Apps for Environments: Running Interoperable Apps
in Smart Environments with the meSchup IoT Platform

Thomas Kubitza™

University of Stuttgart, Stuttgart, Germany
thomas.kubitza@vis.uni-stuttgart.de

Abstract. With Apps a popular concept was introduced allowing end-users to
easily extend their devices such as smartphones or computers with specific func-
tionality. Two million Apps have ever since found their way into each of the
popular App-stores Google Play and Apple Store. We argue that the App-concept
is not only well applicable to single devices but also to complete environments
equipped with smart networked things. In the moment when Apps can be easily
downloaded and executed in home, office and industry environments a wide new
applications space will be opened up. In this work we introduce the concept of
Smart Space Apps that can be downloaded from a cloud-based App-store into a
smart environment where they dynamically utilize the capabilities of available
smart things to optimally achieve the purpose they were installed for. We intro-
duce a unified schema for the access of sensors and actuators of heterogeneous
devices from within Smart Space Apps and describe the middleware and runtime
that implements this approach. We explain how Apps are packaged into an
exchangeable format and published within a cloud-based App-store. Multiple
application use cases are shown and challenges of this novel approach are
discussed.

Keywords: Internet of Things - Smart environments - Middleware - Smart Space
Apps

With the increasing number of smart devices, networked sensors and programmable
actuators many novel opportunities arise through their smart composition. Internet of
Things (IoT) technologies and networked wearable devices provide new opportunities
for creating distributed tangible user interfaces and intelligent behaviour of networked
devices sharing the same physical space. For instance, an activity tracker worn by many
users today is mainly collecting activity-data throughout the day, however, when its user
is sitting on the couch in front of the TV the embedded accelerometer of the activity
tracker could be exploited to detect arm gestures that control the TV.

As soon as individual smart things are able to offer some or all of their capabilities
to the smart environment in which they are located a multitude of new useful applications
will arise that optimally make use of this distributed sensors, actuators, input devices
and screens to assist users during their onsite activities and tasks. At the same time we
believe that the concept of Apps, which is a popular approach allowing users to easily
extend the functionality of single devices, can be also applied to smart environments.

© Springer International Publishing AG 2017
1. Podnar Zarko et al. (Eds.): InterOSS-IoT 2016, LNCS 10218, pp. 158-172, 2017.
DOI: 10.1007/978-3-319-56877-5_10

Apps for Environments: Running Interoperable Apps in Smart Environments 159

In this work we report from our ongoing research on realizing this vision. With Apps
for Environments we introduce a concept, infrastructure and implementation in which
exchangeable Apps that users can download into their smart environments can dynam-
ically utilize available capabilities of networked devices to interact with onsite users and
to optimally achieve their purpose.

1 Smart Space Apps Concept

Apps for Environments or Smart Space Apps do not run on single devices but instead
in environments. For this purpose our approach requires one (stationary) computing
node in the local network to run a middleware and runtime for the execution of smart
space Apps. This node can be part of an existing networking infrastructure (e.g. WiFi,
Ethernet) or span its own networks using different communication technology adapters
(smart hub). A main pillar of our Smart Space Apps concept is a unified view on
networked computing devices and their capabilities: In general, if a device has a
processor and a communication interface it can become part of our smart space. Whether
certain capabilities of a device should be exposed to the smart environment or not is a
decision that inhabitants of a smart space have to decide on inclusion of a new device
to the network. Applied to the initial example - the user that controls his TV using his
activity trackers arm band, has at some point decided to expose his trackers accelerom-
eter to be used on demand by his domestic environment. In addition he has downloaded
and installed a Smart Space App into his smart hubs runtime that promises to utilize
devices of the type “activity-tracker” to control devices of the type “TV”. After down-
load and execution the functionality is instantly available. The core functionality of the
users’ activity tracker, measuring and reporting activity, is still continued but in addition
sensor-data events measured by the accelerometer are shared with the users’ smart envi-
ronment as soon as the tracker is in its wireless range.

