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Abstract
One-dimensional blood flow models have been used extensively for hemody-
namic computations in the human arterial circulation. In this chapter we intro-
duce a high performance computing solution based Graphics Processing Units 
(GPU). Novel GPU only and hybrid CPU-GPU solutions are proposed and eval-
uated. Physiologically sound periodic (structured tree) and non-periodic (wind-
kessel) boundary conditions are considered, in combination with both elastic and 
viscoelastic arterial wall laws, and different second-order accurate numerical 
solutions schemes. Both the GPU only and the hybrid solutions lead to signifi-
cantly smaller execution times.

Parts of Sect. 7.2 have been published before in the paper ‘Graphics Processing Unit Accelerated 
One-Dimensional Blood Flow Computation in the Human Arterial Tree’, International Journal on 
Numerical Methods in Biomedical Engineering, Vol. 29, December, 2013, pp. 1428–1455.
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Moreover, we introduce GPU-based computationally efficient implementa-
tions for the voxelization of a mesh, for the solution of large linear system of 
equations using both the preconditioned conjugate gradient method, and for ran-
dom forest based classification. The GPU based implementations can lead to 
significant execution time improvements for all these applications. This feature 
is based on research, and is not commercially available. Due to regulatory rea-
sons its future availability cannot be guaranteed.

7.1  Introduction

Graphics Processing Units (GPUs) are dedicated processors, designed originally as 
graphic accelerators. Since CUDA (Compute Unified Device Architecture) was 
introduced in 2006 by NVIDIA as a graphic application programming interface 
(API), the GPU has been used increasingly in various areas of scientific computa-
tions due to its superior parallel performance and energy efficiency, leading to the 
definition of a new concept: general-purpose computing on graphics processing 
units (GPGPU) (Ryoo et al. 2008; Zou et al. 2009). GPGPU pipelines initially 
developed due to the speed-up requirements of scientific computing applications. 
Due to its very efficient performance-cost ratio, and its widespread availability, the 
GPU is currently the most used massively parallel processor.

Multiple graphics cards may be used in one computer, or GPU clusters may be 
employed. Nevertheless even a single CPU-GPU framework typically outper-
forms multiple CPUs due to the specialization of each processor (Mittal and 
Vetter 2015).

The GPU is a stream processor, developed for performing a large number of 
floating point operations (FLOPS) in parallel, by using a large number of processing 
units. Recent GPUs deliver the same performance as that of a cluster at 10% of the 
cost. The most important development has been the introduction of a programming 
interface for GPUs, which has transformed them into General Purpose GPUs 
(GPGPU) (Owens et al. 2008). The possibility of running jobs, which typically 
require clusters, on a single computer equipped with one or more GPUs, has drawn 
the attention of researchers from various research areas.

Since graphics applications require significant computing power, the GPU, as 
opposed to the CPU, uses the majority of its transistors for data processing and 
not for data cache or for execution control. This characteristic coincides with the 
requirements of many scientific computing applications (Chen et al. 2009). 
Furthermore, the GPU is well suited for parallel computations. Its stream proces-
sors work independently and concurrently at high frequencies when a program is 
being executed, diminishing thus significantly the need for complex execution 
control.
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Figure 7.1 depicts the architecture of a GPU which can be programmed through 
CUDA. It is composed of several streaming multiprocessors, which can execute in 
parallel a large number of threads. In this example, two multiprocessors form a 
structural block (this specific organization varies from one GPU generation to the 
next). Furthermore, each multiprocessor has a number of processing units which 
have a common control logic and instruction cache.

The G80 GPU, which was introduced together with the CUDA language, had a 
memory bandwidth of 86 GB/s a CPU-GPU bandwidth of 8 GB/s. Furthermore the 
G80 has 128 processing units (16 multiprocessors, each one with 8 processing 
units). The peak performance was over 500 gigaflops. Current GPUs have over 1000 
processing units and exceed several teraflops in terms of processing performance.

Each processing unit can run thousands of threads in a single application. A typi-
cal GPU-based application executes 5000–15,000 threads. The G80 allows the 
simultaneous execution of up to 768 threads per streaming multiprocessor, and over 
12,000 threads for the entire GPU. The GT200 allows the simultaneous execution of 
up to 1024 threads per streaming multiprocessor, and over 30,000 threads for the 
entire GPU. The maximum level of parallelism at hardware level has increased with 
the release of the Fermi, Kepler and Maxwell architectures.

In the CUDA architecture, the host and the CUDA device have separate memory 
spaces: CUDA devices are separate hardware components with their own DRAM. To 
run a kernel on the device, the programmer needs to allocate memory on the device 
and transfer the data of interest from the host to the device. Similarly, once the 
execution on the GPU has finalized, the results need to be transferred back to the 
CPU, and the device memory that is no longer required has to be deallocated.

Host

Input Assembler

Global Memory

Load/store Load/store Load/store Load/store Load/store Load/store

Thread Execution Manager

Parallel Date
Cache

.. .. ..Texture ..

Parallel Date
Cache

.. .. ..Texture ..

Parallel Date
Cache

.. .. ..Texture ..

Parallel Date
Cache

.. .. ..Texture ..

Parallel Date
Cache

.. .. ..Texture ..

Parallel Date
Cache

.. .. ..Texture ..

Parallel Date
Cache

.. .. ..Texture ..

Parallel Date
Cache

.. .. ..Texture ..

Fig. 7.1 Architecture of a GPU programmed through CUDA (Kirk and Hwu 2010)
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Figure 7.2 depicts an overview of the CUDA memory model. On the lower side 
of the figure one can observe the global and the constant memory. These are the two 
types of memory that can be accessed by the host in both directions (the constant 
memory can only be read by the CUDA device).

At thread block level, shared memory is available, which can be accessed by all 
threads of the same block. Typically, shared memory is employed to reduce the 
number of redundant accesses of the global memory. Unlike the global memory, 
shared memory can be accessed with low latency for reading and writing data.

Furthermore, each thread has access to a set of localized registers. These are high 
speed memory locations, but the number of such locations is limited.

GPUs are currently extensively being used in biomedical engineering (for fast 
diagnosis, simulation of surgical procedures and prediction, etc.). Image-guided 
therapy systems, which are gaining more traction in clinical treatment and inter-
ventions applications, are based on programs with a large level of parallelism 
(Shams et al. 2010). Thus, radiology departments may profit in future from GPU-
based high performance computing, at reasonable costs. GPUs have been used in 
research activities related to the cardiovascular system: modelling and simulation 
of the heart (offline—to reduce the simulation time), or for the real-time visualiza-
tion of 3D/4D sequences acquired through MRI or CT. Sato et al. have described 
the acceleration of simulations performed for understanding the propagation of 
electrical waves in the cardiac tissue, and have compared CPU and GPU based 
execution times (Sato et al. 2009). The approach based on a single GPU has shown 
to be 20–40 times than a single CPU based implementation. Furthermore, an inter-
active simulation for cardiac interventions has been proposed, which also takes 
into account the collision between the catheter and the inner wall of the heart (Yu 
et al. 2010). The GPU-based implementation is used for cardiac modelling, visual-
ization and interactive simulation. The simulation of the cardiovascular system can 
also be performed with the Lattice Boltzmann method which is readily paralleliz-
able on GPUs (Nita et al. 2013).
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Fig. 7.2 CUDA memory model (Kirk and Hwu 2010)
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Tanno et al. have introduced a GPU-based implementation of the artificial com-
pressibility method (Tanno et al. 2011). A speed-up of approx. 8× was achieved, 
when compared to the CPU based implementation.

Moreover, a multi-GPU simulator based on the three-dimensional Navier-Stokes 
equations has been introduced, which can simulate the interaction between different 
fluids, and which is based on a level-set approach (Zaspel and Griebel 2013). High- 
order finite differences schemes and the projection method were employed for the 
discretization in space and time. The speed-up, when compared to a CPU-based 
implementation, is of around 3×, while the energy consumption is approx. two 
times smaller.

Another research study has analyzed the GPU-based speed-up potential for a 
hemodynamic simulation performed for the abdominal aorta (Malecha et al. 2011). 
Only a part of the code has been transferred to the GPU (the solution of the linear 
system of equations), and a speed-up of 3–4× was obtained.

In a different approach, blood was modeled as a mix of plasma and red blood 
cells, and hemodynamic simulations were run (Rahimian et al. 2010). Up to 260 
millions deformable red blood cells were used, and the code was developed so 
as to support parallelism at all levels, including internodal parallelism, intrano-
dal parallelism through shared memory, data parallelism (vectorization), as well 
as a very large number of threads for efficient GPU-based execution. The most 
complex simulation employed 256 CPU-GPU systems, and 0.7 petaflops were 
achieved.

In conclusion, GPU-based approaches are already employed widely in many 
compute-intensive research areas, like:

• Computational fluid dynamics (Itu et al. 2013a, b)
• Machine learning (Garcia et al. 2008)
• Molecular modeling (Hasan Khondker et al. 2014)
• Astrophysics (Klages et al. 2015)
• Bioinformatics (Schatz et al. 2007; Manavski and Valle 2008)
• Medical imaging (Shams et al. 2010; Shen et al. 2009)
• Lattice Boltzmann methods (Nita et al. 2013)
• Monte Carlo simulations (Alerstam et al. 2008)
• Weather forecasting (Schalkwijk et al. 2015)
• Fuzzy logic (Cococcioni et al. 2011)

The first generation of CUDA enabled GPUs was limited to single precision 
floating point computations, and hence could not be used efficiently for applications 
with high accuracy requirements, e.g. CFD. Double precision computations were 
then made available in the second generation of CUDA enabled GPUs (Tesla archi-
tecture). Furthermore, the Fermi and Kepler architectures increased the double pre-
cision performance. Hence, GPUs are used nowadays widely for the acceleration of 
scientific computations.

7 GPU-Based High Performance Computing
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The GPU is viewed as a compute device which is able to run a very high number 
of threads in parallel inside a kernel (a function, written in C language, which is 
executed on the GPU and launched by the CPU). The threads of a kernel are orga-
nized at three levels: blocks of threads are organized in a three dimensional grid at 
the top level, threads are organized in three-dimensional blocks at the middle level, 
and, at the lowest levels, threads are grouped into warps (groups of 32 threads 
formed by linearization of the three-dimensional block structure along the x, y and 
z axes respectively).

The concepts and information presented in this chapter are based on research and 
are not commercially available. Due to regulatory reasons its future availability can-
not be guaranteed.

7.2  GPU Accelerated One-Dimensional Blood Flow 
Computation in the Human Arterial Tree

In previous chapters we have focused on computational approaches for modeling 
the flow of blood in the human cardiovascular system.

For three-dimensional blood flow models, due to the extremely high computa-
tional requirements, there has been a lot of interest in exploring high performance 
computing techniques for speeding up the algorithms. Although one-dimensional 
blood flow models are generally at least two orders of magnitude faster, the require-
ment of short execution times is still valid. Thus, when blood flow is modeled in 
patient-specific geometries in a clinical setting, results are required in a timely man-
ner not only to potentially treat the patient faster, but also to perform computations 
for more patients in a certain amount of time.

As described in previous chapter, it is crucial to match the patient-specific state 
in a hemodynamic computation. The tuning procedure requires repetitive runs on 
the same geometry, with different parameter values (e.g. for inlet, outlet or wall 
boundary conditions (BC)), until the computed and the measured quantities match. 
This increases the total execution time for a single patient-specific geometry.

Another type of application for which the acceleration of the hemodynamic com-
putations in general, and of the one-dimensional blood flow in particular, is impor-
tant, has been reported in (Vardoulis et al. 2012): a total of 1000 different 
hemodynamic cases have been simulated (by varying geometry, heart rate, compli-
ance or resistance) in order to find a correlation between total arterial compliance 
and aortic pulse wave speed. The speed-up of the execution time can either signifi-
cantly reduce the time required to perform all computations for a certain correlation 
result, or it can allow one to perform even more computations in the same amount 
of time, with different configurations, to obtain better final results.

