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Abstract In this paper, a fastO(n2) algorithm is presented for computing recursive
triangular factorization of a Bezoutianmatrix associatedwith quasiseparable polyno-
mials via a displacement equation. The new algorithm applies to a fairly general class
of quasiseparable polynomials that includes real orthogonal, Szegö polynomials, and
several other important classes of polynomials, e.g., those defined by banded Hes-
senberg matrices. While the algorithm can be seen as a Schur-type for the Bezoutian
matrix it can also be seen as a Euclid-type for quasiseparable polynomials via factor-
ization of a displacement equation. The process, i.e., fast Euclid-type algorithm for
quasiseparable polynomials or Schur-type algorithm for Bezoutian associated with
quasiseparable polynomials, is carried out with the help of a displacement equation
satisfied by Bezoutian and Confederate matrices leading to O(n2) complexity.

Keywords Quasiseparable matrices · Bezoutians · Euclid algorithm · Schur algo-
rithm · Fast algorithms · Displacement structure

1 Introduction

It is known that the Euclidean algorithm is one of the oldest algorithms which appear
in the computation of the greatest common divisor (GCD). Although the original
Euclidean algorithm was presented to compute the positive greatest common divisor
of two given positive integers, later it was generalized to polynomials in one variable
over a field, and further to polynomials in any number of variables over any unique
factorization domain in which the greatest common divisor can be computed.
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1.1 GCD Computing Algorithms

TheEuclidean algorithm for computing polynomialGCDevolvedwith the earlywork
of Brown (see, e.g., [14, 15]) and thereafter several other authors studied: the degree
of the greatest common divisor of two polynomials in connection to a companion
matrix [2], stable algorithms to compute polynomial ε-GCD using the displacement
structure of Sylvester and Bezout matrices [10], generalization of the Euclidean
algorithm (determining the greatest common left divisor) to polynomial matrices
[1], estimation of the degree of ε-GCDs at a low computational cost [41], approx-
imate factorization of multivariate polynomials with complex coefficients contain-
ing numerical noise [35], generalized Euclidean algorithm of the Routh–Hurwitz
type [19], a numeric parameter for determining two prime polynomials under small
perturbations with the help of an inversion formula for Sylvester matrices [5, 6],
algorithms to approximate GCD for polynomials with coefficients of floating-point
numbers [39], and so on. Our intention is not to consider the Euclidean algorithm
via the above methods but to see it via the Hessenberg displacement structure of
a Bezoutian over a system of polynomials {Q} = {Qk(x)}nk=0 satisfying recurrence
relations having degQk(x) = k and to derive a fast algorithmbased on quasiseparable
polynomials.

1.2 Connection to Bezoutian

Given a pair of polynomials a(x) and b(x) with deg a(x) = n and deg b(x) ≤ n, the
classical Bezoutian of a(x) and b(x) is the bilinear form given by

a(x)b(y) − a(y)b(x)

x − y
=

n−1∑

i=0

n−1∑

j=0

sijx
iyj

and the Bezoutian matrix of a(x) and b(x) is defined by the n × n symmetric matrix
Bez(a, b) = [

sij
]n−1
i,j=0.

In the eighteenth century, the Bezoutian was invented in order to build a bridge
between polynomial and linear algebra. As it was remarked in [23, 44], the Bezoutian
concept in principle already evolves from Euler’s work in elimination theory for
polynomials. Hermite was the first who studied Bezoutians in more detail to solve
root localization problems for polynomials (Routh–Hurwitz), which are important
in particular for the investigation of the stability of linear systems. Note that in the
early stages of work related to Bezoutians, the language of quadratic forms was more
common than matrix language. After the first observation of inversion of Bezoutians
as Toeplitz or Hankel by L.T. Lander in 1974, there were significant results published
to show that the inverse of Toeplitz is T-Bezoutian and Hankel is H-Bezoutian (see,
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e.g., [23, 26, 27, 30, 43]). These works show us great examples on the importance of
matrix representations for the inverses of Hankel, Toeplitz, and more general types
of structured matrices in the construction of fast algorithms for solving structured
systems of equations and interpolation problems.

As this paper connects the generalized Bezoutian with confederate matrices via
a Hessenberg displacement structure, we should remark heavily on Barnett’s result
[3] on showing the important relationship between a Bezoutian matrix and a matrix
polynomial associated with the companion matrix. Apart from this, several oth-
ers studied connections of Bezoutians to GCD including: computing the greatest
common right divisor using Sylvester and generalized Bezoutian resultant matrices
[13], matrix representations for generalized Bezoutians via generalized compan-
ion matrices [43], Bezoutians of Chebyshev polynomials of first and second kind
[20], generalized Barnett factorization formula for polynomial Bezoutian matrices
and reduction of Bezoutian via polynomial Vandermonde matrix [45], computation
of polynomial GCD and coefficients of the polynomials generated in the Euclid-
ean scheme via Bezoutian [11], computation of the GCD of two polynomials using
Bernstein–Bezoutian matrix [12], and so on.

1.3 Connection to Displacement Structure

This paper describes a fast Euclid-type algorithm for quasiseparable polynomials
via a fast Schur-type algorithm for a Bezoutian matrix preserving a Hessenberg
displacement structure. The structured matrices like Toeplitz, Hankel, Toeplitz plus
Hankel, Vandermonde, Cauchy, etc. belong to amore general family of matrices with
low rank displacement structure and that can be used to design fast algorithms.

Definition 1 A linear displacement operator ΘΩ,M,F,N (.) : Cn×n → Cn×n is a func-
tion which transforms each matrix R ∈ Cn×n to the matrix given by the displacement
equation

ΘΩ,M,F,N (R) = Ω RM − FRN = GB (1)

where Ω,M,F,N ∈ Cn×n are given matrices and G ∈ Cn×α, B ∈ Cα×n. The pair
{G,B} on last right in (1) is called a minimal generator of R and

rank
{
ΘΩ,M,F,N (R)

} = α. (2)

Example 1 Toeplitz matrix T = [ti−j]1≤i,j≤n satisfies the displacement equation
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T − Z · T · ZT =

⎡

⎢⎢⎢⎣

t0 t−1 · · · t−n+1

t1 0 · · · 0
...

...
. . .

...

tn−1 0 · · · 0

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

t0
2 1
t1 0
...

...

tn−1 0

⎤

⎥⎥⎥⎦

[
1 0 · · · 0
t0
2 t−1 · · · t−n+1

]

where Z is a lower shift matrix. Thus, rank
{
ΘI,I,Z,ZT (T)

} = 2.

Example 2 Hankel matrix H = [hi+j−2]1≤i,j≤n satisfies the displacement equation

Z · H − H · ZT =

⎡

⎢⎢⎢⎣

0 −h0 −h1 · · · −hn−2

h0 0 0 · · · 0
...

...
...

. . .
...

hn−2 0 0 · · · 0

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

1 0
0 h0
...

...

0 hn−2

⎤

⎥⎥⎥⎦

[
0 −h0 · · · −hn−2

1 0 · · · 0

]

where Z is a lower shift matrix. Thus, rank
{
ΘZ,I,I,ZT (H)

} = 2.

A fast algorithm for the structured matrices which preserve displacement structure
first appeared in Morf’s Thesis [38]. Thus the crucial shift-low-rank updating prop-
erty was recognized by the author as the proper generalization of the Toeplitz and
Hankel structured matrices. The algorithm was called Fast Cholesky decomposi-
tion. In June 1971, computer programs were successfully completed by the author.
In the same Thesis he announced a divide-and-conquer algorithm but it was not
shown how to design a super fast algorithm. Such an algorithm was obtained in
Brent-Gustafson-Yun in 1979. Moreover the paper of Kailath et al. [31] proved cru-
cial results demonstrating that the Schur complement inherits the displacement rank.
This idea was the opening of a new chapter, as it filled in the missing link of proving a
super fast complexity inMorf’s Thesis. Delosme in [17] obtained formulas for gener-
ator updates for the Toeplitz case and claimed that those coincided with the classical
Schur algorithm. Furthermore one can find (e.g., in [18, 32–34]) algorithms that
connect structured matrices with displacement equations to derive fast algorithms.
Many polynomial computations can be reduced to structured matrix computations.
In this way, the matrix interpretation of many classical polynomial algorithms for
determining GCD can be expressed.
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The displacement equations of the structured matrices are used to design fast
Schur-type algorithms having complexity O(n2). The existence of fast Schur-type
algorithms for Toeplitz and Toeplitz-like matrices having low displacement rank was
shown in [31, 38]. It was shown in [25] that the low displacement rankVandermonde-
like and Cauchy-like matrices can be used to derive fast Schur-type algorithms.
We should also recall the fast O(n2) algorithm for Cauchy-like displacement struc-
tured matrices via Gaussian elimination with partial pivoting and fast algorithms for
Toeplitz-like, Toeplitz-plus-Hankel-like,Vandermonde-likematrices via transferring
those matrices to Cauchy-like matrices in [21]. Moreover in [40] a fast Schur-type
algorithm with stability criteria was presented for the factorization of Hankel-like
matrices. Finally, the crucial result of the Schur-type algorithm was presented by
Heinig and Olshevsky [24] for the matrices with Hessenberg displacement structure.

While the displacement structure is considered we should recall some results
on Schur-type algorithms in connection to the Bezoutian. At this point, we should
mention the results on: computing Schur type and hybrid (Schular type and Levin-
son type) algorithms to solve the system of equations involving Toeplitz-plus-Hankel
matrices [29], computing a Schur-type algorithm for LDU-decomposing the strongly
regular Toeplitz-plus-Hankel matrix [46], solving a system of equations by split algo-
rithms for skewsymmetric Toeplitz matrices, centrosymmetric Toeplitz-plus-Hankel
matrices, and general Toeplitz-plus-Hankel matrices [28], and more importantly,
Olshevsky’s claim on Schur-type algorithms in connection to Euclid-type algorithms
via the Bezoutian in the 10th ILAS Conference in 2002 and 16th International Sym-
posium on Mathematical Theory of Networks and Systems in 2004.

1.4 Main Results

In [24], a Schur-type algorithm was presented to compute a recursive triangular
factorization R = LDU for a strongly nonsingular n × n matrix R satisfying the
displacement equation:

RY − VR = GHT

with upper and lower Hessenberg matrices Y and V , respectively, and n × α matrices
G and H where α is small compared to n. The Schur–Hessenberg algorithm in
[24] will have complexity O(n3) in general for dense and unstructured Hessenberg
matrices Y and V . However, one can explore the structures of Y and V to derive a
O(n2) algorithm. Thus in this paper, we explore the structures of Y and V to derive a
fast hybrid of Schur-type and Euclid-type algorithms in connection with Bezoutian
and confederate matrices over the system of quasiseparable polynomials.

We observe a displacement equation of a Bezoutian matrix associated with the
reverse polynomials in connection to a companion matrix over the system of mono-
mial basis (this displacement equation (14) is a variant of the Lancaster–Tismenetsky
equation in [36]). We then use this to derive and generalize a displacement equation
for a generalized Bezoutian matrix with confederate matrix respect to the system of
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polynomials {Q} = {Qk(x)}nk=0 satisfying recurrence relations having degQk(x) = k.
Then, the displacement equation for a generalizedBezoutianwith confederatematrix,
and characteristics of the Schur complement of the generalized Bezoutian and gen-
erator updates for confederate and generalized Bezoutian matrices are used to derive
the Schur–Euclid–Hessenberg algorithm. Finally, to derive a fast O(n2) complex-
ity Schur–Euclid–Hessenberg algorithm we take quasiseparable polynomials as the
main tool.