Unified Access Schema
Our unified view on capabilities of smart things breaks these down into sensors (devices
that are pure data producers), actuators (devices that are pure command receivers) and
combinations of both. This generic view allows to integrate networked devices of very
different kinds in the same way: Capabilities of commercial IoT devices, networked DIY
sensors, smart phones, tablets or home appliances can be accessed in the same way. This
forms the basis of a unified access schema that is used within our runtime to give Apps
access to the shared capabilities of an environment. This schema is illustrated in Fig. 1.
This schema uses a (locally) unique user-defined or auto-generated name to reference
specific devices, device-wide unique names for modules that represent sensors, actua-
tors, or combinations and names for properties of the referenced module to access sensor
data or to trigger actuator commands. As indicated by the dot-notation a runtime could
inject this hierarchically structured information into its namespace and execute Smart
Space App code written in any programming language that uses this access schema to
implement behaviour that interweaves sensor events with system state and actuators.
Using the devices indicated in Fig. 1 a minimal Smart Space App could be implemented

160 T. Kubitza

Smart Things Device Modules Properties
o showURL
iSRiay; showVideo
| — NFC-Reader Iadctlon
|
Smartphone = JohnsPhone.Display.showURL
Accelero- :
Smart meter z
= Couch15

value

DigitalOutl

Arduino i
= SmartCouchl5.Accelerometer.X

Fig. 1. Generic modularization approach and naming scheme used for referencing smart things
and their capabilities

with the following code that shows the weather forecast on the display of “JohnPhone”
when the accelerometer of “SmartCouch15” is actuated (e.g. when someone sits down).

if (SmartCouchl5.Accelerometer.X > 10) {
JohnsPhone.Display.showURL (“http://bing.com?g=weather”);

This very simplistic example illustrates the conceptual level on which logic for Smart
Space Apps is implemented. Note that the networking layer is completely abstracted
and that devices and capabilities of entirely different platforms and operation system are
accessed in the same way. Although very basic, these three lines of code already imple-
ment a small Smart Space App that interweaves two specific devices. Complex Apps
can consist of thousands of lines of code, interweaving arbitrary numbers of devices,
sensors and actuators. In contrast to the example above Smart Space Apps that should
run not just in one specific environment, typically do not consist of code that references
devices specifically (e.g. “JohnsPhone”) but instead reference devices dynamically by
their type and capabilities (see section “Runtime” for an example). This allows building
and publishing Smart Space Apps that can be downloaded and run in smart environments
that consist of very different devices than the ones they were originally build and tested
in. For instance a Smart Space App that notifies users when movement sensors were
triggered could use flashing the floor-lights in smart space A while in smart space B the
same App would show (in addition) a notification message on the displays of currently
near tablet or smartphone devices.

In the previous paragraphs we explained the concept behind Smart Space Apps. In
the next section we will briefly sketch the implementation of this concept in the form of
the meSchup IoT platform.

Apps for Environments: Running Interoperable Apps in Smart Environments 161

2 meSchup IoT Platform

The meSchup IoT platform [1, 2] was designed and implemented within the four year
FP7 EU project meSch. meSchup consists of an integrated middleware, runtime and
web-based development environment (IDE) software for onsite hub computers as well
as client software, firmware and adapters for a wide range of client devices. The client
support at the time of writing incudes Android devices (smartphones, tablets, projectors,
TV, Amazon Fire) smart things platforms such as Arduino, Espressif, NET Gadgeteer
and nRF51822 microcontrollers, Raspberry Pi and Intel Edison computers, Windows
and Linux machines, smart-plugs, ambi-lights and multiple other smart appliances. For
devices that by default are not able to expose their capabilities to local smart environment
Apps, client software or firmware is provided. For devices that are not extendable with
Apps or firmware such as typical smart X appliances adapters are offered that run in the
meSchup middleware and allow direct communication or control of these devices. The
meSchup server software is fully implemented in Node.js and can be thus run platform
independent on various operation systems. Although meSchup can run on any off-the-
shelf machine we provide a set of different meSchHub devices that come optimally
preconfigured for various purposes. Figure 2a for instance depicts the meSchup proto-
typing hub (meSchHub-P) that is based on a Raspberry Pi II computer and comes with
its own embedded WiFi Hotspot, battery and meSchup platform preinstalled on SD-
card.

a))

s meschuy Things N Events 0 Behaviour My Cloud Store Moce ~ Phuging 2 Settings
- Gmeschup & o o] »

| &5, Smart Things Pool

P v e e tame o Ee— oo
@ o o E o
o p . B o
= & W
= e B
oo . @
Of: ¢ O~
o e B
o pe . @

Fig.2. (a) meSchHub-P device, (b) meSchup web interface: Overview of configured and recently
discovered smart things, (c) Public Smart Space Apps in the cloud-based App store