The high performance computing techniques have focused on the parallelization of 
the algorithms. For the implementation of the parallel algorithms cluster-based 
approaches, graphics processing unit (GPU) based approaches, or even a combination 
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of the two have been explored. Since the execution time of a three-dimensional model 
is generally at least two orders of magnitude higher than the execution time of a one-
dimensional model, most of the parallelization activities have focused on three-
dimensional models (Habchia et al. 2003; Tanno et al. 2011; Zaspel and Griebel 
2013). Nevertheless, the speed-up requirements mentioned above are equally valid for 
one-dimensional and three-dimensional models.

A previous research activity focused on the parallelization of the one- dimensional 
blood flow model, employing a cluster-based approach, has been introduced in 
(Kumar et al. 2003), with speed-up values of up to 3.5×. On the other hand, with the 
advent of CUDA (Compute Unified Device Architecture), several researchers have 
identified the potential of GPUs to accelerate biomedical engineering applications 
in general (Kirk and Hwu 2010), and computational fluid dynamics (CFD) compu-
tations in particular to unprecedented levels (Jiang et al. 2011).

In this section, we focus on the GPU based acceleration of the one-dimensional 
blood flow model and present two algorithms: a novel Parallel Hybrid CPU-GPU 
algorithm with Compact Copy operations (PHCGCC) and a Parallel GPU Only 
(PGO) algorithm (Itu et al. 2013a, b). We use a full body arterial model composed 
of 51 arteries and the speed-up of the two approaches is evaluated compared to both 
single-threaded and multi-threaded CPU implementations. The computations are 
performed using two different second order numerical schemes, with an elastic or 
viscoelastic wall model, and windkessel or structured tree boundary conditions as 
representative examples of physiological non-periodic and respectively periodic 
outlet boundary conditions.

7.2.1  Methods

The one-dimensional blood flow model is derived from the three-dimensional 
Navier-Stokes equations based on a series of simplifying assumptions (Formaggia 
et al. 2003). The governing equations ensuring mass and momentum conservation 
are as follows:
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where x denotes the axial location and t denotes the time. A(x,t) is the cross- sectional 
area, p(x,t) the pressure, q(x,t) the flow rate, and ρ is the density. Coefficients α and 
KR account for the momentum-flux correction and viscous losses due to friction 
respectively. For a parabolic velocity profile, KR =  − 8πν and α = 4/3, with ν being 
the kinematic viscosity of the fluid.
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A state equation, which relates the pressure inside the vessel to the cross- sectional 
area, is used to close the system of equations. When the vessel wall is modeled as a 
pure elastic material, the following relationship holds:
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where E is the Young modulus, h is the wall thickness, r0 is the initial radius corre-
sponding to the initial pressure p0, and A0 is the initial cross-sectional area. The 
elastic wall properties are estimated using a best fit to experimental data (Olufsen 
et al. 2000).

Alternatively, a viscoelastic wall model can also be used. To include viscoelastic-
ity, the vessel wall is considered to be a Voigt-type material (Fung 1993), for which 
the tensile stress depends on both the tensile strain and the time-derivative of the 
strain (Malossi et al. 2012):
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where γS is the viscoelastic coefficient, defined by:
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Here TS is the wave characteristic time (usually taken equal to the systolic period 
~0.24 s), ΦS is the viscoelastic angle (10°), while σ is the Poisson ratio (the material 
is considered to be incompressible for σ = 0.5). As in the case of elastic modeling, 
the viscoelastic coefficient is considered to be non-uniform in space (i.e. γS = γS(x)).

The presence of the viscoelastic component in Eq. (7.4) introduces an additional 
term in the momentum conservation equation:
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Spatial and temporal dependencies of the quantities have been omitted for nota-
tional clarity. At each bifurcation, the continuity of flow and total pressure is 
imposed,
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where subscript p refers to the parent, while subscript d refers to the daughter vessels.
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7.2.1.1  Boundary Conditions
Depending on the availability of in-vivo measurements and the underlying assump-
tions used in the modeling, researchers typically use one of the following inlet 
boundary condition: (1) time-varying flow profile, (2) a lumped model of the heart 
coupled at the inlet (Formaggia et al. 2006), or (3) a non-reflecting boundary condi-
tion like a forward running pressure wave (Mynard et al. 2012a, b), (Willemet et al. 
2011). A time-varying velocity profile (or flow rate profile) can be consistently 
determined in a clinical setting, and is often part of the diagnostic workflow (2D/3D 
Phase-contrast MRI (Magnetic Resonance Imaging), Doppler ultrasound). The 
parameters of the lumped heart model can be computed based on non-invasively 
acquired flow rate and pressure values (Senzaki et al. 1996), while the third type of 
inlet boundary condition is generally not used in patient-specific computations.

Outlet boundary conditions may be classified as either periodic or non-periodic 
boundary conditions. Whereas periodic boundary conditions can only be used in 
steady-state computations (e.g. the patient state does not change from one heart 
cycle to the next—the same inlet flow rate profile is applied for each heart cycle) 
and require the flow information from the previous heart cycle, non-periodic bound-
ary conditions do not have these restrictions (e.g. they can be used to model the 
transition from a rest state to an exercise state for a patient).

We consider two physiologically motivated boundary conditions:

 1. The three-element windkessel model (WK), as a non-periodic boundary condi-
tion (Westerhof et al. 1971):
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where Rp is the proximal resistance, Rd is the distal resistance and C is the com-
pliance, while p and q refer to the pressure and respectively the flow rate at the inlet 
of the windkessel model.

 2. The structured tree model (ST) (Olufsen et al. 2000), as a periodic boundary 
condition. The structured tree is a binary, asymmetrical vascular tree com-
puted individually for each outlet, composed of a varying number of vessel 
generations. It is terminated once the radius decreases below a preset mini-
mum radius and its root impedance, z(t), is computed recursively. The root 
impedance is applied at the outlet of the proximal domain through a convolu-
tion integral:
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where T is the period. To apply a periodic boundary condition, the flow history is 
stored and a multiply-sum scan operation is performed at each time-step, leading to 
considerably higher execution times than for a non-periodic boundary condition.
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We emphasize the fact that this choice is not mandatory, the windkessel model 
can also be applied as a periodic boundary condition, and, as recently described, 
even the structured tree boundary condition can be applied as a non-periodic bound-
ary condition (Cousins et al. 2013).

7.2.1.2  Numerical Solution of the One-Dimensional Blood  
Flow Model

When an elastic wall model is used, Eqs. (7.1)–(7.3) represents a hyperbolic system 
of equations. When a viscoelastic wall model is used, the hyperbolic nature of the 
equations is lost due to the additional term in the pressure-area relationship. The 
approaches for the numerical solution of the one-dimensional equations can be 
divided into two main categories:

 1. Methods which do not exploit the original hyperbolic nature of the equations: 
discontinuous finite element Galerkin method with stabilization terms (Raghu 
et al. 2011); implicit finite difference/spectral element method where the non- 
linear terms are solved iteratively at each time-step using the Newton method 
(Reymond et al. 2011), (Bessems et al. 2008), etc.;

 2. Methods which exploit the hyperbolic nature of the equations in case an elastic 
wall law is used (Olufsen et al. 2000), (Mynard and Nithiarasu 2008), or which 
recover the original hyperbolic nature of the equations in case a viscoelastic 
wall law is used, by employing an operator-splitting scheme for the momentum 
equation. This method has been originally proposed in Formaggia et al. (2003) 
for a single vessel and subsequently used in Passerini (2009) and Alastruey 
et al. (2011).

Implicit methods, although solvable with larger time-steps, are slower since they 
require the solution of a system of equations at each time step and, additionally, 
require the application of the Newton method for the non-linear terms (Reymond 
et al. 2011). On the other hand, the methods that exploit the hyperbolic nature of the 
equations are explicit. They are computationally faster, in spite of the time-step 
limitation imposed by the CFL condition (named after Courant, Friedrich and Lewy 
(Courant et al. 1928)).

In addition to the fact that the explicit methods are faster in a sequential imple-
mentation, their explicit nature also enables them to be parallelized, and thus be 
implemented on a cluster (Kumar et al. 2003), or on a GPU.

The explicit methods are based either on a first order method (the method of 
characteristics), or on a second order method (two-step Lax Wendroff (Olufsen 
et al. 2000), or expansion in Taylor series (Mynard and Nithiarasu 2008)). Due to 
their higher accuracy, second-order methods are preferred and have been used for 
the current study. The method of characteristics is used at the inflow, bifurcation and 
outflow points.
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7.2.1.3  Numerical Solution of the Elastic One-Dimensional Model
First, Eqs. (7.1) and (7.2) are written in conservation form:
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where U is the vector of the unknown quantities, R is the flux term, and S is the right 
hand side (RHS).

The Lax-Wendroff (LW) scheme consists of two main steps:

Step 1. Computation of the half step-points: these values are computed between the 
grid points, hence there are only interior half-step values:
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where j = m ± 1/2 and m refers to the grid points;

Step 2. Computation of the full-step-points: this step uses values both from the pre-
vious time step and from the half-step points:
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The expansion in Taylor series (TS) scheme consists of a single step:
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where all the spatial derivatives are discretized using central difference schemes, 
and:
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Both numerical schemes require the apriori computation of the flux and RHS terms.
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7.2.1.4  Numerical Solution of the Viscoelastic One-Dimensional 
Model

An operator splitting scheme is employed for the momentum equation in order to 
recover the hyperbolic nature of the equations. Thus, Eq. (7.6) is rewritten as:
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The equation is no longer hyperbolic and cannot be cast into conservative form. 
The splitting scheme assumes that the contribution of the viscoelastic term is small 
compared to the contribution of the elastic term. The flow rate is considered to be 
composed of an elastic and a viscoelastic component (q = qe + qv), and Eq. (7.17) is 
split into two equations:
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Consequently, the numerical solution at each step is composed of two sequential 
sub-steps:

Step 1. The system composed of Eqs. (7.1) and (7.18) is solved, yielding the quanti-
ties A(x,t) and qe(x,t).

Step 2. Equation (7.19) is solved to obtain qv(x,t) and thus the total flow rate q(x,t):
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Equation (7.20) is discretized using a central difference scheme, leading to a tridi-
agonal system of equations, which can be readily solved using the Thomas algorithm 
in a sequential program. For the viscoelastic component of the flow, homogeneous 
Dirichlet boundary conditions are imposed at the boundaries of each vessel.

