
Goetz Botterweck
Claudia Werner (Eds.)

 123

LN
CS

 1
02

21

16th International Conference on Software Reuse, ICSR 2017
Salvador, Brazil, May 29–31, 2017
Proceedings

Mastering Scale and Complexity
in Software Reuse

Lecture Notes in Computer Science 10221

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Goetz Botterweck • Claudia Werner (Eds.)

Mastering Scale and Complexity
in Software Reuse
16th International Conference on Software Reuse, ICSR 2017
Salvador, Brazil, May 29–31, 2017
Proceedings

123

Editors
Goetz Botterweck
Lero - University of Limerick
Limerick
Ireland

Claudia Werner
Federal University of Rio de Janeiro
Rio de Janeiro
Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-56855-3 ISBN 978-3-319-56856-0 (eBook)
DOI 10.1007/978-3-319-56856-0

Library of Congress Control Number: 2017936356

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-5556-1660

Foreword

This volume contains the proceedings of the International Conference on Software
Reuse (ICSR 16) held during May 29–31, 2017, in Salvador, Brazil.

The International Conference on Software Reuse is the premier international event
in the software reuse community. The main goal of ICSR is to present the most recent
advances and breakthroughs in the area of software reuse and to promote an intensive
and continuous exchange among researchers and practitioners.

The conference featured two keynotes by Mark Harman, University College
London, and Thomas Zimmermann, Microsoft Research. We received 34 submissions
(excluding withdrawn submissions). Each submission was reviewed by three Program
Committee members. The committee decided to accept 11 papers, out of which eight
full papers and three short ones, resulting in an acceptance rate of 32.3%. The program
also included invited talks, a workshop, a doctoral symposium, and two tutorials.
Abstracts of all these are also included in this volume. The program was complemented
by tool demos and doctoral symposium.

This conference was a collaborative work that could only be realized through many
dedicated efforts. First of all, we would like to thank Eduardo Almeida and Ivan
Machado for their work as general chair and local chair, respectively. Rafael Capilla
organized the workshop and tutorial program. Deepak Dhungana organized the
demonstrations and tools track. Rohit Gheyi was Doctoral Symposium Chair. Tassio
Vale and Alcemir Santos both served as Web chairs, while Crescencio Lima and Iuri
Souza served as financial chairs. We would also like to thank Paulo Silveira for his
work as proceedings chair.

We would also like to thank Fapesb, Secretaria de Ciência, Tecnologia e Inovação,
Governo do Estado da Bahia, and CAPES for their financial support of the conference,
which was paramount to holding the conference in Salvador, Brazil.

Last but not least, as program co-chairs of ICSR 2017, we would like to sincerely
thank all authors who submitted papers to the conference for their contributions. We
also thank the members of the Program Committee and the additional reviewers for
their detailed and timely reviews as well as their participation in the discussions of the
submissions.

February 2017 Goetz Botterweck
Claudia Werner

Organization

General Chair

Eduardo Santana
de Almeida

Federal University of Bahia and RiSE Labs, Brazil

Program Co-chairs

Goetz Botterweck Lero - University of Limerick, Ireland
Claudia Werner Federal University of Rio de Janeiro, Brazil

Doctoral Symposium Chair

Rohit Gheyi Federal University of Campina Grande, Brazil

Workshops and Tutorials Chair

Rafael Capilla King Juan Carlos University, Spain

Tool Demonstrations Chair

Deepak Dhungana Siemens, Austria

Program Committee

Mathieu Acher Inria, France
Colin Atkinson University of Mannheim, Germany
Paris Avgeriou University of Groningen, The Netherlands
Ebrahim Bagheri Ryerson University, Canada
Maurice H. Ter Beek ISTI-CNR, Italy
David Benavides Universidad de Sevilla, Spain
Jan Bosch Chalmers, Sweden
Regina Braga Federal University of Juiz de Fora, Brazil
Jim Buckley University of Limerick, Ireland
Rafael Capilla Universidad Rey Juan Carlos, Madrid, Spain
Andrea Capiluppi Brunel University, UK
Sholom Cohen SEI, USA
Florian Daniel Politecnico di Milano, Italy
Davide Falessi Cal Poly, USA
John Favaro Intecs SpA, Italy
William B. Frakes Virginia Tech, USA
Harald Gall University of Zurich, Switzerland

Oliver Hummel IQSER, Germany
Kyo C. Kang Samsung, South Korea
Georgia Kapitsaki University of Cyprus, Cyprus
Jens Krinke University College London, UK
Uirá Kulesza Federal University of Rio Grande do Norte (UFRN),

Brazil
Patricia Lago Vrije Universiteit Amsterdam, The Netherlands
Jaejoon Lee Lancaster University, UK
Daniel Lucré Dio Federal University of São Carlos, Brazil
Hidehiko Masuhara Tokyo Institute of Technology, Japan
John Mcgregor Clemson University, USA
Hong Mei Beijing Institute of Technology and Peking University,

China
Tom Mens University of Mons, Belgium
Maurizio Morisio Politecnico di Torino, Italy
Denys Poshyvanyk College of William and Mary, USA
Jeffrey Poulin USA
Rick Rabiser CDL MEVSS, JKU Linz, Austria
Julia Rubin The University of British Columbia, Canada
Ina Schaefer Technische Universität Braunschweig, Germany
Klaus Schmid University of Hildesheim, Germany
Christa Schwanninger Siemens Healthcare GmbH, Germany
Norbert Siegmund University of Passau, Germany
Murali Sitaraman Clemson University, USA
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Uwe Zdun University of Vienna, Austria

VIII Organization

Keynote Abstracts

Alice in Dataland: Reuse for Data Science
in Software Teams

Thomas Zimmermann

Microsoft Research, Redmond, USA
tz@acm.org

Abstract. Data is changing the world and how we build software. Running
software produces large amounts of raw data about development processes and
customer usage of software. In this talk, I will motivate the need for data
analytics and show how data scientists work in a large software companies such
as Microsoft helping software teams to infer actionable insights. I will highlight
opportunities related to software reuse for researchers, practitioners, and
educators.

Bio. Thomas Zimmermann is a Senior Researcher in the Research in Software Engi-
neering (RiSE) group at Microsoft Research, Redmond, USA. His research interests
include software productivity, software analytics, recommender systems, and games
research. He is best known for his research on systematic mining of software reposi-
tories to conduct empirical studies and to build tools to support developers and man-
agers. His work received several awards, including Ten Year Most Influential Paper
awards at ICSE’14 and MSR’14, five ACM SIGSOFT Distinguished Paper Awards,
and a CHI Honorable Mention. He currently serves as General Chair for SIGSOFT
FSE’16 and as Program Co-Chair for ICSME 2017. He is Co-Editor in Chief of the
Empirical Software Engineering journal and serves on the editorial boards of several
journals, including the IEEE Transactions on Software Engineering. He received his
PhD in 2008 from Saarland University in Germany. His homepage is http://thomas-
zimmermann.com.

http://thomas-zimmermann.com
http://thomas-zimmermann.com

Software Transplantation for Reuse

Mark Harman

University College London, London, UK
mark.harman@ucl.ac.uk

Abstract. This talk describe recent advances in automated software transplan-
tation and genetic improvement, focusing on their potential for reuse.
Transplantation automatically transfers code from one system, a donor, into
another unrelated system, the host, transforming it in order to transfer func-
tionality from donor to host. Genetic improvement automatically improves
operational characteristics of existing systems, such as execution time, memory
requirements, and energy consumption.

This keynote is based on joint work with Earl Barr, Bobby Bruce, Yue Jia,
Bill Langdon, Alexandru Marginean, Justyna Petke, Federica Sarro, Fan Wu and
Yuanyuan Zhang in the CREST centre at UCL. CREST’s work on automated
transplantation won an ACM distinguished paper award (at ISSTA 2015) and
the gold medal for human competitive results at the GECCO 2016 Humie
awards.

Bio. Mark Harman is professor of Software Engineering in the Department of Com-
puter Science at University College London, where he directs the CREST centre and is
Head of Software Systems Engineering. He is widely known for work on source code
analysis and testing and co-founded the field of Search Based Software Engineering
(SBSE). SBSE research has rapidly grown over the past five years and now includes
over 1600 authors, from nearly 300 institutions spread over more than 40 countries.

Contents

Documentation Reuse and Repositories

DevRec: A Developer Recommendation System
for Open Source Repositories . 3

Xunhui Zhang, Tao Wang, Gang Yin, Cheng Yang, Yue Yu,
and Huaimin Wang

Documentation Reuse: Hot or Not? An Empirical Study 12
Mohamed A. Oumaziz, Alan Charpentier, Jean-Rémy Falleri,
and Xavier Blanc

Software Product Lines

A Preliminary Assessment of Variability Implementation Mechanisms
in Service-Oriented Computing . 31

Loreno Freitas Matos Alvim, Ivan do Carmo Machado,
and Eduardo Santana de Almeida

No Code Anomaly is an Island: Anomaly Agglomeration as Sign
of Product Line Instabilities . 48

Eduardo Fernandes, Gustavo Vale, Leonardo Sousa,
Eduardo Figueiredo, Alessandro Garcia, and Jaejoon Lee

ReMINDER: An Approach to Modeling Non-Functional Properties
in Dynamic Software Product Lines . 65

Anderson G. Uchôa, Carla I.M. Bezerra, Ivan C. Machado,
José Maria Monteiro, and Rossana M.C. Andrade

Variability Management and Model Variants

Clustering Variation Points in MATLAB/Simulink Models
Using Reverse Signal Propagation Analysis . 77

Alexander Schlie, David Wille, Loek Cleophas, and Ina Schaefer

Discovering Software Architectures with Search-Based Merge
of UML Model Variants . 95

Wesley K.G. Assunção, Silvia R. Vergilio,
and Roberto E. Lopez-Herrejon

Tracing Imperfectly Modular Variability in Software Product
Line Implementation . 112

Xhevahire Tërnava and Philippe Collet

http://dx.doi.org/10.1007/978-3-319-56856-0_1
http://dx.doi.org/10.1007/978-3-319-56856-0_1
http://dx.doi.org/10.1007/978-3-319-56856-0_2
http://dx.doi.org/10.1007/978-3-319-56856-0_3
http://dx.doi.org/10.1007/978-3-319-56856-0_3
http://dx.doi.org/10.1007/978-3-319-56856-0_4
http://dx.doi.org/10.1007/978-3-319-56856-0_4
http://dx.doi.org/10.1007/978-3-319-56856-0_5
http://dx.doi.org/10.1007/978-3-319-56856-0_5
http://dx.doi.org/10.1007/978-3-319-56856-0_6
http://dx.doi.org/10.1007/978-3-319-56856-0_6
http://dx.doi.org/10.1007/978-3-319-56856-0_7
http://dx.doi.org/10.1007/978-3-319-56856-0_7
http://dx.doi.org/10.1007/978-3-319-56856-0_8
http://dx.doi.org/10.1007/978-3-319-56856-0_8

Verification and Refactoring for Reuse

Composition of Verification Assets for Software Product Lines
of Cyber Physical Systems . 123

Ethan T. McGee, Roselane S. Silva, and John D. McGregor

Engineering and Employing Reusable Software Components
for Modular Verification . 139

Daniel Welch and Murali Sitaraman

Refactoring Legacy JavaScript Code to Use Classes: The Good,
The Bad and The Ugly . 155

Leonardo Humberto Silva, Marco Tulio Valente, and Alexandre Bergel

Tools Demonstrations

DyMMer-NFP: Modeling Non-functional Properties and Multiple Context
Adaptation Scenarios in Software Product Lines . 175

Anderson G. Uchôa, Luan P. Lima, Carla I.M. Bezerra,
José Maria Monteiro, and Rossana M.C. Andrade

Identification and Prioritization of Reuse Opportunities with JReuse 184
Johnatan Oliveira, Eduardo Fernandes, Gustavo Vale,
and Eduardo Figueiredo

Doctoral Symposium

EcoData: Architecting Cross-Platform Software Ecosystem Applications 195
Marcelo França

Investigating the Recovery of Product Line Architectures:
An Approach Proposal. 201

Crescencio Lima, Christina Chavez, and Eduardo Santana de Almeida

Towards a Guideline-Based Approach to Govern Developers in Mobile
Software Ecosystems . 208

Awdren de Lima Fontão, Arilo Dias-Neto, and Rodrigo Santos

Erratum to: Towards a Guideline-Based Approach to Govern Developers
in Mobile Software Ecosystems . E1

Awdren de Lima Fontão, Arilo Dias-Neto, and Rodrigo Santos

Tutorials

Building Safety-Critical Systems Through Architecture-Based
Systematic Reuse . 217

John D. McGregor and Roselane S. Silva

XIV Contents

http://dx.doi.org/10.1007/978-3-319-56856-0_9
http://dx.doi.org/10.1007/978-3-319-56856-0_9
http://dx.doi.org/10.1007/978-3-319-56856-0_10
http://dx.doi.org/10.1007/978-3-319-56856-0_10
http://dx.doi.org/10.1007/978-3-319-56856-0_11
http://dx.doi.org/10.1007/978-3-319-56856-0_11
http://dx.doi.org/10.1007/978-3-319-56856-0_12
http://dx.doi.org/10.1007/978-3-319-56856-0_12
http://dx.doi.org/10.1007/978-3-319-56856-0_13
http://dx.doi.org/10.1007/978-3-319-56856-0_14
http://dx.doi.org/10.1007/978-3-319-56856-0_15
http://dx.doi.org/10.1007/978-3-319-56856-0_15
http://dx.doi.org/10.1007/978-3-319-56856-0_16
http://dx.doi.org/10.1007/978-3-319-56856-0_16
http://dx.doi.org/10.1007/978-3-319-56856-0_17
http://dx.doi.org/10.1007/978-3-319-56856-0_17
http://dx.doi.org/10.1007/978-3-319-56856-0
http://dx.doi.org/10.1007/978-3-319-56856-0

Reusable Use Case and Test Case Specification Modeling 219
Tao Yue and Shaukat Ali

Workshop

2nd Workshop on Social, Human, and Economic Aspects of Software
(WASHES): Special Edition for Software Reuse . 223

Rodrigo Santos, Eldanae Teixeira, Emilia Mendes, and John McGregor

Author Index . 225

Contents XV

http://dx.doi.org/10.1007/978-3-319-56856-0
http://dx.doi.org/10.1007/978-3-319-56856-0_16
http://dx.doi.org/10.1007/978-3-319-56856-0_16

Documentation Reuse and Repositories

DevRec: A Developer Recommendation System
for Open Source Repositories

Xunhui Zhang(B), Tao Wang, Gang Yin, Cheng Yang, Yue Yu,
and Huaimin Wang

National University of Defense Technology, Changsha, Hunan, China
{zhangxunhui,taowang2005,yingang,yuyue,hmwang}@nudt.edu.cn,

delpiero710@126.com

Abstract. The crowds’ active contribution is one of the key factors for
the continuous growth and final success of open source software. With
the massive amounts of competitions, how to find and attract the right
developers to engage in is quite a crucial yet challenging problem for
open source projects. Most of the current works mainly focus on rec-
ommending experts to specific fine-grained software engineering tasks
and the candidates are often confined to the internal developers of the
project. In this paper, we propose a recommendation system DevRec
which combines users’ activities in both social coding and questioning
and answering (Q&A) communities to recommend developer candidates
to open source projects from all over the community. The experiment
results show that DevRec is good at solving cold start problem, and per-
forms well at recommending proper developers for open source projects.

Keywords: Developer recommendation · Collaborative Filtering ·
StackOverflow · GitHub

1 Introduction

Nowadays, open source software (OSS) has formed a brand-new development
paradigm and achieved its unprecedented success. Compared to the traditional
software development in industry, open source software is driven by a massive
number of stackholders including developers, users, managers and so on. These
stakeholders involve in OSS projects by interests, and most of them have their
own full-time job and only spend spare time on OSS. Although crowds may join
in an OSS project occasionally, and then withdraw from it at any time, OSS
has achieved great success at creating high-quality software like Linux, MySQL,
Spark and so on. Nowadays, OSS is viewed as “eating the software world” by
the Future of Open Source Survey [1].

On GitHub alone, one of the largest open source communities, there are more
than 48 million open source projects hosted. However, according to our statistics,
95.2% of them do not received any attention by public (i.e. no watcher and forked
repository) and 15.1% of them were not updated for more than one year. Even for
c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 3–11, 2017.
DOI: 10.1007/978-3-319-56856-0 1

4 X. Zhang et al.

those projects which used to experience their success will languish without the
crowds’ continuous contributions. Therefore, to find and attract the right devel-
opers to participate in is quite crucial for OSS.

However, due to the massive amounts of competitive OSS, the crowds are
often limited by their time and energy to choose from all the related projects.
An automatic approach to bridge the gap between developers and projects is
useful for both the developers and projects. In this paper, we propose a hybrid
recommendation system called DevRec, which combines the development activity
(DA)1 based approach and knowledge sharing activity (KA)2 based approach
respectively to recommend proper developers for open source projects. The main
contributions of this paper include:

– We propose a DA-based recommendation approach, by mining the crowds’
development activities to discover and recommend proper collaborators for a
given project from all over the community.

– We combine the developers’ knowledge sharing and development activities,
which helps to solve the cold-start problem for newly released projects.

– We conducted experiments on a large-scale dataset containing 165,741 projects
and 72,877 developers, to show the effectiveness of our approach.

2 Related Work

In the age of global and distributed software development, finding the right
person to collaborate and complete the right task is of great importance.
Bhattacharya et al. [2] employed the incremental learning approach and multi-
feature tossing graphs to improve the bug triaging. Xuan et al. [3] combined
network analyzing and text classification approaches to recommend proper devel-
opers for a specific bug. Yu et al. [4–6] analyzed the pull-request mechanism,
and embedded the social factors into typical recommendation approaches of bug
triaging, to recommend pull-request reviewers. Besides, there are some works
related to software recommendation. Lingxiao Zhang et al. [7] recommended rel-
evant projects according to the relationship between developers and projects.
Naoki Orii combined the probabilistic matrix factorization and topic model
method to recommend repositories to programmers [8]. Different from these
works, our work aims to recommend developers at the granularity of repository
and the range of the whole software community.

There are also many researches focusing on the interplay between Q&A and
social coding communities. Bogdan Vasilescu et al. [9] did some researches about
the relationship of users’ activities between StackOverflow and GitHub. Wang
et al. [10] proposed an approach to link Android issues and corresponding dis-
cussions. Giuseppe Silvestri et al. [11] studied whether the relative importance of
users vary across social networks, including StackOverflow, GitHub and Twitter.

1 development activity: users’ activities in social coding communities.
2 knowledge sharing activity: users’ activities in Q&A communities.

DevRec: A Developer Recommendation System for Open Source Repositories 5

Venkataramani et al. [12] recommended suitable experts from GitHub to Stack-
Overflow questions, taking developers’ reputation into account. However, there
are few studies about recommending users in Q&A communities to OSS, which
gives full play to users’ expertise and helps to speed up the rate of development.

3 Recommendation Approach

3.1 Overview of Recommendation System

DevRec explores the activities in social coding and Q&A communities to measure
the technical distance between a given project and the developers, and combines
the two results together to rank and recommend developer candidates for OSS.
The architecture of DevRec is shown in Fig. 1.

Fig. 1. Architecture of DevRec

Data Extraction: This step aims to gather datasets from StackOverflow and
GitHub, and generate the user tag and user project association matrix.

Separate Recommendation: When a project comes, we calculate the rel-
evance of each candidate according to the user association matrix, which is
obtained from the user project and user tag association matrix.

Recommendation Integration: We combine the separate results by weight,
and finally get the recommendation results for the hybrid approach.

3.2 Developer Recommendation Based on Social Coding Activities

There are kinds of activities in GitHub, including commit, fork and watch, which
represent developers’ interests to specific repositories. The basic intuition of this
approach is that developers with similar technical interests tend to have similar
development activities [7]. There are three parts in this approach.

UP Connector: This part is to create the association matrix of users and
projects based on the activities in GitHub. Here we get a two-value matrix
Ru−p, where 1 stands for participation and 0 stands for the opposite.

6 X. Zhang et al.

User Connector: This part is to calculate the association between users based
on the user project association matrix using Jaccard algorithm.

Match Engine: In this part, we calculate the association between users
and projects according to the user association matrix Ru−u. If we use
UAp〈u1, u2, ..., un〉 to represent users that have already participated in the tar-
get project p, we can obtain the match score of each user towards project p
using Eq. 1.

result =
|UAp|∑

i=1

Ru−u[UAp[i]] (1)

3.3 Developer Recommendation Based on Knowledge Sharing
Activities

Asking and answering technical questions are common activities among devel-
opers. Those with similar technical interests tend to focus on same posts, which
are marked by same tags, and We suppose that they also tend to participate in
the same kind of repositories. There are four parts in this approach.

Tag Extractor: This part is used to extract the fields that users proficient
in. We consider that tags that mark users’ related posts can represent user’s
interests or research fields.

Relation Creator: In this part, we calculate the user tag association matrix.
Here we use TF-IDF method. If we use U{u1, u2, ..., un} to represent users in
StackOverflow, Tu = {t1, t2, ..., tn} to represent the tags that related to user u,
and C(t, u) to represent the number of times tag t relates to user u. Then we
can calculate user tag association matrix using Eq. 2.

Ru−t(u, t) =
C(t, u)

∑|Tu|
i=1 C(Tu[i], u)

∗ log(

∑|U |
k=1

∑|TU[k]|
q=1 C(TU [k][q], U [k])

∑|U |
j=1 C(t, U [j])

) (2)

User Connector: After obtaining the user tag association matrix Ru−t, we
calculate the association of users using Vector Space Similarity algorithm.

Match Engine: The same as the match engine part in DA-based approach.

3.4 Hybrid Approach for Developer Recommendation

According to the above two approaches, we can get two recommendation results
of the same repository. The combination of the two approaches takes users’ activ-
ities into consideration comprehensively, and will probably improve the recom-
mendation results. The specific steps are as follows:

Overlapped candidates’ selection: Applying the aforementioned approaches
and getting the top 10000 recommendation results of each project. Finding the
same candidates in both sets by calculating the intersection.

DevRec: A Developer Recommendation System for Open Source Repositories 7

Overlapped candidates’ ranking: Setting a balance proportional coefficient
which assign different weights for different approaches. The rank of the candi-
dates is calculated with Eq. 3.

rank = WDA ∗ rankDA + WKA ∗ rankKA (3)

In which WDA

WKA
is the proportional coefficient of DA-based and KA-based

approaches, and rankDA and rankKA represent the ranks of the candidates of
the two approaches. Initially, we set the coefficient to 0.75

0.25 .

4 Experiment

4.1 Research Questions

In order to verify the effectiveness of our recommendation approaches and
explore the influence when considering about different repositories. We focus
on the following two research questions.

– Q1: What is the performance difference among three approaches over reposi-
tories with different popularities?

– Q2: How will the balance coefficient between the two kinds of activities affect
the recommendation performance?

4.2 Experiment Datasets

To address the above research questions and validate our approach, we use the
data in GitHub and StackOverflow. Here we choose the GHTorrent3 MySQL
dump released on March 2016, and the 2015 snapshot of StackExchange4.

We find users both active in StackOverflow and GitHub by matching email
MD5. After removing fake or deleted users, 72,877 left. For projects, we get
1,355,043 that at least one of the related users participated in before point-in-
time (2014-09-14) and 165,741 projects that have new users after point-in-time.

We use h.d. (history developers) to represent the number of related users
who focused on projects before point-in-time, and l.d. (latent developers) means
the number of users who participate in the projects after point-in-time for the
first time. Here we just consider about the projects that are popular after point-
in-time because these projects can be used to validate the effectiveness of the
approaches. After filtering, we get 136 popular projects whose h.d. bigger than
300 and l.d. bigger than 300. Also, we get 99 unpopular projects whose h.d. less
than 2 and l.d. bigger than 100.

3 http://ghtorrent.org/downloads.html.
4 https://archive.org/details/stackexchange.

http://ghtorrent.org/downloads.html
https://archive.org/details/stackexchange

8 X. Zhang et al.

4.3 Evaluation Metrics

Accuracy: We use the accuracy to represent the availability of approaches,
which is calculated by the division of the number of matched projects and the
total number of test projects.

MRR: Mean Reciprocal Rank is widely used to evaluate the performance of
recommendation systems. If the correct results rank in the front, the MRR value
is high. Here, we use ranki to represent the rank of result i, P{p1, p2, ..., pn} to
represent the set of test repositories, and Rp{r1, r2, ..., rm} to represent correctly
matched results for project p. Then the MRR value is shown in Eq. 4.

MRR =
1

|P |
|P |∑

i=1

(
1

|RP [i]|
|RP [i]|∑

j=1

1
rankRP [i][j]

) (4)

5 Experiment Results

5.1 Influence of Different Activities Towards Different Projects

Figures 2 and 3 present the accuracy of three different recommendation
approaches for unpopular and popular projects. From the two figures, we can
see that the accuracy of DA-based approach is better than that of KA-based
approach. That is to say, the development activity is more important when rec-
ommending, which is consistent with reality. Developers may focus on many
techniques, but will just apply one or two when developing projects. Asking or
answering a question is much easier than following a repository.

Fig. 2. Accuracy for unpopular projects Fig. 3. Accuracy for popular projects

In Fig. 2, the hybrid approach performs the best, which means that for unpop-
ular projects, knowledge sharing activity can help to improve the result. The
reason is that the user association matrix generated from StackOverflow is more
dense than that from GitHub. In Fig. 3, for popular projects, hybrid approach
doesn’t perform the best. This is because there are many developers focusing on

DevRec: A Developer Recommendation System for Open Source Repositories 9

Table 1. MRR for unpopular and popular projects (coefficient = 0.75
0.25

)

Unpopular repositories

5 10 15 20 25 30 35 40 45 50

KA-based .445 .295 .246 .229 .198 .172 .164 .155 .145 .136

DA-based .472 .323 .267 .206 .176 159 .142 .134 .126 .120

Hybrid .503 .355 .241 .208 .182 .166 .148 .138 .126 .112

Increase rate (%) 6.57 9.91 −9.74 0.97 3.41 4.40 4.23 2.99 0 −6.67

Popular repositories

KA-based .380 .187 .135 .113 .100 .085 .071 .063 .059 .052

DA-based .491 .321 .263 .225 .193 .167 .149 .135 .125 .117

Hybrid .568 .362 .281 .244 .208 .170 .148 .134 .123 .115

Increase rate (%) 15.7 12.8 6.84 8.44 7.77 1.80 −0.67 −0.74 −1.6 −1.7

the target project before point-in-time, which increases the prepared information
for Collaborative Filtering algorithm.

From Table 1, we can see that hybrid approach tends to hit correct results in
the front very often.

5.2 Influence of Different Coefficient Values in Hybrid Approach

Figures 4 and 5 show that coefficient value will influence the hybrid approach. In
Fig. 4, the accuracy of hybrid approach increases with the decrease of coefficient
value when recommending 5 to 10 developers to unpopular projects. However,
for popular projects in Fig. 5, the result is opposite.

Meanwhile, Table 2 shows that for unpopular projects, the MRR of hybrid
approach increases a lot when setting the coefficient to 0.25

0.75 , however decreases
a lot for popular projects. Compare Table 2 to Table 1, when considering about
MRR, small coefficient is more stable for unpopular projects because all the

Fig. 4. Accuracy for unpopular projects
with different coefficients

Fig. 5. Accuracy for popular projects
with different coefficients

10 X. Zhang et al.

Table 2. MRR for unpopular and popular projects (coefficient = 0.25
0.75

)

Unpopular repositories

5 10 15 20 25 30 35 40 45 50

KA-based .445 .295 .246 .229 .198 .172 .164 .155 .145 .136

DA-based .472 .323 .267 .206 .176 159 .142 .134 .126 .120

Hybrid .483 .357 .297 .250 .213 .178 .161 .148 .142 .131

Increase rate (%) 2.33 10.5 11.2 21.4 21.0 11.9 13.4 10.4 12.7 9.17

Popular repositories

KA-based .380 .187 .135 .113 .100 .085 .071 .063 .059 .052

DA-based .491 .321 .263 .225 .193 .167 .149 .135 .125 .117

Hybrid .394 .286 .228 .188 .159 .143 .131 .120 .109 .102

Increase rate (-%) 19.8 10.9 13.3 16.4 17.6 14.4 12.1 11.1 12.8 12.8

increasing rate are positive, however big coefficient is more suitable for popular
projects with hybrid approach because the increasing rate tends to be positive.

In conclusion, using hybrid approach with small coefficient value to recom-
mend for unpopular projects will get better accuracy and MRR value at the
same time compared with DA-based approach. However, for popular projects, if
the target repository considers more about the accuracy (wants to get suitable
developers more probably), then choose DA-based approach. If it considers more
about the MRR (wants to get suitable developers with fewer results), then use
hybrid approach with big coefficient.

Acknowledgements. The research is supported by the National Natural Science
Foundation of China (Grant No.61432020,61472430,61502512,61303064) and National
Grand R&D Plan (Grant No. 2016-YFB1000805).

References

1. Silic, M.: Dual-use open source security software in organizations-Dilemma: help
or hinder? Comput. Secur. 39, 386–395 (2013)

2. Bhattacharya, P., Neamtiu, I., Shelton, C.R.: Automated, highly-accurate, bug
assignment using machine learning and tossing graphs. J. Syst. Softw. 85(10),
2275–2292 (2012)

3. Xuan, J., Jiang, H., Ren, Z., Zou, W.: Developer prioritization in bug repositories.
In: ICSE, vol. 8543, no: 1, pp. 25–35 (2012)

4. Yu, Y., Wang, H., Filkov, V., Devanbu, P., Vasilescu, B.: Wait for it: determinants
of pull request evaluation latency on GitHub. In: 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories (MSR), pp. 367–371. IEEE (2015)

5. Yu, Y., Wang, H., Yin, G., Wang, T.: Reviewer recommendation for pull-requests
in GitHub: what can we learn from code review and bug assignment? Inf. Softw.
Technol. 74, 204–218 (2016)

DevRec: A Developer Recommendation System for Open Source Repositories 11

6. Yu, Y., Wang, H., Yin, G., Ling, C.X.: Reviewer recommender of pull requests in
GitHub. In: ICSME, pp. 609–612. IEEE (2014)

7. Zhang, L., Zou, Y., Xie, B., Zhu, Z.: Recommending relevant projects via user
behaviour: an exploratory study on GitHub (2014)

8. Orii, N.: Collaborative topic modeling for recommending GitHub repositories
(2012)

9. Vasilescu, B., Filkov, V., Serebrenik, A.: Stackoverflow and github: associations
between software development and crowdsourced knowledge. In: ASE/IEEE Inter-
national Conference on Social Computing, pp. 188–195 (2013)

10. Wang, H., Wang, T., Yin, G., Yang, C.: Linking issue tracker with q and a sites
for knowledge sharing across communities. IEEE Trans. Serv. Comput. PP, 1–14
(2015)

11. Silvestri, G., Yang, J., Bozzon, A., Tagarelli, A.: Linking accounts across social
networks: the case of stackoverflow, github and twitter. In: International Workshop
on Knowledge Discovery on the WEB, pp. 41–52 (2015)

12. Venkataramani, R., Gupta, A., Asadullah, A., Muddu, B., Bhat, V.: Discovery of
technical expertise from open source code repositories. In: International Conference
on World Wide Web Companion, pp. 97–98 (2013)

Documentation Reuse: Hot or Not?
An Empirical Study

Mohamed A. Oumaziz(B), Alan Charpentier, Jean-Rémy Falleri,
and Xavier Blanc

CNRS, Bordeaux INP, Univ. Bordeaux LaBRI, UMR 5800, 33400 Talence, France
{moumaziz,acharpen,falleri,xblanc}@labri.fr

Abstract. Having available a high quality documentation is critical for
software projects. This is why documentation tools such as Javadoc are
so popular. As for code, documentation should be reused when possible to
increase developer productivity and simplify maintenance. In this paper,
we perform an empirical study of duplications in JavaDoc documentation
on a corpus of seven famous Java APIs. Our results show that copy-
pastes of JavaDoc documentation tags are abundant in our corpus. We
also show that these copy-pastes are caused by four different kinds of
relations in the underlying source code. In addition, we show that popular
documentation tools do not provide any reuse mechanism to cope with
these relations. Finally, we make a proposal for a simple but efficient
automatic reuse mechanism.

Keywords: Documentation · Reuse · Empirical study

1 Introduction

Code documentation is a crucial part of software development as it helps devel-
opers understand someone else’s code without reading it [13,25]. It is even more
critical in the context of APIs, where the code is developed with the main intent
to be used by other developers (the users of the API) that do not want to read
it [12,16,17]. In this context, having a high quality reference documentation is
critical [5].

Further, it has been shown that the documentation has to be close to its cor-
responding code [8,9,14]. Developers prefer to write the documentation directly
in comments within the code files rather than in external artifacts [22]. Popular
documentation tools, such as JavaDoc or Doxygen, all share the same principle
which is to parse source code files to extract tags from documentation comments
and to generate readable web pages [20,24].

Writing documentation and code are highly coupled tasks. Ideally, develop-
ers should write and update the documentation together with the code. How-
ever, it has been shown that the documentation is rarely up-to-date with the
code [8,9,14] and is perceived as very expensive to maintain [4,5].

c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 12–27, 2017.
DOI: 10.1007/978-3-319-56856-0 2

Documentation Reuse: Hot or Not? An Empirical Study 13

We think that one possible reason for this maintenance burden is that docu-
mentation tools lack reuse mechanisms whereas there are plenty of such mecha-
nisms in programming languages. Developers that write documentation therefore
copy-paste many documentation tags, which is suspected to increase the main-
tenance effort [11].

As an example, let us consider a case of delegation as shown in the Fig. 1. In
this example, the right method is just returning directly a value computed from
the left method. As expected, some documentation tags from the left method
are copy-pasted in the right method: the common parameters and the return
value. As a consequence, if the documentation of the callee method is updated,
an update of the caller documentation will have to be carried out manually,
which is well known to be error-prone [11].

/**
* @param a the first collection, must

not be null
* @param b the second collection, must

not be null
* @return true iff the collections

contain the same elements with the
same cardinalities.

*/
public static boolean

isEqualCollection(final
Collection a, final
Collection b) {

...
return true;
}

/**
* @param a the first collection, must

not be null
* @param b the second collection, must

not be null
* @param equator the Equator

used for testing equality
* @return true iff the collections

contain the same elements with the
same cardinalities.

*/
public static boolean

isEqualCollection(final
Collection a, final
Collection b, final Equator
equator) {

...
return

isEqualCollection(collect(a,
transformer), collect(b,
transformer));

}

Fig. 1. Extract of a documentation duplication due to method delegation (in the
Apache Commons Collections project). Duplicated tags are displayed in bold.

In this paper, we investigate this hypothesis and more formally answer the
two following research questions:

– RQ1: Do developers often resort to copy-paste documentation tags?
– RQ2: What are the causes of documentation tags copy-paste and could they

be avoided by a proper usage of documentation tools?

We answer our research questions by providing an empirical study performed
on a corpus of seven popular Java APIs where the need of documentation is crit-
ical (see Sect. 2.1). We answer the first research question by showing how big
is the phenomenon of documentation tags copy-pasting (see Sect. 3). To that
extent, we automatically identify what we call documentation tags duplications
(Sect. 2.2), count them, and manually check if they are intended copy-pastes or

14 M.A. Oumaziz et al.

just created by coincidence. We answer the second research question by investi-
gating the intended copy-pastes we observed with the objective to find out their
causes. Then we analyze whether existing documentation tools can cope with
them (see Sect. 4). We further extend our second research question by providing
a proposal for a simple but useful documentation reuse mechanism.

Our results show that copy-pastes of documentation tags are abundant in
our corpus. We also show that these copy-pastes are caused by four kinds of
relations that take place in the underlying source code. In addition, we show
that popular documentation tools do not provide any reuse mechanism to cope
with these relations.

The structure of this paper is as follows. First, Sect. 2 presents our corpus and
the tool we create to automatically identify documentation duplications. Then,
Sect. 3 and Sect. 4 respectively investigate our two research questions. Finally,
Sect. 5 describes the related works about software documentation and Sect. 6
concludes and describes future work.

2 Experimental Setup

In this section, we first explain how we create our corpus (Sect. 2.1), and give
general statistics about it. Then, we describe how we extract documentation
duplications contained in our corpus (Sect. 2.2).

2.1 Corpus

The corpus of our study is composed of seven Java APIs that use JavaDoc, arbi-
trary selected from the top 30 most used Java libraries on GitHub as computed
in a previous work of Teyton et al. [23]. We just considered the source code
used to generate the documentation displayed on their websites. We also choose
to focus only on methods’ documentation, as this is where there is most of the
documentation. In the remainder of this paper, we therefore only discuss about
the documentation of Java methods written in JavaDoc.

Table 1 presents these seven APIs. All the data gathered for this study is
available on our website1. As we can see in the General section of this table, the
projects are medium to large sized (from 33 to 1,203 classes). As expected, they
contain a fair amount of documentation: from about 28% to 97% of the methods
are documented. The Tags section of this table gives some descriptive statistics
of the JavaDoc tags used. As we can see, the most frequent tags are usually,
in order: @description, @param, @return and @throw. Finally, the inheritDoc
section of this table shows that there are few @inheritDoc tags. Such tags are
used to express a documentation reuse between two methods but the method
that reuses the documentation must override or implement the method that
contains the reused documentation.

1 http://se.labri.fr/a/ICSR17-oumaziz.

http://se.labri.fr/a/ICSR17-oumaziz

Documentation Reuse: Hot or Not? An Empirical Study 15

Table 1. Statistics computed from our corpus and the documentation it contains.

acca aciob ggsonc Guava JUnit Mockito SLF4J

General

of classes 466 119 72 1,203 205 375 33

of methods 4,078 1,173 569 9,928 1,319 1,716 433

% of documented methods 61.53 97.27 52.55 36.37 43.44 28.15 36.49

Tags

of @description 1,939 922 265 3,073 448 436 128

of @param 1,199 734 106 749 178 237 51

of @throw 438 209 65 462 12 11 5

of @return 892 322 92 414 90 131 42

inheritDoc

of usage 85 18 0 112 2 0 0
a Apache Commons Collections
b Apache Commons IO
c google-gson

2.2 Documentation Duplication Detector

A documentation duplication is a set of JavaDoc tags that are duplicated among
a set of Java methods. If it is intended then it was created by a copy-paste, if
not then it was created by coincidence. We propose a documentation duplication
detector that inputs a set of Java source code files and outputs the so-called
documentation duplications2.

The detector first parses the Java files and identifies all the documentation
tags they contain by using the GumTree tool [7]. To detect only meaningful
duplications, it extracts the most important tags of JavaDoc: @param, @return,
@throws (or its alias @exception). It also extracts the main description of Java
methods as if it is tagged too (with an imaginary @description tag). Finally, to
avoid missing duplications because of meaningless differences in the white-space
layout, it cleans the text contained in the documentation tags by normalizing the
white-spaces (replacing tabs by spaces, removing carriage returns and keeping
only one space between two words). For the same reasons, it also transforms all
text contained in documentation tags to lowercase.

As a next step, the detector makes a comparison between tags, and checks if
they are shared between different Java methods. Table 2 shows the result of this
step w.r.t. to the Java code of Fig. 1.

The third and last step of the process consists in grouping the Java methods
and the tags they share with the objective to identify maximal documentation
duplications. This step is complex as it can lead to a combinatorial explosion,
but fortunately, it can be solved efficiently using Formal Concept Analysis [10]

2 https://github.com/docreuse/docreuse.

https://github.com/docreuse/docreuse

16 M.A. Oumaziz et al.

Table 2. The methods and their respective tags computed from Fig. 1 source code
(duplicated tags are depicted in bold).

@
p
a
ra

m
a

@
p
a
ra

m
b

@
re

tu
rn

@
p
a
ra

m
eq

u
a
to

r

I1: isEqualCollection(final Collection a, final Collection b)

I2: isEqualCollection(final Collection a, final Collection b, ...)

(FCA). FCA is a branch of lattice theory that aims at automatically finding
maximal groups of objects that share common attributes. In our context, the
objects simply correspond to Java methods, and the attributes correspond to
documentation tags.

FCA returns a hierarchy of so-called formal concepts. A formal concept is
composed of two sets: the extent (a set of Java methods in our context) and the
intent (a set of documentation tags in our context). The extent is composed of
objects that all share the attributes of the intent. In other words in our context, a
formal concept is a collection of Java methods that share several documentation
tags.

The hierarchy returned by FCA then expresses inclusion relationships
between the formal concepts. The Fig. 2 shows such a hierarchy from the formal
context of Table 2. To identify duplicated documentation tags, we search within
the hierarchy the concepts that have at least two objects in their extent, and
discard all other concepts as they do not correspond to duplications. The for-
mal concepts corresponding to maximal duplications are shown in plain line in
Fig. 2, the others are not relevant in our context. In our example, one maximal
documentation duplication has been identified.

3 Research Question 1

In this section, we answer our first research question: Do developers often resort
to copy-paste documentation tags?. To investigate if documentation duplications
are frequent, we simply apply our documentation duplication detector to our
corpus and report statistics about the extracted duplications. To ensure that
these duplications are intentional, we draw at random a subset of the extracted
duplications and ask three developers to manually decide for each duplication if
it is intentional or coincidental.

3.1 Frequency of Duplications

As shown in the Documentation part of Table 3, our detector has identified about
2, 800 documentation duplications in the seven APIs of our corpus. As we can

Documentation Reuse: Hot or Not? An Empirical Study 17

I1, I2

@param a
@param b
@return

I1

@param a
@param b
@return

I2

@param a
@param b
@param equator
@return

@param a
@param b
@param equator
@return

Fig. 2. Hierarchy computed by FCA from the formal context of Table 2. Retained
concepts are depicted with plain lines, while discarded concepts are depicted with
dotted lines.

see, at most 4% of the documented methods have their documentation com-
pletely duplicated (line % of complete dupl.). This indicates that completely
duplicating a method’s documentation is rare. On the contrary, about 40% to
75% of the documented methods have their documentation partially duplicated
(line % of partial dupl.). This indicates that duplicating some method’s doc-
umentation tags is very frequent, at least much more frequent than using the
@inheritDoc tags as seen in the Table 1, which raises questions about the limi-
tations of this mechanism as we will see in Sect. 4.

1
2

2

3

3

4

4

5

5

6

6

7 8 9 10 11 12 13 16 19 20 22 28 54 63 82
1

2

2

3

3

4

4

5

5

6

6

7 8 9 11 14 16 18 19 33 34 42 76

Fig. 3. Diagrams presenting the number of Java methods and tags of the identified
duplications in Guava (left) and Mockito (right). The rows correspond to the number
of Java methods, and the columns correspond to the number of documentation tags.
The color in a cell correspond to the number of duplications (the darker the cell is, the
more duplications).

In addition, we can see in the Documentation tags part of Table 3 a fine-
grained analysis of the duplicated tags. Even though the frequency of duplica-
tions for each tag depends on the project, param and throws are often the most
duplicated tags (from 20% to 40% of these tags are duplicated). The return
tags are also largely duplicated (from 14% to 31%). Finally, the description
tag is rarely duplicated (from 4% to 15%).

18 M.A. Oumaziz et al.

Table 3. Statistics computed from our corpus and the duplications it contains.

acca aciob ggsonc Guava JUnit Mockito SLF4J

Documentation

of dupl 1,137 684 59 630 134 86 36

% of complete dupl 1.51 4.03 0.67 0.80 0.00 0.00 0.00

% of partial dupl 75.53 77.83 48.49 38.72 42.76 58.59 73.42

Documentation tags

% of dupl. @description 11.24 14.53 8.30 6.57 14.96 4.13 3.91

% of dupl. @param 41.78 42.78 22.64 30.71 37.08 17.72 39.22

% of dupl. @throw 49.09 55.98 21.54 33.33 8.33 27.27 40.00

% of dupl. @return 27.35 31.37 15.22 25.85 14.44 19.85 26.19
a Apache Commons Collections
b Apache Commons IO
c google-gson

Figure 3 presents the number of documentation tags and Java methods of
the identified duplications for Mockito and Guava projects. Due to the lack of
space, we only show these two projects, but the figures are very similar for all
the projects in our corpus, and can be found on our website. The figure shows
that most of the identified duplications have few documentation tags and few
Java methods: many duplications involve only two Java methods that share a
single documentation tag. On these figures, we notice that the maximum number
of duplications’ documentation tags ranges from 3 (in SLF4J) to 8 (in Apache
Commons Collections). The maximum number of Java methods ranges from 22
(in google-gson) to 183 (in Apache Commons IO). Thus, there exist duplications
involving a lot of method and only a few tags or a lot of tags and a few methods.
Finally, there is no duplication with both a large number of methods and a large
number of tags.

3.2 Copy-Pastes Vs. Coincidental Duplications

To answer the second part of our research question we perform a qualitative
experiment that relies on the manual judgement of several developers. We choose
to involve three experienced Java developers for the experiment, as advised in [2],
because judging if a duplication is an intended copy-paste or not is subjective.
Involving three developers allows us to have a trust level on the status of a
duplication. In our experiment, the developers are three of the paper’s authors.

We then decided to create a sample composed of 100 duplications randomly
drawn from our dataset of identified duplications, representing about 5% of the
population of that dataset. Due to limitations in time we had to limit our manual
analysis to 100 duplications, we randomly selected them to have a representa-
tive ratio of the corpus. Each of the 100 duplications was then presented to
each developer through a web interface that also presented the associated code.

Documentation Reuse: Hot or Not? An Empirical Study 19

The developers then had as much time as they needed to judge whether the
duplication was an intended copy-paste or not. Of course, the developers were
not authorized to talk about the experiment until its completion.

A duplication labeled as “intended” is called from now on a copy-paste while a
duplication labeled as “not intended” is called an coincidental duplication. When
a developer is not able to decide whether the answer should be “intended” or
“not intended”, he must label the duplication as “not intended”, to ensure that
the number of copy-pastes that are found is a solid lower bound. We therefore
define the two following trust levels. First, a copy-paste has a “majority” trust
level when it has been labeled as “intended” by at least two participants. Last, a
copy-paste has a “unanimity” trust level when it has been labeled as “intended”
by the three participants.

Finally, we apply the bootstrapping statistical method [6] on our sample to
compute a 95% confidence interval for the ratio of copy-pastes in our corpus. The
bootstrapping method is particularly well-suited in our context since it makes
no assumption about the underlying distribution of the values.

Before presenting our experiment results, it should be noted that the devel-
opers replied an identical answer on 69 out of 100 duplications. This indicates
that the task of rating a duplication is not too subjective. Moreover, on these
69 cases, the developers agreed on a copy-paste 68 times, and on a coincidental
duplication only one time3. It means that agreeing on a copy-paste is easy while
agreeing on an coincidental duplication is difficult.

The main results of the experiment are presented in the Fig. 4. About 85%
to 96% of the duplications are copy-pastes when using the majority trust level.
When using the stricter unanimity trust level, about 57% to 76% of the dupli-
cations are copy-pastes. In both cases, more than half of the duplications are
copy-pastes.

3.3 Threats to Validity

Our experiment bears two main threats to validity. First, the developers are
authors of the paper, therefore, it could bias their answer when judging the
duplications. Even if they took extra care to be as impartial as possible, repli-
cating the study would enforce its validity and that it is why all the experiment’s
data is available.4 Second, the results obtained from this experiment cannot be
generalizable to all APIs, because we used the duplications of only seven Java
open-source APIs. Even if we only considered well known and mature open-
source projects for the experiment, it would be better to replicate the study with
other APIs wether open-source or not and in various programming languages.

4 Research Question 2

In this section we answer our second research question: What are the causes
of documentation copy-pastes and could they be avoided by a proper usage of
3 http://se.labri.fr/a/ICSR17-oumaziz/RandomExperiment.
4 http://se.labri.fr/a/ICSR17-oumaziz.

http://se.labri.fr/a/ICSR17-oumaziz/RandomExperiment
http://se.labri.fr/a/ICSR17-oumaziz

20 M.A. Oumaziz et al.

0.00

0.25

0.50

0.75

1.00

Majority Unanimity
Trust level

R
at

io
 o

f d
up

lic
at

io
ns

Duplication status intended not_intended

Fig. 4. Ratio of intended or coincidental duplications for the majority and unanimity
trust levels, shown with their 95% confidence interval.

documentation tools? We start by an analysis of the causes that lead to docu-
mentation copy-paste, and their root in the source code (see Sect. 4.1). Then we
check whether the existing documentation reuse mechanisms can cope with these
causes (see Sect. 4.2). Finally, we propose a new documentation reuse mechanism
that can be used to cope with the unsupported causes (see Sect. 4.3).

4.1 Causes of Documentation Copy-Pasting

To identify the causes that lead to copy-paste, we manually analyzed the source
code corresponding to the 61 copy-pastes (68 initially with 7 containing only
main tags which we did not keep) identified to answer RQ1 (see Sect. 3). After
performing our manual analysis we identified four different causes: delegation,
sub-typing, code clone and similar intent.

A delegation, as shown in Fig. 1, appears when a method calls another one,
and thus has a part of its documentation coming from the called one.

A sub-typing appears when a method overrides another one that is defined
in a same hierarchy. In this case, it is common that the overriding method’s
documentation comes from the one of the overridden method.

A code clone appears when a method shares similar lines of code with another
one, hence duplicating a part of its body. Figure 5 shows an example of code clone
as the two methods share common lines of code.

Finally, a similar intent appears when a method performs a computation
that is similar to another method, which is why they share some documentation
tags.

Figure 6 shows such an example. Here the two methods only differ because of
the return type (float or int). It is not a clone because there is no common line
between them. Further, the funny thing is that the developer made a mistake as

Documentation Reuse: Hot or Not? An Empirical Study 21

/**
* Writes a String to the {@link

StringBuilder }.
*
* @param value The value to write
*/
@Override
public void write(final String

value) {
if (value != null) {
builder.append(value);

}
}

/**
* Writes a portion of a character

array to the {@link
StringBuilder }.

*
* @param value The value to write
* @param offset The index of the

first character
* @param length The number of

characters to write
*/
@Override
public void write(final char[]

value , final int offset , final
int length) {

if (value != null) {
builder.append(value , offset ,

length);
}

}

Fig. 5. Example of copy-paste due to code clone in the Apache Commons IO project.
Duplicated tags are displayed in bold.

/**
* Delegates to {@link

EndianUtils#
readSwappedInteger(InputStream)}
* @return the read long
* @throws IOException if an I/O error

occurs
* @throws EOFException if an end of

file is reached unexpectedly
*/
public int readInt () throws

IOException , EOFException {
return
EndianUtils.readSwappedInteger(in);

}

/**
* Delegates to {@link

EndianUtils#
readSwappedFloat(InputStream)}
* @return the read long
* @throws IOException if an I/O error

occurs
* @throws EOFException if an end of

file is reached unexpectedly
*/
public float readFloat ()

throws IOException ,
EOFException {

return
EndianUtils.readSwappedFloat(in);

}

Fig. 6. Extract of copy-paste due to two methods with a similar intent in the Guava
project. Duplicated tags are displayed in bold.

he clearly copied the documentation of the long method but didn’t change the
documentation of the int and float ones. In Java, most of similar intent cases we
observed are due to developers implementing several times a same feature for
each primitive type.

Table 4 shows the occurrences of each relation in our corpus based on our
analysis. We can see that the main cause of documentation copy-pastes is
delegation (60%) and then code clone (28%). There are very few sub-typing
(8%) and similar intent (3%) cases. Further, looking at the tag level we notice
that this distribution is quite consistent whatever the tag.

22 M.A. Oumaziz et al.

Table 4. Percentage of copy/paste for each cause in our corpus.

Cause

Delegation Sub-typing Code clone Similar intent

copy-pastes 37/61 (60%) 5/61 (8%) 17/61 (28%) 2/61 (3%)

@description 8/15 (53%) 1/15 (7%) 6/15 (40%) 0/15 (0%)

@param 27/41 (66%) 4/41 (10%) 9/41 (22%) 1/41 (2%)

@return 18/30 (60%) 3/30 (10%) 8/30 (27%) 1/30 (3%)

@throw 18/30 (60%) 1/30 (3%) 9/30 (30%) 2/30 (7%)

4.2 Existing Documentation Tools

As a second step, we first look at the different documentation tools to obtain the
mechanisms they provide for reusing documentation. As there are too many doc-
umentation tools (about fifty) 5, and due to time constraints, we choose to focus
on the most popular ones. As a proxy to compute the popularity, we compute
for each tool the number of questions asked by developers on StackOverflow, for
the tools where a dedicated StackOverflow tag is available.

Table 5. The five documentation tools with the most questions in StackOverflow

Tool Language #Questions

JavaDoc Java 2, 022

Doxygen C, C++, Java, C#, VBScript, IDL Fortran, PHP,
TCL

1, 894

phpDocumentor PHP 636

JSDoc JavaScript 574

Doc++ C, C++, IDL, Java 570

We then analyze in detail the five tools having the most related questions on
StackOverflow, whether they are compatible with Java or not, in order to be sure
that there is no mechanism available for other languages that could avoid copy-
pastes and therefore should be implemented for Java. These tools are shown in
Table 5.

As a second step for our experiment, for each tool, we go through the whole
user-guide to find out the list of reuse mechanisms. We find out that these reuse
mechanisms have two main aspects. The first aspect is about the reuse granu-
larity: some allow only to reuse a whole method documentation, some allow to
reuse documentation tags separately. The second aspect is about the location of
the reused documentation. Some mechanisms only allow to reuse documentation

5 https://en.wikipedia.org/wiki/Comparison of documentation generators.

https://en.wikipedia.org/wiki/Comparison_of_documentation_generators

Documentation Reuse: Hot or Not? An Empirical Study 23

Table 6. Aspects of the reuse mechanisms. Reuse granularity indicates if the doc-
umentation has to be completely reused (Whole) or if it is possible to select some
tags (Choice). Source location indicates where can be the source of the reused docu-
mentation: in an overridden method (Override) or in a method anywhere in the code
(Anywhere).

Source location Reuse granularity

Whole Choice

Override JavaDoc, JSDoc JavaDoc

Anywhere Doxygen, JSDoc

located in an overridden method, some allow to reuse documentation located in
any method. Table 6 summarizes the aspects of the mechanisms offered by the
documentation tools.

First, it is important to notice that only three tools out of five provide reuse
mechanisms: DOC++ and phpDocumentor have no support at all to reuse doc-
umentation. More surprisingly, no tool supports the reuse of documentation tags
anywhere in the code. Indeed, JavaDoc allows to reuse documentation tags, but
only in an overridden method, while JSDOC and Doxygen allow to reuse com-
plete method documentations in the code, but not specific documentation tags.

As a result for our classification, delegation, code clone and similar intent
relations are not yet handled by any existing mechanism. On the contrary, dupli-
cations due to sub-typing relations are already properly handled by JavaDoc.