Middleware

The middleware layer of the meSchup platform abstracts from arbitrary (wireless)
communication technologies and protocols and provides unified bidirectional access to
remote devices and their capabilities for higher layers of meSchup such as the App-
runtime, GUI or IDE. Adapters for various communication technologies are supported
such as WiFi, ZigBee, Z-Wave, BLE and LoRa. For each of these communication tech-
nologies automatic device-discovery is implemented. Discovered devices are listed in

162 T. Kubitza

the web-based smart things pool overview where users can configure which of their
capabilities they want to provide to their smart environment (Fig. 2). Known devices
are automatically discovered and configured every time they return into the (wireless)
network. This in particular allows roaming devices such as smartphones to be alternately
used in different smart environments. Event-based communication is the default commu-
nication model between meSchup clients and the middleware server. This means that
client devices do the “hard job” locally such as fast sampling of sensors or complex
computation. Only when adequate sensor changes are detected clients will send sensor
events to the meSchup middleware. This will trigger Apps to be executed in the meSchup
runtime. However, other behaviours such as time-series data can be also configured.
Instant remote reconfiguration allows to expose new sensors and actuators anytime
without the need to reinstall a client or re-flash firmware of a smart device. This is
particularly important to minimize the maintenance for potentially hundreds of devices
that are expected in near future smart environments [3]. The event-based communication
model saves wireless bandwidth, keeps communication responsive and scales for large
numbers of devices.

The meSchup middleware is particularly designed to be extendable and strongly
inclusive. New communication technologies and protocols can be easily added as
middleware modules. By default popular IoT protocols such as MQTT and HTTP/REST
are supported by the platform. Virtual devices optimally map the sensor- and actuator-
topics/resources of these protocols onto the unified device-module-property access
schema.

Web-Based User Interface

meSchup comes with its own web-based GUI for device- and App-management as well
as an integrated development environment for the creation, testing and packaging of
Smart Space Apps. After starting the meSchup software or powering up a meSchHub
the interface is instantly accessible via “http://meschup”. The smart things pool view of
the UI gives an overview of currently available smart things (Fig. 2b), their connection
status, configuration and new devices that have recently been discovered. New sensor/
actuator modules can be added or removed in a drag&drop manner and are made
instantly available on the remote device. The events view allows monitoring of sensor
and actuator events for debugging purposes. The behaviour view provides an overview
of currently installed Smart Space Apps and allows to enable/disable, remove or edit
Apps (and their underlying interaction scripts). Foreign Apps can be downloaded from
a cloud-based Smart Space App store and new Apps can be developed within the inte-
grated IDE and be subsequently published to the store (Fig. 3).

Runtime

The meSchup runtime uses JavaScript as the programming language for the implemen-
tation of Smart Space Apps. An App can consist of one or many interaction scripts. The
previously introduced unified access schema is exposed as the object api.device
within the runtime and provides all Apps unified access to all devices and capabilities
of the smart things pool. An exemplary interaction script is shown below. This generic

http://www.meschup.com/

Apps for Environments: Running Interoperable Apps in Smart Environments 163

Graphical script configurationlayer ~ Simulation mode tab , Upload to cloud Save
€ Goback Interaction Script Editor &L Publish [Saveand Close [Save
a)

Code Configure Simulate Help
Name Description Priority Settings Imports.
MySharing Demo 0 Coffeescript g, Manage
Global v
1~ if (api.device.TomNexusS.SpeechOne.speech2text “make it cosy”) { \
2 api.device.ChromeCastLivingroom. audicOne.play = “http://dropbox.con/. ../song.mp3"; Mark as reusable
3 api.device. LifxLivingroom. 1ightone.din(10); library
4)
s
6+ if (api.device.TomNexusS.TouchOne.action == "SingleTap™) {
7 api.device.ChromeCastLivingroom.audioOne.pause(true);
s) . i
9 else if (api.device.TosNexusS.Touchone.action == “boubleTap™) { -~ Smart Things object browser
10 api.device.ChromeCastiLivingroom. audioOne.pause(false);
11
12 api.device.
DemoTag2 device 2] Current Value
RPI22 d
JennysAndroidsa Sndetined
Synmx meschupServerClient
h. t 8liDemoGadDirect
ints 8liDemoLightsense device
81iDemoGadcab device Logging console
Console [:] Start Logging

Fig. 3. Integrated web based development environment (IDE) for Smart Space Apps

interaction script displays the incoming message on any device that offers a display-
capability to the local environment.