Both the LW and the TS schemes can be used to compute A(x,t) and qe(x,t), but 
because the LW method is composed of two steps, it requires the computation of 
the viscoelastic correction term twice for each time step. Since this would signifi-
cantly increase the total execution time, we applied only the TS scheme when a 
viscoelastic wall law was enforced. The various computational setups, for which 
different parallelization strategies have been adopted, are displayed in Table 7.1. 
For performance comparison, we considered both a Single-threaded CPU only 
(SCO) algorithm and a Multi-threaded CPU only (MCO) algorithm. The MCO 
algorithm represents a parallel version of the SCO algorithm, implemented using 
openMP.
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Before introducing the parallel implementation of the one-dimensional blood 
flow model, we first analyze the execution time of the SCO algorithm. Table 7.2 
displays the execution time of the different parts of the SCO algorithm, for cases 5 
and 6 from Table 7.1 (these two cases were chosen because they contain all compu-
tational steps and both types of outlet boundary conditions are considered). Execution 
times are obtained for the arterial tree described in Sect. 7.3 and correspond to the 
computation for ten heart cycles. When the WK boundary condition is used, approx. 
93% of the time is spent on the computation at the interior grid points and on the 
viscoelastic terms of the flow rate. Since the numerical solution for the interior grid 
points is explicit, this part can be efficiently parallelized on a manycore architecture 
(like the one of a GPU device). Though the computation of the viscoelastic terms 
employs a sequential algorithm, it can also be efficiently parallelized on a manycore 
architecture, as shown in Zhang et al. (2010). Furthermore, the computation at the 
bifurcation and outflow grid points is also parallelizable, but due to the low number 
of grid points of these types, usually below 100 for an arterial tree, the implementa-
tion on a manycore architecture is not efficient. Other operations (initialization activ-
ities, writing results to files during the last heart cycle, etc.) account for 2.21% of the 
total execution time and are not parallelizable. As a result, operations which occupy 
93.57% of the total execution time for case 5 are efficiently parallelizable. The dif-
ference in terms of execution time between case 5 and case 6 is primarily due to the 
outlet boundary condition, which requires a multiply- sum scan operation at each 

Table 7.1 Computational setups for which the speed-up obtained through GPU-based parallel 
implementations is investigated

Case Numerical scheme Wall law Outlet BC

1 Lax-Wendroff Elastic Windkessel

2 Lax-Wendroff Elastic Structured tree

3 Taylor series Elastic Windkessel

4 Taylor series Elastic Structured tree

5 Taylor series Viscoelastic Windkessel

6 Taylor series Viscoelastic Structured tree

Table 7.2 Execution time and corresponding percentage of total execution time for the computa-
tional steps of the numerical solution of the one-dimensional blood flow model

Computational step

Case 5 Case 6

Time (s) Perc. of total time (%) Time (s) Perc. of total time (%)

Interior grid points 357.12 46.12 357.67 30.32

Inflow grid point 0.08 0.01 0.14 0.01

Bifurcation grid points 27.66 3.57 27.61 2.34

Outflow grid points 4.96 0.64 401.72 34.06

Viscoelastic comp. 367.43 47.45 367.55 31.16

Other operations 17.12 2.21 24.87 2.11
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time step. Since this operation is efficiently parallelizable on a manycore architecture 
(Sengupta et al. 2008), the operations which occupy 95.54% of the total execution 
time for case 6 are efficiently parallelizable.

For the MCO algorithm, the computation on the interior, bifurcation and outflow 
points, as well as the computation of the viscoelastic component of the flow rate, 
can be efficiently parallelized since the number of cores is much smaller for a mul-
ticore architecture than for a manycore architecture. This is achieved by associating 
different arterial segments and bifurcation points to distinct cores.

The results in Table 7.2 show that if the LW scheme were used for a viscoelastic 
wall law (case in which the viscoelastic correction term would be computed twice 
at each time step), the total execution would increase by 30–50%, depending on the 
computational setup.

We conclude that the implementation of the numerical solution of the one- 
dimensional blood flow model is efficiently parallelizable on a manycore architec-
ture (like the one of a GPU device), regardless of the computational setup.

7.2.1.5  Parallelization of the Numerical Solution
We propose a parallel implementation of the one-dimensional blood flow model, 
based on a GPU device, programmed through CUDA (Kirk and Hwu 2010).

The numerical scheme of the interior grid points of each vessel is efficiently 
parallelizable and we considered two different implementation approaches:

 1. A Parallel Hybrid CPU–GPU (PHCG) algorithm, whereas the unknown quanti-
ties at the interior points are computed on the GPU and the inflow/bifurcation/
outflow points (called in the following junction points) are computed on the 
CPU. The advantage is that each device is used for computations for which it is 
best suited (CPU—sequential, GPU—parallel), but the disadvantage is that 
memory copies are required at each time step in order to interchange the values 
near the junction points;

 2. A Parallel GPU Only (PGO) algorithm, whereas all grid points are computed on 
the GPU and the CPU is only used to initialize and to control the execution on 
the GPU. The advantage is that no memory copies between the CPU and the 
GPU are required, but the disadvantage is that less parallelizable operations need 
to be performed on the GPU.

7.2.1.6  Parallel Hybrid CPU-GPU (PHCG) Algorithm
First we refer to the implementation used in case an elastic wall law is applied. 
Starting from the numerical schemes described in the previous section, we applied 
the general workflow displayed in Fig. 7.3a.

The CPU is called host, while the GPU is called device. First, the arterial model 
is initialized (host memory is allocated for each grid point, initial radius, initial 
cross-sectional area, wall elasticity, derivatives of radius and wall elasticity are 
computed) and the device memory is allocated and initialized. Next, a while loop 
is started which advances the entire model in time for a given number of iterations 
and heart cycles. Inside the while loop, the host and device thread are executed in 
parallel until a synchronization barrier is reached. During the parallel activities, the 
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Fig. 7.3 PHCG workflow 
in case (a) an elastic wall 
law (Itu et al. 2012a, b), or 
(b) a viscoelastic wall law 
is used. Junction points are 
solved on the CPU, while 
interior points are solved 
on the GPU. Memory 
copies are required at each 
iteration in order to 
exchange the values near 
and at the junction points 
(Itu et al. 2013a, b)
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CPU computes the new values at the junction points and the device performs the 
computations for the interior points (Eqs. (7.13), (7.14) for the LW scheme and 
(7.15) for the TS scheme). Since the device operations are asynchronous, no spe-
cial approach is required to achieve the task level parallelism between the CPU and 
the GPU. The computation of the junction points on the CPU is parallelized using 
openMP for all PHCG implementations. An acronym is displayed in Fig. 7.3 for 
each operation to easily match the execution times discussed in the next section 
with the operations (e.g. OTH stands for Other operations, which comprise several 
activities).

To compute the junction points, the host code requires the values at the grid 
points next to the junction points, from the previous time step. To compute the val-
ues at the grid points next to the junction points, the device code requires the values 
at the junction points, also from the previous time step. Hence, to exchange the 
values at or next to the next junction points, memory copy operations between the 
device and the host are performed at the beginning and the end of each iteration. A 
synchronization barrier is introduced after each iteration to ensure that the copy 
operations have finished. During the last cycle of the computation, after conver-
gence has been reached, the results are saved to files for visualization or post pro-
cessing. Since the number of iterations for each heart cycle is very high (18,000 for 
a grid space of 0.1 cm), the results are saved only after a certain number of iterations 
(every 20–50 iterations).

To improve the execution time on the GPU, the kernel has been optimized. The 
specific goal has been to lower the global memory requirement. This approach is 
necessary to assure efficient kernel performance, even for smaller arterial trees, 
where parallelism is not pronounced. To reduce global memory operations, memory 
accesses are coalesced (the global memory accesses performed by threads of the 
same warp (group of 32 threads) are both sequential and aligned). To obtain aligned 
memory accesses all global memory arrays have been padded. Furthermore, to 
avoid redundant accesses performed by different threads, intermediate results are 
stored in the shared memory of the multiprocessor.

The execution configuration of the kernel which computes the interior grid points 
is organized as follows: each thread is responsible for one grid point, a block of 
threads is defined for each arterial segment and both the block and the thread grid 
are one-dimensional. The numerical solution of a one-dimensional arterial tree, as 
described in the previous section, is a domain decomposition approach. Hence, data 
is exchanged between two arterial segments only at the interfaces of the domains. 
Since for the PHCG algorithm the junction points are solved on the GPU and there 
is no communication and synchronization requirement between the thread blocks, 
the association between one thread block and one arterial segment is natural. 
Furthermore, since parallelism is limited (the number of interior grid points in an 
arterial tree is usually below 10,000 when a grid space of 0.1 cm is used) and the 
computational intensity is high (the kernel which computes the interior grid points 
is limited by the instruction throughput—see Sect. 7.4), an approach for which one 
thread may compute the unknown quantities of several grid points has not been 
considered. We split an arterial segment into several domains if the hardware 
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resources of a streaming multiprocessor were insufficient to run the corresponding 
thread block (the solution variables at the interfaces between the domains of the 
same arterial segment were determined by enforcing continuity of flow rate and 
total pressure).

An important aspect for the PHCG algorithm is the data transfer between host 
and device. Although, the amount of data to be transferred is low (only the values at 
or next to the junction points are exchanged), the total execution time required for 
these data transfers is high. This is due to the high number of copy operations and 
the fact that the locations to be copied are scattered throughout the memory arrays. 
Three different approaches, displayed in Fig. 7.4, are evaluated for decreasing the 
total execution time and have led to three different variants of the PHCG 
algorithm:

 1. PHCG Copy Separately (PHCGCS): each location is copied separately, resulting 
in a total of eight copy operations for each arterial segment at each iteration. 
Figure 7.4a displays the locations for which the values are exchanged at each 
iteration as well as the direction of the copy operations. The arrays displayed in 
this figure are generic and correspond to either the cross-sectional areas or the 
flow rates of a single blood vessel;

 2. PHCG Copy All (PHCGCA): the entire arrays used for cross-sectional area and 
for flow rate are transferred at each iteration: four copy operations at each itera-
tion (Fig. 7.4b);

 3. PHCG Copy Compact (PHCGCC): additional arrays are allocated for the loca-
tions which are copied: four copy operations at each iteration. Figure 7.4c dis-
plays the additional arrays which need to be allocated and the locations which 
read/write to these arrays. For an arterial network, the values of all dependent 
variables of one type (cross sectional area or flow rate) are stored in a single 
array.
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Fig. 7.4. Host ↔ Device Memory copy variants: (a) separate copy operation for each location, (b) 
copy entire array, (c) copy compact additional arrays (Itu et al. 2013a, b)
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The first two memory copy strategies were introduced previously (Itu et al. 
2012a, b), while the third one is developed during the current research activity and 
represents a combination of the first two strategies. The PHCGCS variant minimizes 
the amount of memory to be copied; the PHCGCA minimizes the number of copy 
operations, while the PHCGCC variant minimizes both aspects by trading kernel 
performance for data transfer performance (some threads of the kernel populate the 
additional arrays displayed in Fig. 7.4c).

Figure 7.5 displays the kernel operations and the shared memory arrays used for 
the two previously described numerical schemes (LW and TS). Since neighboring 
threads access the same q/A/R/S values, shared memory is used to avoid redundant 
global memory reads and redundant computations. The operations of the LW 
scheme (Fig. 7.5a) are based on Eqs. (7.13) and (7.14) and require only four shared 
memory arrays (the shared memory is dynamically allocated and the size of the 
arrays is equal to the number of grid points of the longest vessel). The operations of 
the TS scheme (Fig. 7.5b) are based on Eq. (7.15) and use 11 shared memory arrays. 
The shared memory requirement is much higher for the TS scheme since: (1) the 
computations are performed in a single step (the arrays cannot be reused), and (2) 
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Eq. (7.15) uses the derivates of R and S with respect to q and A (the quantities ter-
minated with subscript i are computed by interpolation at locations between the grid 
points). If a viscoelastic wall law is enforced, the kernel displayed in Fig. 7.5b is 
used to compute the cross-sectional area values and the elastic component of the 
flow rate. The last operation of each kernel is displayed in a dashed rectangle since 
it is only performed for the PHCGCC variant of the PHCG algorithm. If the 
PHCGCC algorithm is used, the values corresponding to the last time step are read 
either from the regular arrays, or from the compact arrays displayed in Fig. 7.4c 
during the first operation of each of the two kernels displayed in Fig. 7.5. 
Synchronization barriers are used between the individual steps if, during the subse-
quent step, threads access values computed by other threads (these values are typi-
cally stored in the shared memory arrays). The synchronization barriers displayed 
in Fig. 7.5 are inserted at GPU thread block level (using __syncthreads()), while the 
synchronization barriers displayed in Fig. 7.3 are inserted at CPU level (using 
cudaDeviceSynchronize()).