4.3 Documentation Reuse Revisited

Based on our findings, we suggest a novel mechanism to allow developers to
automatically reuse documentation tags from a method to another one. Our
proposal is an inline tag for JavaDoc. An inline tag can be used inside another
tag, giving therefore the possibility to reuse the content of a specific tag but
also to add more content before and after the reused one. We define it as:
{@reuseClass:Method(type[, type])[:TagName]}.

For instance, by using this new mechanism, the documentation of the right
method in Fig. 1 becomes as in Fig. 7.

As you can see in Fig. 7, while using the @reuse tag inside @param, there
is no need to specify which tag name to reuse, by default it will automatically
reuse the tag with the same name as the tag it belongs to, therefore the @param
named a.

/**
* @param a {@reuse Class:isEqualCollection(Collection, Collection)}
* @param b {@reuse Class:isEqualCollection(Collection, Collection)}
* @param equator the Equator used for testing equality
* @return {@reuse Class:isEqualCollection(Collection, Collection)}
*/

Fig. 7. Example of a documentation reuse with our @reuse inline tag.

24 M.A. Oumaziz et al.

We implemented our proposal as a doclet for JavaDoc, the source code can
be accessed in our website6. By using this mechanism, it is possible to avoid
at least all the copy-pastes due to delegation, the most frequent ones in our
corpus (60% of the copy-pastes). While this mechanism could also be used for
copy-pastes due to code clone and similar intent, one main problem would be to
decide which method should be the documentation origin which is a still open
research question. Finally, our proposal is not able to cope with @description
tags, as they are not materialized in JavaDoc. We also plan to conduct a more
thorough study of our proposal as a future work.

5 Related Work

This section describes the work done on the subject of software documentation:
studies and tools. We start by describing the existing studies on this subject,
which all agree on the fact that developers need more assistance for maintaining
the documentation.

Forward et al. [9] perform a qualitative study on 48 developers and man-
agers about how they feel about software documentation as well as the tools
that support it. They discover that their favourite tools are word processors
and Javadoc-like tools. They also discover that the participants think that the
documentation is usually outdated. Finally, they discover that the participants
would greatly appreciate tools that help in maintaining the documentation.

Dagenais and Robillard [5] perform a qualitative study involving 12 core
open-source contributors writing documentation and 10 documentation readers.
They analyze the evolution of 19 documentation documents across 1500 revi-
sions. They identify three documentation production modes: initial effort, incre-
mental changes and bursts (big amount of change in a small period). They also
discover that Javadoc-like documentation is perceived as a competitive advan-
tage for libraries, and is easy to create but costly to maintain.

Finally, Correia et al. [4] show that maintaining a documentation is highly
challenging. They identify four so-called patterns to help tackling this challenge:
information proximity, co-evolution, domain structured information and inte-
grated environment.

In order to help creating and maintaining the documentation, several tools
have been developed. We describe these tools in the remainder of this section,
even if none of them supports documentation reuse as presented in our study.

DocRef [26] helps detecting errors in software documentation by combining
code analysis and natural language processing techniques. This tool has then
been validated on 1000 detected documentation errors from open-source projects,
and has proven usefulness as many errors have been fixed after having been
reported.

Childs and Sametinger [3] suggest the use of object-oriented programming
techniques such as inheritance and information hiding in documentation to avoid

6 http://se.labri.fr/a/ICSR17-oumaziz.

http://se.labri.fr/a/ICSR17-oumaziz

Documentation Reuse: Hot or Not? An Empirical Study 25

redundancy. They also describe documentation reuse concepts and how to apply
them using literate programming on documentation that is either or not related
to source code.

Parnas [18] explains the lack of interest of researchers about the documen-
tation topic. He further explains that his team and him developed a new math-
ematical notation that is more adapted for documentation but didn’t convince
academics and practitioners.

Buse and Weimer [1] present a tool that can statically infer and characterize
exception-causing conditions in Java and then output a human-readable doc-
umentation of the exceptions. The tool is evaluated on over 900 instances of
exception documentation within 2 million lines of code. They find out that the
output is as good as or better than the existing one in the majority of the cases.

Pierce and Tilley [19] suggest using reverse engineering techniques to auto-
mate the documentation process. They propose an approach based on this prin-
ciple in their Rational Rose tool. This approach offers the possibility to auto-
matically generate up-to-date documentation. However their approach is not
subjected to a serious evaluation.

McBurney and McMilla [15] describe a new method that uses natural process-
ing language with method invocation analysis to generate a documentation not
only explaining what the method does but also what is its purpose in the whole
software project.

Robillard and Chhetri [21] describe a tool, Krec, that is able to extract rele-
vant fragments of documentation that correspond to a given API element. The
tool has been evaluated on a corpus of 1000 documentation units drawn from 10
open source projects and has shown to have a 90% precision and 69% recall.

6 Conclusion

Code documentation is a crucial part of software development. Like it is the case
with source code, developers should reuse documentation as much as possible to
simplify its maintenance.

By performing an empirical study on a corpus of seven popular Java APIs, we
show that copy-pastes of documentation tags are unfortunately too abundant. By
analyzing these copy-pastes, we identified that they are caused by four different
kinds of relationships in the underlying source code.

Our study pinpoints the fact that popular documentation tools do not provide
any reuse mechanism to cope with these causes. For instance, there is definitely
no mechanism supporting documentation reuse in the case of delegation, which
is the major cause of copy-paste.

We looked towards a proposal providing a simple tag that makes the doc-
umentation reuse simple but efficient. As a further work, we obviously plan to
extend our study. We plan to analyze other programming languages and docu-
mentation tools, and to detect not only identical documentations but also similar
ones, aiming to find duplications with tiny differences. We finally plan to extend
and validate our proposal from a developer point of view.

26 M.A. Oumaziz et al.

References

1. Buse, R.P., Weimer, W.R.: Automatic documentation inference for exceptions.
In: Proceedings of the 2008 International Symposium on Software Testing and
Analysis, pp. 273–282. ACM (2008)

2. Charpentier, A., Falleri, J.R., Lo, D., Réveillère, L.: An empirical assessment of
Bellon’s clone benchmark. In: Proceedings of the 19th International Conference on
Evaluation and Assessment in Software Engineering, EASE 2015, pp. 20:1–20:10.
ACM, Nanjing (2015)

3. Childs, B., Sametinger, J.: Literate programming and documentation reuse. In:
Proceedings of Fourth International Conference on Software Reuse, pp. 205–214.
IEEE (1996)

4. Correia, F.F., Aguiar, A., Ferreira, H.S., Flores, N.: Patterns for consistent software
documentation. In: Proceedings of the 16th Conference on Pattern Languages of
Programs, p. 12. ACM (2009)

5. Dagenais, B., Robillard, M.P.: Creating and evolving developer documentation:
understanding the decisions of open source contributors. In: Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 127–136. ACM (2010)

6. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall,
New York (1993)

7. Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained
and accurate source code differencing. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE 2014, pp. 313–
324. ACM, New York (2014)

8. Fluri, B., Würsch, M., Gall, H.C.: Do code and comments co-evolve? on the rela-
tion between source code and comment changes. In: 14th Working Conference on
Reverse Engineering, WCRE 2007, pp. 70–79. IEEE (2007)

9. Forward, A., Lethbridge, T.C.: The relevance of software documentation, tools and
technologies: a survey. In: Proceedings of the 2002 ACM Symposium on Document
Engineering, DocEng 2002, NY, USA, pp. 26–33. ACM, New York (2002)

10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations,
1st edn. Springer-Verlag, Secaucus (1997)

11. Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do code clones matter?
In: IEEE 31st International Conference on Software Engineering, ICSE 2009, pp.
485–495, May 2009

12. Kramer, D.: API documentation from source code comments: a case study of
Javadoc. In: Proceedings of the 17th Annual International Conference on Com-
puter Documentation, pp. 147–153. ACM (1999)

13. Lakhotia, A.: Understanding someone else’s code: analysis of experiences. J. Syst.
Softw. 23(3), 269–275 (1993)

14. Lethbridge, T.C., Singer, J., Forward, A.: How software engineers use documenta-
tion: the state of the practice. IEEE Softw. 20(6), 35–39 (2003)

15. McBurney, P.W., McMillan, C.: Automatic documentation generation via source
code summarization of method context. In: Proceedings of the 22nd International
Conference on Program Comprehension, pp. 279–290. ACM (2014)

16. Monperrus, M., Eichberg, M., Tekes, E., Mezini, M.: What should developers be
aware of? an empirical study on the directives of API documentation. Empirical
Softw. Eng. 17(6), 703–737 (2012)

Documentation Reuse: Hot or Not? An Empirical Study 27

17. Parnas, D.L.: A technique for software module specification with examples. Com-
mun. ACM 15(5), 330–336 (1972)

18. Parnas, D.L.: Software aging. In: Proceedings of the 16th International Conference
on Software Engineering, pp. 279–287. IEEE Computer Society Press (1994)

19. Pierce, R., Tilley, S.: Automatically connecting documentation to code with rose.
In: Proceedings of the 20th Annual International Conference on Computer Docu-
mentation, pp. 157–163. ACM (2002)

20. Pollack, M.: Code generation using Javadoc. JavaWorld (2000). http://www.
javaworld.com/javaworld/jw-08-2000/jw-0818-javadoc.html

21. Robillard, M.P., Chhetri, Y.B.: Recommending reference API documentation.
Empirical Softw. Eng. 20(6), 1558–1586 (2015)

22. de Souza, S.C.B., Anquetil, N., de Oliveira, K.M.: A study of the documentation
essential to software maintenance. In: Proceedings of the 23rd Annual International
Conference on Design of Communication: Documenting & Designing for Pervasive
Information, SIGDOC 2005, pp. 68–75. ACM, New York (2005)

23. Teyton, C., Falleri, J.R., Palyart, M., Blanc, X.: A study of library migrations in
Java. J. Softw. Evol. Process 26(11), 1030–1052 (2014)

24. Van Heesch, D.: Doxygen (2004)
25. Van De Vanter, M.L.: The documentary structure of source code. Inf. Softw. Tech-

nol. 44(13), 767–782 (2002). Special Issue on Source Code Analysis and Manipu-
lation (SCAM)

26. Zhong, H., Su, Z.: Detecting API documentation errors. In: ACM SIGPLAN
Notices, vol. 48, pp. 803–816. ACM (2013)

http://www.javaworld.com/javaworld/jw-08-2000/jw-0818-javadoc.html
http://www.javaworld.com/javaworld/jw-08-2000/jw-0818-javadoc.html

Software Product Lines

A Preliminary Assessment of Variability
Implementation Mechanisms

in Service-Oriented Computing

Loreno Freitas Matos Alvim(B), Ivan do Carmo Machado,
and Eduardo Santana de Almeida

Computer Science Department, Federal University of Bahia - Salvador,
Salvador, Brazil

lorenoalvim@gmail.com, {ivanmachado,esa}@dcc.ufba.br

Abstract. Service-Oriented Computing and Software Product Lines are
software development strategies capable to provide a systematic means
to reuse existing software assets, rather than repeatedly developing them
from scratch, for every new software system. The inherent characteristics
of both strategies has led the research community to combine them, in
what is commonly referred to as Service-Oriented Product Lines (SOPL)
strategies. Despite the perceived potential of such a combination, there
are many challenges to confront in order to provide a practical general-
izable solution. In particular, there is a lack of empirical evidence on the
actual support of variability implementation mechanisms, typical in SPL
engineering, and their suitability for SOPL. In line with such a challenge,
this paper presents a preliminary assessment aimed to identify variability
implementation mechanisms which may improve measures of complexity,
instability and modularity, quality attributes particularly important for
modular and reusable software systems, as is the case of SOPL. Based
on the results of these evaluations, an initial decision model is developed
to provide software engineers with an adequate support for the selection
of variability mechanisms.

Keywords: Software Product Lines · Service-Oriented Product Lines ·
Decision model

1 Introduction

Software Product Lines (SPL) engineering is a software development paradigm
aimed at fostering systematic software reuse. SPL engineering involves creat-
ing a set of product variants from a reusable collection of software artifacts [7].
These product variants share a set of functions (commonalities), but also deliver
customer-specific ones (variabilities), key element of SPL engineering. Several
software companies, from small to large-sized ones, have developed their soft-
ware systems, in a range of application domains, based on such a development
paradigm. SPL engineering promises improvements in the quality of delivered
products, reductions in time-to-market, and gains in productivity [6].
c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 31–47, 2017.
DOI: 10.1007/978-3-319-56856-0 3

32 L.F.M. Alvim et al.

Service-Oriented Computing (SOC) is a well-established paradigm of Soft-
ware Engineering [16]. It allows decomposing software into services, then provide
a well-defined functionality while hiding systems implementation [3]. Services are
autonomous, platform-independent computational units that can be described,
published, discovered, and dynamically composed and assembled [15]. Thus, pro-
grammers may integrate distributed services, even if they are written in different
programming languages [3]. It makes SOC an alternative to solve integration and
interoperability-related issues, and increase business flexibility.

In order to achieve the benefits from both SPL and SOC, the research commu-
nity has investigated their combination, in what has been called Service-Oriented
Product Lines (SOPL) [5]. A number of studies [4,8,10,18] have analyzed how
the commonly variability implementation mechanisms from SPL could also be
suitable to SOPL. Such studies analyzed the mechanisms used by the software
industry to implement variability in SOPL. However, understanding the actual
use of the techniques is still challenging to assess and report its value.

In this paper, we present a preliminary assessment to investigate the variabil-
ity implementation mechanisms suitable for SOPL. More specifically, we analyze
the choice of a particular mechanism, according to three quality attributes: com-
plexity, modularity and stability. We implemented two SPLs and released three
product instances for each SPL. Next, we carried out an adaptation, by trans-
forming the SPL features into services. Based on gathered evidence, we defined
a measurement framework and a decision model to support the analysis of SPL.

2 Variability Implementation Mechanisms

This section provides a brief introduction about the variability implementa-
tion mechanisms used in this work: Conditional Compilation (CComp),
Aspect-oriented Programming (AOP), and the Open Services Gateway
Initiative (OSGi).

2.1 Conditional Compilation

CComp is one of the most elementary, yet most powerful approaches to enable
variability implementation [9]. Preprocessors provide an intuitive means to
implement variability. Its simplicity and flexibility attracts many practition-
ers [13]. Also, projects with strict requirements on the overhead resulting from
the composition process of their variants rely on the overhead-free mechanisms
offered by the preprocessor.

One advantage of conditional compilation is to allow that code be marked at
different granularities from a single line of code to a whole file. As a consequence,
it is possible to encapsulate multiple implementations in a single module.

2.2 Aspect-Oriented Programming

AOP is a widely-known technique for improving Separation of Concerns (SoC)
[11]. An aspect (or concern) is a concept, goal or area of interest. A system can

A Preliminary Assessment of Variability Implementation Mechanisms 33

be considered as a collection of several concerns. There are core-level and system-
level concerns. The former includes the business logic, and the latter includes
aspects that affect the entire system [12]. Many such system-level concerns may
influence multiple implementation modules. They are also called crosscutting
concerns. As these concerns affect many implementation modules, even with
programming approaches such as object-orientation, they make the resulting
system harder to understand, design and implement.

AOP focuses on identifying such crosscutting concerns in the system and
implement them as a collection of loosely coupled aspects. As a result, imple-
mentation modules become more independent and reusable. AOP is an affordable
strategy to analyze the commonalities and variabilities of an SPL [12].

2.3 Open Services Gateway Initiative

The OSGi1 technology is a set of specifications that defines an open, common
architecture to develop, deploy and manage services in a coordinated way for
the Java language. These specifications aim to facilitate the development, reduce
the complexity and increase the reuse of developed services. OSGi is based on a
service-oriented architecture where functional units are decoupled and compo-
nents can be managed independently of each other [17]. An important character-
istic is that the OSGi enables applications to discover and use services provided
by other applications running inside the same OSGi platform [18].

OSGi is also suitable for implementing variation points because it offers an
easy way to include new components and services without being required to
recompile the whole system. In other words, it is possible to perform changes
between different implementations in a dynamic fashion [1].

3 The Measurement Framework

The measurement of internal attributes such as size and instability may not
mean anything when observed in isolation [19]. However, the metrics are more
effective when combined to produce a measurement framework, which enables
software engineers to understand and interpret the meanings of the measured
data. By establishing a relationship among metrics, as introduced in [18], we
herein propose a measurement framework, aimed to assess the code quality in
the context of SOPL. The metrics reused in this framework for data collection
were defined in previous studies [1,10,14,19].

Figure 1 shows the proposed framework. It encompasses three levels, as fol-
lows: (i) code quality - the response variable studied in this work; (ii) reusabil-
ity and maintainability - the quality attributes observed in the system; and
(iii) the factors (complexity, instability and modularity) - which influence the
quality attributes, and could be categorized and quantified using the metrics,
which provide the necessary conditions to analyze the source code quality. These
metrics are further discussed in details.
1 https://www.osgi.org/.

https://www.osgi.org/

34 L.F.M. Alvim et al.

Fig. 1. The Measurement Framework.

3.1 Complexity Metrics

A critical issue in SPL engineering is how to efficiently implement SoC and
modularize the system in order to have modules and components well defined,
testable and reusable [19]. In this scenario, structural dependencies between ser-
vices and components have a significant influence on the system complexity [18].
The following metrics could be used to assess source code complexity:

1. Cyclomatic Complexity (CC). It is a measure of the logical complexity
of a program. CC calculations are useful to keep the size of components or
services manageable and allow the testing of all independent paths. In this
sense, CC can be used to analyze the complexity of each component [1].

2. Lines of Code (LOC). It counts all lines for each implementation, excluding
comments and blank lines. This measure provides a baseline for comparing
any two distinct systems, in terms of size. In this sense, it is necessary to
ensure the same programming style in every project [19], given that different
programming styles can bias the results of this metric. However, this might
be difficult to ensure in SOC, where applications can be built by different
companies, and the source code cannot always be accessed.

3. Weighted Operations per Component or Service (WOCS). It deter-
mines the complexity of service or component based on its operations
(methods) that will be required by other services or components [18]. Let us

A Preliminary Assessment of Variability Implementation Mechanisms 35

consider a component or service C with operations O1, . . . , On. Let c1, . . . , cn
be the complexity of the operations, then:

WOCSC = c1 + ... + cn (1)

For this metric, the number of parameters of an operation is the key of com-
plexity. Thus, operations with many parameters are more likely to be complex
than other which requires few parameters. In this way, the complexity of oper-
ation Ok is defined as: ck = αk + 1, where αk denotes the number of formal
parameters of Ok.

3.2 Stability Metrics

A single change can begin a chain of changes of independent modules or services
when there is a fragile design and difficulties are faced during reuse. Thus, the
designer might face difficulties to predict both the extent of change and its
impact [19]. Instability is the probability of a system to change, due to changes
occurring in different parts of the system [2]. In this context, the metric to
measure instability of source code artifacts used was:

1. Instability Metric for Service or Component (IMSC). It is supported
by fan.in and fan.out, where fan.in (for function A) is calculated by the
number of functions that call function A. On the other hand, fan.out is the
opposite procedure, i.e., it represents the number of external functions called
by A. The value measured by IMSC reflects the interaction between services or
components [18]. Thus, this metric can be defined as follows:

IMCS =
fan.out

fan.in + fan.out
(2)

3.3 Modularity Metrics

Decomposition mechanisms used both in design and implementation are closely
related to SoC. Concerns are an alternative for decomposing software in smaller
parts and at the same time they are deemed to be more manageable and com-
prehensible. Besides, concerns are commonly regarded as equivalent to features
[10]. Thus, the following metrics were chosen to support the modularity analysis
of source code artifacts:

1. Concerns Diffusion over Components (CDC). It quantifies the degree
of feature scattering considering the granularity level of components. CDC
counts the number of components whose purpose is to contribute to the imple-
mentation of a concern. A high CDC indicates that a feature implementation
can be scattered [10].

2. Concerns Diffusion over Operations (CDO). It is similar to CDC, as
it also quantifies the degree of feature scattering, however it is focused on
the level of granularity of the methods. It counts the number of methods and
constructors performing a feature [10].

36 L.F.M. Alvim et al.

4 First Case Study - Warehouse

This section presents the case study aimed at analyzing the variability imple-
mentation mechanisms. We applied the GQM (Goal/Question/Metric) structure
to define our goal, as follows:

G. Analyze the variability implementation mechanisms (conditional compi-
lation, OSGi, and aspects) for the purpose of evaluation with respect to com-
plexity, instability and modularity from the point of view of software engineers
and researchers in the context of an SOPL project.

Q1. How complex are the services and components developed using
CComp, AOP or OSGi? This research question investigates structural depen-
dencies between components or services. This kind of dependency may influence
the system complexity, thus, the goal is to identify which mechanism produces
better results. In order to answer this question we used the framework complexity
metrics (CC, LOC, and WOCS).

Q2. How stable are the services and components developed using
CComp, AOP or OSGi? This research question identifies which mechanism
produces better results for instability. With a fragile design and development,
whenever a single component changes, an independent chain of changes may be
triggered. Thus, this aspect is worth investigating. The framework instability
metric (IMSC) was employed in an attempt to answer this question.

Q3. How modular are the services and components developed using
CComp, AOP or OSGi? Developers often seek to implement modular soft-
ware and, at the same time, they want to deliver more manageable and more
comprehensible software artifacts. In this context, this research question aims at
supporting our analysis about the modularity level of services and components.
The modularity metrics CDC and CDO were employed to answer this question.

4.1 Hypotheses

For this study, it means that there is no difference among the techniques to
implement variability:

H0a :CCompCC = AOPCC = OSGiCC

H0b :CCompLOC = AOPLOC = OSGiLOC

H0c :CCompWOCS = AOPWOCS = OSGiWOCS

H0d :CCompIMSC = AOPIMSC = OSGiIMSC

H0e :CCompCDC = AOPCDC = OSGiCDC

H0f :CCompCDO = AOPCDO = OSGiCDO (3)

Conversely, whether there are differences among the variability implementa-
tion mechanisms, the null hypotheses are rejected.

A Preliminary Assessment of Variability Implementation Mechanisms 37

4.2 Case Study Execution

The SPL under evaluation is a simulator of a warehouse. The project was devel-
oped by two graduate students. The project was inspired by the scenario pro-
posed in [3], which provides conditions to investigate the source code related
to modularity and software variability. The Warehouse SPL is composed of 23
features that allow the simulation of basic functions such as to get customer
requests, to check the availability of ordered goods, to order the goods from an
inventory, and billing.

In the first phase, the SPL was built from scratch, by using CComp as its
variability implementation mechanism. Three releases were developed. The first
release contains the core asset of the SPL and the latter ones incorporate changes
to implement other features. Next, the remaining implementations proceeded.
The developers refactored the SPL by using AOP and OSGi, based on the fea-
tures from the first release. For the OSGi version, the services were used to
resolve features, i.e., the services are the main core assets, where for each fea-
ture, a corresponding service was developed in the implemented SPL.

4.3 Results

This section presents and analyzes the data gathered from the first case study. We
carried out a quantitative analysis regarding the quality attributes complexity,
instability and modularity.

Complexity Analysis. Table 1 shows the mean values for each release of the
Warehouse SPL. OSGi yielded the lowest CComp values. Among the OSGi
releases, there was a minor variation, remaining at roughly 1.2. CComp presents
the higher mean. However, in release 2, the AOP mechanism had similar mean
values, around 1.5.

Unlike the CComp analysis, OSGi demanded a higher LOC, when compared
to the other techniques. When CComp is used in the implementation, the range
was 2487 to 3309 LOC among the releases. The variation between products for
AOP was lower, between 2649 to 2933. Finally, the range for OSGi was from 2992
to 3309. The observed LOC differences could be partially explained by the fact
that CComp inserts its preconditions in pieces of code commented only in the
base product. Thus, when the remaining releases were derived, the preconditions
were removed. In fact, some mechanisms are more verbose than others.

WOCS was the last metric used to measure code complexity. In this metric,
OSGi achieved the lowest values. The difference among the values measured was
considerable, as the OSGi average was half the AOP version. The highest WOCS
values were observed in the CComp version. It can be explained by the fact that
it had the implementation with the lowest number of methods and classes among
the techniques. Thus, the number of parameters (key to calculate this metric) is
distributed in fewer methods, which led to an increased CComp value.

Stability Analysis. By observing the measured values it is possible to identify
that OSGi is the mechanism with more unstable components or services in all

38 L.F.M. Alvim et al.

Table 1. Results for the quantitative analysis for the Warehouse SPL project.

Variability mechanism Metric Release 1 Release 2 Release 3

CComp CC 1.609 1.586 1.609

LOC 2487 2697 2934

WOCS 8.756 8.744 8.848

IMSC 0.272 0.2651 0.2585

CDC 0.088 0.091 0.082

CDO 0.048 0.045 0.036

AOP CC 1.482 1.528 1.511

LOC 2649 2813 2933

WOCS 7.620 7.904 7.661

IMSC 0.270 0.269 0.268

CDC 0.083 0.086 0.077

CDO 0.047 0.044 0.036

OSGi CC 1.275 1.268 1.229

LOC 2992 3160 3309

WOCS 3.892 3.814 3.541

IMSC 0.342 0.327 0.337

CDC 0.074 0.076 0.065

CDO 0.048 0.046 0.039

the analyzed releases. In turn, AOP and CComp had very similar results. The
OSGi values could be explained for its dynamic characteristic, in which it is not
possible to separate the persistence from the Bundle, which resulted in a high
coupling among services that produces increased instability values.

Modularity Analysis. Regarding CDC, Table 1 shows that OSGi implemen-
tation is the most modular when the observed criterion refers to the degree of
feature scattering at component level. AOP had an intermediate mean value, and
CComp yielded the worst result for this metric, with the highest means. This
result was expected due to the intrinsic features of the mechanisms. During the
development of the OSGi version, each feature was isolated in a service. It could
provide a given modularity level. In an analogous way, features were inserted in
aspects when the development used AOP. Nevertheless, CComp implementation
does not have a native way to isolate features.

CDO was the last metric applied in this case study. In contrast with the CDC
results, the achieved values do not clarify which mechanism yielded the best
results. They are very similar and sometimes a technique has slightly superior
values. It is inconclusive at this point.

A Preliminary Assessment of Variability Implementation Mechanisms 39

4.4 Descriptive and Exploratory Analysis

We used the nonparametric Kruskal-Wallis test (KW) to compare the different
variability mechanisms as in most samples the normality hypothesis was rejected
by the Shapiro-Wilk test (SW), which prevents using the variance analysis. The
underlying hypothesis test is:

H0: All populations have identical distributions.
H1: At least two populations have different distributions.

Table 2 shows the results. The comparison of variability mechanisms indi-
cates that LOC and CDO did not present statistically significant differences at a
confidence level of 5%. The instability variable had a borderline significance. It
means that there is a difference only in one of the mechanisms, when compared
to the others, where only OSGi version had higher values. Thus, these results
rejected the null hypotheses defined for the case study except for LOC and CDO
metric that did not present significant results in this study.

Table 2. Results of the quantitative analyses for the Warehouse SPL project.

Variable Kruskal-Wallis Chi-squared H-value df

CC 7.2000 5.6 2

WOCS 7.2000 5.6 2

LOC 5.4222 5.6 2

IMSC 5.6000 5.6 2

CDC 5.9556 5.6 2

CDO 0.5650 5.6 2

4.5 Threats to Validity

Internal Validity. This case study addressed different areas, such as, SOC,
variability implementation mechanisms, and the combination of SOC and SPL,
known as SOPL. Understanding all of these areas would take a long time and
effort. Thus, it is possible that some concepts may have been poorly understood.
Trying to solve these possible issues, we investigated related work that could
provide useful metrics to this investigation, as well as a formalized strategy on
how to proceed during the evaluation process.

External Validity. This study aims at identifying the most suitable variabil-
ity mechanism, it may be used as baseline for comparison in further studies
developed in similar contexts. However, the small domain analyzed is a threat
because the Warehouse is an academic small-sized project that may hinder any
generalization of findings. In the future, we plan to carry out replications, by
considering systems from distinct application domains and size.

40 L.F.M. Alvim et al.

5 Second Case Study - RiSEEvents

This section presents a replicated case study. It was carried out with the aim to
analyze the variability mechanisms used to implement SPL and SOPL, and to
compare the results with the previous case study. For this reason, the protocol
used in this replicated study was identical to the applied in the former, to ensure
their similarity, and foster comparisons.

5.1 Case Study Execution

The SPL under evaluation consists of a desktop application that assists users in
the management of scientific events. The development team for the base version
of the SPL used in this study was composed of three graduate students. They
were not aware of the first case study.

The RiSEEvents SPL is composed of 28 features which provide the required
functions to manage the life-cycle of a scientific event, encompassing submis-
sion, registration and evaluation phases, attendee registration procedures, semi-
automated generation of the event proceedings, and an automated generation
of documents such as reports, and certificate of attendance. Based on the initial
version implemented with CComp, the developers were asked to deliver two addi-
tional releases aiming to complete the number of products required to assess this
variability mechanism. As in the first case study, the Release 1 only comprised
the core assets of the application. Next, changes were incorporated to implement
all features designed for this SPL. At the end of this process, three scenarios for
each variability mechanism through inclusion, changing, or removing classes were
implemented.

5.2 Results and Findings

This section discusses the findings of the replicated case study.

Complexity Analysis. In Table 3, it is possible to observe the CComp collected
from the implemented scenarios. The releases implemented through CComp had
the highest CC among the studied mechanisms. Another observation is the differ-
ence of values measured by each technique. The mean values for the CComp and
AOP versions were rather closer to each other, and distinct from that observed
in the OSGi version. The first two had mean values measured at around 2.1
while in the OSGi version the values of the releases 1 and 2 were about 1.8 and
in the release 3 the value was 1.745.

An opposite situation was observed for the LOC metric. In this context, AOP
becomes the mechanism with the highest measured values, and CComp required
the smallest LOC. The exception was observed in release 3, in which the OSGi
version yielded the highest LOC.

Regarding WOCS measurement, it was observed a particular wide variation
in the results for the OSGi version. In the first release, OSGi had (with a large
difference from other mechanisms) the smallest measured value. However, in

A Preliminary Assessment of Variability Implementation Mechanisms 41

release 2, the situation changed and it made the technique more complex. In
release 3, this situation was repeated, but with the mean closer to other mecha-
nisms. Except in the first release, AOP was the technique with the best results.

Stability Analysis. From Table 3, we could also observe that the components
built with OSGi are the most unstable. The other mechanisms had similar insta-
bility levels, with a slight trend for the implementations that use CComp to be
more stable.

Modularity Analysis. The last group of metrics used in these studies is related
to the modularity of programs. According to the CDC measures, we could state
that features implemented with OSGi are a little less diffuse among the compo-
nents than the others developed with AOP and CComp. They had very similar
results, which were not expected, since it did not occur in the first case study.

Alike in the first study, CDO calculations were also inconclusive. OSGi pre-
sented a large variation and the others had identical results in both releases. It
is possible that during migration from CComp to AOP some external factor had
influenced this process.

Table 3. Results of the quantitative analysis for the RiSEEvents SPL project.

Variability mechanism Metric Release 1 Release 2 Release 3

CComp CC 2.165 2.137 2.15

LOC 9623 20420 26349

WOCS 7.098 7.533 7.285

IMSC 0.435 0.441 0.448

CDC 0.09 0.06 0.05

CDO 0.056 0.049 0.039

AOP CC 2.101 2.112 2.125

LOC 9922 20684 26719

WOCS 7.032 7.409 7.149

IMSC 0.484 0.498 0.503

CDC 0.097 0.06 0.049

CDO 0.054 0.049 0.039

OSGi CC 1.849 1.878 1.745

LOC 9911 20516 26741

WOCS 6.105 8.33 7.448

IMSC 0.624 0.666 0.664

CDC 0.088 0.058 0.043

CDO 0.069 0.051 0.038

Descriptive and Exploratory Analysis. As in the first study, we used
the nonparametric Kruskal-Wallis test to compare the different mechanisms

42 L.F.M. Alvim et al.

of variability and the results are presented in Table 4. They indicate that (for
RiSEEvents) only the results from CC and Instability which presented statisti-
cally significant differences at a confidence level of 5%. As a result, most mech-
anisms presented similar behavior.

With these results, only the two null hypotheses related to cyclomatic com-
plexity and instability defined for this case study could be rejected. Consequently,
the other metrics did not produce significant results in this study.

Table 4. Results for the quantitative analysis for RiSEEvents.

Variable Kruskal-Wallis Chi-squared H-value df

CC 7.2000 5.6 2

WOCS 0.6222 5.6 2

LOC 0.6222 5.6 2

IMSC 72.000 5.6 2

CDC 0.6050 5.6 2

CDO 0.0904 5.6 2

5.3 Threats to Validity

Internal Validity. The wide knowledge areas addressed in this study together
with the context of RiSEEvents SPL are also threats for the study alike in the
preceding one. In order to mitigate these issues, a compilation of the results
through a comparison with data from both studies was performed.

External Validity. The same observation from the first case study still holds
for this second one. It is hard to generalize the findings, given the size of the
projects involved in both studies. However, we believe such results could serve
as baseline values for further replications.

6 Comparative Analysis

In this section, we synthesize gathered evidence, by providing a comparison of
the achieved results.

Complexity Comparison. The individual analysis allows to observe that both
case studies had similar data related to the first complexity criterion - CC.
OSGi was the mechanism with the best results in all products followed by AOP
with intermediary results. However, in the RiSEEvents the values for releases
implemented with CComp were very similar to the AOP releases.

For the second criterion - LOC, the results from both studies converged
again, but in RiSEEvents the measured values were similar. They presented
CComp as the mechanism demanding fewer LOC. OSGi had a higher LOC in

A Preliminary Assessment of Variability Implementation Mechanisms 43

its implementation for the Warehouse SPL. However, AOP had a higher LOC in
its implementation for two products of the RiSEEvents SPL (releases 1 and 2).

Finally, considering WOCS measurement, there was an unusual fluctuation of
results obtained. OSGi had WOCS values in Warehouse and in the first release of
RiSEEvents smaller than other mechanisms. However, for the second release of
RiSEEvents, the measured results had a considerable increase, which led OSGi to
achieve the worst results in both releases 2 and 3 of RiSEEvents. These values
indicate that the services responsible for the implementation of features are
composed of possible god-classes, i.e., classes that control too many other objects
in the system and as such they might become classes with several responsibilities.
The same variation did not occur in Warehouse results, where OSGi had best
results followed by AOP and CComp.

Stability Comparison. Both case studies had the components developed with
CComp more stable that the other ones. This result can be observed more clearly
in the replicated case that had the largest difference between data from CComp
and AOP.

Modularity Comparison. The results indicate that OSGi had the best com-
ponents regarding the CDC metric. It could be observed only in the first case
study where the mean of OSGi had, in general, 0.01 of difference from another
mechanism. In the second study, the results did not allow any inferences. Con-
cerning to CDO, we could not identify any significant differences among the three
approaches in both systems. Therefore, we could not discard the null hypotheses
with the use of CDO metric.

7 Decision Model

The descriptive and exploratory analysis indicate that we should consider some
factors when using the techniques to implement variability. In order to support
the choice of the most suitable technique we defined a decision model. In the
development process, we considered only the data that rejected the null hypothe-
ses. Thus, there is no indication for the most suitable techniques when software
modularity is assessed, for example, by CDO metric in the decision model. More-
over, as a result of the lack of significant differences among the techniques, two
mechanisms could be indicated as first options for a particular observed metric.

The decision model is centered on variability mechanisms and has three
inputs that produce the most suitable indication for the observed criteria. The
first input concerns the variability mechanisms target of the study (CC, AOP,
and OSGi); the second one consists of the criteria to compare the techniques
(complexity, instability, and modularity); and the last one are the metrics used
to quantify the criteria observed in the case studies.

Based on the results from the first case study, the decision model showed in
Fig. 2 was designed. In this model, there are priorities (for each metric) that indi-
cate the most suitable variability mechanism in the analyzed context. For exam-
ple, OSGi is the technique that produces the best components considering CC.

44 L.F.M. Alvim et al.

Fig. 2. Warehouse Decision model.

Similarly, we developed another decision model based on the replicated case
study results. In this case, only the results from CC and instability which pre-
sented statistically significant differences at a confidence level of 5% were con-
sidered. Figure 3 shows the decision model based on the RiSEEvents SPL.

Furthermore, by comparing the results we could assume this one as the model
produced with the results of both studies. Since the CC and instability results
were evaluated in the original case study and reinforced with new assessments in
the replicated case study. Thus, this second assessment allowed understanding
what results were influenced by the context, and provided support for making
these generalizations regarding the CC and instability.

8 Related Work

In this section, we provide an overview of previous research efforts related to the
scope of this paper.

In [4], authors performed an exploratory study to analyze solutions used in
dynamic variability implementation. The evaluation was performed with respect
to size, cohesion, coupling, and instability of the source code with the aid of a
measurement framework. Although similar, our work focuses in context of SOPL
and their work are mostly focused on dynamic SPL engineering.

Quantitative and qualitative analysis were carried out aimed to identify how
feature modularity and change propagation behave in the context of two evolving
SPLs [8]. In order to gather quantitative data, the authors developed each SPL

A Preliminary Assessment of Variability Implementation Mechanisms 45

Fig. 3. RiSEEvents Decision model.

using three different variability mechanisms. Moreover, the compositional mech-
anism available in Feature-oriented Programming (FOP) was evaluated by using
other two variability techniques as baseline (CComp and Design Patterns). Such
a study was further expanded [10], aimed at investigating whether the simultane-
ous use of aspects and features through the Aspectual Feature Modules approach
(AFM) facilitates the evolution of SPLs. All these works compare some variabil-
ity techniques through quantitative and qualitative analysis, however, neither of
them in the context of SOPL.

In [18], authors proposed an approach for implementing core assets in SOPL
providing guidelines and steps that enable the implementation in the SOPL
context (components, services providers and consumers). This study contributed
with our work to indicate how features could be resolved by services. Moreover,
it provided inputs for the development of our measurement framework that aims
to collect data to evaluate the different implementations.

9 Concluding Remarks

This paper presented a preliminary assessment of variability mechanisms to sup-
port SOPL implementation. The assessment comprised the planning, execution
and reporting of two case studies, aimed at evaluating the techniques with respect
to complexity, instability and modularity. The results of the studies indicated
that, in general, there are small differences among the techniques, and some
hypotheses could not be rejected. This paper also describes the proposal of a
framework to design decision models to aid the selection of a particular mecha-
nism based on a set of parameters.

As future work, we plan to improve the empirical assessment, by considering
another set of measurements, in order to increase the coverage of the framework.
Moreover, we will consider to use combination of mechanisms aiming to provide
variability to the services in our study context.

46 L.F.M. Alvim et al.

References

1. Almeida, E., Santos, E., Alvaro, A., Garcia, V.C., Meira, S., Lucredio, D., Fortes,
R.: Domain implementation in software product lines using OSGi. In: 7th Interna-
tional Conference on Composition-Based Software Systems (ICCBSS), pp. 72–81
(2008)

2. Ampatzoglou, A., Chatzigeorgiou, A., Charalampidou, S., Avgeriou, P.: The effect
of GoF design patterns on stability: a case study. IEEE Trans. Softw. Eng. 41(8),
781–802 (2015)

3. Apel, S., Kaestner, C., Lengauer, C.: Research challenges in the tension between
features and services. In: Proceedings of the 2nd International Workshop on Sys-
tems Development in SOA Environments (SDSOA), pp. 53–58. ACM (2008)

4. Carvalho, M.L.L., Gomes, G.S.S., Silva, M.L.G., Machado, I.C., Almeida, E.S.:
On the implementation of dynamic software product lines: a preliminary study. In:
10th Brazilian Symposium on Components, Architecture, and Reuse (SBCARS)
(2016)

5. Castelluccia, D., Boffoli, N.: Service-oriented product lines: a systematic mapping
study. SIGSOFT Softw. Eng. Notes 39(2), 1–6 (2014)

6. Clements, P., McGregor, J.: Better, faster, cheaper: pick any three. Bus. Horiz.
55(2), 201–208 (2012)

7. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston (2001)

8. Ferreira, G.C.S., Gaia, F.N., Figueiredo, E., de Almeida Maia, M.: On the use of
feature-oriented programming for evolving software product lines - a comparative
study. Sci. Comput. Program. 93(PA), 65–85 (2014)

9. Gacek, C., Anastasopoules, M.: Implementing product line variabilities. In: Pro-
ceedings of the 2001 Symposium on Software Reusability: Putting Software Reuse
in Context SSR 2001, pp. 109–117. ACM, New York (2001)

10. Gaia, F.N., Ferreira, G.C.S., Figueiredo, E., de Almeida Maia, M.: A quantita-
tive and qualitative assessment of aspectual feature modules for evolving software
product lines. Sci. Comput. Program. 96(P2), 230–253 (2014)

11. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). doi:10.
1007/BFb0053381

12. Kuloor, C., Eberlein, A.: Aspect-oriented requirements engineering for software
product lines. In: 10th IEEE International Conference and Workshop on the Engi-
neering of Computer-Based Systems, pp. 98–107, April 2003

13. Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An analysis of the vari-
ability in forty preprocessor-based software product lines. In: 32nd International
Conference on Software Engineering (ICSE), pp. 105–114. ACM (2010)

14. McCabe, T.: A complexity measure. IEEE Trans. Softw. Eng. 2, 308–320 (1976)
15. Mohabbati, B., Asadi, M., Gašević, D., Lee, J.: Software product line engineering

to develop variant-rich web services. In: Bouguettaya, A., Sheng, Q.Z., Daniel, F.
(eds.) Web Services Foundations, pp. 535–562. Springer, New York (2014)

16. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007)

17. Rellermeyer, J.S., Alonso, G.: Concierge: a service platform for resource-
constrained devices. SIGOPS Oper. Syst. Rev. 41(3), 245–258 (2007)

http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381

A Preliminary Assessment of Variability Implementation Mechanisms 47

18. Ribeiro, H.B.G., Almeida, E.S., de Lemos Meira, S.R.: An approach for imple-
menting core assets in service-oriented product lines. In: 1st Workshop on Ser-
vices, Clouds, and Alternative Design Strategies for Variant-Rich Software Systems
(SCArVeS). ACM (2011)

19. Santanna, C., Garcia, A., Chavez, C., Lucena, C., von Staa, A.: On the reuse and
maintenance of aspect-oriented software: an assessment framework. In: Proceedings
of the XVII Brazilian Symposium on Software Engineering (2003)

No Code Anomaly is an Island

Anomaly Agglomeration as Sign of Product Line Instabilities

Eduardo Fernandes1,2(✉), Gustavo Vale3, Leonardo Sousa2, Eduardo Figueiredo1,
Alessandro Garcia2, and Jaejoon Lee4

1 Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
{eduardofernandes,figueiredo}@dcc.ufmg.br

2 Informatics Department, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
{lsousa,afgarcia}@inf.puc-rio.br

3 Department of Informatics and Mathematics, University of Passau, Passau, Germany
vale@fim.uni-passau.de

4 School of Computing and Communications, Lancaster University, Lancaster, UK
j.lee3@lancaster.ac.uk

Abstract. A software product line (SPL) is a set of systems that share common
and varying features. To provide large-scale reuse, the components of a SPL
should be easy to maintain. Therefore, developers have to identify anomalous
code structures – i.e., code anomalies – that are detrimental to the SPL maintain‐
ability. Otherwise, SPL changes can eventually propagate to seemly-unrelated
features and affect various SPL products. Previous work often assume that each
code anomaly alone suffices to characterize SPL maintenance problems, though
each single anomaly may represent only a partial, insignificant, or even inexistent
view of the problem. As a result, previous studies have difficulties in character‐
izing anomalous structures that indicate SPL maintenance problems. In this paper,
we study the surrounding context of each anomaly and observe that certain
anomalies may be interconnected, thereby forming so-called anomaly agglom‐
erations. We characterize three types of agglomerations in SPL: feature, feature
hierarchy, and component agglomeration. Two or more anomalies form an
agglomeration when they affect the same SPL structural element, i.e. a feature, a
feature hierarchy, or a component. We then investigate to what extent non-
agglomerated and agglomerated anomalies represent sources of a specific SPL
maintenance problem: instability. We analyze various releases of four feature-
oriented SPLs. Our findings suggest that a specific type of agglomeration indicates
up to 89% of sources of instability, unlike non-agglomerated anomalies.

Keywords: Code anomaly agglomeration · Software product line · Instability

1 Introduction

A software product line (SPL) is a set of systems that share common and varying features
[22]. Each feature is an increment in functionality of the product-line systems [2]. The
combination of features generates different products [4]. Thus, the main goal of SPL is

© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 48–64, 2017.
DOI: 10.1007/978-3-319-56856-0_4

to provide large-scale reuse with a decrease in the maintenance effort [22].
The implementation of a feature can be distributed into one or more source files, called
components. To support large-scale reuse, the components and features of a SPL should
be easy to maintain. Therefore, developers should identify anomalous code structures
that are detrimental to the SPL maintainability. Otherwise, changes can eventually be
propagated to seemly-unrelated features and affect various SPL products.

Code anomalies are anomalous code structures that represent symptoms of problems
in a system [12]. They can harm the maintainability of systems in several levels by
affecting classes and methods, for instance [12, 16]. Code anomalies affect any system,
including SPL [7]. Previous work states that SPL-specific anomalies can be easier to
introduce, harder to fix, and more critical than others, due to the inherent SPL complexity
[18]. An example of code anomaly is Long Refinement Chain [7], related to the feature
hierarchy (see Sect. 3.1). This anomalous code structure may hinder developers in
understanding and performing proper changes. Eventually, these changes might affect
several SPL products in the whole product-line. Thus, understanding the negative impact
of anomalies in the SPL maintainability is even more important than in stand-alone
systems, as their side effects may affect multiple products. Still, there is little under‐
standing about the impact of such anomalies on the SPL maintainability.

Some studies assume that each anomaly alone suffices to characterize SPL mainte‐
nance problems [7, 23]. However, each single anomaly may represent only a partial view
of the problem. This limited view is because, in several occasions, a maintenance
problem is scattered into different parts of the code [20]. For instance, Long Method is
a method with too many responsibilities that, if isolated, represents a punctual, simple
problem [12]. In turn, Long Refinement Chain is a method with too many refinements
in different features [7] that, in isolation, does not indicate a critical problem depending
on the refined method. However, if we observe both anomalies in the same method, we
may assume an increasing potential of the anomalies in hindering the SPL maintaina‐
bility, since an anomalous method is excessively refined and causes a wider problem.
As a result, previous studies have limitations to characterize anomalous structures that
indicate SPL maintenance problems. On the other hand, previous work has observed
that certain anomalies may be interconnected, forming so-called anomaly agglomera‐
tions. They investigate to what extent these anomaly agglomerations support the char‐
acterization of maintenance problems of a single system [21]. The authors define a code
anomaly agglomeration as a group of two or more anomalous code elements directly or
indirectly related through the program structure of a system [21]. However, they do not
characterize and study specific types of anomaly agglomerations in SPLs.

In this paper, we first characterize common types of anomaly agglomerations in
SPLs. Then, we investigate how often non-agglomerated versus agglomerated anoma‐
lies occur in SPLs and if they indicate sources of instability, a specific SPL maintenance
problem. In fact, our findings suggest that “no code anomaly is an island”, i.e., code
anomalies often interconnect to other anomalies in critical elements of a SPL, such as a
feature, a feature hierarchy, or a component. We also confirm that non-agglomerated
anomalies do not support the identification of structures that often harm the SPL main‐
tainability. We then investigate to what extent certain types of agglomerations represent
sources of instabilities. We propose three types of agglomeration based on the key SPL

No Code Anomaly is an Island 49

decomposition characteristics, i.e. features, refinement chains, and components. Two or
more anomalies form an agglomeration when they affect together a feature, a feature
hierarchy, or a component. We then analyze the relationship between agglomerations
and instabilities. Our analysis relies on different releases of four feature-oriented SPLs.

For each proposed type of agglomeration, we compute the strength of the relationship
between agglomerations and instability in SPLs. We also compute the accuracy of
agglomerations in indicating sources of instability. Our data suggest that feature hier‐
archy agglomerations and instability are strongly related and, therefore, this type of
agglomeration is a good indicator of instabilities. The high precision of 89% suggests
feature hierarchy can support developers in anticipating SPL maintenance problems.
These findings are quite interesting because SPLs implemented with feature-oriented
programming (FOP) are rooted strongly on the notion of feature hierarchies. It indicates
that developers of FOP-based SPLs should design carefully the feature hierarchies, since
they might generate hierarchical structures that hamper the SPL maintainability.

The remainder of this paper is organized as follows. Section 2 provides background
information. Section 3 proposes and characterizes three types of anomaly agglomera‐
tions in SPL. Section 4 describes the study settings. Section 5 presents the study results.
Section 6 discusses related work. Section 7 presents threats to the study validity with
respective treatments. Section 8 concludes the paper and suggests future work.

2 Background

This section provides background information to support the paper comprehension.
Section 2.1 presents feature-oriented SPLs. Section 2.2 discusses instability in SPL.

2.1 Feature-Oriented Software Product Lines

In this paper, we analyze SPLs developed with feature-oriented programming (FOP) [4].
FOP is a compositional technique in which physically separated code units are composed
to generate different product-line systems. We analyze SPLs implemented using the
AHEAD [4] specific-language technique and the FeatureHouse [3] multi-language tech‐
nique. We chose these technologies because they compose features in separated code
units and are well-known in FOP community. Both technologies implement SPLs
through successive refinements, in which complex systems are developed from an orig‐
inal set of mandatory features by incrementally adding optional features, called SPL
variability [4]. A feature is composed by one or more component (constants or refine‐
ments) that represents a code unit. A constant is the basic implementation of functionality
and a refinement adds or changes the functionality of a constant [4].

To illustrate the FOP main concepts, Fig. 1 presents the partial design view of
MobileMedia [10], a SPL for management of media resources. In Fig. 1, there are 3
features and 13 components. Lines connecting components indicate a refinement chain
with a constant in the topmost feature and refinements in the features below. When
generating a SPL product, only the bottom-most refinement of the chain is instantiated,
because it implements all the capabilities assigned to the respective chain [4]. In this

50 E. Fernandes et al.

study, we also refer to refinement chains as feature hierarchies, due to the order of
components stablished by a refinement. As an example, the feature SMSTransfer has
four constants and one refinement (MediaController). This refinement is part of a
feature hierarchy that cuts across the three features presented in Fig. 1.

Fig. 1. Partial design view of the MobileMedia SPL

2.2 Sources of Instability in SPL

Instability is the probability of a system to change, due to changes performed in different
parts of the source code [1]. A previous work states that instability relates mostly to the
maintenance of a system and, therefore, instability harms the SPL maintainability [25].
Moreover, a previous work has found evidence that code anomalies can induce to insta‐
bility in systems [14]. Stability is even more important for SPLs than single systems,
since changes in one feature can propagate to other features and affect seemly-unrelated
configurations of a SPL [10]. In this study, we assess to what extent anomaly agglom‐
erations support the identification of sources of instability in SPLs. We are concerned
about the relationship between agglomerated anomalies in indicating parts of the code
that change frequently and represent an instability.

In this study, we consider a component as instable if it has changed in at least two SPL
releases. We made this decision because there are few available releases per analyzed
SPL, seven at most. As a SPL evolves, components may change and be improved.
However, after a manual inspection of the target SPLs, we observed that most of the
changes reflected poor SPL design decisions. Thus, we considered instability as harmful
to the SPL maintainability. Figure 1 presents instable components in MobileMedia by
assigning “I” to each instable component of the SPL. For instance, all presented compo‐
nents of feature MediaManagement are instable, except Constants and MediaUtil.
We do not consider comment-related changes in the count of instability.

3 Code Anomalies and Agglomerations in SPL

Section 3.1 discusses code anomalies and agglomerations. Sections 3.2, 3.3, and 3.4
characterize feature, feature hierarchy, and component agglomerations, respectively.

No Code Anomaly is an Island 51

3.1 Agglomerating Code Anomalies

Code anomalies are symptoms of deeper problems in a software system [12]. They make
a specific source code element difficult to understand and maintain. Any software system
is prone to have anomalies and the SPL variability can introduce anomalies, e.g., because
of feature interactions [7]. As an example, a Long Refinement Chain occurs when a
method has too many successive refinements in different features. It harms the SPL
maintainability because it makes harder to understand the side effects caused by
changing a feature or selecting a different set of SPL features [7]. The following sections
present the definition of three types of agglomerations that take into account the main
characteristics of SPLs. We based our definitions on a previous work [21] that investi‐
gates agglomerations as indicators of maintenance problems in single systems.

3.2 Feature Agglomeration

We define feature agglomerations as follows. Let f be a feature and c be an anomalous
component. Let c → f when an anomalous component c contributes to implement the
feature f. A feature agglomeration of a feature f is a set of anomalous components C in
which there exists a relation c → f for all c ∈ C and |C| ≥ 2. There is a simple reason
for considering a feature as a natural grouping of code anomalies, i.e., FOP expects that
developers implement all components related to a specific functionality of the SPL into
the same feature [2, 4]. Although there might be no explicit, syntactic relationship among
components of the same feature, they are typically located in the same folder at the SPL
source code. Thus, grouping components by feature reflects the semantical relationship
among components. With this type of agglomeration, we hypothesize that the occurrence
of different anomalies in components of the same feature are indicators of instabilities
in SPL. In other words, we analyze anomalies from different components as a single
anomalous structure at the feature-level. We expect that this wider view of anomalies
may better indicate instabilities in the SPL.

Figure 1 presents the feature MediaManagement with seven constants. For each
component, we have the respective number of code anomalies represented by “#” on
the upon-right side of the component. All these components are anomalous and, there‐
fore, this set of components corresponds to a feature agglomeration. By analyzing in
details each anomalous component separately, we observe that most of them have only
one anomaly. For instance, Constants and PhotoViewController contain only
Long Parameter List. Although this anomaly is a symptom of maintenance problems,
it provides a limited view of the maintenance problem that affects the SPL.

In turn, by analyzing the entire anomaly agglomeration, we may observe wider issues.
As an example, the components MediaController and MediaUtil have both, God
Class, Long Method, and Long Parameter List. In general, these anomalies relate to high
difficulty to maintain the affected code elements (classes or methods, in this case). Since
components of the same feature implement the same functionality, we expect that they
access and use to one another. Thus, these anomaly occurrences in the same feature may
lead to major maintenance problems in the feature as a whole. Moreover, attempts to treat
these problems can lead to the overall feature instability. Therefore, feature agglomeration

52 E. Fernandes et al.

may help us to understand problems that affect multiple source files in the same feature
that implement together the same SPL functionality.

