
Challenges and Advances
in Computational Chemistry and Physics
Series Editor: Jerzy Leszczynski

24

Kunal Roy    Editor 

Advances 
in QSAR 
Modeling
Applications in Pharmaceutical, 
Chemical, Food, Agricultural and 
Environmental Sciences



Challenges and Advances in Computational
Chemistry and Physics

Volume 24

Series editor

Jerzy Leszczynski
Department of Chemistry and Biochemistry
Jackson State University, Jackson, MS, USA



This book series provides reviews on the most recent developments in computa-
tional chemistry and physics. It covers both the method developments and their
applications. Each volume consists of chapters devoted to the one research area.
The series highlights the most notable advances in applications of the computa-
tional methods. The volumes include nanotechnology, material sciences, molecular
biology, structures and bonding in molecular complexes, and atmospheric
chemistry. The authors are recruited from among the most prominent researchers
in their research areas. As computational chemistry and physics is one of the most
rapidly advancing scientific areas such timely overviews are desired by chemists,
physicists, molecular biologists and material scientists. The books are intended for
graduate students and researchers.

More information about this series at http://www.springer.com/series/6918



Kunal Roy
Editor

Advances in QSARModeling
Applications in Pharmaceutical, Chemical,
Food, Agricultural and Environmental
Sciences

123



Editor
Kunal Roy
Department of Pharmaceutical Technology
Jadavpur University
Kolkata
India

ISSN 2542-4491 ISSN 2542-4483 (electronic)
Challenges and Advances in Computational Chemistry and Physics
ISBN 978-3-319-56849-2 ISBN 978-3-319-56850-8 (eBook)
DOI 10.1007/978-3-319-56850-8

Library of Congress Control Number: 2017937135

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

Quantitative structure–activity/property relationship (QSAR/QSPR)models correlate
biological activity (therapeutic or toxic) or other properties of chemicals/
pharmaceuticals/toxicants/environmental pollutants with molecular structure infor-
mation using chemometric and cheminformatic tools. These models have relevant
applications in diverse disciplines like materials property modeling, environmental
fate modeling, risk assessment, drug design, ADME/T modeling, food chemical and
agrochemical design, nanomaterials design, etc. The research output in the mentioned
areas is of paramount importance for data gap filling in case of non-availability of
experimental data. Thus, model derived predictions have applications for regulatory
purposes in chemical industries and for new analogue design in pharmaceutical, food
and agricultural industries.

QSAR models aim to explore the specific quantitative relationships between a
target activity (or property) and a set of structural and physicochemical features
encoded within some numerical quantities popularly known as descriptors. Such
models are helpful in predicting the target response for new molecules falling
within the applicability domain of the developed models. It is also possible to
derive a mechanistic interpretation of the structure–activity relationships, especially
from models which have been developed using descriptors with definite physico-
chemical meaning. The objective of structure–activity/property modeling is to
analyze and detect the determining factors for the measured activity/property for a
particular biological and/or chemical system in order to have an insight of the
mechanism and behavior of the studied system. It is now very important to validate
the developed QSAR models in order to check reliability of predictions for new
compounds. The Organization for Economic Co-operation and Development
(OECD) has recommended a set of five point guidelines for QSAR/QSPR model
development and validation, especially for regulatory purposes.

QSAR has long been used in medicinal chemistry for lead optimization and drug
design. QSAR increases the probability of success in finding an optimum lead with
desired pharmacokinetic profile thus avoiding tedious experiments with thousands
of compounds with less potential to become successful and hence avoiding colossal
expenditure. QSAR is also a very popular tool for risk assessment of chemicals in
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the absence of experimental data. Such approach is used by the United States
Environmental Protection Agency and also encouraged in the European Union’s
REACH legislation. QSAR techniques are in consonance with the ‘3Rs concept’
related to the moral principle regarding the use of sentient animals. As a result of
increasing chemicals uses, applications of analogues, SAR and QSAR approaches
by global Governmental organizations have increased.

There are four main areas where QSARs may be applied by governmental
regulatory agencies:

(i) Prioritization of existing chemicals for further testing or assessment
(ii) Classification and labelling of new chemicals
(iii) Risk assessment of new and existing chemicals
(iv) Filling of data gaps.

In addition to the applications in chemical risk assessment and pharmaceutical
development, the QSPR/QSAR findings can also be used to screen compounds with
specific applications such as food additives, antioxidants and nanomaterials.

This volume aims at describing the fundamentals of QSAR modeling and
showcasing some recent advancements of QSAR applications in Pharmaceutical,
Chemical, Food, Agricultural and Environmental Sciences. There are 15 chapters
on different topics of QSAR theory, methods and applications included in this book.

Chapter “Towards the Revival of Interpretable QSAR Models” authored by
Chanin Nantasenamat and others gives a good introduction of the key topic QSAR.
It highlights the basic steps of model development and validation, discusses various
molecular descriptors and statistical techniques for model development. This
chapter also discusses key issues influencing and contributing to the interpretability
of QSAR models.

Chapter “The Use of Topological Indices in QSAR and QSPR Modeling”
authored by John C. Dearden gives an overview of topological descriptors and their
use in QSAR/QSPR studies. The author also mentions about biodescriptors, chi-
rality and software availability in connection with topological descriptors.

Chapter “Which Performance Parameters Are Best Suited to Assess the
Predictive Ability of Models?” has been authored by Karoly Heberger and
co-authors. The authors have revisited the debate topic of choice of external vali-
dation versus cross-validation as a better tool for judging the predictive potential of
QSAR/QSPR models. Using the sum of ranking differences (SRD) methodology
coupled with ANOVA, the authors claim the superiority of cross-validation, at least
in the case studies reported by them.

Chapter “Structural, Physicochemical and Stereochemical Interpretation of QSAR
Models Based on Simplex Representation ofMolecular Structure” authored byVictor
Kuzmin and others shows the applicability of simplex descriptors to development of
interpretable models using several case studies. The authors also demonstrate the
applicability of the SiRMS approach to stereochemical interpretation.

Chapter “The Maximum Common Substructure (MCS) Search as a New Tool
for SAR and QSAR” is authored by Giuseppina Gini and others. This chapter
discusses relevance of a similarity measure exclusively based on the maximum
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common substructure and its implementation in a new software tool developed by
the authors and integrated into the ToxRead software. The authors’ approach can be
used for read across, where only local information about one or two similar
molecules is used, or in assessing the prediction of QSAR results, or in refining the
results of SAR systems that apply structural alerts.

Chapter “Generative Topographic Mapping Approach to Chemical Space
Analysis” is written by Alexandre Varnek and others. This chapter describes
Generative Topographic Mapping (GTM) and its application as a predictive tool for
analysis of chemical space. The strengths of GTMs in chemical space navigation
and analysis are critically reviewed.

Chapter “On Applications of QSARs in Food and Agricultural Sciences: History
and Critical Review of Recent Developments” authored by Jerzy Leszczynski and
others) presents the currently available information on diverse groups of molecules
with applications in agriculture and food science that have been subjected to in
silico modeling studies. The authors have also enlisted available agrochemical, food
and flavor databases along with an extensive list of software tools and online
resources for QSAR and other related in silico modeling studies.

Chapter “Quantitative Structure-Epigenetic Activity Relationships” authored by
Jose Medina-Franco and others) has analyzed the progress of QSAR models
developed for compound databases screened with epigenetic targets. This chapter
also analyzes epigenetic activity landscape modeling, activity cliffs, and activity
cliff generators and their relevance to develop QSAR models.

Chapter “QSAR/QSPR Modeling in the Design of Drug Candidates with
Balanced Pharmacodynamic and Pharmacokinetic Properties” is authored by Anna
Tsantili-Kakoulidou and others. It showcases the application of QSAR/QSPR in
drug discovery process. This chapter discusses several case studies related to
application of QSAR in modeling pharmacodynamics and pharmacokinetics of
drug substances.

Chapter “Strategy for Identification of Nanomaterials’ Critical Properties Linked
to Biological Impacts: Interlinking of Experimental and Computational Approaches”
authored by Iseult Lynch and others discusses on physicochemical properties of
nanomaterials in connection with their toxicological outcome and application of
QSAR in prediction of nanomaterial uptake and toxicity. This chapter also highlights
the gaps between measured physicochemical parameters and calculated QSAR
descriptors for nanomaterials.

Chapter “In Silico Approaches for the Prediction of In Vivo Biotransformation
Rates” is authored by Ester Papa and others. This chapter illustrates the develop-
ment and application of in silico models for in vivo biotransformation rates and half
lives of chemicals. This chapter also describes the complementary role of in vitro
biotransformation rate estimation and the subsequent in vitro-to-in vivo extrapo-
lation calculations for refining bioaccumulation model predictions.

Chapter “Development of Monte Carlo Approaches in Support of Environmental
Research” written by Emilio Benfenati and others shows application of the CORAL
software for evaluation of environmental effects of various chemical compounds.
The mechanistic interpretation and domain of applicability of the models for
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various environmentally important endpoints was also discussed from different case
studies.

Chapter “Environmental Toxicity of Pesticides, and Its Modeling by QSAR
Approaches” is authored by A. Amrane and others. The chapter reviews pollution
by pesticides and their effects on the entire ecosystem. A critical review of QSAR
models for the prediction of the toxicity of pesticides is also provided.

Chapter “Counter-Propagation Artificial Neural Network Models for Prediction
of Carcinogenicity of Non-congeneric Chemicals for Regulatory Uses” written by
N. Fjodorova and others focuses on QSAR models for prediction of carcinogenic
potency based on counter-propagation artificial neural network algorithm. These
models were developed in the scope of CAESAR and PROSIL projects and
implemented in online available internet platform VEGA.

Chapter “Big Data in Structure-Property Studies—From Definitions to Models”
authored by Jaroslaw Polanski discusses what big data is and how important big
data can be in drug design. This chapter also analyzes the big data types that are
available in drug design as well as the methods that are used for their analyses.

I hope that this collection of 15 chapters will be helpful to the researchers
working in the field of QSAR modeling. I am especially thankful to the Series
editor Prof. Jerzy Leszczynski for his help during development of this book and to
the publisher for bringing out this volume.

Kolkata, India Kunal Roy
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Towards the Revival of Interpretable
QSAR Models

Watshara Shoombuatong, Philip Prathipati, Wiwat Owasirikul,
Apilak Worachartcheewan, Saw Simeon, Nuttapat Anuwongcharoen,
Jarl E. S. Wikberg and Chanin Nantasenamat

Abstract Quantitative structure-activity relationship (QSAR) has been instrumental

in aiding medicinal chemists and physical scientists in understanding how modifi-

cation of substituents at different positions on a molecular structure exert its influ-

ence on the observed biological activity and physicochemical property, respectively.

QSAR has received great attention owing to its predictive capability and as such

efforts had been directed toward obtaining models with high prediction performance.

However, to be useful QSAR models need to be informative and interpretable in

which the underlying molecular features that contribute to the increase or decrease

of the biological activity are revealed by the model. Thus, the aim of this chapter is

to briefly review the general concepts of QSAR modeling, its development and dis-

cussions on key issues influencing and contributing to the interpretability of QSAR

models.
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1 Introduction

Quantitative structure-activity relationship (QSAR) can be considered to be one of

the pillars for driving drug discovery efforts forward by enabling practitioners to

make sense of the big data from bioactivity assays of chemical library (Nantasena-

mat et al. 2009, 2010; Cherkasov et al. 2014). Computer-aided drug design or sim-

ply computational drug design is essentially comprised of four major levels: (i) frag-

ment, (ii) ligand, (iii) structure and (iv) systems based approaches (Nantasenamat and

Prachayasittikul 2015). QSAR is a ligand-based approach meaning that it primarily

makes use of information derived from ligands that does not require the need for

details of the target protein. Thus, ligand-based approaches are particularly suited in

situations where there is negligible information on the biological target. The reasons

for using QSAR and quantitative structure-property relationship (QSPR) models are

many: (i) to reduce time and cost; (ii) to rationally predict biological, pharmaceu-

tical, physical and chemical activities/properties; (iii) to aid experimental scientists

by providing the collective wisdom learned from previous big data; (vi) to shed light

on the mechanism of action for biological activities of interest. QSAR/QSPR has

found wide applications in the life sciences (Prachayasittikul et al. 2015) (e.g. biol-

ogy, agriculture and medicine) as well as the physical sciences (Katritzky et al. 2010)

(e.g. organic chemistry, physical chemistry, materials sciences). In drug discovery,

QSAR has been successfully applied in the prediction of logP and pKa values as

well as absorption, distribution, metabolism, excretion and toxicity (ADMET) prop-

erties (Khan and Sylte 2007). It is indeed a difficult task to design a drug that exert

activity toward the target protein(s) of interest while at the same time show proper

uptake, metabolism, excretion and be devoid of toxicity. To aid medicinal chemists

in understanding the origin of ADMET properties Gleeson proposed a set of simple

and interpretable rules through the use of principal component analysis of simple

descriptors (e.g. molecular weight, logP, ionization state, etc.) (Gleeson 2008).

The robustness of QSAR relies on its capability to predict the biological activities

or chemical properties of interests by learning from retrospective experimental data

sets. Particularly, each compound in a chemical library is quantitatively or qualita-

tively described by a set of molecular descriptors and such vector of descriptors (also

known as independent variables in statistics) are mathematically correlated with the

biological or chemical endpoint of interest (i.e. pIC50, logP, etc.) via traditional mul-

tivariate analysis or machine learning algorithm. However, it is worthy to note that

QSAR models is only as good as the data that was used to train it and in spite of its

predictive capability it should not be viewed as a replacement of domain knowledge
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of scientists but rather should be considered as a complementary tool for aiding the

decision-making process.

In spite of its widespread usage, it seems that the full potential for QSAR mod-

els has not yet been achieved as current efforts are localized on generating models

with good predictive performance at the cost of vague or uninterpretable models.

Most robust machine learning algorithms are so-called black box since the underly-

ing features contributing to the variation in the endpoint values are not accessible

to practitioners. To be of benefit for the experimental biologist or chemist, mod-

els need to be transparent such that the underlying important features are revealed.

Moreover, features describing the general or unique characteristics of compounds

needs to be unambiguous, interpretable and easily comprehensible. Upstream to the

issue of interpretability is the accessibility or the know-how on the development of

robust QSAR models. Nowadays, the construction of QSAR models may seem to

be a trivial and mainstream task in computational drug design. However, a robust,

reliable and reproducible model can only be achieved through careful data curation

and analysis, which certainly requires the expertise of trained practitioners. This is

particularly true as not all starting data set is modelable or may not always yield

promising results right out of the box owing to several inherent issues that will be

discussed in this chapter.

2 Brief History of QSAR

More than a century ago, QSAR was developed by several research groups. The pre-

cursor to the birth of QSAR began in 1863 when Cros (Cros 1863) observed that

there exists an inverse correlation between toxicity and water solubility. Particularly,

the toxicity of alcohols toward mammals increased as the water solubility of alco-

hols decreased. Shortly after, Crum-Brown and Fraser (1868) reported that there

was a correlation between chemical substituents and their physiological properties.

Later in the 1890s, Hans Horst Meyer reported that the toxicity of organic com-

pounds depended on their lipophilicity (Borman 1990; Lipnick 1991). Subsequently,

the linear correlation between lipophilicity (e.g. oil-water partition coefficients) and

biological properties was investigated. Louis Hammett (Hansch et al. 1991) investi-

gated the relationship between electronic properties of organic acids and bases with

their equilibrium constants and reactivity. These early studies form the basis for the

development of modern QSAR by establishing the idea that molecular structures

directly influenced the endpoint (i.e. biological activity and chemical property) of

interest. In 1962, Hansch et al. (1962) formally coined the term QSAR and laid its

initial foundations by investigating the structure-activity relationship (SAR) of plant

growth regulators and pesticides and their dependency on Hammett constants (Ham-

mett 1937) and hydrophobicity (Gallup et al. 1952).

The Free-Wilson model (Free and Wilson 1964) is a simple and efficient method

for the quantitative description of SAR. It explains the variation in a series of

congeneric compounds using the presence or absence of substituents or functional
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groups as molecular descriptors. It is the only numerical method that directly relates

structural features with biological properties, which is in contrast to Hansch analy-

sis where physicochemical properties are correlated with biological activity values

(Kubinyi 1988). Nevertheless, both approaches are closely interrelated, not only

from a theoretical point of view but also in their practical applicability (Kubinyi

1988). In many cases both models were combined to a afford a mixed approach

that includes Free-Wilson type parameters for describing the activity contributions

of certain structural modifications and physicochemical parameters for describing

the effect of substituents on the biological activity (Kubinyi 1988; Wei et al. 2001).

Many successful applications, especially from the work of Hansch and his group

(Verma and Hansch 2009; Hansch et al. 2002; Kurup et al. 2000; Gao et al. 1999;

Selassie et al. 2002; Kurup et al. 2001; Hansch and Gao 1997; Kurup et al. 2001;

Hansch et al. 1996; Hadjipavlou-Litina et al. 2004; Garg et al. 1999, 2003) on the

SAR of enzyme inhibitors, demonstrated that this combined model affords stellar

performance for classical QSAR (Hansch 2011). Several variations to Free-Wilson

approach have been developed and recently found useful applications in fragment-

based drug design (Eriksson et al. 2014; Chen et al. 2013; Radoux et al. 2016).

The field of QSAR modeling had evolved progressively and this encompasses two

radical transformations as follows:

1. Paradigm shift from the classical to the non-classical QSAR approach (Fujita

and Winkler 2016). The former is based on a small set of congeneric series of

compounds that usually have a single mode of action while the latter is based on

large, heterogeneous and non-congeneric data set that may contain several mode

of actions.

2. Paradigm shift of QSAR models (Nantasenamat et al. 2009, 2010; Cherkasov

et al. 2014) that considers the SAR of several compounds against a single target
protein to the so-called proteochemometric model (Cortes-Ciriano et al. 2015;

Qiu et al. 2016) (sometimes referred to as computational chemogenomics) that

investigates the SAR of several compounds against several target proteins.

3 How Far Can QSAR Take Us: Can It Really Bring
a Drug to Market?

QSAR modeling have evolved from concept to initial hype followed by skepticism

thereby leading to the identification of their pitfalls and caveats to a moderation of

their expectations (Doweyko 2008). QSAR models are routinely used in the predic-

tion of physicochemical properties (e.g. logP, pKa and solubility) as well as phar-

macokinetic and toxicity endpoints (e.g. permeability, plasma protein binding, liver

toxicity, carcinogenicity, seizure and off-target activities). However, their usage for

actual lead identification and optimization phase has remained quite limited. The

skepticism from medicinal chemists towards QSAR models stems from the inabil-

ity of descriptor based QSAR models (constructed using fingerprints and various
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topological descriptors) to rationalize activities in terms of simple, meaningful and

constructive ways that can clearly provide details on what modifications should be

made to the chemical structure that can afford activity enhancement. Furthermore,

with better ability to assimilate data from human readable patents and publica-

tions of SAR data in concomitant with better understanding of the isosteric concept,

medicinal chemists are better able to capture the underlying principles of SAR and

make synthetically feasible and conservative predictions. However, many encourag-

ing signs are beginning to appear as more robust machine learning algorithm and

interpretable molecular descriptors are being developed. It is still early to predict the

potential of QSAR modeling for bringing a drug to market since they are used in the

early stages of a drug discovery project. With the ever increases in the availability of

clinical and adverse effect data, the use of QSAR modeling together with comple-

mentary computational approaches (e.g. cheminformatics, computational chemistry,

molecular docking, molecular dynamics, etc.) helps improve the odds of bringing a

drug to market. QSAR modeling in combination with other computer-aided drug

design techniques have already shown numerous success stories as summarized in

an excellent report by Kubinyi (2006).

3.1 Why Does QSAR Fail?

QSAR modeling, like many other research disciplines, has had its fair share of ups

and downs. Many predicted the eventual demise of QSAR due to the advances in

synthetic chemistry techniques (e.g. combinatorial chemistry) and assay attributes

(e.g. automation and miniaturization). Drug discovery researchers dissolution with

QSARs is rooted in the fact that it has yet to demonstrate a robust ability to pre-

dict the desired biological activities. The disappointing results from QSAR mod-

els in certain situation can be attributed to features obtained by chance correlation,

rough response surfaces, incorrect functional forms and overtraining (Johnson 2008;

Doweyko 2008). Particularly, rough response surfaces are an inherent characteristic

of SAR data sets that nevertheless significantly affect the QSAR model predictions.

For instance, most aminergic GPCR ligands’ agonistic activities correlate with their

pKa and in many instances an order of magnitude change in the pKa results in a

comparable or even an multi-fold change in the biological activity. Such conserv-

ative change in the chemical structure leading to a large change in the activity are

often not captured by QSAR models which rely heavily on statistical approaches

to capture the features that cause the biological responses. On the other hand, a

chemist quickly grasps the trend using rational thought, controlled experiments and

personal observation assisted by prior knowledge of the protein’s structure-function

relationships. This over-reliance on statistical procedures by QSAR researchers for

feature selection and data modeling has led to the identification of features that may

have no mechanistic role in modulating the activities but might have correlated by

chance. The excessive emphasis on machine learning has also resulted in model

overfitting, models that uses the incorrect functional forms and/or highly predictive
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models with vague or little interpretability. Hence, the resulting QSAR models do

not reflect the reality of the binding or modulation event, which causes the predic-

tions to eventually fail. Thus, to derive meaningful hypothesis, practitioners should

not blindly rely on results from computational models but should view the results

as hints or guides for supporting their own decision-making process (Nantasenamat

and Prachayasittikul 2015). Thus, it is recommended to implement some form of

expert knowledge guided component in the QSAR workflows such that new solu-

tions are built upon prior knowledge of targets and their modulation (Saxena and

Prathipati 2003). In fact, such data-driven approach as implemented in the HAD-

DOCK docking software (Vries et al. 2010) relies on prior biochemical and biophysi-

cal data to drive the docking simulations. Moreover, several recent blinded genomic

challenges for phenotype prediction such as sbvImprover (Tarca et al. 2013) and

DREAM (Costello et al. 2014) also suggests that the inclusion of prior knowledge

can significantly enhance the predictive power while consuming minimal computa-

tional resources. In this context, the use of interpretable molecular descriptors aided

by transparent machine learning models can greatly alleviate the existing problems of

QSAR models.

4 Recommendations for Building Robust QSAR Models

In practice, the development of QSAR models can be carried out to reveal the rela-

tionship between the chemical structures and their respective endpoint through the

use of various types of mathematical and statistical methods for constructing pre-

dictive models that can reveal the origin of bioactivity of interest. A typical m × n
data matrix is comprised of m descriptors and n compounds. A closer look at the M
descriptors revealed that it is typically comprised of a set of Xij descriptors and an yi
endpoint. In a nutshell, a typical QSAR model is essentially described by an equa-

tion the form of Y = f(X) + error that can be used to predict the endpoint for new

compounds in lieu of cost and time-consuming approaches. The classical QSAR

modeling workflow can be broken down into five prime steps as demonstrated in

Fig. 1.

Thus far, several thousands of QSAR models have been developed for various

endpoints and these models are created using different model construction schemes

(e.g. stringency of data pre-processing, descriptor types, learning methods and eval-

uation metrics) and published in the public domain (i.e. this is not including the

thousands of QSAR models developed in pharmaceutical companies that are not

ever published). The variability in the methods used for the QSAR models and their

quality may obviously give rise to different outcome for the conclusions possible to

draw from them. To further complicate the picture, the reproduction of QSAR mod-

els by following the often rather vague instructions in the Methodology sections

of research articles do not always yield the same outcome as in the original article

owing to the aforementioned factors.
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Fig. 1 General workflow of

QSAR modeling. Raw data

compiled from the literature

or public databases are often

noisy and dirty and therefore

requires curation to clean the

data. In this example,

redundant chemical structure

is removed followed by

descriptor calculation, model

building and model

performance evaluation
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Table 1 Summary of the OECD principles for QSAR modeling

No. OECD principles Description

1 Defined endpoint To ensure that all endpoint values within a

given data set are consistent

2 Unambiguous algorithm To ensure transparency and

reproducibility of the proposed QSAR

model

3 Defined applicability domain To determine the boundaries in which the

model is robust for predicting query

compounds

4 Measures of model’s predictive potential To evaluate the internal and external

predictive power of the model

5 Mechanistic interpretation To ensure that the underlying mechanism

of action of compounds can be elucidated

Thus, owing to such lack of standards in QSAR/QSPR modeling, the OECD prin-

ciples was established to address such issues. This first draft initially took place in

Setubal, Portugal in 2002 and a revised version in Paris, France in 2004 at the Work-
shop on Regulatory Acceptance of QSAR Modelling for Human Health and Envi-
ronmental Endpoints and 37th Joint Meeting of Chemicals Committee and Working
Party on Chemicals, Pesticides & Biotechnology, respectively (Worth and Cronin

2004). It has been mandated that to facilitate the consideration of a QSAR model for

regulatory purposes, the model should conform to the five principles summarized in

Table 1.

Moreover, the integrity of a QSAR model could be pursued by following sug-

gested sets of standards and best practices (Dearden et al. 2009; Tropsha 2010;

Tropsha et al. 2003; Dimova and Bajorath 2016; Spjuth et al. 2010) in the devel-

opment of robust QSAR models. Particularly, Tropsha et al. stressed the importance

of leave-many-out validation, bootstrapping, Y-scrambling test and external valida-

tion. Moreover, conflicting viewpoints exist on whether to evaluate the robustness of

QSAR models on the basis of external validation in which Hawkins et al. (2003) is

against this while Esbensen and Geladi (2010) is in support of this. Moreover, recent

investigations clearly favor cross-validation over a single external one (Gütlein et al.

2013; Rácz et al. 2015).

In a nutshell, the development of robust QSAR models should address the follow-

ing key issues:

1. Data curation—The curation or pre-processing of data sets prior to performing

any form of data analysis is of utmost importance for QSAR modeling. Raw data

sets are often noisy or dirty in the sense that they may inherently contain redun-

dant compounds, redundant descriptors, incorrect representation of the chemical

structure or molecular charge. Curation helps to clean and increases the reliabil-

ity of the data set for subsequent analysis.
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2. Modelability—Modelability is an a priori estimate of the feasibility to obtain

externally predictive QSAR models. Modelability is based on the fact that QSAR

models are influenced either by data set characteristics (i.e. size, chemical diver-

sity, activity distribution, presence of activity cliffs, etc.), or by modeling work-

flow steps (e.g. data set curation, feature selection, external validation, consen-

sus modeling, applicability domain, etc.). Particularly, influences arising from

the composition of the modeling workflow can be quantified and can be varied

given the wide range of molecular descriptors and machine learning methods

that are available. However, effects of data set characteristics can be rather dif-

ficult to quantify. While size and chemical diversity are subjective attributes of

a data set and are difficult to quantify, recent advances have provided methods

for objective quantification of activity cliffs (Guha and Drie 2008; Seebeck et al.

2011; Bajorath 2014; Stumpfe et al. 2014; Hu et al. 2012). Building on the ear-

lier proposed concept of the activity cliffs, Golbraikh et al. (2014) proposed a

novel modelability index (MODI) that can be easily computed for any dataset at

the onset of any QSAR investigation.

3. Reproducibility—This important issue is often overlooked by the QSAR com-

munity. This is particularly true as often times, QSAR models are built using

proprietary software or code that are often restricted to a selected few and not

accessible to the general public thereby precluding further attempts to make use

of these models. Moreover, the reproduction of QSAR models is a very difficult

task indeed as the construction of QSAR models employs different data sets (e.g.

different version of the same bioactivity databases such as ChEMBL 19, 20 or

21; it is also highly likely that data sets focused on the same target protein and

performed by different laboratory tend to contain different compounds as they

may be compiled from different papers), descriptor types, learning methods and

evaluation metrics. Spjuth et al. (2010) examines this issue by proposing an open

XML format known as QSAR-ML to formalize QSAR data sets with meta-data,

which will facilitate the exchange and reproducibility of the model.

4. Model validation—The robustness of QSAR models is reliant on stringent val-

idation of QSAR models. Several validation strategies including (1) random-

ization of the modelled property also known as Y-scrambling, (2) k-fold cross-

validations and (3) external validation using rational division of a data set into

training and test sets are currently the de facto standard for ensuring the utility

of a model for virtual screening (Tropsha et al. 2003).

5. Outliers—Outlying compounds are those molecules which have unexpected bio-

logical activity and do not fit in a QSAR model owing to the fact that such

compounds may be acting in a different mechanism or interact with its respec-

tive target molecules in different modes (Nantasenamat et al. 2009; Verma and

Hansch 2005). Similarly, conformational flexibility of target protein binding site

(Kim 2007a) and unusual binding mode are attributed as the possible source of

outliers (Kim 2007b). Mathematically speaking, an outlier is essentially a data

point that has high standardized residual in absolute value when compared to the

other samples of the data set. Furthermore, the building of robust and reliable

QSAR models generally emphasizes two major aspects: (1) feature selection and
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(2) outlier detection. The two problems are interrelated as outlier definitions are

dependent on the selected features. In the realm of QSAR, outliers can be clas-

sified as belonging to the following two types: (1) those that fall outside the

applicability domain or (2) activity cliffs as discussed in the next section. As the

applicability domain considers both chemical and biological space, therefore

outliers with respect to biological space can be safely eliminated from QSAR

models. However outliers defined based on the chemical space needs further

attention. Recent methods such as those from Cao et al. (2011) have argued

in support for simultaneously performing variable subset selection and outlier

detection using the idea of statistical distribution that can be simulated by the

establishment of many cross-predictive linear models. Their approaches build on

the concept that the distribution of linear model coefficients provides a mecha-

nism for ranking and interpreting the effects of variables while the distribution

of prediction errors provides a mechanism for differentiating the outliers from

normal samples (Cao et al. 2011).

6. Applicability domain—The applicability domain (AD) (Sahigara et al. 2013) of

a QSAR model defines the model limitations with respect to its structural sub-

space and response space. AD is an indication of the degree of generalization

of a given predictive model. AD associated with an endpoint prediction is often

well defined if the endpoint prediction for a chemical structure is within the

scope of the model. The AD is thus critically reliant on the sampling of chem-

ical subspace and the range of biological readouts that are used for the model

development (Sheridan 2015). A commonly overlooked aspect in AD is also the

influence of molecular descriptors, generally degenerate and transparent mole-

cular descriptors such as logP, pKa, etc. afford better degree of generalization

to the model while lacking the superior predictive abilities of the more recent

topological graph-based descriptors. The various approaches for AD determi-

nation are classified as range-based (e.g. bounding box, principal component

analysis bounding box and convex hull) and geometric methods (e.g. k-nearest

neighbours, DTs, probability density based methods) (Sahigara et al. 2012).

7. Structure-activity cliffs—Compounds within a congeneric series whose subtle

differences in the chemical structure lead to striking differences in the observed

bioactivity are called activity cliffs (Bajorath 2014). Although, the activity cliffs

are appealing to medicinal chemists their presence may be detrimental to QSAR

models. The inclusion should be carefully reviewed after analyzing for filters

such as PAINS (Baell and Holloway 2010) as unusual activity could be due to

a wide range of mechanisms such as outliers of different kinds or even the pres-

ence of reactive functional groups (Saxena and Prathipati 2006). However, these

compounds belonging to the activity cliffs are currently categorized as outliers

and frequently removed from QSAR models (Guha and Drie 2008). The MODI

quantifies the extent of activity cliffs and serves as a guide to the modelability

of a data set (Golbraikh et al. 2014).

8. Feature selection—The number of molecular descriptors that can capture vari-

ous aspects of a chemical structure have proliferated in recent years (Todeschini

and Consonni 2008). Hence, feature or variable selection is an important and hot
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area of research (Guyon 2003; Eklund et al. 2014; Goodarzi et al. 2013). In the

context of QSAR studies, feature selection improves interpretability by neglect-

ing non-significant effects thereby reducing noise, enhancing generalization by

reducing overfitting (also known as reduction of variance), increasing the mod-

els’ predictive ability and speeds up the QSAR model building process (Sax-

ena and Prathipati 2003). Some widely used and relevant approaches for QSAR

studies includes: (1) all subset models (ASM), (2) sequential search (SS), (3)

stepwise methods (SW), (4) genetic algorithm (GA), (5) particle swarm opti-

mization (PSO), (6) ant colony optimization (ACO), (7) least absolute shrink-

age and selection operator (LASSO), (8) elastic net and (9) variables impor-

tance on PLS projections (VIP) (Eklund et al. 2014), (10) correlation-based

feature selection (CFS) (Hall 1999), (11) simulated annealing (Siedlecki and

Sklansky 1988), (12) sequential feature backward selection (Pudil et al. 1994),

(13) sequential feature forward selection (Pudil et al. 1994), (14) minimum-

redundancy-maximum-relevance (mRMR) (Peng et al. 2005), (15) ReliefF (Liu

and Motoda 2007), (16) Tikhonov regularization (Destrero et al. 2009), (17)

recursive feature elimination (RFE) (Guyon et al. 2002), (18) random forest (RF)

(Breiman 2001), (19) decision tree (DT) (Quinlan 1993), etc.

9. Class imbalance—Class imbalance in supervised machine learning is a major

confounding problem for the construction of QSAR models (Li et al. 2009). In a

classification setting, the size of the active and inactive sets of compounds may

be significantly disproportional and may therefore lead to biased predictive mod-

els. Several solutions that include artificially undersampling the overrepresented

class or oversampling the underrepresented class or using one class learning or

cost-sensitive training have all been suggested as possible remedies to address

this issue (Zakharov et al. 2014; Capuzzi et al. 2016).

10. Chance correlation—Objectivity is a critical component of any hypothesis gen-

erating workflow including QSAR. It has been stressed that causation and cor-

relation are indeed two different things and that a model’s performance may

possibly arise by chance. A possible remedy is to apply Y-scrambling (Rucker

et al. 2007) to evaluate model robustness.

11. Confidence/reliability of the model—QSAR models are not universally applica-

ble as predictions may fail under certain conditions. QSAR models are based

on mathematical formulations for modeling the bioactivity as well as to draw

conclusions from. Their utilization in medicinal chemistry encompasses idea

generation, virtual screening and knowledge discovery. Hence, the confidence

in the predictions derived from QSAR model should be accessible. Substantial

efforts have been devoted to research on this topic within the QSAR community

over the last decade and a number of methods have been suggested for estimat-

ing the confidence of QSAR predictions. These confidence estimates are typi-

cally based on the very loosely defined concept of a QSAR models applicability

domain (AD), which is described as the response and chemical structure space

in which the model makes predictions with a given reliability. The assumption is

that the further away a molecule is from a QSAR models AD,the less reliable the

prediction becomes. This confidence measure can be afforded by an approach
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known as conformal prediction (Shafer et al. 2008), which has been success-

fully applied in QSAR modeling (Eklund et al. 2012). The conformal prediction

framework provides a unified view of the different approaches for estimating a

QSAR models AD. Moreover, conformal prediction provides a natural and intu-

itive way of interpreting the AD estimates as prediction intervals with a given

confidence.

12. Interpretability of the model—Perhaps, the most important contribution of

QSAR modeling lies in their ability to propose a hypotheses to rationalize the

binding/function modulation phenomenon via interpretation of the model’s fea-

tures. In view of its critical role in fulfilling the objectives of QSAR model-

ing, we focus our chapter on their interpretability. The hypothesis gleaned from

QSAR models can benefit biologists and chemists by providing insights into

the cause-effect relationships between molecular features and bioactivity mea-

sures. These insights can aid medicinal chemists to design future SAR stud-

ies objectively and comprehensively. They can also assist molecular and struc-

tural biologists in proposing candidates for site-directed mutagenesis and related

structure-function experiments. This chapter proposes the use of interpretable

molecular descriptors together with interpretable machine learning methods.

Recent interest in the field had also shifted towards making the black box learn-

ing methods more transparent and amenable to interpretations, which will be

covered in the forthcoming sections.

5 Trade-Offs Between Performance and Interpretability

Over the past decades, many QSAR studies had predominantly focused on enhancing

and improving the predictive performance instead of the interpretability of the model

(Fujita and Winkler 2016). The shift can be seen in QSAR model descriptors mov-

ing away from the physicochemical and indicator variables of Hansch-Fujita and

Free-Wilson approaches towards highly non-degenerate and continuous molecular

descriptors which offer high predictive power. However, improved understanding

of the concepts of bioisosterism and the molecular recognition events, identifica-

tion of problems associated with capturing molecular structures and errors in assay

data of widely used SAR databases give credence to the use of moderately degen-

erate and interpretable 1D or fingerprint based molecular descriptors as expanded

elsewhere in this chapter. Learning methods in QSAR modeling have evolved from

simple interpretable methods such as linear regression as used by Hansch and Fujita

to the complex black box approaches such as neural networks and deep learning.

While many experts agree with the obvious improvements (i.e. approximately 10%)

to the predictive power from these complex machine learning methods, they argue

that the loss of interpretability of the feature contributions are not worth the gain in

predictive power. Hence, in Sect. 8.1.4 we expand upon the recent advances in rule

extraction techniques that help to provide enhanced interpretation of the complex

black box approaches. This section also presents several recent enhancements that
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significantly improve the predictive power of the white box learning approaches.

Hence, this chapter presents and advance the case for interpretable QSAR models

in drug discovery research. We argue that a simple and interpretable QSAR model

with modest predictive performance would be more valuable to experimental scien-

tists than a highly predictive but black box model since no or minimal insights can

be gained from it.

6 Reverse Engineering of QSAR models

Designing new molecules corresponding to the given biological activity is invaluable

to the chemical, material and pharmaceutical industries. The traditional approaches

of computer-aided molecular design based on QSAR modeling can be used to solve

two main problems: (i) forward QSAR problem, which identifies the compounds’

structural and physicochemical features related to the experimental readout using

machine learning (ii) inverse QSAR problem that seeks to reconstruct compounds’

structures which correspond to the specific features related with the readout (Faulon

et al. 2005; Brown et al. 2006).

The inverse problem is generally addressed as a subgraph construction. Previ-

ously, there were five types of approaches to solve the inverse problem: random

search, heuristic enumeration, mathematical programming, knowledge-based sys-

tem, and graphical reconstruction methods. The inverse QSAR analysis is quite chal-

lenging for various reasons: combinatorial complexity of the search space, design

knowledge acquisition difficulties, nonlinear structure property correlations, and

problems in incorporating higher level chemical and biological knowledge (Venkata-

subramanian et al. 1995). Thus, it is not surprising that constructing new structural

compound given a desired activity is a long-standing problem. In practice, the inverse

QSAR method can be divided into the common four steps (Skvortsova et al. 1993;

Wong and Burkowski 2009; Churchwell et al. 2004; Visco et al. 2002; Weis et al.

2005). Firstly, a QSAR equation is constructed to derive a forward QSAR model that

essentially discerns the relationship between a set of descriptors and their activities.

The second step is to generate the set of constraint equations with integer coeffi-

cients. The constraints are used for ensuring that the constructed compounds afford

the desired activities. There are two types of constraint equations: graphical and

consistent equations, which are then solved in the third step. Finally, the compound

structures are enumerated and constructed to afford the desired activity while their

activities are predicted using the forward QSAR model described in the first step.