The PHCG workflow introduced previously in Itu et al. (2012a, b), and reviewed 
in Fig. 7.3a cannot be used with a viscoelastic wall law. This is due to the additional 
steps required by the operator splitting scheme employed for this type of wall law. 
Consequently, we have introduced a new workflow, as illustrated in Fig. 7.3b. Two 
different kernels are used: one for the computation of the cross-sectional area and of 
the elastic flow rate: Eqs. (7.1) and (7.18); and a second one for the computation of 
the viscoelastic flow rate: Eq. (7.20).

The execution configuration of the first kernel is the same as in the case of an 
elastic wall law. Host and device instructions are executed in parallel at the begin-
ning of each iteration. After a first synchronization barrier, the values at or next to 
the junction points are interchanged in order to prepare the computation of the vis-
coelastic flow rate (in Eq. (7.20) the new values of the cross-sectional area and of 
the elastic flow rate at all grid points are required), followed by the computation of 
the viscoelastic and the total flow rate. To solve the tridiagonal system of equations 
on the device, we employed an optimized CR (Cyclic Reduction)–PCR (Parallel 
Cyclic Reduction) algorithm (Zhang et al. 2010). Finally, the new flow rate values 
next to the junction points are copied back to the host and a second synchronization 
barrier is introduced at the end of the iteration.

For the kernel which computes the viscoelastic flow rate we use an execution 
configuration with a number of blocks equal to the number of arterial segments. The 
number of threads of each block is set equal to the smallest power of two value 
which is higher than the number of grid points in the longest arterial segment. This 
enables an efficient execution of the CR-PCR algorithm on the GPU.

Figure 7.6 displays the kernel and the shared memory arrays used for the compu-
tation of the viscoelastic component of the flow rate and of the total flow rate. First 
the tridiagonal system is set up (i.e. the coefficients of the three diagonals and of the 
RHS are computed). The CR-PCR algorithm is composed of three main steps, two 
forward reduction (CR and PCR, respectively) and one backward substitution (CR) 
step. Next, the total flow rate is determined and the new flow rate values are stored 
in the compact arrays if the PHCGCC algorithm is used.
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7.2.1.7  Parallel GPU only (PGO) Implementation
The necessity to perform copy operations at each iteration reduces significantly the 
overall performance of the PHCG algorithm. Hence, we performed an implementa-
tion whereas all grid points are computed on the device. This eliminates the mem-
ory copies (only the memory copies at the print iterations are required), but also 
forces the device to perform less parallelizable computations required for the junc-
tion points. Another disadvantage of the PGO algorithm, compared to the PHCG 
algorithm, is that since all operations are performed on the GPU, the task-level 
parallelism between CPU and GPU is lost. Figure 7.7a displays the workflow for 
the most complex case, namely when a viscoelastic wall law is used together with 
the ST boundary condition. A maximum of three kernels are executed at each 
iteration:

 1. Computation of the convolution integral (a multiply-sum scan operation 
(Sengupta et al. 2008)): Eq. (7.10);

 2. Computation of the new cross-sectional area and of the elastic flow rate: Eqs. 
(7.1) and (7.18);

 3. Computation of the viscoelastic flow rate: Eq. (7.20).

The execution configuration of the first kernel is organized as follows: the num-
ber of blocks is equal to the number of arterial segments and the number of threads 
is set to 512. Since the number of time steps per heart cycle (which varies between 
8000 and 38,000 for different grid space values) is much higher than the number of 
threads per block, first each thread performs multiple multiply-sum operations and 
stores the result in a static shared memory array (composed of 1024 double preci-
sion elements). Finally the threads perform a scan operation for the shared memory 
array and store the result in the global memory. The execution configuration of the 
other two kernels is the same as the one described in the previous section.
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Fig. 7.7 (a) Generic GPU 
workflow when a 
structured tree boundary 
condition is used and a 
viscoelastic wall law is 
enforced. All of the 
computations are 
performed inside GPU 
kernels and the CPU only 
coordinates the operations; 
(b) Kernel operations used 
for the computation of the 
new values at all grid 
points (Itu et al. 2013a, b)
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If the WK boundary condition is used, the first kernel is not called, and if an 
elastic wall law is used the third kernel is not called. An acronym is displayed in 
Fig. 7.7 for each operation to easily match the execution times discussed in the next 
section with the operations.

Figure 7.7b displays the kernel operations used to compute the new cross- 
sectional area and flow rate values at all grid points of a vessel segment, with a 
focus on the junction points. First, the interior points are computed as displayed in 
Fig. 7.5 (the individual operations have not been detailed). Next, the first thread of 
the first block solves the inlet point and the last thread of each block solves the 
outlet or the bifurcation/connection point (a connection point is also a junction 
point, which is introduced if an arterial segment is split into several domains). 
Thus, for the junction points, parallelism is only present at block level and not at 
thread level.

7.2.2  Results

Blood was modeled as an incompressible Newtonian fluid with a density of 
ρ = 1.055 g/cm3 and a dynamic viscosity of μ = ν∙ρ = 0.045 dynes/cm2s for all the 
computations.

To compare the performance of the different algorithms (SCO, MCO, three 
PHCG variants and PGO), the arterial tree detailed in Stergiopulos et al. (1992), and 
displayed in Fig. 7.8 was used. It is composed of 51 arteries. A time-varying flow 
rate profile was imposed at the inlet (Olufsen et al. 2000), and for the outlets, the 
WK and the ST boundary conditions were applied (the parameter values displayed 
in Table 7.3 were used). The total resistance and the compliance values were set as 
in Bessems (2008), and the minimum radius used for the generation of the struc-
tured tree was tuned ad-hoc so as to obtain a similar total resistance as for the WK 
outlet boundary condition (total resistance:1.37 × 103 dynes s/cm5). This aspect 
allowed us to adequately compare the time-varying flow rate and pressure profiles 
obtained with the two types of physiologically motivated boundary conditions.

For the ST boundary condition we used an exponential factor equal to 2.7. The 
constants characterizing the asymmetry of the binary tree were set to 0.908 and 
0.578, and the length-to-radius ratio was equal to 50. The elastic properties of the 
wall were set equal for both the proximal domain and for the structured trees. 
Together with the minimum radius at which the structured tree is terminated, these 
parameters determine the compliance of the boundary condition.

The single-threaded CPU algorithm (SCO) was executed on single Intel i7 CPU 
core with 3.4 GHz, the multi-threaded CPU algorithm (MCO) was executed on an 
eight-core i7 processor, while for the parallel algorithms (PHCG, PGO) a NVIDIA 
GPU GTX680 (1536 cores on 8 streaming multiprocessors with 192 cores, 48 kB of 
shared memory and 64K registers) was used (the GTX680 is based on the Kepler 
architecture). All computations were performed with double precision floating- point 
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data structures, since single precision would affect the accuracy of the results, espe-
cially at the junction points where the method of characteristics is applied based on 
the Newton method.

In the following subsections, we discuss the performance of the parallel algo-
rithms and the simulation results obtained under different computational setups.

7.2.2.1  Comparison of Parallel and Sequential Computing 
and with Different Numerical Schemes

Taking the results determined with the SCO algorithm as reference, we computed the 
L2 norms of the absolute differences between the reference numerical solution and the 
numerical solution obtained with the PHCG and PGO algorithms. All L2 norm results 
were smaller than 10−13, i.e. close to the precision of the double-type value in com-
puter data structures (both numerical schemes, LW and TS, were used, but differences 
were only computed between results obtained with the same numerical scheme).
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Fig. 7.8 Representation of the 51 main arteries in 
the human arterial system; the artery numbers of 
the outlet segments correspond to those displayed 
in Table 7.3 (Itu et al. 2013a, b).
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Furthermore, we computed the L2 norm of the absolute differences between the 
numerical solution obtained with the LW scheme and the TS scheme, using the SCO 
algorithm. The norm results were in the order of 10−6 cm2 for the cross-sectional 
area and of 10−5 ml/s for the flow rate, showing that both numerical schemes lead to 
the practically same results.

7.2.2.2  Comparison of the Memory Copy Strategies for the PHCG 
Algorithm

We evaluated the performance of the three memory copy strategies for the PHCG 
algorithm. Table 7.4 displays the execution times of the GPU operations, corre-
sponding to the computation of one heart cycle with an elastic wall, the LW scheme 
and WK outlet boundary conditions (this is the computational setup considered in 
(Itu et al. 2012a, b)). For the PHCGCS algorithm, the kernel execution occupies 

Table 7.3 Parameters of the outlet vessels used for the Windkessel boundary condition (Rp, Rd, 
C) and for the structured tree boundary condition (rmin)

Art. 
Nr.

rtop 
(cm)

rbot 
(cm)

Length 
(cm)

Rp [g/
(cm4 s)]

Rd [g/
(cm4 s)]

C  
(10−6 cm4 s2/g) rmin (cm)

6 0.188 0.183 14.8 8.693 28.007 58.7 0.00235

8 0.174 0.142 23.5 17.165 61.434 25.9 0.00182

10 0.091 0.091 7.9 59.782 238.61 6.6 0.0012

11 0.203 0.183 17.1 8.693 28.007 59.0 0.00235

12 0.177 0.083 17.7 76.989 316.51 4.8 0.0011

13 0.177 0.083 17.7 76.989 315.81 4.8 0.0011

16 0.177 0.083 17.7 76.989 316.51 4.8 0.0011

17 0.177 0.083 17.7 76.989 315.81 4.8 0.0011

20 0.188 0.186 14.8 8.339 28.360 58.7 0.0022

22 0.174 0.142 23.5 17.165 61.434 25.9 0.00182

24 0.091 0.091 7.9 59.782 238.61 6.6 0.0012

25 0.203 0.183 17.1 8.693 28.007 59.0 0.00235

26 0.20 0.15 8.0 14.755 51.844 28.3 0.00193

28 0.30 0.30 1.0 2.796 5.504 268.0 0.0039

31 0.435 0.435 5.9 1.313 11.486 431.0 0.00007

32 0.26 0.26 3.2 3.792 9.007 162.0 0.0033

34 0.26 0.26 3.2 3.792 9.007 162.0 0.0033

36 0.16 0.16 5.0 12.378 42.521 34.0 0.00205

40 0.20 0.20 5.0 6.955 21.144 92.6 0.00255

42 0.255 0.186 12.6 8.339 26.560 62.5 0.0024

43 0.247 0.141 32.1 17.506 62.694 30.0 0.00182

44 0.13 0.13 34.3 21.969 80.330 22.1 0.0017

47 0.20 0.20 5.0 6.955 21.144 92.6 0.00255

49 0.255 0.186 12.6 8.339 26.560 62.5 0.0024

50 0.247 0.141 32.1 17.506 62.694 30.0 0.00182

51 0.13 0.13 34.3 21.969 80.330 22.1 0.0017
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only 2.7% of the total execution time on the GPU, making the application heavily 
PCI Express Bus limited. Although the amount of data to be transferred is higher, 
the PHCGCA algorithm represents an improvement, since the number of copy oper-
ations is reduced drastically. The best results are obtained with the PHCGCC algo-
rithm, since the amount of data to be transferred is small as in the first case and the 
number of copy operations is reduced as in the second case. The only drawback is 
that some of the threads of the kernel need to populate the additional arrays dis-
played in Fig. 7.4c. This leads to an increase of 8.6% for the kernel execution time, 
but the increase is easily compensated by the time gained for the memory copies.

7.2.2.3  Comparison of the Performance Obtained with the SCO, MCO, 
PHCG and PGO Algorithms

Tables 7.5 and 7.6 summarize execution times measured for the six different com-
putational setups displayed in Table 7.1. The execution times correspond to ten 
heart cycles and the highest speed-up values are displayed in bold. The grid space 
has been set to 0.1 cm and the time step to 5.55 ⋅ 10−5s. The values are based on lit-
erature data and on the CFL-restriction respectively.