Definition 2 A matrix A = [
aij

]
is called (H, 1)-quasiseparable (i.e., Hessenberg-

1-quasiseparable) if (i) it is strongly upper Hessenberg (ai+1,i �= 0 for i = 1, 2, · · · ,

n − 1 and ai,j = 0 for i > j + 1), and (ii) max (rank A12) = 1 where the maximum is
taken over all symmetric partitions of the form

A =
[

� A12

� �

]

• Let A = [aij] be a (H, 1)-quasiseparable matrix. For αi = 1
ai+1,i

, then the system of
polynomials related to A via

rk(x) = α1α2 · · ·αkdet(xI − A)(k×k)

is called a system of (H, 1)-quasiseparable polynomials. In the classification paper
[9], the characterization of orthogonal polynomials (orthogonal with respect to a
weighted inner product (definite or indefinite) on the real line) andSzegö polynomials
(orthogonal on the unit circlewith respect to aweighted inner product) via tridiagonal
and unitaryHessenbergmatrices, respectively, are observed to belong to awider class
of (H, 1)-quasiseparable polynomials and matrices, respectively. Hence once a fast
O(n2) Schur–Euclid-type algorithm for quasiseparable polynomials is established,
weanalyze the complexity ofSchur–Euclid-type algorithms for orthogonal andSzegö
polynomials.

1.5 Structure of the Paper

The structure of the paper is as follows. In the next Sect. 2, we state polynomial divi-
sion in a matrix form, arithmetic complexity, and see the connection to the Euclidean
algorithm in matrix forms. In Sect. 3, we express displacement equations and char-
acterizations of the Bezoutian matrix in connection to the Schur complement and
reverse polynomials. Then in Sect. 4, we generalize the displacement equation in
the former section via generalized Bezoutians and confederate matrices over the
system of polynomials {Q} = {Qk(x)}nk=0 satisfying recurrence relations having deg
Qk(x) = k. At the end of the section,we present a hybrid of Euclid-type algorithmand
Schur-type algorithm using the Hessenberg displacement structure of the Bezoutian
and call it the Schur–Euclid–Hessenberg algorithm. Finally in Sect. 5, we establish
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a fast O(n2) Schur–Euclid–Hessenberg algorithm for quasiseparable polynomials
while addressing the complexity of the algorithm for its subclasses: orthogonal and
Szegö polynomials.

2 One Way to Express Polynomial Division in Matrix Form

In this section, we state polynomial division in a matrix form. In the meantime, we
discuss the arithmetic cost of computing the polynomial division and the matrix form
of the Euclidean algorithm in connection to polynomials. Similar to this approach
one can see the results in [42] to compute polynomial division efficiently. We first
give the Euclidean algorithm for computing the GCD of polynomials.

Let a(x) and b(x) be given with deg a(x) ≥ deg b(x); then the Euclidean algorithm
applies to a(x) and b(x) and generates a sequence of polynomials r(i)(x), q(i−1)(x),
such that

r(0)(x) = a(x), r(1)(x) = b(x)
r(i−2)(x) = q(i−1)(x)r(i−1)(x) + r(i)(x), i = 2, 3, · · · , t + 1

(3)

where r(i)(x) is the remainder of the division of r(i−2)(x) by r(i−1)(x). The algorithm
stops when a remainder r(t+1)(x) = 0 is found; then r(t)(x) is the desired GCD of
a(x) and b(x). Note that since the deg r(0)(x) > deg r(1)(x) > · · · > deg r(t+1)(x),
the algorithm must terminate in a finite number of steps. If r(t)(x) is a constant then
r(0)(x) and r(1)(x) are said to be relatively prime.

The following results showpolynomial division (one step of a variant of Euclidean
algorithm) in matrix form. Here we have considered −c(x) as the remainder of the
polynomial division of a(x) by b(x) just to be compatible with future discussions.

Lemma 1 Let a(x) = anxn + an−1xn−1 + · · · + a0 and b(x) = bn−kxn−k +
bn−k−1xn−k−1 + · · · + b0 where k ≥ 1. Then the polynomial division of a(x) by b(x)
can be seen via:

−

⎡

⎢⎢⎢⎢⎢⎣

0
cn−k−1

cn−k−2
...

c0

⎤

⎥⎥⎥⎥⎥⎦
+ q0

⎡

⎢⎢⎢⎢⎢⎣

bn−k

bn−k−1

bn−k−2
...

b0

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

an−k

an−k−1

an−k−2
...

a0

⎤

⎥⎥⎥⎥⎥⎦
− B̂k B

−1
k

⎡

⎢⎢⎢⎣

an
an−1

...

an−k+1

⎤

⎥⎥⎥⎦ (4)

where −c(x) = −cn−k−1xn−k−1 − cn−k−2xn−k−2 − · · · − c0 is the remainder, q0 is
the constant term of the quotient of polynomial division,

Bk := toeplitz ([bn−k : bn−2k+1], [bn−k, zeros(1, k − 1)]) ,
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and

B̂k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−2k bn−2k+1 bn−2k+2 · · · bn−k−1

bn−2k−1 bn−2k bn−2k+1 · · · ...

bn−2k−2 bn−2k−1 bn−2k
...

...
...

...

b0 b1
...

0 b0 b1

0 0
. . .

. . .
...

. . .
. . .

... 0 b0 b1
0 b0

0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof If q(x) = qkxk + qk−1xk−1 + · · · + q0 and−c(x) are the quotient and remain-
der of the polynomial division of a(x) by b(x) then we can say

anx
n + an−1x

n−1 + · · · + a0 = (qkx
k + qk−1x

k−1 + · · · + q0)

·(bn−kx
n−k + bn−k−1x

n−k−1 + · · · + b0)

−(cn−k−1x
n−k−1 + cn−k−2x

n−k−2 + · · · + c0) (5)

By equating the coefficients of xn to xn−k+1 in (5);

⎡

⎢⎢⎢⎢⎢⎣

an
an−1

...

an−k+2

an−k+1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

bn−k 0 · · · · · · 0

bn−k−1 bn−k
. . .

...

bn−k−2 bn−k−1 bn−k
. . .

...
...

. . .
. . . 0

bn−2k+1 bn−2k+2 . . . bn−k−1 bn−k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎣

qk
qk−1

...

q2
q1

⎤

⎥⎥⎥⎥⎥⎦
(6)

Note that the first matrix in the RHS of (6) is a lower Toeplitz matrix (say Bk

where Bk := toeplitz ([bn−k : bn−2k+1], [bn−k, zeros(1, k − 1)]) so qk’s (except q0)
can be recovered from:

⎡

⎢⎢⎢⎢⎢⎣

qk
qk−1

...

q2
q1

⎤

⎥⎥⎥⎥⎥⎦
= [Bk]

−1 ·

⎡

⎢⎢⎢⎢⎢⎣

an
an−1

...

an−k+2

an−k−1

⎤

⎥⎥⎥⎥⎥⎦
(7)

Equating coefficients of xn−k to the constant term in (5);
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−

⎡

⎢⎢⎢⎢⎢⎣

0
cn−k−1

cn−k−2
.
.
.

c0

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

an−k

an−k−1
.
.
.

a0

⎤

⎥⎥⎥⎦ −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−2k bn−2k+1 bn−2k+2 · · · bn−k

bn−2k−1 bn−2k bn−2k+1 · · · bn−k−1
.
.
.

.

.

.
.
.
.

.

.

.

b1
.
.
.

.

.

.
.
.
.

b0 b1
.
.
.

0 b0 b1
.
.
.

0 0 b0 b1
.
.
.

.

.

.
. . .

. . .
. . .

. . .

.

.

.
. . .

. . .
. . . b1

0 · · · · · · 0 0 b0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎣

qk
qk−1

qk−2
.
.
.

q0

⎤

⎥⎥⎥⎥⎥⎦

By rearranging the above system we get

−

⎡

⎢⎢⎢⎢⎢⎣

0
cn−k−1

cn−k−2
...

c0

⎤

⎥⎥⎥⎥⎥⎦
+ q0

⎡

⎢⎢⎢⎣

bn−k

bn−k−1
...

b0

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

an−k

an−k−1
...

a0

⎤

⎥⎥⎥⎦ −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−2k bn−2k+1 bn−2k+2 · · · bn−k−1

bn−2k−1 bn−2k bn−2k+1 · · · bn−k−2
...

...
...

...

b1
...

...
...

b0 b1
...

0 b0 b1
...

0 0 b0 b1
...

...
. . .

. . .
. . .

. . .

...
. . .

. . .
. . . b1

0 · · · · · · 0 0 b0
0 · · · · · · 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎣

qk
qk−1

qk−2
...

q1.

⎤

⎥⎥⎥⎥⎥⎦

However we can now use (7) to rewrite the right side of the above equation andwhich
yields the result (4).

Corollary 1 Let a(x) and b(x) be two polynomials such that deg a(x) = deg b(x) + 1
with deg a(x) = n. Then the polynomial division of a(x) by b(x) can be seen via:
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−

⎡

⎢⎢⎢⎢⎢⎣

0
cn−2

...

c1
c0

⎤

⎥⎥⎥⎥⎥⎦
+ q0

⎡

⎢⎢⎢⎣

bn−1

bn−2
...

b0

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

an−1

an−2
...

a0

⎤

⎥⎥⎥⎦ − q1Z
T

⎡

⎢⎢⎢⎢⎢⎣

bn−1

bn−2
...

b1
b0

⎤

⎥⎥⎥⎥⎥⎦

where q1 = an b
−1
n−1, and Z is the lower shift matrix.

The following gives the Toeplitz matrix-based calculation of the quotient of the
polynomial division and its arithmetic cost.

Corollary 2 If a(x) and b(x) are two polynomials such that deg a(x) = n and deg
b(x) = n − k where k ≥ 1, then the arithmetic cost of computing the quotient of the
polynomial division is O(n log n) operations.

Proof Let q(x) be the quotient of the polynomial division of a(x) by b(x) stated via
(5). Then the coefficients of quotient, qk , can be recovered via

⎡

⎢⎢⎢⎢⎢⎣

qk
qk−1

...

q1
q0

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

bn−k 0 · · · · · · 0

bn−k−1 bn−k
. . .

...

bn−k−2 bn−k−1 bn−k
. . .

...
...

. . .
. . . 0

bn−2k bn−2k+1 . . . bn−k−1 bn−k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

−1

·

⎡

⎢⎢⎢⎢⎢⎣

an
an−1

...

an−k+1

an−k

⎤

⎥⎥⎥⎥⎥⎦

= B−1
k+1 ·

⎡

⎢⎢⎢⎢⎢⎣

an
an−1

...

an−k+1

an−k

⎤

⎥⎥⎥⎥⎥⎦
(8)

Note that Bk+1 = bn−kI + bn−k−1Z + · · · + bn−2kZk = b̄(Z) where Z is the lower
shift matrix and Zk+1 = 0. Thus B−1

k+1 = b̄(Z)−1mod Zk+1. Note that B−1
k+1 is also

a lower triangular Toeplitz matrix which is defined by its first column. Now by
following [42], one can apply a divide-and-conquer technique for the block form of
the B−1

k+1 to calculate the first column of B−1
k+1. This yields the cost of computing B−1

k+1
and also a Toeplitz matrix times a vector is of order O(n log n).

The following shows the cost of computing sequences of remainder polynomials
via a variant of the Euclidean algorithm which corresponds to polynomial division
in matrix form.

Corollary 3 If the sequence of remainders of the polynomial division is computed
via Lemma 1, then the cost of computing one division isO(n log2 n) andO(n t log2 n)
for generating the full sequencewhere n is the degree of the divisor and t is the number
of steps.
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Proof As stated in Corollary 2, the cost of computing the quotient of the polynomial
division isO(n log n). Thus computingB−1

k āwhere ā = [
an an−1 · · · an−k+1

]T
costs

O(n log n) operations. Now the multiplication of B−1
k ā by a tall sparse matrix B̂k

together with vector subtraction yields O(n log2 n) operations for one division or
one step in calculating the remainder. Thus to generate t steps or for a full sequence
it costs O(n t log2 n) operations.

The next section shows the displacement equations of Bezoutian and Schur com-
plement in connection to reverse polynomials.

3 Displacement Structures and Characterizations
of Bezoutian

This section describes two types of displacement equations of the Bezoutian while
introducing characterization of the Bezoutian via Gaussian elimination and Schur
complement. These displacement equations of Bezoutians are elaborated in connec-
tion to a lower shift matrix and a companion matrix but associated with the reverse
polynomials.

