
Chapter 9
Cortical Phase Transitions as an Effect
of Topology of Neural Network

Ilenia Apicella, Silvia Scarpetta and Antonio de Candia

Abstract Understanding the emerging of cortical dynamical state, its functional

role, and its relationship with network topology, is one of the most interesting

open questions in computational neuroscience. Spontaneous cortical dynamics often

shows spontaneous fluctuations with UP/DOWN alternations and critical avalanches

which resemble the critical fluctuations of a system posed near a non-equilibrium

noise-induced phase transition. A model with structured connectivity and dynam-

ical attractors has been shown to sustain two different dynamic states and a phase

transition with critical behaviour is observed. We investigate here which are the fea-

tures of the connectivity which permit the emergence of the phase transition and the

large fluctuations near the critical line. We start from the original connectivity, that

comes from the learning of the spatiotemporal patterns, and we shuffle the presynap-

tic units, leaving unchanged both the postsynaptic units and the value of the connec-

tions. The original structured network has a large clustering coefficient, since it has

more directed connections which cooperate to activate a precise order of neurons,

respect to randomized network. When we shuffle the connections we reduce the clus-

tering coefficient and we destroy the spatiotemporal pattern attractors. We observe

that the phase transition is gradually destroyed when we increase the ratio of shuffled

connections, and already at a shuffling ratio of 70% both the phase transition and its

critical features disappear.
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9.1 Introduction

Thanks to recent experimental techniques, which allow to record the activity of many

neurons simultaneously (both in-vivo and in-vitro), it is easier studying the complex

collective dynamics emerging in highly connected networks of neurons, such as cor-

tical networks. Spontaneous cortical activity can show critical collective features,

such as the alternation between DOWN states of network quiescence and UP states

of neural depolarization, observed in different system and conditions (both in-vitro

[1–3] and in-vivo during slow-wave sleep, anesthesia and quiet walking [4, 5]).

Many recent works confirm the idea that brain operates close to a critical point

(or close to a spinodal point), at which information progressing is optimized [6–8],

so that it is interesting to investigate the role of criticality on cognitive activities or

brain diseases and so on.

In this paper we focus on the presence of phase transition between UP and DOWN

states; it should be important to emphasize that the power laws of avalanches size

and duration distributions in our model has been shown to agree with experimental

data of critical exponents of size and time avalanches distributions [9].

Many experiments both in-vitro [10, 11] and in-vivo [12–15] have demonstrated

that cortical spontaneous activity occurs in precise spatio-temporal patterns. In this

paper we study the spontaneous cortical dynamics of a neural network, in which

a phase transition between replay and not-replay of stored spatiotemporal patterns

emerges.

We call “UP state” the regime in which we have high firing rate with the replay of

one of stored patterns, index of high correlated activity. Instead the “DOWN state” is

the regime of quiescence without replay of pattern. Between this two states, a critical

regime exists, with the alternation of UP and DOWN states. In this regime there is

an intermitted replay of spatiotemporal pattern.

Noise level and strength of connections are the control parameters we change dur-

ing the investigation, then we calculate firing rate and normalized variance, defined

in next section.

As we shall see later an high firing rate doesn’t necessarily imply an UP state,

because if we change the topology of network we don’t always observe retrieval

pattern when firing rate is high and we can have uncorrelated Poissonian activity

even at high rates. This change of topology consists of shuffling the connections

thanks to a shuffling procedure discussing below. This procedure allows us to study

the spontaneous dynamics of network with different position of connections, keeping

unchanged their values, getting very different and interesting regimes of activity.

9.2 The Model

In order to simulate the spontaneous activity of a slice of brain cortex, we have a

network of N spiking neurons, modeled as LIF (Leaky Integrate-and-Fire) units and

represented by SRM (Spike Response Model) of Gerstner [16], in presence of a
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Poissonian noise distribution. Neurons are connected by a sparse connectivity with

the possibility to shuffle a fraction of the connections, in order to understand the role

of topology in spontaneous cortical dynamics.