5 N
6 // Iterate over all smart things
7 » for (var device in api.device) {

8 // show msg on screen if device offers a display

9~ if (hasModule(device,"display™)) {

10 api.device[device]["display”].showHtml ("Msg for John:"+msg);
11 }

12 }

Interaction scripts are executed event-based when new sensor events are received
by the middleware or timer-based to react on schedules. The developers of App-inter-
action scripts decide on which events to listen. However, this can be restricted on instal-
lation of Apps by not granting access to certain device or module types. The runtime
allows executing many Smart Space Apps in parallel. This makes it easy to extend
environments continuously with specific functionality required by their inhabitants.

A Smart Space App can optionally provide a graphical configuration user interface
that allows End-users to fine-tune its behaviour to their needs and local environment
without requiring programming knowledge. These interfaces are web-based and will be
typically accessed via users’ smartphones or tablets. Developers of Smart Space Apps
decide how extensive configuration options are and whether they want to provide a
configuration interface at all.

App Store
Smart Space Apps package interaction scripts and optional resources that are for instance

required for configuration Uls (HTML, CSS, images, etc.) together with meta-data into
exchangeable compressed Smart Space Apps files (.S2A file extension). Meta informa-
tion includes among others the App-title, description, tags, author and version. Further,

164 T. Kubitza

information on necessary device types and modules is included. The packaging process
is integrated into the web-based IDE. Packaged S2A-Apps can be uploaded into our
cloud based App store where they can be easily found by interested users, if the author
decides to make them public. The App store requires a previous registration of a user
account. This account can be then assigned to one or many meSchHubs that are managed
by the same user or organisation. Packaged Apps are then automatically uploaded to
this cloud-based App store account but are not made public. Users can either decide to
make their Apps publicly available or to keep them private. Users or organisations
managing multiple meSchHubs can use the App store to remotely deploy new or updated
Apps to one or many of their hubs at once. We currently extend this basic functionality
of our App store with additional community functions such as author- and App-ratings,
comments, bug-reports and feature requests.

3 Example Applications

meSchup is used as core IoT platform for realizing novel IoT applications in multiple
different projects and domains. Three application examples from these projects are
briefly described to indicate the broad range of current and future potential application
areas for Smart Space Apps.

Smart Interactive Exhibitions

meSchup is actively used in multiple European museums and cultural heritage institu-
tions as the core onsite infrastructure for the realisation of smart interactive exhibitions.
Multiple of these exhibitions were packaged up and are available in an App store! that
was particularly designed for cultural heritage professionals (CHPs). This App store
conceptually works in a similar way as the previously described generic App stores but
in addition it provides support for the typical workflows of exhibitions designers. In
particular it provides easy access to content sources for CHPs such as Europeana® and
allows to interweave this content conveniently with the smart behaviour of available
smart exhibition Apps (these are called recipes within mesch.io).

The example application depicted in Fig. 4 for instance is deployed across multiple
points of interest (POIs) within a museum exhibition and allows a visitor to perceive
personalized multi-media content at each POI based on an object that the visitor has
picked at the entrance. This object represents a perspective on the exhibition (e.g. in the
context of a First-World-War exhibition narrations from the perspective of a soldier
versus the one of a civilian) and the chosen language of the visitor. At each POI a pulsing
round area indicates that visitor can place objects on it. This explicit interaction triggers
audio, video or other presentations that are tailored to the visitors’ language and perspec-
tive.

Technically this interactive setup is realized with NFC readers, projectors, screens
and earpieces embedded into each POl and NFC tags embedded into the wearable objects
for visitors. Apps running in the onsite meSchup platform interweave events from NFC

' http://mesch.io.
: http://www.europeana.eu/portal/en.

http://mesch.io
http://www.europeana.eu/portal/en

Apps for Environments: Running Interoperable Apps in Smart Environments 165

Fig.4. This point of interest in an interactive exhibition space provides personalized multi-media
content using a personal NFC-based token that visitors use across an exhibition

readers with the appropriate content and instantly trigger the display of media at the
corresponding points of interest. Associations of content to POIs and NFC objects are
not hardcoded but instead use simple semantic tags to derive which content should be
shown in which situations. Besides implementing this visible behaviour for visitors the
responsible App can also collect anonymised usage data and provide spatial and
temporal usage-visualisations for curators.

This example illustrates how meSchup and the Smart Space App concept facilitate
the realisation of advanced distributed, customizable interactive installations for novel
museum experiences without requiring any low-level programming experience from
museum-curators and exhibition designers. Furthermore, installations realized in one
physical setup can be easily transferred into another physical setup by just installing the
same App on another smart hub. Full interactive exhibition floors can completely switch
their purpose and content by simply installing another Smart Space App.

