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Abstract
In this chapter we introduce a method based on computational fluid dynamics for 
non-invasively assessing patients with aortic coarctation. While in practice the 
pressure gradient across the coarctation is typically measured invasively with a 
catheter, the proposed method determines the pressure gradient using a compu-
tational modeling approach, which relies on medical imaging data, routine non-
invasive clinical measurements and physiological principles. The main 
components of the method are a reduced-order model coupled with a compre-
hensive pressure-drop formulation, and a parameter estimation method for per-
sonalizing the boundary conditions and the vessel wall parameters. The parameter 
estimation method is fully automated, and is based on an iterative tuning proce-
dure to obtain a close match between the computed and the non-invasively deter-
mined quantities. A key feature is a warm-start to the optimization procedure, 
with better initial solution for the nonlinear system of equations, to reduce the 
number of iterations needed for the calibration of the geometrical multiscale 
models. To achieve these goals, the initial solution, computed with a lumped 
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parameter model, is adapted before solving the parameter estimation problem for 
the geometrical multiscale circulation model: the resistance and the compliance 
of the circulation model are estimated and compensated. This feature is based on 
research, and is not commercially available. Due to regulatory reasons its future 
availability cannot be guaranteed.

4.1	 �Introduction

Aortic coarctation (CoA) represents a congenital cardiac pathology which is encoun-
tered in 5–8% of the patients with congenital heart pathologies (Ringel and Jenkins 
2007). Its luminal appearance is similar to that of an atherosclerotic stenosis: a local 
narrowing of the aortic wall. Different methods are used for assessing the CoA sever-
ity: the anatomy is typically assessed using Magnetic Resonance Imaging (MRI) or 
Computed Tomography (CT). The functional assessment of aortic coarctations is 
based on the pressure drop along the CoA. The gold standard for determining the pres-
sure drop is invasive catheterization. Due to the costs and the risks associated with this 
invasive procedure, other less accurate methods have also been proposed. The veloci-
ties measured using Doppler echocardiography are used in the simplified or modified 
Bernoulli equations to determine the pressure drop, but, on one hand, these velocities 
are sometimes difficult to measure due to the placement of the descending aorta, and, 
on the other hand, the computed values often overestimate the actual gradient (Seifert 
et al. 1999). The difference between cuff-based blood pressure measurements per-
formed at the arms and legs represents another simple, non-invasive and cost-effective 
method, but is also unreliable (Hom et al. 2008).

To address this issue, Computational Fluid Dynamics (CFD) based blood-flow 
models have been proposed for analyzing the hemodynamics in idealized and/or 
patient-specific healthy and diseased aortic geometries. These models provide impor-
tant insights into the structure and function of the cardiovascular system, and have been 
proposed in recent years, for diagnosis, risk stratification, and surgical planning (Cebral 
et al. 2011; Haggerty et al. 2013; Quarteroni et al. 2000; Taylor and Steinman 2010).

Different approaches have been proposed for specifying the outlet boundary condi-
tions, ranging from pressure or flow rate profiles to lumped parameter models (0D 
models). For an accurate patient-specific computation, the role of physiologically 
sound boundary conditions is well appreciated in the literature. The effect of distal 
vasculature is modeled by outlet boundary conditions coupled with the computational 
domain (region of interest), resulting in a geometrical multiscale model. The boundary 
conditions are represented by lumped parameter models, which are designed to capture 
one (or more) of the (1) total resistance, (2) total compliance, and (3) the wave propaga-
tion and reflection effects in the distal vasculature. The most widely used lumped 
parameter model is the three-element windkessel model (Westerhof et al. 2009), which 
is characterized by its simplicity (only three parameters), and ability to capture two 
important characteristics of the distal circulation (compliance and resistance).

In a clinical scenario, the values of the windkessel model parameters are not 
available on a per-patient basis. Instead, multiple pressure or flow measurements are 
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usually available for each patient. A clinically feasible and accurate flow computa-
tion should not only be in agreement with these measurements, but should also have 
means to model other hemodynamic states for the same patient. To achieve this, one 
has to estimate a set of personalized windkessel model parameters, while ensuring 
that the computations match the measured data.

Different calibration procedures for the outlet boundary conditions have been 
proposed. Olufsen et al. proposed a calibration method for determining the dynamic 
cerebral blood flow response to sudden hypotension during posture change (Olufsen 
et  al. 2002). Their experimental calibration procedure depends strongly on the 
patient-specific state, i.e. on the position of the patient.

A fully automatic optimization-based calibration method for the windkessel 
models was suggested (Spilker and Taylor 2010), where the input was specified by 
non-invasively acquired systolic/diastolic pressures and, in some cases, additional 
flow data. The windkessel parameters were obtained by solving a system of nonlin-
ear equations, formulated based on a set of objectives for the pressure and flow rate 
waveforms at various locations. A Broyden method was employed for solving the 
nonlinear system of equations. The initial parameter values were determined by a 
reduced-order model, composed of only the windkessel models of the geometrical 
multiscale model.