If we label with index i the postsynaptic neuron and with the index j the presy-

naptic one, when the neuron i does not fire, the postsynaptic membrane potential

is:

ui(t) =
∑

j

∑

ti<tj<t
Jij(e−(t−tj)∕𝜏m − e−(t−tj)∕𝜏s ) +

∑

ti<t̂i<t

Ji(e−(t−t̂i)∕𝜏m − e−(t−t̂i)∕𝜏s ) (9.1)

The Eq. (9.1) has two contributions: the first one is related to the connections

strength, because Jij is the connection strength between pre- and postsynaptic neu-

rons; the second contribution is related to the noise of network, because Ĵi is extracted

from a Gaussian distribution with mean 0 and standard deviation 𝜎 =
√

𝛼∕𝜌
∑

j J2ij,
where 𝛼 is the “noise level” of the network and 𝜌 = 1 ms

−1
is the rate of Poissonian

distribution P(t) ∝ e−𝜌t. In the Eq. (9.1) 𝜏m is the characteristic time of membrane (in

this paper 𝜏m = 10 ms), 𝜏s is the characteristic time of synapse (in this paper 𝜏s = 5
ms), tj are the spike times of neuron j, t̂i are the times of noise events releasing a

random charge at some point of membrane of neuron i.
The (9.1) is the solution of a differential equation, describing a RC circuit, because

in LIF model each unit has a membrane capacity C and a resistance R in parallel, so

that we have for neuron i:

dui(t)
dt

= −
ui(t)
𝜏m

+
Ii(t)
C

(9.2)

with 𝜏m = RC and Ii(t) is the input current, given by Ii(t) =
∑

j
∑

ti<tj<t
Qij

𝜏s
e−(t−tj)∕𝜏s +

∑
ti<t̂i<t

Q̂i

𝜏s
e−(t−t̂i)∕𝜏s , where Qij is the total charge released at the synapse between

neuron i and j and Q̂i is a random charge released at some point of the membrane of

neuron i. Qij and Q̂i are related to Jij and Ĵi respectively by the relations: Jij =
Qij

C(1− 𝜏s
𝜏m

)

and Ĵi =
Q̂i

C(1− 𝜏s
𝜏m

)
. When the membrane potential ui(t) reaches the threshold 𝜃, the unit

emits a spike and then ui(t) is reset to zero, its resting value.

So far we have described the single unit. Since we want to investigate the effects

of topology on network dynamics we build a structured connectivity that gives rise to

a complex dynamics with a rich phases space, and then we shuffle the connections to

check if crucial changes happen also in the dynamics. In the next section we will talk

about the process of creation of the network connectivity, thanks to the “learning”

and “pruning” procedures, and then we will describe the shuffling procedure.
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9.2.1 Learning and Pruning Procedures

We set synapse strengths Jij at the beginning with the “learning” procedure, inspired

by STDP (Spike Timing Dependent Plasticity). Then, during the simulation we hold

fixed Jij, i.e. we don’t use short term plasticity for sake of simplicity. Note that the

sign of Jij represent the type of synapse: if Jij < 0 the synapse is inhibitory, while

if Jij > 0 it is excitatory. With this procedure we store 𝜇 = 1, 2,… ,P phase-coded

patterns in the network connections, i.e. periodic ordered trains of spikes t𝜇i with

period T𝜇
and with one spike per neuron and per cycle. Because of such periodic

spikes train, the strength of connection Jij changes:

𝛿Jij = Hi

∞∑

n=−∞
A(t𝜇i − t𝜇j + nT𝜇) (9.3)

where A(𝜏) is a function of time, called “learning window”, inspired to STDP, with

𝜏 = t𝜇i − t𝜇j + nT𝜇
. t𝜇j and t𝜇i are pre- and postsynaptic spikes time in pattern 𝜇 respec-

tively, Hi is a constant that sets the strength of the connections, depending on the

postsynaptic neuron. This learning procedure assures the balance between excita-

tion and inhibition, i.e.
∑

i Jij = 0.

To take into account the heterogeneity of neurons, we use two values of Hi: H0 for

“normal” neurons and Hi = 3H0 for “leader” neurons, i.e. neurons that with higher

incoming connection strengths amplify activity initiated by noise. In other words,

leaders are neurons the ones which fire more than others, and they give rise to a cue

able to initiate the short collective replay. They are chosen as a fraction of 3% of

neurons with consecutive phases, for each pattern 𝜇.