Ubiquitous Notifications

meSchup is also utilized in research projects that explore ubiquitous notifications in the
context of smart home and office environments as well as ambient assisted living. In the
ubiquitous notifications project [4] meSchup is used to display notifications that arrive
at users smartphones (e.g. WhatsApp, Email, Calendar, etc.) instantly in the users envi-
ronment by dynamically using the capabilities that the current devices in proximity offer.
Notifications can thus be overlaid on a TV screen in one situation while they are read
aloud by an Amazon Echo device or indicated with ambient lights in another situation.
Multiple mobile and stationary deployed sensor sources such as BLE beacons, move-
ment sensors and phone status and orientation are utilized to optimally derive the best
devices and output modalities for displaying notifications. Different Smart Space Apps
provide an easy way to deploy and test different visualisation concepts and strategies in
different physical setups and with different users (Fig. 5).

166 T. Kubitza

SAMSUNG

[6 () Forwand notiications
- P— |
e Etea [

) images

“rwumm
Wrse Etea [Jimeges

“New WhatApp
msg from John:

Sorry I'm late
fordinner”

Forward ot atrons

Toe [Jten [imeges

e Foowand notd<ations
Toe ETen [imeges

o

Fig. 5. Ubiquitous notifications: Notifications received on users’ smartphones can be instantly
forwarded to smart devices in a users proximity, such as TVs and screens, ambient lights, photo-
frames and tablets as well as speakers (e.g. Amazon Echo).

In a similar approach the DAAN project® utilizes meSchup to realize scenarios for
ambient assistive living environments in which contextual information from sensors in
the environment are continuously collected and analysed in order to provide ambient
proactive suggestions for assistance and behaviour change [5].

Extension of Conventional Things with Smart Interfaces

meSchups instant access to different capabilities of smart things in the same environment
allows flexible combinations of sensors, input devices and actuators that physically
belong to separate devices. This allows using one or multiple input devices spontane-
ously to control actuators of other devices. Associations between input and output can
be dynamically established using for instance physical tokens such as NFC tags, BLE
tags or visual markers. For instance lying down a smartphone on an NFC tag placed in
a smart living room could present a dynamically generated GUI for controlling living-
room devices. Using a camera and display of a smartphone in combination with markers
placed on various devices could overlay these with new or additional interfaces.
Figure 6 for instance shows an example in which a small remotely controllable lamp is
extended with an Augmented Reality (AR) switch interface that allows turning the lamp
on or off.

The concept of such smart interfaces is applicable to many different domains and
scenarios: In industrial settings conventional physical instruments (e.g. temperature and
pressure gauges) can be augmented with additional data or functionality. For instance
overlays of historical graphs (e.g. the temperature curve of the last 24 h) can be shown
in addition to the current gauge-value. In medical environments touchless interaction
via AR interfaces can help to keep devices sterile. The shown AR interfaces example is

> http://daan.dfki.de/.

http://daan.dfki.de/

Apps for Environments: Running Interoperable Apps in Smart Environments 167

Fig. 6. Augmented Reality Interface extending a smart mobile lamp with a virtual on/oft switch.
Pressing the virtual switch on the screen instantly turns the lamp on or off.

realised using a Smart Space App that dynamically overlays identified visual markers
with graphical interfaces (images). These are chosen depending on the capabilities of
the device that is associated with the marker. Overlays are packed with Smart Space
Apps and are thus easy to update and to distribute.

4 Related Work

meSchups’ underlying concept lies at the heart of traditional Ubicomp research and was
inspired by many of its former research projects.

On a device level a set of platforms have laid the way for simplifying the creation
of sensor actuator equipped smart things. Smart-its [6] have early allowed experi-
mentation with sensors and actuators in academic research. As one of the first commer-
cially available physical prototyping toolkits Phidgets [7, 8] enabled access to electronic
components through a pluggable hardware design and easy to use libraries. D.tools [9]
allowed designers to iteratively create physical Uls using a state-chart based program-
ming model. These were followed by the NET Gadgeteer platform [10] with it solderless
pluggable module design and powerful Visual Studio IDE as well as the Arduino [11]
platform with its simple to setup code editor and huge community support. The “App”
concept introduced with Symbian feature-phones and continued by iOS and Android
finally also opened up phones to be used as sensor actuator rich platforms that can run
user defined code. These systems and platforms facilitated the creation of standalone
smart devices by simplifying the development of embedded software and the access to
sensor and actuator hardware.

meSchup’s concept on device level differs from these previous approaches by
offering generic ready-to-go firmware/client-software/Apps for all these device plat-
forms instead of supporting developers to build custom firmware for each and every
thing. The purpose of this generic firmware is to make the device and its capabilities
(sensors and actuators) accessible through its network interface and to be discoverable
and fully controllable by the local smart hub and the Smart Space Apps that run on it.

