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Preface

This volume contains the proceedings of the Second Workshop on Interoperability and
Open-Source Solutions for the Internet of Things (InterOSS-IoT) held in Stuttgart,
Germany, on November 7, 2016, and co-located with the 6th International Conference
on the Internet of Things (IoT 2016). The workshop was co-organized by the H2020
projects symbIoTe and BIG IoT, which are part of the Internet of Things European
Platform Initiative (IoT-EPI) working on relevant aspects for enabling and bridging the
gaps on IoT interoperability.

The evolution in the IoT domain has created a complex ecosystem populated by
numerous platforms that provide access to a broad range of software objects (virtual) and
real-world devices (physical) “things.” IoT-deployed platforms typically promote their
specific interfaces and information models generating technology fragmentation gaps,
and most likely adopt non-standard, and sometimes fully proprietary, protocols to control
a variety of things. This reflects poorly on platform interoperability and creates a number
of open issues and gaps. Platform fragmentation and lack of interoperability between
current IoT solutions prevents the emergence of cooperative IoT ecosystems where
applications can be built to use things operated by various IoT platforms, or simply to
enable things operated by different platforms to interact and exchange information.

The InterOSS-IoT workshop featured an invited keynote talk and 13 oral presen-
tations of original scientific papers. The event attracted around 40 participants who
contributed constructively to all discussions. A big highlight of the event was the talk
of the keynote speaker Ralph Müller, who did not fail to inspire the audience by giving
great insights on the role of open source in the IoT domain. The volume includes
selected and extended papers presented at the workshop covering a wide range of
aspects related to IoT interoperability, such as semantics, security, business models,
and applications. All papers underwent a rigorous two-step review process so that the
final selection of 11 papers is included in this volume out of 17 papers that were
initially submitted for review.

We would like to express our gratitude to the keynote speaker, Mr. Ralph Müller,
for his inspiring talk. The chairs’ special thanks go to the Technical Program Com-
mittee members for their valuable efforts in the review process. We cordially thank all
the authors for their contributions, the workshop participants for their interest and
active involvement in the workshop program, as well as the organizers of the 6th
International Conference on the Internet of Things (IoT 2016) for providing an
excellent workshop venue. Thank you all for making this workshop a valuable
experience.

February 2017 Ivana Podnar Žarko
Martin Serrano
Arne Broering

Sergios Soursos
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Semantic Interoperability as Key to IoT
Platform Federation

Michael Jacoby1(B), Aleksandar Antonić2, Karl Kreiner3,
Roman �Lapacz4, and Jasmin Pielorz3

1 Fraunhofer IOSB, Karlsruhe, Germany
michael.jacoby@iosb.fraunhofer.de

2 Faculty of Electrical Engineering and Computing,
University of Zagreb, Zagreb, Croatia

aleksandar.antonic@fer.hr
3 Austrian Institute of Technology (AIT), Vienna, Austria

{karl.kreiner,jasmin.pielorz}@ait.ac.at
4 Poznan Supercomputing and Networking Center, Poznan, Poland

romradz@man.poznan.pl

Abstract. Semantic interoperability is the key technology to enable
evolution of the Internet of Things (IoT) from its current state of
independent vertical IoT silos to interconnected IoT platform federa-
tions. This paper analyzes the possible solution space on how to achieve
semantic interoperability and presents five possible approaches in detail
together with a discussion on implementation issues. It presents the
H2020 symbIoTe project as an example on how semantic interoperability
can be achieved using semantic mapping and SPARQL query re-writing.
We conclude that the found approaches together with the proposed tech-
nologies have the potential to act as corner stone technologies for achiev-
ing semantic interoperability.

Keywords: Semantic interoperability · Internet of Things · IoT
platform federation · Semantic mapping · SymbIoTe · SPARQL query
re-writing

1 Introduction

Semantic Interoperability is the key to “data exchange and service creation across
large vertical applications” as seen as next step of evolution of the IoT [8]. In
order to enable building new innovative, applications which make use of data
from multiple existing vertical IoT silos these systems must not only be able to
exchange information but also have a common understanding of the meaning
of this data. This means, even if today’s IoT systems are willing to expose
their data and resources to others their semantically incompatible information
models become an issue to dynamically and automatically inter-operate as they
have different descriptions or even understandings of resources and operational
procedures. To enable dynamic and automated interoperability, new features like
c© Springer International Publishing AG 2017
I. Podnar Žarko et al. (Eds.): InterOSS-IoT 2016, LNCS 10218, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-56877-5 1



4 M. Jacoby et al.

semantic annotation, well-defined semantic mapping, unified resource discovery
and federated authentication and authorization are required which cannot solely
be provided by the existing platforms on their own but rather need to be offered
by some kind of interoperability framework mediating between the platforms.
Moreover, in the era of virtualization and Any-as-a-Service models, there is a
need to federate independent infrastructures and introduce simplified methods
to provide virtual resources of different types and owners in a dynamic and
consistent manner. Because semantic interoperability is the basis for building
services addressing sophisticated requirements across heterogeneous vertical IoT
platforms, in this paper we present our thoughts and concepts how semantic
interoperability between IoT platforms can be achieved.

The remainder of the paper is organized as follows. Section 2 provides a def-
inition of semantic interoperability as it is used in this paper as well as some
background on semantic technologies. In Sect. 3 possible approaches to achieve
semantic interoperability are presented on a rather abstract level and Sect. 4
gives some detailed insights on what to keep in mind when trying to realize them.
Section 5 presents how the symbIoTe project is approaching semantic interop-
erability picking up one of the possible approaches introduced in Sect. 3 and
showing how it is realized in symbIoTe. The paper closes with conclusions and
future work in Sect. 6.

2 Related Work

In this section, we will provide a definition of the term semantic interoperabil-
ity as used in this paper. As semantic interoperability is a compound word,
we will first analyze existing definitions for each of the terms and from this
conclude a definition of the whole term. Semantics, as seen in linguistics and
philosophy, refers to the study of meaning which means the relation of signifiers
like words, symbols or signs and their denotation [1]. In computer science, the
meaning of semantics is basically the same, but here the relations of signifiers
and their denotation need to be understandable and processable by machines.
The most common way to achieve this is by using an ontology which is “an
explicit specification of a [shared] conceptualization” [11] and can be imaged
like a formally-defined information model.

In 2001, Tim Berners-Lee introduced the idea of the Semantic Web [2],
proposing the evolution of the internet from a web of documents to a web of
machine-readable and -understandable data, which is becoming more and more
reality. The corner stone technologies of the Semantic Web are the Resource
Description Format1 (RDF), a lightweight (meta data) data model for describ-
ing ontologies, and SPARQL Protocol and RDF Query Language2 (SPARQL),
a query language for data in RDF format, which both are standardized by the
World Wide Web Consortium (W3C).

1 https://www.w3.org/RDF/.
2 https://www.w3.org/TR/rdf-sparql-query/.

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/


Semantic Interoperability as Key to IoT Platform Federation 5

Fig. 1. The Levels of Conceptual Interoperability Model (from [25]).

“Broadly speaking, interoperability can be defined as a measure of the degree
to which diverse systems, organizations, and/or individuals are able to work
together to achieve a common goal” [14]. As this definition of interoperability is
to broad in this context we also refer to the Levels of Conceptual Interoperability
Model (LCIM) [25] depicted in Fig. 1. LCIM were created in the context of
simulation theory but have a much broader applicability. In the scope of this
paper, we see interoperability only up to Level 3 of LCIM where Level 1 refers
to the low-level technical connectivity of platforms, Level 2 to using a common
data format or protocol like XML or HTTP and Level 3 to having a unified
understanding of the shared data. Therefore, semantic interoperability is defined
as “the ability of computer systems to exchange data with unambiguous, shared
meaning” [18] within this paper.

3 Approaches to Semantic Interoperability of IoT
Platforms

The question discussed in this section is what possible approaches a system
can take to achieve semantic interoperability between multiple IoT platforms.
Figure 2 visually depicts the current situation where multiple platforms, in this
case IoT platform A and B, having their own internal information model exist in
parallel. To enable interoperability between those platforms they need to have a
mutual understanding of things, i.e. some unification of their internal information
models must somehow be defined.

As depicted in Fig. 3 the solution space to this problem can be thought of
as a line between the two most radical approaches which are using a single core
information model every platform must comply to on the one side and to not
provide one at all and let platforms provide only their own information models
which need to be aligned using semantic mapping on the other side. In between
there exists a large, not clearly defined number of intermediate solutions from
which three are representatively presented in the following together with the two
radical approaches. These approaches are motivated by and in line with concepts
presented by Wache and Choi et al. [4,28].
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Fig. 2. Schematic representation of the problem of semantic interoperability between
different IoT platforms.

Fig. 3. Solution space for possible approaches to semantic interoperability.

3.1 Core Information Model

The most widespread approach amongst existing platforms is to use a single
core information model that all platforms must comply with. This means that
a platform can only expose data that fits into this core information model as
custom extensions are not permitted. If a platform needs to expose data that
does not fit into the core information model the platform cannot expose this
data and cannot inter-operate with others.

Pros

• easy to implement and use since the data from all platforms follows the same
information model

• resulting system easy to use for app developers who only need to know one
information model

Cons

• defining an information model all platforms can agree upon may be difficult
• information model tends to become complex as it must comprise all data that

should be exchangeable between platforms
• will always exclude some platforms whose internal information model does

not fit the core information model
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• no way to integrate future platforms with information models not compatible
to the core information model without breaking the existing system

3.2 Multiple Pre-mapped Core Information Models

Based on the Single Core Information Model approach, this one tries to make it
more easy and convenient for platform owners to integrate their internal informa-
tion model by supporting not only a single core information model but multiple
ones. To achieve that, a large number of existing platforms can easily participate
it would be a good idea to choose well-established information models (e.g. the
Semantic Sensor Network Ontology [5] or the oneM2M ontology [19]) as core
information models. To ensure interoperability between platforms using differ-
ent core information models the supported core information models are already
mapped to each other. As it will not always be possible to map two core informa-
tion models completely there will be some degree of information loss if platforms
conform to different core information models but if they conform to the same
one they will be fully interoperable.

Pros

• flexible approach as further core information models and mappings can be
added over time

• does not enforce use of one single core information model which excludes less
platforms from participating

Cons

• may still exclude some platforms whose information model does not match
any of the core information models

3.3 Core Information Model with Extensions

This approach is based on an information model that is designed to be as abstract
as possible but at the same time as detailed as needed. Therefore, the core infor-
mation model should try to only define high-level classes and their interrelations
which act as extension points for platform-specific instantiations of this informa-
tion model. These platform-specific instantiations either use the provided classes
directly or they can define a subclass which can hold any platform-specific exten-
sions to the core information model, e.g. additional properties. Besides the high-
level classes, the core information model may also contain properties the system
needs which will be very general properties like ID or name in most of the cases.
This results in an information model that has a minimalistic core that all plat-
forms must conform to and extension points to realize custom requirements. Two
platforms using different extensions can directly understand each other in terms
of the core information model. When they need also to understand the custom
extensions they must define a semantic mapping between their extensions.
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Pros

• provides basic interoperability between platforms through minimalistic core
information model

• provides full flexibility through custom extensions, i.e. no platforms are
excluded

• high acceptance from adopter-side as it combines basic out-of-the-box interop-
erability (by the core information model) with support for complex scenarios
(through extensions and semantic mapping)

Cons

• requires semantic mapping when custom extensions need to be understood
by different platforms

• defining a semantic mapping can be a complex task and requires additional
work from developers/platform owners

• design of the core information model is a complex task

3.4 Pre-mapped Best Practice Information Models

Essentially, this is the same approach as Multiple Core Information Models but
with one small but significant modification: the provided information models are
no longer seen as core information models but rather as best practice information
models. Hence, platforms do not have to be compliant to any of the provided
information models as in the previous approach but can choose their information
model freely. If they choose to re-use one of the provided best practice informa-
tion models they will gain instant interoperability to other platforms also aligned
with one of the best practice information models.

Pros

• no limitations on information model, hence does not exclude any platform
• easier usage for platform owners
• better and broader interoperability due to already aligned best practice infor-

mation models

Cons

• no initial interoperability between platforms as long as no mapping is defined
when no pre-mapped information model is used

• defining a semantic mapping can be a complex task and requires additional
work from developers/platform owners

3.5 Mapping Between Platform-Specific Information Models

In this approach, there isn’t anything like a core information model. Instead,
every platform independently provides its own information model. Interop-
erability is only achieved through mapping between these platform-specific
information models.



Semantic Interoperability as Key to IoT Platform Federation 9

Pros

• supports all possible information models and therefore all platforms
• mappings can be added iteratively increasing the degree of interoperability

Cons

• no initial interoperability between platforms as long as no mapping is defined
• defining a semantic mapping can be a complex task and requires additional

work from developers/platform owners
• the system does not understand any of the data it is processing

4 Considerations About Realizing the Approaches

When thinking about realizing one of the above approaches there are multiple
things that need to be considered. On the one hand, there are design decisions
to make regarding the concrete specification of the information model(s). On
the other hand, there are practical issues to take into account like what kind
of software is needed to implement the chosen approach and what tools do
already exist. This chapter will present two issues relevant for all approaches
using semantic mapping followed by some approach-specific issues and a discus-
sion on performance and scalability of the different approaches.

4.1 Semantic Mapping

Semantic mapping is used in four out of the five approaches as an alternative
to defining a common information model all platforms can agree on. Figure 4
depicts a schematic representation how this could look like when implemented.
At first, a platform owner must know that another platform he would like to
inter-operate with exists. This issue is discussed in detail in the next section.
For now, we assume that the platform owner of platform A knows that plat-
form B exists and that he wants to define a mapping between the information
models of the two platforms. To define such a mapping, which consists of mul-
tiple correspondence patterns and is called an alignment, he essentially needs a
mapping language to express the alignment in. As defining such a mapping is
not a trivial task, some tool support in form of a graphical alignment tool, i.e. a
visual editor for the mapping language, is desirable. Optionally, to further ease
the complexity of the task, a matcher could be up-streamed to automatically
provide an initial mapping of the two information models. At run-time the map-
ping/alignment together with both information models is used by a mediator to
translate instances between the two information models.

When trying to realize any of the approaches which include semantic map-
ping, these are areas that need to be analyzed for existing tools that fit the
requirements. The mapping language is the most important component in this
tool stack as all the other components need to be able to understand or generate
mappings expressed in that language. The main criteria for choosing a language
is its expressiveness and support for defining complex mappings.
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Fig. 4. Schematic representation of an example usage of semantic mapping.

4.2 Finding Other Platforms of Interest

A key problem when trying to make multiple platforms exposing their data in
different information models interoperable using semantic mapping is the follow-
ing: How to know that other platforms exist and that they provide data that is
of such an interest that it justifies the effort to define a semantic mapping to it?
As the parts of the information models that need to be mapped are platform-
specific, there can be no semantic-based discovery but only a syntactical one
as only the platform itself understands its information model. This implies that
there is a need to have humans in the loop to close the semantic gap.

Therefore, a suitable candidate for enabling platform owners to find other
platforms that might be of interest to them would be some kind of search func-
tionality. Such a search could be quite primitive, e.g. a simple full-text search
on the terms defined in the information model, or more sophisticated using con-
cepts like phonetic search, natural language processing or translations to enable
finding of relevant terms even if they do not syntactically match the search term
or are expressed in another language.

Keeping in mind that mapping information models is key to enable interop-
erability between multiple heterogeneous platforms, this is an essential part of
any system that aims to achieve this kind of interoperability and therefore needs
to be solved appropriately.

4.3 Approach-Specific Issues

Single Core Information Model. The main challenge of this approach is to
define a single core information model that does contain every information that
any platform that should be made interoperable needs but, at the same time,
to not make design decisions that prevent integration of upcoming platforms in
the future. Since these two goals are contradicting this is an impossible task.
Therefore, the single core information model approach is not suitable to provide
interoperability between various kind of existing and upcoming IoT platforms.
However, in a scenario where the domain is more narrow this approach could
still be feasible.
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Core Information Model With Extensions. Realizing this approach is
essentially a trade-off between defining a quite detailed and easy-to-use core
information model and finding the right level of abstraction to not make design
decisions that exclude some platforms. This task is quite hard as, referring to
the definitions provided by [24], the core information model is a hybrid between
a domain ontology, defining only the very abstract structure of the IoT domain,
and an application ontology, because it is especially tailored to be used with a
single system. Therefore, this approach needs special attention on modeling the
core information model to not bring platform-specific concepts, relations and
properties into the core information model.

4.4 Performance and Scalability

In this Section, we analyze the above presented approaches regarding perfor-
mance and scalability. Obviously, this strongly depends on the degree of dissim-
ilarity of the information models of the platforms inter-operating. As long as
all platforms are using the same information model all approaches will be able
to perform well and to be scalable (depending on the implementation details of
course). As for the Core Information Model approach this is given by definition.
Therefore, it is the one with the best performance and scalability as all other
approaches need to deal with semantic mapping. The Multiple Pre-Mapped Core
Information Models approach has to cope only with a very limited number of pos-
sible different information models and therefore a limited number of mappings
between them. This allows it to execute these mappings in a very optimized
(probably hard-coded) way. Nevertheless, performance and scalability is worse
than in the Core Information Model approach but can still be considered con-
stant with number of interoperating platforms. The remaining three approaches
are heavily based on user-defined mappings between information models. They
have to discover and execute available mappings at run-time/query-time and
therefore must provide a generic execution framework for generic mapping defi-
nitions. As the number of interoperating platforms, denoted n, grows over time,
the number of mappings may rise up to n2. Thus, for executing a query against
all platforms up to n − 1 mappings need to be executed. When using query
re-writing techniques for executing mappings, this may be done in parallel and
therefore scalability is still given if the necessary computational resources are
available. For these three approaches, performance will be slightly worse than
with the Core Information Model approach and even than the Multiple Pre-
Mapped Core Information Models as for each query the available mappings must
the retrieved before execution. Also the execution of mappings will be slower than
with the Multiple Pre-Mapped Core Information Models approach as the execu-
tion framework must be generic and cannot be optimized for a limited number
of a priori known mappings.
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5 SymbIoTe’s Approach to Semantic Interoperability

SymbIoTe (Symbiosis of smart objects across IoT environments) [23] is an EU
project and part of the European Union’s Horizon 2020 research and innova-
tion programme. Its main objective is to provide an interoperability and medi-
ation framework for collaboration and federation of vertical IoT platforms thus
enabling creation of cross-domain applications using multiple heterogeneous IoT
platforms in a unified way.

Fig. 5. IoT ecosystem with and without symbIoTe.

Figure 5a depicts the IoT ecosystem as it exists now. It consists of multiple
IoT platforms that each represent a vertical silo which is tailored to a specific
domain. If an application wants to integrate more than one platform, it has to do
additional implementation work to make use of another platform-specific API.
The vision of symbIoTe is to enable platform interoperability and creation of
cross-platform apps between the existing vertical IoT silos with minimal inte-
gration effort for the platform owners as shown in Fig. 5b. Semantic interoper-
ability is realized by the Core API providing a query functionality for meta data
on available platforms and their resources. Syntactic interoperability is achieved
by the Interworking API which provides a uniform access to resources of all
platforms and can be seen as some kind of adapter that a platform owner needs
to implement to be symbIoTe-compliant.

5.1 General Approach

Figure 7 shows how symbIoTe achieves semantic interoperability by implement-
ing the Core Information Model with Extensions approach as presented in
Sect. 3.3. On the left and the right, we see two existing IoT platforms expos-
ing platform-specific APIs based on an internal information model to applica-
tions. Between those two vertical IoT stacks we see symbIoTe with the Core
Information Model in its center. As proposed in Sect. 3.3, symbIoTe uses two
central information models. The Core Information model describes domain spe-
cific information and the Meta Information Model describes symbIoTe internal
meta data about platforms and resources. For a platform to become symbIoTe-
compliant it must expose its data using a platform-specific information model
which is basically the Core Information Model with platform-specific extensions
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Fig. 6. High-level diagram showing how symbIoTe approaches syntactic and semantic
interoperability.

to it. The main part of the actual interoperability happens via what is depicted
at the arrow connection the two platform-specific information models: seman-
tic mapping. This allows to define how the platform-specific extension of one
platform can be translated into the platform-specific extensions of another plat-
form thus allowing to define an arbitrary degree of interoperability between two
platforms. When an app or a platform queries the Core API to find resources
of interest on all available platforms, symbIoTe uses these mappings to re-write
the query to fit the platform-specific information model of each platform and
execute it against the meta data it has stored about each of them. Details on
the symbIoTe Information Model as well as semantic mapping and SPARQL
query re-writing are provided in the following sections.

5.2 SymbIoTe Information Model

The symbIoTe Information Model is comprised of two parts as depicted in Fig. 7.
The first part is the Meta Information Model which covers all meta data about
platforms that symbIoTe needs to store internally such as which platforms uses
which Information Model and the URL of the Interworking API endpoint of a
platform. Furthermore, it keeps track of the mappings between different informa-
tion models that are described using any Mapping Language Information Model
which will be explained in detail in the following section. The second part is
the Core Information Model. Its design was driven by the trade-off to keep it
is abstract as possible to not unnecessarily exclude any platform (as it may use
another information model that doesn’t fit the Core Information Model) but to
include all information that symbIoTe needs to understand. This is due to the
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Fig. 7. SymbIoTe Information Model.

fact that symbIoTe internally can only understand the information coming from
the platforms that is modeled within the Core Information Model but not the
platform-specific extensions defined in the Platform-Specific Information Mod-
els. A good example for that is how locations are modeled. Initially, there was
only Location defined and no sub-classes (which was thought to be defined in
the platform-specific information models). But as symbIoTe needs to be able to
internally understand the location to provide location-based query capabilities
three sub-classes were defined to be used in the platform-specific information
models so that symbIoTe can make use of the location information as it now is
able to understand the meaning of this data.

Because this trade-off leaves only a very narrow solution space, symbIoTe can-
not just re-use any existing ontology because their scope was either to abstract
like the Semantic Sensor Network (SSN) ontology [5], thus resulting in sym-
bIoTe not being able to understand the minimal information needed to work
properly, or to narrow like the oneM2M Base Ontology [19], which would result
in unnecessarily excluding platforms by over-specifying the information model.

For this reason, symbIoTe defines its own domain ontology for the IoT espe-
cially tailored to that narrow solution space to satisfy the trade-off between a
desired high-level of abstraction and a needed concretization of some terms.

5.3 Semantic Mapping and SPARQL Query Re-writing

Semantic mapping and SPARQL query re-writing are closely related and
together the most essential parts of providing semantic interoperability in sym-
bIoTe. In this section we narrow down the general term information model used
so far to refer to an information model realized as an ontology. Semantic mapping
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can therefore also be called ontology mapping in this section and is motivated
by the fact that different IoT platforms may use different ontologies to describe
their available resources covering (partially) the same domain and therefore could
generally be (partially) interoperable. Even if these platform-specific ontologies
essentially cover the same domain, they can describe this domain quite differ-
ently, e.g. use a taxonomy with another scope or granularity or use another
terminology. These differences are called ontology mismatches and there exist
multiple classifications for them [15,20,22,26,27]. Based on which of these types
of mismatches a system should be able to resolve it needs to choose or develop a
mapping language that offers language constructs to resolve these mismatches.
There exist multiple existing mapping languages as OWL [17], C-OWL [3],
MAFRA [16], SWRL [13], the Alignment Format [9] and EDOAL [7,10] which
differ widely about the supported kinds of mismatches. At the current state,
symbIoTe is using EDOAL, the Expressive and Declarative Ontology Alignment
Language, which is the most expressive of them and supports many different
mismatch types [21,22].

Having defined mappings/alignments between the different platform-specific
information models/ontologies the platforms use to describe their available
resources we don’t instantly gain anything. Rather we need to implement some
logic to access data presented in these different models in a unified way. There-
fore, we need some execution environment with some kind of mediator like
depicted in Fig. 4. For realizing such a mediator there are again two approaches
which are essentially a trade-off between storage space needed and query execu-
tion time. The first one is to translate the actual data based on the mappings so
that all data is stored according to each information model. This is very efficient
with respect to query execution time but adds a massive overhead regarding
storage space needed, especially when the number of different information mod-
els is high. The second approach is to store the data only according to its original
information model and to re-write each query based on the existing mappings.
This does not need any additional storage space but adds an overhead for mul-
tiple query translations. As the query can be translated and executed for each
m apping in parallel symbIoTe uses this approach as shown in Fig. 6. In order to
perform SPARQL query re-writing we are using the Mediation Toolkit3 whose
functionality is explained in detail here [6].

The overall algorithm for executing a SPARQL query formulated based on the
platform-specific ontology of one IoT platform against the data of all platforms
is comprised of three steps:

1. find all platforms and their interworking services for which a mapping exists
from the ontology the query is formulated in (see Meta Information Model
depicted in Fig. 7)

3 https://github.com/correndo/mediation.

https://github.com/correndo/mediation
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Fig. 8. Two example platform-specific information models which have some common
concepts.

2. for each of the found mappings
– re-write original SPARQL query based on the mapping
– execute it against stored information about available resources
– transform results back to match the ontology the query was originally

formulated in
3. collect and return results

Example. In this section we present a simple example how semantic interoper-
ability could be achieved using symbIoTe with semantic mapping and SPARQL
query re-writing. Figure 8 shows two information models, A and B, which reflect
parts of two PIMs in symbIoTe. As such, they both extend the symbIoTe Core
Information Model, namely by adding subclasses to the SymbolicLocation class.
Obviously, they both describe rooms and some of their properties in quite a
similar but slightly different way. To enable the two platforms using these PIMs
to exchange informations about rooms there needs to be a semantic mapping
defined. Figure 9a shows the important excerpt of such a semantic mapping
defined in the EDOAL language [7,10]. It contains two mapping rules. The first
one (line 7–17) defines that a ConferenceRoom from model A equals a Room
from model B with the property hasBeamer set to true. The second rule (line
19–24) defines that the relation hasLevel from model A is the same as following
the relation isOnLevel followed by level of model B. Based on this mapping file,
we can rewrite the SPARQL query shown in Fig. 9b written against model A to
match model B using the Mediation Toolkit. The resulting query is depicted in
Fig. 9c (note that the query has been manually updated by the authors to be
more easy to read, the actual semantic of the query has not been changed).

As symbIoTe is currently work in progress and these are still areas of research,
the chosen mapping language and SPARQL query re-writing framework might
change in the future.
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Fig. 9. Example for SPARQL query re-writing based on a EDOAL mapping.

6 Conclusions and Future Work

In this paper we introduced five possible approaches to achieve semantic inter-
operability along with detailed considerations on problems and risks to keep
in mind when trying to implement them. We further presented the symbIoTe
project as an example how to achieve not only internal but external interoper-
ability as introduced in [12]. Moreover, the details of how symbIoTe realizes the
Core Information Model with Extensions approach using semantic mapping and
SPARQL query re-writing as core technologies was shown.

As the symbIoTe project is currently work in progress please note that the
implementation details and used frameworks are subject to change. Furthermore,
the following issues regarding the symbIoTe Information Model will be addressed
in the future:

• add support for other resource types (actuators, services),
• revise modeling of Observations with focus on Location and FeatureOfInterest

with regard to mobile sensors, and
• better user management.

Analyzing symbIoTe’s approach we conclude that further research in the area
of mapping languages and SPARQL query re-writing is essential for creating an
interoperability framework for IoT platforms as these techniques are needed in
three out of five possible approaches introduced in Sect. 3.
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H., Hübner, S.: Ontology-based integration of information-a survey of existing
approaches. In: IJCAI-01 Workshop: Ontologies and Information Sharing, vol.
2001, pp. 108–117. Citeseer (2001)



Overcoming the Heterogeneity
in the Internet of Things for Smart Cities

Aqeel Kazmi(B), Zeeshan Jan, Achille Zappa, and Martin Serrano

Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland
{aqeel.kazmi,zeeshan.jan,achille.zappa,martin.serrano}@insight-centre.org

https://www.insight-centre.org

Abstract. In the past few years, the viability of the Internet of Things
(IoT) technology has been demonstrated, leading to increased possibil-
ities for novel human-centric services in the smart cities. This develop-
ment has resulted in numerous approaches being proposed for harnessing
IoT for smart city applications. Having received a significant attention by
the research community and industry, IoT adaptation has gained momen-
tum. IoT-enabled applications are being rapidly developed in a number
of domains such as energy management, waste management, traffic con-
trol, mobility, healthcare, ambient assisted living, etc. On the other hand,
this high-speed development and adaptation has resulted in the emer-
gence of heterogeneous IoT architectures, standards, middlewares, and
applications. This heterogeneity is hindrance in the realization of a much
anticipated IoT global eco-system. Hence, the heterogeneity (from hard-
ware level to application level) is a critical issue that needs high-priority
and must be resolved as early as possible. In this article, we present
and discuss the modelling of heterogeneous IoT data streams in order to
overcome the challenge of heterogeneity. The data model is used within
the VITAL project which is an open source IoT system of systems. The
main objective of the VITAL platform is to enable rapid development of
cross-platform and cross-context IoT based applications for smart cities.

Keywords: Internet of Things (IoT) · Interoperability · Linked data ·
Data model · Smart cities

1 Introduction

With an ever increasing urban population, governments are under pressure to
manage resources efficiently while improving human-centric services. Govern-
ments and corporations alike are looking for ways to use Information and Com-
munication Technologies (ICT) to provide sustainable solutions to the growing
problems originating from rapid urbanization. The Internet of Things (IoT) is
seen as a core technology that will help the governments and corporations to
manage resources efficiently while improving human-centric services in the mod-
ern smart cities. Due to numerous benefits, the Internet of Things (IoT) has
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gained a significant amount of attention from the research community. In addi-
tion to research community efforts, serious business decisions taken by numerous
major ICT companies such as, Google, Apple, Samsung, and Cisco have trans-
ferred the Internet of Things from conceptualization to reality [42]. Today the
IoT, with an envisage of 25 billion connected devices by 2020, is seen as a promi-
nent technology that can help in efficient resource management across different
sectors such as smart energy management, waste management, smart traffic
control, mobility management, smart healthcare, and Ambient-Assisted Living
(AAL), etc. [41]. Without doubt, the Internet of Things has paved the way
for smart cities to deliver cyber-physical based, context aware, human-centric
services.

Attention given by the research community and industry has already led
to the development of a number of heterogeneous IoT applications, which are
offering services in different domains in the area of smart cities. In IoT, interop-
erability is seen as the process of integrating different levels of data (generated
by an IoT application) that may also use different representation models. IoT
systems that generate a set of heterogeneous data streams are unable to com-
municate with each other at the data level. The work presented in this paper
aims to bring interoperability at one common layer by using semantics for stor-
ing heterogeneous data streams generated by different IoT eco-systems. This is
achieved by means of a common data model using Linked Data technologies. In
order to provide interoperability for multiple IoT data streams, we present sys-
tem agnostic data models that are based on existing ontologies. The data models
are used within the so-called Virtualized programmable InTerfAces for innov-
ative cost-effective IoT depLoyments in smart cities (VITAL) project. VITAL
uses linked data standards for modelling and accessing data including RDF as
a basic data model, JSON-LD as the data format, and ontologies to specify the
data in a formal way.

The remainder of the article is structured as follows. First we give a brief
overview of the semantic and linked data technologies that are used to develop
the data model. Then we present different ontologies, as well as necessary exten-
sions to them for modelling data within VITAL, e.g. for modelling sensors and
their measurements, for IoT systems and services, and for Smart City applica-
tions. Finally, we conclude the work and present future work plans.

2 IoT Fragmentation

In the recent past, IoT domain has made noteworthy progress across several
dimensions, which includes, development of multiple IoT architectures and stan-
dards, IoT cloud-enabled middleware platforms, and a large number of IoT
deployments in Smart Cities.

2.1 Architectures and Standards

Without doubt, the development of IoT architectures and related technological
standards have provided the momentum for deploying scalable, intelligent, and
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interoperable IoT applications in the modern smart cities. A number of standard-
ization organizations promoted these IoT architectures. Examples include the
IoT-A Reference Model (ARM) [2]; the WWW Consortium’s (W3C) Semantic
Sensor Networks (SSN) incubator group that targeted the context-aware Wire-
less Sensors [32]; the Research Cluster on the Internet of Things (IERC) which
aims to coordinate and build a consensus on ways to realise the IoT vision in
Europe [8]; the European Commission’s Alliance for Internet of Things Innova-
tion (AIOTI) which aims to assist IoT research and standardization policies [1];
the Open Geospatial Consortium (OGC) which is committed to making open
standards for the global geospatial community [18]; and the Electronic Product
Code (EPCglobal) which focuses in two areas the RFID and Information Ser-
vices [6]. The oneM2M standard [26], aims to develop technical specifications
that can address the need for a common M2M Service Layer that can be readily
embedded within various hardware and software. OM2M [19] is an open source
implementation of the oneM2M standard.

2.2 Platforms

A number of middleware platforms have been developed, which facilitate the
collection of data from homogeneous and heterogeneous IoT devices. Currently,
available platforms provide a range of functionalities e.g. collecting data from
hardware sensors, transforming it into a specified representation, and enabling
(information access) interfaces for applications. Furthermore, some platforms
also use the power of other ICT technologies, notably cloud computing infrastruc-
tures, and have opened ways towards IoT/cloud convergence. These platforms
encourage the end-users to attach their IoT devices to the cloud infrastructure
and enable easy-to-use APIs for retrieving sensor observations and developing
applications [14,27]. HomeOS [36] is a platform that provides PC-like abstrac-
tion over a wide range of IoT devices. ThingWorx [28] is another IoT platform
that facilitates the development of Smart City applications and has already
been adopted by many corporations. As part of the IoT/cloud convergence, the
OpenIoT (Open Source cloud solution for Internet of Things) is an open-source
middleware platform that gathers sensor data and uses the cloud computing
mechanism to offer Sensing as a Service [40] model. Examples of other cloud-
enabled platforms include the Future Internet of Things (FIT) [9], Xively [33],
and Hi-Reply [11] platforms. Similar to VITAL, BIG IoT is another EU project
that aims at enabling the emergence of cross-standard, cross-platform, and cross-
domain IoT services and applications [3]. However, VITAL differs from the BIG
IoT, as BIG IoT does not transform or store the data streams coming from IoT
systems.

2.3 Applications

The recent past has witnessed the development of many research and commercial
IoT applications, which range from the very basic to more smart and intelligent
ones [4,38,39]. These applications are typically developed for specific domains
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within the scope of modern Smart Cities and often use a large number of IoT
devices. Examples of such applications include the BURBA (Bottom Up selec-
tion, collection and management of URBAn waste) system an Intelligent Waste
management system [7]; the OpenIoT uses cases targeting smart manufacturing
and smart agriculture [40]; OnFarm which is an IoT system designed to facilitate
smart farming [15]; HeatWatch which is animal monitoring system that keeps
track of animal movement [10]; SmartStructures a smart infrastructure monitor-
ing solutions [25], ParkSight a smart parking management system within smart
cities [4]; and Echelon which is a smart lighting management system targeting
energy efficiency [24]. By looking at these examples, one can imagine that IoT
applications are already transforming people’s lives while having a significant
impact on Smart Cities resource management.

2.4 Smart City Silos

The development of multiple IoT architectures, IoT platforms, and multiple
(domain-specific) IoT applications has clearly instigated the momentum of IoT
adaptation in Smart Cities. But on the other hand this development has intro-
duced a significantly fragmented IoT landscape resulting from heterogeneity.
Apart from development of architectures and platforms, this fragmentation has
also resulted from independent IoT deployments, thereby leading to vertical
IoT silos. These silos result from technological as well as organizational con-
siderations. Horizontal convergence of these isolated IoT systems is essential to
acquire new services and required efficiency [34]. This convergence should not
be restricted to the technical integration rather it should also extend to the
applications and services spread across different business contexts. IoT Data
streams from the different domains should be combined to better manage the
city services. For example, real-time information about the traffic flow combined
with other information (weather, events, school timings, etc.) can enable traffic
prediction based on time scales.

3 VITAL - System of Systems

VITAL has researched for best practices to eliminate the technological and orga-
nizational silos in the smart cities. It has introduced an integrated virtualized
paradigm for the development, deployment and operation of smart city appli-
cations, which emphasizes the collection and processing of data streams from
heterogeneous sensors and IoT platforms across the urban environment. This
integrated virtualized paradigm is supported by VITAL. VITAL is a system of
systems; a system that can support any underlying IoT system. VITAL has taken
into account the work performed in the scope of the FP7 IoT-A project and their
IoT-A Reference Model (ARM), as a guidance to design the VITAL architecture.
The ARM has been used as a source of building blocks (e.g., protocols, interfaces,
components), which can be used in order to assemble a concrete architecture.
VITAL integrates several of these building blocks, with particular emphasis on



24 A. Kazmi et al.

Fig. 1. High-level overview of the VITAL platform.

blocks that deal with services creation, orchestration and protocols, and less
emphasis on low-level networking concepts and protocols. The development of
VITAL is driven by a number of principles and characteristics:

– Virtualization: VITAL has developed mechanisms to support vitualized
access to data generated by multiple IoT platforms and applications.

– Modularity: VITAL consists of a number of modules as depicted in Fig. 1.
These components are developed as separate modules which can be deployed
independently on different machines.

– Standards-based: VITAL uses a number of popular standards for data mod-
elling e.g. RDF, JSON-LD, and ontologies. VITAL implements the Service
Oriented Architecture (SOA) and enables RESTful web services for commu-
nication interchange mechanism.

– Loosely Coupled: VITAL in its nature is a service oriented distributed sys-
tem which is developed around a loosely coupled approach.
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– Open Source: VITAL is developed using open source technologies. To enable
wide adaptation and maximize the impact, VITAL is distributed as an open
source software under the LGPL license.

Figure 1 provides high-level architectural view of VITAL. Here we only pro-
vide an overview of VITAL and its components as the main focus of this article is
the data models used in VITAL. At the lowest layer VITAL integrates multiple
IoT systems and data sources (generated in multiple domains). The next layer is
the Platform Provider Interfaces (PPI) that enables the access to metadata and
data of IoT systems that are integrated. PPIs are responsible for mapping the
data streams generated by IoT systems into VITAL data model for storage. The
IoT Data Adaptor keeps track of registered PPIs, pulls data from IoT systems
and stores it into the Data Management System (DMS). The DMS stores IoT
data streams while enabling interfaces (for other components) to access stored
(meta) data. VITAL platform also includes a number of added value function-
alities such as Discovery Service for discovering IoT resources (e.g. sensors, sys-
tems, services, etc.), Filtering to filter information from DMS, Complex Event
Processing (CEP) for event detection in IoT data streams, and Orchestrator for
creating business specific services. Finally, the platform provides tools to allow
the development of innovative cross-platform and cross-context applications and
management and governance of IoT resources.