Definition 3 Let a(x) = anxn + an−1xn−1 + · · · + a0. Then, the reverse polynomial
of a(x) is defined as a�(x) = xna(x−1) = a0xn + a1xn−1 + . . . + an−1x + an.

We define the Bezoutian associated with the reverse polynomials as follows.

Definition 4 Let P = {1, x, x2, ..., xn} be a monomial basis and let a(x) and b(x) be
polynomials of degree not greater than n. Then a matrix S� = [sij] is the Bezoutian
associated with the reverse polynomials a�(x) and b�(x), say S� = BezP(a�, b�), if

S(a�, b�) = a�(x) · b�(y) − b�(x) · a�(y)

x − y
=

n−1∑

i,j=0

sijx
iyj

= [
1 x x2 · · · xn−1

]
S�

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn−1

⎤

⎥⎥⎥⎥⎥⎦
. (9)

3.1 Displacement Structures of Bezoutian

Here we obtain two types of displacement equations of the Bezoutian associated with
the reverse polynomials. Once we establish the displacement structures, we state
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connections of the displacement equations to the Gohberg, Kailath, and Olshevsky
algorithm (GKO algorithm) [21] and the Heinig and Olshevsky algorithm (HO algo-
rithm) [24].

Belowwe give the GKO algorithm for matrix R1 satisfying the Sylvester displace-
ment equation.

Lemma 2 Let matrix R1 =
[
r1 R12

R21 R22

]
satisfy:

ΔF1,A1(R1) =
[
f1 0
∗ F2

]
· R1 − R1 ·

[
a1 ∗
0 A2

]
= G(1)B(1) =

[
g1
G1

] [
b1 B1

]

If r1 (i.e., (1,1) entry of R1) �= 0, then the Schur complement R2 = R(1)
22 − R21

1
r1
R12

satisfies the Sylvester type displacement equation

F2 · R2 − R2 · A2 = G(2)B(2)

with

G(2)
2 = G1 − R21

1

r1
g1, B(2)

2 = B1 − b1
1

r1
R12

where g1 and b1 are the first row of G(1) and the first column of B(1) respectively.

The Lemma 2 shows that if R1 satisfies a Sylvester type displacement equation
then so does its Schur complement. Thus the displacement equation of the Schur
complement of the matrix will also yield the factorization. One can recover the first
row and column of R1, and R2, by using generator updates. Proceeding recursively
one finally obtains the LU factorization of R1. Moreover authors in [21] note that one
can obtain a fast Gaussian elimination algorithm with partial pivoting for Cauchy-
like, Vandermonde-like, and Chebyshev-like displacement structures.

Lemma 3 Let the matrix R1 satisfy:

ΔF1,A1(R1) = F1 · R1 − R1 · A1 = G(1)B(1)

and let the matrices be partitioned as

R1 =
[
R11 R12

R21 R22

]
, F1 =

[
F11 F12

F21 F22

]
, A1 =

[
A11 A12

A21 A22

]
,

G(1) =
[
G1

G2

]
, B(1) = [

B1 B2
]
.

If R11 is nonsingular, then the Schur complement of R1, i.e., R2 = R22 − R21R
−1
11 R12

satisfies
F2 · R2 − R2 · A2 = G(2)B(2)
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with
G(2) = G2 − R21R

−1
11 G1, B(2) = B2 − B1R

−1
11 R12

A2 = A22 − A21R
−1
11 R12, F2 = F22 − R21R

−1
11 F12.

From the Lemma 3, one can observe that a Schur-type algorithm can be designed
for nontriangular matrices {F1,A1}. Authors in [24] specialize this crucial result by
deriving a Gaussian elimination algorithm for matrices with Hessenberg displace-
ment structure. Although the algorithm has complexity O(n3), in general one can
explore the structures of F1 and A1 to derive fast algorithms.

We first observe a Sylvester type displacement equation for the Bezoutian asso-
ciated with reverse polynomials in connection to the lower shift matrix and see it as
a GKO-type displacement equation, but in our case it is for the Bezoutian.

Lemma 4 Let S� = BezP(a�, b�) be the Bezoutian associated with the reverse poly-
nomials where a(x) = anxn + an−1xn−1 + · · · + a0 and b(x) = bnxn + bn−1xn−1 +
· · · + b0 then S� satisfies the displacement equation:

ZS� − S�ZT = GJGT (10)

where G =

⎡

⎢⎢⎢⎣

an bn
an−1 bn−1

...
...

a1 b1

⎤

⎥⎥⎥⎦, J =
[

0 1
−1 0

]
and Z is the lower shift matrix.

Proof By following the Definition 4 of the Bezoutian associated with the reverse
polynomials, we get:

(x − y)S(a�, b�) = a�(x) · b�(y) − b�(x) · a�(y). (11)

Observing the RHS:

a�(x)b�(y) − b�(x)a�(y) = [
1 x · · · xn ]

⎡

⎢⎢⎢⎣

an bn
an−1 bn−1
...

...

a0 b0

⎤

⎥⎥⎥⎦

[
bn bn−1 · · · b0

−an −an−1 · · · −a0

]
⎡

⎢⎢⎢⎣

1
y
...

yn

⎤

⎥⎥⎥⎦

= [
1 x x2 · · · xn ]

G̃JG̃T

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn

⎤

⎥⎥⎥⎥⎥⎦
(12)
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where G̃ =

⎡

⎢⎢⎢⎣

an bn
an−1 bn−1
...

...

a0 b0

⎤

⎥⎥⎥⎦ and J =
[

0 1
−1 0

]
. Let’s pad S� with zeros such that

[
S� 0
0 0

]
= S̃. We can always use S̃ instead of S� because

[
1 x x2 · · · xn−1

]
S�

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn−1

⎤

⎥⎥⎥⎥⎥⎦
= [

1 x x2 · · · xn ]
S̃

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn

⎤

⎥⎥⎥⎥⎥⎦

By following (9) together with S̃ we get:

(x − y)S(a�, b�) = [
x x2 · · · xn+1

]
S̃

⎡

⎢⎢⎢⎣

1
y
...

yn

⎤

⎥⎥⎥⎦ − [
1 x · · · xn ]

S̃

⎡

⎢⎢⎢⎣

y
y2

...

yn+1

⎤

⎥⎥⎥⎦

= [
1 x x2 · · · xn ]

(ZS̃ − S̃ZT )

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn

⎤

⎥⎥⎥⎥⎥⎦

Following the immediate result with (11) and (12)

ZS̃ − S̃ZT = G̃JG̃T . (13)

In the relation (13) one can peel off the last row of the generator G̃, and peel off
the last row and column of S̃ resulting in S�, hence the result.

The following result is an immediate consequence of the Bezoutian satisfying the
displacement equation (10) in connection to the displacement rank.

Corollary 4 If the Bezoutian S� satisfies the displacement equation (10), then
rank

{
ΘZ,I,I,ZT (S�)

} = 2.

By following the GKO algorithm [21], one can claim that the displacement equation
(10) is of GKO-type but for the Bezoutian having low displacement rank.

Next, we see the second displacement equation of the Bezoutian associated with
the reverse polynomials satisfying Hessenberg displacement structure.
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Lemma 5 A matrix S� is a Bezoutian for reverse polynomials a�(x) and b�(x) if and
only if it satisfies the equation

CT
a S

� − S�Ca = 0. (14)

for a matrix Ca of the form

Ca =

⎡

⎢⎢⎢⎢⎢⎢⎣

− an−1

an
− an−2

an
− an−3

an
· · · − a0

an
1 0 0 · · · 0

0 1 0
...

...
. . .

. . .
. . . 0

0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
(15)

where a(x) = anxn + an−1xn−1 + · · · + a0 and b(x) = bnxn + bn−1xn−1 + · · · + b0.

Proof Let S� be the Bezoutian associated with the reverse polynomials a�(x) and
b�(x) and Ca have the above structure (entries in the first row are extracted from the
coefficients of a(x)) then it can easily be seen by matrix multiplication that

CT
a S

� − S�Ca = 0. (16)

Notice that this is a variant of the Lancaster–Tismenetsky equation in [36].
Now let CT

a S
� − S�Ca = 0 where S� = [sij] and Ca is the matrix of the given form

so one can recover the columns of S� as follows.
the second column of S� by:

CT
a si,1 + an−1

an
si,1 − si,2 = 0 ⇒ si,2 = CT

a si,1 + an−1

an
si,1

si,2 = s1,1 a +
(
ZT + an−1

an

)
si,1

the third column of S� by:

CT
a si,2 + an−2

an
si,1 − si,3 = 0 ⇒ si,3 = CT

a si,2 + an−2

an
si,1

si,3 = s1,2 a + ZTsi,2 + an−2

an
si,1

= (
ZT s1,1 + s1,2In

)
a +

((
ZT

)2 + an−1

an
ZT + an−2

an

)
si,1
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proceeding recursively the kth column of S� by:

si,k =
((
ZT

)k−2
s1,1 + (

ZT
)k−3

s1,2 + · · · + s1,k−1In
)

a

+
((

ZT
)k−1 + an−1

an

(
ZT

)k−2 + an−2

an

(
ZT

)k−3 + · · · + an−k+1

an

)
si,1

where a = [− an−1

an
− an−2

an
· · · − a0

an

]T
and In is the identity matrix. Hence once all

columns are recovered it should be clear that since S� satisfies (16) there is no other
matrix satisfying (16) and having the same first column si1. Thus S� = BezP(a�, b�).

The displacement equation (16) is of HO-type but for the Bezoutian associated
with reverse polynomials satisfyingHessenberg displacement structure in connection
to the companion matrix Ca.

3.2 Characterization of Bezoutian

In this section, we perform Gaussian elimination on a Bezoutian satisfying displace-
ment structure (10) and then elaborate on the relationship between a Bezoutian with
its Schur complement.

Before we see the Schur complement of a Bezoutian as a Bezoutian, let us provide
a supportive result to see how the displacement equation (13) helps us to address the
rank of a Bezoutian as it is padded with zeros.

Lemma 6 A matrix S� = BezP(a�, b�) ∈ Rn,n is a Bezoutian if and only if S̃ =[
S� 0
0 0

]
has displacement rank 2.

Proof Lemma 4 suggests that if S� is a Bezoutian then S̃ has displacement rank
2. Conversely, if S̃ has displacement rank 2, then ZS̃ − S̃ZT = G̃JG̃T for some
G̃ ∈ Rn+1,2. Now, assume we have two polynomials and we wish to compute the
Bezoutian associated with them. Lemma 4 suggests that we can do this by writing the
polynomials as the columns of the generator and recovering S� from the displacement
equation ZS̃ − S̃ZT = G̃JG̃T . Let a�(x) and b�(x) be the polynomials defined by the
first and second columns of G̃, respectively. Then, the Bezoutian generated by these
two polynomials will be exactly S�.

Lemma 7 If we perform Gaussian elimination on a Bezoutian, then the result will
still be a Bezoutian.

Proof First, it is easy to see that Gaussian elimination on the matrix S� corresponds
to Gaussian elimination on its generator. Second, if we performGaussian elimination
on S� and then pad the resultant matrix with a row and a column of zeros, the result
will be the same as the result of padding S� first to obtain S̃ and performing the
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same steps of Gaussian elimination on S̃. This is because the corresponding steps
of Gaussian elimination will not alter a column or a row of zeros. Therefore, if we
have an arbitrary Bezoutian S�, we know that S̃ has displacement rank 2. Let us say
Gaussian elimination is performed on S� to obtain a different matrix S(1). From the
discussion above, we can infer that the same steps of Gaussian elimination performed

on S̃ will result in

[
S(1) 0
0 0

]
. Let G̃ be the generator of S̃ and G(1) be the result after

applying steps of Gaussian elimination to G̃. It is clear that G(1) is the generator of[
S(1) 0
0 0

]
, which in turn implies S(1) is a Bezoutian, hence the result.

The above result immediately implies the following statement.

