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A Predictive Model of Artificial Neural
Network for Fuel Consumption in Engine
Control System

Khurshid Aliev, Sanam Narejo, Eros Pasero
and Jamshid Inoyatkhodjaev

Abstract This paper presents analyses and test results of engine management
system’s operational architecture with an artificial neural network (ANN). The
research involved several steps of investigation: theory, a stand test of the engine,
training of ANN with test data, generated from the proposed engine control system
to predict the future values of fuel consumption before calculating the engine speed.
In our paper, we study a small size 1.5 L gasoline engine without direct fuel
injection (injection in intake manifold). The purpose of this study is to simplify
engine and vehicle integration processes, decrease exhaust gas volume, decrease
fuel consumption by optimizing cam timing and spark timing, and improve engine
mechatronic functioning. The method followed in this work is applicable to
small/medium size gasoline/diesel engines. The results show that the developed
model achieved good accuracy on predicting the future demand of fuel consumption
for engine control unit (ECU). It yields with the error rate of 1.12e-6 measured as
Mean Square Error (MSE) on unseen samples.
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21.1 Introduction

ANN have received much attention in recent years due to the number of functions
which can be applied to engines such as modelling, controller design, on-board
testing and diagnostics. ANN is an information processing paradigm that is inspired
by biological nervous systems, functions, and mathematical and physical methods
of information processing. The latter is composed of many simple processing units
working in parallel to each other which are connected insome way and depend on
the status of the dynamic response of the external input information computer
system. It is a simple simulation of the brain with specific smart features and rapid
processing abilities to perform [1].

Neural networks generally contains three layers: input layer, hidden and output
layer. Each of them consists of nodes or neurons. Moreover, ANN can solve
classification problems and function approximation. Applications of ANN model
start operate correctly if the design of data satisfies all the dynamics of the system.
Furthermore, structures and combinations of networks considerably affect the
performance level of system. This article will describe data acquiring procedures,
construction of the experiments and neural network description. Collection of data
needs to be done precisely and the size of data is another important factors of ANN.
The data needs to be determined if transient behavior or steady-state operations
provide sufficient features for training and validation. The more features the training
data covers, the better the network is trained for the generalization of engine
behavior. Designing of experiments has a significant impact on the model perfor-
mance and especially for engine systems [2].

21.2 Research Background

Neural networks, and fuzzy systems can be significant in the usage of advanced
control strategies. The authors of [3] used IC (Internal combustion) engines with
highly nonlinear characteristics containing variable time constant terms and delays.

The capability of smart systems performances, for instance neural networks and
fuzzy methods: if we relate these nonlinear properties, ANN becomes excellent tool
in the modeling of engines [4]. The authors of [5] discuss a technique where static
neural networks (SNN), time delayed neural networks (TDNN) and dynamic neural
networks are used for modeling an spark-ignition (SI) engine.

Similarly, in our investigation, computational intelligence is used at 2 stages of
our work. At first, the management of ECU is directed by creating an application of
fuzzyneural network (FNN). Afterwards, once the developed model of ECU passes
the hot test procedure, we created another model of ANN for prediction. The
objective for designing this model was, to predict the future demand of fuel con-
sumption in engine by taking previous time interval and speed (rotation per minute)
as an input.
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21.3 Experimental Setup

The experimental setup of our work consists of three steps. In the first step we
develop a model for engine control system of vehicle motor. The controlling and
management unit is based on neuro-fuzzy system. Afterwards, the hot test proce-
dure is implemented to test the developed ECU which is the second step in our
procedure. The next step is to construct a predictive model, which is capable to
estimate the unknown values of fuel consumption for future time intervals. The
steps are further discussed in details.

21.3.1 Engine Control System

Neural networks can only come into play if the problem is expressed by a sufficient
amount of observed examples. These observations are used to train the black box
(as element of ECU). In this case no prior knowledge about the problem needs to be
given. In our case to develop engine management (controlling) algorithm, we use
the attributes of FNNs. The learning procedure is constrained to ensure the semantic
properties of the underlying fuzzy system. A neuro-fuzzy system approximates
n-dimensional unknown functions which and partly represented by training
examples. A neuro-fuzzy system is represented as a special three-layered feedfor-
ward neural network as shown in Fig. 21.1.

