Composition of Verification Assets for Software
Product Lines of Cyber Physical Systems

Ethan T. McGee!®) | Roselane S. Silva?, and John D. McGregor!

1 School of Computing, Clemson University, Clemson, SC, USA
{etmcgee, johnmc }@clemson. edu
2 Department of Computer Science, Federal University of Bahia (UFBA),
Salvador, BA 40170-110, Brazil
rosesilva@dcc.ufba.br

Abstract. The emerging Internet of Things (IoT) has facilitated an
explosion of everyday items now augmented with networking and com-
putational features. Some of these devices are developed using a Software
Product Line (SPL) approach in which each device, or product, is instan-
tiated with unique features while reusing a common core. The need to
rapidly develop and deploy these systems in order to meet customer
demand and reach niche markets first requires shortened development
schedules. However, many of these systems perform roles requiring thor-
ough verification, for example, securing homes. In these systems, the
detection and correction of errors early in the development life cycle is
essential to the success of such projects, with particular emphasis on the
requirements and design phases where approximately 70% of faults are
introduced. Tools such as the Architecture Analysis & Design Language
(AADL) and its verification utilities aid in the development of an assured
design for embedded systems. However, while AADL has excellent sup-
port for the specification of SPLs, current verification utilities for AADL
do not fully support SPLs, particularly SPL models utilizing composi-
tion. We introduce an extended version of AGREE, a verification utility
for AADL, with support for compositional verification of SPLs.

Keywords: Verification - AADL - AGREE

1 Introduction

Cyber-Physical Systems (CPS) are physical systems that are monitored, con-
trolled, integrated and coordinated by a software layer. These systems bridge
the gap between the discrete and continuous worlds [7] and are used in multiple
domains: automotive, medicinal and aerospace among others. They also form the
backbone of the emerging Internet of Things (IoT). Due to a need of being first
to market, some manufacturers of IoT CPS have adopted a Software Product
Line (SPL) strategy allowing them to reuse core functionality among products
while tailoring the features of each product to the device’s intended use. First
to market also necessitates shortened development cycles imposing the need for

© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 123-138, 2017.
DOI: 10.1007/978-3-319-56856-0_9

124 E.T. McGee et al.

faults to be discovered quickly. Research has shown that approximately 70% of
all faults originate in the requirements and design phases of the Software Devel-
opment Life Cycle; the majority, 80%, of these errors are not caught until later
in the development life cycle [2]. The Architecture Analysis & Design Language
(AADL), designed for modeling embedded systems, also has shown good success
in modeling the intricacies of SPLs [1]. AADL has a strong set of verification tools
that allow system designs to be tested for defects, thus allowing more defects
to be caught early. However, none of the verification tools for AADL currently
available fully support the verification of SPLs.

AADL supports compositional construction of design components, allowing it
to natively represent the design of SPLs using design operators, such as substitu-
tion, to satisfy the variation needs of the implementation hierarchy within a com-
ponent. AADL also provides variation mechanisms that support the incremental
definition of component variants. The language provides facilities allowing one
component to be defined by extending another component and permitting the
inherited types to be refined into more contextually appropriate types, demon-
strated with a model in Figs.1 and 2. This allows the designer to specify, for
example, a functional interface which each product of the SPL will implement
and have each product inherit the interface rather than re-specify it for each
product individually. AADL’s primary behavioral verification mechanism, the
Assume Guarantee REasoning Environment (AGREE), does not natively sup-
port component extension requiring more cumbersome verification conditions for
verifying designs incorporating extension than should be necessary. If AGREE
fully supported AADL’s inheritance mechanisms it could be used to verify com-
plex SPL designs more naturally, and it would enable the reuse of verification
assets in SPLs just as AADL interfaces can be reused.

In this paper, we present an extension to the AGREE language that provides
inheritance support. This is done via two accomplishments:

— detecting the AADL extends keyword (how AADL natively indicates inheri-
tance) and overriding the behavior so that AGREE can utilize the connection,
and

— introducing abstraction into the AGREE annex allowing children to override
functionality inherited from their parent(s).

The remainder of this paper is structured as follows. In Sect. 2 we provide the
background necessary for understanding the remainder of this work. In Sect. 3,
we present the method used in modifying AGREE, and we present an extended
example in Sect. 4. Finally, related work is over-viewed in Sect. 5.