3.3 Feature Hierarchy Agglomeration

We define a feature hierarchy agglomeration as follows. Let r be a refinement chain
and c be an anomalous component. Let c → r when an anomalous component c belongs
to the refinement chain r. A feature hierarchy agglomeration of a refinement chain r is
a set of anomalous components C in which there exists a relation c → r for all c ∈ C
and |C| ≥ 2. A refinement is an inter-component relation explicitly declared in the
refinement’s code that indicates the refined constant. For instance, the components
MediaController of the three features in Fig. 1 compose a refinement chain. Since
all these components are anomalous, they form a feature hierarchy agglomeration. We
observe that two of the components individually have only one anomaly; MediaCon-
troller of both MediaManagement and SMSTransfer have only Long Parameter
List. This anomaly provides a limited view of maintenance problems (Sect. 3.2).

However, by analyzing in detail the feature hierarchy of MediaController, we
can reason about major maintenance problems that encompass the entire refinement
chain. The component MediaController of feature MediaManagement is a
constant and, therefore, the components below it in the feature hierarchy are refinements.
This constant has four code anomalies: God Class, Long Method, Long Parameter
List, and Long Refinement Chain. The high number of anomalies that affect locally
MediaController suggests this component has one or more problems. Besides that,
there are two other components refining the constant. Because of the Long Parameter
List, that may indicate an overload of responsibilities in the method, it is even more
critical the fact that we have too many refinements of the constant, i.e. the Long Refine‐
ment Chain is potentially critical. Therefore, the impact of these anomalies is wider than
an analysis of individual components may cover. Feature hierarchy agglomeration aims
to indicate problems that affect a scattered concern associated with multiple features.

3.4 Component Agglomeration

We define a component agglomeration as follows. Let c be a component and e be a code
element. Let e → c when a code element e belongs to the component c. A component
agglomeration of a component c is a set of anomalous code elements E when there exists
a relation e → c for all e ∈ E and |E| ≥ 2. In Fig. 1, the component that contains the
highest amount of anomalies is MediaController of feature MediaManagement.
Four anomalies with potential to harm the SPL maintainability occur in this component:
God Class, Long Method, Long Parameter List, and Long Refinement Chain. By
analyzing each anomaly separately, we limit our observations to the possible problems
that the respective anomaly may cause. In turn, by agglomerating anomalies that affect
the same component may lead to observations that are more conclusive. For instance,
if we consider God Class and Long Method separately, we may overlook two important
issues regarding MediaController. First, this component is a constant and many
other components refine its implementation. Second, this component has a Long

No Code Anomaly is an Island 53

Refinement Chain that makes code harder to understand and evolve. This anomaly,
summed to the occurrences of Large Class and Long Method, tend to harm the SPL
maintainability even more. Thus, component agglomeration may support the identifi‐
cation of major SPL maintenance problems in a component caused by inter-related
anomalies.

4 Study Settings

Section 4.1 describes the study goal and research questions. Section 4.2 presents the
target SPLs used in our analysis. Section 4.3 describes the study protocols.

4.1 Goal and Research Questions

We aim to investigate whether non-agglomerated and agglomerated anomalies indicate
sources of instability in SPL. Our research questions (RQs) as discussed below.

RQ1. Can non-agglomerated code anomalies indicate instability in SPL?
RQ2. Can agglomerated code anomalies indicate instability in SPL?
RQ2.1. How strong is the relationship between agglomerations and instability?
RQ2.2. How accurate is the relationship between agglomerations and instability?

To the best of our knowledge, we did not find studies that investigate non-agglom‐
erated anomalies as indicators of instability in SPL. Therefore, we assess if non-agglom‐
erated anomalies can provide instability hints in SPL (RQ1). RQ2 focuses on the
investigation of whether agglomerations can be indicators of instability. We address this
question according to two perspectives. First, we compute the strength of the relationship
between each type of agglomeration and instability (RQ2.1). That is, we assess the
potential of agglomerated anomalies in indicating instabilities. We say a relationship is
strong if agglomerated anomalies are able to identify at least 100% more instabilities
than non-agglomerated anomalies. We chose this rounded threshold based on the guide‐
lines of Lanza and Marinescu [16]. Second, we then compute the accuracy of agglom‐
erations in identifying instability (RQ2.2), in terms of precision and recall. In other
words, we assess if agglomerated anomalies can identify instabilities correctly.

4.2 Target SPLs

We selected four SPLs implemented in AHEAD or FeatureHouse: MobileMedia [10],
Notepad [15], TankWar [23], and WebStore [13]. We selected these SPLs for some
reasons. First, these SPLs are part of a SPL repository proposed in a previous work [24].
Second, they have been published and investigated in the literature [9, 23]. Third, there
are different releases per SPL and, therefore, we could compute instability for the SPLs
throughout consecutive releases. MobileMedia provides products for media manage‐
ment in mobile devices, and it has seven releases [9, 24]. Notepad aims to generate text
editors and it has two releases [24]. TankWar is a war game for personal computers and
mobile devices and it has seven releases [23]. Finally, WebStore derives Web

54 E. Fernandes et al.

applications with product management, and it has six releases [9, 24]. Fourth, developers
of these SPLs were available for consultation, except in the case of Notepad.

According to the developers of the four SPLs, each of them evolved to address
different issues. MobileMedia initially supported photo management only, but evolved
to manage other media types, such as video and music. This evolution required a revision
of the SPL assets [9]. Notepad was completely redesigned in the two available releases
[15]. Developers added new functions and created new ones to ease the introduction of
functions and to improve the feature modularization. TankWar evolved only to refactor
the SPL without changing any functions but to improve its maintainability. Finally,
WebStore initially supported a few payment types and data management options. As
WebStore evolved, it has changed to cover these and other new functionalities. Although
this is a similar scenario to MobileMedia, the initial development of WebStore took into
account future planned evolutions, making this SPL more stable [9].

4.3 Data Collection and Analysis Protocols

Our data collection and analysis comprised three activities presented as follows. The
artifacts produced during this process are available in the research website [8].

Identifying Sources of Instabilities. We first computed instability per SPL. We
manually computed the number of changes per component between releases. Then, we
identified the main sources of instability per SPL, based on the changed components.
We used the instability computation for MobileMedia and WebStore provided by a
previous work [9]. To increase the data reliability and to compute instability for
TankWar and Notepad, we a tool for source code file comparison called WinMerge1.
We count an instability index if the file changes between consecutive releases. As stated
in Sect. 2.2, we considered as instable a component with two or more changes, due to
the few available releases per SPL. Regarding the sources of instabilities, we analyzed
the reasons that lead to instability per component to identify groups of components with
similar instability sources, e.g. because a new feature was added, and represent a major
source of instability. Whenever was possible, we validated the detected instability with
developers of the target SPL by showing them the numbers obtained per component.

Table 1 presents the sources of instabilities identified in the four analyzed SPLs. The
first column indicates the category and the sum of affected components per source. The
second column presents the description of each source of instability. The last line (i.e.,
Others) represents the sources of instability that we were not able to categorize. As an
example, we named “Add crosscutting feature” when a new feature is added to the SPL
and it affects the implementation of existing features. This particular instability is inter‐
esting in the SPL context because, according to the open/closed principle, software
entities should be open for extension, but closed for modification [19].

Identifying Code Anomalies and Agglomerations. Our process of identifying code
anomalies consists in three steps: (i) to define the anomalies for study, (ii) to define the

1 http://winmerge.org/.

No Code Anomaly is an Island 55

http://winmerge.org/

metric-based detection strategies to identify each anomaly, and (iii) to apply the defined
detection strategies to each SPL. We investigate eight anomalies defined in our website
[8], namely: Data Class, Divergent Change, God Class, Lazy Class, Long Method, Long
Parameter List, Shotgun Surgery [12, 16], and Long Refinement Chain [7]. Our analysis
relies mostly on such general-purpose anomalies, except for Long Refinement Chain [7],
but all of them relate somehow to the SPL composition. These anomalies affect the
source code of SPLs in different levels, including feature hierarchies.

Table 1. Sources of instabilities in SPL

Source Description
Add crosscutting feature (122) When we add a new feature to the SPL and, conse‐

quently, the new functionalities are of interest of
components from several existing features. Many
components from different features change

Distribute code among features (39) When we extract code parts of a component from an
existing feature and, then, distributed these code
parts to components from existing features

Change from mandatory to optional (19) When we distribute the implementation of an
existing feature to: (i) a new, basic mandatory
feature, and (ii) a new optional features, with
specific functionalities

Pull up common feature code (63) When we extract code parts that are common into
child features to a parent feature above in the feature
hierarchy

Others (195) General sources unrelated explicitly to SPL main‐
tenance, e.g. attribute renaming

As an example, Divergent Change is a class that changes due to divergent reasons
[16]. If these reasons relate to different features, this anomaly may harm the SPL modu‐
larization. Long Method is a method with too many responsibilities [12]. This anomaly
is harmful in SPLs if the responsibilities of the method relate to different features, for
instance. Finally, Long Refinement Chain [7] is a method with excessive number of
successive refinements. This SPL-specific anomaly is harmful since it hampers the
understanding of side effects of changes in the generation of SPL products. To detect
each anomaly, we adapted detection strategies from the literature [16] whenever
possible. We extracted the metric values per SPL via the VSD tool [24]. Once detected
the anomalies, we computed manually the three types of agglomerations per SPL (see
Sect. 3). Two authors contributed to double-check the results in order to prevent errors.

Correlating Agglomerations and Instabilities. To answer our research questions, we
defined a criterion for correlating agglomerations and instabilities. Consider a general
agglomeration that can be either a feature, a feature hierarchy, or even a component
agglomeration. We say that such agglomeration indicates an instability when there exists
an instable code element in the feature, feature hierarchy, or component that have the
agglomeration. Even though agglomerations and instabilities may be located in more
than two anomalous elements, our criterion considers sufficient if the agglomeration is

56 E. Fernandes et al.

affected by at least one problem. Thus, an agglomeration fails to indicate instability
when none of its components relates to an instability. With respect to the number of
agglomerations that indicate instability in the analyzed SPLs, we observed that an
average of 94%, 78%, and 32% of the agglomerations indicate 2 or more instable compo‐
nents for feature, feature hierarchy, and component agglomeration respectively.

5 Results and Analysis

Section 5.1 presents the results for non-agglomerated anomalies. Section 5.2 discusses
the results for the three proposed types of anomaly agglomeration in SPLs.

5.1 Non-agglomerated Code Anomalies

First, we investigate whether non-agglomerated code anomalies are sufficient indicators
of instabilities in SPL. Therefore, we aim to answer RQ1.

RQ1. Can non-agglomerated code anomalies indicate instabilities in SPL?

We computed the strength of the relation between non-agglomerated anomalies and
instabilities via Fisher’s test [11]. We also used the Odds Ratio [5] to compute the
possibility of the presence or absence of a property (i.e., the non-agglomeration) to be
associated with the presence or absence of other property (i.e. instability). We computed
both statistics via the R tool2. Table 2 presents the results for non-agglomerated anoma‐
lies. The first column lists each SPL. The second column present the number of non-
agglomerated anomalies that indicate instabilities. The third column presents the number
of agglomerated anomalies that do not indicate instabilities, i.e. they indicate stability.
The fourth column presents the total number of anomalies per SPL.

Table 2. Analysis results for non-agglomerated anomalies

SPL Non-agglomerated and
instability

Agglomerated and
stability

Total number of
anomalies

MobileMedia 1 11 87
Notepad 0 1 24
TankWar 0 2 106
WebStore 0 4 29

By comparing the second and third columns, we observe that for the 4 SPLs the
number of non-agglomerated anomalies that indicate instability is very low. In general,
this number is even lower than the number of agglomerated anomalies that indicate
stability. Since each SPL has several anomalies (fourth column), we may assume that
agglomerations are potentially useful to identify instabilities in SPL. In addition, consid‐
ering all the four analyzed SPLs, we have a p-value of 0.1488 and Odds Ratio equals

2 https://cran.r-project.org/.

No Code Anomaly is an Island 57

https://cran.r-project.org/

0.0816. Thus, our results suggest that the possibility of a non-agglomerated anomaly to
indicate instabilities is close to 0 when compared with an agglomerated anomaly.

Summary for RQ1. Our data suggest that non-agglomerated anomalies may not suffice
to indicate instabilities in SPL. The low number of non-agglomerated anomalies that
indicate instabilities supports this finding. On the other hand, there is a potential for
agglomerations in indicating instabilities.

5.2 Agglomerated Code Anomalies

In this section, we analyze the relationship between agglomerations and instabilities.
We aim to answer RQ2 decomposed into RQ2.1 and RQ2.2 discussed as follows.

RQ2.1. How strong is the relationship between agglomerations and instability?

Table 3 presents the results per type of agglomeration. The first column lists each
type of agglomeration. The second column presents the number of agglomerations that
indicate correctly an instability for the four analyzed SPLs. The third column presents
the number of non-agglomerations that does not indicate instability. The last two
columns present the p-value computed via Fisher’s test and the results for Odds Ratio.

Table 3. Analysis results for agglomerated anomalies

Type of
agglomeration

Agglomeration and
instability

Non-agglomeration
and stability

p-value Odds ratio

Feature 31 6 1 1.1598
Feature hierarchy 28 13 0.0478 3.8492
Component 28 124 0.8761 0.9290

Note that, for all types of agglomerations, we obtained similar numbers of agglom‐
erations that indicate instability, but the values of non-agglomerations that indicate
stability vary according to the type of agglomeration. Regarding p-value, we assume a
confidence level higher than 95%. Only feature hierarchy agglomerations presented p-
value lower than 0.05 and, therefore, it is the only type of agglomeration with statistical
significance with respect to the correlation between agglomerations and instabilities.
Regarding Odds Ratio, we have a value significantly greater than 1 only for feature
hierarchy agglomerations, around 3.8. That means that the possibility of a feature hier‐
archy agglomeration to relate with instabilities is almost 4 times higher than a non-
agglomerated code anomaly. For the other two types of agglomerations, we have values
close to 1 and, therefore, we may not affirm that such types of agglomeration have more
possibilities to “host” instabilities when compared to non-agglomerated anomalies.

Thus, regarding RQ2.1, we conclude that the relationship between agglomerations
and instabilities is strong for feature hierarchy agglomeration. We then answer RQ2
partially. This observation is quite interesting, since in FOP the features encapsulate the
implementation of SPL functionalities. Besides that, our data suggest the refinement
relationship may hinder this encapsulation by causing instability into multiple features.

58 E. Fernandes et al.

This problem is even more critical since the instabilities caused by a feature hierarchy
agglomeration can eventually propagate to several seemly-unrelated SPL products.

We also investigate the accuracy of code anomaly agglomerations to indicate insta‐
bilities in SPLs, per type of agglomeration. We answer RQ2.2 as follows.

RQ2.2. How accurate is the relationship between agglomerations and instability?

To assess accuracy of each type of agglomeration, we compute precision and recall
in terms of true positives (TP), false positives (FP), true negatives (TN), and false nega‐
tives (FN) [6]. TP is the number of agglomerations that indicate correctly instabilities.
FP is the number of agglomerations that indicate incorrectly instabilities, i.e. indicate
stability. TN is the number of non-agglomerations that does not indicate instability.
Finally, FN is the number of non-agglomerations that indicate instability. The formula
for precision and recall are P = TP/(TP + FP) and R = TP/(TP + FN) [6].

Since even small-sized systems have several anomalies [17], developers should
focus their maintenance effort on anomalies that represent the most critical maintenance
problems. Thus, agglomerating anomalies can reduce the search space for finding those
problems. We focus our analysis on accuracy computed in terms of precision and recall.
In this study, we compute precision and recall per type of agglomeration considering all
the instable components, regardless the sources of instability of each component. We
made this decision because some instable components have multiple sources that relate
to different types of agglomeration. For instance, the component MediaController
of feature MediaManagement has changed because of an “Add crosscutting feature” and
a “Distribute code among features” in MobileMedia, Release 4.

Table 4 presents precision (P), recall (R), and the number of instable components
indicated per type of agglomeration (#IC). This table also presents median, mean, and
standard deviation for the results obtained for the four SPLs under analysis. We provide
a discussion of our results per type of agglomeration as follows.

Table 4. Precision and recall per type of agglomeration

Agglomeration Feature Feature hierarchy Component
SPL P R #IC P R #IC P R #IC
MobileMedia 76% 72% 65 100% 59% 30 50% 10% 8
Notepad 50% 20% 4 75% 50% 8 50% 25% 3
TankWar 92% 61% 37 82% 82% 66 65% 23% 17
WebStore 75% 60% 26 100% 24% 10 0% 0% 0
Median 76% 61% 32 91% 54% 20 50% 16% 6
Mean 73% 53% 33 89% 54% 29 41% 14% 7
Std. dev. 15% 20% 22 11% 21% 23 25% 10% 6

Feature Agglomeration. The first three columns in Table 4 correspond to the results
for feature agglomeration. We observed a precision with median of 76% and mean of
73%. We then observe that each 3 out of 4 feature agglomerations indicate instabilities.
These results are expressive if we consider that agglomerations aim to provide a precise
indication of instability, based on high frequencies of code anomalies that may occur in

No Code Anomaly is an Island 59

any system. To illustrate the effectiveness of a feature agglomeration in indicating insta‐
bility, let us consider again the example of MobileMedia from Sect. 3.2. In fact, the
feature agglomeration formed by components from feature MediaManagement indi‐
cated relevant instabilities generated by a source of instability categorized as “Distribute
code among features”. In this case, the implementation of the component BaseCon-
troller from feature Base, the most important controller of the SPL, was distributed
to several features including MediaManagement. This distribution of source code to
other features made the components of the feature agglomeration instable.

Regarding recall, we obtained a mean of 53%, with median of 61%, for the SPLs
under analysis. We observed a percentage of recall equals or higher than 60% in 3 out
of 4 SPLs. Indeed, low percentages of recall are expected in this study, since not all
instabilities in SPL are related to anomalous code structures. Through a manual analysis
of the four SPLs, we identified various sources of instability that do not relate with code
anomalies. For instance, in MobileMedia some components have changed from one
release to another because of the inclusion of new functionalities by means of features
(e.g., in Releases 1 to 2). In TankWar, some components have changed due to the inclu‐
sion of FOP-specific mechanisms (e.g., in Releases 2 to 3).

Note that, for Notepad, the low rates of both precision and recall may be justified by
the small percentage for both instable and anomalous components. As an example,
Notepad has only 37.5% of instable components, against 58.9%, 79.3%, and 44.2% for
MobileMedia, TankWar, and WebStore respectively. Despite of that, in general our
results suggest that there is a high rate of feature agglomerations that, possibly, may
indicate instabilities in the SPLs. However, since we did not observe statistical signifi‐
cance for this type of agglomeration (see Sect. 5.2), we may not affirm that feature
agglomerations are indicators of instability in SPLs.

Feature Hierarchy Agglomeration. The three next columns in Table 4 present preci‐
sion, recall, and #IC for the analysis of feature hierarchy agglomeration. We obtained
values similar to the first analysis, with respect to the feature analysis. First, regarding
precision, we have a mean value of 89%, the highest value among types of agglomera‐
tion. This data suggests the only a few feature hierarchy agglomerations – that is, related
to a refinement chain formed by components and its refinements – are not related to
instabilities. We additionally obtained a mean recall of 54% for the target SPLs, that is,
the best value among agglomeration types. This result indicates that a significant number
of feature hierarchy agglomerations are candidates to indicate instabilities. We conclude
that the feature hierarchy agglomeration is an indicator of instabilities in SPL.

To illustrate a feature hierarchy agglomeration that indicated instability, let us
consider the example of MobileMedia from Sect. 3.3. The feature hierarchy agglomer‐
ation formed by components of the refinement chain of MediaController indicated
several relevant sources of instability. For instance, this agglomeration captured the
instability caused by a source categorized as “Pull up common feature code”. In this
case, due to the addition of new types of media in MobileMedia, it was reorganized the
implementation of feature CopyPhoto into two features: CopyPhoto and CopyMedia.
This change affected all components from the agglomeration in terms of instability.

60 E. Fernandes et al.

Component Agglomerations. The three last columns in Table 4 present precision,
recall, and #IC for the analysis of component agglomeration. In this case, we obtained
values significantly different when compared to the feature agglomeration analysis. With
respect to the four SPLs, we obtained a mean precision of 41%. This result points that
less than a half of the observed component agglomerations relate, in fact, to instabilities.
Based on this data, we may not affirm that this type of agglomerations is effective in
indicating instabilities. Moreover, we obtained a mean recall of 14% for the SPLs. This
result is very low when considering that systems tend to present several instable compo‐
nents and code anomalies. Therefore, our data suggests that the component agglomer‐
ation is not an indicator of instabilities in SPL.

Although precision and recall are, in general, low, we observed interesting cases of
component agglomerations that indicate instabilities. Consider the example presented
in Sect. 3.4. Code elements from the component MediaController, of the feature
MediaManagement, indicated correctly different sources of instability. These sources
include (i) “Distribute code among features” regarding the implementation of compo‐
nent BaseController from feature Base and (ii) “Pull up common feature code”
regarding the reorganization of feature CopyPhoto. We discuss both sources previously
in this section, for feature agglomeration and feature hierarchy agglomeration.

Summary for RQ2. Our data suggest that feature hierarchy is the most effective type
of agglomeration for identification of sources of instability in SPLs, due to the p-value
lower than 0.05 (given a 95% confidence interval) and the highest Odds Ratio close to
3.8. When compared to non-agglomerated anomalies (RQ1), with Odds Ratio equals
0.08, we observe that feature hierarchy agglomeration is 3.8 times more effective in
identifying instabilities. The high precision of 89% for this type reinforces our findings.

6 Related Work

Previous works propose or investigate anomalies that indicate potentially SPL mainte‐
nance problems [2, 7]. Apel et al. [2] introduce the term “variability smell”, i.e. anoma‐
lies that capture the notion of SPL variability, and present a set of 14 anomalies that may
occur in different phases of the SPL engineering. In turn, Fenske and Schulze [7] provide
a complementary set of variability-aware anomalies, besides of an empirical study to
assess the occurrence of these anomalies in real SPLs. However, none of these studies
neither has used anomaly agglomeration nor has analyzed instability.

In particular, Oizumi et al. [21] investigate the use of inter-related anomalies, i.e.
anomaly agglomerations, to identify design problems in general source code. They
define strategies to group different anomaly occurrences in source code elements. The
authors discuss that the defined agglomerations are better indicators of design problems
than non-agglomerated anomalies. The results suggest that some types of agglomeration
can indicate sufficiently problems with accuracy higher than 80%. However, the authors
do not explore neither instability as a design problem nor the relationship between
agglomerations and instability in SPL. In turn, this paper focus on the analysis agglom‐
erations as indicators of instability in the context of feature-oriented SPL.

No Code Anomaly is an Island 61

7 Threats to Validity

We discuss threats to the study validity, with respective treatments, as follows.

Construct and Internal Validity. We carefully designed our study for replication.
However, a major threat to our study is the set of metrics used in the detection strategy
composition. This set is restricted to the metrics provided by the SPL repository [24]
adopted in our study. To minimize this issue, we selected some well-known and largely
studied metrics, such as McCabe’s Cyclomatic Complexity (Cyclo). The list of detection
strategies used in this study is available in the research website [8]. Regarding the small
length of the analyzed SPLs, we highlight the limited number of SPLs available for
research, as the limited number of releases for the available SPLs. The low number of
available releases has lead us to consider a component as instable if it has changed in
two or more releases. To minimize this issue, we analyzed the SPLs in all available
releases. Finally, we conducted the data collection carefully. To minimize errors, two
authors checked all the collected data and re-collected the data in case of divergence.

Conclusion and External Validity. We designed a data analysis protocol carefully.
To compute the statistical significance and strength of the relationship between agglom‐
erations and instabilities, we computed the Fisher’s test [11] and Odds Ratio [5], two
well-known and reliable techniques. We also computed precision and recall for the
accuracy analysis of agglomerations, based on previous work [21]. These procedures
aim to minimize issues regarding the conclusions we draw. Two authors checked the
analysis to avoid missing data and re-conducted the analysis to prevent biases. Regarding
the generalization of findings, we expect that our results are extensible to other SPL
development contexts than FOP. However, further investigation is required.

8 Conclusion and Future Work

Some studies assume that each code anomaly alone suffices to characterize SPL main‐
tenance problems [7, 23]. Nevertheless, each single anomaly may represent only a partial
view of a problem. To address this issue, a previous work investigates to what extent
agglomerating code anomalies may support the characterization of maintenance prob‐
lems in single systems [21]. However, we lack studies to investigate and compare the
use of anomalies and their agglomerations as indicators of problems that harm the SPL
maintainability. In this paper, we focus on a specific maintenance problem in SPLs:
instability. We first investigate if non-agglomerated anomalies may indicate instability
in SPL. Our findings suggest that non-agglomerated anomalies do not support the iden‐
tification of anomalous code structures that cause instability. We then investigate to what
extent anomaly agglomerations represent sources of instability in SPL. Our study relies
on the analysis of different releases of four feature-oriented SPLs.

Our data suggest that feature hierarchy agglomeration, one of the three types of
agglomeration proposed in this study, is up to 3.8 times more effective than non-
agglomerated anomalies in identifying sources of instability in SPL. The high precision
of 89% for this type of agglomeration reinforces that it can support developers in

62 E. Fernandes et al.

anticipating critical instabilities that harm the SPL maintainability. These findings have
clear implications in the FOP development. Since feature hierarchies are a basis for FOP,
developers of feature-oriented SPLs should design carefully feature hierarchies to
prevent the implementation of hierarchical structures that hamper the SPL maintaina‐
bility. As future work, we intend to investigate alternative types of agglomeration for
other SPL maintainability problems, as the impact of different anomalies on instability.

Acknowledgments. This work was partially supported by CAPES/Procad, CNPq (grants
424340/2016-0 and 290136/2015-6), and FAPEMIG (grant PPM-00382-14).

References

1. Ampatzoglou, A., Chatzigeorgiou, A., Charalampidou, S., Avgeriou, P.: The effect of GoF
design patterns on stability. IEEE Trans. Softw. Eng. 41(8), 781–802 (2015)

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines.
Springer, Heidelberg (2013)

3. Apel, S., Kätner, C., Lengauer, C.: FeatureHouse. In: 31st ICSE, pp. 221–231 (2009)
4. Batory, D., Sarvela, J., Rauschmayer, A.: scaling step-wise refinement. In: 25th International

Conference on Software Engineering (ICSE), pp. 187–197 (2003)
5. Cornfield, J.: A method of estimating comparative rates from clinical data. J. Natl Cancer Inst.

11(6), 1269–1275 (1951)
6. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
7. Fenske, W., Schulze, S.: Code smells revisited. In: 9th VaMoS, pp. 3–10 (2015)
8. Fernandes, E., Vale, G., Figueiredo, S., Figueiredo, E., Garcia, A., Lee, J.: No Code Anomaly

is an Island: Anomaly Agglomeration as Sign of Product Line Instabilities – Data of the Study.
http://labsoft.dcc.ufmg.br/doku.php?id=about:no_code_anomaly_is_an_island

9. Ferreira, G., Gaia, F., Figueiredo, E., Maia, M.: On the Use of Feature-Oriented Programming
for Evolving Software Product Lines. Sci. Comput. Program. 93, 65–85 (2014)

10. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares, S.,
Ferrari, F., Khan, S., Castor Filho, F., Dantas, F.: Evolving software product lines with aspects.
In: 30th International Conference on Software Engineering (ICSE), pp. 261–270 (2008)

11. Fisher, R.: On the interpretation of x2 from contingency tables, and the calculation of P. J.
Roy. Stat. Soc. 85(1), 87–94 (1922)

12. Fowler, M.: Refactoring. Object Technology Series. Addison-Wesley, Boston (1999)
13. Gaia, F., Ferreira, G., Figueiredo, E., Maia, M.: A quantitative and qualitative assessment of

aspectual feature modules for evolving software product lines. Sci. Comput. Program. 96(2),
230–253 (2014)

14. Khomh, F., Di Penta, M., Gueheneuc, Y.: An Exploratory Study of the Impact of Code Smells
on Software Change-Proneness. In: 16th WCRE, pp. 75–84 (2009)

15. Kim, C.H.P., Bodden, E., Batory, D., Khurshid, S.: Reducing configurations to monitor in a
software product line. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 285–299.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16612-9_22

16. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice. Springer, Heidelberg (2006)
17. Macia, I., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N., von Staa, A.: Are automatically-

detected code anomalies relevant to architectural modularity? In: 11th International
Conference on Aspect-Oriented Software Development (AOSD), pp. 167–178 (2012)

No Code Anomaly is an Island 63

http://labsoft.dcc.ufmg.br/doku.php%3fid%3dabout:no_code_anomaly_is_an_island
http://dx.doi.org/10.1007/978-3-642-16612-9_22

18. Medeiros, F., Kästner, C., Ribeiro, M., Nadi, S., Gheyi, R.: The love/hate relationship with
the C prepocessor. In: 29th ECOOP, pp. 495–518 (2015)

19. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, Upper Saddle River (1988)
20. Moha, N., Gueheneuc, Y., Duchien, L., Le Meur, A.: DECOR. IEEE Trans. Softw. Eng.

36(1), 20–36 (2010)
21. Oizumi, W., Garcia, A., Sousa, L., Cafeo, B., Zhao, Y.: Code anomalies flock together. In:

38th International Conference on Software Engineering (ICSE), pp. 440–451 (2016)
22. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering. Springer Science

& Business Media, Heidelberg (2005)
23. Schulze, S., Apel, S., Kästner, C.: Code clones in feature-oriented software product lines. In:

4th GPCE, pp. 103–112 (2010)
24. Vale, G., Albuquerque, D., Figueiredo, E., Garcia, A.: Defining metric thresholds for software

product lines. In: 19th SPLC, pp. 176–185 (2015)
25. Yau, S., Collofello, J.: Design stability measures for software maintenance. IEEE Trans.

Softw. Eng. 11(9), 849–856 (1985)

64 E. Fernandes et al.

ReMINDER: An Approach to Modeling
Non-Functional Properties in Dynamic Software

Product Lines

Anderson G. Uchôa1(B), Carla I.M. Bezerra1, Ivan C. Machado3,
José Maria Monteiro2, and Rossana M.C. Andrade2

1 Federal University of Ceará, UFC Quixadá, Fortaleza, Brazil
andersonguchoa@gmail.com, carlailane@ufc.br

2 Computer Science Department, Federal University of Ceará,
UFC Fortaleza, Fortaleza, Brazil

monteiro@lia.ufc.br, rossana@ufc.br
3 Computer Science Department, Federal University of Bahia,

UFBA Salvador, Salvador, Brazil
ivanmachado@dcc.ufba.br

Abstract. This paper presents a systematic approach to modeling
NFPs in DSPL feature models. In our proposed approach, feature models
are annotated with the representation of NFPs, rules for the activation
and deactivation of features, constraints between NFPs and features, and
context adaptation scenarios. To evaluate the applicability of the pro-
posed approach we carried out an empirical evaluation. The approach
yielded good results at identifying NFPs in DSPLs.

Keywords: Dynamic Software Product Lines · Non-Functional
Properties · Feature models

1 Introduction

DSPL engineering is an approach that extends the concept of conventional SPL
to allow the generation of software variants at runtime [1]. DSPL aims to pro-
duce software capable to adapt according to the needs of users and resources
constraints at runtime. In a DSPL, variation points are firstly bound when the
software is released, matching initial environment settings. However, at runtime,
whether the context changes, it is possible to rebind the variation points, in
order to adapt the system to the new, changed, environment settings [2].

One of the most important assets of a DSPL is the feature model. This
artifact captures the similarities and variabilities between the possible configu-
rations of products of a DSPL in a given context. In a DSPL feature model
the system characteristics can be added, removed and modified at runtime

R.M.C. Andrade—Research Scholarship - DT Level 2, sponsored by CNPq.

c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 65–73, 2017.
DOI: 10.1007/978-3-319-56856-0 5

66 A.G. Uchôa et al.

in a managed way [1]. However, the feature model does not capture NFP explic-
itly neither influence these properties to achieve alternative configurations of a
product variant.

Representing NFP in DSPL might be a rather complex activity. Given a
particular context, configuration rules, features constraints and preferences of
stakeholders, particularly the Functional Requirements (FR) and NFP [8], must
all be considered. Although the NFP represent an important artifact associated
to the quality of an SPL, modeling NFP techniques are not completely suitable
for SPL engineering, as the approaches are commonly based on FR rather than
NFP, as indicated in an extensive literature survey on the field [4].

In this paper, we present an approach to modeling NFPs in DSPL feature
models. The approach is capable to identify, in a systematic fashion, the set of
NFPs, constraints and context adaptation scenarios. To evaluate the approach
we carried out an empirical evaluation, aimed to identify the relevant NFPs
and context adaptation scenarios, with their respective constraints, to support
the features modeling and the representation of NFPs in DSPL feature models.
As results we obtained 70% accuracy in relation to the identification of NFPs,
and 90% accuracy to identify context adaptations scenarios. Besides, we could
observe that the approach could be useful to provide software engineers with an
adequate support at identifying NFPs and their relation to the behavior of the
feature models through interdependence constraints.

2 ReMINDER: An AppRoach to Modeling
Non-FunctIoNal Properties in DSPL

The ReMINDER approach aims to provide a systematic way for identifying
NFPs and context adaptation scenarios, with their respective constraints, as a
means to support feature modeling and the representation of NFP in DSPL fea-
ture models. The proposed approach could be considered an endeavor to bridge
an important gap, concerning to the lack of existing approaches to enable the
representation of both NFP and context scenarios in feature models.

Figure 1 provides an overview of the ReMINDER approach. The ReMINDER
approach encompasses two major phases: (1) identification and representation
of NFPs in feature models; and (2) identification of constraints and context
adaptations scenarios. The first phase aims to identify the NFPs that are critical
for a DSPL and represent them in an quality feature model. The input of this
phase are SPL or DSPL feature models without context, modeled with the FODA
notation [3]. The output of this phase is a quality feature model. The second
phase aims to identify the constraints between NFPs and context adaptations
with the guidance of a Domain Engineer. The input of this phase is the SPL or
DSPL feature models without context and the quality feature model built in the
previous phase, while as output DSPL feature models with context, the quality
feature model and context adaptation scenarios. The NFPs catalog, the quality
feature model and the templates used by ReMINDER are available online1. Each
step of the ReMINDER approach is discussed along the next sections.
1 http://bit.ly/2lx3Ik2.

http://bit.ly/2lx3Ik2

ReMINDER: An Approach to Modeling Non-Functional Properties 67

Fig. 1. Process of ReMINDER approach.

2.1 Phase I - Identification and Representation of NFPs
in Feature Models

The first phase of the ReMINDER approach aims to identify the NFPs that are
critical for a DSPL and represent them in a quality feature model. The quality
feature model classifies these NFPs according to the quality characteristic and
sub-characteristics presented in the product quality model of the ISO/IEC 25010
SQuaRE [6]. To assist in the identification of these NFPs, we created a NFPs
catalog from [9]. This catalog also classifies the NFPs according to the SQuaRE
quality characteristic and sub-characteristics. This phase encompasses four steps,
as follows:

Step I - Identification of Quality Characteristics. It aims to identify
the relevant quality characteristics based on the stakeholders needs.
Step II - Identification of Quality Sub-characteristics. Next, for each
quality characteristic previously identified, it aims to identify the relevant
quality sub-characteristics.
Step III - Identification of NFPs. This step consists of adding the NFPs
established by the stakeholders, for each relevant sub-characteristic previ-
ously identified. The relevance of a NFP for a specific sub-characteristic is
represented by qualifiers - high, medium or low. For example, for the quality
sub-characteristics operability, the NFP effort can be measured as low.
Step IV - Representation of NFPs. The NFPs could be represented
through a quality feature model, composed of quality characteristics, sub-
characteristics, and NFPs. This artifact together with the DSPL feature
model is given as input to the next phase.

68 A.G. Uchôa et al.

2.2 Phase II - Identification of Constraint and Context
Adaptation Scenarios

The second phase of the ReMINDER aims to identify the activation and deacti-
vation constraints between features and adaptation context scenarios, based on
the definition of context rules. In addition, define how an activated and deacti-
vated context feature might influence a NFP in a particular context adaptation
scenario. This phase has as input the quality feature model together with the
DSPL feature model. For this phase we identified four steps, as follows:

Step I - Identification of Context Adaptation Scenarios. In this app-
roach we classify the context adaptations in three categories: computing con-
texts, user contexts, and physical contexts. According to [5], computing con-
text refers to the hardware configuration used, such as the processors available
for a task, the devices accessible for user input and display, and the band-
width. User context represents all the human factors, such as the user’s profile,
calendars, and profiles. Physical context refers to the non-computing-related
information provided by a real-world environment, such as location, lighting,
etc. The definitions of each context adaptation scenario describe situations
relevant to the domain of an DSPL, based on a scenario ID and the following
properties:

– Contexts - used to inform the type of context, computing context, user
context, and physical context.

– Context informations - used to identify the information that varies accord-
ing to each type of context, for example, battery level is a computational
context information.

– Qualifiers - used to identify the qualifications of each context information.
A qualification can be either boolean or classified in a qualitative scale (high,
medium and low). For example, the context information “free memory level”
can assume the values high or low. On the other hand, context information
“internet connection” can assume the values true or false.

– Quantifiers - used to describe the values associated with each type of qual-
ifier. These quantifiers are defined by relational operators: greater than (>),
less than (<), greater than or equal to (>=), less than or equal to (<=), equal
(=) and different (<>). Followed by a value of type: string, integer, float or
boolean. If this quantifier is defined by a numeric range, a logical operator is
added that can be of the type: (OR) or (AND), followed by another value of
type string, integer, float or boolean. For example, high free memory level >=
128 or low free memory level < 128.

– Status of quantifiers by scenario - Used to indicate which of the values
of each context information is valid in the scenario definition.

Step II - Defining Context Rules. After the identification of context
adaptation scenarios, we can define the context rules that specify how a con-
text information impacts on the configuration of the products of a DSPL. It
indicates, for example, which features should be activated and deactivated.

ReMINDER: An Approach to Modeling Non-Functional Properties 69

These rules have as properties: an identifier and an expression. The expres-
sion is formed by an antecedent, the operator implies, and a consequent. The
antecedent is an expression that can contain context information with its
variation activated and deactivated. The operator implies determine that if
the antecedent is true in the adaptation scenario, then the consequent should
be or not included in the configuration of the feature models. The consequent
is an expression that can contain features and logic operators. The expres-
sion determines which features need to be activated or deactivated according
to each context adaptation scenario. For example, RC1 - Low Memory
Level implies NOT (Persistence); RC2 - NOT (Internet Connec-
tion) implies Via Sensor.
Step III - Identification of Constraints Between Features and Con-
text Adaptive Scenarios. The next step is to identify the constraints of
activation and deactivation features according to the context rules that will
be executed based on the definitions of context adaptation scenarios and the
features present in the initial configuration of the product. As exemplified pre-
viously, for a given context adaptation scenario, in which just the antecedent
Low Memory Level is true, RC1 must be executed, i.e., Persistence
must be deactivated.
Step IV - Definition of Interdependence Constraints Between NFPs
and Context Features. After identifying the constraints between features
and context adaptation scenarios, we need to identify the relations of interde-
pendencies between the identified NFPs and the features, according to each
context adaptation scenario. To specify and measure this interdependence
constraints, we have added a concept of goal-oriented modeling, in particular
the concept of contribution links [10]. In this way, we assign interdependence
constraints between context features and NFPs, in a given context. These
features can be represented visually (see footnote 1) and may have four types
of interdependence constraints over an NFP:

– “++” - the feature completely satisfies an NFP if it is activated.
– “– –” - the feature does not completely satisfy an NFP if it is activated.
– “+” - the feature has a positive influence on an NFP if it is activated.
– “–” - the feature has a negative influence on an NFP if it is activated.

3 Empirical Evaluation

An observational study was executed to analyze the process defined in the
ReMINDER approach. The DSPL used in this study is called DSPL Mobi-
Line [7]. The MobiLine’s feature model, used in the observational study is avail-
able online (see footnote 1). Two M.Sc. students and one PhD participated in
this observation study.

3.1 Execution

For this empirical study, a questionnaire was applied to characterize each par-
ticipant. Then, a training was held for participants on the steps used in the

70 A.G. Uchôa et al.

ReMINDER approach. An observation activity occurred in a single session. Ini-
tially, participants had to assume the role of domain engineer in charge of spec-
ifying the relevant NFPs for the DSPL mobile visit guide. The effort expected
to accomplish this task was medium. We consider a scale between high, medium
and low. The participants identified an average, respectively, 50%, 100% and
62% of the expected NFPs. These results show that it is possible to identify and
specify NFPs using ReMINDER.

Next, the engineers should identify which features should be activated and
deactivated based on the context rules that are performed and the definitions
of the context adaptation scenarios. The effort expected to accomplish this task
was low. A set of 11 contextual rules and two contextual adaptation scenarios
were defined. In the first scenario, 11 activated features and 2 deactivated were
provided, whereas in the second scenario, 9 activated and 4 deactivated features
were provided. Only one participant did not identify all features.

Finally, the participants had to identify the interdependence constraints
between the NFP that were identified in the first part of the observation study
and activated and deactivated features according to context adaptations scenar-
ios identified in the second part. The effort expected to accomplish this task
was medium or high. In this activity, we analyzed whether the constraints iden-
tified by each engineers were consistent. Only one of the engineers presented
inconsistency in their constraints.

3.2 Results and Findings

After the observation activities, we performed a interview with the participants
to contribute with the evaluation approach and answer the research questions.

Q1: What is the effort expended to identify the NFPs according to the
quality characteristics and sub-characteristics of the SQuaRE stan-
dard, through the NFPs Catalog?

In general, the effort spent to identify the NFPs according to the quality
characteristics and sub-characteristics was medium. However, prior knowledge
about the quality characteristics and sub-characteristics of SQuaRE standard is
required. Regard the number of correct answers in the NFP identification task,
we verified 70% accuracy in relation to the expected result.

Q2: What is the effort expended to specify the interdependence con-
straints between identified NFP and features?

When it is necessary to specify the interdependence constraints between NFP
and features, the overall effort spent was medium. The participants took on
average about 29 min to specify the constraints, even with the support of the
proposed template. Initially, the participants took about 20 min to specify the
interdependence constraints in the first context adaptation scenario. In the sec-
ond adaptation scenario, they took less time to accomplish the task, which indi-
cates a reduced effort necessary.

ReMINDER: An Approach to Modeling Non-Functional Properties 71

Q3: What is the accuracy and effort expended to specify the adapta-
tion scenarios and their constraints?

The use of the templates facilitated the specification of context scenarios
adaptations and their constraints. According to the participants, with the tem-
plates it was possible to delimit the values of the context information, and man-
age their features and constraints. In addition, the ease of specifying context
adaptation scenario is one of the greatest benefits of the approach. However,
during the observation activity, the engineers made a high effort to identify
which context rules should be executed. In relation to the number of correctness
in specifying scenarios of context adaptations and their constraints, we verified
90% accuracy in relation to the expected result for the first scenario of context
adaptation, while 89% accuracy regarding the expected result for the second
context adaptation scenario.

Q4: What are the drawbacks and benefits of the approach?
The participants mentioned the approach was both intuitive and easy to

understand, the phases are well divided and with specific objectives. The app-
roach facilitated the identification of NFP and their relationship to the features
of the product line. In addition, the templates and the NFP catalog were a
useful support at identifying NFP in DSPL. However, they reported a greater
effort to accomplish the task to specify the interdependence constraints between
identified NFPs and context features.

3.3 Threats to Validity

We next discuss the threats to the validity of our empirical assesssment. Con-
struct Validity. As the main researcher of this study is part of the same
experimenter’s research group, he had a strong influence on the conclusions.
To mitigate this threat, other participants played the role of a domain engineer,
during the process of using the approach. Internal Validity. The approach has
a couple of phases and steps. It is possible that some concepts have been mis-
interpreted. To mitigate this threat, the researcher was, during an observation
activity, all the time close to the participants. The Mobiline DSPL used in this
study may not be the most appropriate. In order to mitigate this threat, we aim
to continue to investigate the approach in other application scenarios. External
validity. As the empirical study was executed in one small academic DSPL,
it is difficult to generalize the findings. Hence, the discussions are limited for
this DSPL context. Despite the limitations, researchers can extend the study by
replicating it in different DSPL contexts following the design of this study.

4 Related Work

Zang et al. [11] presents an approach to modeling quality attribute and quality-
aware product configuration in SPLs. Similar to the objective of this work, the
authors proposed an approach for modeling quality attributes in the feature
models leading to a quality-aware product configuration. However, in this work,

72 A.G. Uchôa et al.

we defined an approach for identification and representation of NFPs and iden-
tification of constraints and context adaptation scenarios to the DSPL feature
models. Soares et al. [9] identified in a systematic review, a set of 52 NFP that
may emerge at runtime. This set of 52 NFPs that emerge at runtime, by applica-
tion domains that suffer adaptations at runtime, can also emerge in autonomic
systems and context-aware systems. From this classification we have created a
NFP catalog as one of the main artifacts of our approach. Sanchez et al. [8]
presents an approach for self-adaptive systems, based on the process of specifi-
cation, measurement and optimization of quality attribute properties in feature
models. In addition, instead of extending the feature models in two submodules,
we propose a quality feature model to support the NFP representation.

5 Conclusion and Future Work

This paper presented the ReMINDER approach that support the modeling of
NFP in DSPL. We carried out an empirical evaluation to evaluate the applica-
bility of the approach. The evaluation consisted of observation and interview
activities with domain engineers. Among the observations, we examined the role
of the approach as a guide to identification and specification of NFP. From
an NFP catalog, stakeholders can find NFP related to the quality character-
istics and sub-characteristics of a DSPL, according to the SQUaRE standard.
As future work, we plan to extend the ReMINDER approach to formally verify
whether the NFP in DSPL feature models match the expected results of the
process of reconfiguration at runtime. In addition, we plan to add new NFPs to
the NFPs catalog, which may emerge at runtime and develop a tool to assist in
operationalizing the approach.

References

1. Bencomo, N., Hallsteinsen, S., De Almeida, E.S.: A view of the dynamic software
product line landscape. Computer 45(10), 36–41 (2012)

2. Capilla, R., Bosch, J., Kang, K.C.: Systems and Software Variability Management.
Springer, Heidelberg (2013)

3. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Softw. Process: Improv. Pract. 10(1), 7–29 (2005)

4. Hammani, F.Z.: Survey of non-functional requirements modeling and verification of
software product lines. In: 2014 IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS), pp. 1–6. IEEE (2014)

5. Hong, D., Chiu, D.K., Shen, V.Y.: Requirements elicitation for the design of
context-aware applications in a ubiquitous environment. In: 7th International Con-
ference on Electronic Commerce, pp. 590–596. ACM, Xi’an (2005)

6. ISO/IEC: 25010: Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models.
Technical report, ISO/IEC, Switzerland (2011)

ReMINDER: An Approach to Modeling Non-Functional Properties 73

7. Marinho, F.G., Andrade, R.M., Werner, C., Viana, W., Maia, M.E., Rocha, L.S.,
Teixeira, E., Ferreira Filho, J.B., Dantas, V.L., Lima, F., et al.: MobiLine: a nested
software product line for the domain of mobile and context-aware applications. Sci.
Comput. Program. 78(12), 2381–2398 (2013)

8. Sanchez, L.E., Diaz-Pace, J.A., Zunino, A., Moisan, S., Rigault, J.P.: An app-
roach based on feature models and quality criteria for adapting component-based
systems. J. Softw. Eng. Res. Dev. 3(1), 1–30 (2015)

9. Soares, L.R., Potena, P., Carmo Machado, I., Crnkovic, I., Almeida, E.S.: Analysis
of non-functional properties in software product lines: a systematic review. In: 2014
40th EUROMICRO Conference on Software Engineering and Advanced Applica-
tions, pp. 328–335. IEEE (2014)

10. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of the 2001 Fifth IEEE International Symposium on Requirements
Engineering, pp. 249–262. IEEE (2001)

11. Zhang, G., Ye, H., Lin, Y.: Quality attribute modeling and quality aware product
configuration in software product lines. Softw. Qual. J. 22(3), 365–401 (2014)

Variability Management and Model
Variants

Clustering Variation Points
in MATLAB/Simulink Models Using
Reverse Signal Propagation Analysis

Alexander Schlie1(B), David Wille1, Loek Cleophas2,3, and Ina Schaefer1

1 TU Braunschweig, Braunschweig, Germany
{a.schlie,d.wille,i.schaefer}@tu-braunschweig.de
2 Stellenbosch University, Stellenbosch, South Africa

3 TU Eindhoven, Eindhoven, The Netherlands
l.g.w.a.cleophas@tue.nl

https://www.tu-braunschweig.de/isf

Abstract. Model-based languages such as MATLAB/Simulink play an
essential role in the model-driven development of software systems. Dur-
ing their development, these systems can be subject to modification
numerous times. For large-scale systems, to manually identify performed
modifications is infeasible. However, their precise identification and sub-
sequent validation is essential for the evolution of model-based systems.
If not fully identified, modifications may cause unaccountable behavior
as the system evolves and their redress can significantly delay the entire
development process. In this paper, we propose a fully automated tech-
nique called Reverse Signal Propagation Analysis, which identifies and
clusters variations within evolving MATLAB/Simulink models. With
each cluster representing a clearly delimitable variation point between
models, we allow model engineers not only to specifically focus on single
variations, but by using their domain knowledge, to also relate and verify
them. By identifying variation points, we assist model engineers in vali-
dating the respective parts and reduce the risk of improper system behav-
ior as the system evolves. To assess the applicability of our technique, we
present a feasibility study with real-world models from the automotive
domain and show our technique to be very fast and highly precise.

Keywords: MATLAB/Simulink · Variation point · Clustering

1 Introduction

For the model-driven engineering of complex systems, model-based languages
such as MATLAB/Simulink1 are of substantial importance in a variety of indus-
trial domains. They allow for an abstraction of the overall complexity to a level
more understandable for the various engineers involved in the process [1]. Cer-
tain domains favor the development of a 150% model [2], that is a single system
1 MathworksR©- https://mathworks.com/products/simulink/ - Nov. 2016.

c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 77–94, 2017.
DOI: 10.1007/978-3-319-56856-0 6

https://mathworks.com/products/simulink/

78 A. Schlie et al.

comprising all functions, rather than multiple single-variant instances [3]. Con-
sequently, nurturing the precise identification of performed modifications in an
evolution scenario is essential to both system versions and system variants.

During their development, model-based systems can be subject to modifica-
tion several times [4]. Due to their sheer size and complexity, the majority of
such systems might remain unchanged between iterations. The parts subject to
modification can, however, be substantial to the behavior of the entire system.
Manually identifying variations induces a vast workload and is usually infeasible.
With multiple engineers involved in the process, performed changes can unin-
tentionally be overlooked. If not precisely detected in the first place, they can
cause unaccountable system behavior in subsequent phases of development. The
workload to redress unverified modifications can accumulate and cause severe
problems. Consequently, the identification and validation of the respective parts
is essential to the entire development process and subsequent maintenance.

In this paper, we address this problem by specifically utilizing domain-specific
features of MATLAB/Simulink to analyze models. To this end, we propose
Reverse Signal Propagation Analysis (RSPA) to identify and cluster variations
in evolved model-based systems. We argue that by precisely identifying varia-
tions within models, our method is beneficial for the development process and
supports engineers in evolving, maintaining and validating large-scale industrial
models. We provide a feasibility study to assess our technique. Focusing on
MATLAB/Simulink models, we make the following contributions:

– We introduce RSPA, a fully automated procedure to precisely identify and
cluster syntactically connected variations within MATLAB/Simulink models,
in order to allow for performed modifications to be validated.

– We evaluate our approach by means of a feasibility study with real-world
models from the automotive domain and show our proposed technique to be
very fast, highly precise and applicable to models of industrial size.

In the following sections, we briefly provide background information on MAT-
LAB/Simulink models and domain-specific features we utilize (Sect. 2). We
introduce and explain in detail our proposed technique (Sect. 3), present a fea-
sibility study with models from the automotive domain and discuss the results
produced by our technique (Sect. 4). We state related work (Sect. 5) and future
work (Sect. 6).

2 Background

We provide the basic terminology to represent implementation-specific variabil-
ity for evolved MATLAB/Simulink models. We further provide information on
domain-specific properties for such models that we specifically exploit for RSPA.

2.1 MATLAB/Simulink Models

MATLAB/Simulink is a block-based behavioral modeling language that uti-
lizes functional blocks and signals to specify functionality of a software system.

The Reverse Signal Propagation Analysis 79

To capture the behavior of complex systems, MATLAB/Simulink models can
comprise several thousand blocks [1,5]. To maintain an overview, logically con-
nected blocks are often grouped within a Subsystem block, which hides the con-
tained blocks from direct view until explicitly accessed. Subsystems can be nested
and constitute a model hierarchy. Figure 1 shows two versions of a model, both
encapsulated in the respective subsystem block shown in Fig. 2. We refer to the
contained blocks as sub blocks. They are shifted within the model hierarchy by
one hierarchical layer with respect to the subsystem block, which forms their
parent block.

2.2 Variability in Models

During their evolution, software systems can undergo a multitude of itera-
tions [4]. Modifications can affect various parts of the model and cause blocks
and their associated signals to diverge. Hence, diverging elements can be scat-
tered across the model. We refer to locations where two similar models differ
as Variation Points. Depending on the extent of the performed modification,
variation points can comprise multiple blocks and hierarchical layers. Figure 1
shows two versions of a model. Although mostly unchanged, the models diverge
at the location circled in red. Here, the circled block represents a simple example
of a variation point.

2.3 Signal Propagation in Models

Implementing new functionalities or performing modifications within a model
results in additional or varying signals respectively. The change in the signals
can propagate between hierarchical layers. This upward directed propagation is
depicted in Figs. 1 and 2. For both figures, the lower portion reflects the model
prior to the modification and the upper portion reflects the model after the
modification. Circled in red in Fig. 1, there is an additional Outport block. This
signal change propagates to the next higher layer and requires the corresponding
parent block shown in Fig. 2 to provide an interface to further relay the signal.

Prior to change

After change

Fig. 1. Signal propagation on lower
layer (Color figure online)

Prior to change

After change

Fig. 2. Effect on higher layer

80 A. Schlie et al.

Our proposed RSPA specifically exploits this upward propagation to realize a
lightweight but precise identification of all variation points.

2.4 The Simulink Identifier

The Simulink Identifier (SID) is a unique, non-volatile and unmodifiable iden-
tifier that persists for the lifetime of a block. It is automatically generated by
the MATLAB/Simulink environment. For each block, its SID is comprised of
the corresponding model name and a unique integer value greater than one,
separated by a colon. Besides regular MATLAB/Simulink blocks, the SID also
applies to Stateflow2 elements, generally used to model decision logic based on
state machines. Both element types are commonly used in combination when
modeling complex functionality. For RSPA, we neglect the model name as part
of a block’s SID and only evaluate the unique integer value. We do so because the
model name might change during evolution but MATLAB/Simulink guarantees
the integer value itself to persist.