Corollary 5 The Schur complement of a Bezoutian is a Bezoutian.

Proof This follows because Schur complementation is equivalent to Gaussian elim-
ination.

4 Schur–Euclid-Type Algorithm via Bezoutian Having
Hessenberg Structure

This section describesHessenberg displacement structure of theBezoutian associated
with reverse polynomials expanded in a monomial P = {1, x, · · · , xn} basis and
then generalizes it to the basis Q = {Q0,Q1, · · · ,Qn} where deg Qk(x) = k. The
main idea is to explore the transformation of Hessenberg displacement structure
of a Bezoutian from a monomial basis P and to the generalized basis Q. Once it
is established we see the connection of the Schur complement of a Bezoutian to
the Schur–Euclid–Hessenberg algorithm via generator updates of the generalized
Bezoutian and confederate matrix.

4.1 Hessenberg Displacement Structure of Bezoutian Over
Monomial Basis

Here we use the displacement equation of a Bezoutian (14) associated with reverse
polynomials over a monomial basis to address the connection among generator
updates of the companion matrix, the Schur complement of the Bezoutian, and poly-
nomial division.

Definition 5 A matrix R1 is said to have Hessenberg displacement structure if it
satisfies

F1R1 − R1A1 = G(1)B(1) (17)

where A1 is an upper Hessenberg matrix and F1 is a lower Hessenberg Matrix.
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In Lemma 5, we have seen the connection of the Bezoutian S� = BezP(a�, b�) to
the displacement equation CT

a S
� − S�Ca = 0 and vice-versa. Since Ca is an upper

Hessenberg matrix, by following the Definition 5, we can say that the Bezoutian has
the Hessenberg displacement structure associated with reverse polynomial over a
monomial basis.

In the following, we use the Hessenberg displacement structure of a Bezoutian
over a monomial basis to see a connection to generator updates of the companion
matrix to polynomial division.

Lemma 8 Let Ca (15) be the companion matrix of the polynomial a(x) satisfying
CT
a S

� − S�Ca = 0 where S� = BezP(a�, b�) and deg a(x) > deg b(x). Then the gen-
erator update of Ca is the companion matrix of the polynomial b(x).

Proof Let deg a(x) = n and deg b(x) = n − k. Since the Bezoutian satisfies the
Hessenberg displacement structure CT

a S
� − S�Ca = 0 one can apply Lemma 3 to

update the generators. Thus the updated companion matrix results in:

Cnew =

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎣

0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎤

⎥⎥⎥⎦ · R−1
11 · R12 (18)

However, from another displacement equation of the Bezoutian, i.e., following the
formula (13) one can state:

ZR − RZT = G(1)J̄G(1)T (19)

where R =
[
Bez(b�, a�) 0

0 0

]
= −

[
S� 0
0 0

]
, J̄ =

[
0 −1
1 0

]
, Z is the lower shift matrix,

and G(1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

an 0
...

...

an−k+1 0
an−k bn−k

...
...

a0 b0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With the help of the above equation one can obtain the following equations by
considering the first k columns of R:
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[
Zr1| Zr2 − r1| Zr3 − r2| . . . |Zrk − rk−1

] = [
anb| an−1b| an−2b| . . . |an−k+1b

]

(20)

From these it is possible to obtain the following relations:

Zr1 = anb

Zr2 = r1 + an−1b = ZTanb + an−1b

Zr3 = r2 + an−2b = (ZT )2anb + ZTan−1b + an−2b
.
.
.

Zrk = rk−1 + an−k+1b = (ZT )k−1anb + (ZT )k−2an−1b + . . . + ZTan−k+2b + an−k+1b

Let R11 be the k × k upper block of R. Then, from the above equations it is possible
to express R11 as:

⎡

⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 anbn−k

0 · anbn−k anbn−k−1 + an−1bn−k

.

.

. ·
.
.
.

0 anbn−k

anbn−k anbn−k−1 + an−1bn−k · · · anbn−(2k−1) + an−1bn−(2k) + . . . + an−k+1bn−k .

⎤

⎥⎥⎥⎥⎥⎥⎦

Let Ĩ be the antidiagonal matrix. Multiplying the above (R11) by Ĩ from the right:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

anbn−k 0 · · · 0 0

anbn−k−1 + an−1bn−k anbn−k 0
.
.
. 0

.

.

. · 0
.
.
.

anbn−k 0
anbn−(2k−1) + an−1bn−2k + . . . + an−k+1bn−k · · · anbn−k−1 + an−1bn−k anbn−k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

However this can easily be factored as:

R11 · Ĩ =

⎡

⎢⎢⎢⎢⎢⎢⎣

bn−k

bn−k−1 bn−k
... bn−k−1

. . .

. . .
. . .

bn−(2k−1) · · · bn−k−1 bn−k

⎤

⎥⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎢⎣

an
an−1 an

... an−1
. . .

. . .
. . .

an−k+1 · · · an−1 an

⎤

⎥⎥⎥⎥⎥⎥⎦

(21)

So, R11 · Ĩ = BkAk where we denote the Toeplitz matrix composed of the coefficients
of a(x) on the lower diagonals in the above Eq. (21) as Ak and similarly for Bk .
Therefore, R−1

11 = ĨA−1
k B−1

k .
Let R21 be the (n − k + 1) × k block of R right below R11, i.e.,
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R21 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

anbn−k−1 anbn−k−2 + an−1bn−k−1 . . . anbn−2k + an−1bn−2k+1 + . . . + an−k+1bn−k−1

anbn−k−2 anbn−k−3 + an−1bn−k−2 . . .
.
.
.

.

.

.
.
.
.

anb2 anb1 + an−1b2 . . . an−k+3b0 + an−k+2b1 + an−k+1b2
anb1 anb0 + an−1b1 . . . an−k+2b0 + an−k+1b1
anb0 an−1b0 . . . an−k+1b0
0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us compute R21 · Ĩ:

R21 · Ĩ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

anbn−2k + an−1bn−2k+1 + . . . + an−k+1bn−k−1 . . . anbn−k−2 + an−1bn−k−1 anbn−k−1

.

.

. . . . anbn−k−3 + an−1bn−k−2 anbn−k−2

.

.

.
.
.
.

an−k+3b0 + an−k+2b1 + an−k+1b2 . . . anb1 + an−1b2 anb2
an−k+2b0 + an−k+1b1 . . . anb0 + an−1b1 anb1

an−k+1b0 . . . an−1b0 anb0
0 . . . 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is possible to factor the above as follows:

R21 · Ĩ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−2k bn−2k+1 bn−2k+2 . . . bn−k−1

bn−2k−1 bn−2k bn−2k+1 . . . bn−k−2
...

b0
...

0
. . .

. . .
...

...
. . .

. . . b0
0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎢⎣

an
an−1 an

... an−1
. . .

. . .
. . .

an−k+1 . . . an−1 an

⎤

⎥⎥⎥⎥⎥⎥⎦

From this it follows that R21 = B̂k · Ak · Ĩ where B̂k is the first matrix in the RHS
of the above equation. Therefore

R21R
−1
11 = (̂BkAk̃I) · (̃IA−1

k B−1
k ) = B̂k · B−1

k .

Moreover one can say that (R−1
11 R12)

T = R21R
−1
11 . Thus
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(R−1
11 R12)

T

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−2k bn−2k+1 · · · bn−k−1
bn−2k−1 bn−2k · · · bn−k−2
bn−2k−2 bn−2k−1 · · · bn−k−3

.

.

.

b0

.

.

.

0
. . .

. . .

.

.

.
. . .

. . . b0
0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎢⎢⎢⎣

bn−k
bn−k−1 bn−k
bn−k−2 bn−k−1 bn−k

.

.

.
. . .

bn−(2k−1) bn−(2k−2) . . . bn−k−1 bn−k

⎤

⎥⎥⎥⎥⎥⎥⎦

−1

(22)

Since the generator update of Ca in Eq. (18) uses only the last row of R−1
11 R12, one

has to consider only the last column of its transpose (after peeling off the last entry)

which is

⎡

⎢⎢⎢⎢⎢⎢⎣

bn−k−1

bn−k
bn−k−2

bn−k
bn−k−3

bn−k

...
b0
bn−k

⎤

⎥⎥⎥⎥⎥⎥⎦
. Thus the updated matrix Cnew in (18) is given by:

⎡

⎢⎢⎢⎢⎢⎣

− bn−k−1

bn−k
− bn−k−2

bn−k
· · · − b1

bn−k
− b0

bn−k

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
. . .

...

0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎦

which is the companion matrix for b(x) and hence the result.

Corollary 6 The first column of the Bezoutian S� = BezP(a�, b�) where deg a(x) >

deg b(x) contains scalar multiples of the coefficients of b(x).

Proof This result is trivial as the first column of R, i.e., r1 = ZTanb where

b = [
bn−k bn−k−1 · · · b0

]T
and R = −

[
S� 0
0 0

]
.

The next result shows the updated first column of the Schur complement of a
Bezoutian in the kth step.

Corollary 7 The first column of the Schur complement of S� = BezP(a�, b�) where
deg a(x) > deg b(x), contains scalar multiples of the coefficients of the polynomial
−c(x) which is the remainder of the polynomial division of a(x) by b(x).
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Proof Let us partition the generator G(1) in (19) as G(1) =
[
G1

G2

]
where G1 =

⎡

⎢⎢⎢⎣

an 0
an−1 0

...
...

an−k+1 0

⎤

⎥⎥⎥⎦ andG2 =

⎡

⎢⎢⎢⎣

an−k bn−k

an−k−1 bn−k−1
...

...

a0 b0

⎤

⎥⎥⎥⎦. Since S� satisfies the displacement equa-

tion (19) with lower shift matrix Z , one can apply the block form of Lemma 2 to
update the generator G(1) via:

⎡

⎢⎢⎢⎣

dn−k bn−k

dn−k−1 bn−k−1
...

...

d0 b0

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

an−k bn−k

an−k−1 bn−k−1
...

...

a0 b0

⎤

⎥⎥⎥⎦ − R21R
−1
11

⎡

⎢⎢⎢⎣

an 0
an−1 0

...
...

an−k+1 0

⎤

⎥⎥⎥⎦

which results in the formula:
⎡

⎢⎢⎢⎣

dn−k

dn−k−1
...

d0

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

an−k

an−k−1
...

a0

⎤

⎥⎥⎥⎦ − R21R
−1
11

⎡

⎢⎢⎢⎣

an
an−1

...

an−k+1

⎤

⎥⎥⎥⎦

The matrices R11 and R21 in the above system are expressed explicitly in Lemma 8
and are the same as the matrices Bk and B̂k respectively defined in Lemma 1. Thus
combining both Lemmas results in:

⎡

⎢⎢⎢⎢⎢⎣

dn−k

dn−k−1

dn−k−2
...

d0

⎤

⎥⎥⎥⎥⎥⎦
= −

⎡

⎢⎢⎢⎢⎢⎣

0
cn−k−1

cn−k−2
...

c0

⎤

⎥⎥⎥⎥⎥⎦
+ q0

⎡

⎢⎢⎢⎢⎢⎣

bn−k

bn−k−1

bn−k−2
...

b0

⎤

⎥⎥⎥⎥⎥⎦

where from Lemma 1, −c(x) = −
n∑

i=k+1

cn−ix
n−i is the remainder and q0 is the con-

stant term in the quotient of the polynomial division of a(x) by b(x). Thus the gen-
erator update of G(1) via the Bezoutian BezP(a�, b�) corresponds to the polynomial
division of a(x) by b(x). Moreover following Lemma 2, the Schur complement of the
Bezoutian, which is the new Bezoutian BezP(b�, c�), also satisfies the displacement
equation (19)with the above generator updates. Thus, as in Lemma 8, one can recover
the scalar multiple of the coefficients of c(x) from the first column of BezP(b�, c�).

Theorem 1 Let the Bezoutian S� = BezP(a�, b�) where deg a(x) > deg b(x) and Ca

is the companion matrix defined via (15). Then the generator update of the Bezoutian
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S� over the displacement equation CT
a S

� − S�Ca = 0 coincides with the polynomial
division of a(x) by b(x).