The PHCGCA algorithm cannot be applied for all computational setups investi-
gated herein (as described in Sect. 2.3.1, the workflow in Fig. 7.4a cannot be applied 
for a viscoelastic wall law). The speed-up values in Tables 7.5 and 7.6 are computed 
based on the execution time of both the SCO and MCO algorithms.

The speed-up values vary between 5.26× and 8.55× compared to the SCO algo-
rithm and between 1.84× and 4.02× compared to the MCO algorithm. As anticipated, 
the PHCGCC algorithm outperforms the PHCGCA algorithm for all cases for which 
the PHCGCA was applied. For an elastic wall law, in case a WK boundary condition 
is used, the PHCGCC algorithm performs best, while in case the ST boundary condi-
tion is used, the PGO algorithm leads to the highest speed-up. For a viscoelastic wall 
law, the PHCGCC algorithm performs best, regardless of the type of outlet boundary 
condition. Execution times are higher with a ST boundary condition because of the 
time spent for the computation of the convolution integral in Eq. (7.10).

For an elastic wall law, with the PHCGCC algorithm, the execution times are 
comparable for the LW and the TS scheme (for both outlet boundary condition 
types), with slight advantages for the LW scheme. For the SCO and MCO algo-
rithms, the LW scheme is superior to the TS scheme.

Table 7.4 Execution times (s) of the GPU operations obtained for the computation of one heart 
cycle with the three variants of the PHCG algorithm. The results correspond to a computation with 
elastic walls, the LW scheme and the WK outlet boundary condition. Copy H→D refers to a copy 
operation between the host (CPU) and the device (GPU), while Copy D→H refers to a copy opera-
tion in the opposite direction

Operation PHCGCS PHCGCA PHCGCC

Copy H→D 23.7 3.76 0.85

Kernel 1.86 1.86 2.02

Copy D→H 43.1 5.29 0.89
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Table 7.5 Execution times and speed-ups obtained for the computation of ten heart cycles with 
the SCO, MCO, and PGO algorithms. The first four cases correspond to an elastic wall with either 
the Lax-Wendroff (LW) or the Taylor series (TS) scheme and with a Windkessel (WK) or struc-
tured tree (ST) boundary condition. The last two cases correspond to a viscoelastic wall law with 
the TS scheme and with a WK or ST boundary condition

Case Num. sch. Wall law Outlet BC SCO (s) MCO (s)

PGO

Time (s)

Speed-up

SCO MCO

1 LW Elastic WK 273.4 81.13 101.98 2.68× 0.79×

2 LW Elastic ST 673.7 205.38 111.49 6.04× 1.84×

3 TS Elastic WK 396.3 119.37 105.10 3.77× 1.14×

4 TS Elastic ST 797.2 233.09 116.56 6.84× 2.00×

5 TS Viscoel. WK 774.4 384.43 235.14 3.29× 1.63×

6 TS Viscoel. ST 1179.6 501.08 241.45 4.89× 2.07×

Table 7.6 Execution times and speed-ups obtained for the computation of ten heart cycles with 
the PHCGC algorithms. The first four cases correspond to an elastic wall with either the Lax- 
Wendroff (LW) or the Taylor series (TS) scheme and with a Windkessel (WK) or structured tree 
(ST) boundary condition. The last two cases correspond to a viscoelastic wall law with the TS 
scheme and with a WK or ST boundary condition.

Case
Num. 
sch. Wall law

Outlet 
BC

PHCGCA PHCGCC

Time (s)

Speed-up

Time (s)

Speed-up

SCO MCO SCO MCO

1 LW Elastic WK 68.21 4.01× 1.19× 42.4 6.45× 1.91×

2 LW Elastic ST 182.34 3.69× 1.13× 149.92 4.49× 1.37×

3 TS Elastic WK 74.81 5.30× 1.59× 46.37 8.55× 2.57×

4 TS Elastic ST 187.27 4.26× 1.24× 151.90 5.25× 1.53×

5 TS Viscoel. WK – – 95.64 8.10× 4.02×

6 TS Viscoel. ST – – 224.38 5.26× 2.23×

A detailed analysis of the results obtained with the best performing algorithms 
(PHCGCC and PGO) is presented below. Figure 7.9 displays the percentage of the 
execution time occupied by each operation identified in the workflows in Fig. 7.3, 
for cases 1, 2, 5 and 6, computed with the PHCGCC algorithm. Regarding the 
computations with an elastic wall law, as is displayed in Fig. 7.3a, computations on 
the host and on the device are performed in parallel. The operations on the device 
require more time than the host operations if a WK boundary condition is used. 
Although the copy operations were optimized, they occupy almost half of the total 
time spent on the GPU. Besides, a considerable time is required for other opera-
tions, which include control instructions, data exchange operations between the 
host arrays and the arrays used for the copy operations, and print operations during 
the last cycle. If a ST boundary condition is used, the computation of the convolu-
tion integral in Eq. (7.10), performed on the host, occupies most of the execution 
time.
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This is the primary reason behind the low speedup achieved with the PHCGCC 
algorithm and the ST boundary condition. In addition, it also explains the similar 
speed-up values obtained with the PHCGCC and PHCGCA algorithms.

Regarding the computations with a viscoelastic wall law, as is displayed in 
Fig. 7.3b, computations on the host and on the device are performed in parallel at 
the beginning of each iteration, but since the computation of the viscoelastic flow 
rate requires the values of the elastic flow rate and of the cross-sectional area at the 
junction points (from the current time step), during the second part of each iteration, 
only the device performs computations. As for the elastic wall law, in case a ST 
boundary condition is used, the computation of the convolution integral in Eq. 
(7.10), performed on the host, occupies most of the execution time.

Figure 7.10 displays the percentage of the execution time occupied by each oper-
ation identified in the workflow in Fig. 7.7, for cases 1 and 6, computed with the 
PGO algorithm. In the first case a single kernel is used, while for case 6 also the 
convolution integral and the viscoelastic flow rate correction are computed. The 
computation of the interior and junction points require more execution time for case 
6 than for case 1, since, on the one side the TS scheme is used instead of the LW 
scheme, and on the other side additional operations are performed because of the 
viscoelastic wall law. Compared to case 6 in Fig. 7.9 (ST boundary condition),  
the execution time dedicated to the outflow points is reduced significantly since the 
operations are performed on the device, but because the computation of all grid 
points requires considerably more time, the total execution time for case 6 is higher 
with the PGO algorithm than with the PHCGCC algorithm.

Figure 7.11 displays a comparison of the number of heart cycles which can be 
computed per hour with different algorithms: the SCO and MCO algorithms, the 
previously introduced PHCGCA algorithm (applied only for non-periodic boundary 
conditions) and the best performing parallel algorithm for each computational setup 
as determined in the current study. The four different computational setups have been 
obtained by combining the different wall laws and outlet boundary conditions and by 
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choosing the best performing numerical scheme (according to the results in Tables 
7.5 and 7.6). The results show that the best performing GPU based algorithms con-
siderably increase the number of heart cycles which can be computed per hour.

To analyze the effect of the simulation parameters on the speed-up factor, we 
display in Fig. 7.12 the speed-up values obtained for different grid space values: 
Δx = 0.25 cm (5486 degrees of freedom (dofs), 8000 time steps per cycle), 
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Δx = 0.15 cm (9144 dofs, 12,500 time steps per cycle), Δx = 0.1 cm (13,716 dofs, 
18,000 time steps per cycle), and Δx = 0.05 cm (27,432 dofs, 37,000 time steps per 
cycle). The displayed values represent the speed-up obtained by the best performing 
GPU based algorithms compared to the MCO algorithm. The time-step values are 
chosen to satisfy the CFL condition for each case, and both types of wall laws and 
outlet boundary conditions are considered. In each case, the numerical scheme and 
the parallel algorithm applied for the computation correspond to the best speed up 
value obtained for a grid space of 0.1 cm. Figure 7.12 displays an approximately 
linear increase of the speed-up value, indicating that the computational power of the 
GPU is not fully exploited for any of the computational configurations with a grid 
space higher than 0.05 cm. The increase is moderate for three of the four computa-
tional setups and more pronounced in case a viscoelastic wall law is used together 
with a WK boundary condition. This aspect is given by the fact that the implementa-
tion of the viscoelastic wall law is more efficient for the PHCGCC algorithm com-
pared to the MCO algorithm. On the other hand, when a viscoelastic wall law is 
used together with the ST boundary condition, most of the time is spent for comput-
ing the outlet grid points and the difference in execution time for the viscoelastic 
component becomes less important.

Figure 7.13 displays the time-varying pressure, flow rate and cross-sectional area 
at the five locations marked with a blue circle in Fig. 7.8.

Each figure contains four plots, which have been obtained with either an elastic 
or viscoelastic wall and with a WK or ST boundary condition. Since the total resis-
tance introduced by either of the two types of boundary conditions is similar, the 
average quantities are approximately equal at all locations inside the arterial tree. 
Referring first to the computations with elastic walls, the pressure values obtained 
with the ST boundary condition decrease at a later time inside one heart cycle, indi-
cating that the reflected wave arrives later (an aspect which is more pronounced for 
the proximal parts of the arterial tree). This can be explained as follows: the ST 
boundary condition simulates the propagation of the waves down to the arteriolar 
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Fig. 7.13 Time-varying pressure, flow rate and cross-sectional area at (a) aortic root, (b) descend-
ing aorta, (c) abdominal aorta, (d) femoral artery, and (e) subclavian artery (corresponding to 
locations A–E respectively in Fig. 7.6). Four plots are displayed in each figure, which have been 
obtained with either an elastic or viscoelastic wall and with a WK or ST boundary condition (Itu 
et al. 2013a, b)
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level where the reflections occur primarily, whereas the WK boundary condition, as 
a lumped model, is not able to capture the wave propagation phenomena in the distal 
part of the tree and introduces the reflections at the outlet points of the proximal 
arteries. As a result of the later arriving pressure waves, also the maximum pressure 
value is reached at a later moment in time. These aspects also lead to higher oscilla-
tions inside the flow rate waveforms which are displayed in the second column of 
Fig. 7.13. Finally, for the cross-sectional area, generally, the variation inside one 
heart cycle is higher with a ST boundary condition. For the elastic wall, the pressure 
and the cross-sectional area waveforms are in phase and a more pronounced varia-
tion of the area values is reflected by a higher pressure pulse. The higher pressure 
pulse obtained for the structure tree boundary condition indicates a lower total com-
pliance than the one enforced through the WK boundary condition. We emphasize 
the fact the compliance of the proximal part of the tree is identical in both cases and 
the difference in total compliance is given only by the outlet boundary conditions.

When a viscoelastic wall is used, the main difference is that the high-frequency 
oscillations in the waveforms are reduced. This can be observed in both the pressure 
and the flow rate waveforms and the phenomenon is more pronounced at the distal 
locations. These observations are consistent with results reported in literature 
(Reymond et al. 2011). The introduction of the viscoelastic wall does not change the 
overall behavior of the WK and ST boundary conditions, the observations men-
tioned above being still valid, as would be expected. Another important consequence 
of the introduction of the viscoelastic wall is the fact that pressure and area are no 
longer in phase, the peak cross-sectional area value being generally obtained at a 
later moment in time inside one heart cycle.

Furthermore, Fig. 7.14 displays the pressure-area relationships at three different 
locations. A hysteresis loop can be observed when a viscoelastic wall laws is used, as 
opposed to the linear variation for an elastic wall law. The area of the hysteresis loop is 
proportional to the energy dissipation given by the viscoelastic properties of the wall.

7.2.3  Discussion and Conclusions

To test the speed-up potential of novel hybrid CPU-GPU and GPU only based 
implementations of the one-dimensional blood flow model, we have used a full 
body arterial model and have applied two physiologically motivated outlet bound-
ary conditions, 3-element windkessel circuits as non-periodic boundary condition 
and structured trees as periodic boundary condition, and two different types of con-
stitutive wall laws. The speed-up values over a multi-threaded CPU based imple-
mentation range from 1.84× to 4.02×, and over a single-threaded CPU based 
implementation range from 5.26× to 8.55×, thus significantly improving on previ-
ously reported parallel implementations and confirming the excellent speed-up 
potential of the GPU-based implementation.