4 VITAL Data Model

Due to diverse set of use cases, VITAL covers a wide area of data models. It
specifies the modelling of IoT systems and IoT services, e.g. using the Mini-
mal Service Model (MSM) and basic IoT sensors and sensor measurements, e.g.
using the Semantic Sensor Network (SSN) ontology. It also identifies data mod-
els for Smart City applications, e.g. smart transport systems. And it models the
metadata for the VITAL system and its components, e.g. to model security and
monitoring information. Next section provides an overview of the Linked Data
technologies used in VITAL. Next we discuss existing ontologies and data mod-
els that are used as the basis of the VITAL data models and extended as needed
by platform. This work is subdivided into different areas; sensors and sensor
measurements, IoT systems and services, and Smart City Applications. We now
list the ontologies we use for modelling the required data and also discuss the
modelling of necessary additional data items.

4.1 Linked Data and Semantic

Linked Data (using RDF and ontologies) helps to describe and integrate data
that is provided by different organisations in an interoperable way [37]. This is
ideally suited for VITAL. VITAL envisages that a multitude of (independent)
organisations and entities deploy and operate different sensors and IoT systems,
which produce data (and offer services) that should be integrated in a system
agnostic way. VITAL uses Linked Data standards for modelling and accessing
metadata and data.
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RDF: The Resource Description Framework (RDF) is World Wide Web Con-
sortium (W3C)’s recommendations [22], which is also the most commonly used
data model in the context of Linked Data. The RDF data model is a popular
standard for describing things (known as resources or entities). By itself it is a
graph-based data model that represents information as labelled directed graphs.
This graph is built of triples that describe the data. Each triple (sub, pre, obj)
consists of a subject sub, a predicate pre and an object obj. Using RDF in a
Linked Data context has numerous advantages [37]:

– If the identifiers of data items (both used as subjects and objects) and vocab-
ulary terms (used as predicates) are HTTP URIs, the RDF data model can
be used at global scale and anybody is able to refer to anything.

– Each RDF triple is included in the Web of Data and can be the starting point
for explorations in the data space, because any URI can be looked up in an
RDF graph over the Web.

– It is possible to set RDF links between data from different sources.
– Sets of triples can be merged in a single graph to combine information.
– Terms taken from different vocabularies can be mixed in a RDF graph.

JSON-LD: A number of data formats are available that can be used to write
RDF data, either directly as triples or as nodes that can be mapped to RDF
triples, e.g. RDF/XML [22], RDFa [23], Turtle [30], N-Triples [21], and JSON-
LD [12]. JSON-LD, a W3C recommendation, is a JSON-based serialization for
Linked Data with the goals of simplicity, compatibility, terseness, expressiveness,
etc. JSON-LD uses few important keywords, such as @context, @id, @value,
and @type. In the VITAL platform JSON-LD is used. JSON-LD allows for refer-
encing external files to provide context. This means contextual information can
be requested on-demand which makes JSON-LD better suited to situations with
high response times or low bandwidth usage requirements. Using JSON-LD will
reduce the complexity of VITAL development by making it possible to reuse
a large number of existing tools and reduce the inherent complexity of RDF
documents.

Ontologies: Another important Linked Data concept used in VITAL is ontol-
ogy. To integrate all data, generated by one or different sources, there have to
be some rules. Some rules determine how the RDF graph is to be built and
how triples may be connected or not. These rules are given by ontologies. An
ontology specifies formally the conceptualisation of a domain of interest. As the
conceptualisation is formal, a computer can automatically reason on it. There
are many ontologies that have already been developed. Reuse of existing ontolo-
gies is crucial. If an existing ontology within the domain of use does not meet
all the requirements and some new data models arise they should be attached
to the existing ontology. We require ontologies in different areas. First, VITAL
needs to model sensors and sensor measurements, which are the basis of any IoT
system. Second, VITAL models IoT systems and services that are integrated into
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the VITAL. Third, VITAL provides means to model entities that are relevant to
Smart City applications. And finally, it provides ontologies to model the VITAL
system itself.

4.2 Sensors and Measurement

A number of ontologies have been developed to model sensors and sensor obser-
vations. Most of the existing ontologies are domain specific. Some abstract and
generic ontologies are developed to provide a conceptual framework for IoT sys-
tems, for example, the Semantic Sensor Network (SSN) ontology developed by
the W3C Semantic Sensor Network Incubator [35]. In practice such ontologies
must be combined with additional ontologies to define concrete instances of
abstract concepts. For instance, while a generic sensor ontology may specify how
to model a sensor and its measurements, additional definitions must be used to
model a concrete location of sensor and time when an observation was made.
SSN is the generic sensor ontology that the VITAL consortium has selected to
be used in VITAL.

SSN: The Semantic Sensor Network (SSN) ontology [35] defines a conceptual
framework for describing sensors and sensor observations. The SSN ontology can
formally describe sensors in terms of their:

– accuracy and capabilities,
– observations,
– measurement method,
– operating and survival ranges, and
– deployments.

A sensor could be any object that observes, it can be an electronic object, a
virtual object or even a human. The ranges are used in the definition of sensors
conjoined with the performance of these sensors. The description of deployment
includes the deployment lifetime as well as the sensing purpose of the deployed
macro instrument.

Time: Temporal aspects are essential for any system addressing real world phe-
nomena, e.g. smart city IoT systems. Timestamps can be used to describe when
a sensor observation was taken or when it was transferred. Multiple readings
can be ordered by the time of their occurrence. Users may specify or query for
certain types of observations based on specific timeframe. To model this, VITAL
provides an ontology for time as well as temporal properties and relations. A
well-established ontology for this is OWL Time [29]. OWL Time allows describ-
ing of temporal properties and relationships. It also supports time intervals as
well as durations, which are useful for example, when describing imprecise mea-
surement times as well as complex event specifications.
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Location: Location in the physical world is another basic concept that is mod-
elled in VITAL. There is a multitude of different location models and ontologies
available today, including geographical and symbolic location models. VITAL
follows a practical approach to allow easy usage of the system while at the same
time being flexible enough for advanced use cases. WGS84 [31] coordinates are
used as the basic location model, since they are the de-facto standard for outdoor
localisation using the GPS system. In addition, symbolic names are often used as
locations. VITAL uses the Linked GeoData system to model more complex loca-
tion concepts, including symbolic names, cell-based locations and inter-location
relationships.

Measurement: Different properties in the VITAL data models represent phys-
ical magnitudes like length or weight. Each one of these properties should be
associated with an unambiguous unit of measurement, e.g. metre or kg. There is
currently no single accepted ontology to model units of measurements in linked
data. A number of potential ontologies were found and four were chosen for
detailed evaluation. VITAL chooses QUDT [20] ontology for units of measure-
ments due to the impressive scope and amount of information available on each
type as well as the reputation of the maintainer and sponsoring party. QUDT is
also actively maintained, with the latest version that was released in September
2016.

Modelling Sensor

To model sensors, sensor measurements and their descriptions in VITAL, we
reuse and extend the SSN ontology and the Delivery Context (DC) [5] ontolo-
gies. A sensor is modelled as a VitalSensor, a subclass of ssn:Sensor and
dcn:Device. By using the SSN ontology, VITAL can immediately describe
sensors in detail, including aspects like the properties that they observe, sen-
sor locations, and sensor observations. The SSN ontology also allows to model
non-functional aspects of a sensor, e.g. its accuracy or reliability, by adding a
ssn:hasMeasurementProperty property to the sensor description that points
to a ssn:MeasurementCapability. The DC ontology defines a dcn:Device as a
class that represents a device in the delivery context. By using the DC ontology,
VITAL can reuse a highly detailed set of ontologies describing many aspects of
devices, including their software, their hardware as well as their networking.

In addition to the SSN and DC ontologies, VITAL defines an additional
property for sensors, hasLastKnownLocation. This property is a sub property
of dul:lastLocation as specified in the SSN ontology description. It links to
a location, which is the last known location of the sensor. The property does
not imply that this is the actual current location of the sensor. If the sensor is
mobile, it could have moved to a new location after the description was created.
If the property is not available in a sensor description, then the location of the
sensor may not be known.

Note that the location of a sensor can be modelled with different types as
specified before, e.g. as a geo:Point in case GPS coordinates are used. To be as



Overcoming the Heterogeneity in the Internet of Things for Smart Cities 29

flexible as possible, we use the generic dul:Entity class to represent all different
location types here. It is taken from the DOLCE+DnS Ultralite (DUL) ontology
and defines it as anything: real, possible, or imaginary, which some modeller
wants to talk about for some purpose [17]. In addition to the basic description of
a sensor, some VITAL services may require additional information. Properties
and classes to model this information are described in next sections.

Modelling Sensor Measurements

Similarly to sensors, VITAL uses the SSN ontology to model sensor measurements.
A measurement is modelled as an ssn:Observation. The observation contains
a link to an observed property (using ssn:observedProperty) to specify what
the observation is measuring. In addition, it specifies when the measurement was
taken (ssn:observationResultTime), at which location (dul:hasLocation) in
WGS84 format, the quality of the measurement (ssn:observationQuality), as
well as the measured value (ssn:observationResult) with the unit of measure-
ment specified with the QUDT ontology.

4.3 IoT Systems and Services

VITAL integrates existing IoT systems (e.g. deployed platforms) and allows
clients (applications as well as VITAL system services) to access (meta) data
and services of such systems. Currently there are four platforms for which exam-
ple deployments are integrated as a proof of concept: X-GSN, Hi-Reply, INRIA
FIT, and Xively. To integrate systems and work with them, VITAL needs a set
of models to describe IoT systems and their services.

Modelling Systems

VITAL models an IotSystem as a subclass of ssn:System with a number of addi-
tional properties. An IoT system description always includes a basic set of prop-
erties that describe general aspects of the system, e.g. its operator. In addition, a
system description may specify a set of IoT services that it offers. To describe gen-
eral metadata about the system, VITAL supports three new properties: status,
operator, and serviceArea. The status of an IoT system might change dur-
ing its lifecycle, thus, VITAL compliant systems that want to expose their cur-
rent operational stat must manage a virtual sensor of type MonitoringSensor
(a sub class of VitalSensor). Furthermore, OperationalState specifies the oper-
ational state of a system. A number of states are defined in VITAL as sub classes
of OperationalState: Operational, StartingUp, Running, ShuttingDown, and
Unavailable. In addition to the metadata discussed so far, an IoT system may
offer a set of IoT services to access its functionalities. To allow an IoT system to
link to descriptions of provided IoT services, VITAL introduces a new property
providesService.
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Modelling Services

In VITAL, an IoT system does not only provide access to IoT data (e.g. sensor
measurements) but may offer a set of distinct and heterogeneous IoT services.
An IoT service may be generic, e.g. a service to discovery ICOs or to access
filtered data, or application specific, e.g. a service to reserve a parking space
in a Smart City IoT system. In fact, VITAL models all functionality that can
be exposed by an IoT system and can be accessed and used by a client as an
IoT service, including data access, e.g. reading a sensor measurement. VITAL
therefore specifies a flexible data model to specify all different kinds of IoT
services. There is currently no single, standardised way to model IoT services.
Based on the related work discussed before, we decided to base VITAL’s semantic
IoT service model on existing work in the domain of web services.

As discussed before, VITAL aims at providing a semantic model that is
generic – yet simple and minimal, reuses existing ontologies as much as pos-
sible and allows to link with an active community as well as other current
projects. After careful consideration, we selected to use widely used Minimal
Service Model (MSM) [13] as the basis of its IoT service modelling ontology. In
the VITAL system an IoT service is modelled as a RESTful (web) service that
is described by Linked Data using the MSM ontologies. This allows publishing a
description of the IoT service that can e.g. be used for discovery or for automatic
composition tasks.

IoT systems (integrated within VITAL platform) may provide configura-
tion functionalities. In order to model these functionalities, Configuration-
Service class is defined as a sub class of msm:Service along with two
operations: GetConfiguration in order to access existing configurations and
SetConfiguration to set new configurations.

An IoT system can allow VITAL to monitor a number of monitoring function-
alities. For example, the status of an IoT system, the status of sensors that an IoT
system manages, performance metrics of an IoT system, SLA parameters related
to an IoT system, etc. These functionalities are exposed by a MonitoringService
class a sub class of msm:Service with a number of operations: GetSystemStatus,
GetSensorStatus, GetSupportedPerformanceMetrics, GetPerformanceMet-
rics, GetSupportedSLAParameters, and GetSLAParameters.

The VITAL platform can use both a pull and push based mechanism to
obtain observations made by a sensor. An IoT system with various sensors can
provide/support both mechanism by providing an observation service. An IoT
system must support at least one of these two mechanisms in order to allow
access to sensor observations. This service is modelled as ObservationService
sub class of msm:Service with the following operations: GetObservations,
SubscribeToObservationStream, and UnsubscribeFromObservationStream.
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4.4 Smart Cities

The VITAL platform is under proof-of-concept validation using the two use
cases focus on Smart Transport and Traffic Management and Smart Working.
Therefore, in the following we discuss how to model data items and properties
that are relevant for these two scenarios. Clearly, VITAL is not restricted to
these two use case scenarios. A user who would like to use VITAL for other
smart city aspects can do so by specifying additional ontology elements. Due to
the nature of Linked Data, these additional elements can be added at any time
without the need to redesign the system.

Modelling Cities

VITAL obtains the majority of its semantic information on cities from DBpe-
dia, using the classic DBpedia dataset for most information with the option
of using DBpedia live for information that updates more frequently. It is also
encouraged to link real places and services in cities back to DBpedia to improve
the amount of knowledge available. For example, while Camden Road would be
modelled as an otn:Road as part of a smart transport system, it should also
link to dbpedia:Camden Road. As discussed, ssn:observes is used to specify a
property of the real world a sensor is observing. The specification for modelling
real instances of such properties are application domain specific and should be
defined as required. For these two use cases we re-use the ontology of FP7 project
OpenIoT [40].

Modelling Smart Transport

VITAL models transport infrastructure using a combination of ontologies. The
core of these is the Ontology of Transportation Networks (OTN) [16]. This ontol-
ogy allows easy modelling of a transport network graph with connections between
infrastructure such as bus and train stations as well as events such as accidents
and blocked passages. In order to model the traffic management system, VITAL
describes a class TrafficManagement a sub class of IoTSystem. For the purpose
of transport and traffic scenarios and use cases (specifically in Camden Town,
London), VITAL models the following sub classes of ssn:Property: BusArrival,
RailArrival, TubeArrival, and AvailableBikes. To describe general descrip-
tion of Line, VITAL supports two new properties. These properties are: name and
direction

Modelling Smart Working

The structural development in advanced economies is influencing the change
in working patterns with (increasingly) employees more likely to work on the
move. Mobile workers require optimal working environments to be available at
short notice and without any difficulties to use. Owners of these suitable envi-
ronments require optimal occupancy. To meet these requirements, the smarter
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working application (powered by VITAL) introduced a number of sub classes of
ssn:Property: AvailableDesks and Availability. Each available workspace
in the system that meets the specified criteria is shown on a map and/or list.
Additional information is also shown associated with each workspace e.g. antic-
ipated air quality, temperature, humidity, and footfall in the requested time
window and location etc. In order to model additional information, following
classes are defined as sub classes of ssn:Property: CarbonMonoxide, Ozone,
and Footfall. Should the additional information need to be added and mod-
elled by introducing new classes, they can be added as required.

4.5 JSON-LD Definitions

Since Linked Data in VITAL is always formatted as JSON-LD we introduce some
additional definitions (in a JSON-LD context section) that do not change the
used ontology or the resulting RDF triples but align the JSON-LD representation
more closely to normal JSON and thus makes it easier for developers to work
with the data. All JSON keys that do not specify a prefix will be expanded
to URIs in the VITAL ontology namespace. This results in more compact files
with less clutter. Then we define that the key id will be mapped to a JSON-
LD node identifier (@id). The node identifier is used to create the URI that is
used as the subject in RDF triples. Similarly, specified key will be mapped to
the JSON-LD keyword @type. This results in an RDF triple being created that
specifies the RDF type of a node. To further simplify the JSON-LD file, the key
name will be mapped to rdfs:label and the key description will be mapped
to rdfs:comment. We then specify a number of prefixes that can be used in the
JSON-LD description to reduce the length of keys by specifying them as so-
called terms. All these mappings are completely transparent to developers and
can be ignored by clients. They are only relevant if the JSON-LD file is mapped
to RDF triples internally. Together, they reduce the complexity of the resulting
JSON-LD file and make it both smaller and easier to read and understand for
JSON developers. The resulted JSON-LD contexts are available at:

– http://vital-iot.eu/contexts/system.jsonld
– http://vital-iot.eu/contexts/service.jsonld
– http://vital-iot.eu/contexts/sensor.jsonld
– http://vital-iot.eu/contexts/measurement.jsonld

4.6 VITAL Ontology

In previous sections we discussed the VITAL data models e.g., the major classes,
properties, and operations that are used to model IoT systems, services, sensors,
observations, and smart city applications. Clearly, discussion on each concept
is impossible. Figure 2 visualizes the main entities in VITAL ontology. VITAL
ontology can be accessed at: http://vital-iot.eu/ontology/ns/ontology.owl.

http://vital-iot.eu/contexts/system.jsonld
http://vital-iot.eu/contexts/service.jsonld
http://vital-iot.eu/contexts/sensor.jsonld
http://vital-iot.eu/contexts/measurement.jsonld
http://vital-iot.eu/ontology/ns/ontology.owl
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Fig. 2. VITAL data model: entities and their modelling

5 Conclusion and Future Work

The Internet of Things (IoT) domain has gained a significant attention from
both academia and industry. This has led to the development of multiple het-
erogeneous architectures and standards, platforms, and IoT applications. Clearly,
there is a pressing need that IoT applications address the challenge of hetero-
geneity and allow the exchange of information across platforms and applications.
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This paper provides the basis for the semantic (meta) data models used in the
VITAL system. We build upon Linked Data principles and technologies to pro-
vide interoperable and platform agnostic data models that are based on existing
ontologies. This allows VITAL applications to integrate other data sources in
the Web, resulting in a large and varied set of usable data items. Although we
analysed a large number of ontologies during the design of the VITAL data mod-
els, the work is not finished. Thus, it is envisaged that more data models will be
added as VITAL extends its functionalities and more VITAL-powered use cases
are developed.
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Abstract. The Internet of Things (IoT) is maturing and more and more IoT
platforms that give access to things are emerging. However, the real potential of
the IoT lies in growing IoT cross-domain ecosystems on top of these platforms
that will deliver new, unanticipated value added applications and services. We
identified two crucial aspects that are important to grow an IoT ecosystem: (i)
interoperability to enable cross-platform and even cross-domain application
developments on top of IoT platforms as well as (ii) marketplaces to share and
monetize IoT resources. Having these two crucial pillars of an IoT ecosystem in
mind, we present in this article the BIG IoT architecture as the foundation to
establish IoT ecosystems. The architecture fulfills essential requirements that
have been assessed among industry and research organizations as part of the BIG
IoT project. We demonstrate a first proof-of-concept implementation in the
context of an exemplary smart cities scenario.

Keywords: Internet of Things · Architecture · Interoperability · Marketplace

1 Introduction

The idea of the Internet of Things (IoT) [1] has become more and more a commercial
reality that spans various application domains, from smart homes, over smarter cities,
to Industry 4.0. Various IoT platforms are upcoming: Cloud-level platforms such as
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Evrythng1 or ThingWorx2, and also on premise solutions such as Bosch’s IoT Suite3.
However, up to now, these IoT platforms failed to form vibrant IoT ecosystems. This is
due to the large number of stakeholders, including developers and providers of plat‐
forms, services and applications. They require marketplaces that enable the monetization
of their IoT resources. Once such marketplaces are established, revenue streams can be
shared across all contributing stakeholders. A crucial task of a marketplace is to provide
functionalities for advertising, discovery and orchestration of IoT services to facilitate
their usage.

However, before such marketplaces can bring their effect, a serious market barrier
needs to be tackled: the missing interoperability. The fragmentation of the IoT and the
lack of interoperability prevent the emergence of broadly accepted IoT ecosystems [6].
A recent McKinsey study [2] estimates that a 40% share of the potential economic value
of the IoT directly depends on interoperability between IoT platforms. Today, we are
dealing with various vertically oriented and mostly closed systems. Architectures for
IoT are built on heterogeneous standards (e.g., OMA LWM2M [3], OGC SWE [4] or
OneM2M [5]) or even proprietary interfaces. This causes interoperability problems
when overarching, cross-platform and cross-domain applications are to be built. Addi‐
tionally, it leads to barriers for small innovative business, which cannot afford to offer
their solution across multiple platforms.

In order to address these shortcomings in today’s IoT landscape, this article concre‐
tizes our vision presented in [6]: It presents the BIG IoT architecture as enabler for
establishing IoT ecosystems. It overcomes the above-described hurdles through (1) a
common Web API, (2) semantic descriptions of resources and services, as well as (3) a
marketplace as a nucleus of the ecosystem. We implement this architecture as part of
the BIG IoT project4. This will allow new applications, e.g., by combining data from
multiple platforms. In addition, platforms from multiple domains (e.g. home and city)
and regions will be combined, such that applications can utilize all relevant information
and work seamlessly across regions.

To ignite an IoT ecosystem based on the developed concepts, the BIG IoT project
involves overall 8 IoT platforms. There are 6 cloud- or infrastructure-level platforms:
Bosch’s Smart City platform, based on the Bosch IoT Suite3, CSI’s Smart Data5 plat‐
form, OpenIoT [7], Vodafone’s Mobile Analytics Platform, VMZ’s TIC6 platform, and
WorldSensing7. Further, there are 2 device-level platforms: Bosch’s BEZIRK8 platform
and Econais’ Wubby9 platform. Together with multiple service and application imple‐
mentations, these platforms will be BIG IoT-enabled and evaluated in 3 different pilots
(Barcelona, Berlin/Wolfsburg and Piedmont).

1 http://www.evrythng.com.
2 http://www.thingworx.com.
3 https://www.bosch-si.com/products/bosch-iot-suite/platform-as-service/paas.html.
4 http://www.big-iot.eu.
5 http://www.smartdatanet.it.
6 https://viz.berlin.de/en/home.
7 http://www.worldsensing.com.
8 http://www.bezirk.com.
9 http://www.wubby.io/.
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The remainder of this article is structured as follows. Section 2 presents related work
and outlines an overview of different research projects in this field. Section 3 outlines
the high-level concepts and requirements for IoT ecosystems. Section 4 describes the
BIG IoT realization of such an IoT ecosystem architecture, which is then demonstrated
in a proof-of-concept in Sect. 5. Finally, we conclude this article in Sect. 6.

2 Background and Related Work

Various related works exist that contributed to the advancement of IoT architectures
design. Most related to our work are other large research projects in context of the IoT.
This section lists some of such approaches to give an overview of the research field and
highlights the unique approach of our work in BIG IoT.

A prominent project in this context is the Internet of Things Architecture (IoT-A)
project [8], which developed a comprehensive architectural reference model as a foun‐
dation for interoperability of IoT systems, including guidelines for the design of proto‐
cols and interfaces. However, other than IoT-A, which can be used as a blueprint for the
development of an IoT platform, this work develops an architecture that focuses on
integrating existing systems, components, and stakeholders of the IoT.

Another lighthouse IoT framework project is FI-WARE [9]. It develops a framework
of so-called generic enablers to support IoT developments. Our approach differs from
the FI-WARE idea, as we do not aim at creating another unified platform or platform
building blocks, but enabling the coexistence and distributed collaboration of existing
and already commercially deployed platforms to foster an easy creation of portable
services by third party providers.

A Semantic Web-based design of a middleware platform for the IoT has been devel‐
oped in the OpenIoT project [7]. While OpenIoT assumes the use of a single sensor
middleware platform and its integration within a common cloud computing infrastruc‐
ture, it does not address cross-platform mechanisms. This is however, a focal topic of
the work described in this article. In fact, the OpenIoT platform is integrated into the
BIG IoT project as one IoT platform of the overall ecosystem.

VITAL [10] aims at virtualized filtering and complex event processing mechanisms
over a variety of IoT architectures. It focuses on an abstract virtualized digital layer that
will operate across multiple IoT architectures. In that sense, VITAL has similar goals
of integrating different IoT platforms. However, it is a domain specific effort, by
restricting itself to smart cities. The project develops a centralized operating system,
called Vital-OS, which manages and monitors all systems and data. In contrast, our work
follows a domain-agnostic approach that generalizes emerging platforms and enables
semantic interoperability to provide unified APIs.

The objective of CityPulse [11] has been to develop a distributed framework for the
semantic discovery and processing of large-scale real-time IoT data and relevant social
data streams for knowledge extraction in a city environment. CityPulse focuses on
developments for the application layer. Their services could be integrated and run on
top of the common API designed by BIG IoT.
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The IoT@Work project [12] was a deep dive into the industry automation domain
with its very specific requirements. The approach presented a novel solution for flexible
production. The BIG IoT project in contrast aims at cross-domain applications and
making use of existing platforms and installations in a more generic sense. By fostering
the emergence of open ecosystems, our approach diverts from the specific one of
IoT@Work.

One of the intentions of the BIG IoT project is to bring its approaches to standardi‐
zation in order to reach an interoperable IoT platform landscape. In that sense, BIG IoT
members are involved in the W3C Web of Things (WoT) [13] activities, which is going
to be standardized in parallel to the BIG IoT project. The W3C WoT group was founded
in spring of 2015, and the major motivation for initiating this group was also the fact
that the IoT suffers from a lack of interoperability across platforms. BIG IoT members
are mainly involved in the topic Thing Description. Development and experiences in
WoT and BIG IoT are regularly synchronized in order to learn and benefit from each
other.

Mineraud et al. [14] analyze the technological gaps of today’s IoT platforms. Specif‐
ically, they highlight the fact that data and device catalogs as well as billing of consumers
of the IoT data sources is generally missing. Hypercat [16] is an initiative that aims to
address the issue of semantic interoperability for IoT through catalogs, which enable
distributed data repositories to be used jointly by applications. As such, Hypercat offers
a starting point to solving the issues of managing heterogeneous data sources through
linked data and web approaches. However, the gap for IoT marketplaces, where
providers and consumers of IoT resources can meet and do business, as they exchange
their assets, are not yet addressed. Our work in the BIG IoT project targets to address
exactly this vital gap. By building up on the previous works outlined above, we focus
on reusing existing technologies with the goal of igniting IoT ecosystems.

3 High-Level Architecture Concepts and Requirements

This section first defines the terminology and key concepts for an IoT ecosystem archi‐
tecture, then it identifies requirements from our stakeholders, deducts architectural
implications, and high-level design decisions that influence and guide the design of the
concrete BIG IoT architecture in Sect. 4.

3.1 Terminology and Conceptual Model for an IoT Ecosystem

Figure 1 defines the generic concepts that we identified within an IoT ecosystem and
the interactions between them. The core concepts are: offerings, (offering) providers and
consumers, and the interactions of registering and discovering offerings via a market‐
place, and accessing the resources offered by a provider.
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Fig. 1. Conceptual model for an IoT ecosystem.

An offering encompasses a set of IoT resources, typically a set of related information
(e.g. low-level sensor data like temperature or aggregate information across an region)
or functions (e.g. actuation tasks like open a gate or computational functions like
compute a route), that are offered on a marketplace.

Providers register their offerings on a marketplace and provides access to the offered
resources via a common API. A provider can be either a platform or a service instance
that offers available resources, i.e., some information or access to functions that it wants
to share or trade on the marketplace (e.g. an IoT platform of a parking lot provider).
Consumers discover and subscribe to offerings of interest via a marketplace in order to
access the resources. A consumer can be either an application or service instance that
requires access to IoT resources in order to implement an intended service or function
(e.g., a smart parking service provided by the city).

In technical terms, a provider registers its offerings on the marketplace by providing
an offering description for each offering. An offering can for example entail parking
information for a city and include data such as geo location or address of the parking
lot, the type of lot (e.g. garage or on-street), available spots, occupied spots, etc. In order
to increase interoperability between different IoT platforms, the offering description is
provided in a machine interpretable manner, e.g., based on RDF [15] models. All rele‐
vant communication metadata is provided on how the offering can be accessed (e.g.,
endpoint URL, which HTTP method, etc.). As a default vocabulary set, the offering
description includes a local identifier (unique to a provider), a name of the offering, and
the input and/or output data provided to a consumer when the offering is accessed.
The description may also include information about the region (e.g. the city or spatial
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extent) where the resources relate to, the price for accessing the resources, the license of
the data provided, the access control list, etc.

Consumers discover offerings of interest on the marketplace by providing an
(offering) query. The query entails a specification of the type of offerings the consumer
is interested in. For example, a consumer can provide a description of the desired
resources (such as type of parking information) and define the maximum price, the
desired license types, the region, etc. Upon a discovery request, the marketplace iden‐
tifies all matching offerings and returns them to the consumer. The consumer can then
choose the offerings of interest and subscribe to those on the marketplace. Since the
discovery can take place at run-time, a consumer is able to identify and subscribe to
newly offered resources as they emerge. Finally, to limit the data to be transmit upon
accessing an offering, a consumer can also provide a filter in the request.

3.2 Use Cases and Requirements

The high-level requirements for designing the architecture have been identified through
discussion of relevant use cases and from a qualitative survey among the stakeholders
from industry and research involved in the BIG IoT project. Clusters of requirements
have been identified, as described in the following.

(1) Core technology – Given the overall goals of our work, namely to facilitate IoT
ecosystem creation, and to enable resource providers to trade and monetize their
IoT resources and consumers to discover and utilize them across platform and
domain boundaries, we have identified the following high-level functional require‐
ments. First, IoT platforms and services need to be able to offer and register IoT
resources on a marketplace, and provide easy access to the resources via a common
API. Second, applications and services shall be able to discover desired IoT
resources via a marketplace and access them across heterogeneous platforms or
services via a common API. Third, resource providers shall be able to monetize
their assets (information and functions) via a marketplace. Fourth, resource
consumers shall be able to discover new resource providers at run-time and leverage
their resources immediately.
In conclusion, we identified three technological pillars that are key for the devel‐
opment of an IoT ecosystem: a centralized marketplace, common API(s), and a
software development kit (SDK) for easy integration with the ecosystem. The API
and its implementation, the SDK, need to be developed in an open source/
community process.

(2) Developer support – In order to grow an IoT ecosystem, it is crucial to lower the
hurdle of joining the ecosystem, and thus, support developers in the process of
extending their IoT platforms, services or applications. These scenarios involve
developers that (a) extend their platform to support the common API and offer
resources to a central marketplace, and (b) develop a service or application, which
uses the common API to gain access to the marketplace to discover offerings and
connect to their provider platforms or services. In this context, we identified three
essential use cases. First, a developer studies the BIG IoT documentation, example
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code and downloads the SDK. Second, a service/platform developer implements a
service or extends an IoT platform to register a resource offering on the marketplace.
Third, an application/service developer implements an application/service, which
utilizes a resource offering discovered via a marketplace.

(3) Exchange of resource offerings – This cluster of use cases defines how (a)
providers can offer their resources on a marketplace, and how (b) consumers can
search for offerings and access them. The derived requirements are: first, a service/
platform registers a resource offering on a marketplace; and second, a service/
application discovers offerings via a marketplace and accesses them on the plat‐
forms/services. Both, the registration as well as the discovery of offerings need to
be supported at run-time, in order to allow consumers to leverage emerging
resources as they become available.

(4) Charging and billing – One of the core functionalities of an IoT ecosystem
marketplace is to enable providers to monetize the access and use of their resources.
Therefore, the following two requirements describe the collection of accounting
data as well as the necessary functions for charging and billing. First, platform/
service/application instances perform accounting of the accessed resources.
Second, a marketplace offers accounting and charging information to the involved
stakeholders.

(5) Non-functional requirements – First, the integration of existing and new IoT
applications, services, and platforms with a marketplace shall be low-effort.
Second, the common API and the marketplace implementations shall be highly
scalable to support large-scale IoT deployments. Third, the communications and
interactions among consumers, providers, and the marketplace shall be secure, as
this is a crucial aspect for any IoT deployment to work.

3.3 Platform Integration Modes

For the integration of heterogeneous IoT platforms into IoT ecosystems, we have
analyzed the needs and constraints of the 8 platforms involved by the BIG IoT project
partners (see Sect. 1). The following challenges have been identified:

1. The implementation of the API for interaction with the marketplace, and to offer
access to consumers must be low effort.

2. Platform providers that use off-the-shelf platform solutions, and thus have no access
to the source code of their platform, need alternative means to integrate their plat‐
forms into an ecosystem.

3. Constrained10 device-level platform providers need infrastructure-level support to
overcome the availability and cost limitations of such platforms.

In order to address challenge 1, BIG IoT provides developers an SDK comprising a
library for using the API. This way, a developer can extend an IoT platform

10 Constrained in this context means that the platforms may not always be accessible (either due
to energy saving reasons or with wireless coverage) and/or their backhaul connection might
incur costs based on a “pay-per-use” plan (e.g. mobile phones or battery-powered sensors).
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programmatically by means of an easy-to-use programming interface. While we
currently focus on Java, the SDK will be provided for common programming languages
and development environments.

To cope with challenge 2, we suggest that affected platform providers develop a
gateway-service. Such a gateway-service sits between the existing platform, and the
marketplace or consumer applications/services. We envision that open source gateway-
service implementations will become available for common IoT platform types.

In order to deal with challenge 3, we support affected platform providers by releasing
an open source proxy-service implementation together with an extended SDK that
allows easy integration of such constrained device-level platforms with the proxy-
service and the marketplace. The main functionality of the proxy-service is to store
informational resources that are offered by the device-level platform and serve them to
interested consumers upon request. With respect to tasks or actions that need to be
processed by such device-level platforms, the proxy-service queues them until the plat‐
form connects and pulls the received tasks or actions. The response of a task or action
is also proxied by such a service.

We validated the different options with all the platform providers involved in BIG
IoT. The results show that 5 out of 8 platform providers are interested in the API library
to extend their platform programmatically. In addition, 5 out of 8 providers indicated
interest in the gateway-service based integration option. From the 2 device-level plat‐
form providers involved in the project, both confirmed interest in the proxy-service.

3.4 High-Level Design Decisions

This section draws high-level design decisions for the architecture work based on the
surveyed needs of the BIG IoT platform providers and the considerations above.

1. Focus the Marketplace Functionality on an IoT Resource Exchange.
The functional scope of a marketplace in an IoT ecosystem can be broad. We eval‐
uated the following possible key functional options:
• Resource exchange – for IoT resource providers and consumers to publish and

discover their resource offerings and facilitate the resource exchange;
• Application or service store – for IoT developers to trade their applications or

services software; and
• Hosting environment – for application, service or platform providers to host their

run-time systems.

Based on a survey among the BIG IoT partners, we have identified the resource
exchange functionality as most crucial, and thus, focus the BIG IoT marketplace
on this. Nevertheless, the marketplace may be extended towards other function‐
alities in the future.

2. Consumers Access IoT Resources Directly on the Provider.
For scalability reasons and to keep IoT resources under full control of the providers
we propose not to store IoT data on a marketplace, but to enable easy access to the
resources directly on the provider end. This design decision has the advantage that
the marketplace only requires the ability to publish and discover the resource
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offerings (i.e., the descriptions of the resources), and to facilitate the direct access
(e.g., through authentication of consumers and accounting support), but the actual
resources remain stored and managed on the provider infrastructure.

3. Providers and Consumers Can Participate on Multiple Marketplaces.
In order to avoid a marketplace lock-in, we propose to allow providers and
consumers to use and interact with multiple marketplace instances at the same time.
The advantage is that providers can offer their resources on multiple marketplaces,
and thus, minimize the risk of integrating the API without good prospects to regain
the initial investment of joining the ecosystem or running the risk of a vendor lock-
in. Likewise, consumers can participate on multiple marketplaces.

4 The BIG IoT Architecture

This section describes the BIG IoT architecture as a realization of the generic concepts
and requirements for IoT ecosystems presented in Sect. 3. A first implementation by the
BIG IoT project is currently in progress. As shown in Fig. 2, we distinguish the following
5 core building blocks:

(1) BIG IoT enabled Platform – this IoT platform implements (as a provider)
the common API, which is called the BIG IoT API, to register offerings on a BIG
IoT Marketplace, and grants BIG IoT Services or Applications (as consumers)
access to the offered resources.

(2) BIG IoT Application – this application software implements and uses the BIG IoT
API, (as a consumer) to discover offerings on a BIG IoT Marketplace, and to access
the resources provided by one or more BIG IoT Services or Plat‐
forms (as providers).

(3) BIG IoT Service – this IoT service implements and uses the BIG IoT API to register
offerings on a BIG IoT Marketplace (as a provider) and/or to discover and access
offerings provided via a BIG IoT Marketplace (as a consumer).

(4) BIG IoT Marketplace – this composite system consists of sub-components: The
Marketplace API serves as an entry point for all communications and interactions
with the marketplace; the Identity Management Service (IdM) which authenticates
and authorizes providers and consumers; the eXchange, which allows registration
and discovery of offerings using semantic technologies; the Web Portal for users
of the Marketplace; and the Charging Service, which collects accounting informa‐
tion. The Web Portal allows the users of a marketplace (typically organizations) to
register and create accounts for their developers and administration personnel who
in turn can create and register new provider or consumer instances, define new
offerings and queries (for supported application domains), query and subscribe to
offerings of interest, and manage those conveniently via a Web browser.

(5) BIG IoT Lib – this is an implementation of the BIG IoT API that supports service
and application developers. The BIG IoT Lib consists of a Provider Lib and a
Consumer Lib part. It translates function calls from the respective application or
service logic, or the platform code into interactions with the marketplace, or peer-
services or -platforms. The Provider Lib allows a platform or service to authenticate
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itself on a marketplace and to register offerings. As described in Sect. 3.1, the
offering description is machine-readable and we base it on RDF [15] models. It
incorporates the W3C WoT [13] Thing Description design pattern: offerings can
be semantically described by integrating existing domain contexts (e.g., specific
vocabularies for smart cities, smart home, or manufacturing). The Consumer
Lib allows an application or service to authenticate itself on a marketplace, to
discover available offerings based on semantic queries, and to subscribe to offerings
of interest. The use of semantic technologies enables the BIG IoT eXchange
to perform semantic matching even in case providers and consumers use different
semantic models or formats, as long as a common meta-model defines the relations/
mapping between the different semantic models and converters for the different
semantic formats are supported.

Fig. 2. The BIG IoT architecture.

4.1 Architecture Integration Modes

To Comply with the Requirements Identified in Sect. 3.3, the Architecture Supports the
Following Platform Integration Modes

Mode 1: the platform developer uses the Programming Interface P1 provided by the
Provider Lib to extend an existing or new IoT platform programmatically.
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Mode 2: the provider develops and operates a BIG IoT Gateway Service, which
handles all BIG IoT related interactions and translates the relevant requests into calls
supported by the existing platform (Integration Interface I1).

Mode 3: the provider develops and operates a BIG IoT Management Service, which
handles the interactions with the marketplace. It integrates with the legacy platform by
implementing the Integration Interface I2. Access to the resource offerings is provided
directly by the legacy platform.