3 Reverse Signal Propagation Analysis

In this section, we propose our RSPA to identify and cluster variation points in
MATLAB/Simulink models. Our approach is integrated into the Family Mining
Framework (FMF) [6–8], which provides an environment for comparing models
to identify and store their variability information in a Software Product Line
context [9]. Although RSPA generally allows for an arbitrary number of input
models, in this paper we focus on pairwise comparisons which explicitly reflect
a model evolution scenario. The basic workflow of RSPA is shown in Fig. 3.

Input model

Import Generate
Signal Sets

Compare and
Perform Preliminary

Clustering

Optimize Clusters

Tool Integration

Input model

Import Generate
Signal Sets

Fig. 3. Basic workflow of RSPA

RSPA requires preparatory work, for instance importing the models (cf.
Sect. 3.1), and comprises a total of three sequentially processed phases3. First,
we traverse each model separately from top to bottom. For each hierarchical
layer, we generate a Signal Set to store the outgoing signals present on that
layer (cf. Sect. 3.2). We then compare two signal sets of distinct models that

2 MathworksR©- https://www.mathworks.com/products/stateflow/ - Nov. 2016.
3 We provide further details and a screencast on our website:

https://www.isf.cs.tu-bs.de/cms/team/schlie/material/icsr17rspa/.

https://www.mathworks.com/products/stateflow/
https://www.isf.cs.tu-bs.de/cms/team/schlie/material/icsr17rspa/

The Reverse Signal Propagation Analysis 81

correspond to the same hierarchical depth. We do so in reverse, thus starting
with the lowest hierarchical layer present in either model. Blocks associated with
varying signals are clustered within preliminary sets (cf. Sect. 3.3). Between the
preliminary sets, intersections may exist which need to be resolved. Hence, we
iteratively chain together sets until no more intersections exist (cf. Sect. 3.4). The
results are intersection-free sets, each one representing a complete and syntacti-
cally delimitable variation point. In other words, every final set itself comprises
all blocks associated with a variation point but no two sets exist that contain
the same block. Although not explicitly explained in this paper, RSPA automat-
ically generates instructions to display variation points found in evolving models
and categorize the comprised elements directly within the MATLAB/Simulink
environment.

3.1 Preparatory Work

For RSPA to detect and cluster variation points in MATLAB/Simulink models,
we utilize the FMF and its integrated MATLAB/Simulink importer. It is essen-
tial to RSPA for each signal set to only contain signals on the same hierarchical
layer. To assure this, we assign a parameter HD to each block during import.
This parameter states the hierarchy layer the block and its associated outgo-
ing signals reside on within the model and, thus, their hierarchical depth. The
importer itself guarantees a valid assignment of the parameter HD for a given
block in both the presence and absence of a corresponding parent block.

Utilizing the SIDs, we introduce a specification that allows for an outgoing
signal ϕout, regardless of its hierarchical depth, to be traced and affiliated with
its start block and target block. Specifically, we use the SIDs of the start block
and the target block as well as the signal label if present. Using the lifetime-
persistent SIDs, the specification of a signal also persists for the lifetime of a
model. For the model shown in Fig. 4, an example of such specification is as
follows:

ϕout = 4 − pass Value − 5

The parameters that are necessary for RSPA to function are listed in Table 1
and illustrated in Fig. 4. For simplicity reasons, the block names in Fig. 4 corre-
spond with their SIDs. The subsystem block resides on the top layer and, thus,
is assigned ‘0’ for its hierarchical depth. Consequently, the contained sub blocks
are assigned ‘1’ as their hierarchical depth. For both sub blocks, their SIDP

is the SID of the subsystem block. We also store the type of a block during
import. Both parameters, SIDP and the block type are important later on to
capture variations that affect multiple hierarchical layers. With the parameters
listed in Table 1, RSPA can explicitly distinguish between local variation points
that reside on a single layer and variation points that affect multiple hierarchical
layers.

82 A. Schlie et al.

Table 1. Parameters used by the RSPA

Name Description

SID Unique and unmodifiable
identifier (cf. Sect. 2.4)

ϕout An outgoing signal for a given
block

HD The element’s hierarchical
depth

SIDP SID of the parent block if
present

type Semantical function of a block

HD: 0

HD: 1
ϕout: 4 − pass V alue − 5

parent
block

sub
block

Fig. 4. Parameter illustration

3.2 Signal Set Generation

RSPA begins by generating the signal sets for each model. We start with the
highest hierarchy layer present and traverse each model from top to bottom.
For each hierarchical layer, we generate a signal set that only contains outgoing
signals present on that specific layer. For the signal set generation shown in
Algorithm 1, the following properties are of interest.

Mi Single MATLAB/Simulink model
Ki Result set holding all generated signal sets for the model Mi

δj Specific hierarchical layer of the current model, j ≥ 0
kj Signal set holding all ϕout present on the current hierarchical layer δj
b MATLAB/Simulink block or Stateflow element
ϕout Outgoing signal of a MATLAB/Simulink block or Stateflow element

RSPA processes each input model separately and creates an individual result set
to hold all generated signal sets for that specific model (line 1). We utilize the
parameter HD to associate a block’s outgoing signal with its hierarchical depth
and store the respective signal specification in a signal set kj (line 6). With the
procedure shown in Algorithm 1, we guarantee each signal specification to be
placed in the signal set that represents the corresponding hierarchical depth.

For instance, the model M1 shown in Fig. 5 contains a total of two hierarchical
layers, δ0 and δ1. Consequently, processing M1 results in two signal sets, k0
representing the top layer itself and k1 for the signals associated with the blocks
contained in the two subsystems. Figure 6 represents the model M1 from Fig. 5
as a graph to illustrate the hierarchical layers, the corresponding signal sets and
the generated result set for that model.

When evaluating models that differ in their hierarchical depth, the total
number of signal sets and, thus, the size of the result sets reflect this structural
divergence.

The Reverse Signal Propagation Analysis 83

Fig. 5. MATLAB/Simulink model M1

(Color figure online)

root

In1 GS

In1 Gain Out1

In2 Log CS

In1 Table Out1

Out1δ0 :

δ1 :

k0

k1

K1

traversal
direction

Fig. 6. Graph representation of M1

The model M2 displayed in Fig. 7 is created by copying the model M1 from
Fig. 5 and replacing the block circled in red with a new subsystem that comprises
two StateFlow elements. In comparison to the model M1, the additional third
hierarchical layer introduced by this operation results in an additional signal set
k2. The graph representation for M2 shown in Fig. 8 illustrates the additional
hierarchical layer present in M2 and highlights in gray the modified parts.
In Table 2, we show an excerpt from the generated signal sets for the models M1

and M2 from Figs. 5 and 7 along with their result sets K1 and K2. Marked gray
are the varying signal specifications that correspond to the highlighted parts
in Figs. 6 and 8 and that represent a delimitable variation point between the
models.

With the signal specification we are able to identify varying parts. For
instance for the first entry for the subsystem CS in Table 2, the target block
Table and, thus, its SID = 11 have changed to State with SID = 13. However,
RSPA also identifies the common part for this specification, the start block In1
with SID = 10.

84 A. Schlie et al.

Fig. 7. MATLAB/Simulink model M2

root

In1 GS

In1 Gain Out1

In2 Log CS

In1 State

Start Ready

Out1

Out1δ0 :

δ1 :

δ2 :

k0

k1

k2

K2

traversal
direction

Fig. 8. Graph representation of M2

Table 2. Excerpt from the signal sets for models from Fig. 5 (left) and Fig. 7 (right)

3.3 Comparison and Preliminary Clustering

After the result sets have been generated, RSPA compares the contained signal
sets and preliminarily clusters blocks associated with varying signal specifica-
tions. We explicitly exploit the upward signal propagation in MATLAB/Simulink
models (cf. Sect. 2.3) and start the comparison and clustering procedure shown
in Algorithm 2 by processing the signal sets with the highest index, i.e., deepest
in the hierarchy first. Hence, we guarantee a sub block to be analyzed prior to its
respective parent block and ensure both to be validly grouped within one cluster.
In addition to the previously provided parameters, the following properties are
of interest for the signal set analysis.

P̂ Set to hold the preliminary results prior to optimization
kj , fj Signal set, each from a different input model and corresponding to their

respective hierarchy layer δj , generated in Algorithm 1
s Disjoint set holding the varying signals between kj and fj

The Reverse Signal Propagation Analysis 85

bstart Start block for the varying and currently evaluated outgoing signal
btarget Target block for the varying and currently evaluated outgoing signal
fN (ϕout) Successor function, thus, target block of ϕout

τ Set holding bstart and btarget
VS Variance Set clustering blocks associated with varying signals

We only compare two signal sets ki and fi from different input models that
correspond to the same hierarchical depth. This might seem like a strong limita-
tion but we argue that it suffices for an evolution scenario and that it also drasti-
cally reduces overhead. Moreover, by exploiting the upward signal propagation,
RSPA not only reliably detects local variations but also large-scale structural
relocations across hierarchical layers. We only consider two signals equal if their
specification is identical (cf. Sect. 3.1).

For the signal sets k1 ∈ K1 and k1 ∈ K2 in Table 2, the signals for the
subsystem CS are all considered varying because their specification does not
match. Every varying signal is evaluated separately and the respective start block
and target block are grouped in a set τ (line 16). To cluster blocks associated
with varying signals, we look for an existing Variance Set (VS) that already
contains one of the two blocks within τ (line 17). We refer to these sets as
VSs as they hold and cluster blocks associated with varying signals. During the
procedure depicted in Algorithm 2, VSs can grow in size and in the number of
hierarchical layers they comprise. When evaluating the signal sets k1 for our
example, we would create a new VS (line 21) for the specification 10-null-11
from Table 2. However, when analyzing 10-null-13, a VS now exists that already
contains the SID 10. Thus, the block State with SID 13 is added to that VS.
Although not explicitly shown in line 17 of Algorithm 2, we also evaluate the
SIDP and the type of every element within an existing VS to capture variation
points that comprise multiple hierarchical layers. For the type, we specifically
focus on certain blocks that introduce (i.e., Inport) or forward (i.e., Outport)
data between layers or systems and, thus, can establish a syntactical connection
between them.

For instance in Fig. 1, the added Outport requires the parent block shown
in Fig. 2 to relay the signal. We recognize this syntactical connection and, thus,
cluster both blocks within one VS. With the procedure shown in Algorithm 2, we
allow for a precise distinction between variations that propagate between hierar-
chical layers and local variations that do not affect other layers. With RSPA, we
aim for each single VS to represent a syntactically delimitable variation point
and for each VS to contain all elements that variation point comprises.

However, within the preliminary result set P̂ , the contained VSs may share
elements. These intersections between the VSs need to be resolved for each VS
to represent a clearly delimitable variation point. To assure this, we initiate the
procedure shown in Algorithm 3, which we explain in Sect. 3.4.

86 A. Schlie et al.

3.4 Cluster Optimization

Depending on the order in which signals are analyzed in Algorithm 2, the VS s
within P̂ may share elements and, thus, an intersection exists between them. To
resolve these intersections, we use the procedure shown in Algorithm 3 to chain
VS s together. If, for instance, two VS s share a block, thus an intersection exists,
both VS s really correspond to the same variation point. Hence, we chain them
together.

The procedure shown in Algorithm 3 runs iteratively. In each iteration, we
transfer VS s from P̂ to the new set L̂. Within L̂, VS s are either chained together
(line 7) or simply stored for further iterations (line 10). We can easily find out if
an optimization was possible, by storing the set’s size before chaining (line 3) and

The Reverse Signal Propagation Analysis 87

after chaining (line 14). If the total number of VS s decreased, an optimization
was possible. However, further chaining might still be possible and, thus, we
initiate the next iteration. If no chaining was possible, the procedure terminates
(line 17).

The resulting set L̂ contains the final VS s and the intersections, if present,
have been resolved. Each of the contained VS s may contain large numbers of
blocks and comprise multiple hierarchical layers. However, essential to RSPA,
each VS itself represents a clearly delimitable variation point between the input
models. The VS s themselves contain the SIDs of all blocks associated with
varying signals for both input models. This information can be used to further
process or to classify the findings, for instance by the model engineer, and we
provide more information on our website (See footnote 3) and in the screencast
respectively.

We implemented our technique in Java4 using Eclipse5 and its Model-
ing Framework6. Our approach automatically generates MATLAB/Simulink
instructions. The instructions allow for each VS to specifically highlight the
contained blocks directly within the MATLAB/Simulink environment. We post-
process the information contained in the VS s and use color schemes to explicitly

4 Oracle SystemsR©- https://www.java.com/en/ - Nov. 2016.
5 Eclipse FoundationR©- https://eclipse.org/ - Nov. 2016.
6 Eclipse FoundationR©- https://www.eclipse.org/modeling/emf/ - Nov. 2016.

https://www.java.com/en/
https://eclipse.org/
https://www.eclipse.org/modeling/emf/

88 A. Schlie et al.

distinguish between blocks that are present in both input models and blocks
that are only present in one input model. With the generated instructions and
the possibility to further utilize them, we allow model engineers to directly val-
idate the results of our technique without using any intermediate or abstracted
representation.

4 Evaluation

To assess the feasibility of our proposed technique, we conducted a case study
with real-world models from the automotive domain. In this section, we provide
our objectives, information about the analyzed models, the methodology we used
for the evaluation and the results we were able to achieve. With RSPA, we want
to support model engineers in developing and maintaining large-scale systems by
automatically and reliably identifying variations within models as they evolve.
We focus on the following research questions:

RQ1: What level of precision and recall can our technique achieve?
The level of precision is substantially important for our technique to be
accepted by model engineers. We refer to precision as the extent to which
each of the generated VSs reflects a syntactically delimitable variation
point. We refer to recall as the extent to which each VS only contains
blocks associated with varying signals.

RQ2: Is the performance reasonable when scaling up?
Especially in an industrial environment, an acceptable runtime is essen-
tial for our proposed technique to be applicable in practice. We refer
to performance as the total runtime required and its distribution over
RSPA’s three, non-concurrent phases: Signal Set Generation, Compari-
son and Preliminary Clustering and Cluster Optimization (cf. Sect. 3).

4.1 Analyzed Models

We identified delimitable parts within an exemplary Driver Assistance System
(DAS) from the publicly available SPES XT 7 project and extracted them as Sub
Models (SMs). The SMs are listed in Table 3, along with information on their size
and complexity. We combined the SMs in various ways to constitute a total of 18
large-scale models that specifically address structural changes reflecting a system
evolution. For instance, systems contain only one SM, e.g., EmergencyBrake
(EB), or two SMs respectively, e.g., SpeedLimiter (SL) and CruiseControl (CC).
The largest generated model contains all SMs listed in Table 3. Using the project
documentation, we identified constraints that prohibit certain SMs to be used
in isolation and we list those constraints in Table 3. Further information on the
models can be found on our website (See footnote 3).

7 http://spes2020.informatik.tu-muenchen.de/spes xt-home.html - Nov. 2016.

http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html

The Reverse Signal Propagation Analysis 89

Table 3. Basic properties of the analyzed models

Model name & Abbreviation #blocks #BSub maxHD

EmergencyBreak ‘EB’ 409 43 7

FollowToStop (req. CC) ‘FTS’ 699 77 11

SpeedLimiter ‘SL’ 497 57 10

CruiseControl ‘CC’ 671 74 11

Distronic (req. CC) ‘DT’ 728 78 11
BSub – Subsystem blocks, maxHD – max. hierarchical depth, req.−
requires

4.2 Methodology

To assess the feasibility of our proposed technique regarding its potential usage
in an industrial environment, we focus on analyzing performance, precision and
recall. For the 18 generated models, all possible 153 pairwise comparisons8 were
performed twenty times each to account for runtime deviations inherently present
in a non-closed system.

For precision and recall, manually analyzing all combinations is infeasible due
to their size and complexity. Hence, we focused on two subsets, covering a total
of 50 models (≈ 33%) that explicitly reflect a development process as follows:

1: Model evolution, for instance, SL and SL-CC. From an evolutionary stand-
point, the latter can be considered an extension. For this, we analyzed a total
of 30 combinations.

2: Model modification, for instance, SL-CC and EB-CC. The latter can be con-
sidered a modification of the former by replacing a certain part of the model.
For this, we analyzed a total of 20 combinations.

For the 50 combinations mentioned above, we manually identified the varia-
tion points before applying our technique to compare the results with our ini-
tial findings. The combinations were examined by an expert well familiar with
the analyzed MATLAB/Simulink models. Using the generated instructions, the
variability information clustered within the produced VSs was assessed directly
within the MATLAB/Simulink environment.

The case study was evaluated on a Dual-Core i7 processor with 12GB of
RAM, running Windows 10 on 64bit. All runtime measurements were performed
using Java’s System.nanoTime() [10].

4.3 Results and Interpretation

The results we provide in this section show aggregated data. Detailed infor-
mation on the models used for the analysis and the data collected during the
process can be found on our website (See footnote 3). We further provide all
8 153 = 18 ∗ (17/2), since the input order does not matter.

90 A. Schlie et al.

generated instruction sets for the evaluated combinations to allow the results to
be reproduced.

Precision and Recall (RQ1): To evaluate RSPA regarding precision and
recall for the feasibility study, we manually inspected the results of 50 compar-
isons as described in Sect. 4.2. Using the automatically generated instructions,
we assessed the results directly within the MATLAB/Simulink environment.

For all evaluated combinations, RSPA identified all variation points present
within the compared models. Each variation point was clustered within a single
VS and we found all VSs to represent a syntactically delimitable variation point.
Hence, we consider our RSPA to operate with absolute precision for the evaluated
models. For recall, we analyzed each of the generated VSs with regard to the
presence of blocks that are associated with non-varying signals and, thus, are
incorrectly clustered within the VS. For all generated VS, we did not find such
elements but only blocks associated with varying signals. Hence, we claim our
RSPA to exhibit total recall for the evaluated models.

Performance (RQ2): For all possible 153 combinations (cf. Sect. 4.1), we mea-
sured the total runtime required and its distribution over the involved phases.
The import of the models and the generation of the MATLAB/Simulink instruc-
tions were omitted for the runtime as they are not part of the algorithm itself.

Figure 9 depicts the performance results of our proposed technique. We show
the total runtime required in relation to the combined model size, measured
by the number of contained blocks, and highlight the combinations we selected
for our two evolution scenarios (cf. Sect. 4.2). Each data point shown in Fig. 9
represents the average over the 20 runs performed for every comparison.

Fig. 9. Performance results of the RSPA

The Reverse Signal Propagation Analysis 91

Our proposed RSPA requires an average of approximately 2.5 ms to com-
pare two models from our case study. The longest runtime is just shy of 5 ms.
Although not shown in Fig. 9, we experimentally enlarged the models up to a
combined size for both compared models of 15.000 blocks and 62.000 blocks
respectively. For these two comparisons, RSPA required an average of ≈ 44 ms
and ≈ 720 ms and precisely identified all artificially placed variation points. For
the 50 evaluated combinations, we measured the time for each of RSPA’s three
sequentially processed phases separately to asses the runtime distribution. Signal
Set Generation requires ≈ 60%, Comparison and Preliminary Clustering makes
up for ≈ 37% and Cluster Optimization accounts for ≈ 3% of the total runtime.

Considering the runtime RSPA exhibits, we argue that models can be
processed almost instantly so that we consider performance acceptable. Without
confirmation from industrial experts, we conservatively consider our technique
to be applicable in an industrial environment. Overall, the results strengthen the
confidence we have in our approach to effectively support engineers in develop-
ing and maintaining models by precisely and fully identifying variation points
within evolving systems.

Threats to Validity: Although we designed, implemented and evaluated our
technique with great care, a variety of threats to validity are inherently present.
For our evaluation, we used a single case study with models from one domain.
We argue that the analyzed models exhibit a relatively high complexity and that
they are to some extent representative for models used in the automotive indus-
try. We kept ourselves from being biased and developed and implemented RSPA
without specific domains in mind. We acknowledge that other domains might
have different development procedures and their systems could entail peculiari-
ties that impinge the results produced by our approach and the results’ usabil-
ity in general. We recognize that certain development processes may exist that
adversely affect RSPA’s dependency on the SID. For several cases, a non-volatile,
unique and persistent identifier might be a too strong restriction. We also analyze
syntactical properties only and do not consider semantic properties.

5 Related Work

A variety of approaches exists in the literature to identify variability in models.
The two most prominent techniques are Clone Detection and Model Differencing.
Deissenboeck et al. [1] transform models into graphs to perform clone detection.
Their CloneDetective approach is integrated into the ConQAT tool9. In contrast
to RSPA, the models are flattened and certain blocks are removed prior to the
analysis. Based on ConQAT, Al-Batran et al. [11] describe an approach which is
able to detect syntactic clones in MATLAB/Simulink models but also to identify
semantic clones by normalizing the compared models with semantic-preserving
graph transformations. With RSPA, we do not use graph transformations but

9 https://www.conqat.org.

https://www.conqat.org

92 A. Schlie et al.

explicitly exploit the upward signal propagation in MATLAB/Simulink models
as they evolve to realize a lightweight analysis. Alafi et al. [12] use SIMONE to
analyze and cluster subsystem clones within MATLAB/Simulink models. They
aim to detect clone patterns and to visualize clones. In contrast to their approach
and clone-detection in general, we aim to precisely detect variation points rather
than clones and their distribution. Kelter et al. [13] propose a generic algorithm
to detect model differences. They use a special data model to store properties
of Unified Modeling Language (UML) [14] class-diagrams for comparison. Based
on [13], Treude et al. [15] introduce SiDiff and allow for various types of UML
models and also MATLAB/Simulink models to be compared. Kelter et al. and
Treude et al. both use an internal data model and semantically lift retrieved
information. Our technique does not use any intermediate or abstracted model.
Similar to Treude et al., Könemann [16] also uses model differencing to detect
and semantically lift performed changes. Könemann’s approach aims to generate
model-independent differences and to apply them as patches to other models.
Unlike RSPA, he assesses the approach with UML class-diagrams with only one
hierarchical layer. Ryssel et al. [17] propose a technique to identify variation
points in multiple MATLAB/Simulink models. In contrast to RSPA, they use
a metric to calculate the similarity of blocks and use graph transformations to
identify variation points.

6 Conclusion and Future Work

In this paper, we propose RSPA to automatically detect and cluster variation
points within evolved and related MATLAB/Simulink models. With RSPA, we
allow model engineers to capture performed modifications in their entirety and
by using their domain knowledge, to also validate them. By precisely identify-
ing variation points within evolving systems and visualizing them within Mat-
lab/Simulink we offer assistance that is potentially helpful for the entire devel-
opment process. We provide a feasibility study with models from the automotive
domain that reflect an evolution scenario and show our technique’s capability to
identify variation points rapidly and precisely.

In the future, we plan to assess our technique with models used in the indus-
try to identify both specific use cases and limitations for the RSPA in an indus-
trial environment. Currently, the generated instructions need to be copied to
MATLAB/Simulink manually. To increase RSPA’s user-friendliness, we further
intend to integrate RSPA directly within the MATLAB/Simulink environment.
Ultimately, we plan to evaluate the applicability of RSPA for other model-based
languages, for instance State Charts.

Acknowledgments. We would like to thank Remo Lachmann and Christoph Seidl
for their strong support and guidance on this paper.

The Reverse Signal Propagation Analysis 93

References

1. Deissenboeck, F., Hummel, B., Jürgens, E., Schätz, B., Wagner, S., Girard, J.F.,
Teuchert, S.: Clone detection in automotive model-based development. In: Proceed-
ings of the International Conference on Software Engineering (ICSE), pp. 603–612.
ACM (2008)

2. Grönniger, H., Krahn, H., Pinkernell, C., Rumpe, B.: Modeling variants of auto-
motive systems using views. CoRR abs/1409.6629 (2014)

3. Eckl, C., Brandstätter, M., Stjepandic, J.: Using the “model-based systems engi-
neering” technique for multidisciplinary system development. In: Transdisciplinary
Lifecycle Analysis of Systems - Proceedings of the 22nd ISPE Inc., International
Conference on Concurrent Engineering, Delft, The Netherlands, July 20–23, 2015,
pp. 100–109 (2015)

4. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In: Pro-
ceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software
Models. CVSM 2009, Washington, DC, pp. 1–6. IEEE Computer Society (2009)

5. Deissenboeck, F., Hummel, B., Juergens, E., Pfaehler, M., Schaetz, B.: Model
clone detection in practice. In: Proceedings of the 4th International Workshop
on Software Clones. IWSC 2010, pp. 57–64. ACM, New York (2010)

6. Wille, D., Holthusen, S., Schulze, S., Schaefer, I.: Interface variability in family
model mining. In: Proceedings of the International Workshop on Model-Driven
Approaches in Software Product Line Engineering (MAPLE), pp. 44–51. ACM
(2013)

7. Holthusen, S., Wille, D., Legat, C., Beddig, S., Schaefer, I., Vogel-Heuser, B.: Fam-
ily model mining for function block diagrams in automation software. In: Proceed-
ings of the International Workshop on Reverse Variability Engineering (REVE),
pp. 36–43. ACM (2014)

8. Wille, D.: Managing lots of models: the famine approach. In: Proceedings of the
International Symposium on the Foundations of Software Engineering (FSE), pp.
817–819. ACM (2014)

9. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

10. Kuperberg, M., Reussner, R.: Analysing the fidelity of measurements performed
with hardware performance counters. In: Proceedings of the 2nd ACM/SPEC Inter-
national Conference on Performance Engineering. ICPE 2011, pp. 413–414. ACM,
New York (2011)

11. Al-Batran, B., Schätz, B., Hummel, B.: Semantic clone detection for model-based
development of embedded systems. In: Whittle, J., Clark, T., Kühne, T. (eds.)
MODELS 2011. LNCS, vol. 6981, pp. 258–272. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-24485-8 19

12. Alalfi, M., Cordy, J.R., Dean, T.R.: Analysis and clustering of model clones: an
automotive industrial experience, pp. 375–378. IEEE (2014)

13. Kelter, U., Wehren, J., Niere, J.: A generic difference algorithm for UML models.
Softw. Eng. 64(105–116), 4–9 (2005)

14. The Object Management Group: Unified Modeling Language (UML). Technical
report, OMG Version 2.4.1. (2011)

http://dx.doi.org/10.1007/978-3-642-24485-8_19
http://dx.doi.org/10.1007/978-3-642-24485-8_19

94 A. Schlie et al.

15. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large mod-
els. In: Proceedings of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering. ESEC-FSE 2007, pp. 295–304. ACM, New York (2007)

16. Könemann, P.: Semantic grouping of model changes. In: Proceedings of the 1st
International Workshop on Model Comparison in Practice. IWMCP 2010, pp. 50–
55. ACM, New York (2010)

17. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Automatic variation-point identification
in function-block-based models. In: Proceedings of the International Conference on
Generative Programming and Component Engineering (GPCE), pp. 23–32. ACM
(2010)

Discovering Software Architectures
with Search-Based Merge
of UML Model Variants

Wesley K.G. Assunção1,2(B), Silvia R. Vergilio2,
and Roberto E. Lopez-Herrejon3

1 DInf, Federal University of Paraná, CP: 19081, Curitiba 81531-980, Brazil
2 COINF, Federal University of Technology - Paraná, Toledo 85902-490, Brazil

{wesleyk,silvia}@inf.ufpr.br
3 ÉTS, University of Quebec, Notre-Dame Ouest 1100, Montreal H3C 1K3, Canada

roberto.lopez@etsmtl.ca

Abstract. Software reuse is a way to reduce costs and improve quality.
However, in industry, the reuse of existing software artifacts is commonly
done by ad hoc strategies such as clone-and-own. Clone-and-own leads
to a set of system variants developed independently, despite of having
similar parts. The maintenance of these independent variants is a diffi-
cult task, because of duplication and spread functionalities. One problem
faced by developers and engineers is the lack of a global view of such
variants, providing a better understanding of the actual state of the sys-
tems. In this paper we present an approach to discover the architecture
of system variants using a search-based technique. Our approach iden-
tifies differences between models and uses these differences to generate
candidate architectures. The goal is to find a candidate architecture most
similar to a set of UML model variants. Our contribution is threefold: (i)
we proposed an approach to discover model-based software architecture,
(ii) we deal with the merging of multiple UML model variants; and (iii)
our approach applies a search-based technique considering state-based
merging of models. We evaluate our approach with four case studies and
the results show that it is able to find good candidate architectures even
when different features are spread among model variants.

Keywords: Model merging · UML models · Model-based architectures ·
Search-based techniques

1 Introduction

Developing software systems from scratch is a complex and high cost activity.
A well established strategy to reduce costs, improve productivity and increase
quality is software reuse, which is based on the use of existing artifacts to develop

S.R. Vergilio—This work was supported by the Brazilian Agencies CAPES: 7126/
2014-00 and CNPq: 453678/2014-9 and 305358/2012-0.

c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 95–111, 2017.
DOI: 10.1007/978-3-319-56856-0 7

96 W.K.G. Assunção et al.

new software systems [14]. Any artifact built during software development can
be reused, including source code, design models, test cases, etc.

Software reuse is generally carried out using an ad hoc strategy, called “clone-
and-own” [20]. In this strategy, existing software artifacts are cloned/copied and
adapted to fulfill the new requirements. The clone-and-own strategy is an easy
way to reuse software, does not require an upfront investment, while obtaining
good results quickly. However, the simultaneous maintenance and evolution of
a typically large number of individual system variants is a complex activity
because different variants can provide the same functionalities, but at the same
time modify or add others. These duplicated functionalities must be maintained
individually [6]. Furthermore, engineers commonly do not have a global view on
how the different implementations are spread over the variants.

There exists extensive work on migration of multiple variants into SPLs [1].
However, this task demands high levels of investment and human resources [19].
There is a lack of effective ways to support the maintenance and evolution of
multiple variants. One way to deal with this problem is the creation of a doc-
umented architecture. Software architectures are artifacts that provide a high-
level view of functional parts of systems and allow analysis of their structure [4].
An architecture supports design decisions and eases software reuse. Currently,
majority of the work on software architecture recovery/discovery is based on
source code [7,10,11].

In this paper, we present an approach to automatically merge multiple UML
model variants to obtain a documented software architecture. The goal is to
discover a global model that contains all the features spread across the differ-
ent variants. A feature is a user-visible aspect, functionality, or characteristic
of a system [12]. The input of our approach is a set of UML model variants
and the output is a complete model, the most similar to all variants. The pro-
posed merging process relies on a search-based technique to avoid having to deal
with domain specific constraints of systems under consideration and possible
conflicts among models. In other words, we delegate to the evolutionary process
the solution of problems regarding constraints and conflicts [9]. We implemented
our approach with a genetic algorithm, and evaluated it using four case studies
from different domains and with different sizes. Our evaluation showed that good
candidate architectures can be found.

The main contributions of our work are:

– Our study relies on the discovery of model-based architectures from different
UML model variants. In the literature there are few pieces of work with focus
on discovery of architectures from diagrams/models [15,17].

– The proposed search-based merging approach deals with multiple UML mod-
els variants, whereas the majority of studies on model merging considers only
two or three models at once [3,13,16].

– Our approach performs state-based merging of models, i.e. we consider the
model itself during the evolutionary process. Other pieces of work that merge
models are operation-based, which means they work mainly considering the
history of operations applied to the different models created [13,16].

Discovering Architectures with Search-Based Merge of Model Variants 97

The remainder of this paper is as follows. In Sect. 2 we describe in detail
the proposed search-based approach. The evaluation of the proposed approach
and the results are presented in Sect. 3. Section 4 reviews related work. Section 5
contains conclusions and future work.

2 Proposed Approach

In this section we present details of our search-based approach to discover soft-
ware architectures. According to Harman et al. [9], three ingredients are neces-
sary to implement a search-based approach: (i) an appropriate way to represent
solutions, (ii) a function designed to evaluate the quality of a solution, and (iii)
a set of operators to generate new solutions and explore the search space.

In this section we describe such ingredients of our approach. To illustrate how
it works, we rely on three variants of a Banking System [17]. These variants1 are
presented in Fig. 1. The goal of our approach is to obtain a global UML model
with the greatest similarity to the variants of our example. To reach this greatest
similarity, the global UML model must have as many as possible of the features
contained across the variants.

Fig. 1. Three banking system model variants, extracted from [17]

2.1 Representation

Our approach deals with models created with the Eclipse Modeling Framework
(EMF). EMF is a well-known and widely used set of modeling tools [22]. We
represent the models using EMF-based UML22 implementation of the UMLTM

1 Available at: https://github.com/but4reuse/but4reuse/wiki/Examples.
2 http://wiki.eclipse.org/MDT/UML2.

https://github.com/but4reuse/but4reuse/wiki/Examples
http://wiki.eclipse.org/MDT/UML2

98 W.K.G. Assunção et al.

2.x metamodel for the Eclipse platform. When models are represented using
EMF-based UML2 data types, they can be compared, modified, and saved. These
operations enabled by EMF tools are the basis to our search-based approach.

2.2 Fitness Function

The fitness function of our approach is based on differences among UML mod-
els of system variants. To compute these differences we use the Eclipse EMF
Diff/Merge tool3. EMF Diff/Merge compares two models and returns the dif-
ferences between them. EMF Diff/Merge computes three essential types of dif-
ferences between models: (i) presence of an unmatched element, which refers
to an element in a model that has no match in the opposite model; (ii) pres-
ence of an unmatched reference value, which means that a matched element
references another element in only one model; (iii) presence of an unmatched
attribute value, where a matched element owns a certain attribute value in only
one model.

Figure 2 presents the output of EMF Diff/Merge when comparing differences
between the variants Bank 1 and Bank 2 (Fig. 1). The total number of differences
is thirteen, but it is composed of two sets of differences. At the top of the figure
we have seven differences that are elements present in Bank 2 but missing on
Bank 1, and at the bottom of the figure we have six elements that belong to
Bank 1 but do not appear in Bank 2.

Fig. 2. Differences between variants Bank 1 and Bank 2

EMF Diff/Merge tool is able to compare only two or three models at once.
However, to evaluate a candidate architecture we have to compute differences
from one model to many model variants. Considering this, the proposed fitness
function is composed of the sum of differences from one model to all input model
variants. Definition 1 presents the fitness function called here Model Similarity.
3 http://www.eclipse.org/diffmerge/.

http://www.eclipse.org/diffmerge/

Discovering Architectures with Search-Based Merge of Model Variants 99

The function diff represents the number of differences found by using EMF
Diff/Merge, but here we sum only the set of differences that indicate the elements
that exist in the variant v but are missing on the candidate model. There are no
distinctions among the three essential types of differences.

Definition 1. Model Similarity (MS). Model Similarity expresses the degree
of similarity of the candidate architecture model to a set of model variants.

MS =
∑

v ∈ V ariants

diff(candidate model, v) (1)

Fig. 3. Example of fitness evaluation

100 W.K.G. Assunção et al.

To illustrate the computation of MS we consider the candidate architecture
model presented in Fig. 3(a) and the input models in Fig. 1. Using EMF Dif-
f/Merge tool we have obtained the sets of differences presented in Figs. 3(b),
3(c) and 3(d), respectively to Bank 1, Bank 2 and Bank 3. For our fitness func-
tion only the differences from the candidate architecture to each variant are
relevant, they are highlighted in the figures. There are no differences from the
candidate model to Bank 1. From candidate model to Bank 2 there exist six dif-
ferences. From candidate model to Bank 3 we have also six differences. We can
observe twelve differences from the candidate model to all input variants, then
MS = 12. The goal is to minimize the value of MS. An ideal solution has MS
equal to zero, which indicates that the candidate architecture has all elements
from the variants for which we want to discover the corresponding architecture.

2.3 Genetic Operators

The set of differences returned by EMF Diff/Merge is used to perform crossover
and mutation and it also allows duplication/modification of models to incorpo-
rate the changes done by the operators.

Crossover. The start point of our crossover operator is two candidate architec-
tures. From these two models we generate two children: one with the differences
merged and one without the differences. For instance, let us consider any parent
models X and Y. The children will be:

– Crossover Child Model 1 : this model has the differences between its parents
merged. For example, the elements of X that are missing on Y are merged in
this later, or vice versa. Both ways will produce the same child.

– Crossover Child Model 2 : this child is generated by removing the differences
between the parents. For example, the differences of X that are missing on Y
are removed, or vice versa. Both ways will produce the same child.

The strategy adopted by child model 1 aims at creating a model that has
more elements, going to the direction of the system architecture. On the other
hand, the strategy used by child model 2 has the goal of eliminating possible
conflicting elements from a candidate architecture.

To illustrate the crossover operator let us consider as parents Bank 1 and
Bank 2 presented in Fig. 1 and the differences between them, presented in Fig. 2.
The offspring generated by crossover is presented in Fig. 4. In Fig. 4(a) we have
the child with all differences merged (highlighted) and in Fig. 4(b) the child with
the differences removed.

Mutation. Mutation operator aims at applying only one modification in each
model parent. The start point of mutation operator is two candidate architec-
tures, and the result is also two children. Let us again consider any parent models
X and Y. The children are:

Discovering Architectures with Search-Based Merge of Model Variants 101

Fig. 4. Example of crossover between Bank 1 and Bank 2

– Mutation Child Model 1 : the first child is created by merging one difference
of the model Y in the model X. After randomly selecting one element of the
model Y, but missing on the model X, this element is added in the model X.

– Mutation Child Model 2 : the same process described above is performed but
including one element of the model X in the model Y.

An example of mutation between Bank 1 and Bank 2 (Fig. 1) is presented in
Fig. 5. Considering the differences shown in Fig. 2, we have have seven differences
to select one to include in Bank 1, and six differences to select one to include in

Fig. 5. Example of mutation between Bank 1 and Bank 2

102 W.K.G. Assunção et al.

Bank 2. As highlighted in Fig. 5(a), the attribute limit was chosen to be included
in Bank 1. In the child of Fig. 5(b) we can see that the class Consortium was
selected to be included in Bank 2.

The mutation process can select a difference that is owned (i.e. is part of)
another difference. In such cases, the entire owning difference is moved to the
child. For example, when a mutation selects a parameter owned by an operation,
the entire operation is moved to the child.

Selection. We use binary tournament strategy whereby a set of individuals are
randomly selected from the population, from which the individual with the best
fitness is chosen to undergo crossover and mutation [8].

Initial Population. The initial population is created by copying the input
UML models variants. All variants should be included in the initial population
at least once. Each copied variant is an individual. More than one copy of each
variant is allowed to reach the population size.

3 Evaluation

In this section we present the setup and case studies used to evaluate the pro-
posed approach, along with the results obtained and their analysis.

3.1 Implementation Aspects and Experimental Setup

We implemented our work using JMetal framework which provides several algo-
rithms for multi-objective and mono-objective optimization [5]. We selected the
mono-objective generational Genetic Algorithm (GA) [8]. Our GA was designed
to deal with an minimization problem, recall that an ideal solution for our archi-
tecture recovery problem is an individual (i.e. candidate architecture) with fitness
equal to zero (0).

As mentioned before, in our implementation we handle the UML models
using EMF framework. This framework was used mainly to load and save mod-
els. For the evolutionary process, where we compare and modify models, we used
EMF Diff/Merge. Despite of EMF Diff/Merge having many functionalities, we
needed to develop a customized match policy. The default match policies of EMF
Diff/Merge only perform comparisons based on XMI:ids. However, model vari-
ants could have similar semantic even with different structures. Our customized
match police considers qualified names, data types, and relationship types.

The GA parameters were: population size = 200, crossover probability = 0.95,
mutation probability = 0.2, and number of fitness evaluations = 8000. We have
set the parameters of crossover and mutation based on default values used in
other discrete problems on JMetal. Population size and number of evaluations
were set based on hardware limitation. When we tried to use greater values
for these two latter parameters it caused limit memory exception. The elitism

Discovering Architectures with Search-Based Merge of Model Variants 103

strategy for the generation GA was copying the best four individuals of one
generation for the next generation. The number of fitness evaluations is the stop
criteria. The experiments were run on a machine with an Intel R© CoreTM i7-
4900MQ CPU with 2.80 GHz, 16 GB of memory, and running a Linux platform.

3.2 Case Studies

In our experiment we used four case studies. Each case study is a set of different
UML model variants where each variant implements different system features,
and is composed of classes, attributes, operations and relationships. The case
studies are: Banking System (BS), a small banking application composed of four
features [18]; Draw Product Line (DPL), a system to draw lines and rectangles
with six features [2]; Video On Demand (VOD) implements eleven features for
video-on-demand streaming [2]; and ZipMe (ZM), a set of tools to files compres-
sion with seven features [2]. The variants are presented in Tables 1, 2, 3 and 4,
respectively. These tables show the features, number of classes (#Cl), number of
attributes (#Attr), number of operations (#Op), and number of relationships
(#Rel) for each variant. This information was computed using SDMetrics4. Only
BS is originally a set of UML model variants, for the other case studies we reverse
engineered the models from Java code using the Eclipse MoDisco5.

Table 1. Banking system

Variant Features #Cl #Attr #Op #Rel

BS WL CON CC

1 � 3 5 6 1

2 � � 4 6 7 3

3 � � 3 6 8 1

4 � � 4 7 11 2

Baseline � � � � 5 9 14 4

BS: Base, WL: Withdraw Limit, CON: Consortium, CC:
Currency Converter

For the four case studies we have variants with all possible features combi-
nations. However, we selected only variants that implement at most half of the
non-mandatory features. To select these variants we follow the rule:

threshold = (RoundUp
(#all features − #mandatory features

2

)
+ #mandatory features)

We selected for our experiment only variants that implement a number of features
below the threshold. The reason to select only a sub-set of variants is to have the
combinations of features spread on different variants, to assess the ability of our

4 http://www.sdmetrics.com.
5 https://eclipse.org/MoDisco.

http://www.sdmetrics.com
https://eclipse.org/MoDisco

104 W.K.G. Assunção et al.

approach to merge the models and get good system architectures. For each case
study we also had a variant that implements all features, i.e. the most complete
variants. We use this variant as a baseline for our analysis, since we consider this
variant as the most similar model to a known system architecture. In the last
line of Tables 1, 2, 3 and 4 there is information about the baseline.

Table 2. Draw product line

Variant Features #Cl #Attr #Op #Rel

DPL L R C W F

1 � � 4 13 26 3

2 � � � 5 24 37 4

3 � � 4 18 29 3

4 � � � 4 22 27 3

5 � � � 4 27 30 3

6 � � � 4 15 27 3

7 � � � 4 20 30 3

8 � � � � 4 33 32 3

Baseline � � � � � � 5 42 41 4

DPL: Base, L: Line, R: Rectangle, C: Color, W: Wipe, F: Fill

Table 3. Video on demand

Variant Features #Cl #Attr #Op #Rel

VOD SP SelM StaM PI VRC P StoM QP CS D

1 � � � � � � 32 362 217 75

2 � � � � � � � 32 362 217 75

3 � � � � � � � 33 364 221 77

4 � � � � � � � � 33 364 221 77

5 � � � � � � � 33 364 221 77

6 � � � � � � � � 33 364 221 77

7 � � � � � � � � 34 366 225 79

8 � � � � � � � 37 377 232 87

9 � � � � � � � � 37 377 232 87

10 � � � � � � � � 38 379 236 89

11 � � � � � � � � 38 379 236 89

12 � � � � � � � 35 374 226 82

13 � � � � � � � � 35 374 226 82

14 � � � � � � � � 36 376 230 84

15 � � � � � � � � 36 376 230 84

16 � � � � � � � � 40 389 241 94

Baseline � � � � � � � � � � � 42 393 249 98

VOD: Base, SP: Start Player, SelM: Select Movie, StaM: Start Movie, PI: Play
Imm, VRC: VRC Interface, P: Pause, StoM: Stop Movie, QP: Quit Player, CS:
Change Server, D: Details

Discovering Architectures with Search-Based Merge of Model Variants 105

Table 4. ZipMe

Variant Features #Cl #Attr #Op #Rel

ZM C CRC AC GZIP A32 E

1 � � 22 212 241 64

2 � � � 23 215 251 66

3 � � � 22 212 243 66

4 � � � � 23 215 253 68

5 � � � 25 223 263 68

6 � � � � 26 229 282 72

7 � � � � 25 223 265 70

8 � � � 23 216 263 69

9 � � � � 24 219 273 71

10 � � � � 23 216 265 71

11 � � � � 26 227 285 73

12 � � � 23 219 262 70

13 � � � � 24 223 279 74

14 � � � � 23 219 264 72

15 � � � � 26 230 284 74

16 � � � � 24 223 284 75

Baseline � � � � � � � 28 241 334 87

ZM: ZipMe, C: Compress, CRC: CRC-32 checksum, AC: Archive Check, GZIP:
GZIP format support, A32: Adler32 checksum, E: Extract

Observing the information in case studies tables (Tables 1, 2, 3 and 4) we
can see that there are no variants with as many features as the baselines. Fur-
thermore, the number of classes, attributes, operations, and relationships in the
variants of all case studies are smaller than the baselines.

3.3 Results and Analysis

Figure 6 shows the evolution of the best candidate architecture in each GA gen-
eration. As mentioned before, the initial population is composed of copied the
input models. The best individual of each case study after the first 200 fitness
evaluations is an input model from the initial population that has the least dif-
ference from the other input models. For BS the best individual is Variant 4 that
has 25 differences from the input. For DPL the best initial individual is Variant
2 with 127 differences. For VOD the best initial candidate architecture is Variant
16 with 315 differences. Finally, Variant 11 of ZM is the best individual of the
initial population having 854 differences from the input. These individuals are
the first solutions presented in the charts of Fig. 6. Observing the figures we can
see how the evolutionary process is able to find better candidate architectures by
reducing the number of differences. On average the best solution is found after

106 W.K.G. Assunção et al.

1400 fitness evaluations. VOD is the simplest case study, since the best solution
was reached with approximately 1000 fitness evaluations. On the other hand, ZM
is the most complex case study, needing approximately 1800 fitness evaluations
to reach the best solution. As expected for a GA, in all case studies there is a
great improvement in the number of found solutions in the initial generations,
and then the search remains stable.

Fig. 6. Evolution of the best individual

Another information gathered during the experimentation is the runtime.
The amount of time spent by the GA to perform the entire evolutionary process
was: BS = 55s 740ms, DPL = 6m 13s 17ms, VOD = 1h 46m 55s 698ms, and
ZM = 2h 10m 29s 267ms. GA ran very fast for BS, that has the smallest num-
ber of features, classes, attributes, operations, and relationships. DPL has more
features and model elements (Table 2) than BS, and for this case study, the GA
took a little more than 6 min. A huge difference on the runtime is observed for
VOD and ZM. VOD needed almost 2 h to be finished. ZM is the case study
which required the biggest amount of time, it took more than 2 h.

Now let us consider the details of the best solutions found. Table 5 shows
the information of candidate architectures and baseline models. The values of
MS presented in the third column is in relation to the input models. Regard-
ing the number of classes, attributes, operations and relationships, the baseline
model and the best individual model are very similar. For BS there is only a
single difference in the number of relationships, where the best individual has

Discovering Architectures with Search-Based Merge of Model Variants 107

one relationship less. In DPL and VOD the number of model elements are the
same. For ZM the number of model elements is different in operations and rela-
tionships. Despite having a similar number of model elements, we can observe
that the values of MS are not similar. As mentioned before in Sect. 2.2, the fit-
ness function EMF Diff/Merge computes the presence of elements, presence of
attributes values, and presence of reference values. This latter difference happens
when a model element references to, or belongs to, different model elements. This
explains the reason why baselines and best individuals have similar number of
model elements but different values of MS.

Table 5. Candidate architectures

Case Study Model MS #Cl #Attr #Op #Rel

BS Baseline 20 5 9 14 4

Best Individual 6 5 9 14 3

DPL Baseline 40 5 42 41 4

Best Individual 20 5 42 41 4

VOD Baseline 162 42 393 249 98

Best Individual 136 42 393 249 98

ZM Baseline 633 28 241 334 87

Best Individual 250 28 241 381 79

#Cl: Number of classes, #Attr: Number of attributes,
#Op: Number of operations, #Rel: Number of relationships

Table 6 presents the differences between baseline and the best individuals for
each case study. Since the comparison of EMF Diff/merge has two directions,
we show the number of differences existing from baseline to the best individual
(candidate architecture), and vice versa. For example, considering BS, there
are seven differences needed for baseline having all elements of the candidate
architecture. On the other hand, candidate architecture needs fourteen existing
differences to have all elements of baseline. In the values of Table 6 we can observe
that the baseline is the less different for the case studies BS, DPL and VOD.
This means that it is easier to transform baseline in the best than vice versa.
For ZM, the solution obtained by the GA is the most similar to the baseline.

The analysis of Tables 5 and 6 reveals that a model having all features does
not imply that it is the most similar to a set of model variants. We can infer
this by considering that the best individual obtained by the GA for each case
study is the most similar to the model variants than the baseline (third column
in Table 5), and on the other hand baseline is more similar to the best individ-
ual when comparing these two models (second and third columns of Table 6).
To illustrate this situation, let us use the models of BS presented in Fig. 7. In
Fig. 7(a) the baseline has all features implemented and in Fig. 7(b) the best
solution found is the most similar to the input models. Observe that in the best
solution there exists an operation withdrawWithoutLimit(amount: double).

108 W.K.G. Assunção et al.

Table 6. Differences between baseline and candidate architectures

Case study From baseline to best From best to baseline

BS 7 14

DPL 5 451

VOD 20 3425

ZM 4155 200

Fig. 7. Baseline and best solution for banking system

This operation is present in the variants that do not implement the feature WL
(see Fig. 1), i.e., it is present in three out of four variants. This operation is not
present in the baseline model, so this baseline model does not provide a global
overview of the variants. The baseline would not serve as reference for maintain-
ing variants that do not have feature WL. However, in the architecture we can
find out where the operation withdrawWithoutLimit is located.

3.4 Threats to Validity

The first threat to validity regards the parameter setting for the GA. We
addressed this threat by adopting default values for crossover and mutation and
set the values of population size and number of evaluations as big as possible.
The second threat is the influence of the case studies. Despite of using only four

Discovering Architectures with Search-Based Merge of Model Variants 109

case studies these systems are from different domains, and have different sizes.
They can provide evidence about the usage of our approach. But nonetheless
further studies should be conducted in the future. The third threat concerns the
comparison to other approaches. To the best of our knowledge, there are no other
studies with the exact same focus as ours. As baseline we used models known in
advance that implement all features that compose the systems, assuming these
models are the closest to an ideal solution.

4 Related Work

A detailed study on comparative techniques to architecture recovery is presented
by Garcia et al. [7]. The authors observed that most techniques identify software
components by using structural information from source code and do not present
any technique based on UML models to recovery system architecture.

Hussain et al. apply a search-based technique to recovery software architec-
ture using Particle Swarm Optimization that clusters system units based on
cohesion and coupling of the source code [10], while Jeet and Dhir use a Genetic
Black Hole to also perform clustering in the source code considering dependen-
cies between system units [11]. Differently from our approach, none of them
include UML models in the evolutionary process.

A search-based model merge approach is presented by Debreceni et al. who
support collaborative model-driven engineering by merging models developed by
different collaborators [3]. They propose a guided rule-based design space explo-
ration where candidate models are generated to reach a conflict-free merged
model. This approach also performs comparison in model states (state-based
approach). However, it applies only a three-way model merge. In contrast, in
our study we deal with the merging of multiple models. Kessentini et al. propose
a search-based technique to merge models based on sequences of operations that
originate different models [13,16]. Operation-based merge considers the opera-
tions that perform modifications in a model, instead of the state of the model.
Their goal is to find a sequence of operations to generate a merged model in
order to minimize the number of conflicts and maximize the number of success-
fully applied operations. In both pieces of work the authors apply only three-way
model merge. Our work differs from theirs in two points. First, we consider the
state of the models (state-base) instead of the operations used to generate each
variants (operation-based). Second, we deal with more than three models at
once.

Maazoun et al. propose an approach to construct an SPL design from a set
of class diagrams that are merged and then enriched with information from a
Feature Model [15]. Martinez et al. create a model-based SPL by discovering vari-
abilities and commonalities from model variants, which are then described using
Common Variability Language [17]. Even though they deal with model variants,
in contrast with us their focus on SPLs imply another upfront investment to
implement the benefits of systematic reuse, which is outside of our scope.

Rubin and Chechik propose an algorithm, named NwM, to merge multiple
models simultaneously [21]. Their algorithm starts from a common set of model

110 W.K.G. Assunção et al.

elements, the most frequent in the variants, and analyses all possible combination
of remaining elements among the variants to find the best merging operations.
This process is a polynomial-time approximation, since the problem is NP-Hard.
It works for a limited number of models. Our approach differs from NwM because
we do not need to identify the initial set of common elements and our search-
based approach can deal with many model variants.

5 Conclusions

We presented in this paper an approach to discover model-based software archi-
tecture by merging UML model variants. Our approach relies on a search-based
technique that does not require information regarding domain constrains or con-
flicting models elements in advance. The candidate architectures are evaluated
by a measure called Model Similarity.

To evaluate our approach we performed an experiment with four case stud-
ies from different domains and with different sizes. The results show that our
approach is able to find good candidate architectures even when features are
implemented in multiple variants. Furthermore, we could observe that having a
variant that implements all features of a system does not imply that this variant
has all model elements spread in other variants.

We acknowledge that some results could be influenced by internal aspects of
the case studies, however our approach is an easy way to support the discovery of
a documented architecture. This architecture helps maintenance by (i) providing
a global view of a set of variants that supports the identification of bad smells
and refactoring activities; (ii) allowing reconciling design of different variants
(potentially inconsistent) implemented by many designers; (iii) when a bug is
fixed in one variant, the architecture helps to replicate the changes to other
variants that also have the same model elements. The documented architecture
supports evolution by (i) being a starting point to combine variants into an SPL,
and (ii) reducing the time to produce variants with new combination of features.

For future work we plan to improve the match policy to include more detailed
information regarding the semantics of the model variants. Furthermore, we want
to evaluate our approach with more case studies to infer how model elements,
i.e. implementation aspects, can have influence on getting good architectures.