168 T. Kubitza

This approach shifts the individual high level application logic into the hubs of an envi-
ronment and provides unified access to the capabilities of heterogeneous devices inde-
pendent of their communication technology, used communication protocol or device
platform. The generic firmware already handles all platform specific low level calls,
local sensor sampling as well as the secure transport of messages from or to a device.
Sensor changes of connected devices simply appear as events within the App runtime
of the smart hub and actuator commands are simple function calls within an App. This
results in a drastically reduced time and effort for developing distributed logic for heter-
ogeneous IoT devices.

The realization of distributed multi-device interaction was addressed by a multi-
tude of systems in particular in the domain of context aware computing and smart spaces.
iStuff [12] allowed the prototypic exploration of various novel ubicomp scenarios
providing easy means for connecting input and output of distributed devices. Dey etal.’s.
framework for prototyping context-aware applications [13] laid the foundations for
further projects targeting at enabling end-users. iCap [14] provided a pen based interface
that allowed end-users to realise individual context aware applications by graphically
composing simple event-condition-action rules. Among others centralized architectures
were also proposed in iStuff [12] and SEAP [15]. However, these used rule-based
languages that were limited in their expressiveness and complexity. More recently some
projects have also picked up JavaScript for executing inter-device behaviour. Fabryq
[16] supports mobile scenarios using smartphones as gateways to some BLE devices
and hosts the JavaScript based application logic in the cloud. Weave [17] focuses on
simplifying the synchronisation of GUIs across multiple device displays.

While most of these projects represent proof-of-concept implementations or toolkits
for prototyping that cannot be easily transferred out of the lab, meSchup stands for a
highly modular generic IoT platform that provides a wide support for available IoT
device platforms and high flexibility through its App based runtime. Its capabilities of
providing support from local App-development, to App-packaging, App-Store upload
and deployment and execution of the same App on other smart hubs is unique among
current IoT systems and research projects.

Multiple cloud based platforms exist that offer end-users simple to use interfaces for
the realisation of trivial IoT scenarios. The IFTTT service [18] for instance offers a form
based web Ul that allows users to compose simple trigger-action rules binding one event
to one action. Slightly more advanced interconnections between data sources and data
sinks can be created with the flow-based visual programming interface of the Node-Red
toolkit [19]. However, for more complex applications the graphical flow based Ul
expands quickly in space and becomes hard to handle.

In contrast to purely cloud based approaches meSchup by design executes its appli-
cation logic locally in its runtime and is thus robust against internet connection problems
and high latencies. Further, the owner of a smart hub has full control over the data
collected through Apps and is not forced to send any data to external parties. meSchup
Apps written in JavaScript can realize anything from simplest IFTTT rules using a single
sensor and an actuator to complex applications that utilize the full power of the Java-
Script language while interacting with hundreds of sensors and actuators. Optionally
meSchup Apps can push visual GUISs to devices with displays such as smartphones and

Apps for Environments: Running Interoperable Apps in Smart Environments 169

tablets. These dynamically generated or static GUIs can be used as configuration layer
that makes Apps adjustable to end-users without programming skills. Using pure web-
technology for Smart Space Apps is a design decision that allows the huge community
of web-developers to instantly start the development of IoT applications.

5 Discussion

The concept of Apps for Environments for the first time brings easy extendibility with
new functionality to smart multi-device environments in the same way as Apps extend
a smartphones functionality. This is achieved by providing a unified interface and an
access schema that can map and address arbitrary sensors and actuators of heterogeneous
remote devices in a unified way. In a similar way operation systems such as Android or
iOS provide unified APIs to control the capabilities of various devices and hardware
types using the same App. However, smart environments differ in their exponentially
higher potential heterogeneity. All devices in a smart environment as well as their capa-
bilities can be used by multiple Smart Space Apps in parallel. This can in particular
result in conflicts where the same actuator resource is manipulated by multiple control
sources which can lead to unexpected behaviour. Conflict detection and resolution
mechanisms are required to handle such situations. MeSchups’ UI offers a specific
monitoring view in which such cases are detected and indicated by the runtime and can
be resolved by end-users. Our approach allows a user to resolve such conflicts by either
deactivating one of the conflicting Apps completely or by specifically withdrawing one
of both Apps the right to control the conflicting actuator.