Mode 4: the provider develops and operates a BIG IoT Proxy Service, which handles
the interactions with the marketplace and offers the Access Interface A1. The proxy-
service acts as an “always-available” proxy on behalf of a typically constrained device-
level platform.

4.2 Interfaces and Interactions

Besides the core components, Fig. 2 also depicts the relevant interfaces of the architec‐
ture. The Programming Interfaces P1 and P2, provided by the BIG IoT Lib, are offered
to developers to connect their components with the marketplace and other entities. For
easy integration of constrained device-level platforms, a special BIG IoT Lib is provided,
which allows developers to interact easily with the BIG IoT Proxy Service (via
the Programming Interface P3).

The BIG IoT Marketplace provides five interfaces to allow interactions with its
services. The M1 interface is used by the provider and consumer instances to authenti‐
cate themselves on the marketplace at start-up. Upon successful authentication,
the Provider or Consumer Libs will obtain the required credentials for any further
communication and interaction with the marketplace. The M2 interface is used by
providers to register/deregister offerings, while the M3 interface is used by consumers
to discover them on the marketplace. Once a registration request is received, the BIG
IoT eXchange validates the offerings and stores them in a semantic database. To
subscribe/unsubscribe to offerings, consumer applications use the M4 interface. With a
subscription, a consumer indicates its intent to access the offered resources, and confirms
its consent with respect to the offering’s license, price, etc. Once an offering is
subscribed, the eXchange provides the consumer unique credentials to access this
offering. In case the offering has expired or has been updated by the provider,
the eXchange revokes the subscription and indicates the cause in the response. The M5
interface is used by consumers and providers to send accounting information in regular
time intervals to the Charging Service. Accounting types (e.g. per message) can differ
between offerings, and are specified by a provider in the offering description. The inter‐
faces M1–M4 are used in the same way by the Web Portal.

The Access Interface A1 is the interface via which a consumer gets access to
resources offered by a provider. Depending on the Provider Lib implementation, it will
support different access means. All Provider Libs shall support the HTTP-based request/
response access. Optionally, a Provider Lib can also support other protocols (e.g.
WebSockets, MQTT) or other access paradigms (e.g. streaming).

Figure 3 describes the discovery (M3) and subscription (M4) to offerings on the
marketplace in more detail. Once a query has been created by a developer via the Web
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UI, we distinguish between two modes: static and dynamic. In static mode, the developer
or administrator of a consumer application or service selects and subscribes to the
offerings of interest manually, via the Web portal. In dynamic mode, queries can be
refined by the application or service logic programmatically, e.g. in order to consider
information that is only available at run-time (e.g. location) and the subscriptions to
offerings is automated based on consumer-defined policies. The dynamic mode is needed
in case an application or service is designed to discover and integrate new data sources
at run-time, e.g. in order to incorporate emerging offering providers automatically.

Fig. 3. Sequence of offering discovery and subscription.

5 Proof-of-Concept Implementation and Demonstrator

This section presents a proof-of-concept implementation of the BIG IoT architecture
components. In an end-to-end scenario, the practicability of the BIG IoT architecture,
including the marketplace and the API for an interoperable IoT ecosystem and the feasi‐
bility of the approach is demonstrated.
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The overall goal of the developed architecture is to ease the interoperation of IoT
platforms, services and applications despite technological and organizational bounda‐
ries. This scenario showcases that the run-time discovery and integration of IoT
resources provided by heterogeneous platforms and various organizations becomes
possible through the developed API and the marketplace. Although this scenario incor‐
porates platforms from the smart city domain, the BIG IoT components and interfaces
can be utilized in other domains as well. The key components are (1) the eXchange
backend and the Web Portal of the BIG IoT Marketplace, (2) a demo Web application,
(3) the cloud-level OpenIoT platform offering parking space data, and (4) the device-
level Wubby platform offering air quality data. Figure 4 shows the key components as
well as the interfaces and connections between those components. By default, the two
platforms shown at the bottom offer their own proprietary interfaces. To integrate these
platforms into the BIG IoT ecosystem, two gateway-services (shown in blue) are imple‐
mented according to integration mode 2 (Sect. 4.1). Those gateway-services implement
the adaptation of the proprietary platform interfaces to the BIG IoT API. This adaptation
is facilitated through usage of the BIG IoT Lib (shown in yellow). This library offers
the access interface for consumers to access the resources, and can be used to interact
with the marketplace as a client. The library is also used by the demo Web application
(shown in green). Using the BIG IoT Lib, simple method calls in the particular program‐
ming languages (here: Java), makes it easy to discover the relevant resource providers
and to utilize the access interface of the heterogeneous platform.

Fig. 4. Components of the proof-of-concept demonstrator implementation. (Color figure online)
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The sequence of interactions in this demonstration is illustrated in the following. An
application developer is implementing a Web application (Fig. 6) that is supposed to
visualize available parking spaces in smart cities. First, the developer visits the market‐
place Web Portal and fills out the UI form accordingly to search for available resource
offerings based on a semantic type that is of interest to her. Figure 5 shows the screenshot
of the prototypical implementation of the marketplace Web Portal. We assume that at
this point, only a few parking information offerings are found for this category. Never‐
theless, the user is presented with a Query ID that is associated with the respective
parameters. The user utilizes the returned Query ID and places it in her application code
in order to allow her Web application to perform regular discovery requests for the
offerings interested on the marketplace. Running the application triggers the discovery
request based on the Query ID, however, only few parking spaces are shown on the map,
as not many offerings of type “parking” are registered or active.

Fig. 5. Screenshot of the marketplace portal UI to create and view queries.

In a next step, a new user (platform provider) visits the marketplace portal to create
an offering called “Barcelona Parking Sensors” and tags it with the same semantic type.
After this creation, the offering is still inactive. The portal presents the provider with an
Offering ID. This ID is used by the provider as a parameter in the OpenIoT gateway
service. Once the provider starts the gateway service, it automatically registers the
offering on the marketplace using the created Offering ID and marks it then as active.

Coming back to the Web application, which makes periodic discovery requests based
on the defined Query ID, it now finds the new offering (of the desired semantic type)
and automatically accesses and integrates the data in the application. As a result, the
application visualizes the newly found parking spaces as markers at their specific loca‐
tions (Fig. 6).
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Fig. 6. Screenshot of the Web application to view the available parking spots.

Once the application receives a new offering from the marketplace, it checks all
relevant information (e.g., price for accessing the offering, or license agreement) whether
they meet the user’s requirements. Then, the application subscribes to the matching
offering, and eventually accesses the offering to retrieve the parking information. The
access to the parking information on the provider platform is enabled by using a direct
access interface provided by the BIG IoT Provider Lib. When the Web application calls
the access method (provided by the BIG IoT Consumer Lib), the OpenIoT Gateway
Service translates the requests for the parking information into a proprietary call to the
OpenIoT platform and returns the data to the Web application.

The validation of the BIG IoT architecture in other use case scenarios and across
domains is ongoing work in the project, aiming to address the five interoperability
patterns identified and presented in [6].

6 Conclusions and Outlook

Grounded in our vision of interoperable IoT ecosystems [6], we define, in this article,
generic concepts for IoT ecosystem architectures, such as marketplaces, offerings,
providers, consumers. Based on this core terminology, we present guiding use cases and
requirements for the architecture, which were derived from surveys among the industrial
and research partners of the BIG IoT project. We realize those generic considerations
in the concrete BIG IoT architecture, by describing the key building blocks, their inter‐
faces, and interactions. Finally, we present a first proof-of-concept implementation and
demonstrator in order to illustrate the core architectural concepts, their feasibility, and
the advantages of the architecture. While this scenario incorporates IoT platforms from
the smart city domain, the BIG IoT components and interfaces are likewise applicable
in other domains.
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The demonstrator shows that the defined architecture is capable of: (1) solving the
discovery challenge of available IoT resources for application and service providers,
despite the fact that resources are collected and stored across heterogeneous platforms
and systems, across large geographic spaces, and by a multitude of stakeholders and
organizations, who are mostly not even aware of each other; (2) bridging the interoper‐
ability gap among heterogeneous IoT applications, services and platforms, which are
using various standards and technologies, and operate on different scales (cloud-level
vs. device-level platforms); and (3) addressing the evolvability problem of applications
and services, who rely mostly on manual integration of continuously emerging IoT
resource providers (e.g., new data sources), and thus, require growing development
efforts to keep their applications or services up-to-date.

First, the BIG IoT architecture, with its marketplace, overcomes those challenges by
introducing “places” for resource providers and consumers to meet and exchange their
resource offerings and demands, and discover each other. Second, based on the BIG IoT
API, the heterogeneous platforms and systems involved are able to access and exchange
resources using standard protocols and frameworks. Finally, since the BIG IoT archi‐
tecture supports the discovery of providers and their resources as well as the access to
the resources at run-time, IoT applications and services are now able to integrate auto‐
matically emerging resource providers at run-time.

Key enablers for addressing the discovery challenge are semantic technologies. They
facilitate the matching of resource offerings and queries across heterogeneous systems
and diverse stakeholders, and also help to overcome the interoperability challenge. In
the future, semantic vocabularies for specific application domains need to be established.
This is needed in order to enable semantic matchmaking for IoT offering discovery on
the marketplace. The BIG IoT project aims at using and extending existing and proven
vocabularies, such as schema.org.

The detailed specification of the BIG IoT API, and in particular the use of semantic
technologies to describe resource offerings, queries, the resources themselves, as well
as the detailed specification of the BIG IoT Marketplace architecture, including the
eXchange and the use of semantic databases, is ongoing work. To ground these speci‐
fications in public standards, we are actively contributing to the W3C Web of Things
group and will continue doing so in the future.
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Interoperability Gap” (BIG IoT) funded by the European Commission’s Horizon 2020 research
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Abstract. This work contributes towards extending OGC Sensor
Observation Service to become ready for Internet of Things, i.e. can
be employed by devices with limited capabilities or opportunistic inter-
net connection. We present an extension based on progressive data
transmission, which by-design facilitates selective data harvesting and
disruption-tolerant communication. The extension economizes resources,
while respects the SOS specification requirement that the client should
have no a-priori knowledge of the server capabilities. Empirical exper-
iments in two case studies demonstrate that the extension adds little
overhead and may lead to significant performance improvements in cer-
tain cases, as for irregular timeseries. Also, the proposed extension is not
invasive and backwards compatible with legacy clients.

Keywords: Open Geospatial Consortium · Sensor Observation Service ·
Internet of Things · Syntactic interoperability · SOS 2.0 · Sensor Web ·
Progressive transmission · Pagination · Timeseries data

1 Introduction

Internet of the Things (IoT) is a dynamic, open, participatory ecosystem of
decentralized and collaborative devices. Recent technological advances resulted
in a plethora of low-cost devices with extended capabilities compared to tradi-
tional sensors. New generation of devices are miniaturized and empowered with
storage, processing and networking capacity. They are essentially transformed
into smart nodes, that operate autonomously, may offer added value services
[31], and collaborate with each other in the cloud [4]. Smart nodes could offer
capture, storage and dissemination services of sensory information in a single
device [36]. IoT devices are also instrumental to the proliferation of new data
sources [14], sharing of information [15], and contribute to the big data move-
ment. Internet of Things advances the vision of Sensor Web, an infrastructure
which enables interoperable usage of sensor resources [8]. In the IoT era, Sensor
Web is challenged to offer services that are interoperable, but at the same time
perform efficiently with less resources, saving processing power and network
bandwidth.
c© Springer International Publishing AG 2017
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Interoperable data interchange for sensor data has been driven by the
Open Geospatial Consortium (OGC). OGC introduced service interfaces and
information models within Sensor Web Enablement (SWE), which is founded
on machine-to-machine communication [5,7]. Service interfaces, as the Sensor
Observation Service, Web Feature Service, Web Coverage Service, SensorThings
provide interoperable means for geospatial information discovery and retrieval.
Sensor Observation Service (SOS) [24,25] is an OGC service interface, which
promotes interoperable sensor-borne data exchange, operates as a web service,
and supports for syntactic and semantic interoperability.

In the IoT era, architectural paradigms and technologies need to respect the
limited capabilities of devices. The SWE 2.0 has been established with technolo-
gies as the Simple Object Access Protocol (SOAP) and XML-based information
models, which are considered to add substantial overhead - a critical issue for
IoT devices. On the other hand, Representational State Transfer (REST) and
JSON-based information models seem to provide services which excel over SOAP
and XML, in terms of power consumption and performance [22]. Beyond these
technical limitations, there are certain design choices that preclude SOS as an
appropriate IoT outlet.

In this paper, we investigate current SOS design and propose an extension. In
Sect. 2, we present related work, how SOS operates and challenges identified in
the literature. In Sect. 3, we identify SOS design shortcomings from an IoT per-
spective, and introduce a pagination technique in order to promote selective data
harvesting, enable seamless data integration and facilitate machine-to-machine
interoperability. Section 4 presents an implementation and details the two case
studies, which were designed to test the efficiency of the extension, along with
experimental results. Section 5 provides with a discussion about our findings and
contributions, concludes the research and lays the groundwork for future work.

2 Related Work

2.1 Service Orientation and Interoperability in Sensor networks

Service-Oriented Architecture (SOA) is an architectural paradigm founded on
self-describing, self-contained services. Key concept in SOA is that services may
be developed, maintained and served by different entities, and can subsequently
be combined and produce composite applications. SOA has been instrumen-
tal for highly interoperable systems, as services are platform and language
independent [30].

In the frame of interoperable data interchange, OGC introduced Sensor Web
Enablement (SWE), which follows the SOA architectural paradigm. Standards
developed within SWE provide means for the discovery and retrieval of sen-
sor observations. SWE contributes towards the vision of Sensor Web, where
web-accessible sensor networks and archived sensor observations can be dis-
covered and accessed using standard protocols and application program inter-
faces (APIs) [5]. They are realized through web services, i.e. services “identi-
fied by a URI, whose service description and transport utilize open Internet
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standards” [30]. Communication between service interfaces and other services or
clients is achieved through Simple Object Access Protocol (SOAP), which builds
on existing communication layers (i.e. HTTP) [10]. SWE is a very important
infrastructure [8] as it offers interoperable protocols for advertising, disseminat-
ing and requesting data among heterogeneous sensor systems and devices.

2.2 The Sensor Observation Service

Sensor Observation Service (SOS) is an OGC service interface specification for
accessing sensor observations, which acts as “the intermediary between a client
and an observation repository” [5]. SOS interface enables clients to request, filter
and retrieve observations, and metadata about repositories and sensors.

SOS comes with a core set of services, and extensions that enrich it with extra
functionality, or profiles for domain-specific behavior. The current 2.0 specifica-
tion [24] defines three core operations:

a. service discovery (GetCapabilities),
b. sensors metadata retrieval (DescribeSensor), and
c. observations retrieval (GetObservation).

There are several extensions and profiles available, but their description falls
outside the scope of this paper. As an indicative example for the reader, the
transactional extension provides with services to register new sensors and add
new observations.

Fig. 1. A typical observation retrieval workflow using SOS
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SOS is a pull-based service interface and is intended for machine-to-machine
communication. The protocol prescribes a communication between a client and
a server, both can be considered to be software agents. The client submits a
request and the server answers with a response, typically in the form of XML
document. Responses are encoded in appropriate SWE related XML schemas
as Observation & Measurements [23], or SensorML [27]. A typical observation
retrieval workflow using SOS is depicted in Fig. 1. First, the client inquires the
server for its capabilities. Then, it may ask for descriptions on certain sensors,
and finally requests for observations from one or more sensors. A typical Get-
Observation request includes temporal and/or spatial boundaries.

When SOS server encounters an error while performing a GetObservation
operation, it returns an exception. For example, if client asks for wrong values
of arguments an InvalidParameterValue exception is rendered. In the current
SOS 2.0 interface standard [24] there is also a type of exception for the cases
that the response exceeds a size limit. We will investigate this further below.

2.3 Challenges in Sharing Sensor Observations in IoT

Internet of Things consists of smart nodes equipped with sensors and network
connectivity, able to interact with their environment and share information.
Smart nodes are entitled with specific characteristics:

a. restrained capabilities (in terms of energy and processing power),
b. opportunistic Internet connection, and
c. heterogeneity in resulting data formats and communication protocols [3].

Key challenges towards the IoT realization include energy efficiency, integra-
tion of service technologies and security/privacy [21]. Also, thematic and spatial
concerns of deployed IoT systems pose great challenges in spatiotemporal aggre-
gation of disperse observation datasets.

As regards with heterogeneous sensor integration, previous studies have
been conducted towards various directions. A virtual integration framework for
heterogeneous meteorological and oceanographic data sources is demonstrated
in [33]. A SOS profile to facilitate multi-agency sensor data integration was
reported in [1,19]. Fredericks et al. argue in [12] that quality metadata should
also be transmitted through SWE services, in order the realization of automatic
data integration to be achieved.

Integration of spatially diverse sensor timeseries utilizing OGC standards
concerned Horita et al. in [16]. They developed a spatial decision support sys-
tem for flood risk management, associating Volunteered Geographic Information
(VGI) and measured data derived from Wireless Sensor Networks (WSNs). Data
acquisition, integration and dissemination is orchestrated by a SOS instance.

Only recently, OGC introduced SensorThings API to facilitate “the intercon-
nection of IoT devices, data, and applications over the Web” [28]. In contrast with
other OGC standards, SensorThings API adopts the REST paradigm and uti-
lizes JSON-based information models. SensorThings API defines HTTP requests
to facilitate observations’ retrieval, as well tasking of sensors and actuators.
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Using parameters to regulate response size to requests within OGC-related
standards, was a topic of interest for [26,28,29]. Lengthy responses to Get-
Observation requests have been identified as a potential danger to both SOS
server and clients [26]. In the same work, it has been indicated that beyond the
ResponseExceedSizeLimit exception, other certain limitations as regards with
the number of returned observation should be concerned and imposed. The WFS
interface standard [29] and the SensorThings API offer a paging implementation,
that allows the client to limit the number of features included in a response by
using two optional arguments (count, startindex for WFS, and top, skip for
SensorThings API).

Last but not least, several researchers investigated the suitability of limited
bandwidth, energy, and processing power devices to host a SOS server. These
have mainly concentrated on (a) adoption of lightweight architectural paradigms
(e.g. REST instead of SOAP [17,35,39]), and (b) evaluation of SOS lightweight
implementations [18,32]. We have also deployed SOS over a Raspberry Pi to
exploit the potential of low-cost embedded devices [36].

In this work we concentrate on the SOS service interface design and evaluate
the efficiency of communication between client and server.

3 Methods

3.1 SOS Service Interface Design Issues

According to SOS specification, clients are not allowed to know sensor observa-
tions’ frequency. The server advertises the boundaries of the information it holds,
but not the resolution. Any client is not possible to infer the sensor temporal or
spatial resolution, based on their communication with the server. This require-
ment is that the client has access with no a-priori knowledge [25]. While this
enforces reusability and generality of the service interface, it may lead to exces-
sive data requests, which may result to server overload, or even Denial of Service
attacks.

Excessive data transmission has been identified as an issue for GetObser-
vation requests. In the first specification of SOS, there was not imposed any
limitation, regarding the maximum number of observations which could be trans-
mitted. For the server, the only viable response to of a GetObservation request
was to return a set of observations. The server had no way to refuse to respond,
in cases where the client was asking for an excessive amount of data, it was busy,
or any other reason.

To illustrate the above shortfall we will consider a service offered by National
Oceanic and Atmospheric Administration (NOAA) [9]. NOAA’s Center for Oper-
ational Oceanographic Products and Services (CO-OPS) offers openly a variety
of sensor observations using SOS. In this implementation, if a client requests
observations for a time range which exceeds 31 days, the server responds with
an exception, rejecting the parameter value:
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<Exception exceptionCode="InvalidParameterValue"
locator="eventTime">

<ExceptionText>
Max 31 days of data can be requested.
62.0 days were requested.

</ExceptionText>
</Exception>

Note that the exception rejects the parameter value, disclosing in a non
machine interoperable message of the size limits for this request.

In the future work section of SOS 1.0 specification [25] it was acknowledged
that: “The density of requests and offerings must be addressed,. . . so that large
data volumes are not transmitted unnecessarily due to a lack of information
about service offerings.”. Indeed, that was addressed in SOS 2.0 by introducing
an exception to manage excessive data requests, while taking into considera-
tion the no a-priori knowledge requirement [5]. The ResponseExceedSizeLimit
exception functionality resembles the response of NOAA server above, but with
pertinent semantics to the exception thrown: The server is able to inform the
client that the “requested result set exceeds the response size limit of the service
and thus cannot be delivered” [24]. Both server and client applications are pro-
tected from extremely big response sizes, and the no a-priori knowledge require-
ment is respected.

The ResponseExceedSizeLimit exception of SOS 2.0 is a significant
improvement compared to SOS 1.0, as it allows the server to respond to a request
with an exception than with actual data. Note that, the response size limit should
not be considered a fixed parameter. It could change when there is high traffic,
or service maintenance. In those conditions, the server should be allowed to not
to respond to requests that would under normal conditions.

However, the main limiting factor to this design is that clients have no insights
regarding the carrying capacity of the server, or (equivalently) the density of an
offering. Due to the no a-priori knowledge requirement, clients cannot infer how
to narrow down their requests so that server responds.

We identify two cases here. First case is when the server publishes regular
sensor observations. Under this category fall most long-term, permanent sen-
sor infrastructures. In this case, clients could implement heuristic techniques to
discover the response size limit (assuming that it is constant).

In the second case, observation streams are irregular. This may happen if
the sensor sampling frequency varies, or sensors move. For example, consider
sensors operating in energy restrained environments and adopt opportunistic
sensing techniques, or event-based sensing [2]. Volunteered Geographic Informa-
tion Systems which enable individuals [11,13] or cars [6] as data providers, fall
in the same case. In these situations, it is impossible for the client to make any
kind of estimate on the response size, and devise a strategy to reduce accordingly
the spatiotemporal boundaries of their query.

Responding with an exception to voluminous requests could be tolerated in
fixed sensor networks (case one above). However, it hinders SOS applicability in
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resource-constrained environments. As clients are neither aware of the response
size limits, nor how to restrict their queries, the SOS communication protocol
underperforms: It wastes both processing power and network bandwidth as it
is engaged in more request/response cycles. This, ultimately results in bigger
response times. Such drawbacks are incompatible with the Internet of Things
needs. This problem could be addressed by introducing a progressive data trans-
mission technique described below.

3.2 The Resumption Token Technique and Open Archives Initiative

The notion of selective data retrieval was introduced in Lagoze and Van de
Sompel [20]. Utilizing a resumption token, large and resource-demanding data
transactions are fragmented into several requests/responses. The client submits
a request and the server responds with a part of the result and a resumption
token. Then the client (harvester) can use this resumption token in follow up
requests to get the following part of its initial request. Gradually, by consecutive
requests the client retrieves the all the partial answers to its initial request. This
mechanism enables the server to handle with requests that have large responses,
with respect to available bandwidth and/or processing power.

3.3 A Pagination Extension for SOS

SOS service interface can address IoT needs by introducing progressive data
transmission. We extend the current SOS service interface with a resumption
token parameter in the GetObservation requests. By fragmenting requests into
many sequential ones, we transform SOS into a disruption-tolerant service
interface, as clients are enabled to ask for specific observation subsets. Obser-
vations are divided and loosely packed into pages of certain size. The number
of observations contained in a page (i.e. chunk of subsequent observations) is
determined by the SOS server.

The observation retrieval workflow according to the proposed design is
depicted in Fig. 2. The client asks for a set of observations with a GetObser-
vation request. The server processes the request, and always responds with an
O&M document. If the response exceeds the carrying capacity of the server,
results will be organized in subsets (called pages), and the server response will
include an additional element, called next which will point to the URL of the
next page of results. The next page URL is the same as the original request, but
contains an extra parameter called page, which has the role of the resumption
token. The page parameter is optional: when a client request does not contain a
page argument, the server responds with the first page of the request. The last
page of the parts contains no next page element to notify the client of the end
of the transmission.

In the simplest case, server carrying capacity could be an arbitrary, fixed
threshold, similar to the request size limit of the SOS 2.0 exception. Of course, the
server carrying capacity may dynamically vary according to result set properties,
or server resources, enabling network load balancing, efficient use of energy, etc.
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Fig. 2. A typical paginated observation retrieval workflow

It could even change during the transmission, as the total number of pages is
not disclosed to the client. The page resumption token could be constructed
incrementally as page number in case the server has a fixed carrying capacity,
and data do not change. In case of varying page size, the page parameter can
take unique pseudo-random integer values. In case where data changed during
the communication, or any other reason, the next page token could be revoked
by the service provider.

3.4 Expected (by Design) Benefits

The paginated protocol proposed here is beneficial for both server and client
efficiency and performance. The communication protocol does not waste
resources to respond with exceptions, as all requests result to responses that
carry observations. This saves processing power and communication bandwidth
in both client and the server.

Another attribute of the design we propose is its non-invasive nature. Given
the page parameter is optional, current SOS clients can seamlessly submit Get-
Observation requests and retrieve observations, as long as the SOS server car-
rying capacity is not exceeded. This means that existing SOS 1.0 or 2.0 server
infrastructures could switch to a paginated implementation, and as long as they
do not change their size limit threshold, existing clients would continue to oper-
ate without disruption. In the rest cases, a page-parser method should be imple-
mented and incorporated in legacy clients. This method would parse a GetObser-
vation response document to determine the URL of the next GetObservation
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request. On server side, the pagination extension could be easily applied on top
of existing implementations.

4 Demonstration and Implementation

4.1 Setup

The SOS pagination extension introduced above comes with design advantages
discussed in the previous section. There are also performance improvements that
we experimentally evaluated by setting up two case studies. Without loss of
generality, we assume not movable sensors that hold timeseries information. In
case study one, the server holds a regular timeseries dataset, while in the second
case study an irregular one. For both cases, we compared the SOS pagination
extension (SOS-p) service interface against SOS 2.0.

The SOS-p server is queried by a corresponding client (PAC ), that is able
to handle page resumption tokens. For SOS 2.0 server, we considered two
clients: one that is not aware of SOS 2.0 carrying capacity and finds it by
employing a divide-and-conquer algorithm (DAC ); and one that has this a-priori
knowledge (LEC ).

The three clients are in detail as follows:

Divide and Conquer client (DAC): DAC submits GetObservation requests
according to SOS 2.0 specification. When the server responds with a Response-
ExceedSizeLimitexception, DAC halves the time window and submits a new
query. When DAC finds a time window for which the server responds with no
exception, it continues asking for observations with of this duration size in the
temporal filter, until it has received all the data corresponding to the original
request.

Leaky client (LEC): LEC knows the server carrying capacity and arranges
the temporal filter of its request, so that there are no exceptions. While this
is against the no a-priori knowledge requirement, it corresponds to the most
favorable situation for the existing SOS 2.0 protocol. LEC submits GetObser-
vation requests to SOS 2.0 only for case study 1.

Pagination-aware client (PAC): PAC client submits GetObservation
requests according to SOS-p, i.e. it is capable of processing the page resump-
tion token. In its first GetObservation request asks for the first page, and then
processes the response for the next page it will ask for. If the GetObservation
response document does not contain a next page tag, it means that all requested
observations were transmitted.

4.2 Implementation and Synthetic Datasets

This study makes use of the AiRCHIVE SOS server implemented in Python [36].
Clients were also implemented in Python. Queries to SOS server were submitted
as HTTP GET requests via Python Requests module [34]. Response times for



A Sensor Observation Service Extension for Internet of Things 65

each case study were facilitated using the Python Time module [38]. All experi-
ments were carried out on a Intel Core i5 4 Mac with a 2,4 GHz and 16.0 GB of
memory (1600 MHz DDR3), running OS X El Capitan (Version 10.11.1). SOS
server and SOS client instances operated on the same physical machine.

In both case studies, a dataset of 15,000 observations was artificially gener-
ated. In case study one, we assumed that measurements are sensed in constant
intervals of 10 s. In case study two, observations were timed with a inconstant
frequency. Observation time interval varies from 10 to 3000 s, distributed uni-
formly. Timestamps were generated with the Python Random Number generator
module, using Mersenne Twister [37]. Both timeseries were stored in two SQLite
databases and made available to the servers.

4.3 Experimental Setup and Metrics

As limited bandwidth and processing power are key elements of IoT systems,
we set up accordingly our experiments. The carrying capacity of the servers
was defined to be 15 observations. This arbitrary threshold was chosen so that
there will be significant traffic of SOS requests. SOS 2.0 server would render a
ResponseExceedSizeLimit exception if the result set would include more than
15 observations. SOS-p server organizes its responses in pages of 15 observations
per page.

Clients were configured to request for observations for time intervals that
result to 1 000, 2 000, 4 000, 8 000 or 15 000 observations (response length).
Experiments have been repeated 10 times for all clients and both case studies.

For all experiments, we recorded two metrics:

a. the response time is the total time passed until the client has received the
total amount of data requested. Measured in seconds.

b. transfer volume is the total size of all response documents received by the
client until the whole response has been received. It is measured in MB.

Response times are averaged across the 10 repetitions, while transfer volume
is the same for each repetition.

For the cases of SOS 2.0 implementation, in the average response time and
transfer volume, time spent and resulted size of exceptions are also included.

4.4 Experimental Results

Tables 1 and 2 summarize the results for both case studies and all clients. The
response time is reported as average and standard deviation of ten repetitions.

For case study 1, best results are achieved, as expected, by the client that
is aware of the server carrying capacity (LEC ), but violates the no a-priori
knowledge requirement. The divide-and-conquer client (DAC ) in SOS 2.0 adds
an overhead to the transmission, as it needs to search for a working time interval.
Its performance is affected mostly of how close the time interval found is to
the servers carrying capacity. The response time was significantly increased in
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Table 1. Experimental results for the regular timeseries for all three clients. Average
response times and standard deviation across ten requests are reported. Total volume
of the data transmitted, number of requests, and number of exceptions for DAC.

Query

length

PAC LEC DAC

Resp. time Vol Reqs Resp. time Vol Resp. time Vol Exceptions

(std) [s] [MB] (std) [s] [MB] (std) [s] [MB]

1000 1.34 (±0.049) 0.59 67 1.29 (±0.013) 0.58 2.36 (±0.02) 0.63 7

2000 2.68 (±0.012) 1.2 134 2.57 (±0.011) 1.2 4.64 (±0.05) 1.3 8

4000 5.53 (±0.083) 2.4 267 5.22 (±0.017) 2.3 9.27 (±0.03) 2.5 9

8000 11.93 (±0.031) 4.7 534 10.31 (±0.034) 4.7 18.31 (±0.06) 5.0 10

15000 24.77 (±0.739) 8.9 1000 19.05 (±0.043) 8.7 21.33 (±0.06) 8.8 10

our experiments in Table 1. In the contrary, the performance of SOS-p and the
paginated client PAC is very close to the server carrying capacity, without any
breach of the no a-priori knowledge requirement. Experimental results in Table 1
illustrate overheads less than 5% in response time for up to few hundreds of
pages, while for bigger numbers of requests overheads in time may end up to
30% in response time. This is attributed to the efficiency of the pagination
implementation and is a well-known limitation among the database community.
In the future, we will investigate other database options that can improve this
further.

For case study 2, irregular timeseries are served therefor there is no notion of
leaking the prior knowledge of the server carrying capacity. Here the paginated
SOS-p excels over SOS 2.0, as presented in Table 2. SOS-p and PAC are faster
than SOS 2.0 by more than 60% on average on every GetObservation request.
Also, note that number of requests has been roughly doubled, which results to
a noticeable difference in the amount data transmitted. This is to be expected,
as the divide and conquer strategy may end up finding a query window that is
far from what can be actually served. There could be other search algorithms
employed for improving DAC performance. However, it is made clear from this

Table 2. Experimental results for the irregular timeseries. For PAC and DAC clients
reports average response times and standard deviation across ten requests. Total vol-
ume of the data transmitted, number of requests and number of exceptions for DAC.

Query

length

PAC DAC

Resp. Time (std) [s] Vol [MB] Reqs Resp. Time (std) [s] Vol [MB] Exceptions

1000 1.35 (±0.02) 0.59 67 2.40 (±0.03) 0.63 7

2000 2.75 (±0.05) 1.2 134 4.71 (±0.05) 1.3 8

4000 5.66 (±0.07) 2.4 267 9.28 (±0.06) 2.5 9

8000 11.97 (±0.08) 4.7 534 18.34 (±0.03) 5.0 10

15000 24.62 (±0.11) 8.9 1000 36.81 (±0.88) 9.5 11



A Sensor Observation Service Extension for Internet of Things 67

experiment, that the paginated protocol guarantees by design that the optimal
number of measurements is included in each response. SOS-p entrusts the burden
of coordinating the observation boundaries to the server, which knows its limits,
than having the client wasting resources with requests of suboptimal lengths.
The improved performance ensures that there is no waste of resources on both
the client and the server side.

5 Discussion and Conclusions

This work contributes towards improving OGC SOS protocol to become IoT
ready. Drafting on top of IoT requirements as efficient resource utilization and
opportunistic Internet connection, and taking into consideration response size to
GetObservation requests requirements set in [26], we designed a SOS extension,
which implements a pagination mechanism.

There is a fundamental difference between our design and the paging mech-
anism introduced in OGC WFS [29]. WFS paging design contradicts with the
rationale of SOS ResponseExceedSizeLimit exception, that is to enable the
SOS server to manage efficiently its resources. Conversely, it allows clients to
select the number of returned observations, which is a feature that can only
facilitate specific applications (e.g. Graphical User Interfaces which can visual-
ize a certain number of observations). In the contrary, the solution proposed in
this work follows the Open Archives Initiative design pattern, and the decision
on the page size remains with the server, not the client. As we demonstrated
above, this is a necessary condition for the server in the IoT era, as it allows for
parsimonious use of resources, and protection from queries resulting with very
big results.

Pagination introduces the notion of progressive transmission, which fits
for purpose with timeseries data sequential nature, but is also suitable for any
kind of spatiotemporal requests. It adds disruption-tolerance as an additional
SOS feature, since a client can request for and retrieve a specific page. This is very
useful when big datasets are to be transmitted or when the Internet connection is
poor. Our design enables a SOS server to exploit its resources to the maximum,
as computational power and network bandwidth are spent for yielding results,
not for handling exceptions. Thus, the paginated extension enables by-design
SOS for devices with restrained capabilities, where resources are economized in
sharing interoperable knowledge.

Whilst our suggested design entails new improvements to the existing SOS
2.0, its importance is highlighted by its non-invasive nature. Backwards
compatible design is achieved through the optional page parameter, since all
requested data could be included in one page. This way, current SOS 2.0 clients
could operate without further modifications with SOS-p extended servers, if the
server always responds with the whole data requested.

Evaluating the SOS-p extension against specific metrics, we validated
improvements by experiments. Those improvements are mainly concerned with
efficiency. Lower GetObservation requests completion times contribute towards
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IoT devices energy conservation, since computational resources are occupied for
less time, and thus more clients can be served simultaneously. In addition to
that, when carrying capacity is not known to the client, the SOS 2.0 protocol
is under-operating, as possibly transmits less observations in each request. This
results to more request-response transactions, with overheads in data volume
and duration time.

The pagination extension introduced here offers a remedy to SOS 2.0 short-
falls in handling exceptions, by providing a machine interoperable solution. It
also fills-in the SOS missing piece, that is to “allow a client to determine the
density of an offering” [25]. Instead of that, it delegates to the server to drive
protocol.

Advancements discussed so far lay the groundwork for future work. Firstly,
our intention to use pagination was exploratory, thus there is room for further
improvements in the implementation to further improve performance. One direc-
tion for improvement is the adoption of a caching mechanism. Pagination is a
good candidate for caching techniques, since requests are incremental and queries
are submitted sequentially. With the design introduced here, the client reveals
its intentions to the server, by asking the whole spatiotemporal boundaries of
interest. If the response is too big, the server will return the first page that
includes a part of the results. As the client intentions have been disclosed to the
server, this allows for caching mechanisms to be set up on the server side.

Following the anonymous reviewer comments and the discussions during the
InterOSS-IoT Workshop in Stuttgart on November 7th, 2016, authors will con-
sider bringing this forward to OGC for consideration as a white paper.

To summarize, we argued that current SOS design was not intended for
the Internet of the Things era. We designed a pagination extension offering
progressive data transmission, economizing resources and tackling with limited
or interrupted Internet connectivity with a disruption-tolerant protocol, while
respecting SOS specification. There is a small effort into extending current SOS
servers and clients to implement the pagination extension, while there are signif-
icant performance improvements, as indicated by the experimental results. The
pagination extension sets the grounds for enabling SOS as an Internet of the
Things dissemination outlet for sensor observations.

Supplementary Materials

Pagination cumulative results are available on Zenodo:
http://doi.org/10.5281/zenodo.178913
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Abstract. In order for IoT application developers to deliver on the
promise of IoT, new tools and methodologies addressing the challenges
associated with development of highly distributed systems running on
non-reliable and heterogeneous hardware are required. Some of the main
characteristics of cloud computing that has been a driving force for its
success, are resource pooling, elasticity and the capacity for combining
unrelated services. We believe that a similar approach is needed for IoT
as well. In this paper, we show how Calvin, an open source peer-to-peer
platform for distributed applications, tackles many of the problems inher-
ent in IoT. By only loosely associating the functionality of a device with
a semantics, and having implementations based on conventions rather
than pre-defined terminology, it is possible to let a system of Calvin run-
times autonomously handle deployment decisions, and respond to chang-
ing requirements. We will discuss how to develop and deploy dynamic
and adaptive IoT-applications based on capabilities and requirements,
and how to resolve requirements by automatically combining informa-
tion from multiple sources based on encapsulated domain knowledge.

1 Introduction

There is no doubt that IoT solutions are required within our society to increase
efficiency and effectiveness in industry and to help cities and communities achieve
the necessary economic growth with reduced impact on the environment. With-
out effective means for programmers to develop applications, however, the much
needed IoT revolution will progress slower and have less impact than is desired.

Some of the main characteristics of cloud computing that has been a driving
force for its success, are resource pooling, elasticity and metering [20]. Physical
resources such as compute and storage nodes, and network fabrics are shared
among tenants. Virtual resource elasticity brings the ability to dynamically
change the amount of allocated resources, for example as a function of work-
load or cost. Resource usage is metered and in most pricing models the tenant
only pays for allocated capacity. We believe that a similar approach is needed
for IoT as well.

Virtualization techniques have played a major role in the success of cloud
computing through simplifying resource sharing and providing isolation. Simi-
larly, for the IoT scenario, we could benefit from sharing sensors, actuators, and
c© Springer International Publishing AG 2017
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compute nodes between applications and application domains. Traditional vir-
tualization techniques, such as virtual machines and containers, are associated
with a certain amount of overhead and are slow to migrate. A virtualization
platform for IoT must be extremely lean and able to execute on devices with
very scarce resources.