An adjoint based method for calibrating the windkessel parameters was proposed 
(Ismail et al. 2013a, b), where the Jacobian was computed without the use of finite-
differences, and eliminated the risk of that the Broyden’s method would not converge 
for initial guesses far away from the solution. Furthermore, a reduced-order model 
with resistance outlet boundary conditions was introduced (Blanco et  al. 2012), 
under which the terminal resistance values of the arterial model of the arm were 
adapted to obtain desired flow rate distribution between vascular territories.

A competitive alternative to the above mentioned optimization based methods is 
represented by filtering based methods. These methods were successfully used to 
estimate different aspects of fluid-structure interaction applications, like arterial wall 
stiffness (Pant et al. 2014), the surrounding tissue support (Moireau et al. 2013), or 
windkessel parameters (Bertoglio et al. 2012).

Herein we propose a parameter estimation method for personalizing hemodynamic 
computations (Itu et al. 2015). The proposed method is inspired by the approach intro-
duced previously (Spilker and Taylor 2010), and has been developed based on the 
following strategies: a warm-start of the optimization procedure with better initial 
solution, and a reduction in the number of iterations performed for the calibration of 
the geometrical multiscale models (for simplifying phrasing, we will refer to geo-
metrical multiscale models simply as multiscale models). The first strategy aims at 
reducing the risk of a possible failure of the optimization approach due to a bad initial 
guess (Ismail et  al. 2013a, b)—a fairly common occurrence for pathologic cases. 
Moreover, we can achieve a faster computation time for the overall estimation method 
by reducing the number of repetitive iterations on the same geometry.

The parameter estimation method automatically determines the windkessel 
parameters in the multiscale circulation model, by solving a system of nonlinear 
equations. To obtain an initial guess, the equations are first solved for a lumped 
parameter model. The main characteristic of the proposed method is that, when 
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switching from the lumped model to the multiscale model, the windkessel parame-
ters are appropriately adapted to take into account the hemodynamic properties 
(resistance and compliance) of the multiscale model.

The concepts and information presented in this chapter are based on research and 
are not commercially available. Due to regulatory reasons its future availability can-
not be guaranteed.

4.2	 �Methods

In this section, we describe an efficient optimization-based algorithm, which ensures 
that the personalized flow computations are in close agreement with the physiologi-
cal measurements. In the present study, we use a 1D–0D reduced-order geometrical 
multiscale model as proof of concept. One-dimensional models have been shown to 
accurately predict time-varying flow rate and pressure wave forms (Reymond et al. 
2011). Most of the one-dimensional models introduced in literature use elastic wall 
laws (Stergiopulos et al. 1992; Olufsen et al. 2000; Formaggia et al. 2003; Mynard 
and Nithiarasu 2008), but viscoelastic arterial wall models have also been applied 
(Alastruey et al. 2011; Malossi et al. 2012). Further, recent research activities have 
shown the growing interest in the one-dimensional blood flow model not only for 
the computation of a full body arterial model, but also for specific parts of the cir-
culation in pathologic situations: the coronary circulation (Itu et  al. 2012), the 
abdominal aorta (Raghu et al. 2011; Low et al. 2012), proximal part of the aorta (Itu 
et al. 2013), and the aortic valve (Mynard et al. 2012). The 1D model used in this 
study has been previously introduced in (Itu et al. 2012, 2013). Time-varying flow 
rate profiles are used as inlet boundary condition, while three-element windkessel 
models were coupled at the outlets of the highest order model. The 3-element wind-
kessel model is represented by the following relationship between instantaneous 
flow and pressure:
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(4.1)

where p is the instantaneous pressure at the inlet of the windkessel model, q is the 
instantaneous flow rate, Rp and Rd are the proximal and distal resistance respec-
tively, and C is the compliance.

Next, we briefly review the calibration method proposed previously and intro-
duce the proposed parameter estimation method.

4.2.1	 �Calibration Method for Windkessel Parameters

The calibration method automatically estimates the free parameters (windkessel param-
eters) to ensure that the computed pressure and flow-rate values minimize the objec-
tive function (Spilker and Taylor 2010). More specifically, the algorithm iteratively 
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estimates the total resistance of the windkessel model, Rt, the proximal resistance 
ratio, ρ, and the time constant of the exponential pressure decay in the windkessel 
model at zero flow, τ:

	
R R Rt p d= + , 	 (4.2)

	
r = R Rp t/ , 	 (4.3)

	 t = ×R Cd . 	 (4.4)

Measured pressure and/or flow rate values are used as objectives of the calibra-
tion method. The parameter estimation problem is formulated as a solution to a 
system of nonlinear equations, with each equation representing the residual error 
between the computed and measured quantity of interest. To determine the values of 
all the residuals (f(xi)), a computation with the parameter values xi is required. Since 
the absolute values of the adapted parameters and of the residuals generally differ 
by orders of magnitude, for the calibration method both the parameter and the 
objective residuals have been scaled using typical values, as is described below.