2 Background

2.1 AADL

AADL is a language for the architectural modeling of embedded software [12].
It is a standard of the Society of Automotive Engineers (SAE) [13] and incor-
porates many features for the representation of both hardware (i.e. processors,

Composition of Verification Assets for Software Product Lines 125

memory, buses) and software (i.e. data, thread, subprograms). AADL supports a
model-based architecture design through fine-grained modularity and separation
of concerns. It’s syntax also includes capabilities for querying the architectural
model facilitating verification and validation of the models.

Our extension to AGREE utilizes the extensibility feature of the language.
This is represented by the extends keyword and is how AADL designates inheri-
tance. An extender receives all of the features, sub-components and connections
of the component it extends. The extender is also permitted to refine compo-
nents inherited from the parent. An AADL snippet using extends and refines
is shown in Figs. 1 and 2. However, unlike features, properties and other native
AADL elements which can be extended and refined, annexes are not inherited
by extenders.

system child extends parent

--inherited from parent

system parent --features
features --output: out data port;
input: in data port; input: refined to in data port
output: out data port; Base_Types: :Integer;
annex agree {xx annex agree {*x
assume "input greater than 2": assume "input greater than 2":
input > 2; input > 2;
guarantee "output input * 2": guarantee "output input * 2":
output = input * 2; output = input * 2;
*x}; *x};
end parent; end child;
Fig. 1. AADL parent example Fig. 2. AADL child extends example
2.2 AGREE

AGREE is a compositional verification tool for AADL based on the widely-
used assume-guarantee contract verification method [18]. Designers state their
assumptions about input and specify guarantees concerning output provided
the assumptions are met. Designers also specify the behavior of a system to
ensure that the system can fulfill its guarantees. Analysis work in AGREE is
performed by a Satisfiability-Modulo Theorem (SMT) prover that checks the
behavior model for contradictions that would prevent the system from fulfilling
its guarantees. Any found contradictions are then presented to the user as a case
against the system’s correctness.

AGREE is an AADL annex that encapsulates the definitions of contracts and
specifications. A sample of AGREE’s syntax, an assume-guarantee contract, is
shown in Fig. 1. Note that AGREE splits the assume-guarantee contracts from
their behavior specification. The assume-guarantee contract is placed in the func-
tional interface along with the input / output specifications, and the behavior
specification is placed in the implementation. In this way, the multiple imple-
mentations common in an SPL can use the same assumptions and guarantees
while each has its own behavior specification.

126 E.T. McGee et al.

2.3 Software Product Lines

A Software Product Line (SPL) is a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of a partic-
ular market segment / mission and are developed from a common set of core
assets in a prescribed way [22]. SPLs have achieved remarkable benefits includ-
ing productivity gains, increased agility, increased product quality and mass
customization [8].

’Spsad Sensar Lagend
. Enatie | Disabie Switch .:, " ’
// O Opfionad
’,”',' @ Spoad nerease Requastar ‘;__» . /"_\, Aternaive
’ | Rexr Distance Sensar | Absyract
/ »_),() Speed Decrease Requestor {x
Cruse Caral T Front Distance Semar
t.\\\ /‘ Main Driver Preference
“‘ * //_i__‘__-meGv
\ Cataller Loge [
T Maintain Speed with Newrby

N
\ Martan Gap and Nerty

ORado

Fig. 3. SPL feature model

SPLs are of particular importance to the IoT, particularly for their cost /
time savings and productivity gains. They enable IoT companies to maintain a
common core of features which can be reused across several products through
customization of the product instantiation. This reuse permits shortened devel-
opment schedules and also allows companies to maintain a common set of appli-
cations, each targeted to a specific audience.

Figure 3 represents an example SPL feature model, a diagram of the configu-
rations each product in the product line can choose. Some features of the cruise
control are required, for example, the sensor which determines the current speed
of the vehicle, a method of requesting the vehicle accelerate and a method of
enabling / disabling the cruise control system. Other features, like the radio to
facilitate communication between vehicles, are optional. Each product will make
a selection of which features to include and, for the features, which have multiple
variations, which variations to use.

Composition of Verification Assets for Software Product Lines 127

3 Method

AGREE is packaged as a plug-in for the Open Source AADL Tool Environment
(OSATE) development workbench, which is built on top of Eclipse [21]. AGREE
adds several features to OSATE. The first addition is a right-click context menu
for the model outline viewer, shown in Fig.5. This context menu exposes the
verification options supported by AGREE and allows the user to select which
component(s) he wishes to verify. The second addition is that of an annex which
exposes the AGREE language, its parser, and its semantic analyzer as well as
the interface to the prover. An overview of the work-flow of the plug-in can be
seen in Fig. 4.