The first layer corresponds to the input variables—acquired data from sensors.
The second layer symbolizes the fuzzy rules—processes in the engine control unit.

Fig. 21.1 The architecture of
a neuro-fuzzy system: the use Injectors Spark
of neural networks in an
engine management system : ACTUATORS
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The third layer represents the output variables—output signals from the control unit
to actuators. The fuzzy sets are converted as (fuzzy) connection weights.

21.3.2 Engine Hot Test Process

The hot test process consists of two main offline tests which includes production
and durability hot tests. A production hot test (idle running engine) was used for the
engine start verification prior to shipment to avoid costly final assembly plant
warranty issues. These stations are often used as a confidence test for the quality
process, and also act as a low cost electrical test. Often operator subjective, an noise
vibration harshness (NVH) test looking for odd engine noise may also be used in
this test, as well as for fuel and oil leakage. On the other hand, a durability hot test
which (puts a well-controlled load on the engine during running) is used in large
diesel markets, where horsepower verification and fuel consumption, emission and
calibration can only be done while running the engine.

In our case, the engine hot test process included the checking of the main engine
parameters and engine performance data acquisition. The engine was rigged up on a
trolley outside the test container as shown in Fig. 21.2. Subsequently, the trolley
was connected automatically through the connection plate to the test stand. After
manual release by the worker, the trolley is automatically pulled to the test position
and fixed.

On the test stand and on the trolley, connection plates with quick fit connectors,
guarantee a fast docking. If the engine is properly connected to the test stand, the
test stand program will start the test cycle. During the hot test the following
parameters test the performance of power: torque with either oil, water or fuel
leakages under warm conditions. The next step is to record engine control module

Fig. 21.2 Engines hot test machine (container type)
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Fig. 21.3 Hot test sequences

(ECM) trouble codes, noise, electrical and mechanical functions, fuel consumption
and emission. The test consist of different sequences and steps illustrated in
Fig. 21.3.

After the automatic test run, the observed results were transferred to the test field
server via an ethernet interface. The outcomes were reported in an Excel file. The
measured results of other test runs were saved simultaneously on the server. The
last observations run was saved and automatically opened in the post-processing of
personal computer (PC) [6].

21.3.3 Prediction for Fuel Consumption

The engine hot test machine generates 2 types of output data: graphical—curves of
separate engine characteristics and numerical data. The numerical data are used for
ANN training process with detail breakdown which gives outputs from 24 engine
parameters recorded frequently after every 0.47 s.

As much information we get from the training process as “smarter” our con-
trolling system performs. In engine control unit system, amount of fuel being used
is very crucial. Fuel consumption is the weight flow rate of fuel required to produce
a unit of power or thrust. That is the reason to know in advance the consumption of
fuel. Fuel consumption in the designed engine management control system is
predicted one time step earlier with ANN model.

The two attributes speed and time are taken from the dataset generated by ECU,
to train the ANN model for prediction of fuel consumption. The data is scaled in the
range of [0, 1] for the artificial neural network to learn the underlying nonlinear
structure and dependencies present in the dataset. Further to this, in contemplation
to predict accurate fuel consumption values over step ahead, as it is discussed
earlier that the choice of ANN used here is nonlinear autoregressive exogenous
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Fig. 21.4 Architecture of model NARX ANN

model (NARX), which is a recurrent neural network. The expression of that model
is given in Eq. (21.1).

y@) =f(u(t—nu), ...,u(t=1),u(t),yt—ny)...,y(t=1))+ € (21.1)

which identifies that in order to predict the future values of y, the past values of
same parameters and the current and the past values of external variable u are far
most crucial. It is the realization in literature that the recurrent neural networks with
sufficient number of hidden neurons having nonlinear activation function behaves
in the manner of nonlinear autoregressive moving average (ARMA) method for
time series forecasting [7, 8]. Inputs to our adopted model comprises of time
(sec) and engine speed (rpm).

Output of model is a future value of fuel consumption. Figure 21.4 depicts
the architecture is based on input layer, 1 hidden layer containing 30 hidden
nonlinear neurons with sigmoid activation function, and 1 output layer containing
one linear neuron. The selection of hidden neurons is based on Monte-Carlo
simulation [9, 10].