Until now, there are relatively few studies providing computational-based

models for solving this problem (Visco et al. 2002). Almost all of the proposed

computational-based methods that are used are essentially a stochastic model in

nature and use either genetic algorithm (GA) or Monte Carlo simulated anneal-

ing approach to construct new chemical compounds. In 1995, Venkatasubramanian

et al. (1995) and Sheridan and Kearsley (1995) proposed a stochastic model based on

Monte Carlo. GA is a general purpose approach based on the Darwinian
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principle for natural selection and evolution, which are used for stochastic, evolution-

ary search, and optimization strategies. The main advantage of GA lies in its abil-

ity to allow a dynamically evolving population of molecules to gradually improve

by competing for the best performance. However, the problem from these stud-

ies represent a combinatorial explosion (Kvasnicka and Pospichal 1996). In order

to analyze a huge number of compounds, Kvasnicka and Pospichal (1996) devel-

oped a new approach based on a random search that not only afford all solutions but

also provide users with a high probability of deriving the correct solution. In 2002,

Visco et al. introduced the use of signature descriptors to represent compounds as

molecular graphs. In this study, a set of 121 HIV-1 protease inhibitors were ana-

lyzed by comparing the proposed QSAR model with other descriptor types consist-

ing of connectivity indices, KierHall shape indices, fragments, electrotopological

states and information indices. This work also revealed that signature descriptors

are particularly well suited for tackling the inverse problem (also see the work from

Faulon 1994, 1996; Faulon et al. 2003; Churchwell et al. 2004; Faulon et al. 2004;

Weis et al. 2005). Also from the same group, Churchwell et al. (2004) applied the

inverse QSAR approach to a small set of peptide inhibitors that targets the leukocyte

functional antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) complex.

Their prediction results showed that the predicted IC50 values were very close to

that of the experimental IC50 values. Practically, the inverse QSAR problem is rel-

atively difficult when compared to the forward QSAR problem because the mole-

cular descriptors used for constructing the inverse QSAR model must adequately

address the forward QSAR model for the activity or property of a given data, if the

subsequent recovery phase is to be meaningful. Additionally, a major problem is to

reconstruct and enumerate the chemical structures from its extracted descriptors. To

solve such problem, Wong and Burkowski proposed (Wong and Burkowski 2009) a

new workflow using a vector space model molecular descriptor (VSMMD) to rep-

resent the chemical structures. Their proposed inverse QSAR model consists of five

key steps: (i) calculating the VSMMD for each compound from the training set;

(ii) apply the kernel function (i.e. more detail is discussed in a subsequent section)

to map each VSMMD from the input space (i.e. low dimension) to the feature space

(i.e. high dimension); (iii) designing a new point in the feature space using a kernel

function algorithm; (iv) map the new point from the feature space and trace back

to the input space using a pre-image approximation algorithm and (v) building the

chemical structures using the VSMMD recovery algorithm.

As can be seen, inverse QSAR models has great potential for obtaining desirable

compounds directly from the trained QSAR model. Further work in this area is highly

encouraged as to help steer towards the practical utility of QSAR models for building

promising chemical structures aside from making predictions of their bioactivity

values or class label.
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7 Interpretable Molecular Descriptors

7.1 Role of Molecular Descriptors in Post-genomic Drug
Discovery

Molecular descriptors encode the physical and chemical properties of molecules of

interest and are central to QSAR/QSPR studies (Danishuddin 2016). The availabil-

ity and the use of high quality, interpretable descriptors can greatly contribute to

the formulation of an intuitive model for retrospective and prospective analysis of

life or material sciences data (Cherkasov et al. 2014). As depicted in Fig. 2, molec-

ular descriptors play a critical role in enabling mathematical and statistical analysis

for relating chemical structure with biological data. While human intuitive molecu-

lar graphics depictions use the atom, bond, angle coordinates together with charge

Fig. 2 General schematic diagram depicting the importance of molecular descriptors for capturing

the details of chemical structures (from a chemical library) as vectors and matrices; hence enabling

mathematical and statistical procedures for QSAR and other chemoinformatics analysis
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information to reconstruct the chemical structures as 2D and 3D projections, encod-

ing chemical structure as machine readable matrices and vectors is required for per-

forming mathematical and statistical analysis. In this regard molecular descriptors

play a key role in establishing QSARs and in performing chemo-informatics tasks

such as chemical space mapping, substructure analysis, etc. In the pre-genomic era,

biological readouts were available as single vectors, however advances in miniatur-

ization, robotics and automation in the post-genomic era presented QSAR researchers

with a complex array of biological data as matrices. The complex biological matri-

ces include both the traditional target and phenotypic measurements and the recent

clinical chemistry and histopathology findings and microarray and proteomics data

(Prathipati and Mizuguchi 2016a). These data were generated in standardized high-

throughput format and are available in databases such as LINCS, Open TG-Gates,

CEBS, DrugMatrix and CMap (Prathipati and Mizuguchi 2016a). Several advanced

multi-label statistical techniques (such as network-based inference) and complex

molecular descriptors (such as proteo-chemometric) are presently under develop-

ment which can capture both the biological data’s relationship with the chemical

structure together with complex relationships among the biological readouts and

the chemical structures (Prathipati and Mizuguchi 2016a). Thus a range of machine

learning methods are under consideration for multi-label QSAR models depending

on the data types such as support vector machines (SVMs), neural networks (NN),

k-nearest neighbors (kNN), boosting methods for unrelated multi-label datasets and

similarity based approaches such as DT-hybrid, kernel regression methods such as

lasso or elastic nets or pairwise kernel method (PKM) for related multi-label datasets

(Prathipati and Mizuguchi 2016a). While some of these machine learning methods

are discussed in Sect. 8, in the following subsections we expand upon the range of

molecular descriptors and their attributes and their utility for modelling the wide

array of biological readouts.

7.2 Interpretability of Molecular Descriptors Advances
Ligand-Based Approaches

The continuing appeal of QSAR models as part of ligand-based approaches in the

face of the ever increasing structural data of target proteins and advancements in

structure-based approaches is an interesting conundrum (Prathipati and Mizuguchi

2016a). Although structure-based approaches are highly interpretable and intuitive

to drug researchers, their efficiency and effectiveness is limited by several factors

including ambiguity in pose prediction, limitations of scoring functions at captur-

ing the molecular recognition event, limitations of existing methods in consider-

ing bridging water molecules and induced fit phenomenon (Prathipati et al. 2007;

Prathipati and Mizuguchi 2016b). Furthermore, drug targets such as nuclear recep-

tors, G protein-coupled receptors (GPCRs) and kinases are known to have multi-

ple conformational states that exists in equilibrium in the absence of their cognate



Towards the Revival of Interpretable QSAR Models 19

ligands (Spyrakis and Cavasotto 2015; Zhao et al. 2014; Rueda et al. 2009, 2010).

Most often the X-ray structures of one or the other of these conformational states

are difficult to obtain. For instance, several kinases are known to exist in at least

4 different conformational states (e.g. DFG-in, DFG-out, A-loop-out and A-loop-

in) in recognizing type -I, -II and -III inhibitors (Chiu et al. 2013). The DGF-out

inactive conformational state of a kinase is quite flexible and is quite difficult to

crystallize where the catalytically important p-loop is most often difficult to resolve

(Kufareva and Abagyan 2008). Similarly, GPCRs too exist in the active, inactive

and apo conformational states. While the inactive GPCR conformational states are

easy to crystallize owing to its rigidity as conferred by the strong salt-bridge inter-

actions between the helices (e.g. helices 3 and 6 and helices 2 and 5), the active

conformational state stabilized in the presence of an agonist disrupts these interac-

tions through charge neutralization, hence becomes flexible and is difficult to crys-

tallize and resolve (Standfuss et al. 2011). Conversely, ligand-based QSAR models

are quick and can be dynamically adapted to model both target and phenotypic end-

points as well as different types of chemotypes with relatively little effort (Prathipati

and Saxena 2005). QSAR models derived using molecular descriptors were shown

to provide high predictive power and were successfully used for hit identification

(Krasavin 2015; Geronikaki et al. 2008; Poroikov et al. 2003). The disadvantages of

this approach is their comparatively low intuitiveness and their difficulty for inter-

pretation (Saxena and Prathipati 2006). Hence, we shall attempt to discuss the pros

and cons of various descriptors in terms of their quality and interpretability.

7.3 Assessing the Quality and Interpretability of a Molecular
Descriptor

Historically, the Hammett equation (Hammett 1937) describes one of the earliest

known mathematical formulations relating structures with the property of interest

(i.e. reactivity in this instance) and remains the most widely used and understood

mathematical equation to date. It describes a linear free-energy relationship relating

rate or equilibrium of a reaction with a substituent’s position and electronic property

(i.e. withdrawing or donating) captured as ‘Sigma’ (Hammett 1937). The molecular

descriptor ‘Sigma’ as proposed by Hammett (1937) to explain the acidity of sub-

stituted benzoic acids also serves as useful guidepost in evaluating the quality and

interpretability of a molecular descriptor. ‘Sigma’, also called the substituent con-

stant, has several features that makes it an excellent molecular descriptor, particularly

it has (1) high structural interpretation, (2) good correlation with biological or phys-

ical property (i.e. pKa in this case), (3) can be applied to local structure (substruc-

tures), (4) uses the familiar structural and electronic concepts (e.g. electronegativity

and polarizability), (5) high sensitivity (i.e. varies with structures; even isomers)

and (6) size dependence (i.e. changes with molecular weight). However, the original

implementation of Hammett involves using experimental properties and makes the



20 W. Shoombuatong et al.

Table 2 Summary of the strengths and weaknesses of the various dimensions of molecular

descriptors. The number of stars denotes the strengths and weaknesses for each characteristics while

the exclamation mark designate that caution should be taken

Characteristics 0D 1D 2D 3D PC

Simplicity ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆

Calculation efficiency ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ! ⋆

Structural interpretation ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Correlation with biological

property

⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Applicable to local structure

(substructures)

⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆⋆

Use familiar structural and

electronic concepts

⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Sensitivity (discriminate different

structures including isomers)

! ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆

Size dependency (varies with MW) ⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆

0D: zero-dimensional descriptors, 1D: one-dimensional descriptors,

2D: two-dimensional descriptors, 3D: three-dimensional descriptors,

PC: physicochemical descriptors

computation of sigma highly inefficient and hence not practical for high-throughput

virtual screening workflows. We shall discuss the importance of physicochemical

properties descriptors and the 4 major class of structural descriptors in light of the

features discussed above (Table 2). Furthermore, several novel applications of QSAR

such as the modelling of peptides, nucleotides and nanostructures for biologics-based

drug discovery research requires the availability of novel descriptors. Hence, Table 4

presents the list of free software along with availability of various descriptor types

(Table 3).

7.4 Trade-Offs Between Descriptor Quality
and Interpretability

Thus, it should be noted that a descriptor’s quality and its interpretability, together

with the use of an appropriate machine learning method can greatly produce a prac-

tical and interpretable QSAR model that scientists can use. The sensitivity or the

degeneracy of a molecular descriptor is the measure of its ability to avoid equal val-

ues for different molecules. This is the most critical attribute of a descriptor’s quality.

Furthermore, a descriptor’s interpretability can be defined as its ability to elucidate

and rationalize the underlying structural and physicochemical properties responsible

for the biological response.

3D descriptors which most accurately encode the structural and physicochemical

properties that are responsible for the investigated endpoint are presently regarded

to afford robust quantitative descriptions of molecular structures. They have high
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sensitivity and present different values of different isomers and other subtle struc-

tural variations. Some 3D descriptors such as those based on the GRID concept or

obtained from quantum chemical computations provide causal insights while those

based on the graph concept akin to the 2D graph-based descriptors present very

little causal interpretation. Furthermore, 2D graph-based descriptors are equally as

degenerate as a 3D descriptor and can also be regarded as a descriptor of high qual-

ity. However, most medicinal chemistry SAR data are not highly sensitive to small

changes in the structure (i.e. the addition of substructures to non-pharmacophoric

areas) and are shown to have moderate complexity (Schuffenhauer et al. 2006). Fur-

thermore,the assay data too are prone to experimental artifacts (e.g. aggregation,

reactive functional groups induced assay readouts) and errors (i.e. standard devia-

tion of technical replicates) (Feng et al. 2005; Feng and Shoichet 2006; Feng et al.

2007; McGovern et al. 2002; Thorne et al. 2010). The moderate complexity of the

chemical space can be attributed to the difficulties in their synthesis and purification

as well as the characterization of stereo- and regioisomers.

In light of the moderately complex chemical space, 1D or fingerprint descrip-

tors having moderate sensitivity (e.g. non-degenerativity) and interpretability, have

become the de facto standard in chemoinformatics both for a prospective and retro-

spective QSAR analysis (Schuffenhauer et al. 2006). The compact nature of the bit-

vector representation makes them amenable to not only QSAR modeling but also for

a wide range of computations such as similarity searching (Prathipati et al. 2008),

clustering (Prathipati et al. 2008), substructure searching and the inverse QSAR

problems (Rosenbaum et al. 2011). As to address issues such as assay errors, arti-

facts and heterogeneity of assay methods, the use of classification models has been

proposed as a promising solution and as such its usage has steadily increased in

recent years.

7.5 Dimensions of Molecular Descriptors

7.5.1 0D Descriptors

The 0D descriptors (Todeschini and Consonni 2008) capture the counts of atoms

(e.g. number of carbon atoms, number of nitrogen atoms, etc.) and bonds as well as

their constitution (e.g. hybridization states and bond orders). In addition, 0D descrip-

tors also encode the sum or average of the atomic properties such as weight, volume,

polarizability, electronegativity, etc. These descriptors are easily calculated and nat-

urally interpreted but they may not be very sensitive to subtle changes in molecular

structures (e.g. isoforms). However, this class of descriptors have successfully been

used in explaining the variation effect of structures on activity/property of several

data sets as has extensively been shown by the research group of Andrey Toropov

and Alla Toropova (Toropov and Benfenati 2007a, b; Toropov et al. 2010).

Particularly, the research group of Toropov and Toropova proposed the SMILES-

based descriptors for the easy computation and interpretation of the importance of
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features followed by QSAR modeling using the Monte Carlo approach. This com-

putational methodology has been produced as a free software called the CORre-

lation And Logic (CORAL) (http://www.insilico.eu/coral) (Toropov and Benfenati

2007a, b; Toropov et al. 2010). The SMILES notation is used to directly extract 1D

molecular features (e.g. atom, bond and other elements) from the chemical struc-

tures without the need for external software for descriptor calculation. It can be used

for the development of regression and classification based predictive models using

the Monte Carlo technique for biological activities (Worachartcheewan et al. 2015;

Masand et al. 2014), chemical properties (Toropova and Toropov 2014; Gobbi et al.

2016) and nanomaterial properties (Toropov et al. 2013). CORAL requires an input

file consisting of the compound name, SMILES notation and the bioactivity values

or class labels. Compounds from the data set are separated into training, invisible

training, calibration sets (i.e. used as visible data set) and validation set (i.e. used as

invisible data set that is not used during the model construction). Moreover, such data

subsets are generated for three or more independent data splits as to evaluate vari-

ability from the prediction models. The performance of such models can be derived

from statistical parameters such as R2, Q2, R2 − Q2 (Worachartcheewan et al. 2014).

A set of local and global molecular features can be derived from the SMILES

notations as follows:

abcdef → a + b + c + d + e + f (Sk)
abcdef → ab + bc + cd + de + ef (SSk)
abcdef → abc + bcd + cde + def (SSSk)

(1)

These are the examples of local descriptors that represents the elements in the

SMILES notation. In addition, global descriptors are also encoded designated as

BOND, PAIR, NOSP and HALO as follows:

∙ BOND is presence/absence of bond in the SMILES input such as double bond (=),

triple bond (#) and stereo chemical bond (@)

∙ PAIR is the co-incidence of two elements of the following: F, Cl, Br, I, N, O, S, P,

#, = and @

∙ NOSP is presence/absence of N, O, S and P

∙ HALO is presence/absence of halogens

In the software, optimized parameters include threshold and correlation weights

(CW). An example of equation of SMILES-based optimal attributes, was calculated

by the following equation:

DCW(Threshold,Nepoch) =
∑

CW(Sk) +
∑

CW(SSk) +
∑

CW(SSSk) +∑
CW(BOND) +

∑
CW(NOSP) +

∑
CW(HALO) +

∑
CW(PAIR)

(2)

The biological/chemical endpoint can be calculated as follows:

Endpoint = C0 + C1 × DCW(Threshold,Nepoch) (3)

http://www.insilico.eu/coral
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Fig. 3 Workflow of the CORAL software for constructing QSAR modelings using SMILES-based

descriptors

where C0 is the intercept and C1 is the slope or correlation coefficient.

Furthermore, the molecular fragments obtained from the software can give knowl-

edge of important chemical feature influencing their activities as promoters for

increasing or decreasing biological activity. The summary of development of pre-

dictive models using SMILES-based descriptors by CORAL software are outlined

in Fig. 3.
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Recently, Filimonov et al. (2009) proposed a novel QNA-based Star Track QSAR

approach in which any molecule is represented as a set of points in 2D space of QNA

descriptors. The Star Track approach is in contrast with the classical QSAR method

and does not require the use of feature selection. This approach is implemented in the

GUSAR software package and is based on a self-consistent regression, QNA descrip-

tors and the topological length and volume of a molecule. This approach predicts

quantitative values of biological activity of compounds on the basis of their struc-

tural formula and does not require the use of information about the 3D structures of

ligands and/or target proteins. The Star Track QSAR approach compares favorably

with different 3D and 2D QSAR methods on various gold standard data sets and

does not select models based on Q2 values. Thus, the Star Track QSAR approach as

implemented in the GUSAR software package is a potentially useful approach for

the derivation of statistically robust, interpretable and fast QSAR models.

7.5.2 1D Descriptors

1D descriptors, also referred to as fingerprints, essentially capture the counts and

properties of functional groups and substructural fragments (Todeschini and Con-

sonni 2008). A fundamental difference between 1D descriptors and fingerprints is

that the former uses a predefined set of keys (i.e. functional groups and substruc-

tures) to generate the descriptors while the latter uses either a predefined set or a

set of keys generated on the fly. The older generation of fingerprints consisting of

MACCS (Durant et al. 2002), PubChem, and SMARTS still uses a predefined set of

keys (Hinselmann et al. 2011) for generating fingerprints and are critically limited

at capturing the domain (target- and ligand-) specific structural features responsible

for variation in activities. For instance, predefined fingerprints may capture too few

or too many correlating features which may have moderate value in QSAR studies.

However, recent advances in computer science led to the concept of hashed finger-

prints where a set of patterns are generated by gathering atom environment informa-

tion or subgraph information or both. The generated context dependent patterns are

then transformed into hash codes (i.e. a fixed size vector) using hashing algorithm.

These hash codes can then be transformed into bit strings using a random number

generation of a defined length (i.e. size of the fingerprint). The presence and absence

of a pattern is marked as being either 1 and 0, respectively. Extended connectivity

fingerprint (ECFP) (Rogers and Hahn 2010) is a prototypical example of a hashed

fingerprint. A major advantage of 1D descriptors or hashed fingerprints is their abil-

ity to capture complex structural patterns in uniform fixed bit vectors, which can be

quickly computed (Rogers and Hahn 2010). These bit vectors are amenable for mole-

cular similarity/substructure analysis problems, show little degeneracy, are naturally

interpreted and are widely used in chemoinformatics (Prathipati et al. 2008). In view

of the intuitive concepts of substructures’ and functional groups’ contributions to

drug design and their efficient computation, the 1D descriptors or fingerprints were

primarily used for the inverse QSAR problems (Rosenbaum et al. 2011) as discussed

in the Introduction.
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7.5.3 2D Descriptors

2D or topological descriptors (Gozalbes et al. 2002) are computed by encoding the

atoms and their connectivity as a graph. Several variations to the graph-theoretic rep-

resentation of atoms and their connectivities led to the wide plethora of methods for

the generation of ‘graph-theoretic’ descriptors such as Kier and Hall (1976), Broto

et al. (1984), Balaban (1982), Randic (1975), MEDV etc. Although they lack in inter-

pretability, 2D descriptors can be considered good descriptors in many aspects (as

listed in Table 2). However, the poor interpretability of this class of descriptor criti-

cally limits its usage in retrospective QSAR analysis (Gozalbes et al. 2002). Further-

more, since correlation does not always imply causality, models derived using these

class of descriptors are difficult to prioritize from a pool of models that offer very

similar statistical significance (Saxena and Prathipati 2006). There are two excellent

techniques to mitigate this problem and discriminate seemingly equivalent models

via the generalized pairwise correlation method (GPCM) (Héberger and Rajkó 2002)

and the sum of ranking differences (Heberger and Skrbic 2012). However, QSAR

models derived from these descriptors are ideally suited for a prospective virtual

screening analysis as they can be efficiently computed and generally have very low

levels of degeneracy (Saxena and Prathipati 2006).

Among the various topological indices, the molecular electronegativity distance

vector based on 13 atomic types called the MEDV-13, is a fast, easy to use, repro-

ducible and predictable descriptor for QSAR studies. The studies by Liu et al. (2001)

show the performance of MEDV-13 models were comparable to 3D QSAR stud-

ies and are also applicable to QSARs of peptides. MEDV-13 descriptor in addition

employs information about an element atom type, valence electronic state, and chem-

ical bond type from 2D molecular topology and requires no information related to

3D structures or physicochemical properties or molecular alignments.

7.5.4 3D Descriptors

3D descriptors characterize the 3D structure of a molecule in terms of their shape,

steric and electronic features (Kubinyi 1993). While shape-based 3D descriptors (e.g.

volume, RDF (Gonzlez et al. 2005), autocorrelation3D (Sliwoski et al. 2016), etc.)

are highly relevant in explaining SAR data, they remain difficult to interpret. Fur-

thermore, the 3D descriptors comprising of RDF (Gonzlez et al. 2005), 3D-MoRSE
(Devinyak et al. 2014), WHIM (Bravi et al. 1997) and GETAWAY (Consonni et al.

2002) descriptors share many similarities with 2D descriptors as described above.

While the latter encodes atoms and their connectivity as simple graphs, the 3D shape-

based descriptors capture these features together with their distances and angles as

part of a complex graphs. On the other end, the 3D descriptor spectrum includes

descriptors such as steric and electrostatic fields that are computed using semi-

empirical quantum chemical methods as part of the GRID concept (Sippl 2006).

The 3D QSAR paradigm asserts the importance of conformational preferences of

compounds for molecular recognition to its target protein in addition to structural
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and physicochemical features as described above. The CoMFA/CoMSIA methods

(Cramer et al. 1988) to date remains the prototypical examples of this paradigm and

several leading publications reported seemingly interpretable retrospective analysis

of both target-based (Prathipati et al. 2005) and phenotype-based SAR data. How-

ever, in a seminal paper, Doweyko (2004) debunked the commonly asserted illusion

and showed that the so-called significant regions are subject to the vagaries of align-

ment and that the nature of possible interactions heavily depends on the eye of the

beholder. Furthermore, the arbitrary nature of both the alignment paradigm and atom

description lends itself to capricious models, which in turn can lead to distorted con-

clusions (Doweyko 2004). In spite of limitations of the 3D QSAR approach, this

class of descriptors demonstrates very low levels of degeneracy (i.e. extremely sen-

sitive to changes in the structure) and is considered as the gold standard amongst

the QSAR modelling techniques. Although, the 3D steric and electrostatic fields

have been very intuitive both for explaining the SAR data and for guiding several

novel designs, a potential limitation is their rationalization is limited to a congeneric

series of compounds. Hence, 3D-QSAR models are not typically used for large-scale

prospective virtual screening analysis (Doweyko 2004). Although, several variations

of the Tripos CoMFA/CoMSIA (Cramer et al. 1988) have emerged in recent years,

the only known freeware is Open3DQSAR (Tosco et al. 2011), which is potentially

an interesting addition to the growing number of 3D QSAR software.

7.5.5 Physicochemical Properties

Physicochemical properties are considered to be one of the most relevant descrip-

tors for drug design (Brustle et al. 2002; Taskinen and Yliruusi 2003). While they

are mostly measured quantities, they are calculated based on parameterization with

measured data. Thus, these descriptors differ from others in that they are not derived

from first principles but are obtained from models trained using either 0D, 1D, 2D,

3D (e.g. 3D quantum chemical descriptors calculated using the GRID approach) to

fit with experimentally obtained physical and chemical properties such as logP, pKa
and solubility measures (Taskinen and Yliruusi 2003). Hence, in contrast to some

molecular descriptor software and reviews, which had categorized this class of mole-

cular descriptors as 0D, 1D, 2D or 3D. Thus, in this chapter we have placed this class

of descriptors separately. These descriptors (e.g. logP, logD, pKa) play a major role

in both pharmacodynamic and pharmacokinetic properties of compounds (Taskinen

and Yliruusi 2003). Furthermore, they have now become a part of the standard check-

list for assessing the drug-likeness (e.g. Lipinski’s rule-of-five) and other pharma-

cokinetic liabilities. Moreover, they are also widely used in explaining the variation

of target-based SAR data. Most proteins’ structure-function modulation is mediated

via salt-bridges and small molecules typically modulate the function of a protein

via charge neutralization thereby leading to the disruption of salt-bridges followed

by a consequent change in the structure and function of the protein (Prathipati and

Saxena 2005). In this context, physicochemical properties like pKa and other quan-

tum chemically derived electronic properties are widely used (Manallack 2008). In
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spite of their widespread usage, intuitive appeal and interpretability, these descrip-

tors remain difficult to compute. Given the importance of modelling various elec-

tronic effects (e.g. inductive, mesomeric, polar) (Thornber 1979; Patani and LaVoie

1996; Jelfs et al. 2007; O’Boyle et al. 2017b; Harding et al. 2009; Morgenthaler et al.

2007; Xing et al. 2003; Manallack 2008), it should be noted that computationally-

expensive quantum chemical descriptors are often used to train models that can pre-

dict the pKa, polarizability, etc. Thus, the development of software for computing

these descriptors is an area of active research. Improvements in GPU technology

have greatly accelerated the utilization of quantum chemical simulations (Patani and

LaVoie 1996) for the prediction of physicochemical properties and biological activ-

ities.

8 Interpretable Learning Algorithms

8.1 Black Box Learning Methods

Kurgan et al. (2009) used the term black box models to describe the fact that machine

learning models do not identify the underlying associations of individual features

with the specific outcome as well as not revealing which features provide essential

contribution to the observed prediction accuracy. Black box have demonstrated suc-

cess in modeling a wide range of bioactivities and properties (Charoenkwan et al.

2013; Shoombuatong et al. 2015; Simeon et al. 2016a, b; Shoombuatong et al. 2015;

Nantasenamat et al. 2005, 2007a).

8.1.1 Support Vector Machine

Support vector machine (SVM) (Cortes and Vapnik 1995; Burges 1998; Barakat and

Bradley 2010) is a statistical learning approach and a well-known maximum margin

classifier that is based on the principles of structural risk minimization (SRM). The

SRM principle is utilized to seek a hypothesis function with low capacity from a

nested sequence of functions that can simultaneously minimize both the true error

rate (i.e. prediction error on the external set) and the empirical error rate (i.e. predic-

tion error on the training set) as illustrated in Fig. 4.

Given a training set Dm
Tr = {(x1, y1), (x2, y2), ..., (xm, ym)}, where xi ∈ IRn and

yi ∈ −1,+1, the SVM classifier finds the optimal separating hyperplane that has

the largest margin and satisfies the following conditions:

wT
𝜑(xi) + b ≥ +1, for yi = +1

wT
𝜑(xi) + b ≤ +1, for yi = −1

(4)
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Fig. 4 Illustration of the SVM learning process. Initially, the input space is transformed to a higher

dimensional feature space via the use of kernel functions whereby the maximal margin separating

hyperplane is obtained after defining the margins of the two classes. It should be noted that com-

pounds (denoted by circles) lying on the margin represents the support vectors
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which is equivalent to:

yi[wT
𝜑(xi) + b] ≥ +1, i = 1, 2, ...,m (5)

The non-linear function maps the input space to a higher dimensional space called the

feature space. The mapping function 𝜑(x) ∶ IRn → IRp, where n << p, is performed

by defining the inner product between two samples through kernel function K(x,y).

Practically, the kernel function K(x,y) is expressed with a similarity measurement

between two samples in the data set, which is defined as Burges (1998):

K(x, y) = 𝜑(x) ⋅ 𝜑(y)

=
∑

i
𝜑(x)i𝜑(y)i (6)

For the kernel function K(xi, xj), the most popular kernel function includes: the linear

kernel 𝜑(xi)T𝜑(xj); the polynomial kernel (1+𝜑(xi)T𝜑(xj))d, where d = 2, 3, and 4

(i.e. it should be noted that d = 1 for linear kernel); and the radial basis function

(RBF) kernel exp(-𝛾(‖‖‖xi − xj
‖‖‖)), where C (the penalty factor), 𝛾 (trading off error

predictions against margin width) and 𝜀 (the percentage of support vectors in the

SVM model) are parameters to be optimized. Kernel functions are often used in

SVM because of the scalar product in the dual form. In fact, these approaches can

also be used for other machine learning algorithms, but they are not tied to the SVM

formalism. It should be noted that the RBF kernel has been widely used in SVM

modelling. The decision function of the SVM classifier is given by:

y(x) = sign[
m∑

i=1
𝛼iyiK(xi, x) + b] (7)

where 𝛼 is the parameter solved by the Lagrangian algorithm and x = (x1, x2, ..., xM).
This method was not originally developed as a tool for statistical prediction by

Cortes and Vapnik (1995). However, Vapnik enabled the original SVM to solve

regression problems also known as support vector regression (SVR), by choosing

a suitable cost function (𝜀-insensitive loss function) that enables a sparse set of sup-

port vectors to be obtained. The standard regression procedures is to identify a func-

tion f(x) that provides the least square error between predicted and actual observed

responses for all training data set. In contrast, SVR attempts to minimize the gen-

eralization error bound for achieving higher generalization performance. This gen-

eralization error bound is derived from the combination of the training error and a

regularization term controlling the complexity of hypothesis space. The first term

is calculated by the 𝜀-insensitive losses. The 𝜀-insensitive loss function for SVR

method (Drucker et al. 1996; Song et al. 2002) is defined as follows:

L
𝜀
(y, f (x, 𝛽)) =

{
|y − f (x, 𝛽)| − 𝜀, |y − f (x, 𝛽)| ≥ 𝜀

0 , |y − f (x, 𝛽)| < 𝜀
(8)
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where y is the actual value, f (x, 𝛽) is the predicted value (i.e. in which the simple

form is f(x), where x = (x1, x2, ..., xn)) and 𝜀 is the insensitivity parameter.

8.1.2 Artificial Neural Network

Artificial neural network (ANN) is a well-established machine learning

algorithm for establishing QSAR models (Nantasenamat et al. 2005, 2007a, b, 2008;

Worachartcheewan et al. 2009). ANN represents biologically inspired prediction and

classification methods whose original development was based on the structure and

function of the network of neurons (Zurada 1992). A typical ANN is established with

three major components, namely the transfer function, the learning rule and the con-

nection formula (Simpson 1990) as illustrated in Fig. 5. Until now, the feed-forward

ANN (FF-ANN) is the most popular ANN that has been used in real-life situation

(Ebrahimi et al. 2016). Among many learning algorithm for estimating the parameter

of FF-ANN, the back-propagation (BP) algorithm is the most extensively used for

finding the optimal parameters, which is carried out by minimizing the error of the

network through the derivatives of the error function. For a given training set Dm
Tr in

a BP-ANN task, the input layer starts to propagate the signal through the connection

Fig. 5 Illustration of the

architecture of artificial

neural network (a) and inner

working of neurons in a

hidden layer (b)

(a)

(b)
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weights and the transfer function to produce the output for each neuron. The output

or predicted value is then compared to the actual value and the differences in the

value between the predicted and actual values is minimized by the BP algorithm.

Practically, the delta rule is used to optimize the weights via the BP algorithm:

Wnew
ij = Wold

ij +△Wij (9)

△ Wij = −𝜇
𝜕Ep

𝜕Wij
outj (10)

where outj is the output of the jth neuron, 𝜇 is the training rate and Ep is the error.

The output layer of ANN can be represented mathematically as:

O = f(
M∑

i=1
wixi + b) (11)

8.1.3 Deep Learning

Owing to the limitations of FF-ANN, a deep learning (DL) method was proposed by

three separate groups (Hinton et al. 2006; Raiko 2012; Bengio 2009) for solving the

process of training models in many layers. In 2006, DL also known as deep neural

network has become increasingly popular for parameter approximation by allowing

computational models to learn from representations of data using multiple levels of

abstraction (Hinton et al. 2006, 2012). Many research groups reported that there are

many different points between ANN and DL (Xing et al. 2003; Leung et al. 2014;

Ma et al. 2015). Firstly, each layer of the neural network is constructed from a row

of neurons while DL is built from several layers of neurons. Layers in a DL consist

of three main layers: (i) the input layer (i.e. the bottom layer), where the descriptors

of a molecule are entered; (ii) the output layer (i.e. the top layer), where prediction

results are created; (iii) the hidden (middle) layers, where the word “deep” in DL

implies that there is more than one hidden layer, as illustrated in Fig. 6. There are two

popular choices of activation functions (f ) that are used in the hidden (fH) and output

(fO) layers, namely the sigmoid function and the rectified linear unit (ReLU) function.

Secondly, the output layer of ANN basically has one or more neurons and each output

neuron generates prediction for a separate endpoint while DL can naturally model

multiple endpoints at the same time. Finally, DL employs ReLU instead of sigmoids

(i.e. usually used in ANN) as activation functions in order to overcome the vanishing

gradient problem. These activation functions have non-vanishing derivative.

Previously, many reports suggested that the predictive performance of DL has

dramatically improved as compared to that of standard ANN. The strength of DL

lies in its ability to manipulate the intricate structure in large training set by using

the backpropagation algorithm. Presently, DL is being applied to many domains of

science, business and government. For instance, in the domain of bioinformatics,
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Fig. 6 Illustration of the architecture of deep learning algorithm

DL has been compared with other conventional machine learning algorithm for pre-

dicting the activity of potential drug molecules (Ma et al. 2015), analysing particle

accelerator data (Ciodaro et al. 2012), reconstructing brain circuits (Helmstaedter

et al. 2013) and predicting the effects of mutations in non-coding DNA on gene

expression and disease (Xing et al. 2003; Leung et al. 2014). DL has also yielded

promising results in natural language processing (NLP) (Collobert et al. 2011), espe-

cially for topic classification, sentiment analysis, question answering and language

translation (Bordes 2014; Sutskever et al. 2014).

8.1.4 Towards Opening the Black Box

The classical QSAR approach developed by Hansch in the 1960s (Hansch et al. 1962)

has a long history in predicting biological activities and physical properties. The

original model used a simple, transparent and interpretable MLR model and pro-

vided excellent mechanistic interpretation of the biological activity. However, QSAR

models are expected to provide both quick predictions (i.e. in a prospective manner)

and mechanistic interpretation (i.e. through its features in a retrospective manner).

The superior performance of SVM and ANN models vis-a-vis other computational-

based models in a variety of application areas is widely known. The high accuracy

and robustness of these methods can be attributed to their ability to build non-linear,

black-box models that can account for the complexity of the input data. This inability

to provide an explanation or comprehensible justification for the predicted solutions

critically limits their application to several areas. In application areas such as medical

diagnosis, it is highly desirable to give a clear mechanistic interpretation associated

with the classification decisions in order to aid the compliance by both the physician

and the patient. To mitigate this problem, methods that can aid the interpretation of

significant features used by the model can be obtained via the use of rule extraction

methods as had recently been shown for ANNs (Fung et al. 2005; Andrews et al.

1995; Setiono et al. 2002) and SVMs (Andrews et al. 1995; Barakat and Bradley
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Fig. 7 Taxonomy of rule extraction techniques

2010; Núñez et al. 2002; Zhang et al. 2005; Fu et al. 2004; Barakat and Diederich

2004, 2005).

In recent years, many rule extraction techniques were developed to extract easy-

to-understand regularities from data. Figure 7 illustrates the taxonomy of those meth-

ods that are derived from the data mining research community. Firstly, they are

divided into direct and indirect methods according to the approach that rules are

reasoned out. As mentioned, indirect rule extraction methods (e.g. SQRex-SVM

and SVM+Prototypes) have been developed for providing explanations as well as

affording prediction. Direct rule extraction methods are more widely studied in the-

ory and applied in practice. The direct extraction of rules contains two critical tasks

namely antecedent (i.e. representing the condition part of rules) and consequent (i.e.

defining the behavior within each region) identifications. Based on the approach that

these two tasks are carried out, methods to extract rules are further divided into

two groups consisting of joint methods and disjoint methods. Joint methods, such

as GA (Lawrence 1991), simultaneously identifies the antecedent and consequent

by exceeding the capabilities of most optimization algorithms as they can afford the

capability of finding global optimal solutions by mimicking biological evolution. As

for disjoint methods, the divide and conquer approach is used as the strategy for

optimizing the following two tasks: separating and identifying advantages over joint
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(a)

(b)

Fig. 8 System flowchart of decompositional and pedagogical rule extraction techniques

ones in computational efficiency. There are three methods that are widely used for

partition namely grid (e.g. Wang-Mendel (WM) method (Wang and Mendel 1992)),

tree partition (e.g. C4.5 (Quinlan 1993), classification and regression trees (CART),

logistic model tree (LMT) and random forest (RF) (Breiman 2001)) as well as clus-

tering (e.g. Mountain clustering and its extension, subtractive clustering (Yager and

Filev 1994)).

The interpretability of ANNs and SVMs can be obtained by extracting sym-

bolic rules from the trained model. The rule extraction techniques are used to open

up the black box approach by generating symbolic, comprehensible descriptions

while maintaining the same predictive power (Martens et al. 2007). Andrews et al.

(Andrews 1974; Andrews et al. 1995) proposed an approach for the rule extraction

from ANN that can be easily extended to SVMs. Two approaches exist to extract

rules from the black-box ANN and SVM models (Martens et al. 2007) which are the

decompositional and pedagogical approaches. The decompositional approach deter-

mines rules by utilizing information from the internal components of the constructed

SVM model while the pedagogical approach considers SVM model as a black box

and derives its rules by relating the inputs with the outputs of the SVM model. The

difference between the decompositional and pedagogical rule extraction techniques

is schematically illustrated in Fig. 8.

For the decompositional approach, Setiono and Liu (1995) firstly proposed an

approach to understand the ANN’s results. Understanding the ANN’s results through

rule extraction was obtained via the use of a three-phase algorithm as follows:

(i), a weight-decay back-propagation network is built such that important connec-

tions are reflected by the larger weight values; (ii) the network is pruned by delet-

ing non-informative connections while still maintaining its predictive accuracy; (iii)

rules are extracted and produced. In 1997, the decompositional technique

NeuroLinear (Setiono and Liu 1997) was developed to extract oblique classification
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rules from neural networks comprising of one hidden layer. Kim and Lee (2000)

have proposed an algorithm for feature extraction and feature combination by uti-

lizing multilayer perceptron networks with sigmoid functions. A few years later,

Gupta et al. (1999) had proposed an analytical framework for classifying existing

rule extraction methods for FF-ANN. This method extracts rules by directly inter-

preting the strengths of the connection weights in a trained network. In the case

of the decompositional method, a few research have been published for extracting

rules from SVMs. For instance, Núñez et al. (2002) proposed the SVM+Prototypes

method for extracting rules from SVMs. The basic idea of this approach consists of:

(i) determining the decision function by means of SVM while a clustering algorithm

is used to determine prototype vectors for each class; (ii) defining regions in the input

space that can be transferred to if-then rules. In 2007, Barakat and Bradley (2007)

proposed a novel algorithm for the rule extraction from SVMs known as SQRex-

SVM. After training the SVM model, SQRex-SVM directly extracts rules from the

support vectors (SVs) by using a modified sequential covering algorithm. Rules are

then produced by using the rank of the most discriminative features as measured by

the interclass separation.