AGREE AGREE
Plugin Parser

o : ———— Unchanged
revosiory | o

Fig. 4. Workflow for AGREE

SMT
Formatter

The user accesses the context menu for a component and selects a ver-
ification task. The architectural description of the component, the AGREE
annex contents and any sub-components are then provided to the plug-in. The
AGREE contract statements are extracted from the component and parsed into
an Abstract Syntax Tree (AST). The AST is provided to a formatter which
transforms the AST into the syntax expected by the Satisfiability-Modulo The-
orem (SMT) prover. The results of the SMT prover’s execution are provided
back to OSATE in a displayable format which OSATE renders. A view of the
rendered results can be seen in Fig.5. Note that OSATE displays successfully
verified conditions of a component with green checks, and errors are displayed
with a red X. Users can right-click the invalidated conditions for more detail.

=0

oL PUbAC i1 Problems [T] Properties [®] AADL Property Values [~] REAL Results | & AGREE Results ¢ G Console i Assurance Case
Property Result

¥ «/ Verification for cruise_control.impl 6 Valid
v/ Contract Guarantees 4 Valid
/ accelerating o braking, not both Valid (05)
> +/ increase when speed less than target speed Valid (0s)
+/ decrease when speed greater than target speed Valid (0s)
+/ maintain when target equal actual Valid (0s)
— ¥/ This component consistent 1 valid
& Verify Single Layer / Result Valid (0s)
B Yoty AL avers ¥ / Component composition consistent 1 valid

 Check Realzabilty :
G Verity Monolithically / Result Valid (0s)

‘mypack.aad’ text

Predefined Theorems >

Fig. 5. Context menu & AGREE console

AGREE can be used for both architectural design and verification. When
used for design, AGREE contracts are specified at a broad level first, then as
the architecture matures, they become increasingly refined. Throughout this

128 E.T. McGee et al.

paper, we primarily focus on AGREE’s verification functionality. Note, however,
that our work is applicable to the design functionalities of AGREE as well.

Our extension to AGREE includes modifications to the architecture of the
plugin facilitating inheritance support !. We also introduce new statements to the
language which facilitate inheritance while also providing the ability to disable
it for backwards compatibility. We first cover the modifications made to the
architecture of the plugin.

In order to facilitate inheritance, we modified the parser of AGREE so that
it no longer directly communicated ASTs to the SMT Formatter. We also added
a repository which serves two purposes. It first functions as a temporary bank
which holds all ASTs of the architectural model. Secondly, it functions as a com-
poser that is capable of stitching together parent and child ASTs into a single,
unified AST. The composer functionality is invoked only when a component’s
AST is requested by the Formatter. These modifications along with the original
architecture are visualized in Fig. 4.

From the perspective of the composer, there are three types of statements
that an annex can contain. The first are original, or normal, statements. These
are statements that are introduced in the current specification and do not exist
at any higher level of the inheritance hierarchy. The second are inherited state-
ments, statements that are introduced at a higher level of the inheritance hier-
archy which are copied down into the behavior of the child. And finally, override
statements are statements which amend the behavior of inherited statements.

When an AST is requested from the Formatter, the inheritance hierarchy of
the requested component is gathered, and then a composed AST is generated
starting at the highest level of the hierarchy. As the composer moves down each
level of the hierarchy, it invokes a merging formula

C=I+0)+N

where C' is the composed behavior of the current level and all higher levels.
I represents inherited behavior, N represents normal behavior and O is the
override behavior. As the order of statements in the AGREE annex is impor-
tant, inherited behavior is always included first, taking care to account for any
overrides. Finally, new behavior introduced in the current level is appended. The
composed AST is then passed down the inheritance hierarchy until all levels have
been evaluated. Once the hierarchy is completely traversed, the final composed
behavior is returned to the Formatter.

We now cover the modified / additional statements added to the AGREE
language in order to facilitate inheritance. A short overview of the statements
that have been added or modified is presented in Table 1. Each statement will
be discussed and an example of its use provided.

Guarantee / Assume Statements. The guarantee and assume statements of the
AGREE language are analogous to the pre-condition / post-condition concepts

1 'We will refer to the AGREE language provided in the standard OSATE distribution
as “traditional” and our version as “extended”.

