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Abstract Drug discovery and development is a slow complicated multi-objective
and expensive enterprise. Drug candidates are a compromise output of competing
pharmacodynamics and pharmacokinetic processes. To facilitate this task and avoid
failures in clinical phases, computational techniques and in silico modeling using
the endpoints offered by high technology, are extremely valuable. In this chapter,
some historical aspects and a background overview for constructing Quantitative
Structure-Activity Relationships (QSAR) and Quantitative Structure-Property
Relationships (QSPR) are provided. The different goals for the establishment of
QSAR/QSPR models are defined. Representative examples and success stories of in
silico modeling along the different drug discovery processes are presented.
Examples include models for optimizing efficient binding to receptor, using both
ligand- and structure-based approaches, for in vitro permeability predictions, pre-
dictions for human intestinal absorption and blood brain barrier penetration, as well
as for plasma protein binding and drug metabolism. The value of global and local
models as well as their interpretability and the criteria for their evaluation and
proper use are discussed throughout this chapter.
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1 Introduction

The advancement of a new chemical entity (NCEs) to become a drug candidate is a
slow, complex, expensive and multi task process. Along this long road, identifi-
cation of the disease and the isolation and validation of the molecular target(s) are
the first crucial steps. Next, the right drug candidates to interact with the validated
target are designed, synthesized and tested for their preclinical and clinical efficacy
and safety (Satyanarayanajois 2011; Speck-Planche and Cordeiro 2015). Despite
the great advances in science and technology, this process can take around 15 years
with a cost of hundreds of millions of dollars (Paul et al. 2010). In fact, much of this
cost comes from failures, which account for 75% of the total drug discovery and
development expenses. On the other hand such failures if appropriately consoli-
dated, contribute to the body of knowledge on biological complexity.

To prevent late-stage project interruptions, research is shifted to reduce the
uncertainties and obtain a proof of concept (POC) for a molecule as a potential
medicine in earlier phases of development. Thus, investigation of the fate of a
molecule in the organism, considering appropriate pharmacokinetics as well as
safety and adverse reactions profiles should advance in parallel with affinity for the
target receptor(s) (Gaviraghi et al. 2001; Swift and Amaro 2013). The fate of drug
molecules within the organism is principally controlled by ADME properties which
stand for absorption, distribution, metabolism and elimination. (Rogge and Taft
2010; Testa et al. 2005b). Poor absorption and thereupon poor bioavailability have
been in the past one of the main reasons for the failure of drug candidates.
According to more recent statistics, the most important issues to be confronted are
drug efficacy and drug safety, associated mainly with plasma protein binding,
metabolism and off target activity (Kola and Landis 2004).

Computer-aided approaches and chemoinformatics, applied during the different
stages of the pipeline, permit an effective handling of such failures and uncer-
tainties, facilitate candidate selection and speed up their long journey to the market.
Reliable models obtained by Quantitative Structure-Activity Relationships (QSAR)
and Quantitative Structure-Property Relationships (QSPR) offer decision support
upon rationalizing the drug discovery procedure in line with the Quick Win, Fast
Fail concept, allowing a pre-selection of compounds with more chances to succeed
in later phases (Owens et al. 2015). In this context, a new scientific area has
emerged, defined as pharmacoinformatics, which enables the management of all
available information from binding to kinetics and toxicity for safer drug candidates
(Goldmann et al. 2014).

In fact, successful drug candidates usually represent a compromise between the
numerous, sometimes competing objectives so that the advantages for patients
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outweigh potential drawbacks and risks. However, in order to benefit from
QSAR/QSPR models, the appropriate criteria for their evaluation and thereupon
their proper use and/or interpretation are essential. Such criteria as well as the
ultimate goal of the models may differ according to the timeline and the particular
process modeled.

The present chapter provides an outline of the philosophy, the state of the art and
the strategies for QSAR/QSPR generation. Distinction between QSAR and QSPR is
primarily associated with the traditional drug design steps, concerning lead opti-
mization for efficient receptor binding and predictions of pharmacokinetic/toxicity
properties, respectively. After an overview of the common features for in silico
modeling, QSAR models for pharmacodynamics properties, e.g., binding to target
receptor(s) or off-target proteins and QSPR models for pharmacokinetic process
(ADME properties) are discussed in separate sections. According to the underlying
mechanism QSPR models concern both models for passive phenomena and for
bonding to proteins. In all cases, two critical interdependent issues are addressed
throughout the chapter: (i) the value of global models built on large and chemically
diverse datasets and that of local models, built specifically for a series or project,
and (ii) the importance or not of model interpretability (Cox et al. 2013; Fujita and
Winkler 2016).

2 Historical Aspects and Background

Early QSAR studies were based on the assumption that biological activity can be
quantitatively expressed as a function of chemical structure (Brown and Fraser
1868). They involved the establishment of model equations in order to understand
and if possible to predict biological activity on the basis of structural parameters, as
expressed by equation of type (1).

Biological activity = a0 + a1P1 + a2P2 +⋯+ anPn ð1Þ

where P1…Pn are physicochemical/molecular properties characterizing the com-
pound structures and ao a1…an the constants derived by multiple linear regression
analysis (Hansch et al. 1995b; Hansch and Fujita 1964; Martin 1978).

Although biological activity was not always considered at the molecular level, it
was recognized as an essential prerequisite that the analyzing compounds should act
at the same receptor and with the same mechanism of action. Within a congeneric
series it was assumed that all other factors influencing the manifestation of drug
action should have similar impact. In regard to the description of chemical structure,
the well-known Hansch analysis recognized three major categories of physico-
chemical parameters, namely lipophilicity, electronic properties and steric (geo-
metric) properties (Eq. 2).
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logBR= − alogP2 + blogP+ ρσ+ δEς+c ð2Þ

where logBR is a general expression for biological activity in its logarithmic form
to be linearly related to free energy, logP is the logarithm of octanol-water partition
coefficient, the widely accepted measure of lipophilicity, σ Hammett’s electronic
substituent constant and Eς Taft’s steric substituent constant (Hansch 1969; Hansch
and Fujita 1964).

Evidently, early QSAR models could be developed only for congeneric com-
pounds, having a common skeleton and different substituents. In those models,
lipophilicity was considered as the physicochemical property of primary impor-
tance, since it was understood to influence both pharmacokinetics and pharmaco-
dynamics (Kubinyi 1979; Leo et al. 1971; Pliška et al. 1996; Van de Waterbeemd
and Testa 1987). A parabolic relationship between lipophilicity and membrane
passage was assumed; thus the quadratic term in Eq. 2 reflects transport to the
active site, considering all other pharmacokinetic issues equal within a congeneric
series (Hansch and Clayton 1973). Since, the parabolic relationship between
potency and logP did not fit all datasets, Kubinyi proposed a bilinear relationship,
which allows for different slopes at low and high logP values (Kubinyi and
Kehrhahn 1978). At the same time calculation methods for logP were developed,
based on the additivity principle. The hydrophobic substituent constant π and soon
later the hydrophobic fragmental constant f or their Σπ and Σf, accounting for all
substituents/fragments on the parent structure, could replace logP of the whole
molecule, in line with the other substituent constants in Hansch analysis (Hansch
and Leo 1979; Rekker and Mannhold 1992).

In fact, Hansch analysis, firstly applied in agrochemistry, drug design, toxicol-
ogy, industrial and environmental chemistry (Dunn 1988; Hansch et al. 1995a,
1963; Muir et al. 1967), marked a breakthrough in the way of thinking in medicinal
chemistry and the start of the new discipline of QSAR (Ganellin 2004), with the
mission to exploit the increasing amount of information in the aim to facilitate drug
discovery.

Since those early days, QSAR has undergone a tremendous evolution in regard
to all aspects, the target end points, the structural representation, the implemented
statistical tools, as well as its own standpoints (Cherkasov et al. 2014; Cramer 2012;
Puzyn et al. 2010; Tsantili-Kakoulidou and Agrafiotis 2011). In view of biological
complexity QSAR has adapted to the multi-task concept, taking advantage of
technological achievements and moving from the perception of single-objective
drug design to the multi-objective drug discovery and development (Fujita and
Winkler 2016; Jorgensen 2004; Speck-Planche and Cordeiro 2015). The multiple
tasks addressed by QSAR/QSPR and the tools implemented to construct the models
are illustrated in Fig. 1.

Thus, QSAR/QSPR models are generated to address two goals, each of which
has its own value: One goal is to establish models which provide an insight of the
properties or chemical features that correlate with a biological assay and thereupon
an understanding of the mechanism of action. Such models are valuable support for
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the design of novel compounds with affinity to a target protein. The second goal is
to create models, which provide accurate prediction of large chemically diverse
datasets and address a variety of biological endpoints, as well as different phar-
macokinetic processes. Such models allow ranking of compounds prior to synthesis
or set priorities among drug candidates for proceeding to further development
(Birchall et al. 2008a, b; Nicolotti et al. 2002).