For the pedagogical approach, there are a large number of studies focused on

opening the black box nature of ANN as to improve their interpretability. In 1988,

Saito and Nakano (1988) have proposed a workflow for medical diagnosis using

rule extraction from a modified ANN. A few years later, the BRAINNE system

was proposed (Sestito and Dillon 1992) for extracting rules from ANN using back-

propagation algorithm. The major contribution of the BRAINNE system is that it can

directly deal with continuous data as inputs without requiring discretization. Shortly

afterwards, Thrun (1993) proposed the VIA method for extracting rules by mapping

inputs directly to the output through the use of a generate-and-test procedure for

extracting symbolic rules from ANN trained by the backpropagation algorithm. Fur-

thermore, details on how to improve the interpretability of the black box ANN have

been discussed previously (Zhou and Chen 2002; Andrews et al. 1995; Augasta and

Kathirvalavakumar 2012). Similar to the case of the decompositional method, only

a few studies have been reported for improving the interpretability of ANN via the

pedagogical approach. For example, Trepan (Craven and Shavlik 1996) was the first

to introduce the pedagogical tree extraction algorithm by extracting decision trees

from trained neural networks having an arbitrary architecture. In constructing a tree,

this method makes use of the best first expansion strategy to build a tree via recursive

partitioning. Trepan allowed splits with at least M-of-N type of tests. At each step, a

queue of leaves is further expanded into sub-trees until a stopping criterion is met. In

2007, Martens et al. (2007) proposed the use of an SVM model as an oracle to gener-

ate rules. For the convenience of the vast majority of scientists, a MATLAB toolbox

for generating rules using any black box model as oracle has been implemented and

made publicly available. Previously, many researchers reported that ANN and SVM

rule extraction approaches had equal or higher performance when compared with the

original ANN and SVM methods (Barakat and Bradley 2007; Augasta and Kathir-

valavakumar 2012; Gong et al. 2008).
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8.2 White Box Learning Methods

8.2.1 Multiple Linear Regression

MLR is one of the most basic method for performing regression in QSAR model-

ing. Given a matrix X of a compound of interest, the MLR model assumes that the

expected value of Y could be expressed in the form of a linear equation as summa-

rized below:

yi =
m∑

i=1
bixi + b0 (12)

Generally, this approach is favored for its simplicity and ease of interpretation as

the model assumes that there exists a linear relationship between a set of molec-

ular descriptors and the bioactivity. When using MLR, regression coefficients can

be obtained via the use of the least squares method. The size of the coefficient

may reveal the degree of influence that molecular descriptors has on the bioactivity.

Moreover, a positive coefficient indicate that the respective molecular descriptors

contributes positively to the bioactivity and vice versa for the negative coefficient.

However, in the presence of collinear descriptors, these interpretations may be error

prone. A general rule of thumb states that the sample size (i.e. number of compounds

in the data set) should be at least five times the number of descriptors that are used.

8.2.2 Logistic Regression

The transformation of MLR to a logistic regression (LR), can be easily performed

by representing the Y variable via the conditional probability of Y given X variables

(𝜋(X)) when the logistic distribution is used (Hosmer et al. 2013). The specific for-

mula of LR is defined as follows:

𝜋(X) = eb0+b1x1++b2x2+⋯++bMxM

1 + eb0+b1x1++b2x2+⋯++bMxM
(13)

where bi represents the transformation of 𝜋(X). Furthermore, the logit transforma-

tion is defined in terms of 𝜋(X):

g(X) = ln[ 𝜋(X)
1 − 𝜋(X)

]

= b0 + b1x1 + +b2x2 +⋯ + +bMxM

(14)

For the MLR method, the least square approach is used to estimate unknown para-

meters bi. The basic idea of this method is to minimize the sum of square error

between predicted Y and actual Y values. Unfortunately, the least square approach

cannot be used to optimize bi on a data having a dichotomous variable (i.e. variables
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that have a value of 0 or 1). As for the LR method, the maximum likelihood estima-

tor is used to alleviate the problem of dichotomous variables. A convenient way to

represent the likelihood probability function for (x, y) where x = (x1, x2, ..., xM) and

y = (y1, y2, ..., yM) can be defined as follows:

𝜋(xi)yi[1 − 𝜋(xi)]1−yi (15)

Since the data set (X,Y) is assumed to be independent variables, the likelihood prob-

ability function is used to estimate 𝛽i in expressions summarized as follows:

l(bi) =
M∏

i=1
𝜋(xi)yi[1 − 𝜋(xi)]1−yi (16)

In the binomial case, where the outputs of LR is close to 0 and 1, respectively, indi-

cates low and high probability of occurrences.

8.2.3 Efficient Linear Method

Efficient linear method (ELM) is a general-purpose learning method proposed by

Shoombuatong et al. (2015) that can be used for performing both classification

and regression tasks. This approach was first applied in the QSAR study of the

bioactivity of aromatase inhibitors (AIs) where it has been shown to afford an

interpretable model in which significant features are transparent and can be used

to provide insights pertaining to the origin of its bioactivity. The main procedures of

the ELM method entails the following steps:

Step 1: Prepare a training data set DM
Tr consisting of positive and negative samples.

Step 2: Formulate a predictive model with a weighted summation f (C) in the form

of a linear model as follows:

f (C) =
m∑

i=1
bixi + b0 (17)

Step 3: Select informative features using the fitness function of the Akaike infor-

mation criterion (AIC). Finally, features affording high feature usage is selected for

the construction of a predictive model.

Step 4: Estimate the optimal parameter b by using the genetic algorithms (GA)

with the Andrews’ sine function fitness(x) (Andrews 1974). To obtain a reliable para-

meter, the fitness function utilizes a 10-fold cross-validation (10-fold CV) scheme.

Step 5: Predict the unknown P with the scoring function (Pred(C)) using the

weighted summation and subsequently discriminate it using only the threshold as

obtained from:
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Pred(C) =

{
positive, f (C) > threshold
negative, otherwise

(18)

8.2.4 Principal Component Analysis

The aforementioned learning approach are supervised (e.g. MLR, ANN, or SVM)

in which the SAR is discerned from a list of compounds in the training set using the

function in the form of Y = f (X) (i.e. Y can be computed as a function of X descrip-

tors). As a counterpart, unsupervised learning methods aim to characterize the under-

lying patterns of X variables without the need for Y variable. Principal component

analysis (PCA) is one of the most commonly used unsupervised learning method

for multivariate data analysis that can help reveal details from the high-dimensional

information hidden inside the array of numerical descriptors (Jolliffe 2002). PCA

analyzes the high-dimensional and intercorrelated X variables and compresses its

information into a few dimensions without much loss of the core information while

filtering out the noise. Briefly, the first principal component (PC) lies along the direc-

tion of maximal data variance capturing the most variability of all possible linear

combinations. Because PCA seeks the linear combination of X variables that are

uncorrelated with maximal variability, the assumption can be made that the first PC

contains the most core information while much of the last PCs contain the noise.

PCA focuses on identifying the data structures based on measurement scales and the

resulting PC weights will be larger for X variables with higher variation. Two of the

most useful features of PCA are the loadings and scores values.

8.2.5 Partial Least Squares Regression

Partial least squares regression (PLSR) is a commonly used learning method for the

analysis of large data sets owing to its inherent ability to handle large redundant

features and readily produce interpretable regression coefficients from the predic-

tive model. In PCA, only the X variables are considered in the multivariate analysis

as it does not take into account the biological properties of compounds (i.e. the Y
variable). However, PLSR makes use of the information of Y variables to maximize

inter-class variance (Helland 1988). PLSR is a widely used method for constructing

predictive models in which features are compressed into orthogonal latent variable or

PCs. The origins of PLSR can be traced back to the non-linear iterative partial least

squares (NIPALS) algorithm as proposed by Herman Wold (Helland 2001). For the

principle assumption of PLSR methods, a data set with intercorrelated variables is

generated and then the latent structure are projected by means of PLSR. This learn-

ing method can be used for both regression and classification tasks where dimension

reduction of the original feature space is an integral part of its modeling process.
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8.2.6 Decision Tree

Decision trees (DT) are tree-like graphs that model a decision, which are commonly

learned by recursively splitting the set of training instances into subsets based on the

instances’ values for the explanatory variables (Quinlan 1993). It uses the conditional

statement consisting of if-then statement, which allows us to make a prediction. In

short, DT constitutes a series of split points that are known as nodes. To make a

prediction, we start at the top-most root node, which represents the most important

feature. From this root node, a decision threshold value leads to divergence of two

subsequent nodes in which the value of the feature of interest is greater than or less

than the threshold value. This process is repeated at each subsequent inner nodes

until we reach one of the terminal leaf nodes, which are the prediction class (i.e.

whether the compound’s bioactivity is classified as either being active or inactive).

8.2.7 Random Forest

Random Forest (RF) is an ensemble of unpruned classification and regression tree

(Breiman et al. 1984; Breiman 2001). RF takes advantage of two efficient machine

learning methods (e.g. bagging and random feature selection). RF is a further devel-

opment of bagging. Instead of using all features, RF randomly selects two-third of

a training data set to build the predictor and the other one-third of the training data

set, known as the out-of-bag (OOB) data set, is utilized to evaluate the performance

of the predictor. Predictions are derived from the majority vote or averaging the out-

put of all trees for classification and regression problems, respectively. To evaluate

the importance for each feature fi, the values of features fi in the OOB data set are

randomly permutated and the feature importance for fi can then be evaluated by mea-

suring the decrease of prediction performance of the permutated OOB data set. The

prediction performance can be measured by using accuracy or Gini index. The Gini

index is calculated by using the impurity of each feature that is capable of separat-

ing samples of two (or more) classes. The size of the feature subsets used is a fixed

number in which the number of different features tried at each split (mtry) are set at

p1∕2 and p/3 for classification and regression problems.

9 Resources and Software for Performing QSAR Modeling

In this section, we present some of the software that can be used for the construction

of QSAR models. This spans molecular descriptor software, multivariate analysis

software and integrated software that typically lowers the steep learning curve that

are usually required to get up and running in developing QSAR models.

Prior to the construction of QSAR models, the molecular features of compounds

can be discerned via the use of software for computing molecular descriptors. Table 4
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Table 7 Comparison of machine learning packages and modules from R, Python’s scikit-learn

and WEKA

Methods R package Python’s scikit-learn Weka

SVM e1071 SVC, NuSVC and LinearSVC LibSVM

ANN neuralnet MLPClassifier and

MLPRegressor

MultilayerPerceptron

DL deeplearning – –

MLR car LinearRegression LinearRegression

LR logistf LogisticRegression Logistic

ELM R scripta – –

PCA princomp PCA PrincipalComponents

PLSR pls PLSRegression PartialLeastSquares

DT C50 DecisionTreeClassifier and

DecisionTreeRegressor

J48graft

RF randomForest RandomForestClassifier and

RandomForestRegressorr

RandomForest

ahttp://dx.doi.org/10.6084/m9.figshare.1274030

summarizes the available software along with the dimensional type of descriptor that

can be computed.

A wide range of software and tools for performing QSAR modeling are avail-

able as either standalone desktop-based application or as web-based application as

summarized in Table 5.

Table 6 lists some of the software for performing multivariate analysis for com-

puter savvy scientists as the software may require a steeper learning curve than those

listed in Table 5.

Table 7 summarizes the comparison between three popular machine learning

packages in three popular languages namely R, Python and Java.

10 Conclusion

In spite of certain inherent flaws, the QSAR paradigms inevitably is one of the

driving forces contributing to the advancements in drug discovery and design. As

with all technologies, QSAR is not perfect, however, its weaknesses and flaws are

continuously being identified, solved and reformed to help shape a more robust

QSAR model. Particularly, the present chapter argues for the increased use of inter-

pretable QSAR models in drug discovery research. QSAR models were originally

intended to assist medicinal chemists with design ideas that are often overlooked

as a useful approach; one reason is that chemists and biologists do not understand

the underlying assumptions of the predictions. Hence, we have presented several

concepts pertaining to inverse QSAR techniques that can reconstruct a chemical

http://dx.doi.org/10.6084/m9.figshare.1274030
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structure with good synthetic feasibility based on features identified by QSAR mod-

els. We have also presented concepts on rule extraction methods that can unravel the

black box and make interpretations of machine learning approaches. Furthermore,

we reviewed the utility of various molecular descriptors in the post-genomic era of

the biological data deluge. Moreover, the concept of conformal prediction have also

been discussed as a novel and potentially powerful approach that can define the rel-

ative confidence or reliability of predictions made. The inherent heterogeneity and

vagueness of details describing the construction of QSAR models in the literature

may hinder further progress. Therefore, markup language such as QSAR-ML have

been suggested as a means to solve the reproducibility of QSAR models by stan-

dardizing and demystifying the underlying details of QSAR models (i.e. addition

of metadata on the source of the data set, the type of descriptors used, the machine

learning employed, software names and version that are used, etc.) as well as making

them exchangeable (i.e. in the context that they can be shared and readily be used

by the scientific community). The availability of interpretable molecular descrip-

tors and transparent machine learning methods presents a positive outlook for the

utility of QSARs in drug discovery research. The application of several key sets of

standards in QSAR modeling will further help to enhance their generalization and

acceptance by the wider drug research community.
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The Use of Topological Indices in QSAR
and QSPR Modeling

John C. Dearden

Abstract Topological indices (TIs) are numerical representations of the topology
of a molecule, and are calculated from the heavy atom graphical depiction of the
molecule. One of the first TIs was that of Wiener in 1947, who showed that his
index correlated well with the boiling points of alkanes. There are now many
different TIs available, and many of them are discussed in this chapter, with respect
largely to their use as descriptors in QSAR/QSPR modeling. Three types in par-
ticular stand out, molecular connectivities developed by Randić and Kier and Hall,
electrotopological state (E-state) values developed by Kier and Hall, and infor-
mation content indices developed by Basak and co-workers. New TIs are still
appearing, despite some criticism that there are already too many types of TI, that
they are difficult of interpretation, and that they are inferior to physicochemical
descriptors in modeling.

Keywords Wiener ⋅ Randić ⋅ Information content ⋅ Molecular connectivity ⋅
Electrotopological state ⋅ Biodescriptors ⋅ Inverse QSAR ⋅ Software ⋅
Hostility to topological indices

1 Introduction

1.1 What Is QSAR?

QSARs (quantitative structure-activity relationships) and QSPRs (quantitative
structure-property relationships) are mathematical correlations between a specified
biological activity or molecular property and one or more physicochemical and/or
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molecular structural properties, known as descriptors since they “describe” the
activity or property under examination. A simple example is given by Eq. 1 (Cronin
et al. 2002) for the inhibition of growth of the aquatic ciliate Tetrahymena pyri-
formis by phenols:

log 1 ̸IGC50ð Þ=0.53 logD− 0.96 LUMO− 0.58

n= 160 r2 = 0.81 q2 = 0.80 s = 0.34F =340
ð1Þ

where IGC50 = concentration of a substituted phenol required to inhibit growth by
50%, D = its distribution coefficient between 1-octanol and water buffered to pH
7.35, LUMO = energy of the lowest unoccupied molecular orbital of the chemical
(a measure of electrophilicity), n = number of chemicals used to develop the
QSAR (termed the training set), r = correlation coefficient, q = cross-validated
correlation coefficient, s = standard error of prediction by the QSAR, and F =
Fisher statistic (variance ratio).

For those not familiar with QSAR, a brief explanation of Eq. 1 and its
accompanying statistics is apposite. Activities and toxicities are almost invariably
used in QSAR as the logarithm of the reciprocal concentration (or dose) to produce
a required effect, for two reasons: (a) activities and toxicities can range over many
orders of magnitude, so taking logarithms makes the numbers easier to handle, and
(b) QSARs can be considered as modifications of the van’t Hoff isotherm, which
relates the free energy change in a process to the logarithm of the equilibrium or
rate constant controlling the process; QSPRs in particular are sometimes referred to
as linear free energy relationships (LFERs) (Wells 1968).

The statistical information provided gives an indication of the goodness-of-fit,
robustness and predictive ability of the QSAR model. The coefficient of determi-
nation, r2, is a measure of how well the QSAR models the data; a value of 0.81
means that the model explains 81% of the variation in log IGC50. Considering that
IGC50 is a measure of in vivo toxicity, that is a very good value; one only rarely
finds r2 values much greater than 0.8 when modeling in vivo data, because of
inherent error in the data. q2 is an internal cross-validated coefficient of determi-
nation, an indicator of how predictive the QSAR is—that is, how well it predicts
IGC50 values for chemicals that were not used to develop the QSAR. This is done
by removing one chemical from the training set, re-developing the QSAR without
that chemical, and then using the re-developed QSAR to predict the IGC50 value of
the removed chemical. That chemical is then returned to the training set, another
chemical is removed and the process repeated until all chemicals have been
removed in turn. A combined predictive indicator q2 is then calculated. It should be
noted that q2 is not now considered to be a good indicator of predictivity (Golbraikh
and Tropsha 2002). It is preferable to use chemicals that have not been used at all to
develop a QSAR model, in order to test its predictivity.

Some years ago a set of principles, the OECD Principles for the Validation of
(Q)SARs, was devised as guidance for the development and use of QSARs (OECD
2004):

58 J.C. Dearden



A valid QSAR/QSPR should have:

(1) a defined endpoint:
(2) an unambiguous algorithm;
(3) a defined domain of applicability;
(4) appropriate measures of goodness-of-fit, robustness and predictivity;
(5) a mechanistic interpretation, if possible.

The OECD report went on to say:

It is recognised that it is not always possible, from a scientific viewpoint, to provide a
mechanistic interpretation of a given (Q)SAR (Principle 5)…The absence of a mechanistic
interpretation for a model does not mean that a model is not potentially useful in the
regulatory context. The intent of Principle 5 is not to reject models that have no apparent
mechanistic basis, but to ensure that some consideration is given to the possibility of a
mechanistic association between the descriptors used in a model and the endpoint being
predicted, and to ensure that this association is documented.

It is important to note that “it is not always possible…to provide a mechanistic
interpretation of a given (Q)SAR”. There are far too many examples in the literature
of descriptors being wrongly interpreted in an attempt to provide a mechanistic
interpretation. Johnson (2008) commented that “QSAR has devolved into a per-
fectly practiced art of logical fallacy: cum hoc ergo propter hoc (with this, therefore
because of this)”.

1.2 What Are Topological Indices?

There are now thousands of physicochemical and structural descriptors available for
use in QSAR/QSPR modeling. The vast majority of these are calculated values,
since experimental measurement is time-consuming and expensive, whereas cal-
culation is rapid and less expensive with the wide range of software now available
for that purpose (see Table 1). Among these calculated values are the descriptors
known as topological indices, which are graph invariants that encode the topology
of molecules depicted as graphs (Devillers 1999a), usually without hydrogen atoms
(i.e., hydrogen-suppressed graphs). In such graphs, atoms are termed ‘vertices’ and
bonds are termed ‘edges’. The graphs are two-dimensional (2D), as shown in
Fig. 1, and show the non-hydrogen atoms and their connections with each other
(their connectivity).

In order to calculate a TI, typically the values of adjacent vertices, or some
function of them such as square root or reciprocal, are multiplied, and then summed
across all edges. So, for the 2-methylpentane molecule shown in Fig. 1, a simple TI
would be 1 × 3 + 1 × 3 + 3 × 2 + 2 × 2 + 2 × 1, which is 18.

Many different types of topological indices are now available, through the
manipulation of adjacency matrices and distance matrices (across multiple edges),
including the use of graphs with more than one edge between at least one pair of
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Table 1 Some software for calculation of topological indices

Software Indices calculateda Website (all accessed on 11
July 2016)

ADAPT χ (0–7)b, kappa (1–3), E-state, Wiener http://research.chem.psu.edu/
pcjgroup/adapt.html

ADMET Predictor E-state http://www.simulations-plus.
com

ADMEWORKS
Predictor

χ (0–7), kappa (1–3), E-state, Wiener http://www.fqs.pl

Bluedesc χ, WHIM, autocorrelation http://www.ra.cs.uni-
tuebingen.de/software/
bluedesc/welcome_e.html

ChemDes χ, kappa, E-state, information content,
WHIM, autocorrelation

http://www.scbdd.com/
chemdes/

Chemistry
Development Kit

χ (0–1), kappa, WHIM http://www.opentox.org/dev/
documentation/components/
cdk

ChemProp E-state http://www.ufz.de/index.php?
en=34593

CODESSA χ, kappa, flexibility, Wiener, Balaban J,
information content

http://www.semichem.com

CORINA
Symphony

Autocorrelation http://www.mn.am.com/
products/corinasymphony

Dragon χ, E-state, Randić, Zagreb, information
content, ETA, autocorrelation

http://www.talete.mi.it/

JOElib E-state, kappa, autocorrelation, Zagreb http://www.ra.cs.uni-
tuebingen.de/software/joelib/
index.html

MathChem χ, Zagreb, Randić, Balaban J, Wiener https://pypi.python.org/pypi/
mathchem

MDL QSAR χ (0–10), kappa (1–3), flexibility,
Shannon, Wiener, Platt

https://www.mdl.com/
products/predictive/qsar/index.
jsp

Molconn-Z χ (0–10), kappa (1–3), flexibility,
Shannon, Wiener, Platt

https://www.edusoft-lc.com/
molconn/

Mold2 χ, flexibility, Zagreb, Randić, Balaban J,
Wiener, autocorrelation, information
content

https://www.fda.gov.
ScienceResearch/
BioinformaticsTools/Mold2

Molecular
Modeling Pro

χ (0–4), kappa (2), E-state, Wiener https://www.chemistry-
software.com

MOE (Molecular
Operating
Environment)

χ (0–1), kappa (0–3), flexibility, E-state,
Wiener, Balaban J, Zagreb

http://www.chemcomp.com

MOLE db χ, E-state, Randić, Zagreb, information,
ETA, autocorrelation, WHIM

http://michem.disat.unimib.it/
mole_db/

PaDEL-Descriptor χ, kappa (1–3), E-state, Wiener, Zagreb,
WHIM

http://padel.nus.edu.sg/
software/padeldescriptor

(continued)
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adjacent vertices (i.e. taking account of double and triple bonds), termed multi-
graphs, and weighted graphs, whereby the contributions of various edges and/or
vertices are modified according to the relative importance of each to the TI. Many
have proved useful in QSAR modeling (Netzeva 2004). An early example is the
modeling of the potency of non-specific local anaesthesics by Kier et al. (1975),
using an approach developed by Randić (1975). They obtained an excellent cor-
relation of minimum blocking concentrations with what is now termed simple first
order molecular connectivity, χ:

Table 1 (continued)

Software Indices calculateda Website (all accessed on 11
July 2016)

POLLY information content (0–6), χ (0–6),
Wiener

No website; copyright of
University of Minnesota, 1988

PreADMET χ, kappa, Wiener, Balaban J https://preadmet.bmdrc.kr/
QSARPro χ, kappa, information content http://www.vlifesciences.com/

products/QSARPro/Product_
QSARpro.php

QuaSAR χ (1, 2), kappa (1–3), flexibility,
Wiener, Zagreb, Balaban J

http://www.chemcomp.com/
journal/descr.htm

RDKit χ (0–4), kappa (1–3), Balaban J https://rdkit.readthedocs.io/en/
latest/

SciQSAR χ, kappa, E-state http://www.
pharmaceuticalonline.com/doc/
sciqsar-2d-0001

T.E.S.T. χ (0–10), kappa (1–3), E-state,
information content, autocorrelation,
Zagreb, Balaban J, Wiener

http://www.epa.gov/chemical-
research/toxicity-estimation-
software-tool-test

TOPIX χ (0–8), kappa (1–3), Randić, Wiener,
Zagreb

http://www.lohninger.com/
topix.html

VCCLAB
Parameter Client

χ, kappa (1–3), flexibility, E-state,
information content, Wiener, Randić,
Balaban J, Zagreb, centric,
autocorrelation, WHIM

http://www.vcclab.org/lab/
pclient

aSome software will calculate other topological descriptors in addition to those listed
bχ (0–7) means χ values for path lengths 0 to 7; χ means no path lengths specified

Fig. 1 Hydrogen-suppressed
graph of 2-methylpentane,
with labelled vertices
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logMBC=3.55− 0.762χ

n= 36 r2 = 0.966 s = 0.390
ð2Þ

The calculation of χ values is described in Sect. 16.
This chapter considers the usefulness of the main topological indices employed

in QSAR and QSPR modeling. An early review of the subject is that of Balaban
(1985). Those readers interested in the philosophy and theory of topological indices
should consult Ivanciuc and Balaban (1999), Basak (2013a) and Roy et al. (2015).
Rouvray and King (2002) and Todeschini and Consonni (2009) have presented and
discussed, inter alia, a very wide range of topological indices. It should be noted
that TIs are real numbers that represent aspects of molecular structure (Yilmaz and
Götürk 2009), and thus are qualified for use as descriptors in QSAR/QSPR
modeling.

1.3 The Value of Topological Indices

Topological indices have been shown to correlate well with numerous biological
and physicochemical properties, suggesting that they are information-rich, and they
are also generally quickly and readily calculated. They are therefore useful
descriptors in QSARs and QSPRs that are used for predictive purposes, such as
prediction of the toxicity of a chemical or the potency of a drug for future release in
the market.

However, the term “descriptor” can be taken to relate not only to statistical
description of the dependent variable, but also to physicochemical and/or structural
description, implying that the descriptor(s) can yield information about the process
(es) that control the magnitude of the dependent variable.

In connection with topological indices, Kubinyi (1993) forcefully pointed out
that “in contrast to general recommendations on the selection of biologically
meaningful parameters (descriptors), the physicochemical meaning of the topo-
logical parameters is never clear”. He later (Kubinyi 1997) described them as
having a “hidden secret”. Livingstone (2000) has pointed out that with such large
numbers of topological indices available for QSAR/QSPR use, there is a danger of
chance correlations occurring. Lopez de Compadre et al. (1983) pointed out that
there are dangers in their application to non-homologous series.

It has to be acknowledged that the inability of topological descriptors to allow
much if any physicochemical interpretation is a grave drawback. Nevertheless, as
Devillers (1999a) has pointed out, “these problems do not (mean) that topological
indices must not be used in QSAR and QSPR studies. Indeed, they only show that,
like all the other molecular descriptors, they have to be employed only in contexts
for which they are suitable”. So long as this is recognised and acted upon, the use of
topological indices is valid and valuable. Indeed, Randić et al. (2016) have made a
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powerful case for the use of topological indices as true indicators of molecular
structure in QSAR and QSPR modeling.

Of course, some TIs have proved more useful than others. In the present author’s
view, three types have proved especially valuable, namely (i) information content
indices, developed by Basak and co-workers (see Sect. 7); (ii) molecular connec-
tivities, devised initially by Randić as a branching index (see Sect. 13), and
developed by Kier and Hall (see Sect. 14); and (iii) electrotopological state (E-state)
indices, developed by Kier and Hall (see Sect. 19). The main types of TI in use
today are discussed below in semi-chronological order of their introduction.

2 The Wiener Index

One of the first topological indices (Ivanciuc 2000) to be used in QSPR modeling is
the Wiener index W (Wiener 1947), which gives an additive measure of the con-
nections in a hydrogen-suppressed molecular graph. It is defined for hydrocarbons
in terms of two variables, (a) the polarity number p, which is the number of pairs of
carbon atoms that are separated by three carbon-carbon bonds, and (b) the path
number w, calculated as follows: multiply the total number of carbon atoms on one
side of any bond by those on the other side, and sum these for all bonds.

With this approach Wiener was able to predict the boiling points of a series of
branched and straight chain paraffins to within an average of 1°, using Eq. 3:

Δt= 98 ̸n2
� �

Δw+5.5Δp ð3Þ

where Δt = difference in boiling point between a straight and a branched chain
isomer, and w and p = structural variables. Wiener later (Wiener 1948) used the
same type of equation to model other physicochemical properties of isomeric
alkanes. For example, for surface tension he found an average error of prediction of
0.13 dyne.cm−1. The Wiener index has also been correlated with critical constants
(Stiel and Thodos 1962), density and viscosity (Rouvray and Crafford 1976), and
van der Waals surface area (Gutman and Körtvélyesi 1995).

Ivanciuc (2000) used two Wiener descriptors, weighted to account for the
presence of heteroatoms and multiple bonds, along with log D, to model the toxicity
of 47 nitrobenzenes to T. pyriformis, with r2 = 0.875 and s = 0.250, which is
comparable to the model developed by Dearden et al. (1995) using physicochemical
descriptors (log D, LUMO and modulus of change of charge on the nitro oxygen
atom upon substitution), with r2 = 0.867 and s = 0.255. Dearden et al. (1995) were
able to make mechanistic interpretations of their results, concluding that the
nitrobenzenes were behaving as pro-electrophiles, whilst Ivanciuc (2000) was
unable to do so, as the Wiener descriptors yield little or no mechanistic information.
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3 The Platt and Gordon-Scantlebury Indices

Platt (1947) devised a simple scheme to predict the physicochemical properties of
alkanes, by summing the number of adjacent bonds for each atom. The index is not
widely used, although Bharate and Singh (2011) found that it contributed to several
good QSAR models of the anti-leishmanial effect of phloroglucinol-terpene
adducts.

The Gordon-Scantlebury index (1964) is defined as the number of distinct ways
that a sequence of three bonds can be overlapped on to the carbon skeleton of a
molecule. Sabljić (1990) has pointed out that the index is equal to half the value of
the Platt index. Like the Platt index, the Gordon-Scantlebury index is little used in
QSAR. One instance of its use is an investigation of the antimycobacterial activity
of alkenols (Gupta et al. 2005), although it did not compare well with other
topological indices in that work.

4 The Hosoya Index

The Hosoya index Z is the number of sets of non-adjacent bonds in a molecule
(Hosoya 1971). In other words, the Hosoya index of a hydrogen-suppressed graph
is the total number of matchings within the graph, where a matching is a subset of
edges that do not share a vertex. Like other topological indices, it gives a measure
of molecular branching. Solomon et al. (2009) used it, along with a number of other
descriptors, to model the inhibition of cholinesterase activity, although their best
models included the Wiener index rather than the Hosoya index.

5 The Zagreb Indices

The first Zagreb index is calculated simply as the sum of the squares of the number
of non-hydrogen bonds formed by each heavy atom (Gutman and Trinajstić 1972).
A number of modifications of this were later developed, and Nikolić et al. (2003)
have discussed these in detail. Whilst there has been much discussion on the
derivation of Zagreb indices, there are relatively few publications that demonstrate
their value in QSAR/QSPR modeling (Singh et al. 2014). Two such are that of
Bajaj et al. (2005), who used refined Zagreb indices to model the anti-inflammatory
activity of N-arylanthranilic acids, and that of Dureja et al. (2008), who found that
the Zagreb topochemical indices M1 and M2 were valuable in modeling the fraction
bound and clearance of cephalosporins in humans.
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6 The Balaban J Index

The Balaban index (Balaban 1982), also called the average distance sum connec-
tivity index, is computed as follows: the numbers of edges from atom i to all other
atoms in a molecule are summed, and this procedure is repeated for all other atoms.
The sums for adjacent atoms are then multiplied together, and the reciprocal square
roots taken and summed. This number is then multiplied by (B/(C + 1)), where
B = number of bonds in the molecule and C = number of rings, to give the Bal-
aban index J. Unlike other topological indices, it does not increase rapidly with
molecular size (Maran et al. 2010).

Mekenyan et al. (1987) found that J did not correlate well with a range of
physicochemical properties or with acute toxicity of ethers. However, Thakur et al.
(2004) found that the inhibition of carbonic anhydrase by sulphonamides was
modeled well by J:

logKc = 31.41− 9.619 J

n= 29 r2 = 0.910 s = 0.429F =274.2
ð4Þ

where Kc = inhibition constant.

7 Information Content Indices

Shannon (1948) was probably the first to study the science of information theory,
which relates to molecular complexity (Mowshowitz 1968). However, the main
proponents of this approach are undoubtedly Subhash Basak of the University of
Minnesota and his co-workers (Basak 1999, 2013b and references cited therein).

There are four main types of information indices: mean, total, complementary
and structural information content (Basak 1999). The reader is referred to the
publications of Basak (1999, 2013b) for details of the calculation of these indices.
Like most topological indices, information content indices appear to work best with
homologous series, as with the examples cited by Basak (1987), such as the
anesthetic potency (AD50) of barbiturates;

AD50 = 0.33TIC1 − 0.002 TIC1ð Þ2 − 18.50

n= 13 r2 = 0.98 s = 0.06
ð5Þ

where TIC1 = first-order total information content.
This is statistically a slightly better model than that obtained using log

P (octanol-water partition coefficient):
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AD50 = 1.58 logP− 0.44 logPð Þ2 + 1.93

n= 13 r2 = 0.94 s = 0.10
ð6Þ

A combination of information indices and other descriptors can yield good
QSAR models for diverse data sets. For example, for acute toxicity to fathead
minnow of 69 diverse benzene derivatives (Gute and Basak 1997), a combination of
topostructural and topochemical indices yielded r2 = 0.783 and s = 0.36. When
geometric and quantum chemical descriptors were added, the correlation improved:
r2 = 0.863, s = 0.30. However, geometric and quantum chemical descriptors alone
did not yield good models.

8 Autocorrelation Descriptors

The autocorrelation approach, first introduced by Moreau and Broto (1980), derives
molecular descriptors encoding various physicochemical or structural properties
from the molecular graphs of the organic chemicals being studied (Devillers
1999b).The procedure is as follows:

(1) The shortest interatomic distances, expressed as number of bonds, between
each pair of atoms i and j are calculated.

(2) An appropriate physicochemical or structural property is chosen, and the
autocorrelation vector is calculated as the sum of the products of the atomic
contributions to that property for each distance between the different atoms.

Many physicochemical properties have been used in QSARs and QSPRs
involving this approach (Devillers 1999b). González et al. (2006) used masses,
electronegativities and van der Waals volumes to model the inhibitory activity of
cytokinin-derived cyclin-dependent kinase inhibitors.

Abreu et al. (2009) used a combination of autocorrelation descriptors and radial
distribution descriptors to model the radical scavenging activity of benzo[b]thio-
phenes. In a comparative assessment of 2D autocorrelation, CoMFA and CoMSIA
modeling of protein tyrosine kinase inhibition, Caballero et al. (2008) found that
CoMSIA performed best.

9 WHIM Descriptors

WHIM (Weighted Holistic Invariant Molecular) descriptors are geometrical
descriptors based on statistical indices calculated on the projections of atoms along
principal axes (Todeschini et al. 1994). They are able to capture relevant molecular

66 J.C. Dearden



information regarding molecular size, shape, symmetry and atom distribution with
respect to invariant reference frames. In the WHIM approach a molecule is con-
sidered as a configuration of points (the atoms) in the three-dimensional space
defined by the Cartesian axes. Projections of the atoms along each principal axis are
made, and their distributions around the geometric centre are evaluated.

Todeschini and Gramatica (1997) found that WHIM descriptors performed very
well in the prediction of a number of physicochemical properties of chlorophenols
and of their aquatic toxicity to a range of species. Vlaia et al. (2009) obtained
excellent correlations of WHIM descriptors with the toxicity of 48 aliphatic esters
to the aquatic ciliate Tetrahymena pyriformis. Tong et al. (2008) used the vectors of
principal component scores of WHIM indices of peptide analogues to model
properties such as bitter taste (n = 48, r2 = 0.873, RMSE (root mean square
error) = 0.225) and bactericidal activity (n = 12, r2 = 0.997, RMSE = 0.133).

10 Topochemical Atom Indices

Topochemically Arrived Unique (TAU) indices, developed by Pal et al. (1988),
take account of the chemistry of the atomic core and valence electronic environment
of atoms. A detailed explanation of their derivation has been given by Roy and
Saha (2003), who used them to model the aqueous solubility of 193 diverse acyclic
compounds, with excellent results (r2 = 0.946, s = 0.735). Roy and Ghosh (2003)
then extended the scope of the TAU scheme by redefining its basic parameters and
introducing a novel Extended Topochemical Atom (ETA) formalism. They showed
that their new ETA indices could model the toxicities of 50 substituted phenols to
Tetrahymena pyriformis very well (r2 = 0.948, q2 = 0.936, s = 0.161, F = 159.1).
They also found (Roy and Ghosh 2004) a good correlation of ETA indices with
acute toxicity of substituted benzenes to the guppy (r2 = 0.885, q2 = 0.865,
s = 0.230, F = 92.6), and a good correlation (Roy and Ghosh 2009) of a combi-
nation of 15 ETA and non-ETA topological descriptors with the toxicity of 288
diverse aromatic compounds to Tetrahymena pyriformis ((r2 = 0.854, q2 = 0.821,
is not given, F = 106.3). It may be noted that the use of a large number of
descriptors in a QSAR is not recommended (Aptula et al. 2005) as it makes
interpretation difficult.

11 The Centric Index

The centric index C developed by Balaban (1979) reflects molecular shape. It uses a
procedure known as pruning partition of terminal atoms, and is calculated as
follows:
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C=Σ aið Þ2 ð7Þ

where ai = number of atoms deleted in step i.
The index has not been widely used in QSAR and QSPR investigations. Two

studies that employed it (Jalali-Heravi and Asadollahi-Baboli 2008; Noorizadeh
et al. 2011) found it not to feature in their best models.

12 Triplet Indices

Filip et al. (1987) introduced a new approach for obtaining graph invariants with
very high discrimination ability, called triplet indices. Local vertex invariants
(LOVIs) are assembled into a triplet TI, based on one of several operations such as:
(i) summation; (ii) summation of squares; (iii) summation of square roots, and so on
(Basak et al. 2000). Filip et al. (1987) showed that triplet indices correlated well
with physicochemical properties such as boiling points, and NMR chemical shifts.

13 The Randić Index

Randić (1975) devised a topological index to characterize branching in alkanes. In
Fig. 2 are depicted the hydrogen-suppressed graphs of three isomeric hexanes,
namely n-hexane, 2-methylpentane and 3-methylpentane. The branching index
(BI) for each is calculated by multiplying the number of non-hydrogen bonds made
by each atom with the number on an adjacent atom, taking the reciprocal square
root of the product, then summing across all non-hydrogen atoms.

Hence, for n-hexane the BI is 1/√2 + 1/√4 + 1/√4 + 1/√4 + 1/√2, or
2.914. The BIs for 2-methylpentane and 3-methylpentane are 2.770 and 2.808
respectively. Clearly the Randić index can readily differentiate between alkane
isomers.

Fig. 2 Hydrogen-suppressed graphs of three isomeric hexane molecules
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This was an important development, and was recognised as such by Lemont
(Monty) Kier and Lowell Hall, who proceeded to develop Randić’s concept and
widen its applications (see Sect. 16). Randić himself later (Randić 2001) generously
acknowledged the significant contributions of Kier and Hall, quoting Wilson
(1952): “Every once in a while some new theory or a new experimental method or
apparatus makes it possible to enter a new domain. Sometimes it is obvious to all
that this opportunity has arisen, but in other cases recognition of the opportunity
requires more imagination”.

14 Molecular Connectivity Indices

Kier and Hall, discerning the potential of the Randić index, collaborated with
Randić (Kier et al. 1975) to show that his branching index could be applied to
compounds other than alkanes, and could be used in QSPR and QSAR modeling.
They demonstrated that the cavity surface area of 69 alcohols and hydrocarbons
was well modelled by BI, which they chose to call the molecular connectivity
index, χ (r2 = 0.956, s = 11.2). Such a correlation is not unexpected, since χ
clearly increases with molecular size. What is much more interesting is that they
also correlated a biological activity (minimum blocking concentration of
non-specific local anaesthetics) with χ for a chemically diverse set of 36 chemicals
(r2 = 0.966, s = 0.390).

It was also realised (Murray et al. 1975) that for compounds with π-bonds, better
correlations could be achieved if a π-bond was regarded as two bonds, so that, for
example, CH2 = has a vertex value (connectivity) of 2. Kier et al. (1976) also
introduced the concept of an expanded series of the molecular connectivity index χ,
involving calculation across more than one bond. For example, for isopentane, the
first-order χ value, designated as 1χ, is 1/√3 + 1/√3 + 1/√6 + 1/√2, or 2.270.
The second-order χ value, calculated by multiplying across two bonds, and des-
ignated as 2χ, is 1/√1 × 3 × 1 + 1/√1 × 3 × 2 + 1/√1 × 3 × 2 + 1/
√3 × 2 × 1, or 1.558. The third-order χ value, calculated by multiplying across
three bonds, and designated as 3χ, is 1/√1 × 3 × 2 × 1 + 1/√1 × 3 × 2
1, or 0.816. Higher-order χ values are calculated similarly, and the zero-order χ
value is calculated as the sum of the reciprocal square roots of the vertex values.