The results showed that, for an elastic wall, if a non-periodic boundary condition 
is used, the PHCGCC algorithm performs best, while for a periodic boundary con-
dition, the PGO algorithm performs best. This is motivated by various aspects. First 
of all, the PHCGCC algorithm decreases the execution time not only through data 
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parallelization on the GPU, but also through task level parallelization between CPU 
and GPU. For periodic boundary conditions, the execution time required specifi-
cally for the outlet points is more than one order of magnitude higher than for non- 
periodic boundary conditions (Fig. 7.9). Since for the PHCGCC algorithm the outlet 
points are computed on the CPU, the speed-up obtained for a periodic boundary 
condition is limited. In this case, the PGO algorithm performs better, although it 
does not employ task level parallelization, because the multiply-sum scan operation 
required for the convolution integral is more efficient on the GPU (especially when 
the number of time steps per cycle is high, as is here the case). In case a viscoelastic 
wall law is used, the PHCGCC algorithm performs best for both types of boundary 
conditions. Although the PGO reduces the execution time dedicated to the outlet 
points, it is slower than the PHCGCC algorithm because the computation of all grid 
points increases significantly due to the viscoelastic wall law.

As has been shown in Fig. 7.12, the speed-up potential of the GPU-based algo-
rithms is even higher when the number of grid points increases. This is given by the 
fact that, for the standard configuration with Δx = 0.1 cm, only 6858 threads are 
generated at the kernel execution, whereas the GPU is able to run grids with tens of 
thousands of threads. On the other side, even when the number of threads is 
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Fig. 7.14 Pressure-area relationships at (a) aortic root, (b) abdominal aorta, and (c) femoral artery 
(corresponding to locations A, C and respectively D in Fig. 7.8). Four plots are displayed in each 
figure, which have been obtained with either an elastic or viscoelastic wall and with a WK or ST 
boundary condition (Itu et al. 2013a, b)
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decreased 2.5 times (Δx = 0.25 cm), still significant speed-up values are obtained. 
This is obtained as a result of the activities performed for the kernel optimization, 
which optimized the kernel towards high computational intensity and few global 
memory operations. Whereas the grid space is a crucial factor for the final speed-up 
value, the number of time steps does not influence the results, since different itera-
tions are executed sequentially both on the CPU and on the GPU.

Furthermore, when the interior points of the arteries are solved on the GPU, the 
maximum number of grid points for a single segment is limited by the resources of 
the GPU (number of registers, amount of shared memory and maximum number of 
threads per block). Consequently, if an arterial vessel contains too many grid points, 
it is split into separate segments and junction points are introduced which are treated 
similarly to bifurcation points (conservation of flow rate and pressure). For the arte-
rial tree used herein, this approach has been required only when a grid space with 
Δx = 0.05 cm was used and only for the vessels longer than 28.2 cm (the main limit-
ing factor has been the shared memory). Furthermore, we emphasize that a generic 
arterial model was used for demonstrating the algorithm. For patient-specific mod-
els, the geometry will have slight variations in terms of lengths and radiuses. This, 
however, does not affect the proposed algorithm and the memory requirements.

Next, we focus on a theoretical analysis of the performance gain obtained through 
the GPU, based on the standard computational setup with Δx = 0.1 cm. CUDA 
introduced the single instruction multiple threads (SIMT) architecture whereas an 
operation can be executed in parallel on p processors. By analogy with a SIMD 
system (Jordan and Alaghband 2003), p represents in this case the number of cores 
of the GPU. The total number of interior grid points is:
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where m is the total number of arteries and Ni is the number of grid points of each 
artery.

Referring first to the computation of the interior grid points, if nI different opera-
tions are required to compute the new cross-sectional area and flow-rate values at a 
single interior grid point, the theoretical computing time is:
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for the PHCG algorithm and:

 T n NI1 = ×  (7.23)

for the SCO algorithm. Hence, the theoretical parallel speed-up and the effi-
ciency are respectively:
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The performance of GPU kernels is limited by either the global memory band-
width or by the computational intensity. The kernel which computes the interior 
grid points has an overall global memory throughput of only 11.3 GB/s, as opposed 
to the peak theoretical of 192.2 GB/s of the GTX680 card. The instruction through-
put on the other side is of 69.91 GFLOPS (Giga Floating Point Operations per 
Second), with 5.71∙106 warps executed per second. The technical specifications of 
the GTX680 only contain the theoretical single precision GFLOP value (3090 
GFLOPS), whereas the computations for the one-dimensional model are performed 
in double precision. As is specified though in, the instruction throughput for double 
precision computations is significantly lower than the instruction throughput for 
single precision computations for the GTX680 architecture.

Since for the GTX680 p = 1536, the ideal execution time of the interior points 
should be 1/1536 of the sequential execution time. Taking case 1 in Tables 7.5 and 7.6 
as a representative case, the execution time of the interior points for the PHCGCC 
algorithm is of 20.23 s, while for the SCO algorithm it is of 240.45 s. Thus, the speed-
up is of only 11.88× and not 1536×. The great difference between the theoretical 
speedup and the empirical speedup is given by (1) not all thread blocks can be exe-
cuted simultaneously because of the shared memory limitation—occupancy is limited 
(only one thread block can be executed at a time on each of the 8 streaming multipro-
cessors of the GTX680, whereas there are 51 thread blocks in total), (2) the necessity 
to perform synchronization at thread level, (3) the parallelism is limited for a grid 
space of 0.1 cm, and (4) the number of double precision floating point units is signifi-
cantly smaller than the number of cores.

Secondly, we refer to the computation of the viscoelastic component of the flow 
rate. The size of the tridiagonal system varies between the different vessel segments, 
leading to an average length of 14 cm for the arteries of the tree displayed in Fig. 7.8. 
Hence the average size of the tridiagonal system is 141. This value is rounded up to 
a power of 2, leading to a tridiagonal system of size nT = 256. For the Thomas algo-
rithm 8nT operations are executed, while for the CR-PCR parallel algorithm 
17(nT − mT) + 12mTlog2mT operations are executed, where mT is the size of the system 
solved with the PCR algorithm (mT = 128 on average). Hence:
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Similarly to the first kernel, the performance of the kernel which computes the 
viscoelastic component of the flow rate is also limited by the computational inten-
sity. The overall global memory throughput is of only 1.3 GB/s, whereas the instruc-
tion throughput is of 77.94 GFLOPS, with 3.12∙106 warps executed per second.

Taking case 5 in Tables 7.5 and 7.6 as a representative case, the execution time 
of the viscoelastic flow rate for the PHCGCC/PGO algorithms is of 44.17 s, while 
for the SCO algorithm it is of 376.49 s. Thus the speed-up is of only 8.52× and not 
243.33×. Additionally to the reasons enumerated above (since shared memory 
usage for this kernel is similar to the first kernel, occupancy is limited: only one 
thread block can be executed at a time on a streaming multiprocessor), also the 
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fact that the 17(nT − mT) + 12mTlog2mT operations cannot be executed in parallel 
plays an important role (the CR-PCR algorithm is executed on average in 
2log2nT − log2mT − 1 = 8 sequential steps).

Thirdly, we refer to the computation of the convolution integral (for the PGO 
algorithm). Each multiplication/addition pair of this operation is combined into a 
single floating point operation, leading to a total of nC operations, where nC is the 
number of time steps for one heart cycle. Thus,
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Unlike the first two kernels, the performance of the kernel which computes the 
convolution integral is limited by the global memory bandwidth. The overall global 
memory throughput is of 184 GB/s, which is close to the peak theoretical value, 
whereas the instruction throughput is of only 21.8 GFLOPS, with 7.98∙106 warps 
executed per second.

Taking case 2 in Tables 7.5 and 7.6 as a representative case, the execution time of 
the convolution integral for the PGO algorithm is of 14.14 s, while for the  SCO/
PHCGCC algorithms it is of 407.13 s. Thus the speed-up is of only 28.79× and not 
1536×. Additionally to reasons (2) and (4) enumerated during the analysis performed 
for the interior grid points, also the fact that the nC operations cannot be executed in 
parallel, and the fact that the kernel is limited by the global memory throughput, play 
an important role (the optimized scan algorithm uses log2nC = 11 sequential steps). In 
this case the number of simultaneously active threads on a streaming multiprocessor 
is close to maximum, leading to an occupancy of 81% (the shared memory does not 
limit the occupancy since each block requires only 8 kB of shared memory).

As expected, the overall speed-up of the application is lower than the speed-up 
of the individual components because of the initialization activities, control opera-
tions, task-level synchronization, writing of results to files, data exchange opera-
tions between the host arrays and the arrays used for the copy operations (PHCGCC 
algorithm), limited parallelism of junction points operations (PGO algorithm), etc.

Our past work analyzed the speed-up potential only for one computational setup 
(elastic wall, windkessel outlet boundary condition as non-periodic BC and the Lax- 
Wendroff numerical scheme) of the six scenarios considered in the present study 
and only compared with the SCO algorithm (Itu et al. 2012a, b). Additionally, a 
different GPU (GTX460) was used, and only the PHCG approach was considered, 
for which, from the three different variants introduced herein, only the PHCGCS 
and PHCGCA algorithms were investigated. As can be seen in the results section 
(Tables 7.5 and 7.6 and Fig. 7.11), the third variant (the PHCGCC algorithm), out-
performs the previous two algorithms. Additionally, a new PHCG workflow, based 
on the operator splitting scheme, was developed to be able to employ any of the 
PHCG variants in case a viscoelastic wall law is applied (Fig. 7.3b).

The consideration of different computational setups has been a crucial aspect, 
since it demonstrated the limited speed-up obtained for the PHCG variants with 
periodic boundary condition and an elastic wall law. The PGO algorithm proposed 
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in the current study leads to considerably improved execution times for these cases 
(case 2, and 4 in Tables 7.5 and 7.6). When comparing the results against (Itu et al. 
2012a, b), one has to take into consideration that previously a grid space of 0.05 cm 
was used, for which a speed-up of 4.7× was obtained for the PHCGCA algorithm 
with the GTX460 (this speed-up changes to 4.01× for a grid space of 0.1 cm with 
the GTX680).

To our knowledge, the only other previous research focused on the acceleration 
of the one-dimensional blood flow model has been reported in (Kumar et al. 2003). 
An Origin 2000 SGI machine with eight processing elements was used and the 
Message Parsing Interface (MPI) libraries have been applied for the communication 
between the processing nodes. An elastic wall law was used together with a Taylor- 
Galerkin numerical scheme and the results were mainly reported for up to four 
processing nodes. An arterial model composed of 55 arteries, very similar to the one 
adopted herein, has been used and the speed-up factor did not exceed around 3.5× 
even if the grid space was decreased to 0.05 cm (~3.25× for Δx = 0.1 cm). We have 
seen that in our case the speed-up is of 6.45× for a grid space of 0.1 cm. In (Kumar 
et al. 2003) non-reflecting and resistance-based boundary condition, which are both 
non-periodic boundary conditions, have been used. Herein we obtained for the 
MCO algorithm, compared to the SCO algorithm, a similar speed-up as in (Kumar 
et al. 2003) (3.37× for the computational setup with an elastic wall law and wind-
kessel boundary condition). These results show that a GPU is better suited for the 
acceleration of the one-dimensional blood flow model than a multi-threaded CPU 
based configuration.