To improve the model’s biologically plausibility, we delete some connections to

make the connectivity sparse. With the “pruning” procedure we cut a fraction f +prune
(70%) of positive (excitatory) connections with the lowest value and a fraction f −,iprune
(depending on postsynaptic neuron) of negative (inhibitory) connections with the

lowest absolute value. As it happens before pruning, also after pruning still there

is a balance of positive and negative connections affering each postsynaptic unit,

i.e.
∑

i Jij = 0. In this way, only a part of connections survives: 27% of N(N− 1)

connections are negative, 12% of N(N− 1) connections are positive, the other ones

are equal to zero. In such a way we get a structured and sparse connectivity.

9.2.2 Shuffling Procedure

We investigate the effects of shuffling procedure on network dynamics. We start from

the structured and sparse connectivity coming from learning and pruning procedures,

and we apply a shuffling procedure. In such a way the network topology changes, but

the strength of connections is preserved. Let’s consider the connection Jij, picked

up randomly. Given the postsynaptic neuron i, we change the presynaptic neuron
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j with another one k, chosen randomly among other neurons of the network. We

use the strength of Jij for the new connection Jik, i.e. Jik = Jij and then we put the old

connection Jij to zero. We repeat this procedure for a fraction of connections or all the

connections of the network. Not only the strength of connections remains the same,

but also the balance between inhibitory and excitatory connections entering each

unit is preserved. In this way we have the possibility to investigate the spontaneous

dynamics of the same model but with different network topology, from a structured

connectivity to a random connectivity, with the same value of connections.

The key parameters are: the noise level 𝛼, the strength of connectionH0, expressed

in units of the threshold 𝜃 of the neurons, and the fraction of connections we change

cs, that is the ratio between the number of times we make the shuffling procedure and

the number of connections, so we can have different situations from cs = 0 (struc-

tured connectivity) to cs = 1 (when all the connections are shuffled). For each cs we

want to investigate, we change the value of 𝛼 and H0, and we calculate the spiking

rate and the normalized variance. The normalized variance is defined as 𝜎̂ = 𝜎

<r>
,

where r = ntot
N𝛥

is the rate, with ntot total number of spikes in the time interval 𝛥, and

𝜎 = N𝛥 < r2 > −N𝛥 < r >2
is the variance. Explaining r, the normalized variance

can be written as 𝜎̂ = <n2tot>−<ntot>
2

<ntot>
. Note that if neurons are uncorrelated and Pois-

sonian then < n2tot > − < ntot >2=< ntot >. As a consequence the normalized vari-

ance is equal to 1. Therefore if normalized variance is different from 1, this means

that or (1) neurons are not uncorrelated or (2) each unit is not Poissonian. To under-

stand the importance of topology in this dynamics we calculate the clustering coef-

ficient of the network. The clustering coefficient (C) of a node of the network is a

measure of the number of edges that exist between its nearest neighbors [17]. It is

defined as

C̄ =

∑N
i=1

[∑
j,k∈𝛥(i) 𝛤 (j → k)

]

∑N
i=1 zi(zi − 1)

(9.4)

where 𝛥(i) is the set of nodes j such that there is a connection from i to j, zi is the

number of nodes in 𝛥(i), and 𝛤 (j → k) is one if there is a connection from j to k, zero

otherwise.

Structured network has more clusters of directed connections which cooperate

to activate a precise order of neurons, respect with randomized network. A dense

local clustering coefficient we observe in the structured network (cs close or equal to

0) remembers the regular topology of a network, while the clustering coefficient is

close to 0, from a particular value of cs close to 0.7 up to cs = 1 (random network).

We calculate the normalized clustering coefficient, defined asC = C̄−C1
C0−C1

, whereC0 is

clustering for zero shuffling, andC1 is for randomized network and C̄ is the clustering

coefficient of other intermediate cases of networks.