3 Experimental Data and Endpoints in QSAR/QSPR

The multi-objective QSAR starts with data analysis for hit identification, followed
by hit-to-lead optimization (lead discovery) and lead optimization (Jorgensen
2009). For hit identification, virtual screening has gained a crucial role, as a con-
sequence also of the continuous emergence of novel biological targets (Schneider
2010; Vasudevan and Churchill 2009). QSAR end-points are usually measured at
the molecular or cellular level. The advent of robotized biological testing in the
1990s (Ashour et al. 1987; Houston and Banks 1997; Löfås and Johnsson 1990;
Navratilova et al. 2007) has led to the creation of large databases, freely accessible
in the public domain, which incorporate millions of compounds with associated
bioactivities. PubChem (https://pubchem.ncbi.nlm.nih.gov) and ChemSpider
(http://www.chemspider.com), the two major collections of chemical structures on
the web, currently include over 30 million compounds each. ZINC (http://zinc.
docking.org), a database frequently used for virtual screening applications, incor-
porates a total of approximately 21 million compounds (Irwin 2008; Moura Barbosa

Fig. 1 Tasks addressed by QSAR/QSPR and tools implemented in model construction
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and Del Rio 2012; Wang et al. 2012). In such databases the results of many screens
are presented in the form of scores for many compounds on a given assay, while
they also contain information on the structures of compounds and the target of
particular assays. More detailed data about binding assays can also be found in
Binding Database (www.bindingdb.org) which is a public web-accessible database
of measured binding affinities containing more than 1 million binding data for
nearly 500,000 small molecules and thousands of proteins (Gilson et al. 2016).

However there is a warning on the use of the databases, since they may include
inconsistencies concerning both chemical and biological data, while the chemical
structures may be inaccurate or presented in a non-consistent way. Therefore
curation of the data sets is recognized as a critical step for the establishment of good
quality models (Akhondi et al. 2012; Cherkasov et al. 2014).

More to the point, there are databases with sets of inactive compounds (decoys)
for several biological targets together with a small set of known active compounds
(Mysinger et al. 2012) or even software to produce decoy datasets based on sim-
ilarity with known active compounds (Cereto-Massagué et al. 2012). Decoy data
sets are useful for validation of the QSAR/QSPR models.

When searching in structural databases for experimental binding affinities, one
could find different biological data. They may be expressed as continuous response
such as IC50, EC50, Ki, Kd, % inhibition, etc., or as categorical response, e.g.,
active/inactive. Continuous response values are preferably used in their negative
logarithms, so as to be in linear correlation with free energy. In line with this concept,
ChEMBL database introduced the pChEMBL activity value, defined as −log(IC50,
XC50, EC50, AC50, Ki, Kd or Potency) in M units (Papadatos et al. 2015). This value
allows a number of roughly comparable measures of half-maximal response
concentration/potency/affinity to be compared on a negative logarithmic scale
(https://www.ebi.ac.uk/chembl/faq#faq67). This approach has also been imple-
mented in software for large scale off-target pharmacology and predictive safety of
small molecule such as CTLink (http://www.chemotargets.com).

Besides the compound databases, there is also a wealth of deposited gene
expression data available for downloading and/or online interrogation For example,
the NCBI gene expression omnibus (GEO) (Barrett et al. 2007) hosts over half a
million single array chip expression profiles and the EBI hosts the Array Express
database (Parkinson et al. 2010) with a similar largely overlapping number of
arrays. Gene expression-based screening (GE-HTS) represents a strategy for
identifying modulators of biological processes with little a priori information about
their underlying mechanisms. It is mainly used in cancer research, where it detects
compounds, which may revert undesired oncogenic states to nonmalignant or
drug-sensitive states (Evans and Guy 2004; Williams 2012). It is evident that for the
screening procedure, good prediction models are necessary, complying with the
second goal as described in Sect. 2. In such case model interpretability is not a
priority. In contrast, the transition from hit identification to lead discovery and
optimization requires models which should provide an understanding of the
molecular factors involved and a sound physicochemical interpretation, while
in-house affinity measurements of the novel compounds are used as endpoints.
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The range of affinity values is a crucial issue for model construction. Generally it
should be significantly greater than the experimental error among the biological
data. Considering that such errors can often exceed half a log unit (Gedeck et al.
2006) it is recommended an endpoint value range of at least 1.0 log unit to obtain a
reasonable QSAR model (Cherkasov et al. 2014).

Lead optimization in regard to other pharmaceutical properties, while main-
taining affinity, is a next important step. This is a multi-objective process involving
many experimental parameters (assays) related to physicochemical properties,
ADME properties, plasma and tissue protein binding, target selectivity, off-target
activities and toxicity. These properties influence considerably the efficacy and
safety of drug candidates and are potential causes for attrition. Rapid in vitro
measurements have been and are being developed for permeability and for plasma
protein binding assessment and toxicity protocols have been established (Artursson
et al. 2001; Kansy et al. 1998; Kariv et al. 2001; Rich and Myszka 2000). On the
other hand, there are many efforts for in silico prediction of many of these endpoints
by constructing appropriate QSARs or QSPRs (A Cabrera-Perez et al. 2012;
Dearden 2007; Lambrinidis et al. 2015; Swift and Amaro 2013). Certain global
models for toxicity predictions are approved by OECD and provide support to
regulatory authorities (Larregieu and Benet 2013). More to the point, predictions on
secondary targets may be useful for the safety profile as well as for drug repur-
posing (Hodos et al. 2016; Sheridan et al. 2015).The implementation of
QSAR/QSPR in the complex drug discovery process is demonstrated in Fig. 2.

Fig. 2 Implementation of QSAR/QSPR in the drug discovery process
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The splitting of QSAR models to encompass various areas of biological com-
plexity has challenged the development of workflows, which integrate QSAR/QSPR
models of selected endpoints, including affinities for different target proteins/
off-targets and pharmacokinetic data (Cartmell et al. 2005). Consensus predictions
using all acceptable models may contribute to further decisions in selecting future
experimental screening sets. In inductive knowledge transfer approaches, treating
multi-task modeling, the individual QSAR models are not considered separately but
they are viewed as nodes in a network of inter-related models (Cherkasov et al. 2014;
Qiu et al. 2016). Evidently, the quality of such integrated models largely depends on
the quality of the available experimental data compiled in relevant databases, which
should be carefully curated, as well as on the range of endpoint values, as already
commented (Cherkasov et al. 2014; Gedeck et al. 2006). Interpretability of such
models as a prerequisite depends on the purpose and the timeline that they are used
along the drug discovery process. In regard to toxicity, for QSAR models to be
accepted for regulatory purposes, interpretability is often a crucial issue. According
to OECD “To facilitate the consideration of a QSAR model for regulatory purposes,
it should be associated with… a mechanistic interpretation, if possible” (www.oecd.
org/chemicalsafety/risk-assessment/37849783.pdf).

4 Tools Implemented in Model Construction

4.1 Molecular Structure Representation-Descriptors

Molecular structures are represented by descriptors which mediate their relation
with activity. Thus, molecular descriptors are at the core of QSAR modeling.

In line with the definition of Todeschini and Consonni (2009), molecular rep-
resentation has moved forward from substituent constants to variables suitable to
portray diverse molecules, belonging to different chemical classes. A variety of
software calculates a large number of different physicochemical/molecular prop-
erties and theoretical descriptors, starting from SMILES, 2D-chemical graphs to
3D-x, y, z-coordinates or based on mathematical algorithms or statistics. Some
of the most popular software are DRAGON, which calculates more than 4000
descriptors (http://www.talete.mi.it/products/dragon_description.htm), ADAPT
(Stuper and Jurs 1976) (http://research.chem.psu.edu/pcjgroup/adapt.html), OASIS
(Mekenyan and Bonchev 1986), CODESSA (Katritzky et al. 1994),
MOE-Chemical Computing Group (https://www.chemcomp.com/) and MolConnZ
(http://www.edusoft-lc.com/molconn/).

According to molecular structure representation, descriptors may reflect various
levels of dimensionality, ranging from 0D to 4D and xD. 0D are based on molecular
formula and are independent from molecular connectivity and conformations. 1D
descriptors, reflect the substructure representation of a molecule, 2D descriptors are
based on the two-dimensional structural formula (2D), while 3D descriptors are
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conformation dependent. 3D descriptors are based on thermodynamically favored
conformation and necessitate geometry optimization. 4D descriptors reflect inter-
actions with some probe within a grid, while higher dimension (xD) are receptor
dependent descriptors. They represent each ligand molecule as an ensemble of
conformations, orientations, tautomeric forms and protonation states (Ekins et al.
1999; Hopfinger et al. 1997; Vedani et al. 2000, 2005). Using enhanced molecular
dynamic simulations, the overall conformational change of the receptor upon ligand
binding can be simulated, producing more vital structural descriptors (Sohn et al.
2013). Such approaches can be considered as a promising link between structure
and ligand based strategies (Polanski 2009; Caporuscio and Tafi 2011). An atlas of
the available descriptors, the theory used for their calculation and their information
content, has been compiled by Todeschini and Consonni (2009). In Table 1,
a classification of representative descriptors is presented.

Among the physicochemical descriptors, logP keeps its central role in
drug-protein and drug-membrane interactions, as well as in permeability models.
Nowadays, there are many algorithms for logP or logD calculation, implemented in
relevant software. They are based on the additivity principle and have been
developed upon analysis of a large amount of experimental data (Mannhold and
Dross 1996). More to the point, calculation of logD necessitates knowledge on pKa,
while charge is a crucial determinant also in drug action (Csizmadia et al. 1997).
Actually most of the logP, pKa and solubility prediction algorithms are QSPR
models per se. Some global logP models are implemented in software workflows,
which allow the user to utilize his/her own compound library as input in order to
refine predictions (Tetko et al. 2001). A comprehensive description and classifi-
cation of the logP/logD calculation systems and software is provided by Mannhold
et al. (Mannhold et al. 2009). Among them, ClogP is often considered as a reference
calculation system, while it has been included in most rules for druglikeness (see
Sect. 5). Some software for logP/logD prediction are free available on the web.