Like cloud resources, things in IoT, such as sensors and actuators should
not be hardwired to any particular application, but instead be viewed as parts
of a generic computing platform. This decouples application development and
deployment from hardware investments. For example, sensors in vehicles are of
interest to many parties, and could be shared among users. An obvious appli-
cation would be to open up the outside thermometer of cars as a way of crowd
sourcing weather data, but there are numerous other possibilities, e.g., deducing
traffic jams based on speed and location of vehicles on a road. This naturally
raises a number of interesting issues on its own, such as how this can be done
without compromising security and privacy. These topics are broad enough to fill
several papers on their own, and are mostly outside of the scope of the current
paper. See, e.g. [12,22] for a discussion on the security aspects in a distributed
IoT framework such as Calvin. Privacy preserving secure resource sharing, on
the other hand, is still a topic for future research.

In order for IoT application developers to deliver on the promise of IoT [5],
new tools and methodologies that address the challenges associated with the
development of highly distributed systems running on a non-reliable and hetero-
geneous hardware platform are required.

To address this, we propose to combine, and refine, the well-known actor and
data-flow programming models to achieve true separation of concerns between
(at least) four entities: (1) device manufacturers, (2) developers, (3) market
places that hosts applications and components, and (4) operators that deploys
and maintains applications.

The rest of this paper is laid out as follows: First we paint a picture of our
vision, and then we will look at some successful uses of the strategies we combine,
and lay out our strategy in some detail before we turn to presenting our solution
platform. Then we will look at a scenario where the properties of the platform is
used to create IoT applications with novel properties, and finally we summarize
the results and talk about where we are heading next.

2 A Vision of Software Definable Things

In a scenario when everything is programmable, from the smallest sensors to the
servers in cloud and the nodes in the communication networks, we need a new
way to model and implement IoT applications. We envision a developer method-
ology that provides a unified programming view of such a heterogeneous execu-
tion platform. From the programmer’s point of view, all computing resources
should be treated in an abstract manner, independent of whether it will eventu-
ally reside on a server in a data centre or on an embedded sensor. An important
piece to the puzzle is the management of resources. A holistic approach, which
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maximizes the utilization of hardware at lower cost while at the same time main-
taining timing and other types of requirements, as well as properties particular
to each specific device, is required. We are not alone in arriving at these conclu-
sions, see e.g. [11].

From this point of view, current state-of-the-art in IoT development is,
mostly, (1) cloud centric with dumb devices for sensing and actuating, with
application logic residing in the cloud, (2) siloed, preventing reuse of existing
infrastructure, (3) insufficiently abstracted, requiring developers to specify IP-
addresses, transport protocols, and device parameters, (4) assuming deployments
to be static, and (5) too programming oriented, requiring a complex code just
to get started with simple applications. Much of this is caused by viewing IoT-
applications as just another kind of cloud application, and while we should keep
the properties of cloud computing that are beneficial, we clearly need to adapt
any good solution to the peculiarities of IoT.

We need to describe applications in an abstract manner, regardless of the
details of hardware, and the actor model [13] provides a clear separation of
concerns by encapsulating functionality and state, and providing well defined
interfaces, ports, towards other actors. Furthermore, from a software engineering
perspective, actors promote reuse, opening up the possibility for making them
available through an open repository or marketplace.

In an application the actors have to be connected such that data flows from
port to port, and in the CAL actor language [7], an application is described as
a directed graph of interconnected actors, a data-flow. This description captures
the functional behaviour of the application, but does not prescribe exactly how
the application should be deployed. Typically, an application may be deployed or
orchestrated in multiple ways, which opens up for different kinds of optimization.

Central to achieving dynamic application deployment and management
is matching an application’s requirement against host capabilities and other
attributes. For example, in a building automation scenario, a sensing actor may
state a requirement to be deployed on any device capable of measuring tem-
perature within a specified building and within a particular security domain.
The programming model must thus provide means for elaborate specification of
requirements and capabilities.

As the field of IoT is rapidly evolving we believe that a successful platform
must be an open one, and there are several ways of creating an open platform.
One way would be to build a world-wide standard for all types of sensors, actua-
tors, and other kinds of IoT devices. This would require extensive taxonomies and
a more or less fixed enumeration of capabilities and classifications. We believe a
more agile process is preferable, implementing support for devices as and when
it is needed — learning what works and what does not while doing so — being
open to, and try to recognize, better solutions when they appear. In keeping
with the Agile Manifesto [2], we prefer a good solution to the problem at hand
over a general solution to a problem we have not yet encountered. Once a useful
de facto standard has crystallized, however, there is of course no reason not to
make an official standard out of it.
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In our proposed scenario, we see all hosts, from the smallest IoT devices,
to base-stations and cloud resource, hosting, or being proxied by, a runtime
execution environment. The runtime takes care of establishing communication
and sending messages between runtimes over available network interfaces. It
also offers a Hardware Abstraction Layer (HAL) for applications to interact with
e.g. sensors or actuators, to establish a common interface to similar functionality,
built up in an agile manner, meaning we see it as evolving over time, with
developers of similar functionality eventually agreeing on a de facto standard.
This is discussed further in Sect. 4.2.

Note that by ‘runtime’ we mean software handling the hardware abstraction,
communication with peer runtimes, local resource management, etc. It could be
implemented as a virtual machine executing bytecode, but this is not a require-
ment. As long as the runtime can be part of the system, i.e. it implements the
protocol of the reference implementation, then it does not really matter how
it is implemented. If a device has a structured way of describing and handling
resources, such as IPSO [17], then it is most likely better to build a runtime on
top of this, rather than replace it.

Applications, described as directed graphs with self-contained actors as
nodes, are deployed to such runtimes. The application approach is similar to
a micro-service architecture common in modern cloud applications, with self-
contained services connected to make up the application. An application typi-
cally spans over many hosts. Similarly, each host executes actors from multiple
applications, possibly from different tenants.

The Calvin platform [23] is an attempt at a solution allowing developers
to develop applications using clearly separated, well-defined functional units
(actors) and per-deployment requirements. The platform then autonomously
manages the application by placing the actors on different nodes (devices, net-
work nodes, cloud, etc.) in order to meet the requirements, and later migrates
them if changes in circumstances should so require.

3 Related Approaches

In this section we briefly present a non-exhaustive list of other frameworks that
are to some extent based on, or at least influenced by, the same ideas as Calvin.

NoFlo [3] and Node-RED [15] are two frameworks exploiting the simplified
development possible with the Flow-based programming model [21]. By specify-
ing how data moves through an application, together with well-defined interfaces
between components, it is possible to make application development quite intu-
itive and simple, for example by using a graphical drag-and-drop interface.

The Actor model of computation is exploited in the Orleans framework [6] in
order to get a lightweight virtualization which opens up a set of new possibilities.
By keeping the internal state of an actor private, and only allowing it to change
in response to events and data, it is possible to handle tasks such as scaling,
migration and load balancing on a fine-grained level not possible using standard
virtualization methods.
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Lee et al. [19] discusses the issues and requirements needed to handle appli-
cation development and deployment in large scale, heterogeneous, and dynamic
systems. Applications in this setting, called swarmlets, uses actors to separate
devices and services from the functionality they offer. By including a list of
requirements in the description of an actor, it is possible to determine the func-
tionality required for deploying an application beforehand.

Asynchronous, event-driven architectures are well suited for loosely coupled
components and services [9]. On the highest level, it is also easy to visualize the
causality in the application, which, as is the case with the dataflow model, makes
application development manageable. The approach has been very successful in
cloud-based frameworks, such as IFTTT [16], and OpenWhisk [14], as well as the
AWS Lambda [1] framework. To some extent, they all try to make the binding
between triggering events and consequent actions as easy and transparent as
possible. For IFTTT, it is done by combining pre-defined, more or less well-
established services, whereas for OpenWhisk and AWS Lambda, the focus is
more on how to develop and combine services.

The natural question is of course what sets Calvin apart from the aforemen-
tioned platforms, or indeed any of the many other very competent frameworks
that exist today. Calvin differs from other platforms in three main ways: (1) It
is peer-to-peer, allowing for greater flexibility in where computations are made
and decisions taken, (2) the separation of concerns between the different stages
of the application lifecycle lets each stakeholder focus on their own specialties,
and finally (3) the requirement-based deployment of applications allows for a
greater level of automatic management, which is the topic of this paper.

4 Calvin

The development of the open source Calvin platform [8] was initiated and is
actively maintained by Ericsson Research, based on previous experience work-
ing with dataflow and actor-based paradigms for multicore systems [4]. The
basic idea behind this platform is that a distributed system is very similar to a
multicore system, but with heterogeneous components, and large differences in
throughput and latency between them.

One of the goals the of Calvin is to simplify developing distributed appli-
cations. In order to facilitate this, the individual runtimes combine to present
a unified front to the application, and the application developer, giving the
appearance of a single runtime offering the resources of the entire system, and,
as a consequence, applications can be written as were they run-of-the-mill, non-
distributed apps, which greatly simplifies their development. This poses some
limitations on the programming paradigm; this approach is not suitable for e.g.
imperative programming methodologies. In the following sections, we will discuss
this more in-depth.

The platform decouples application development and deployment from hard-
ware investments by providing an abstraction layer for applications and establish
a common interface to similar functionality, built up in an agile manner.
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Part of what makes the Calvin platform so appealing is that it handles all
communication in an application. This means that the developer does not have
to know how a specific device communicates, or which protocols it uses. Provided
the Calvin runtime has a means of communicating with it, it can be part of the
system, preferably by hosting a Calvin runtime, or for legacy devices by having
Calvin handling all communication, acting as a proxy, see Sect. 4.2, giving the
appearance of the device being part of the system.

4.1 Calvin Application Development

We will now describe in more detail how Calvin makes it possible to handle large
portions of deployment and management automatically. Much of the power and
flexibility stems from dividing an application’s life cycle into four separate, well
defined, phases:

– Describe. In the first phase, the fundamental building blocks, actors, describing
device functionality and common operations are created. In practice, there
are actors that may execute on any runtime, actors providing services that
requires resources not available everywhere, and sensing and actuating actors
that require specific hardware to function. Actors are collected in a system
wide actor store, available for reuse, and it is typically in the interest of device
suppliers to provide device-specific actors.

– Connect. In the second phase, an application developer specifies actors and
how data should flow between them. This gives an abstract view of the appli-
cation, in effect capturing the essence of what the application does, but it does
not say anything about which devices should be involved.

– Deploy. In the third phase, an application is deployed by mapping actors onto
things, where a “thing” can be anything Calvin can communicate with. The
mapping causes an application to be distributed across a set of devices and
services matching its requirements.

– Manage. Finally, once deployed, the application enters its managed phase.
Here, the application can be monitored and traced. Actors can be moved from
one device to another in order to balance or optimize resource usage, and
actors may even replaced while the application is running.

4.2 The Calvin Actor

As previously stated, Calvin uses the actor model to provide abstractions of
device and service functionality. The actors are event-driven, and can be used to
build loosely coupled applications, with each actor providing some functionality
the application needs. Figure 1 gives an overview of a Calvin actor. Each actor
is self-contained and hides its internal state from the rest of the application.

In Calvin, the standard model has been extended with a collection of meta-
data associated with each actor. This metadata contains information on the
actor that the platform make use of during deployment and management. The
information includes, for example, requirements the actor have on the runtime.
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Fig. 1. A Calvin actor.

Fig. 2. A Calvin proxy actor.

In order to migrate an actor, the runtime currently hosting it serializes the
internal state and sends it to the destination runtime, which then creates a new
instance of the actor, restoring state from the serialized data. It is important to
note that implementation details of the actor (and runtime) are irrelevant for
the migration. As long as the received state can be used, either directly or after
some transformation, then the actor can be migrated to this runtime. Naturally,
when transforming the state, great care must be taken so that it is not mangled
in a way which prevents it from being migrated to another runtime.

Since a migration entails creating a new instance of an actor initialized with
the old state, this mechanism allows for easy upgrade of an actor in a running
system. By migrating an actor to the same runtime, and using a new version of
the desired actor, initialized with the old state, an upgrade can be done with
minimal impact. Migration can also be used when upgrading the Calvin runtime
itself — start a new, upgraded runtime, migrate all actors to it, and then stop
the old one. Should there be insufficient resources to handle two runtimes on
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a single device, then it is also possible to migrate all actors to an intermediary
runtime elsewhere during the upgrade.

In order to handle legacy devices and services, i.e. those that for some reason
cannot host a runtime, a common pattern is to use a special kind of actor, a
proxy actor. As shown in Fig. 2, a proxy actor translates an incoming message on
a port to a request to an external legacy device, using whatever API or protocol
exposed by the device, and subsequently turns the response into an outgoing
message from the actor. This is similar to the Accessor pattern described by
Latronico et al. [18].

4.3 CalvinScript

With actors describing the processing blocks, we can express the data flow graph
in a concise manner using CalvinScript, a small, domain specific description
language. An example of an application written in CalvinScript is shown in
Listing 1.1.

Listing 1.1. A simple application

trigger : std.Trigger(tick=1, data=null)

camera : media.Camera ()

screen : media.ImageRenderer ()

status : io.Print()

trigger.token > camera.trigger

camera.image > screen.image

camera.status > status.token

The application comprises four actor instances, trigger, camera, screen, and
status, defined at the top, followed by a description of the data flow. The flow
of data is stated as actor .outport > actor .inport where the > operator denotes
data flow from outport to inport, not an ordering in the mathematical sense.

4.4 Capabilities and Requirements

In order to handle the complexity of systems with a large number of devices,
deployment and management should be orchestrated by the runtimes them-
selves, without human interaction. The way this is handled in Calvin, is through
matching a collection of requirements an application has with the capabilities pre-
sented by the system, where capabilities (somewhat simplified) represent what
a runtime (and thus a system) offers in what it can do, and its properties. In
other words, a Calvin runtime presents an abstraction of the platform it runs
on as a collection of capabilities this platform offers. Analogously, requirements
represent what the application needs in order to function.

Capabilities. Capabilities are fetched from the device or platform the runtime
is executing on, but they can also be provided as a configuration to the runtime.
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Besides the fundamental capabilities of a device, e.g. that a camera provides
images, we also consider information related to location, ownership etc. as a
kind of capability. An example is shown in Listing 1.2 where a physical camera
is tied to its particular location by adding a piece of information to the runtime,
typically when installing the camera.

The capabilities are shared between runtimes in a registry, and while the
internal API to access the registry is prescribed, the implementation is not.
Currently, Calvin comes with two different implementations for storing capabil-
ities; a central repository, and a secure distributed hash table (DHT), and it is
a matter of configuration to choose one of them.

Listing 1.2. Additional capabilities for a particular device (partial)

{

"indexed_public ": {

"address ": {

"country ":"SE",

"locality ":" Lund",

"street ":" Testvagen",

"streetNumber ":"1",

"room ":" secret_room"

},

"node_name ": {

"organization ":" com.ericsson",

"name ":" secret_room"

}

}

}

Requirements. Almost all actors have requirements on the hosting runtime,
such as the presence of a timer, the ability to measure temperature, or access
to a file system. Once a developer has selected a specific actor when writing
an application, the requirements of this actor become implicit to the applica-
tion, and cannot be changed (unless the actor is replaced by one with different
requirements.) Consequently, the selection of actors can have a major impact
on which runtimes can host the application. At first glance, this may seem as
a limitation, but it means that it is straightforward to collect the requirements
for an application, and determine whether the application can run on a given
system or, if not, give an explanation of what is missing. The developer can then
either change the application or add the missing capabilities to the system.

In addition to the requirements stemming from actors, there are additional
requirements posed by the applications, usually given by the developer (or who-
ever is in charge of deploying and maintaining the application.) These require-
ments include properties such as geographical location, ownership, or name of a
runtime. With this, it is possible to specify a particular runtime (device) to host
an actor, or that the runtime (device) should reside in a certain location. As an
example, the deployment requirements for the application in Listing 1.1 could, in
one particular scenario, be as shown in Listing 1.3. Note that we do not specify
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Listing 1.3. Deployment requirements (partial)

{

"requirements ": {

"camera ": [{

"op":" node_attr_match",

"kwargs ": {"index ":

[" address", {" country ":"SE","locality ":" Lund",

"street ":" Testvagen",

"streetNumber ":"1"}]

},

"type ":"+"

}],

"screen ": [{

"op":" node_attr_match",

"kwargs ": {"index ": [" node_name", {"name ":" laptop "}]},

"type ":"+"

}],

}

}

any particular room, but rather just the general address of the premises. Thus,
any room or location at that address will match the deployment requirements.

Security as Capabilities and Requirements. Although we are not address-
ing Calvin authentication and security in this paper, it is worth noting that
access management and access control is also treated as collections of require-
ments and capabilities; the application is deployed and executes as a user in the
system, and in order for an actor to execute on a runtime, this user needs first
of all to be allowed to place an actor on this runtime, and, second, have access
to the capabilities satisfying the requirements of the actor. The details of this
are discussed further in [22].

Given the surveillance application from Listing 1.1 and the deployment
requirements from Listing 1.3 we now have a surveillance system that accepts
input from each possible camera and displays the stream on a computer screen.

4.5 Deployment

As stated in Sect. 4, Calvin simplifies application development by giving the
illusion of a single runtime, but of course the application is distributed and
pushing the complexity downwards does not solve the problems associated with
distributed applications per se. It does however confine them to the core layers of
Calvin, where they can be handled systematically. The solution relies heavily on
the capabilities and requirements described in Sect. 4.4, the hardware abstrac-
tion layer, called CalvinSys, and the abstraction and hiding of transport and
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communication protocols. All of these work in concert during deployment, and
when adapting to changing conditions during an application’s life, to migrate
actors to appropriate runtimes while ensuring data flow between actors.

Deployment of a Calvin application basically works as follows: The applica-
tion graph of actors and connections, together with any additional requirements,
are handed over to a runtime in the system. The runtime goes through the list of
actors, determine their type, possibly by looking it up in the registry, instantiates
them and sets up the port connections. If an actor has unsatisfied requirements,
it will not be able to execute on this runtime, and is kept in a shadow state
for now. Next the runtime looks at the requirements, both the implicit actor
requirements and the supplied application requirements, querying the registry
for runtimes in the system with matching capabilities. Once it has found a match-
ing runtime for each actor in the application, the actors are migrated to their
initial deployment and the application can start executing.

Of course, if all requirements are satisfied by the initial runtime, then there
will be no migration, and the application can commence executing at once.
Should there, on the other hand, be requirements that cannot be fulfilled, there
will be actors left in a shadow state, and the application cannot start.

This approach to deployment and functionality offers the possibility of having
a runtime handle an actor and its requirements in a “best effort” fashion. This
is done by having the runtime present level of abstraction centered around the
functionality, rather than the hardware. So, for example, a runtime can expose
an “alarm” functionality, without specifying exactly what the alarm does, and
an application can make use of this without the developer having detailed knowl-
edge it. When an alarm is triggered, the actor gets a token on a port containing
relevant data in order of priority — such as “audio & video,” “just audio,”
“text,” or simply “on”. The runtime hosting the actor then executes its alarm
functionality, using the available data. For example, an alarm on a system with
a tv monitor could use audio and video to display and play a message, a speaker
could use the audio stream, and a small, cellular device could send the text
as a text message to a preconfigured recipient. There could also be a prede-
fined sequence of actions being executed by the device in response to an alarm,
disregarding any data in the call.

4.6 Management

One of the nice properties of the automated deployment based on capabilities and
requirements is that many aspects of managing running applications are already
in place. By making sure that changes in conditions and capabilities triggers the
same logic that handles initial deployment, the correct measures to ensure that a
running application’s requirements are met are taken. Typically these measures
result in one or more actors migrating from one runtime to another.
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5 Scenario: No Access at Certain Times

Next we present a scenario where we utilize requirements and capabilities to
achieve goals that are not easily handled by current IoT-systems.

Coming back to our surveillance scenario from Sect. 4.5, we would like to
prevent cameras from accessing the top secret lab during office hours, while
allowing security and management staff to be able to view those streams during
off-hours to make sure no-one is in the lab. We can do this by amending the
general policy with the policy given in Listing 1.4 specifically for the lab.

The nice thing about policy, and security in general, is that to Calvin it
behaves as any other requirement. Thus, by applying the policy in Listing 1.4 we
prevent migration of the camera actor to the secret lab during office hours using
the same mechanisms used for satisfying functional requirements, and in case
the camera actor is currently executing on the camera in the secret room, it is
migrated away from that runtime. An in-depth description of how authorization
is handled in Calvin is given by Nilsson [22].

Listing 1.4. Policy for secret room

{

"id":" policy1",

"rule_combining ":" permit_overrides ",

"target ": {" resource ": {" node_name.name ":" secret_room "}},

"rules ": [{

"id":" policy1_rule1",

"effect ":" permit",

"condition ": {

"function ":"or",

"attributes ": [

{" function ":" equal",

"attributes ": ["attr:subject:group","Security "]},

{" function ":" equal",

"attributes ": ["attr:subject:position","Manager "]}

]

},

"obligations ": [{

"id":" time_range",

"attributes ":{" start_time ":"16:00" ," end_time ":"08:00"}

}]

}]

}

6 Next Steps

The functionality necessary for the applications and deployments discussed so
far are already in place in Calvin, and although it is sometimes cumbersome to
express e.g. requirements, it is possible to run the examples. However, there are
a number of future extensions that offer some quite interesting possibilities.
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Listing 1.5. Actor encapsulating domain knowledge (informal pseudo-code)

@provides(roadspeed)

@requires(powertrain.roadspeed)

return read(powertrain.roadspeed)

@requires(powertrain.distance , dashboard.real_time_clock)

define comp {

t0, s0 := 0, 0 // initial values

t = read(dashboard.real_time_clock)

s = read(powertrain.distance)

v = (s-s0)/(t-t0)

s0, t0 = s, t

}

return comp()

Actor Enhancements. An interesting possibility is to include insights and
learnings such as historically successful (or unsuccessful) deployments in the
state of an actor. For example, if, for some reason, it is the case that a particular
actor always performs poorly on a specific runtime, even though there are no
obvious reasons for this, that information can be used during future deployments
in order to avoid this runtime.

Encapsulated Domain Knowledge. Consider the case when a new capability
has been introduced, and has become popular, but it is not yet widely supported
among existing runtimes. The capability can in that case be implemented in an
actor, which includes a prioritized list of capabilities it could potentially make
use of in order to run. (The ability to have conditional inclusions on requirements
is an upcoming, but not currently supported feature in Calvin.)

This is in some sense encapsulation of domain knowledge within an actor, and
can be used to, e.g., have a “backup” plan for an actor. A trivial, but illustrative,
example is shown in Listing 1.5. The actor calculates the roadspeed of a vehicle.
The preferred way is to read the current speed from the powertrain, but if this
sensor is not available, then the actor can make use of two different inputs in
order to calculate the speed, using the well-known formula speed = distance

time .

Soft Requirements, Incremental Deployments. A requirement can be
either hard, meaning it is non-negotiable and must be met in order for the
application to execute at all, or soft, which means the application can function
without it, but it will perform better, in some way, if it is satisfied. Calvin cur-
rently only supports hard requirements — the plan is to add support for soft
requirements in some form within the year.

Also in development are application requirements involving several actors. For
example, in an application involving streaming data, there can be requirements on
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Listing 1.6. A small video application

src: media.Camera()

snk: media.ImageRenderer ()

true > src.trigger // Continuous trigger

src.image > snk.image

snk.status > voidport // Discard status output

bandwidth or latency in between two or more actors. Such a requirement is best
satisfied by having all actors involved hosted by the same runtime, but if this is
not possible, due to e.g. resource constraints or lack of computational power, then
the requirement extends to all runtimes hosting these actors. In general, this is
a problem related to the Constraint Satisfaction Problem which is known to be
intractable [10], but provided the requirements are soft, thus allowing the applica-
tion to execute without necessarily having all requirements met, there are ways of
handling this using Calvin.

As an example, consider the application in Listing 1.6, slightly modified from
Listing 1.1. This application, as is, sends images as fast as possible from a camera
to a screen. A typical soft requirement to add here is the framerate of the stream.
With Calvin, the way to handle this will be to do a first deployment which does
not fully satisfy the framerate requirement. It could even be a deployment where
it is unknown what the framerate will be. As the runtimes “learn” their frame
rate capabilities, they can make decisions on where to migrate the actors in the
application in order to, incrementally, improve the framerate of the stream. For
an application in a large system, this can take a significant number of migrations,
but the application will always be running, albeit at a reduced framerate.

Broadcast and Covering Migrations. For many applications, the goal is
simply to collect data from a multitude of devices and send it to be analyzed in
real-time, or stored for later analysis. These applications can be greatly simplified
using a planned feature which allows an actor to be replicated on a number of
runtimes based on e.g. an attribute or a capability. For example, an application
for collecting the temperature from all thermometers in a building could be
(somewhat simplified) described as in Listing 1.7, with the added requirement
that the actor thermometer (with the obvious interpretation) should be present
on one runtime in each room in the building. It is not important which specific
thermometer (or other device) is used in each room as long as one is. The actor
measurement, which is of type attr.TagData, an actor which is used to tag data
with a given attribute, in this case address.room, would have as an additional
requirement that it is hosted by the same device as the thermometer.

An extension to the functionality from the previous paragraph is the addition
of a “broadcast” mode of migration, where an actor is sent to all runtimes match-
ing some requirement. For example, an emergency vehicle travelling at high speed
towards the scene of an accident could have an emergency application which is
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Listing 1.7. A fragment of a temperature application

// Actors

fire: std.Trigger(tick =0.5, data=true)

measurement: attr.TagData(index =" address.room")

thermometer: sensor.Temperature ()

// Connections

fire.data > thermometer.measure

thermometer.centigrade > measurement.data

measurement.data > ...

broadcast with the requirements that the receiving runtimes be located along a
certain path, and be either a vehicle or a traffic light controlling an intersecting
road. By having the deployment requirement be, for example, all devices in the
building, it would suffice to deploy a single application and broadcast migrate.
Less critical applications that could make use of this would be e.g. applications
for subscribing to sports results or news.

7 Summary and Conclusions

With Calvin, we hope to address some of the many issues that are holding back
IoT, preventing it from deliver on its promises. Moving away from a cloud centric
model with siloed deployments, we want to move the intelligence from the data
center to the devices, and let them talk directly to each other, making decisions
in concert, thus necessarily breaking open the silos.

We think it is clear that we are on the right track. The ease with which
even quite hard problems, such as dynamic deployment and automatic manage-
ment of applications can be modelled and implemented using requirements and
capabilities, shows that the ideas are viable, both in theory and in practice.
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Abstract. The Internet of Things (IoT) is growing and more and more devices,
so-called “things”, are being connected every day. IoT platforms provide access
to those “things” and make them available for services and applications. Today,
a broad range of such IoT platforms exist with differing functional foci, target
domains, and interfaces. However, to fully exploit the economic impact of the
IoT, it is essential to enable applications to interoperate with the various IoT
platforms. The BIG IoT project aims at enabling this interoperability and
supporting the creation of vibrant IoT ecosystems, which facilitate the develop‐
ment of cross-platform and cross-domain applications. While the value of inter‐
operability for the overall economy is well understood and cannot be underesti‐
mated, some stakeholders may still need to find their business value in intero‐
perable IoT ecosystems. Thus, this paper identifies the different stakeholders of
such ecosystems, and analyses how these stakeholders can enhance their existing
business models when taking part in an interoperable IoT ecosystem.

Keywords: Internet of Things · Ecosystems · Business models · Interoperability

1 Introduction

Since its very beginnings, the notion of the “Internet of Things” (IoT) [1], as technology
that enables physical assets to become parts of information chains, has experienced an
ever increasing attention. Today, the IoT has become a reality for businesses and
consumers. Connected devices, or “things”, are the fundament of the IoT, and they range
from connected light bulbs, over personal fitness trackers, to geolocated shipping
containers. Various studies predict significant growth of the IoT and its business value
in the coming years. E.g., Gartner anticipates an increase from 6 billion connected
devices in 2016 to over 20 billion in 2020 [2]. A recent McKinsey analysis [3] foresees
that, by 2025, IoT applications will have an economic benefit of $3.9 to $11.1 trillion;
up from $0.3–$0.9 trillion in 2015.
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Those studies are encouraging, since they suggest a tremendous impact of the IoT
over the coming years. Nevertheless, the McKinsey analysis [3] also points out a signif‐
icant threat to the estimated economic benefit: missing interoperability. Specifically, the
authors state that a 40% share of the estimated value directly depends on interoperability
between IoT systems, i.e., it can only be achieved if two or more systems are able to
work together. E.g., an adaptive traffic control system of a city has more value, the more
information systems it can interact with. Only if it can interoperate with different
systems, e.g., for digital traffic signage, traffic lights, parking systems, or public trans‐
port, a traffic control system can reach its full potential.

Establishing interoperability on the IoT is the vision of the BIG IoT project1 [4]. In
order to support the development of cross-platform and even cross-domain applications
and the emergence of entire IoT ecosystems, BIG IoT delivers key technological
enablers. First, a common API among IoT platforms is developed so that application
development is facilitated. Second, a marketplace as a center piece of an IoT ecosystem
is introduced and implemented. The marketplace is key for enabling all stakeholders of
the ecosystem to participate in revenue streams.

However, to make such interoperable IoT ecosystems possible, the benefits for all
stakeholders need to be understood and pointed out. While the value for the user (e.g.,
a city administration) is clear, some stakeholders have protected assets and benefitting
from an interoperable ecosystem is not obvious. Thus, this article studies the research
question of how the different stakeholders of an interoperable IoT ecosystem can benefit
and create value. Therefore, the goal of this paper is to outline the characteristics of an
interoperable IoT ecosystem, identifying the relevant stakeholder roles, and analyzing
potential business models. We are conducting this study as part of the BIG IoT project,
with several industrial and research partners involved.

The remainder of this paper is structured as follows. Section 2 gives an overview of
existing studies and related work in this field of research. Section 3 describes the key
characteristics of interoperable IoT ecosystems, its stakeholders, and their relationships.
In Sect. 4, we analyse and discuss potential business models for the identified stake‐
holders. Finally, Sect. 5 draws conclusions from our findings and points at future work
in this field of research.

2 Background and Related Work

In this section, we provide an overview of research on business models for IoT ecosys‐
tems.

A very comprehensive study on the IoT market as a whole and its development can
be found in [3]. Based on a view of nine vertical markets, as similarly seen in [5], a
market prognosis is presented. The key findings support our goal of enabling interoper‐
able IoT ecosystems: The authors estimate that the potential economic impact of IoT
applications in nine vertical markets may be as high as $11.1 trillion per year in 2025.
However, interoperability between IoT systems is critical in order to reach this impact,

1 http://big-iot.eu.
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and the authors expect that 40–60% of potential value is generated through cross-plat‐
form IoT applications. Further, the authors identify most sensor-collected data is
currently unused, e.g., an oil rig with 30,000 sensors is examined on which only 1% of
the data is being used. Also in such cases, interoperability and facilitated access to the
data will help in the future to improve this ratio of data being used.

In [6], two main classes of business models are distinguished. First, Digitally
Charged Products, which refer to the new possibilities of the digital transformation for
manufacturing industries. Second, the Sensor as a Service idea, where sensor data are
collected, processed and sold. The second group characterizes also the approach of
interoperable IoT ecosystems followed by BIG IoT (see Sect. 3), where IoT data sources
are offered by IoT service providers. The St. Gallen business model navigator [7] anal‐
yses 250 business models applied in the past 25 years and identifies 55 patterns being
used as basis for innovation of business models in the IoT. The UNIFY project analyses
in [8] a broad range of business models to provide a basis for the dialogue of the European
Platforms Initiative2 (IoT-EPI). The framework captures the challenges of building IoT
ecosystem business models considering the heterogeneity of smart node devices at the
edge, network technologies, multiple standardisation initiatives, the immaturity of inno‐
vation, and the unstructured ecosystems.

Following the above findings we have to distinguish between business models that
(1) target end-users of the IoT and (2) those focusing on business to business revenues.
The first case includes, e.g., production companies which are digitally upgrading their
businesses from product selling to selling services. The second case includes business
models which benefit from ecosystems and require centralized marketplaces for services
and/or applications. Further, as the IoT combines the physical with the digital world and
fosters cooperation between partners from different domains, a huge number of stake‐
holders with a wide variety of interests are involved. This makes it difficult to overview
the wide variety of business models, which can be complex. So in contrast to the so far
usual value chains, the more powerful tool of value networks will be useful to identify
more complex relationships of participants of the ecosystem (see Sect. 3.2).

A conclusion of our related work analysis is that most of the current work is focusing
on analyzing business models for device manufacturers. Analyses for IoT ecosystem
value propositions are currently missing. At this point, our paper extends the current
state of art by identifying the relevant stakeholders and their potential business models
within an interoperable IoT ecosystem.

3 Characteristics of an Interoperable IoT Ecosystem

This section describes the need for interoperability in order to ignite IoT ecosystems and
presents the BIG IoT approach (Sect. 3.1). Further, we identify different stakeholders
and their relationships within such an ecosystem (Sect. 3.2), in order to derive relevant
business models for those stakeholders in Sect. 4.

2 http://iot-epi.eu/.
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3.1 Realizing an Interoperable IoT Ecosystem – the BIG IoT Approach

The fundament of an IoT ecosystem is the “thing”, i.e., physical entity with a virtual
counterpart that computes/communicates information and may be controllable autono‐
mously or remotely. These things may be directly connected and accessible through the
Internet, e.g., a Raspberry Pi or smart phone, which we call a device-level platform. They
may also be connected through a gateway, which we call a fog-level platform, or there
is an aggregating cloud-level platform, which is deployed on a server [4]. A few prom‐
inent examples of cloud-level platforms are ThingWorx3, AWS IoT4, or Xively5. There
are more than 360 IoT platforms today and the number is continuing to grow [9].
However, the landscape is complex; each IoT platform defines its own interface, data
formats, and semantics. This situation with respect to cloud level platforms is illustrated
in Fig. 1, which shows the variety of platform interfaces in form of varying shapes on
the interface connector.

Fig. 1. The problem of missing interoperability. (Icons by Freepik from http://www.flaticon.com)

On the one hand, this situation is due to the unavailability of well-adopted standards
and shared semantic vocabularies. While work on various IoT standards is in progress
(e.g., oneM2M [10] or OMA LWM2M [11]), none of the more high-level standards has
reached broad acceptance, yet. On the other hand, the providers of IoT platforms inten‐
tionally choose proprietary interfaces. This helps to protect their environment. Once
customers have invested in applications using the proprietary interface, the platform has
defensible advantages. While this may be an advantage for platform providers once they
reach a large customer base, this is a disadvantage for thing providers as well as appli‐
cation developers. The interface heterogeneity makes cross-platform applications more
difficult to realize since supporting variety of interfaces is costly and increases time to
market. Especially, small enterprises cannot afford providing solutions on all different
platforms, as they can only provide applications for a small number of platforms, e.g.,
a traffic information application for one specific city. For thing providers, e.g., the public
transport organization of a city, a vendor-lock is disadvantageous as it may develop
higher contracting costs in the long-run.

3 https://www.thingworx.com.
4 https://aws.amazon.com/iot.
5 http://www.xively.com.
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Today, IoT solutions are often in vertical silos with no or little interoperability
between them. The BIG IoT project addresses this gap of interoperability between IoT
platforms as illustrated in Fig. 2. By establishing a common API (visualized as round
interface connector), called the BIG IoT API, services and applications can easily access
different IoT platforms. Thus, in addition to existing proprietary interfaces, platform
providers can support the BIG IoT API to take part in the IoT ecosystem. The common
place to discover offerings of platforms and services for business users is the BIG IoT
marketplace. Additionally, the marketplace offers all stakeholders in the ecosystem the
means to trade their offerings. Offerings encompass a set of related information (e.g.,
low-level sensor data or aggregated information) or functions (e.g., actuation tasks or
computational functions). As depicted in Fig. 2, we distinguish between services and
applications. While the latter only consume offerings, services consume and provide
offerings.

Fig. 2. BIG IoT approach towards an interoperable IoT ecosystem. (Icons by Freepik from http://
www.flaticon.com)

In this way, platform providers may reach business partners who are otherwise out
of reach.

3.2 The Stakeholders of an Interoperable IoT Ecosystem

In order to better understand the different stakeholders and their motivation in such an
IoT ecosystem, as being realized by BIG IoT, we have created a value network model
depicted in Fig. 3. Value network analysis is a business modeling methodology that
visualizes business activities and sets of relationships from a dynamic whole systems
perspective [12]. The nodes in this network represent different stakeholders of the IoT
ecosystem. The lines between different nodes are the relationships between the stake‐
holders. All tangible and intangible value objects that are exchanged between different
stakeholders are marked on the corresponding relationships.
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Fig. 3. Value network model for interoperable IoT ecosystems.

The BIG IoT Open Source Software (OSS) project provides tools, models and support
to Service and Application Providers, IoT Platform and Marketplace Providers in order
to enable them to use the BIG IoT technology to develop their assets. On the other side,
these stakeholders provide requirements for further development of the BIG IoT OSS
project. The Thing Provider operates or sells devices (e.g., sensors or actors) as well as
objects equipped with such devices (e.g., traffic lights equipped with radar sensors). He
enables the connection of the provided things to an IoT platform. The IoT Platform
Provider has relations with the Data Owners whose data are being collected and
provided as offerings on the marketplace. The Marketplace Provider on the one side
facilitates the trading of offerings by providing means for offering’s registration and
search, as well as billing and charging for the usage of these offerings in return for the
marketplace fee. On the other side, he enables the Service Provider to easily discover
already registered offerings, build new services and then provide service output as new
offerings on the marketplace, in return for the marketplace fee. Application Providers
use the offerings traded on the marketplace to develop applications for their end
customers but do not offer them on the marketplace for business customers. Last but not
least, Standardisation Providers contribute mainly with models and vocabularies to
enable semantic interoperability.

The role of the main stakeholders is studied in more details in Sect. 4.
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4 Business Model Analyses

As discussed in Sect. 2, interoperability is needed to exploit the economic impact and
all business opportunities emerging from the IoT. In this section, we analyse how the
different stakeholders identified in Sect. 3 can enhance value propositions of their current
business models in such interoperable IoT ecosystems. Further, we discuss these busi‐
ness models and identify the importance of a marketplace as a central point of exposition
and trading of offerings from heterogeneous IoT platforms and services.

4.1 Business Model Canvases for IoT Ecosystem Stakeholders

For analyzing business models of the different stakeholders of an interoperable IoT
ecosystem, we have used the established business model canvas methodology with its
nine building blocks [13].

The business models for each stakeholder of the ecosystem are carried out taking
into account those following nine steps of the business model canvas:

Step 1: Customer Segments: Describing the addressed most important customer
segments and roles, for which the value is created.
Step 2: Value Propositions: Definition of the main products and services, that are
delivered to the customers and creates value for them.
Step 3: Channels: Outlines the channels through which the customers are reached and
served.
Step 4: Customer Relationships: Gives a description of the relationship with the
customers.
Step 5: Revenue Streams: Defining the benefits and earnings for the business model
for the value propositions consumed by the customers.
Step 6: Key Resources: Describing the physical, intellectual financial and human
resources needed to run the business.
Step 7: Key Activities: Showing the most important activities to be performed.
Step 8: Key Partnerships: Outlining the main partners and suppliers to provide addi‐
tional external activities and resources.
Step 9: Cost Structure: Defining the principal cost to setup and run the business.