So we have C = 1 for cs = 0, i.e. a network with structured connectivity and

C = 0 for cs = 1, i.e. a random connectivity (Fig. 9.1a). In the next section we will

show the main results we have got, focusing our attention in particular on three dif-
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Fig. 9.1 a Changes of Topology. Normalized clustering coefficient C = (C̄ − C0)∕(C1 − C0),
where C0 is clustering for zero shuffling, and C1 is for randomized network, as a function of shuffled

connections cs. From a value of cs close to 0.7 the clustering coefficient approaches to 0, as happens

for a random network. A non-equilibrium phase transition occurs in the spontaneous dynamics of a

network ofN = 3000 neurons with structured connectivity (cs = 0). The rate (b) and the normalized

variance (c) are shown as a function of noise intensity 𝛼 and synaptic strength factorH0. One can see

a sharp transition from a region of Poissonian quiescence, with low rate and normalized variance

close to 1 (yellow points in figure b and c) to a region of correlated high rate activity (red points
in figure b and magenta points in figure c), with high values of both rate and normalized variance.

Between them there is an intermediate region in which the rate gradually grows and the normalized

variance has a peak, index of a transition (in blue circle). d Rate and normalized variance are shown

as a function of H0 for fixed 𝛼 = 0.03 ms
−1

. Note that the transition between qiescience state and

high correlated activity occurs when the rate grows and the normalized variance has a peak, for a

particular value of connection strength, corresponding to the region in blue circle of figure b and

c. e Rate and normalized variance are shown as function of 𝛼 for fixed value of H0 = 0.3. Note that

also in this direction there is an abrupt growing of rate and a peak of normalized variance

ferent cases of topology: cs = 0 (structured connectivity coming from the learning),

cs = 1 (random connectivity, when all the connections are shuffled) and cs = 0.63
(an intermediate case, when only 63% of connections are shuffled). We will observe

three completely different behaviors.

9.3 Results

In order to study the spontaneous dynamics, we calculate the firing rate (number

of spike per neuron and time interval) and the normalized variance (defined above)

changing the value of noise level 𝛼 and strength of connections H0. For a network

with structured connectivity (cs = 0) results are shown in Fig. 9.1. In this case we

observe a transition from a regime of quiescence characterized by both low values
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Fig. 9.2 Raster plot is the graphic in which we have the index neuron on the y-axis and the firing

time on the x-axis. For each point (𝛼, H0) of the rate diagram we want to investigate, in figure a,

b and c we show three raster plot, in the first one (upper) the neurons are ordered according to

their own number, in the second one (in the middle) are ordered according to the pattern 1 and in

the third one (bottom) according to the pattern 2. a The raster plot shows a quiescence regime in

which few neurons fire and without a scheme, for 𝛼 = 0.03 ms
−1

and H0 = 0.18. b An intermitted

reactivation of pattern 1, for 𝛼 = 0.03 ms
−1

and H0 = 0.243. This values of 𝛼 and H0 don’t allow

the permanence of pattern. c We have the permanence of retrieval pattern 1, for 𝛼 = 0.03 ms
−1

and

H0 = 0.26. In this model the two patterns can’t be retrieve at the same time, so that if we observe

the perfect pattern 1, when neurons are ordered according to pattern 2 we observe a lot of neurons

fire, because of high firing rate, but in disordered way. In figure d, e and f we show the rate to time

(upper) and the distribution of rate (bottom) of the same point of figure a, b and c respectively. d
The quiescence regime is shown, few neurons fire during the investigated time interval, indeed the

distribution of rate has one peak at low value of rate, close to 0. e The bimodal activity and the

alternation of up and down states are shown. We observe in upper figure the alternation of high and

low values of firing rate in time. In the bottom, the distribution of rate has two peaks, one close to 0

and another one at higher value of rate. f An UP state. The rate always is high and the distribution

of rate is similar to a Gaussian distribution with the mean value at high value of rate (about 20)

of rate and normalized variance to a regime of high correlated activity, characterized

by high value of both rate and normalized variance. Between these two regime there

is the transition region (in blue circle) when the transition occurs. Indeed in figure

(d) and (e) we have respectively rate and normalized variance in function of H0 for

fixed value of 𝛼 = 0.03 ms
−1

and in function of 𝛼 for fixed value of H0 = 0.3. The

peak of normalized variance in correspondence of a growth of rate is the sign that a

phase transition occurs. While in the region of high activity (red points in Fig. 9.1b)

there is a replay of one of stored pattern (Fig. 9.2c, f), in the region with low rate (yel-

low points in Fig. 9.1b) there is uncorrelated Poissonian activity (see Fig. 9.2a, d).