Despite the large arsenal of available software, the correct selection for
logP/logD prediction is not always easy, since often the outcome of the different
algorithms shows considerable variations. Although this is not an issue for models
intended to screen large compound libraries, it becomes crucial for local models
established for lead optimization or for predictions within congeneric compounds
(Chrysanthakopoulos et al. 2009; de Melo et al. 2009). In such cases it is important
that the compounds analyzed fall within the applicability domain of the training set,
used to construct the prediction algorithm (see Sect. 4.3) (Tetko et al. 2009).

Next to lipophilicity, other molecular properties such as molecular volume and
surface area, polarizability, molar refractivity, polarity descriptors, dipole moments,
hydrogen bond acidity/basicity, as well quantum chemical descriptors, including
energy parameters like EHOMO and ELUMO, maximum and minimum electrostatic
potentials, partial charges etc., are most commonly used by medicinal chemists.
Such descriptors considered as “well-founded”; actually fall within the frame of the
three categories: lipophilicity, electronic and geometric descriptors, reflecting
the recognition forces and steric requirements of binding to receptor active site.
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Thus they provide insight into the mechanism of action. More to the point, easily
calculated physicochemical and molecular properties have created the basis for the
development of the drug-like concept (see Sect. 4.1.1).

On the other hand, theoretical descriptors may be considered to reflect a direct
detailed representation of molecular structure. However they are not easily inter-
pretable and they do not provide a straightforward perception of the mechanism of
action. Their use in QSAR/QSPR models is often faced with some skepticism and
their contribution to model quality and validity performance compared to classical
descriptors has been questioned in the case of lead optimization (Vallianatou et al.
2013). However, it is true that in some cases the most predictive model may not be
the most interpretable (Birchall et al. 2008a, b; Nicolotti et al. 2002). The value of
models with high prediction accuracy but low interpretability has already been
discussed in Sect. 3.

To obtain information about molecular structure from QSAR/QSPR models with
low interpretability, a procedure called reversible decoding or inverse QSAR is
being developed. Topological and molecular signature descriptors are considered to
be more suitable for inverse QSAR/QSPR (Faulon et al. 2005; Gozalbes et al.
2002).

Moreover, sub-structural descriptors and molecular fingerprints are important to
establish similarity/diversity approaches, which gain increasing interest within the
scientific community (Willett 2004). Such approaches are widely used for virtual
screening and design of chemical libraries, which aid in the primary identification
of promising hits.

Recently, chemical similarity between molecules is being extended to evaluate
clinical effects, if combined with information derived from computing similarity
based upon lexical analysis of patient package inserts. It is expected, that drugs with
highly structurally similarity (both by 2D and 3D comparison) are much more likely
to have significant overlap of their clinical effects, compared to drugs that are
structurally different (low 2D similarity but high 3D similarity Yera et al. 2014).
However in the search of new candidates chemical similarity does not always lead
to biological similarity. Structure-Activity landscape may present the so called
activity cliffs. Such discontinuities cannot be predicted by statistically derived
QSAR models (Guha 2011).

In the case of toxicity predictions the incorporation of biodescriptors (short-term
assays) as independent variables is suggested. Such descriptors are derived by
in vitro quantitative high through put screening (qHTS) and in combination with
chemical descriptors lead to hybrid models, which may exhibit higher accuracy
(Sedykh et al. 2011).

Gene expression signatures of a desired biological state, derived from gene
expression data are used to screen a compound library to identify compounds that
induce this target signature and corresponding phenotype, while they may also be
used as descriptors (Hieronymus et al. 2006; Stegmaier et al. 2004).
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4.1.1 Drug-Like Filtering

The use of combinatorial methods during the last 30 years has produced a vast
number of compounds, which tend to be more lipophilic, less soluble and with
higher molecular weight than conventional drug entities (Hertzberg and Pope
2000). Such properties are often associated with unfavorable absorption, poor or
inconsistent bioavailability, as well as with lack of selectivity and increased toxicity
(Oprea 2000). To face this situation the concept of druglikeness was launched,
defining boundaries on the chemical space and functioning as filter to guarantee a
physicochemical profile enabling further development (Leeson and Springthorpe
2007; Yusof et al. 2013). Druglikeness provides useful guidelines for early stage
drug discovery, following simple rules of thumb, which suggest cut-off values or
ranges for certain properties. According to the rule of 5 (RoF), molecular weight
(MW) should not exceed 500 Da, calculated lipophilicity (clogP) should not exceed
5, hydrogen bond donor sites (HBD) should not be more than 5, and hydrogen bond
acceptor (HBA) sites not more than 10. Upon pairwise violation of these limits,
bioavailability problems may occur in the case of orally administered drugs (Lip-
inski et al. 1997). RoF was further extended including cutoff values or ranges for
additional properties, the most common being: Polar Surface Area (PSA) < 140,
number of rotatable bonds (ROTB) < 10, Molar Refractivity (MR) in the range of
40–130, number of aromatic rings (AROM) < 3, total number of atoms in the range
of 20–70 (Ursu et al. 2011; Veber et al. 2002). Lipophilicity is related also to safety
endpoints. Increased relative risk (6:1) for an adverse event may be anticipated for
compounds possessing high lipophilicity (ClogP > 3) and low topological polar
surface area (TPSA < 75 A) (Hughes et al. 2008). It is also reported that for
ClogP > 3 there is a dramatic higher risk for hERG channel inhibition, an endpoint
associated with cardiotoxicity (Wager et al. 2011). More strict cutoff values are
proposed for compounds intended to act in the Central Nervous System
(CNS-likeness Pajouhesh and Lenz 2005). A quantitative estimate of drug-likeness
(QED) has been proposed by Bickerton et al. (Bickerton et al. 2012) which relates
the similarity of a compound’s properties to those of oral drugs based on eight
commonly used molecular properties: MW, log P, HBDs, HBAs, PSA, ROTBs,
AROMs and count of alerts for undesirable substructures.

For lead compounds the rule of 3 is suggested according to which MW < 300,
logP < 3, HD < 3, and HA < 6 (Congreve et al. 2003). The rule of 3 is applicable
mainly for fragment-based lead generation.

The rules of thumb are very simple and understandable, however they do not
take into account inaccuracies in the prediction of logP and more important they do
not consider the receptor demands. For instance, receptors of the PPAR family
possess a very large hydrophobic cavity in their active center, requiring lipophilic
ligands with high molecular weight, which in many cases violate twice the rule of 5
(Giaginis et al. 2008, 2007). Target specific lipophilicity profiles obtained through
calculation of the logP and logD of ligand series for different receptors have
recently investigated, showing also other targets where the compound libraries had
mean logP ≥ 5, i.e., outside of traditional RoF space with respect to lipophilicity.
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Such knowledge in the early stages of drug development is very useful for the
formulation strategy in later stage (Bergström et al. 2016).

The advantages of smaller and less lipophilic compounds as safer and more
selective drug candidates were further recognized in terms of receptor binding.
According to metrics such as ligand efficiency (LE) and ligand lipophilicity effi-
ciency (LLE) affinity is normalized against molecular size, expressed as heavy
atoms, or lipophilicity respectively (Abad-Zapatero 2007; Hopkins et al. 2014).
Ligand efficiency dependent lipophilicity (LELP) takes both lipophilicity and
molecular size into consideration by dividing logP (clogP) by LE (Tarcsay et al.
2012). In terms of thermodynamics, according to the above metrics drug—receptor
binding should be optimized in regard rather to the enthalpic component through
specific interactions. Such metrics may be used to prioritize drug candidates with
quasi equal potency (Hann 2011; Leeson and Springthorpe 2007).

An update on recent applications of efficiency metrics and strategies to control
drug-like properties and to replace problematic elements for improving drug design,
is recently published by Meanwell (2016).

4.2 Modeling Techniques

Statistical tools mediate the relationship between structural descriptors and the
response variable(s) leading either to regression or to classification models. Model
building methods are incorporated in different software packages (Bruce et al.
2007). Multiple linear regression (MLR) analysis is a simple and still widely used
technique, which however can handle a limited number of variables. Thus, as a first
step, variable selection methods are applied to reduce the large number of calcu-
lated descriptors to a set which is information rich but as small as possible.
Redundant descriptors and descriptors which show low variance or/and collinearity
are removed. For further descriptor reduction, stepwise regression approaches are
commonly used, with the drawback however that they are local search processes
and may converge to local optima (Paterlini and Minerva 2010).

A promising alternative for variable selection is the use of genetic algorithms
(GA). GAs explore the descriptor space simultaneously by a population of candi-
date solutions which compete and recombine, mimicking the process of natural
selection (Mitchell 1998).

Reduction of the descriptors space is inherent in multivariate data analysis
(MDVA) a popular statistical technique, which permits the simultaneous (not one at
a time) treatment of large number of descriptors, while tolerating inter-relation
between them (Eriksson et al. 2001; Wold et al. 2001). It is a projection method
from a space with high dimensionality to a space with few dimensions (latent
variables), characterized as principal components. Principal component analysis
(PCA) is a powerful unsupervised classification method. Projection to latent
structures defined also as partial least squares (PLS) is the regression extension of
PCA. PLS can handle more than one response variables, under the precondition that
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they are to some degree inter-related. This is very important for multi-target drug
design, for toxicity models or for the establishment of activity profiles of antimi-
crobial or anticancer agents (Vallianatou et al. 2013; Koukoulitsa et al. 2009). PLS
analysis generates coefficients for the original variables (descriptors), which permit
a straight-forward interpretation of the model.