Overall, we think that the advantages of a GPU-based implementation of the 
one-dimensional blood flow model outweigh the costs. Most importantly, the accel-
eration of the execution time is crucial when the blood flow model is applied in a 
clinical setting (Itu et al. 2012a, b, 2013a, b). This is given not only by the fact that 
results are required in a timely manner, but also by the necessity of applying tuning 
procedures which increase the computational intensity. Such accelerated approaches 
(when validated) are ideal for interventional settings, where near real-time informa-
tion is needed to make the clinical decision. Under such settings, the measurement 
data is often acquired when the patient is undergoing an intervention. As a result, the 
tuning and simulation process for the hemodynamic simulation should be fast 
enough to generate pressure and flow information that can be used during the 
procedure.

Secondly, as pointed out in the introduction, research activities can also benefit 
from the acceleration if results depend on running hundreds or even thousands of 
computations with different configurations.

On the other side, costs are limited, both financially (the results reported herein 
have been obtained on a regular desktop computer equipped with an NVIDIA 
graphics card) and from the development time point of view. Especially, when the 
PHCGCC algorithm is employed, only the computation of the interior points needs 
to be ported to the GPU. Furthermore, even when the PGO algorithm is required, 
i.e. when periodic outlet boundary conditions are imposed, the additional develop-
ment time does not exceed a couple of weeks.

C. Suciu et al.



213

7.3  GPU Accelerated Voxelizer

Solid voxelization represents the process of transforming a polygonal mesh into a 
voxel representation by associating each polygon of a mesh with the cells in the 
voxel grid. Voxel representation of solids are currently used in many applications 
such as physics simulations, collision detection, volume rendering, and many oth-
ers. The main advantage of the voxel representation of a solid is that each voxel in 
the grid can be accessed directly by knowing its position in space or its position 
relative to another voxel, without performing a search operation, whereas in a mesh 
representation information is described sparsely as a set of polygons, by providing 
the position of each point explicitly.

Although there are many studies on this topic, solid voxelization remains a dif-
ficult problem, mostly because of computational complexity and issues related to 
robustness

To perform a Fluid-Structure interaction (FSI) using the Lattice-Boltzmann 
method (LBM) the moving geometry has to be embedded in a Cartesian grid of 
uniformly distributed points using a signed distance field ϕ(x). However, the geom-
etry is typically given as a sequence of non-uniform polygonal meshes. A surface 
voxelization operation is required to compute the distance field. The main challenge 
of voxelization consists in associating each vertex vi of a polygonal mesh to each 
node xi of the Cartesian grid. Typically, the size of the grid is between 500,000 and 
50,000,000 nodes while the size of the mesh is between 50,000 and 300,000. This 
makes the voxelization a computationally expensive operation.

For the FSI computations, since the surface is moving, the voxelization operation 
is required at each solver iteration to update the position of the surface. With the clas-
sical method (CPU based implementation), the surface voxelization operation is the 
performance bottleneck as it occupies around 50% of the total computation time (Nita 
et al. 2015). Therefore, it is crucial that an efficient implementation is developed.

7.3.1  The Classical Method

The Cartesian grid is defined from a three-dimensional image by its dimensions 
(Nx , Ny , Nz), an origin o and a grid spacing δx (the grid nodes are uniformly distrib-
uted hence δx = δy = δz). The grid size is chosen to satisfy the flow solver stability 
constraints. The origin o and the grid spacing δx is used to transform from physical 
coordinates to grid coordinates (and vice versa) i.e. to find the voxel (i, j, k) that cor-
responds to a point p = (px, py, pz). The transformation is defined as follows:
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where ⌊x⌋ denotes the floor function. And the inverse transformation:
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A mesh is defined as a set of triangles T = (v1, v2, v3), for each triange we compute 
an axis-aligned bounding-box (AABB) as AABB = (vmin, vmax) so that the triangle 
will completely fit inside it, furthermore the AABB is enlarged in all directions 
using a small value (2 − 3δx) so that the triangle vertices will never be located 
exactly on the AABB wall.

The classic method for surface voxelization consists in simply looping over each 
grid node xi in each AABB and computing the signed distance ϕ(xi). To find all the 
grid nodes inside the AABB, one needs to transform (vmin, vmax) to grid coordi-
nates to get (imin, jmin, kmin) and (imax, jmax, kmax) and then loop over all i , j and 
k values located inside the bounds.

The signed distance function is defined as follows:
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where n is the triangle normal and x⊥ is the closest point to x on the triangle. The 
second factor in the above expression represents the sign, i.e. it will be negative or 
positive depending on which side of the triangle, the point x is located. For adjacent 
triangles the AABBs will intersect and will result in multiple ϕ values for the same 
grid point x, one value for each AABB that point x is included in (Fig. 7.15). In this 
case the absolute minimum value of ϕ will be chosen.

For the GPU implementation, the loop that processes the mesh triangles is paral-
lelized so that one GPU thread will process one triangle. However there are several 
downsides that causes very poor GPU utilization in this case. The main problem 
arises at the adjacent triangles where the AABBs intersect. In the intersection 

AABB 3
AABB 1

AABB 2

Region 3
Region 1 Region 2

x

x

P2

P2

P1
P3

φ(x) = min(d(x, P1) d(x, P2) d(x, P3))

φ(x) = d(x,P2)

Fig. 7.15 Two-
dimensional analogy of the 
surface voxelization 
algorithm. The classic 
approach (up): ϕ is 
computed for all the nodes 
inside an AABB. And the 
separating planes 
technique (down): nodes 
that correspond exclusively 
to a facet are identified 
using separating planes
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regions, there will be multiple threads that need to update the ϕ value at the same 
grid node x. In this case a synchronization operation is required to ensure that only 
one thread will update one location at the same time. The synchronization operation 
drastically reduces parallelism and GPU performance.

The other limitation is given by the fact that each GPU thread will process a dif-
ferent number of grid nodes because of the different AABB sizes. More specifically, 
the number of the grid nodes in an AABB is influenced by the size and orientation 
of the corresponding triangle. To achieve maximum performance with a GPU based 
implementation, all the threads should execute the same operations.

7.3.2  The Separating Plane Technique

The classical method can be improved by redefining the way grid nodes are associated 
with mesh triangles. Instead of computing the ϕ value for all the nodes in an AABB it is 
possible to identify a priori the nodes for which each mesh triangle will give the mini-
mum ϕ. Hence, there will no longer be threads that will need to update ϕ at the same 
location x. This method was initially presented in Janßen et al. Janßen et al. (2015)).

For each triangle we define a region so that each point x in that region has the 
closest point x⊥ located on that triangle. To define such a region for a triangle, three 
planes are required, one for each edge. More specifically, if a node is located on the 
negative side of all three planes then that node is considered to belong exclusively 
to that triangle.

We check if a point x is located in a triangle region in the following way 
(Fig. 7.16):

 1. For each vertex vi on the mesh, the vertex normal is computed as an angle 
weighted average of the normals of adjacent triangles:
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Fig. 7.16 Defining a 
vertex normal as an angle 
weighted average of the 
normals from adjacent 
triangles
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 2. For each edge (vi, vj), with the associated vertex normals (ni, nj) a separating 
plane is defined:

 
n x vs i× -( ) = 0  (7.31)

Where ns is the separating plane normal and is computed as an edge bi-normal:
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 3. A point x is considered to be located inside a region of a triangle T = (v1, v2, v3) if 
it is located on the negative side of all three separating planes:
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For any two adjacent, non-intersecting triangles, the regions defined by  
Eq. (7.33) will not intersect. If each GPU thread processes the nodes in separated 
regions then there will never be any concurrency hence the synchronization is no 
longer required. This drastically improves the GPU parallelism and performance.

7.3.3  Results

To test our implementation we considered a known CFD benchmark case consisting 
of a large brain aneurysm (Steinman et al. 2013). Figure 7.17 displays the mesh 
along with the voxelized surface.

The mesh contains 318,000 triangular elements and the size of the grid in which 
the surface is embedded is 171 × 180 × 142. We performed the computations for this 
case using the CPU and GPU implementations for both the classic and the separat-
ing planes method. The hardware we used consists of an Intel i7 (8-cores) CPU and 
a GTX Titan Black GPU.

The execution times were:

• for the classic method on the CPU the execution time was 23.5 s and on the 
GPU it was 234 ms which gives a speedup of around 100 times. The GPU 
execution time does not contain the CPU-GPU memory copy as in an FSI 
simulation the memory copy should only be done once in the pre-processing 
stage.

• for the separating planes method, the GPU execution time was 21.4 ms. Compared 
to the current implementation that we use for FSI computations, the new GPU-
accelerated one is around 1000 times faster. Using this approach, the perfor-
mance of the FSI computations can be taken to an unprecedented level.
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7.4  GPU Accelerated Solution of Large Linear Systems 
of Equations Using the Preconditioned Conjugate 
Gradient Method

The focus for this section has been on the development of fast solutions for very 
large sparse linear systems of equations of the type A ∙ x = b, using parallel methods, 
where A is an N × N symmetric positive definite matrix. Such systems routinely 
appear when computing numerical solutions to PDEs, such as but not limited to the 
Finite Element Method. A widely-used iterative approach for solving such linear 
systems is the Conjugate Gradient (CG) method (Hestenes and Stiefel 1952).  

Fig. 7.17 Test case: a large brain aneurysm mesh of 318,000 triangular elements (up) and the 
voxelized surface (down)
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In each iteration, the CG method performs a Sparse-Matrix Vector multiplication, a 
process that converges in at most N iterations to the exact solution. While current 
GPU technology excels in fast processing of a large number of parallel computa-
tional threads, its global memory size can still create a bottleneck in solving large 
linear systems. We have developed a methodology for overcoming this limitation 
using a streaming based algorithm. Parallel algorithms for iterative solutions to the 
above system have been proposed already, e.g. Ortega (1988), and using the CUDA 
framework (Verschoor and Jalba 2012). However, such solutions do not take into 
account RAM memory limitations on the size of the solution.

7.4.1  Single-GPU Solution

We propose a streaming based algorithm in order to overcome the global memory 
size limitation of the GPU, so as to be able to solve large systems arising in numeri-
cal solutions of various biomechanical PDEs. These may include but are not limited 
to fluid flow, bone or soft tissue deformation, etc. GPU cards have limited RAM 
memory (currently up to 12 GB), which limits the size of the system of equations 
(currently to around 12 million equations). To alleviate this limitation we introduce 
a streaming based solution whose core idea is to store the matrix A on the CPU 
RAM, and to transfer it slice by slice to the GPU during the matrix-vector multipli-
cation step of the PCG method (Fig. 7.18). Our streaming based strategy can be 
used either in the context outlined in the next section, or in the more general context 
of iterative methods that need to handle during each iteration an operation involving 
data that exceeds the GPU memory.

When applying the PCG method, the majority of the memory required for the 
solution is occupied by matrix A and by the matrix used for the preconditioning 
(Saad 2003). To reduce the memory requirements, here we apply a Jacobi (diago-
nal) pre-conditioner which is stored as vector, while A is stored in a sparse matrix 
format (e.g. ELLPACK) (Bell and Garland 2008). The other operations of the PCG 
method are either vector-vector or scalar-vector operations. The seven vectors are 
stored throughout the entire execution on the GPU due to their limited memory size. 
Figure 7.18a displays the slicing strategy of A. To ensure coalesced memory accesses 
by the threads of the same warp, A is stored in column major order. The slicing 
however is performed on a row basis. To limit the number of copy operations to two 
for one slice, we still store data in column major order, but only at slice level (all 
values of one slice are stored in consecutive locations). To reduce the execution 
time, the memory transfer operation of one slice is overlapped with the processing 
of another slice. To implement the overlapping behavior, two memory slices are 
allocated on the GPU (marked ’A’ and ’B’ in Fig. 7.18a: while data is copied into 
one slice, the other one is processed.