A further step (Kier and Hall 1976a) involved the specific treatment of het-
eroatoms. The vertex value δ of an atom is equivalent to the number of valence
electrons minus the number of hydrogen atoms bonded to it; for example, for the N
atom of NH2, δ = 3, and for the N atom of NH, δ = 4. However, this does not
work for the halogens. To circumvent this problem, the δ values for halogen atoms
were derived from modeling of molar refraction data, yielding δ values of: fluorine
−20, chlorine 0.690, bromine 0.254, iodine 0.085.

When χ values corrected for unsaturation and heteroatoms are used, they are
written as χv. For example, the simple (uncorrected) 1χ value for vinyl chloride,
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CH2 = CHCl, is 1/√2 + 1/√2, or 1.414. The valence-corrected 1χv value is
1/√2 × 3 + 1/√3 × 0.690, or 1.103.

Also in 1976 Kier and Hall (1976b) published their first book on molecular
connectivity.

When branching occurs in a molecule, the atoms at and around the branch are
termed a cluster (Fig. 3a) or a path-cluster (Fig. 3b). Clearly their molecular con-
nectivity terms (3χc and 4χpc) describe local structural properties. Kier et al. (1977)
found them useful in modelling odorants (Eq. 8) and Sabljić and Protić-Sabljić
(1983) used them to model properties of branched alcohols.

Odor similarity = 7.47− 1.842χ +1.343χc
n = 15 r2 = 0.848 s = 0.395

ð8Þ

Ring (termed chain) molecular connectivities describe the types of rings and
their substitution patterns in a molecule (Kier and Hall 1986). Sabljić (1985) found
that a chain term was required to model chromatographic retention indices of
chlorinated benzenes on a polar stationary phase:

ICW20M = 226.83χ +1588.07χCH + 649.1

n= 13 r2 = 0.996 s not givenF =1347
ð9Þ

A differential molecular connectivity index, Δχ, was introduced in Kier and Hall
(1991), defined as the difference between the simple and valence connectivity
indices of the same order. The information encoded by this differential index is
largely electronic. For example, Kier and Hall (1991) found that the ionization
potentials (IP) of amines, alcohols and ethers were well modeled by two Δχ values:

IP= 5.01Δ0χ +5.17 Δ1χ +5.34

n= 24 r2 = 0.912 s = 0.30F =109
ð10Þ

Kier and Hall have utilized molecular connectivities to model a wide range of
physicochemical and biological endpoints (Hall and Kier 1999a), from aqueous
solubility (Hall et al. 1975) to muscarinic receptor affinity (Kier and Hall 1978) to
fish toxicity (Hall et al. 1989).

Hall and Kier (1999a) have also pointed out that molecular connectivities,
together with kappa and E-state indices (see Sects. 17 and 21), have been utilized in

Fig. 3 a 3rd order cluster;
b 4th order path-cluster
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database characterization (Cummins et al. 1996) and combinatorial library design
(Zheng et al. 1998a, b).

It is not surprising that there is considerable collinearity of χ values, especially
amongst the lower order values. It is important to eliminate collinearity of
descriptors in a QSAR model, otherwise distortion of the statistics can occur
(Dearden et al. 2009) and mechanistic interpretation is difficult. Murcia-Soler et al.
(2001) used χ values to model the anti-hyperglycemic effect and other properties of
sulfonylurea drugs. They modeled the plasma protein binding of those drugs with
three molecular connectivities, namely 0χv, 1χ and 1χv, all of which are highly
correlated with each other (r > 0.99). Lu et al. (1999) modeled the fish biocon-
centration factor (BCF) of organic pollutants, and reported the following model:

log BCF= 0.770+ 0.7570χv − 2.6501χ +3.3722χ − 1.1862χv − 1.8073χc
n = 80 r2 = 0.907 s = 0.364

ð11Þ

They did not give the χ values of the compounds, but by comparison with the
Murcia-Soler data above it is clear that at least one pair of descriptors (0χv and 1χ) in
Eq. 11 must be very highly correlated.

Randić (2001) took a different view of collinearity. He stated: “Descriptors that
show high collinearity with already selected descriptors are often eliminated from
structure-property-activity studies. They should not be. The only useful criterion for
discarding a descriptor is its inability to reduce the standard error of the regression.
For example, in several applications of connectivity indices, the second order
connectivity index 2χ has been discarded because…it shows close parallelism to the
connectivity index 1χ. But… 2χ, despite its parallelism to 1χ, also complements it.
That is, a part of 2χ which is different from 1χ (and which may be small) suffices to
produce satisfactory regression”. Randić (2001) pointed out that a referee disagreed
with his view, stating that “such a model is generally not predictive, that is, when
new compounds are predicted, their presence essentially alters the interrelation
between the two descriptors, 1χ and 2χ in this example. Often when models using
inter-correlated variables are used, they do not produce good validation statistics”.
This is confirmed by, for example, Livingstone (1995) and Hansch et al. (1998).
The latter authors pointed out that a QSAR developed by Ribo and Kaiser (1984)
for the toxicity of chloroanilines to Photobacterium phosphoreum (now called
Vibrio fischeri) contained two highly correlated terms, ClogP and the Hammett
constant σ:

log 1 ̸C=1.25 ±0.49ð ÞClogP− 1.45 ±1.1ð Þσ+2.01 ±0.70ð Þ
n= 14 r2 = 0.917

ð12Þ

The correlation between ClogP and σ is r2 = 0.946, and the σ term has low
significance, as can be seen from its standard error’s being high relative to its
coefficient.
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The present author remains of the belief that it is probably better not to use
highly correlated descriptors in a QSAR/QSPR. The subject is, however, worthy of
further investigation. Hollas et al. (2005) have reported that by slight modification
of TIs such as molecular connectivities, the Platt number and Zagreb indices, their
mutual correlation can be reduced or completely eliminated.

Another point that perhaps requires further examination is just what is meant by
“highly correlated”. There does not appear to be any definitive value, at least so far
as QSAR is concerned, and a wide range of values are in use. The present author’s
very subjective choice is r2 ≥ 0.8. Gramatica et al. (2007) used r2 ≥ 0.98, which
aligns with the view of Randić (2001). On the other hand, r values as low as 0.2
have been used as a cut-off point (Randić 2015).

It has already been mentioned that molecular connectivities, like other topo-
logical descriptors, are difficult of interpretation. Nonetheless a number of attempts
have been made to do so. Kier and Hall (1976b, 1986) pointed out that there are five
general categories of molecular structure described by χ indices: (i) degree of
branching, (ii) variable branching pattern, (iii) position and effect of heteroatoms,
(iv) adjacency patterns, and (v) degrees of cyclicity. Kier and Hall (2000, 2001) also
showed that χ indices represent the numerical possibilities of a molecule encoun-
tering another identical molecule. By converting bond accessibility into a cellular
automata rule for 38 alkanes, and running the dynamics, they showed that the
number of cell encounters correlated better (r2 = 0.991) than did 1χ (r2 = 0.984)
with the boiling points of the alkanes.

Randić and co-workers (Randić and Zupan 2001; Randić et al. 2001) considered
the interpretation of several topological indices. They pointed out that the paucity of
papers on the subject suggested that the interpretation of topological indices may be
rather difficult. Nonetheless they attempted to do so, and commented that the fact
that peripheral bonds make larger contributions to 1χ than do inside bonds indicates
their contribution to molecular surface area, which is a measure of molecular size.

Estrada (2002) also identified χ indices as components of molecular accessi-
bility. He interpreted the δ values (inverse square roots of the vertex degree
(number of non-hydrogen bonds formed)) as the length of the arc in the van der
Waals circumference accessible from outside. Then, for a 2χ index (i.e. over 3
atoms), the 3 δ values are multiplied together to give a molecular accessibility
volume.

In a principal component (PC) analysis of 108 n-alkanes and polychlorinated
biphenyls, Burkhard et al. (1983) found that three PCs accounted for 98% of the
variance in the data set, and that those PCs were associated with, respectively,
(i) degree of branching, (ii) molecular size or bulkiness, and (iii) structural
flexibility.

Dearden et al. (1988) looked at the correlations between a range of χ values of
59 substituents attached to a benzene ring and 54 non-χ properties of each of the
substituents. In general, they found that path connectivity terms, of whatever order
(≤ 6) and whether simple or valence-corrected, model predominantly bulk volume.
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The (χ – χv) terms did not appear to model any of the 54 non-χ properties. Other ad
hoc comments have occasionally appeared in the literature; for example,
Krishnasamy et al. (2008) stated that 4χpv highlights the role of molecular surface.
Stankevich et al. (1995) reported that χ indices for conjugated hydrocarbons cor-
related with the Hamiltonian function describing the π-electron properties of the
compounds.

There have also been several attempts to “correct” χ indices. For example Li
et al. (2003) developed a novel valence χ value and found it better (r2 = 0.939) than
the standard χ value (r2 = 0.889) for the prediction of aqueous solubility of a
diverse group of 36 organic compounds. Zhang et al. (2005) also used the same
novel valence χ value, together with several quantum-chemical descriptors, in the
modeling of corrosion inhibitory activity of 34 compounds such as imidazoles and
imidazolines.

Dearden et al. (2004) devised an approach to improve the correlation of χ values
with hydrophobicity by subtracting, instead of adding, the bond contributions
(δ values) for bonds where one of the atoms is a heteroatom other than halogen, to
give a 1χp value. For example, for a set of 23 diverse substituents, the correlation
between 1χ and π (the hydrophobic substituent constant) was r2 = 0.123, whilst that
between 1χp and π was r2 = 0.771.

15 Kappa Indices

Kier (1985) devised a numerical index (kappa, κ) of molecular shape from the
hydrogen-suppressed graph of a molecule. It is based on the count of 2-bond
fragments in a graph relative to the maximum number possible (if the molecule is
star-shaped) and the minimum number in the isomeric linear graph. He showed that
the sweet taste potency of 14 nitro- and cyano-anilines was modelled better
(r2 = 0.852, s = 0.30) with 2κ and (2κ)2 than was found by Iwamura (1980) using a
Verloop steric constant (r2 = 0.810, s = 0.32). Kier later (Kier 1986a) introduced
different orders of kappa indices and (Kier 1986b) a modification term α for
non-carbon atoms.

Solomon et al. (2009) used a first-order κ index in a good 5-descriptor QSAR to
model the butylcholinesterase inhibition of 59 N-aryl derivatives (r2 = 0.884).

16 Flexibility Indices

Almost all organic molecules are flexible, and flexibility often plays an important
part in chemical reactions, and in xenobiotic transport and receptor binding within
an organism (Luisi 1977). Kappa indices were used by Kier (1989) to develop a
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molecular flexibility index. The heteroatom-weighted kappa indices 1κα and 2κα are
obtained, and the flexibility index Φ is defined as:

Φ= 1κα.2κα ̸A ð13Þ

where A = atom count.
The compressibility of a molecule is a function of the free space between

molecules, which must relate to molecular flexibility. Kier and Hall (1999) reported
that, for a heterogeneous set of cyclic and acyclic hydrocarbons, compressibility
(KT) correlated well with their Φ values:

KT = 17.785Φ+75.032

n= 10 r2 = 0.922 s = 9.4
ð14Þ

Melting point is a function of crystal packing, which also would be expected to
relate to molecular flexibility. Eike et al. (2003) obtained a good QSPR for the
melting points of 75 quaternary ammonium salts with acyclic saturated alkyl
side-chains, using 5 descriptors including Φ (r2 = 0.775).

17 The Variable Connectivity Index

Topological indices are known as graph invariants. However, Randić (1991a, b)
introduced the concept of optimization, by using weighted path numbers, of such
indices involving heteroatoms in order to obtain better QSAR/QSPR models. The
topic then lay dormant until Randić and Basak (1999), Krenkel et al. (2001), Pompe
et al. (2004), Randić et al. (2004) and Mu et al. (2009) extended it. Singh et al.
(2014) devised some variable Zagreb indices with high discriminating power.
Randić and Basak (1999) were able to show that the use of two optimized variable
connectivity indices improved QSPR modeling of the boiling points of 58 aliphatic
alcohols, with the standard error of prediction being lowered from 6.64° to 3.89°.

Randić (2015) made the impressive point that, in the prediction of boiling points
of 100 alcohols, a single variable first-order connectivity index yielded r2 = 0.982,
s = 4.21°, whereas four non-variable connectivity indices were required to achieve
similar statistics (r2 = 0.982, s = 4.91°) using the same data.

Randić et al. (2004) have, however, pointed out that as the training set of
compounds is changed, the values of the variable indices also change. This means
that the method is not fully transferable. It is also likely that unless external test set
compounds are very similar to those in the training set, poor external predictivity
could result. Additionally there could be a risk that the standard error of prediction
could be significantly lower than the experimental error, which is unacceptable
(Dearden et al. 2009).
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18 Use of Topological Descriptors in Inverse QSAR

It is relatively easy, given a data set of biological activities or physicochemical
properties, to describe them quantitatively with a QSAR/QSPR model. But if such a
model is to be used predictively, for example to develop more potent drugs, how
does one obtain potential drug candidates from the model? The problem is, of
course, not restricted to models using topological indices, but Kier and Hall have
examined it from that standpoint (Kier et al. 1993a, b; Hall and Kier 1993; Kier and
Hall 1993).

Essentially, the approach is (Hall and Kier 1993): (i) set desired target range for
property value; (ii) use QSAR equation(s) to obtain target range of each χ index;
(iii) convert χ target range into target range of path count; (iv) obtain target range
for number of atoms and rings; (v) use interconversion equations to obtain target
degree sets; (vi) convert each degree set into a set of corresponding graphs, called
candidate graphs; (vii) use best QSAR equation to predict property value for each
candidate graph. Kier and Hall (1993) used the above algorithm to design potential
isonarcotic agents from a published data set, and found 8 compounds likely to have
isonarcotic activity in the desired range.

The Zefirov group has also examined the inverse QSAR problem with the use of
a number of topological indices (Baskin et al. 1989; Gordeeva et al. 1990; Zefirov
et al. 1991), using an approach quite similar to that of Kier and Hall. Skvortsova
et al. (1992, 1993) similarly examined the inverse QSAR problem with the use of
kappa indices.

19 Electrotopological State Indices

Almost all molecular descriptors encode essentially either electronic or topological
information, and usually represent whole molecules (Hall et al. 1991a). In the early
1990s Kier andHall developed a set of descriptors that encompass both electronic and
topological features, and are atom-based (Kier and Hall 1990; Hall et al. 1991a, b;
Hall and Kier 1995); they termed these electrotopological state (E-state) indices. This
work was later drawn together in a book (Hall and Kier 1999b).

The electronic factor is considered to relate to the count of non-σ (π and
lone-pair) electrons associated with an atom, and is equal to (δv – δ), where δvis the
count of valence electrons and δ is the count of σ electrons. The atom intrinsic
factor I is defined as (δv + 1)/δ for first row atoms, and for higher level atoms as
[(2/N)2.δv + 1]/δ. The perturbation ΔIi of other atoms j on atom is defined as:

ΔIj = ∑
N

j=1
ðIi − IjÞ ̸r2ij ð15Þ
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where N = principal quantum number, and r = count of atoms in the shortest path
connecting atoms i and j, counting both i and j. Hence the E-state value Si for atom i
is (Ii + ΔIi).

The power and beauty of the E-state approach are that, unlike most molecular
descriptors, it allows an investigator to focus on the effects of individual atoms
within a molecule on the activity or property under investigation, and thus poten-
tially aids in determination of mechanism of action. Hall et al. (1991a) found that
the 17O NMR chemical shifts for a series of 10 ethers was modelled almost as well
by an E-state term (r2 = 0.990, s = 4.3) as by a quantum mechanically calculated
partial charge (r2 = 0.994, s = 3.4).

Another example of E-state correlation with a physicochemical property was
given by Hall and Kier (1995), who modeled the boiling points (BP) of 245 alkanes
and alcohols:

BP= 8.21 SsCH3 + 14.86 SssCH2 + 24.56 SsssCH+43.76SssssC+ 11.63 SsOH− 43.95

n= 245 r2 = 0.941 s= 8.0F =755

ð16Þ

Note that lower case s indicates the number of non-hydrogen bonds formed by
each type of atom.

E-state indices were used by Huuskonen et al. (1999) to model the octanol-water
partition coefficients (log P) of 300 drugs and related compounds, yielding
r2 = 0.87, s = 0.68. However, a total of 19 E-state values were required in order to
achieve those statistics. Whilst that probably reflected the diversity of the data set, it
is not comparable with the results obtained by Abraham et al. (1994), who modeled
log P of 613 diverse organic compounds with only four descriptors, yielding
r2 = 0.995, s = 0.116.

Kellogg et al. (1996) then introduced E-state values for hydrogen (I(H), mainly
to take account of hydrogen bonding. They assumed I(H) to be dependent primarily
on the attached atom, and calculated it as I(H) = (δv – δ)2/δ. Rose et al. (2002)
found these E-state terms valuable for modeling blood-brain barrier partitioning of
102 diverse compounds, using two hydrogen E-state terms and a χ difference term,
with reasonable statistics (r2 = 0.66, s = 0.45).

Numerous other workers have found E-state descriptors to be of value in
QSAR/QSPR modeling. Ray et al. (2010) used a combination of these and
physicochemical descriptors to model the free-radical scavenging activity of 36
hydroxyphenylureas, with q2 = 0.957 and external predictive r2 = 0.966. An
exploration of the pharmacophore of some benzodiazepine derivatives as
anti-Alzheimer agents was performed by Debnath et al. (2004) using E-state
descriptors, with excellent results.

Roy and Mitra (2012) have recently reviewed the use of E-state indices in drug
design, property prediction and toxicity assessment. They commented that: “the…
use of E-state parameters in the field of computational chemistry portray(s) them as
an indispensable tool to expedite investigation of molecular mechanisms and
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rational design of molecules, in addition to characterization of physicochemical
properties of the molecules and identification of toxic industrial wastes and envi-
ronmental pollutants”. The present author concurs with those sentiments. In a recent
mechanism-based study of compounds causing skin sensitization, Dearden et al.
(2015a) found, in 8 QSAR models selected by step-wise regression, that χ values,
E-state indices and Kier flexibility terms featured strongly.

20 Biodescriptors

As interest in, and knowledge of, genomics and proteomics increase apace, the
biological information available is huge. For example, a proteomics map derived
from 2D gel electrophoresis can yield data on the charge, mass and abundance of
about 2000 individual proteins (Basak and Gute 2008). The question thus arises as
to whether graph theoretical indices can be devised for the characterization of
biological data such as DNA sequences or proteomics maps (Basak and Gute 2008).
Nandy and Basak (2000) and, Randić et al. (2000) were the first to attempt this.
Nandy and Basak examined the effect of toxic substances on DNA primary
sequences, and developed simple numerical descriptors from a graphical repre-
sentation technique that enabled easy visualization of changes in base mutations
and deletions arising from toxicity. Nandy et al. (2006) have compared a number of
different approaches. The lack of correspondence amongst them led the authors to
comment that “until a reasonably dependable characterization system is developed,
the underlying graphical systems to be used should be the ones with intuitive appeal
to understand the base composition and distribution structure in a sequence, and
develop numerical techniques based on such graphs”. Basak and Gute (2008)
examined several approaches to the development of mathematical biodescriptors,
and concluded that they have a reasonable ability to distinguish between proteomics
patterns that result from closely related chemicals and complex mixtures. This
could allow the development of new drug candidates, and also act as early warning
signals of toxicity. Basak (2010) has reviewed the field up to 2010.

21 Chirality

Graph theoretical indices are 2D descriptors, and so generally cannot distinguish
between 3D structural features such as chirality, although Randić et al. (1990)
reported an extension of the Randić index approach to give 3D descriptors.
A number of attempts have been made to develop TIs that can differentiate between
diastereoisomers (Golbraikh et al. 2001) and also between cis and trans enan-
tiomers (Schultz et al. 1995). Natarajan et al. (2007) have discussed these, and
developed a novel approach using a three-point interaction model, whereby the
three groups of highest priority attached to a chiral center are viewed from a given
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reference point. Attached groups/atoms are assigned δ values by the Kier and Hall
method (Kier and Hall 1986), and decreasing importance with increasing topo-
logical distance is assigned. The group δi value is than calculated as follows:

δvi = δvn1 + δvn2 ̸2
� �

+ δvn3 ̸4
� �

+ δvn4 ̸8
� �

+⋯ ð16Þ

The relative chirality index (vRCI) is then calculated as the sum of the δiv values
across all relevant bonds in the chiral molecule.

They found that their approach gave good differentiation between
diastereoisomers and between enantiomers.

22 Software for Calculation of Topological Indices

There is now a wide range of software available for the calculation of topological
indices, and many of these are listed in Table 1. It is sometimes difficult to ascertain
whether or not a given software package will calculate a particular topological
index, as some websites are not very specific. A number of software websites state,
for example, simply that their software will calculate “topological descriptors”,
without saying which ones, and such software has not been included in Table 1.

Another matter of potential concern is the accuracy of the topological indices
calculated by available software packages, since a number of such programs will
probably have been written in-house. A case in point is a paper by Murcia-Soler
et al. (2001), who modeled anti-diabetic potencies of drugs using molecular
connnectivities calculated by their own in-house software. Dearden et al. (2015b)
found, in a re-investigation of the Murcia-Soler data, that their reported χ values
were incorrect. For example, their 0χv values were all too low by 0.587, and their
3χv values were all too low by 0.230, in comparison with the Molconn-Z values of
Hall and Kier, which one would expect to be correct.

23 Conclusions

It is clear from what is written above that there is now a vast literature on the
development of topological indices, and on their applications in QSAR and QSPR.
One question that has arisen more than once is: are there now enough (or more than
enough) topological indices available? It is true that we now have a wide range of
TIs available for use in QSAR/QSPR, as this chapter shows. However, one could
ask the same question regarding other descriptors, of which we now have thousands
(Todeschini and Consonni 2009), yet it does not appear to have been asked, or at
least not to the same extent.

Another often-voiced criticism of TIs is that they are difficult to interpret. Kubinyi
(1993) implied that he regarded them as “an irrelevance which has had the
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unfortunate effect of diverting attention from the real work that needs doing”. Unger
(1987), reviewing Kier and Hall’s (1986) book, stated that molecular connectivity
“is a highly concocted piece of numerology and is often applied with total lack of
rationale”. However, Randić et al. (2016) have made the valid point that although
the use of physicochemical properties in QSAR modelling can offer insights into
mechanisms of action, they simply relate to parallelisms between such properties and
activity, but they tell us nothing about the structure-activity relationship directly.

In the present author’s opinion, topological and physicochemical descriptors
should be regarded as complementary. Topological indices are one, or perhaps
more than one, class of QSAR/QSPR descriptors. Part of the concern about their
use is that, on the whole, they have been used as stand-alone descriptors, perhaps
even in competition with other types of descriptor, leading to inter-necine rivalry
and hence argument: “My descriptors are better than your descriptors”. But why
should this be so? All descriptors, of whatever nature and derivation, contain
information that could be valuable in modeling, so why not use a descriptor pool of
various types of descriptor, as proposed by Basak et al. (1999)? This point has been
made strongly by Tseng et al. (2012): “There is no logical reason for keeping
descriptor classes segregated. Certainly one can appreciate situations, based upon
the endpoint of interest, where multiple classes of descriptors are needed to ade-
quately capture the molecular features and interactions that contribute to the end-
point of interest”. The present author concurs fully with those sentiments. Randić
(2008) noted the continuing hostility towards chemical graph theory, and has
quoted verbatim many adverse comments by authors and journal editors, although
he commented that molecular connectivities have been under less attack of recent
years. The present author has witnessed at first hand the verbal abuse of molecular
connectivity work in the presence of Kier and Hall at international conferences.

Randić (2008) commented that graph theory is widely appreciated and
acknowledged in physics and biology, so why not in chemistry? Who is afraid of
graph theory? He also cited many publications in which chemical graph theory has
been unfairly attacked, in his view. Randić (2008) put this hostility down to
ignorance of the power of graph theory, and speculated as to whether the blindness
of critics could “reflect conscious or unconscious concerns how to preserve the
monopoly in an applied area of medicinal and physical chemistry”. He expressed
similar concerns earlier (Randić 2001) and in a recent co-authored book (Randić
et al. 2016). Prelog (1976) has pointed out that “pictorial representations of graphs
are so easily intelligible that chemists are often satisfied with inspecting and dis-
cussing them without paying too much attention to their algebraic aspects, but it is
evident that some familiarity with the theory of graphs is necessary for deeper
understanding of their properties”.

It is acknowledged that topological indices are often difficult to interpret in
physicochemical terms, although it has to be said that the same applies to a great
many non-topological descriptors. A number of authors have attempted such
interpretation, and a few such are Basak et al. (1987, 2015), Stankevich et al.
(1995), Kier and Hall (2000), Randić et al. (2001), Randić and Zupan (2001) and
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Shafiei (2015). Basak (2013a) has also presented a philosophical view of mathe-
matical chemistry.

Although most of the work reported here relates to the application of topological
indices in QSAR and QSPR modeling, TIs are also being used in other fields such as
proteomics and DNA sequencing (see Sect. 20) and molecular similarity (Basak
et al. 1988, 2006; Randić 2014). The latter has potential for database characterization
(Cummins et al. 1996) and combinatorial library design (Zheng et al. 1998a, b).

It therefore seems that the future of topological indices and their application to
chemistry, biochemistry, biology and medicine are assured for the foreseeable
future. There will no doubt continue to be disagreements, but that is the nature of
science. If one goes back to 19th century scientific publications, it is clear that bitter
arguments were taking place even then.

Let us be grateful that the dire predictions of Auguste Comte (1798–1857) did
not come to pass. He wrote: “Every attempt to employ mathematical methods in the
study of chemical questions must be considered profoundly irrational and contrary
to the spirit of chemistry. If mathematical analysis should ever hold a prominent
place in chemistry—an aberration which is happily almost impossible—it would
occasion a rapid and widespread degeneration of that science” (Liang et al. 1993).
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Which Performance Parameters
Are Best Suited to Assess the Predictive
Ability of Models?

Károly Héberger, Anita Rácz and Dávid Bajusz

Abstract We have revisited the vivid discussion in the QSAR-related literature
concerning the use of external versus cross-validation, and have presented a thor-
ough statistical comparison of model performance parameters with the recently
published SRD (sum of (absolute) ranking differences) method and analysis of
variance (ANOVA). Two case studies were investigated, one of which has exclu-
sively used external performance merits. The SRD methodology coupled with
ANOVA shows unambiguously for both case studies that the performance merits
are significantly different, independently from data preprocessing. While external
merits are generally less consistent (farther from the reference) than training and
cross-validation based merits, a clear ordering and a grouping pattern of them could
be acquired. The results presented here corroborate our earlier, recently published
findings (SAR QSAR Environ. Res., 2015, 26, 683–700) that external validation is
not necessarily a wise choice, and is frequently comparable to a random evaluation
of the models.

Keywords Performance parameters (merits) ⋅ Ranking ⋅ Cross-validation ⋅
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1 Introduction

There is a long lasting and never ending discussion in the literature: How can we
estimate the predictive ability of multivariate models (and in particular QSAR
models)? Here we cannot recapitulate the entire story, just refer to some basic
sources. Generally, there are principally two different ways to evaluate the
“goodness” of a QSAR model: to assess the model’s performance with regards to
(i) description (fitting or recall), i.e. evaluating the performance on the existing data;
and (ii) prediction, i.e. evaluating the performance on future data, also called ex-
ternal validation (how reliable a prediction can be made from the model for external
data, such as for new molecules).

External validation is usually modelled by a single split (hold-out sample) in the
belief that future compounds (objects, samples) will be derived from the same
property distribution, which is more or less true for QSAR models within the
applicability domain. If the future compounds diverge from the property distribu-
tion of the earlier ones (on which the model was built), then the model cannot be
applied anymore without updating.

A common choice is to estimate the predictive ability using cross-validation;
however, it is debatable how well cross-validation can mimic the prediction per-
formance. Cross-validation is probably the most widely used method for estimating
prediction error, but its various implementations inherently call for a compromise in
terms of the bias-variance trade-off. As Hastie, Tibshirani and Friedman point out,
“[…] five- or ten-fold cross-validation will overestimate the prediction error.
Whether this bias is a drawback in practice depends on the objective. On the other
hand leave-one-out cross-validation has low bias, but can have high variance.
Overall, five- or tenfold cross-validation are recommended as a good compromise”
(Hastie et al. 2009).

Some chemists also advocate a separation of an external part for testing
(Esbensen and Geladi 2010), while others maintain the opposite: “hold-out sample
is far inferior [as compared to leave-one-out cross-validation]” (Hawkins et al.
2003) or “hold-out samples are downward biased.[…] small independent hold-out
samples are all but worthless” (Hawkins 2004).

As the machine learning community provides a plethora of novel techniques,
which can produce 100% classification or error-free regression on the training set,
the assessment of the predictive performance on future samples (i.e. validation, test)
has gained increasing importance. There is no single best way to determine the
predictive performance of a model, though some options such as leave-one-out
cross-validation have become a kind of standard. We should emphasize the
statistician’s view: “If possible, an independent sample should be obtained to test
the adequacy of the prediction equation. Alternatively, the data set may be divided
into three parts; one part to be used for model selection [model building or variable
selection], the second part for the calibration of parameters in the chosen model and
the last part for testing the adequacy of predictions” (Miller 1990).
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In the machine learning field (artificial neural networks, support vector machines,
etc.) this is the standard or at least the advocated practice. In many cases the insuffi-
cient number of samples leads to the division of the data into two parts. If the cali-
bration of parameters is done using the same part of the data, substantial biases arise.

We should mention two recent sources with opposite conclusions: Esbensen and
Geladi insist categorically on external validation with new measurements (Esbensen
and Geladi 2010). Meanwhile, Gütlein et al. maintain that “contrary to current
conception in the community, cross-validation may play a significant role in
evaluating the predictivity of (Q)SAR models” (Gütlein et al. 2013). A somewhat
intermediate opinion is presented by Gramatica, who agrees that cross-validation
will generally give better and less variable results in terms of the prediction error for
the available and modeled data, but also argues that only an additional “external
evaluation” on totally new chemicals can represent a future working situation of the
model (and thus, assess its predictivity) (Gramatica 2014). Her paper, together with
an earlier work of her research group (Gramatica et al. 2012), also presents a
thorough data splitting approach for external validation.

Recently, we have shown how one can identify the best (most consistent) per-
formance indicators (merits) and demonstrated the capabilities of sum of ranking
differences (SRD) in model selection and in the ranking of the performance merits.
Based on two case studies from the literature (using a total of four training-test splits
for the two case studies), we established that many of the performance parameters—
if not all—for external validation are substantially inferior to other merits even if
their application can be advantageous in some cases of data fusion (Rácz et al. 2015).

This work complements our earlier study on model performance parameters with
two more case studies from the literature: a QSPR study employing a
non-conventional technique, multivariate image analysis (MIA) to predict
bioactivity-related properties of small peptides against Dengue virus 2 NS3 pro-
teases (Silla et al. 2011), and a recent work by Roy et al. suggesting the use of error
measures for QSAR model validation (Roy et al. 2016).

2 Model Performance Parameters (Merits)

Multivariate models can be evaluated with a large number of performance parameters
(merits), including correlation-based (e.g. R2, Q2) and error-like (e.g. MAE, RMSE)
merits. In the QSAR modeling field—to the best of our knowledge—the QSARINS
modeling software from the group of Paola Gramatica provides the largest pool of
model performance parameters during QSAR modeling (Gramatica et al. 2013).
A comprehensive summary of this set of performance parameters is available in our
recent work (Rácz et al. 2015). In Table 1, the performance parameters occurring in at
least one of the discussed case studies are included.
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Table 1 Definition and description of the performance parameters compared

Performance
parameter

Calculated
duringa

Formulab Description

R2, R2
ext Training,

external
validation

R2 = 1− ∑n
i=1 yi − ŷið Þ2

∑n
i=1 yi − y ̄ð Þ2 = 1− RSS

TSS
Explained variance;
coefficient of
determination, square of
the multiple correlation
coefficient

RMSE Training,
internal
and
external
validation

RMSE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 yi − yîð Þ2
n

q
Root mean square error

MAE Training,
internal
and
external
validation

MAE= ∑n
i=1 yi − yîj j

n
Mean absolute error

CCC Training,
internal
and
external
validation

CCC= 2∑n
i=1ðyi − y ̄Þðyî − ŷÞ

∑n
i=1ðyi − y ̄Þ2 + ∑n

i=1ðyî − ŷÞ2 + nðy ̄− ŷÞ2
Coefficient of
concordance,
concordance correlation
coefficient (Lin 1989,
1992)

PRESS Internal,
external
validation

PRESS= ∑
n

i=1
ðyi − ŷi ̸iÞ2 Predicted residual sum

of squares (either
cross-validated or
calculated on the
external set)

Q2
LOO Internal

validation
Q2

LOO =1− ∑n
i=1 yi − ŷi ̸ið Þ2
∑n

i=1 yi − y ̄ð Þ2 = 1− PRESS
TSS

Leave-one-out
cross-validated square of
the (multiple)
correlation coefficient

Q2
F1 External

validation
Q2

F1 = 1− ∑next
i=1ðyi − yîÞ2

∑next
i=1ðyi − yT̄RÞ2

Definition 1 in Ref.
(Consonni et al. 2010)
for Q2 of the external
test set (Schüürmann
et al. 2008), TR: training
set

Q2
F2 External

validation
Q2

F2 = 1− ∑next
i=1ðyi − yîÞ2

∑next
i=1ðyi − yĒXT Þ2

Definition 2 in Ref.
(Consonni et al. 2010)
for Q2 of the external
test set (Shi et al. 2001),
EXT: external test set

aParameters that are calculated for more than one subsets are indexed in the main text: CV for
cross-validation, EXT for external validation
bThe following notation is used: yi single experimental value; ȳ mean of experimental values; ŷi
single predicted value; ŷ mean of predicted values; ŷi ̸i predicted value for the ith sample when the
ith sample is left out from the training; n number of samples; i sample index
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2.1 Case Study 1

The MIA-QSPR application of Silla et al. (2011) involves the comparison of the
correlation coefficient R2 and the root mean square error RMSE, for calibration
(cal), leave-one-out cross-validation (loo) and external validation (ext); a total of six
performance parameters. While the selection is of moderate size, it provides an
illustrative, balanced distribution of performance merits (two for calibration, two for
cross-validation and two for external validation) to be compared. (Nonetheless, our
recent work has shown that the outcome of SRD calculations is not—or only
negligibly—influenced by the apparent “overweighting” of some methods (Bajusz
et al. 2015).)

2.2 Case Study 2

In contrast, the article of Roy et al. (2016) on QSAR model validation deals
exclusively with external validation merits. It is also interesting to know, which
external merit(s) is (are) acceptable, preferable or which one(s) should be avoided.
This work originally reports eight performance parameters for numerous QSAR
models, and was complemented with PRESS values from the courtesy of Prof.
Kunal Roy, arriving at a total of ten performance parameters. (PRESS values—
along with multiple other merits—were calculated for the whole dataset, as well as
for 95% of the data points, after omitting 5% high residual data points.)

3 Data Preprocessing Methods

Performance parameters can be distributed into two groups, which are scaled
reversely: similarity (correlation) coefficient-like and error-like measures. To obtain
comparable results we reversed the scaling of the error-like measures. Some
well-known data preprocessing methods were used for the datasets: normalization
(to unit length), rank transformation, range scaling, and standardization. The
techniques are discussed in details below.

3.1 Normalization (NOR)

Normalization has several types, such as unit vector, area and mean normalization.
Normalization based on area is used mostly in chromatography or spectroscopy,
because it means that the observations are divided with the sum of all peak area.
Mean normalization can be considered a classic choice: here the observations are
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divided with the row average. Unit vector normalization is also popular, as it is
frequently used in the preprocessing phase of pattern recognition methods. In our
case, the latter was used. Its basic idea is that all variables are scaled to unit length,
which means that the elements of a column are divided with their Euclidian dis-
tances of each column:

xnormalizedi, j =
xi, jffiffiffiffiffiffiffiffiffiffi
∑ x2j

q , ð1Þ

Here j means the running index of columns.

3.2 Rank Transformation (RNK)

Rank transformation is the simplest data transformation technique, because in this
case the only task is to order the values of a column (variable) in increasing (or in
the reverse case: decreasing) magnitude and give a rank number to each value in the
column. Thus the scale of the values will be between zero and the number of
samples.

3.3 Range Scaling (SCL)

With the use of range scaling the variables are transformed into the [0; 1] (or other
pre-defined) interval in a simple way:

xrange scaledi, j =
xi, j −Min xj

� �� �

Max xj
� �

−Min xj
� �� � , ð2Þ

where j means the running index for columns:1, 2,…, m. In this case there will be at
least one zero and one unity in the dataset (or in each column, in case of more
variables) by definition. Range scaling is very sensitive to outliers. Both range
scaling and standardization increase the measurement errors. Range scaled values
can be easily inverted:

xreversely scaledi, j =1−
xi, j −Min xj

� �� �

Max xj
� �

−Min xj
� �� � ð3Þ
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3.4 Standardization (STD)

In the case of standardization the centered matrix is divided with the column
standard deviations. It is absolutely necessary, if the variables in the dataset are
expressed in different units. Standardization can transform the variables to the same
scale. In this way the variables are scaled to unit standard deviation. Standardization
can be used in two different forms: row-wise and column-wise. While row-wise
standardization is more important in the field of spectroscopy, in our case the
column-wise version was used. The equation of the standardization process is the
following:

xi, j standardizedð Þ= xi, j −Average xj
� �

standard deviation xj
� � ð4Þ

4 Sum of Ranking Differences (SRD)

Sum of (absolute) ranking of differences is a novel and general ranking (ordering)
and pattern recognition method for the comparison of methods, models and other
types of features (variables) (Héberger 2010; Kollár-Hunek and Héberger 2013).

In the beginning the dataset should be compiled in the following format: the
variables are arranged in the columns and the samples (observations, compounds)
are in the rows. A reference column is also needed for the calculation, which can
contain exact reference values, but row average, minimum or maximum values are
also applicable as consensus approaches. (The choice depends on the dataset, e.g.,
minimums for error rates and maximums for non-error rates are suitable choices.)

In the first step the compounds (samples, observations) are ranked in every
column (in the reference column, as well) in increasing magnitude. In the following
step, differences are calculated between the ranks of the reference values and the
ranks of each variable, for each row (sample). Finally the (absolute) differences are
summed in every column: these are the SRD values, based on which the different
models and methods can be compared. The smaller the SRD value, the better the
method (more consistent with the reference), thus the best features are close to zero.

The validation of SRD calculations is carried out with a randomization test and a
bootstrap-like cross-validation. (If the number of cases is smaller than fourteen,
leave-one-out cross-validation is used.)

The final result of SRD is an ordering of methods (models, features, etc.),
visualized on a plot, where both the x and the (left) y axis show the same SRD
values. (Thus, the SRD values are lines instead of points in the plot.) The infor-
mation is carried by the location of the lines and their proximity to each other and
not by the height of the lines. Additionally, a Gauss-like curve corresponding to the
distribution of SRD values of the randomization test is plotted, with frequency
values on the right y axis. Features that overlap with the 95% of the Gauss-like
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curve are not significantly better than the use of random numbers in terms of their
ranking behavior, as compared to the reference (the 5% error limit is marked with
dotted lines and abbreviation of XX1 in the SRD plots: anything below this limit is
significantly different from random ranking at the 5% error level. Similarly, XX19
means 95% confidence, Med is the abbreviation for median).

The results of cross-validated SRD are favorably presented in Box and Whisker
plots and can constitute the input of factorial ANOVA analysis in those cases,
where there is more than one factor (indicator or grouping variable) present. The
basic idea of ANOVA is that it tests the significance of differences between the
group averages (where samples are grouped according to the indicator variables).
ANOVA is a parametric technique and assumes (multi)normal distribution. In the
case of factorial ANOVA we can use more than one factor, which means that we
can test all the group averages with different group systems one by one and together
as well.