MLR and PLS are linear methods and any non-linearity should be incorporated
through data transformation before the analysis. On the other hand, machine
learning (ML) methods are gaining increasingly important roles in the construction
of classification and/or prediction models in several steps of the drug discovery
process (Tao et al. 2015). They are effective dimension reduction methods, while
allowing for non-linearity to be included in the models and the incorporation of
variable interactions. Thus they can reflect biological complexity leading to models
with high accuracy. Their drawback is their black box character, e.g., the inability
for their rationalization and interpretation in chemical terms. Most popular ML
techniques are artificial neural networks (ANN) and associative neural networks
(ASNN), inspired by the function and structure of neural network correlations in
brain, the k-nearest neighbor technique (k-NN), support vector machines (SVM),
regression trees (RT) or random forest (RF) (Byvatov et al. 2003; Sakiyama 2009).
The latter are also very useful in the creation of gene expression signatures (Lima
et al. 2016). An overview of the machine learning methods, used mainly as pre-
diction tools for ADME properties is given in a recent review by Tao et al. (Tao
et al. 2015). Table 2 includes commonly used statistical tools, which are referred in
the representative QSAR and QSPR examples, discussed in Sect. 5.

Models are evaluated by statistical data, the most commonly being correlation
coefficient (R or r) and determination coefficient (R2 or r2), standard error of esti-
mate(s), given also as root mean square error of estimate (RMSE). The adjusted
determination coefficient (Radj

2 ) for degrees of freedom allows for comparison
between QSARs with different numbers of descriptors and can indicate if a given
QSAR model is overfit incorporating too many descriptors. The Fisher test F pro-
vides an indication of a chance correlation, while the Student test t is used to
evaluate the significance of descriptors in MLR. In multivariate data analysis, the
variable importance to projection (VIP) criterion is used instead. In ANN, the
contribution of molecular descriptors is based on the ratio between the performance
of neural network before and after the elimination of each descriptor (sensibility
analysis).

Visualization of the results, fitting the line on the graph of observed versus
predicted values, enables to check for outliers or trends in the data, while it provides
an overview of the predictive power of the model. In fact a good model should
show an 1:1 correlation between observed and predicted values. Detected outliers
should be submitted to further investigation—they may unravel interesting infor-
mation. Further statistical data are related to model internal or external validation
(Sect. 4.3).

For classification models, % sensitivity defined as the ratio of percentage of true
positives in respect to the sum of true positives + false negatives, % specificity,
defined as the ratio of percentage of true negatives in respect to the sum of true
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negatives + false positives and %CCR (correct classification rate or balanced
accuracy) equal to (sensitivity + specificity)/2 are common statistical data to
evaluate the merit of the models. It should be noted that acceptance criteria depend
on the quality of experimental data, as well as on the ultimate goal of the
QSAR/QSPR performed.

4.3 Model Validation

Whatever modeling technique is used, validation of QSAR models has received
considerable attention in the last decades (Guha and Jurs 2005; Tropsha et al. 2003;
Veerasamy et al. 2011). Validation requirements are becoming increasingly strict so
as to assure robust models, which can lead to reliable predictions and to proof of
concepts. According to the European center for the validation of alternative
methods (ECVAM) four tools, the methods accepted for estimating the prediction
accuracy include (i) cross-validation, (ii) bootstrapping, (iii) randomization of the
response data, and (iv) external validation (Worth et al. 2004).

Cross-validation as an internal model validation method is usually performed by
the ‘leave-one out’ (LOO) or ‘leave many out’ (LMO) procedure to determine
PRESS and cross-validated correlation coefficient q2, which are metrics reflecting

Table 2 Statistical tools, commonly used in QSAR/QSPR prediction or classification models

Linear Non-linear Prediction Classification

Multiple Linear Regression Analysis
(MLR)

x x

Partial Least Square/Projection latent
Structures, PLS

x x

Principal Component Regression, PCR x x

Principal Component Analysis, PCA x x(unsupervised)

PLS-Discriminant Analysis, PLS-DA x x (supervised)

Linear Discriminant Analysis (LDA) x x (supervised)

Artificial neural networks, ANN
Bayesian NN
Associative NN

x x x (unsupervised/
supervised)

Support Vector Machine, SVM x x x (supervised)

k-Nearest Neighbors non-parametric x x (supervised)

K-means x x x(unsupervised)

Decision trees and Random forests x x x(unsupervised)

Classification and Regression Tree
(CART)

x x x (supervised)

Ensemble methods-Bagging-
Boosting trees

x x x (supervised)
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the internal predictive ability of the model. In contrast to r2 which increases with the
number of variables included in the model with a tendency to approximate the value
of 1, Q2 follows a quadratic relationship reaching a maximum corresponding to
optimal number of variables.

To check that the obtained model is not a result of chance factors, randomization
of the Y response is recommended (Rücker et al. 2007). All models obtained with
the randomized training set should be inferior, with r2 and q2 values around 0 or
with negative values respectively for a set with 0% similarity with the original set
(Gasteiger et al. 2003; Klopman and Kalos 1985).

A prerequisite for model validation is external validation, either by dividing the
data set into training and test sets and rebuilding the models or/and using a blind
test set. The errors produced in the predictions should be comparable to those
achieved for the training set. Recently, Roy et al. have proposed a modified cor-
relation coefficient rm

2 as a novel metric for external validation, which represents the
actual difference between the observed and predicted response data without con-
sideration of training set mean and taking into account the r2 with intercept and r0

2,
without intercept. Change of the axes denoting observed and predicted y modified
correlation coefficient r′m

2 may be different from rm
2 A threshold for the difference

delta rm
2 = abs(rm

2 −r′m2 ) less than 0.2 and an average rm
2 = (rm

2 + r′m
2 )/2 higher than

0.5 indicate robustness of the model (Roy et al. 2009; Roy et al. 2012).
Model applicability domain (AD), defined as the region of chemical space where

predictions can be made without extrapolation is an important issue that should be
taken into consideration for the proper use of QSAR/QSPR. There are different
methods for the assessment of applicability domain, for particular types of QSAR
models (Jaworska et al. 2005; Netzeva et al. 2005; Sahigara et al. 2012).
Distance/leverage based methods are usually applied. In regard to QSAR models
for regulatory purposes, OECD clearly states that the AD should be described “in
terms of the most relevant parameters, i.e., usually those that are descriptors of the
model” (Jaworska et al. 2003).

The performance of the models over time, in particular in the case of global
QSPR models, has been addressed by continuous updating of the original models,
so as to extend the applicability domain allowing predictions for new compounds of
different chemotypes (Rodgers et al. 2011).

5 QSAR/QSPR Applications in the Drug
Discovery Process

QSAR/QSPR models can be established for all processes across the drug discovery
pipeline. Initial virtual screening may be followed by modeling of the affinity of
ligand series to the receptor or to other off-target proteins. In parallel, models for
permeability and other pharmacokinetic properties like plasma protein binding,
affinity to uptake or efflux transporters and metabolic stability may be established to
evaluate safety and efficacy of the candidates.
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5.1 Modeling Pharmacodynamics

Pharmacodynamic models focus on predictions of receptor affinity. It should be
noted however that binding to proteins is governed by the same recognition forces,
regardless if they are target receptors, plasma and tissue proteins, metabolizing
enzymes or off-target proteins. They reflect interactions between the small mole-
cules and the amino acid residues within the active site of the protein.

Computational techniques to detect and/or and optimize efficient binding involve
both ligand- and structure-based methods and are applied to optimize receptor
binding as well as to predict ADME properties involving proteins, like plasma
protein binding, binding to metabolizing enzymes or transporters (Fig. 2).

5.1.1 Ligand-Based Drug Design (LBDD)

Ligand-based Quantitative Structure-Activity Relationships (QSAR), established by
the procedures, already discussed in Sects. 3–5, do not require or ignore knowledge
on the structure of the target protein. In most cases, they are two dimensional
models, although they may embrace three dimensional information by incorporat-
ing 3-D descriptors. Such models take advantage of the large number of available
descriptors and the progress in the statistical techniques as well as of the associated
philosophy (see Sect. 4). They can be further classified as global or local models.

Global models are useful for virtual screening, off target screening or for
plasma/tissue protein binding (Helgee et al. 2010; Sheridan 2014). For global
models, the goal is to encompass a large applicability domain, while interpretability
may not be an issue, at least in the early stages. More important may be the
continuous updating of the models to incorporate new chemotypes, so as to expand
their applicability domain (Rodgers et al. 2011). In fact, the goal of such global
models is not the search for new chemical entities, but to prioritize existing or
virtual compounds. In contrast, for lead optimization on receptor binding, local
models are more helpful. They are built under the precondition that all analyzed
molecules interact with the same type of receptor in the same manner. Evidently, in
these cases interpretability defines a determinant factor since the primary goal is to
understand the receptor requirements and search for novel compounds with the
desired physicochemical/molecular properties. Yet, the inverse-QSAR methodol-
ogy (see Sect. 4), although based on descriptors which do not confer inter-
pretability, may still allow to construct viable molecules (Wong and Burkowski
2009).

The three dimensional structure of the molecules can serve to create 3-D QSAR
models, which provide a direct link to potency. 3D-QSAR has emerged as an
extension to the classical 2D-QSAR, using robust chemometric techniques, such as
PLS. In 3D-QSAR the precondition for identical binding sites in the same relative
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geometry for all molecules should be strictly obeyed. After geometry optimization,
molecules are superimposed and carefully, aligned in a rational and consistent way
to create a hypermolecule. A sufficiently large box is positioned around this
hypermolecule and a grid distance is defined. Different atomic probes, e.g., a carbon
atom, a positively or negatively charged atom, a hydrogen bond donor or acceptor,
or a lipophilic probe, are used to calculate field values in each grid point, i.e., the
energy values which the probe would experience in the corresponding position of
the regular 3D lattice. Using these fields as input descriptors in PLS analysis,
principal components, defined by different proportions of the fields, are generated.