The matrix-vector multiplication is performed by using two different streams: 
one for the memory transfer operations—host (CPU) to device (GPU)—and one for 
the processing of the slices—kernel execution (Fig. 7.18b). The operations of differ-
ent streams are executed out of order and need to be synchronized. Therefore we use 
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CUDA events: an event (i)1 is recorded after copying slice i from host to device, 
while an event (i)2 is recorded after processing slice i. The synchronization at events 
(i)1 is used to enable the processing of one slice only after the corresponding mem-
ory transfer operation is finished. The synchronization at events (i)2 is used to enable 
the overwriting of one slice only after it was processed. This ensures a correct syn-
chronization between the streams, irrespective of the relative duration of the mem-
ory transfer and processing operations.

Next, we present specific results for linear systems of equations as they typically 
arise in solid mechanics applications. To test the method described abobe, we used 
four different FE models. For each model, a volume of cube was meshed with 
8-node hexahedral elements, with each node having three DOFs (translation in x, y 
and z dimensions). The four linear systems were first solved with the commercial 
software ANSYS (Release 14.0.3, ANSYS, Inc) on a six-core processor (Intel (R) 
Xeon (R) E-5-2670. 2.60 GHz) with 256 GB of RAM. Next, we solved the systems 
with the streaming based GPU algorithm on an eight-core i7 processor, 3.4 GHz, 
with 8 GB of RAM and a NVIDIA Kepler GTX680 graphics card, with 2 GB of 
RAM. Table 7.7 compares the execution times of the CPU and GPU based algo-
rithms. The speed-up varies between 44.2× and 181.2× for the largest system of 
equations.
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7.4.2  Multi-GPU Solutions

The method described in the previous section was also used to evaluate multi-GPU 
based implementation of the preconditioned conjugate gradient method.

The strategy we implemented for running the PCG method on multiple GPUs is:

• One node is considered to be the master and performs all operations which do not 
involve the matrix-vector multiplication (initialization, copy operations, vector- 
vector operations, scalar-vector operations).

• All nodes, including the master node, perform the matrix-vector multiplication 
step:
 – Each GPU stores a section of matrix A, which includes multiple slices (data 

transfer to the various GPUs is performed during initialization). All sections 
are approximately equal.

 – At each iteration, before starting the matrix-vector multiplication, each GPU 
receives the vector values used during the multiplication.

 – Each GPU performs in parallel the matrix-vector multiplication for the sec-
tion of the matrix which was assigned to it.

 – Each GPU sends the resulting vector section back to the master node.

The Message Passing Interface (MPI) is used for transferring data between the 
nodes. The implementation described in this section is motivated by two goals:

• Reduce the execution time of a single-GPU based implementation
• Handle cases when matrix A does not fit into the RAM memory of the CPU

Table 7.8 displays the results for a two-node configuration for the Test 2 and Test 
3 configurations used in the previous section. As one can observe, if a 1 Gbit/s node- 
to- node transfer speed is used the execution time increases compared to the single- 
node implementation. This is given by the time required to transfer the vectors at 
each iteration. Conversely, if a 10 Gbit/s node-to-node transfer speed is used, the 
execution time decreases by a factor of around 1.5, which means that the time spent 
during data transfer is overcompensated by the time saved through the parallel com-
putation of the matrix-vector product.

Table 7.7 Comparison of CPU and GPU based algorithms

Config. Nr. of equations

CPU–Ansys Streaming based GPU algorithm

Exec. time (s) Exec. time (s) Nr. iter.
Number of  
slices in A Speed-up

Test 1 2.260.713 3441 77.8 525 30 44.2
Test 2 4.102.893 21,334 175.9 647 30 121.3
Test 3 5.582.601 35,125 268.2 721 18 131.0
Test 4 7.057.911 66,046 363.1 785 44 181.9
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The strategy described above was also used for a hardware configuration con-
taining multiple GPUs in a single node. The major difference is that instead of using 
MPI to transfer data from one node to another, all data transfers are performed 
through the PCI Express bus. The specific hardware configuration used for testing 
is: E6989 Rampage IV Extreme Main Board which has 4 PCI slots (2 at ×16, 2 at 
×8), 3 GPUs: 1× GTX Titan Black, 2× GTX680. Due to the different transfer speeds 
over the PCI bus, the ideal partitioning of slices to different GPUs depends on the 
PCI bus to which each GPU is physically connected. Hence, we implemented a 
methodology for automatically determining the number of slices for each GPU so 
as to obtain an execution time for the matrix-vector multiplication which requires 
approximately the same time on each GPU (so as to avoid idle times for the proces-
sors). Table 7.9 displays the results for three different configurations. One can 
observe that the multi-GPU implementation leads to smaller execution times. 
However, the measured speed-up is smaller than the theoretical value due to transfer 
of data between GPUs.

7.5  GPU Accelerated Random Forest Classification

Machine Learning algorithms have been proven to be useful in a variety of appli-
cation domains (Zhang 2000). Herein we focus on one of the most common 
machine learning applications: classification. We study how to effectively imple-
ment a random forests (RF) algorithm for data classification on GPUs by evaluat-
ing the performance of the algorithm in terms of execution time, compared to the 
CPU-based version. The random forest consists of multiple decision trees which 
can be generated and evaluated independently and can classify large amounts of 
data, described by a large number of attributes. Therefore, the random forest 
algorithm is very well suited for a massively parallel approach (implemented on 
GPUs).

Table 7.8 Comparison of single-node and multi-node GPU based implementation of the PCG 
method.

Configuration 1 Node (s) 2 Nodes (1 Gbit/s) (s) 2 Nodes (10 Gbit/s)

Test 2 176 450 116 s (1.51×)

Test 3 268 704 179 s (1.50×)

Table 7.9 Comparison of single-node single-GPU and multi-GPU based implementation of the 
PCG method

Configuration Slice distribution Exec. time (s)

Speed-up

Measured Theoretical

Titan (×16) 55 164.1 ± 0.87 – –

Titan(×16), 680(×16) 35/20 120.0 ± 0.64 1.37 1.57

Titan(×16), 680(×8), 680(×8) 35/10/10 137.1 ± 0.69 1.20 1.57
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Random forest is an ensemble classifier consisting of decision trees that com-
bines two sources of randomness to generate base decision trees: bootstrapping 
instances for each tree and considering a random subset of features at each node 
(Breiman 2001). It is a supervised learning method: the training data consists of a 
set of training examples; each example is a pair consisting of an input object (typi-
cally a vector of features) and the corresponding desired output value. A supervised 
learning algorithm analyzes the training data and produces a model, which is then 
used to predict the output for new examples.

During the learning phase, the data that has reached a given leaf is used to model 
the posterior distribution. During the test phase, these posterior distributions enable 
the prediction for new unseen observations reaching a given leaf.

Because the training phase is done offline, the time required by this phase is not 
critical. Therefore, we only focus on the acceleration of random forest classification 
since in most of the cases this phase is done online and the execution time may be 
critical. The algorithm behind the testing phase is based on the fact that each inter-
nal node of a tree contains a simple test that splits the space of data to be classified 
and each leaf contains an estimate based on training data of the posterior distribu-
tion over the classes. The input data transformed into a feature vector is classified 
by propagating the information through all the trees and performing an elementary 
test at each node that directs it to one of the child nodes. Each decision node con-
tains a test function that compares a feature response with a threshold to generate a 
binary decision. Once the sample reaches the leaf in each three in the forest, the 
posterior probabilities are combined (voting or averaging) to compute the final pos-
terior probability. Traversing a large number of decision trees sequentially is inef-
fective when they are built independently of each other. Since the trees in the forest 
are independently built and the only interaction is the final counting of the votes, the 
voting part (classification) of the RF algorithm can be efficiently parallelized (Grahn 
et al. 2011).

The first step of the GPU based implementation of the RF classifier is to load all 
decision tree data structures of a RF into the GPU memory. Prediction is performed 
in a loop over all pixels of the input image. We determine the feature response for 
each pixel which will become the input vector for each tree. Each decision tree is 
then traversed in parallel to retrieve the probability distribution over all classes for 
the given pixel. The probability distributions from every tree in the forest are aver-
aged and, finally, the result is copied back into the CPU memory.

To accelerate prediction on the GPU, we use multiple threads to process each 
image and multiple threads to process the RF trees in parallel. After images are 
loaded, we calculate the integral image in a pre-processing step. Calculating image 
integrals is expensive with respect to processing time. We accelerate it by calculat-
ing the integral for each of the five image channels in parallel with separate threads 
on the GPU. Prediction time depends on the complexity of the features but scales 
linearly with the number of trees, depth of the trees and the number of pixels in the 
input image. To take advantage of the massively parallel computing power of  
the GPU, instead of pre-computing all values for all possible features, we sampled 
the feature space at runtime and calculated the feature responses on demand.
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Our strategy for storing the RF decision trees involves the mapping of the data 
structure describing the RF to a 2-D texture array which is stored in the GPU texture 
memory. These texture arrays are read only, and, since they are cached, this improves 
the performance of reading operations (Grahn et al. 2011). The data associated with 
a tree is laid out in a four-component float texture, whereas the data of each node is 
stored on three separate columns in each channel of the texture array. We store the 
data of each node of a tree in the forest in sequential horizontal positions and differ-
ent trees on separate rows. Data stored in the texture memory contains the position 
of the left and right child nodes, threshold values and all feature parameters required 
to evaluate the test for a node. If a node cached in the texture memory is a leaf node, 
then we add the probability distribution learned during training and the index of the 
leaf. To navigate through the tree during the evaluation, we use the tex2D function 
which performs a texture lookup in a given 2-D sampler based on 2-D node coordi-
nates and channel information (Fig. 7.19). Our strategy involves launching a kernel 
which evaluates the probability of the random forest with the number of threads 
equal to the number of candidates. As the number of feature candidates can exceed 
the maximum number of threads per block with a maximum of 1024, 1536 and 2048 
for compute capability 1.2/1.3, 2.x and 3.x, respectively, several thread blocks are 
launched.

In the following we present results for a spine structure detection application, 
whereas the 3D input image was obtained from microCT (computed tomography) 
and where the random forest classifier is used to detect lesions. After the system was 
trained, tests were run with three different implementations of the classification 
algorithm. The implementation was tested with two available data sets and perfor-
mance benchmarks for our implementation have been compared with two CPU 
based implementations. The experimental results indicate that our GPU-based 
implementation of the Random Forest algorithm outperforms the two CPU based 
algorithms (CPU single-core and CPU multi-core).

To test the method for the bone lesion detection, we used a Random Forest detec-
tor consisting of 100 trees, 27K normalized candidates (voxels) for each vertebra 
and 12K features. The execution configuration of the classification kernel specifies 

Algorithm- Random Forest prediction on the GPU
1. for all trees in the forest do
2.       while curNode has valid children do
3.            if children_found then
4.             float right = evaluate_Harr_feature(boxCenter, curNode);
5.                 if (right < 0)
6.                    curNode <- leftChildPosition
7.                 else
8.                    curNode <- rightChildPosition
9.             else if leaf_node_reached then
10.             probability + = leaf_Node_Histogram
11.             total ++
12.             end if
13.        end while
14. end for
15. return probability / total

Fig. 7.19 Algorithm for 
the binary decision tree 
evaluation
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that the number of threads is equal to the number of candidates (27K), each block 
contains 128 threads (27K/128 blocks are used) and each thread traverses a candi-
date through all trees of the random forest.

Prediction time was compared on a machine equipped with Intel Core i7 CPU 
and a NVIDIA GPU GeForce GTX Titan Black. Table 7.10 compares the execution 
times of the CPU and GPU based algorithms. The speed-up varies between 170× 
and 190× compared to the single-core implementation and between 24× and 28×. 
Table 7.11 displays the total execution time which includes various other non- 
parallelized steps like the loading of the input image, etc. The RF based position 
detector classifier occupies the vast majority of the total execution time (~60%).
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