21.4 Results and Discussion

The NARX model is trained on 40,000 samples of data set. In order to avoid the
over fitting of model on data and to improve generalization, the dataset is divided in
70% for training, 15% for validation check and 15% for testing the model perfor-
mance. The rest of dataset samples are kept aside to evaluate the efficiency of
network on unseen data. The performance of the network is measured by Mean
Square Error (MSE) as given in Eq. (21.2).
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MSE= 4 3 1(0) -3 212)

i=1

where § is a vector of n predictions, and y is the vector of observed values cor-
responding to the inputs to the function which generated the predictions. Practices
of model can be observed from Fig. 21.5a and b which shows the measures related
with the training set of model.

The model is trained using Levenberg-Marquardt training Algorithm, training
stops as the error is not reduced further on validation set by choosing the early
stopping criteria. However the model completes 333 epochs of iteration to minimize
the error on predictions. The overall network performance measure is 3.5603e-05
MSE.

Another validation parameter R is used, involves analyzing the goodness of
fit of the regression. Monitoring whether the regression residuals are random, and
checking whether the model’s predictive performance deteriorates substantially
when applied to data that were not used in model estimation. The graph of the
regression is illustrated in Fig. 21.6. The solid line represents the best fit linear
regression line between outputs and targets. The R value is an indication of the
relationship between the outputs and targets. If R = 1, this indicates that there is an
exact linear relationship between outputs and targets. On the other hand, if R is
close to zero, then there is no linear relationship between outputs and targets.
Figure 21.7 depicts the behavior of actual fuel consumption and predicted fuel
consumption with time. The deviation of predicted samples from the actual ones
can be properly seen in Fig. 21.8a and b.

Figure 21.8b shows 20 samples prediction of fuel consumption using one step
ahead prediction, the average difference between the actual and the predicted
samples is around 1.1242e-06, which is nearly accurate. This model helps to know
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10° ) w10* Error Histogram with 20 Bins
e Traitt | —,
_— Valdation | [N Training
a.') ;:u as [ vaication
A | " | — ™
E— 10 3 Zero Ervor
e
o w25
bl a
= 402 a
w c
° B
=~ £ s
5 10
“B,' 1
c 2 05
g 10— o 5
= !L S EReIT L EEEr AR LR
| EEEEEEEEEEEEREEREESS
sfc Pggocinfesosag!
10-5| ¢qiqi$do6 -] SSdoSS8686 686

50 100 150 200 250 300 L R e e
333 EpOChS rrors = largets - puts
Fig. 21.5 a Performance of model on training, validation and test sets b error histogram of
training, validation and testing



220

Training: R=0.9999

w
e O Data °
[
= I Fit
s 0 Y=T
+
o
§ 067
[1+]
'_
»
= 04
1
?
§, 02t
3
(o]

0

0 02 04 06 08 1

Target
Test: R=0.99985
o |
g O Data
Fit

=1 b
g = Y=T ©
+
@ 06}
8 o0
©
|_
- 04Ff
1]
]
3 L
302
=1
o]

0

0 02 04 06 08 1

Target

Output ~=1*Target + 0.00015

Output ~=1*Target + 0.00013

K. Aliev et al.

Validation: R=0.99963

O  Data
Fit
Y=T

0.8 [

0.6 [

0.4

0.2
0
0 02 04 06 08 1
Target
All: R=0.99985
1 &
O  Data ©
| Fit
e Y=T ©
0.6
0.4
0.2 °
0 Y
0 02 04 06 08 1
Target

Fig. 21.6 Regression plots of training, validation, test and all in one
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Fig. 21.8 a Actual and predicted values b 20 samples of actual and predicted FCs

in early time stamp what will be fuel consumption, even the speed is unavailable
but focusing the rotation at previous time and the previous fuel consumptions one is
able to infer the approximate fuel consumption for future.

21.5 Conclusion

In this paper we presented neural network approach to predict the fuel consumption
of the engine based on NARX-models. The input to NARX is extracted from the
resultant parameters of engine hot test. The hot test was conducted on ECU which is
again based on neuro-fuzzy system. The ECU is further using ANN architecture
which can manage engine controlling system precisely and outputs gave good
results of learning and prediction. By predicting the fuel consumption earlier, we
can manage more accurately air/fuel ratio, exhaust managing by exhaust gas
recirculation (EGR) system and cam timing (if it is variable). As a result, it
improves the main engine characteristic, effectiveness, fuel consumption, perfor-
mance and pollutant volume.
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