The most popular 3D-QSAR methodology is Comparative Molecular Field
Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis
(CoMSIA). CoMFA, developed by Cramer in 1988, is based upon the calculated
energies of steric and electrostatic fields (Cramer et al. 1988). CoMSIA, instead of
interaction fields, calculates similarity indices using a distance-depended Gaussian
functional form. Five types of similarity indices are calculated, steric, electrostatic,
hydrophobic, and hydrogen-bond donor and acceptor (Klebe 1998). An important
advantage of CoMFA and CoMSIA is the graphical representation of the results.
3-D contour maps in CoMFA display the different contributions of the potentials to
the activity, while in CoMSIA they highlight the areas within the region occupied
by the ligands, that ‘favor’ or ‘dislike’ the presence of a structural feature with a
given physicochemical property. In this sense the CoMSIA representation is more
easily interpretable than CoMFA contour maps.

The difficulties of both methods are associated with the structure alignment,
which may affect the results, while it limits their application to strictly similar
compounds. The use of a single conformation for a given ligand represents a
limitation of 3D-QSAR since the bioactive conformation may not be necessarily the
thermodynamically optimal one. Moreover, orientation in the binding site may be
ambiguous, especially in the absence of structural information on the biological
receptor. To face such problems, higher dimension QSAR methodologies
(xD-QSAR) have been developed. Additional dimensions offer the possibility to
represent each ligand molecule as an ensemble of conformations, orientations,
tautomeric forms and protonation states (Ekins et al. 1999; Hopfinger et al. 1997;
Vedani et al. 2005, 2000).

A general drawback of ligand-based QSAR models is the underlying assumption
that chemical similarity correlates with biological similarity, considering a rather
smooth structure-activity landscape. The presence of activity outliers however
shows that this is not always the case and structure-activity landscape may present
activity cliffs (Guha 2011). In such cases, outliers deserve special attention and
should be investigated separately. Outliers representing activity cliffs can be
identified by structure-based methods, like docking or pharmacophore approaches.
In this aspect combination of both ligand- and structure-based approaches may
provide insight on the behavior of such outliers (Vallianatou et al. 2013).
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5.1.2 Structure-Based Drug Design (SBDD)

Structure-based methods rely on detailed knowledge of target protein structures and
target protein-ligand complex providing a more straightforward understanding of
the mechanistic aspects in drug-receptor interactions. X-ray crystallography as well
as NMR have contributed immensely in this field (Anderson 2003).

In the PDB database (http://rcsb.org), more than 120,000 biological macro-
molecular structures are deposited, covering more than 40,000 organisms and
38,000 distinct protein sequences. However, in order to use those data, a proper and
detailed preparation of the protein must be performed (Anderson 2003; Sastry et al.
2013). The preparation process includes hydrogen addition, protonation or depro-
tonation based on pKa prediction of acid or basic side chains, and side chain
optimization to achieve the optimum number of hydrogen bond interactions. Once
the structure of the protein is well studied and analyzed, all essential parts for
interactions between the co-crystalized ligand and the protein are gathered to design
new optimized molecules. In this aspect, the key issue for a successful
structure-based design is the identification of the target and the appropriate binding
site. In Fig. 3 a representative crystal structure of a protein-ligand complex and the
interaction points is illustrated. In Fig. 3a, PPARα receptor is represented by rib-
bons in complex with aleglitazar, represented in space-filling way (CPK repre-
sentation). Figure 3b shows the ligand interaction diagram of aleglitazar inside the
binding pocket.

Additionally, the crystal structure of a protein-target can be used for virtual
screening procedure. Virtual screening procedures are based on the structure of a
protein while a large database is screened and all molecules are ranked based on
empirical docking scoring function for binding affinity (Hillisch et al. 2015). Top
ranked molecules are than tested in vitro to validate the model, and the new lead
compounds are optimized using computer-aided combinatorial techniques (Com-
biGlide, version 4.1, Schrödinger, LLC, New York, NY, 2016). Thus, using
fragment based algorithms, new virtual chemical libraries are designed based on the
core skeleton of the hit compound previous, and top ranked “theoretical” molecules
are passed to medicinal chemists for synthesis and further in vitro testing.

However prediction of binding constants based on the correlation with docking
scores is not always feasible, especially in the case of structurally diverse com-
pounds. ΔG values calculated by molecular docking may have an acceptable cal-
culation error of 2 kcal/mol corresponding to 2 log units of dissociation constants
Kd (Enyedy and Egan 2008; Keserü 2001). Moreover, they may show little dif-
ferentiation, since they are the outcome of enthalpy–entropy compensation (Brandt
et al. 2011). Therefore docking calculations alone are not sufficient, if the principal
query is to predict binding constants.

In the past years, many success stories have been achieved using structure-based
drug design (SBDD). Some representative examples are reported below:

Amprenavir (Agenerae) and nelfinavir (Viracept) (Kaldor et al. 1997) were the first
drugs reaching the market designed against HIV protease using SBDD methodology.
Zanamivir (Relenza) was designed against neuraminidase (Varghese 1999),
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Tomudex against thymidylate synthase (Rutenber and Stroud 1996) and imitin-
abmesylate (Glivec) against Abl tyrosine kinase (Schindler et al. 2000). Moreover,
SBDD has contributed to address more complicated targets, like nucleic acids as
well as protein-protein interactions. Thus, inhibitors have been developed for HIV-1
RNA target TAR (Lind et al. 2002, Filikov et al. 2000), the IL2/IL2Rα receptor
interaction (Tilley et al. 1997), the VEGF/VEGF receptor (Wiesmann et al. 1998)
and Bcl2 (Enyedy et al. 2001).

5.2 Modeling Pharmacokinetics

Pharmacokinetic processes are controlled both by passive phenomena and binding
to proteins, the latter concerning plasma and tissue proteins, metabolizing enzymes
and transporters. Passive phenomena include passive diffusion through various
biological barriers, hemolysis or cell retention. They are governed primarily by
lipophilicity, while molecular weight and hydrogen bonding may contribute as
additional factors (Avdeef 2012; van de Waterbeemd and Smith 2001). There are
also border cases between passive diffusion and binding such as phospholipidosis
or drug membrane interactions (Hanumegowda et al. 2010). Volume of distribution
is also the outcome of membrane permeability and tissue binding (Hollósy et al.
2006). Among the biological barriers, the gastrointestinal tract and the blood brain
barrier are of highest interest and relevant QSPR models are discussed in the
following sections.

Fig. 3 a Ribbon representation of PPARα in complex with aleglitazar (CPK representation),
b Ligand interaction diagram of Aleglitazar inside the binding pocket. Hydrophobic residues are
colored green, hydrophilic residues are colored cyan, positive charged residues are colored blue
and negative charged residues are colored red. Hydrogen bonds are depicted with dashed lines
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5.2.1 Modeling Permeability

Several in vitro techniques have been developed for rapid estimation of membrane
permeability in vitro. Artificial membranes used in parallel artificial membrane
permeability assay (PAMPA) (Kansy et al. 1998) or in immobilized artificial
membrane (IAM) chromatography (Tsopelas et al. 2016a, b) provide easy mea-
surements. However, cell-based protocols such as Caco2 or MDCK cell lines are
more widely accepted as measures of effective permeability, which is considered as
a reliable index mainly for intestinal human absorption (Thiel-Demby et al. 2008;
Usansky and Sinko 2005; Volpe 2008; Yee 1997). The Caco-2 model is recom-
mended by the US FDA for the classification of compounds according to the
bio-classification system (BCS) (Larregieu and Benet 2013). Several QSPR models
to predict Caco-2 or MDCK permeability have been published, which however
include a limited number of compounds (Castillo-Garit et al. 2008; Irvine et al.
1999; van De Waterbeemd et al. 1996). It has been shown however from local
models, that high Caco-2 permeability rate should correspond to the high human
intestinal permeability rate (or extent of absorption), independent of the laboratories
of origin and regardless of whether carrier-mediated transport is occurring (Lar-
regieu and Benet 2014).

Due to the considerable inter- and intra-laboratory variability of Caco-2 effective
permeability, classification models may be a better option, while meeting the
requirements for BCS. Two representative studies performed on large datasets are
reported below. Sherrer et al. applied random forest (RF) to the largest dataset ever
reported (15791 compounds) to establish a moderate model with a R2 = 0.52,
RMSE = 0.20 using 8 descriptors (Sherer et al. 2012). A later model derived by
ruled-based decision trees using 1289 compounds achieved determination of 3
permeability classes (High-H, Medium-M, Low-L). The best rule, based on the
combination of PSA-MW-logD (3P Rule), was able to identify the H, M and L
classes with accuracy of 72.2, 72.9 and 70.6%, respectively, while a consensus
system based on three voting binary classification trees predicted 78.4/76.1/79.1%
of H/M/L compounds on the training and 78.6/71.1/77.6% on the test set
(Pham-The et al. 2013).