Proof Lemma 5 shows that the Bezoutian S� satisfies CT
a S

� − S�Ca = 0. Since Ca

has upper Hessenberg structure one can apply Lemma 3 to update S�,Ca and CT
a .

Here there is no need to updateG(1) and B(1) since they are both 0.Moreover, updates
forCa andCT

a via Lemma 3 will preserve the upper and lower Hessenberg structures.
As we know the Bezoutian S� is completely determined by polynomials a�(x) and
b�(x). By Lemma 8 the polynomial b(x) can be recovered from the generator update
of the companion matrix Ca, i.e., after generator updates the companion matrix of
the polynomial a(x) becomes the companion matrix of the polynomial b(x). Now by
Corollary 7, one can recover the scalar multiple of the coefficients of −c(x) which
is the remainder of the polynomial division of a(x) by b(x) via the first column of
the Schur complement of the Bezoutian BezP(b�, c�). Hence the result.

Thenext sectiongeneralizes the result in this sectionhavingpolynomials expanded
over the basis {Qk(x)}nk=0 where degQk(x) = k.

4.2 Hessenberg Displacement Structure of Bezoutian Over
Generalized Basis

In this section, we first generalize Hessenberg displacement structure of a Bezoutian
over monomial basis P = {xk}nk=0 to an arbitrary basis Q = {Qk(x)}nk=0 where
degQk(x) = k. As a result of this, we will have a new displacement equation with
the generalized Bezoutian and confederate matrix. Next we elaborate the Schur com-
plement of the generalized Bezoutian over {Q} and use this to analyze the generator
updates of a generalized Bezoutian with the polynomial division over {Q}. Finally,
we state the Schur–Euclid–Hessenberg algorithm.

Definition 6 Let {Q} = {Q0(x),Q1(x), · · · ,Qn(x)} be a system of polynomials sat-
isfying deg Qk(x) = k and, a(x) and b(x) be polynomials of degree not greater than
n. Then a matrix SQ = [ŝij] is the generalized Bezoutian associated with the reverse
polynomials a�(x) and b�(x) over {Q} say SQ = BezQ(a�, b�) if

a�(x) · b�(y) − b�(x) · a�(y)

x − y
=

n−1∑

i,j=0

ŝijQi(x)Qj(y)

= [
Q0(x) Q1(x) · · · Qn−1(x)

]
SQ

⎡

⎢⎢⎢⎣

Q0(y)
Q1(y)

...

Qn−1(y)

⎤

⎥⎥⎥⎦ (23)
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The next result shows a relationship between a Bezoutian for polynomials over
the monomial basis {P} and the generalized basis {Q} = {Q0(x),Q1(x), · · · ,Qn(x)}
having deg Qk(x) = k.

Lemma 9 Let BPQ be uni upper triangular basis transformation matrix correspond-
ing to passing basis {P} = {xk}nk=0 to basis {Q} = {Qk(x)}nk=0 where degQk(x) = k
via: [

Q0(x) Q1(x) · · · Qn−1(x)
]
BPQ = [

1 x · · · xn−1
]
.

Then
SQ = BPQ S� BT

PQ (24)

where S� = BezP(a�, b�) and SQ = BezQ(a�, b�).

Proof Recall from the Definition 4 of the Bezoutian associated with the reverse
polynomials over basis {P}

a�(x) · b�(y) − b�(x) · a�(y)

x − y
= [

1 x x2 · · · xn−1
]
S�

⎡

⎢⎢⎢⎢⎢⎣

1
y
y2

...

yn−1

⎤

⎥⎥⎥⎥⎥⎦

We can revise the RHS of the above system:

a�(x) · b�(y) − b�(x) · a�(y)

x − y
= [

1 x · · · xn−1
]
B−1
PQ BPQ S� BT

PQ B−T
PQ

⎡

⎢⎢⎢⎣

1
y
.
.
.

yn−1

⎤

⎥⎥⎥⎦

= [
Q0(x) Q1(x) · · · Qn−1(x)

]
BPQ S� BT

PQ

⎡

⎢⎢⎢⎣

Q0(y)
Q1(y)

.

.

.

Qn−1(y)

⎤

⎥⎥⎥⎦ .

Following Definition 6 gives the result.

To generalize the displacement equation for a Bezoutian we have to explore the
Hessenberg structured confederate matrix. Thus we will give the definition of a
confederate matrix introduced in [37] next.

Definition 7 Let polynomials {Q} = {Q0(x),Q1(x),Q2(x), ...,Qn(x)} with deg
Qk(x) = k be specified by the recurrence relation

Qk(x) = αkxQk−1(x) − rk−1,kQk−1(x) − rk−2,kQk−2(x) − . . . − r0,kQ0(x), αk �= 0
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for k > 0 and Q0(x) is a constant. Define for the polynomial

a(x) = a0Q0(x) + a1Q1(x) + . . . + anQn(x)

its confederate matrix (with respect to the polynomial system Q) by

CQ(a) =

⎡

⎢⎢⎢⎢⎢⎢⎣

r0,1
α1

r0,2
α2

r0,3
α3

· · · r0,n
αn

− a0
αnan

1
α1

r1,2
α2

r1,3
α3

· · · r1,n
αn

− a1
αnan

0 1
α2

r2,3
α3

· · · r2,n
αn

− a2
αnan

...
...

. . .
...

0 0 · · · 1
αn−1

rn−1,n

αn
− an−1

αnan
.

⎤

⎥⎥⎥⎥⎥⎥⎦

In the special case where a(x) = Qn(x), we have a0 = a1 = · · · = an−1 = 0. We
refer to [37] for many useful properties of the confederate matrix and only recall
here that

Qk(x) = α0α1 · · ·αk · det(xI − [CQ(a)]k×k),

and
a(x) = α0α1 · · · αnan · det(xI − [CQ(a)]),

where [CQ(a)]k×k denotes the k × k leading submatrix of CQ(a).
As we have seen the generalized Bezoutian associated with reverse polynomi-

als and confederate matrix capturing recurrence relations over {Q}, we will next
generalize the displacement equation CT

a S
� − S�Ca = 0 passing BezP(a�, b�) to the

generalized Bezoutian SQ = BezQ(a�, b�) and companion matrix Ca to the confed-
erate matrix CQ.

Theorem 2 Let {Q} = {Q0(x),Q1(x),Q2(x), ...,Qn(x)} where deg Qk(x) = k be
the system of polynomials satisfying recurrence relations

Q0(x) = 1

Qk(x) = xQk−1(x) − rk−1,kQk−1(x) − rk−2,kQk−2(x) − . . . − r0,kQ0(x) (25)

a(x) = a0Q0(x) + a1Q1(x) + . . . + anQn(x) and similarly for b(x). Then a matrix
SQ = BezQ(a�, b�) is a Bezoutian associated with reverse polynomials a�(x) and
b�(x) if and only if SQ satisfies the equation

CT
Q SQ − SQ CQ = 0 (26)

for some confederate matrix
CQ = ĨCT

Q′ Ĩ (27)

where
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CQ′ =

⎡

⎢⎢⎢⎢⎢⎣

r0,1 r0,2 r0,3 · · · r0,n − a0
an

1 r1,2 r1,3 · · · r1,n − a1
an

0 1 r2,3 · · · r2,n − a2
an

...
...

. . .
...

0 0 · · · 1 rn−1,n − an−1

an
.

⎤

⎥⎥⎥⎥⎥⎦
(28)

Proof In the monomial basis {P} it has been proven that

CT
a S

� − S�Ca = 0

where S� = BezP(a�, b�) and Ca =

⎡

⎢⎢⎢⎢⎢⎣

− an−1

an
− an−2

an
− an−3

an
· · · − a0

an
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

...

0 0 · · · 1 0

⎤

⎥⎥⎥⎥⎥⎦
. Thus it is pos-

sible to rewrite the above system as

S1C
T
1 − C1S1 = 0 (29)

where S1 = ĨS�Ĩ = BezP(a, b) and C1 = ĨCT
a Ĩ . Now with the help of the structure

of the uni upper triangular basis transformation matrix BPQ together with the result
[32] one can revise the above system as

SQ′ CT
Q′ − CQ′ SQ′ = 0

where SQ′ = BPQ S1 BT
PQ = BezQ(a, b) and CQ′ = BPQ C1 B

−1
PQ is the confederate

matrix given by (28). By rearranging the above system we get

(ĨSQ′ Ĩ)(ĨCT
Q′ Ĩ) − (ĨCQ′ Ĩ)(ĨSQ′ Ĩ) = 0

yields the result:
CT
Q SQ − SQ CQ = 0.

Conversely if CT
Q SQ − SQ CQ = 0 and SQ = [ŝij] then the second column of SQ is

given by:

CT
Q ŝi,1 −

(
rn−1, n − an−1

an

)
ŝi,1 − ŝi,2 = 0 ⇒ ŝi,2 = CT

Q ŝi,1 −
(
rn−1, n − an−1

an

)
ŝi,1

the third column of SQ is given by:

CT
Q ŝi,2 −

(
rn−2, n − an−2

an

)
ŝi,1 − rn−2, n−1 ŝi,2 − ŝi,3 = 0
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ŝi,3 = CT
Q ŝi,2 −

(
rn−2, n − an−2

an

)
ŝi,1 − rn−2, n−1 ŝi,2

proceeding recursively the kth column of SQ is given by:

ŝi,k = CT
Q ŝi,k−1 −

(
rn−k+1, n − an−k+1

an

)
ŝi,1 − rn−k+1, n−1 ŝi,2 − · · · − rn−k+1, n−k+2 ŝi,k−1.

Thus one can recover all columns of SQ and it should be clear that since SQ satisfies
(26) there is no other matrix which satisfies (26) and has the same first column ŝi,1.
Thus SQ = BezQ(a�, b�). 
�

It has been shown in Lemma 7 and Corollary 5 that the Schur complement of a
Bezoutian is Bezoutian. Thus in the following result, we will generalize the result
obtained in Sect. 3. We show that the Schur complement of a Bezoutian SQ with
respect to the generalized basis {Q} is congruent to the Schur complement of the
Bezoutian S� with respect to the monomial basis {P}.
Theorem 3 The Schur complement of the generalized Bezoutian SQ over the basis
{Q} = {Qk(x)}nk=0 where deg Qk(x) = k is congruent to the Schur complement of the
Bezoutian S� over monomials {P} = {xk}nk=0.

Proof Let us partition the Bezoutian matrix: S� =
[
S11 s12
sT12 s22

]
. From Lemma 9, we

know that SQ = BPQ S� BT
PQ so the basis transformation matrix which is an upper tri-

angularmatrix having 1’s along the diagonal can be partitioned asBPQ =
[
U11 u12
0 1

]
.

Now analyze the block products of SQ = BPQ S� BT
PQ to find its Schur complement.

SQ =
[
U11 u12
0 1

] [
S11 s12
sT12 s22

] [
UT

11 0
uT12 1

]

=
[
U11 u12
0 1

] [
I 1

s22
s12

0 1

] [
S11 − 1

s22
s12sT12 0

0 s22

] [
I 0

1
s22
sT12 1

] [
UT

11 0
uT12 1

]

=
[ ∗ s12u11 + s22u12
sT12u

T
11 + s22uT12 s22

]

where ∗ := U11

(
S11 − 1

s22
s12sT12

)
UT

11 + (s12u11 + s22u12)
(

1
s22
sT12u

T
11 + uT12

)
. Thus

Schur complement of SQ say SQs is given by:

SQs =
(
U11

(
S11 − 1

s22
s12s

T
12

)
UT

11 + (s12u11 + s22u12)

(
1

s22
sT12u

T
11 + uT12

))

− 1

s22
(s12u11 + s22u12)

(
sT12u

T
11 + s22u

T
12

)

= U11

(
S11 − 1

s22
s12s

T
12

)
UT

11
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Hence the result.