In the following, the four business model canvases of the IoT Platform Provider, the
Service & Application Provider, the Thing Provider, as well as the Marketplace
Provider will be described. The inputs for the different building blocks have been
assessed according to a survey among the industrial and research partners of the BIG
IoT project and also taken from other research and productive ecosystem evaluations
and examples.

Business Model Canvas of an IoT Platform Provider
By using the business model canvas (Table 1), we analyse the main opportunities for
the IoT platform provider that emerge from the integration with the BIG IoT API and
participating in the Marketplace.
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Table 1. Business model canvas of an IoT platform provider.

Key Partners 

IT Vendors 

IoT Platform 
Vendors 

Thing Providers 

Data Owners 

Standardisation 
Providers 
BIG IoT OSS 
project 

Marketplace 
Provider 

Key Activities 

Development 

Integration 

Operation 

Sales 

Value Proposition 

Data provision 
(domain 
independent) 

Data discovery 

Reuse of data and 
composition 

Services for 
charging and billing 

Flexible deployment 
model 

Operational support 

Customer 
Relationship 

Consultancy 

Self Service 

Personalized 
Support 

Customer segments 

Public 
administrations 

Public utilities 

SMEs 

Users of IoT Data 
Key Resources

Developers 

Data Centers 

Networking 

Channels

Web 

Sales 

References 

Conferences

Cost Structure 

Development 

Integration 

Operation 

Marketing & Sales 

Support 

Revenue Stream 

Flat rate 

Fixed price  

Consulting contracts 

An IoT platform value grows if it catches demand both from the side of IoT data
providers (e.g., things providers or data owners) and from the side of data users (appli‐
cation/service providers). The main partners of the IoT platform provider are its
suppliers (i.e., IT and IoT platform vendors). As the key asset of the IoT platform
provider is the content available on the platform, the range of key partners further
comprises things providers, marketplace provider, and data owners. In order to take part
in the ecosystem, the BIG IoT OSS project as well as standardisation bodies are
becoming partners to the platform provider, since it can interact with them in order to
influence interface definitions.

The core activities of the platform provider are operation on data (their exposure),
development of platform services, and sale of those services. To do this, the IoT platform
provider exploits storage and computing resources, developing capability, data models,
and networking. The key value proposition is strictly linked with exchange and exposure
of data, data combination, and operational support. Customer relationships of the IoT
platform provider are often strengthened through consultancy and personal assistance
devoted to customer segments, such as IoT data users (e.g., service or application
providers) and IoT data producers (e.g., public administrations, or utilities). Also, small
and medium sized enterprises (SMEs) are often relying as customers on IoT platform
providers, as they do not have the capacity to run their own IoT platform. The main costs
are derived from the development, management, and evolution of the IT infrastructure
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as well as the data maintenance. The IoT platform provider can expect revenue streams
from the customers through recurring fees (flat rate model) or through fixed prices based
on individual contracts. Also, consulting contracts, e.g., for customizing the platform to
specific needs, are possible.

By participating in an ecosystem, such as the one realized by BIG IoT, the traditional
business model of the IoT platform provider is strengthened, as the IoT platform
becomes a product offered through the marketplace connected with the BIG IoT API.
Through this registration on the marketplace, the visibility of the platform increases.
The key value offered, the access and use of data, is facilitated by relying on a common
API. This adds value for the customers and IoT platform users. The above advantages
will eventually increase revenue streams.

The BIG IoT solution increases the benefit in following aspects of the Business
Model:

Value Proposition:

• Usage of the BIG IoT API and a common offering representation in the BIG IoT
marketplace enables domain independent provision of data.

• Discovery of data is made easy by the marketplace search and discovery features.
• Reuse of data and composition of data and services is enabled by semantic description

of offerings, based on shared models.
• Services for charging and billing offered by the BIG IoT marketplace facilitate the

platform provider to offer a common billing interface to all applications or services.
• Flexible deployment model allows working across all inter- and intra-segment part‐

ners of BIG IoT.
• Operational support can be provided with protection of investment and reusability

for more than one platform.

Key Partners:

• Partnerships with different standardisation bodies and BIG IoT OSS project will
ensure wider acceptance and thus higher protection of investment and future reusa‐
bility of the platform interfaces.

• Marketplace Provider enables the provision of the platform offerings to a broader
market than today, since currently only the segments of direct customers of the vendor
and in a given vertical segment are served.

Revenue Stream:

• price for flat rate, fixed price and consulting contracts include increased value for a
given price, as the same platform will be able to interoperate with more services and
applications also from different domains.

Business Model Canvas of an IoT Things Provider
“Things” (the real-world objects connected to the IoT) represent the front-end of what
the consumer will see, touch and feel when he first interacts with IoT technology. The
device’s task is to provide functionality and on a second level to interact with other
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connected objects in order to enhance the capabilities of an ecosystem and creating more
comprehensive scenarios. Things can also generate data, which can be used by other
devices or services to better accomplish their tasks. Putting these considerations in the
context of BIG IoT, “things” theirselves can become first-class citizens of the larger IoT
ecosystem, through equipping them with the commonly defined APIs. By doing so, the
business model canvas in Table 2 sketches out the relevant factors of a things provider
from a business perspective.

Table 2. Business model canvas of an IoT things provider.

Key Partners 

Module / IC 
providers 

BIG IoT OSS 
project 

Key Activities 

Development 

Integration 

Value Proposition 

Provisioning of 
things 

Enabling connection 
of things to platforms 

Publishing data 
through common API 

Customer 
Relationship 

Support in 
utilisation of 
things 

Customer 
segments 

Public 
administrations 

Public utilities 

SMEs 

IoT Platform 
Providers 

Key Resources 

Developers 

Channels 

Sales 
representatives 

Marketing 
channels 

Cost Structure 

R&D 

Development 

Operation 

Sales & marketing 

Revenue Stream 

Fixed price per unit  (if things are sold) 

Operation contracts (if things are operated for third party) 

Support / service contracts 

Apart from providing the things, the value proposition of the thing provider is to
facilitate the connection of the things with IoT platforms. This process is supported
through common APIs, such as the BIG IoT API. Additionally, the common API can
mask hardware complexity and abstract from the challenges of the underlying hardware
by exporting a comprehensive and common interface. Among the ecosystem partners
of the thing provider are module and integrated circuit (IC) manufacturers, who provide
the components on which the design of the product is based, as well as the BIG IoT OSS
project, which offers software that can be reused to integrate things. Key resources to
be invested are developers that realize the hard- and software. They implement the API
as well as device-level applications and ensure that the process of development is
smooth. Once a common and open API is chosen, the audience of developers can be
extended by externals, which results in overall benefits for the ecosystem. The main cost
drivers are R&D, operation, sales and marketing. The revenue stream is either coming
from the operator of the things (in case thing provider sells things) or is coming from
operation contracts, in case the thing provider is in charge of operating. Additionally,
contracts to support the utilisation of things may generate revenue. A model that will
presumably become more and more important in the future is the generation of revenue
through offering things as a service (e.g., railway companies may acquire entire
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locomotives on service basis, i.e., they pay the things provider per day of operation).
Such service model contracts are further supported through common APIs, as defined
by BIG IoT.

Business Model Canvas of a Service/Application Provider
The service and application providers have a crucial role in an IoT ecosystem, as they
bring additional value on top of the IoT platforms. Table 3 outlines business model
considerations from their perspective.

Table 3. Business model canvas of a service/application provider.

Key Partners 

IoT Platform 
Providers 

Standardisation 
Providers 

BIG IoT OSS 
Project 

Marketplace 
Provider

Key Activities

Development 

Operation 

Value Proposition

Higher value 
information 

Added-value 
functionalities 

Enrichment through 
value-chain 

Common API 
facilitates integration 

Customer 
Relationship 

Support 

Consulting 

Customer segments 

Application Providers 
(using a service) 

Service Providers 
(using a service) 

Business users (e.g., 
an organization using 
an application) 

Key Resources

Developers 

Marketing & 
sales

Channels

Web or direct 
marketing 

Cost Structure 

Development 

Operation 

Marketing & sales 

Revenue Stream 

Pay per use 

Pay per install (in case of applications) 

Support / service contracts 

The service provider as well as the application provider offer a number of value
propositions within an interoperable IoT ecosystem. Based on lower-level input (i.e., an
IoT platform or another service), a service or application can offer either higher value
information (e.g., weather forecast based on temperature, humidity, and wind measure‐
ments) or added-value functionalities (e.g., switching light off in entire building based
on single light switches). This enrichment through the chaining of offerings from
different parties is valuable for customers. By utilizing the common API or even
exposing it (in case of services), the integration with other components of the IoT
ecosystem becomes easier. Hence, customers are again other application- or service
providers with high-level capabilities, or also business users, e.g., organizations which
utilize an application. Relationships to these customers can be maintained through
support or even specific consulting. These activities are also a possible revenue stream,
apart from the pay per use or a direct payment for the service / application. The key
partners of the service and application provider are IoT platform providers, marketplace
provider, BIG IoT OSS project, standardisation providers as well as developers. The
main activities are development, operation and marketing.
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Business Model Canvas of a Marketplace Provider
In the previous canvases we presented how the different stakeholders can enrich their
value proposition to their customers by participating in an IoT ecosystem, e.g., through
the BIG IoT solution. The following business model canvas (Table 4) summarizes the
value proposition of the Marketplace to these stakeholders.

Table 4. Business model canvas of marketplace provider.

Key Partners 

IoT Platform 
Providers 

Standardisation 
Providers 

BIG IoT OSS 
Project 

Developers 

IT vendors 

Key Activities 

Development 

Operation 

Product 
Management 

Value Proposition 

Discovery of 
offerings  

Advertisement of 
offerings and 
broadening of 
customer outreach 

Charging and billing 

Management of 
common vocabulary 

Customer 
Relationship 

Support 

Consulting 

Customer 
segments 

Service Providers 

IoT Platform 
Providers 

Application 
Providers Key Resources 

Developers 

Marketing & 
sales  

Channels 

Web and direct 
marketing 

Platform, service, 
and application 
vendors 

Cost Structure 

Development 

Operation & infrastructure 

Support 

Traffic generation and retention 

Revenue Stream

Advertising fees 

Pay per use 

Percentage of each payment 

Entry fees 

Support / consulting contracts 

The key value proposition of the marketplace is enabling the discovery of offerings
from IoT platforms or value adding services. This discovery is provided as searching
capabilities on a user interface, as well as through a machine readable API. Applications
are specifically not listed in the marketplace of BIG IoT, as there are already many
established app stores for this purpose. Nevertheless, also application providers (besides
service- and platform providers) are the main customers of the marketplace. All stake‐
holders profit from the advertisement (or: “marketing”) capabilities of the marketplace,
which broadens the customer outreach of those offering providers. The discovery and
advertisement of offerings is supported through the management of common vocabu‐
laries by the marketplace. This is the key to semantic interoperability within an IoT
ecosystem. Common terms (e.g., “traffic light” or “temperature”), which are used by
multiple participants of the ecosystem, are registered and referenced at the marketplace.
Beyond these capabilities for reaching interoperability, the marketplace supports
charging and billing. I.e., a service or platform can state how much access to their
offerings costs and consumers of those offerings have to pay. Through these function‐
alities, the marketplace enables the monetization of IoT offerings.
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To operate a marketplace, its provider mainly invests into development and opera‐
tion, but also product management (i.e., marketing, feedback, promotion, sales) is a key
activity for success. Thereby, customer relationships can be initiated through consul‐
tancy, customizing assistance, and support. Then, revenue streams will be generated
through contractual work for those activities. Apart from those, the marketplace has
several interesting possibilities for creating revenue based on different payment models.
These range from fees for better advertisement, over a pay per use (e.g., counting API
calls), small participations in each payment, up to entry fees for service and platform
providers to enlist their offerings.

4.2 Discussion on IoT Ecosystem Business Models

The analyses above show that for each stakeholder, business models can be identified
within an interoperable IoT ecosystem. From our perspective, all stakeholders can profit
from interoperability and the creation of an IoT ecosystem. Naturally, their effectiveness
can only be evaluated in practice. However, the success of an IoT ecosystem will depend
(a) on the willingness of IoT platform providers and platform vendors to adopt common
APIs into their platforms so that a sufficient offer of data is available and (b) on the
number of service and application providers to use these and add value to the data via
their offerings. I.e., the lower the initial barriers to enter the ecosystem and a marketplace,
the more likely will be the success.

Once a marketplace is established, IoT offerings of platforms and services can be
easier found and used to create new, innovative applications. By means of semantic
search of offerings, service- and application providers can find resources from different
platforms and domains that best fit their needs. Additionally, by using a common API
and vocabularies a service provider can more easily provide and trade its offerings. In
this way, they can more rapidly deliver services to their existing customers and reach
new customers. Furthermore, by using charging and billing of the marketplace they can
outsource these activities.

As discussed in Sect. 3, value chains are evolving towards a value network
comprising multiple stakeholders in the ecosystem. When taking the primary function‐
ality of providing a marketplace for the offerings, a general view on the clients of the
marketplace only distinguishes between offering providers and offering consumers, as
shown in Fig. 4.

By bringing together the offering providers (platforms and service providers) and
the offering consumers (services and application providers) the marketplace fosters the
exploitation across the complete value network of an IoT ecosystem. The marketplace
even pushes the utilisation for all involved ecosystem stakeholders due to interoperable
APIs and the advanced discovery as well as monetization facilities.

To evaluate from an application/industry point of view the value and benefit, we
have to investigate in the future through the lens of individual industries or sectors (see
[3, 14]). The existing vertical customer segments of whole industries will be affected by
enhancement of IoT capabilities. They will cover more or less all market sectors, but
with respect to IoT some will gain more potential than others. In particular, the following
vertical markets are important for the IoT [3]: Factories, Cities, Retail environments,
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Work sites, Vehicles, Agriculture, Outside, Home, Offices. The interoperability and
marketplace create value for business users across settings and sectors. As a marketplace
can provide presentation and promotion of the offerings relevant across multiple vertical
segments as well as semantic search options, the ecosystem is stimulated to push inter-
segment and intra-segment value generation as illustrated in Fig. 5.

Fig. 5. Marketplace facilitates inter-segment and intra-segment interaction.

Fig. 4. The marketplace as centre piece of an interoperable IoT ecosystem.
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5 Conclusions and Outlook

In this paper we present an overview of the IoT ecosystem and its stakeholders and the
advantages interoperability can bring for them. Starting from a description of the BIG
IoT solution, as a realisation of an IoT ecosystem, we argue that interoperability brings
new business opportunities for all participants in such an ecosystem. By using the value
network model analysis we identify the key stakeholders, relationships, as well as
tangible and intangible value exchange between different roles. Further, based on the
business model canvas method, we analyse existing business models of four key stake‐
holders and identify how these models are being enhanced through an interoperable IoT
ecosystem to provide more value to their customers. In our discussion, we identify the
marketplace as the fulcrum of such an ecosystem, and we explain the importance of this
role for the inter-segment and intra-segment interaction.

In the future, we will further study the final designs of revenue schemes and which
business models are most suitable for the economic success. This work will be done
alongside the implementation of three different pilots of the BIG IoT project in Barce‐
lona, Berlin/Wolfsburg, as well as Piedmont. Furthermore, we will investigate how
orchestration between all kinds of IoT services and offerings can be supported through
the marketplace. Automated orchestration promises to reduce costs through less adap‐
tion efforts and empowerment of IoT end-to-end use cases.

Acknowledgments. This work is financially supported by the project “Bridging the
Interoperability Gap” (BIG IoT) funded by the European Commission’s Horizon 2020 research
and innovation program under grant agreement No. 688038.
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Abstract. The Internet of Things (IoT) is on the rise. Today, various
IoT platforms are already available, giving access to myriads of things.
Initiatives such as BIG IoT are bringing those IoT platforms together in
order to form ecosystems. BIG IoT aims to facilitate cross-platform and
cross-domain application developments and establish centralized mar-
ketplaces to allow resource monetization. This combination of multi-
platform applications, heterogeneity of the IoT, as well as enabling mar-
keting and accounting of resources results in crucial challenges for secu-
rity and privacy. Hence, this article analyses the requirements for security
in IoT ecosystems and outlines solutions followed in the BIG IoT project
to tackle those challenges. Concrete analysis of an IoT use case covering
aspects such as public, private transportation, and smart parking is also
presented.

Keywords: Internet of Things · IoT · Security · Privacy

1 Introduction

In the past years, the Internet ofThings (IoT)has largely expanded and the number
of IoT devices is ever increasing. Today, IoT use cases span over a wide variety of
application domains, ranging from smart homes over e-health systems to industrial
environments. Things used in such applications are made available through IoT
platforms. These platforms can be located on the device, edge, fog, or cloud levels.

A multitude of such platforms exists today. In order to enable cross-platform
and even cross-domain application development, different initiatives are deter-
mined to form IoT ecosystems. An example for this is BIG IoT1 [9]. At the
moment, the BIG IoT project comprises 8 IoT platforms and is ready to grow
beyond them by means of an open call. To ignite such an IoT ecosystem, BIG
IoT focuses on establishing interoperability across platforms.
1 http://big-iot.eu.

c© Springer International Publishing AG 2017
I. Podnar Žarko et al. (Eds.): InterOSS-IoT 2016, LNCS 10218, pp. 107–122, 2017.
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Fig. 1. The BIG IoT approach for building an ecosystem of IoT platforms. (Icons by
Freepik from http://www.flaticon.com)

BIG IoT has two main objectives. The first one is defining a shared inter-
face, i.e., the so-called BIG IoT API comprising common functionalities such
as discovery, access, and event handling. This API needs to be supported by
all participating platforms, often in addition to their existing proprietary inter-
face, as illustrated in Fig. 1. The second objective is establishing a centralized
marketplace where platforms as well as value-adding services can be registered,
searched, and subscribed for by applications. In the BIG IoT project, these tech-
nologies are deployed in multiple pilot scenarios and involving various IoT plat-
forms, services, and applications from the Smart Cities domain. We will provide
an example of these scenarios in Sect. 4.

Besides the evident benefits that can be achieved by such IoT ecosystems,
there are crucial challenges to deal with. In particular, new security threats
must be addressed to allow the continued growth of such ecosystems. Frequently,
sensitive data are stored, sent, or received by IoT platforms. Thus, security
mechanisms are needed to protect these data from unauthorized access. Consider
a patient who is wearing a glucose sensor that transmits its results to the IoT
platform of a medical centre. Security vulnerabilities may allow other entities to
misuse this information or even put at risk the physical safety of the patient if
these data are forged.

Dealing with IoT security risks is challenging and can be more complex than
in conventional networks, particularly for companies entering IoT ecosystems
without any experience in the security field. Moreover, as new security vulnera-
bilities may be discovered over time, there is a need for updating IoT platforms
on a regular basis. This might be hard to achieve in some cases either due to the
simplicity of some device-level IoT platforms, or due to the lack of awareness of
users or platform admins that forget or just skip updates. Finally, it may happen

http://www.flaticon.com
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that some IoT platform manufacturers decide not to provide ongoing support
nor security updates in order to reduce costs.

Last, but not least, privacy must be a mandatory concern. A privacy analysis
should at the least find an appropriate answer to the question: do the collected
data allow drawing conclusions on individual or small, specific groups or human
beings? Note that such conclusions may be drawn by unauthorized eavesdrop-
pers, and then this discussion is overlapping with confidentiality.

The purpose of this article is to outline current discussion, analysis, and
specific actions with regard to security and privacy in IoT ecosystems, and par-
ticularly to the BIG IoT realization of such an ecosystem. Requirements and
best practices presented here will help to secure all the assets of the BIG IoT
ecosystem and to prevent abuse of sensitive data.

The rest of this document is structured as follows. Section 2 presents a set of
security requirements for the BIG IoT as well as current discussion and actions
in order to address them. Section 3 outlines privacy recommendations for the
IoT ecosystem. Next, in Sect. 4 a BIG IoT use case example is presented and
analysed from the point of view of security and privacy. Finally, Sect. 5 provides
with the conclusions of this work.

2 Securing an IoT Ecosystem

The BIG IoT marketplace, the common API, and all the platforms/services/
applications in the ecosystem must comply with a set of security requirements.
After an analysis of the BIG IoT needs, seven security requirements were identi-
fied, which are presented in Sect. 2.1. Moreover, in order to face these risks, some
solutions were already discussed (see Sect. 2.2).

2.1 Requirements

1. End-to-end security. IoT communications typically spread over several
nodes and technologies. In particular, BIG IoT is not another IoT platform,
it is a framework for a heterogeneous set of platforms, services, and applica-
tions. A possible solution to provide security would be to leave the mecha-
nisms already in use for each platform, and then to define adaptation policies
of these mechanisms in the boundary points of platforms. The definition of
these “low-level” relationships would highly increase complexity, as each indi-
vidual security protocol (suite) provided by a component would have to be
mapped to each protocol (suite) offered by each component it communicates
with, which may fail, and hence should be avoided. The solution adopted in
BIG IoT is to provide security at the API level, because it is common for all
platforms. So, there is no need to adapt protection mechanisms between plat-
forms, as the API is end-to-end by nature and assures that security remains
independent of low level platform components.
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2. “Batteries included but swappable”2. BIG IoT has to be designed to
be capable of ageing in place while still addressing evolving risks [22]. There
may appear new attacks, crypto systems, counter measures, techniques, and
topologies, but the IoT system must be capable of dealing with these emerging
concerns long after the system was deployed. Consequently, BIG IoT must
ship a default but swappable security implementation, not hard-coded to
specific security protocols/systems. Notice that this is not incompatible with
defining current minimum requirements in terms of protocols, mechanisms
and/or algorithms.

3. Flexible authentication/authorization. The authentication and autho-
rization systems used in the BIG IoT ecosystem must ease the management
of identities and permissions. The various platform that BIG IoT composes
for interoperation have very different user management architectures and
interfaces. Furthermore, platform operators may not want to expose certain
user management features due to business or even security concerns. There-
fore, supporting various models including decentralized, federated or dele-
gated authentication is required for successful interoperation of platforms’
user management systems.

4. Ownership transfer. BIG IoT should support safe transfer of ownership,
even if a component is sold or transferred to a competitor; something that
often happens during the lifespan of IoT nodes/components.

5. Accounting and charging. The BIG IoT must implement a secure account-
ing of resources consumption. This accounting must generate enough charging
data, typically in the form of a Charging Data Record (CDR), so that the
desired charging policies can be enforced. As a result of a charging policy, a
billing system may be necessary to generate invoices for service consumers.
All these systems must be flexible enough to implement different business
models and monetization strategies of services that can be implemented in
the BIG IoT ecosystem. The BIG IoT marketplace must support offline and
online charging and billing.

6. Continuous security. The BIG IoT system should be ready to respond
to hostile participants, compromised nodes, and any other adverse event.
Therefore, it is necessary to implement mechanisms and/or tools to re-issue
credentials, exclude participants, distribute security patches, updates, swap
algorithms, or protocols, etc.

7. Secure development. Security must be a key part during the design phase
of every BIG IoT software, but a secure design would be useless if develop-
ment errors open unexpected attacks and/or vulnerabilities. Using a Secure
Software Development Life Cycle (S-SDLC) and secure Source Code Analy-
sis (SCA) would help developers to build more secure software and address
security compliance requirements.

2 https://blog.docker.com/2016/03/docker-networking-design-philosophy/.

https://blog.docker.com/2016/03/docker-networking-design-philosophy/
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2.2 Addressing the Security Requirements in BIG IoT

Even though many strategies or decisions are still to be taken, some actions have
already been adopted in order to address the above requirements.

Requirement 1 is directly met as the BIG IoT API is an HTTP(s) based API,
and so it is end-to-end by design. Moreover, in order to comply with Requirement
2, the API should be flexible enough to handle any protocol and/or content.
BIG IoT handles this by defining a very generic API; semantic annotations of
the syntactic descriptions of each registered service and platform are then used
to clarify the details on how to establish communication with these components.

Requirement 3 states that there is a need of providing flexible authentica-
tion in the IoT ecosystem. I.e., BIG IoT must implement an authentication and
authorization system to be shared by participating platforms, services, appli-
cations, and end-users. Moreover, BIG IoT has to be able to work even when
the authentication managers are not available. To solve this, BIG IoT uses an
approach that is similar to the ones used by other widely-known IoT initiatives
(e.g., [6]): signed manifests or tokens. A client presents a signed manifest to a
server to demonstrate that it is able to perform a given action on a given asset.
When the server receives the signed manifest, it can trust the contents because
the manifest is signed by a common root of trust.

Many state-of-the-art technologies have already dealt with the fact of using
such signed manifests. Most solutions for the Web use JSON, CBOR, or XML
encodings and rely on JSON Web Encryption (JWE) [17], JSON Web Signature
(JWS) [16], XML Encryption (XML-Enc) [15], or XML Signature (XML-Sig) [7].
Obviously, one can decide to design a custom solution from scratch, which may
seem at-a-glance a better suited solution. However, experience tells us that secu-
rity protocols are subtle and often tricky. Consequently, BIG IoT position is
to adopt existing, already tested, security technologies. The specific set of solu-
tions is still to be decided though. Given that the BIG IoT API relies on HTTP
REST, potential candidates are SAML [20], Oauth 1 [13], OAuth 2 [14], or
OpenID Connect [19] (built upon OAuth 2), supporting delegated authorization
and authentication/identification.

Requirement 4 must also be considered in the choice of the previous bottom-
technology. The authentication/authorization system has to be defined with
focus on easy management of identities and permissions, easing actions that
are quite common in the IoT. This includes safe transfer of resources’ owner-
ship and quick response to dynamic topologies with frequent admissions and
withdrawals.

Requirement 5 states that an appropriate accounting is key to develop charg-
ing/billing systems, both offline or online. An offline charging system just stores
a CDR containing the relevant accounting and charging information (starting
and ending time, data used, bandwidth, etc.). Then, the user is charged after
resources have been used. In general, users being charged offline provide a bank
account to pay the corresponding bill. On the contrary, when using online charg-
ing, the user typically buys a prepaid amount of credit. In this case, the charging
system has to monitor online the resources consumption and then, needs to stop
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(or constrain) the service when the credit limit is reached. In both approaches
(offline and online), it should be desirable to have non-repudiation proofs for
both, the users and the marketplace to be able to verify consumptions, bills, etc.
and to solve possible inconsistencies.

Requirement 6 forces the marketplace to host a secure repository where to
securely download software and software updates/patches. This is a challenge
that has often been addressed in the past and present. Experience here says that,
apart from security, success depends on the ease of use for both end users and
developers. The app stores of Apple, Google and Amazon are good examples,
but BIG Iot is aiming for a more open approach for this component.

Requirement 7 requires the use of S-SDLC. To accomplish this, BIG IoT
developers are following best practices for secure software development set up
by the Open Web Applications Security Project (OWASP) [1]. First, the orga-
nization itself has to fulfil security related activities and software security prac-
tices, which are described in the OWASP Software Assurance Maturity Model
(SAMM) [3] framework. Second, the applications meet requirements based on
the OWASP Application Security Verification Standard (ASVS) [21]. Third, the
application source code is to be analysed according to the OWASP secure Source
Code Analysis (SCA) guidelines [2]. And finally the application will be tested for
vulnerabilities and design flaws according the OWASP testing guidelines [18].

OWASP ASVS defines security requirements for applications and services.
This standard currently defines 19 verification requirements. All these require-
ments have three security verification levels, with each level increasing in depth:
ASVS Level 1 “Opportunistic” is meant for all software and its compliance
adequately defends against application security vulnerabilities that are easy
to discover; ASVS Level 2 “Standard” is meant for applications that contain
sensitive data, such as business-to-business transactions, including those that
process health-care information, implement business-critical or sensitive func-
tions, or process other sensitive assets; and ASVS Level 3 “Advanced” is meant
for the most critical applications, that is, applications that perform high value
transactions, contain sensitive medical data, or any application that requires the
highest level of trust. Responsibilities include controls for ensuring confidential-
ity (e.g. encryption), integrity (e.g. transactions, input validation), availability
(e.g. handling load gracefully), authentication (including between systems), non-
repudiation, authorization, and auditing (logging). Each ASVS level contains a
list of security requirements, and each of these requirements can also be mapped
to security-specific features and capabilities that must be built into software by
developers. For BIG IoT, developers should (at least) follow the ASVS level 2
requirements, and they could complete these with level 3 requirements according
to the appropriate criticality.

3 Best Practices for Privacy in IoT Ecosystems

Igniting an IoT ecosystem involves handling big data. Often these data contain
sensitive information and therefore their use could be a threat to users’ privacy.



On the Road to Secure and Privacy-Preserving IoT Ecosystems 113

The FTC published in 2015 a guide containing best practices for privacy in IoT
[12] that is summarized with the following statement: while flexibility in terms
of data gathering is key to innovate around new uses of data, the amount of data
storage should be balanced with the interests in limiting the privacy and data
security risks to consumers.

These recommendations are useful and valid in the European scope. However,
they are rather generic and they should be always complemented with a specific
analysis of every use case (an example is provided in Sect. 4). In the following,
we provide the main ideas behind the FTC recommendations.

3.1 Data Minimisation

Data minimisation is a long-standing principle of privacy protection [10] that
means that a data controller3 should limit the collection of personal information
to what is directly relevant and necessary to accomplish a specific purpose. Since
users’ privacy is (or it should be) key for a wide adoption of the IoT, data
minimisation is key to fostering the IoT ecosystem. Indeed, data minimisation
can help guard against two privacy-related risks.

First, storing huge volumes of data increases the likelihood of receiving a
data breach since the is more potential harm derived from such an event.

Second, collecting and storing large amounts of data also increases the risk of
using the data in a way that departs from consumers’ reasonable expectations.

To minimise these risks, organizations should develop data minimisation poli-
cies and practices providing answers to questions like what types of data it is
collecting, to what end, and how long it should be stored. Such an exercise is
part of a privacy-by-design approach and helps ensure that a company is sensitive
with data collection practices.

In the EU, the data minimisation principle derives from Article 6.1(b) and
(c) of Directive 95/46/EC [10] and Article 4.1(b) and (c) of Regulation EC
45/2001 [11], which state that personal data must be “collected for specified,
explicit and legitimate purposes” and it must be “adequate, relevant and not
excessive in relation to the purposes for which they are collected and/or further
processed”.

When a company needs to gather and store sensitive data with a business
purpose, it should consider whether it can do so with a deidentified data set.
Deidentified data can reduce potential consumer harm while still promoting ben-
eficial societal uses of the information.

A key to effective deidentification (anonymisation) is to ensure that the data
cannot be reasonably reidentified even with external cross sources. This usually
requires removing identifiers or pseudoidentifiers. Although, at first glance it
seems quite affordable, recognizing non-evident identifiers is quite a challenge
that often has to be faced in a manual, use-case-specific manner.

In BIG IoT, for every specific use case, an analysis of potential identifiers
among the data and/or metadata stored/exchanged is being performed. Data

3 An entity processing and/or storing personal information.
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minimisation is encouraged specially for the BIG IoT platforms and should
account for cross data not only from other BIG IoT platform/services, but also
from any other external source. An example for such data minimization tech-
nologies in the context of a BIG IoT use case is given in Sect. 4.

Notice that there is a common misconception about the added costs for data
minimisation. Enhancing privacy by means of data minimisation techniques does
not necessarily imply added costs. Indeed, data minimisation reduces the sensi-
tiveness of data and hence lower security would be required. As a consequence,
for instance, in BIG IoT, important saving can be obtained in development costs
due to a reduced ASVS level compliance.

3.2 Strong Accountability

As aforementioned, deidentified data sets can reduce many privacy risks. How-
ever, there is always a chance that supposedly deidentified data could be reiden-
tified; especially because of the technology advances. For this reason, companies
should have accountability mechanisms in place. In this context, the FTC has
stated that companies stating that they maintain deidentified or anonymous data
must meet three actions: (1) take reasonable steps to deidentify data, including
by keeping up with technological developments; (2) publicly commit not to rei-
dentify the data; and (3) have enforceable contracts in place with any third
parties with whom they share the data, requiring the third parties to commit
not to reidentify the data. This approach ensures that if the data are reidentified
in the future, regulators can hold the company responsible.

Consequently, BIG IoT platforms, services, and applications should provide
proper accounting mechanisms to securely log any action by any actor dealing
with sensitive data.

3.3 Transparency and Easy Access

The centrepiece legislation at EU level in the field of data protection is the “Data
Protection Directive” [10] which is implemented in EU Member States through
national laws. This directive aims to protect the rights and freedoms of persons
with respect to the processing of personal data by laying down guidelines that
determine when the processing is lawful. The guidelines mainly relate to the
quality of the data, the legitimacy of the processing, the processing of special
categories of data, information to be given to the data subject, the data sub-
ject’s right of access to data, the right to object to the processing of data, the
confidentiality and security of processing and the notification of the processing
to a supervisory authority. The Directive also sets out principles for the transfer
of personal data to third countries and provides for the establishment of data
protection authorities in each EU Member State.

In general, the conclusion is that EU’s individuals need better information
on data protection policies and about what happens to their data when it is
processed by online services. As a result, the EU will require European orga-
nizations to publish transparent and easily accessible data protection policies.
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Fig. 2. Privacy icons proposal by Aza Raskin [23]

In this context, simple icons on websites and applications could explain how,
by whom and under whose responsibility personal data will be processed. As a
consequence, users are better informed about how and if their personal data is
being exploited.

To better picture this fact, Fig. 2 shows a set of privacy icons proposed by
Aza Raskin [23]. BIG IoT services and/or applications should use similar icons
(or even those) to clearly show end users how their data are being processed.

4 Use Case Example: Smart Transportation Assistant

In this section we describe the use case of a transportation assistant in context
of BIG IoT and analyze and discuss its security and privacy aspects.

In this case, a subscriber of the app is at home and she wants to go to a
specific place. The BIG IoT app allows her to be assisted in this decision by
providing information about private and public transportation.

Regarding private transportation, she can receive information about current
traffic conditions. If she decides to use her private vehicle, she is assisted with
navigation information while driving and is also assisted in finding available
parking spots.

Regarding public transportation, the app can suggest several possible ways
of transportation as an alternative to using the private vehicle. For instance, the
app allows the user to select a bus line of interest. From this she can see live
information about the next bus arriving at the selected stop. This information
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includes indications of where the bus is located currently, if the bus is delayed,
the number of people on the bus, and a forecast of the number of people on the
bus when it reaches her stop. Based on this information, she can choose if she
takes this bus or if she should switch to take another line, a later bus, or another
mode of transportation. She can also choose to see historical information about
the number of people on the bus based on location and time of day. This will
allow her to plan ahead, i.e. if she wants to avoid overfilled buses she can see at
which times of the day the buses are less loaded.

We would like to mention that the previous use case is in fact implemented in
two different pilots of the BIG IoT project. One pilot (mainly focused on private
transportation) is going to be deployed in Barcelona and the other one (mainly
focused in public transportation) is going to be deployed in Wolfsburg.

Fig. 3. Usecase: a transportation assistant in the BIG ecosystem

Finally, it is important to notice that from the users point of view, all the
functionality is accessed with a single smartphone app; however, behind the
scenes this app is consuming data from several services, which in turn consume
data provided by physical sensors operated by different platforms. A complete
picture is presented in Fig. 3 (acronyms are explained in the sections correspond-
ing to the individual components below).

Services are an important abstraction layer in BIG IoT because they allow
code re-utilization and simplify the process of building BIG IoT applications.
For example, a service can aggregate data acquired from different platforms and
then, present a unified dataset to apps. Another service could manage the history
of data, allowing the user to access to past data (data not currently available in
the source platform). Another service could create forecasts from data (acquiring
data from a platform or from another service). Finally, another interesting use
could be a service that anonymises an underlying dataset. This could allow lower
levels of ASVS security in the upper layer (app). In the next sections we describe
the involved BIG IoT components and discuss their security and privacy aspects.



On the Road to Secure and Privacy-Preserving IoT Ecosystems 117

Platform 1: Bitcarrier’s WiFi/Bluetooth Antennas [4]

This platform is fed by data gathered by WiFi/Bluetooth antennas placed at sev-
eral street crosses. The technology detects vehicles/users by their unique MAC
addresses and provides average travel times, speed, and even street congestion.

MAC addresses are very sensitive data, which could be used to track or pro-
file vehicles’ (and even users’) habits. This potential privacy invasion should be
avoided. To do so, all the parties involved have to agree the necessary legal con-
tracts in which they accept to properly use the data stored/exchanged. Also,
these data must be appropriately secured/anonymised to avoid any kind of leak-
age (mistakenly or on purpose).

Under this assumption, BIG IoT approach is to immediately anonymise
unique addresses using a one way cryptographic-hash function. This function
uses as inputs: (1) the address to be anonymised and (2) a key. This key is
updated periodically, e.g. ranging from minutes to days. In this manner, one
device cannot be tracked for more than a period. How often the key is updated
is part of the privacy policy.

The use of cryptographic hash functions allows anonymising the data while
keeping a trapdoor that could be used to reidentify vehicles/users. The platform
operator must keep secret the temporal keys used to anonymise the identifiers.
However, operators may be forced to disclose these keys under some circum-
stances, e.g. a law enforcement requirement when a legal process is followed.

From the above reasoning, this platform should comply at least with recom-
mended baseline ASVS level 2 “standard”. In addition, the management of the
anonymisation keys should comply with ASVS level 3 “advanced”, as it may
allow an attacker to identify/track users and/or vehicles.

Platform 2: SEAT’s Cars

SEAT has put several cars with integrated sensors at BIG IoT disposal. These
cars send their current position and speed. Providing these data may allow to
track a vehicle and thus can be considered a threat to privacy.

Same reasoning as for the platform 1 is applied: if identifiers cannot be
removed from provided data, at least they must be properly anonymised, e.g.
with a cryptographic hash function. Therefore, the same ASVS security require-
ments apply for both Bitcarrier’s platform and SEAT cars; that is, cars should
comply at least with standard ASVS level 2, but the key manager (if needed)
would require ASVS level 3.

Platform 3: Fastprk’s On-street Parking Spot Status [5]

This platform can provide individual status of parking spots over a predefined
monitored area. For instance, for the BIG IoT Barcelona use cases, this platform
currently offers status information for 600 on-street parking spots. This kind of
data entails specific privacy risks due to correlation with other sources: if an
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attacker knows where someone has parked their car, it can monitor when he/she
leaves by checking the spot status.

Obviously, a straightforward countermeasure would be, e.g., to provide free
spots in a given street segment (a virtual lot). This approach will guarantee
k-anonymity (a given individual cannot be differentiated from another k − 1)
of monitored vehicles/users with k being the number of vehicles parked on the
same segment. This fulfils the requirement of anonymisation/deidentification of
sensitive information stated before, in this case location information. The greater
the segments are, the more anonymous the service is, but the PAS will provide
less specific, potentially less useful, information.