Recently, a QSPR study to predict Caco-2 cell permeability was performed on a
large data set of 1272 compounds, which were filtered and curated (Wang et al.
2016). Four different methods including multiple linear regression (MLR), partial
least squares (PLS), support vector machine (SVM) regression, and boosting trees
were employed to build prediction models with 30 molecular descriptors.
The nonlinear model derived by Boosting performed better with R2 = 0.97,
RMSE = 0.12, Q2 = 0.83, RMSECV = 0.31 for the training set and R2 = 0.81,
RMSE = 0.31 for the test set.
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5.2.2 Predicting Human Intestinal Absorption/Oral Bioavailability

Considerable efforts are oriented to establish QSPR models for human intestinal
absorption and oral bioavailability. Relevant software packages are available either
for direct predictions or for predictions of ADME properties like lipophilicity,
solubility, ionization, which would allow a rough evaluation of the potential of
drugs to be orally absorbed. The rules of thumb, discussed in Sect. 4.1, are very
helpful in this case.

Human intestinal absorption (HIA) is usually measured as the percentage of the
dose that reaches the portal vein after passing the intestinal wall (%HIA). On the
other hand, oral bioavailability (%F) describes the passage of a substance from
the site of absorption into the systemic circulation after first pass hepatic metabo-
lism. Intestinal metabolism, acidic stability and the effect of transporters contribute
to the outcome. Absorption in gastrointestinal tract is governed by permeability
through cell membranes (transcellular absorption) or through the intercellular space
between cells of the gastrointestinal mucosa (paracellular transport). The effect of
lipophilicity on absorption has been previously described by linear, bilinear, sig-
moidal or parabolic models (Kubinyi et al. 1993; Kubinyi and Kehrhahn 1978).
However, for the establishment of global QSPR models, which would permit
predictions for different chemotypes of novel compounds, additional physico-
chemical parameters or molecular descriptors, should be implemented. Molecular
weight, polarity or hydrogen bonding parameters as well as the charge state are
most commonly used, being also consistent to describe Caco-2 permeability as
discussed above (Kumar et al. 2011; Tsopelas et al. 2016a, b; Veber et al. 2002).

The main problems to be addressed for the establishment of robust global HIA
models concern the significant variability of the datasets from one source to another
and the distribution of endpoints, since they include commercially available drugs
and are often heavily biased towards compounds with high intestinal absorption
values (Hou et al. 2007). This fact will influence the predictive capacity of the in
silico models and better predictions will be obtained for compounds with high
intestinal absorption values, compared to the rest of the dataset. A scientific and
technical report of the European Commission Joint Research Centre and the
Institute for Health and Consumer Protection compiles literature models for HIA
published till 2010, along with databases with ADME endpoints (Mostrag-
Szlichtyng and Worth 2010). In this chapter, representative examples and latest
investigations are discussed.

One of the first attempts to predict %HIA was published by Wessel et al. who
applied a genetic algorithm with a neural network (GA-NN) technique to develop a
non-linear model for set of 86 drugs. They identified six most significant variables,
namely: the cube root of gravitational index, related to the size of molecule, the
normalized 2D projection of the molecule on the YZ plane (SHDW-6, related to the
shape, the number of single bonds (NSB), related to flexibility, as well as the charge
on hydrogen bond donor atoms (CHDH-1), the surface area multiplied by the
charge of hydrogen bond acceptor atoms (SCAA-s) and the surface area of
hydrogen bond acceptor atoms (SAAA-2), related to hydrogen-bonding properties.
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The predicted %HIA values achieved good statistics with root mean square errors
(RMSE) of 9.4%HIA units for the training set, 19.7%HIA units for the
cross-validation (CV) set, and 16.0%HIA units for the external prediction set
(Wessel et al. 1998).

The general solvation equation developed by Abraham’s group (Abraham et al.
2002) was used by Zhao et to model the human intestinal absorption data of 169
drugs (Zhao et al. 2001). The model Eq. (3) derived by stepwise MLR was based
on Abraham’s linear solvation energy (LSE) descriptors, namely: excess molar
refraction (E), solute polarity/polarizability (S), the McGowan characteristic vol-
ume (V), solute overall hydrogen bond acidity (A) and basicity (B).

%HIA=92+ 2.94E+4.10S+ 10.6V− 21.7A− 21.1B

R2 = 0.74, s = 14
ð3Þ

According to Eq. (3) the volume and the hydrogen bond descriptors were found
to be the most important.

Klopman et al. compiled a large dataset of 467 drug molecules for human
intestinal absorption. The data were split into a training set of 417 and external
prediction set of 50 molecules. Structural fragments promoting or preventing HIA
were identified using the CASE program (http://www.multicase.com/) and their
occurrence was subsequently used in a multiparameter linear equation (4) to predict
human intestinal absorption (Klopman et al. 2002).

%HIA= c0 + ciGi, ð4Þ

where c0 is a constant, ci are the regression coefficients and Gi is the presence (1) or
absence (0) of a certain structural fragment. The final QSAR model included 37
descriptors: 36 statistically significant structural descriptors identified by CASE
analysis and one important physicochemical parameter—the number of hydrogen
bond donors (H donors). The model was able to predict the %HIA with an r2 = 0.79
and a standard deviation s = 12.32% for the compounds of the training set. The
standard deviation for the external test set (50 drugs) was 12.34%. The merit of the
model is that it indicates certain substructures with negative impact in %HIA, such
as quaternary nitrogens, SO2 groups connected to an aromatic ring and others with
positive impact on HIA. A drawback of the model is that the training set was biased
towards high absorption values (Klopman et al. 2002).

Using Zhao’s data set, Sun proposed a PLS-DA classification approach for
human intestinal absorption modeling, using atom type descriptors. Drugs were
classified as classified them as “good” (absorption > 80%) “medium” (80% < ab-
sorption > 20%) or “poor” (absorption < 20%), according to their %HIA. A five
component PLS-DA model separated very well all 169 compounds with r2 = 0.921
and q2 = 0.787. Since in the case of virtual screening, only poorly absorbed
compounds would need to be identified and removed the authors proposed also a
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three-component PLS-DA with r2 = 0.939 and q2 = 0.861 to separate the com-
pounds with less than 20% absorption (Sun 2004).

Recently, a dataset of 578 compounds, split into a training set of 403 compounds
a validation set of 87 and an external prediction set of 87, was analyzed, using
ensemble learning (EL) techniques, (gradient boosted tree, GBT and bagged
decision tree, BDT) to derive both qualitative (classification) and quantitative
models. Topological polar surface area proved to be the most important descriptor
with negative contribution, followed by lipophilicity expressed as XlogP. Classifi-
cation accuracy > 99% was reported, while the QSAR models yielded correlation
coefficients R2 > 0.91 between the measured and predicted HIA values (Basant
et al. 2016).

Prediction models are available also for the more complex process of oral
bioavailability (Andrews et al. 2000; Hou et al. 2007; Kim et al. 2014; Kumar et al.
2011; Martin 2005; Moda et al. 2007; Tian et al. 2011). Till the year 2010 they are
compiled in the scientific and technical report of the Joint Research Center of the
European Union. In the same report relevant software for prediction of oral
bioavailability are provided (Mostrag-Szlichtyng and Worth 2010).

Recently, in silico approaches focus more on physiologically based pharma-
cokinetics (PBPK), which go beyond human intestinal absorption and oral
bioavailability, providing realistic descriptions of absorption, distribution, meta-
bolism, and excretion processes (Bois and Brochot 2016; Jamei 2016). PBPK
modeling has gained a significant impact on regulatory science and decisions
(Huang et al. 2013) and best practice for its use to address regulatory questions, has
been reported (Zhao et al. 2012).

5.2.3 Predicting Blood Brain Barrier Penetration

In drug discovery for CNS active drugs, it is important to determine whether a
candidate molecule is capable of penetrating the blood brain barrier (BBB). For
drugs targeted at the CNS, the BBB penetration is a necessity, whereas for drugs
acting in peripheral tissues, the BBB penetration may lead to undesirable adverse
effects (Di et al. 2009; Ecker and Noe 2004). The log BB, defined as the logarithm
of the ratio of the concentration of a drug in the brain and in the blood, measured at
equilibrium, is an index of BBB permeability. The optimal threshold for classifi-
cation as a CNS acting drug is typically specified between 0 and −1 (Clark 2003).
Log BB values, although widely used, do not take into account plasma and tissue
binding, and therefore, do not reflect the free amount of the drug in the brain.
Permeability surface area product (PS, quantified as logPS) representing the uptake
clearance across the BB is used as a direct measure of permeability and theoretically
is not confounded by the plasma and brain tissue binding.

Several models have been published trying to predict blood-brain barrier per-
meability from various physicochemical properties of molecules, including,
among others, molecular size, lipophilicity or number of groups that can establish
potential hydrogen bonds (Clark 1999; Kaliszan and Markuszewski 1996;
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Konovalov et al. 2007; Luco 1999; Vastag and Keseru 2009). Rules of thumbs are
also suggested, as discussed in Sect. 4.1. Till the year 2010, literature models are
compiled in the scientific and technical report of the European Commission Joint
Research Centre and the Institute for Health and Consumer Protection
(Mostrag-Szlichtyng and Worth 2010). Some representative models and recent
publications are discussed in this chapter.

Already in 1980, Levin had related log Pc (which is close analog of log PS) to a
simple linear function of logP and molecular weight. The overall effect was rep-
resented as log (P � MW−1/2) = logP−½logMW, whereby increasing log P was
supposed to reflect a steady increasing log PS effect, whereas increasing MW had
an opposite effect (Levin 1980). In 1999, Clark analyzed a set of 55 diverse organic
compounds and generated a multiple linear regression model based on in silico
calculated polar surface area (PSA) and logP values with negative and positive
contribution respectively (Clark 1999).