References

1. Assunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed,
A.: Reengineering legacy applications into software product lines: A systematic
mapping. Empirical Softw. Eng. 1–45 (2017)

2. Assunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A.:
Extracting variability-safe feature models from source code dependencies in system
variants. In: Genetic and Evolutionary Computation Conference (GECCO), pp.
1303–1310. ACM (2015)

Discovering Architectures with Search-Based Merge of Model Variants 111

3. Debreceni, C., Ráth, I., Varró, D., Carlos, X., Mendialdua, X., Trujillo, S.: Auto-
mated model merge by design space exploration. In: Stevens, P., W ↪asowski, A.
(eds.) FASE 2016. LNCS, vol. 9633, pp. 104–121. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49665-7 7

4. Dobrica, L., Niemela, E.: A survey on software architecture analysis methods. IEEE
Trans. Softw. Eng. 28(7), 638–653 (2002)

5. Durillo, J.J., Nebro, A.J.: jMetal: A java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42, 760–771 (2011). http://jmetal.sourceforge.net/

6. Faust, D., Verhoef, C.: Software product line migration and deployment. Softw.
Pract. Experience 33(10), 933–955 (2003)

7. Garcia, J., Ivkovic, I., Medvidovic, N.: A comparative analysis of software archi-
tecture recovery techniques. In: International Conference on Automated Software
Engineering (ASE), pp. 486–496. IEEE (2013)

8. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of
populations. Complex Syst. 6, 333–362 (1992)

9. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45(1), 1–61 (2012)

10. Hussain, I., Khanum, A., Abbasi, A.Q., Javed, M.Y.: A novel approach for software
architecture recovery using particle swarm optimization. Int. Arab J. Inf. Technol.
12(1), 32–41 (2015)

11. Jeet, K., Dhir, R.: Software architecture recovery using genetic black hole algo-
rithm. ACM SIGSOFT Softw. Eng. Notes 40(1), 1–5 (2015)

12. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) feasibility study. Technical report, SEI - CMU
(1990)

13. Kessentini, M., Werda, W., Langer, P., Wimmer, M.: Search-based model merging.
In: Genetic and Evolutionary Computation Conference, pp. 1453–1460 (2013)

14. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)
15. Maazoun, J., Bouassida, N., Ben-Abdallah, H.: A bottom up SPL design method.

In: 2014 2nd International Conference on Model-Driven Engineering and Software
Development (MODELSWARD), pp. 309–316, January 2014

16. Mansoor, U., Kessentini, M., Langer, P., Wimmer, M., Bechikh, S., Deb, K.:
Momm: Multi-objective model merging. J. Syst. Softw. 103, 423–439 (2015)

17. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.: Automating the
extraction of model-based software product lines from model variants. In: Interna-
tional Conference on Automated Software Engineering (ASE), pp. 396–406 (2015)

18. Martinez, J., Ziadi, T., Klein, J., Traon, Y.: Identifying and visualising common-
ality and variability in model variants. In: Cabot, J., Rubin, J. (eds.) ECMFA
2014. LNCS, vol. 8569, pp. 117–131. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-09195-2 8

19. Pohl, K., Böckle, G., van Der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

20. Riva, C., Del Rosso, C.: Experiences with software product family evolution. In:
International Workshop on Principles of Software Evolution, pp. 161–169 (2003)

21. Rubin, J., Chechik, M.: N-way model merging. In: 9th Joint Meeting on Founda-
tions of Software Engineering (ESEC/FSE), pp. 301–311. ACM (2013)

22. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Pearson Education, Boston (2008)

http://dx.doi.org/10.1007/978-3-662-49665-7_7
http://jmetal.sourceforge.net/
http://dx.doi.org/10.1007/978-3-319-09195-2_8
http://dx.doi.org/10.1007/978-3-319-09195-2_8

Tracing Imperfectly Modular Variability
in Software Product Line Implementation

Xhevahire Tërnava(B) and Philippe Collet

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
{ternava,collet}@i3s.unice.fr

Abstract. When large software product lines are engineered, a com-
bined set of traditional techniques, e.g., inheritance, design patterns,
generic types, is likely to be used for realizing the variability at the
implementation level. In these techniques the concept of feature, as a
reusable unit, does not have a first-class representation in implementa-
tion, but still an imperfect form of modularization of variability can be
achieved. We present in this paper a framework (i) to explicitly capture
and document this imperfectly modular variability – by several com-
bined techniques – in a dedicated variability model, and (ii) to establish
trace links between this model and the variability model at the specifi-
cation level. We report on the implementation of the framework through
a domain specific language, and show the feasibility of the approach on
a real feature-rich system.

1 Introduction

In Software Product Line Engineering (SPLE), the core software assets are devel-
oped during the domain engineering phase [13] and represent those reusable
artifacts and resources that form the basis for eliciting the single software prod-
ucts during the application engineering phase. Core assets are made reusable by
modeling and realizing what is common and what is going to vary, i.e., the com-
monality and the variability, between the related products in a methodological
way. In realistic SPLs, where variability is extensive, a crucial issue is the ability
to manage it in these different core assets among different abstraction levels [5].
An important aspect of the variability management activity is then the ability to
trace a variable unit, commonly known as a feature [10], along the SPLE phases.

Traceability is defined as the ability to describe and follow the life of a soft-
ware artifact forward and backward along the software lifecycle [2,7]. In SPLE
there are four main dimensions of traceability: refinement, similarity, variability,
and versioning traceability [2,13]. Variability traceability “is dealt by capturing
variability information explicitly and modeling the dependencies and relation-
ships separate from other development artifacts” [4]. In this work we focus on an
analysis of the variability traceability between the specification and implemen-
tation level, i.e., on the realization trace links [2,13] to the core-code assets.

The results of a recent survey on SPLE traceability, by Kim et al. [12],
show that none of the current approaches fully support end–to–end traceability,
c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 112–120, 2017.
DOI: 10.1007/978-3-319-56856-0 8

Tracing Imperfectly Modular Variability in SPL Implementation 113

and there are unexplored research areas in these approaches. To the best of our
knowledge, no variability traceability and management approach at the imple-
mentation level, e.g., [3,4,6,9,13,14], is currently addressing the early steps of
capturing and modeling the variability when a subset of traditional techniques
(e.g., inheritance, design patterns, generic types) are used in combination, as in
many realistic SPL settings [3,8,9].

In this paper, we propose an approach for tracing variability between the
specification level and, what we name imperfectly modular variability1 at the
implementation level. We distinguish both levels in a way similar to Becker [3].
Our contribution is a tooled framework (Sect. 3) that gives support from the early
steps of variability traceability, i.e., from the capturing and modeling of the vari-
ability in core-code assets. Unlike other works that tackled similar issues [6,9,14]
we show how to capture and model the variability when it is implemented by
several traditional techniques in combination. We keep the variability informa-
tion separated from the core code assets as by Berger et al. [4] and Pohl et al.
[13]. Further, as the variability to be represented may be large [13], our frame-
work fosters the documentation of the implemented variability in a fragmented
and flexible way, inspired by Kästner et al. [11]. We also report on our imple-
mentation of the framework by a Domain Specific Language (DSL), and on its
application to a feature-rich system, showing its feasibility (Sect. 4).

2 Motivations

Background. We consider that the variability of an SPL is documented in
a Variability Model (VM), which is commonly expressed as a Feature Model
(FM) [10]. An FM is mainly used at the specification level for scoping the soft-
ware products within an SPL in terms of features. On the other hand variation
points (vp-s) are places in a design or implementation that identify locations at
which the variation occurs [9], and the way that a vp is going to vary is expressed
by its variants.

Variability traceability can be established and used for different reasons, and
by different stakeholders [2,7]. It is mainly used for (semi)automating differ-
ent processes in SPLE, e.g., for resolving the variability (product derivation),
evolving, checking consistency, addressing, or comprehending the variability.

Imperfectly Modular Variability. For illustration and validation we use
JavaGeom2, an open source geometry library for Java that is architected around
well identified features. Although not presented as an SPL, JavaGeom is a rel-
evant and easily understandable case for demonstrating the applicability of our
framework on the equivalent of a medium-size SPL. Let us consider the imple-
mentation of a set of features as depicted in the FM on Fig. 1. StraightCurve2D
is a mandatory feature with three shown alternative features: Line2D, Segment2D,
and Ray2D. Focusing on the realization techniques (cf. Fig. 2), the abstract class

1 This notion is defined in Sect. 2 using a real feature-rich system.
2 http://geom-java.sourceforge.net/index.html.

http://geom-java.sourceforge.net/index.html

114 X. Tërnava and P. Collet

Fig. 1. Features from JavaGeom Fig. 2. A detailed design excerpt of JavaGeom

AbstractLine2D is a vp and its three variants, i.e., StraightLine2D, LineSegment2D,
and Ray2D, are created by generalizing/specializing its implementation. Features
from Fig. 1 seem to have a direct and perfect modular mapping in implemen-
tation (cf. Fig. 2), e.g., «StraightCurve2D implemented by AbstractLine2D», or
«Line2D implemented by StraightLine2D». But actually, this perfect modularity
hardly exists.

Imperfect modularity comes from the fact that a feature is a domain concept
and its refinement in core-code assets is a set of vp-s and variants (even if they are
modular), i.e., it does not have a direct and single mapping. For example, the fea-
ture Line2D uses several vp-s, such as AbstractLine2D and CirculinearElement2D

(other vp-s are not shown), the variant StraightLine2D (cf. Fig. 2), plus their
technical vp-s (Sect. 3.2), as the getSymmetric() vp of the AbstractLine2D. When
a combined set of traditional techniques are used for implementing the variabil-
ity, e.g., inheritance for StraightCurve2D, overloading for getSymmetric(), the
code is not shaped in terms of features. Therefore, the trace relation is n–to–m
between the specified features to the vp-s and variants at the implementation.
Moreover an SPL architect has to deal with a variety of vp-s and variants.

Our approach addresses the ability to trace this imperfectly modular vari-
ability in implementation, which we define as follows: An imperfectly modular
variability in implementation occurs when some variability is implemented in a
methodological way, with several implementation techniques used in combination,
the code being not necessarily shaped in terms of features, but still structured with
the variability traceability in mind.

3 A Three Step Traceability Approach

To trace imperfectly modular variability in implementation, we propose an app-
roach that follows three main steps (cf. Fig. 3): ① capturing the implemented
variability in terms of vp-s and variants, as abstract concepts, ② modeling (doc-
umenting) the variability in terms of vp-s and variants, while keeping the con-
sistency with their implementation in core-code assets, and ③ establishing the
trace links between the specified and implemented variabilities.

Tracing Imperfectly Modular Variability in SPL Implementation 115

Fig. 3. Proposed traceability approach (T VMm stands for Technical Variability Model
(cf. Sect. 3.2) of the core-code asset cam, with vp-s {vpa, vpb, ...} and their respective
variants {va1, va2, ...}. While, {f1, f2, ...} are features in the FM.)

3.1 Capturing the Variability of Core-Code Assets (Step ①)

The core-code assets that realize variability usually consist of a common part
and a variable part. It can happen that a whole asset is also a variable asset.
A core-code asset can be, e.g., a source file, package, class. The variable part
consists of a mechanism (i.e., technique) for creating the variants, a way for
resolving the variants, and the variants themselves. They are abstracted using
the concepts of variation points (vp-s), variants, and their dependencies.

Let the set of all vp-s in an SPL be VP = {vpa, vpb, vpc, ...} for the set of core-
code assets, with variability or variable, CA = {cam, can, cao, ...}. We assume
that a vpx ∈ VP is implemented by a single traditional technique tx ∈ T . The
set T of possible techniques for vpx is then made explicit in our framework,

T = {Inheritance , Generic Type , Overriding , Strategy

pattern , Template pattern ,...}

A vp is not a by-product of an implementation technique [5], therefore we have
to tag it in some way. “Tagging a vp” means to map the vpx ∈ VP concept to
its concrete varying element of any cax ∈ CA. For example, we abstract/tag the
superclass AbstractLine2D (cf. Fig. 2) with vp_AbsLine2D, and its subclasses as
variants v_Line2D, v_Segment2D, and v_Ray2D, respectively. Depending on the size
of variability and the used technique, the nature of a core asset element that
represents a vp varies. We gathered their variety as characteristic properties of
vp-s. Their properties that are important to be captured are: granularity, relation
logic, binding time, evolution, and resolution.

Granularity. A vp in a core-code asset can represent a coarse-grained element
that is going to vary, e.g., a file, package, class, interface; a medium-grained
element e.g., a method, a field inside a class; or a fine-grained element e.g., an
expression, statement, or block of code.

Logic Relation (LG). The set of the logic relations between variants in a vp,
that are commonly faced in practice, is similar to the possible relations between
features in an FM. Thus, a tx ∈ T offers at least one of these logic relations,

LG = {Mandatory , Optional , Alternative , Multi -Coexisting}

116 X. Tërnava and P. Collet

Binding Time (BT). Each vp is associated with a binding time, i.e., the time
when is decided for its variants, or when they are resolved. Based on the available
taxonomies [6], the possible binding times for the vpx are:

BT = {Compilation , Assembly , Programming time ,

Configuration , Deploy , StartUp , Runtime}

Evolution (EV). Depending on whether a vp is meant to be evolved in the future
with new variants or not, it can be EV = {Open, Close}.

For example, the vp_AbsLine2D has a class level granularity (cf. Fig. 2). It is
resolved at runtime to one of its alternative variants, v_Line2D, v_Segment2D, or
v_Ray2D, and we tag it as open as it is implemented as an abstract class.

Another characteristic property of a vp is how it is resolved, i.e., whether a
variant is added, removed or replaced by another variant. This matters during
the process of product derivation, which is a possible usage of our framework.

3.2 Modeling the Implemented Variability (Step ②)

During this phase, the variability of a core-code asset cax is modeled in terms of
vp-s and variants as abstractions (cf. Fig. 3, step ②). We distinguish five types
of vp-s that can be chosen from:

X = {vp , vp_unimpl., vp_technical , vp_optional , vp_nested}

A resolution for each of them is given in Table 1. The implementation technique
tx ∈ T of the vpx ∈ VP, which relation we write as (vpx, tx), describes three main
properties of the vpx: the relation logic for its variants, the evolution, and the
binding time. Possibly, other properties can also be abstracted and attached.
Then, tx = {lgx, evx, btx, ...}, where lgx ∈ LG, evx ∈ EV, and btx ∈ BT . So,
when the vpx is an ordinary vp (cf. Table 1) we model the variability in a core-
code asset as a set of its variants V = {vx1, vx2, vx3, ...}, and the characteristic
properties derived from the vpx’s implementation technique tx. This leads to the
following definition:

vpx = {V, tx} = {{vx1, vx2, vx3, ...}, tx} (1)

As an illustration we present the ordinary vpx (cf. Table 1) as in Fig. 4, num-
bered with 1 . Similarly, a technical vp, e.g., the technical vpa of vpy, is repre-
sented as in 2 . An optional vp is modeled as the vpz in 3 . We use the acronym
opt here in order to distinguish between the optional relations between variants
in a vp and the optionality of the vp itself. Moreover a nested vp is illustrated as
the nested vpb of vpz, where the variant vz2 of vpz represents a common part for
its three variants {vb1, vb2, vb3}. Finally, the vpc = {{∅}, tc} in 4 is an unim-
plemented vp. These types of vp-s can be combined, e.g., an optional vp can be
ordinary, unimplemented, or can have other nested or technical vp-s.

Instead of modeling the whole implemented variability at once and in one
place, we model it in a fragmented way. A fragment can be any unit (i.e., a
package, a file, or a class) that has its inner variability and that is worth to

Tracing Imperfectly Modular Variability in SPL Implementation 117

Table 1. Types of variation points that are commonly faced in practice

Types Description

Ordinary A vp is introduced and implemented (i.e., its variants are
realized) by a specific technique

Unimplemented A vp is introduced but is without predefined variants (i.e., its
variants are unknown during the domain engineering)

Technical A vp is introduced and implemented only for supporting
internally the implementation of another vp, which realizes some
of the variability at the specification level

Optional The vp itself, not its variants, is optional (i.e., when it is
included or excluded in a product, so are its variants)

Nested vp When some variable part in a core-code asset becomes the
common part for some other variants

be separately modeled. For this reason, we designed specific models, named as
Technical Variability Models (T VM), which are created and maintained locally,
i.e., closer to the core-code assets (cf. Fig. 3). They contain the abstractions of
vp-s and variants, their tags with core asset elements, and describe the variability
of a specific core-code asset. For example, the variability of a cam with six
different vp-s is modeled by the T VMm as in Fig. 4.

All the T VMs together constitute the Main Technical Variability Model
(MT VM). Unlike the organization of features in an FM as a tree structure, in
MT VM the vp-s reside in a forest-like structure. Moreover, the meaning of a vp
is extended, i.e., it is the place at which the variation occurs [9], and represents
the used technique to realize the variability.

Fig. 4. An example of the Technical Variability Model (T VMm) for a cam

3.3 Establishing the Trace Links (Step ③)

The last step of our approach (cf. Fig. 3, step ③) is to map the variability between
the VM at specification level (i.e., features in an FM) and the MT VM at
implementation level (i.e., vp-s and variants), by establishing the trace links
between them.

118 X. Tërnava and P. Collet

Let us suppose that fx ∈ FM is a variable feature at specification level,
where FM = {f1, f2, f3, ...}. For mapping features to vp-s, we use a single bidi-
rectional type of trace links implementedBy (�−→) or implements , which
presents the variability realization trace link in implementation. When fx is
implemented ideally by a single variation point vpx, or conversely, we write:
fx �−→ vpx, or implementedBy(fx, vpx). Similarly, fx can be implemented by a
single variant vxn ∈ V (cf. Sect. 3.2), i.e., fx �−→ vxn. For example, the feature
StraightCurve2D (cf. Fig. 1) is implemented by vp_AbsLine2D (cf. Fig. 2), i.e.,
StraightCurve2D �−→ vp_AbsLine2D, or Ray2D �−→ v_Ray2D. When fx is imple-
mented by several vp-s, which can be from the same core-code asset or not, then
fx �−→ {vpx, vpy, vpz, ...}.

The mapping between features and vp-s is a partial mapping, as some features
in FM are abstract features (i.e., do not require an implementation), or they
can be deferred to be implemented later.

4 Implementation and Application

We implemented the proposed framework as an internal DSL in Scala. The
interoperability between Java and Scala enabled us to use the DSL in JavaGeom.
To document and trace variability, the DSL provides two modules fragment and
traces, respectively. We used them to analyse 92% of the 35,456 lines of code
from JavaGeom. The successful documentation phase resulted in 11 T VMs, all
of them being at the package level. We observed that vp-s in JavaGeom are
implemented using up to three techniques, inheritance, overloading, and generic
types. Then, we established the trace links between the specified features (cf.
Fig. 1, which consist of 110 features extracted from its documentation) to the
vp-s and variants in implementation (cf. Fig. 2). We successfully traced 199 vp-s,
with 269 variants, showing the feasibility of our approach.

Capturing and documenting different types of vp-s and their implementation
techniques during the variability traceability, as in JavaGeom, becomes impor-
tant during the usage of trace links. For example, the relation logic between the
variants in a vp is needed to check the consistency between the variability at the
specification and implementation level. Similarly, knowledge of the binding time
of vp-s is necessary during the product derivation.

5 Conclusion

Tracing the variability between the specification and implementation levels is an
important part of the development process in SPL engineering. At the implemen-
tation level, a combination of traditional variability implementation techniques
are actually used in many realistic SPLs, thus leading to a form of imperfectly
modular variability in implementation. The key contribution of our approach is
a three-step framework for capturing, documenting, and tracing this imperfectly
modular variability, together with some DSL-based tool support.

Tracing Imperfectly Modular Variability in SPL Implementation 119

A limitation of the DSL, but not of the framework itself, is that we could
not apply it for tracing the variability at the finest granularity level, e.g., at
the expression level, as our internal DSL in Scala uses reflection for tagging
the variability. Although using reflection is not mandatory, this helps to keep
the strong consistency between the abstractions of vp-s and variants with the
core-code assets themselves. Although we used the DSL successfully in a real
feature-rich system, we plan to extend this framework in supporting the docu-
mentation of the dependencies between the vp-s themselves and to integrate the
DSL with another DSL that models the variability specifically at the specifica-
tion level, such as FAMILIAR [1]. With these two extensions, we plan to apply
our variability traceability framework to (semi)automated consistency checking
of variability between the specification and implementation levels on several case
studies.

References

1. Acher, M., Collet, P., Lahire, P., France, R.B.: FAMILIAR: a domain-specific lan-
guage for large scale management of feature models. Sci. Comput. Program. (SCP)
78(6), 657–681 (2013)

2. Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.C., Rummler, A.,
Sousa, A.: A model-driven traceability framework for software product lines. Soft-
ware and Systems Modeling 9(4), 427–451 (2010)

3. Becker, M.: Towards a general model of variability in product families. In:
van Gurp, J., Bosch, J. (eds.) Workshop on Software Variability Management,
Groningen, The Netherlands, pp. 19–27 (2003). http://www.cs.rug.nl/Research/
SE/svm/proceedingsSVM2003Groningen.pdf

4. Berg, K., Bishop, J., Muthig, D.: Tracing software product line variability: from
problem to solution space. In: Proceedings of the 2005 Annual Research Conference
of the South African Institute of Computer Scientists and Information Technolo-
gists on IT Research in Developing Countries, pp. 182–191. South African Institute
for Computer Scientists and Information Technologists (2005)

5. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J.H., Pohl, K.: Vari-
ability issues in software product lines. In: Linden, F. (ed.) PFE 2001. LNCS, vol.
2290, pp. 13–21. Springer, Heidelberg (2002). doi:10.1007/3-540-47833-7 3

6. Capilla, R., Bosch, J., Kang, K.C.: Systems and Software Variability Management.
Springer, Heidelberg (2013)

7. Cleland-Huang, J., Gotel, O., Zisman, A.: Software and Systems Traceability, vol.
2. Springer, London (2012)

8. Coplien, J.O.: Multi-paradigm Design for C+. Addison-Wesley, Reading (1999)
9. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and

Organization for Business Success. ACM Press/Addison-Wesley Publishing Co.,
New York (1997)

10. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-oriented
reuse method with domain-specific reference architectures. Ann. Softw. Eng. 5(1),
143–168 (1998)

11. Kästner, C., Ostermann, K., Erdweg, S.: A variability-aware module system. In:
ACM SIGPLAN Notices, vol. 47, pp. 773–792. ACM (2012)

http://www.cs.rug.nl/Research/SE/svm/proceedingsSVM2003Groningen.pdf
http://www.cs.rug.nl/Research/SE/svm/proceedingsSVM2003Groningen.pdf
http://dx.doi.org/10.1007/3-540-47833-7_3

120 X. Tërnava and P. Collet

12. Kim, J., Kang, S., Lee, J.: A comparison of software product line traceability
approaches from end-to-end traceability perspectives. Int. J. Software Eng. Knowl.
Eng. 24(04), 677–714 (2014)

13. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer Science & Business Media,
Heidelberg (2005)

14. Schmid, K., John, I.: A customizable approach to full lifecycle variability manage-
ment. Sci. Comput. Program. 53(3), 259–284 (2004)

Verification and Refactoring for Reuse

Composition of Verification Assets for Software
Product Lines of Cyber Physical Systems

Ethan T. McGee1(B), Roselane S. Silva2, and John D. McGregor1

1 School of Computing, Clemson University, Clemson, SC, USA
{etmcgee,johnmc}@clemson.edu

2 Department of Computer Science, Federal University of Bahia (UFBA),
Salvador, BA 40170-110, Brazil

rosesilva@dcc.ufba.br

Abstract. The emerging Internet of Things (IoT) has facilitated an
explosion of everyday items now augmented with networking and com-
putational features. Some of these devices are developed using a Software
Product Line (SPL) approach in which each device, or product, is instan-
tiated with unique features while reusing a common core. The need to
rapidly develop and deploy these systems in order to meet customer
demand and reach niche markets first requires shortened development
schedules. However, many of these systems perform roles requiring thor-
ough verification, for example, securing homes. In these systems, the
detection and correction of errors early in the development life cycle is
essential to the success of such projects, with particular emphasis on the
requirements and design phases where approximately 70% of faults are
introduced. Tools such as the Architecture Analysis & Design Language
(AADL) and its verification utilities aid in the development of an assured
design for embedded systems. However, while AADL has excellent sup-
port for the specification of SPLs, current verification utilities for AADL
do not fully support SPLs, particularly SPL models utilizing composi-
tion. We introduce an extended version of AGREE, a verification utility
for AADL, with support for compositional verification of SPLs.

Keywords: Verification · AADL · AGREE

1 Introduction

Cyber-Physical Systems (CPS) are physical systems that are monitored, con-
trolled, integrated and coordinated by a software layer. These systems bridge
the gap between the discrete and continuous worlds [7] and are used in multiple
domains: automotive, medicinal and aerospace among others. They also form the
backbone of the emerging Internet of Things (IoT). Due to a need of being first
to market, some manufacturers of IoT CPS have adopted a Software Product
Line (SPL) strategy allowing them to reuse core functionality among products
while tailoring the features of each product to the device’s intended use. First
to market also necessitates shortened development cycles imposing the need for
c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 123–138, 2017.
DOI: 10.1007/978-3-319-56856-0 9

124 E.T. McGee et al.

faults to be discovered quickly. Research has shown that approximately 70% of
all faults originate in the requirements and design phases of the Software Devel-
opment Life Cycle; the majority, 80%, of these errors are not caught until later
in the development life cycle [2]. The Architecture Analysis & Design Language
(AADL), designed for modeling embedded systems, also has shown good success
in modeling the intricacies of SPLs [1]. AADL has a strong set of verification tools
that allow system designs to be tested for defects, thus allowing more defects
to be caught early. However, none of the verification tools for AADL currently
available fully support the verification of SPLs.

AADL supports compositional construction of design components, allowing it
to natively represent the design of SPLs using design operators, such as substitu-
tion, to satisfy the variation needs of the implementation hierarchy within a com-
ponent. AADL also provides variation mechanisms that support the incremental
definition of component variants. The language provides facilities allowing one
component to be defined by extending another component and permitting the
inherited types to be refined into more contextually appropriate types, demon-
strated with a model in Figs. 1 and 2. This allows the designer to specify, for
example, a functional interface which each product of the SPL will implement
and have each product inherit the interface rather than re-specify it for each
product individually. AADL’s primary behavioral verification mechanism, the
Assume Guarantee REasoning Environment (AGREE), does not natively sup-
port component extension requiring more cumbersome verification conditions for
verifying designs incorporating extension than should be necessary. If AGREE
fully supported AADL’s inheritance mechanisms it could be used to verify com-
plex SPL designs more naturally, and it would enable the reuse of verification
assets in SPLs just as AADL interfaces can be reused.

In this paper, we present an extension to the AGREE language that provides
inheritance support. This is done via two accomplishments:

– detecting the AADL extends keyword (how AADL natively indicates inheri-
tance) and overriding the behavior so that AGREE can utilize the connection,
and

– introducing abstraction into the AGREE annex allowing children to override
functionality inherited from their parent(s).

The remainder of this paper is structured as follows. In Sect. 2 we provide the
background necessary for understanding the remainder of this work. In Sect. 3,
we present the method used in modifying AGREE, and we present an extended
example in Sect. 4. Finally, related work is over-viewed in Sect. 5.

2 Background

2.1 AADL

AADL is a language for the architectural modeling of embedded software [12].
It is a standard of the Society of Automotive Engineers (SAE) [13] and incor-
porates many features for the representation of both hardware (i.e. processors,

Composition of Verification Assets for Software Product Lines 125

memory, buses) and software (i.e. data, thread, subprograms). AADL supports a
model-based architecture design through fine-grained modularity and separation
of concerns. It’s syntax also includes capabilities for querying the architectural
model facilitating verification and validation of the models.

Our extension to AGREE utilizes the extensibility feature of the language.
This is represented by the extends keyword and is how AADL designates inheri-
tance. An extender receives all of the features, sub-components and connections
of the component it extends. The extender is also permitted to refine compo-
nents inherited from the parent. An AADL snippet using extends and refines
is shown in Figs. 1 and 2. However, unlike features, properties and other native
AADL elements which can be extended and refined, annexes are not inherited
by extenders.

Fig. 1. AADL parent example Fig. 2. AADL child extends example

2.2 AGREE

AGREE is a compositional verification tool for AADL based on the widely-
used assume-guarantee contract verification method [18]. Designers state their
assumptions about input and specify guarantees concerning output provided
the assumptions are met. Designers also specify the behavior of a system to
ensure that the system can fulfill its guarantees. Analysis work in AGREE is
performed by a Satisfiability-Modulo Theorem (SMT) prover that checks the
behavior model for contradictions that would prevent the system from fulfilling
its guarantees. Any found contradictions are then presented to the user as a case
against the system’s correctness.

AGREE is an AADL annex that encapsulates the definitions of contracts and
specifications. A sample of AGREE’s syntax, an assume-guarantee contract, is
shown in Fig. 1. Note that AGREE splits the assume-guarantee contracts from
their behavior specification. The assume-guarantee contract is placed in the func-
tional interface along with the input / output specifications, and the behavior
specification is placed in the implementation. In this way, the multiple imple-
mentations common in an SPL can use the same assumptions and guarantees
while each has its own behavior specification.

126 E.T. McGee et al.

2.3 Software Product Lines

A Software Product Line (SPL) is a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of a partic-
ular market segment / mission and are developed from a common set of core
assets in a prescribed way [22]. SPLs have achieved remarkable benefits includ-
ing productivity gains, increased agility, increased product quality and mass
customization [8].

Fig. 3. SPL feature model

SPLs are of particular importance to the IoT, particularly for their cost /
time savings and productivity gains. They enable IoT companies to maintain a
common core of features which can be reused across several products through
customization of the product instantiation. This reuse permits shortened devel-
opment schedules and also allows companies to maintain a common set of appli-
cations, each targeted to a specific audience.

Figure 3 represents an example SPL feature model, a diagram of the configu-
rations each product in the product line can choose. Some features of the cruise
control are required, for example, the sensor which determines the current speed
of the vehicle, a method of requesting the vehicle accelerate and a method of
enabling / disabling the cruise control system. Other features, like the radio to
facilitate communication between vehicles, are optional. Each product will make
a selection of which features to include and, for the features, which have multiple
variations, which variations to use.

Composition of Verification Assets for Software Product Lines 127

3 Method

AGREE is packaged as a plug-in for the Open Source AADL Tool Environment
(OSATE) development workbench, which is built on top of Eclipse [21]. AGREE
adds several features to OSATE. The first addition is a right-click context menu
for the model outline viewer, shown in Fig. 5. This context menu exposes the
verification options supported by AGREE and allows the user to select which
component(s) he wishes to verify. The second addition is that of an annex which
exposes the AGREE language, its parser, and its semantic analyzer as well as
the interface to the prover. An overview of the work-flow of the plug-in can be
seen in Fig. 4.

Fig. 4. Workflow for AGREE

The user accesses the context menu for a component and selects a ver-
ification task. The architectural description of the component, the AGREE
annex contents and any sub-components are then provided to the plug-in. The
AGREE contract statements are extracted from the component and parsed into
an Abstract Syntax Tree (AST). The AST is provided to a formatter which
transforms the AST into the syntax expected by the Satisfiability-Modulo The-
orem (SMT) prover. The results of the SMT prover’s execution are provided
back to OSATE in a displayable format which OSATE renders. A view of the
rendered results can be seen in Fig. 5. Note that OSATE displays successfully
verified conditions of a component with green checks, and errors are displayed
with a red X. Users can right-click the invalidated conditions for more detail.

Fig. 5. Context menu & AGREE console

AGREE can be used for both architectural design and verification. When
used for design, AGREE contracts are specified at a broad level first, then as
the architecture matures, they become increasingly refined. Throughout this

128 E.T. McGee et al.

paper, we primarily focus on AGREE’s verification functionality. Note, however,
that our work is applicable to the design functionalities of AGREE as well.

Our extension to AGREE includes modifications to the architecture of the
plugin facilitating inheritance support 1. We also introduce new statements to the
language which facilitate inheritance while also providing the ability to disable
it for backwards compatibility. We first cover the modifications made to the
architecture of the plugin.

In order to facilitate inheritance, we modified the parser of AGREE so that
it no longer directly communicated ASTs to the SMT Formatter. We also added
a repository which serves two purposes. It first functions as a temporary bank
which holds all ASTs of the architectural model. Secondly, it functions as a com-
poser that is capable of stitching together parent and child ASTs into a single,
unified AST. The composer functionality is invoked only when a component’s
AST is requested by the Formatter. These modifications along with the original
architecture are visualized in Fig. 4.

From the perspective of the composer, there are three types of statements
that an annex can contain. The first are original, or normal, statements. These
are statements that are introduced in the current specification and do not exist
at any higher level of the inheritance hierarchy. The second are inherited state-
ments, statements that are introduced at a higher level of the inheritance hier-
archy which are copied down into the behavior of the child. And finally, override
statements are statements which amend the behavior of inherited statements.

When an AST is requested from the Formatter, the inheritance hierarchy of
the requested component is gathered, and then a composed AST is generated
starting at the highest level of the hierarchy. As the composer moves down each
level of the hierarchy, it invokes a merging formula

C = (I + O) + N

where C is the composed behavior of the current level and all higher levels.
I represents inherited behavior, N represents normal behavior and O is the
override behavior. As the order of statements in the AGREE annex is impor-
tant, inherited behavior is always included first, taking care to account for any
overrides. Finally, new behavior introduced in the current level is appended. The
composed AST is then passed down the inheritance hierarchy until all levels have
been evaluated. Once the hierarchy is completely traversed, the final composed
behavior is returned to the Formatter.

We now cover the modified / additional statements added to the AGREE
language in order to facilitate inheritance. A short overview of the statements
that have been added or modified is presented in Table 1. Each statement will
be discussed and an example of its use provided.

Guarantee / Assume Statements. The guarantee and assume statements of the
AGREE language are analogous to the pre-condition / post-condition concepts

1 We will refer to the AGREE language provided in the standard OSATE distribution
as “traditional” and our version as “extended”.

Composition of Verification Assets for Software Product Lines 129

Table 1. AGREE syntax overview

Keyword Description

assume declare that the system expects input to conform
to the following statement

do not inherit explicitly disable inheritance

eq declare a concrete variable or override an abstract
variable

eq abstract declare an abstract variable

guarantee declare that output of the system will conform to
the following statement

inherit explicitly state that inheritance from a parent
occurs

of other verification tools. With traditional AGREE, the assumptions and guar-
antees of parent components are not inherited by their children despite the fact
that many times the children will use the same inputs, outputs, assumptions
and guarantees as their parents. Our extended version of AGREE allows for
such inheritance. We also recognize that it is sometimes necessary to tweak the
assumptions or guarantees of your parent, particularly if the child introduces
new inputs or outputs that the parent does not have.

An example of AGREE’s assume and guarantees are shown in Figs. 6 and 7.
Also shown in these figures is a demonstration of how our extended version of
AGREE permits verification assets to be reused across different components of
the model hierarchy as well as how assumptions and guarantees can be overridden
by children if necessary. The parent component, introduced in Fig. 6 has two
features, a single input and output, and the AGREE annex assumes that the
input will be greater than or equal to 0 while guaranteeing that the output will
be greater than or equal to 1. The behavior of the parent is simply to take
the input value and set the output to the input plus 1. The child, shown in
Fig. 7, adds an additional complication by adding a second output. Note that
in Fig. 7 all inherited pieces are shown using comments (denoted by a double
dash in AGREE and AADL). The guarantees of the child have to be modified or
amended to account for this extra output. The override is driven by the descriptor
string, or, children who have an assumption or guarantee with a descriptor that
matches a parent assumption / guarantee’s descriptor will override the parent’s
matching descriptor.

Eq / Eq Abstract Statements. In traditional AGREE, the eq statement allows
for the declaration of a single variable. In introducing inheritance, we modified
the eq statement to either introduce a new variable or to override an existing
variable if the variable in the child has the same name as a variable in the
parent. We also introduced an eq abstract statement that provides a way to
define a variable without providing an implementation for that variable. Abstract
variables in AGREE are much like abstract variables in Java or C++. They can

130 E.T. McGee et al.

Fig. 6. AADL G / A example Fig. 7. AADL child G / A example

be used in calculations and statements just like any other variable but their
implementation is left for children, or extenders, to provide. We also introduce
the concept of an abstract implementation, an implementation specification that
contains an AGREE annex which introduces or inherits an abstract variable. In
order for an implementation specification to be non-abstract, or concrete, it
must override and provide an implementation for all inherited abstract variables
without introducing any new abstract variables.

An example of eq and eq abstract statements and how they are used in
inheritance is shown in Figs. 8 and 9. Once again comment lines (those starting
with a double dash) represent components that have been inherited. The parent
figure, shown in Fig. 8, has one output, a string representing the type. In the
parent figure, the type produced by the component is guaranteed to be null. This
is reflected in the parent’s implementation as myType has been declared abstract
and not provided with an implementation. The child figure, shown in Fig. 9,
overrides the parent’s guarantee and asserts that the component will declare
its type as “child”. The child, however, does not have a full implementation,
only a provision of a definition for the inherited abstract variable. The assert
that ties the abstract variable to the output is inherited and does not require
respecification.

Inherit / Do Not Inherit Statements. The inherit and do not inherit statements
are unique to our extended implementation of AGREE. The do not inherit
statement allows inheritance to be explicitly disabled allowing the traditional
behavior of the plug-in to be used. This statement was introduced to provide
a means of enabling backwards compatibility. When encountered, the composer

Composition of Verification Assets for Software Product Lines 131

Fig. 8. AADL Eq example Fig. 9. AADL child Eq example

of the repository component halts and the current results are returned without
including any statements from parent annexes. The inherit statement is similar
to the do not inherit statement in that it allows a developer to explicitly state
that inheritance does occur. The statement has no effect on the composer, how-
ever, it does allow developers to specify which hierarchies use inheritance and
which hierarchies do not if a mixed model is being utilized.

Finally, we provide an example where inheritance is controlled using the
inherit and do not inherit statements. This example is shown in Figs. 10 and 11
and can be seen in the implementation’s AGREE annexes. Note that the child’s
annex does not inherit the assert of the parent due to the child specifying that
inheritance should not be used. Note, however, that the do not inherit statement
does not affect extends. The child will still inherit the features of the parent even
though the AGREE annex will not inherit any attributes of the parent.

A video providing more detail and an example can be found online at https://
goo.gl/VK6NKe. The source of the implementation is available at https://goo.
gl/TG9A4r, and an Eclipse / OSATE compatible update site is provided at
https://goo.gl/QZhSrv.

4 Example

We now provide an example of a SPL verified using our extended version of
AGREE. First, an overview of the architecture and excerpts of AADL are pro-
vided for discussion. Also shown are examples of AGREE using the features
introduced in our extended version. Second, we demonstrate that the extended
version of AGREE is capable of working with models that use several layers of
inheritance.

https://goo.gl/VK6NKe
https://goo.gl/VK6NKe
https://goo.gl/TG9A4r
https://goo.gl/TG9A4r
https://goo.gl/QZhSrv

132 E.T. McGee et al.

Fig. 10. AADL inherit example Fig. 11. AADL child inherit example

4.1 Architecture Overview

The example SCSPL architecture, whose product hierarchy is diagrammed in
Fig. 12 and whose feature model is shown in Fig. 3, has three levels. The top-most
level is a collection of core assets shared by each of the different types of cruise
controls, or products. The middle level includes a standard cruise control and an
adaptive cruise control. The standard cruise control is the type common in many
vehicles, particularly older vehicles. It uses the “Maintain Driver Preference”
variant for the controller logic feature and does not have a radio or speed decrease
detector, and its increase requestor feature variant is simply a button. It allows
a user to manually set a speed for the car to maintain, and sensors in the engine
determine how the throttle needs to be modified in order for the requested
speed to be achieved. The adaptive cruise control, found in some vehicles, is
the same as the standard cruise control except that it has extra sensors on
the front of the vehicle that also feed into the throttle actuator as well as the
braking system. If the cruise control is causing the vehicle to approach another
vehicle too rapidly, the adaptive cruise control can use the brake actuators to
match the speed of the vehicle in front. This product uses the “Rear Distance
Sensor” variant and a button for the increase speed requestor feature and the
“Front Distance Sensor” and a button for the decrease speed requestor feature.
The “Maintain Gap” variant is chosen for the controller feature. Finally, the
bottom of the hierarchy contains a collaborative-adaptive cruise control. This
cruise control, in addition to front sensors, includes networking capabilities that
allow vehicles to communicate amongst one another to determine the safest

Composition of Verification Assets for Software Product Lines 133

Fig. 12. Example SPL architecture

speed for all vehicles to be traveling considering the location and lane of the
vehicle, so the optional radio feature is selected. This cruise control uses the
“Maintain Gap and Nearby” variant for the controller logic feature. In addition
to other vehicles, collaborative-adaptive cruise controls could communicate with
Traffic Management Centers or roadside infrastructure, however, this is outside
the scope of this architecture.

4.2 Verifying Multi-layered Architectures

We will now introduce several models which represent parts of the cruise control
architecture. These models will be used to demonstrate, using a more extensive
example, how the extended version of AGREE facilitates reuse within models
utilizing the inheritance features of AGREE.

The first model used is the model of the abstract cruise control, shown in
Fig. 13. This represents all of the shared features found in each cruise control
present in the SPL of cruise controls. There are 3 inputs and 1 output. The
inputs represent whether or not the cruise control is turned on (enabled), what
the target speed of the cruise control should be (targetSpeed) and what the
current speed of the vehicle is (actualSpeed). Note that many cruise controls will
not operate below a minimum speed threshold, and for our purposes, we have
set this threshold at 30 miles per hour.

The single output represents the throttle setting for the vehicle. A method of
decreasing the speed is not included in the shared model as this is not a shared
trait of the cruise controls in our product line. For example, the standard cruise
control is not connected to the braking system of the vehicle. It can moderate
the speed by letting off of the throttle, allowing the vehicle to slow down, but
it cannot stop the vehicle; this task is left up to the driver. The adaptive cruise
control, however, is connected to the braking system of the vehicle and it can
issue a command to the braking system over the vehicle bus slowing the vehicle.

134 E.T. McGee et al.

Fig. 13. Shared core asset model

The AGREE annex of Fig. 13 focuses on the verification of a single property,
assuring that the increase speed event fires only when the cruise control system is
enabled and the target speed is less than the actual speed. In all other instances,
the increase speed event should be disabled. The controls around whether or not
the speed should be increased will depend largely on the components used by
the instantiated product of the product line, so an abstract variable shouldIn-
creaseSpeed is introduced in the abstract cruise control system’s implementation
that children will override based on their requirements.

The second model provided is a representation of the adaptive cruise control.
Recall that the adaptive cruise control is connected to various other sensors on
the vehicle that allow it to maintain both speed and, in the presence of another
vehicle, a gap between the vehicles.

The adaptive model is shown in Fig. 14. Note that 3 additional inputs are
provided as well as 1 additional output. The additional output represents the
connection to the braking system of the vehicle and can be used to slow the
vehicle down when necessary. The additional inputs represent the upper limit
of the gap between the vehicle and the vehicle in front (upperGapLimit) as well
as the lower limit on that gap (lowerGapLimit). The final input is the current
measured gap distance (gap).

Notice that the adaptive model has many more assumptions and guarantees
than the shared model, including guarantees from the shared model that are over-
ridden. The implementation is also much more detailed, and it provides an imple-
mentation for the abstract variable of the shared model (shouldIncreaseSpeed).
The reason for the extra complexity, of course, is due to the need to factor a gap

Composition of Verification Assets for Software Product Lines 135

Fig. 14. Adaptive cruise control model

calculation into whether or not the increase speed event should be fired as well
as constraints on the decrease speed event. However, notice that, other than the
over-ridden guarantee and abstract, none of the parent’s restrictions or implemen-
tation details need to be copied down into the child. This allows that only verifi-
cation assets unique to the adaptive cruise control are required to be attached to
the adaptive cruise control. This reuse increases the maintainability of the model
and reduces the workload / cognitive load on those developing the model.

136 E.T. McGee et al.

Fig. 15. Adaptive cruise control verification results

Finally, we provide the results of verifying the adaptive cruise control using
the extended AGREE implementation in Fig. 15. Note in the figure that the
assumptions / guarantees of both models are present despite the assumptions /
guarantees of the parent not being specified in the child. This demonstrates that
our inheritance mechanism works as expected, and the results of the composition
can be validated by a SMT prover.

5 Related Work

Compositionally composed assume-guarantee verification is a popular verifica-
tion technique, and it has been used successfully in many other ecosystems out-
side of AADL. Some examples of this are [15,16]. Our work differs from these
groups in where verification is applied to the system. We apply compositional
verification to the architecture during the design phase of the development life
cycle, while these projects apply verification technique later.

Our work is most similar to the work performed by the following groups,
particularly [18,26], both of which used AADL. Additional architecture-based
techniques exist, such as [14,17,20]. Our work differs from these groups in that
we are explicitly focused on allowing the verification assets to be reused in the
same manner as SPL assets, exploiting the inheritance features of the AADL
language.

6 Conclusion

We have introduced an extension to the AGREE language allowing it to support
compositional verification of SPL models that utilize inheritance. Our extended
version of AGREE facilitates the re-use of verification assets across multiple lev-
els of inheritance hierarchies present in SPL. It also allows verification assets to
incorporate abstraction and refinement into their definitions further simplifying
the verification assets to be shared and ensuring they are more maintainable.
In future work, we plan to incorporate abstraction in the other statements of
traditional AGREE. We also plan to further validate our claims of verification
asset reusability by utilizing the extended AGREE module to analyze more com-
plex models, particularly dynamic SPL. The extended version of AGREE will
be used to determine the correctness of such models and their appropriateness
to an organization’s goals.

Composition of Verification Assets for Software Product Lines 137

Acknowledgements. The work of the authors was funded by the National Science
Foundation (NSF) grant # 2008912.

References

1. Gonzalez-Huerta, J., Abrahão, S.M., Insfrán, E., Lewis, B.: Automatic derivation
of AADL product architectures in software product line development. In: MODELS
(2014)

2. Feiler, P., Goodenough, J., Gurfinkel, A., Weinstock, C., Wrage, L.: Four pillars for
improving the quality of safety-critical software-reliant systems. DTIC Document
(2013)

3. Klein, A., Goodenough, J., McGregor, J., Weinstock, C.: Increasing confidence
by strengthening an inference in a single argument leg: An alternative to multi-
legged arguments. In: Proceedings of the 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (2014)

4. McGee, E.T., McGregor, J.D.: Composition of proof-carrying architectures for
cyber-physical systems. In: Proceedings of the 19th International Conference on
Software Product Line, pp. 419–426 (2015)

5. Wheeler, D.: http://www.openproofs.org/wiki/Main Page.OpenProofs (2010)
6. McGee, E.: http://dx.doi.org/10.5281/zenodo.33234 (2015)
7. Rajkumar, R.R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: The next

computing revolution. In: Proceedings of the 47th Design Automation Conference,
pp. 731–736 (2010)

8. Clements, P., McGregor, J.: Better, faster, cheaper: Pick any three. Bus. Horiz.
55, 201–208 (2012)

9. Bishop, P., Bloomfield, R., Guerra, S.: The future of goal-based assurance cases.
In: Proceedings of the Workshop on Assurance Cases, pp. 390–395 (2004)

10. Gacek, A., Backes, J., Whalen, M., Cofer, D.: AGREE User’s Guide
(2015). https://github.com/smaccm/smaccm/blob/master/documentation/agree/
AGREE%20Users%20Guide.pdf

11. Feiler, P.H., Hansson, J., Niz, D.D., Wrage, L.: System architecture virtual inte-
gration: An industrial case study (2009)

12. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language
(AADL): An introduction (2006)

13. Feiler, H.P., Lewis, B., Vestal, S.: The SAE architecture analysis and design lan-
guage (AADL) standard. In: IEEE RTAS Workshop (2003)

14. Goodloe, A.E., Muñoz, C.A.: Compositional verification of a communication pro-
tocol for a remotely operated aircraft. Sci. Comput. Program. 78, 813–827 (2013)

15. Fong, P.W.L., Cameron, R.D.: Proof linking: Modular verification of mobile pro-
grams in the presence of lazy, dynamic linking. ACM Trans. Softw. Eng. Methodol.
9, 379–409 (2000)

16. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE Trans. Softw. Eng. 30, 368–402 (2004)

17. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Composi-
tional verification of architectural models. In: NASA Formal Methods, pp. 126–140
(2012)

18. Murugesan, A., Whalen, M.W., Rayadurgam, S., Heimdahl, M.P.: Compositional
verification of a medical device system. ACM SIGAda Ada Lett. 33, 51–64 (2013)

http://www.openproofs.org/wiki/Main_Page.OpenProofs
http://dx.doi.org/10.5281/zenodo.33234
https://github.com/smaccm/smaccm/blob/master/documentation/agree/AGREE%20Users%20Guide.pdf
https://github.com/smaccm/smaccm/blob/master/documentation/agree/AGREE%20Users%20Guide.pdf

138 E.T. McGee et al.

19. White, J., Clarke, S., Groba, C., Dougherty, B., Thompson, C., Schmidt, D.C.:
R&D challenges and solutions for mobile cyber-physical applications and support-
ing internet services. J. Internet Serv. Appl. 1, 45–56 (2010)

20. Hsiung, P., Chen, Y., Lin, Y.: Model checking safety-critical systems using
safecharts. IEEE Trans. Comput. 56, 692–705 (2007)

21. Delange, J.: AADL Tools: Leveraging the Ecosystem. SEI Insights (2016)
22. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.

Addison-Wesley Longman Publishing Co, Inc., Boston (2002)
23. Nair, S., Vara, J.L., Sabetzadeh, M., Briand, L.: An extended systematic literature

review on provision of evidence for safety certification. Inf. Softw. Technol. 56(7),
689–717 (2014)

24. Braga, R.T.V., Junior, O.T., Castelo Branco, K.R., De Oliveira Neris, L., Lee,
J.: Adapting a software product line engineering process for certifying safety
critical embedded systems. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP
2012. LNCS, vol. 7612, pp. 352–363. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33678-2 30

25. Feiler, P., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston
(2012)

26. Yushtein, Y., Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V., Noll, T., Olive, X.,
Roveri, M.: System-software co-engineering: Dependability and safety perspective.
In: 2011 IEEE Fourth International Conference on Space Mission Challenges for
Information Technology, pp. 18–25 (2011)

27. Agosta, G., Barenghi, A., Brandolese, C., Fornaciari, W., Pelosi, G., Delucchi,
S., Massa, M., Mongelli, M., Ferrari, E., Napoletani, L., et al.: V2I Cooperation
for traffic management with SafeCop. In: 2016 Euromicro Conference on Digital
System Design, pp. 621–627 (2016)

http://dx.doi.org/10.1007/978-3-642-33678-2_30
http://dx.doi.org/10.1007/978-3-642-33678-2_30

Engineering and Employing Reusable Software
Components for Modular Verification

Daniel Welch(B) and Murali Sitaraman

School of Computing, Clemson University, Clemson, SC 29631, USA
{dtwelch,msitara}@clemson.edu

Abstract. The aim of this paper is to illustrate the central role of
reusable software components in developing high assurance software sys-
tems and a practical framework and environment for building such sys-
tems. The paper presents in detail elements of an actual implementation
of a component-based system wherein all components are engineered for
reuse and are equipped with interface contracts formalized via math-
ematical models so that they are amenable to automated verification.
The components in the system themselves are built reusing other com-
ponents, and for scalability, can be verified in a modular fashion one
component at a time, using only the interface contracts of reused com-
ponents. While building such components is necessarily expensive, reuse
has the power to amortize the costs. Specification, research, development,
verification, and reuse of components in this paper have been performed
in the context of an experimental, desktop-based IDE we have built.

1 Introduction

While the need for well-engineered component-based software in improving soft-
ware productivity and quality is widely acknowledged, the benefits are signifi-
cantly enhanced if the engineering involves components with formal specification
and verification. The year software reuse became the topic of a major inter-
national conference at Rio, Brazil in 1994, in an IEEE Software special issue
edited by Frakes [5], a futuristic component-based system built from multiple
generic, formally specified concepts is envisioned [20]. Twenty years later, this
paper presents a practical realization of that reuse vision and the accompany-
ing component-based system. The reusable concepts are described precisely using
mathematical models which enhance generality and applicability, facilitate alter-
native component implementations with varying performance behaviors, and last
but not least, serve as the basis for modular formal analysis and reasoning that
can lead to automatically verifiable component-based software systems.

Developing verified software components is an expensive activity because it
entails investment in formal specification and code annotations, such as invari-
ants. But there is no alternative for achieving high quality and the ideal of
one time cost of development being amortized through a lifetime of uses. The
specific system illustrated in this paper arises from a graph algorithm domain
where typical reuse involves source code and algorithm modification for context.
c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 139–154, 2017.
DOI: 10.1007/978-3-319-56856-0 10

140 D. Welch and M. Sitaraman

So componentization is necessary and the ideas are domain-independent. In prin-
ciple, the behavior of any reusable concept can and should be captured formally
through mathematical models so that implementation(s) can be verified.

The artifacts presented in this paper are written in RESOLVE [16]—an inte-
grated programming and specification language designed for building verifiable,
reusable components. The programming language is similar in spirit to object-
oriented languages, such as C++ and Java. While the ideas in this paper can be
expressed to an extent in other modeling and programming language-dependent
(such as JML [10]) or independent formalisms [1], one of the primary reasons we
choose to employ RESOLVE is its support for modular specification that enforces
a strict separation between mathematical contracts and code and modular ver-
ification. This makes it possible to produce highly reusable concepts specified
exclusively in terms of purely mathematical models that are not only devoid of
implementation bias, but also effectively hide which structures are used in under-
lying computations and when such computations occur. Thus, each reusable
concept described is shown to have a host of implementation possibilities.1 The
language and its specifications are extensible and generalizable, as it allows users
to create and employ new mathematical theories in their specifications.

Fig. 1. A desktop-based IDE with support for RESOLVE.

More than the modular and extensible nature of its specification language,
the RESOLVE compiler itself is host to a number of amenities, including an
integrated proof obligation generator2, an experimental, minimalist automated

1 Though not a focus of this paper, the conceptual models presented can be
extended to specify non-functional performance behaviors of alternative component
implementations.

2 Henceforth referred to as a Verification Condition (VC) generator.

Engineering and Employing Reusable Software Components 141

prover, and a code generator which, given verified client code, produces correct-
by-construction Java for execution [18].

The language also enjoys the support of a number of development tools
including a web-based IDE [2] that has been widely used in software engineer-
ing and reuse education, and a more fully featured, experimental desktop based
environment that integrates support for RESOLVE into commercial and open
source JetBrains IDEs [7]. The examples in this particular paper were developed
using the latter, desktop based IDE. Figure 1 highlights some of the advantages
in using such an environment, which range from support for input of non-ASCII
notations (which are utilized extensively throughout the examples in this paper),
to responsive reference completion for contracts, code, and keywords. The envi-
ronment is also fully integrated with RESOLVE, including its library of reusable
core components.

2 A High Level Overview of the Example

To illustrate the notions of engineering reusable concepts and employing them in
component-based implementations, we use a well-known optimization problem
from the domain of graph algorithms:

– Finding a minimum spanning tree in a (connected), edge-weighted graph.3

Rather than designing a concept around one specific algorithm for solving this
problem, we instead consider how this problem can be generalized to yield a
reusable concept that is:

– Generalized so that optimization is based on some general function of edge
information.