Composition of Verification Assets for Software Product Lines 129

Table 1. AGREE syntax overview

Keyword Description

assume declare that the system expects input to conform
to the following statement

do not inherit | explicitly disable inheritance

eq declare a concrete variable or override an abstract
variable

eq abstract declare an abstract variable

guarantee declare that output of the system will conform to
the following statement

inherit explicitly state that inheritance from a parent
occurs

of other verification tools. With traditional AGREE, the assumptions and guar-
antees of parent components are not inherited by their children despite the fact
that many times the children will use the same inputs, outputs, assumptions
and guarantees as their parents. Our extended version of AGREE allows for
such inheritance. We also recognize that it is sometimes necessary to tweak the
assumptions or guarantees of your parent, particularly if the child introduces
new inputs or outputs that the parent does not have.

An example of AGREE’s assume and guarantees are shown in Figs. 6 and 7.
Also shown in these figures is a demonstration of how our extended version of
AGREE permits verification assets to be reused across different components of
the model hierarchy as well as how assumptions and guarantees can be overridden
by children if necessary. The parent component, introduced in Fig.6 has two
features, a single input and output, and the AGREE annex assumes that the
input will be greater than or equal to 0 while guaranteeing that the output will
be greater than or equal to 1. The behavior of the parent is simply to take
the input value and set the output to the input plus 1. The child, shown in
Fig. 7, adds an additional complication by adding a second output. Note that
in Fig. 7 all inherited pieces are shown using comments (denoted by a double
dash in AGREE and AADL). The guarantees of the child have to be modified or
amended to account for this extra output. The override is driven by the descriptor
string, or, children who have an assumption or guarantee with a descriptor that
matches a parent assumption / guarantee’s descriptor will override the parent’s
matching descriptor.

Eq / Eq Abstract Statements. In traditional AGREE, the eg statement allows
for the declaration of a single variable. In introducing inheritance, we modified
the eg statement to either introduce a new variable or to override an existing
variable if the variable in the child has the same name as a variable in the
parent. We also introduced an eq abstract statement that provides a way to
define a variable without providing an implementation for that variable. Abstract
variables in AGREE are much like abstract variables in Java or C++. They can

130 E.T. McGee et al.

system parent

features
ip: in data port Base_Types::Integer;
op: out data port Base Types::Integer;

annex agree {x
assume "input req": ip >= 0;
guarantee "output req": op >= 1;

**};

end parent;

system implementation parent.impl
annex agree {**
assert op = ip + 1;
**};

end parent.impl;

Fig.6. AADL G / A example

system child extends parent

features
--ip: in data port Base_Types::Integer;
--op: out data port Base_Types::Integer;
op2: out data port Base_Types::Integer;

annex agree {x
--assume "input req": ip >= 0;
guarantee "output req": op >= 1

and op2 >= 1;
**};

end child;

system implementation child.impl
extends parent.impl
annex agree {x
--assert op = ip + 1;
assert op2 = ip + 1;
**};

end child.impl;

Fig. 7. AADL child G / A example

be used in calculations and statements just like any other variable but their
implementation is left for children, or extenders, to provide. We also introduce
the concept of an abstract implementation, an implementation specification that
contains an AGREE annex which introduces or inherits an abstract variable. In
order for an implementation specification to be non-abstract, or concrete, it
must override and provide an implementation for all inherited abstract variables
without introducing any new abstract variables.

An example of eq and eq abstract statements and how they are used in
inheritance is shown in Figs. 8 and 9. Once again comment lines (those starting
with a double dash) represent components that have been inherited. The parent
figure, shown in Fig. 8, has one output, a string representing the type. In the
parent figure, the type produced by the component is guaranteed to be null. This
is reflected in the parent’s implementation as myType has been declared abstract
and not provided with an implementation. The child figure, shown in Fig.9,
overrides the parent’s guarantee and asserts that the component will declare
its type as “child”. The child, however, does not have a full implementation,
only a provision of a definition for the inherited abstract variable. The assert
that ties the abstract variable to the output is inherited and does not require
respecification.

Inherit / Do Not Inherit Statements. The inherit and do not inherit statements
are unique to our extended implementation of AGREE. The do not inherit
statement allows inheritance to be explicitly disabled allowing the traditional
behavior of the plug-in to be used. This statement was introduced to provide
a means of enabling backwards compatibility. When encountered, the composer

Composition of Verification Assets for Software Product Lines 131

system child extends parent
system parent --features
features --type: out data port Base_Types::String;

type: out data port Base.Types::String; annex agree {x

annex agree {** guarantee "output req": type = "child";
guarantee "output req": type = null; *x};
**}; end child;

end parent;

system implementation parent.impl
annex agree {**
eq abstract myType: string;
assert type = myType;
**};

end parent.impl;

system implementation child.impl
extends parent.impl
annex agree {**
eq myType: string = '"child";
--assert type = myType;
**};

end child.impl;

Fig. 8. AADL Eq example Fig. 9. AADL child Eq example

of the repository component halts and the current results are returned without
including any statements from parent annexes. The inherit statement is similar
to the do not inherit statement in that it allows a developer to explicitly state
that inheritance does occur. The statement has no effect on the composer, how-
ever, it does allow developers to specify which hierarchies use inheritance and
which hierarchies do not if a mixed model is being utilized.