The linear solvation energy relationship approach (LSER), also used to model
human intestinal absorption, has been applied to blood/brain permeability predic-
tion (Platts et al. 2001). For a dataset of 148 diverse compounds using MLR, they
obtained a transparent QSAR incorporating 5 Abraham descriptors and an indicator
variable (equal 1 for carboxylic acids and 0 for other compounds) has been
reported. The model shows good statistics (R2 = 0.74, s = 0.34, RCV2 = 0.71).
According to the model, the increasing size of molecules strongly enhances brain
uptake, while increasing polarity/polarizability, hydrogen-bond acidity, basicity and
the presence of carboxylic acid groups have a detrimental effect. Platt’s model has
been implemented in the commercially available ADME Boxes software (previ-
ously Pharma Algorithms; now ACD Labs, http://www.acdlabs.com/), providing a
very fast estimation of logBB. Later, the data set was extended to include 328
compounds with in vivo and in vitro logBB values. A correlation coefficient r2 = 0.
75 and a standard deviation s = 0.3 was achieved by incorporating an additional
indicator for in vitro data (Abraham et al. 2006).

For a data set of 88 diverse compounds using a variable selection and modeling
method, a QSAR with three or four descriptors out of 324 descriptors has been
reported for logBB prediction. In both models, calculated lipophilicity (AlogP98)
was combined either with the atomic type E-state index (SsssN) and Van der
Waal’s surface (r = 0.842, q = 0.823, and s = 0.416) or with kappa shape index of
order 1, atomic type E-state index (SsssN), atomic level based AI topological
descriptor (AIssssC) (r = 0.864, q = 0.847, and SE = 0.392). The success rate of
the reported models in test sets was 82% in the case of BBB + compounds.
A similar success rate was observed with BBB-compounds (Narayanan and Gunturi
2005).

The VolSurf technique, which is based on molecular interaction fields, has also
been used for blood/brain partitioning modeling (Crivori et al. 2000). The model
was built on the basis of 230 diverse compounds and more than 70 VolSurf
descriptors. Its prediction accuracy (assessed against an external test set) is 90% for
BBB permeable molecules and 60% for non-permeable ones. The computational
procedure is fully automated and fast and it provides a valuable tool for the virtual
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screening of large datasets of diverse molecules (Cruciani et al. 2000). The short-
coming of this approach however is its low interpretability.

Linear discriminant analysis (LDA) based on physicochemical descriptors cal-
culated in silico has been used to establish two distinct classification models (Vilar
et al. 2010). The data set consisted of the 307 compounds used by Abraham et al.
(Abraham et al. 2006) for which in vivo logBB values were available. Considering
that molecules with log BB > 0.3 cross the BBB readily while molecules with log
BB < −1 are poorly distributed to the brain, these values were selected thresholds
for classifying the compounds into two categories. For the threshold 0.3, a two
component model was obtained with lipophilicity and topological polar surface area
(TPSA), the latter with a negative coefficient. For the threshold-1, the total number
of acidic and basic atoms was additionally incorporated, also with a negative sign.
The models were validated with external data sets using the area under receiver
operating characteristic (ROC) curves as evaluation criterion. In ROC the fraction
of true positives (sensitivity) is plotted against the fraction of false positives
(1-specificity). An area under the ROC curve of 0.95 for model 1 and 0.97 for
model 2 is reported, demonstrating the high predictive power of the models, con-
sidering that for a perfect classifier the area under the curve is 1 and for a random
classifier it is 0.5 (Vilar et al. 2010).

Based on logPS values in rats, Suenderhauf et al. developed predictive com-
putational models (decision tree induction) for a dataset of 153 compounds. The
established models exhibited a corrected classification rate of 90%. The models
confirmed the involvement of lipophilicity, molecular size and charge in BBB
permeation (Suenderhauf et al. 2012).

5.2.4 Modeling Plasma Protein Binding

A special case of binding of small molecules to macromolecules is plasma protein
binding. Plasma protein binding (PPB) is the reversible association of a drug with
the proteins of the plasma and is mainly due to hydrophobic and electrostatic
interactions. Since only the fraction of unbound (fu) drug is able to pass across cell
membranes, PPB strongly influences volume of distribution, half-life and efficacy
of drugs. Extended plasma protein binding may be associated with drug safety
issues, low clearance, low brain penetration, as well as drug–drug interactions (Ito
et al. 1998; Rowley et al. 1997). In fact, plasma protein binding belongs to the
ADME properties, representing mainly the “D” of the acronym.

Among the plasma proteins, human serum albumin (HSA) has a central role and
the affinity of drugs to this protein is considered to dominate PPB and the thereupon
related pharmacokinetic issues. Two primary active sites on HSA have been rec-
ognized for drug binding, the Sudlow’s sites 1 (warfarin site) and 2 (benzodiazepine
site), α1-acid glycoprotein (AGP) is the second essential plasma protein with two
main variants and a complicated physiological role (Lambrinidis et al. 2015).

Modeling of total plasma protein binding or/and of HSA binding has been the
objective of many researchers and offers a representative case where combined
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structure- and ligand-based methods act synergistically. Structure based methods
are very helpful to initially classify the compounds according to the preferred
binding site or protein, prior to proceeding to ligand-based methods. Since PPB is
practically involved in any class of therapeutics, the ultimate goal is to construct
global HSA or PPB models, where structural diversity plays an important role.
Representative successful efforts are described below. Often more than one model
are suggested by the same research group, where interpretability may compete with
accuracy in predictions.

A multiple computer-automated structure evaluation method (M-CASE) was
used by Saiakhov et al. (Saiakhov et al. 2000) to analyze 154 structurally diverse
compounds for total plasma protein binding. M-CASE starts by searching for
‘baseline correlation’ via an internal baseline activity identification algorithm
subroutine (BAIA), using the octanol–water partition coefficient which is the most
important parameter. For compounds showing residual binding when predicted by
the baseline correlation, the algorithm continues to identify responsible structural
characteristics, called biophores. Several local QSAR models built for subsets with
common biophores are included in the final global model. The binding site(s) of
each biophore, including the warfarin, benzodiazepine and digitoxin sites, as well
as AGP and lipoproteins, are also characterized. Lipophilicity as the prevalent
parameter showed different contribution in each local QSAR, indicating different
lipophilicity requirements for each binding site. A crucial structural fragment pre-
sent in the molecules was found to be part of a phenyl ring. The model, after
classifying the compounds according to their biophores, was able to predict cor-
rectly the percentage bound to plasma for 80% of the compounds with an average
error of 14%.

A large data set of 1008 compounds, partitioned into a training set of 808
compounds and an external validation test set of 200 compounds was used by
Votano et al. for model construction of human serum protein binding (Votano et al.
2006). A robust ANN model based of topological descriptors in combination with
logP was established with r2 = 0.90, MAE = 7.6 and r2 = 0.70, MAE = 14.1
respectively. MAE stands for Mean Absolute Error.

Votano’s data set was used by Ghafourian et al. (Ghafourian and Amin 2013) to
construct linear regression and nonlinear models using classification and regression
trees (CART), boosted trees and random forest. Interpretable linear regression and
simple regression trees models were able to identify the important contribution of
hydrophobicity, van der Waals surface area and aromaticity for high PPB. On the
other hand, the more complicated ensemble method of boosted regression trees
produced the most accurate PPB predictions.

Combination of chemometrics with molecular modeling confirmed the prepon-
derant contribution of hydrophobic regions of drug molecules and the specific roles
of polar groups, which anchor drugs to HSA 1 and 2 binding sites (Estrada et al.
2006). Identification of the binding site before performing QSAR analysis can
evidently lead to better models. For 889 chemically diverse compounds with
binding affinity for domain III-A, a group contribution model was developed
based on 74 chemical fragments. (R2 = 0.94, Q2 = 0.90) (Hajduk et al. 2003).
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The authors further suggested a combination of QSAR models for full-length
albumin and for domain-IIIA to allow for discrimination between compounds that
bind to the latter site and those that bind elsewhere on the protein. An important
issue is that the fragments used in the model are mapped by most of the topological
descriptors included in Votano’s model, indicating that they can be considered quite
universal. Thus, they provide a convenient look-up table for quantitatively esti-
mation of the effect of a particular group to albumin binding.

A free web prediction platform was constructed by Zsila et al. who combined
support vector machine (SVM) classification model with molecular docking cal-
culations. The classification model was based on 45 descriptors, with logP being the
most important. The platform (http://albumin.althotas.com) enables the users (i) to
predict if albumin binds the query ligand, (ii) to determine the probable ligand
binding site (site 1 or site 2) according to the classification model (iii) to select
using the Tanimoto similarity the albumin X-ray structure which is complexed with
the most similar ligand and (iv) to calculate complex geometry using molecular
docking calculations (Zsila 2013).

The continuous update of the HSA models in order to maintain their perfor-
mance over time is essential for the drug discovery and development settings,
extending their applicability domain and robustness. In this sense, Rodgers et al.
proposed a procedure for monthly updating human plasma protein binding models
over a period of 21 months (Rodgers et al. 2007), which was extended to three
years, using partial least squares (PLS), random forest (RF) and Bayesian neural
networks (BNN). The authors started with a large data set, the size of which was
doubled by the end of the study (Rodgers et al. 2011). Consensus predictions of
HSA binding constants using the final models, generated by all three techniques
showed, RMSE = 0.55. These results justified the need for the automatic regular
updating of QSAR models (autoQSAR) in the case of ADME properties.