– Modeled as a two-phase machine that allows for the incremental delivery of
edges of interest, and extraction of only a subset of minimum spanning edges
(including, of course, the entire set).

– Designed so that it is suitable even when the input graph is not connected (in
which case the solution is said to be a minimum spanning forest).

The generalization of weighting based on edge information allows possibilities
such as, for example, traffic times in a graph of streets to be affected by a variety
of factors, such as geography or weather conditions—rather than just distances.
The notion of incremental construction is motivated by efficiency, generality, and
reuse concerns. Indeed, there are many conceivable applications in which clients
of such an interface might not wish (or need) to process/obtain all edges of the
resulting spanning forest, such as when a fixed total threshold bound can be met.
Finally, the importance and utility of such a concept being able to scale to the
problem of unconnected networks, thus producing minimum spanning forests
(MSFs) as solutions is obvious. We term the concept designed to take these
3 Informally, a minimum spanning tree is defined to be a subset of a graph’s weighted-

edges such that all vertices are connected with minimum total weight.

142 D. Welch and M. Sitaraman

considerations into account a Spanning Forest Finder (or, SFF for short) and
discuss it, and a range of possible component-based implementations in greater
detail in Sect. 4.

Fig. 2. A design-time diagram sampling a hypothetical client application built on top
of layers of reusable concepts and realizations.

A design time diagram illustrating the relationships between the application
and various reusable concepts and realizations involved in the proposed software
system are illustrated in Fig. 2. In this figure, circles represent concept inter-
faces and square boxes represent realizations. The thick solid lines connecting
a realization to a concept denote an ‘implements’ relationship, while directed,
dashed arrows emanating from realizations to other concepts indicate a ‘uses’
(or ‘relies-on’) relationship.

Note that all realizations in Fig. 2 rely solely on concept interfaces, a fact that
allows formal reasoning to be performed in a modular fashion: that is, strictly
on the basis of other concepts and their respective mathematical models and
contracts. For example, in the first layer of the software system, the Kruskal-
based realization of the SFF concept relies only on two additional, reusable
concepts: one capturing the idea of connectivity, and the other capturing the
idea of prioritization. Though these can of course be implemented in a variety
of functionally interchangeable ways, client code will ultimately be calling the
operations described in the interface contract, thus keeping reasoning modular
and in terms of suitably high level, abstract contracts.

The focus of this paper is on concepts inhabiting the first two layers of the
proposed system. The third layer, which introduces a mathematical abstraction
for modeling arrays, as well as a spiral-like abstraction useful in the representa-
tion k-ary heaps, falls outside the scope of this particular paper.

Engineering and Employing Reusable Software Components 143

3 Motivating a System of Tiered Reuse: A Spanning
Forest Client Application

To motivate the system described, and the extensibility mechanisms our reusable
solution affords, consider a small sample design problem in which the goal is to
design a portion of a circuit wiring/layout application. Circuit wirings consist
of a set of terminals and wires of varying lengths. The goal is to implement an
option for the app that connects all the terminals with minimal wiring.4 The
incremental interface of the SFF concept by default allows clients to iteratively
insert each wire into the component, then iteratively retrieve some subset of
wires that make up a minimal cost solution.

While the incremental interface of the SFF indeed allows one to implement
such functionality natively via primary methods as described, it pays in some
applications (e.g. when all edges are initially present) to support a means of
computing the entire solution in bulk. We solve this in a reusable way—without
modifying existing interfaces and/or realizations—in the proceeding subsection.

3.1 Enhancing the SFF Concept: A Reuse-Favoring Solution

The reusable solution to the problem of computing an entire MSF in bulk
(as opposed to just a subset) involves enhancing the original SFF concept
with a secondary operation that provides MSF Producing Capability5. The
enhancement—shown in Fig. 3—introduces a single operation, Find MSF, that
takes a queue of edges and updates it such that it holds only the edges of a
resulting MSF.6

The relationship between the client application, SFF concept, and the pro-
posed enhancement is illustrated in Fig. 2, which uses a solid arrow to indicate
an ‘enhances’ relationship between two interfaces.

One thing to note is that enhancements and their interchangeable realizations
are completely independent of any one particular realization of the base concept.
Enhancement implementations (template methods) therefore are written solely
in terms of the primary (hook) operations made available through the concept
being enhanced.

Abstract Specification. Specification of the operation employs pre- and post
conditions, formalized via requires and ensures clauses (respectively) that are
written exclusively in terms of abstract mathematical models. In this case, since
a Queue is passed, a portion of the contracts are expressed using the queue’s
abstract model, which is a mathematical string.7 The uses clause therefore

4 For a simple variation in which the minimal wiring needed falls within a fixed total
threshold bound, consult [20].

5 In design pattern parlance, this solution is a template method that invokes primary,
hook methods from the interface.

6 While in general there may exist many potential MSFs for a given graph, we are
interested in any one.

7 A string can be thought of as a sequence of values, such as 〈5, 1, 2, 3, 1〉.

144 D. Welch and M. Sitaraman

Fig. 3. A secondary (extension) operation to the SFF concept.

brings in a theory module (String Theory), which gives specifiers access to
string-specific definitions and notations such as string length | . . . | and Occ Set—
which maps the contents of a string to a set. This is needed in order to apply the
Is MSF predicate, which expects two sets of edges G and H, and is true iff the
edges in G represent a minimum spanning forest of those in H (such a predicate
is locally defined in the SFF concept, which is the topic of Sect. 4).

Stated in English, the Find MSF operation therefore requires that the length
of the edge queue is within Max Edges, a constant parameter to the SFF concept,
and ensures that the set of edges for the outgoing value of the queue (Q) is a
minimum spanning forest of the incoming value of the queue’s (#Qs) edges.

The contracts also include specification parameter modes which describe how
each parameter is affected by the operation. For example, a parameter with a
mode of updates specifies that its value will be affected in the manner speci-
fied in the ensures clause. Additional parameter modes include evaluates (an
expression is expected), replaces (the incoming value is irrelevant, but the out-
going value is relevant), and alters (a meaningful incoming value that assumes
an arbitrary outgoing value).

An Iterative Realization. The realization of MSF Producing Capability,
shown in Fig. 4, is carried out much in the same way a client would in the context
of the original wiring application—namely by reusing/relying-on the primary
hook operations provided by the concept. The procedure works as follows: first,
edges from Q are iteratively dequeued and inserted into a local graph machine G
(via the Augment with operation). The graph is then switched into edge extrac-
tion phase (via the Change Phase operation), at which point the resulting MSF
edges are iteratively removed from G and re-enqueued, thus updating Q (as stated
by the updates parameter mode).

As Fig. 4 illustrates, the behavior of each loop is explicitly captured through
the use of several formal annotations including a maintaining clause to specify a

Engineering and Employing Reusable Software Components 145

Fig. 4. MSF Producing Capability enhancing the original, SFF concept.

loop invariant that must be true at the beginning and end of each iteration, a list
of variables that are changing within the body, and a decreasing clause used
to specify a progress metric for the loop—which is needed to prove termination.
These assertions (like the pre- and post conditions already mentioned) are also
expressed in terms of abstract models.

In this case, the maintaining clause for the first loop (lines 8–10) simply
relate the set of edges underlying the incoming value of the queue to the collection
of edges already in the graph G and those that remain to be added (and also
asserts that the graph remains in insertion phase). The maintaining clause for
the second loop (line 19) on the other hand asserts that for each iteration, the
set of edges inhabiting the outgoing queue is a minimum spanning forest of those
in the incoming queue. Additionally, note that since the second loop is removing
edges from a graph, as opposed to a queue, we employ the set cardinality operator
‖ . . . ‖ to express the fact that G’s edge-set is decreasing in size each iteration.

And while there are indeed ongoing efforts to infer loop invariants automat-
ically, we note that many automated tools [9] still require users to manually
supply such invariants and other assertions. Readers interested in a more thor-
ough discussion of loop invariants, their design, and the feedback provided by
the tool, are encouraged to refer to [15].

146 D. Welch and M. Sitaraman

3.2 Client Application Context

Returning to the context of the circuit wiring application, before a client can
employ such a system, it must first be instantiated via a facility8 declaration
which pairs a concept interface with a realization, as shown below in Listing 1.1.

Facility Wire_Optimizer_Fac is Spanning_Forest_Finder(...)
realized by Kruskal_Incremental_Realiz(...).

Listing 1.1. A simplified facility instantiation of the Spanning Forest Finder concept.

Once instantiated, such a facility allows the client to declare variables of type
Graph Holder and subsequently call primary operations exported by the SFF
concept—such as Augment with, Change Phase, and Remove an Edge as follows:

Var G, H : Wire_Optimizer_Fac :: Graph_Holder;
Wire_Optimizer_Fac :: Change_Phase(G); ...

Thus, to employ and benefit from the Find MSF operation designed, the client
must enhance the original facility instantiation as follows:

Facility Wire_Optimizer_Fac is Spanning_Forest_Finder(..)
realized by Kruskal_Incremental_Realiz(..)

enhanced by MSF_Producing_Capability
realized by Iterative_Realiz;

Listing 1.2. A simplified, singly enhanced facility instantiation.

Such a mechanism for layering functionality generalizes to an arbitrary num-
ber of enhancements and hence permits clients to create, reuse, and layer as much
functionality as needed onto data abstractions, without the need to change core
interfaces or understand specific realizations of the core concept.

4 Reuse Layer 1: A Formal Concept for Finding MSFs

This section describes the Spanning Forest Finder concept that inhabits the
first reusable layer of the system enhanced in the previous section. We empha-
size both the abstract modeling and contracts of such a concept, discuss the
organization of its primary operations and outline the elements of a sample,
incremental, Kruskal-based implementation.

4.1 Mathematical Modeling

In constructing our abstract, mathematical model of the graph, we use the usual
formalization of an Edge as the cartesian product of natural numbers and a
generic label: (u : N, v : N, Lab : Edge Info). The natural numbers u and
v simply represent tags for the vertices bookending the edge, while the weight

8 One can safely consider ‘facility’ as a synonym for ‘factory’ in design pattern
terminology.

Engineering and Employing Reusable Software Components 147

Fig. 5. A concept interface for the minimum spanning forest.

used in optimization is based on Edge Info, and is some application-dependent
function of Weight—which is supplied as a parameter to the concept by a user
at the time of instantiation.

The model for the graph itself, shown in Fig. 5, is introduced via the type
family clause which consists of an edge-set (formulated as a member of P(Edge))
and a boolean flag In Insert Phase to indicate the phase the graph machine is
currently operating under: edge insertion or extraction phase.

The exemplar provides specifiers a handle for referring to the model, and
is used below in the constraints (i.e., conceptual invariants) to assert that a
graph’s edge-set is bounded by Max Edges, and that it can only contain edges
in a MSF of the input graph—expressed with the help of a locally defined pred-
icate, Is MSF. Of course, this is just an abstraction: that such a component
implementation can indeed compute a MSF incrementally as and when edges
are extracted—and that implementation requires an abstraction relation for

148 D. Welch and M. Sitaraman

Fig. 6. An incremental Kruskal-based realization of the SFF concept (excerpt).

verification—is the topic of [17]. Finally, the initialization ensures clause
that immediately follows specifies the abstract state the model must be in when
variables or parameters of type Graph Holder are initialized: namely, that the
set of edges is the empty-set and the machine must be accepting new edges.

As outlined in [20], to provide functional and performance flexibility for
clients, the SFF concept has multiple “small effect” (incremental) primary oper-
ations instead of a singular large effect operation such as Find MSF—which, as
demonstrated in Sect. 3.1, can be implemented instead as a secondary operation
by reusing the primary operations.

Engineering and Employing Reusable Software Components 149

Example: An Incremental Realization. To illustrate these points, Fig. 6
shows a portion of one possible realization of the SFF. Since the realization
shown is based upon Kruskal’s greedy algorithm, it hinges on the ability to (1)
order edges with a weighting function based on edge information and (2) test
whether adding an edge to the under-construction forest produces a cycle. To
accomplish these tasks, two reusable concepts from the second layer (which are
discussed in Sect. 5) are instantiated via facilities and used in the Record-based
representation of the Graph Holder type which consists of two fields: one for
holding and ordering the edges currently inserted into the graph (Edge P) and
another for checking edge connectivity (Conn Checker).

The presentation of the realization omits details of internal annotations
needed for verification. Specifically, a conventions clause that captures a rep-
resentation invariant : That no vertices in Conn Checker are related when in
the accepting phase; and a correspondence clause that captures an abstraction
relation: That the conceptual set of edges is an MSF of the (multi)-set of edges
in the prioritizer when in the accepting phase and that the conceptual set of
edges is an MSF of the (multi)-set of edges, excluding those edges that connect
vertices already connected by Conn Checker when not in the accepting phase.
The correspondence clause in this case would also tie the conceptual accepting
flag from the SFF concept to a similar flag within the model of the prioritizer.

The realization shown is an efficient one: Each time a user calls Augment with
to add a new edge to the graph, it is added to the prioritizer while Change Phase
effectively does nothing, except prepare the prioritizer for edge removal (see next
section). It is in Remove an Edge (elided) where a bulk of the work takes place,
as it essentially carries out a “single” step of Kruskal’s algorithm—though this
is unbeknownst to the caller.

5 Reuse Layer 2: Additional Models for Prioritization
and Connectivity Checking

5.1 A Concept for Prioritizing

Figure 7 shows a concept for prioritizing generic Entrys. Like the SFF, the
prioritizer is parameterized by a generic Entry type, a constant parameter
Max Capacity that holds the maximum number of allowable elements, and a
binary preordering relation � that provides a means of ordering the generic ele-
ments that make up the abstract state of the concept. As a precondition, the
concept requires this relation to be a total preordering (i.e., total and transi-
tive), and is expressed via the higher-order predicate Is Total Preordering.

Mathematical Modeling. Like the SFF concept, the organization of the pri-
oritizer also conforms to the aforementioned machine oriented design principle,
which lends it similar advantages both in terms of understandability and reuse,
as well as implementation and performance flexibility.

150 D. Welch and M. Sitaraman

Fig. 7. A concept interface for prioritizing generic Entrys.

Operating at the core of the prioritizer’s mathematical model is a finite multi-
set (FMSet)9, with relevant notations defined in the imported Multiset Theory.
While the contracts for the most part are made straightforward through
the usage of Multiset Theory, one worthy of mention is the ensures
clause of Remove a Smallest Entry, which uses a higher order predicate
Is Universally Related, to state that every element in {e} is related to every
element in the incoming multiset’s (underlying) set10 via the � predicate.

9 A multiset is an unordered collection of elements that may contain duplicates, such
as (1, 1, 3, 5, 3, 1). Multiset union is � and �. . .� ‘tallies’ the number of times an
element appears in a given multiset.

10 Like Occ Set for strings, Underln Set maps elements of a multiset to regular set.
For example:

Engineering and Employing Reusable Software Components 151

5.2 A Concept for Maintaining Equivalence Relations

The final concept we present is one concerned with capturing arbitrary object
equivalences. A general, formal concept for forming and maintaining such equiv-
alence relations is shown in Fig. 8.

Fig. 8. A concept for maintaining
equivalence relations.

To ensure that instances of equivalence
relation type conform with the mathe-
matical modeling, the concept makes use
of several reusable, higher-order predicates
from Basic Binary Relation Properties.
In particular, the constraints asserts that
the model is indeed reflexive (∀x, f(x, x)),
symmetric (∀x∀y, f(x, y) =⇒ f(y, x)), and
transitive (∀x∀y∀z, f(x, y) ∧ f(y, z) =⇒
f(x, z)). The initialization clause ensures
that all indices are initially disjoint (in other
words, each element initially inhabits its own
equivalence class). The set of primary operations for such a concept provide what
one would expect: that is, the ability to form, test, and clear equivalencies. Once
again, irrespective of the formal contract for the concept laid out above, clients
are free to implement such a concept in any number of efficient ways including
(but not limited to) approaches utilizing the well-known ‘union by rank’ and
‘path compression’ optimizations [3].

6 The Verification Process

In a prior work [16] the idea of verification conditions (VCs) that describe both
what is necessary and sufficient to prove in order to establish functional correct-
ness of a given component is discussed. Sound VC generation is a non-trivial
process in general [6], and for the system we employ (RESOLVE), generated
VCs can be read as sequents of the form: {A1, . . . , An} � C where each comma-
separated Ai (1 � i � n) represents a given and C is the goal that must be
proven. VCs arise from a variety of different places in code including: establish-
ing the preconditions of called operations, postconditions of operation’s being
proved, or progress metrics for establishing termination of iteration or recursion.

Figure 4 illustrates how the IDE displays generated VCs. Lines that raise one
or more proof obligations are marked by an orange ‘vc’ button in gutter, which,
upon being selected, brings up a context menu that navigates the user to the
right hand side verifier panel which allows them to view any or all VCs and
(optionally) export a summary.11

11 In the future, we also aim to offer researchers the ability to view and export VC
derivation details for specified blocks of code—this feature is forthcoming.

152 D. Welch and M. Sitaraman

Enhancement Realization. Verification of the iterative realization of the
MSF Producing Capability shown in Fig. 4 produces 17 VCs, many of which
arise from the loops—which entail establishing a base case and inductive hypoth-
esis (for their respective maintaining clauses), along with establishing precon-
ditions for the various calls to spanning forest and queue operations scattered
throughout. The variables proceeded by primes are intermediate variables con-
jured by the VC-generator, and are used to reflect the changing state of a par-
ticular variable.

One simple, and one of the more complicated examples of these VCs are
reproduced below in Listings 1.3 and 1.4, respectively.

Listing 1.3. Augment with requires.

|Q′′| �= 0 ,
Occ Set(Q) = G′′.Edges ∪ Occ Set(Q′′) ,
G′′.In Insert Phase = true ,
|Q| � Max Edges ,
Max Edges � 1
	
‖G′′.Edges‖ + 1 � Max Edges

Listing 1.4. Second loop inductive hypo.

Next Edge′ /∈ G′.Edges ,
‖G′.Edges‖ �= 0 , |Q′′| = 0 ,
Is MSF(G′.Edges ∪ Occ Set(Q′), Occ Set(Q)) ,
Occ Set(Q) = G′′′.Edges ∪ Occ Set(Q′′) ,
|Q| � Max Edges , Max Edges � 1 ,
	
Is MSF(G′.Edges ∼ {Next Edge′} ∪

Occ Set(Q′ ◦ 〈e〉), Occ Set(Q))

SFF Concept Realization. The preliminary, incremental realization of the
SFF concept sketched in Fig. 6, generates upwards of 40 VCs. Unlike those
generated for the previous example, VCs that arise in practice from con-
cept realizations typically come from more diverse sources such as establish-
ing that correspondences hold for various type representations (such as Edge
and Graph Holder), and establishing module level preconditions from facility
instantiations (such as Priorit Fac and Conn Fac).

Two representative VCs, including one involving multisets (right) are repro-
duced below in Listings 1.5 and 1.6.

Listing 1.5. Add Entry requires.

Is MSF(conc.GH.Edges,
Undrln Set(GH.Edge P.Entry Tally)) ,

‖conc.GH.Edges‖+ 1 � Max Edges ,
. . . ,
Max Edges� 1,Max Edges> 0
	
‖GH.Edge P.EntryTally‖ < Max Edges

Listing 1.6. Augment with ensures.

Is MSF(conc.GH.Edges,
Undrln Set(GH.Edge P.EntryTally� (e))) ,

‖conc.GH.Edges‖+ 1 � Max Edges,
Max Edges� 1 ,
Max Edges> 0
	
Is MSF(conc.GH.Edges,conc.GH.Edges∪ {e})

Discussion. While the VCs generated from the present components have not
yet been verified automatically, we have made significant progress in automated
verification of VCs for typical components [2,8], including those developed in
undergraduate software engineering classes. Thus, while the VCs presented
here—which span multiple theories—are straightforward enough to dispatch by

Engineering and Employing Reusable Software Components 153

hand, many continue to pose a significant challenge to current decision proce-
dures and automated provers.

7 Related Work and Conclusions

While the role of modeling in specifying safety and behavioral properties for
reusable component-based software systems has become increasingly more preva-
lent and widely practiced [13,14], the verification community has focused on
and achieved impressive feats (e.g. [12]) over the years through one-time man-
ual efforts (typically using proof assistants). However, the detailed construc-
tions, complexity, and nontrivial libraries that typically enable these impressive
achievements continue to present new and pressing reuse challenges [19].

On the other hand, efforts that have considered components, such as
Dafny [11], RESOLVE, Why3 [4], and others have achieved notable successes
in specifying and verifying automatically a variety of individual components
such as lists, sequences, queues, and trees—but have not ventured far beyond
these boundaries by attempting abstract specification and modular verification
of larger, layered reusable component assemblies of the sort presented in this
paper.

The contribution of this paper is in presenting a practical implementation
of a verifiable, comprehensive component-based software system involving mul-
tiple formally specified reusable components. Furthermore, the system has been
developed with an IDE built for reuse-based software engineering. While we have
automatically verified a number of component implementations, automated ver-
ification of the components presented in this paper remains an immediate future
direction. As such, the theories and concepts will no doubt need to undergo fur-
ther formalization and development to ultimately facilitate automation. While
significant, the system presented in this paper is still much smaller than typical
practical systems thus, studies that involve further scaling up to even bigger
systems is another important direction for future work.

Acknowledgments. This research is funded in part by NSF grants CCF-0811748,
CCF-1161916, and DUE-1022941.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Cook, C.T., Harton, H., Smith, H., Sitaraman, M.: Specification engineering and
modular verification using a web-integrated verifying compiler. In: 2012 34th Inter-
national Conference on Software Engineering (ICSE), pp. 1379–1382, June 2012

3. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, New York (2001)

4. Filliâtre, J.-C., Paskevich, A.: Why3 — Where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37036-6 8

http://dx.doi.org/10.1007/978-3-642-37036-6_8

154 D. Welch and M. Sitaraman

5. Frakes, W.B., Isoda, S.: Success factors of systematic reuse. IEEE Softw. 11(5),
14–19 (1994)

6. Harton, H.: Mechanical and modular verification condition generation for object-
based software. Ph.D. thesis, Clemson University (2011)

7. JetBrains: IDEs. Software product line. https://www.jetbrains.com/
8. Kirschenbaum, J., Adcock, B., Bronish, D., Smith, H., Harton, H., Sitaraman, M.,

Weide, B.W.: Verifying component-based software: deep mathematics or simple
bookkeeping? In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791,
pp. 31–40. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04211-9 4

9. Klebanov, V., et al.: The 1st verified software competition: experience report. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 154–168. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21437-0 14

10. Leavens, G.: JML: expressive contracts, specification inheritance, and behavioral
subtyping. In: Proceedings of the Principles and Practices of Programming on the
Java Platform, PPPJ 2015, p. 1. ACM, New York (2015)

11. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

12. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7),
107–115 (2009)

13. Li, J., Sun, X., Xie, F., Song, X.: Component-based abstraction and refinement. In:
Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 39–51. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-68073-4 4

14. Penzenstadler, B., Koss, D.: High confidence subsystem modelling for reuse. In:
Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 52–63. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-68073-4 5

15. Priester, C., Sun, Y.S., Sitaraman, M.: Tool-assisted loop invariant development
and analysis. In: 2016 IEEE 29th International Conference on Software Engineering
Education and Training (CSEET), pp. 66–70, April 2016

16. Sitaraman, M., Adcock, B.M., Avigad, J., Bronish, D., Bucci, P., Frazier, D.,
Friedman, H.M., Harton, H.K., Heym, W.D., Kirschenbaum, J., Krone, J., Smith,
H., Weide, B.W.: Building a push-button RESOLVE verifier: progress and chal-
lenges. Formal Aspects Comput. 23(5), 607–626 (2011)

17. Sitaraman, M., Weide, B.W., Ogden, W.F.: On the practical need for abstraction
relations to verify abstract data type representations. IEEE Trans. Softw. Eng.
23(3), 157–170 (1997)

18. Smith, H., Harton, H., Frazier, D., Mohan, R., Sitaraman, M.: Generating veri-
fied Java components through RESOLVE. In: Edwards, S.H., Kulczycki, G. (eds.)
ICSR 2009. LNCS, vol. 5791, pp. 11–20. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04211-9 2

19. Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics on display:
a wiki for Flyspeck. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 152–167. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39320-4 10

20. Weide, B.W., Ogden, W.F., Sitaraman, M.: Recasting algorithms to encourage
reuse. IEEE Softw. 11(5), 80–88 (1994)

https://www.jetbrains.com/
http://dx.doi.org/10.1007/978-3-642-04211-9_4
http://dx.doi.org/10.1007/978-3-642-21437-0_14
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-540-68073-4_4
http://dx.doi.org/10.1007/978-3-540-68073-4_5
http://dx.doi.org/10.1007/978-3-642-04211-9_2
http://dx.doi.org/10.1007/978-3-642-04211-9_2
http://dx.doi.org/10.1007/978-3-642-39320-4_10

Refactoring Legacy JavaScript Code to Use
Classes: The Good, The Bad and The Ugly

Leonardo Humberto Silva1(B) , Marco Tulio Valente2 ,
and Alexandre Bergel3

1 Federal Institute of Northern Minas Gerais, Salinas, Brazil
leonardo.silva@ifnmg.edu.br

2 Federal University of Minas Gerais, Belo Horizonte, Brazil
mtov@dcc.ufmg.br

3 PLEIAD Lab, DCC, University of Chile, Santiago, Chile
abergel@dcc.uchile.cl

Abstract. JavaScript systems are becoming increasingly complex
and large. To tackle the challenges involved in implementing these
systems, the language is evolving to include several constructions
for programming-in-the-large. For example, although the language is
prototype-based, the latest JavaScript standard, named ECMAScript 6
(ES6), provides native support for implementing classes. Even though
most modern web browsers support ES6, only a very few applications
use the class syntax. In this paper, we analyze the process of migrating
structures that emulate classes in legacy JavaScript code to adopt the
new syntax for classes introduced by ES6. We apply a set of migration
rules on eight legacy JavaScript systems. In our study, we document: (a)
cases that are straightforward to migrate (the good parts); (b) cases that
require manual and ad-hoc migration (the bad parts); and (c) cases that
cannot be migrated due to limitations and restrictions of ES6 (the ugly
parts). Six out of eight systems (75%) contain instances of bad and/or
ugly cases. We also collect the perceptions of JavaScript developers about
migrating their code to use the new syntax for classes.

Keywords: JavaScript · Refactoring · ECMAScript 6

1 Introduction

JavaScript is the most dominant web programming language. It was initially
designed in the mid-1990s to extend web pages with small executable code.
Since then, its popularity and relevance only grew [1–3]. Among the top 2,500
most popular systems on GitHub, according to their number of stars, 34.2% are
implemented in JavaScript [4]. To mention another example, in the last year,
JavaScript repositories had twice as many pull requests (PRs) than the second
language, representing an increase of 97% over the previous year.1 The language

1 https://octoverse.github.com/.

c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 155–171, 2017.
DOI: 10.1007/978-3-319-56856-0 11

http://orcid.org/0000-0003-2807-6798
http://orcid.org/0000-0002-8180-7548
http://orcid.org/0000-0001-8087-1903
https://octoverse.github.com/

156 L.H. Silva et al.

can be used to implement both client and server-side applications. Moreover,
JavaScript code can also be encapsulated as libraries and referred to by web
pages. These characteristics make JavaScript suitable for implementing complex,
single-page web systems, including mail clients, frameworks, mobile applications,
and IDEs, which can reach hundreds of thousands of lines of code.

JavaScript is an imperative and object-oriented language centered on pro-
totypes [5,6]. Recently, the release of the new standard version of the lan-
guage, named ECMAScript 6 (or just ES6, as used throughout this paper),
represented a significant update to the language. Among the new features, par-
ticularly important is the syntactical support for classes [7]. With ES6, it is
possible to implement classes using a syntax very similar to the one of main-
stream class-based object-oriented languages, such as Java and C++. However,
although most modern browsers already support ES6, there is a large codebase
of legacy JavaScript source code, i.e., code implemented in versions prior to the
ES6 standard. Even in this code, it is common to find structures that in practice
are very similar to classes, being used to encapsulate data and code. Although
not using appropriate syntax, developers frequently emulate class-like structures
in legacy JavaScript applications to easily reuse code and abstract functionalities
into specialized objects. In a previous study, we show that structures emulating
classes are present in 74% of the studied systems [8]. We also implemented a
tool, JSClassFinder [9], to detect classes in legacy JavaScript code. Moreover,
a recent empirical study shows that JavaScript developers are not fully aware
of changes introduced in ES6, and very few are currently using object-oriented
features, such as the new class syntax [10].

In this paper, we investigate the feasibility of rejuvenating legacy JavaScript
code and, therefore, to increase the chances of code reuse in the language. Specif-
ically, we describe an experiment on migrating eight real-world JavaScript sys-
tems to use the native syntax for classes provided by ES6. We first use JSClass-
Finder to identify class like structures in the selected systems. Then we convert
these classes to use the new syntax.

This paper makes the following contributions:

– We present a basic set of rules to migrate class-like structures from ES5 (prior
version of JavaScript) to the new syntax for classes provided by ES6 (Sect. 3.1).

– We quantify the amount of code (churned and deleted) that can be automat-
ically migrated by the proposed rules (the good parts, Sect. 4.1).

– We describe the limitations of the proposed rules, i.e., a set of cases where
manual adjusts are required to migrate the code (the bad parts, Sect. 4.2).

– We describe the limitations of the new syntax for classes provided by ES6, i.e.,
the cases where it is not possible to migrate the code and, therefore, we should
expose the prototype-based object system to ES6 maintainers (the ugly parts,
Sect. 4.3).

– We document a set of reasons that can lead developers to postpone/reject
the adoption of ES6 classes (Sect. 5). These reasons are based on the feedback
received after submitting pull requests suggesting the migration to the new
syntax.

Refactoring Legacy JavaScript Code to Use Classes 157

2 Background

2.1 Class Emulation in Legacy JavaScript Code

Using functions is the most common strategy to emulate classes in legacy
JavaScript systems. Particularly, any function can be used as a template for
the creation of objects. When a function is used as a class constructor, the this
variable is bound to the new object under construction. Variables linked to this
define properties that emulate attributes and methods. If a property is an inner
function, it represents a method; otherwise, it is an attribute. The operator new
is used to instantiate class objects.

To illustrate the emulation of classes in legacy JavaScript code, we use a
simple Queue class. Listing 1.1 presents the function that defines this class (lines
1–8), which includes one attribute (elements) and three methods (isEmpty,
push, and pop). The implementation of a specialized queue is found in lines 9–
17. Stack is a subclass of Queue (line 15). Method push (line 17) is overwritten
to insert elements at the first position of the queue.
1 // Class Queue
2 function Queue() { // Constructor function
3 this._elements = new LinkedList();
4 ...
5 }
6 Queue.prototype.isEmpty = function() {...}
7 Queue.prototype.push = function(e) {...}
8 Queue.prototype.pop = function() {...}
9 // Class Stack

10 function Stack() {
11 // Calling parent’s class constructor
12 Queue.call(this);
13 }
14 // Inheritance link
15 Stack.prototype = new Queue();
16 // Overwritten method
17 Stack.prototype.push = function(e) {...}

Listing 1.1. Class emulation in legacy JavaScript code

The implementation in Listing 1.1 represents one possibility of class emu-
lation in JavaScript. Some variations are possible, like implementing meth-
ods inside/outside class constructors and using anonymous/non-anonymous
functions [8,11].

2.2 ECMAScript 6 Classes

ES6 includes syntactical support for classes. Listing 1.2 presents an implemen-
tation for classes Queue and Stack (Listing 1.1) in this latest JavaScript stan-
dard. As can be observed, the implementation follows the syntax provided by
mainstream class-based languages. We see, for example, the usage of the key-
words class (lines 1 and 11), constructor (lines 2 and 12), extends (line 11),
and super (line 13). Although ES6 classes provide a much simpler and clearer
syntax to define classes and deal with inheritance, it is a syntactical sugar over

158 L.H. Silva et al.

JavaScript’s existing prototype-based inheritance. In other words, the new syntax
does not impact the semantics of the language, which remains prototype-based.2

1 class Queue {
2 constructor() {
3 this._elements = new LinkedList();
4 ...
5 }
6 // Methods
7 isEmpty() {...}
8 push(e) {...}
9 pop() {...}

10 }
11 class Stack extends Queue {
12 constructor() {
13 super();
14 }
15 // Overwritten method
16 push(e) {...}
17 }

Listing 1.2. Class declaration using ES6 syntax

3 Study Design

In this section, we describe our study to migrate a set of legacy JavaScript
systems (implemented in ES5) to use the new syntax for classes proposed by
ES6. First, we describe the rules followed to conduct this migration (Sect. 3.1).
Then, we present the set of selected systems in our dataset (Sect. 3.2). The results
are discussed in Sect. 4.

3.1 Migration Rules

Figure 1 presents three basic rules to migrate classes emulated in legacy
JavaScript code to use the ES6 syntax. Each rule defines a transformation that,
when applied to legacy code (program on the left), produces a new code in ES6
(program on the right). Starting with Rule #1, each rule should be applied mul-
tiple times, until a fixed point is reached. After that, the migration proceeds by
applying the next rule. The process finishes after reaching the fixed point of the
last rule.

For each rule, the left side is the result of “desugaring” this program to the
legacy syntax. The right side of the rule is a template for an ES6 program using
the new syntax. Since there is no standard way to define classes in ES5, we
consider three different patterns of method implementation, including methods
inside/outside class constructors and using prototypes [8,11]. Rule #1 defines
the migration of a class C with three methods (m1, m2, and m3) to the new
class syntax (which relies on the keywords class and constructor). Method
m1 is implemented inside the body of the class constructor, m2 is bound to
the prototype of C, and m3 is implemented outside the class constructor but it
is not bound to the prototype.3 Rule #2, which is applied after migrating all
2 https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes.
3 For the sake of legibility, Rule #1 assumes a class with only one method in each idiom. The
generalization for multiple methods is straightforward.

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes

Refactoring Legacy JavaScript Code to Use Classes 159

Fig. 1. Migration rules (pi is a formal parameter list and Bi is a block of statements)

constructor functions and methods, generates subclasses in the new syntax (by
introducing the extends keyword). Finally, Rule #3 replaces calls to super class
constructors and to super class methods by making use of the super keyword.

There are no rules for migrating fields, because they are declared with the
same syntax both in ES5 and ES6 (see Listing 1.1, line 3; and Listing 1.2, line 3).
Moreover, fields are most often declared in constructor functions or less fre-
quently in methods. Therefore, when we migrate these elements to ES6, the
field declarations performed in their code are also migrated.

3.2 Dataset

We select systems that emulate classes in legacy JavaScript code in order to
migrate them to the new syntax. In a previous work [8], we conducted an empir-
ical study on the use of classes with 50 popular JavaScript systems, before the
release of ES6. In this paper, we select eight systems from the dataset used in
this previous work. The selected systems have at minimum one and at maximum
100 classes, and 40 KLOC.

160 L.H. Silva et al.

Table 1 presents the selected systems, including a brief description, checkout
date, size (LOC), number of files, number of classes (NOC), number of methods
(NOM), and class density (CD). CD is the ratio of functions in a program that
are related to the emulation of classes (i.e., functions which act as methods or
class constructors) [8]. JSClassFinder [9] was used to identify the classes emu-
lated in legacy code and to compute the measures presented in Table 1. The
selection includes well-known and widely used JavaScript systems, from differ-
ent domains, covering frameworks (socket.io and grunt), graphic libraries
(isomer), visualization engines (slick), data structures and algorithms (algo-
rithms.js), and a motion detector (parallax). The largest system (pixi.js)
has 23,952 LOC, 83 classes, and 134 files with .js extension. The smallest sys-
tem (fastclick) has 846 LOC, one class, and a single file. The average size is
4,681 LOC (standard deviation 7,881 LOC), 15 classes (standard deviation 28
classes) and 29 files (standard deviation 48 files).

Table 1. JavaScript systems ordered by the number of classes.

System Description Checkout date LOC Files Classes Methods Class

density

fastclick Library to remove

click delays

01-Sep-16 846 1 1 16 0.74

grunt JavaScript task

runner

30-Aug-16 1, 895 11 1 16 0.16

slick Carousel

visualization

engine

24-Aug-16 2, 905 1 1 94 0.90

parallax Motion detector

for devices

31-Aug-16 1, 018 3 2 56 0.95

socket.io Realtime app

framework

25-Aug-16 1, 408 4 4 59 0.95

isomer Isometric graphics

library

02-Sep-16 990 9 7 35 0.79

algorithms.js Data structures &

algorithms

21-Aug-16 4, 437 70 20 101 0.54

pixi.js Rendering engine 05-Sep-16 23, 952 134 83 518 0.71

4 Migration Results

We followed the rules presented in Sect. 3 to migrate the systems in our dataset
to ES6. We classify the migrated code in three groups:

– The Good Parts. Cases that are straightforward to migrate, without the need
of further adjusts, by just following the migration rules defined in Sect. 3.1.
As future work, we plan to develop a refactoring tool to handle these cases.

– The Bad Parts. Cases that require manual and ad-hoc migration. Essentially,
these cases are associated with semantic conflicts between the structures used

Refactoring Legacy JavaScript Code to Use Classes 161

to emulate classes in ES5 and the new constructs for implementing classes in
ES6. For example, function declarations in ES5 are hoisted (i.e., they can be
used before the point at which they are declared in the source code), whereas
ES6 class declarations are not.

– The Ugly Parts. Cases that cannot be migrated due to limitations and restric-
tions of ES6 (e.g., lack of support to static fields). For this reason, in such
cases we need to keep the legacy code unchanged, exposing the prototype
mechanism of ES5 in the migrated code, which in our view results in “ugly
code”. As a result, developers are not shielded from manipulating prototypes.

In the following sections, we detail the migration results according to the
proposed classification.

4.1 The Good Parts

As mentioned, the “good parts” are the ones handled by the rules presented in
Sect. 3.1. To measure the amount of source code converted we use the following
churn metrics [12]: (a) Churned LOC is the sum of the added and changed lines
of code between the original and the migrated versions, (b) Deleted LOC is the
number of lines of code deleted between the original and the migrated version, (c)
Files churned is the number of source code files that churned. We also use a
set of relative churn measures as follows: Churned LOC/Total LOC, Deleted
LOC/Total LOC, Files churned/File count, and Churned LOC/Deleted
LOC. This last measure quantifies new development. Churned and deleted LOC
are computed by GitHub. Total LOC is computed on the migrated code.

Table 2 presents the measures for the proposed code churn metrics. pixi.js
has the greatest absolute churned and deleted LOC, 8,879 and 8,805 lines of
code, respectively. The smallest systems in terms of number of classes and meth-
ods are fastclick and grunt. For this reason, they have the lowest values
for absolute churned measures. Regarding the relative churn metrics, paral-
lax and socket.io are the systems with the greatest values for class density,
0.95 each, and they have the highest relative churned measures. parallax has
relative churned equals 0.76 and relative deleted equals 0.75. socket.io has rel-
ative churned equals 0.77 and relative deleted equals 0.75. Finally, the values of
Churned/Deleted are approximately equal one in all systems, indicating that
the impact in the size of the systems was minimum.

In summary, the relative measures to migrate to ES6 range from 0.16 to 0.77
for churned code, from 0.15 to 0.75 for deleted code, and from 0.21 to 1.11 for
churned files. Essentially, these measures correlate with the class density.

4.2 The Bad Parts

As detailed in the beginning of this section, the “bad parts” are cases not handled
by the proposed migration rules. To make the migration possible, they require
manual adjustments in the source code. We found four types of “bad cases” in
our experiment, which are described next.

162 L.H. Silva et al.

Table 2. Churned metric measures

System Absolute churn measures Relative churn measures Churned/
deleted

Churned Deleted Files Churned Deleted Files

fastclick 635 630 1 0.75 0.74 1.00 1.01

grunt 296 291 1 0.16 0.15 0.09 1.02

slick 2, 013 1, 987 1 0.69 0.68 1.00 1.01

parallax 772 764 2 0.76 0.75 0.67 1.01

socket.io 1, 090 1, 053 4 0.77 0.75 1.00 1.04

isomer 701 678 10 0.71 0.68 1.11 1.03

algorithms.js 1, 379 1, 327 15 0.31 0.30 0.21 1.04

pixi.js 8, 879 8, 805 82 0.37 0.37 0.61 1.01

Accessing this Before super. To illustrate this case, Listing 1.3 shows the
emulation of class PriorityQueue which inherits from MinHeap, in algo-
rithms.js. In this example, lines 7–8 call the super class constructor using a
function as argument. This function makes direct references to this (line 8).
However, in ES6, these references yield an error because super calls must pro-
ceed any reference to this. The rationale is to ensure that variables defined in a
superclass are initialized before initializing variables of the current class. Other
languages, such as Java, have the same policy regarding class constructors.

1 // Legacy code
2 function MinHeap(compareFn) {
3 this._comparator = compareFn;
4 ...
5 }
6 function PriorityQueue() {
7 MinHeap.call(this, function(a, b) {
8 return this.priority(a) < this.priority(b) ? -1 : 1;
9 });

10 ...
11 }
12 PriorityQueue.prototype = new MinHeap();

Listing 1.3. Passing this as argument to super class constructor

Listing 1.4 presents the solution adopted to migrate the code in Listing 1.3.
First, we create a setter method to define the value of the comparator prop-
erty (lines 4–6). Then, in the constructor of PriorityQueue we first call
super() (line 10) and then we call the created setter method (lines 11–14).
In this way, we guarantee that super() is used before this.

Refactoring Legacy JavaScript Code to Use Classes 163

1 // Migrated code
2 class MinHeap {
3 ...
4 setComparator(compareFn) {
5 this._comparator = compareFn;
6 }
7 }
8 class PriorityQueue extends MinHeap {
9 constructor() {

10 super();
11 this.setComparator(
12 (function(a, b) {
13 return this.priority(a) < this.priority(b) ? -1 : 1;
14 }).bind(this));
15 ...
16 }
17 }

Listing 1.4. By creating a setter method (lines 4–6) we guarantee that super is called
before using this in the migrated code

We found three instances of classes accessing this before super in our study,
two instances in algorithms.js and one in pixi.js.

Calling Class Constructors Without new. This pattern is also known as “factory
method” in the literature [13]. As an example, Listing 1.5 shows part of a Server
class implementation in socket.io. The conditional statement (line 3) verifies
if this is an instance of Server, returning a new Server otherwise (line 4).
This implementation allows calling Server with or without creating an instance
first. However, this class invocation without having an instance is not allowed
in ES6.

1 // Legacy code
2 function Server(srv, opts){
3 if (!(this instanceof Server))
4 return new Server(srv, opts);
5 }

Listing 1.5. Constructor of class Server in system socket.io

Listing 1.6 shows the solution we adopted in this case. We first renamed class
Server to Server (line 2). Then we changed the function Server from the
legacy code to return an instance of this new type (line 7). This solution does
not have any impact in client systems.
1 // Migrated code
2 class _Server{
3 constructor(srv, opts) { ... }
4 }
5 function Server(srv, opts) {
6 if (!(this instanceof _Server))
7 return new _Server(srv, opts);
8 }

Listing 1.6. Workaround to allow calling Server with or without new

We found one case of calling a class constructor without new in socket.io.

164 L.H. Silva et al.

Hoisting. In programming languages, hoisting denotes the possibility of referenc-
ing a variable anywhere in the code, even before its declaration. In ES5, legacy
function declarations are hoisted, whereas ES6 class declarations are not.4 As
a result, in ES6 we first need to declare a class before making reference to it.
As an example, Listing 1.7 shows the implementation of class Namespace in
socket.io. Namespace is assigned to module.exports (line 2) before its
constructor is declared (line 3). Therefore, in the migrated code we needed to
change the order of these declarations.

1 // Legacy code
2 module.exports = Namespace;
3 function Namespace {...} // constructor function

Listing 1.7. Function Namespace is referenced before its definition

Listing 1.8 shows another example of a hoisting problem, this time in pixi.js.
In this case, a global variable receives an instance of the class DisplayObject
(line 2) before the class definition (lines 3–6). However, in this case the vari-
able tempDisplayObjectParent is also used by the class DisplayObject
(line 5). Furthermore, pixi.js uses a lint-like static checker, called ESLint5, that
prevents the use of variables before their definitions. For this reason, we cannot
just reorder the statements to solve the problem, as in Listing 1.7.

1 // Legacy code
2 var _tempDisplayObjectParent = new DisplayObject();
3 DisplayObject.prototype.getBounds = function(..) {
4 ...
5 this.parent = _tempDisplayObjectParent;
6 }

Listing 1.8. Hoisting problem in pixi.js

Listing 1.9 shows the adopted solution in this case. First, we assigned null
to tempDisplayObjectParent (line 2), but keeping its definition before the
implementation of class DisplayObject (line 4). Then we assign the original
value, which makes reference to DisplayObject, after the class declaration.

1 // Migrated code
2 var _tempDisplayObjectParent = null;
3

4 class DisplayObject { ... }
5 _tempDisplayObjectParent = new DisplayObject();

Listing 1.9. Solution for hoisting problem in pixi.js

We found 88 instances of hoisting problems in our study, distributed over
three instances in algorithms.js, four instances in socket.io, one instance in
grunt, and 80 instances in pixi.js.

4 https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes.
5 http://eslint.org/.

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
http://eslint.org/

Refactoring Legacy JavaScript Code to Use Classes 165

Alias for Method Names. Legacy JavaScript code can declare two or more meth-
ods pointing to the same function. This usually happens when developers want to
rename a method without breaking the code of clients. The old name is kept for
the sake of compatibility. Listing 1.10 shows an example of alias in slick. In this
case, slick clients can use addSlide or slickAdd to perform the same task.

1 // Legacy code
2 Slick.prototype.addSlide =
3 Slick.prototype.slickAdd = function(markup, index, addBefore) { ... };

Listing 1.10. Two prototype properties sharing the same function

Since we do not have a specific syntax to declare method alias in ES6, the solu-
tion we adopted was to create two methods and to make one delegate the call to
the other one that implements the feature, as presented in Listing 1.11. In this
example, addSlide (line 6) just delegates any calls to slickAdd (line 4).
1 // Migrated code
2 class Slick {
3 ...
4 slickAdd(markup,index,addBefore) { ... }
5 // Method alias
6 addSlide(markup,index,addBefore) { return slickAdd(markup,index,addBefore);

}
7 }

Listing 1.11. Adopted solution for method alias in slick

We found 39 instances of method alias in our study, distributed over 25
instances in slick (confined in one class), 8 instances in socket.io (spread over
three classes), and 6 instances in pixi.js (spread over six classes).

4.3 The Ugly Parts

The “ugly parts” are the ones that make use of features not supported by ES6.
To make the migration possible, these cases remain untouched in the legacy code.

Getters and Setters Only Known at Runtime (Meta-Programming). In the ES5
implementation supported by Mozilla, there are two features, defineGetter
and defineSetter , that allow binding an object’s property to functions
that work as getters and setters, respectively.6 Listing 1.12 shows an example in
socket.io. In this code, the first argument passed to defineGetter (line 2)
is the name of the property and the second one (line 3) is the function that will
work as getter to this property.

1 // Legacy code
2 Socket.prototype.__defineGetter__(’request’,
3 function() { return this.conn.request; }
4);

Listing 1.12. Getter definition in socket.io using defineGetter

6 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

166 L.H. Silva et al.

ES6 provides specific syntax to implement getters and setters within the
body of the class structure. Listing 1.13 presents the ES6 version of the example
shown in Listing 1.12. Declarations of setters follow the same pattern.
1 // Migrated code
2 class Socket {
3 get request() { return this.conn.request; }
4 ...
5 }

Listing 1.13. Getter method in ES6

However, during the migration of a getter or setter, if the property’s name is
not known at compile time (e.g., if it is denoted by a variable), we cannot migrate
it to ES6. Listing 1.14 shows an example from socket.io. In this case, a new
getter is created for each string stored in an array called flags. Since the string
values are only known at runtime, this implementation was left unchanged.
1 // Legacy code
2 flags.forEach(function(flag){
3 Socket.prototype.__defineGetter__(flag,
4 function(){ ... });
5 });

Listing 1.14. Getter methods only known in execution time

We found five instances of getters and setters defined for properties only
known at runtime, all in socket.io.

Static Data Properties. In ES5, usually developers use prototypes to implement
static properties, i.e., properties shared by all objects from a class. Listing 1.15
shows two examples of static properties, ww and orientationStatus, that are
bound to the prototype of the class Parallax. By contrast, ES6 classes do not
have specific syntax for static properties. Because of that, we adopted an “ugly”
solution leaving code defining static properties unchanged in our migration.
1 // Prototype properties (legacy code)
2 Parallax.prototype.ww = null;
3 Parallax.prototype.orientationStatus = 0;

Listing 1.15. Static properties defined over the prototype in Parallax

We found 42 instances of static properties, 28 in parallax and 14 in pixi.js.

Optional Features. Among the meta-programming functionalities supported by
ES5, we found classes providing optional features by implementing them in
separated modules [14]. Listing 1.16 shows a feature in pixi.js that is imple-
mented in a module different than the one where the object’s constructor func-
tion is defined. In this example, the class Container is defined in the module
core, which is imported by using the function require (line 2). Therefore,
getChildByName (line 4) is a feature that is only incorporated to the system’s
core when the module implemented in Listing 1.16 is used.

Refactoring Legacy JavaScript Code to Use Classes 167

1 // Legacy code
2 var core = require(’../core’);
3

4 core.Container.prototype.getChildByName = function (name) { ... };

Listing 1.16. Method getChildByName is an optional feature in class Container

In our study, the mandatory features implemented in module core were
properly migrated, but core’s optional features remained in the legacy code.
Moving these features to core would make them mandatory in the system. We
found six instances of classes with optional features in our study, all in pixi.js.

5 Feedback from Developers

After migrating the code and handling the bad parts, we take to the JavaScript
developers the discussion about accepting the new version of their systems in ES6.
For every system, we create a pull request (PR) with the migrated code, suggesting
the adoption of ES6 classes. Table 3 details these pull requests presenting their ID
on GitHub, the number of comments they triggered, the opening date, and their
status on the date when the data was collected (October 12th, 2016).

Table 3. Created pull requests

System ID #Comments Opening date Status

fastclick #500 0 01-Sep-16 Open

grunt #1549 2 31-Aug-16 Closed

slick #2494 5 25-Aug-16 Open

parallax #159 1 01-Sep-16 Open

socket.io #2661 4 29-Aug-16 Open

isomer #87 3 05-Sep-16 Closed

algorithms.js #117 4 23-Aug-16 Open

pixi.js #2936 14 09-Sep-16 Merged

Five PRs (62%) are still open. The PR for fastclick has no comments. This
repository seems to be sparsely maintained, since its last commit dates from
April, 2016. The comments in the PRs for slick, socket.io, and parallax
suggest that they are still under evaluation by the developer’s team. In the
case of algorithms.js, the developer is in favor of ES6 classes, although he
believes that it is necessary to transpile the migrated code to ES5 for the sake of
compatibility.7 However, he does not want the project to depend on a transpiler,
such as Babel8, as stated in the following comment:

7 A transpiler is a source-to-source compiler. Transpilers are used, for example, to convert back
from ES6 to ES5, in order to guarantee compatibility with older browsers and runtime tools.

8 https://babeljs.io/.

https://babeljs.io/

168 L.H. Silva et al.

“I really like classes and I’m happy with your change. Even though most modern
browsers support classes, it would be nice to transpile to ES5 to secure compat-
ibility. And I’m not sure it would be good to add Babel as a dependency to this
package. So for now I think we should keep this PR on hold for a little while...”
(Developer of system algorithms.js)

We have two closed PRs whose changes were not merged. The developer of
grunt chose not to integrate the migrated code because the system has to keep
compatibility with older versions of node.js, that do not support ES6 syntax,
as stated in the following comment:

“We currently support node 0.10 that does not support this syntax. Once we are
able to drop node 0.10 we might revisit this.” (Developer of system grunt)

In the case of isomer, the developers decided to keep their code according
to ES5, because they are not enthusiasts of the new class syntax in ES6:

“IMHO the class syntax is misleading, as JS “classes” are not actually classes.
Using prototypal patterns seems like a simpler way to do inheritance.” (Developer
of system isomer)

The PR for system pixi.js was the largest one, with 82 churned files, and all
the proposed changes were promptly accepted, as described in this comment:

“Awesome work! It is really great timing because we were planning on doing this
very soon anyways.” (Developer of pixi.js)

The developers also mentioned the need to use a transpiler to keep compat-
ibility with other applications that do not support ES6 yet, and they chose to
use Babel for transpiling, as stated in the following comments:

“Include the babel-preset-es2015 module in the package.json devDependencies.”...
“Unfortunately, heavier dev dependencies are the cost right now for creating
more maintainable code that’s transpiled. Babel is pretty big and other tech like
TypeScript, Coffeescript, Haxe, etc. have tradeoffs too.” (Developer of pixi.js)

Finally, pixi.js developers also discussed the adoption of other ES6 features,
e.g., using arrow functions expressions and declaring variables with let and
const, as stated in the following comment:

“I think it makes more sense for us to make a new Dev branch and start working
on this conversion there (starting by merging this PR). I’d like to make additional
passes on this for const/let usage, fat arrows instead of binds, statics and other
ES6 features.” (Developer of pixi.js)

6 Threats to Validity

External Validity. We studied eight open-source JavaScript systems. For this
reason, our collection of “bad” and “ugly” cases might not represent all possible
cases that require manual intervention or that cannot be migrated to the new
syntax of ES6. If other systems are considered, this first catalogue of bad and
ugly cases can increase.

Refactoring Legacy JavaScript Code to Use Classes 169

Internal Validity. It is possible that we changed the semantics of the systems
after the migration. However, we tackled this threat with two procedures. First,
all systems in our dataset include a large number of tests. We assure that all tests
also pass in the ES6 code. Second, we submitted our changes to the system’s
developers. They have not pointed any changes in the behavior of their code.

Construct Validity. The classes emulated in the legacy code were detected by
JSClassFinder [8,9]. Therefore, it is possible that JSClassFinder wrongly iden-
tifies some structures as classes (false positives) or that it misses some classes
in the legacy code (false negatives). However, the developers who analyzed our
pull requests did not complain about such problems.

7 Related Work

In a previous work, we present a set of heuristics followed by an empirical study
to analyze the prevalence of class-based structures in legacy JavaScript code [8].
The study was conducted on 50 popular JavaScript systems, all implemented
according to ES5. The results indicated that class-based constructs are present
in 74% of the studied systems. We also implemented a tool, JSClassFinder [9],
to detect classes in legacy JavaScript code. We use this tool to statically identify
class dependencies in legacy JavaScript systems [15] and also to identify the
classes migrated to ES6 in this paper.