Intuitively, it seems that obtaining the exact free parking spot position or
the segment where there is one (or more) free parking spots is likely to be
equally useful for the end user; although looking for the appropriate trade-off
between privacy and usability requires further technical discussion and studies of
real users’ needs. While some applications/services may allow different per-user
degrees of privacy, this is not the case for this scenario. Therefore, testing user
feedback about the suitability (or not) of just providing free spots on the street
without their specific location cannot be done on an individual basis; it should
be a global approach with, e.g., a pilot project.

Since the data stored by the platform can be somehow used to track/monitor
end users, we recommend securing this BIG IoT platform following ASVS ver-
ification level 2. However, if the platform just stores and provides free parking
spots in a predefined segment/lot, ASVS verification level 1 could be considered.

Platform 4: Wifi Probe Catching Sensors on Buses

Wifi probe catching sensors are sensors placed on buses that collect wifi probe
requests, which contain MAC addresses, emitted from users wifi enabled devices.

Since the MAC addresses are unique, they must be anonymised in the same
way as it is done for platform 1. Indeed, the operation of this platform is very
similar to the operation of platform 1 and therefore the same security and privacy
recommendations apply.

Platform 5: Location Sensors on Bus

These sensors, placed in buses, provide location data and timestamps. The col-
lected data is not stored at the sensor, as an outdated location would not be
of much use. Since positions of public buses is not private, no specific privacy
actions has to be taken. The software development has to comply with standard
ASVS level 2 and, if properly justified, even with ASVS level 1.

Service 1: Traffic Monitoring Service (TMS)

This service is providing routes of cars to destinations based on current traf-
fic conditions. With such a purpose, in this use case, the TMS consumes data
provided by platforms 1 and 2 as well as a city map.
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Assuming that data provided by platforms 1 and 2 is anonymised, no specific
requirements in terms of privacy are required. Regarding security, the software
development has to comply with standard ASVS level 2 and, if properly justified,
even with ASVS level 1.

Service 2: Parking Availability Service (PAS)

In this use case, the PAS is fed with on-street parking spot status provided by
platform 3. Moreover, the PAS may store statistics/historic of parking spot sta-
tus. Therefore, the same privacy recommendations as for the Fastprk’s platform
applies here. Both the service and its connections must be protected with ASVS
level 2 or ASVS level 1 if an acceptable level of k-anonymity is provided.

Service 3: External TMB Bus Routing Data Service (TMBS)

Transports Metropolitans de Barcelona (TMB) is the main public transport oper-
ator in the Barcelona metropolitan area. It already has an open data API [24]
where to obtain routes to destinations with different public transports: trains,
metro, buses.

The TMBS makes the TMB API in the BIG IoT ecosystem. Since all the data
involved in the service are public, no specific requirements in terms of privacy are
required. Regarding security, unless properly justified, the software development
has to comply with standard ASVS level 2.

Service 4: People Density Estimation on Bus Service (PDES)

The PEDS consumes data from the Wifi probe catching sensors and it provides
information about the number of people on buses to Public transport load appli-
cation. The provided data consists of a bus id, estimation of number of people,
accuracy indicator and timestamp. The provided data is stored for a fixed dura-
tion at the service, meaning that detailed load information on a specific bus can
be requested within this duration. After the duration the data is minimised, such
that only more general historic information is stored at the service, which is also
made available to apps and services. It is recommended that the service complies
with ASVS level 2, but it could even be ASVS level 1 as no user specific data is
handled. However, to protect the business case of the service, i.e. to control who
has access to the data and can use it, ASVS level 2 is recommended.

Service 5: Live Bus Location Service (LBLS)

This service consumes data from the location sensors on buses and provides
information to Live bus location app. The provided data consists of sensor ID,
location, and timestamp. The data is stored at the service for a short fixed time
duration, after which it is deleted. The service does not handle any user specific
data but more publicly available information, why it is recommended to comply
with ASVS level 1.
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Smartphone App for Enduser

An App consumes data provided by the 5 services. Apps in BIG IoT are expected
to offer transparency functions, as mentioned in the privacy recommendations
above, including e.g. privacy icons. Developers would also have to consider pri-
vacy requirements going beyond the scope of the BIG IoT infrastructure, such
as informed consent or right of access to personal information, rectification, or
deletion. Regarding secure development, apps should follow ASVS level 2.

5 Conclusions and Outlook

Nowadays, a plethora of IoT platforms and solutions exist, but yet no large-scale
and cross-platform IoT ecosystems have been developed. This is mainly due to
the fragmentation of IoT platforms and interfaces, as this variety results in high
market entry barriers. The BIG IoT project aims at establishing interoperability
across platforms in order to ignite an IoT ecosystem. Core technological pillars
of BIG IoT are a common API as well as a marketplace for all participants of
the IoT ecosystem, including devices, end-users, and service providers. Key to
its success is to define appropriate levels of security and privacy.

Regarding security, in this paper we have identified seven requirements to
be followed when creating and/or deploying BIG IoT components. Such require-
ments affect the design of the BIG IoT API and the marketplace, as well as any
software in the BIG IoT ecosystem. Following this analysis, we have outlined
how these requirements will affect the architectural approach of BIG IoT.

Regarding privacy, we have proposed three recommendations that need to
be followed by any IoT ecosystem participant: (1) data minimisation, i.e., that
a data controller should limit the collection of personal information to what
is directly relevant and necessary to accomplish a specified purpose; (2) strong
accountability, i.e., to provide mechanisms to securely log any action by any
actor dealing with sensitive data; and (3) transparency and easy access, i.e., any
data controller should publish transparent and easily accessible data protection
policies that clearly show how their data is being processed to the end users.
Notice that protecting users’ privacy does not necessarily imply added costs. In
fact, storing anonymised data can help in saving development and operational
costs due to a reduced ASVS level compliance.

Finally, we introduce a use case, and we have analysed it from the perspective
of security and privacy. This use case presents an application that helps a user
to get to a destination and to easily find nearby parking spots, as well as propose
alternative routes by public bus. This use case is being implemented in two pilots
of the BIG IoT project, in Barcelona and Berlin/Wolfsburg.

In the future, our research will build up on the recommendations laid out in
this article. By implementing various services and applications in the BIG IoT
pilots, which all need to follow the security and privacy framework outlined here,
we will be able to evaluate our recommendations in terms of feasibility, prac-
ticability, and thoroughness. This will lead to sharpened and proven guidelines
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for the creation of IoT ecosystems in general, which we aim to contribute to our
on-going engagement with standardization at W3C’s Web of Things group4.

Beyond the work on security and privacy best practices, we will focus our
research agenda towards combining IoT security solutions with Semantic Web
[8] technologies. The already available semantic descriptions of services and plat-
forms in the BIG IoT project will enable us to develop ontologies that describe
different security aspects. This will allow us to automate the selection of reason-
able security measures and options per IoT ecosystem participant.
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9. Bröring, A., Schmid, S., Schindhelm, C.K., Khelil, A., Kaebisch, S., Kramer, D.,

Le Phuoc, D., Mitic, J., Anicic, D., Teniente, E.: Enabling IoT ecosystems through
platform interoperability. IEEE Software (Software Engineering for the Internet of
Things) (2017, forthcoming)

10. EU Legislation: Directive 95/46/ec (1995). https://secure.edps.europa.eu/
EDPSWEB/edps/site/mySite/pid/74#data directive

11. EU Legislation: Directive 45/2001/ec (2001). https://secure.edps.europa.eu/
EDPSWEB/edps/site/mySite/pid/86#regulation

12. FTC Staff: Internet of Things: privacy and security in a connected world, Jan-
uary 2015. https://www.ftc.gov/system/files/documents/reports/federal-trade-
commission-staff-report-november-2013-workshop-entitled-internet-
things-privacy/150127iotrpt.pdf

13. IETF OAuth WG: OAuth 1. https://oauth.net/1/
14. IETF OAuth WG: OAuth 2.0. https://oauth.net/2/
15. Imamura, T., Dillaway, B., Simon, E.: XML encryption syntax and processing.

https://www.w3.org/TR/xmlenc-core/

4 http://www.w3.org/WoT/.

https://www.owasp.org/
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
https://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.bitcarrier.com/
http://www.fastprk.com/
https://allseenalliance.org/framework
https://www.w3.org/TR/xmldsig-core/
https://secure.edps.europa.eu/EDPSWEB/edps/site/mySite/pid/74#data_directive
https://secure.edps.europa.eu/EDPSWEB/edps/site/mySite/pid/74#data_directive
https://secure.edps.europa.eu/EDPSWEB/edps/site/mySite/pid/86#regulation
https://secure.edps.europa.eu/EDPSWEB/edps/site/mySite/pid/86#regulation
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://oauth.net/1/
https://oauth.net/2/
https://www.w3.org/TR/xmlenc-core/
http://www.w3.org/WoT/


122 J. Hernández-Serrano et al.

16. Jones, M., Bradley, J., Sakimura, N.: JSON Web Signature (JWS).
https://datatracker.ietf.org/doc/rfc7515/

17. Jones, M., Hildebrand, J.: JSON Web Encryption (JWE), https://datatracker.ietf.
org/doc/rfc7516/

18. Meucci, M., Muller, A.: OWASP testing guideline version 4. https://www.owasp.
org/index.php/OWASP Testing Project

19. OpenID Foundation: OpenID connect. http://openid.net/connect/
20. Organization for the Advancement of Structured Information Standards (OASIS):

Official Wiki of the OASIS security services (SAML) technical committee. https://
wiki.oasis-open.org/security/FrontPage

21. OWASP: Application security verification standard 3.0.1. https://www.owasp.org/
images/3/33/OWASP Application Security Verification Standard 3.0.1.pdf

22. OWASP Internet of Things Project: Principles of IoT security. https://www.owasp.
org/index.php/Principles of IoT Security

23. Raskin, A.: Privacy icons. https://www.flickr.com/photos/azaraskin/5304502420/
sizes/o/

24. Transport Metropolitans de Barcelona: TMB open data. https://www.tmb.cat/
en/web/tmb/about-tmb/open-data

https://datatracker.ietf.org/doc/rfc7515/
https://datatracker.ietf.org/doc/rfc7516/
https://datatracker.ietf.org/doc/rfc7516/
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
http://openid.net/connect/
https://wiki.oasis-open.org/security/FrontPage
https://wiki.oasis-open.org/security/FrontPage
https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
https://www.owasp.org/index.php/Principles_of_IoT_Security
https://www.owasp.org/index.php/Principles_of_IoT_Security
https://www.flickr.com/photos/azaraskin/5304502420/sizes/o/
https://www.flickr.com/photos/azaraskin/5304502420/sizes/o/
https://www.tmb.cat/en/web/tmb/about-tmb/open-data
https://www.tmb.cat/en/web/tmb/about-tmb/open-data


Attribute-Based Access Control Scheme
in Federated IoT Platforms

Savio Sciancalepore1,4(B), Micha�l Pilc2, Svenja Schröder3, Giuseppe Bianchi1,5,
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Abstract. The Internet of Things (IoT) introduced the possibility to
connect electronic things from everyday life to the Internet, while mak-
ing them ubiquitously available. With advanced IoT services, based on
a trusted federation among heterogeneous IoT platforms, new security
problems (including authentication and authorization) emerge. This con-
tribution aims at describing the main facets of the preliminary security
architecture envisaged in the context of the symbIoTe project, recently
launched by European Commission under the Horizon 2020 EU pro-
gram. Our approach features distributed and decoupled mechanisms for
authentication and authorization services in complex scenarios embrac-
ing heterogeneous and federated IoT platforms, by leveraging Attribute
Based Access Control and token-based authorization techniques.

Keywords: Internet of Things · Security mechanisms · Attribute-Based
Access Control · Interoperability framework · Macaroons · JSON Web
Token

1 Introduction

The term Internet of Things (IoT) was first used by Kevin Ashton in 1999 as
a name of a network of RFID devices used to monitor corporate supply chains
while simultaneously being connected to the Internet [1]. By 2004 the term had
been adopted by most scientific and technological journals like Scientific Amer-
ican [2]. Many proposals of IoT platforms like smart housing, smart stadium or
even a smart city have been presented since then [3,4]. In parallel, consortia of
c© Springer International Publishing AG 2017
I. Podnar Žarko et al. (Eds.): InterOSS-IoT 2016, LNCS 10218, pp. 123–138, 2017.
DOI: 10.1007/978-3-319-56877-5 8
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enterprises and international institutions started to develop protocols and com-
munication standards more suitable for different deployment cases (including
machine-to-machine, body area network, industrial telemetric network, and so
on). Now, with the incumbent explosion of the IoT in everyday life, heteroge-
neous application-specific platforms are emerging, often designed as standalone
solutions that hardly communicate with each other.

Unfortunately, the fragmentation of the IoT ecosystem resulted in poor coop-
eration between different IoT platforms in terms of resource sharing and reusabil-
ity of applications. In the face of the demand for interoperability between differ-
ent IoT platforms, several international projects like symbIoTe1, INTER-IoT2

and bIoTope3 were launched by European Commission under the Horizon 2020
EU program.

Security is an important cornerstone of all those projects which will impact
their success or failure in two aspects: usability and technical implementation.
Every solution therefore needs to protect the privacy of users and its resources
against unauthorized access and must still provide full functionality.

In distributed (but interoperable) IoT networks, for instance, the protec-
tion of resources against unauthorized accesses and the authentication of users
requires more sophisticated methods. Conventional computer networks adopt
the Role-Based Access Control (RBAC) paradigm. In RBAC a user is assigned a
role such as “administrator” or “ordinary user” that predetermines access rights
policies. Unlike RBAC, the Attribute-Based Access Control (ABAC) method of
authorization derived from distributed computing relies on the assignment of
so-called “attributes” to each entity in the system. An attribute may refer either
to a user or to a particular resource or to the surrounding environment. An
“attribute” is defined as a particular property, role or permission associated to
a component in the system. It is assigned after an authentication procedure by
the system administrator [5].

In this paper we present a security architecture that enables an ABAC-based
controlled access to IoT resources and easily supports a trusted resource sharing
among different IoT platforms. The proposed security architecture was developed
in the symbIoTe project, which aims at a symbiosis of smart objects across IoT
environments. The main contributions of the work are summarized below:

– we describe general requirements for a secure and standardized interoperability
framework;

– we identify components to be deployed in the system to manage security issues;
– we provide a baseline architecture for the authentication and authorization

among federated IoT platforms;
– we identify different scenarios that require customized security functionalities;
– we design interfaces and interactions among components in the aforementioned

architecture;

1 https://www.symbiote-h2020.eu.
2 http://www.inter-iot-project.eu.
3 http://biotope.cs.hut.fi.

https://www.symbiote-h2020.eu
http://www.inter-iot-project.eu
http://biotope.cs.hut.fi
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– we propose two possible technical solutions for the token format, that are
Macaroons and JSON Web Tokens (JWTs).

The rest of the paper is organized as in the following.
Section 2 presents security requirements for the IoT interoperability frame-

work and Sect. 3 outlines the state-of-the-art in distributed systems and IoT.
Section 4 describes the architecture of the proposed system with focus on secu-
rity aspects. Following the requirements and architecture, two possible token
solutions are presented and compared in Sect. 5. Our efforts, contributions and
future work are summarized in Sect. 6.

2 Requirements

In a network of federated IoT platforms it is necessary to provide security of
applications, components, platforms and resources at high level. Such complex
system must be protected against many security threats: opening doors by an
illegitimate user in a Smart Home environment, reading confidential data from
remote sensors connected to an industrial sensor network or launching evacuation
mechanism in Smart Stadium environment. Due to a huge number of low-power
devices, IoT networks are vulnerable to many types of attacks that can cause
substantial damages. First of all, every device that is in the radio range can
overhear the transmission between sensors, actuators and other devices, thus
each message must be protected by cryptographic protocols. Secondly, many IoT
devices are not susceptible against malicious updates of their firmware, which
can cause damages in a computer network the IoT platform is connected to for
instance, letting hackers break into e-mail account4. Finally, IoT platforms and
networks of IoT platforms are vulnerable to distributed denial-of-service (DDoS)
and man-in-the-middle (MITM) attacks. With nearly 20 billion devices that will
have been connected to the Internet by 2020 it is crucial to mitigate security
threats.

After a detailed analysis of use case sample scenarios, like Smart Home, we
defined security requirements of the system. At application layer it is neces-
sary for all devices to adhere to the rules defined within OWASP Internet of
Things Project5. One of the most important requirement concerning the system
is the provision of mutual authentication: this means that not only a user must
authenticate with an IoT platform but also an IoT Platform must authenticate
with a user. This can help to protect the network against impersonating whole
services or servers together with two factor authentication (password and PIN).
Authentication and authorization are implemented with cryptographic protocols
and primitives. Communication between all system entities must be encrypted
to prevent illegitimate access to resources and tampering the data. Another
important security mechanism is the validation of input data which is based on

4 http://iotsecurityconnection.com/posts/security-is-a-must-in-everyiot-device.
5 https://www.owasp.org/index.php/OWASP Internet of Things Project.

http://iotsecurityconnection.com/posts/security-is-a-must-in-everyiot-device
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
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sanitization mechanisms. The countermeasure consists in eliminating potentially
harmful characters from user input by means of removal, replacement and encod-
ing the characters. Another important security requirement in such a framework
is the implementation of access control through access policies. The users and
entities must be able to define constraints that limit the users that are allowed
to get access to resources, time constraints and other attribute. The major dif-
ficulty here is the capability of granting access to resources from one platform
while being a user logged in another IoT platform. To solve this problem, the sys-
tem must offer identification mechanisms for instance through tokens that store
attributes. Another feature that must be implemented in application layer are
mechanisms of establishing trust relationships and thus implicitly trust levels,
prior to applying security mechanisms for the first time. Information about this
must be stored in a secure data store i.e. by Public Key Infrastructure (PKI).
Finally, privacy at user level must be preserved. All data about sensors, entities
and other resources that are exposed by IoT platform must be anonymized, i.e.
devices must not expose details on manufacturer, firmware version and other
sensitive data. The details about sensor location must not be exposed unless its
owner agrees on it.

3 State of the Art

Guaranteeing user authentication and authorization in distributed computing
systems has been always regarded as a concern.

Authorization methods that rely on attributes were widely applied in cloud
computing systems, where security policies are supported by the authorization
mechanisms of the cloud [6]. More recently a commercial solution of security
architecture specifically designed for Supervisory Control and Data Acquisition
(SCADA) systems was presented in [7].

A decentralized network of federated IoT platforms like our approach resem-
bles the aforementioned scenarios. The core part of our design is a cloud
responsible for seamless connection between sensors, actuators and user applica-
tions placed in different IoT platforms. Trust management concerns about the
Internet-of-Things were summarized in [8].

A related work showing security threats in IoT was published in 2015 by
Sicari et al. [9].

In 2014, the concept of macaroon tokens for decentralized authorization in
the cloud was presented [10]. A different authorization method, widely adopted in
online purchasing, that is JWT, was described in [11]. Recently, a recommenda-
tion for authentication and authorization in IoT was issued in the Authentication
and Authorization for Constrained Environments (ACE) IETF Working Group
[12]. Scalability and adaptation of access control policies to the environment
conditions were proposed as a solution for the Internet of Things [13].



ABAC Scheme in Federated IoT Platforms 127

Security concerns were also addressed in EU-funded projects under the 7th
Framework Programme (FP7) like OpenIoT6, SMARTIE7, RERUM8, COM-
POSE9 and FI-WARE10.

To enable a baseline comparison, COMPOSE and OpenIoT are two FP7
projects in which authentication and authorization issues have been tackled
by using a centralized solution. In COMPOSE, the middleware is the owner
of all registered resources, and manages centrally the authentication of client
applications and the issuing of tokens. In OpenIoT, instead, same mechanisms
are offered by a Central Authorization and Authentication Service (CAS). This
architecture property allows those projects to apply the well-known OAuth 2.0
authorization framework [14]. In our case, instead, the ownership over resources
is left to each IoT platform, thus making impossible to apply the OAuth 2.0
paradigm. However, its decoupled logic have been used as a useful starting point
for the development of our solution. Finally, while most of the aforementioned
projects use ABAC for access control (SMARTIE, RERUM, FI-WARE), COM-
POSE uses RBAC and openIoT Lattice-Based Access Control (LBAC). While
JSON is being used for issuing tokens in some of the projects, none of them
so far considered using macaroons for tokens. However, none of them included
attributes directly in the token.

4 Architecture

The reference architecture considered in this contribution is depicted in Fig. 1. It
integrates many independent IoT platforms exposing heterogeneous resources.
Each IoT platform (thus, each available resource) is registered with a trusted
mediator (i.e., the interoperability framework’s core) which offers advanced
mechanisms for enabling platform interoperability and distributed resource
access. Moreover, there are applications willing to access the available resources.

To maximize interoperability among platforms our security framework has to
deal with different scenarios: applications can be registered to only the trusted
mediator, to only one IoT platform, or two (or more) IoT platforms federated
with the mediator entity. Therefore, the following target scenarios can be iden-
tified:

– Scenario #1: an application is registered with an IoT platform and it would
like to access resources exposed by the IoT platform where it is registered
to. This is the case of a typical cloud system, where applications, services
and resources are controlled by the same administrator, without the need to
interface with other platforms.

6 http://www.openiot.eu.
7 http://www.smartie-project.eu.
8 https://www.ict-rerum.eu.
9 http://www.compose-project.eu.

10 https://www.fiware.org.

http://www.openiot.eu
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http://www.compose-project.eu
https://www.fiware.org
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Fig. 1. System architecture.

– Scenario #2: an application is registered with the trusted mediator and
it would like to access resources exposed by a federated IoT platform. This
is the case of a third-party application developer, that implements special
applications to access services and resources exposed by a given IoT platform
controlled by a different administrator.

– Scenario #3: an application is registered with one or more IoT platforms
federated with the mediator and it would like to access resources exposed
elsewhere in the considered architecture. This is the case of a current sensor
in a smart home. To access the data, the system could require an application
to register both with Smart-Home and the Service Provider IoT platforms. We
refer to this scenario as the multi-domain access rights composition paradigm.

4.1 Main Security Rationale

The resource access is handled through the ABAC logic. ABAC is a well-known
technique for dealing with access control in distributed environments, which is
able to protect sensitive data, applications or services from unauthorized oper-
ations by means of efficient, simple and flexible access rules. It is based on
attributes and access policy concepts.

An attribute encodes a specific property, role or permission assigned to an
application. Attributes are stored within a digital object, namely a token, that
certifies the authenticity of both the issuer (i.e., a dedicated component of media-
tor or IoT platform) and the owner (i.e., the application), additionally to its time
validity. Both symmetric or asymmetric cryptography techniques can be used
to ensure authenticity and integrity of those tokens. To provide few examples,
Macaroons use symmetric keys to generate an Hash-based Message Authentica-
tion Code (HMAC) that assures integrity and authenticity of the token, while
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JWTs can be created both by using symmetric or asymmetric keys. A thorough
description of both solutions will be provided in Sect. 5.

An access policy, instead, enables a fine-grained access control mechanism. In
fact, it describes the combination of attributes needed to obtain the access to a
given resource. For each resource, a dedicated access policy can be defined. Then,
an application in possession of tokens storing a set of attributes matching the
aforementioned access policy can successfully obtain the access to the resource.
Otherwise, its access request will be denied.

It emerges that the token represents a key element in the resource access
mechanism. From the security perspective, it is generated during the authenti-
cation procedure and inspected and validated during the authorization proce-
dure. The solution described in this contribution natively offers the decoupling
between authentication and authorization processes. This means that authen-
tication and authorization involve different components and are independently
executed at different times. An application uses the authentication procedure to
authenticate itself within a given domain (like the trusted mediator or an IoT
platform federated with the mediator). In case of a successful authentication it
obtains a set of tokens storing its own attributes. Then, the collected attributes
can be used during the authorization procedure to obtain access to resources.
Since an application should not perform the whole authentication process for
each resource access, the designed approach allows also for enhanced flexibility
and scalability benefits for the whole system.

Note that when an application or component registered in a given IoT plat-
form or in the mediator would like to access resources exposed elsewhere, it
could be possible that the attributes that are assigned to it are not valid also
in the new domain. Therefore, an Attributes Mapping Function is needed to
manage the translation between attributes in different platforms. Thanks to the
described functionalities, at the same time the interoperability framework works
on top and extends the existing security architecture of a given IoT platform,
providing procedures for secure communications with foreign IoT platforms and
third-party applications.

4.2 Component Description

To practically implement the aforementioned security rationale in each target
scenario, the following logical components are introduced:

Platform Authentication and Authorization Manager (AAM): With
reference to Scenario #1 and Scenario #3, it handles the authentication
procedure for applications registered with the IoT platform. Therefore, it
releases home tokens storing attributes that describe properties, roles and/or
permissions assigned to the application within the platform where it is regis-
tered to. It also manages a Token Revocation List (TRL) storing the list of
tokens that have been revoked before their expiration. For this reason it may
be contacted by any component in the architecture during the check revoca-
tion procedure.
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With reference to Scenario #2 and Scenario #3, the Platform AAM is
in charge of (i) verifying the validity and the possible revocation of tokens
generated by the AAM component of the mediator or the AAM component
of another IoT platform, (ii) performing the attributes mapping functionality
and (iii) releasing a new set of tokens, namely foreign tokens, usable in the
local IoT platform.

Core AAM: With reference to Scenario #2, it handles the authentication
procedure for applications registered with the mediator. Therefore, it releases
core tokens storing attributes that describe properties, roles and/or permis-
sions assigned to the application at the mediator side. Moreover, similarly
to the Platform AAM, it manages the TRL and can be contacted by any
component in the architecture during the check revocation procedure.

Resource Access Proxy (RAP): With reference to Scenario #1, Sce-
nario #2 and Scenario #3, it holds the URI for obtaining all the resources
available in the specific IoT platform, along with the access control policy
associated to each of them. Therefore, it receives all the requests for access-
ing these resources along with the tokens containing the attributes of the
requester. Finally, it enforces the access control by checking if the provided
attributes satisfies the policy associated with the resource. In the positive
case it provides access to the resource itself, otherwise the access is denied.

Note that each AAM component manages authentication and authoriza-
tion functionalities only for users and applications that are registered within
its domain. In this sense, third-party applications that are not registered with
any reference IoT platform registers within the core AAM. This design choice
provides enhanced flexibility to the interoperability framework, because each
AAM does not need to store data related to all possible components in the sys-
tem. Instead each AAM stores only a limited amount of data. When foreign
components tries to access to local services, the reference AAM can interact
with the remote AAM to obtain the required information about the application.
Finally, we highlight that specific modules devoted to the detection and preven-
tion of system anomalies could be envisaged to work in strict connection with
the described modules. However, their design is left for future work.

4.3 Sequence Diagrams

The reference sequence diagrams for the scenarios introduced at the beginning of
the section will be provided in what follows. We suppose a previous registration
phase, in which each component in the system receives an asymmetric key pair
(private/public keys) and a public-key certificate in a trusted way. The public
key of the application is also included in the token, to guarantee authenticity
of the token itself and to provide the cryptographic material to be used in the
challenge-response procedure. Finally, end-to-end security in the communication
between described components is guaranteed thanks to the mandatory use of the
Transport Layer Security (TLS) protocol [15].

The sequence diagram describing the resource access in Scenario #1 is
depicted in Fig. 2. It is composed by two main steps:
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Fig. 2. An application registered in a given IoT platform wants to access resources
produced within its home IoT platform.

Step 1: Home authentication. At the beginning, the application performs
the login in its home platform by contacting the home AAM and receiving
home tokens.

Step 2: Resource access authorization. The application contacts the RAP
and delivers the home tokens retrieved in the previous step. The RAP initi-
ates the challenge-response mechanism to verify that the application is the
real owner of the tokens. In the case the challenge-response mechanism is
successfully completed, the RAP verifies that tokens are valid and that they
have not been revoked by contacting its reference platform AAM component.
Then it checks the provided attributes against the access policy associated
with the requested resource: if the attributes supplied by the applications are
enough to satisfy the access policy associated with the resource (according to
the ABAC logic) the RAP grants the access to the resource. Otherwise access
is denied.

The sequence diagram describing the resource access in Scenario #2 is
depicted in Fig. 3. It is composed by three main steps:

Step 1: Core authentication. At the beginning, the application performs the
login with the mediator by contacting the core AAM and receiving core
tokens.

Step 2: Foreign authentication. The application forwards core tokens to the
AAM component of the foreign platform. The AAM component of the for-
eign platform initiates the challenge-response mechanism to verify that the
application is the real owner of the tokens, thus preventing both replay and
impersonation attacks. In the case the challenge-response mechanism is suc-
cessfully completed, the AAM component of the foreign platform validates the
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Fig. 3. An application registered in the mediator space wants to access resources in an
IoT platform.

tokens, verifies that they have not been revoked by contacting the AAM com-
ponent of the mediator and performs the attribute mapping function. Then,
it generates a new set of foreign tokens and sends them to the application.

Step 3: Resource access authorization. The application contacts the RAP
and delivers it the foreign tokens retrieved in the previous step. The RAP
initiates the challenge-response mechanism to verify that the application is
the real owner of the tokens. In the case the challenge-response mechanism is
successfully completed, the RAP verifies that tokens are valid and that they
have not been revoked by contacting its reference platform AAM component.
Then it checks the provided attributes against the access policy associated
to the requested resource: if the attributes supplied by the applications are
enough to satisfy the access policy associated to the resource (according to
the ABAC logic) the RAP grants the access to the resource. Otherwise the
access is denied.

The sequence diagrams describing the resource access in Scenario #3, refer-
ring to as multi-domain access rights composition, are depicted in Fig. 4. Without
loss of generality, it is assumed that the application is registered in platforms
IoT A and IoT B and would like to gain access to a resource available in the
platform IoT C. Also in this case, the procedure has three main steps:

Step 1: Home authentications. At the beginning the application performs
the login in the IoT platforms where it is registered to (i.e., IoT A and
IoT B). To this end it contacts the AAM component of each platforms for
retrieving home tokens.
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Step 2: Foreign authentication. The application combines the home tokens
and forwards them to the AAM component of the foreign platform IoT C.
The AAM component of the foreign platform initiates the challenge-response
mechanism to verify that the application is the real owner of the tokens, thus
preventing both replay and impersonation attacks. In the case the challenge-
response mechanism is successfully completed, the AAM component of the
foreign platform validates the tokens, verifies that they have not been revoked
by contacting AAM components of the home platforms (i.e., IoT A and
IoT B) and performs the attribute mapping function. Then, it generates a
new set of foreign tokens and sends them to the application.

Step 3: Resource access authorization. The application contacts the RAP
and delivers the foreign tokens retrieved at the previous step. The RAP ini-
tiates the challenge-response mechanism to verify that the application is the
real owner of the tokens. In the case the challenge-response mechanism is suc-
cessfully completed, the RAP verifies that the tokens are valid and that they
have not been revoked by contacting its reference platform AAM component.
Then it checks the provided attributes against the access policy associated
with the requested resource: if the attributes supplied by the applications are
sufficient to satisfy the access policy associated to the resource (according
to the ABAC logic) the RAP grants access to the resource. Otherwise, the
access is denied.

Fig. 4. Multi-domain access rights composition.
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5 Planned Implementation

The implementation of the security architecture described in Sect. 4 requires
the selection of a suitable token format. Without loss of generality a token is a
digital object used as a container for security-related information. It serves for
authentication and/or authorization purposes and generally appears as a list of
elements. Each element contains an assertion that further specifies properties
assigned to the owner of the token. Each token must contain an explicit expira-
tion date, indicating the date until the token can be considered valid. Moreover,
the token also contains at the end an element that certifies its authenticity and
integrity. Depending on the chosen solution, validating a token could require
different procedures.

The following discussion describes two promising technical solutions, can-
didates for the implementation of tokens in our approach. It does not provide
only a comparison between the two approaches, but it illustrates also, specifi-
cally in Sect. 5.3, how they can be modified in order to fit within the proposed
architecture.

During implementation of the framework itself one or a combination of the
following technologies will be used. We aim at a flexible solution where platforms,
applications and other use cases can decide which of the following technologies
they want to use.

5.1 Macaroons

Macaroons are a new kind of authorization credential developed by Google [10].
As bearer credentials, they serve a similar purpose as cookies in World Wide
Web, but they are more flexible and provide better security. Macaroons are
based on a construction that uses nested, chained MACs (e.g., HMAC) in a
manner that is highly efficient, easy to deploy and widely applicable. They allow
authority delegation between bearers with attenuation and contextual confine-
ment. Each field embedded within macaroons structure, i.e. the caveat, restricts
both the macaroons’ authority and the context in which it may be used (e.g. by
limiting the permitted actions and requiring the bearer to connect from a certain
IP address and to present additional evidence such as a third-party signature).
Macaroon caveats are plain-text readable. Macaroons also contain a list of AND
conditions. Its bearer is authorized to perform an operation AS LONG AS con-
dition1, condition2, ..., conditionN hold true. The main (root) macaroon which
allows for everything gets successively attenuated with those conditions. Each of
them is signed with an HMAC function.

By considering the reference architecture shown in Fig. 1, three possible
tokens can be introduced: root macaroons, platform macaroons, and application
macaroons. The mediator creates a root macaroon by calculating the HMAC
function of a random nonce and its secret key. Note that the output of the HMAC
function must be shared among AAMs of federated platforms for verifying the
authenticity of tokens received during the resource access procedure. Starting
from the root macaroon the mediator also generates platforms macaroons. The
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platform macaroons are signed by the HMAC function with the key being the
previously calculated HMAC value. Then, each platform can autonomously gen-
erate application macaroons by following the same process.

An application, after obtaining the macaroon from the AAM component of
its platform, may further attenuate it and therefore authorize others to perform
actions in its name. For example a Smart Home System mints its owner a full
access token. The owner can go on vacation and want the neighbor next door to
be able to operate the windows and doors but not the garage. The owner can
do so by attenuating his/her own token and handing it to the neighbor.

5.2 JSON Web Tokens

JWT is an open industry standard widely used in today’s Internet to deal with
authentication and authorization issues [11]. It contains a set of claims. A claim
is a specific certified statements related both to the token itself or to the entity
that is using it. Typically, these claims are encoded in the JavaScript Object
Notation (JSON) format, thus easily allowing system interoperability. A claim
is identified with a specific name: it is possible to distinguish between Regis-
tered Claim Names, that are names defined and standardized in the reference
document and Private Claim Names, that represent extensions that a developer
could choose for his/her own system.

The cryptographic force of the JWT resides in the sign field, stored at the end
of the token. It can be generated through symmetric or asymmetric cryptography
techniques and allows to verify the authenticity of the token, i.e. generation by
a trusted entity, as well as integrity, in the sense that no one could modify its
content without invalidating it.

Each JWT contains a header that provides information about the type of the
token and the algorithm used to build the sign of the token. It contains also a
body, encoding a set of claims for this token, and finally - a sign containing the
cryptographic validation of the token and generated as stated in the header.

Registered Claim Names carried in the body of the JWT include iss, that
uniquely identifies the entity that issued the token, sub, which uniquely identifies
the entity for which this token has been released (it is a key field when a token
needs to be used also for authentication purposes), exp, indicating the expiration
time, after which this token should not be used and processed by any entity in
the system; nbf, that identifies the time in which this token becomes effectively
valid and can be processed by any entity in the system, iat, identifying uniquely
the time in which this token has been created and, finally, jti, that is the unique
identifier of the token.

JWT fits perfectly within the reference architecture described in Sect. 4. From
a cryptographic perspective, the only requirement for its adoption is the deploy-
ment of a public-key infrastructure, which issues a private/public key pair to
each entity in the system.

AAMs uses their private keys to generate and sign tokens. Any entity in the
system that receives a token could easily verify its authenticity by gathering the
public key of the issuer of the token (specified in the token itself).
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Important features such as the support for an expiration date are integrated
by JWT thanks to the definition of the exp claim.

Also, each token can be easily associated to a given entity in the system
through the sub claim. More in detail, the public key of the owner of the token can
be embedded in this claim. This can be used in the challenge-response procedure
described in Sect. 4 to prove the possession of the respective private key and
verify that the application using the token is effectively the entity for which the
token has been generated. This procedure avoids replay attacks.

Finally, the JWT can be easily extended to support the carrying of attributes
associated to the ABAC logic, thanks to the possibility to integrate customized
Private Claims.

5.3 Usage of Tokens in Our Proposal

To conclude, the comparison between the user macaroon and the user JWT, as
they can be modified to be included in the described architecture, is reported in
Fig. 5.

(a) (b)

Fig. 5. Details of the content of (a) Macaroons and (b) JWT tokens for the designed
architecture.

The application macaroon is shown in Fig. 5(a). It has a hierarchical struc-
ture. The nonce is used as a unique identifier of the token. The second, third and
fourth caveats are related to the AAM of the platform in which the application
is registered to. In particular, the ID of the AAM is signed through the private
key of the mediator entity (PVroot). The remaining lines are dedicated to the
application. They contain the list of attributes assigned to the application, its
public key certificate and, finally, the sign on the user ID by the AAM that
issued the token, through its private key (PViot−a). The last line is needed to
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assure that the AAM is the unique component able to sign the token. Finally,
the last caveat is the chained HMAC of all the caveats in the token, performed
starting from the output of the HMAC function of the root macaroon.

The application JWT is shown in Fig. 5(b). Also in this case we can identify
the part related to the issuer of the token, certified through the sign with the
private key (PVroot), and the part related to the owner of the token. The private
claim att is introduced to encode the information about the list of attributes
possessed by the application. Finally, the sign of the whole token is performed
through the private key of the issuer (PViot−a) without the need of a symmetric
shared secret.

Note that both token types have a limited time validity. After the expiration
of that date, the token must be renewed through a new authentication procedure.

The evaluation of pros and cons of macaroons tokens and JWTs as well as
their suitability for the proposed scenario is left for future work.

6 Conclusions and Future Activities

In this paper we presented the baseline security architecture for an interoper-
ability framework among IoT platforms, developed within the H2020 EU project
symbIoTe. First, we described our general system requirements derived from
use cases and requirements. We illustrated our approach for a standardized IoT
architecture with the focus on security. Current plans for implementation foresee
the usage of the ABAC paradigm, through Macaroons or JWT tokens. However,
this paper so far provides a basic architecture and a proposal for some technical
solutions to realize a security framework. Future work will aim first at imple-
menting the proposed security architecture within the H2020 symbIoTe project,
and conducting a deep performance evaluation of the two approaches described
for tokens. Also, a solution for detecting anomalies in the system will be devel-
oped and device-level security will be carefully considered. Our main action
point for future work, however, will be on the implementation of the aforemen-
tioned secure interoperability framework (and thus validation of the architecture
concept).
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Abstract. Internet of Things is a very active research area with great commer‐
cialisation potential. The number of IoT platforms is already exceeding 300 and
still growing. However, performance evaluation and benchmarking of IoT plat‐
forms are still in their infancy. As a step towards developing a performance
benchmarking approach for IoT platforms, this paper analyses and compares a
number of popular IoT platforms from data ingestion and storage capability
perspectives. In order to test the proposed approach, we use the widely used open
source IoT platform, OpenIoT. The results of the experiments and the lessons
learnt are presented and discussed. While having a great research promise and
pioneering contribution to semantic interoperability of IoT silos, the experimental
results indicate OpenIoT platform needs more development effort to be ready for
any substantial deployment in commercial IoT applications.