An analogous approach for modeling HSA binding, as well as other ADME
properties, over time is implemented in a software architecture, the so called
“Discovery Bus” which allows exhaustive exploration of descriptor and model
space, automates model validation and their continuous updating providing an
automated QSPR through competitive workflow (Cartmell et al. 2005).

Recently, ensemble machine learning-based QSPR models have been estab-
lished for a four-category classification and PPB affinity prediction, using a dataset
of 930 compounds. The structural diversity of the compounds was tested by the
Tanimoto similarity index. In the test set, the classification QSPR models proved
superior with an accuracy > 93%, while the regression QSPR models yielded
r2 > 0.920 between the measured and predicted PPB affinities, with the root mean
squared error < 9.77. Lipophilicity, expressed as XLogP, was the most important
descriptor (Basant et al. 2016).

For further PPB models and for the state of the art in predicting binding to
a1-acid glycoprotein, the second important plasma protein, the reader is referred to
a recent comprehensive review by Lambrinidis et al. (2015).
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5.2.5 Prediction Models for Metabolism

Metabolism, the M in ‘ADME’, is one of the main factors influencing the fate and
toxicity of a chemical. Metabolism or (biotransformation) includes a large set of
chemical reactions, which generally convert drugs or other xenobiotics into more
polar and more easily excreted, i.e., less toxic forms. However, in some cases,
metabolism may lead to toxic metabolites or/and intermediates. Thus, metabolites
with physicochemical and pharmacological properties that differ substantially from
those of the parent drug have important implications for both drug safety and
efficacy (Testa et al. 2004; Testa 2009).

The utility of conventional QSARs predicting the metabolic fate of chemicals is
rather limited. Most of the models are established to predict the phase I metabolism,
mainly addressing cytochrome P450 (CYP450) isoforms, a superfamily of enzymes
including more than 70 families of proteins, which play a predominant role in the
biotransformation of drugs and xenobiotics. Based on a ‘guesstimate’ of the number
of drug metabolites that are known to be produced by cytochromes P450 isoforms
and other oxidoreductases (EC 1), as well as hydrolases (EC 3), and transferases
(EC 2), it is supposed that oxidoreductases are the main enzymes responsible for the
formation of toxic or active metabolites, whereas transferases play the major role in
producing inactive and nontoxic metabolites (Testa 2009).

Terfloth et al. (2007) investigated the application of several model-building
techniques, such as k-NN, decision trees, Multilayer Perceptron as Neural Networks
(MLPNN), Radial Basis Function Neural Networks (RBF-NN), Logistic Regres-
sion (LR) and Support Vector Machine (SVM), to predict the isoform specificity for
CYP450 3A4, 2D6 and 2C9 substrates (Terfloth et al. 2007). The applied
descriptors included simple molecular properties and functional group accounts,
topological descriptors, descriptors related to the shape of molecules or the distri-
bution of interatomic distances considering the 3D structures of the molecules.
A 9-descriptor model, established by combining automatic variable selection with
the SVM technique, gave the best results. The achieved predictivity for an external
data set of 233 compounds was equal 83%. Promising results were also obtained for
the decision tree based model with three descriptors only, and 80% predictivity for
the external data set was achieved. Burton et al. (2006) constructed classification
models for human CYP1A2 and CYP2D6 inhibition using binary decision tree. The
decision tree for CYP2D6 had sensitivity 88%, specificity 92% and positive pre-
dictivity 90%. The external validation hada ccuracy 89%, sensitivity 91%, speci-
ficity 92% and precision 90%. For CYP1A2, accuracy was 89%, sensitivity 95%,
specificity 83% and precision 85% for the training set while the test set had 81%
accuracy, 76% sensitivity, 86% specificity and 85% precision. The authors identified
a range of useful descriptors. Van der Waals surface area (VSA) was particularly
efficient and allowed to develop models reaching 95% correct classification. 3D
descriptors also provided promising results. Sheridan et al. (2007) applied Random
Forest (RF) technique for predicting CYP450 (3A4, 2D6, 2C9) sites of the meta-
bolism, using descriptors that describe the environment around each non-hydrogen
atom in each molecule. The authors identified several descriptors positively and
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negatively related to the oxidation sites of molecules. Compared to the results using
MetaSite software (Molecular Discovery) of Cruciani et al. (2005), Sheridan’s
model performed better in the case of CYP3A4. For CYP2D6 and CYP2C9 the
predictions of Sheridan’s model were only slightly better.

In the case of metabolism, computer-based expert systems have a much broader
applicability. Among them MetaSite is widely used (Cruciani et al. 2005). It makes
predictions based on the lability of hydrogens and orientation effects derived from
the 3D structure of a CYP active site, independently of the availability of
pre-existing data. MetaSite can handle 3A4, 2D6, 2C9, 1A2, 2C9, and 2C19 and
can be extended to any CYP for which a homology model can be generated. It is
advantageous for enzymes such as CYP1A2 and CYP2C19, where there are not
currently enough data in the literature to generate a QSAR model. Moreover, the
MetaSite methodology is easy to use, fast and fully automated. Other expert sys-
tems are MetabolExpert, developed by CompuDrug (Darvas 1988), METEOR
(Testa et al. 2005a) COMPACT (Computer-Optimised Molecular Parametric
Analysis of Chemical Toxicity) (Lewis et al. 1996; Lewis 2001) and META,
implemented in MCASE ADME Module (MultiCASE) (Klopman et al. 1999,
1997; Talafous et al. 1994).

More information about for predicting drug metabolism can be found in a recent
review by Kirchmair et al. (2015).

5.2.6 Integrated ADME Prediction Models

In previous sections, separate models for different processes along the drug dis-
covery and development pipeline are discussed. The medicinal chemist team should
try to take advantage by applying them in their project compounds, selected by
early stage techniques, e.g., virtual screening, structure or ligand based design for
the target of interest, drug-like filtering. The multi-objective character of drug
development however has challenged the creation of software tools and web
platforms mainly for the purpose of integrated ADME and ADME-related predic-
tions. Many of them are commercial. They differ greatly in terms of their capa-
bilities and applications. Prediction software for physicochemical properties like
lipophilicity and ionization, related to ADME, has already been discussed in
Sect. 4. Solubility is another endpoint of interest for oral absorption as well as for
formulation issues. Such predictions serve as inputs to models of key ADME
properties, mainly for gastrointestinal absorption, BBB permeability, oral
bioavailability (including affinity to uptake or efflux transporter) and plasma protein
binding. Predictions of possible metabolite, as well as toxicity endpoints like
mutagenicity, carcinogenicity or teratogenicity are also implemented in certain
software. Some popular software are Know-it-All (Bio-Rad Laboratories http://
www.bio-rad.com/), ADME Boxes (Pharma Algorithms—now included in
ACD/ADME Suite), and ADMET Predictor (Simulations Plus Inc. http://www.
simulations-plus.com/). VolSurf/VolSurf + (Molecular Discovery and Tripos) also
predicts various ADME properties including passive intestinal absorption,
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blood-brain barrier permeation, solubility, protein binding, volume of distribution,
and metabolic stability on the basis of different models based on VolSurf
descriptors.

Moreover, there is a trend towards developing more sophisticated, mathematical
PBPK models, see also Sect. 5.2.2. In these software tools, in vitro and/or in vivo
ADME data are integrated with the results of QSAR/QSPR models (e.g., for per-
centage plasma protein binding or blood/brain barrier penetration) for
organism-based ADME modeling. GastroPlus and Cloe, which mimic the processes
inside living organisms, are more commonly used. Simcyp (http://www.simcyp.
com/) is a proprietary PBPK simulator that provides a platform for modeling the
ADME properties of drugs and their metabolites, as well as drug-drug interactions,
in virtual patient populations (Jamei et al. 2009).

It should be noted as a warning for using software for ADME prediction that the
results should be considered as rough estimates, useful for screening purposes or as
starting points for further modeling or experimental evidence.

6 Conclusions

Drug discovery and development is a complicated multi-objective and expensive
enterprise, with drug candidates being a compromise of competing pharmacody-
namics and pharmacokinetic processes. In silico predictions along the different
stages of the pipeline provide valuable support in the selection of drug candidates
with balanced properties, so as to control each stage early enough and reduce
failures at clinical phases. High technology provides new endpoints that may serve
to establish efficient QSAR and QSPR models, which themselves profit of the
evolution in computational and statistical techniques. Local and global models have
their own value, dependent on the underlying goal and the timeline. Initial
screening, off-target affinities or ADME properties benefit more by global models,
while local models are suitable for selected project ligands with potential affinity for
a target receptor. Interpretability of models is an important issue. The medicinal
chemist is more familiar with models containing well understandable physico-
chemical or molecular descriptors, which provide an insight in the mechanism of
action. However the most accurate model is not always the most interpretable. In
such cases the intended use of the model is the determinant factor. Nevertheless,
toxicity models for regulatory purpose must have a certain degree of interpretability
as required by OECD.

The correct use of the models implies that the user is aware of their merits and
pitfalls. Their evaluation should consider the accuracy and range of the endpoints,
while external validation with blind test sets is a strict prerequisite in particular for
global models. In such cases, determination of their applicability is useful in order
to evaluate when predictions are reliable.

In conclusion, the results of the in silico models at the different stages of drug
discovery should be taken into consideration for prioritizing the drug candidates,
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before proceeding to the next step. The ultimate goal is to produce safe and efficient
drug candidates, a goal, which can be achieved by finding the golden ratio between
affinity to the target receptor, in regard also to off-targets and the appropriate
pharmacokinetic properties in compliance with the concept of druglikeness. The
tools are available, they need to be properly used.
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