5 Analysis of Variance (ANOVA)

ANOVA is a technique used to assess effects of the categorical factors and their
interactions (Lindman 1991). The following model was considered:

SRD= b0 + b1*I1+ b2*I2+ b12*I1*I2 ð5Þ

where SRD stands for the sum of absolute ranking differences, I1 is the type of
preprocessing (four levels NOR, RNK, SCL, STD), I2 is the performance param-
eter: 6 levels in Case study 1 (RMSEcal, RMSEext, RMSEloo, r2cal, r

2
ext, r

2
loo) and 10

levels in Case study 2 (CCC, PRESS95, PRESS100, MAE95, MAE100, R2
100, Q

2
F1 95,

Q2
F2 95, Q

2
F1 100, Q

2
F2 100).

Seven repetitions allow us to test the significance of factors and their
interactions.

Variance analysis decomposes the effect of the different factors on the SRD
values. This unique combination of SRD and ANOVA provides not only the rel-
ative importance of factors, but also an overall evaluation, and has proven to be
successful in earlier cases, such as comparing evaluation techniques for genotoxi-
city measurements (Héberger et al. 2014) and comparing similarity measures for
molecular fingerprints (Bajusz et al. 2015).

SRD analyses have been carried out with our own scripts, including the recently
published SRD-COVAT heatmaps (Andrić et al. 2016), all of which are down-
loadable from our website: http://aki.ttk.mta.hu/srd/.

ANOVA calculations have been carried out with STATISTICA (version 12.5,
StatSoft, Inc., Tulsa, OK 74104, USA, 2014).
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6 Results and Discussion

Similarly to our earlier paper (Rácz et al. 2015) we have chosen two examples from
the literature as case studies for the comparison of various model performance
parameters applied in the QSAR modeling field. While previously we have taken
only the raw data from the publications and carried out QSAR modeling ourselves,
this time we have selected two papers that have reported a selection of performance
parameters for several models that were compared by the authors.

6.1 Case Study 1

In a 2011 study Silla et al. have applied multivariate image analysis of 2D chemical
structures to develop QSPR models for the prediction of bioactivity-related prop-
erties (substrate cleavage rate constant kcat and Michaelis constant KM) of small
peptides against Dengue virus 2 NS3 proteases (Silla et al. 2011). Since image
analysis is an inherently high-dimensional task (each pixel of the image can be
considered a dimension), a suitable variable selection technique is of paramount
importance in such studies. To that end, the authors compared numerous PLS
models, where the variables were selected with one of (or a combination of) three
variable selection methods: interval PLS (iPLS), genetic algorithm (GA) and
ordered predictors selection (OPS).

Table 2 of the mentioned paper summarizes six performance parameters for 22
models, namely R2 and RMSE values for calibration, leave-one-out cross-validation
and external validation (see Table 1 for definitions). The external test set was
compiled randomly and contained 11 compounds (vs. the 43 compounds in the
training set). The data in the mentioned table are suitable for a detailed statistical
analysis, for a fair comparison of performance parameters (merits).

As the merits are measured on different scales, first they have to be placed on the
same scale. Four possibilities have been selected for this task: normalization, rank
transformation, range scaling and standardization. (Naturally the error-like

Table 2 Results of two-way ANOVA conducted on the cross-validated SRD values, with the
data preprocessing methods (I1) and the performance parameters (I2) as indicator variables, for
Case study 1

SS DOF MS F p

Intercept 231607.4 1 231607.4 81233.46 0.000000
I1 8.6 3 2.9 0.03 0.991579
I2 29989.8 5 5998.0 69.61 0.000000
I1 * I2 1292.5 15 86.2 6.08 0.000000
Error 2380.7 168 14.2
SS sum of squares, DOF degrees of freedom, MS mean squares
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measures should be reversed to obtain comparable quantities.) Thus, four 6 × 22
input matrices were formed according to the data preprocessing techniques.

During the SRD analysis, average was used as the benchmark (reference col-
umn) with the consideration that all performance parameters express some pre-
diction ability with error. (The maximum likelihood principle would suggest the
usage of average as the best estimation.) Figure 1 shows the ordering result of the
SRD procedure on the standardized dataset. Here, R2 values based on calibration
and cross-validation are the two performance parameters that are most consistent
with the reference, while RMSEext is over the 5% limit (i.e. indistinguishable from
random ranking). The process was repeated for all the four data preprocessing
methods and all of the four matrices were subjected to a sevenfold cross-validation.
In such a way, 192 SRD values were calculated showing characteristic patterns
according to the factors: performance merits (Fig. 2) and data preprocessing tech-
niques (Fig. 3). As an additional validation step, we have made sure that the SRD
values resulting from the whole dataset are in conformity with the SRD value
distribution acquired from sevenfold cross-validation (data not shown).

While there is a generally good agreement between ranking, range scaling and
standardization, normalization to unit length is peculiar, sometimes the worst
(largest), sometimes the best (smallest) one among the preprocessing methods.
However, the differences among performance parameters cannot be traced back to
the choice of different pretreatment methods, as demonstrated by the ANOVA
results in Table 1.

Two-way analysis of variance (ANOVA) has been carried out on the SRD
results, with the data preprocessing methods (I1) and the performance merits (I2) as

Fig. 1 Scaled SRD values (between 0 and 100) compared to random ranking (black Gaussian
curve) for the standardized dataset. In this example, RMSEext overlaps with the Gaussian curve
and is thus not significantly different from random ranking. r2loo is the most consistent with the
reference (in terms of ranking the models)
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the two indicator variables. Based on the ANOVA analysis we conclude that the
choice of the data preprocessing method does not influence the SRD values sig-
nificantly (at a 5% error level suggesting that no “artificial” effect was introduced
with data preprocessing), while the choice of the performance merit as well as the
combination of the two factors does.

6.2 Case Study 2

A 2016 study by Roy et al. promotes the use of error measures for the evaluation of
QSAR models, as a more advantageous alternative to “classic” correlation-based
metrics (Roy et al. 2016). The authors argue that while R2-based performance
parameters are easier to comprehend (due to their fixed [0; 1] range), they are highly
dependent on the range of the response values. However, the study deals exclu-
sively with external validation parameters. In addition, a guideline is proposed to
assess the quality of predictions based on the mean absolute error (MAE) and its
standard deviation computed from 95% of the test set predictions (after omitting 5%
high residual data points). Tables 1, 2 and 3 of Ref. [11] report various performance
parameters based on the external validation of an abundance of QSAR models, and
have formed the basis of our analysis. The original tables were complemented with
PRESS values from the courtesy of Prof. Kunal Roy. Interestingly, Q2

F3 has been

Fig. 2 Sevenfold cross-validated SRD results for the comparison of performance parameters. r2

values based on calibration and leave-one-out cross-validation are the most consistent metrics (as
they display the smallest SRD values), RMSE values from the same procedures are intermediate
and the r2 and RMSE values based on external validation are the least consistent with the reference
(average)
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left out from the evaluation, though Consonni et al. suggested its superiority
(Consonni et al. 2010). On another note, Chirico and Gramatica suggested the
favorable usage of the coefficient of concordance (Chirico and Gramatica 2011).

The same SRD procedure has similarly been carried out as for Case study 1, the
average was used as the reference here, as well (see Fig. 4). All of the four data
preprocessing methods were applied as in Case study 1: standardization, normal-
ization, range scaling and rank transformation. Analysis of variance has confirmed
the conclusions drawn in the first case study: the choice of the data preprocessing
method is not a significant factor (see Table 2) suggesting that no “artificial” effect
was introduced with data preprocessing.

One can argue that the SRD results are principally determined by the selection of
the reference (benchmark) column, which is true to some extent (but overlooks the
maximum likelihood principle and the superiority of the consensus approach over
an individual reference variable). Therefore, we have elaborated a technique to
examine the underlying data structure to a finer “resolution”. In this case, each
variable (column) is used as the reference, one at a time and a color-coded matrix
(heatmap) is compiled from the results. This approach was termed COVAT–
Comparison with One VAriable at a Time—and was introduced in our recent paper

Fig. 3 Effects of preprocessing to the SRD values of the performance merits. The preprocessing
techniques are generally in good agreement, with the exception of normalization in some cases
(such as for r2cal and r2loo)
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on lipophilicity scales (Andrić et al. 2016). The different benchmarks eliminate the
problem of golden standard selection: the grouping of the SRD values obtained
with the various reference vectors can reveal the underlying connections between
the examined variables (here, performance parameters).

For the heatmap calculations, standardization has been selected as the data
preprocessing method—keeping in mind that the factor of data preprocessing was
proven to be not significant. The results are shown in Fig. 5.

Figure 5a highlights three groups of external validation merits: group 1 (upper left
part) contains Q2

F2 95, Q
2
F2 100, R

2
100 and CCC, group 2 (middle) contains MAE95 and

Table 3 Results of two-way ANOVA conducted on the cross-validated SRD values, with the
data preprocessing methods (I1) and the performance parameters (I2) as indicator variables, for
Case study 2

SS DOF MS F p

Intercept 589413.5 1 589413.5 88787.07 0.000000
I1 34.6 3 11.5 1.74 0.159475
I2 45074.0 9 5008.2 754.42 0.000000
I1 * I2 884.6 27 32.8 4.94 0.000000
Error 1858.8 280 6.6
SS sum of squares, DOF degrees of freedom, MS mean squares

Fig. 4 Sevenfold cross-validated SRD results for the comparison of external validation
parameters (with average values as the reference vector). It is relatively easy to classify these
performance parameters into good (consistent), intermediate and bad (least consistent) ones
considering the SRD gaps between groups. The fact that the concordance correlation coefficient is
among the good merits strengthens Chirico and Gramatica’s recommendation (Chirico and
Gramatica 2011) about its usefulness
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MAE100, group 3 (lower right) containsQ2
F1 95, andQ

2
F1 100, PRESS95, andPRESS100.

While the first two groups confirm the conclusions based on Fig. 4 completely, the
third “group” can be further divided based on Q2

F1 and PRESS values, though they
have similar (sometimes overlapping) SRD distributions against the average as ref-
erence (see Fig. 4). Additionally, the pairs of performance parameters calculated from
the whole dataset and 95% are close to each other, as expected.

Figure 5b offers even more intriguing results, as it shows the SRD values rel-
ative to the SRD distribution of random rankings (consult the Gaussian curve on
Fig. 1 for reference): cells of any other color than white denote that there is no
correspondence between the rankings produced by the two external validation
parameters indicated in the implied row and column headers. As there are many
such cells in the table, we can conclude that the ranking results obtained by most of
these (external) performance merits are highly divergent. Ultimately, this can safely

Fig. 5 SRD-COVAT heatmaps of the external validation parameters in Case study 2 with an
equidistant (a) and a “Gaussian” (b) color coding. (Color references are provided on the upper
parts of the images.) While panel A highlights four clusters of similar performance parameters,
panel B provides information on the significance of SRD values, i.e. relative to the distribution of
random rankings
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be considered as a conclusion supporting the preference of performance parameters
based on cross-validation, since there seems to be little consensus among those
based on external validation (see Fig. 5). From the external validation metrics, we
would suggest the use of Q2

F2, R
2
100 and CCC as the most consensual ones.

7 Conclusion

We have carried out a comparison of QSAR model performance parameters based
on two case studies, with the combination of sum of ranking differences (SRD) and
analysis of variance (ANOVA). The first case study has shown cross-validation
based performance metrics to be more consistent with the consensus ranking than
those based on external validation. In the second case study, we have compared
some members of the latter group in more detail and have shown that the rankings
produced by them are greatly divergent. The results presented here corroborate our
earlier, recently published findings (Rácz et al. 2015) on diverse data sets of
independent literature sources.

Showing a model to be predictive for a small external test set does not necessarily
mean that it will be predictive for molecules outside of this test set. In other words, in
the case of external validation we are delivered to a random test, which might be
informative but not necessarily. While we agree that a more meticulous training-test
splitting approach (such as the one presented by Gramatica et al. (2012)) can sig-
nificantly improve the reliability of external validation, we would still advise against
overemphasizing model performance parameters based on external validation, or
preferring them over the ones derived from cross-validation. (In our opinions, a
consensus approach might be the best choice here.) In the lack of sufficient test data
(which is often the case in QSAR modeling), our results reinforce the conclusions of
Hawkins et al. (2003), who advise against small holdout samples (to avoid the loss of
information in model building) and recommend cross-validation instead.
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Structural, Physicochemical
and Stereochemical Interpretation
of QSAR Models Based on Simplex
Representation of Molecular Structure

P. Polishchuk, E. Mokshyna, A. Kosinskaya, A. Muats, M. Kulinsky,
O. Tinkov, L. Ognichenko, T. Khristova, A. Artemenko
and V. Kuz’min

Abstract In this chapter we describe different structural, physicochemical and
stereochemical approaches towards interpretation of QSAR models based on sim-
plex representation of molecular structure (SiRMS). These techniques are feasible
due to the flexible nature of SiRMS, which may encode not only structural and
physicochemical features of molecules, but also stereochemical ones (to represent
molecules with different types of chirality). The developed approaches to structural
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and physicochemical interpretation do not depend on used machine learning
methods that makes it possible to easily interpret traditional “black box” models
like Support Vector Machine and Random Forest. We demonstrated an applicability
of the developed interpretation approaches in a number of case studies including
classical Hammett and Free-Wilson analysis, as well as several data sets with
various physical and biological end-points. A good correspondence of the inter-
pretation results with classical Hammett and Free-Wilson approaches supports
validity of the proposed approaches. The analysis of different data sets with dif-
ferent end-points showed three possible scenarios of QSAR models’ interpretation
depending on the mechanisms of action for studied compounds that brings us to a
conclusion that despite all models are interpretable, not all end-points are. The
stereochemical interpretation was applied to the classical Cramer’s set of steroids
and to the data set that includes compounds with mixed central and axial chirality.
In both cases we demonstrated the substantial contribution of the chiral descriptors
in 2.XD QSAR models and revealed certain stereochemical features, which have
the biggest contributions to investigated properties. As SiRMS represents an
attractive framework for developing predictive and interpretable models, we
developed several open-source software tools to make it available for the com-
munity. They are discussed at the end of the chapter.

Keywords QSAR model interpretation ⋅ Simplex representation of molecular
structure ⋅ SiRMS ⋅ Structural and physicochemical interpretation of QSAR
models ⋅ Stereochemical interpretation of QSAR models ⋅ Free-Wilson
models ⋅ Hammet constants ⋅ Critical properties ⋅ Antagonists of fibrinogen
receptor ⋅ Acute oral toxicity

1 Introduction

Since the introduction of the simple linear models, the modeling community shifted
its attention to much more complex non-linear machine learning approaches
(Support Vector Machine, Neural Network, Random Forest) as well as consensus
modeling (when various individual models are combined to predict target proper-
ties). A better predictive ability of the latter caused such shift because they sig-
nificantly outperform the linear models in many tasks. But interpretation of the
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non-linear and consensus models is less straightforward than of the linear models,
which promotes the idea of a certain trade-off between predictivity and inter-
pretability of QSAR models, so-called “two QSARs” (Guha 2008; Fujita and
Winkler 2016).

Nevertheless, interpretation of QSAR models appears to be of fundamental
importance (Cherkasov et al. 2014; Gasteiger 2016). The interpretation helps a
researcher to understand established structure-property relationships. The inter-
pretation results may be compared to empirical knowledge for a knowledge-based
validation of QSAR models. If the interpretation results contradict experimentally
observed structure-property relationships, this signifies that either a model is wrong
or the empirical knowledge is incomplete. From an interpretation of QSAR models,
a researcher can find desirable or undesirable structural motifs for a design of new
compounds with improved properties. Interpretation provides information that not
only helps to understand but also improves QSAR models.

Traditionally interpretation of QSAR models consists of two parts: inter-
pretability of machine learning models and interpretability of descriptors. But recent
advances made it possible to interpret any QSAR model regardless of the employed
descriptors and/or machine learning approach (Polishchuk et al. 2013, 2016;
Riniker and Landrum 2013; Sushko et al. 2014). In this chapter we present one of
such universal approaches towards structural interpretation of QSAR models and its
extensions, which allows a deeper analysis of captured structure-property rela-
tionships in physicochemical terms. The simplex representation of molecular
structure (SiRMS) is a very powerful and flexible approach and it perfectly suits for
structural and physicochemical interpretation of QSAR models. Within the SiRMS,
one can also encode stereochemical information and, thus, perform stereochemical
interpretation of QSAR models. Here, we demonstrate the applicability of simplex
descriptors to development of interpretable models using several case studies.

2 Simplex Representation of Molecular Structure
(SiRMS)

Throughout several last decades simplex representation of molecular structure was
successfully applied to many different tasks (Kuz’min et al. 2005, 2008). Here, we
describe some basics for understanding of interpretation results of QSAR models.
The simplexes are tetraatomic fragments of fixed composition, topology, chirality
and symmetry, whilst simplex descriptors are counts of the identical simplexes in a
structure. The simplexes can be bound or connected (all atoms in a simplex are
connected by bonds) or unbound or unconnected (one or more atoms are not
connected to others in a simplex). The latter feature allows to encode structures
consisting of separate fragments and/or stereochemistry of compounds. The SiRMS
uses the labeling of atoms according to their physicochemical properties—partial
atomic charges (representing electrostatic interactions), lipophilicity (hydrophobic
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interactions), polarizability (dispersive interactions), H-bond donor/acceptor
(H-bonding), etc. When the values of atomic properties lay in a continuous scale
(like partial atomic charges), the whole range of values is divided into a specific
number of bins (usually 4–7), and each bin receives its own label. Such label serves
as an atom label on the stage of simplex generation (Fig. 1). In this study, we have
used simplex descriptors labeled by partial atomic charge, lipophilicity, refractivity
and H-bonding. All the parameters were calculated using the Chemaxon cxcalc
software tool (cxcalc).

The full set of chiral simplexes uniquely represents stereoisomers of any types
(enantiomers or diastereomers with any chiral features: cis/trans bonds, chiral
centers, etc.). Even for the simple molecules with one chiral center, SiRMS has
certain advantages in comparison to classical Cahn-Ingold-Prelog (CIP) system as
the molecules with similar configuration are represented as different stereoisomers
(Fig. 2). Since CIP system solves only nomenclature problems, it sometimes pre-
vents from distinguishing different classes of homochirality of chiral molecules.

Within the SiRMS, a chiral center is represented by the set of 5 simplexes.
Canonical numbers are assigned to each atom in simplexes by known algorithms
(Weininger et al. 1989). Thus, one can rank all simplexes according to the prece-
dence of atoms in them (Fig. 3). The stereochemical representation of the

Fig. 1 2D simplex representation of molecular structure

H2N
H

COOH
H2N

H

COOH

Cahn-Ingold-Prelog configuration S-isomer R-isomer
Configuration based on simplexes RSSSS RSSRR

Fig. 2 An example of two compounds with similar configuration and their corresponding
stereoconfiguration defined according to Cahn-Ingold-Prelog rules and simplex representation
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compounds with a single chiral center is a sequence configuration of simplexes
ordered by their precedence and for a hypothetical molecule depicted on Fig. 3 will
be RSRRR. Obviously its enantiomers will have configuration SRSSS, all sim-
plexes will have an opposite configuration.

If one calculates the configuration of molecules depicted in Fig. 2, three most
precedent simplexes will have the same configuration that reflects common stere-
ochemical features of molecules. A 3D structure of any molecule may be repre-
sented as a system of simplexes; and thus all the stereochemical peculiarities are
taken into account. However, conformations of molecules, in which they bind to
their functional targets, are usually not known and 3D approaches cannot be
directly applicable.

For a 2D representation, several approaches exist that allow to encode
stereoisomers (Golbraikh et al. 2001; Lukovits and Linert 2001; Aires-de-Sousa and
Gasteiger 2002; Carbonell et al. 2013). But all of them are limited to the molecules
with chiral centers only. The SiRMS allows to solve this task for molecules with
different chiral features and, moreover, the conformation and configuration com-
ponents of 3D representation can be separated. Thus, one may define configuration
without concretizing a conformational part of 3D molecular representation (Fig. 4).
To do this one needs to separate conformationally independent simplexes (whose
configuration does not depend on conformation). These conformationally inde-
pendent 3D simplex descriptors are concatenated to topological 2D simplex

Atom ranks 
in simplexes 

Simplex 
precedence

Simplex 
configuration 

5

4

3

2

1

RSRRR

1 2 3 4 1 R
1 2 3 5 2 S
1 2 4 5 3 R
1 3 4 5 4 R
2 3 4 5 5 R

Fig. 3 An example of encoding of stereoconfiguration for a hypothetical molecule with one chiral
center (numbers are canonical numbers of atoms obtained with conventional algorithms)

Fig. 4 Conformational and
configuration components of
3D representation of
molecules
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descriptors. Such representation may be considered as intermediate between 2D and
3D representation—(2 + 0.X)D.

The (2 + 0.X)D SiRMS approach on enantiomers of alanine returns 2D sim-
plexes common for both enantiomers and conformationally independent 3D sim-
plexes that discriminate those enantiomers (Fig. 5). Inherently, stereochemical
interpretation estimates the 0.X value, in other words the contribution of the
descriptors representing stereoconfiguration of molecules.

3 Structural and Physicochemical Interpretation
of QSAR Models

3.1 Structural Interpretation

The idea of structural interpretation relates to the matched molecular pair approach
and employs the assumption that the contribution of the fragment of interest (C) can
be calculated as a difference between predicted property values for the initial
molecule (A) and the counter-fragment (B) which remains after virtual removal of
the fragment of interest from the initial molecule (Fig. 6). Thus, one may estimate
contributions of any fragment or single atoms. This interpretation procedure does

Fig. 5 An example of (2 + 0.X)D simplex representation approach for enantiomers of alanine
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not depend on the descriptors and the machine learning methods and can be con-
sidered as universal (Polishchuk et al. 2013).

The SiRMS representation perfectly fits the described approach as it allows to
estimate contributions of any arbitrary atom subset (connected or disconnected),
scaffolds and linkers. Due to the presence of the disconnected simplexes the
removal of fragments (scaffolds or linkers) leading to the multiple disconnected
parts can be easily performed.

3.2 Physicochemical Interpretation

Using the interpretation scheme described above one can estimate the contributions
in different physicochemical terms. To perform physicochemical interpretation, the
initial compound should be encoded by descriptors which represent certain
physicochemical properties. The descriptors representing the same physicochemical
property should be grouped together. First the fragment of interest (C) is removed
from the initial compound (A). Then only descriptors belonging to the certain group
are calculated for the counter-fragment (B) (Fig. 7). Thus fragment C is virtually
removed in terms of the certain group of descriptors only. The calculated difference
between predicted property values for the initial molecule (A) and the
counter-fragment (B) will represent the contribution of the fragment C in terms of
the selected group of descriptors and thus reflect contribution of a particular
physicochemical property encoded by them.

Within the SiRMS, each molecule can be represented by simplexes labeled by
certain physicochemical properties as described above (partial atomic charge,
lipophilicity, H-bonding and refractivity). Thus the SiRMS perfectly suits for
physicochemical interpretation of QSAR models (Polishchuk et al. 2016).

Fig. 6 An example of structural interpretation of QSAR models. f is a QSAR model which returns
predicted property values for initial compound A and counter-fragment B which remains after
virtual removal of the fragment of interest C. W(C) is a contribution of the fragment C to the
investigated property
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4 Fragment Selection and Assembling Strategies.
Statistical Assessment of Calculated Contributions

Let’s define local and global interpretation analysis. Local analysis is performed for
one particular compound possessing several putative binding groups. Local analysis
answers the question which of these groups is relatively more important and finds the
most influencing fragment within the molecule. Global analysis consists of grouping
fragment contributions of different molecules and comparing them to explain or
extend experimentally observed trends in a structure-property relationship. Local
analysis can be made for any compound of a data set, whereas the results of global
interpretation depend on fragment selection and grouping strategy (Table 1). The
simplest case (scenario 1 in Table 1)—no specific orientation of compounds relative
to their target is expected or it can be disregarded (e.g., solubility, lipophilicity,
passive diffusion through membranes, etc.). Fragment selection and grouping can be

Fig. 7 An example of physicochemical interpretation of QSAR models. AE, AH, AD, AHB are
groups of descriptors representing electrostatic, hydrophobic, dispersive and hydrogen bonding
terms of the molecule A, correspondingly. BHB is the group of descriptors representing hydrogen
bonding of the counter-fragment B. WHB(C) is the contribution of the fragment C regarding the
hydrogen bonding term

Table 1 Strategies of fragments selection and assembling

Scenario
(data set
type)

Do specific interactions
exist and cannot be
disregarded?

Is the position of
a ligand towards
its target known?

Fragments selection and
grouping

1 (I) No (e.g. passive diffusion
through membranes,
solubility, lipophilicity,
etc.)

Not relevant Manual selection on the basis of
researcher experience

2 (II) Yes (e.g. ligand-receptor
interactions)

Yes Selection according to ligand’s
pose relatively to the target

3 (III) No Recommendation: select
fragments from homogenous
sets of compounds having a
common scaffold and
presumably, acting by the same
mechanism
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guided by general considerations and depend on the decision of the researcher. If the
orientation of compounds relative to their target is important and known from
experimental studies or modeling (scenario 2 in Table 1), then this information
should be taken into account during fragment selection and grouping. For example,
if it is known that particular fragments of investigated compounds form H-bonds
with the same amino acid residue, then these fragments can be grouped and analyzed
together in order to obtain relevant interpretation results. In the worst case (scenario
3 in Table 1), the orientation of investigated compounds is important but unknown,
we can analyze only homogenous sets of compounds tacitly assuming the identical
interaction mode of all investigated compounds. MMP analysis (Leach et al. 2006)
or SAR matrices (Wassermann et al. 2012) can also perform this analysis. Such data
sets that comprise compounds with unknown but different mechanisms of action are
the most common and therefore should be carefully analyzed.

A global analysis represents a contribution of each fragment by a distribution of
its contributions for different molecules. To estimate fragment contributions’
deviations from zero, the appropriate standard parametric/nonparametric statistical
tests, such as the t-test, Wilcoxon rank test, etc. can be applied. However, this does
not take into account a model error which may be quite large and may affect
calculated contributions, e.g., if the model error is much greater than the difference
between two predicted values, this difference can be a result of a chance correlation
captured by the model. Therefore, to estimate practical significance we suggest not
only to apply standard statistical tests but also to compare calculated contributions
to model error estimated from cross-validation or from external testing. For
example, we can express contribution values in units of the model error (units of
RMSE for regression models) and choose a reasonable threshold value to separate
significant and non-significant contributions.

5 Stereochemical Interpretation

As mentioned above, in (2 + 0.X) SiRMS approach chiral 3D simplexes are used
along with 2D simplexes. The use of 3D chiral simplexes can be considered sig-
nificant if their addition to a 2D QSAR model improves its predictive performance
Number X is a sum of relative influences of chiral descriptors included in the final
model. In the current study, relative influences of descriptors are defined by the
corresponding regression coefficients in the PLS equation. The value of X can be
interpreted as a factor describing the role of chiral features in a studied
activity/property. For the molecules with multiple chiral centers, SiRMS approach
allows to estimate relative influence of different chiral centers to the studied activity
based on the following Formula (1):

RIc = ∑
n

i = 1

Qi

4
× Infi, ð1Þ
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where RIc is the relative influence of a particular chiral center, n is the number of
chiral simplexes which include the selected chiral center, Qi is the quantity of i-th
simplex including this center, 4 is the number of atoms in each simplex and Infi is a
relative influence of i-th simplex to 2.XD QSAR model calculated as modulo of
regression coefficient of each descriptor in the model, %.

When it is necessary to calculate the overall relative influence of different ele-
ments of chirality (such as centers, axis or plane of chirality), one should add
relative influences of chiral simplexes describing the corresponding type of chirality
to the model. X in this case can be calculated as in (2)

X = Infc + Infa + Infp = ∑
n

ic=1
Infic + ∑

n

ia=1
Infia + ∑

n

ic=1
Infip, ð2Þ

where Infc, Infa and Infp are influences of central, axial and planar chirality, and
Infic, Infia and Infip are modulo of regression coefficients of i-th chiral simplex
describing central, axial and planar chirality, respectively, included in the model. In
the case if there is no particular type of chirality, the corresponding influence value
is 0. This interpretation approach belongs to model-specific ones because it uses
regression coefficients of a PLS model.

6 Structural and Physicochemical Interpretation.
Case Studies

In this section we will: (i) compare results obtained by using the developed structural
interpretation approach and classical Free-Wilson approach on the original data set
used by Free and Wilson; (ii) demonstrate applicability of structural and physico-
chemical interpretation approaches on several real data sets which belong to different
types according to the classification provided in Table 1. Since searching for the
general trends in structure-property relationship comprises the greatest interest, we
focus further analysis mainly on global interpretation. However, in some cases we
demonstrate and discuss results of the local interpretation as well.

6.1 Comparison of the Approach of Structural
Interpretation of QSAR Models with Classical
Approaches

6.1.1 Hammet Constants Analysis

One of the first Linear Free-Energy Relationships appeared to be the Hammett
equation. In the pioneering study Hammett, connected the acidities (dissociation
constants) of substituted benzoic acids and the rates of alkaline hydrolysis of
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substituted ethyl benzoates (Hammett 1937). From the received correlation they
obtained the following equation:

log(k ̸koÞ= σρ, ð3Þ

where σ—the substituent constant, ρ—reaction constant, k—the rate constant for
the substituted compound, ko—reaction constant for the unsubstituted compound.

Unfortunately, in the original study, Hammett and coworkers presented no initial
data on the dissociation constants for the listed 36 compounds, and in the further
studies the dissociation constants are present only for the 17 substituents (taken
from various sources). Thus, for the analysis we selected a study by Lindberg et al.
(1976) and its further enhancement by Takahata and Chong (2005), where Core
Electron-binding Energy (CEBE) shifts were chosen to obtain Hammett-like
equation. The data set contained 29 different para-, ortho- and metasubstituted
fluorobenzenes (Fig. 8), the values of CEBE shifts were expressed in eV. A direct
comparison of fragment contributions was possible as the equation has a linear
form.

ΔCEBE= κσ ð4Þ

κ=2.3kTðρ− ρ*Þ, ð5Þ

where κ—calculated parameter, σ—Hammett substituent constant, ρ and ρ*—re-
action constants specific for the neutral molecule and core ionized molecule,
respectively.

Despite the small size of the data set, the model performance for the RF, SVM,
GBM and PLS methods was quite high (Table 2). Calculated fragment contribu-
tions had an excellent agreement among different models and had a high correlation
with the tabulated σ values (R2 = 0.85 for the consensus model) (Takahata and
Chong 2005). However the systematic shift between the calculated and tabulated

Fig. 8 Substituted
fluorobenzenes used for
modeling of Core
electron-binding constants
(Lindberg et al. 1976)

Table 2 Five-fold
cross-validation statistical
parameters of QSPR models
for the critical volumes

Model Q2 RMSE, eV

GBM 0.81 0.20
RF 0.71 0.24
SVM 0.74 0.22
PLS 0.87 0.19

Consensus 0.88 0.18
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values was observed (Fig. 9a). It can be explained by the choice of a reference
point. Lindberg et al. (1976) chose 1-fluoro-4-(methylsulfanyl)benzene as the
reference compound for the σ constants and assigned value of 0 to methylsulfanyl
group. Thus, subtracting the calculated contribution value for the reference group
results in a more coherent picture of the calculated contributions and tabulated
values of σ constants (Fig. 9b).

Physicochemical interpretation of the consensus model reveals the effect of
electrostatics term, which is the biggest effect for the strong electron donor sub-
stituents (Fig. 10). That means that these fragments have favorable distribution of
charges and are more sensitive to their changes. Other substituents (particularly
having moderate overall contributions) are more sensitive to the changes of electron
polarizability and hydrophobicity. These conclusions partially correspond to the
idea that Hammet constants represent effects of electron polarizability and partial
charges distribution.

6.1.2 Free-Wilson Models

One of the data sets used by Free and Wilson for their pioneering work contained
29 compounds with associated LD50 values expressed in mg/10 g after i.p. injection
in mice (Fig. 11) (Free and Wilson 1964). The weight units were not converted into
molar units in order that the results would be comparable to published values of
contributions.

The performance was poor for the five-fold cross-validation of RF, GBM, SVM
and PLS models as could be expected due to the small size of the data set (Table 3).

Fig. 9 The reference values of σ constants and a the original calculated fragment contributions
and b the calculated fragment contributions with the regard for the contribution of the reference
methylsulfanyl group
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Despite the practical uselessness of the weak models, we performed an interpre-
tation to compare results with the original Free-Wilson approach. As it can be seen

Fig. 10 Comparison of values for the sigma constants and the calculated substituent contributions
(only descriptors weighted by the dispersive interactions)

R3

N

R
R4

O
R2

R1

Fig. 11 Structures of
compounds of the data set
from Free and Wilson paper
(1964). R = H, CH3; R1 = H,
CH3, C2H5; R2 = N(CH3)2, N
(C2H5)2, morpholino;
R3 = H, phenyl;
R4 = nothing, -CONH-
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from Fig. 12, there is a good agreement between contributions calculated from
different QSAR models and the contributions reported by Free and Wilson.

These two benchmark studies showed that the universal fragment interpretation
approach possesses a consistency and inner logic, and the calculated fragment
contributions proved comparable to those in previous classical studies.

6.2 Critical Properties of Organic Compounds
(Type I Data Set)

Critical point—one of the most important physical characteristics of the com-
pounds—describes the state on a phase surface where liquid and gas phases behave
alike. Three parameters robustly and non-variantly characterize critical

Table 3 Five-fold
cross-validation statistical
parameters of QSAR models
for the Free-Wilson data set

Q2 RMSE

RF 0.34 1.47
GBM 0.33 1.48
SVM 0.43 1.37
PLS 0.26 1.56
Consensus 0.38 1.43

Fig. 12 Calculated average contributions of fragments for the Free-Wilson data set in comparison
with results from original publication of Free and Wilson (Reprinted with permission from
J. Chem. Inf. Model., 2016, 56, 1455–1469. Copyright 2016 American Chemical Society.)

120 P. Polishchuk et al.



point—critical temperature, critical pressure and critical volume. Traditional ther-
modynamic methods for the critical properties mainly base their predictions on the
additive group-contributions (GC) schemes. In this case study we chose critical
volume (Vc) as a property of interest and some of the most popular GC methods for
comparison—method of Joback and Reid (1987), Marerro-Pardillo method
(First-Order) and Marerro-Pardillo method (Second-Order) (Marrero-Morejón and
Pardillo-Fontdevila 1999). Marerro-Pardillo method (Second-Order) suggests to use
more complex fragments instead of using simple functional groups, i.e., secondary
carbon in ring connected to a carbonyl. According to the authors, such approach
allows to account for inter-group influences. The labels of fragments correspond to
those in the original studies.

The experimental data were taken from the comprehensive handbook (Reid et al.
1987). Then wrong or incomplete data were cured using NIST Webbook database
(Thermodynamics Research Center, NIST Boulder Laboratories, M. Frenkel
director 2013). Among considered compounds were those of various classes, such
as saturated and unsaturated hydrocarbons, aromatic hydrocarbons and their
derivatives, heterocyclic compounds, alcohols, ethers, esters, various halogenated
compounds, etc. The experimental Vc values were available for 309 compounds.
The five-fold cross-validation showed very high performance for all models with
Q2 varying from 0.90 to 0.92. The RMSE values ranged from 38 to 43 cm3/mol
(Table 4).

Since there were no significant differences between calculated fragment contri-
butions among different QSPR models, the results of only the consensus model will
be discussed below. The main difficulty in comparing the interpretation results with
reference group contribution values was comprised by the fact that every GC
method was developed on a data set different from the studied one, and complete
information about data sets is not available. We eliminated the fragments with
insignificant contributions according to the Wilcoxon test (α = 0.95). For the sake
of visual comparison, the y-axis scale is the same for all plots. The analysis shows
quite similar trends for Joback method with median fragment contributions calcu-
lated from the consensus model. The RMSE value between them is only
19 cm3/mol (Fig. 13), and we connect the difference in contributions for a non-ring
oxygen atoms with a discrepancy between the used data sets. The comparison with
Marrero-Pardillo First-Order method (Fig. 13) shows less consistent results with
QSPR method being more sensitive towards differences in the oxygen fragments
(RMSE being 51 cm3/mol). The comparison with Marrero-Pardillo Second-Order
method (Fig. 13) demonstrates less divergence between results (RMSE is

Table 4 Five-fold
cross-validation statistical
parameters of QSPR models
for the critical volumes

Model Q2 RMSE, cm3/mol

GBM 0.90 43
RF 0.90 43
SVM 0.92 38
PLS 0.91 41
Consensus 0.93 35
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26 cm3/mol), which can be explained by a more detailed description of the frag-
ments and higher precision of the Second-Order method itself. These features
consequently lead to statistically more reliable contributions and decrease influence
of difference between the data sets.

In this case study, the structure-property relationships captured the trends of
influence, previously discovered by the traditional group contribution methods.
Calculated contributions values deviate from the group contributions, which we
connect mainly with the difference in the data sets, as well as with the nature the
QSPR models. Since the QSPR models possess higher mathematical complexity,
they are also apt to describe complex relationships (unlike simpler group contri-
butions methods). Predictive performance of the built QSPR models is very high
and their applicability domain is rigorously defined, which makes use of QSPR
models highly perspective for critical volumes prediction of organic compounds.

6.3 RGD-Mimetics—Antagonists of Fibrinogen Receptor
(Type II Data Set)

Arg-Gly-Asp (RGD) sequence of fibrinogen responses for the interaction of fib-
rinogen with its receptor followed by a thrombus formation (Gartner and Bennett

Fig. 13 Comparison of a Joback group contribution, b Marerro-Pardillo First-Order c and
Marerro-Pardillo Second-Order values and the median values of the calculated fragment
contributions from the consensus QSPR model. M is the number of compounds comprising a
fragment. N is the number of fragments across the whole data set (some compounds have several
identical fragments and their contributions were estimated separately). For Marerro-Pardillo
Second-Order method (r) denotes ring group
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1985; Andrieux et al. 1989). For a long time, researchers have focused on the
development of antagonists of the fibrinogen receptor which mimic the RGD
sequence (Hartman et al. 1992; Scarborough et al. 1993; Egbertson et al. 1994). The
data set consisted of 325 antagonists of the fibrinogen receptor (RGD-mimetics)
with a measured affinity value expressed as pIC50 values collected from ChEMBL
database (Gaulton et al. 2012) and our own studies. The whole data set is published
in the recent article (Polishchuk et al. 2016).

Each compound of this data set can be represented as consisting of three parts:
Arg- and Asp-mimetics connected by a linker moiety (Fig. 14). We established
ligand-protein interactions of these compounds in our previous docking studies
(Polishchuk et al. 2015). Arg-mimetics containing a basic nitrogen atom form a
charged H-bond with Asp224 and Ser225 residues of the fibrinogen receptor.
Asp-mimetics contain a carboxylic acid residue which coordinates with Mg2+ ions
inside the protein cavity and substituents which form H-bonds with Arg214 and
Asn215. There are several hydrophobic residues in the binding site which may
interact with Arg-mimetic and linker moiety of ligands. The linker part of ligands is

Fig. 14 Binding pattern of tirofiban—commercial antagonist of fibrinogen receptor (PDB code
2VDM) and the general representation of antagonists of the fibrinogen receptor which has Asp-
and Arg-mimetic parts linked together, and several examples of corresponding fragments
(Reprinted with permission from J. Chem. Inf. Model., 2016, 56, 1455–1469. Copyright 2016
American Chemical Society.)
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exposed and may be solvated or form H-bonds via water molecules with Asp232
residue (Polishchuk et al. 2015).