Finally, we provide an example where inheritance is controlled using the
inherit and do not inherit statements. This example is shown in Figs. 10 and 11
and can be seen in the implementation’s AGREE annexes. Note that the child’s
annex does not inherit the assert of the parent due to the child specifying that
inheritance should not be used. Note, however, that the do not inherit statement
does not affect extends. The child will still inherit the features of the parent even
though the AGREE annex will not inherit any attributes of the parent.

A video providing more detail and an example can be found online at https://
£00.gl/VK6NKe. The source of the implementation is available at https://goo.
gl/TG9A4r, and an Eclipse / OSATE compatible update site is provided at
https://goo.gl/QZhSrv.

4 Example

We now provide an example of a SPL verified using our extended version of
AGREE. First, an overview of the architecture and excerpts of AADL are pro-
vided for discussion. Also shown are examples of AGREE using the features
introduced in our extended version. Second, we demonstrate that the extended
version of AGREE is capable of working with models that use several layers of
inheritance.

https://goo.gl/VK6NKe
https://goo.gl/VK6NKe
https://goo.gl/TG9A4r
https://goo.gl/TG9A4r
https://goo.gl/QZhSrv

132 E.T. McGee et al.

system parent

features
ip: in data port Base_Types::Integer;
op: out data port Base_Types::Integer;

annex agree {**
assume "input req": ip >= 0;
guarantee "output req": op >= 1;

**};

end parent;

system implementation parent.impl
annex agree {x
assert op = ip + 1;
*x};

end parent.impl;

Fig. 10. AADL inherit example

system child extends parent
features
--ip: in data port Base_Types::Integer;
--op: out data port Base_Types::Integer;
op2: out data port Base_Types::Integer;
annex agree {*x
do not inherit;
assume "input req": ip < 1;
guarantee "output req": op <= 0
and op2 <= 0;
*x)

end child;

system implementation child.impl
extends parent.impl
annex agree {xx
do not inherit;
assert op = ip - 1;
assert op2 = ip - 1;
*x)

end child.impl;

Fig. 11. AADL child inherit example

4.1 Architecture Overview

The example SCSPL architecture, whose product hierarchy is diagrammed in
Fig. 12 and whose feature model is shown in Fig. 3, has three levels. The top-most
level is a collection of core assets shared by each of the different types of cruise
controls, or products. The middle level includes a standard cruise control and an
adaptive cruise control. The standard cruise control is the type common in many
vehicles, particularly older vehicles. It uses the “Maintain Driver Preference”
variant for the controller logic feature and does not have a radio or speed decrease
detector, and its increase requestor feature variant is simply a button. It allows
a user to manually set a speed for the car to maintain, and sensors in the engine
determine how the throttle needs to be modified in order for the requested
speed to be achieved. The adaptive cruise control, found in some vehicles, is
the same as the standard cruise control except that it has extra sensors on
the front of the vehicle that also feed into the throttle actuator as well as the
braking system. If the cruise control is causing the vehicle to approach another
vehicle too rapidly, the adaptive cruise control can use the brake actuators to
match the speed of the vehicle in front. This product uses the “Rear Distance
Sensor” variant and a button for the increase speed requestor feature and the
“Front Distance Sensor” and a button for the decrease speed requestor feature.
The “Maintain Gap” variant is chosen for the controller feature. Finally, the
bottom of the hierarchy contains a collaborative-adaptive cruise control. This
cruise control, in addition to front sensors, includes networking capabilities that
allow vehicles to communicate amongst one another to determine the safest

Composition of Verification Assets for Software Product Lines 133

Abstract Cruise Control

Standard Cruise Control Adaptive Cruise Control

Collaborative Adaptive
Cruise Control

Fig. 12. Example SPL architecture

speed for all vehicles to be traveling considering the location and lane of the
vehicle, so the optional radio feature is selected. This cruise control uses the
“Maintain Gap and Nearby” variant for the controller logic feature. In addition
to other vehicles, collaborative-adaptive cruise controls could communicate with
Traffic Management Centers or roadside infrastructure, however, this is outside
the scope of this architecture.