Keywords: Internet of Things (IoT) · Platform · Data management · Storage ·
Ingestion · Evaluation · Benchmarking

1 Introduction

According to the Gartner’s report [1] the market of Internet of Things (IoT) platforms
has been continuously emerging. Gartner defines an IoT platform as “a software suite
or a Platform as a Service (PaaS) cloud offering that monitors, and may manage and
control, various types of endpoints, often via applications end users build on the plat‐
form. It facilitates operations involving IoT endpoints and integration with enterprise
resources.” The capabilities of a typical IoT platform include device management, data
processing, storage and management, event processing, instruments for application
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development, security, device interoperability and interfaces for administrators, devel‐
opers and users [1]. Existing platforms seriously vary in their prices, functionality, limits
and performance.

Performance evaluation of an IoT Platform [2] is a challenging task due to the variety
of systems and their components. The discussion of developing a benchmarking system
for IoT platforms has started recently, but the process is still in its infancy. However,
developers and companies have an urgent need to compare solutions in order to under‐
stand development trends and making an appropriate choice while selecting an IoT
platform. Data management infrastructure is one of the core components of an IoT plat‐
form and it has a significant influence on the overall performance. This makes the
problem of benchmarking the process of data ingestion, storage and retrieval important.

In this paper, we analyse what architectural components are used across different
IoT platforms and how they influence the overall performance. In particular, we are
interested in the ingestion and storage components of IoT platforms and propose a set
of IoT platform benchmarking metrics. Our analysis show, the performance of an IoT
system’s storage components depend not only on the underling storage technology, but
also on the ingestion pipeline, messaging queue and many other components of the
platform. Additionally, decisions about how to store, cache and access different types
of data have significant influence on the overall performance. We use the proposed
benchmarking metrics to run a series of experiments to evaluate and test the ingestion
and storage performance of the widely used open source platform - OpenIoT. Finally,
we provide a detailed analysis of the experimental outcomes discussing OpenIoT’s data
ingestion and storage performance.

The paper is organised in the following way: in Sect. 2, we provide information about
approaches to data storage taken by different IoT platforms. Section 3 describes how
the OpenIoT platform manages ingestion, storage and retrieval of data. This description
if followed by a series of tests, which identify limits and bottlenecks in current imple‐
mentation of OpenIoT. Section 4 contains discussion on IoT platforms benchmarking
and Sect. 5 concludes the paper and defines directions for future work.

2 Overview of Data Management in Existing IoT Platforms

In this section, we analyse how different IoT platforms deal with data management
(storage) issues. We have grouped the platforms into two categories: commercial IoT
platforms and academy/research projects. This division is caused by seriously different
approaches applied by these two groups. The difference in targets and approaches makes
it hard to compare projects from different groups, but we believe that best practices from
one group can be applied in another for improving the functionality and performance.

Avoiding technologies that were not seriously tested in real-world applications,
focusing on security, performance and cost efficiency are essential features of all
commercial solutions. These solutions are often cloud-based and use a Software as a
Service (SaaS) or PaaS model. Their main target is to allow customers straightforward
and rapid development of applications that will connect companies’ “things” together.
These solutions provide interoperability regarding various sensors and protocols, but
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the problem of horizontal data exchange between companies, state organizations, and
individuals is not addressed. Research projects, on the other hand, provide open-source
software that can be deployed on-premises and maintained by organizations themselves.
These projects often focus on semantic and horizontal interoperability and while
providing cutting edge functionality in some aspects can lack functionally or perform‐
ance in others.

In this paper, we are focusing on data management approaches, for instance, how
data is ingested, stored, indexed, cached and retrieved by the IoT platform.

2.1 Commercial IoT Platforms

Predix [3] is a PaaS IoT platform developed by General Electric and aiming to provide
services for data collection and processing in the area of Industrial Internet of Things.
Predix has a catalogue of provided services that includes a set of tools for data manage‐
ment. Predix is not trying to produce a one-fits-all solution and propose to use one or
several services best suited for the current task. These services are (i) Asset Data, (ii)
Time Series, (iii) SQL database, (iv) Blobstore, and (v) Key-Value store. RabbitMQ –
a message queue based on AMQP protocol, organizes communication of components.
Asset data is a set of models used to describe machines and instances, which are created
basing on these models. Time Series service provides means for efficient ingestion,
distribution and storage of sensory data, including indexing for making fast queries.
Predix uses a graph database for its asset service to store data as RDF triples. A special
Graph Expression Language (GEL) is used for data retrieval [4]. SQL database service
is built on top of well-known open-source PostgreSQL database. Blobstore service
provides means for storing and retrieving any amounts of binary data and ensures high
availability and horizontal scalability. Key-Value store service is based on open-source
Redis project and serves as an advanced cache store. Predix uses a hybrid (or polyglot
persistence) storage solution, but all the responsibilities on choosing the right options
are left to the application developers.

Data services is a promising feature of the platform that is in the beta stage. There
are only two services available: Places data services and Seismic data services. This is
a remarkable step to horizontal IoT solutions. The platform provides easily accessible
data from external data sources or sensors to application developers making it possible
to adapt industrial automation solutions to detected earthquakes or other accidents.

Tibbo AggreGate [5] is an example of a commercial non-cloud IoT platform. All
data is logically separated into two groups: (i) configuration and (ii) events. This
approach helps in providing flexibility of data storage in case of adding new business
objects. Configuration data can be stored in almost any enterprise-grade relational data‐
base that supports JDBC connectivity, key-value database or in a file-based storage. In
case of a relational database the AggreGate platform includes an embedded database or
a preconfigured version of MySQL. AggreGate provides means for database clustering
for achieving high availability. Key-value integrated storage is recommended for
scenarios, which need clustering together with a high update rate. File-based storage can
be used in environments with limited resources. Event data can be stored in a relational
database, NoSQL database or in-memory storage. RDBMS puts some limits on insertion
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performance. NoSQL database provides horizontal scalability, high insertion rates and
failover facilities. Memory storage is proposed for use in some of the embedded instal‐
lations. Approximate estimated insertion rates for a relational database are about 500–
2000 events per second and 10–20 thousand events per second for a NoSQL database
on a standard server node [6]. AggreGate also provides functionality for building a
failover cluster and achieving high availability.

ThingWorx [7] is a cloud-based platform enabling developers to build solutions for
IoT. It provides three main ways for data storage: (i) Data Tables, (ii) Streams and (iii)
Value streams. ThingWorx also uses concepts of an InfoTable and a DataShape.

The InfoTable is a JSON document in which all the objects share the same properties.
InfoTables are fast in-memory objects and are recommended for storing temporary data.
The DataShape specifies what property names are required in an object and what types
they have. This means a DataShape represents a schema for defining a “thing”.

The concept of a DataTable in ThingWorx is similar to a table in relational databases,
but columns are defined by a DataShape. A DataTable supports the creation of indexes
upon its properties. It is recommended to build an index for each common request for
achieving high performance and to use DataTables when it is expected to have not more
than 100000 rows in it. Storage of time series data is facilitated by streams. A stream
consists of a timestamp and additional properties defined by a DataShape. For dealing
with things-driven models, it is recommended to use Value Streams, which have some
differences with ordinary Streams. Value Streams provide persistence for associated
property and return only property values on request. On the contrary, a stream returns
a whole row when querying a single column.

Amazon AWS IoT is a cloud based platform that makes use of all the impressive
technological stack provided by Amazon. Communication between devices and cloud
is organized by a Device Gateway which supports the publish/subscribe approach. The
Rule Engine provides means for configuring rules for filtering and transforming
incoming events. This configuration includes routing of data to various supported data‐
bases, messaging queues, AWS Lambda and other services. Registration and monitoring
of connected devices can be made via Device Registry. Configuration of processing
rules for the device is performed in a JSON document consisting of an SQL statement
and an action list.

Amazon’s IoT solution uses storage technologies provided by Amazon Storage
Services. Full description of its capabilities is not possible in this paper due to space
limitations. Amazon Storage Services focus on providing scalability, availability and
elasticity for mostly well-known storage technologies and promote a so-called NoDBA
approach, which reduces operational costs for customers. The variety of provided
storage services includes Amazon DynamoDB, Amazon RDS, ElastiCache and Elas‐
ticSearch. Amazon DynamoDB is a cloud managed NoSQL key-value store, but a
version for on-premises installations is also available. Amazon Relational Database
Service (Amazon RDS) can use any of the six most popular relational databases.
Amazon’s in-memory data store cloud service is represented by so-called “ElastiCache”.
This service can significantly improve system performance by reducing the number of
slow disk reads. ElastiCache is based on two popular open-source in-memory engines:
Redis as an in-memory data store and Memcached as a system for object caching. For
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such use cases as device-log analysis and real-time monitoring of applications Amazon
recommends the ElasticSearch service that is based on a famous cognominal search
engine. Amazon IoT platform uses a messaging system based on Kafka-based named
“AWS Kinesis” for event-broadcasting. Capturing and loading streaming data is
performed by Kinesis Firehose and analytical processing of streaming data is done by
Kinesis Analytics [8, 9]. Amazon AWS IoT introduces the “thing shadow” or “device
shadow” concept. A special “Thing Shadows” service is responsible for managing fast
and easy access to a JSON document with a current state of device that was last reported
to the platform.

IBM Watson IoT platform relies on the IBM Cloudant database. It is a cloud fully
managed document-oriented database sharing many common features with Apache
CouchDB. IBM recognizes the need for flexible storage solutions, but by now their
solution is mostly document-oriented. Describing plans for future, IBM’s specialists
state that variety of tasks causes different requirements to latency, scalability, cost and
performance, raising the necessity for different storage solutions [10]. By now, data from
devices can be stored in two formats. If the API receives a valid JSON, it is stored in
the same way. In another case, the data is saved as a base64 encoded string inside the
payload field of a JSON document. Recently IBM introduced a feature named “Last
Value Cache”. As the most common request to an IoT device is about its current state,
it makes sense to provide a way for answering such requests in the fastest possible way.
These cached values are stored for 12 months and can be retrieved using the standard
API.

2.2 Other Platforms

Many other PaaS platforms including Carriots, Xively, Zatar, Realtime.io and Flow‐
things.io provide only APIs for uploading or downloading data and do not provide
information about their backend and storage architecture.

2.3 Academic/Research Projects

The FIWARE community is aiming to create an open ecosystem that will enable devel‐
opment of Smart Applications. This ecosystem is based on royalty-free standards and
covers a wide range of tasks. Software for the category of tasks is grouped into a module
called “generic enabler” (GE) [11].

FIWARE provides several generic enablers for dealing with various types of storage.
The central module of FIWARE ecosystem is the Orion Context Broker. This component
uses a connector called “Cygnus” that is responsible for persisting or retrieving data
from a specific storage. The current release of Cygnus can communicate with HDFS,
MySQL, PostgreSQL, CKAN, MongoDB, Comet, Kafka, DynamoDB and CartoDB.

Time series data in FIWARE ecosystem is managed by a component called Comet
or Short Term History (STH). This component deals with the storage, retrieval, and
removal of raw time series data as well as aggregated context information. This compo‐
nent relies on MongoDB as the datastore.
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Semantic Application Support (SAS) GE provides the possibility for developing
applications based on Semantic-web technological stack. In [12] Ramparany et al.
suggest that OWL and other Semantic technologies can help in solving such problems
as (i) Semantic data interoperability, (ii) data integration and abstraction, (iii) data
discovery, and (iv) reasoning. FIWARE developers admit that despite large investments
and development of markup and query languages the progress with penetration of
Semantic web technologies into the market is still too slow. They identify several
reasons, which include both technical and commercial problems. SAS GE tries to solve
technical and engineering problems, namely (i) scalability, (ii) performance, (iii) distri‐
bution (iv) security, (v) lack of methodologies and best practices, and (iv) lack of devel‐
opment instruments. The GE consists of a GUI client and server-side components that
are responsible for storing and managing ontologies. Server-side components provide
scalable and secure ways to publish and retrieve metadata as well as instruments for
managing the infrastructure and data.

The data layer of SAS GE consists of relational database that stores information
about ontology documents, and a Knowledge Base that supports OWL-2RL. By now,
there is no knowledge base-independent solution and the knowledge base is imple‐
mented as a combination of Sesame and OWLIM [13].

OpenIoT is an open source IoT platform, which includes a set of novel functional‐
ities [14], namely:

• Incorporation of IoT data and applications inside cloud computing infrastructures;
• Providing a secure access to semantically interoperable applications;
• Enabling and supporting discovery of sensors and data at run-time;
• Supporting mobile sensors and corresponding QoS parameters.

In OpenIoT the registration, data acquisition and deployment of sensors are managed
by X-GSN. X-GSN is an extension of the GSN [15], which is responsible for semanti‐
cally annotating both sensor data and metadata. Virtual sensor is the main fundamental
concept in X-GSN, which is capable of representing any abstract entity (e.g. physical
devices) that collects any parameters. In order to make a virtual sensor accessible from
the rest of the OpenIoT platform, each virtual sensor needs to register within the Linked
Sensor Middleware (LSM). LSM is another core component in OpenIoT that is respon‐
sible for handling the sensor data delivery chain. In this regard, LSM transforms and
annotates (based on the supported ontologies) the data coming from virtual sensors
(through X-GSN) into a Linked Data representation i.e. RDF, and stores it in the data‐
base. The OpenIoT platform relies on OpenLink Virtuoso (it is also known as Virtuoso
Universal Server) as the main database. OpenLink Virtuoso is a hybrid database engine
that combines the functionality of a traditional RDBMS, ORDBMS, virtual database,
RDF, XML, free-text, web application server and file server functionality in a single
system [16]. According to information on the website, Virtuoso can handle the insert
rate of 36 K triples per second on a single 4-core machine. The architecture of OpenIoT
data platform is illustrated in Fig. 1.
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Fig. 1. OpenIoT data platform architecture

2.4 Discussion

After analysing the data storage capabilities of several commercial and research IoT
platforms, we have identified that such platforms mostly tend not to limit developers in
their choice of a data storage format. Some IoT platforms introduce their own storage
technologies; others offer well-known open source or commercial solutions. Mostly
these platforms offer the following storage types: (i) in-memory, (ii) document-oriented,
(iii) column-oriented, (iv) relational, and (v) RDF. Organization of blob storage is
performed using OpenStack Swift. Scalability and high performance of message
queueing are achieved by using technologies like Apache Kafka, RabbitMQ, or
ZeroMQ. For Big Data processing IoT platforms usually rely on Apache Hadoop or
Apache Spark. Research prototypes often use RDF or OWL, but this trend is still mostly
avoided by commercial companies due to the issues with scalability and low industry
penetration of Semantic Web technologies.

It is also worth noticing that some of the discussed platforms are developing and
introducing new features at a very high pace so that we can expect serious changes in
the market in the nearest future. Table 1 displays key features of several popular IoT
platforms from an IoT data storage angle. It is easy to notice that several platforms rely
on multiple technologies for data ingestion and storage instead of using one approach
for all types of data.
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Table 1. Underlying storage technologies of IoT platforms

Based on the study of data management techniques and tools presented earlier, in
Sect. 3, we present the benchmarking metrics used to evaluate the performance of IoT
platforms from the perspective of storage and data ingestion. We use the OpenIoT plat‐
form in order to conduct benchmarking studies using the identified metrics.

3 Benchmarking Metrics and Evaluation of OpenIoT

In this section, we discuss the evaluation of data ingestion and storage capability in the
OpenIoT platform. In particular, we propose a set of benchmarking metrics that are then
used in the experimental evaluation of the OpenIoT platform. We refer to the term
“ingestion” to describe the whole process of loading data to the system through a set of
components. We use the term “injection” for describing the generation of an individual
sensor measurement.

3.1 Benchmarking Metrics

Two different metrics are proposed in order to benchmark the performance of the IoT
platform. These metrics are Ingest per Second (IPS), and Resource usage.
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• Ingest per second is defined as the total number of ingested data divided by the
injection duration. For each experiment, we calculate the number of total ingested
data points and divide it by injection duration, which is 60 s. This metric determines
the performance of the OpenIoT platforms’ data ingestion capability.

• Resource usage shows the amount of resources (CPU usage, and Memory) consumed
by the IoT platform during the execution of each experiment. Resource usage metrics
are collected every five seconds when the data injection starts until it ends. As we
mentioned in Sect. 2.3, OpenIoT data ingestion pipeline consists of three main
components, X-GSN, LSM, and Virtuoso. Therefore, in this paper, we are only
interested in the resource usage of these three components. However, since LSM runs
on JBoss, we logged and represented the JBoss resource usage instead of LSM.

3.2 Experiments Settings

To evaluate the performance of data ingestion, a large set of sensors with different
injection rates is needed. However, due to limitations in accessing resources (sensors)
we used synthesized sensor data streams to perform the large-scale evaluation.

In OpenIoT, the process of generating virtual sensors consists of two main steps,
defining sensor types, which will be stored as an extension to the OpenIoT ontology in
the LSM server, and creating new instances of the sensor types. For the purpose of this
study, we are only interested in the performance evaluation of data ingestion. Therefore,
increasing the number of sensor types does not affect the results of our experiments as
the type and exact value of the ingested data points does not have a considerable impact
on IPS. Accordingly, we predefined only one sensor type and used it for all the experi‐
ments. This sensor type is a weather station that observes temperature and humidity. For
creating a virtual sensor, two files with the same name (sensor name) are needed to be
generated inside the X-GSN virtual-sensor folder. These files are Virtual Sensor
Description file (VSD), and Virtual Sensor Metadata file (VSM). The VSM is used for
associating metadata with a virtual sensor. On the other hand, VSD is an XML file that
contains the selection and the parametrization of the virtual sensor and the corresponding
wrapper, which is responsible for data acquisition. Based on the requirements of our
experiments, we implemented a new time driven wrapper called Simulation-Wrapper.
The Simulation-Wrapper first retrieves the injection rate, injection duration, and sensor
output format from the VSD file. Then it periodically (interval is based on the injection
rate) randomly generates the sensor’s data output and sends it to the LSM server for the
injection. In all conducted experiments, the injection duration is set to one minute. We
implemented a sensor simulator for generating and registering virtual sensors.

To evaluate the performance of data injection in OpenIoT platform, 121 experiments
have been conducted. In these experiments, we have studied the impact of increasing
the data ingestion rate by (a) varying the number of sensors while the injection rate is
fixed; and (b) varying the injection rate while the number of sensors is fixed. First, we
have fixed the number of sensors to 1 and increase the injection rate from 1 to 100 (with
the increment step set to 10). Then we repeat the experiments ten more times by
increasing the number of sensors by 5 in each iteration. This procedure is shown in the
following pseudocode:
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Furthermore, to get more precise results and eliminate unwanted factors that could
affect the experiments results, we restart the Virtuoso, JBoss, and X-GSN servers before
starting each experiment. The detailed steps of the designed experiments are depicted
in Fig. 2.

Fig. 2. Evaluation sequence diagram

3.3 Experimentation Environment

The OpenIoT platform is deployed on the JBoss application server hosted on a
VirtualBox. The experiments were carried out in the following environment: MacBook
Pro (Mid 2015), Oracle VirtualBox 5.1.4, Intel i7-4770HQ CPU @ 2.20 GHz × 4 cores,
8 GB 1600 MHz DDR3 memory, 40 GB Flash Storage, Ubuntu 16.04 (64-bit) OS.
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3.4 Experimentation Results

In this section, we report the results of each experiment for the synthetic dataset
regarding ingest per second (IPS), and Resource usage

Ingest per Second. Figure 3 shows the IPS versus injection rate where the number of
sensors is fixed to 1, 5, 10, 15, and 20. This graph indicates that when the injection rate
is less than 30, the increment of injection rate has a direct impact on IPS. In contrast, a
sharp drop can be observed when the injection rate is between 30 and 40 injections per
second. Moreover, when the injection rate increases to more than 50, the IPS almost
remains constant. Overall, the data indicates that increasing the injection rate improves
the IPS until the platform reaches its maximum capacity, where the injection rate is equal
to 30, and from that point, IPS immediately drops (due to the extra overhead) and then
remains unchanged with further increase of injection rate.
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Fig. 3. Data ingestion performance with different injection rates

Similar data is represented in Fig. 4. This figure shows the IPS versus number of
sensors where the injection interval is fixed to 1, 10, 20, 30, and 40 injections per second.
While we expect to observe an increase in IPS as a result of raising the sensors number,
at some points, potentially when the sensors number goes up, we observe a decrease in
IPS. We can see that when the number of sensors is 5, the IPS reaches its maximum
(49.6 ingestion per second). This is followed by a gradual decline in IPS when the
number of sensors is between 5 and 20. Then the IPS almost remain unchanged for the
rest of the trial.

0 
10 
20 
30 
40 
50 

1 5 10 15 20 25 30 35 40 45 50 

IP
S 

Number of Sensors 

(injec�ons per second) 1 10 20 30 40 

Fig. 4. Data ingestion performance with varying number of sensors
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Based on the represented data, we can conclude that OpenIoT does not perform
efficiently when the total injection rate increases to more than 50 IPS.

The last chart we want to discuss in this section is represented in Fig. 5. This chart
shows how the IPS ratio changed among all the conducted experiments and has two
graphs; the blue graph (single line) shows the actual IPS and the red graph (double line)
represents the expected IPS rate. Because the IPS rate is positively skewed, we used a
logarithmic transformation (base 10) to normalize the data. The labels on the horizontal
axis represent the injection ratio and between each two horizontal gridlines, the number
of sensors increases from 1 to 50 (with increment step set to 5). To estimate the expected
IPS for each experiment, the following equation is used:
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Fig. 5. Data ingestion performance for different experiment settings described in Sect. 3.2 (Color
figure online)

Expected IPS#Sensors=n

Iinjection rate=m
= m ∗ n

As the double line graph shows, we expect IPS to increase rapidly in each section
(between horizontal gridlines) while the number of sensors increasing. Furthermore, we
expect an overall increase in IPS since the injection ratio grows. However, the actual
value appear to be different from expected. In the first section, when the injection rate
is 1, the actual value is almost same as the expected value in very first points. However,
when the number of sensors get larger, the gap between actual and expected value starts
growing. In the case of second section (inject per second = 10), IPS first increases (when
number of sensors is between 1 and 5) and then start decreasing. This pattern repeats in
the rest of the trial and the overall IPS ratio remains steady while the distance between
the actual and expected value increase dramatically.

Resource Usage. Figure 6 shows the memory usage among all the conducted experi‐
ments and has three graphs: the blue graph (dotted) shows the Virtuoso memory usage,
the red graph (single line) represents the X-GSN memory usage, and the green graph
(double line) indicates the JBoss memory usage. The labels on the horizontal axis repre‐
sent the injection ratio and between each two horizontal gridlines, the number of sensors
increases from 1 to 50 (with increment step set to 5). As it can be observed, both X-GSN
and JBoss memory usage fluctuate without any specific pattern. Therefore, we can infer
that increasing the number of sensors or injection rate does not affect X-GSN and JBoss
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memory usage. In contrast, when the number of sensors is less than 30, the Virtuoso
memory usage increases rapidly. However, for the rest of the trial, the Virtuoso memory
usage remains steady with some random changes.

400 

600 

800 

1000 

#1 #10 #20 #30 #40 #50 #60 #70 #80 #90 #100 

M
em

or
y 

U
sa

ge
 

(M
b)

Experiments 

Virtuoso X-GSN JBoss

Fig. 6. Memory usage for different experiment settings described in Sect. 3.2 (Color figure
online)

In the same format, the CPU usage among all the conducted experiments is shown
in Fig. 7. In the case of X-GSN and JBoss, similar to their memory usage, we can observe
that increasing the number of sensors or injection rate does not affect their CPU usage
percentage. In contrast, when the number of sensors is less than 30, the Virtuoso CPU
usage increases rapidly. However, for the rest of the trial, the Virtuoso CPU usage
remains steady with some random changes. Full protocols of the described experiments
can be found in [17].
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Fig. 7. CPU usage for different experiment settings described in Sect. 3.2

3.5 Analysis of Benchmarking Results

The results presented in Sect. 3.4 has helped establish the baseline performance of
OpenIoT using the proposed benchmarking metrics. From the experimental results, it
can be noted that the current performance of the OpenIoT platform is suitable for small-
scale settings (in-house lab setups). However, when deployed under large scale
scenarios, in particular in highly data intensive use cases such as Smart Cities, the
performance of the OpenIoT platform will be greatly challenged.

Based on the authors’ experience working with OpenIoT, the lack of performance
in OpenIoT is mainly due to the imperfect implementation. For instance, the provided
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implementation of LSM does not support multi-threading or an appropriate buffering
mechanism. Therefore, LSM becomes a bottleneck when multiple sensors inject data at
a very high rate. This could potentially be overcome introducing some changes to the
platform such as adding a queuing system based on ZeroMQ or other such technologies.

Based on the IoT platform study conducted in Sect. 2, we can state that it could be
useful to introduce features such as elastic clustering for providing storage scalability,
find better options for time-series data, add efficient in-memory caching mechanism and
message queue for sustainable interconnection of components during peak loads.
However, since this paper was to establish the benchmarking metrics and use this to
establish the performance of OpenIoT, further investigation of underlying reason
pertaining to lack of performance degradation is out of scope of this paper. Introducing
such changes to the OpenIoT platform and evaluating the performance of other platforms
to establish the baseline performance of such systems is a part of our future work.

In this section we have performed a set of tests which highlighted some issues of a
particular platform. In the following section we discuss the problem of establishing a
broader test suite that can be used for benchmarking various IoT platforms under
different types of load.

4 IoT Platforms Benchmarking

Comparing the performance of different IoT systems is a complex task. The complexity
grows exponentially with the number of features and possible use-cases. However,
performance benchmarks are needed for both consumers and developers. Product
consumers can rely on the benchmarking results for making a better choice and devel‐
opers can analyse weaknesses of their product, improve and demonstrate the results. In
the world of transactional databases, this effort was started and supported since 1988 by
a non-profit organization called Transaction Performance Council (TPC) [18]. Actual
benchmarks are TPC-C, TPC-H, TPC-E, TPC-DS, TPC-DI and TPCx-HS which cover
such areas as OLTP, ad-hoc DSS, complex OLTP, complex DSS, data integration and
Big Data. In the NoSQL movement, which has significant differences in approaches
with classical transactional world, the most popular benchmarking approach is the
Yahoo Cloud Serving Benchmark (YCSB) [19] which is supported by some open-source
tools [20]. Semantic web community also introduces a number of benchmarking strat‐
egies for RDF Stores [21]. Regarding OpenIoT, evaluation results for Virtuoso 7 are
provided [22] according to Berlin SPARQL Benchmark [23].

Discussion of benchmarking strategies for the IoT platforms has already started [24,
25] and some attempts are already made [2, 26]. For example, HP develops the IoTA‐
bench [27] with an initial focus on use-cases like smart metering. The problem is in the
variety of vendors’ understanding of the IoT platforms principles, tasks, main features
and system complexity in general. As we have underpinned in Sect. 2, a common way
for IoT platforms is to integrate several storage and caching technologies for different
types of data. In the dynamic world of IoT, automatic data management strategies are
becoming more and more valuable. These data management strategies, supported by the
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ingestion and retrieval pipelines will affect benchmarking results at the same level as
the underlying storage technologies.

5 Conclusion

In this paper, we proposed benchmarking metrics in order to establish the baseline
performance of the storage component of IoT platforms by studying and comparing
several widely discussed commercial and research IoT platforms. We tested the devel‐
oped benchmarking metrics using the widely used experimental IoT platform OpenIoT.
We conduced several experiments in order to benchmark the performance of the
OpenIoT platform. Results of the evaluation show that the bottleneck occurs on the data
ingestion and storage components of OpenIoT (namely LSM). While having a great
research promise and pioneering contribution to semantic interoperability of IoT silos,
OpenIoT could be suitable as an experimental platform for small-scale testbeds.
However, experiment outcomes demonstrate that Smart City scale data will pose signif‐
icant challenges and stress on OpenIoT scalability, reliability and performance. In
summary, based on our established benchmarking metrics and experimental evaluation
of OpenIoT based on these metrics, we conclude, the currently open source release of
OpenIoT as available in GitHub is not ready for substantial large scale commercial IoT
deployments without significantly upgrading its performance, reliability, and stability.

As future work, we discussed the need for developing benchmarking standards for
IoT platforms. As the area of IoT middleware is comparatively new, the benchmarking
methodologies are not well-developed yet. Development of such methodologies is a
challenging task due to the complexity of IoT middleware systems and diversity of their
components and tasks. However, development of such benchmarks will significantly
contribute to the field and bring some amount of understanding to the integrators.
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Abstract. With Apps a popular concept was introduced allowing end-users to
easily extend their devices such as smartphones or computers with specific func‐
tionality. Two million Apps have ever since found their way into each of the
popular App-stores Google Play and Apple Store. We argue that the App-concept
is not only well applicable to single devices but also to complete environments
equipped with smart networked things. In the moment when Apps can be easily
downloaded and executed in home, office and industry environments a wide new
applications space will be opened up. In this work we introduce the concept of
Smart Space Apps that can be downloaded from a cloud-based App-store into a
smart environment where they dynamically utilize the capabilities of available
smart things to optimally achieve the purpose they were installed for. We intro‐
duce a unified schema for the access of sensors and actuators of heterogeneous
devices from within Smart Space Apps and describe the middleware and runtime
that implements this approach. We explain how Apps are packaged into an
exchangeable format and published within a cloud-based App-store. Multiple
application use cases are shown and challenges of this novel approach are
discussed.

Keywords: Internet of Things · Smart environments · Middleware · Smart Space
Apps

With the increasing number of smart devices, networked sensors and programmable
actuators many novel opportunities arise through their smart composition. Internet of
Things (IoT) technologies and networked wearable devices provide new opportunities
for creating distributed tangible user interfaces and intelligent behaviour of networked
devices sharing the same physical space. For instance, an activity tracker worn by many
users today is mainly collecting activity-data throughout the day, however, when its user
is sitting on the couch in front of the TV the embedded accelerometer of the activity
tracker could be exploited to detect arm gestures that control the TV.

As soon as individual smart things are able to offer some or all of their capabilities
to the smart environment in which they are located a multitude of new useful applications
will arise that optimally make use of this distributed sensors, actuators, input devices
and screens to assist users during their onsite activities and tasks. At the same time we
believe that the concept of Apps, which is a popular approach allowing users to easily
extend the functionality of single devices, can be also applied to smart environments.
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In this work we report from our ongoing research on realizing this vision. With Apps
for Environments we introduce a concept, infrastructure and implementation in which
exchangeable Apps that users can download into their smart environments can dynam‐
ically utilize available capabilities of networked devices to interact with onsite users and
to optimally achieve their purpose.

1 Smart Space Apps Concept

Apps for Environments or Smart Space Apps do not run on single devices but instead
in environments. For this purpose our approach requires one (stationary) computing
node in the local network to run a middleware and runtime for the execution of smart
space Apps. This node can be part of an existing networking infrastructure (e.g. WiFi,
Ethernet) or span its own networks using different communication technology adapters
(smart hub). A main pillar of our Smart Space Apps concept is a unified view on
networked computing devices and their capabilities: In general, if a device has a
processor and a communication interface it can become part of our smart space. Whether
certain capabilities of a device should be exposed to the smart environment or not is a
decision that inhabitants of a smart space have to decide on inclusion of a new device
to the network. Applied to the initial example - the user that controls his TV using his
activity trackers arm band, has at some point decided to expose his trackers accelerom‐
eter to be used on demand by his domestic environment. In addition he has downloaded
and installed a Smart Space App into his smart hubs runtime that promises to utilize
devices of the type “activity-tracker” to control devices of the type “TV”. After down‐
load and execution the functionality is instantly available. The core functionality of the
users’ activity tracker, measuring and reporting activity, is still continued but in addition
sensor-data events measured by the accelerometer are shared with the users’ smart envi‐
ronment as soon as the tracker is in its wireless range.

Unified Access Schema
Our unified view on capabilities of smart things breaks these down into sensors (devices
that are pure data producers), actuators (devices that are pure command receivers) and
combinations of both. This generic view allows to integrate networked devices of very
different kinds in the same way: Capabilities of commercial IoT devices, networked DIY
sensors, smart phones, tablets or home appliances can be accessed in the same way. This
forms the basis of a unified access schema that is used within our runtime to give Apps
access to the shared capabilities of an environment. This schema is illustrated in Fig. 1.

This schema uses a (locally) unique user-defined or auto-generated name to reference
specific devices, device-wide unique names for modules that represent sensors, actua‐
tors, or combinations and names for properties of the referenced module to access sensor
data or to trigger actuator commands. As indicated by the dot-notation a runtime could
inject this hierarchically structured information into its namespace and execute Smart
Space App code written in any programming language that uses this access schema to
implement behaviour that interweaves sensor events with system state and actuators.
Using the devices indicated in Fig. 1 a minimal Smart Space App could be implemented
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with the following code that shows the weather forecast on the display of “JohnPhone”
when the accelerometer of “SmartCouch15” is actuated (e.g. when someone sits down).

This very simplistic example illustrates the conceptual level on which logic for Smart
Space Apps is implemented. Note that the networking layer is completely abstracted
and that devices and capabilities of entirely different platforms and operation system are
accessed in the same way. Although very basic, these three lines of code already imple‐
ment a small Smart Space App that interweaves two specific devices. Complex Apps
can consist of thousands of lines of code, interweaving arbitrary numbers of devices,
sensors and actuators. In contrast to the example above Smart Space Apps that should
run not just in one specific environment, typically do not consist of code that references
devices specifically (e.g. “JohnsPhone”) but instead reference devices dynamically by
their type and capabilities (see section “Runtime” for an example). This allows building
and publishing Smart Space Apps that can be downloaded and run in smart environments
that consist of very different devices than the ones they were originally build and tested
in. For instance a Smart Space App that notifies users when movement sensors were
triggered could use flashing the floor-lights in smart space A while in smart space B the
same App would show (in addition) a notification message on the displays of currently
near tablet or smartphone devices.

In the previous paragraphs we explained the concept behind Smart Space Apps. In
the next section we will briefly sketch the implementation of this concept in the form of
the meSchup IoT platform.

Fig. 1. Generic modularization approach and naming scheme used for referencing smart things
and their capabilities
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2 meSchup IoT Platform

The meSchup IoT platform [1, 2] was designed and implemented within the four year
FP7 EU project meSch. meSchup consists of an integrated middleware, runtime and
web-based development environment (IDE) software for onsite hub computers as well
as client software, firmware and adapters for a wide range of client devices. The client
support at the time of writing incudes Android devices (smartphones, tablets, projectors,
TV, Amazon Fire) smart things platforms such as Arduino, Espressif, .NET Gadgeteer
and nRF51822 microcontrollers, Raspberry Pi and Intel Edison computers, Windows
and Linux machines, smart-plugs, ambi-lights and multiple other smart appliances. For
devices that by default are not able to expose their capabilities to local smart environment
Apps, client software or firmware is provided. For devices that are not extendable with
Apps or firmware such as typical smart X appliances adapters are offered that run in the
meSchup middleware and allow direct communication or control of these devices. The
meSchup server software is fully implemented in Node.js and can be thus run platform
independent on various operation systems. Although meSchup can run on any off-the-
shelf machine we provide a set of different meSchHub devices that come optimally
preconfigured for various purposes. Figure 2a for instance depicts the meSchup proto‐
typing hub (meSchHub-P) that is based on a Raspberry Pi II computer and comes with
its own embedded WiFi Hotspot, battery and meSchup platform preinstalled on SD-
card.

Fig. 2. (a) meSchHub-P device, (b) meSchup web interface: Overview of configured and recently
discovered smart things, (c) Public Smart Space Apps in the cloud-based App store

Middleware
The middleware layer of the meSchup platform abstracts from arbitrary (wireless)
communication technologies and protocols and provides unified bidirectional access to
remote devices and their capabilities for higher layers of meSchup such as the App-
runtime, GUI or IDE. Adapters for various communication technologies are supported
such as WiFi, ZigBee, Z-Wave, BLE and LoRa. For each of these communication tech‐
nologies automatic device-discovery is implemented. Discovered devices are listed in

Apps for Environments: Running Interoperable Apps in Smart Environments 161



the web-based smart things pool overview where users can configure which of their
capabilities they want to provide to their smart environment (Fig. 2). Known devices
are automatically discovered and configured every time they return into the (wireless)
network. This in particular allows roaming devices such as smartphones to be alternately
used in different smart environments. Event-based communication is the default commu‐
nication model between meSchup clients and the middleware server. This means that
client devices do the “hard job” locally such as fast sampling of sensors or complex
computation. Only when adequate sensor changes are detected clients will send sensor
events to the meSchup middleware. This will trigger Apps to be executed in the meSchup
runtime. However, other behaviours such as time-series data can be also configured.
Instant remote reconfiguration allows to expose new sensors and actuators anytime
without the need to reinstall a client or re-flash firmware of a smart device. This is
particularly important to minimize the maintenance for potentially hundreds of devices
that are expected in near future smart environments [3]. The event-based communication
model saves wireless bandwidth, keeps communication responsive and scales for large
numbers of devices.

The meSchup middleware is particularly designed to be extendable and strongly
inclusive. New communication technologies and protocols can be easily added as
middleware modules. By default popular IoT protocols such as MQTT and HTTP/REST
are supported by the platform. Virtual devices optimally map the sensor- and actuator-
topics/resources of these protocols onto the unified device-module-property access
schema.

Web-Based User Interface
meSchup comes with its own web-based GUI for device- and App-management as well
as an integrated development environment for the creation, testing and packaging of
Smart Space Apps. After starting the meSchup software or powering up a meSchHub
the interface is instantly accessible via “http://meschup”. The smart things pool view of
the UI gives an overview of currently available smart things (Fig. 2b), their connection
status, configuration and new devices that have recently been discovered. New sensor/
actuator modules can be added or removed in a drag&drop manner and are made
instantly available on the remote device. The events view allows monitoring of sensor
and actuator events for debugging purposes. The behaviour view provides an overview
of currently installed Smart Space Apps and allows to enable/disable, remove or edit
Apps (and their underlying interaction scripts). Foreign Apps can be downloaded from
a cloud-based Smart Space App store and new Apps can be developed within the inte‐
grated IDE and be subsequently published to the store (Fig. 3). 

Runtime
The meSchup runtime uses JavaScript as the programming language for the implemen‐
tation of Smart Space Apps. An App can consist of one or many interaction scripts. The
previously introduced unified access schema is exposed as the object api.device
within the runtime and provides all Apps unified access to all devices and capabilities
of the smart things pool. An exemplary interaction script is shown below. This generic
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interaction script displays the incoming message on any device that offers a display-
capability to the local environment.