RF, GBM, SVM and PLS models were built for the compounds of this data set.
They have satisfactory and comparable predictive performance (Table 5). As
mentioned above, the compounds in this data set can be virtually split into three
parts which interact with corresponding amino acid residues in the binding site of
the fibrinogen receptor. Therefore, analysis of contributions was performed sepa-
rately for these three groups of fragments (Fig. 15). The concordance between
fragment contributions calculated across different models was high (R = 0.89 −
0.98). For this reason, analysis of interpretation results was done for the consensus
model only (Fig. 16). Two-sided Wilcoxon rank test was applied to test the sta-
tistical significance of contributions. However, calculated contributions are affected
by the accuracy and predictive performance of models. For this reason, it is feasible
to compare contributions relative to a cross-validation error (RMSE). Contributions
which are within 1 unit of RMSE can be considered insignificant and their analysis
should be done with care.

Clear trends of structure-affinity relationship were observed for each group of
fragments: Arg-mimetics, linkers and Asp-mimetics (Fig. 16). Cyclic secondary
amines as Arg-mimetics increase affinity for the fibrinogen receptor more than
pyridyl, amidino or guanidino groups. Unexpectedly, there were five outliers in the
L3 linker group. More thoughtful analysis revealed that all five cases correspond to
the most active compounds in the data set. It points to some restrictions due to
QSAR modeling. Models which cannot extrapolate (e.g., such as RF or GBM)
always return predicted values within the range of observed values of the training
set compounds. This causes contributions of almost any fragment comprising the
most active compounds to be positive. The same is true for the contribution of
fragments in the least active compounds. Thus, special attention should be paid to
such compounds and their analysis.

Asp-mimetics were the most diverse part of RGD-peptidomimetics. The fre-
quently occuring D8 fragment has a very large range of contributions values due to
the substantial influence of molecular context. At the same time, fragment D6 (also
present in different molecular contexts) has a smaller range of contributions. In
general, the variance of contribution values of Arg-mimetics is substantially smaller
than that for linkers and Asp-mimetics. This indicates that the nature of
Arg-mimetics may be more important for binding to fibrinogen receptor than
linkers and Asp-mimetics whose contributions are highly context dependent. This

Table 5 Five-fold
cross-validation statistical
parameters of QSAR models
for the RGD-mimetics data
set

Q2 RMSE

RF 0.72 0.81
GBM 0.68 0.86
SVM 0.70 0.82
PLS 0.67 0.88
Consensus 0.73 0.79
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Arg-mimetic

R1 R2 R3 R4 R5 R6 R7
Linker

L1 L2 L3 L4 L5 L6 L7
Asp-mimetic

D1 D2 D3 D4 D5 D6 D7

R=OCH3,
OCH2O

D8 D9

Fig. 15 Most frequently occurring fragments in compounds of the RGD-peptidomimetics data set
(Reprinted with permission from J. Chem. Inf. Model., 2016, 56, 1455–1469. Copyright 2016
American Chemical Society.)

Fig. 16 Distribution of overall fragments contributions of RGD-mimetics calculated from the
consensus QSAR model. M is the number of compounds comprising a fragment. Asterisks refer to
statistical significance calculated by the two-sided Wilcoxon rank test (p-value): *** <0.001,
** <0.01, * <0.05 (Reprinted with permission from J. Chem. Inf. Model., 2016, 56, 1455–1469.
Copyright 2016 American Chemical Society.)
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information along with established trends in structure-property relationship may be
used for drug design per se or as a guideline for the researcher.

Is it important to note that interpretation results depend on available data sets and
this should always be taken into account in any analysis. For example, it is well
known from pharmacophore modeling, docking and X-ray data of ligand-protein
complexes that fibrinogen receptor antagonists should contain positively and neg-
atively charged groups at a distance of 15–20 Å (Polishchuk et al. 2015; Hartman
et al. 1992; Egbertson et al. 1994; Springer 2008). These groups are essential for
binding to the receptor. However, according to interpretation of results, contribu-
tions of some Arg-groups are close to zero and not statistically significant (Fig. 16).
Thus, we can erroneously conclude that these groups are not very important for
binding. But such results are easily explained by the biased data set which does not
contain true non-binders. Compounds with guanidine (R1) and pyrimidine (R2)
groups have the lowest affinity values (10–100 μM) in the data set and therefore
their contributions are very low. However, that does not mean that these groups are
unimportant for receptor recognition.

The global and local physicochemical interpretation reveals the high contribu-
tion of the electrostatic term (Fig. 17), which we assume the main driving force of
ligand-receptor interaction. This assumption can be supported by the following
considerations: (1) ligands have at least one positively and one negatively charged
group which is essential for ligand-receptor recognition (Fig. 18); (2) there are
commonly one or two charged H-bonds in ligand-receptor complexes according to
earlier molecular docking studies (Fig. 18), (3) the desolvation effect of ligands

Fig. 17 Median contributions of physicochemical terms in ligand-protein interactions of the
RGD-mimetics data set compounds calculated from the consensus model consisting of RF, GBM,
SVM and PLS models. Definition of M was given in the caption of Fig. 13 (Reprinted with
permission from J. Chem. Inf. Model., 2016, 56, 1455–1469. Copyright 2016 American Chemical
Society.)
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which depends on the distribution of partial atomic charges can also play an
important role in ligand binding and cannot be estimated directly. Less significant
effects of hydrogen bonding (relative to the electrostatic term) may be explained by
the charged nature of formed H-bonds between ligands and Asp224 and Arg214
residues of the fibrinogen receptor. There are few hydrophobic residues in the
binding pocket and correspondingly, relatively small contributions of hydrophobic
effects of fragments are observed in the consensus QSAR model. The contributions
of dispersive interactions are the smallest as these forces are usually very weak and
do not substantially influence affinity values.

6.4 Acute Oral Toxicity in Rats (Type III Data Set)

The data were obtained from the T.E.S.T. 4.1 program (Toxicity Estimation Software
Tool) provided by U.S. EPA (Environmental Protection Agency) (http://www2.epa.
gov/chemical-research/toxicity-estimation-software-tool-test). LD50 values were
converted from mass to molar units and expressed as -logLD50 (LD50, mol/kg).
7205 compounds remained in the data set after removal of salts, undefined isomeric
mixtures, polymers and mixtures.

Statistical characteristics of individual RF, GBM, SVM and PLS models and
their consensus predictions are given in Table 6. Despite the poor predictive per-
formance of the PLS model, we included it in the consensus model, and the pre-
dictive ability of the latter, and the interpretation results remained unchanged. Since
the consensus model provides averaged and thus less biased predictions we

Fig. 18 Interaction map of a selected ligand with the fibrinogen receptor and calculated
contributions of physicochemical terms for separate fragments from the consensus model (ELS—
electrostatic, HYD—hydrophobic, HB—hydrogen bonding, DSP—dispersive). This is an example
of local interpretation (Reprinted with permission from J. Chem. Inf. Model., 2016, 56, 1455–
1469. Copyright 2016 American Chemical Society.)
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performed only its interpretation. However, the calculated contributions among
individual models were also in a good agreement.

First, the contributions of known toxicophores with established mechanism of
action were calculated to confirm the ability of the interpretation approach to rank
them correctly relatively to other structural motifs (Table 7). The mentioned toxi-
cophores ranked top among all considered fragments (Fig. 19). We analyzed an
influence of a molecular context and distribution of values for some toxicophores
with common structures such as the carbamate group. The contributions of
O-(methylaminocarbonyl)oxime exceeded the contribution of the parent carbamate
group. But the cyclic carbamate fragment proved virtually non-toxic (Table 7).

Second, we analyzed the contributions of other highly ranked fragments from the
list of common functional groups and ring systems in order to find new potential
toxicophores. Some, like nitrosamine and aziridine are known mutagens as it was
shown by Kazius with co-workers (Kazius et al. 2005) and in our recent publication
(Polishchuk et al. 2013). Others like piperazine and piperidine are frequently used
in medicinal chemistry and not well known as toxicophores. The analysis of the
molecular context of these groups revealed 4-phenylpiperazine and
4-phenylpiperidine moieties as probable toxicophores as they have significantly
higher contribution values relative to the contributions of corresponding parent
fragments. Halogens per se have relatively small contribution to acute toxicity and
may be considered weak toxicophores. Fragments with negative contributions like
carboxylic or sulfonic acid groups can be considered detoxicophores.

6.5 Comparison of BBB Permeability with Passive Diffusion
Measured by PAMPA and P-gp Binding

The transport of molecules across the blood brain barrier (BBB) is a highly
restricted and controlled process. The tight junctions between adjacent cells, lack of
capillary fenestration and low pinocytotic activity hamper transport across BBB.
The major pathway for compounds to cross the BBB is the transcellular route,
which depends on their physical-chemical characteristics and interactions with
transporter proteins. Passive diffusion is the primary process of translocation from
the blood stream to the brain for most drugs. For a given membrane or barrier

Table 6 Five-fold cross-validation statistical parameters of QSAR models for the acute oral
toxicity data set

Q2 RMSE

RF 0.61 0.59
GBM 0.56 0.63
SVM 0.54 0.64
PLS 0.44 0.71
Consensus 0.60 0.60
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Table 7 List of fragments with known or presumed mechanism of toxic action* (Reprinted with
permission from J. Chem. Inf. Model., 2016, 56, 1455–1469. Copyright 2016 American Chemical
Society)

Fragment Representative structures Mode of action References

Known toxicophores

2-trifluoromethyl
benzimidazole

N

N F

F

FF

F
F

LD50 = 9.01 mg/kg

Inhibitors of oxidative
phosphorylation

(Beechey
1966)

O-(methylamino-
carbonyl)oxime N

ON

O
S

LD50 = 0.5 mg/kg

Acetylcholine esterase
inhibitors

(Čolović
et al. 2013)

4-hydroxycoumarin

O

O

O

O

LD50 = 1.6 mg/kg

The anticoagulant
(vitamin K
antagonists)

(Littin et al.
2000)

Dinitrophenoxy

N

O

O

N

OO

O

O

S

LD50 = 147 mg/kg

Inhibitors of oxidative
phosphorylation

(Terada
1990;
Grundlingh
et al. 2011)

Phosphorodithioate O
P

S

O

S

N

N
N

O

LD50 = 7 mg/kg

Acetylcholine esterase
inhibitors

(Čolović
et al. 2013)

Phosphorothionate

O

O

P
S

O

O

O

LD50 = 0.14 mg/kg
Phoshoryl

Cl

Cl

O

P
O

O
O

LD50 = 2.5 mg/kg
Hexachlorononbornene

Cl

Cl

Cl

Cl

O

Cl

Cl

Cl

Cl

LD50 = 4 mg/kg

GABA-gated chloride
channel antagonists

(Casarett
and
Klaassen,
2008)

1,3-indandione O

O

O

LD50 = 1.5 mg/kg

The anticoagulant
(vitamin K
antagonists)

(Valchev
et al. 2008)

(continued)
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characteristics (surface area, water pores, tight junction diameters, histomorphol-
ogy), the physicochemical parameters of molecules represent the major rate
determinant for passive diffusion. Hitherto it is the most computable and measur-
able property which can be used as a predictor of BBB permeation. It depends on
simple parameters that make sense for medicinal chemists (molecular weight,
H-bond capacity, rotatable bonds, solvent-accessible surface area). Polar molecules
are generally poor CNS agents unless they undergo active transport to pass the
CNS. Substrates of P-gp are generally chemically unrelated drugs. The efflux
transport depends on the drug binding to P-gp, the level of expression of P-gp, the

Table 7 (continued)

Fragment Representative structures Mode of action References

Carbamate

N

O
N

O

N

LD50 = 4.5 mg/kg

Acetylcholine esterase
inhibitors

(Čolović
et al. 2013)

NHNH2

(not hydrazide)
N

N

LD50 = 34 mg/kg

Inhibition of GABA
synthesis

(Medina
1963;
O’Brien
et al. 1964)

2-fluoroacetyl
N

F O

LD50 = 10 mg/kg

Inhibition of Krebs
cycle

(Proudfoot
etal. 2006)

Thiourea**

N N

S

LD50 = 50 mg/kg

Inhibitor of thyroid
peroxidase

(Davidson
et al. 1979)

2-(2,4-dichloro-
phenoxy)acetyl O

O

O

ClCl

LD50 = 300 mg/kg

Generation of free
radicals, increases the
lipid peroxidation
process, depletion of
ATP

(Bukowska
2006)

Potential new toxicophores

Phenylpiperidine
NO

N

Cl

O

D50 = 98 mg/kg
Phenylpiperazine

O

NN
OO

O

N

N

Cl

Cl

LD50 = 166 mg/kg
*SMARTS patterns of all analyzed fragments are given in Table S1 in Supporting materials
(Polishchuk et al. 2016)
**The acute toxicity of thiourea varies with species, strain, age and iodine content of the diet.
[Thiourea. Concise International Chemical Assessment Document, 49. World Health
Organization, Geneva, 2003]
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drug concentration, and a constant equilibrium. The presence of P-gp inhibitors or
modulators could modify this transport component significantly. Practically, for a
majority of drugs the resulting BBB permeation can be represented as a sum of
passive diffusion and efflux transport components (Adenot and Lahana 2004; Ma
et al. 2005). Moreover, the inclusion of P-glycoprotein transport as a component of
BBB permeation allows a clear mapping of drugs in terms of their behavior toward
blood-brain barrier permeation. To estimate passive diffusion, the parallel artificial
membrane permeability assay (PAMPA) test is frequently used (Kansy et al. 1998).
Therefore, it would be reasonable to compare results of QSAR model interpretation
for these three end-points: permeability through BBB and PAMPA and substrate
binding to P-gp.

For this study three different data sets were collected:

(i) 321 compounds with measured BBB permeability (178 permeable and 143
non-permeable); these compounds permeate by mainly passive diffusion
(Polishchuk et al. 2016)

Fig. 19 Contributions to toxicity of different molecular fragments calculated on the basis of the
consensus QSAR model. Definitions of M and N were given the caption of Fig. 13 (Reprinted with
permission from J. Chem. Inf. Model., 2016, 56, 1455–1469. Copyright 2016 American Chemical
Society.)
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(ii) 281 drug substances with measured passive permeability by Double
Sink PAMPA (141 permeable and 140 non-permeable) (Avdeef 2012)

(iii) 194 compounds with associated data on P-gp (98-substrate and
96-non-substrate) (Bikadi et al. 2011)

All data sets had common compounds: BBB/PAMPA 54, BBB/P-gp 45,
P-gp/PAMPA 82 and 30 compounds were common for all data sets.

Table 8 Five-fold cross-validation performance for BBB, PAMPA and P-pg models

Balanced accuracy Sensitivity Specificity Kappa

BBB permeability

RF 0.76 0.81 0.71 0.52
GBM 0.77 0.84 0.69 0.54
SVM 0.75 0.79 0.70 0.49
Consensus 0.76 0.83 0.69 0.52
P-gp binding

RF 0.75 0.76 0.75 0.51
GBM 0.76 0.74 0.78 0.53
SVM 0.70 0.62 0.78 0.40
Consensus 0.76 0.73 0.79 0.52
PAMPA permeability

RF 0.80 0.79 0.81 0.60
GBM 0.82 0.82 0.81 0.64
SVM 0.80 0.77 0.83 0.59
Consensus 0.81 0.81 0.82 0.63

Fig. 20 Median contributions of fragments estimated from BBB, PAMPA and P-gp consensus
models which occurred at least 7 times in both data sets. In the labels “al” means aliphatic atom,
“ar” means aromatic atom

132 P. Polishchuk et al.



2D QSAR models were built by means of GBM, SVM and RF methods as well
as the consensus models which included all corresponding individual models. All
models had reasonable performance according to the five-fold cross-validation
strategy (Table 8).

The structural interpretation results for all corresponding individual and con-
sensus models were in good agreement, further we discuss the interpretation results
of the consensus models only. One could expect that the similar interpretation
results for BBB and PAMPA end-points because the BBB data set includes mainly
compounds permeating by passive diffusion. Indeed, the plot of median contribu-
tion of the common fragments shows such trend (Fig. 20). The fragments which
enhance PAMPA permeability also enhance BBB permeability and vice versa.
Analysis of fragment contributions relationship to BBB permeability and P-pg
binding proved more difficult. No clear trend exists between fragment contributions
(Fig. 20). Some groups, like carboxylic, increase the chance of binding to P-gp and
at the same time they have poor passive permeability. Therefore, compounds
bearing such groups may have decreased BBB permeability due to both factors.

Fig. 21 Median physicochemical contributions of the most influential fragments from BBB,
PAMPA and P-gp data sets
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Other groups, like CF3, may increase passive diffusion and at the same time
increase the chance of efflux. Therefore, researchers should find the trade-off
between these two effects for compounds having such groups.

For many fragments physicochemical interpretation of the consensus models
returns very small values, therefore we show the contributions of the most
influential fragments only (Fig. 21). Negative influence of fragments with het-
eroatoms on BBB permeability can be explained by unfavorable hydrogen bonding.
The positive impact of CF3 group on P-gp binding presumably relates to the
favorable hydrophobic interactions, whereas unfavorable hydrophobic interaction
of SO2NH2 group results in its negative influence on passive diffusion measured by
PAMPA. Generally these conclusions correspond to the experimentally observed
relationships. Low BBB permeability may be caused by a large number of H-bond
donors/acceptors and a large polar surface area (Hitchcock and Pennington 2006;
Wager et al. 2010a, b; Ghose et al. 2012; Hitchcock 2012).

7 Stereochemical Interpretation. Case Studies

Two QSAR tasks were selected to demonstrate the applicability of (2 + 0.X)D
SiRMS approach to stereochemical interpretation. The first data set contained
compounds with multiple chiral centers and the second set contained compounds
with chiral centers and axis of chirality. The (2 + 0.X)D SiRMS approach makes it
possible to consider stereochemical features of those compounds and provide
stereochemical interpretation. Both of the data sets belong to the type III data set, in
which compound binding poses are important but unknown. But the data sets
contain only congeneric series of compounds that makes interpretation reasonable
assuming that they have the same binding mode.

7.1 Cramer Steroids with Multiple Chiral Centers

The first data set—also known as the Cramer set—contained steroids with asso-
ciated affinity values for corticosteroid-binding globulin (CBG) expressed as pKa,
where Ka is the association constant between steroid and CBG (Dunn et al. 1981;
Cramer et al. 1988) (Fig. 22, Table 9). Many 3D-QSAR methods (Cramer et al.
1988; Silverman and Platt 1996; Lobato et al. 1997; Parretti et al. 1997; Besalú
et al. 2002; Liu et al. 2002; Marrero-Ponce et al. 2008) use this data set as a
benchmark. The studied compounds contain multiple chiral centers.

In Table 9 the numbers of chiral centers were assigned according to their
positions in the scaffold (a-l) taking into account their molecular context. For
example an atom in the same position as center 1 can become center 13, 15 or 18
according to the changes in the nearest surrounding. To describe chirality of each
center, we calculated the set of connected 3D-simplexes including chiral center and
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4 nearest atoms. Along with 2D-simplexes, these simplexes represent the structure
of whole molecule and were used to build a PLS model. The obtained (2 + 0.X)
D-SiRMS model has shown high quality, its statistical parameters exceed most of
the known for 3D-QSAR models. In all previous studies only R2 and Q2

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31

Fig. 22 Structures of Kramer steroids
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Table 9 The scaffold of the studied steroids with labeled stereogenic centers and affinity of
compounds for corticosteroid-binding globulin

Scaffold of studied steroids and their stereogenic centers

№ pKa Numbers and stereochemical configurations (R/S) of stereogenic centers
a b c d e f g h i j k L

1 −6.27 1R 2S 3S 4S 5S 6R 7S – – – – –

2 −5 1R 2S – 4R 5S 8S – – – 9S – –

3 −5.25 1R 2S – 4S 5S 8S 7S – – 9S – –

4 −7.2 1R 2S – 4R 5S 8S 7S – – – – –

5 −5 1R 2S – 4R 5S 8S 10S – 11S 9S – –

6 −7.65 1R 2S – 4S 5S 8S 7S – – 9S – –

7 −5 1R 2S – 4R 5S 8S 12R – – 9S – –

8 −6.14 13R 2S – 4R 5S 8S 10S – – – – –

9 −5.76 1R 2S – 4R 5S 8S – – – – – –

10 −7.88 1R 2S – 4S 5S 8S 12R – – – – –

11 −7.38 1R 2S – 4S 5S 8S 7S – – – – –

12 −6.24 1R 2S – 4R 5S 8S 12S 14R – – – –

13 −5 1R 2R – 4R 5S 8S 7S – – 9S – –

14 −5.91 15S 2S – 4R 5S 8S 10S – 11S – – –

15 −7.74 1R 2S – 4R 5S 8S 12R – – – – –

16 −7.12 1R 2S – 4S 5S 8S 7S 16R – – – –

17 −5.61 15S 2S – 4R 5S 8S – – 11S 9R – –

18 −5 – 17S – 4R 5S 8S 10S – – – – –

19 −6.72 1R 2S – 4R 5S 8S 10S – – – – –

20 −6.81 13S 2S – 4R 5S 8S 7S – – – – –

21 −7.88 1R 2S 3S 4S 5S 8S 7S – – – – –

22 −5 – 2S – 4R 5S 8S 10S 14R – – – –

23 −7.51 18R 2S 3S 4S 5S 8S 12R – – – – –

24 −7.68 1R 2S 3S 4S 5S 8S 12R – – – 19R –

25 −7.88 1R 2S 3S 4S 5S 8S 12R – – – – –

26 −5 – 2S – 4R 5S 8S – – – – – –

27 −7.55 1R 2S 3S 4S 5S 8S 12R – – – – 20R
28 −5.79 1S 21R 3S 4S 5S 8S 12R – – – 19R –

29 −6.89 1R 2S – 4S 5S 8S 12R – – – – –

30 −5.25 15S 2S – 4R 5S 8S – – 11R 9S – –

31 −6.77 1R 2S – 4S 5S 8S 7S – – – – –
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(determination coefficient of leave-one-out cross validation) values were provided
(Table 10).

The obtained (2 + 0.X)D-SiRMS model exceeds the ordinary 2D-SiRMS model
in terms of predictive ability estimated additionally using five-fold cross-validation
strategy: Q2

5CV = 0.90 and RMSE5CV = 0.34 versus Q2
5CV = 0.86 and RMSE5CV =

0.39, correspondingly. Thus, CBG affinity of those steroids is chirality-dependent
and the use of stereochemical descriptors improves model performance. Stereo-
chemical interpretation showed that relative influence of chiral descriptors (X in
‘2 + 0.X’D formula) is 29%. Thus, this task was solved by the 2.29 D-QSARmodel.

During the computations we omitted those chiral centers that appeared less than
3 times in the data set (Table 11). There are centers with notably higher influence
compared to others such as centers 7, 10 and 12 defining orientation of substituent
in position g (Table 9) and centers 1, 15 and 8 which define configuration of centers

Table 10 Comparison of the statistical parameters for QSAR models built on Kramer steroids set

№ Descriptors Level of
structure
representation

Statistical
method

R2 Q2
LOO

1 (2 + 0.X)D-SiRMS 2.XD PLS 0.90 0.84
2 2D-SiRMS 2D PLS 0.86 0.80
3 3D-chiral

TOMOCOMD-CARDD
(Marrero-Ponce et al. 2008)

2.5D MLR 0.95 0.83

4 MEDV (Liu et al. 2002) 3D MLR + GA 0.86 0.77
5 TQSI (Lobato et al. 1997) 3D MLR 0.83 0.76
6 CoMSIA (Parretti et al. 1997) 3D PLS 0.76 0.73

Table 11 Relative influence
of different chiral centers to
CBG affinity of Kramer
steroids

Chiral
center

Configuration Number of
appearances

Average
influence, %

1 R 21 2.81
2 S 28 2.51
3 S 7 1.41
4 R 17 1.54
4 S 13 1.40
5 S 31 2.46
7 S 10 3.56
8 S 30 3.68
9 S 7 1.22
10 S 6 2.90
11 S 3 2.48
12 R 9 2.85
15 S 3 2.73
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a and f, respectively. These centers define the coupling of cycles in steroid scaf-
folds. Analysis of overall influence of chiral centers grouped by position in the
scaffold (a-l) shows that they can be ranked by an influence in the following order:
f > g > a > b > e. All of the chiral centers have non-zero influence on the affinity
according to this model. It proves that stereoconfiguratons of all centers contribute
to the binding of steroids to CBG.

7.2 Data Set of Compounds with Mixed Central
and Axial Chirality

This data set included 40 naphtylisoquinoline alkaloids with antiplasmodial activity
determined using the K1 strain (resistant tochloroquine and pyrimethamine), for
which a modification of the [3H]-hypoxanthine incorporation assay (Bringmann and
Rummey 2003). Activity values were expressed as logIC50 where IC50 was mea-
sured in nmol/mL (Table 12). These compounds along with others were studied by
3D QSAR models via CoMSIA approach (Bringmann and Rummey 2003).

These compounds possess two types of chirality—central and axial. The feature
vector representing those compounds thus should contain (i) ordinary 2D simplex
descriptors, (ii) 3D simplex descriptors representing chiral centers as shown in the
previous study and (iii) 3D simplex descriptors representing axial chirality. We
employed a system of unconnected simplexes containing atoms pairs located in
different planes from the axis of chirality to describe axial chirality and the con-
nected simplexes to describe atoms at chiral axis and next to them (Fig. 23). All of
the atom pairs in unconnected simplexes are not planar and can be used to generate
chiral descriptors. All of the connected simplexes include C-C bond which is equal
to the axis of chirality.

The built PLS models were validated according to the five-fold cross-validation
protocol. The (2 + 0.X)D SiRMS model had satisfying statistical parameters
(R2 = 0.81, Q2 = 0.74, R2

5CV = 0.78, S5CV = 0.33) and exceeded those for the 2D
SiRMS model (R2 = 0.80, Q2 = 0.63, R2

5CV = 0.72, S5CV = 0.38). Thus, this
2.X-D QSAR model can be used for stereochemical interpretation. It proves
impossible to compare our results with the QSAR studies from Bringmann and
Rummey (2003) because the authors included in their training set compounds with
stereochemically unstable axis—axis around which free rotation is possible.
However, predictive ability for biaryl compounds in Bringmann and Rummey
(2003) was not quite high compared to this study—R2 (ts) = 0.59.

The relative influence of simplex descriptors for axial chirality is 12% (including
8.5% for unconnected simplexes and 3.5% for connected ones) and 5% for the
simplex descriptors represented central chirality. Thus, one can assume that this
model is at 2.17D level. Since descriptors for both types of chirality contribute to
the model this evidences that all types of stereochemistry are important for anti-
malarial activity. Larger influence of the unconnected 3D simplexes describing
axial chirality can be caused by the fact that pairs of atoms in such simplexes are
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sufficiently separated in space (especially compared to connected simplexes). Thus,
unconnected chiral simplexes can better describe the shape of a molecule in terms
of its stereochemical features.

The use of (2 + 0.X)D-QSAR approach based on the SiRMS opens a lot of
opportunities to get important information about structural and stereochemical
factors which allows to include all necessary information about stereochemistry of
studied compounds without sampling of conformers.

8 Software Implementation of Structural
and Physicochemical Interpretation of QSAR Models
Based on SiRMS

Structural and physicochemical interpretation approaches were implemented in an
open-source tool for knowledge mining of chemical data sets—SPCI (Polishchuk
et al. 2016). The overall procedure is straightforward: SDF-file → automatic
model building and validation → calculation of desired fragments’ contribu-
tions → visualization of contributions. There exist two interpretation modes:
structural interpretation only and structural and physicochemical interpretation.

Fig. 23 The structure of dioncopeltine A and simplexes representing axial chirality of the
compound
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Different simplex labeling schemes are used for them. In the first case, vertices in
simplexes are labeled by an element, in the second case they are labeled according
to the value of partial atomic charge, lipophilicity, H-bonding ability and refraction
to represent electrostatic, hydrophobic, H-bonding and dispersive factors, corre-
spondingly. Therefore, overall contribution calculated in the second case will
slightly differ from a contribution calculated in structural interpretation mode,
because different descriptor labeling schemes are used.

Modeling and validation are performed automatically, and no variable selection
is performed during modeling. Optimal model parameters are tuned by a grid
search. five-fold cross-validation is performed only once (one repetition) with the
predefined seed to make it reproducible. Statistics and parameters used for optimal
models building can be viewed in a separate window.

The exploratory analysis can be rapidly and easily performed for any data set
based on several pre-defined fragmentation schemes: (1) common functional groups
and small rings; (2) all ring systems available in the modeling data set; (3) Murcko
scaffolds detected in the modeling data set; (4) two automatic fragmentation
schemes, which use SMARTS to define bonds to cleave during fragmentation. In
the latter fragmentation scheme, only fragments with at most three attachment
points are created to avoid combinatorial explosion. The user-defined fragments in
SMARTS/SMILES format may also be used for fragmentation (tab-separated list of
SMART/SMILES and their names). There are lots of command line options in
underlying Python scripts which provide great customization and tuning of the
whole system. Though many parameters are set to the reasonable default values to
simplify the usage and graphical interface. In the last 0.1.5 version the predictor
module was added, which returns predictions for new data sets and estimates the
applicability domain based on a fragment control approach. Only basic visualiza-
tion of structure-activity relationship trends was implemented in SPCI software.
More advanced and flexible visualization is provided by rspci R package (https://
github.com/DrrDom/rspci).

For more details on the software tools, one can refer to the SPCI manual and the
author page http://qsar4u.com/pages/sirms_qsar.php. The open-source code is
available in the following github repositories: (i) standalone SPCI software tool
with GUI (https://github.com/DrrDom/spci); (ii) Python tool to carry out frag-
mentation of the data set compounds for further descriptors calculation with
external software and prediction by QSAR models and for calculation of fragment
contributions (https://github.com/DrrDom/spci-ext); (iii) R package for customized
visualization of fragment contributions (https://github.com/DrrDom/rspci).
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9 Conclusions

The simplex representation of molecular structure proved itself as a powerful and
flexible tool for encoding chemical structures in QSAR modeling. The SiRMS
allows not only to represent topology of molecules but their stereochemical con-
figuration regardless their type of chirality. The simplex descriptors are suitable for
an interpretation of QSAR models by means of model-specific and
model-independent approaches. We demonstrated that one should consider three
different scenarios of interpretation based on a mechanism of action of studied
compounds for reasonable interpretation results. In all case studies, we obtained
relevant and reasonable interpretation results. Models showed high performance,
and thus the SiRMS descriptors can be recommended to build highly predictive and
interpretable QSAR models.
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The Maximum Common Substructure
(MCS) Search as a New Tool for SAR
and QSAR

Azadi Golbamaki, Alessio Mauro Franchi and Giuseppina Gini

Abstract The Maximum Common Substructure (MCS) between two molecules
induces a similarity that makes it possible to group compounds sharing the same
pattern. In our study the relevance of a similarity measure exclusively based on
MCS has been implemented in new software based on the fmcs_R package. The
newly developed program searches for the largest substructures between a target
molecule, with unknown property value, and a set of similar molecules with
experimental value to assess the toxicity of the target chemical. In QSAR and
read-across, while reasoning on the similarity of the evaluated molecules, another
important aspect to consider is the difference of two molecules that share a large
common part. Thus, the present study examines the issue of the MCS itself, and the
differences between a reference and a similar molecule by the aid of an ad hoc
developed software. The most important features of this software are: (I) the process
of the MCSs between two molecules represented as graphs and (II) the detection
and the graphical representation of the dissimilar substructures that are identified in
the target and the source molecules. The user may consequently quantify the
properties and weights of these substructures to improve the assessment of new
substances. This new software is integrated into ToxRead, a system to visualize
structures and substructures for expert reasoning. Moreover, an automatic search in
a database containing the role of small substructures in amplifying or reducing the
property can help in improving the final assessment.
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1 Introduction

Clustering and classification methods used to group similar chemicals could benefit
from the Maximum Common Substructure (MCS) algorithm. The MCS algorithm
usually takes two molecular structures, represented as graphs, and extracts the
maximum common substructure, either as a connected or disconnected graph.
Usual applications of MCS are for filtering and prioritizing large data sets of
molecules. Structure-Activity Relationship (SAR) systems often search for large
substructures with known properties to predict the property of new molecules that
contain them; this task is substructure search, a much simpler case than MCS.

In Quantitative Structure-Activity Relationship (QSAR) and read-across, while
reasoning on the similarity of the considered molecules, another need may arise:
how to account for the differences of two molecules that share a large common
part? What is missing here is not the maximum common substructure itself, but
exactly what are the differences between a reference and a test molecule. In this
chapter we discuss how to detect and show these differences, how to quantify their
weight, and how to use them to improve the assessment of new substances.

Finding the maximum common substructure is a computationally hard algorithm
that has been studied in literature and has received many complete or heuristic
solutions (Garey and Johnson 1979). The MCS problem is recognized as a “NP”
problem (for which no polynomial-time solutions are known), and complete
solutions are indeed exponential in the number of atoms of the substructure. We
review the main algorithms for MCS and discuss our specific approach tailored for
our aims.

2 Notation, Basic Algorithm and Classical Applications
of MCS

Determining a one-to-one atom correspondence between two chemical compounds
is important to measure molecular similarities. This determination is a case of
well-known problems on graphs.

2.1 Basic Definitions

A graph is a collection of n vertices and m edges connecting them; formally
G = (V, E), where E is a set of unordered pairs from V. In undirected graphs the
edges have no orientation.
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The subgraph isomorphism problem is finding a fixed graph as a subgraph in a
given graph. A particular subgraph is a clique.

A clique in a G = (V, E) is a subset S ⊆ V of vertices of an undirected graph
such that the induced subgraph is complete, i.e. every two distinct vertices in the
clique are adjacent. Mathematically we define a clique as a subset of a directed
graph satisfying the following conditions:

• The subset contains at least three points.
• If Pi and Pj are in the clique, then there is an edge connecting Pi and Pj.
• The subset is the largest possible.

A maximal clique is a clique that cannot be extended by including one more
adjacent vertex. A graph with 3n vertices can have at most 3n maximal cliques, as
demonstrated by Moon and Moser (1965).

The maximum common subgraph-isomorphism (MCS) problem is defined as
a decision problem: given two graphs, G1 and G2, what is the largest subgraph of
G1 isomorphic to a subgraph of G2? MCS is NP-hard too.

2.2 Computational Approaches to Clique

The computational problem of finding (all) the largest complete subgraph(s)
(maximal clique) is called the clique problem. Since their number can be very large,
smart algorithms need to be designed. The clique problem is NP-complete, i.e. no
polynomial time algorithms have been found to solve the general problem. Many
algorithms for computing cliques have been developed, both complete and
approximate.

A well-known complete algorithm is by Bron and Kerbosh (1973); it finds all
cliques, in an undirected graph, running in exponential time. Ullmann (1976)
developed a subgraph isomorphism method, applied also to clique detection, and
optimized through special hardware; it significantly reduces the size of the search
space using backtracking.

Bunke and Messmer (1995) attempted to reduce the overall computational cost,
resulting in a quadratic time with respect to graph size, but with an exponential
memory requirement and pre-processing time. Other techniques, such as nonde-
terministic ones, reduce the complexity from exponential to polynomial, but are not
guaranteed to find an exact and optimal solution. Cordella et al. (2004) worked to
reduce the memory needs so as to scale the system to thousands of nodes and
branches. Finally, to address the matching of very large graphs, Zhu et al. (2013)
proposed an approximate solution with polynomial time complexity.
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2.3 Use in Chemistry of Clique and MCS

In chemistry cliques and MCS algorithms are mostly used to describe chemical
similarity. Chemical graphs are usually small graphs, with tens of nodes, but the
chemical space is very large, with possibly millions of molecules (Reymond and
Awale 2012).

Kuhl et al. (1983) used cliques to model the positions in which two chemicals
will bind to each other. Gini et al. (2001) used the Ulmann algorithm to match
expert-defined substructures related to carcinogenicity to tested chemicals. Cliques
can be used to check a chemical dataset against a target structure, as in CLIP by
Rhodes et al. (2003), that used the Bron-Kerbosch clique detection algorithm to find
those structures in a file that have large structures in common with a target structure.

Raymond and Willett (2002) provided a classification and a review of the many
MCS algorithms, both exact and approximate, which have been described in
cheminformatics.

For MCS, typically, the number of bonds in the MCS is used as a similarity
coefficient.

Cuissart et al. (2002) explored the use of MCS to define structural similarity
indices and then to classify biodegradability of chemicals. Duesbury et al. (2015)
explored the MCS similarity against the fingerprints approach. A combination of
fingerprints and MCS is also used by Stah et al. (2005) to cluster a large chemical
database for applications as identifying the most frequently occurring scaffolds,
selecting analogues, and in the prioritization of chemical libraries. Cao et al. (2008)
compared an MCS algorithm to global similarity measurements, and used them to
predict and cluster biologically active compounds.

In the RASCAL system Raymod et al. (2002) developed the maximum common
edge subgraph (MCES) algorithm to calculate graph similarity; the algorithm is
based on maximum clique.

Despite the fact that most of the authors approach only one problem at a time,
Xu (1996) has shown in his GMA algorithm that homomorphism, isomorphism,
and maximal common substructure match (MCSS) can be processed in one algo-
rithm with a complexity that depends on the number of edges.

Commercial systems are also integrating some MCS method, as in ChemAxon
(Englert and Kovacs 2015). Free software is available; see for example the fMCS
algorithm in python on https://bitbucket.org/dalke/fmcs.

3 Improving Read-Across Methods with Automatic
Notification of Differences

Similarity of chemical structures plays an important role in grouping chemicals for
read-across methods. Read-across assumes that a property or activity of a molecule
depends on its chemical structure (Hansch and Leo 1979). We can assign a new
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molecule with missing values to a group of chemicals with high similarity and use
the experimental values available in the group to induce the value of the new
molecule. This way of reasoning also assumes that the values of a property have a
kind of local linear behaviour; so it is necessary limiting the search area to the most
similar molecules.

According to the Organization for Economic Cooperation and Development
(OECD) documents,1 this kind of read-across to fill missing values can be done
considering the chemical group as a 2D matrix, where rows are properties and
columns are molecules, as indicated in Table 1. The unknown property values can
be filled by considering just one very similar molecule or two molecules to make
interpolation or extrapolation.

Read-across relies on the expert experience in choosing the most similar
molecule and the meaning of the functional subgroups in it. Several issues have
been found; for instance, the data filled are not easily reproducible, as indicated in
Benfenati et al. (2016), and the method itself is unable to make use of any statistical
knowledge about the considered group of chemicals.

Of course the data filling can be done using SAR or statistical QSAR systems
that usually work on molecules in a broader chemical space. However, there are
problems also with them. In many cases regulators do not accept the results of
QSAR, saying that they are not transparent. SAR methods, that assign the new
molecule to the toxicity class in case it contains a known functional subgroup
(structural alert), tend to overestimate the toxicity: in fact, the entire group of
chemicals containing the structural alert is considered as toxic. This is the case, for
instance, of the structural alerts for mutagenicity used in the ToxTree2 software;
their presence in the data set originally used to find them never reaches 100%, and
in some cases is lower than 50%.

To improve the quality of QSAR models many solutions are available today,
such as mixing different levels of description. For instance, it is well known that
local considerations about the presence of specific atoms can improve the predic-
tivity of QSAR models based on global descriptors (Toropov et al. 2010). The idea
of dissecting the molecule, taking its subparts, and reasoning on them can be further
exploited.

Table 1 Read-across, interpolation, and extrapolation of activity values from experimental values
available for similar molecules in a group

Chemical Chemicali+1 Chemicali+2 Chemicali+3
activity1 Exp ⇒ Filled Exp ⇒ Filled Read-across

activity2 Exp ⇒ Filled Filled ⇐ Exp Interpolation

activity3 Filled ⇐ Exp Exp ⇒ Filled Extrapolation

1http://www.oecd.org/chemicalsafety/risk-assessment/
groupingofchemicalschemicalcategoriesandread-across.htm.
2http://www.toxtree.sourceforge.net/.
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To improve both the acceptability of QSAR and the reproducibility of
read-across, we claim that it is worth reasoning also on the dissimilarities of
molecules after considering their similarity. The reason is that the toxic activity may
depend on the common part of the molecules, especially in case it contains a
structural alert, but the remaining part can play a role in increasing or reducing the
toxicity too.