Between this two regions there is an interval of parameters where both the high-rate

and low-rate states are metastable and the system switches between the two states

(Fig. 9.2b, f). Even if this is not an equilibrium phase transition, but a dynamical one,
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Fig. 9.3 Rate (a) and normalized variance (b) as a function of fraction of shuffled connections

cs, at 𝛼 = 0.05 ms
−1

and at different values of H0. When cs increases the transition goes to upper

values of H0, until to a particular value of cs close to 0.7 where the transition ends. Indeed before

this value of cs, for each cs we observe the gradually growth of rate and an abrupt increase of

normalized variance following by low values again. At upper values of cs = 0.7 the normalized

variance is always close to 1 (as we have said) even if the rate increases with H0

this is similar to a first order transition since effects of hysteresis have been observed

by preliminary investigations (not shown).

The raster plot (Fig. 9.2) confirms the idea that a phase transition between a high

rate replay regime and a quiescence regime occurs. In raster plots we can see which

neuron and when fires. We show three raster plot in order to point out the three dif-

ferent behaviors of the network dynamics: (A) quiescence state, that we call DOWN

state, for 𝛼 = 0.03 ms
−1

and H0 = 0.18, in which few neurons fires, (B) a critical

behaviors in which there is an intermitted reactivation of one of stored patterns, for

𝛼 = 0.03 ms
−1

and H0 = 0.243 (C) high correlated activity for 𝛼 = 0.03 ms
−1

and

H0 = 0.26, in which neurons fire, retrieving perfectly one of stored patterns.

The dynamics of this neural network with structured connectivity is radically

altered when its topology changes when we apply the shuffling procedure. It should

be emphasized that the strength of connections are the same, even if we shuffle them.

In Fig. 9.3 the rate and normalized variance are shown as function of strength of

connection H0 and fraction of shuffled connections cs, for fixed value of noise level

𝛼 = 0.05 ms
−1

. This two figures explain how the transition between the two differ-

ent regimes (from quiescence-DOWN state to correlated activity-UP state) moves to

higher values of H0 as long as cs increases, until it disappears for a particular value

of cs close to 0.7. Indeed for cs larger than this particular cs the normalized vari-

ance always is close to 1, index of dynamics dominated by Poissonian noise, so the

transition is ended.

In particular we analyze two cases, different from the previous one of structured

connectivity (cs = 0): the case near the end of phase transition, choosing cs = 0.63
(63% of connections are shuffled) and the case in which the network has a random

connectivity (cs = 1, i.e. all the connections are shuffled).

In Fig. 9.4 we underline the end of phase transition when we shuffle all the connec-

tions. The sign of the end of this transition is the disappearing of peak in normalized

variance and the gradual growth (very smooth) of firing rate when H0 increases.
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Fig. 9.4 Phase transition ends when we shuffle all the connections, keeping unchanged their values.

Three cases are analyzed: a cs = 0, structured connectivity. The rate increases abruptly and the

normalized variance has a peak in correspondence of this increasing of rate. b cs = 0.63, 63% of

connections are shuffled. The increasing of rate is less abrupt than the figure a and the normalized

variance has a smaller peak moved to higher values of H0, like as the transitions moves to higher

values of strength of connections but doesn’t disappear. c cs = 1, all the connections are shuffled,

but their values don’t change. The firing rate increases very smoothly with the increasing of strength

of connections, while the peak of normalized variance (seen in previous figures) disappears. The

normalized always is close to 1, index of absence of the transition

The intermediate case, cs = 0.63 is very interesting. The phase transition occurs

at high value of H0 and at low noise, while at high noise there is a region of high

rate but uncorrelated activity (normalized variance is close to 1). In particular at

fixed value of H0 = 0.8 (Fig. 9.5), for high value of noise (𝛼 = 0.2 ms
−1

) we have

high value of rate but low value of normalized variance, close to 1, like in the case

cs = 1 (see later). Indeed the raster plot shows a dynamics in which neurons fire a

lot, but without a particular order (see Fig. 9.5b, d). For low value of noise (𝛼 = 0.02
ms

−1
), the situation is similar to the case of cs = 0, because in this case we observe a

transition region with a peak of normalized variance. Indeed for this point the raster

plot shows a perfect retrieval pattern (see Fig. 9.5a, c). The phase transition moves

toward higher values of H0 and lower values of noise level, when we increase the

fraction cs of shuffled connections.