Interaction scripts are executed event-based when new sensor events are received
by the middleware or timer-based to react on schedules. The developers of App-inter‐
action scripts decide on which events to listen. However, this can be restricted on instal‐
lation of Apps by not granting access to certain device or module types. The runtime
allows executing many Smart Space Apps in parallel. This makes it easy to extend
environments continuously with specific functionality required by their inhabitants.

A Smart Space App can optionally provide a graphical configuration user interface
that allows End-users to fine-tune its behaviour to their needs and local environment
without requiring programming knowledge. These interfaces are web-based and will be
typically accessed via users’ smartphones or tablets. Developers of Smart Space Apps
decide how extensive configuration options are and whether they want to provide a
configuration interface at all.

App Store
Smart Space Apps package interaction scripts and optional resources that are for instance
required for configuration UIs (HTML, CSS, images, etc.) together with meta-data into
exchangeable compressed Smart Space Apps files (.S2A file extension). Meta informa‐
tion includes among others the App-title, description, tags, author and version. Further,

Fig. 3. Integrated web based development environment (IDE) for Smart Space Apps
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information on necessary device types and modules is included. The packaging process
is integrated into the web-based IDE. Packaged S2A-Apps can be uploaded into our
cloud based App store where they can be easily found by interested users, if the author
decides to make them public. The App store requires a previous registration of a user
account. This account can be then assigned to one or many meSchHubs that are managed
by the same user or organisation. Packaged Apps are then automatically uploaded to
this cloud-based App store account but are not made public. Users can either decide to
make their Apps publicly available or to keep them private. Users or organisations
managing multiple meSchHubs can use the App store to remotely deploy new or updated
Apps to one or many of their hubs at once. We currently extend this basic functionality
of our App store with additional community functions such as author- and App-ratings,
comments, bug-reports and feature requests.

3 Example Applications

meSchup is used as core IoT platform for realizing novel IoT applications in multiple
different projects and domains. Three application examples from these projects are
briefly described to indicate the broad range of current and future potential application
areas for Smart Space Apps.

Smart Interactive Exhibitions
meSchup is actively used in multiple European museums and cultural heritage institu‐
tions as the core onsite infrastructure for the realisation of smart interactive exhibitions.
Multiple of these exhibitions were packaged up and are available in an App store1 that
was particularly designed for cultural heritage professionals (CHPs). This App store
conceptually works in a similar way as the previously described generic App stores but
in addition it provides support for the typical workflows of exhibitions designers. In
particular it provides easy access to content sources for CHPs such as Europeana2 and
allows to interweave this content conveniently with the smart behaviour of available
smart exhibition Apps (these are called recipes within mesch.io).

The example application depicted in Fig. 4 for instance is deployed across multiple
points of interest (POIs) within a museum exhibition and allows a visitor to perceive
personalized multi-media content at each POI based on an object that the visitor has
picked at the entrance. This object represents a perspective on the exhibition (e.g. in the
context of a First-World-War exhibition narrations from the perspective of a soldier
versus the one of a civilian) and the chosen language of the visitor. At each POI a pulsing
round area indicates that visitor can place objects on it. This explicit interaction triggers
audio, video or other presentations that are tailored to the visitors’ language and perspec‐
tive.

Technically this interactive setup is realized with NFC readers, projectors, screens
and earpieces embedded into each POI and NFC tags embedded into the wearable objects
for visitors. Apps running in the onsite meSchup platform interweave events from NFC

1 http://mesch.io.
2 http://www.europeana.eu/portal/en.
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readers with the appropriate content and instantly trigger the display of media at the
corresponding points of interest. Associations of content to POIs and NFC objects are
not hardcoded but instead use simple semantic tags to derive which content should be
shown in which situations. Besides implementing this visible behaviour for visitors the
responsible App can also collect anonymised usage data and provide spatial and
temporal usage-visualisations for curators.

This example illustrates how meSchup and the Smart Space App concept facilitate
the realisation of advanced distributed, customizable interactive installations for novel
museum experiences without requiring any low-level programming experience from
museum-curators and exhibition designers. Furthermore, installations realized in one
physical setup can be easily transferred into another physical setup by just installing the
same App on another smart hub. Full interactive exhibition floors can completely switch
their purpose and content by simply installing another Smart Space App.

Ubiquitous Notifications
meSchup is also utilized in research projects that explore ubiquitous notifications in the
context of smart home and office environments as well as ambient assisted living. In the
ubiquitous notifications project [4] meSchup is used to display notifications that arrive
at users smartphones (e.g. WhatsApp, Email, Calendar, etc.) instantly in the users envi‐
ronment by dynamically using the capabilities that the current devices in proximity offer.
Notifications can thus be overlaid on a TV screen in one situation while they are read
aloud by an Amazon Echo device or indicated with ambient lights in another situation.
Multiple mobile and stationary deployed sensor sources such as BLE beacons, move‐
ment sensors and phone status and orientation are utilized to optimally derive the best
devices and output modalities for displaying notifications. Different Smart Space Apps
provide an easy way to deploy and test different visualisation concepts and strategies in
different physical setups and with different users (Fig. 5).

Fig. 4. This point of interest in an interactive exhibition space provides personalized multi-media
content using a personal NFC-based token that visitors use across an exhibition
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In a similar approach the DAAN project3 utilizes meSchup to realize scenarios for
ambient assistive living environments in which contextual information from sensors in
the environment are continuously collected and analysed in order to provide ambient
proactive suggestions for assistance and behaviour change [5].

Extension of Conventional Things with Smart Interfaces
meSchups instant access to different capabilities of smart things in the same environment
allows flexible combinations of sensors, input devices and actuators that physically
belong to separate devices. This allows using one or multiple input devices spontane‐
ously to control actuators of other devices. Associations between input and output can
be dynamically established using for instance physical tokens such as NFC tags, BLE
tags or visual markers. For instance lying down a smartphone on an NFC tag placed in
a smart living room could present a dynamically generated GUI for controlling living-
room devices. Using a camera and display of a smartphone in combination with markers
placed on various devices could overlay these with new or additional interfaces.
Figure 6 for instance shows an example in which a small remotely controllable lamp is
extended with an Augmented Reality (AR) switch interface that allows turning the lamp
on or off.

The concept of such smart interfaces is applicable to many different domains and
scenarios: In industrial settings conventional physical instruments (e.g. temperature and
pressure gauges) can be augmented with additional data or functionality. For instance
overlays of historical graphs (e.g. the temperature curve of the last 24 h) can be shown
in addition to the current gauge-value. In medical environments touchless interaction
via AR interfaces can help to keep devices sterile. The shown AR interfaces example is

3 http://daan.dfki.de/.

Fig. 5. Ubiquitous notifications: Notifications received on users’ smartphones can be instantly
forwarded to smart devices in a users proximity, such as TVs and screens, ambient lights, photo-
frames and tablets as well as speakers (e.g. Amazon Echo).
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realised using a Smart Space App that dynamically overlays identified visual markers
with graphical interfaces (images). These are chosen depending on the capabilities of
the device that is associated with the marker. Overlays are packed with Smart Space
Apps and are thus easy to update and to distribute.

4 Related Work

meSchups’ underlying concept lies at the heart of traditional Ubicomp research and was
inspired by many of its former research projects.

On a device level a set of platforms have laid the way for simplifying the creation
of sensor actuator equipped smart things. Smart-its [6] have early allowed experi‐
mentation with sensors and actuators in academic research. As one of the first commer‐
cially available physical prototyping toolkits Phidgets [7, 8] enabled access to electronic
components through a pluggable hardware design and easy to use libraries. D.tools [9]
allowed designers to iteratively create physical UIs using a state-chart based program‐
ming model. These were followed by the .NET Gadgeteer platform [10] with it solderless
pluggable module design and powerful Visual Studio IDE as well as the Arduino [11]
platform with its simple to setup code editor and huge community support. The “App”
concept introduced with Symbian feature-phones and continued by iOS and Android
finally also opened up phones to be used as sensor actuator rich platforms that can run
user defined code. These systems and platforms facilitated the creation of standalone
smart devices by simplifying the development of embedded software and the access to
sensor and actuator hardware.

meSchup’s concept on device level differs from these previous approaches by
offering generic ready-to-go firmware/client-software/Apps for all these device plat‐
forms instead of supporting developers to build custom firmware for each and every
thing. The purpose of this generic firmware is to make the device and its capabilities
(sensors and actuators) accessible through its network interface and to be discoverable
and fully controllable by the local smart hub and the Smart Space Apps that run on it.

Fig. 6. Augmented Reality Interface extending a smart mobile lamp with a virtual on/off switch.
Pressing the virtual switch on the screen instantly turns the lamp on or off.
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This approach shifts the individual high level application logic into the hubs of an envi‐
ronment and provides unified access to the capabilities of heterogeneous devices inde‐
pendent of their communication technology, used communication protocol or device
platform. The generic firmware already handles all platform specific low level calls,
local sensor sampling as well as the secure transport of messages from or to a device.
Sensor changes of connected devices simply appear as events within the App runtime
of the smart hub and actuator commands are simple function calls within an App. This
results in a drastically reduced time and effort for developing distributed logic for heter‐
ogeneous IoT devices.

The realization of distributed multi-device interaction was addressed by a multi‐
tude of systems in particular in the domain of context aware computing and smart spaces.
iStuff [12] allowed the prototypic exploration of various novel ubicomp scenarios
providing easy means for connecting input and output of distributed devices. Dey et al.’s.
framework for prototyping context-aware applications [13] laid the foundations for
further projects targeting at enabling end-users. iCap [14] provided a pen based interface
that allowed end-users to realise individual context aware applications by graphically
composing simple event-condition-action rules. Among others centralized architectures
were also proposed in iStuff [12] and SEAP [15]. However, these used rule-based
languages that were limited in their expressiveness and complexity. More recently some
projects have also picked up JavaScript for executing inter-device behaviour. Fabryq
[16] supports mobile scenarios using smartphones as gateways to some BLE devices
and hosts the JavaScript based application logic in the cloud. Weave [17] focuses on
simplifying the synchronisation of GUIs across multiple device displays.

While most of these projects represent proof-of-concept implementations or toolkits
for prototyping that cannot be easily transferred out of the lab, meSchup stands for a
highly modular generic IoT platform that provides a wide support for available IoT
device platforms and high flexibility through its App based runtime. Its capabilities of
providing support from local App-development, to App-packaging, App-Store upload
and deployment and execution of the same App on other smart hubs is unique among
current IoT systems and research projects.

Multiple cloud based platforms exist that offer end-users simple to use interfaces for
the realisation of trivial IoT scenarios. The IFTTT service [18] for instance offers a form
based web UI that allows users to compose simple trigger-action rules binding one event
to one action. Slightly more advanced interconnections between data sources and data
sinks can be created with the flow-based visual programming interface of the Node-Red
toolkit [19]. However, for more complex applications the graphical flow based UI
expands quickly in space and becomes hard to handle.

In contrast to purely cloud based approaches meSchup by design executes its appli‐
cation logic locally in its runtime and is thus robust against internet connection problems
and high latencies. Further, the owner of a smart hub has full control over the data
collected through Apps and is not forced to send any data to external parties. meSchup
Apps written in JavaScript can realize anything from simplest IFTTT rules using a single
sensor and an actuator to complex applications that utilize the full power of the Java‐
Script language while interacting with hundreds of sensors and actuators. Optionally
meSchup Apps can push visual GUIs to devices with displays such as smartphones and
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tablets. These dynamically generated or static GUIs can be used as configuration layer
that makes Apps adjustable to end-users without programming skills. Using pure web-
technology for Smart Space Apps is a design decision that allows the huge community
of web-developers to instantly start the development of IoT applications.

5 Discussion

The concept of Apps for Environments for the first time brings easy extendibility with
new functionality to smart multi-device environments in the same way as Apps extend
a smartphones functionality. This is achieved by providing a unified interface and an
access schema that can map and address arbitrary sensors and actuators of heterogeneous
remote devices in a unified way. In a similar way operation systems such as Android or
iOS provide unified APIs to control the capabilities of various devices and hardware
types using the same App. However, smart environments differ in their exponentially
higher potential heterogeneity. All devices in a smart environment as well as their capa‐
bilities can be used by multiple Smart Space Apps in parallel. This can in particular
result in conflicts where the same actuator resource is manipulated by multiple control
sources which can lead to unexpected behaviour. Conflict detection and resolution
mechanisms are required to handle such situations. MeSchups’ UI offers a specific
monitoring view in which such cases are detected and indicated by the runtime and can
be resolved by end-users. Our approach allows a user to resolve such conflicts by either
deactivating one of the conflicting Apps completely or by specifically withdrawing one
of both Apps the right to control the conflicting actuator.

Another challenge in smart environments is the omnipresent disruption of connec‐
tivity through wireless connection loss or battery drain. Mobile devices can physically
get out of wireless range, be interfered by other signals or suffer high delay through low
bandwidth or high traffic. A smart environment needs to be able to detect such situations,
handle situations in which devices become unavailable and recover devices and their
actuator states as soon as they return. meSchup handles situations in which devices
become unavailable pragmatically by dropping all actuator commands that are triggered
by Apps as long as the target device is not available. App developers can also implement
special event-handlers that are executed when devices become available again, allowing
for individual initial configurations for certain device types.

We believe that the most challenging aspects in relation to smart environment and
Smart Space Apps are privacy and security. Smart environments offer a multitude of
new data sources to collect, analyse and derive personal information about their inhab‐
itants. In contrast to cloud based approaches for controlling smart environments (e.g.
IFTTT4) the meSchup platform offers data privacy by design because it does not require
any communication with external servers. Whether Smart Space Apps can communicate
with external sources needs to be fully transparent and controllable by smart space
inhabitants to assure the privacy of their data. In meSchup users who install new Smart
Space Apps have the opportunity to restrict the access to resource-types of the local

4 https://ifttt.com/.
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smart space as well as to the internet (by default blocked). Currently meSchup offers
individual white and blacklists for device types. However, our experience from various
deployments indicates that capabilities of smart devices should in the future be annotated
with a metric for privacy and security criticality. For instance doorlocks, cameras and
microphones would fall into a higher criticality group than for instance switches or
lamps. Such groups would then make it easier for users to decide when granting rights
on installation.

Mechanisms are further required to assure the functionality, quality and harmless‐
ness of publicly downloadable Smart Space Apps. Installing untrusted Smart Space
Apps potentially contains a multiple of privacy and security risks compared to traditional
single-device Apps: Cyber-physical systems such as doors, climate control or heating
can be potentially locked, stopped or misused. MeSchups’ App packaging allows App
creators to sign their App with their certificate, ensuring that unmodified Apps can be
installed from trusted parties. Further our App store soon allows the rating and
commenting by users, thus indicating the satisfaction with a publicly available App.

To prevent theft of sensible sensor data or spoofing of critical control commands
within the networks of smart environments end-to-end encryption is necessary on-top
of the existing encryptions mechanisms of the individual communication technologies.
MeSchups’ middleware addresses communication security in three layers. The first layer
involves transport layer security such as WPA for WiFis and password based encryption
for BLE and ZigBee. On a second layer architectural security means are applied. For
instance smart things only accept messages from the same hub after they have been
discovered. On a third layer all communication is in addition encrypted with a per-
device-key that has been exchanged on initial inclusion of a smart thing to a smart
environment. For instance for Android devices a QR-code is scanned to exchange an
initial encryption key by-passing unsecure RF communication (out-of-band). Similarly
microcontrollers with installed meSchup firmware and USB/Serial/NFC interface can
be attached to the hub for a few seconds to exchange a key securely. Encryption on
application layer prevents theft of data and guarantees the identity of previously included
devices.

meSchups security roadmap further plans the usage of secure elements base on elliptic
curve cryptography (ECC) both on future hub-hardware as well as IoT devices equipped
with meSchup firmware. This will simplify the secure initial key exchange among these
devices.

6 Conclusion

In this paper we describe the concept of Apps for Environments and its implementation
as Smart Space Apps based on the meSchup IoT platform. We introduce a unified schema
for accessing capabilities of smart things as the foundation for Smart Space Apps and
describe its implementation on top of a middleware and runtime. We explain the imple‐
mentation of Apps, their packaging into an exchangeable format and the distribution via
a cloud based Apps store. We introduce multiple example applications spanning across
different domains and present challenges of this novel approach.
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We believe that the concept of Apps for Environments has an enormous poten‐
tial to bring innovative applications into current and future smart environments. Our
Smart Space App programming approach provides a clean abstraction from low
level layers and is fully based on web-technologies such as JavaScript, HTML and
CSS. In combination with the integrated development environment and cloud store
support we believe that Smart Space Apps are an attractive platform for a broad
range of developers. A wide uptake of this concept would lead to a multitude of new
useful IoT applications and creative multi-device solutions.

Acknowledgements. This work is funded by the European Project meSch (Grant Agreement
No. 600851).
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Abstract. The OPC Unified Architecture (OPC UA) is a protocol for
Ethernet-based communication in industrial settings. At its core, OPC
UA defines a set of services for interaction with a server-side informa-
tion model that combines object-orientation with semantic technologies.
Additional companion specifications use the OPC UA meta-model to
define domain-specific modeling concepts for semantic interoperability.
The open62541 project is an open source implementation of the OPC UA
standard. In this work, we give a short introduction to the core concepts
of OPC UA and how the measures taken to scale OPC UA to Big-Data
scale reflect in the architecture of open62541.

Keywords: OPC UA · Open source · Semantic interoperability ·
Big-data

1 Introduction

In the past, a multitude of communication technologies and protocols have been
used for data exchange in industrial settings. The reasons for this are the diverse
use cases and their requirements, such as realtime communication in safety-
critical applications, but also a lack of interoperability between vendors. Today,
it has become common to deploy Ethernet-based networking in addition to tradi-
tional fieldbus-based communication systems [6]. With this increase in flexibility
for communication, new applications have emerged. For example Plug&Produce
[1,16], where system components are equipped with a self-description for fast
deployment and configuration, and Condition Monitoring [5,14], where analytics
based on runtime data is used to improve operations and especially maintenance.

The OPC UA protocol promises not only to unify industrial communication
but also to enable semantic interoperability. Motivated by the increased use of
Big-Data concepts in the industry, this work discusses how OPC UA can be
scaled up to support large data volume, velocity and variety. The remainder
of this paper is structured as follows. The OPC UA protocol and its capabil-
ities for information modeling and semantic interoperability are introduced in
Sect. 2. Section 3 discusses the use of OPC UA in Big-Data scenarios. In light
of the features described in the previous two sections, we motivate the design
of the open62541 OPC UA implementation and the measures taken to ensure
scalability in Sect. 4. The paper concludes with a summary in Sect. 5.
c© Springer International Publishing AG 2017
I. Podnar Žarko et al. (Eds.): InterOSS-IoT 2016, LNCS 10218, pp. 173–185, 2017.
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2 Semantic Interoperability with OPC UA

According to Heiler [8], interoperability in distributed systems is the ability to
exchange data and use remote services based on agreements for message passing
protocols, procedure names, error codes, and so on. Semantic interoperability
additionally requires a common understanding of the meaning of the requested
services and data. In this section, we give an introduction to the capabilities
of OPC UA for information modeling and the relation to established semantic
technologies, such as ontologies [10].

Developed as the successor to the widely used OPC Classic protocol, OPC UA
has become a major contender for Ethernet-based communication in industrial
applications and has been standardized in IEC 62541 [11]. At its core, OPC UA
defines

– a type system to define protocol messages with a binary and XML-based
encoding scheme,

– a meta-model for information modeling that combines object orientation with
semantic triple-relations, and

– a set of 37 standard services to interact with a server-side information model.
The signature of each service is defined as a request and response message in
the protocol type system.

The OPC Foundation drives the continuous improvement of the standard, the
development of companion specifications, and the adoption of OPC UA in the
industry by hosting events and providing the infrastructure and tools for com-
pliance certification.

An OPC UA server exposes its information model to remote clients. In cyber-
physical systems, the server is usually deployed close to the source of information,
i.e. the physical process. OPC UA information models can be fully introspected
at runtime using only the standard services. So a client that connects to a server
for the first time needs no prior notion of the server’s content. The idea then
is to define reusable building blocks for OPC UA information models. This can
drastically reduce the effort required for integration when the client software,
built with a notion of these reusable building blocks, adjusts at runtime to the
remote information model it encounters.

In order to support cross-vendor interoperability, the so-called OPC UA com-
panion specifications map established standards from an application domain to
OPC UA information models. That is, companion specification define such
reusable building blocks for OPC UA information models (reference types, data
types, variable types, methods and object types, see their discussion later in this
section) together with their intended use. The current companion specifications
are based on established standards in their application domain and are driven
by joint working groups between the OPC Foundation and domain-specific stan-
dardization bodies or industrial consortia. Existing companion specifications in
the manufacturing automation domain are, for example, Field Device Integra-
tion, ISA-95, PLCopen, MTConnect and AutomationML.
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Table 1. Node classes in OPC UA

Node Class Usage

ReferenceTypeNode Predicate type to be used in references between nodes

DataTypeNode A data type for scalar values

VariableNode A named value (scalar, array, multi-dimensional array)

VariableTypeNode Requirements for variables (data type, array size and so on)

MethodNode A callable remote procedure with its signature

ObjectNode An object made up of variables, methods and further
objects

ObjectTypeNode Requirements for objects (mandatory and optional
members)

ViewNode Gives access to a subset of nodes

At its core, every OPC UA information model consists of nodes and typed
references, each linking two nodes in a directed graph. Every node is of one
of the eight node types shown in Table 1. The references can be thought of as
NodeId tuples of the form (source, predicate, target), where the predicate
denotes a ReferenceTypeNode. In the remainder of this section, we introduce the
different node classes and discuss how they are used as part of an object-oriented
information model.

Reference Types. Every reference uses the NodeId of a ReferenceTypeNode
for its predicate. The predefined ReferenceTypeNodes shown in Fig. 1 form an
extensible hierarchy. Every reference type has three binary properties: hierarchi-
cal/nonhierarchical, abstract/concrete, symmetric/directed. Hierarchical refer-
ence types are subtypes of HierarchicalReferences. They may not form directed
cycles. References with a symmetric reference type are undirected (consider e.g.
an isEqualTo reference). Abstract reference types cannot be used directly and
are used to structure the reference types hierarchy.

The following example shows how reference types alone can be used for
semantic interoperability. Assume we want to model the layout of a technical
system. For this, we introduce two custom reference types. First, the hierarchi-
cal contains reference type indicates that a component (subsystem) is part of a
larger system. This gives rise to a tree of containment relations. For example, a
motor is contained in the car and a crankshaft is contained in the motor. Sec-
ond, the symmetric connectedTo reference type indicates that components are
connected outside of the containment hierarchy. For example, the car wheels are
connected to the axle. A client can then learn the layout of system represented
in an OPC UA information model based on a common understanding of just
two additional reference types. Further subtypes of connectedTo could be used
to differentiate between physical, electrical and information related connections.
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Fig. 1. Predefined reference types in OPC UA. Arrows denote a hasSubType reference.

Variables. VariableNodes are used as named value containers similar to their use
in programming languages. Variables are typed and store both their current value
and the constraints that need to hold the value. The constraints are the data
type, the value rank (scalar, array, multi-dimensional array, etc.) and, for multi-
dimensional arrays, the array length in each dimensions. VariableNodes may
also have child variables. These may give additional information, for example
the unit of the value. The semantics of a variable may be inferred from the
VariableTypeNode it references.

Variable Types. Naming a variable “speed” may not be enough for cross-vendor
interoperability, as speed can be expressed in many ways. For this, variable types
are a more suitable choice. Every variable references exactly one VariableTypeN-
ode. The variable type both convey meaning and imposes constraints for possible
variable values (or rather for the data type, value rank and array dimensions of
the variable). Again, variable types form a type hierarchy and can be abstract.
Assume now the “speed” variable is of a variable type FloatingPointRPM. Both
the encoding and the meaning of the variable are then defined in the variable type
in enough detail write program code against the abstraction that then applies
to all instances.

Data Types. DataTypeNodes define scalar values. Built-in data types comprise
for example integers of various size, strings, and so on. Users can add cus-
tom data types by combining the built-in data types to form structures, unions
and arrays. An example are 3D-coordinates represented by a tuple (x:float,
y:float, z:float). The data types also form a hierarchy. Similar to Refer-
enceTypesNodes, abstract data types are used to structure the hierarchy. For
example, an increaseCount method might refer to the (abstract) UInteger data
type for unsigned integers in its signature. The actual values sent over the wire
are then of a concrete data type derived from UInteger, such as Byte or UInt16.
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Fig. 2. Excerpt of an object type hierarchy.

Objects. Objects are used to structure information models and contain variables,
methods and further objects (i.e., refers to them with a hierarchical reference).
For example, in the representation of a car and its technical layout that was just
introduced, every component would be represented by an object, including the
car itself. For interoperability, it is important to impose structure. Programmable
logic controllers (PLCs) in the automation domain have traditionally exposed
simply flat lists of variables in their interfaces. Much manual effort was needed
to define which variables go together. By structuring information into objects,
such relations can be discovered automatically.

Methods. A MethodNode represents a procedure associated with an object. The
method signature are two arrays of input and output arguments. Every argu-
ment is described, similar to variables, by a data type, value rank and array
dimensions. Several objects may reference the same MethodeNode. The request
message of the Call service contains the NodeId of the method and the NodeId
of the object as context along with the input arguments.

Object Types. Additional structure is imposed on objects via ObjectTypes that
define mandatory and optional member objects, methods and variables. Object
types are the smallest common denominator of the entities they represent. Then,
programs are written against the object type definition to reduce the amount of
integration work required for every instance. Figure 2 shows an example object
type hierarchy. The object type Pump is derived from the generic FieldDevice.
It specifies two variables and two methods for interacting with the physical
pump it represents. Every object needs one hasTypeDefinition reference to an
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object type. The default object type, BaseObjectType, is at the root of the object
type hierarchy and defines no members. Similar to the previously discussed node
classes for describing a type, object types may be abstract, in which case they
cannot be instantiated. Advanced concepts of object-orientation, such as mul-
tiple inheritance are not ruled out in the standard, but their use is currently
underspecified.

Views. Information models can be large. Views give access to a subset of nodes to
reduce complexity. That is, the information model can be browsed in reference to
a ViewNode. For example, in an information model describing a chemical plant,
a view may filter out all nodes not pertaining to an electrical device.

3 Support for Big-Data Volume, Velocity and Variety

Big-Data stands for the use of huge datasets for analytics. The term is often
defined in reference to the data volume, velocity and variety. In this section, we
detail the features of OPC UA that render it useful for data storage and transfer
according to the three “V”.

3.1 Volume: Working with Large Data Sets

In order to deal with large information models, OPC UA defines several mech-
anisms for focused access to a subset of the data and its piecewise transfer.

Historical Data Access. Many “big” data sets deal with time-series data. In
OPC UA, historical values of node attributes can be retrieved with the Histo-
ryRead service and changed with the HistoryUpdate service. Most server imple-
mentations have this feature enabled only for the value attribute of select Vari-
ableNodes. The possibilities range from specialized databases for time-indexed
values to a simple ring-buffer for storing values directly in RAM.

Reading with an Index Range. The value attribute of a VariableNode may be
a (multi-dimensional) array. These can naturally become quite large so that
transferring the entire array should be avoided if possible. The Read and Write
service for accessing node attributes optionally contain an index-range in string
encoding, such as “1:3, 5, 0:5”, to access specific entries in a (multi-dimensional)
array.

Chunking. Since the response to a Read request may be larger than the Maxi-
mum Transmission Unit (MTU) of the underlying network, OPC UA uses chunk-
ing where messages are split into several packets and reassembled on the receiving
end. It is not uncommon to see maximum message sizes that are several hundred
megabyte long. This is of course limited on embedded systems with less available
working memory.
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Resumable Services. Some services, such as Browse may have an unexpectedly
large response. In the case of Browse, clients can limit the number of returned
node references. The operation can be resumed with a BrowseNext call so that
references are not missed.

File Transfer. Since the advent of Unix, huge data blobs are often stored in files
in a folder hierarchy. A special ObjectType called FileType is used to expose
such a filesystem folder hierarchy and common operations of the underlying
filesystem (open, read, skip to position, write, copy file, . . . ) in OPC UA.

3.2 Velocity: Handling High Throughput

OPC UA was designed to work in conditions where only few resources are avail-
able for computation and data transfer. Together with asynchronous messaging
enabling an event-oriented programming style, OPC UA can be scaled to handle
a large throughout of data.

Binary Protocol. OPC UA defines a binary encoding for the protocol type system
in which request and response messages are defined. This leads to a small size
of messages. Encoding messages in XML and transport over HTTP/SOAP is
alternatively possible. But the increase in message size is reported to be over an
order of magnitude.

Batch Operations. Most services defined in OPC UA are batched. For example,
a ReadRequest contains an array of the nodes and their attributes to be read.
(See also Listing 1 for a request message containing an array of actual read
operations.) This generally leads to fewer larger packets that are sent instead of
many smaller ones. On packet-switched networks, this leads to a better use of
the available capacity for data transport.

Asynchronous messaging. The asynchronous design of OPC UA, where message
responses may delayed or occur in a different ordering, encourages an event-
oriented programming style. The advantages of this can be seen, for example
in the performance increase of modern webservers, such as nginx, versus their
counterparts from the 90s, such as Apache. See also Sect. 4 for the impact on
the design of the open6251 implementation.

Subscriptions. Polling, i.e. repeated reading of values, is a highly inefficient way
to track runtime value changes and events. Push-notification can drastically
reduce the number of exchanged messages when only notifications occur not very
often, but need to be communicated in a timely manner. Even though OPC UA
strictly adheres to the request/response pattern, push-notification is one of its
core concepts. Since a server can send responses asynchronously and out-of-order,
requests for the Publish service are queued up for sending notifications at a later
time. OPC UA differentiates between so-called MonitoredItems and Subscrip-
tions. MonitoredItems either track a data value change with a fixed sampling
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interval (intermediate values are lost if the sampling interval is too long) or lis-
ten for Events (every Event generates a notification). Notifications are fed into
the publication queue of a Subscription. Every Subscription has a publication
interval. Only when the publication interval times out, queued notifications are
sent out in a single message to reduce the network load. If no notifications have
been accumulated, a heartbeat message is sent after some number of publication
interval without activity. Extensive measures have been taken that clients can
retrieve a full history of the notifications created by the server. The receipt of a
Publish response needs to be acknowledged by the client in one of the following
requests. Until then, old notifications are kept in the server’s working memory. If,
for example, communication is interrupted and the SecureChannel breaks down,
the client can reestablish the old Session on a new SecureChannel and retrieve
non-acknowledged notifications via the Republish service.

3.3 Variety: Handling Heterogeneous Data

OPC UA as a NoSQL Database. Relational databases rely on a fixed schema
for each table. They are however not suited for storing unstructured data (not
considering ad-hoc encoding as string values). In recent years, so-called NoSQL
databases have seen increased use. An OPC UA server can be seen as a special
type of NoSQL database combining features from object- and graph-databases.
The difference to databases based on Codd’s relational algebra [3] is that triple-
relations are used [2] as the underlying data structure. Instead of SQL, the
Browse service is used to discover the information at runtime. The Query service
is used once the data’s meta-model is sufficiently understood and clear search
criteria can be defined. But even though OPC UA information models are based
on triple-relations, the OPC UA query mechanism does not offer the inferential
power of SPARQL endpoints used for RDF-based [12] semantic models.

Flexible Protocol Type System. On todays Internet, ad-hoc data encoding with
JSON is quite popular since the format is very flexible. Some of the NoSQL
databases, such as MongoDB, leverage this flexibility and use JSON as the core
format of schema-less data base entries. Even though OPC UA defines a protocol
type system, servers and clients do not have to know about the transferred data
literals a-priori. First, data types can be introspected based on their DataTypeN-
ode in the server’s information model. Second, the binary protocol defines special
way to transfer complex data types. The so-called ExtensionObject data type
is used to encode values that are not one of the 25 built-in types. In the binary
encoding, the ExtensionObject begins with the NodeId of the content’s data
type and the length of the following binary encoding. This ensures that the
receiving end can decode the message even if it has no notion about a portion
of its content. Servers can then store the value as a binary blob and let clients
interact with it.
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4 Design of the open62541 Implementation to Support
Semantic Interoperability at Scale

open62541 (http://open62541.org) is an open source implementation of OPC
UA. It is a library written in the common subset of the C and C++ language and
provides functionality to implement dedicated OPC UA clients and servers, or to
integrate OPC UA-based communication into existing applications. open62541
was started in the beginning of 2014 and driven by several universities and
research organizations with the joint requirement of being in full control of the
communication stack for research projects. Since then, large parts of the specifi-
cation have been implemented and pass the official Conformance Testing Tools
(CTT) of the OPC Foundation. open62541 currently implements the core OPC
UA communication stack as well as the server and client SDK in about 15,000
lines of code (not counting generated code). In the remainder of this section,
we discuss the design choices made for open62541 for scaling from embedded
applications to large multi-core servers for big-data operations.

Protocol Type System. At the core of the stack lies the protocol type system. We
differentiate between the protocol type system and typing mechanisms used for
information models. Note however, that every data type defined in the protocol
type system is identified by NodeId of a corresponding DataTypeNode. Only the
values defined in terms of the protocol type system can be encoded in binary
messages to be sent over the network. The OPC UA protocol defines 25 built-in
data types and three ways of combining them into higher-order types: arrays,
structures and unions. In open62541, the built-in data types are defined manu-
ally. All other data types are generated from standard XML definitions. Their
exact definitions can be looked up at https://opcfoundation.org/UA/schemas/
Opc.Ua.Types.bsd.xml. Listing 1 shows an example data type in its XML defi-
nition and the resulting structure in the C programming language. In order to
reduce the binary size, open62541 does not define extra handling functions for
every data type. Instead, a struct with the type description is handed over to
generic functions, e.g., for binary encoding. The encoding function is optimized
for minimal resource consumption. Beside speed optimization, it is possible to
encode messages that are bigger than the network buffer. For this, a callback
is triggered when the end of the encoding buffer is reached. Then, the current
buffer is sent out and reset, so that the encoding function can continue where
it left off. This saves one sweep over every data type that would otherwise be
required to determine the binary encoding length prior to allocating a buffer. The
encoding has generic fallbacks that work on any processor architecture, including
the various possibilities for endianness and non IEEE-754 floating point number
representations.

http://open62541.org
https://opcfoundation.org/UA/schemas/Opc.Ua.Types.bsd.xml
https://opcfoundation.org/UA/schemas/Opc.Ua.Types.bsd.xml
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Network Connection Handling. Network connections are made up of three lay-
ers. Lowest is the raw TCP connection. For this, a plugin API has been defined
so that the networking layer can be exchanged for non-POSIX targets. On top
of every TCP connection, a SecureChannel is established. (The security pol-
icy “None” defines a SecureChannel without encryption or signing.) A Session
requires users to authenticate. Their credentials, such as username and pass-
word, are verified by the user that can also assign custom data to the session.
Later on, this data is passed to the access rights management function when the
user interacts with the information model. Sessions are stateful and may outlive
the current SecureChannel. For this, they are rebound to a new SecureChannel.
This is important for users who do not want to loose subscription notifications.

Event-Oriented Architecture. OPC UA strictly adheres to the request/response
pattern where only clients can send requests. However, responses are asynchro-
nous. That is, servers may respond to requests in a different ordering and may
delay responses. This encourages a non-blocking style of programming, greatly
enhancing the responsiveness of applications. This led us to adopting an event-
based architecture for open62541. Messages are retrieved from the network layer
and added to a dispatch queue. There, independent worker threads dequeue
events for processing (see Fig. 3). In the single-core case, dispatching an event is
synonymous with processing it right away. Similar architectures have led to huge
increases in latency and throughput for webservers [15]. Also, the event-oriented
architecture enables the efficient handling of repeated callbacks at different cycle
intervals. With open62541, it is possible to establish tens of thousands of Mon-
itoredItems with a few millisecond sampling interval each. Their execution is
distributed across processor cores. In the next paragraph, we detail why this
does lead to contention points that limit scaling.
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Fig. 3. Event-based architecture

Immutable Data Structures and Lockless Parallelism. Since the processor clock-
speeds reached their current limit around 2005, multicore operations have
become the leading paradigm for scaling applications. However, the achievable
speed-up is limited by Amdahl’s Law [9] according to the portion of the rate-
limiting code that does not support parallelism and needs to be protected by
locks. To overcome these limits, recent processors support atomic operations,
such as CAS (compare-and-switch) [13]. Atomic operations make consistency
guarantees across all processor cores and memory caching levels. In the case of
CAS, a pointer is replaced only when the current value still points to the same
memory address. The NodeStore in open62541 is implemented as a hashmap
where OPC UA nodes are indexed with their NodeId. In multicore operations,
nodes cannot be edited and must be replaced in their entirety. This can be
achieved with atomic operations. The question remains when old versions can
be safely removed without expensive synchronisation. Currently, open62541 uses
the RCU (Read, Copy, Update) mechanism originally developed to scale concur-
rent operations in the Linux kernel [4]. To free other shared data structures, for
example a Session, delayed callbacks are used. When the Session is closed, it is
invalidated and all pointers to the session are removed. But freeing the memory
is delayed until all previously dispatched events, where the Session may still be
references, have completed to protect from data races [7].

Service Sets. The 37 standard OPC UA services are organized into service sets.
Some services, for example to establish a Session can be accessed only over
the network. Most services however are exposed via the user-visible API to the
server developer. In fact, services are the only way for users to interact with
the server’s information model. That reduces the complexity as there is a single
point where, e.g., node attributes can be set. Furthermore, any functionality
that is implemented for the local user, such as adding a new object instance, is
automatically available also over the network.

Consider now the following microbenchmark of the Read service as an indi-
cation of the effectiveness of the services (making heavy use of the NodeStore in
the background) and the encoding function. Decoding the read-request, process-
ing the service and encoding the response can be repeated more than 1,000,000
times per second on a laptop computer (running an Intel i7-3520M at 2.9 GHz).



184 J. Pfrommer

Thus, less than 3000 processor cycles are required for this very common service.1

This however excludes the effect of networking itself and the necessary context
switches into the operating system kernel.

5 Conclusion

In this paper, we discussed the use of OPC UA, a network protocol commonly
used in the Industrial Internet of Things, to support semantic interoperability
and connectivity in big-data scenarios. We then discussed the architecture of the
open62541 OPC UA implementation and the measures taken to ensure scala-
bility. In recent years, several open source implementations of OPC UA have
been developed for the most common software development platforms. That
is OPC UA is becoming a readily available technology. With its features for
semantic interoperability and large-scale application scenarios, OPC UA brings
the learnings for the integration of large-scale cyber-physical systems from the
industrial automation community to a wider audience. Our hope is that a fruitful
exchange of ideas will ensue.
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