Expert users are responsible, in read-across, in making this kind of considera-
tions; however, the number of subgroups known to modify toxicity can be large and
not fully memorized by the expert. Our proposed answer is a three-steps method:

• Find the MCS of two molecules (the reference and the unknown) and graphi-
cally show the structural differences.

• Check in a knowledge base of functional subgroups whether there is a structural
alert in the MCS or in the differences.

• Check in a knowledge base whether the differences contain a toxicity modulator
group.

The following sections illustrate the first step and its implementation in the
ToxRead (Gini et al. 2014) system. The other steps depend on the property under
consideration and are in development for specific endpoints, starting from muta-
genicity that is used in the following examples.

4 A New MCS Based Method to Detect Dissimilarity

As we have seen in the state of art, several solutions exist for computing the MCS,
either optimal or not. The most common algorithms are focused on general graph
theory; for example, several are based on converting the MCS problem into the
clique problem, by introducing a compatibility graph. However, these methods do
not exactly match with the representation needed for chemicals and consequently
they cannot be very efficient. Moreover, the conversion to the clique problem
prevents a flexible matching between two graphs. Stated these problems, along with
the intractable computational complexity of the MCS problem, it is evident that
more specific approaches are needed.

Our solution is based on the algorithm proposed in the fmcs_R package (Cao
et al. 2008); it performs MCS computation via a novel backtracking algorithm,
incrementally computing a search tree of correspondences between atoms of the
two molecules under investigation. Each node in this tree is a set of atom corre-
spondences, and leafs are the connected subgraphs we are looking for; the deepest
leafs are the MCSs. This mechanism is more flexible than clique and makes it also
possible to introduce various strategies to reduce the search space, such as pruning
or branch and bound heuristics. It also let us define a mismatch tolerant comparison
of atoms (i.e. different atoms may correspond for particular circumstances), using
for example a priori defined set of admissible atom associations.
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After the MCS is computed, we have to perform ring closure. Since the proposed
algorithm does not consider rings as such, it may break some rings, i.e. it selects
only a subset of atoms in a ring. This leads to a significant loss of structural
information and consequently we need to close all the broken rings in the MCS.

We can finally extract the structural differences between the two compounds
under investigation: we overlap each graph with the MCS and highlight all the
sub-branches not in the MCS (Fig. 1).

4.1 The Algorithm

The backtracking algorithm works directly with the molecular graph structure; each
atom of the compound is a vertex in the graph. The core idea is to search for all the
possible combinations of two vertices correspondences, and build a search tree
having sets of correspondences as nodes. As we move down the tree each set is
possibly expanded with the addition of a new correspondence; each node is thus a
subset of the set in each of its child nodes. The root of the tree is the empty set.

Figure 2 represents a simple example of a tree of correspondences, where A1,
B1, C1, D1 and A2, B2, C2, D2 are nodes respectively from the first and the second
molecular graph.

The matching between a node in the target graph and a second node in the query
graph is driven by a set of rules, involving both the atoms itself (i.e. the atoms must
be the equal) and their bonds (i.e. the two atoms must be connected by the same
type of bonds). The expert may expand these rules by user-defined exceptions,
possibly related to the particular molecules involved or the property it is trying to
asses.

Once the tree is fully built, each leaf node is a candidate common subgraph, and
the algorithm performs a depth-first search for the largest set of correspondences,
i.e. the MCS. In the example of Fig. 2, one among the three lower nodes are
returned; actually all the common subgraphs with maximum dimension are selected
as the MCSs.

In order to reduce the complexity of the MCS problem and thus speed up the
algorithm we used various strategies. The first concerns the selection of the next

Fig. 1 The MCS in black is
overlapped to both the
molecule in study; the red
branches are the desired
differences
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node in the target graph to be analysed; it is possible to create a sort of ordering in
the search, with the aim of traversing as soon as possible branches that potentially
contain an optimal solution. This allows the algorithm to prune out more branches
and significantly reduce the dimension of the tree. In particular, we select the node
having the highest number of neighbours in the current best common subgraph,
resulting in a higher probability of findings a bigger subgraph.

The second strategy is related to the property of connectedness of the MCS. In
general, a common subgraph may contain a number of disconnected fragments, but
this is not desirable when working with chemical compounds. We then restrict our
search to connected subgraph, greatly reducing the dimension of the search space.
The implemented algorithm always expands the current common subgraph not
creating disconnected fragments; for particular needs, it is also possible to relax this
restriction introducing a maximum number of disconnected fragments. When this
limit is reached during the traversal of a branch, or the current branch cannot be
expanded further, a new branch starts.

4.2 Ring Closing

In the following processing, we have to close all the broken rings we have in the
MCSs. With the term broken rings we are referring to those only partially included
in the MCS; we can imagine the MCS as the longest path in common between two

Fig. 2 A simple example of the search tree of correspondences. A1, B1, C1, D1 are atoms from
the first molecule; A2, B2, C2, D2 are atoms from the second one
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graphs and it may happen that during its computation it only partially traverse a
ring, thus not preserving its structure. The left graph of Fig. 3 is an example: the
MCS is highlighted in red and both the two rings are not fully in the MCS; these are
two broken rings.

This step is fundamental for our goal because the information about the presence
or not of a ring in the MCS (and consequently in the differences) often plays a
major role in the final assessment of a compound property.

In order to close the rings, we need to keep track whether a node is in a ring or
not; before we start computing the MCS, we analyse both the entire graphs and
associate a positive flag with those nodes that are in a ring. At the same time, we
also fill in a data structure containing a couple “ID - list of atoms” describing each
ring in the graph. With these information, right after we extracted the MCS, we are
able to close the ring: for each node in the MCS that has a positive flag, we
manually add to the MCS all the other nodes that are in the same ring, but are still
not present in the MCS. See right part of Fig. 3 for the final output of this step: red
bonds and atoms are the MCS while yellow ones close the two rings.

It is important to state here that the updated subgraph is not anymore the exact
MCS, as we relaxed it with the addition of several nodes; it is more a sort of
“flexible-MCS”, but in our opinion this makes it is more adapt to capture a global
and comprehensive information from the chemical side.

An interesting problem we faced with ring closure concerns double rings. The
example in Fig. 4 clearly shows this issue. The molecule has an open ring (the
second from the left) that we must close. There is also a second ring (the rightmost),
which is already fully contained in the MCS and no further processing is required.
Differently the green ring must not be added to the MCS as the only two nodes of it
belonging to the MCS are shared with other rings. This particular case shows that
the presence in the MCS of two atoms belonging to the same ring is not enough to

Fig. 3 An example of ring closure on the caffeine molecule; the MCS is highlighted in red; on the
left there are two broken rings, which can be closed by the addition of the yellow atoms and bonds,
as shown in the right graph
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require a closure. To avoid these situations, we added a rule setting the minimum
number of atoms of a ring included in the MCS required for its closure.

Even if ring closure may seem a quite time consuming procedure, it is
infinitesimal with respect to the computational complexity of the MCS and its
impact on the global performance is irrelevant.

4.3 Extracting the Differences

With the MCS ready, we extract the structural differences between the two com-
pounds. The idea is to overlap the MCS with the molecules we are investigating,
and select all the atoms and bonds not covered by the common part. The difficulty
here resides in correctly detecting each connected subgraph.

We can practically do this in two separate steps. We first fill in the list of nodes
and bonds (namely “nodeList” and “bondList”) of the target graph that have not
been included in the MCS. If the MCS is equal to the graph, these two sets are
empty and no residual subgraph exists. Secondly, we build each single connected
branch one by one, in a recursive way: we start adding the first node of the first
bond in the bondList to a new list, “nodeBranchList”. We now search for every
bond in the bondList connected to that node, and add the second node of the bond
to the nodeBranchList, also removing the bond from the bondList. We recursively
repeat this step, each time selecting a new node to be expanded, until no more valid
bonds are found. We now empty the nodeBranchList and repeat these procedures
while the bondList is not empty. In this way, we build one tree of nodes for each
connected branch not in the MCS. These are the structural differences we are
looking for; Fig. 5 shows the three final trees we built starting from the bondList
printed on the left. Each tree represents a connected subgraph.

Fig. 4 A toy example with a
non-real molecule; the MCS
is drawn in red; yellow bonds
must be added to close the
broken ring, while green ones
must not be selected to avoid
a false positive ring
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5 Result and Discussion

Selecting the differences after applying the MCS is at the basis of the new func-
tionality of ToxRead. As already mentioned, ToxRead is a free software to help
experts in their read across activity by showing similar compounds and common
alerts. A simple illustration of the ToxRead Graphical User Interface (GUI) is in
Fig. 6.

The main window is a global view of the similar compounds, with the chemical
under investigation drawn in the centre in light blue. Pop-up windows appear when
clicking on molecules (circles) or rules (triangles). In particular, when clicking on
the chemical, the following fields appear: chemical structure, CAS number, Simi-
larity value, and Experimental value. When clicking on the rules, Chemical
structure, Rule name, Rule description, and Rule accuracy appear.

In the newly introduced MCS-based dissimilarity function, the pop-up window
shows the structures of the target and the similar molecules, the MCS, and the
dissimilar substructures.

Fig. 5 The three connected subgraph built from the bond list shown on the left
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The addition of information about the structural differences between two similar
compounds is the natural extension of the ToxRead software. In Fig. 7 we see the
conceptual organization of the new functionality provided by MSC. As a new target
compound is entered in the system, it is compared to the set of molecules in a
dataset with known experimental values, and the most similar with respect to a
similarity value are selected and displayed to the expert as before illustrated. The
MCS and the dissimilarities between the target compound and a second similar
molecule are computed as necessary. With the list of dissimilar substructures, the
system now interrogates a dataset of rules, derived, for the specific endpoint, from a
data set of compounds with experimental values. The subset of dissimilar sub-
structures with toxicity information is eventually displayed to the user.

In the rest of this section we illustrate two simple case studies to show how the
analysis of the differences can change the presumed straightforward classification of
a molecule.

Fig. 6 The GUI of ToxRead. Light blue circle is the target compound; the others represent the
most similar compounds
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5.1 First Case Study

Let us consider two structurally similar molecules (their Tanimoto similarity index
is 0.87 (Tanimoto 1958)) to investigate their mutagenicity property; suppose that
the toxicity property of the target molecule was unknown.

We compared the target molecule with the source molecule with known muta-
genicity property and identified the MCS and the dissimilar substructure by our
software. Figure 8 shows the molecular structures, the MCS found, which is exactly
the structure of the source molecule, and the dissimilar substructure.

The dissimilar fragment that is present in the target molecule is a nitride group
substructure, which is known to be responsible for mutagenic property of a

Fig. 7 The flow chart of the new dissimilarity system: on the right the use of MCS in ToxRead,
on the left the interrogation of a database of specific rules for the fragments (obtained from an
offline process)

Fig. 8 The structural similarity and dissimilarity analysis between two molecules (Target
molecule: 2-Amino-5-[(4-nitrophenyl)diazenyl]-3-thiophenecarbonitrile (unknown property);
Source molecule: 2-Amino-5-(phenyldiazenyl)-3-thiophenecarbonitrile (property: non mutagen))
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molecule when it is connected to any aromatic ring in the molecule. In fact, the data
on the experimental tests show that the target molecule is mutagenic. This simple
example shows that the differences between two similar compounds can signifi-
cantly change their property.

5.2 Second Case Study

Figure 9 shows another case study of two similar molecules (Tanimoto similarity
index = 0.87) where the mutagenicity property of the target molecule is under
investigation and the similar molecule is non mutagen. The MCS between two
molecules has been identified, as well as the dissimilar substructures present in both
molecules.

Fig. 9 The structural similarity and dissimilarity analysis between two molecules (Target
molecule: 3-Hydroxy-4-[(4-methyl-2-sulfophenyl)diazenyl]-2-naphthoic acid; Source molecule:
5-[(E)-{4′-[(E)-(7-Amino-1-hydroxy-3-sulfonato-2-naphthyl)diazenyl]-4-biphenylyl}diazenyl]-2-
hydroxybenzoate)
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In particular, phenylamine is among the dissimilar substructures identified in the
target molecule, and it is known to be an active mutagenic fragment in the col-
lection of mutagenicity rules established at Istituto di Ricerche Farmacologiche
Mario Negri (IRFMN) using automatic (Gini et al. 2013) and expert evaluations.
Considering this rule will improve the assessment giving more evidence to the
positive activity of the compound. Indeed, from experimental results, the target
molecule is known to be mutagenic while a simple read-across with a similar
molecule would suggest a negative activity.

6 Conclusions

The MCS and the dissimilarity searching are shown to be effective in the study and
property prediction of chemical compounds. The differences between a new
molecule and a similar molecule with experimental property value are important
while reasoning on the activity of a new molecular structure.

Our MCS-based difference extraction method, incorporated into a new software
tool, can help researchers in decision-making and property assessments of the
molecular structures under investigation. It can be used for read across, where only
local information about one or two similar molecules is used, or in assessing the
prediction of QSAR results, or in refining the results of SAR systems that apply
structural alerts.

The new tool is freely available inside ToxRead, and shows in the graphical
interface the subparts of the molecule under investigation that are different from the
reference similar molecule. The expert can investigate the role of those differences

Fig. 10 An example of the integration of the new tool into ToxRead; this additional information
may be used by the expert to improve its assessment of the chemical under investigation
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on the basis of experience and knowledge. The next step will be the automatic
search into a database of substructures relevant for the endpoint under study, so to
alert the user about their presence. The construction of the knowledge base of
substructures relevant for the mutagenicity endpoint is under development
(Fig. 10).
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Abstract Generative Topographic Mapping (GTM) is a probabilistic, non-linear
dimensionality reduction method, developed by C. Bishop et al. It essentially
represents a fuzzy-logics-based enhancement of Kohonen Self-Organizing Maps
(SOM). The probabilistic nature of this method is the source of the multivalent
applications of GTM, which goes well beyond simple dimensionality reduction and
visualization, but allows straightforward comparison of large compound libraries
(in terms of diversity and coverage), supports regression or classification models
with applicability domain control and herewith may serve as predictive tools of a
large panel of properties (including polypharmacological profiles of bioactive
compounds). A good predictive modeling implicitly validates a map and provides
an objective criterion to select the best suited ones, out of the multitude of possi-
bilities based on different initial molecular descriptors and user-defined mapping
parameters. This multi-purpose “Swiss army knife” of dimensionality reduction
may furthermore extract “privileged” structural patterns associated to bioactivities
of interest, and hence contribute to an intuitive understanding of structure-activity
relationships.

Keywords Generative Topographic Mapping ⋅ Dimensionality reduction ⋅
(Quantitative)Structure-Activity relationships (Q)SAR ⋅ Privileged patterns

D. Horvath (✉) ⋅ G. Marcou ⋅ A. Varnek
Laboratoire de Chemoinformatique, UMR 7140 CNRS – University of Strasbourg,
1, rue Blaise Pascal, 67000 Strasbourg, France
e-mail: d.horvath@unistra.fr; dhorvath@unistra.fr

G. Marcou
e-mail: g.marcou@unistra.fr

A. Varnek
e-mail: varnek@unistra.fr

© Springer International Publishing AG 2017
K. Roy (ed.), Advances in QSAR Modeling, Challenges and Advances
in Computational Chemistry and Physics 24, DOI 10.1007/978-3-319-56850-8_6

167



1 Introduction

In data mining, items characterized by a large number of attributes can be conceived
as points in a “data space” or “attribute space” (defined by the vector of its attri-
butes) but cannot be directly visualized as such if the dimensionality D (the total
number of attributes needed to characterize the instance) exceeds three. Or, com-
plex instances such as molecules (or chemical reactions) in chemoinformatics
typically require hundreds or thousands of specific attributes—henceforth called
“molecular descriptors”, as customary in chemoinformatics—in order to conve-
niently capture the chemical information associated to a given compound. Under-
standing the neighborhood relationships between items—the analysis of the relative
distances separating them in data space—is often of paramount importance to the
understanding and exploitation of the knowledge provided by a set of example
items, if item properties can be shown to comply with the neighborhood principle.
This principle states that similar items (close to each other in data space) tend to
display rather similar properties. In chemoinformatics, the “similarity principle”
postulating that similar molecules will likely display similar (physicochemical
and/or biological) properties (Johnson et al. 1988; Johnson and Maggiora 1990) is a
key paradigm in chemistry, guiding the design and synthesis of novel analogues of
properties close to the ones of state-of-the-art precursor compounds.

The similarity principle may be perfectly well exploited in arbitrarily
high-dimensional descriptor spaces (Papadatos et al. 2009; Patterson et al. 1996),
based on therein defined distance measures (metrics) quantitatively rendering the
degree of dissimilarity (remoteness) of any two items. However, such approaches
are frustratingly counterintuitive “black boxes”. The alternative—intuitive grasping
of the neighborhood relationships from a 2D map of the initial space—requires a
procedure to project the initial points onto a plane, in a way minimizing distortions
of inter-item distance value. In the practice of chemoinformatics, projected
inter-item distances need not quantitatively match the ones in the initial descriptor
space: it is enough to ensure that (i) neighboring molecules in the descriptor space
continue to show up as neighbors, and (ii) initially remote species do not artefac-
tually become neighbors in the projection (the so-called “latent space”). The
principle of a meaningful projection is illustrated in Fig. 1—item a is closest to
items d, e and b, in both the initial space and the projection.

Many various dimensionality reduction algorithms do exist, starting from the
classical linear algebra Principal Component Analysis (PCA) (Dunteman 1989), to
various non-linear techniques such as Kohonen Self-Organizing Maps
(SOM) (Kohonen 1984, 2001), Multidimensional Scaling (MDS) (Agrafiotis et al.
2001), Stochastic Embedding (Agrafiotis 2003), etc.
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2 Generative Topographic Mapping—Principles

Generative topographic mapping (Kireeva et al. 2012) or GTM, introduced byBishop
et al. (1998a, b), are basically fuzzy-logics driven Kohonen Self-Organizing Maps
(SOM). A regular squared grid of K nodes covering the 2D latent space is generated,
where K is the square of some small integer

ffiffiffiffi
K

p
, the grid “width”, expressed by the

number of nodes/square edge. A node k is defined by its integer 2D coordinates
xk = ðlx, lyÞ, with index k= lx ×

ffiffiffiffi
K

p
+ ly where lx, ly = 0, …,

ffiffiffiffi
K

p
− 1 and k = 0, …,

K − 1. Each node is mapped to a manifold point yk embedded in the D-dimensional
space: xk → yk, using the non-linear mapping function yðx;WÞ that maps points from
the two-dimensional latent space into the D-dimensional data space:

y x;Wð Þ=WφðxÞ

Y=WΦT

where Y is the K ×D manifold, W is the D×M parameter matrix, and Φ is the
M ×K radial basis function matrix with M RBF centers μm:

Φmk =exp
xk −μmk k2

2σ2

 !

The parameter σ2 corresponds to the average squared Euclidean distance
between two RBF centers, multiplied by a tunable factor w. W, the parameter
matrix, can be initialized such as to minimize the sum-of-squares error between
initial-space and latent-space point distances, corresponding to a default, linear
PCA mapping. The points yk on the manifold are the centers of normal probability
distributions (NPDs) of t:

Fig. 1 The principle of dimensionality reduction
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p tjxk ,W, βð Þ= β

2π

D ̸2
exp

β

2
yk − tk k2

� �

where tn is a data instance and β the common inverse variance of these
distributions.

Intuitively, onemay think of this abstract manifold as a “rubber sheet” is inserted in
the descriptor space zone covered by the items to map, and which may be subse-
quently “torn” (fitted) in order to accommodate, or at least pass closely to each of these
items. Therefore, the ensemble of N data items—here, Nmolecules, each represented
by their molecular descriptor vector tn, n = 1,…,N, define the zone within which the
manifold will be most accurately defined, thus represent a “frame” within which the
map is positioned and will therefore be termed “frame set” in the following. Manifold
grid points are positioned in the neighborhood of frame set points. The optimization of
the below-given log likelihood function accounts for the purposeful distortion of the
manifold in order to optimally cover or approach each of the frame set items.

Eventually (see intuitive example in Fig. 2), the manifold will be folded into the
delimited 2D square grid ofK nodes.While it may describe an infinite hypersurface in
the initial space, its extrapolation far beyond the frame set-covered zone is hardly
meaningful. “Exotic” items outside the frame zone will be spuriously “folded” back
within the bounds of the square grid, but should be eventually ignored, because they
are outside the applicability domain of the map. Therefore, the proper choice of frame
compounds—which may, but do not need to coincide with the actual compound
collections targeted by the GTM-based study—is a key prerequisite in GTM design.

An optimal GTM corresponds to the highest log likelihood L, taken over all
frame compounds n = 1, …, N, optimized by expectation-maximization (EM):

L W, βð Þ= ∑
n
ln

1
K
∑
k
p tnjxk,W, βð Þ

� �

Fig. 2 An example of the “Swiss roll” manifold fitted to match the items (points) in the initial 3D
data space, then unfolded onto the 2D latent space grid

170 D. Horvath et al.



β and W are optimized during the maximization step:

1
β
=

1
ND

∑
n
∑
k
Rkn yk − tnk k2

ΦTGΦ+
λ

β

� �
WT = ΦTRT

where I is the identity matrix and G a K ×K matrix with elements Gkk = ∑
n
Rkn.

GTM build-up is fully controlled by four user-defined parameters:M, the number of
RBFs, the number of nodes K, the RBF width multiplication factor w and the
weight regularization coefficient λ. The latter two serve to tune the stiffness of the
manifold and hence avoid overfitting. Of course, the local minimum which will be
reached by the (gradient-based) optimization of the log likelihood function will
depend on the initial geometry of the manifold—in our implementation, opti-
mization starts from a flat manifold representing the plane of the first two principal
components of the descriptor space. Note that the final rendering of the map may
depend a lot on the initial conditions—but the neighborhood relationships it
encodes will not: compounds that are close in the descriptor space should be
mapped to adjacent points in latent space. Or, in chemoinformatics GTMs serve to
monitor neighborhood relationships—therefore, no systematic study of all possible
log likelihood minima achievable for any given quartet of control parameters (M, K,
w, λ) has been pursued.

Eventually, the responsibility or posterior probability that a point tn in the data
space is generated from the kth node is computed using Bayes’ theorem:

Rkn = p xnjtk,W, βð Þ= p tnjxk,W, βð ÞpðxkÞ
∑k0 p tnjxk0 ,W, βð Þpðxk0 Þ

These responsibilities are used to compute the mean (real value) position xy of a
molecule on the map xðtnÞ, by averaging over all nodes with responsibilities as
weighting factors:

xyðtnÞ= ∑
k
xkRkn

Each point on the GTM thus corresponds to the averaged position of one
molecule. This step completes mapping, i.e., reducing the responsibility vector to a
plain set of 2D coordinates xy, defining the position of the projection point of the
initial D-dimensional vector on the map plane.

The above optimization of L requires access to the entire set of molecular
descriptor vectors, which represents a N ×D matrix of real numbers, and may thus
quickly run into memory problems, knowing that the dimensionality D of the
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descriptors may often reach order of magnitude of 103–104, whilst frame sets of
millions of molecules could be considered. In particular, in the context of “big
data”, or in order to exhaustively map the chemical “Universe” of all commercially
available or feasible compounds, the input data alone may easily scale up to tens of
GB, and temporary variables required for processing will be similar in size.
Alternatively to the use of a memory-rich supercomputer, an incremental version of
GTM (iGTM) algorithm has been proposed (Gaspar et al. 2014). It divides the data
into blocks and updates the model block by block until convergence of the log
likelihood function.

After a map has been “built”—i.e., the manifold was optimized, based on pro-
vided frame set items—any other point t′ in the initial descriptor space can be
projected on the manifold and its responsibility vector can be computed. This is
technically possible—but practically not advisable—even if the compound is very
different from frame set molecules, and implicitly remote from the fitted manifold.
Note that mapping of external items only requires the manifold equation and t′ as
input, thus can be easily parallelized, so that arbitrarily large external compound
sets can be mapped on any given GTM. However, the underlying—smaller—frame
set must be nevertheless representative of these external sets (i.e., cover roughly the
same descriptor space hypervolume, albeit at much lower density). This is a key
issue in chemical space mapping, needed to ensure that mapping of external
compounds is meaningful, and not artefact-prone.

2.1 Responsibility Patterns

GTM has, over other techniques, the key advantage of is its two-stage approach to
dimensionality reduction:

1. from the original, D-dimensional descriptor space to the K-dimensional
responsibility vector space (Responsibility Level). A responsibility vector
(Fig. 3) can be intuitively visualized by colored “patches” positioned at the node
(s) with significant responsibility values, where color intensity is modulated by
the actual responsibility values.

2. from responsibilities to 2D positions on the map (2D Level): computed latent
coordinates xyðtnÞ can be assigned to each compound: see crossfires at the
(responsibility-weighted) barycenter of the set of significant residence nodes in
Fig. 3.

The latter and final level is clearly not the most interesting one. A 2D map of
very high-dimensional spaces will—irrespectively of the linear or non-linear
mapping strategy—be inherently imprecise, to the point of not being of great use.
Molecular structures cannot be robustly characterized by two real numbers only,
irrespective of the strategy one may design for defining those numbers. The full
advantages of GTM are apparent at responsibility level, at intermediate
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K dimensionality. K is a user-tunable parameter, which should be chosen such as to
avoid massive loss of chemically relevant information, but filtering out the noise
due to less relevant descriptor components.

It is straightforward to expect that similar molecules are to be represented by
similar responsibility “color patches” on the map, and the human eye is perfectly
suited to detect “color patch” similarity—even beyond the trivial scenario when
“patches” include a single node and the GTM acts like a classical Kohonen
map. Further reduction of the molecule object to a single point of 2D coordinates
(crosshair), which is precisely the barycenter of the responsibility pattern, may
represent a drastic loss of information, unless one single node accounts for the
entire density distribution.

Fuzzy compound-to-node assignment may seem like a minor enhancement, but
is actually another key strength of GTM over Kohonen maps. First, at a same grid
size K, the volume of chemical information that can be monitored by a GTM is
much larger. A Kohonen grid of K nodes may distinguish between at best K dif-
ferent core structural motifs—much less in practice. Some of these K nodes will,

Fig. 3 Examples of single-node residents versus fuzzy, multi-node residents. For the antiparasitic
compound above, the responsibility vector is null for all nodes except the highlighted one, in
which the compound is predicted to reside exclusively. The fatty acid inhibitor below is defined as
a partial resident of the highlighted nodes in red, where the color intensity matches relative
responsibility values. The black crossfire signs correspond to the (x, y) latent space coordinates of
the compounds of the map, and are positioned at the (responsibility-weighted) barycenter of the set
of significant residence nodes. The displayed map is the result of a study (Sidorov et al. 2015)
aimed at the discovery of general maps of maximal pertinence for the space of drug-like
compounds (“universal” map #2 of the cited publication)
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indeed, each stand for “main stream” compound classes, but others will serve as
“garbage collectors” of all the exotic structures that would not fit any of the former,
but need to be assigned to one (and only one) given node, nevertheless. On a GTM,
molecules are not necessarily bound to a single node and the total number of
distinct structural motifs is defined—intuitively—by the number of distinct “color
patch” patterns that may be drawn with the help of a K-sized grid, or—technically
—by the phase space volume spanned by the K-dimensional responsibility vectors.
Kohonen maps operate only with pure states, while GTMs, by contrast, with mixed
states, and the latter come in virtually infinite numbers (not all of them corre-
sponding to real compounds or common core motifs, however). A consequence is
that exotic compounds that are remote from all the nodes of the manifold will as a
consequence be often mapped with equally weak responsibilities on all nodes,
rather than assigned to the one—relatively—closer “garbage” node.

However, the non-fuzzy Kohonen maps seem to have an apparent advantage in
terms of compound clustering. All compounds mapping to a same node are, from
the Kohonen map perspective, no longer distinguishable and therefore may be
unambiguously viewed as members of a same group, or cluster—which makes
perfect chemical sense for all but above-mentioned “garbage” nodes. Conceptually,
things are identical for compounds residing in single nodes of GTMs, with the
additional benefit that single-node residents are typically compounds found close to
the manifold, well within the GTM applicability domain. Single-node residents of
any given node are expected to form a chemically meaningful “cluster” of similar
compounds. The cluster corresponding to the “blue” node in which resided the
antiparasitic compound in Fig. 4 is shown below.

Yet, the working hypothesis “compounds of a same node belong to a same
cluster” may be easily generalized to fuzzily mapped items such as
CHEMBL600799 from Fig. 3, by introducing the concept of Responsibility Pat-
terns, RP. The responsibility pattern (Klimenko et al. 2016) of a compound n is
defined as an integer, discretized version of the real-number responsibility vector R:

RPkn = 10×Rkn +0.9½ �

where “[]” stands for the truncation operator. The peculiar transformation rule
above was chosen such as to ensure that even marginally responsible nodes (at
Rkn = 0.01) will be highlighted. Beyond this minimal threshold, every additional
10% increase of a responsibility value contributes an increment of +1 to the integer
RP equivalent. For a compound n, the responsibility pattern vector RPkn may be
best rendered as string enumerating—in increasing node number order—the nodes
of non-zero RP values, concatenated to these values, e.g., /k1:RPk1n/k2:RPk2n/k3:
RPk3n/…/. For single-node compounds, the RP string /k:10/ is simply a label of the
concerned node. Herewith (see Fig. 5), compounds associated to a same RP string
will be considered to belong to a same cluster.

The responsibility pattern approach therefore amounts to a cell-based clustering
technique: the above discretization formula may be interpreted as a procedure to
tessellate the vector space of responsibilities R, so that items within any cell would
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share a same RP string. Typically, cell-based clustering fails in high-dimensional
spaces, because of the sheer number of possible cells: in the K-dimensional space of
responsibility vectors, there are 10K possible cells, with K = 32 × 32 = 1024 in
the GTM from Fig. 3 (see figure caption for more information about the map).
However, with a well-fitted GTM model, only a minority of cells is actually
populated—in particular, the K single-node configurations and fuzzy configurations
with responsibilities shared between two and—for CHEMBL600799, which was

Fig. 4 Other single-node resident compounds from the ChEMBL database (Gaulton et al. 2011),
in the node of residence of the antiparasitic compound from Fig. 3. The cluster regroups
benzopyroles, benzimidazoles and other closely related heterocyclic scaffolds. In spite of the wide
diversity of substituents (only 9 randomly picked examples are shown, out of its 9100 members in
the ChEMBL database), there is a clearly visible common structural pattern associated to this node

Fig. 5 Exemplifying the definition of Responsibility Patterns as strings (labels) concentrating the
information in the responsibility vectors by “binning”, and herewith regrouping molecules with
identical or slightly different responsibility vectors under a common label. Integers above the lines
are node numbers, and corresponding real values below are responsibility values. These are
binned, and nodes returning non-zero binned values are concatenated together with their binned
value, into a “RP string” shown below
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picked for being the “fuzziest” mapper amongst all ChEMBL compounds—five
participating nodes. The 1.3M ChEMBL compounds populate 23,253 distinct re-
sponsibility patterns, out of which 723 correspond to strict single-node mapping
modes (concerning a total of 1.22M compounds, i.e., 95.3% of ChEMBL struc-
tures). There are 19,952 bi-nodal RPs, regrouping some 53K molecules. There are
4,217 ChEMBL compounds that are nonspecifically “smeared” over the entire map,
with Rkn = 1/1024 for all k—these 3‰ represent mapping failures, and are beyond
the applicability domain of the model.

Like in any clustering approach, the user expects to see “structurally related”
compounds grouped together under a given RP label. “Structural relatedness”,
however, is an intrinsically ill-defined concept—it typically refers to the
scaffold-centric view cherished by medicinal chemistry, where two compounds are
“analogues” if they contain a same (however defined) “scaffold”. There is no
absolute truth in the above point of view—one may as well prefer the alternative
pharmacophore-centric approach, where two compounds are “analogues” if they are
porters of a same pharmacophore pattern (analogous spatial distribution of func-
tional groups of analogue physico-chemical nature). Note that the GTM-based RPs
are not specifically generated on the basis of scaffold-centric information, but may
capture the presence of a scaffold by its specific “signature” in the provided
molecular descriptor vector (specific scaffold contributes a subset of specific frag-
ments to the ISIDA fragment count vector). Alternatively, pharmacophore patterns
might also be captured, if the pharmacophore-colored fragmentation schemes
(Ruggiu et al. 2010) are enabled.

Thus, the nature of the common structural “motif” behind a given RP is by
default open-ended. First, “garbage” RPs—the equivalent of Kohonen “garbage”
nodes—may appear, for various reasons. They may regroup cases of exotic com-
pounds that are too far from the manifold to be clearly assignable to a node and are
therefore “smeared” over many putative locations. However, single node RPs may
also sometimes accommodate a set of—from a chemist’s point of view—highly
diverse structures, with no obvious common “motif”. The more populous a node,
the higher are its chances to accommodate widely diverse compounds. Figure 6
highlights the three most populous RPs of the ChEMBL map, each corresponding
to single node RPs associated to the pinpointed “borderline” nodes. In spite of the
large compound populations, in two of the three nodes it was rather easy to evi-
dence the common underlying structural pattern “uniting” these compounds into a
cluster. Finding the pattern required nothing but visual inspection of some repre-
sentatives. Then, the observed putative common hypothesis were formulated as
substructure search queries, and applied to the compounds matching each RPs—as
their numbers are too large for exhaustive visual inspection. Indeed, 95% of the
members of the most populous RP of ChEMBL (highlighted node #128) are
putative Michael acceptors, matching the α,β-unsaturated ketone pattern C=C–
C=O. More than 66% of residents of node #32 are oxyanions—which is a
remarkable enrichment, knowing that over the entire ChEMBL set, the occurrence
rate of oxyanions is of 17%. However, there is no obvious common pattern within
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node #64, the second-largest RP in ChEMBL. Yet, the molecules do have some-
thing in common—their “fragment-like” size, being significantly smaller, and hence
less complex than typical drugs.

Thus, as exemplified in this chapter, and as observed in previous works (Kli-
menko et al. 2016), the unifying structural “reasons” behind a given RP may be of
diverse nature, and represent different “resolution” levels. They may range from the
extremely fuzzy size considerations, to clustering molecules by their predominant
pharmacophore feature—anionic nature, to specific shared substructures.

These substructures need not to be scaffolds in order to be (bio)chemically
relevant. As shown above, the herein discussed GTM “spontaneously decided” to
regroup Michael acceptors, based on the specific signature of the C=C–C=O
moiety. Of course, the mapping process did not rely on any knowledge of putative
specific or non-specific biological effects, “PAINS” (Bael and Walters 2014; Dahlin
et al. 2015) of Michael acceptors. Also, it cannot be taken as granted that Michael
acceptors would, as such, share a specific zone in the initial descriptor space—
which is a prerequisite for their projection onto a common RP. The nature of
molecular descriptors on which mapping was based (Sidorov et al. 2015)—
force-field-type colored ISIDA atom pair counts—was of paramount importance,
because they helped to evidence the specific signature of the C=C–C=O moiety.
This map was grown and selected with respect to its propensity to explain

Fig. 6 Analysis of the three nodes corresponding to the three most populous Responsibility
Patterns in ChEMBL, based on the map introduced in Fig. 3. Given the structural diversity of
compounds in node #64, this may be viewed as a “garbage” node—nevertheless, it has the
specificity of regrouping small, fragment-like compounds
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structure-activity relationships throughout diverse series of compounds associated
to various targets (vide infra—Building high-quality GTMs). In the process of
achieving that goal, assignment of putatively reactive and hence unspecific Michael
acceptors to a “borderline” node emerged spontaneously. Note—not shown in
Fig. 6—that the fifth-most populous node of the map is another Michael-acceptor
dominated chemical space zone, with the peculiarity that the C=C–C=O pattern is
now included in a ring.

Common structural motifs may nevertheless correspond to one scaffold, or to
ensembles of similar scaffolds, as already highlighted in Fig. 4. Examples from
previous work show that the relevant underlying common substructure may be
more stringent than the scaffold level—compounds within a given RP may share
not only a common scaffold, but also very specific substituents at key scaffold
positions. The relationship between RPs and the underlying structural motifs is
therefore open-ended and self-adaptive: it may stretch from very fuzzy regrouping
of compounds sharing a same small size, or a same negative charge, to compound
clusters based on a clear-defined common substructure, which may or may not
match a scaffold (in the sense of “ring system”). Different maps may highlight
different structural motifs that are specific to some of their RPs. On the contrary,
“rediscovery” of the very same ones being associated to map-specific RPs (Kli-
menko et al. 2016) of different maps is also possible, even if those maps are based
on different molecular descriptors. Either way, if a map is shown to be
neighborhood-compliant, in the sense of supporting robust structure-activity models
for a wide panel of properties (vide infra), then the RPs extracted from such map are
highly likely to correspond to some well-defined underlying structural motif of
(bio)chemical significance.

2.2 GTM-Driven Classification and Regression
Predictive Models

Whenever molecules, initially represented as D-dimensional objects in descriptor
space, are mapped onto a 2D latent space, their properties are being implicitly
localized on the map. It makes sense to “transfer” the—mean—property of mole-
cules residing a given latent space zone to that particular latent space zone itself. If
the mapping is meaningful—that is (Horvath and Barbosa 2004), similarity
principle-compliant—for a given property, then mappers onto any given latent space
“spot” of sufficiently small size will be similar molecules of similar property. Hence,
the mean P̄ of these property values will display a limited standard deviation σðPÞ,
and coherently represent the local, above-expectation accumulation of compounds
of property value P≈P ̄. Coherence of mapping of compounds with known property
values may thus serve to implicitly define the quality of a mapping approach.
Moreover, would a new species be shown to map in the same latent space zone, the
assumption that its expected property value shall not be far from P̄ can be upheld and
used for prediction.
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P may stand for various properties of distinct nature—both continuous and
categorical (class labels). The relevant latent space “spots” and the “mean” values P̄
may be defined in context-dependent ways, but the above outlines the general
principle of predictive mapping. For example, in Kohonen maps, nodes are the
smallest addressable latent space unit for which P̄ values may be computed.
A Kohonen map may not make any more detailed prediction but returning the P̄
value associated to the node into which a compound has been classified. This means
that, with continuous properties, it may return a discrete spectrum of node-bound P̄
values, one value per node for all “non-garbage” nodes, with σðPÞ below some
user-defined threshold. Therefore, Kohonen maps—unlike GTM—fail to support
proper quantitative regression models: they would return P̄ as the predicted value
for the entire series of analogues residing in the same node. A structural modifi-
cation of a compound would not trigger any change of the predicted value P̄ unless
this change causes relocation to a different node, associated to a different P̄ value.
The above, however, is perfectly compatible with the expected behavior of a
classification model. Both Kohonen and GTM approaches may therefore be used
for compound classification, while GTM is—due to its fuzzy mapping abilities—
better suited for regression models.