The nonlinear system of equations is first solved for a 0D model, composed of 
the windkessel models used in the multiscale model. To find an initial solution for 
the 0D model, a grid of physiological parameter value sets is considered. The 
parameter value set leading to the smallest L2 norm for the objective residual, is 
used as initial solution for a dogleg trust region method, which determines the solu-
tion x0 used during the subsequent steps.

Next, a fixed-point approach is used to compute a finite-difference Jacobian 
which is determined using the typical step sizes, and is consistent with the chosen 
typical values of the objective residuals. The components of the Jacobian approxi-
mations are computed as follows:
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(4.5)

where ei and ej represent the unit vectors in the ith and jth direction respectively, and 
s j
typ  is the typical step size for parameter j, given by:
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(4.6)

where fi
typ  is the typical value of the objective residual fi.

The process composed of Eqs. (4.5) and (4.6) is an iterative procedure which is 
terminated once the Euclidian norm of the difference of two consecutive Jacobians, 
normalized by the corresponding fi

typ  and s j
typ  values, is less than 10−6.

Next, the multiscale model is set up and run, and the objective residuals are evalu-
ated. For the first run with the multiscale model, the solution variables are initialized 
based on the results obtained with the 0D model. Each computation, with a given set 
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of parameter values, is run until the L2 norms of the normalized differences between 
the pressure and flow rate profiles at the current and the previous cardiac cycle are 
smaller than 10−5.

If all objective residuals are smaller than the tolerance limit (taken here equal to 
fi
typ /10 ), the calibration method is terminated. Otherwise, a quasi-Newton method 

is employed to update the parameter values. First the Jacobian matrix is updated: 
since the computation of a finite-difference Jacobian matrix with the multiscale 
model is expensive, the Jacobian determined with the fixed-point approach is 
updated at each iteration, using:
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where si = xi + 1 − xi is the current step and Ds is a diagonal scaling matrix:
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Finally, the new parameter values are estimated:

	
x x J f xi i i i+

-= - ( )1
1 . 	 (4.9)

The main drawback of the above described calibration method is that the hemo-
dynamic properties of the highest order model of the multiscale model are not taken 
into account when switching from the 0D model to the multiscale model. This aspect 
has several consequences. First of all, the solution obtained for the 0D model, which 
is used as initial solution for the nonlinear system of equations solved for the multi-
scale model, is considerably different from the final solution of the parameter values. 
This can lead to a failure of the minimization approach employed for the nonlinear 
system. Furthermore, this risk is enhanced when the hemodynamic computation is 
performed for pathologic cases, i.e. when the hemodynamic properties of the highest 
order model become more important compared to the properties of the 0D model. 
Secondly, the number of calibration iterations required to obtain the final solution for 
the parameter values increases. These repetitive computations increase the total exe-
cution time, an aspect which is a significant disadvantage when the calibration 
method is applied for patient specific computations in a clinical setting.

4.2.2	 �Proposed Parameter Estimation Framework

We introduce a parameter estimation method which eliminates the drawbacks of the 
calibration method described in the previous section. An outline of the algorithm is 
illustrated in Fig. 4.1, which is composed of the steps described previously and two 
critical steps (displayed in bold: steps 6 and 7). One of the main advantages of the 
proposed algorithm is that it can be efficiently applied not only for healthy cases, but 
also for pathologic cases. The main idea is to efficiently account for the hemodynamic 
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1. Solve a 0D model to
compute initial

parameter values x0

2. Compute initial
Jacobian (J)

3. Compute typical
step size (styp)

4. Compute
Jacobian (J)

Are the new J and
styp consistent with the

given f typ values
?

yes

5. Create multiscale

model

6. Estimate
compliance and
resistances of

highest-order model

7. Compute higher
order boundary

conditions

8. Run computation
with current

parameter values and
determine objective

residuals (f(xi))

Does the solution
satisfy objectives within
tolerances of ftyp / 10

?

yes

Terminate

no
9. Use Broyden’s
method to update

Jacobian J

10. Use quasi-Newton
method to update
parameter values

no

Fig. 4.1  The proposed 
parameter estimation 
method (Itu et al. 2015)
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properties of the highest order model inside the multiscale model, when switching 
from the 0D model to the multiscale model. Particularly, we focus on two properties 
of the multiscale model: the compliance and the resistance.

At step 6, the compliance and resistances of the highest order model are esti-
mated. These two quantities have not been taken into account when solving the 
nonlinear system of equations with the 0D model. Next, at step 7, the parameter 
values of the windkessel models are recomputed to account for the hemodynamic 
properties of the highest order model. Note that the values of the parameters of the 
nonlinear system are not modified at this stage and only the windkessel parameters 
are changed. The algorithms used for the estimation and compensation of the resis-
tances and compliances are described in the next two subsections.

As a result of the two additional steps, the parameter estimation method adapts the 
overall properties of the multiscale models. For the multiscale computation, the 
windkessel parameters are the only quantities updated from one iteration to the next.