4.2 Verifying Multi-layered Architectures

We will now introduce several models which represent parts of the cruise control
architecture. These models will be used to demonstrate, using a more extensive
example, how the extended version of AGREE facilitates reuse within models
utilizing the inheritance features of AGREE.

The first model used is the model of the abstract cruise control, shown in
Fig. 13. This represents all of the shared features found in each cruise control
present in the SPL of cruise controls. There are 3 inputs and 1 output. The
inputs represent whether or not the cruise control is turned on (enabled), what
the target speed of the cruise control should be (targetSpeed) and what the
current speed of the vehicle is (actualSpeed). Note that many cruise controls will
not operate below a minimum speed threshold, and for our purposes, we have
set this threshold at 30 miles per hour.

The single output represents the throttle setting for the vehicle. A method of
decreasing the speed is not included in the shared model as this is not a shared
trait of the cruise controls in our product line. For example, the standard cruise
control is not connected to the braking system of the vehicle. It can moderate
the speed by letting off of the throttle, allowing the vehicle to slow down, but
it cannot stop the vehicle; this task is left up to the driver. The adaptive cruise
control, however, is connected to the braking system of the vehicle and it can
issue a command to the braking system over the vehicle bus slowing the vehicle.

134 E.T. McGee et al.

system abstract._cruise_control
features
enabled: in data port Base_Types::Boolean;
targetSpeed: in data port Base_Types::Integer;
actualSpeed: in data port Base_Types::Integer;
increaseSpeed: out event data port Base_Types::Boolean;
annex agree {**
assume "target speed is greater than lower threshold when enabled":
enabled => targetSpeed >= 30;
assume "actual speed is greater than lower threshold when enabled":
enabled => actualSpeed >= 30;
guarantee "increase speed only when enabled":
not increaseSpeed or (enabled and targetSpeed < actualSpeed and increaseSpeed) ;
**};

end abstract_cruise_control;

system implementation abstract_cruise_control.impl
annex agree {**
eq abstract shouldIncreaseSpeed : bool;
assert increaseSpeed = shouldIncreaseSpeed;
*x};

end abstract_cruise_control.impl;
Fig. 13. Shared core asset model

The AGREE annex of Fig. 13 focuses on the verification of a single property,
assuring that the increase speed event fires only when the cruise control system is
enabled and the target speed is less than the actual speed. In all other instances,
the increase speed event should be disabled. The controls around whether or not
the speed should be increased will depend largely on the components used by
the instantiated product of the product line, so an abstract variable shouldIn-
creaseSpeed is introduced in the abstract cruise control system’s implementation
that children will override based on their requirements.

The second model provided is a representation of the adaptive cruise control.
Recall that the adaptive cruise control is connected to various other sensors on
the vehicle that allow it to maintain both speed and, in the presence of another
vehicle, a gap between the vehicles.

The adaptive model is shown in Fig.14. Note that 3 additional inputs are
provided as well as 1 additional output. The additional output represents the
connection to the braking system of the vehicle and can be used to slow the
vehicle down when necessary. The additional inputs represent the upper limit
of the gap between the vehicle and the vehicle in front (upperGapLimit) as well
as the lower limit on that gap (lowerGapLimit). The final input is the current
measured gap distance (gap).

Notice that the adaptive model has many more assumptions and guarantees
than the shared model, including guarantees from the shared model that are over-
ridden. The implementation is also much more detailed, and it provides an imple-
mentation for the abstract variable of the shared model (shouldIncreaseSpeed).
The reason for the extra complexity, of course, is due to the need to factor a gap

Composition of Verification Assets for Software Product Lines 135

system adaptive_cruise_control extends abstract._cruise_control
features
decreaseSpeed: out event data port Base_Types::Boolean;
upperGapLimit: in data port Base_Types::Integer;
lowerGapLimit: in data port Base_Types::Integer;
gap: in data port Base_Types::Integer;
annex agree {x
guarantee "decrease when speed greater than target speed":
enabled and actualSpeed > targetSpeed => decreaseSpeed;
assume "upper gap limit is non-negative and non-zero": upperGapLimit > 0;
assume "lower gap limit is non-negative and non-zero": lowerGapLimit > 0;
assume "gap is non-negative and non-zero": gap > 0 ;
assume "gap is above lower limit": lowerGapLimit <= gap;
guarantee "increase speed when gap reaches lower limit":
enabled and gap = upperGapLimit => increaseSpeed;
guarantee "decrease speed when gap reaches lower limit":
enabled and gap = lowerGapLimit => decreaseSpeed;
—--override
guarantee "maintain when target equal actual":
enabled and actualSpeed = targetSpeed and
lowerGapLimit < gap and gap < upperGapLimit => not increaseSpeed;
**};