The next result shows the connection of generator updates of the generalized
Bezoutian to polynomial division over basis {Q}.
Theorem 4 Let {Q} = {Q0,Q1,Q2, ...,Qn} where deg Qk(x) = k be the system of
polynomials satisfying recurrence relations (25) and SQ = BezQ(a�, b�) = [ŝij]. If
a(x) = a0Q0(x) + a1Q1(x) + . . . + anQn(x)andb(x)= b0Q0(x) + b1Q1(x) + . . . +
bn−kQn−k(x) then the coefficients of the remainder −c(x) of the polynomial division
a(x) by b(x) can be recovered from:

−

⎡

⎢⎢⎢⎣

cn−k−1

cn−k−2
...

c0

⎤

⎥⎥⎥⎦ =
[[

CT
Q −

(
rn−1, n − an−1

an

)
In

]
ŝi,1

]′
− ŝ12

ŝ11

[
ŝi,1

]′
(30)

where

CQ =

⎡

⎢⎢⎢⎢⎢⎣

rn−1, n − an−1

an
rn−2, n − an−2

an
rn−3, n − an−3

an
· · · r0, n − a0

an
1 rn−2, n−1 rn−3, n−1 · · · r0, n−1

0 1 rn−3, n−2 · · · r0, n−2
...

. . .
. . .

0 · · · 0 1 r0, 1

⎤

⎥⎥⎥⎥⎥⎦
(31)

and prime means peeling off the first k components.

Proof We have shown in Theorem 2 that CT
QSQ − SQCQ = 0 and it is the same as

SQCQ − CT
QSQ = 0. One can clearly see that CQ is an upper Hessenberg matrix,

so with that said, SQ has Hessenberg displacement structure. Hence we can apply
Lemma 3 to update CQ. As deg b(x) is n − k let us partition matrices: CQ =[

Cq(k, k) Cq(k, n − k)
Cq(n − k, k) Cq(n − k, n − k)

]
and SQ =

[
Sq(k, k) Sq(k, n − k)

Sq(n − k, k) Sq(n − k, n − k)

]
where

Sq(n − k, k) = [
Sq(k, n − k)

]T
and apply the block form of Lemma 3

Cnew = Cq(n − k, n − k) − Cq(n − k, k)
[
Sq(k, k)

]−1
Sq(k, n − k)

=

⎡

⎢⎢⎢⎢⎢⎣

rn−k−1, n−k rn−k−2, n−k rn−k−3, n−k · · · r0, n−k

1 rn−k−2, n−k−1 rn−k−3, n−k−1 · · · r0, n−k−1

0 1 rn−k−3, n−k−2 · · · r0, n−k−2
...

. . .
. . .

...

0 · · · 0 1 r0, 1

⎤

⎥⎥⎥⎥⎥⎦

−

⎡

⎢⎢⎢⎣

0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎤

⎥⎥⎥⎦
[
Sq(k, k)

]−1
Sq(k, n − k).
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Thus when updating CQ only the first row of Cq(n − k, n − k) changes with respect

to the last row of the product
[
Sq(k, k)

]−1
Sq(k, n − k). Let us restate the (1,1) block

of Cnew and (1,1), (1,2) blocks of SQ in terms of a basis transformation matrix which

can be partitioned as BPQ =
[

Bpq(k, k) Bpq(k, n − k)
Bpq(n − k, k) B̂PQ

]
. Thus the above system

can be seen as:

Cnew = Ĩ

⎡

⎢⎢⎢⎢⎢⎣

r0, 1 r0, 2 r0, 3 · · · r0, n−k

1 r1, 2 r1, 3 · · · r1, n−k

0 1 r2, 3 · · · r2, n−k
...

. . .
. . .

...

0 · · · 0 1 rn−k−1, n−k

⎤

⎥⎥⎥⎥⎥⎦

T

Ĩ

−

⎡

⎢⎢⎢⎣

0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎤

⎥⎥⎥⎦
[
Sq(k, k)

]−1 [
Bpq(k, k)

]T [
Bpq(k, k)

]−T
Sq(k, n − k)

= B̂PQ

⎡

⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎣

0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎤

⎥⎥⎥⎦ · R−1
11 · R12

⎤

⎥⎥⎥⎥⎥⎦

[̂
BPQ

]−1
.

Hence going back to the block form of the Bezoutian (22) we get

Cnew =
⎡

⎢⎢⎢⎢⎢⎣

rn−k−1, n−k − bn−k−1

bn−k
rn−k−2, n−k − bn−k−2

bn−k
rn−k−3, n−k − bn−k−3

bn−k
· · · r0, n−k − b0

bn−k

1 rn−k−2, n−k−1 rn−k−3, n−k−1 · · · r0, n−k−1

0 1 rn−k−3, n−k−2 · · · r0, n−k−2
...

. . .
. . .

0 · · · 0 1 r0, 1.

⎤

⎥⎥⎥⎥⎥⎦

Thus when a generalized Bezoutian SQ satisfies the displacement equation CT
QSQ −

SQCQ = 0 with an upper Hessenberg matrix CQ, the generator update of the con-
federate matrix CQ corresponding to polynomial a(x) over {Q} results in a con-
federate matrix Cnew (say CQb) and that corresponds to the polynomial b(x) =
b0Q0(x) + b1Q1(x) + . . . + bn−kQn−k(x).

Now following Lemma 3, one can see a new system with generator updates as

SQsCQb − CT
QbSQs = 0
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where CQb is the confederate matrix of b(x) over basis {Q} and SQs is the Schur
complement of SQ. We have shown in Theorem 3 that the Schur complement of SQ,
which is SQs, is congruent to the Schur complement of S�, which is S(1), i.e.,

SQs = U11S
(1)UT

11 (32)

where U11 is the (1,1) block of the uni upper triangular basis transformation matrix
BPQ.Moreover fromCorollary7,we have shown that the coefficients of the remainder
over monomials can be retrieved from the first column of the Schur complement of
S� which is S(1). This together with the system (32) tells us that coefficients of the
remainder over basis {Q} can be retrieved from the first column of the SQs, the Schur
complement of SQ.

Before computing the coefficients of the remainder over {Q} let us observe the
second column of SQ. This can be seen directly following Theorem 2 so the second
column of SQ is given by:

ŝi,2 =
[
CT
Q −

(
rn−1, n − an−1

an

)]
ŝi,1.

The coefficients of the remainder −c(x) over {Q} can be retrieved from the first
column of the Schur complement SQs = [s̃ij] so those can be retrieved from:

si,1 = [
ŝi,2

]′ − ŝ12

[
1

ŝ11
ŝi,1

]′

where prime means peeling off the first k components. Hence the result.

Remark 1 The aboveTheorem further shows that the generator update of aBezoutian
SQ satisfying displacement equation CT

QSQ − SQCQ = 0 coincides with polynomial
division over basis {Q}.
As we have the generalized result for the Bezoutian satisfying Hessenberg displace-
ment structure CT

QSQ − SQCQ = 0 let us state the Schur–Euclid–Hessenberg algo-
rithm to recover the coefficients of the remainder c(x) of the polynomial division of
a(x) by b(x) over basis {Q} = {Qk}nk=0 where degQk(x) = k. In themeantimewewill
be providing triangular factorization of the Bezoutian (SQ = [ŝij] = LDU ) over basis

{Q}. The k-th row uk of U and the k-th column lk of L are given by uk = 1
ŝk11

[
0 ŝ(k)1,·

]

and lk = uTk where "0" stands for a zero vector of appropriate length. The diagonal
factor is given by D = diag [ŝ(k)11 ]nk=1.

The Schur–Euclid–Hessenberg Algorithm

Input: Coefficients of a(x) and b(x), say a0, a1, · · · , an and b0, b1, · · · , bn−1, and if
the degree of b(x) is n − k < n − 1 then list its coefficients as b0, b1, · · · , bn−k, 0.
Here “0" means a zero vector of appropriate length up to n − 1.
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Initialization: ŝ(1)1,· = ŝ1,·, ŝ(1)·,1 = ŝT1,·, C(1)
Q = CQ in (27)

Recursion: For k = 1, · · · , n − 1 compute

1. The k-th entry D, the k-th row of U , and k-th column of L by

d(k) = ŝ(k)11 , u(k) = 1
d(k) ŝ

(k)
1,· , l(k) = [u(k)]T

2. The second row and column of S(k)
Q by

If k = 1

ŝ(k)2,· = ŝ(k)1,· ·
[
C(1)
Q −

(
rn−1, n − an−1

an

)
I
]
, ŝ(k)·,2 = [ŝ(k)2,· ]T

else

ŝ(k)2,· = ŝ(k)1,· ·
[
C(k)
Q − rn−k, n−k+1I

]
, ŝ(k)·,2 = [ŝ(k)2,· ]T

3. The first row and column of S(k+1)
Q which is the Schur complement of S(k)

Q by

ŝ(k+1)
1,· = ŝ(k)

′
2,· − ŝ(k)21

(
1
ŝ(k)11

ŝ(k)1,·
)′
, ŝ(k+1)

·,1 = [ŝ(k+1)
1,· ]T

Here the prime means the first component is peeled off. (If deg b(x) = n − k peel
off the first k components for the first step).

4. Coefficients of the remainder c(x) by
c(k+1)
.,1 = 1

ŝ(k+1)
11

ŝ(k+1)
·,1

5. New Confederate matrix generated by

C(k+1)
Q = C(k)′′

Q − (e1)′
(

1
ŝ(k)11

ŝ(k)
′

1,·
)

Here double prime means peel off the top row and the first column of the matrix.
(If deg b(x) = n − k peel off the first k rows and columns of the matrix for the first
step).
Output: Coefficients of the remainder and triangular factorization of the generalized
Bezoutian

Proposition 1 The arithmetic cost of computing the Schur–Euclid–Hessenberg
algorithm for a generalized Bezoutian is O(M(n)n) where M(n) is the cost of mul-
tiplying the confederate matrix CQ by vectors (k = 1, 2, · · · , n).

Due to the upper Hessenberg structure of the confederate matrix CQ in the above
scenario M(n) = n2. Thus to derive a fast Schur–Euclid–Hessenberg algorithm one
has to analyze the confederate matrices based on quasiseparable polynomials or their
subclasses as orthogonal and Szegö polynomials as defined in the next section.

5 A Fast Schur–Euclid Algorithm for Quasiseparable
Polynomials

We have seen the Schur–Euclid–Hessenberg algorithm for generalized Bezoutian
associated with the polynomials expanded over the basis {Qk(x)}nk=0 where deg
Qk(x) = k and its arithmetic complexity. The cost of Schur–Euclid–Hessenberg
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algorithm is determined by the cost of the multiplication of the confederate matrix
by vectors. Thus the arithmetic complexity of the algorithm can be reduced hav-
ing sparse, banded, or structured confederate matrices. Hence in this section, we
discuss the complexity of Schur–Euclid–Hessenberg algorithm for quasiseparable
polynomials and therefore its sub classes [7]: orthogonal and Szegö polynomi-
als while elaborating a fast Schur–Euclid–Hessenberg algorithm for quasiseparable
polynomials.

5.1 Schur–Euclid–Hessenberg Algorithm for Quasiseparable
Polynomials

In this section, we analyze the matrix decomposition for the confederate matrix
over quasiseparable polynomials and use the decomposition to derive a fast Schur–
Euclid–Hessenberg algorithm for a Bezoutian associated with the quasiseparable
polynomials. The ultimate idea is to explore the confederate matrix over quasisepa-
rable polynomials to reduce the cost of computing M(n) in Proposition 1.

Let us start with the generator definition of (H, 1)-quasiseparable matrix which
is equivalent to the rank Definition 2. We use quasiseparable generators to define a
system of quasiseparable polynomials.

Definition 8 A matrix A is called (H, 1)-quasiseparable if (i) it is strongly upper
Hessenberg, and (ii) it can be represented in the form

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

d1
q1 d2 gib

×
ij hj

0 q2
. . .

...
. . .

. . .
. . .