The parameter estimation methods do not always use the total resistances or the 
compliances as calibrated parameters. Nevertheless, regardless of the choice of 
parameters, the resistances and the compliances of the terminal windkessel models 
are always adapted when switching from the 0D model to the multiscale model. 
Additionally, if the resistances or the compliance of the multiscale model are 
adapted directly or indirectly, the parameters of the windkessel models are recom-
puted at the end of each iteration, based on the new parameter values determined 
through Eq. (4.9) and the estimated quantities of the highest order model. If the 
quantities are not adapted at all, then step 7 is applied only once (an aspect indicated 
by the dashed line in Fig. 4.1). The target objectives are: maximum pressure, Pmax, 
minimum pressure, Pmin, and flow rate split between outlets of the highest order 
model, Φ. The typical value of the residuals for pressure and flow-rate split objec-
tives was set to 1 mmHg and 0.005 respectively.

4.2.3	 �Resistance Estimation and Compensation

To estimate the resistance of a healthy vascular segment for the highest order model, 
(RHO)i, we assume a velocity profile:
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the viscosity and ri is the radius. For this work, we have chosen a parabolic profile 
(γ = 2) without any loss of generality. Alternatively a power law profile (γ = 9) or a 
Womersley profile can be considered (Womersley 1955).

For a pathologic vascular segment (e.g. coarctation, stenosis) we use a compre-
hensive pressure-drop model to estimate the resistance of the pathological segment. 
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This approach was validated against catheter-based ground-truth measurements in 
our previous work (Itu et al. 2013). Since the time-varying flow rate through the 
descending aorta is not known apriori, the resistance of the CoA segment is com-
puted from the average flow rate (which represents an objective of the parameter 
estimation method, i.e. it is known apriori):

	
R R Q P Q QHO i CoA DAo DAo( ) = ( ) = ( )D / , 	 (4.11)

where ΔP(•) refers to the pressure drop model (Itu et al. 2013), and QDAo  is the aver-
age flow rate through the descending aorta.

A similar approach can also be used if the multiscale model contains stenosed arter-
ies. Depending on the region of interest, different pressure drop models have been 
proposed in the literature, e.g. coronary artery stenosis (Huo et al. 2012), femoral artery 
stenosis (Young et al. 1975), renal artery stenosis (Steele 2007). For aneurysms, a dif-
ferent pressure drop model (Bessems 2007) can be applied to estimate the resistance.

Equations (4.10)/(4.11) are used at step 6 in Fig. 4.1 to determine the resistance 
of each branch of the multiscale model. Next, we introduce a recursive algorithm, 
employed at step 7, for adapting the total terminal resistances of the windkessel 
models, which is used during the switch from the 0D model to the multiscale model. 
Let n be the number of outlets in the geometric model, (Rt − 0D)j represents the total 
(sum of proximal and distal) resistance of the windkessel model used at each outlet 
(j = 1…n). The objective is to estimate the total resistances at each outlet of the 
geometric multiscale model (Rt − MS)j. Algorithm 1 illustrates the recursive function 
used for the resistance adaptation.

Algorithm 1: adaptResistance (totalRes, vesselNr)
Rt ← totalRes
i ← vesselNr
(Rt − MS)i ← Rt − (RHO)i
if vessel i is a terminal vessel
return
else

R
R

kt D i
k t D k

-
-

( ) ¬
( )

®å0
0

1
1

,  terminal vessels downstream from vessel i

for each daughter vessel j of vessel i
Φj ← (Rt − 0D)i/(Rt − 0D)j
(Rt − MS)j ← (Rt − MS)i/Φj

adaptResistance ((Rt − MS)j, j)
end (for)
end (if)
return

The function adaptResistance is called exactly once for the root segment of 
the arterial tree, which recursively computes all terminal resistances of the 

4  A Parameter Estimation Framework for Patient-Specific Assessment of Aortic



98

multiscale model. If the current segment is a terminal segment, the total termi-
nal resistance is determined by subtracting the multiscale resistance of the cur-
rent segment from the total resistance at the root of the vessel. If the current 
segment has daughter vessels, the goal is to distribute the new total resistance, 
(Rt − MS)i, to the outlets of segment i, in a manner that maintains the flow rate ratio 
in each daughter vessel. In the first step, the total resistance of the daughter ves-
sels inside the 0D model is determined. Next, for each daughter vessel, using the 
ratio of total resistance of current vessel to terminal resistance of the current 
daughter vessel (Φj), the new terminal resistance of the current daughter vessel 
is determined ((Rt − MS)j). If the daughter vessel j is not a terminal vessel, (Rt − 0D)j 
is computed using the resistances of the downstream terminal vessels. Finally, 
function adaptResistance is called to further distribute the resistance of the cur-
rent daughter vessel.