Another challenge in smart environments is the omnipresent disruption of connec-
tivity through wireless connection loss or battery drain. Mobile devices can physically
get out of wireless range, be interfered by other signals or suffer high delay through low
bandwidth or high traffic. A smart environment needs to be able to detect such situations,
handle situations in which devices become unavailable and recover devices and their
actuator states as soon as they return. meSchup handles situations in which devices
become unavailable pragmatically by dropping all actuator commands that are triggered
by Apps as long as the target device is not available. App developers can also implement
special event-handlers that are executed when devices become available again, allowing
for individual initial configurations for certain device types.

We believe that the most challenging aspects in relation to smart environment and
Smart Space Apps are privacy and security. Smart environments offer a multitude of
new data sources to collect, analyse and derive personal information about their inhab-
itants. In contrast to cloud based approaches for controlling smart environments (e.g.
IFTTT*) the meSchup platform offers data privacy by design because it does not require
any communication with external servers. Whether Smart Space Apps can communicate
with external sources needs to be fully transparent and controllable by smart space
inhabitants to assure the privacy of their data. In meSchup users who install new Smart
Space Apps have the opportunity to restrict the access to resource-types of the local

* https://ifttt.com/.

https://ifttt.com/

170 T. Kubitza

smart space as well as to the internet (by default blocked). Currently meSchup offers
individual white and blacklists for device types. However, our experience from various
deployments indicates that capabilities of smart devices should in the future be annotated
with a metric for privacy and security criticality. For instance doorlocks, cameras and
microphones would fall into a higher criticality group than for instance switches or
lamps. Such groups would then make it easier for users to decide when granting rights
on installation.

Mechanisms are further required to assure the functionality, quality and harmless-
ness of publicly downloadable Smart Space Apps. Installing untrusted Smart Space
Apps potentially contains a multiple of privacy and security risks compared to traditional
single-device Apps: Cyber-physical systems such as doors, climate control or heating
can be potentially locked, stopped or misused. MeSchups’ App packaging allows App
creators to sign their App with their certificate, ensuring that unmodified Apps can be
installed from trusted parties. Further our App store soon allows the rating and
commenting by users, thus indicating the satisfaction with a publicly available App.

To prevent theft of sensible sensor data or spoofing of critical control commands
within the networks of smart environments end-to-end encryption is necessary on-top
of the existing encryptions mechanisms of the individual communication technologies.
MeSchups’ middleware addresses communication security in three layers. The first layer
involves transport layer security such as WPA for WiFis and password based encryption
for BLE and ZigBee. On a second layer architectural security means are applied. For
instance smart things only accept messages from the same hub after they have been
discovered. On a third layer all communication is in addition encrypted with a per-
device-key that has been exchanged on initial inclusion of a smart thing to a smart
environment. For instance for Android devices a QR-code is scanned to exchange an
initial encryption key by-passing unsecure RF communication (out-of-band). Similarly
microcontrollers with installed meSchup firmware and USB/Serial/NFC interface can
be attached to the hub for a few seconds to exchange a key securely. Encryption on
application layer prevents theft of data and guarantees the identity of previously included
devices.

meSchups security roadmap further plans the usage of secure elements base on elliptic
curve cryptography (ECC) both on future hub-hardware as well as IoT devices equipped
with meSchup firmware. This will simplify the secure initial key exchange among these
devices.

6 Conclusion

In this paper we describe the concept of Apps for Environments and its implementation
as Smart Space Apps based on the meSchup IoT platform. We introduce a unified schema
for accessing capabilities of smart things as the foundation for Smart Space Apps and
describe its implementation on top of a middleware and runtime. We explain the imple-
mentation of Apps, their packaging into an exchangeable format and the distribution via
a cloud based Apps store. We introduce multiple example applications spanning across
different domains and present challenges of this novel approach.

Apps for Environments: Running Interoperable Apps in Smart Environments 171

We believe that the concept of Apps for Environments has an enormous poten-

tial to bring innovative applications into current and future smart environments. Our
Smart Space App programming approach provides a clean abstraction from low
level layers and is fully based on web-technologies such as JavaScript, HTML and
CSS. In combination with the integrated development environment and cloud store
support we believe that Smart Space Apps are an attractive platform for a broad
range of developers. A wide uptake of this concept would lead to a multitude of new
useful IoT applications and creative multi-device solutions.