We repeat the same investigation for cs = 1. cs = 1 means that we shuffle all the

connection, getting a completely random connectivity (while the set of connection’s

strengths are preserved). In this case the figures of firing rate and normalized variance

are completely different from the case of cs = 0 (structured connectivity) and cs =
0.63 (intermediate case). While the rate shows a gradually growth (coming from

high values of level noise and strength of connections), the normalized variance is

always close to 1, even when the rate is high. It is the sign of a dynamics dominated

by Poissonian noise. Indeed the raster plot doesn’t show a particular scheme, even if

the rate is always high (see Fig. 9.6c).
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Fig. 9.5 The study of spontaneous dynamics for a network with cs = 0.63 (only a fraction of 63%
of connections are shuffled). a The firing rate shows a gradually growth when we increase the

strength of connections, but for high value of noise (in the blue circle) the normalized variance b
is close to 1, similar to the case of cs = 1, while for low values of noise (in the green circle) the

normalized variance shows a peak, similar to the case of cs = 0where we observe a phase transition.

b Normalized variance diagram, for the same values of 𝛼 and H0 of the firing rate diagram. c Rate

and normalized variance in function of H0 for fixed value of 𝛼 = 0.02 ms
−1

. We observe a peak of

normalized variance when the rate abruptly increases. d Rate and normalized variance in function

of 𝛼 for fixed value of H0 = 0.8. We note a peak of normalized variance at value of noise close to

0.04 ms
−1

, while for high value of 𝛼 the normalized variance is always close to 1 even if the rate is

high. e Raster plot of a network with cs = 0.63 and 𝛼 = 0.02 ms
−1

and H0 = 0.8 (point in the blue
circle of panel a and b. In this case we observe the perfect retrieval stored pattern with high firing

rate. f Raster plot of a network with cs = 0.63 and 𝛼 = 0.2 ms
−1

and H0 = 0.8 (point in green circle
of panel a and b). Even if the firing rate is high, the neurons fire a lot, but without a precise scheme

Fig. 9.6 The investigation of firing rate and normalized variance for cs = 1 (random connectivity)

changing noise level 𝛼 and strength of connections H0 gradually. a Rate in function of 𝛼 and H0.

We note a gradually growth of value of rate for high values of 𝛼 and H0, but this doesn’t mean

a transition occurs. Indeed in figure b we observe values of normalized variance always close to

1, index of dynamics dominated by Poissonian noise. c Rate to time (upper) and rate distribution

(bottom) for a network with random connectivity (cs = 1), with strength of connectionH0 = 0.8 and

noise level 𝛼 = 0.2 ms
−1

, i.e. a red point in panel a. The rate is always high during the investigated

time interval and the rate distribution is similar to a Gaussian distribution with a peak at rate close

to 20. In the raster plot we don’t observe a particular scheme according to which neurons fire
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9.4 Conclusion

With this work we have seen how, in a structured network with a phase transition

from quiescence state to a replay state, the spontaneous dynamics changes when we

shuffle the connections. The balance between excitation and inhibition are preserved

during shuffling. The clustering coefficient decreases when the fraction of shuffled

connections increases. The clustering coefficient reaches the value that we observe

for a completely randomized network when the shuffling fraction is about cs = 0.7.

This is also the value of cs at which the phase transition seems to disappear. We

can conclude that the transition and the rich dynamics in phase-space we observe

when the network has a structured connectivity is crucially related to the network

topology, induced by the learning procedure. The peak in the normalized variance

that we observe near the transition is the signature of a system with high fluctuations

as it is observed near a second order transition or near the spinodals of a first order

transition. Further investigations are in progress to understand the order of the phase

transition.
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