Equations (4.10)/(4.11) are used to estimate only once the resistance of each 
vascular segment. If the resistances are adapted directly or indirectly, Algorithm 1 is 
also applied, in a slightly modified version, at the end of each calibration iteration 
performed for the multiscale model (after computing the new parameter values 
through Eq. (4.9)). Hence, the total resistances of the 0D model used in Algorithm 
1, (Rt − 0D)j, are substituted by the total equivalent resistances of the multiscale model 
at each outlet of the highest order model, (Rt)j, which is determined before applying 
the modified version of Algorithm 1. If the directly or indirectly adapted resistance 
refers to a single outlet, (Rt)j is set equal to this parameter value. Otherwise the 
parameter value is distributed to all outlets covered by the parameter. For the current 
study, we use a power law:

	
R R r rt j t

k
k
m

j
m( ) = ×å ,

	
(4.12)

where Rt refers to the adapted parameter, index k is used to iterate over all outlets 
covered by the adapted parameter and m is a power coefficient, whose physiological 
range of values is between two for large arteries (Zamir et al. 1992) and three for 
small arteries (Murray 1926).

4.2.4	 �Compliance Estimation and Compensation

To estimate the compliance of a vascular segment i of the highest order model in the 
multiscale model, (CHO)i, we use the material properties of the arterial wall:
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where Ei is the Young’s modulus and hi is the wall thickness. Most of the compli-
ance in an arterial/venous tree resides in the large vessels, hence the compliance of 
the highest order model may become significant compared to the compliance of the 
windkessel elements, especially when using domains with large arteries. Next, the 
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total compliance of the highest order model is determined C CHO
i

HO i
= ( )å , which 

is then distributed to the outlets of the geometric model:
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where (CMS − a)j represents the assumed additional compliance introduced at each 
outlet of the highest order model inside the multiscale model. The goal is to deter-
mine the compliance of the windkessel models, (CMS)j, so as to obtain for the multi-
scale model the same total compliance as the one used for the 0D model, (C0D)j. 
Figure 4.2 introduces different representations for the compliance of the multiscale 
model, alongside the 0D model.

Figure 4.2a displays the classic representation of the multiscale model, com-
posed of the highest order model and the terminal windkessel element. In Fig. 4.2b, 
the compliance of the highest order model is lumped into a 0D compliance at outlet 
j, (CMS − a)j, placed before the windkessel model. To determine the compliances of 
the windkessel elements of the multiscale model, (CMS)j, (CMS − a)j is ported inside the 
windkessel model, as displayed in Fig. 4.2c. For the models in Fig. 4.2c, d to be 
equivalent, the following relationship must hold:

	
C C CMS j D j MS a WK j( ) = ( ) - ( )- -0 	 (4.15)

Hence, to determine (CMS)j, (CMS − a − WK)j must be computed. (CMS − a − WK)j repre-
sents the assumed additional compliance introduced by the multiscale model at out-
let j and ported inside the three-element windkessel model. Three different 
approaches were tested for computing (CMS − a − WK)j.

Approach 1—Direct compliance compensation. The influence of the proximal 
resistance of the windkessel model is neglected:

	
C CMS a WK j MS a j- - -( ) = ( ) 	 (4.16)

Multiscale model

a

b

d

c

(CMS)j

(CMS)j

(CMS)j

(C0D)j

(CMS-a)j

(CMS-a-WK)j

0D Model

Fig. 4.2  (a) Classic 
representation of the 
multiscale model; (b) the 
compliance of the highest 
order model is lumped into a 
0D compliance at outlet j 
placed before the windkessel 
model; (c) the compliance of 
the highest order model is 
ported inside the windkessel 
element; (d) classic 
representation of the 
windkessel model
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Approach 2—Analytical compliance compensation. Approach 1 does not take 
into account the fact that the proximal resistance of the windkessel element dimin-
ishes the influence of the compliance. Thus, following a method proposed previ-
ously (Grinberg and Karniadakis 2008):

	
C C R RMS a WK j MS a j p MS j t MS j- - - - -( ) = ( ) - ( ) ( )( )1 / , 	 (4.17)

where (Rp − MS)j is the proximal resistance of the windkessel model at outlet j of the 
highest order model.

Approach 3—Numerical compliance compensation. Thirdly, we propose a 
numerical approach based on the pulse pressure method (PPM) (Stergiopulos 
et al. 1994), which is described in Algorithm 2. PPM has been introduced to esti-
mate the compliance downstream of a location in an arterial tree, at which the 
time-varying flow rate values and the average and pulse pressure are known. In the 
following we use a modified PPM, based on a three-element windkessel model 
(PPM-WK3) which replaces the two-element windkessel model in the original 
PPM.

Algorithm 2: PPM-Based Compliance Compensation
  for each terminal vessel j

    Run computation with two element WK model
      ((Q0D(t))j, (Rt − MS)j, (CMS − a)j) → (PPref)j
    Initialize PPM-WK3 → (Q0D(t))j, (Rp − MS)j, (Rd − MS)j, (CMS − a)j,(PPref)j
    Run PPM-WK3 → (CMS − a − PPM)j
    (CMS − a − WK)j←(CMS − a − PPM)j
  end (for)

First, a two-element windkessel model is used to determine a reference pulse 
pressure, (PPref)j, using the flow rate profile obtained at outlet j of the highest 
order model during the last computation performed with the 0D model, (Q0D(t))j, 
the total resistance at outlet j after resistance compensation, (Rt − MS)j, and the 
assumed additional compliance introduced at outlet j, (CMS − a)j. Next, PPM-WK3 
is initialized and run, and as a result the compliance value, to be subtracted in 
Eq. (4.15) from the compliance used inside the 0D model, is determined.