Hafiz et al. [10] present an empirical study to understand how different lan-
guage features in JavaScript are used by developers. The authors conclude that:
(a) developers are not fully aware about newly introduced JavaScript features;
(b) developers continue to use deprecated features that are no longer recom-
mended; (c) very few developers are currently using object-oriented features,
such as the new class syntax. We believe this last finding corroborates the impor-
tance of our work to assist developers to start using ES6 classes.

Rostami et al. [16] propose a tool to detect constructor functions in legacy
JavaScript systems. They first identify all object instantiations, even when there
is no explicit object instantiation statement (e.g., the keyword new), and then
link each instance to its constructor function. Finally, the identified constructors
represent the emulated classes and the functions that belong to these construc-
tors (inner functions) represent the methods.

Gama et al. [11] identify five styles for implementing methods in JavaScript:
inside/outside constructor functions using anonymous/non-anonymous functions
and using prototypes. Their main goal is to implement an automated approach to
normalize JavaScript code to a single consistent style. The migration algorithm
used in this paper covers the five styles proposed by the authors. Additionally,
we also migrate static methods, getter and setters, and inheritance relationships.

Feldthaus et al. [17] describe a methodology for implementing automated
refactorings on a nearly complete subset of the JavaScript language. The authors
specify and implement three refactorings: rename property, extract module, and
encapsulate property. In summary, the proposed refactorings aim to transform

170 L.H. Silva et al.

ES5 code in code that is more maintainable. However, they do not transform
the code to the new JavaScript standard.

Previous works have also investigated the migration of legacy code, imple-
mented in procedural languages, to object-oriented code, including the transfor-
mation of C functions to C++ function templates [18] and the adoption of class
methods in PHP [19].

8 Final Remarks

In this paper, we report a study on replacing structures that emulate classes
in legacy JavaScript code by native structures introduced by ES6, which can
contribute to foster software reuse. We present a set of migration rules based
on the most frequent use of class emulations in ES5. We then convert eight
legacy JavaScript systems to use ES6 classes. In our study, we detail cases that
are straightforward to migrate (the good parts), cases that require manual and
ad-hoc migration (the bad parts), and cases that cannot be migrated due to
limitations and restrictions of ES6 (the ugly parts). This study indicates that
the migration rules are sound but incomplete, since most of the studied systems
(75%) contain instances of bad and/or ugly cases. We also collect the perceptions
of JavaScript developers about migrating their code to use the new syntax for
classes. Our findings suggest that (a) proposals to automatically translate from
ES5 to ES6 classes can be challenging and risky; (b) developers tend to move
to ES6, but compatibility issues are making them postpone their decisions; (c)
developer opinions diverge about the use of transpilers to keep compatibility
with ES5; (d) there are demands for new class-related features in JavaScript,
such as static fields, method deprecation, and partial classes.

As future work, we intend to enrich our research in two directions. First,
we plan to extend our study migrating a larger set of JavaScript systems. In
this way, we can identify other instances of bad and ugly cases. Second, we plan
to implement a refactoring tool for a JavaScript IDE. This tool should be able
to semi-automatically handle the good cases, and also alert developers about
possible bad and ugly cases.

Acknowledgments. This research is supported by CNPq, CAPES and Fapemig.

References

1. Kienle, H.: It’s about time to take JavaScript (more) seriously. IEEE Softw. 27(3),
60–62 (2010)

2. Ocariza Jr., F.S., Pattabiraman, K., Zorn, B.: JavaScript errors in the wild: an
empirical study. In: 22nd IEEE International Symposium on Software Reliability
Engineering (ISSRE), pp. 100–109 (2011)

3. Nederlof, A., Mesbah, A., van Deursen, A.: Software engineering for the web: the
state of the practice. In: 36th International Conference on Software Engineering
(ICSE), pp. 4–13 (2014)

Refactoring Legacy JavaScript Code to Use Classes 171

4. Borges, H., Hora, A., Valente, M.T.: Understanding the factors that impact the
popularity of GitHub repositories. In: 32nd International Conference on Software
Maintenance and Evolution (ICSME), pp. 1–10 (2016)

5. Borning, A.H.: Classes versus prototypes in object-oriented languages. In: ACM
Fall Joint Computer Conference, pp. 36–40 (1986)

6. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of JavaScript. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126–150. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14107-2 7

7. European Association for Standardizing Information and Communication Systems
(ECMA). ECMAScript Language Specification, 6th edn. (2015)

8. Silva, L.H., Ramos, M., Valente, M.T., Bergel, A., Anquetil, N.: Does JavaScript
software embrace classes? In: 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER), pp. 73–82 (2015)

9. Silva, L.H., Hovadick, D., Valente, M.T., Bergel, A., Anquetil, N., Etien, A.:
JSClassFinder: a tool to detect class-like structures in JavaScript. In: 6th Brazilian
Conference on Software (CBSoft), Tools Demonstration Track, pp. 113–120 (2015)

10. Hafiz, M., Hasan, S., King, Z., Wirfs-Brock, A.: Growing a language: an empirical
study on how (and why) developers use some recently-introduced and/or recently-
evolving JavaScript features. J. Syst. Softw. (JSS) 121, 191–208 (2016)

11. Gama, W., Alalfi, M., Cordy, J., Dean, T.: Normalizing object-oriented class styles
in JavaScript. In: 14th IEEE International Symposium on Web Systems Evolution
(WSE), pp. 79–83 (2012)

12. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: 27th International Conference on Software Engineering (ICSE),
pp. 284–292 (2005)

13. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

14. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8(5), 49–84 (2009)

15. Silva, L.H., Valente, M.T., Bergel, A.: Statically identifying class dependencies in
legacy JavaScript systems: first results. In: 24th IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Early Research
Achievements (ERA) Track, pp. 1–5 (2017)

16. Rostami, S., Eshkevari, L., Mazinanian, D., Tsantalis, N.: Detecting function con-
structors in JavaScript. In: 32nd IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pp. 1–5 (2016)

17. Feldthaus, A., Millstein, T.D., Møller, A., Schäfer, M., Tip, F.: Refactoring towards
the good parts of JavaScript. In: 26th Conference on Object-Oriented Programming
(OOPSLA), pp. 189–190 (2011)

18. Siff, M., Reps, T.: Program generalization for software reuse: from C to C++.
In: 4th Symposium on Foundations of Software Engineering (FSE), pp. 135–146
(1996)

19. Kyriakakis, P., Chatzigeorgiou, A.: Maintenance patterns of large-scale PHP web
applications. In: 30th IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 381–390 (2014)

http://dx.doi.org/10.1007/978-3-642-14107-2_7

Tools Demonstrations

DyMMer-NFP: Modeling Non-functional
Properties and Multiple Context Adaptation

Scenarios in Software Product Lines

Anderson G. Uchôa1(B), Luan P. Lima1, Carla I.M. Bezerra1,3,
José Maria Monteiro2, and Rossana M.C. Andrade2,3

1 Federal University of Ceará, UFC Quixadá, Quixadá, Brazil
andersonguchoa@gmail.com, luan pereira lima@hotmail.com,

carlailane@ufc.br
2 Computer Science Department, Federal University of Ceará,

UFC Fortaleza, Fortaleza, Brazil
{monteiro,rossana}@ufc.br

3 Group of Computer Networks, Software Engineering and Systems (GREat),
Federal University of Ceará, Fortaleza, Brazil

Abstract. In Software Product Lines (SPLs), the modeling of non-
functional properties (NFPs) and context adaptation scenarios are
important activities, once they make possible the identification of inter-
dependencies constraints between functional requirements (FR) and
NFP, according to a specific adaptation context scenario. However, there
are few tools to help domain engineers to represent NFPs and context
adaptation scenarios. To deal with this problem, we propose DyMMer-
NFP, an extension of the DyMMer tool to support the modeling of
NFPs and multiple contextual adaptation scenarios in feature mod-
els. DyMMer-NFP uses a catalog with 39 NFPs. Each NFP in this
catalog were mapped according to each quality characteristic and sub-
characteristics presented in the ISO/IEC 25010 SQuaRE product qual-
ity model. To specify the interdependencies between NFPs and fea-
tures, DyMMer-NFP has used the concept of contribution links. In
order to make it easier to evaluate DyMMer-NFP two datasets, called
AFFOgaTO and ESPREssO, were made available for free.

Keywords: Feature models · Non-functional properties · Dynamic
Software Product Lines

1 Introduction

One of the main concepts in Software Product Lines (SPLs) is the variability,
which can be defined as the possibility of setting or as the ability of a system
or software artifact has to be changed, customized or configured for a particular
context [3]. SPLs treat variability using a design artifact called feature model,

R.M.C. Andrade—Research Scholarship - DT Level 2, sponsored by CNPq.

c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 175–183, 2017.
DOI: 10.1007/978-3-319-56856-0 12

176 A.G. Uchôa et al.

which captures the similarities and variabilities between the possible configura-
tions of products in a particular domain [9]. This artifact represents the varia-
tions in software architecture. In SPLs, variants are typically set during the SPL
development cycle at design time. However, recently, Dynamic Software Product
Lines (DSPLs) were proposed as a way to promote runtime variability, where
variants can be selected and change their behavior at runtime [3]. DSPL aims to
produce software capable to adapt according to the needs of users and resources
constraints at runtime. In a DSPL, variation points are firstly bound when the
software is released, matching initial environment settings. However, at runtime,
whether the context changes, it is possible to rebind the variation points, in
order to adapt the system to the new, changed, environment settings [4]. Thus,
in a DSPL feature model, the features can be added, removed and modified at
runtime in a managed way [1].

Nevertheless, feature models do not capture Non-Functional Properties
(NFP) explicitly neither influence these properties to achieve alternative con-
figurations of a product variant. Representing NFP in SPL or DSPL might be
a rather complex activity. Given a particular context, configuration rules, fea-
tures constraints and preferences of stakeholders, must all be considered [10].
Although the NFP represent an important aspect related to the quality of a
SPL, modeling NFP techniques are not completely suitable for SPL engineering,
as indicated in an extensive literature survey [7].

A major challenge in DSPLs is to enable the support of scenarios with con-
text adaptation and non-functional properties (NFP). The modeling of multiple
context adaptation scenarios in DSPL feature models is an important mecha-
nism for DSPL engineering, specifically in Domain Engineering where system
features must be specified to accommodate context variations, and therefore,
depending on the context, one set of features will be activated and the other will
be deactivated [5].

In our previous work, we developed a tool called, DyMMer [2], to automati-
cally support the evaluation of SPL and DSPL feature models based on a catalog
of 40 quality measures. Currently, DyMMer is able to import a feature model
in XML format, represent visually a feature model and edit it, adding context
adaptations and context rules to the activation and deactivation of features.
Besides, DyMMer is also capable of computing 40 quality measures, in which 8
are specific for DSPLs and 32 can be used in both SPLs and DSPLs [2].

In this work, we present an extension of the DyMMer tool, called DyMMer-
NFP, to support the modeling of NFPs and multiple contextual adaptation sce-
narios in feature models. DyMMer-NFP uses a catalog with 39 NFPs (showed in
Fig. 1), identified initially by [11]. Next, the 39 NFPs in this catalog were mapped
according to each quality characteristic and sub-characteristics presented in the
ISO/IEC 25010 SQuaRE product quality model [8]. Finally, to specify the inter-
dependencies between NFPs and features we have used the concept of goal-
oriented modeling, in particular the concept of contribution links [12].

The remainder of this paper is organized as follows. Section 2 the DyMMer
tool is presented in detail, which includes the main features and architecture.

DyMMer-NFP: Modeling Non-functional Properties 177

Section 3 describe the main features added to the DyMMer-NFP and presents
a NFPs catalog to assist in the identification and NFPs modeling in DSPL
feature models. Section 4 describes how to use the DyMMer-NFP to NFPs mod-
eling through a set of tasks. Finally, Sect. 5 the conclusion and future work are
described.

2 Background

DyMMer (Dynamic Feature Model Tool Based on Measures) is a tool origi-
nally developed to extract measures from different feature models, which can
be described using the file format (XML) proposed by the S.P.L.O.T1 feature
models repository. So, DyMMer receives as input a XML file and creates an in
memory representation for this feature model. The DyMMer was developed using
JAVA and offers a series of functionalities, organized in three main layers [2]:

– Feature Model Viewer - allows the visualization of feature models accord-
ing to the selected context;

– Feature Model Editor - allows the insertion, exclusion and edition of con-
text adaptations. DyMMer considers that context and non-context features
are represented in a single feature model; and

– Data Exportation - allows to export the values generated from the qual-
ity measures applied to the feature models with and without context for a
spreadsheet in Microsoft Office Excel format.

Although DyMMer presents functionalities that allow domain engineers to
extract quality measures and to edit feature models, it does not support the
addition and removal of features and cardinality groups. Besides, DyMMer does
not support the managing of NFPs, as well as multiple context adaptations
scenarios in a same feature model. Thus, in order to surpass the lack of these
functionalities, we extend the DyMMer giving rise to a new tool called DyMMer-
NFP. The DyMMer-NFP code and its documentation are available online2. The
new features incorporated by DyMMer-NFP are presented in the next section.

3 DyMMer-NFP Main Features

In this section we present the main features added in the DyMMer-NFP.

Creating a Feature Model. In addition to importing existing feature mod-
els which must be described in the S.P.L.O.T format, DyMMer-NFP makes it
possible to create new feature models using the FODA method notation [6]. It
is possible to create mandatory and optional features, XOR and OR cardinality
groups, as well as inclusion and exclusion constraints (see Fig. 2. ➂).

1 S.P.L.O.T - http://www.splot-research.org/.
2 https://github.com/anderson-uchoa/DyMMer.

http://www.splot-research.org/
https://github.com/anderson-uchoa/DyMMer

178 A.G. Uchôa et al.

Modeling Non-functional Properties. DyMMer-NFP makes it possible to
represent NFPs in a feature model. For this, we have used a NFPs catalog
(showed in Fig. 1), identified initially by [11]. Next, the 39 NFPs in this catalog
were mapped according to each quality characteristic and sub-characteristics pre-
sented in the ISO/IEC 25010 SQuaRE product quality model [8] (see Fig. 2 ➀).
This catalog works as a guide for the identification of NFPs that emerge at
runtime. Thus, the NFPs catalog was organized in several levels. The 1st level
represents the root of our classification schema. The 2nd level is composed of each
quality characteristic and the 3rd level represents the quality sub-characteristics
related to each quality characteristic. Finally, the 4th level represents the NFPs
identified in [11]. The quality characteristics mapped in this catalog are: Func-
tional suitability, Performance efficiency, Reliability, Security e Usability. Cur-
rently, the DyMMer-NFP supports the modeling of 39 NFPs, which can also be
used in both SPLs and DSPLs feature models.

Fig. 1. The NFPs catalog.

DyMMer-NFP: Modeling Non-functional Properties 179

Defining Context Adaptation Scenarios. DyMMer-NFP makes it possible
to edit a specific feature model, adding or removing context adaptation scenarios.
The addition of context adaptation scenarios is represented by a hierarchical
list consisting of two specification levels (see Fig. 2. ➁). Thus for each added
context adaptation scenario a domain engineer must add context information
with their respective variations, specify which features should be activated or
deactivated, and define constraints. A DSPL feature model may have one or
more context adaptation scenarios. DyMMer-NFP enables the domain engineer
to handle DSPLs feature models. It is important to emphasize that the S.P.L.O.T
does not support DSPLs modeling.

Fig. 2. An overview of the DyMMer-NFP tool: ➀ quality feature model editor, ➁

context adaptation scenarios editor, ➂ cross-tree constraints editor, ➃ interdependen-
cies constraints editor, ➄ visualizing feature model configuration, ➅ selecting context
adaptation scenarios.

Specifying Interdependencies Constraints Between Features and
NFPs. DyMMer-NFP makes it possible to specify the interdependencies
between NFPs and features (see Fig. 2. ➃). To specify this constraints we have
added a concept of goal-oriented modeling, in particular the concept of con-
tribution links [12]. In this way, we assign interdependence constraints for each
feature in a given context. These features may have four types of interdependence
constraints over an NFP:

– “++” - the feature completely satisfies an NFP if it is activated;
– “- -” - the feature does not completely satisfy an NFP if it is activated;
– “+” - the feature has a positive influence on an NFP if it is activated; and
– “-” - the feature has a negative influence on an NFP if it is activated.

180 A.G. Uchôa et al.

Visualizing Feature Model Configuration. DyMMer-NFP makes it possible
to view the feature model configuration (see Fig. 2 ➄–➅). The visualization of the
feature model configuration can be done in two ways: (i) after adding a context
adaptation scenario in editing; and (ii) by means of the feature model viewer
layer. The visualization of the feature model configurations after adding a context
adaptation scenario, for example, is possible through the preview functionality,
allowing the domain engineer to easily observe the feature model configuration
during its editing. In this way, after each addition of a new context adaptation
scenario the domain engineer can view one or more feature model configurations.

4 Using DyMMer-NFP to Modeling Non-functional
Properties

The use of the DyMMer-NFP to modeling NFPs in feature models consists in
running a set of tasks showed in Fig. 3 and in the tool demonstration video3.
These task are discussed next.

Fig. 3. Using DyMMer-NFP.

Task 1 - Importing Feature Models from S.P.L.O.T. The first task is to
import a feature model from S.P.L.O.T repository or create a new feature model.
In order to make it easier to evaluate DyMMer-NFP two datasets can be used,
they are: (i) AFFOgaTO dataset is composed of a set of 218 feature models
fetched from S.P.L.O.T repository; and (ii) ESPREssO dataset is composed of
a set of the 30 DSPLs feature models extracted from literature and represented
in the XML format, following the S.P.L.O.T specifications. The AFFOgaTO4

3 Demonstration video - https://youtu.be/FCn0zEfAEBs.
4 AFFOgaTO - https://goo.gl/gye5ma.

https://youtu.be/FCn0zEfAEBs
https://goo.gl/gye5ma

DyMMer-NFP: Modeling Non-functional Properties 181

and ESPREssO5 datasets are available for free download and can be used by the
software engineering community.

Task 2 - Modeling Non-functional Properties. After to import or create
a new feature model, we must represent the non-functional properties that are
relevant for the feature model. These NFPs are specified according to the NFPs
catalog and represented visually in DyMMer-NFP.

Task 3 - Defining Context Adaptation Scenarios. Next, a set of context
adaptation scenarios can be defined for a given feature model. Context adap-
tation scenarios are added in a hierarchical list, where context information are
added with their quantifiers and qualifiers. These quantifiers are defined by rela-
tional operators: greater than (>), less than (<), greater than or equal to (>=),
less than or equal to (<=), equal (=) and different (<>). Followed by a value of
type: string, integer, float or boolean. If this quantifier is defined by a numeric
range, a logical operator is added that can be of the type: (OR) or (AND),
followed by another value of type string, integer, float or boolean.

Task 4 - Specifying Constraints Between Features and Context Adap-
tation Scenarios. The next task is to analyze and specify the constraints
between features and context adaptation scenarios. This task aims to verify
which features should be activated and deactivated in a given context adapta-
tion scenario. To perform this task we must specify which features are activated
and deactivated for each context adaptation scenario.

Task 5 - Specifying Interdependencies Constraints Between NFPs and
Features. After specifying the context adaptation scenarios, that is, which fea-
tures are activated and deactivated in each context adaptation scenario, the
interdependencies constraints between NFPs and the context features can be
defined. Thus, for each context adaptation scenario, the user needs to specify
the contribution links between each feature, activated or deactivated in this cur-
rent scenario, and one or more NFPs.

Task 6 - Visualizing DSPL Feature Models Configurations. After mod-
eling the context adaptation scenarios and the interdependencies constraints
between NFPs and context features, we can visualize the configuration of a spe-
cific feature model.

5 Conclusion and Future Work

This paper presents DyMMer-NFP, an extension of the DyMMer tool to support
the modeling of NFPs and multiple contextual adaptation scenarios in feature
models. DyMMer-NFP uses a catalog with 39 NFPs (showed in Fig. 1), identi-
fied initially by [11]. Next, the 39 NFPs in this catalog were mapped according
to each quality characteristic and sub-characteristics presented in the ISO/IEC

5 ESPREssO - https://goo.gl/ONfTL3.

https://goo.gl/ONfTL3

182 A.G. Uchôa et al.

25010 SQuaRE product quality model [8]. Finally, to specify the interdepen-
dencies between NFPs and features we have used the concept of goal-oriented
modeling, in particular the concept of contribution links [12]. The modeling of
multiple context adaptation scenarios in DSPL feature models is at the same time
an important mechanism and a challenging task. So, DyMMer-NFP can help
domain engineers in creating better adaptive software, guiding the specification
of the feature model, besides making it easier to model the NFPs established
by the stakeholders and to represent the relationship (including constraints)
between features and NFPs. Thus, DyMMer-NFP enables the analysis of the
impacts that a feature have on one or more NFPs in different context adapta-
tions, ensuring that products derived from the DSPL continue serving in a satis-
factory way the NFPs previously established. In this way, the domain engineers
are guided to build DSPLs that satisfies the specified NFPs: adding features
that increases the possibility of achieving a particular NFP and removing (or
minimizing) features that reduces this probability, ensuring an improvement in
the quality of the DSPL. As future work, we intend to formally verify whether
the NFPs in a specific DSPL feature model match the expected results of the
process of runtime reconfiguration. In addition, we plan to add new NFPs in the
catalog and to identify thresholds for each NFP.

References

1. Bencomo, N., Hallsteinsen, S., De Almeida, E.S.: A view of the dynamic software
product line landscape. Computer 45(10), 36–41 (2012)

2. Bezerra, C.I., Barbosa, J., Freires, J.H., Andrade, R., Monteiro, J.M.: DyMMer:
a measurement-based tool to support quality evaluation of DSPL feature mod-
els. In: Proceedings of the 20th International Systems and Software Product Line
Conference, pp. 314–317. ACM (2016)

3. Bosch, J.: Software variability management. In: Proceedings of the 26th Interna-
tional Conference on Software Engineering, pp. 720–721. IEEE Computer Society
(2004)

4. Capilla, R., Bosch, J., Kang, K.C.: Systems and Software Variability Management.
Springer, Heidelberg (2013)

5. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.: An overview
of dynamic software product line architectures and techniques: observations from
research and industry. J. Syst. Softw. 91, 3–23 (2014)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Softw. Process: Improv. Pract. 10(1), 7–29 (2005)

7. Hammani, F.Z.: Survey of non-functional requirements modeling and verification of
software product lines. In: 2014 IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS), pp. 1–6. IEEE (2014)

8. ISO/IEC: 25010: Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models.
Technical report, ISO/IEC, Switzerland (2011)

9. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, DTIC Document
(1990)

DyMMer-NFP: Modeling Non-functional Properties 183

10. Sanchez, L.E., Diaz-Pace, J.A., Zunino, A., Moisan, S., Rigault, J.P.: An app-
roach based on feature models and quality criteria for adapting component-based
systems. J. Softw. Eng. Res. Dev. 3(1), 1–30 (2015)

11. Soares, L.R., Potena, P., Carmo Machado, I., Crnkovic, I., Almeida, E.S.: Analysis
of non-functional properties in software product lines: a systematic review. In: 2014
40th EUROMICRO Conference on Software Engineering and Advanced Applica-
tions, pp. 328–335. IEEE (2014)

12. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
2001 Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering, pp. 249–262. IEEE (2001)

Identification and Prioritization of Reuse Opportunities
with JReuse

Johnatan Oliveira1(✉), Eduardo Fernandes1, Gustavo Vale2, and Eduardo Figueiredo1

1 Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
{johnatan.si,eduardofernandes,figueiredo}@dcc.ufmg.br

2 Department of Informatics and Mathematics, University of Passau, Passau, Germany
vale@fim.uni-passau.de

Abstract. Software reuse aims to decrease the development efforts by using
existing software components in the development of new systems. Previous work
propose tools to support the identification of reuse opportunities. Such tools apply
different techniques, such as software design and source code analyses. However,
none of them combines lexical analysis with prioritization and identification of
reuse opportunities in several systems of a single domain. To fill this gap, this
paper proposes JReuse, a tool that computes naming similarity for classes and
methods of Java systems. Based on naming similarity, JReuse identifies reuse
opportunities and prioritizes them by their frequency among systems. We evaluate
JReuse with 35 e-commerce systems collected from GitHub by assessing the
agreement among the JReuse recommendations and the opinion of a group of
experts. We observe agreements of 89% and 72% for classes and methods, respec‐
tively. Therefore, our data suggest that JReuse is able to recommend reusable
classes and methods in a given domain.

Keywords: Software reuse · Reuse opportunity · Supporting tool

1 Introduction

Software reuse is a development strategy in which existing software components support
the development of new systems [4]. The reuse of existing components potentially
increases the software quality and the developers’ productivity, since reused components
are recurrently evaluated and improved, instead of developed from scratch [6, 7].
Previous works propose tools with different techniques to support the identification of
reuse opportunities [5, 9, 14]. For instance, the Guru tool [5] relies on source code
analysis to identify reuse opportunities based on the similarity of attributes from different
classes. Another tool, called Aesop [9], relies on the analysis of architectural diagrams.
Finally, CodeBroker [14] performs run-time identification and prioritization of oppor‐
tunities based on semantic code analysis and documentation. However, none of them
combines lexical analysis with the prioritization of reuse opportunities. In addition, they
do not aim to analyze several systems of a single domain.

This paper proposes and evaluates JReuse, a tool for identification and prioritization
of reuse opportunities in Java systems. JReuse computes the naming similarity

© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 184–191, 2017.
DOI: 10.1007/978-3-319-56856-0_13

(i.e., lexical analysis) of classes and methods among systems. Therefore, the tool aims
to analyze systems from a domain with similar naming conventions. In addition, the tool
prioritizes the identified reuse opportunities by their frequency among different systems.
We evaluate JReuse with 35 e-commerce systems collected from GitHub1. In this eval‐
uation, we compare the reuse opportunities identified by JReuse with the opinion of a
group of e-commerce experts. We observe an average agreement of 89% between the
tool and experts with respect to classes. Similarly, the average agreement was 72%
between JReuse and the experts’ opinion for methods.

Our main contribution with this paper is the JReuse tool. The potential users of the
tool are software developers and engineers concerned about the identification of reuse
opportunities at class and method levels in systems of a specific domain. The recom‐
mendations provided by JReuse have different practical applications. We provide some
examples as follows. First, methods and partial classes can guide developers in the
implementation of a new system. Second, the results provided by JReuse may support
recovering a partial design for systems of a domain. Third, the recommendations
provided by JReuse can support the evolution of existing systems.

The remainder of this paper is organized as follows. Section 2 discusses related work.
Section 3 presents JReuse. Section 4 provides the tool’s evaluation. Section 5 discusses
threats to validity. Section 6 concludes the paper and suggests future work.

2 Related Work

Different techniques may support the identification of reuse opportunities. Maarek et al.
[5] proposes the Guru tool that relies on the source code analysis. Guru groups code
elements that implement similar functionalities based on the extraction of attributes of
classes. However, Guru does not provide a general view of the reuse opportunities, via
prioritization of opportunities, and requires that developers search for specific function‐
alities of interest instead. Monroe and Garlan [9] present Aesop that relies on architec‐
tural analysis. The authors assume that code analysis does not suffice to identify reuse
opportunities, due to the limitation of representing concerns via code. Hence, Aesop
analyzes the architectural diagram of a system to identify the main components and its
interactions. Unlike Guru and Aesop, JReuse identifies and prioritizes reuse opportuni‐
ties without requiring the developer to provide a search key.

Ye and Fischer [14] present the closest technique to ours, called CodeBroker, for
identification of reuse opportunities at run-time using information retrieval. Their tool
relies on semantic analysis and performs both source code and documentation analysis.
CodeBroker provides a list of methods as reuse opportunities prioritized by their rele‐
vance. In turn, JReuse applies lexical analysis, i.e. a lighter technique for analysis of
multiple systems at the same time. JReuse also aims to support reuse by identifying and
prioritizing not only methods as reuse opportunities, but also classes.

1 https://github.com/.

Identification and Prioritization of Reuse Opportunities with JReuse 185

https://github.com/

3 JReuse

This section presents the JReuse tool. Section 3.1 describes the tool’s architecture and
the algorithm adopted for similarity computation. Section 3.2 presents the main imple‐
mentation technologies and the user interface of JReuse. An illustrative video of JReuse,
as the source code of the tool, are both available in our research website [11].

3.1 Architecture

JReuse is an Eclipse plug-in that computes similarity among names of classes and
methods to identify the most frequent terms in systems of a single domain. Figure 1
presents the architecture of JReuse. Four modules compose the tool, namely Collector,
Extractor, Similarity Calculator, and Ranking Calculator.

Fig. 1. Architecture of JReuse

Collector collects a set of systems for identification of reuse opportunities. Two sub-
modules compose this module: GitHub Collector and Local Storage Collector. GitHub
Collector is responsible for collecting systems from GitHub given a search string
provided by the user. Local Storage Collector collects systems from a local directory
informed by the user. The user may choose between both means to collect systems.
Extractor extracts the code elements necessary for computation of naming similarity.
This module has two sub-modules. Class Extractor is responsible to retrieve both names
and types of classes. Method Extractor does the same for methods.

Similarity Calculator calculates naming similarity among classes, through the Class
Similarity sub-module, and Method Similarity does the same for methods. Both sub-
modules use the Levenshtein’s algorithm for naming similarity computation (details in
the paragraph Similarity Algorithm). Finally, Ranking Calculator generates the sorted
list of reuse opportunities. Such list prioritizes the opportunities based on a similarity
score, i.e., higher scores come first. CSV Generator and Repository sub-modules export
the JReuse results as CSV and persists the results on the repository.

Similarity Algorithm. Previous work [1, 3, 15] propose algorithms for naming simi‐
larity computation. We chose the Levenshtein’s algorithm [15] because of its simplicity.
This algorithm relies on lexical analysis to computes a similarity score between two
strings. Such score ranges from 0% to 100%. The higher the score, the more similar the
strings are. We consider two names as similar if their score is at least 75%. We derived
this value empirically, given naming conventions for classes and methods. Thus, we
prevent elements with similar names that address different concerns. For instance, two

186 J. Oliveira et al.

classes named Customer and CustomerDAO have score equals 72%. The first one
is an entity abstraction and the second one is a data base entity.

Limit for Recommendation. We defined two limits to the amount of classes and
methods recommended as reuse opportunities. For classes, the limit is 15% of systems
in the analyzed domain. For instance, considering the data set presented in Sect. 4.1, the
limit of 15% means that a class should appear in at least 6 out of 35 systems. In our
empirical analysis, several classes appear in a small amount of systems, eventually in
just one system of our data set. Therefore, this limit aims to prevent the recommendation
of non-frequent classes. For methods, the limit is 3, i.e. a method has to appear in at least
3 classes from different systems to be recommended. The limits of classes and methods
can be adjusted depending on characteristics of the data set.

3.2 Implementation Technologies and User Interface

We implemented JReuse using the Java programming language with support of the Java
Development Tools (JDT). JDT provides libraries for accessing and manipulating the
Java source code and supports the source code parsing, as the retrieval of names of
classes and methods of Java systems. We analyze the source code structure of target
systems via Abstract Syntax Tree (AST). JReuse works only for Java systems, although
the technique behind the tool applies to other object-oriented programming languages.
The main reasons for selecting Java are: (i) it has a large support for code analysis,
including libraries for AST generation, (ii) it is one of the most popular languages [2],
and (iii) software reuse have been investigating in the context of Java software systems
[8, 12].

Figure 2 illustrates the data grid view of JReuse with results for methods recom‐
mended as reuse opportunities. The grid for classes is similar. There are four columns
in the view discusses as follows. “#” presents is an identifier per recommendation sorted
by the prioritization score. Class provides the name of the source class for each method.
Method shows the method name. Prioritization presents the frequency of each method
among the systems of the analyzed data set (more details in Sect. 4). In addition, the
button Save as CSV exports the results as a CSV file.

Fig. 2. Data grid view with a list of methods identified by JReuse

Identification and Prioritization of Reuse Opportunities with JReuse 187

4 Evaluation

This section evaluates JReuse. Section 4.1 presents the study settings. Sections 4.2 and
4.3 discuss the evaluation results at class and method levels, respectively.

4.1 Evaluation Settings

This evaluation aims to assess both the JReuse correctness and whether it is able to
identify reuse opportunities in Java e-commerce systems. Regarding the tool correct‐
ness, we created many test cases and we manually searched for reusable classes and
methods in the e-commerce systems. Then, we compared them with the results of
JReuse. The results were equals. Thereby, we conclude that JReuse works correctly. In
turn, regarding the ability of JReuse to identify reuse opportunities, we conducted a two-
level evaluation. First, we investigate if the highly prioritized classes provided by JReuse
are specific of a domain. Second, we investigate if the highly prioritized methods are
meaningful to the class they were implemented. To support both evaluation steps, we
rely on a group of experts composed of four software engineers with experience in
software development and reuse, including e-commerce systems. We considered classes
and methods as reuse opportunities just if all members of the group of experts agreed
with the tool.

We designed three steps to the evaluation of JReuse. First, we run the tool with a
data set composed by 35 e-commerce systems collected from GitHub. Second, we
analyzed all classes recommended by JReuse. Third, from the top-ten highly prioritized
classes, we verified the recommended methods. We chose the e-commerce domain for
two main reasons. First, there is a large amount of systems of this domain available for
download in GitHub. Second, since e-commerce is a well-defined domain in terms of
requirements, e-commerce systems potentially have several reuse opportunities for
identification. We collected the systems in November 2016. They have in total around
500 KLOC (mean of 46 KLOC per system), 3 K classes (mean of 368 classes), and 18 K
methods (mean of 1 K methods).

4.2 Results at Class Level

Table 1 presents the reuse opportunities identified by JReuse at class level in our data
set. The columns represent the class name, the class frequency, and if the classes are
specific of the e-commerce domain according to the group of experts. We double the
three columns due to space constraints, and the most frequent classes come first at the
left side. As stated in Sect. 3.1, JReuse does not recommend classes that appear in less
than 15% of the systems (limit). Thus, any class under this condition does not appear in
Table 1. The column “Domain Specific” represents the opinion of the group of experts,
in which “Y” means that all experts agree that the class is specific of the e-commerce
domain, and “N” means that at least one expert does not agree.

188 J. Oliveira et al.

Table 1. Results at class level

Class name Class
frequency

Domain
specific

Class name Class
frequency

Domain
specific

Product 80% Y Category 35% Y
PaymentType 69% Y ProductService 29% Y
Client 58% Y Order 26% Y
ProductDao 52% Y LoginController 20% N
ClientDao 52% Y UserDao 18% Y
Item 49% Y ProductServiceImpl 18% Y
ShoppingCart 49% Y ShoppingCartController 18% Y
User 49% N OrderedProduct 15% Y
Customer 40% Y ShoppingCartService 15% Y

The classes presented in Table 1 appear in several systems. For instance, the class
Product appears in 80% (28 out of 35) of the systems under analysis. Hence, this class
probably will be necessary in the development of a new e-commerce system. Regarding
the data reported at domain specific column, we observe that the group of experts agrees
that most classes are specific of the e-commerce domain. The group of experts disagrees
just in the case of User and LoginController. In summary, the agreement between the
classes JReuse recommended and the group of experts is around 89%, a high value for
agreement. We conclude that, in general, the reuse opportunities identified by JReuse at
class level are actually reusable.

4.3 Results at Method Level

Table 2 summarizes the results for methods identified by JReuse as reuse opportunities.
This analysis relies on the top-ten highly prioritized classes from Table 1. The rows list
mean, maximum, and standard deviation for the last three columns. The second column
presents of methods identified as reuse opportunities for the top-ten classes. The third
column presents the percentage of methods in at least a half of similar classes in different
systems. With this column, we aim to highlight the methods that occur more frequently
in the analyzed classes. The fourth column presents the percentage of agreement from
the group of experts with respect to the highly prioritized methods.

For the top-ten classes, we observe an average of 11 methods per class identified as
reuse opportunities (maximum of 15). That is, each highly prioritized class has a high
amount of similar methods that support the implementation of new e-commerce systems.
In addition, we observe a mean of 60% (maximum of 100%) of methods identified as
reuse opportunities and that occur in at least 50% of similar classes in the analyzed
systems. Finally, regarding the viewpoint of the domain experts, we observe an average
agreement of 72% of methods pointed as specific of their respective classes. The agree‐
ment reached up to 100% for methods of the class User. In summary, as stated in
Sect. 4.2, we conclude that methods identified by JReuse are meaningful and, conse‐
quently, reusable in association with the identified classes.

Identification and Prioritization of Reuse Opportunities with JReuse 189

Table 2. Results for methods from the top-ten classes

Measure # Identified methods % Methods with ≥ 50% frequency Domain-specific
methods

Mean 11 60% 72%
Max. 15 100% 100%
Std. Dev. 3 20% 20%

5 Threats to Validity

We discuss the main threats to the study validity, as the respective treatments, as follows.
Our discussion relies on the guidelines proposed by Wohlin et al. [13].

Construct and Internal Validity. We conducted a careful filtering of systems
collected from GitHub to evaluate JReuse. However, some threats may affect the correct
filtering, as human factors that wrongly lead to the discard of a valid system for evalu‐
ation. We minimize this threat by adopting exclusion criteria described in our website
[11]. Moreover, some threats may have affected our lexical classification of classes and
methods. These threats include error in the nomenclature of classes and methods. To
minimize this problem, and to identify bugs in the JReuse implementation, we randomly
selected a sample of 10 e-commerce systems from our data set. We then identified the
names of classes and methods manually from source code, in order to find synonyms.
We compared our manually obtained results with the ones provided by JReuse and
observed a low loss of 10% in synonym terms identified by the tool.

Conclusion and External Validity. We analyzed the data collected from JReuse
manually, and two authors contributed to double-check such analysis. In addition, we
derived empirically the limits for recommendation of classes and methods (see
Sect. 3.1). Although both the analysis and the limit derivation may have been affected
by human factors, we carefully conducted each activity to prevent biases and missing
data, for instance. Finally, we evaluated JReuse with a set of 35 e-commerce systems
collected from GitHub. Since our evaluation relies on a specific set of systems from a
single domain, we may not generalize our study findings to any Java software systems.
However, the systems of our data set are the most popular Java e-commerce systems on
GitHub given by their number of stars. In addition to e-commerce, we evaluated JReuse
in other three domains [10]: hospital, restaurant, and accounting.

6 Conclusion and Future Work

This paper presents JReuse, a tool for identification and prioritization of reuse oppor‐
tunities in Java systems. Our tool relies on lexical source code analysis. JReuse computes
naming similarly, using the Levenshtein’s algorithm, for classes and methods extracted
from a data set of systems from a specific domain. We evaluate the recommendations
provided by JReuse at class and method levels. A group of experts assessed such recom‐
mendations with respect to their reusability in the context of e-commerce systems.

190 J. Oliveira et al.

Agreements of 89% and 72% regarding classes and methods, respectively, suggest that
JReuse is able to identify relevant reuse opportunities in both class and method levels
for the e-commerce domain. These reuse opportunities can support, for instance, the
reuse of parts of code, the recovery of a partial design for a system, or the evolution of
existing systems.

As future work, we intend to implement the combination of similarity computation
techniques, such as semantic analysis, to extend JReuse. We also aim to identify and
prioritize reuse opportunities in systems implemented in languages other than Java.

Acknowledgments. This work was partially supported by CAPES, CNPq (grants 424340/2016-
0 and 290136/2015-6), and FAPEMIG (grant PPM-00382-14).

References

1. Bilenko, M., Mooney, R.: Adaptive duplicate detection using learnable string similarity
measures. In: 9th Conference on Knowledge Discovery and Data Mining (KDD), pp. 39–48
(2003)

2. Diakopoulos, N., Cass, S.: The Top Programming Languages 2015. http://spectrum.ieee.org/
static/interactive-thetop-programming-languages-2015

3. Gitchell, D., Tran, N.: Sim: a utility for detecting similarity in computer programs. ACM
SIGCSE Bull. 31(1), 266–270 (1999)

4. Krueger, C.: Software reuse. ACM Comput. Surv. (CSUR) 24(2), 131–183 (1992)
5. Maarek, Y., Berry, D., Kaiser, G.: An information retrieval approach for automatically

constructing software libraries. IEEE Trans. Softw. Eng. (TSE) 17(8), 800–813 (1991)
6. Mohagheghi, P., Conradi, R.: Quality, productivity and economic benefits of software reuse:

a review of industrial studies. Empirical Softw. Eng. (ESE) 12(5), 471–516 (2007)
7. Mohagheghi, P., Conradi, R., Killi, O., Schwarz, H.: An empirical study of software reuse vs.

defect-density and stability. In: 26th ICSE, pp. 282–291 (2004)
8. Mojica, I., Adams, B., Nagappan, M., Dienst, S., Berger, T., Hassan, A.: A large-scale

empirical study on software reuse in mobile apps. IEEE Softw. 31(2), 78–86 (2014)
9. Monroe, R., Garlan, D.: Style-based reuse for software architectures. In: 4th ICSR, pp. 84–

93 (1996)
10. Oliveira, J.: A method based on naming similarity to identify reuse opportunities. MSc

dissertation, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (2016)
11. Oliveira, J., Fernandes, E., Vale, G., Figueiredo, E.: JReuse – Data of the Study. http://

homepages.dcc.ufmg.br/~johnatan.si/jreuse
12. Roopa, M., Mani, V., Stefan, H.: An approach for enabling effective and systematic software

reuse. In: 11th ICGSE, pp. 134–138 (2016)
13. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation

in Software Engineering. Springer Science & Business Media, Heidelberg (2012)
14. Ye, Y., Fischer, G.: Reuse-conducive development environments. Autom. Softw. Eng. (ASE)

12(2), 199–235 (2005)
15. Yujian, L., Bo, L.: A normalized Levenshtein distance metric. IEEE Trans. Pattern Anal.

Mach. Intell. (TPAMI) 29(6), 1091–1095 (2007)

Identification and Prioritization of Reuse Opportunities with JReuse 191

http://spectrum.ieee.org/static/interactive-thetop-programming-languages-2015
http://spectrum.ieee.org/static/interactive-thetop-programming-languages-2015
http://homepages.dcc.ufmg.br/%7ejohnatan.si/jreuse
http://homepages.dcc.ufmg.br/%7ejohnatan.si/jreuse

Doctoral Symposium

EcoData: Architecting Cross-Platform Software
Ecosystem Applications

Marcelo França1,2(✉)

1 COPPE/UFRJ – Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
mafranca@cos.ufrj.br, mafranca@br.ibm.com

2 IBM – International Business Machines Brazil, Rio de Janeiro, Brazil

Abstract. Software Ecosystems (SECOs) have been receiving an increasing
amount of attention from both academia and industry. That could be explained
by the open challenges pointed out by the Software Engineering community, as
well as by the fact that many organizations adopt a more open and collaborative
strategy to achieve innovation. While observing an evolution in the way platforms
are used for developing applications, a specific type of SECO, which is centered
on data, was identified: EcoData. It emerged in the “third model of computing
platform”, recognized by industry as the confluence of new technologies such as
Cloud Computing, Big Data and Analytics, Mobility and Social Business –
CAMS. By reviewing the literature, non-functional requirements for EcoData
applications were identified, but without a reference architecture (RA). While a
RA would be useful for new solutions, the research’s goal is to provide a means
for architecting and improving cross-platform SECO applications.

Keywords: Software ecosystem · Software architecture · CAMS

1 Introduction

From an organizational perspective, a Software Ecosystem (SECO) is defined as an
environment where internal and external actors construct large software systems by
reusing components, supported by a common platform [1]. As a relative new topic in
Software Engineering (SE), its research has received more attention since 2007 [2].

At the same time, there is an everlasting demand for innovative solutions, since
competitors are struggling to differentiate themselves by delivering more value to
customers nowadays. Industry has to deal with the so called “digital transformation” [3],
where changes associated with the application of digital technology are affecting human
society. Thus, in order to reduce time-to-market whilst responding to such challenges,
companies are moving from a traditional, independent strategy, to a more open, collab‐
orative, and even agile approach, like crowdsourcing and SECO [1].

Despite the initial advances in SECO research, there are still several open challenges
[4] and few contributions from industrial studies. Investigations performed for this PhD
research helped us to identify two research issues: (1) the novelty of SECO research in
SE implies in an incomplete SECO taxonomy [1], with the absence of a specific type of
SECO that is centered on data, which is pivotal nowadays [5]; and (2) the lack of a SECO

© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 195–200, 2017.
DOI: 10.1007/978-3-319-56856-0_14

reference architecture (RA) for applications targeting more than one platform, both on
mobile (such as Windows, Android, and iOS) and in the cloud.

According to Taylor et al. [6], a RA is the set of principal design decisions that are
applicable to multiple related systems with explicitly defined points of variation, usually
within a domain – in our case, the SECO domain. RA could be leveraged as a roadmap
for new SECO entrants, and a model for evaluating and improving existing SECO
applications, due to the known correlation between software architecture and its quality
and evolution, especially complex ones [7].

Three dimensions classically characterize a SECO: business, social and technical [8].
Focusing on the latter, this PhD’s objective is to contribute to a body of knowledge with
the definition of SECO architectures, by investigating non-functional requirements for
today’s applications targeting more than one platform (multihoming, for instance). The
intent is to characterize a specific SECO type that is centered on data, spreading across
multiple platforms and, then, to identify a set of non-functional requirements for appli‐
cations targeting it (for example, portability and interoperability), and confirm it with
specialists, i.e., subject matter experts (SME) from the industry. Finally, we will propose
a RA addressing those requirements, documented as a set of architectural artifacts and
a checklist plus a process, supporting the improvement of existing applications as
outcome – since one could not be found in the literature.

Thus, the problem to be solved is how to architect and improve software applications
targeting an EcoData, taking in consideration current technology trends, and according
to the identified non-functional requirements. An important problem since there is not
much information about data-centric cross-platform SECO applications.

The remainder of this paper is structured as follows: research questions are listed in
Sect. 2, related work is discussed in Sect. 3, the proposed research methodology is
defined in Sect. 4, and preliminary contributions are presented in Sect. 5. Finally,
Sect. 6 concludes the paper with some remarks.

2 Research Questions

Based on the PhD objective, two hypotheses were established:
H1: A RA based on open standards and cross-platform mechanisms can address

portability and interoperability requirements for applications targeting EcoData.
H2: An EcoData RA that takes in consideration current industrial challenges (CAMS)

is useful to architect new modern EcoData applications, as well as to evaluate and
improve existing ones, by addressing a set of non-functional requirements.

Considering the issues discussed in Sect. 1 and the aforementioned hypotheses, an
initial research questions (RQs) set was established in order to help in narrowing the
scope of this PhD research, and defining the RQs for answering H1 and H2:

RQ1: What is already known about software architectures for SECO applications
and platforms, especially when it comes to current technology trends and challenges?

The goal was to study software architectures supporting existing SECO applications
and platforms. To do so, besides conducting ad-hoc observations in industry, we
conducted a systematic mapping study to find out what was already known regarding

196 M. França

SECO architectures and, at the same time, to identify common characteristics, besides
problems yet to be addressed [9]. This RQ contributes to answer H1.

RQ2: What are the characteristics of data-centric SECO applications, which are
cross platforms, i.e., not limited to a single technology or keystone organization?

Throughout the investigation tasks performed in the first two years of the PhD
research, RQ1 was answered and a specific type of SECO identified. It allowed us to
establish RQ2 and propose seven EcoData characteristics [5], besides a complimentary
SECO taxonomy. This RQ contributes to answer H1.

RQ3: What are the EcoData non-functional requirements, and how do they relate
to current industry challenges?

We are currently trying to answer this research question by conducting a survey with
experts. This RQ intends to answer H1 and contributes to answer H2.

RQ4: How should a RA be in order to address EcoData requirements, and how
should we use it to evaluate and improve applications targeting that type of SECO?

As Taylor explained [6], given two concrete architectural models of the system –
“as is” and “to be” –, it is possible to create a diff. So, by using a RA, one could identify
gaps related to implementation and define a roadmap for improving existing applica‐
tions. We plan to conduct a case study with an industrial SECO platform. This RQ
intends to answer H1 and H2.

3 Related Work

Bosch [1] has proposed a SECO taxonomy that identifies nine potential classes,
according to a classification within two broad dimensions: category (end-user program‐
ming, application, and operating system) and platform (desktop, web, and mobile). He
also argued that, before the desktop, mainframes and mini-computers existed and, in the
era of ubiquitous computing, one can define other platforms besides mobile. As a result
of our empirical observations, we adopted a “community focus”, chronologically, as an
additional dimension, proposing a complimentary taxonomy based on three SECO cate‐
gories: Extra, Intra and Inter, respectively describing SECOs where developers focus
on creating value-adding products on top of the platform, on growing the platform (with
plug-ins, for instance), and finally on integrating platforms (interoperability). Bosch has
also proposed a set of SECO architectural challenges [10], which includes integration
via application program interfaces.

Similarly, Taylor [11] has discussed the importance of SECO software architectures,
while also articulating a SPL-evolution view. According to him, a SECO’s success may
be assessed as regards to qualities such as reduced time-to-market, widespread use and
adaptability, emphasizing SECO’s platform. Conversely, our proposal focuses on appli‐
cations targeting more than one SECO platforms.

Regarding a solution spreading across multiple platforms, Pérez et al. [12] proposed
a RA for a domain-specific System-of-Systems (SoS). The authors developed their work
from an industrial project and define a SoS as a composition of large heterogeneous and
independent systems that leverage emergent behavior from their interaction. Albeit we

EcoData: Architecting Cross-Platform Software Ecosystem Applications 197

ratify the importance of the integration among SECO components, the coupling seems
to be lower than in a SoS, since it would be easier to replace them based on their APIs.

Finally, Christensen et al. [13] analyzed and designed a SECO architecture for a
telemedicine platform. Their work could be considered broader, since it considers even
the business SECO dimension, and at the same time more focused on design than archi‐
tecture, since it describes low level implementation details. Our proposal is a high-level
RA for EcoData. From an industrial perspective, our research is also interested in inno‐
vation enablers, in the so-called “third platform” [14–16], also known as CAMS - the
confluence of Cloud Computing, Big Data and Analytics, Mobility and Social Business,
plus Security and Internet of Things (IoT) technologies.

It can be concluded that related work does not completely exhaust the analysis of
SECO architectures, at least related to EcoData. Also, they did not focus on CAMS
challenges, although some of them describe desirable quality attributes. Most of the
works focus on the platform itself and not on SECO applications, which is our case.

4 Research Methodology

The methodology used in this research is composed by the following activities:
STEP 1 (03/2014–08/2014) – Execute a broad and flexible literature review on

SECO: a literature review was done in order to better understand SECO basis and its
relations to SE. This activity is finished and helped in focusing the PhD scope;

STEP 2 (09/2014–02/2016) – Conduct an exploratory research on Software
Architecture: a second literature review was done to better understand SECO from a
Software Architecture perspective, while empirical observations in industry helped us
to identify EcoData [5]. This activity is finished and helped answering RQ1 and RQ2;

STEP 3 (03/2016–08/2016) – Conduct a systematic mapping study to identify
SECO’s architectural challenges and desirable non-functional requirements: we
wanted to find out what is already known about SECO architecture, and the challenges
yet to be addressed. This is finished and helped answering RQ1, RQ2 and RQ3;

STEP 4 (09/2016–02/2017) – Evaluate the literature findings by surveying
specialists: this activity is ongoing, and will help us to ratify the identified non-func‐
tional requirements, i.e., to what extent industry’s experts agree with them;

STEP 5 (09/2016–02/2017) – Write and present the Qualifying Exam: this
activity is also ongoing, and will ratify this PhD proposal;

STEP 6 (03/2017–02/2018) – Propose a RA for EcoData: by addressing the iden‐
tified non-functional requirements, the RA proposal will be described by a set of archi‐
tectural diagrams, which were suggested by industry’s SMEs during a survey (step #4).
This activity, yet to be done, will help in answering RQ4;

STEP 7 (03/2018–06/2018) – Evaluate the proposed RA: considering the chal‐
lenging nature of the process of evaluating a RA, we will adopt two methods: (i) instan‐
tiate EcoData RA in more than one platform as a service (PaaS) like IBM Bluemix [17],
as POC (proof of concept), in order to conduct a case study based on a real scenario;
and (ii) submit the RA’s artifacts, plus the “roadmap” process and checklist, to a board
of industry’s SMEs (architects and developers from countries such as US and Brazil)

198 M. França

for review. We will also compare it with other RAs, such as [12], with respect to
commonalities. This activity, yet to be done, will help in answering RQ4;

STEP 8 (07/2018–02/2019) – Write and present the PhD Thesis: to be done, the
following chapters are considered: (1) Introduction; (2) Overview of Software Ecosys‐
tems; (3) Architectural Evolution of Software Ecosystems; (4) EcoData: A Reference
Architecture for SECO Applications; (5) EcoData: A Case Study; and (6) Conclusion.

5 Preliminary Contributions

As an initial contribution, we cite our complimentary taxonomy. One could claim that
SECO arose with the first computational systems, even not being called that way back
then, before the era of operating systems. We classify such type of SECO, which the
community focused on providing value on top of the platform, as ExtraSECO. Later,
we observed another type of SECOs emerged, one which its community focuses on the
growth of the platform itself, named IntraSECO. Finally, we observed that instead of
plug-ins architectures, SECOs based on Web APIs started to appear, spreading across
multiple platforms. We call them InterSECO, i.e., a “SECO of SECOs”.

Then, we have identified EcoData, which is a specific type of InterSECO. The
distinction is possible due to the fact that it is centered on data, rather than on a set of
platform features. Actually, this is the first of seven EcoData characteristics published
in [5]: independence of the infrastructure platform. The other characteristics are: #2
hybrid application strategy; #3 enhanced data security requirements; #4 systems of
engagements that are focused on data provided by instrumented people; #5 crowd‐
sourcing; #6 extra caution with the veracity of sensor data, and the necessity for model
rules definition; and finally #7 An API-based Economy strategy.

EcoData may encompass software applications running on-premises, i.e. internally,
but reusing components on top of one or more off-premise (cloud) platforms. One way
of achieving platform independence is through the adoption of open standards, both on
SECO platform and application side. Regarding data stores, it is possible to have them
on the platform, in a separate infrastructure (due to large data volume), and also inter‐
nally on organizations.

From a reuse perspective, Web APIs are the new components called Microservices:
a granular SOA-style pattern. Integrating private and public APIs, and charging for them,
is also a challenge that must be considered in future architectures.

Finally, our systematic literature mapping provided us with desirable SECO non-
functional requirements, such as security, portability, interoperability and interface
stability, besides a research agenda for software architecture for SECO.