0 · · · 0 qn−1 dn

⎤

⎥⎥⎥⎥⎥⎥⎦

where b×
ij = bi+1bi+2 · · · bj−1 for j > i + 1 and b×

ij = 1 for j = i + 1. The scalar ele-
ments {qk, dk, gk, bk, hk} are called the generators of the matrix A.

The results of [7, 37] allow one to observe a bijection between the set of strongly
upper Hessenberg matricesH (say A = [aij] ∈ H ) and the set of polynomials sys-
tem P (say R = {rk(x)} ∈ P with deg rk(x) = k) via

f : H → P,where rk(x) = 1

a2,1a3,2 · · · ak,k−1
det(xI − A)k×k . (33)

The following lemma is given in [7, 8] and is a consequence of Definition 8 and [37].

Lemma 10 Let A be an (H, 1)-quasiseparable matrix specified by its generators as
inDefinition 8. Then a system of polynomials {rk(x)} satisfies the recurrence relations
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rk(x) = 1

qk

⎡

⎣(x − dk)rk−1(x) −
k−2∑

j=0

gj+1b
×
j+1,khk rj(x)

⎤

⎦ (34)

if and only if {rk(x)} is related to A via (33).

With the help of the system of quasiseparable polynomials {rk(x)}nk=0 satisfying
k-term recurrence relations (34), we will define a confederate matrix for the polyno-
mial

a(x) = a0r0(x) + a1r1(x) + · · · + anrn(x) (35)

by

CR(a) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 g1h2 g1b2h3 · · · · · · g1b
×
1,nhn − a0

an
q1 d2 g2h3 · · · · · · g2b

×
2,nhn − a1

an
0 q2 d3 · · · · · · g3b

×
3,nhn − a1

an
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . qn−2 dn−1 gn−1hn − an−2

an
0 · · · · · · 0 qn−1 dn − an−1

an
.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

Thematrix (36) is an upper Hessenbergmatrix so following Theorem 4 theBezoutian
associated with quasiseparable polynomials satisfies CT

RSR − SRCR = 0, where R
is the system of quasiseparable polynomials satisfying recurrence relations (34),
CR = Ĩ[CR(a)]T Ĩ , and a(x) is defined via (35). Though one can state a Schur–Euclid–
Hessenberg algorithm for a Bezoutian associated with quasiseparable polynomials
using the Schur–Euclid–Hessenberg algorithm in Sect. 4.2 it is not cheap because
the structure of the confederate matrixCR is not sparse. Thus to reduce the cost of the
Schur–Euclid–Hessenberg algorithm for a Bezoutian associated with quasiseparable
polynomials one has to explore the structure of the confederate matrix CR via matrix
decomposition.

Theorem 5 Let CR be the matrix specified by generators {qk, dk, gk, bk, hk} and
coefficients ak via

CR =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

dn − an−1

an
gn−1hn − an−2

an
gn−2bn−1hn − an−3

an
· · · · · · g1b×

1,nhn − a0
an

qn−1 dn−1 gn−2hn−1 · · · · · · g1b
×
1,n−1hn−1

0 qn−2 dn−2 · · · · · · g1b
×
1,n−2hn−2

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . q2 d2 g1h2
0 · · · · · · 0 q1 d1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

then the following decomposition holds:

CR =
[
θ̃n

(
· · ·

(
θ̃3

(
θ̃2θ̃1 + Δ̃2

)
+ Δ̃3

)
· · ·

)
+ Δ̃n

]
+ 1

an
· Ã1Ã2 · · · Ãn (38)
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where

θ̃1 =
⎡

⎣
In−2

d2 g1
q1 d1

⎤

⎦ , θ̃k =

⎡

⎢⎢⎣

In−k−1

dk+1 bk
qk hk

Ik−1

⎤

⎥⎥⎦ , θ̃n =
[
hn

In−1

]

Δ̃k =

⎡

⎢⎢⎣

0n−k−1

0 gk − dkbk
0 dk − dkhk

0k−1

⎤

⎥⎥⎦ , Δ̃n =
[
dn − dnhn

0n−1

]
(39)

and

Ãk =

⎡

⎢⎢⎣

Ik−1

−an−k 1
0 0

In−k−1

⎤

⎥⎥⎦ , Ãn =
[
In−1

−a0.

]
(40)

Proof Let us split the matrix CR into CR = H̃ + 1
an
C where

H̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

dn gn−1hn gn−2bn−1hn · · · · · · g1b
×
1,nhn

qn−1 dn−1 gn−2hn−1 · · · · · · g1b×
1,n−1hn−1

0 qn−2 dn−2 · · · · · · g1b×
1,n−2hn−2

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . q2 d2 g1h2
0 · · · · · · 0 q1 d1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and C =

⎡

⎢⎢⎢⎢⎣

−an−1 −an−2 · · · −a1 −a0
0 0 · · · 0 0
0 0 · · · 0 0
· · · · ·
0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎦
. One can easily show by matrix multiplica-

tion that the latter matrix admits the factorization C = Ã1Ã2 · · · Ãn with the given Ãk

for k = 1, 2, · · · , n. Thus we only have to prove the decomposition for H̃ in terms
of θ̃k’s and Δ̃k’s.

Showing the decomposition for H̃ = θ̃n

(
· · ·

(
θ̃3

(
θ̃2θ̃1 + Δ̃2

)
+ Δ̃3

)
· · ·

)
+ Δ̃n

is equivalent to showing that the matrix H̃ satisfies the iteration:

H̃0 = In, H̃k = θ̃kH̃k−1 + Δ̃k, k = 1, 2, · · · , n, H̃ = H̃n. (41)

Let us show by induction that for every k = 3, 4, · · · , n :

H̃k−1(n − k + 1 : n, n − k + 1 : n) = H̃(n − k + 1 : n, n − k + 1 : n) (42)
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The basis of induction (k=3) is trivial

H̃(n − 2 : n, n − 2 : n) =
[
d2 g1h2
q1 d1

]
= H̃2(n − 2 : n, n − 2 : n).

Assume that (42) holds for all indices up to k. Consider the matrix H̃k(n − k + 2 :
n, n − k + 2 : n) :

⎡

⎣
dk+1 bk
qk hk

Ik−1

⎤

⎦

⎡

⎢⎢⎢⎣

1 0 · · · 0
0
... H̃k−1(n − k + 1 : n, n − k + 1 : n)
0

⎤

⎥⎥⎥⎦ +
⎡

⎣
0 gk − dkbk
0 dk − dkhk

0k−1.

⎤

⎦

(43)
The first row of the matrix H̃k−1(n − k + 1 : n, n − k + 1 : n) equals the first row of
thematrix H̃(n − k + 1 : n, n − k + 1 : n). Therefore, performing thematrix product
in (43) we get:

⎡

⎢⎢⎢⎢⎢⎣

dk+1 dkbk + (gk − dkbk) H̃k−1(n − k − 2, n − k : n)bk
qk dkhk + (dk − dkhk) H̃k−1(n − k − 1, n − k : n)hk
0
... H̃k−1(n − k : n, n − k − 1) H̃k−1(n − k : n, n − k : n)
0

⎤

⎥⎥⎥⎥⎥⎦

which is equal to H̃(n − k + 2 : n, n − k + 2 : n). By induction we get H̃n−1(1 :
n, 1 : n) = H̃(1 : n, 1 : n). Substituting this into recursion (41) we get

H̃n =
[
hn

In−1

]
H̃n−1 +

[
dn − dnhn

0n−1

]
= H̃.

Now we have the decomposition of the confederate matrix CR (38) over quasisep-
arable polynomials and Hessenberg-1-quasiseparable displacement structure of the
Bezoutian CT

RSR − SRCR = 0. Thus the following Schur–Euclid–Hessenberg algo-
rithm for a Bezoutian associated with quasiseparable polynomials can be used to
recover coefficients of the remainder c(x) of the polynomial division a(x) by b(x)
over the basis {R} = {rk}nk=0 where deg rk(x) = k and {R} satisfies the recurrence
relations (34), and also to obtain the triangular factorization of Bezoutian over the
system of quasiseparable polynomials {R}.
The Schur–Euclid–Hessenberg Algorithm for Bezoutian Over Quasiseparabale
polynomials

Input: Generators {qk, dk, gk, bk, hk}. Coefficients of a(x) and b(x), say a0, a1, · · · ,

an and b0, b1, · · · , bn−1, and if the degree of b(x) is n − k < n − 1 then list its
coefficients as b0, b1, · · · , bn−k, 0 here "0" means a zero vector of appropriate length
up to n − 1.
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Initialization: Set θ̃k and Δ̃k in terms of generators {qk, dk, gk, bk, hk}, and Ãk in
terms of ak and C(1)

R = CR via (38). Set ŝ(1).,1 = ŝ.,1 .

Recursion: For k = 1, · · · , n − 1 compute

1. The k-th entry D, the k-th row of U , and k-th column of L by

d(k) = ŝ(k)11 , u(k) = 1
d(k) ŝ

(k)
1,· , l(k) = [u(k)]T

2. The second row and column of S(k)
R by

If k = 1

ŝ(k)2,· = 1
qn−1

ŝ(k)1,·
[
C(1)
R −

(
dn − an−1

an

)
I
]
, ŝ(k)·,2 = [ŝ(k)2,· ]T

else

ŝ(k)2,· = 1
qn−k

ŝ(k)1,·
[
C(k)
R − dn−k+1I

]
, ŝ(k)·,2 = [ŝ(k)2,· ]T

3. The first row and column of S(k+1)
R which is the Schur complement of S(k)

R by

ŝ(k+1)
1,· = ŝ(k)

′
2,· − ŝ(k)21

(
1
ŝ(k)11

ŝ(k)1,·
)′
, ŝ(k+1)

·,1 = [ŝ(k+1)
1,· ]T

Here the prime means the first component is peeled off. (If deg b(x) = n − k,
then peel off the first k components for the first step).

4. Coefficients of the remainder c(x) by
c(k+1)
.,1 = 1

ŝ(k+1)
11

ŝ(k+1)
·,1

5. Confederate matrix after peeling off row(s) and column(s) by

C̃(k)
R = θ̃ ′′

n−k

(
· · ·

(
θ̃ ′′
3

(
θ̃ ′′
2 θ̃ ′′

1 + Δ̃′′
2

)
+ Δ̃′′

3

)
· · ·

)
+ Δ̃′′

n−k

Here the double primemeans peel off the top row and the first column ofmatrices.
(If deg b(x) = n − k, then peel off the first k rows and columns of the matrix for
the first step).

6. New confederate matrix generated by

C(k+1)
R = C̃(k)

R − qn−k(e1)′
(

1
ŝ(k)11

ŝ(k)
′

1,·
)

Output: Coefficients of the remainder and triangular factorization of the Bezoutian
associated with quasiseparable polynomials.

As we have seen in Proposition 1, the cost of the Schur–Euclid–Hessenberg algo-
rithm is dominated by M(n) which is the cost of multiplication of a confederate
matrix by vectors and this occurs in step 2 of the algorithm. Also note that for the
multiplication of C(k)

R by vectors, i.e., for k = 1 we have to multiply n factors of θ̃k ,
n − 1 factors of Δ̃k , and n factors of Ãk together with the scaling factor 1

an
(note

that we do not have to scale for the monic polynomial case) by a vector and for
k = 2, 3, · · · , n − 1 we have to multiply at most n − k factors of θ̃ and n − k − 1
factors of Δ̃ by a vector. Thus the most expensive step in the recursion is when
k = 1. Now for k = 1 in step 2 of the Schur–Euclid–Hessenberg algorithm in the
quasiseparable case, we have at most 4multiplications and 2 additions corresponding
to multiplication of θ̃k , at most 2 multiplications corresponding to multiplication of
Δ̃k , and at most 1 multiplication and 1 addition corresponding to multiplication of
Ãk by the first row of the Bezoutian. Thus the arithmetic cost of computing C(1)

R by a
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vector is at most 11n − 2 operations as opposed to Hessenberg structured matrix CR

(37) by a vector, which is n2 − 2 operations. Hence ∀n > 11, one can design a fast
Schur–Euclid–Hessenberg algorithm for quasiseparable polynomials.