Approaches 1–3 are used to estimate only once the assumed additional com-
pliance introduced by the multiscale model at each outlet j of the highest order 
model. If the compliance of the multiscale model is adapted directly or indi-
rectly, the compliance values of the windkessel elements are recomputed at each 
calibration iteration performed for the multiscale model. In this case, considering 
C the total compliance of the multiscale model, this value is first distributed to 
the outlets of the highest order model, using a relationship similar to Eq. (4.14):

	
C C r rMS t j j

j

n

j-
=

( ) = ×( ) å2

1

2 ,
	

(4.18)
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where (CMS − t)j represents the total equivalent compliance of the multiscale model at 
each outlet of the highest order model.

For the recomputation of the windkessel compliance, a relationship similar to 
Eq. (4.15) is employed:

	
C C CMS j MS t j MS a WK j( ) = ( ) - ( )- - - . 	 (4.19)

Compliance compensation is always performed after resistance compensation.

4.3	 �Results

To evaluate the performance of the proposed parameter estimation method, next we 
present results for a patient-specific aortic coarctation model extracted from MRI 
images. In this case, the parameter estimation method ensures that the computa-
tional setup is personalized, and, consequently, computed pressure and flow values 
are in close agreement with the clinical measurements.

Results are reported for four different parameter estimation methods: the calibra-
tion method for windkessel parameters (WKC) (Spilker and Taylor 2010), the param-
eter estimation method with resistance compensation and Direct Compliance 
compensation (DC), the parameter estimation method with resistance compensation 
and Analytical Compliance compensation (AC), and the parameter estimation method 
with resistance compensation and Numerical Compliance compensation (NC).

Blood is modeled as an incompressible Newtonian fluid with a density of 
1.050  g/cm3 and a dynamic viscosity of 0.040 dynes/(cm2  s). The grid size is 
0.05  cm, while the time-step (limited by the CFL-condition) is set equal to 
2.5e − 5 s.

Several CFD-based methods for non-invasive assessment of trans-stenotic pres-
sure gradient have been proposed recently (Itu et  al. 2013; Keshavarz-Motamed 
et  al. 2011; LaDisa et  al. 2011; Ismail et  al. 2013a, b). For an accurate patient-
specific estimation, the CFD-based solution should be in close agreement with the 
measured pressure and flow-data, a task that requires automatic calibration of the 
boundary conditions.

The patient-specific anatomical model (CFD Challenge 2013) is composed of 
the ascending aorta, three supra-aortic branches, aortic arch, coarctation, and the 
descending aorta (Fig. 4.3a). Figure 4.3b displays the multiscale model correspond-
ing to the CoA patient-specific geometry. A measured flow rate profile is provided 
at the inlet, while time-averaged flow-splits are provided for each of the outlets of 
the geometric model. The objective is to compute the pressure drop across the 
coarctation, under the constraint that the CFD-based solutions should (1) maintain 
the same flow-split at each outlet as with the measured data, and (2) replicate the 
measured systolic and diastolic pressure in the aorta. Figure 4.3c displays the cor-
responding 0D model.

To build the discretized geometric mesh required for the blood flow computation, 
we first used the vascular modeling toolkit (VMTK 2014) to extract the centerline 
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and the cross-sectional areas along the centerline of each arterial segment. Next we 
used an approach similar to previously introduced ones (Steele et al. 2003), wherein 
for each vessel of the arterial model, we used several distinct 1D segments with 
spatially varying cross-sectional area values in order to obtain a geometry close to 
the 3D geometry acquired through MRI.

Given the high compliance of the ascending aortic wall, this example underlines 
the advantages of a compliance compensation. At the same time, it also demon-
strates the advantages of the resistance compensation for high resistance segments, 
such as the coarctation.

The parameters to be estimated are the total resistances of the three supra-aortic 
vessels and of the descending aorta, and the total compliance. The following system 
of nonlinear equations is numerically solved to obtain the optimum value of each 
parameter:
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Fig. 4.3  (a) Proximal aorta geometry with coarctation, (b) Multiscale model used for determining 
the windkessel parameter values of the patient-specific model, (c) 0D model used during the first 
steps of the model personalization algorithm for finding an initial solution of the parameter values 
(Itu et al. 2015)
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where Pmax is the maximum (systolic) pressure, Pmin is the minimum (diastolic) pres-
sure, (Φ)• represents a flow rate split, while (•)comp refers to a value computed using 
the 0D/Multiscale model, and (•)ref refers to the reference value. Index BC refers to 
the brachiocephalic artery, LCC to the left common carotid artery and DAo to the 
descending aorta. The reference systolic and diastolic pressures (115 mmHg and 
65 mmHg respectively), and the reference flow-rate splits are taken from literature 
data (CFD Challenge 2013). Only three of the four flow rate splits are used as objec-
tives in Eq. (4.20) since the fourth one is obtained as difference. The characteristics 
of the pressure waveform are determined at the outlet of the left subclavian artery 
(Ismail et al. 2013a, b).