Acknowledgements. This work is funded by the European Project meSch (Grant Agreement
No. 600851).

References

10.

11.
12.

. Kubitza, T., Schmidt, A.: Towards a toolkit for the rapid creation of smart environments. In:

Diaz, P., Pipek, V., Ardito, C., Jensen, C., Aedo, 1., Boden, A. (eds.) IS-EUD 2015. LNCS,
vol. 9083, pp. 230-235. Springer, Cham (2015). doi:10.1007/978-3-319-18425-8_21

. Kubitza, T., Schmidt, A.: Rapid interweaving of smart things with the meSchup IoT platform.

In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing Adjunct - UbiComp 2016, pp. 313-316. ACM Press, New York (2016)

. van der Meulen, R., Rivera, J.: Gartner says a typical family home could contain more than

500 smart devices by 2022. http://www.gartner.com/newsroom/id/2839717

. Kubitza, T., Voit, A., Weber, D., Schmidt, A.: An IoT infrastructure for ubiquitous

notifications in intelligent living environments. In: Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing Adjunct - UbiComp
2016, pp. 1536-1541. ACM Press, New York (2016)

. Wiehr, F., Voit, A., Weber, D., Gehring, S., Witte, C., Kércher, D., Henze, N., Kriiger, A.:

Challenges in designing and implementing adaptive ambient notification environments. In:
Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing Adjunct - UbiComp 2016, pp. 1578-1583. ACM Press, New York (2016)

. Beigl, M., Gellersen, H.: Smart-its: an embedded platform for smart objects. In: Smart Objects

Conference (2003)

. Greenberg, S., Fitchett, C.: Phidgets: incorporating physical devices into the interface. In:

Proceedings of UIST 2001, pp. 209-218. ACM Press (2001)

. Greenberg, S., Fitchett, C.: Phidgets: easy development of physical interfaces through physical

widgets. In: Proceedings of the 14th annual ACM symposium on User interface software and
technology - UIST 2001, p. 209. ACM Press, New York (2001)

. Hartmann, B., Klemmer, S., Bernstein, M.: d.tools: integrated prototyping for physical

interaction design. In: IEEE Pervasive Computing (2005)

Villar, N., Scott, J., Hodges, S.: Prototyping with microsoft .net gadgeteer. In: Proceedings
of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction -
TEI 2011, p. 377. ACM Press, New York (2011)

Arduino: Physical prototyping platform. https://www.arduino.cc

Ballagas, R., Ringel, M., Stone, M., Borchers, J.: iStuft: a physical user interface toolkit for
ubiquitous computing environments. In: Proceedings of the conference on Human factors in
computing systems - CHI 2003, p. 537. ACM Press, New York (2003)

http://dx.doi.org/10.1007/978-3-319-18425-8_21
http://www.gartner.com/newsroom/id/2839717
https://www.arduino.cc

172

13.

14.

15.

16.

17.

18.
19.

T. Kubitza

Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for supporting the
rapid prototyping of context-aware applications. Hum. Comput. Interact. 16, 97-166 (2001)
Dey, A.K., Sohn, T., Streng, S., Kodama, J.: iCAP: interactive prototyping of context-aware
applications. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) Pervasive 2006.
LNCS, vol. 3968, pp. 254-271. Springer, Heidelberg (2006). doi:10.1007/11748625_16
Holloway, S., Stovall, D., Lara-Garduno, J., Julien, C.: Opening pervasive computing to the
masses using the SEAP middleware. In: 2009 IEEE International Conference on Pervasive
Computing and Communications, pp. 1-5. IEEE (2009)

McGrath, W., Etemadi, M., Roy, S., Hartmann, B.: Fabryq. In: Proceedings of the 7th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems - EICS 2015, pp. 164—
173. ACM Press, New York (2015)

Chi, P.P., Li, Y.: Weave: scripting cross-device wearable interaction. In: Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems - CHI 2015, pp.
3923-3932. ACM Press, New York (2015)

IFTTT: ‘If this then that’ cloud service. https://ifttt.com

Node-Red: A visual tool for wiring the Internet of Things. http://nodered.org

http://dx.doi.org/10.1007/11748625_16
https://ifttt.com
http://nodered.org

	Apps for Environments: Running Interoperable Apps in Smart Environments with the meSchup IoT Platform
	Abstract
	1 Smart Space Apps Concept
	2 meSchup IoT Platform
	3 Example Applications
	4 Related Work
	5 Discussion
	6 Conclusion
	Acknowledgements
	References