6 Concluding Remarks

SECO research is still in its infancy, if compared to other topics in the SE area. Although
plenty of research can be found for software architecture in general, there are still open
questions when it comes to SECO architectures. Both industry and academy may benefit

EcoData: Architecting Cross-Platform Software Ecosystem Applications 199

from a research that takes in consideration SECO challenges, especially regarding
EcoData, since data’s growing importance for organizations.

It was possible to detect a migration pattern regarding the behavior of community
developers in relation to underlying SECO platform. Also, we were able to identify a
very specific type of SECO, which is not restricted to a single platform, and where data
are more important than functionality or technology.

Finally, by conducting a systematic mapping study, we gathered non-functional
requirements for SECO platforms and applications. By analyzing those, we hope to be
able to propose a RA for applications targeting an EcoData, achieving platform inde‐
pendence and interoperability, for example.

References

1. Bosch, J.: From software product lines to software ecosystem. In: Proceedings of the 13th
International Software Product Line Conference, San Francisco, CA, USA, pp. 1–10 (2009)

2. Manikas, K., Hansen, K.M.: Software ecosystems: a syst. literature review. J. Syst. Softw.
86, 1294–1306 (2013)

3. Stolterman, E., Fors, A.C.: Information technology and the good life. In: Kaplan, B., Truex,
D.P., Wastell, D., Wood-Harper, A.T., DeGross, J.I. (eds.) Information Systems Research.
IIFIP, vol. 143, pp. 687–692. Springer, Boston, MA (2004). doi:10.1007/1-4020-8095-6_45.
ISBN 1-4020-8094-8

4. Serebrenik, A., Mens, T.: Challenges in software ecosystems research. In: Proceedings of the
2015 European Conference on Software Architecture Workshops, Cavtat, Croatia (2015)

5. França, M., Santos, R.P., Werner, C.M.L.: A roadmap for cloud SECO. EcoData and the new
actors in IoT era. In: DCOSS, Fortaleza, Brazil, pp. 218–223 (2015)

6. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture – Foundations, Theory,
and Practice. Wiley, Hoboken (2010)

7. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, Upper Saddle River (1996)

8. Santos, R.P., Werner, C.M.L.: A proposal for software ecosystems engineering. In: IWSECO/
ICSOB, pp. 40–51 (2011)

9. França, M., Santos, R.P., Werner, C.M.L.: Software architecture for SECO: a systematic
literature mapping and research agenda. Technical report, COPPE/UFRJ (2016)

10. Bosch, J.: Architecture challenges for software ecosystems. In: Proceedings of the 4th
European Conference on Software Architecture, ECSA 2010, NY, USA, pp. 93–95 (2010)

11. Taylor, R.N.: The role of architectural styles in successful software ecosystems. In:
Proceeding of 17th SPLC 2013, New York, NY, USA, pp. 2–4 (2013)

12. Pérez, J., et al.: Towards a reference architecture for large-scale smart grids system of systems.
In: Proceedings of 3rd International Workshop on Software Engineering for SoS, SESoS 2015,
USA, pp. 5–11 (2015)

13. Christensen, H.B., et al.: Analysis and design of software ecosystem architectures: towards
the 4S telemedicine ecosystem. J. Inf. Soft. Tech. 56, 1476–1492 (2014)

14. Gartner: The Nexus of Forces: Social, Mobile, Cloud and Information (2012). https://
www.gartner.com/doc/2049315. Accessed 12 Oct 2016

15. IDC: IDC Predictions 2013: Competing on the 3rd Platform, IDC Technical report (2013)
16. The Open Group: Convergent Technologies Survey (2013). https://www2.opengroup.org/

ogsys/catalog/R130. Accessed 12 Oct 2016
17. IBM Bluemix. http://bluemix.net

200 M. França

http://dx.doi.org/10.1007/1-4020-8095-6_45
https://www.gartner.com/doc/2049315
https://www.gartner.com/doc/2049315
https://www2.opengroup.org/ogsys/catalog/R130
https://www2.opengroup.org/ogsys/catalog/R130
http://bluemix.net

Investigating the Recovery of Product Line
Architectures: An Approach Proposal

Crescencio Lima1,2(B), Christina Chavez1, and Eduardo Santana de Almeida1

1 Federal University of Bahia, Salvador, Brazil
crescencio@gmail.com

2 Federal Institute of Bahia, Salvador, Brazil

Abstract. Due to the complexity of managing architectural variability,
maintaining the Product Line Architecture (PLA) up-to-date and syn-
chronized with the project source code is a key challenge. Moreover, allow
the variability traceability in architectural level of large-scale projects is a
costly task. The systematic use of Software Architecture Recovery (SAR)
techniques enables PLA recovery and keeps the PLA aligned with devel-
opment. In this context, we present an initial proposal that consists of
an approach to recover PLAs based on SAR techniques. We performed
literature reviews and exploratory studies to investigate the relationship
between SAR and PLA to identify gaps and define state-of-the-art. Learn
how to combine SAR and PLA is an important strategy to address some
issues of PLA design. We identified that few studies address architec-
tural variability and provide empirical evaluation For this reason, more
empirical research is still necessary.

1 Introduction

Software Architecture (SA) is “the architecture of a system that defines that
system in terms of computational components and interactions among those
components.” [17]. According to Bass et al. [2], SA is the system structure, which
consists of software elements, externally visible properties, and the relationships
among elements. Making SA explicit and persistent is a key factor for using the
potential it offers as an enabler for efficient and effective software development,
specially in scenarios of increasing system size and complexity.

Nevertheless, applications evolve over time, so their architecture inevitably
drifts. Recovering the architecture and checking whether it is still valid is, there-
fore, a relevant aid [14]. Software Architecture Recovery (SAR) is the process of
obtaining the architecture of an implemented system from the existing system
to promote enhanced understandability, and reuse of implemented systems [3].

Reuse is a key issue in the context of Software Product Line (SPL) projects.
The SPL paradigm supports the development of software systems based on
reusable parts [1]. SPL products share a set of common features (common-
alities) and have variabilities that distinguish the applications [13]. Because
the development of an SPL involves the implementation of different structures,

c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 201–207, 2017.
DOI: 10.1007/978-3-319-56856-0 15

202 C. Lima et al.

processes, interfaces and activities, it is relevant for product line practitioners to
pay sufficient attention to its architecture.

According to Nakagawa et al. [11], “the Product Line Architecture (PLA)
refers to a structure that encompasses the behavior from which software prod-
ucts are developed.” Moreover, Pohl et al. [13] defined PLA as the “core” archi-
tecture that represents the SPL high-level design, considering variation points
and variants documented in the variability model.

The combination of SAR with PLA is critical to keeping assets (including
architectural documentation and design artifacts) up-to-date [12], managing the
variability at architectural level [15], and enabling architectural conformance
among SPL products [7]. SAR can help in commonality and variability identi-
fication within the products [4]. However, Souza Filho et al. [18] points out the
lack of guidelines for software architecture recovery in the SPL context. Shatnawi
and colleagues [15] state that existing work is mostly focused on recovering vari-
ability at the requirement level. Few works aim at fully-automated PLA recovery
addressing variability at the architectural level [6,7].

In this context, we present an initial proposal to PLA recovery that builds
upon existing SAR techniques and tools developed for Single Systems (SS).
We intend to understand PLA recovery, identify steps necessary to achieve it
and provide guidelines to perform PLA recovery in a systematic way. Finally,
we describe activities already performed during our research work and present
related results.

2 Research Methodology

In our previous work [9], we performed a literature review on PLA and SAR
relationship and its evolution over the years. We investigated how existing solu-
tion proposals supported PLA recovery and identified product line architecture
recovery research trends. As a result from that study, we focused our investi-
gation on bottom-up processes (i.e. tools and techniques) because we extracted
information from SPL projects source code.

We also performed a literature review on metamodels to support Product
Line Architecture design [8]. Moreover, we performed a set of exploratory studies
based on experimentation in software engineering guidelines [19] to define our ini-
tial thesis proposal. Finally, we intend to perform empirical studies such as con-
trolled experiments and mixed-methods to evaluate and calibrate the proposal.

3 Initial Proposal

In this research, we hypothesize that: “adapting existing single systems
approaches, tools, and techniques from SAR will provide systematization in PLA
recovery, and support PLA recovery replication and improvement”. We propose
an approach to verify this hypothesis by performing exploratory studies on recov-
ering PLAs from open source SPL projects. We want to answer the following
Research Questions (RQ):

Investigating the Recovery of Product Line Architectures 203

– RQ1: Is it possible to use and adapt existing bottom-up recovery processes
(i.e. tools and techniques) to recover PLAs?

– RQ2: What are the steps necessary to perform PLA recovery based on SPL
projects source code?

– RQ3: How to identify and represent variability in PLA recovery?

To answer the above research questions, we are performing a series of studies,
organized into 4 phases, to (1) identify frequent activities and steps used to
recover PLA, (2) adapt or modify existing SAR tools and techniques for single
systems, (3) organize information from the previous two phases in an novel
approach – including the development of new tools to support the approach,
and (4) define guidelines in a systematic way to support replication.

Currently, we are working on phases (3) and (4), which involves organizing
the approach (and developing tool support) and defining guidelines that describe
PLA recovery activities. We analyze how to perform variability identification
relevant for PLA recovery. To the best of our knowledge, existing approaches
lack detailed information regarding variability representation.

3.1 Preliminary Results

Based on evidence of our previous studies, we identified four main scenarios
where the bottom-up recovery tools and techniques can be used in the recovery
and/or adaptation of architectures of SPL projects:

– PLA Recovery directly from SPL source code;
– PLA Recovery based on the combination of SPL products architectures;
– PLA Recovery based on the combination of SS (legacy) architectures;
– PLA Recovery based on the combination of different versions of the same SPL

project (e.g. Health Watcher and Mobile Media).

To understand the phenomenon, we performed two exploratory studies in
the first and second scenarios – each one following the guidelines for controlled
experiments [19]. We choose to work with this first two scenarios due to the lack
of support for them. We identified these gaps based on available preliminary
evidence.

In this way, the objective of the first exploratory study was to understand
PLA recovery by identifying and adapting existing tools and techniques that sup-
port bottom-up recovery process. We recovered PLAs from fifteen SPL projects
in different domains.

In the second exploratory study, we performed PLA recovery based on the
steps identified in the first study. Moreover, to make PLA recovery systematic, we
investigated the adaptation of Garcia et al. [5] recovery framework in the context
of SPL projects. We worked with PLA recovery and two SPL teams. Finally, we
presented the recovered information for the participants. After discussion, they
suggested improvements and we identified lessons learned.

Finally, we considered the third and fourth scenarios out of the scope of
our research. The third scenario presents the majority of studies and solution

204 C. Lima et al.

proposals. The fourth scenario focuses on SPL evolution – in other words, the
use of different versions of the SPL is mandatory. In the latter, we performed
studies recovering PLAs from different versions of the SPL.

3.2 Performing PLA Recovery

This initial proposal consists of an approach (and respective guidelines) for PLA
recovery based on the use and adaptation of existing single systems SAR tech-
niques and tools.

First, we gathered information about the SPL project. For instance, we down-
load the SPL source code and feature model from the repository. The recovery
technique and extraction tools may change according to the kind of variabil-
ity implementation used. Moreover, in our approach, the SPL source code is
mandatory because we recovered the PLA using bottom-up recovery tools and
techniques.

Second, we selected the extraction tool based on the programming language
used to implement the SPL project. Then, we extracted structural information
from SPL (or/and products) source code. Third, based on the extracted infor-
mation, we perform PLA recovery (including variability identification) using
the technique suited for the scenario (e.g. merge of the recovered information).
Fourth, we presented the PLA representation for analysis.

As mentioned before, one of our exploratory studies recovered the PLA
based on the combination of architectures from the SPL products. After product
instantiation, we extracted information (phase 2) from products source code
using some existing extraction tool. We also developed a tool to support the
merging process (phase 3) and provide the PLA representation (phase 4).

4 Expected Contributions and Road Ahead

The expected contributions of our research are:

A novel approach to PLA recovery. The approach will provide a set of guide-
lines to support PLA recovery. Moreover, we will evaluate the approach based
on empirical software engineering methods to support replication. We expect
to drive efforts towards the definition of guidelines to support PLA recovery in
details. In this way, we intend to use the approach to support different scenarios
of PLA recovery.

Variability identification and traceability. During our exploratory studies,
we have found that existing tools and techniques from SS do not support vari-
ability identification and traceability of the recovered information. We focused
our efforts to identify variability (and enable traceability as a consequence) in
the first and second scenarios. Moreover, we are developing tools to support this
activity.

Investigating the Recovery of Product Line Architectures 205

Metamodels to represent PLA recovery output. In our previous study
[8], we defined a list of metamodels to support PLA design. Moreover, in our
exploratory study with SPL developers, we investigated how these metamodels
support them to understand the recovered PLA. We intend to organize these
metamodels in a PLA Metamodels Catalog and represent recovered information
based on the selected metamodel.

Raising architectural awareness of SPL engineers. This work intends to
improve SPL engineers understanding about variability at the architectural level
of SPL projects by providing up-to-date PLA documentation. We also expect
that the proposed approach will help engineers to keep the PLA synchronized
with SPL source code.

4.1 Evaluating the Approach and Results

We intend to perform a family of controlled experiments with subjects to evaluate
the approach. Moreover, based on the execution of the experiments, we intend
to calibrate and evolve the approach.

Two groups will participate in each study design. The group A will evaluate
information recovered with our approach and group B will evaluate information
recovered with existing SAR tool or technique. In this way, we will evaluate
whether our adaptation to existing SAR techniques affected the PLA recovery
activities.

We also intend to perform a survey to ask experts in SPL domain to vali-
date the steps from the PLA recovery approach. Based on their knowledge, we
believe that it will be possible to calibrate the approach according to the experts’
suggestions.

5 Related Work

Shatnawi et al. [15] proposed an approach to PLA recovery based on the com-
parison of components recovered from different versions of the same SPL. The
authors relied on Formal Concept Analysis (FCA) to analyze the variability
and created a variability model. They extended the study in [16]. These studies
focused only on the fourth PLA recovery scenario, and the approach did not
support PLA recovery in the other three scenarios presented previously.

Linsbauer et al. [10] presented an approach for extracting information from
sets of related product variants. The authors extracted structural information
from the SPL products source code. They compared the information to recover
the Feature Model (FM). We implemented a similar recovery process. However,
instead of recovering the FM, we compared architectures recovered from SPL
products to recover the SPL architecture.

206 C. Lima et al.

Acknowledgment. This work was funded by FAPESB grants BOL2443/2016, and
IFBA grants BP003-04/2014/PRPGI.

References

1. Apel, S., Batory, D., Kastner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer, Heidelberg (2013)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Longman Publishing, Amsterdam (2003)

3. van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C.: Symphony:
view-driven software architecture reconstruction. In: 4th WICSA, pp. 122–132
(2004)

4. Eixelsberger, W., Ogris, M., Gall, H., Bellay, B.: Software architecture recovery of
a program family. In: 20th ICSE, pp. 508–511. ACM (1998)

5. Garcia, J., Krka, I., Medvidovic, N., Douglas, C.: A framework for obtaining the
ground-truth in architectural recovery. In: WICSA/ECSA, pp. 292–296. IEEE
(2012)

6. Kang, K.C., Kim, M., Lee, J., Kim, B.: Feature-oriented re-engineering of legacy
systems into product line assets – a case study. In: Obbink, H., Pohl, K. (eds.)
SPLC 2005. LNCS, vol. 3714, pp. 45–56. Springer, Heidelberg (2005). doi:10.1007/
11554844 6

7. Koschke, R., Frenzel, P., Breu, A., Angstmann, K.: Extending the reflexion method
for consolidating software variants into product lines. SQJ 17(4), 331–366 (2009)

8. Lima, C., Chavez, C.: A systematic review on metamodels to support product line
architecture design. In: 30th SBES, pp. 13–22. ACM (2016)

9. Lima-Neto, C.R., Cardoso, M.P.S., Chavez, C.V.G., de Almeida, E.S.: Initial evi-
dence for understanding the relationship between product line architecture and
software architecture recovery. In: IX SBCARS, pp. 40–49 (2015)

10. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Variability extraction and model-
ing for product variants. Softw. Syst. Model. 1–21 (2016)

11. Nakagawa, E.Y., Oliveira Antonino, P., Becker, M.: Reference architecture and
product line architecture: a subtle but critical difference. In: Crnkovic, I., Gruhn,
V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 207–211. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23798-0 22

12. Pinzger, M., Gall, H., Girard, J.-F., Knodel, J., Riva, C., Pasman, W., Broerse, C.,
Wijnstra, J.G.: Architecture recovery for product families. In: Linden, F.J. (ed.)
PFE 2003. LNCS, vol. 3014, pp. 332–351. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24667-1 26

13. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

14. Pollet, D., Ducasse, S., Poyet, L., Alloui, I., Cimpan, S., Verjus, H.: Towards a
process-oriented software architecture reconstruction taxonomy. In: 11th European
Conference on Software Maintenance and Reengineering, pp. 137–148 (2007)

15. Shatnawi, A., Seriai, A., Sahraoui, H.: Recovering architectural variability of a
family of product variants. In: Schaefer, I., Stamelos, I. (eds.) ICSR 2015. LNCS,
vol. 8919, pp. 17–33. Springer, Cham (2014). doi:10.1007/978-3-319-14130-5 2

16. Shatnawi, A., Seriai, A.D., Sahraoui, H.: Recovering software product line archi-
tecture of a family of object-oriented product variants. JSS (2016)

17. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, Upper Saddle River (1996)

http://dx.doi.org/10.1007/11554844_6
http://dx.doi.org/10.1007/11554844_6
http://dx.doi.org/10.1007/978-3-642-23798-0_22
http://dx.doi.org/10.1007/978-3-540-24667-1_26
http://dx.doi.org/10.1007/978-3-540-24667-1_26
http://dx.doi.org/10.1007/978-3-319-14130-5_2

Investigating the Recovery of Product Line Architectures 207

18. Souza Filho, E.D., Oliveira Cavalcanti, R., Neiva, D.F.S., Oliveira, T.H.B., Lisboa,
L.B., Almeida, E.S., Lemos Meira, S.R.: Evaluating domain design approaches
using systematic review. In: Morrison, R., Balasubramaniam, D., Falkner, K. (eds.)
ECSA 2008. LNCS, vol. 5292, pp. 50–65. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88030-1 6

19. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-540-88030-1_6
http://dx.doi.org/10.1007/978-3-540-88030-1_6

Towards a Guideline-Based Approach to Govern
Developers in Mobile Software Ecosystems

Awdren de Lima Fontão1(✉), Arilo Dias-Neto2, and Rodrigo Santos3

1 Institute of Computing, Federal University of Amazonas, Manaus, AM, Brazil
awdren@icomp.ufam.edu.br
2 ICOMP/UFAM, Manaus, Brazil

3 DIA/UNIRIO, Rio de Janeiro, Brazil

Abstract. Mobile application developers use repositories to store and reuse
resources that support the development process. These repositories can be clas‐
sified into internal – property of an organization that owns the mobile platform –
or external – maintained by developers’ communities in a open-source way. The
app store is an example of an internal repository. As examples of external repo‐
sitories, we can mention Github (code) and Stack Overflow (questions and
answers. Such repositories can be used to support keystone’s strategy to open its
infrastructure in order to engage developers to meet the users’ demands. This
scenario refers to Mobile Software Ecosystem (MSECO) where keystones can
use governance models to increase profits and reduce possible risks. However, it
is necessary to understand how to monitor the engagement of developers using
repositories as sources of information. In other words, it is important to define
developers’ governance guidelines to monitor the developer, contributions, tech‐
nical questions, alignment with the keystone’ goals, and developers’ experience
(DX). In this context, the goal of this PhD dissertation is to define a guideline-
based approach to govern developers in an MSECO.

Keywords: Software ecosystem · Mobile application · Governance

1 Introduction

The organizations that sustain mobile platforms known as keystones, such as Apple,
Google and Microsoft, have maintained mobile applications stores (app stores) and
technical materials (developers portals) repositories as a way to govern the development
of mobile applications (apps). The keystone with its internal structure cannot itself meet
the users’ demands and because of this there is a need to engage developers external to
the keystone’s infrastructure [1]. In Software Engineering, this scenario refers to the
Mobile Software Ecosystem (MSECO), that is composed of elements competing and
cooperating (e.g. developers and users) surrounding the app [2]. The developers collab‐
orate with the keystone when producing apps or any other artifact (e.g. code snippets
and technical documentation) to support building or evolving apps [5].

The original version of this chapter was revised: The name of the third author was corrected.
The erratum to this chapter is available at 10.1007/978-3-319-56856-0_17

© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 208–213, 2017.
DOI: 10.1007/978-3-319-56856-0_16

http://dx.doi.org/10.1007/978-3-319-56856-0_17

These developers’ contributions are stored in internal repositories, for example, app
store or developer portals. The app store works as a physical store where the keystone
provides a set of apps in order to attract more users. The developer portal is a repository
whose function is to provide and host technical materials to support the MSECO
contributors in their activities. However, the developers also use external repositories
that does not belong to keystone to exchange ideas, form communities and gain knowl‐
edge during the app development process. These external repositories help to maintain
the interaction between developers influencing directly or indirectly the ecosystem [3],
as examples we can cite Github and Stack Overflow. Github contains information about
open source projects (e.g. code sources, commits). In turn, Stack Overflow has a set of
developers involved in technical questions and answers in a social mechanism.

In this context, Manikas [3] argues that it is challenging to reach conclusions in
specific aspects of an ecosystem without examining (part of) the other aspects, for
example, the elements’ interaction during the software development. An external repo‐
sitory maintains the structure of archived communications between developers and it
can be used to examine aspects of an MSECO. It can also support the keystone to have
a good overview of the ecosystem providing effective measurements supporting the
governance strategies [4] and helping to monitor the longevity and propensity to growth
of the ecosystem (ecosystem health) [3]. This situation is known as synergy that is the
relationship that exists between living organisms with each other (developers, keystone,
and artifacts) and the ecosystem, ensuring the survival of them [6]. In this scenario, as
a survival strategy, developers have expectations before and during their involvement
in an MSECO, it refers to the Developer Experience (DX) [7].

If the keystone does not have efficient strategies for governing developers, the
organization runs the risk of failing to meet the user’s demands (e.g. number of apps,
quality and variety). Successful ecosystem management and monitoring still remain as
great challenges for software ecosystem practitioners [13]. This is partly because the
ecosystems community lacks proper management theories, tool support, and real case
studies [3]. The objective of this PhD dissertation is to define and evaluate a guideline-
based approach to govern developers focused on monitoring developers from technical,
social and business dimensions.

This paper is structured as follows. In the next section, related work is presented.
Section 3 presents the proposed approach and discusses an evaluation proposal of the
approach. Finally, the concluding remarks are discussed in Sect. 4.

2 Related Work

Ververs et al. [8] use data mining to map the influential factors that determine developer
participation and evaluate the factors in a case study on the Debian ecosystem. The
authors studied bug trackers, mailing lists and forums as a way to understand the
community needs in the software ecosystem. Some conclusions are: influences have
more effect on the degree of participation than causing more or less developers to become
active; and developers respond differently to internal and external ecosystem influences.
This reinforces our approach of analyzing internal and external repositories as a way to
identify strategies of developers’ governance.

Towards a Guideline-Based Approach to Govern Developers 209

Haenni et al. [9] present the results of a quantitative survey into the nature of infor‐
mation needs of 75 developers from open source ecosystems. The authors identified that
in open source ecosystems mailing lists and internet search are the most popular tools
that developers use to satisfy their ecosystem-related information needs (e.g. selection-,
adoption-, and co-evolution-related needs). However, the authors conclude that the
intersection of strong information needs, inappropriate practices and a new research
field still remain as potential challenges for future impactful research.

Manikas et al. [10] argue that decisions related to the governance can influence the
ecosystem’s health and can result in fostering the success or greatly contributing to the
failure of the ecosystem. From existing literature of software ecosystem governance and
IT governance, the authors proposed the decomposition of software ecosystem gover‐
nance into three activities: input or data collection (e.g. measures, information sources),
decision making (e.g. data processing, scenario interpretation, alternative actions and
their impact), and applied actions. The author identified five decision areas: principles,
actor Interaction, software interaction, platform and ecosystem business and products.

Sadi et al. [11] proposed a generic approach built upon Android and iOS ecosystems
to: identify types of developers, analyze the technical and non-technical requirements
for collaborations and derive alternative solutions for designing an appropriate collab‐
oration. The authors found out that Android developers choose the open-source platform
to cultivate their intrinsic motivations, such as skills development and reputation
enhancement. Regarding iOS developers, financial gain is one main requirement to
sustain a collaborative relationship between developers and Apple. This study focuses
on developers’ objectives and decision criteria but does not provide specific guidance
on how it can be performed.

This PhD dissertation focuses on the MSECO context. Manikas [3] argues that more
in-depth studies are necessary. Focusing on a specific subset or type of ecosystem and
studying the different aspects of this type in depth would arguably bring more realistic
results rather than wide ecosystem studies focusing on a single aspect (e.g. architecture).
In this scenario, this PhD dissertation focuses on mobile software ecosystems.

3 Proposal

3.1 Goal and Research Questions

The objective of this PhD dissertation is to define and evaluate a developers’ governance
approach by means of a set of support guidelines that impact the developer’s experience
within the MSECO. The following research questions (RQs) were defined: (RQ1) How
to identify and assess (under social, technical and business perspectives) relevant sources
of developer experience available in Mobile Software Ecosystems? (RQ2) How to deal
in terms of developer experience with the use of internal and external repositories when
governing developers in mobile software ecosystems? And (RQ3) What is the impact
of using guidelines to support developers’ governance in mobile software ecosystems
considering business/social/technical dimensions?

Figure 1 helps to understand the idea involved in the proposed approach. We can
capture the developer profile (e.g. expectations, country, MSECO name) and why

210 A. de Lima Fontão et al.

he/she wants to participate in an MSECO, using this information we may identify the
existing barriers in an MSECO that could make the developer onboarding difficult. The
internal and external repositories can serve as source of information. This information
serves as input to strategies, to control and support developers, based on input data from
repositories, business, technical and social dimensions and also sources of developer
experience (e.g. infrastructure development, feelings about the work, and the value of
one’s contribution). It will impact on developer health indicators (e.g. productivity,
niche creation and robustness) that can be used to analyze the use of strategies helping
the keystone to evaluate and evolve them.

Fig. 1. An overview of the proposed approach.

3.2 Research Methodology and Emerging Results

STEP 1 (02/2016–05/2016) – Literature review about developer experience:
building of the knowledge body about developer experience, research questions and
opportunities, and defining the concept of DX in the mobile application development
context. Applying the forward snowballing method on the string “developer experi‐
ence”, we retrieved 125 papers. In these papers, 58 (46%) have concepts related to DX.
We have extracted proposed a definition of DX, 7 sets composed by research questions
to understand what the researchers are working on and 37 existing opportunities to help
to create a research agenda [12]. This step helped us to identify ways to monitor the
developers from the use of repositories to the impact on health indicators.

STEP 2 (06/2016–08/2016) – Analysis of MSECO repositories: in an MSECO,
there are some repositories where users search, download and evaluate apps, or where
developers look for support material. These repositories can be used as part of an organ‐
ization’s strategy to monitor the ecosystem health. In order to explore the repositories,
we performed four steps: (1) Design a governance process; (2) Interview experienced
managers from MSECOs: Apple, Google, Nokia, Microsoft, and Samsung; (3) Perform
an exploratory analysis of the repositories’ structure, and; (4) Associate the repositories
with ecosystem health indicators. Three main repositories (app store, developer central
and apps’ management portal) and also external repositories (e.g. code repositories as
Github or Codeplex, Questions and Answers repositories as Stack Overflow) were
analyzed. This study of MSECO repositories helped us to understand them as a source
of information to governance strategies.

Towards a Guideline-Based Approach to Govern Developers 211

STEP 3 (08/2016–12/2016) – Literature Review about developers’ governance
in software ecosystem: a systematic mapping study was performed to investigate the
following research question: “Which strategies are applied to support Developers’
Governance in Software Ecosystems?”. We choose to explore Software Ecosystem as
a way to identify directions that can be applied in the mobile domain. The following
digital libraries were investigated: IEEExplore, ACM, Scopus, ScienceDirect, Springer
Link, Engineering Village, and Web of Science. A total of 65 studies were analyzed. In
summary, it is important to research on survival of developers. 43% (28) of the studies
evaluate open-source ecosystems, 35% (23) proprietary and 22% (14) hydrid.

STEP 4 (01/2017–06/2017) – Business, technical and social studies: experimental
studies aiming to explore strategies of governance and the impact on health indicators.
In the technical dimension, data mining methods (extraction and clustering) were applied
on Questions & Answers repositories such as Stack Overflow. In this study, we made
comparisons among the three MSECOs: hot topics in recent and more commented/
viewed questions, developers’ badges, sentiment analysis, relationship between ques‐
tions and official developer events. It helped us to define a set of five propositions that
can help the keystone to analyze an MSECO from a Q&A repository. In the social
dimension, a study that explores the strategies from the point of view of the interaction
between the developers will be conducted. In the business dimension, the objective is
to raise hypotheses related to opportunities and economic barriers.

STEP 5 (07/2017) – Initial approach proposal: from the findings extracted in the
previous steps, an initial version of the approach will be proposed. The approach will
still take into consideration the following developer experience sources: development
infrastructure, developer perceptions about work and value of contribution.

STEP 6 (08/2017–10/2017) – Surveys with experts: a validation of applicability
and usefulness of the approach from the developers, researchers and community leaders
viewpoint.

STEP 7 (11/2017–12/2017) – Write and present the qualifying exam.
STEP 8 (01/2018–09/2018) – Experimental studies with developers and

community leaders: the set of studies (feasibility, observational, interviews) will have
as objective to analyze the impact of the guideline-based approach from forms of gover‐
nance with the developers: Top-down (organization guidelines as a way to support the
developers, example, quality criteria of apps); Bottom-up (contributions from the devel‐
oper that serve as input to the keystone’s appropriateness of strategies, for example, an
app that is purchased by the organization and becomes an official product), and; Inter-
developers (the use of the MSECO infrastructure by developers but they create their
own way of governing, e.g. startups).

STEP 9 (10/2018–12/2018) – Preparation to present the PhD dissertation. The
writing of the dissertation happens during all the steps.

4 Concluding Remarks

The main contributions aiming to support the developers and keystones are: (1) body of
knowledge about developer governance in the context of Mobile Software Ecosystems;

212 A. de Lima Fontão et al.

(2) Provide guidelines to support the developer governance using internal and external
repositories as source of information, strategies that involves developer experience and
the evaluation of health indicators; and (3) Assessment of the feasibility and application/
use of the approach using experimental studies.

Acknowledgements. The authors thank to CAPES for financial support for this research.

References

1. Fontao, A., Santos, R.P., Dias-neto, A.: Mobile software ecosystem (MSECO): a systematic
mapping study. In: 39th Annual International Computers, Software & Applications
Conference, pp. 653–658 (2015)

2. Lin, F., Ye, W.: Operating system battle in the ecosystem of smartphone industry. In:
International Symposium on Information Engineering and Electronic Commerce, pp. 617–
622 (2009)

3. Manikas, K.: Revisiting software ecosystems research: a longitudinal literature study. J. Syst.
Softw. 117, 84–103 (2016)

4. Eckhardt, E., Kaats, E., Jansen, S., Alves, C.: The merits of a meritocracy in open source
software ecosystems. In: European Conference on Software Architecture (2014)

5. Fagerholm, F., Ikonen, M., Kettunen, P., Munch, J., Roto, V., Abrahamsson, P.: Performance
alignment work: how software developers experience the continuous adaptation of team
performance in lean and agile environments. Inf. Softw. Technol. 64, 132–147 (2015)

6. Begon, M., Townsend, C., Harper, J.: Ecology: From Individuals to Ecosystems. Artmed
(2007)

7. Fagerholm, F., Münch, J.: Developer experience: concept and definition. In: International
Conference on Software and System Process, pp. 73–77 (2012)

8. Ververs, E., Van, R., Jansen, S.: Influences on developer participation in the debian software
ecosystem. In: International Conference on Management of Emergent Digital EcoSystems,
pp. 89–93 (2011)

9. Haenni, N., Lungu, M., Schwarz, N., Nierstrasz, O.: A quantitative analysis of developer
information needs in software ecosystems. In: European Conference on Software Architecture
Workshops, pp. 12–17 (2014)

10. Manikas, K., Wnuk, K., Shollo, A.: Defining decision making strategies in software ecosystem
governance (2015)

11. Sadi, M.H., Dai, J., Yu, E.: Designing software ecosystems: how to develop sustainable
collaborations? In: Persson, A., Stirna, J. (eds.) CAiSE 2015. LNBIP, vol. 215, pp. 161–173.
Springer, Cham (2015). doi:10.1007/978-3-319-19243-7_17

12. Fontao, A., Santos, R., Dias-neto, A.: What we know about developer experience? In: 19th
International Conference on Human-Computer Interaction (2017)

13. Rodrigo, S.: Managing and monitoring software ecosystem to support demand and solution
analysis. Ph.D. dissertation. COPPE. Federal University of Rio de Janeiro (2016)

Towards a Guideline-Based Approach to Govern Developers 213

http://dx.doi.org/10.1007/978-3-319-19243-7_17

Erratum to: Towards a Guideline-Based
Approach to Govern Developers in Mobile

Software Ecosystems

Awdren de Lima Fontão1(&), Arilo Dias-Neto2, and Rodrigo Santos3

1 Institute of Computing, Federal University of Amazonas,
Manaus, AM, Brazil

awdren@icomp.ufam.edu.br
2 ICOMP/UFAM, Manaus, Brazil

3 DIA/UNIRIO, Rio de Janeiro, Brazil

Erratum to:
Chapter “Towards a Guideline-Based Approach to Govern
Developers in Mobile Software Ecosystems” in:
G. Botterweck and C. Werner (Eds.):
Mastering Scale and Complexity in Software Reuse, LNCS,
DOI: 10.1007/978-3-319-56856-0_16

By mistake the name of the third author was stated as “Rodrigo Dias Santos”. The
correct name is “Rodrigo Santos”.

The updated online version of this chapter can be found at
http://dx.doi.org/10.1007/978-3-319-56856-0_16

© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, p. E1, 2017.
DOI: 10.1007/978-3-319-56856-0_17

http://dx.doi.org/10.1007/978-3-319-56856-0_16
http://dx.doi.org/10.1007/978-3-319-56856-0_16

Tutorials

Building Safety-Critical Systems Through
Architecture-Based Systematic Reuse

John D. McGregor1 and Roselane S. Silva2

1 Clemson University, Clemson, USA
johnmc@clemson.edu

2 Federal University of Bahia, Salvador, Brazil
rosesilva@dcc.ufba.br

Abstract. Studies have shown that 70% of all defects are inserted dur-
ing the very early phases of development, but most of those defects are
not found until very late in development. The Architecture Analysis and
Design Language (AADL) provides the basis for creating highly detailed
models that support a “virtual integration” approach to architecture
development. Through a set of domain specific languages, which support
requirements definition, verification activities, and architectural model-
ing, the development team is able to incrementally design and analyze a
system model. Those analyses are used to identify functional and non-
functional requirements that are not satisfied at the time of the analysis
by the architecture described in the model. This early “virtual integra-
tion” of the system using architectural-level components has been shown
to facilitate early defect detection and a reduction of overall development
effort by as much as 30%. This tutorial will survey this environment,
present a specific example, and set the attendee up to explore the role of
the tools in defining systems. This is a new tutorial although a similar
tutorial at Saturn 2016 received very good reviews.

Bio

John D. McGregor is an associate professor of computer science at Clemson
University, and a Software Architecture Researcher at the Software Engineer-
ing Institute. He regularly engages large software development organizations
at all levels from strategic to tactical to the concrete. His research interests
include highly-reliable software-intensive systems, software product lines, socio-
technical ecosystems, model-driven development, and software/system architec-
ture. He serves on the program committee of six to ten conferences per year. He
researches, writes, and practices strategic software engineering. His consulting
has included satellite operating systems, telephony infrastructure, cell phones,
software certification, and software-defined radios.

Roselane S. Silva is a masters degree student of Computer Science at Federal
University of Bahia (UFBA) and a member of RiSE Labs (Reuse in Software
Engineering) at UFBA. She was selected for a study abroad program and studied
c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 217–218, 2017.
DOI: 10.1007/978-3-319-56856-0

218 J.D. McGregor and R.S. Silva

in the United States during the 2014–2015 academic year. For SPL research,
Roselane is working with the Strategic Software Engineering Research Group at
Clemson University on architectures for families of safety critical systems. Her
architecture artifacts are being used by the Software Engineering Institute of
Carnegie Mellon University as pedagogical examples.

Reusable Use Case and Test Case
Specification Modeling

Tao Yue and Shaukat Ali

Simula Research Laboratory, Fornebu, Norway
{tao,shaukat}@simula.no

Abstract. Typically, use case specifications are structured, unrestricted
textual documents conforming to a use case template. Since use case
models are mostly text-based, ambiguity is unavoidable. This tutorial
will present a use case modeling approach, called Restricted Use Case
Modeling (RUCM), consisting of distinct restriction rules and an adapted
use case template. Our objectives are: (1) limit the way users specify use
case specifications with the goal of decreasing ambiguity, (2) provide
built-in mechanisms to support reuse of use case specifications, and (3)
enable automated analyses, e.g., generation of UML models and test
cases.

Previously, we developed Zen-RUCM (a framework) composed of nat-
ural language-driven specification and modeling of requirements followed
by generation of UML models and test cases. A chain of methodologies
implemented in tools were developed and evaluated with real world case
studies. These included: requirements modeling for real-time systems
(RUCM4RT), test case specifications (RTCM) and automatic test case
generation. This tutorial focuses on Zen-RUCM, RUCM, RUCM4RT,
and RTCM methodologies, along with tool demonstration on real-world
case studies. Particularly, we will focus on reuse of use case specifications,
and test case specification.

Bio

Tao Yue is a chief research scientist of Simula Research Laboratory, Oslo,
Norway and adjunct associate professor at University of Oslo. where she is lead-
ing the expertise area of Model Based Engineering (MBE). She is also affiliated
to University of Oslo as an associate professor. She has received the PhD degree
in the Department of Systems and Computer Engineering at Carleton University,
Ottawa, Canada in 2010. Before that, she was an aviation engineer and system
engineer for seven years. She has around 16 years of experience of conducting
industry-oriented research with a focus on MBE in various application domains
such as Avionics, Maritime and Energy, and Communications in several countries
including Canada, Norway, and China. Her present research area is software engi-
neering, with specific interested in requirements engineering, requirements-based
testing, model-based product line engineering, model-based system engineering,
model-based testing and empirical software engineering. Dr. Yue has been on the
c© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 219–220, 2017.
DOI: 10.1007/978-3-319-56856-0

220 T. Yue and S. Ali

program and organization committees of many international, IEEE and ACM
conferences such as MODELS, RE, and SPLC. She is PI and CO-PI of several
national and international research projects. She is also actively participating in
defining international standards such as Uncertainty Modeling.

Shaukat Ali is currently a senior research scientist in the Software Engineer-
ing department, Simula Research Laboratory, Norway. His research focuses on
devising novel methods for Verification and Validation (V&V) of large scale
highly connected software-based systems that are commonly referred to as
Cyber-Physical Systems (CPSs). He has been involved in several basic research,
research-based innovation, and innovation projects in the capacity of PI/Co-PI
related to Model-based Testing (MBT), Search-Based Software Engineering, and
Model-Based System Engineering. He has rich experience of working in several
countries including UK, Canada, Norway, and Pakistan. Shaukat has been on the
program committees of several international conferences (e.g., MODELS, ICST,
GEECO, SSBSE) and also served as a reviewer for several software engineering
journals (e.g., TSE, IST, SOSYM, JSS, TEVC). He is also actively participating
in defining international standards on software modeling in Object Management
Group (OMG), notably a new standard on Uncertainty Modeling.

Workshop

2nd Workshop on Social, Human,
and Economic Aspects of Software (WASHES)

Special Edition for Software Reuse

Rodrigo Santos1, Eldanae Teixeira2, Emilia Mendes3,
and John McGregor4

1 Department of Applied Informatics,
Federal University of the State of Rio de Janeiro (UNIRIO),

Rio de Janeiro, Brazil
rps@uniriotec.br

2 Systems Engineering and Computer Science Department,
Federal University of Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, Brazil

danny@cos.ufrj.br
3 Faculty of Computing Sciences,

Blekinge Institute of Technology, Karlskrona, Sweden
emilia.mendes@bth.se

4 Department of Computer Science, Clemson University, Clemson, USA
johnmc@clemson.edu

Abstract. The Special Edition for Software Reuse of the Workshop on Social,
Human, and Economic Aspects of Software (WASHES) aims at bringing
together researchers and practitioners who are interested in social, human, and
economic aspects of software. WASHES is a forum to discuss models, methods,
techniques, and tools to achieve software quality, improve reuse and deal with
the existing issues in this context. This special edition’s main topic is “Chal-
lenges of Reuse and the Social, Human, and Economic Aspects of Software”.
We believe it is important to investigate software reuse beyond the technical
perspective and understand how the non-technical barriers of reuse affect
practices, processes and tools in practice.

1 Motivation

Human and social aspects in software development have been discussed by researchers
and practitioners since methods, techniques, and tools affect (and are affected by)
stakeholders and their interactions. Similarly, software is a source of value for business
in several organizations, either being software suppliers or acquirers, representing the
key factor for their economic success. Decisions made in the software development
processes and activities have economic implications on the profit and/or cost per-
spectives. Then, stakeholders, their interactions, and the software value notion are
crucial to quality and directly affect the benefits promoted by software reuse. As such, it
is important to discuss models, methods, techniques, and tools to achieve software
quality, improve reuse and deal with the existing issues in this context.

© Springer International Publishing AG 2017
G. Botterweck and C. Werner (Eds.): ICSR 2017, LNCS 10221, pp. 223–224, 2017.
DOI: 10.1007/978-3-319-56856-0

2 Goals and Conclusion

The 2nd Workshop on Social, Human, and Economic Aspects of Software (“WASHES
in Reuse”) aims at putting together competencies and technologies focusing on the
interaction between critical aspects that influence software engineering and software
quality. This year’s main topic seeks to bring together different perspectives in a
specific forum in order to analyze software reuse in the light of social, human, and
economic aspects.

In its first edition (2016) [1], the workshop was successfully co-located with the 15th
Brazilian Symposium on Software Quality (SBQS 2016). WASHES 2016 had 50
attendees and received 30 submissions. After the final analysis, 6 full papers and 6 short
papers were accepted. Additionally, 3 papers were presented as posters. A panel was
promoted to discuss social, human and economic implications on software quality as
well as to define the WASHES Research and Collaboration Roadmap.

WASHES Steering Committee is composed of 4 researchers from Federal
University of Maranhão (UFMA, Brazil), Federal University of the State of Rio de
Janeiro (UNIRIO, Brazil), Northern Arizona University (USA), and Pontifical Catholic
University of Rio Grande do Sul (PUCRS, Brazil). This special edition is jointly
organized by the 4 program chairs from Federal University of the State of Rio de Janeiro
(UNIRIO, Brazil), Federal University of Rio de Janeiro (COPPE/UFRJ), Blekinge
Institute of Technology (Sweden) & University of Oulu (Finland), and Clemson
University (USA). WASHES Program Committee is composed of researchers with
relevant expertise and production in the related research areas of the workshop. Program
Committee Members conducted a rigorous double blind review process, in which each
paper was evaluated and discussed in details by at least three members.

We welcome WASHES 2017 authors and other attendees, as well as ICSR 2017
participants. We would like to invite all participants to actively take part in discussions
and integration moments provided by the workshop. Discussions on the investigation
of reuse beyond the technical perspective will be performed in order to understand how
the non-technical aspects influence (or are influenced by) software development
management, processes and tools in practice.

Additionally, we would like to thank all researchers and practitioners who sub-
mitted their papers to WASHES 2017, the Steering and Program Committees’ mem-
bers, and the organizers and sponsors of ICSR 2017, for their support for the
accomplishment of this workshop.

Reference

1. The First Workshop on Social, Human, and Economic Aspects of Software (WASHES 2016).
http://reuse.cos.ufrj.br/washes2016/

224 R. Santos et al.

Author Index

Ali, Shaukat 219
Alvim, Loreno Freitas Matos 31
Andrade, Rossana M.C. 65, 175
Assunção, Wesley K.G. 95

Bergel, Alexandre 155
Bezerra, Carla I.M. 65, 175
Blanc, Xavier 12

Charpentier, Alan 12
Chavez, Christina 201
Cleophas, Loek 77
Collet, Philippe 112

de Almeida, Eduardo Santana 31, 201
de Lima Fontão, Awdren 208
Dias-Neto, Arilo 208

Falleri, Jean-Rémy 12
Fernandes, Eduardo 48, 184
Figueiredo, Eduardo 48, 184
França, Marcelo 195

Garcia, Alessandro 48

Lee, Jaejoon 48
Lima, Crescencio 201
Lima, Luan P. 175
Lopez-Herrejon, Roberto E. 95

Machado, Ivan do Carmo 31, 65
McGee, Ethan T. 123
McGregor, John 223
McGregor, John D. 123, 217

Mendes, Emilia 223
Monteiro, José Maria 65, 175

Oliveira, Johnatan 184
Oumaziz, Mohamed A. 12

Santos, Rodrigo 208, 223
Schaefer, Ina 77
Schlie, Alexander 77
Silva, Leonardo Humberto 155
Silva, Roselane S. 123, 217
Sitaraman, Murali 139
Sousa, Leonardo 48

Tërnava, Xhevahire 112
Teixeira, Eldanae 223

Uchôa, Anderson G. 65, 175

Vale, Gustavo 48, 184
Valente, Marco Tulio 155
Vergilio, Silvia R. 95

Wang, Huaimin 3
Wang, Tao 3
Welch, Daniel 139
Wille, David 77

Yang, Cheng 3
Yin, Gang 3
Yu, Yue 3
Yue, Tao 219

Zhang, Xunhui 3

	Foreword
	Organization
	Keynote Abstracts
	Alice in Dataland: Reuse for Data Science in Software Teams
	Software Transplantation for Reuse
	Contents
	Documentation Reuse and Repositories
	DevRec: A Developer Recommendation System for Open Source Repositories
	1 Introduction
	2 Related Work
	3 Recommendation Approach
	3.1 Overview of Recommendation System
	3.2 Developer Recommendation Based on Social Coding Activities
	3.3 Developer Recommendation Based on Knowledge Sharing Activities
	3.4 Hybrid Approach for Developer Recommendation

	4 Experiment
	4.1 Research Questions
	4.2 Experiment Datasets
	4.3 Evaluation Metrics

	5 Experiment Results
	5.1 Influence of Different Activities Towards Different Projects
	5.2 Influence of Different Coefficient Values in Hybrid Approach

	References

	Documentation Reuse: Hot or Not? An Empirical Study
	1 Introduction
	2 Experimental Setup
	2.1 Corpus
	2.2 Documentation Duplication Detector

	3 Research Question 1
	3.1 Frequency of Duplications
	3.2 Copy-Pastes Vs. Coincidental Duplications
	3.3 Threats to Validity

	4 Research Question 2
	4.1 Causes of Documentation Copy-Pasting
	4.2 Existing Documentation Tools
	4.3 Documentation Reuse Revisited

	5 Related Work
	6 Conclusion
	References

	Software Product Lines
	A Preliminary Assessment of Variability Implementation Mechanisms in Service-Oriented Computing
	1 Introduction
	2 Variability Implementation Mechanisms
	2.1 Conditional Compilation
	2.2 Aspect-Oriented Programming
	2.3 Open Services Gateway Initiative

	3 The Measurement Framework
	3.1 Complexity Metrics
	3.2 Stability Metrics
	3.3 Modularity Metrics

	4 First Case Study - Warehouse
	4.1 Hypotheses
	4.2 Case Study Execution
	4.3 Results
	4.4 Descriptive and Exploratory Analysis
	4.5 Threats to Validity

	5 Second Case Study - RiSEEvents
	5.1 Case Study Execution
	5.2 Results and Findings
	5.3 Threats to Validity

	6 Comparative Analysis
	7 Decision Model
	8 Related Work
	9 Concluding Remarks
	References

	No Code Anomaly is an Island
	Abstract
	1 Introduction
	2 Background
	2.1 Feature-Oriented Software Product Lines
	2.2 Sources of Instability in SPL

	3 Code Anomalies and Agglomerations in SPL
	3.1 Agglomerating Code Anomalies
	3.2 Feature Agglomeration
	3.3 Feature Hierarchy Agglomeration
	3.4 Component Agglomeration

	4 Study Settings
	4.1 Goal and Research Questions
	4.2 Target SPLs
	4.3 Data Collection and Analysis Protocols

	5 Results and Analysis
	5.1 Non-agglomerated Code Anomalies
	5.2 Agglomerated Code Anomalies

	6 Related Work
	7 Threats to Validity
	8 Conclusion and Future Work
	Acknowledgments
	References

	ReMINDER: An Approach to Modeling Non-Functional Properties in Dynamic Software Product Lines
	1 Introduction
	2 ReMINDER: An AppRoach to Modeling Non-FunctIoNal Properties in DSPL
	2.1 Phase I - Identification and Representation of NFPs in Feature Models
	2.2 Phase II - Identification of Constraint and Context Adaptation Scenarios

	3 Empirical Evaluation
	3.1 Execution
	3.2 Results and Findings
	3.3 Threats to Validity

	4 Related Work
	5 Conclusion and Future Work
	References

	Variability Management and Model Variants
	Clustering Variation Points in MATLAB/Simulink Models Using Reverse Signal Propagation Analysis
	1 Introduction
	2 Background
	2.1 MATLAB/Simulink Models
	2.2 Variability in Models
	2.3 Signal Propagation in Models
	2.4 The Simulink Identifier

	3 Reverse Signal Propagation Analysis
	3.1 Preparatory Work
	3.2 Signal Set Generation
	3.3 Comparison and Preliminary Clustering
	3.4 Cluster Optimization

	4 Evaluation
	4.1 Analyzed Models
	4.2 Methodology
	4.3 Results and Interpretation

	5 Related Work
	6 Conclusion and Future Work
	References

	Discovering Software Architectures with Search-Based Merge of UML Model Variants
	1 Introduction
	2 Proposed Approach
	2.1 Representation
	2.2 Fitness Function
	2.3 Genetic Operators

	3 Evaluation
	3.1 Implementation Aspects and Experimental Setup
	3.2 Case Studies
	3.3 Results and Analysis
	3.4 Threats to Validity

	4 Related Work
	5 Conclusions
	References

	Tracing Imperfectly Modular Variability in Software Product Line Implementation
	1 Introduction
	2 Motivations
	3 A Three Step Traceability Approach
	3.1 Capturing the Variability of Core-Code Assets (Step 172)
	3.2 Modeling the Implemented Variability (Step 173)
	3.3 Establishing the Trace Links (Step 174)

	4 Implementation and Application
	5 Conclusion
	References

	Verification and Refactoring for Reuse
	Composition of Verification Assets for Software Product Lines of Cyber Physical Systems
	1 Introduction
	2 Background
	2.1 AADL
	2.2 AGREE
	2.3 Software Product Lines

	3 Method
	4 Example
	4.1 Architecture Overview
	4.2 Verifying Multi-layered Architectures

	5 Related Work
	6 Conclusion
	References

	Engineering and Employing Reusable Software Components for Modular Verification
	1 Introduction
	2 A High Level Overview of the Example
	3 Motivating a System of Tiered Reuse: A Spanning Forest Client Application
	3.1 Enhancing the SFF Concept: A Reuse-Favoring Solution
	3.2 Client Application Context

	4 Reuse Layer 1: A Formal Concept for Finding MSFs
	4.1 Mathematical Modeling

	5 Reuse Layer 2: Additional Models for Prioritization and Connectivity Checking
	5.1 A Concept for Prioritizing
	5.2 A Concept for Maintaining Equivalence Relations

	6 The Verification Process
	7 Related Work and Conclusions
	References

	Refactoring Legacy JavaScript Code to Use Classes: The Good, The Bad and The Ugly
	1 Introduction
	2 Background
	2.1 Class Emulation in Legacy JavaScript Code
	2.2 ECMAScript 6 Classes

	3 Study Design
	3.1 Migration Rules
	3.2 Dataset

	4 Migration Results
	4.1 The Good Parts
	4.2 The Bad Parts
	4.3 The Ugly Parts

	5 Feedback from Developers
	6 Threats to Validity
	7 Related Work
	8 Final Remarks
	References

	Tools Demonstrations
	DyMMer-NFP: Modeling Non-functional Properties and Multiple Context Adaptation Scenarios in Software Product Lines
	1 Introduction
	2 Background
	3 DyMMer-NFP Main Features
	4 Using DyMMer-NFP to Modeling Non-functional Properties
	5 Conclusion and Future Work
	References

	Identification and Prioritization of Reuse Opportunities with JReuse
	Abstract
	1 Introduction
	2 Related Work
	3 JReuse
	3.1 Architecture
	3.2 Implementation Technologies and User Interface

	4 Evaluation
	4.1 Evaluation Settings
	4.2 Results at Class Level
	4.3 Results at Method Level

	5 Threats to Validity
	6 Conclusion and Future Work
	Acknowledgments
	References

	Doctoral Symposium
	EcoData: Architecting Cross-Platform Software Ecosystem Applications
	Abstract
	1 Introduction
	2 Research Questions
	3 Related Work
	4 Research Methodology
	5 Preliminary Contributions
	6 Concluding Remarks
	References

	Investigating the Recovery of Product Line Architectures: An Approach Proposal
	1 Introduction
	2 Research Methodology
	3 Initial Proposal
	3.1 Preliminary Results
	3.2 Performing PLA Recovery

	4 Expected Contributions and Road Ahead
	4.1 Evaluating the Approach and Results

	5 Related Work
	References

	Towards a Guideline-Based Approach to Govern Developers in Mobile Software Ecosystems
	Abstract
	1 Introduction
	2 Related Work
	3 Proposal
	3.1 Goal and Research Questions
	3.2 Research Methodology and Emerging Results

	4 Concluding Remarks
	Acknowledgements
	References

	Erratum to: Towards a Guideline-Based Approach to Govern Developers in Mobile Software Ecosystems
	Erratum to: Chapter “Towards a Guideline-Based Approach to Govern Developers in Mobile Software Ecosystems” in: G. Botterweck and C. Werner (Eds.): Mastering Scale and Complexity in Software Reuse, LNCS, DOI: 10.1007/978-3-319-56856-0_16

	Tutorials
	Building Safety-Critical Systems Through Architecture-Based Systematic Reuse
	Reusable Use Case and Test Case Specification Modeling
	Workshop
	2nd Workshop on Social, Human, and Economic Aspects of Software (WASHES)
	Abstract
	1 Motivation
	2 Goals and Conclusion
	Reference

	Author Index