One of the estimated total resistances corresponds to several outlets (Rt–BC repre-
sents the equivalent total resistance of the right subclavian artery and the right com-
mon carotid artery). Hence, before applying Algorithm 1, at the end of the calibration 
iterations performed for the multiscale model, the total equivalent resistance of the 
multiscale model at each of the two outlets of the brachiocephalic artery is deter-
mined using Eq. (4.12), with a power coefficient equal to two. The proximal resis-
tance of each windkessel model is set equal to the characteristic resistance and was 
maintained constant throughout the parameter estimation method.

Since total resistance is adapted directly, Algorithm 1 is applied both when 
switching from the 0D model to the multiscale model, and during each additional 
calibration iteration performed for the multiscale model. Since compliance is also 
adapted directly, Eqs. (4.14) and (4.15) are used for the initial compliance compen-
sation, and Eqs. (4.18) and (4.19) are applied at each further calibration iteration.

The objective and parameter values obtained with the four different parameter 
estimation methods are displayed in Fig. 4.4. Whereas three iterations are required 
with the WKC method, two iterations are required with the DC and AC methods, 
and only one iteration is required with the NC method.

With any of the proposed parameter estimation methods, the objective and 
parameter values are significantly closer to their reference/final values. When the 
WKC method is used, the pulse pressure at iteration 0 is significantly smaller than 
the reference pulse pressure, caused by the additional compliance of the highest 
order model (especially the initial diastolic pressure is considerably closer to the 
final value). This aspect is also reflected by the fact that the compliance value at 
iteration 0 is significantly closer to its final value for the proposed methods. 
Furthermore all initial computed flow rate split values are closer to their final values. 
This is mainly caused by the significantly improved initial estimate of the total 
resistance on the descending aorta Rt–DAo.

As opposed to the objectives, where the final values are identical for all four 
parameter estimation methods, the final parameter values are different for the two 
methods. This is caused by the fact that the herein introduced methods adapt the 
overall properties of the multiscale model, whereas the WKC method adapts directly 
the parameters of the three-element windkessel models. Hence, although the param-
eter values of the two methods at iteration 0 are identical, the values of the windkes-
sel parameters are in fact different. The initial estimate of Rt–DAo for the proposed 
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parameter estimation methods is superior since Eq. (4.11) is employed for comput-
ing the resistance of the CoA segment.

Figure 4.5 displays a comparison of the pressure profiles at the outlet of the left 
subclavian artery, corresponding to the initial solution of the WKC method, the 
initial solution of the NC method and the final solution (identical for both parameter 
estimation methods). The initial solution refers to the results obtained at iteration 
zero with the multiscale model. The initial solution provided by the NC method is 
clearly superior to the initial solution provided by the WKC method and almost 
identical to the final solution.
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Fig. 4.4  Parameter estimation progression for the proximal aorta model. The total resistance of 
each of the three supra-aortic branches, the total resistance of the descending aorta windkessel 
model and the sum of all compliances were the adapted parameters. The desired mean fractions of 
flow through supra-aortic branches and through the descending aorta were used as objectives, 
besides systolic and diastolic pressure (Itu et al. 2015)
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Table 4.1 compares the reference and the computed flow rate split values 
(obtained with the NC method): the values match almost perfectly. Tables 4.2 and 
4.3 display for each parameter estimation method the final values of the adapted 
parameters and the compensated multiscale compliance and CoA resistance values 
respectively. The compensated compliance is highest for the NC method. 
Importantly, the sum of the five compensated compliance values reflects the differ-
ence between the final total compliance values obtained with the proposed param-
eter estimation methods and with the WKC method. Furthermore, the compensated 
CoA resistance (RCoA) roughly reflects the difference between the final total resis-
tance value on the descending aorta (Rt-DAo) obtained with the proposed methods and 
with the WKC method.
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Fig. 4.5  Comparison of 
the pressure profiles at the 
outlet of the left subclavian 
artery of the proximal aorta 
model, corresponding to 
the initial solution of the 
NC method, the initial 
solution of the WKC 
method and the final 
solution (Itu et al. 2015)

Table 4.1  Comparison of reference and computed flow rate split values

Artery Reference flow split [%] Computed flow split (NC) [%]

Brachiocephalic artery 25.6 25.6044

Left common carotid artery 11.3 11.3022

Left subclavian artery 4.26 4.3009

Descending aorta 58.8 58.7925

Table 4.2  Final values of the adapted parameters for four different parameter estimation methods 
applied for the nonlinear system in Eq. (4.20)