end adaptive_cruise_control;

system implementation adaptive_cruise_control.impl extends abstract_cruise_control.impl
annex agree {**
eq shouldIncreaseSpeed: bool =
if enabled and (actualSpeed < targetSpeed or gap = upperGapLimit) then
true
else
false;
eq shouldDecreaseSpeed: bool =
if enabled and (actualSpeed > targetSpeed or gap = lowerGapLimit) then
true
else
false;
assert decreaseSpeed = shouldDecreaseSpeed;
**};

end adaptive_cruise_control.impl;
Fig. 14. Adaptive cruise control model

calculation into whether or not the increase speed event should be fired as well
as constraints on the decrease speed event. However, notice that, other than the
over-ridden guarantee and abstract, none of the parent’s restrictions or implemen-
tation details need to be copied down into the child. This allows that only verifi-
cation assets unique to the adaptive cruise control are required to be attached to
the adaptive cruise control. This reuse increases the maintainability of the model
and reduces the workload / cognitive load on those developing the model.

136 E.T. McGee et al.

1#] Problems [Properties] AADL Property Values | AGREE Results %2
Property Resut
6 Valid
Valid (0s)
Valid (0s)
Valid (0s)
Valid (0s)
Valid (0s)
Valid (0s)
1 Valid

/ Result Valid (0s)
v +/ Component composition consistent 1 Valid

+/ Result Valid (0s)

Fig. 15. Adaptive cruise control verification results

Finally, we provide the results of verifying the adaptive cruise control using
the extended AGREE implementation in Fig.15. Note in the figure that the
assumptions / guarantees of both models are present despite the assumptions /
guarantees of the parent not being specified in the child. This demonstrates that
our inheritance mechanism works as expected, and the results of the composition
can be validated by a SMT prover.

5 Related Work

Compositionally composed assume-guarantee verification is a popular verifica-
tion technique, and it has been used successfully in many other ecosystems out-
side of AADL. Some examples of this are [15,16]. Our work differs from these
groups in where verification is applied to the system. We apply compositional
verification to the architecture during the design phase of the development life
cycle, while these projects apply verification technique later.

Our work is most similar to the work performed by the following groups,
particularly [18,26], both of which used AADL. Additional architecture-based
techniques exist, such as [14,17,20]. Our work differs from these groups in that
we are explicitly focused on allowing the verification assets to be reused in the
same manner as SPL assets, exploiting the inheritance features of the AADL
language.

6 Conclusion

We have introduced an extension to the AGREE language allowing it to support
compositional verification of SPL models that utilize inheritance. Our extended
version of AGREE facilitates the re-use of verification assets across multiple lev-
els of inheritance hierarchies present in SPL. It also allows verification assets to
incorporate abstraction and refinement into their definitions further simplifying
the verification assets to be shared and ensuring they are more maintainable.
In future work, we plan to incorporate abstraction in the other statements of
traditional AGREE. We also plan to further validate our claims of verification
asset reusability by utilizing the extended AGREE module to analyze more com-
plex models, particularly dynamic SPL. The extended version of AGREE will
be used to determine the correctness of such models and their appropriateness
to an organization’s goals.

Composition of Verification Assets for Software Product Lines 137

Acknowledgements. The work of the authors was funded by the National Science
Foundation (NSF) grant # 2008912.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Gonzalez-Huerta, J., Abrahdo, S.M., Insfran, E., Lewis, B.: Automatic derivation

of AADL product architectures in software product line development. In: MODELS
(2014)

Feiler, P., Goodenough, J., Gurfinkel, A., Weinstock, C., Wrage, L.: Four pillars for
improving the quality of safety-critical software-reliant systems. DTIC Document
(2013)

Klein, A., Goodenough, J., McGregor, J., Weinstock, C.: Increasing confidence
by strengthening an inference in a single argument leg: An alternative to multi-
legged arguments. In: Proceedings of the 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (2014)

McGee, E.T., McGregor, J.D.: Composition of proof-carrying architectures for
cyber-physical systems. In: Proceedings of the 19th International Conference on
Software Product Line, pp. 419-426 (2015)

Wheeler, D.: http://www.openproofs.org/wiki/Main_Page.OpenProofs (2010)
McGee, E.: http://dx.doi.org/10.5281/zenodo.33234 (2015)