Proposition 2 The arithmetic cost of computing the Schur–Euclid–Hessenberg
algorithm for the Bezoutian associated with the quasiseparable polynomials sat-
isfying recurrence relations (34) is O(n2).

5.2 Cost of Schur–Euclid–Hessenberg Algorithm
for Orthogonal Polynomials

In this section, we observe the cost of computing the Schur–Euclid–Hessenberg
Algorithm for aBezoutian associatedwith the orthogonal polynomials. Themain idea
here is to explore the confederate matrix with respect to the orthogonal polynomial
system to reduce the cost of computing M(n) in Proposition 1.

It is well known [16] that systems of polynomials R = {rk(x)}nk=0 orthogonal with
respect to an inner product of the form

< p(x), q(x) >=
∫ b

a
p(x)q(x)w2(x)dx

satisfy a three-term recurrence relation of the form

rk(x) = 1

qk
(x − dk)rk−1(x) − gk−1

qk
· rk−2(x), qk �= 0. (44)

Define for the polynomial

a(x) = a0r0(x) + a1r1(x) + · · · + an−1rn−1(x) + anrn(x) (45)

its confederate matrix, given by

C(a) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 g1 0 · · · 0 − a0
an

q1 d2 g2
. . .

... − a1
an

0 q2 d3
. . . 0 − a2

an
...

. . .
. . .

. . .
. . .

...

0 · · · 0 qn−2 dn−1 gn−1 − an−2

an
0 0 · · · 0 qn−1 dn − an−1

an

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

which has been called a comrade matrix in [4].
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The matrix (46) is an upper Hessenberg matrix so by Theorem 4 the Bezoutian
associated with orthogonal polynomials satisfies CT

RSR − SRCR = 0, where R is
the system of orthogonal polynomials satisfying recurrence relations (44), CR =
ĨC(a)T Ĩ , and a(x) is defined via (45). Moreover orthogonal polynomials are a sub
class of quasiseparable polynomials [7] so to express Schur–Euclid–Hessenberg
algorithm for a Bezoutian associated with the orthogonal polynomials one has to
revise the Schur–Euclid–Hessenberg Algorithm in the quasiseparable case in Sect.
5.1. To do so one has to consider the Bezoutian associated with orthogonal poly-
nomials and initialize the algorithm with the comrade matrix CR = ĨC(a)T Ĩ having
generators {qk, dk, gk} with the coefficients ak . Due to the sparse structure of the
comrade matrix, we could ignore step 5 of the Schur–Euclid–Hessenberg Algorithm
in the quasiseparable case and revise the first matrix in the RHS of step 6 to be the
comrade matrix CR = ĨC(a)T Ĩ .

The matrix CR is almost tridiagonal. Thus the cost of multiplication of CR by
vectors is onlyM(n) = O(n) operations. Hence one can design a fast Schur–Euclid–
Hessenberg algorithm for a Bezoutian associated with orthogonal polynomials hav-
ing complexity O(n2) operations.

Proposition 3 The arithmetic cost of computing the Schur–Euclid–Hessenberg
algorithm for the Bezoutian associated with the orthogonal polynomials satisfying
(44) is O(n2).

5.3 Cost of Schur–Euclid–Hessenberg Algorithm for Szegö
Polynomials

In this section, we observe the cost of computing the Schur–Euclid–Hessenberg
Algorithm for a Bezoutian associated with the Szegö polynomials. The main idea
here is to explore the confederate matrix with respect to the Szegö polynomial system
to reduce the cost of computing M(n) in Proposition 1.

Szegö polynomials S = {φ�

k(x)}nk=0 or polynomials orthonormal on the unit circle
with respect to an inner product of the form

< p(x), q(x) >= 1

2π

∫ π

−π

p(eiθ )[q(eiθ )]∗w2(θ)dθ,

for any such inner product, it is known [22] that there exist a set of reflection coeffi-
cients {ρk} satisfying

ρ0 = −1, |ρk| < 1, k = 1, 2, · · · , n − 1, |ρn| ≤ 1,

and complementary parameters {μk} defined by the reflection coefficients via
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μk =
{√

1 − |ρk|2, |ρk| < 1
1, |ρk| = 1

such that the corresponding Szegö polynomials satisfying the two-term recurrence
relations

[
φk(x)
φ

�

k(x)

]
= 1

μ0

[
1
1

]
,

[
φk(x)
φ

�

k(x)

]
= 1

μk

[
1 −ρ�

k−ρk 1

] [
φk−1(x)
x φ

�

k−1(x)

]
(47)

where {φk(x)} is a system of auxiliary polynomials. Define for the polynomial

a(x) = a0φ
�
0(x) + a1φ

�
1(x) + · · · + an−1φ

�
n−1(x) + anφ

�
n(x) (48)

its confederate matrix is given by

CS(a) =

⎡

⎢⎢⎢⎢⎢⎣

−ρ∗
0ρ1 −ρ∗

0μ1ρ2 −ρ∗
0μ1μ2ρ3 · · · −ρ∗

0μ1μ2 · · · μn−1ρn − a0
an

μ1 −ρ∗
1ρ2 −ρ∗

1μ2ρ3 · · · −ρ∗
1μ2μ3 · · · μn−1ρn − a1

an
0 μ1 −ρ∗

2ρ3 · · · −ρ∗
2μ3μ4 · · · μn−1ρn − a1

an
. . .

. . .
. . .

. . .
...

0 · · · 0 μn−1 −ρ∗
n−1ρn − an−1

an
.

⎤

⎥⎥⎥⎥⎥⎦
(49)

Thematrix (49) is an upper Hessenbergmatrix so following Theorem 4 theBezoutian
associated with Szegö polynomials satisfiesCT

S SS − SSCS = 0 where S is the system
of Szegö polynomials satisfying recurrence relations (47),CS = Ĩ[CS(a)]T Ĩ , and a(x)
is defined via (48). The matrix CS is not sparse like the orthogonal polynomial case
so to reduce the cost of multiplication of CS by vectors one has to use the nested
factorization of CS .

Lemma 11 LetCS be thematrix specified by generators {ρ∗
k , ρk, μk} and coefficients

ak via
CS = Ĩ[CS(a)]T Ĩ (50)

then the following decomposition holds:

CS = Γ̃0Γ̃1Γ̃2 · · · Γ̃n + 1

an
· Ã1Ã2 · · · Ãn (51)

where

Γ̃0 =
[−ρn

In−1

]
, Γ̃k =

⎡

⎢⎢⎣

Ik−1

ρ∗
n−k μn−k

μn−k −ρn−k

In−k−1

⎤

⎥⎥⎦ , Γ̃n =
[
In−1

ρ∗
0

]
(52)
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and

Ãk =

⎡

⎢⎢⎣

Ik−1

−an−k 1
0 0

In−k−1

⎤

⎥⎥⎦ , Ãn =
[
In−1

−a0.

]

Proof The matrix CS can be split into CS = Ũ + 1
an
C where

Ũ =

⎡

⎢⎢⎢⎢⎢⎣

−ρ∗
n−1ρn −ρ∗

n−2μn−1ρn −ρ�
n−3μn−2μn−1ρn · · · −ρ∗

0μ1μ2 · · · μn−1ρn

μn−1 −ρ�
n−2ρn−1 −ρ�

n−3μn−2ρn−1 · · · −ρ∗
0μ1μ2 · · · μn−2ρn−1

0 μn−2 −ρ�
n−3ρn−2 · · · −ρ∗

0μ1μ2 · · · μn−3ρn−2

. . .
. . .

. . .
. . .

...

0 · · · 0 μ1 −ρ�
0ρ1

⎤

⎥⎥⎥⎥⎥⎦

andC =

⎡

⎢⎢⎢⎢⎣

−an−1 −an−2 · · · −a1 −a0
0 0 · · · 0 0
0 0 · · · 0 0
· · · · ·
0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎦
. LetU be the unitary Hessenbergmatrix [9]

corresponding to Szegö polynomials {φ�

k(x)} satisfying 2-term recurrence relations
(47), then we can see that

Ũ = ĨUT Ĩ

It is well known that unitary Hessenberg matrix U can be written as the product
U = Γ0Γ1Γ2 · · ·Γn where

Γ0 =
[
ρ∗
0
In−1

]
, Γk =

⎡

⎢⎢⎣

Ik−1

−ρk μk

μk ρ∗
k
In−k−1

⎤

⎥⎥⎦ , Γn =
[
In−1

−ρn

]
.

Thus Ũ has the factorization
Γ̃0Γ̃1Γ̃2 · · · Γ̃n

where Γ̃k = ĨΓ T
k Ĩ for k = 0, 1, · · · , n.

One can see clearly by the matrix multiplication that the matrix C admits the
factorization

C = Ã1Ã2 · · · Ãn

where Ãk =

⎡

⎢⎢⎣

Ik−1

−an−k 1
0 0

In−k−1

⎤

⎥⎥⎦ , Ãn =
[
In−1

−a0

]
, hence the result.
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Szegö polynomials are a sub class of quasiseparable polynomials [7] so to express
the Schur–Euclid–Hessenberg algorithm for the Bezoutian associated with the Szegö
polynomials one has to revise the Schur–Euclid–Hessenberg Algorithm in the qua-
siseparable case, in Sect. 5.1. To do so one has to consider the Bezoutian associated
with Szegö polynomials and initialize the algorithmwith the confederate matrix (51)
having generators {ρ∗

k , ρk, μk} with the coefficients ak . But to reduce the complexity
M(n) one has to revise step 5 of the Schur–Euclid–Hessenberg Algorithm for the
quasiseparable case with the decomposition C̃(k)

S = Γ̃ ′′
k Γ̃ ′′

k+1 · · · Γ̃ ′′
n where Γ̃k’s are

given in (52) and the double prime means peel off the top k column(s) and row(s) if
deg b(x) = n − k where deg a(x) = n while revising the first matrix in the RHS of
step 6 to be the confederate matrix C̃(k)

S in step 5.
Due to the decomposition of CS , in step 2 of the Schur–Euclid–Hessenberg algo-

rithm for Szegö polynomials, we have at most 4 multiplications and 2 additions
corresponding to multiplication of Γ̃k by the first row of the Bezoutian, and at most
1 multiplication and 1 addition corresponding to multiplication of Ãk by the first row
of the Bezoutian. Thus the total cost of multiplication of n + 1 factors of Γ̃k which is
Ũ by the vector is 6(n + 1) operations, and n factors of Ãk which is C by the vector
costs 2n operations. Together with the multiplication of C by quantity 1

an
gives the

overall cost of multiplication of CS by vectors as M(n) = O(n) complexity. Hence
one can design a fast Schur–Euclid–Hessenberg algorithm for Szegö polynomials.

Proposition 4 The arithmetic cost of computing the Schur–Euclid–Hessenberg
algorithm for a Bezoutian associated with the Szegö polynomials satisfying recur-
rence relations (47) is O(n2).

6 Conclusion

In this paper, we have derived a Schur–Euclid–Hessenberg algorithm to compute
the triangular factorization of a generalized Bezoutian. In this case, it is associated
with the system of polynomials {Q} = {Qk(x)}nk=0, where deg Qk(x) = k and satis-
fies k-term recurrence relations while recovering the coefficients of the remainder of
the polynomial division over basis {Q}. Once the generalization results were estab-
lished, we explore a fast Schur–Euclid–Hessenberg algorithm for quasiseparable
polynomials. This algorithm generalizes the result for fast Schur–Euclid–Hessenberg
algorithm for orthogonal polynomials and Szegö polynomials. To derive the fast
algorithm we exploit the decomposition of confederate matrices over quasiseparable
and Szegö polynomials and use the sparse comrade matrix for orthogonal polynomi-
als. The presented Schur–Euclid–Hessenberg algorithm enables us to compute a fast
triangular factorization of the Bezoutian associated with quasiseparable, Szegö, and
orthogonal polynomials, and to recover coefficients of the remainder in polynomial
division over quasiseparable, Szegö, and orthogonal basis with complexity O(n2)
operations.
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