Parameter 
estimation 
method

(Rt-BC)final 
[g/(cm4 s)]

(Rt-LCC)final [g/
(cm4 s)]

(Rt-LS)final [g/
(cm4 s)]

(Rt-DAo)final 
[g/(cm4 s)]

(C)final 
[10−6 cm4 s2/g]

NC 8711.3 19,710.6 51,541.6 3698.0 308.71

AC 8720.0 19,730.8 51,595.4 3700.7 304.63

DC 8718,8 19,728.2 51,587.6 3700.0 294.18

WKC 8665.7 19,615.9 50,715.9 3555.4 216.14
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The computed average pressure drop across the coarctation is 4.12 mmHg, while 
the peak pressure difference is of 16.88  mmHg, both in the range of the values 
reported for the challenge (Ismail et al. 2013a, b).

4.4	 �Discussion

The results presented in the previous section demonstrate the potential advantages 
of the model personalization algorithm, which leads to superior calibration results 
for the considered patient-specific CoA geometry. The DC and AC methods are 
easier to implement and computationally faster due to their analytical nature. Given 
the high computational cost associated with multiscale models, the additional exe-
cution time for the NC method, compared to the DC and AC methods, is negligible. 
Since the NC method has the best performance, we consider this variant of the 
proposed parameter estimation method to be the most efficient. Note that the con-
figurations of the 0D model and the multiscale model are not affected by the addi-
tional steps in the proposed parameter estimation method, and the framework 
developed for the WKC method can be completely reused.

The geometrical multiscale framework for the aortic model is useful for model-
ing multiple pathologies. Recently, we validated (with in-vivo measurements) a 
reduced-order multiscale model for the non-invasive assessment of aortic coarcta-
tion (Itu et al. 2013). A fully automated parameter estimation method was proposed 
for personalizing the hemodynamic computations. The goals of this estimation 
method were to match the patient-specific average aortic pressure, the flow distribu-
tion between supra-aortic arteries and the descending aorta, and to determine the 
aortic wall properties. Promising validation results were obtained for the non-
invasive computation of the trans-coarctation peak-to-peak pressure-gradient.

The configuration used in the previous section for the CoA geometry provides 
the possibility to enhance the personalization of the hemodynamic computations by 
matching not necessarily the mean arterial pressure, computed from the systolic and 
diastolic pressure, but directly the two cuff-based pressures. Matching the flow rate 
split for the descending aorta is crucial since the trans-coarctation pressure-drop is 
highly dependent on the flow rate through the descending aorta. Previously only the 

Table 4.3  Compensated CoA resistance and compliance values for four different parameter esti-
mation methods applied for the nonlinear system in Eq. (4.20)

Parameter estimation method RCoA [g/(cm4 s)]

CMS-a-WK [10−6 cm4 s2/g]

RS RCC LCC LS DAo

NC 125.17 18.15 9.679 13.23 5.830 45.68

AC 125.17 17.45 0.245 12.77 5.442 44.37

DC 125.17 15.44 8.097 11.48 4.700 38.85

WKC 0.0 0.0 0.0 0.0 0.0 0.0

RS right subclavian artery, RCC right common carotid artery, LCC left common carotid artery,  
LS left subclavian artery
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average flow rate was considered, but, using an automated parameter estimation 
method, the maximum and/or minimum flow rate can also be constrained.

The proposed parameter estimation method could potentially provide significant 
advantages when the multiscale model is an FSI model (when rigid wall models are 
used, only the resistance compensation is required). For the non-invasive assess-
ment of aortic coarctation FSI modeling is required: since the trans-coarctation 
pressure gradient is computed as a peak-to-peak pressure difference between the 
ascending aorta and the descending aorta, the pressure drop is not mainly deter-
mined by the maximum flow rate and the geometry, but by the complex interaction 
between these two aspects, the phase lag introduced by the compliance, the wave 
propagation speed, and the backward travelling pressure and flow rate waves. 
Furthermore, the wall properties can also be used as adapted parameters in order to 
match a specific feature of the wave propagation aspects.

Parameter estimation methods for model personalization are not only useful for 
performing patient-specific computations using measured data, but also to perform 
computations for other conditions, like exercise, drug-induced hyperemia, or post 
surgical intervention. Patient-specific computations for CoA patients corresponding 
to the exercise state were reported previously (LaDisa et  al. 2011), where time-
varying and average trans-coarctation pressure gradient, wall shear stress and oscil-
latory shear index parameters were analyzed. Parameter estimation methods may 
provide the possibility to enhance the value of such (predictive) computations by 
imposing different changes for the reference values, compared to the rest state. For 
example, different elevations of mean or systolic aortic pressure, or of flow rate 
through the descending aorta could be imposed. After further evaluation and clinical 
research, such an approach could have the potential to eliminate the risks and the 
costs involved in measuring these quantities in-vivo. Regarding treatment planning 
evaluation, parameter estimation methods could be useful for imposing a certain 
post-interventional state for the hemodynamic computation, which could then 
enable an accurate assessment of the treatment options.
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