Rajkumar, R.R., Lee, 1., Sha, L., Stankovic, J.: Cyber-physical systems: The next
computing revolution. In: Proceedings of the 47th Design Automation Conference,
pp. 731-736 (2010)

Clements, P., McGregor, J.: Better, faster, cheaper: Pick any three. Bus. Horiz.
55, 201-208 (2012)

Bishop, P., Bloomfield, R., Guerra, S.: The future of goal-based assurance cases.
In: Proceedings of the Workshop on Assurance Cases, pp. 390-395 (2004)

Gacek, A., Backes, J., Whalen, M., Cofer, D.. AGREE User’'s Guide
(2015). https://github.com/smaccm/smaccm/blob/master /documentation/agree/
AGREE%20Users%20Guide.pdf

Feiler, P.H., Hansson, J., Niz, D.D., Wrage, L.: System architecture virtual inte-
gration: An industrial case study (2009)

Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language
(AADL): An introduction (2006)

Feiler, H.P., Lewis, B., Vestal, S.: The SAE architecture analysis and design lan-
guage (AADL) standard. In: IEEE RTAS Workshop (2003)

Goodloe, A.E.,; Muifioz, C.A.: Compositional verification of a communication pro-
tocol for a remotely operated aircraft. Sci. Comput. Program. 78, 813-827 (2013)
Fong, P.W.L., Cameron, R.D.: Proof linking: Modular verification of mobile pro-
grams in the presence of lazy, dynamic linking. ACM Trans. Softw. Eng. Methodol.
9, 379-409 (2000)

Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE Trans. Softw. Eng. 30, 368-402 (2004)

Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Composi-
tional verification of architectural models. In: NASA Formal Methods, pp. 126-140
(2012)

Murugesan, A., Whalen, M.W., Rayadurgam, S., Heimdahl, M.P.: Compositional
verification of a medical device system. ACM SIGAda Ada Lett. 33, 51-64 (2013)

http://www.openproofs.org/wiki/Main_Page.OpenProofs
http://dx.doi.org/10.5281/zenodo.33234
https://github.com/smaccm/smaccm/blob/master/documentation/agree/AGREE%20Users%20Guide.pdf
https://github.com/smaccm/smaccm/blob/master/documentation/agree/AGREE%20Users%20Guide.pdf

138

19.

20.

21.

22.

23.

24.

25.

26.

27.

E.T. McGee et al.

White, J., Clarke, S., Groba, C., Dougherty, B., Thompson, C., Schmidt, D.C.:
R&D challenges and solutions for mobile cyber-physical applications and support-
ing internet services. J. Internet Serv. Appl. 1, 45-56 (2010)

Hsiung, P., Chen, Y., Lin, Y.: Model checking safety-critical systems using
safecharts. IEEE Trans. Comput. 56, 692-705 (2007)

Delange, J.: AADL Tools: Leveraging the Ecosystem. SEI Insights (2016)
Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co, Inc., Boston (2002)

Nair, S., Vara, J.L., Sabetzadeh, M., Briand, L.: An extended systematic literature
review on provision of evidence for safety certification. Inf. Softw. Technol. 56(7),
689-717 (2014)

Braga, R.T.V., Junior, O.T., Castelo Branco, K.R., De Oliveira Neris, L., Lee,
J.: Adapting a software product line engineering process for certifying safety
critical embedded systems. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP
2012. LNCS, vol. 7612, pp. 352-363. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33678-2_30

Feiler, P., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston
(2012)

Yushtein, Y., Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V., Noll, T., Olive, X.,
Roveri, M.: System-software co-engineering: Dependability and safety perspective.
In: 2011 IEEE Fourth International Conference on Space Mission Challenges for
Information Technology, pp. 18-25 (2011)

Agosta, G., Barenghi, A., Brandolese, C., Fornaciari, W., Pelosi, G., Delucchi,
S., Massa, M., Mongelli, M., Ferrari, E., Napoletani, L., et al.: V2I Cooperation
for traffic management with SafeCop. In: 2016 Euromicro Conference on Digital
System Design, pp. 621-627 (2016)

http://dx.doi.org/10.1007/978-3-642-33678-2_30
http://dx.doi.org/10.1007/978-3-642-33678-2_30

	Composition of Verification Assets for Software Product Lines of Cyber Physical Systems
	1 Introduction
	2 Background
	2.1 AADL
	2.2 AGREE
	2.3 Software Product Lines

	3 Method
	4 Example
	4.1 Architecture Overview
	4.2 Verifying Multi-layered Architectures

	5 Related Work
	6 Conclusion
	References