When defining the “mean” property value P̄k of a GTM node k, one must count
each resident compound n proportionally to its degree of residence in that node,
Rkn:

P̄k =
∑n Rkn ×wðnÞ×PðnÞ

∑n Rkn ×wðnÞ

where P(n) represents the property of compound n and w(n) represent importance
weighting factors of the compounds. When the property P represents a continuous
magnitude, such as a pIC50 or logP value, there is no immediate reason for any
specific importance weighing scenario. Letting all compounds be equally important,
w(n) = 1∀n, will assign simple arithmetic means of the property to nodes. Since Rkn

is never strictly zero, no matter how far compound n is situated from manifold node
k in descriptor space, GTMs—unlike Kohonen maps—do not display genuinely
empty nodes, and the above equation is applicable for all k, without fearing divi-
sions by zero. However, if the above denominator is low, it makes little sense to
expect a meaningful extrapolation of P̄k based only on the remote contributions of
compounds having no significant degree of residence at k. Therefore, there should
be some user-defined minimal threshold for the total cumulated responsibility per
node, below which k should be considered as “practically empty”, and its techni-
cally obtainable but chemically senseless P̄k value ignored. Node density can be
encoded in plots by color transparency—from completely transparent (below
defined density threshold) to full color (to be used, for example, for the top t% most
dense nodes). Density (cumulated responsibility) is a major criterion of the trust-
worthiness of estimated Pk̄ values: the higher the density, the more robust the
assigned P̄k and the above-mentioned minimal density threshold can be considered
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as an applicability domain delimiter of a map (Gaspar et al. 2015, 2013; Horvath
et al. 2009; Sushko et al. 2010; Tetko et al. 2008).

Note that the equation above may also be used for classification purposes: if, for
example, we define P(n) = 1 for all inactives, by contrast to P(n) = 2 for all
actives, then P̄k above will be below 1.5 if the inactives residing the node are
predominant, above 1.5 if actives are dominant and 1.5 if both categories are
equally well represented. Then, the node can be assigned to either class 1 or 2, or
discarded as “undecidable”. Note that the herein—for the sake of intuitiveness—
outlined approach to classification by rounding up the P̄k values only works
properly for two-class classification problems. Obviously, with three classes P
(n) ∈ {1, 2, 3} a node having 50% of its residents of class 1, and the other half of
class 3 would be wrongly colored as “class 2”. The proper way (Gaspar et al. 2013)
to deal with multi-class classification is to count cumulated responsibilities
∑n Rkn ×wðnÞjn of class P for each class, and to return the class P with the largest sum
as P̄k . Only two-class classification supports node coloring by the fuzzy P ̄k grad-
ually shifting from class 1 to class 2, and herewith implicitly returning the co-
herence-based trustworthiness of node versus class association—the closer P̄k is to
the extremes 1 or 2, the more robust the prediction. Coherence-based trustworthi-
ness can also be defined for multi-class classification problems, by checking how
much larger the winning cumulated responsibility score is with respect to the
second-best one. Coloring nodes by winning class only is always feasible, but
unfortunately such plot does not inform about coherence-based trustworthiness. In
regression models, coherence-based trustworthiness can be inferred from the
standard deviation σk Pð Þ of the property at node k (vide infra). Two-class classi-
fication is a special case, since σkðPÞ is deterministically related to P̄k: it is zero if
P̄k reaches its extreme values 1 or 2, and maximal (equal to 1) when P̄k is an
undecided 1.5. Fuzzy class landscapes rendering the mean class P̄k of GTM nodes
have the peculiarity of informing both about the winning class in each node and the
coherence-based trustworthiness of that assumption. With transparence encoding
local compound density, they provide a complete picture of the class landscape and
its applicability domain.

2.2.1 Bayesian Weighing to Correct for Class Size Imbalance

If the classes to be discriminated against on a map are of very different sizes
(classically, the number of inactives in screening of random compound collection is
much higher than the one of confirmed actives, for example) then it may be
interesting to revisit the discussion above in the light of relative, rather than
absolute predominance of a class in a node. Practically, if the default ratio of actives
versus inactives is 1:100 throughout the studied compound collection, then a node
populated by one active for only five inactives is still dominated by inactives in
terms of absolute “head counts”, and yet enriched in actives by a robust factor of
20. Therefore, it may deserve to be highlighted as a node of “actives”, nevertheless.
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This can be achieved by corrected importance weights for molecules of each class,
taking their default occurrence rates as baseline. With i classes, denoting the total
fraction of class i members of the library by fi, the weight w(n) of a compound
n belonging to class i should be set to wðnÞjn∈ i = f − 1

i ̸∑j f
− 1
j . In this way, nodes

would be “undecidable” at P̄k =1.5 if their relative population of the two classes
equals default occurrences, “active” if the population of actives is higher than the
default “hit rate” or inactive otherwise. Figure 7 illustrates this aspect in monitoring
the distribution of ChEMBL aromatic versus aliphatic compounds on the GTM
nodes (same map as in Fig. 3, see references in that figure legend). Out of the 1.3M
ChEMBL compounds, only 83K are completely void of aromatic moieties and were
labeled “aliphatic” (class 1), whilst the vast majority of aromatic moiety-containing
molecules are considered in class 2. Plots a and b below correspond to the plain w
(n) = 1 scenario and the occurrence-based importance weighing, respectively. The
five-color spectrum maps P̄k values from 1 (aliphatic class) in red to 2 (aromatic) in
blue, with middle color yellow marking “undecidable” nodes. It can be seen from
plot a that nodes in which the purely aliphatic compounds significantly outnumber
the ubiquitous aromatic derivatives are rare. If occurrence rate-based importance
weights are used, nodes relatively enriched in aliphatics are witnessing a “red shift”
of their colors. Eventually, plot c of the same figure is identical to plot b, but in
bicolor mode highlighting only the winning class color.

Plot b is clearly the most informative of the three alternative renderings—it
shows that aromaticity/aliphatic character, a physicochemical parameter of key
relevance in drug design, defines a major “fault line” on the map, with aliphatics
relatively predominant in the north-west. It also gives a clear demarcation of nodes

Fig. 7 GTM node coloring (each of the 36 × 36 nodes being a small squared “tile” of the grid)
by average fuzzy class value (plots a and b), where the five-color spectrum maps P̄k values from 1
(aliphatic class) in red to 2 (aromatic) in blue, with middle color yellow marking “undecidable”
nodes. Plot a is realized in terms of absolute compound numbers per class (out of the 1.3M
monitored ChEMBL compounds), whilst plot b monitors the relative enrichment of nodes in terms
of aliphatic and aromatic compounds, respectively. Plot c represents the simplified two-color
“winning class” landscape of b, where the “undecidable” nodes turn either red or blue, depending
on whether their P̄k value was slightly larger or smaller than 1.5. Node transparency is modulated
by their cumulated responsibilities, i.e., the fuzzy count of resident compounds
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that are robustly dominated by one or the other class, versus mixed ones—which
will nevertheless be forcibly declared “aliphatic” or “aromatic” in the traditional
“winning class” representation c.

Now, the plots in Fig. 7 might have represented a Kohonen map as well as a
GTM, since they do focus only on the information associated to the nodes. At this
level, the fact that compounds may be fuzzily shared by several nodes would not
significantly impact the generic aspect of such plots. On a Kohonen map, a com-
pound is assigned to a node, so it does make sense to show nodes as tiles covering
the map. On a GTM, however, a compound shared between several nodes may be
imagined as “residing”—in terms of (x, y) latent space coordinates—between the
nodes, as shown in Fig. 3. Therefore, logically, the mapped property landscape is
also defined over the entire latent space between the nodes and may, in principle,
written as a function P̄ðx, yÞ, to be interpolated—according to various strategies,
from node Pk̄ values. For example, P ̄ðx, yÞ=Pk̄jk= nearest node to ðx, yÞ is called the

“local” extrapolation strategy. By contrast, in the “global” strategy P̄ x, yð Þ associ-
ated to a compound n located at (x, y) is not directly inferred from latent space
coordinates, but falls back to the responsibilities relying that peculiar resident to the
nodes of given Pk̄:

P ̄ðnÞ= ∑
k
RknP̄k

Above, the predicted property is now a smooth function of responsibilities, so
the GTM-specific global property prediction strategy is a genuine regression
method for prediction of continuous molecular properties. In Fig. 8, the landscape

Fig. 8 Interpolated
aromaticity class landscape—
red aliphatic, blue aromatic.
Compare to its “node-only”
rendering in Fig. 7b
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P̄ x, yð Þ is obtained by polynomial interpolation with respect to the values of the four
surrounding nodes. In such a landscape, nodes would merely correspond to indi-
vidual grid points, but, in order to highlight their special status, small circles of
homogeneous color corresponding to the actual P ̄k values are “cut” out of the
smooth, interpolated landscape. Compare the interpolated, GTM-specific and fuzzy
aromaticity/aliphaticity class landscape below to its “node-only”, Kohonen-map
like counterpart in Fig. 7b.

2.2.2 Density, Coherence, Applicability

In order to conclude on the key issue of trustworthiness/applicability of GTM-based
property landscapes, it is interesting to emphasize the standard deviation σkðPÞ and
respectively mean node-based property P̄k values are not correlated (except for
two-class problems). However, the former—“coherence”, a strong indicator of the
trustworthiness of Pk̄ values—may be alternatively used, for example, as the color
transparency modulation parameter on the map, to produce alternative
coherence/property landscapes, which may significantly differ from above-
introduced density/property plots, and herewith provide an independent point of
view to chemical space analysis. This is exemplified in Fig. 9, representing three
different viewpoints to the octanol-water partition coefficient logP map of the 1.3M
ChEMBL compounds. As there are no experimental logP values for the entire
ChEMBL, calculated values provided by the ChemAxon tool generateMD (Che-
mAxon 2007) were used instead. A common property coloring spectrum is used:
red for extreme hydrophilic logP ≤ 0.0, blue for extreme hydrophobes at
logP > 6.0, orange–yellow–green for the intermediate ranges. Plot a in Fig. 9 is the
“classical” density-modulated representation, which conveys a first image of
density-conditioned trustworthiness: empty zones (cumulating the equivalent of less
than 1 compound/node, in terms of total responsibility) are obviously not able to

Fig. 9 Three alternative modes to represent the logP landscape of ChEMBL compounds:
a density-modulated, b coherence-modulated, c applicability score-modulated. The used map has
been introduced in Fig. 3
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predict the lipophilicity of any external compound that might be mapped therein.
By contrast, plot b is coherence-modulated: all nodes in which the standard devi-
ation σkðPÞ exceeds 2.5 logP units are no longer visible, while those with
σkðPÞ<1.0 are fully colored. In general, low-density zones are also low-coherence
zones. Therein, P̄k and σkðPÞ are estimated on hand of remotely responsible
compounds, that are basically “random picks” happening to be the less remote, not
really descriptive of those zones, and therefore not expected to be coherent in terms
of their logP values. However, there are significantly populated map regions that
are not very selective in regrouping compounds according to their lipophilicity. Let
us note, at this point, that the considered manifold was never built or selected
(Sidorov et al. 2015) in order to maximize its predictive propensity of logP. This
notwithstanding, the map nevertheless features many zones in which compounds of
roughly similar lipophilicity cluster “spontaneously”. Eventually, plot c below
shows how density and coherence can be combined into a composite “applicability”
parameter, defined as the product of density and a coherence penalty factor,
reaching its maximum of 1 at σ < 1.0 and its minimum 0 at σ > 2.5. This appli-
cability score, basically a coherence-modulated density, was used in plot c instead
of “pure” density in plot a, all other setups being equal.

2.2.3 Building High-Quality GTMs—Properly Choosing Key GTM
Parameters

Let us re-emphasize, at this point, that obtaining of property landscapes like
above-shown is a process involving two clearly distinct steps:

1. the actual unsupervised map (manifold) construction, based on a frame set, and
2. subsequent (supervised) learning or “coloring” of this map, based on a—po-

tentially different—training set.

Note, furthermore, that any manifold from step 1 may be, in principle, inde-
pendently used in many alternative coloring attempts, in as far as the herein used
training sets are not too remote from the frame-set-based manifold, as already
mentioned.

Some options/parameters only concern only the unsupervised manifold fitting
step 1. These include the four GTM setup parameters—node number K (required to
be a perfect square integer¸ the number of radial basis functions (RBFs) M, RBF
width factor w and weight regularization coefficient λ—in addition to the frame set
and descriptor choices, which can be formally regarded as additional degrees of
freedom, “meta-parameters”. By contrast, the choice of possible coloring/
interpolation procedures required to build the property map does not affect at all
step 1—any given manifold is in principle exploitable for both regression and
classification, based on either above-mentioned “local” or “global” approaches.

All these (meta-)parameters have an impact on the quality of the final predictive
model supported by the manifold. Model quality is a key objective criterion to
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validate the quality of the proposed manifold. Without it, the “beauty” of a map is
the only criterion to decide whether the chosen grid size is “correct”, whether the
choice of a different set of molecular descriptors would have improved the map-
ping, etc.

Coupling visualization with prediction is therefore a key benefit of the GTM
approach. Thus, one may formulate the GTM construction problem as a combi-
natorial optimization approach. Given all the possible choices of the seven
already-mentioned (meta-)parameters (designation of a frame set and of a molecular
descriptor type, out of the respective lists of possible choices, selection of the K, M,
w and λ values and of the landscape interpolation strategy), which choice shall
produce a map optimally rendering the one or more targeted property landscape(s)?
It is understood that “optimal rendering” of a property landscape means maximizing
the predictive power of such landscape. Placing an external compound (not used in
the “coloring” process) on the colored map, in order to “read” the predicted
property at the given location, is expected to return values in good quantitative
agreement with experiment. Thus, map quality will be measured in terms of clas-
sical statistical validation criteria—cross-validated determination coefficients Q2,
for example. To design a multicompetent map able to support more than a single
predictive model, the “compromise” mean Q2 might be used as a global criterion
(optionally including a penalty for high standard deviations of Q2, in order to
discourage setups with either extremely good or extremely bad results for the
different monitored properties). One may alternatively consider a multiobjective
optimization strategy, defining a Pareto front of locally best solutions for each of the
monitored properties. The search for (near)-optimal setups in the seven-dimensional
parameter space cannot be done systematically, knowing that the calculation of map
goodness criteria may be a very time-consuming undertaking. Recall that this
implies (1) fitting the manifold, given the descriptor choice, the frame set choice
and the four GTM parameters, (2) cross-validated manifold coloring/prediction
cycles, for each of the targeted properties, based on the property-specific training
sets. Therefore, any stochastic search strategies—computer cluster-deployed
genetic algorithms, for example—are well suited for optimal mapping
parameterization.

Since a manifold needs not be tailor-made to specifically serve as support of a
single dedicated model, one may ask whether it is possible to build some to suc-
cessfully serve as support not only for the propertie(s) for which it was optimized
(vide supra), but also for many other distinct and diverse structure-property models.
So-far obtained results (Sidorov et al. 2015) of this quest for an arguably
“Universal” GTM are very encouraging, having led to manifolds that showed to be
valuable supports for hundreds of distinct predictive models, for properties as
diverse and unrelated as target-specific activities, antiviral and antibiotic properties,
physico-chemical properties. The maps used to exemplify the various issues dis-
cussed here are all, unless otherwise stated, “Universal” maps centered on the
drug-like chemical space as represented in the ChEMBL database.
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3 Chemical Space Analysis Using GTMs

The following will focus on the various ways of using GTMs for the rational and
intuitive understanding of chemical space, and, implicitly, for library design. This
covers topics as diverse as comparing different large compound libraries, or
designing libraries with any desired coverage “pattern” of chemical space—both
maximal diversity subsets, and focused libraries, putatively enriched in bioactives
of desired class.

3.1 GTM-Based Compound Library Comparison

This topic has been extensively covered in previous publications (Gaspar et al.
2013, 2014, 2015), and therefore only a brief reminder of the underlying principles
will be given here. The key concept here is representation of any compound library
by the cumulated responsibility vector—the “density”—at any node. This renders
any library, of arbitrary size, as a single K-dimensional vector, which is a mathe-
matical object of the same class as ðRknÞ, the molecular responsibility vector, i.e.,
the density vector of a “library” composed of one molecule, n. For a library L, the
descriptor vector of cumulated responsibilities can be formulated as ∑n∈ L Rkn

� �
.

Therefore, two libraries, L and Λ, can be straightforwardly compared by means of
taking some distance/dissimilarity score (Euclid, 1-Tanimoto, etc.) of their char-
acteristic vectors, ∑n∈ L Rkn

� �
versus ∑n∈Λ Rkn

� �
. This is, first of all, extremely

fast compared to calculating the pairwise inter-molecular dissimilarity scores of all
members of L versus all members of Λ. If the distance metric is based on some
covariance score which is independent of the absolute magnitudes of the two
vectors, such as the cosine metric x ⃗y ⃗ ̸ x ⃗k k y ⃗k kð Þ, then two libraries with identical
pro-rata representations in all GTM nodes will be reported as identical, irrespective
of their sizes—as, for example, a representative “core” subset of a large collection
versus this parent library. Library comparison can be intentionally rendered
size-insensitive, all metrics confounded, by explicit normalization of cumulated
responsibility vectors with respect to library size. If, furthermore, nodes were
assigned mean characteristic property values Pk̄, these may be used as weighing
factors in library comparison metrics. In order, for example, to bias the library
comparison with respect to the nodes which are enriched in actives for a given
target—Pk̄ representing, for example, the mean pIC50 value of actives residing
on node k—library comparison should use vectors ∑n∈ L Pk̄Rkn

� �
versus

∑n∈Λ P̄kRkn
� �

. This would implicitly focus more on the relative populations on
nodes with high mean pIC50 values. Note that map “coloring” to obtain P ̄k values
need not be based on any experimental pIC50 of compounds from the actually
compared L and Λ—any other independent “color” training set can be used to this
purpose. Again, it is necessary to ensure, like always, that the used manifold is
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“competent” to acquire the compounds of L, Λ, and the putative color set, as already
discussed in the previous chapter.

Alternatively, library comparison can be formally treated like a classification
problem. If compounds of L are, arbitrarily, considered of class 1, whilst Λ mem-
bers are assigned the class label 2, then the fuzzy mean class Pk̄ associated to nodes
will intrinsically reflect the (absolute or relative, vide supra) local dominance of
either of libraries, in terms of density. A GTM image consisting of perfectly sep-
arated “patches” of red and blue means that the chemical spaces covered by the
libraries does not overlap at all. A homogeneously yellow landscape, corresponding
to P̄k =1.5 ∀k means that local densities of both libraries are quasi-identical all over
the space. The former scenario would correspond to a Tanimoto score of 0, whilst
the latter means Tanimoto = 1 in terms of cumulated responsibility vectors, as
discussed above. In practice, one expects both zones of significant overlap and
zones of separation to coexist: this would correspond to some intermediate score in
terms of quantitative library comparison. However, the class landscape is much
more information-rich than a simple Tanimoto score, because it conveys
node-by-node information, rather than the final “verdict” condensed into a single
score value. The left side of Fig. 10 represents such a class landscape, comparing
the 1.3M ChEMBL compounds to a roughly equally large collection of 1.4M
commercial compounds of various sources, curated for High-Throughput Screening
compliance (Horvath et al. 2014). The “blue” chemical space zones that are clearly
overpopulated with commercial compounds are well visible. Furthermore, com-
paring this class landscape to the lipophilicity landscape on the right side (same as

Fig. 10 (Left) Fuzzy mean class landscape (with Bayesian weighing) of the comparative map of
1.3M ChEMBL compounds (class 1, red) versus 1.4M curated molecules from commercial
sources (class 2, blue). The used map is the one introduced in Fig. 3. (Right) The lipophilicity
landscape already shown in Fig. 9a has been added aside for comparative purposes: it can be seen
that the chemical space dominated by commercial compounds corresponds to several zones of
moderated lipophilicity
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in Fig. 9a) immediately reveals that “commercial” chemical space is almost always
associated to moderately hydrophilic compounds. It is, of course, straightforward to
visualize representatives of either “blue” or “red” zones, as examples of
collection-specific molecules.

Library comparison may furthermore be easily modulated and made to focus on
peculiar chemical space zones. For example, in Fig. 11, the comparison of
ChEMBL to the above-mentioned commercial compound library has been revisited
from the perspective of two different medicinal chemists—one interested in GPCR
research, the second active in the field of kinase inhibition. To this purpose,
compounds of interest were selected for the given research domain—here, the
predefined ChEMBL “SARfari” subsets for GPCRs and kinases, respectively.
These were mapped, generating the white–grey–back density-modulated landscapes
shown as miniatures below. The latter can be understood as problem-specific
“masks” one would like to use in order to focus of chemical space zones of interest.
Logically, this is the same thing as deciding to redefine the Applicability Domain of
the map by means of the specific density of the “compounds of interest”.

Practically, the most straightforward way to apply such a filter is to

• extract the Responsibility Patterns (RPs) for all SARfari “compounds of
interest”.

• establish a list of robustly reoccurring RPs, each representing at minimum 10
compounds of interest. On the herein used map, the ∼115K compounds of the
GPCR SARfari set cover 458 distinct RPs, while the less numerous (∼51K)
kinase SARfari compounds are responsible for 296 RPs.

Fig. 11 Landscapes a and b represent the same “ChEMBL versus commercial” class landscape as
in Fig. 10, now restricted to the compounds matching only Responsibility Patterns that were
encountered, for at least ten times, amongst a the GPCR Sarfari and b the Kinase Sarfari ChEMBL
subsets. Associated to a and b are the density plots of the cited ChEMBL subsets, in
density-modulated white–grey–black
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• discard, from both ChEMBL and commercial libraries, all the compounds
having RPs other than the ones kept in the above list.

• rebuild the fuzzy, mean class landscapes with the remaining representatives of
the two libraries.

In the above-shown, compounds of interest were chosen to be rather large and
heterogeneous sets, which are clearly not containing only actives with respect to the
cited target class. However, focus on a wanted chemical space zone is extremely
flexible: any set of RPs can be used, whether they come from validated bioactives
of minimal potency, from compounds predicted to be actives by QSAR models,
from promiscuous/specific compounds, etc.

3.2 GTM-Based Diversity Analysis

Let us consider the classical task of extracting a core subset of c% from a large
library (here, ChEMBL) of maximal representativeness/diversity. GTMs are—like
Kohonen maps—extremely useful for both proposing such a core subset, and a
posteriori analysis of its relation to the (unselected remainder) of the parent library.
Mapping in diversity analysis is a key time-saving step, because it provides an
implicit “clustering” of molecules, by binding them to specific positions on the
map. Molecules mapping to distinct locations—associated to different neurons on a
Kohonen map, and, respectively, to distinct Responsibility Patterns (RPs)—are
implicitly considered “diverse”. On the opposite, molecules which are assigned to a
common location are indistinguishable, as far as mapping can tell. Here, GTM has
the advantage of higher resolution: at equal number of nodes, the GTM supports
more distinct RPs than the Kohonen approach, with their binary compound-to-node
assignment scheme. A rational core extraction strategy supported by GTM would
therefore amount to pick controlled numbers of compounds from the clusters
associated to the detected RPs. This is extremely fast—the estimation of O(N2)
intermolecular dissimilarity scores is completely avoided.

The most straightforward diversity selection strategy would therefore be a pro
rata draw: in order to pick a representative core of c% molecules, it is advised to
(randomly) pick c% of representatives of every detected RP. First, representatives of
a given RP are, as already discussed, basically expected to be rather similar, and/or
share some common structural traits. Therefore, in a “generic” library subsetting
exercise, when there are no specified targets for screening the core library, there is
little rationale to prefer one particular compound over all the other representatives of
a given RP. Note that, in principle, one may use a classical diversity algorithm in the
initial descriptor space (Agrafiotis 1997; Maldonado et al. 2006; Turner et al. 1997)
for selection, ensuring that the RP-specific subset of c% avoids, as much as possible,
inclusion of “redundant” compounds such as methyl/normethyl analogues. Even so,
computer effort would remain reasonably low, since local comparison would
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concern a limited number of items associated to a common RP. This was not pursued
in this example, for three main reasons. First, the similarity threshold (Horvath et al.
2013) at which two similar molecules may be safely considered redundant is
ill-defined and, at best, problem-specific. Second, the manner in which RP repre-
sentatives are picked has no impact on the chemical space coverage as perceived by
the GTM. Third, note that in practice two similar molecules may nevertheless
happen to be assigned to different RPs because of binning artefacts. Map-based
diversity selections are coverage-oriented, but do not formally guarantee the absence
of redundant compounds. Therefore, if non-redundancy (whatever its definition) is a
key issue, the optimal strategy is to generate a slightly larger-than-needed
map-driven core selection, to be further refined by elimination of redundant com-
pounds. This latter step will be relatively fast—since limited to the small core instead
of the large library. Note that design of larger-than-needed cores is rather
state-of-the-art protocol than exception. In practice, logistic bottlenecks, compound
purity/solubility etc. will be highly impacting factors on the final compound selec-
tion. Therefore, diversity selection should be kept conceptually simple, and fast—
extensive number-crunching coming up with an ideal list of compounds that were
just taken off the vendor’s shelf, or are offered at unacceptable prices, makes no
sense. GTM-based selection is fast, powerful in terms of coverage control.

Mean class landscapes, denoting the core as the “blue” class 2 and the remainder
of the parent library as “red” class 1—mandatorily using Bayesian weighting, as
class 2 is by definition a minority—are perfect indicators of the representativity of
the core. At perfect pro rata sampling, and after compensation of subset sample
sizes, a homogeneously yellow landscape, corresponding to Pk̄ =1.5 ∀k, should be
obtained. That signals the fact that, at any point of chemical space, the core subset
molecules reflect the original compound density of the parent library, being neither
oversampled (blue spots), nor undersampled (red spots). Figure 12 represents such
mean class landscapes, obtained by (above) random drawing and (below) pro rata
sampling of RPs of cores representing—from left to right—50, 10, 1, 0.1 and 0.01%
of ChEMBL.

Fig. 12 Mean class landscapes, with Bayesian weighting, denoting the core as the “blue” class 2
and the remainder of the parent library as “red” class 1, at decreasing core size c% (numbers
below), generated either by random draw of ChEMBL compounds (top row), or by pro rata draw
of compounds from every detected responsibility pattern
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Clearly, one half of the 1.3M ChEMBL compounds does indeed strongly
resemble the other, and even 10% of ChEMBL is still seen to represent well the
remaining 90%—even without recurring to no more sophisticated subsetting than
the plain random draw. With cores of 1% or less, it becomes increasingly difficult to
include representatives of every chemical space zone—hence, the clear “red shift”
in the upper series of landscapes. Often, randomly picked compounds may stem
from a relatively thinly populated chemical space zone—within the much smaller
core, their relative importance implicitly becomes very high, and they are perceived
as “oversampling” their respective chemical space zones. Therefore, the
above-mentioned “red shift” is accompanied by a polarization of the landscape—
emergence of a few oversampled blue “islands” in the “sea” of undersampled space.

By contrast, cores produced by pro rata draw from every RP show the char-
acteristic “red border” effect in the lower series of landscapes. This is an implicit
consequence of the existence of many sparsely represented RPs, with less than 1/c%
members, which will therefore contribute none of their members to the selection.
Even at 50%, “singleton” RPs, each associated to exactly one molecule (there are
roughly 15K such patterns, out of a total of 23K distinct RPs observed for
ChEMBL compounds on the given map), cannot contribute to the selection. They
provide the population of the low-density “border” regions, which will not make it
into the core selection—hence the observed “red border” effect. By contrast, it can
be seen that selection within the zones that can be sampled at given core size is
much more homogeneous—there is clearly less polarization in the series associated
to pro rata draws.

Alternatively, one may proceed to a “flat” draw of an equal number of repre-
sentatives from each of the RPs exceeding a certain population level. The left-most
density landscape (a) in Fig. 13 features a ChEMBL core of 23K compounds—one
representative for each of its 23K distinct responsibility patterns. This is compared
to a core of similar size, obtained by random drawing—its density trace (b) can be
seen to be relatively less homogeneous, and presenting some clearly highlighted
diversity holes, covered by the “flat” core.

Which of pro rata and flat diversity selection strategies are best-suited is a
context-dependent problem. The key message here is that GTMs, exploiting the
RP-based default “clustering” of molecules, is perfectly operational in diversity
selection, irrespective of the used approach. One may, for example, perform a flat
selection but only based on RPs with a minimum level of occurrence—which can
be seen as a hybrid pro rata/flat approach. Such could be very useful if one wishes
to maximize coverage all while ensuring that selected compounds are no singletons
—i.e., close analogues thereof are available, in order to support a quick harvesting
of structure-activity data after primary hit confirmation. Furthermore, diversity
sampling may well be associated to already known structure-activity data or any
other filters for “interesting” chemical space zones. As shown in the previous
chapter, library comparison can be biased towards specific chemical space
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zones—or, diversity selection is just an application of library comparison. Or, a key
advantage of a GTM is the ability to validate the proposed map, in terms of its
propensity to discriminate actives from inactives, and to quantitatively predict
molecular properties. A map shown to be a competent support for classification and
regression models is therefore compliant with the molecular similarity principle and
proposes a chemically meaningful “image” of chemical space. As such, diversity
selections based on this map are also likely to fulfill the expectation of picking all
the “iconic” distinct chemotypes or pharmacophores. By default, diversity selection
is tributary to the initial choice of molecular descriptors, dissimilarity metric, etc.
Whatever those choices, a diversity selection will emerge—and it will heavily
depend on those choices. Or, as already discussed, it is very difficult to establish any
“objective” quality criteria for a diversity selection aimed at designing a
general-purpose screening library. Thus, the final “verdict” about the pertinence of
the diversity selection can only be given a posteriori, after experimentally screening
the selected library core. Instead, if one relies on a map built and shown to be
similarity-principle compliant with respect to various different biological activities,
the descriptor choice and the dimensionality reduction parameters (defining the
manifold) has already been done and validated on the basis of quantitative statistical
criteria of predictive models. If the library to be sampled is seen to fall within the
Applicability Domain of such a map, the “competence” of the map in previously
tackled predictive problems may be accepted as a caution for a meaningful diversity
subsetting.

Fig. 13 a Density landscape of the “flat” ChEMBL core, featuring one randomly picked
representative for each of the detected 23K distinct responsibility patterns on this map (same as
described in Fig. 3). b Random drawn core of equivalent size (∼1.8% of ChEMBL). Connectors
highlight diversity holes of the latter, covered by the “flat” selection
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3.3 Privileged Responsibility Patterns

Consider a specific subset l of a larger compound library L, consisting of all
molecules of L that have a given property—for example, all the compounds that are
associated to a biological target, or, alternatively, all the compounds found active
against a given target. Suppose that, out of these “specific” molecules from l, there
is a fraction flðRPÞ of compounds representing a given Responsibility Pattern RP—
according to a given GTM model. Let, by default, the baseline occurrence rate of
this RP, represent fLðRPÞ, the overall fraction of the RP-matching molecules over
the parent library L. If L is a large compound collection, representing a significant
sample of the so-far synthesized and tested organic compounds, then any RP found
to occur much more often in l, i.e., flðRPÞ ≫ fLðRPÞ can be considered as privileged
within l. A privilege score

π = flðRPÞ ̸fLðRPÞ

may thus be defined. Since l is defined in terms of a specific property shared by its
members, it is straightforward to link this privileged status to the property. Of
course, correlation never implies causality (Horvath 2010), but it is tempting for
medicinal chemists to “relate” a given pattern to a given activity. If, for example,
every second active is seen to match that pattern (fl = 0.5), whereas the same
pattern is being encountered in only one commercial compound out of 100 (fL =
0.01), this provides a rationale to specifically design and synthesize more mole-
cules containing the pattern. The patterns which medicinal chemists love to monitor
are scaffolds—hence, the “privileged scaffold” (Evans et al. 1988; Kubinyi 2006)
paradigm, a very popular pedagogical method aimed at systematizing the rela-
tionships between scaffolds and therapeutic classes. Yet, it cannot be taken as
granted that the best structural motif to analyze is, indeed, a single scaffold—
specific, non-cyclic fragments, or scaffold families, or pharmacophores may also
have a “privileged” status. The advantage of exploiting RPs in the quest for priv-
ileged patterns is that mapping of a compound on a GTM automatically defines its
RP, which can be a posteriori related to the underlying structural motif (as already
discussed; see the chapter introducing the RP concept).

In a previous publication (Klimenko et al. 2016), we exemplified the detection of
RPs preferentially appearing within compound sets of confirmed antiviral properties
and traced these RPs back to the underlying specific structural motifs. In some cases,
the underlying structural motif shared by all compounds of a given privileged RP
happened to be indeed a “privileged scaffold”. More often, this was not the case—
RP members could alternatively share much fuzzier common structural traits (many
ATP mimics featuring a anion-linker chain-heterocycle “pharmacophore-like” pat-
tern were, for example, regrouped under a common RP). The opposite was also
observed: RPs based on a well-defined scaffold with specific substitution patterns at
specific points.
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In the following example of privileged RP analysis, the ChEMBL database will
be used as the “baseline” library L with respect to which default occurrences
fLðRPÞ, of the RPs from the previously introduced “Universal” GTM (Fig. 3), will
be defined. Subsets of ChEMBL compounds associated to—being tested on—a
given human biological target T from ChEMBL were used as “property-specific”
subsets l, for each target with more than 500 associated compounds. Thus, the
“property” that all members of a subset l have in common is not their strong affinity
for a given target T, but the fact that they were tested on target T, irrespective of the
result. This may seem odd, but the shared feature providing a common identity to
all members of a subset l is the fact that they were all considered—rightly or
wrongly—being worth testing on target T according to experts in the field.
Therefore, the privileged RPs highlighted here are not the RPs privileged by the
target—that is, the RPs seen to significantly enhance the change to obtain an active
on that target—but rather the RPs privileged by the know-how of medicinal che-
mists, believed by medicinal chemists to relate to a given target. This analysis is
therefore no rigorous structure-activity relationship, but rather a trend analysis of
the human factor in drug design. An alternative analysis—in terms of rigorous
measured activities—could be performed as well and, if the medicinal chemists’
flair was correct, it should conclude that patterns privileged by the target are the
same as the ones privileged by chemists. On the contrary, if a target has been
subjected to “carpet bombing” by High-Throughput Screening of random libraries,
no privileged RPs should emerge at all, since there was little or no know-how used
to associate those randomly picked screening candidates to a target.

The privilege score π has been calculated for each of the RPs, over all considered
targets. Figure 14 locates on the map the five RPs (five nodes, as it turned out that
all concerned RPs were single-node) with the absolute largest π scores, all targets
confounded. Each of these RP is matched by compound sets of rather modest size
(between 131 and 735 compounds) and “snapshots” of representative compounds
are shown.

In red, the node reaching the absolute highest privilege factor corresponds to a
structurally homogeneous series. This series is, strictly speaking, not based on a
single “privileged” scaffold defined as a single cyclic moiety, but on an expanded
aryl-oxadiazole-cyclohexyl core, with heteroatoms allowed in different positions of
the aryl and cyclohexyl moieties. Such compounds are encountered within the set of
compounds associated to SMO, the “smoothened” frizzled GPCR with a frequency
1757-fold higher than the default one in the entire ChEMBL database. Out of the
517 molecules associated to SMO in ChEMBL, 92 are representatives of the “red”
RP, which gathers 131 compounds in its associated cluster. The other target having
a still significant 12-fold enrichment of compounds from this class within the set of
associated molecules is the ion channel HERG. Note that GPCRs and ionic
channels are expected to privilege the same structural patterns, as many ligands
binding to macromolecules of both classes are known.
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In orange, the RP privileged by Trypsin, with a factor of 1080, matches a series
of artificial peptidomimetics: rather linear compounds, with at least three aromatics
connected by flexible linkers (it is worth noting the high occurrence of oxadiazole
rings, though not in the same context as in SMO binders above), and often seen to
embed actual amino-acids (proline, lysine) next to the non-peptidic moieties. In
view of the fact that the chosen target is a protease, this makes perfect sense.

In yellow, compounds matching the third RP are even more strikingly
peptide-like, consisting of several small (artificial, or amino-acid) building blocks
interconnected by amide bonds. The often recurring amino-acid is glutamate,
bringing a net negative charge to the species. This RP is privileged by nucleoside
and peptide-binding GPCRs, and—again—proteases. Thus, the featured GTM
possesses at least two—not very remote—zones dedicated to “peptide-like”
molecules, and unsurprisingly associated to proteases.

Further privileged RPs cover complex patterns evoking natural product deriva-
tives, and the analysis could be pursued for each of the significantly populated RPs
(there are 504 represented by more than 100 compounds each, in the ChEMBL
projection on the current map). A GTM may be manually annotated with respect to
targets privileging each RP—and, as a direct consequence, compounds matching a
privileged RP but not yet tested on a target are candidates of choice for further
testing.

Fig. 14 Location, on the ChEMBL map (see Fig. 3 legend) of five RPs (all single-node) with top
privilege scores, as colored nodes against the grey density plot of the entire ChEMBL.
Representative samples of compounds matching each RP are shown. Next to the associated
structure tables, the target or targets that are privileging each RP are denoted, next to the actual
privilege score π of the RP (listed as “× π”) with respect to the target
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4 Conclusions

After briefly revisiting the principles of Generative Topographic Mapping as a
dimensionality reduction tool in chemoinformatics, this chapter specifically focuses
on the applications of GTMs for the analysis of chemical space. The key feature
that dramatically enhances the analysis of chemical space through the prism of a
GTM is rendering of compounds by their responsibility vectors, representing fuzzy,
real-value probabilities of residence of a compound on every GTM node. Whereas
on a Kohonen map, the statement “compound n resides in node k” is either correct
or false, following binary logics, on a GTM the fuzzy truth value of the above
statement is nothing but the responsibility value Rkn. Therefore, at equal number of
nodes, a GTM is much more information-rich than a Kohonen map. Albeit the latter
appears to be better suited as a compound clustering tool—all residents of a node
belong to the same cluster—it was shown that “binning” responsibility values can
be straightforwardly used to convert this real-value vector to a short Responsibility
Pattern (RP). A RP represents the non-zero responsibility values after binning, in
conjunction to the node numbers to which they pertain, under the compact form of a
string, or label, and may as readily serve as a clustering criterion as the Kohonen
number: all compounds matching a common RP label will be regarded as members
of a same cluster. In the—rather often occurring—situations of a responsibility
vector dominated by a single node, the associated “single-node” responsibility
pattern is formally identical to the node number identifier in the Kohonen scenario.

The fuzzy nature of GTMs versus the binary nature of Kohonen maps, and the
therefrom emerging ability of the former to accommodate a much larger number of
RPs at given number of nodes, will have a direct impact on the quality (structural
coherence) of the clusters defined by RPs. It is well known that some of the
Kohonen “garbage” nodes will “specialize” in accommodating items which do not
fit into any other nodes—but need to be mapped somewhere, nevertheless. By
contrast, in GTMs, such “exotic” compounds tending to be far away from the
manifold in the initial descriptor space will typically be assigned, fuzzily, to many
different nodes, so that single-node RPs will, in general, tend to regroup items
which actually show some significant, common, structural pattern. The more
populous an RP, the more difficult it is statistically to ensure that the entire set of
acquired compounds is structurally homogeneous. It was found that, out of the three
most densely populated single-node RPs in ChEMBL (all three being “borderline”
nodes at the map edge) only one could be tentatively labeled as “garbage” node—
the others are preferentially populated by Michael acceptors and oxyanionic com-
pounds, respectively. This issue also illustrates that the nature of the “significant,
common, structural pattern” assembling the compounds under a same RP label is
open-ended and self-adaptive: it may be a substructure (but not necessarily a ring
scaffold, as put forward by medicinal chemists), a set of related substructures, a
common pharmacophore and, perhaps, even less precisely defined, a size constraint.
Actually, the members of the node tentatively discarded as “garbage” do have
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something in common: their size, closer to the one of typical fragments (in
Fragment-Based Drug Design) than to actual drug molecules.

Albeit property prediction with GTMs is not the main topic of this contribution,
this very important issue has nevertheless been discussed. First, the fact that a map
can be shown to support quantitative of class-based predictive modeling provides a
rigorous quality assessment of the map, something which is not provided by its
other applications, such as visualization and library comparison. Second, library
comparison and diversity selection—or any other form of chemical space analysis
—will benefit from the knowledge contained in “property landscapes” obtained by
coloring the map with diverse structure-property data. Property prediction with
GTM also provided the occasion to discuss the matters of compound density,
coherence of mapped properties and, in general, Applicability Domain-related
issues with GTMs.

Next, the problematics of library comparison with GTMs has been revisited, on
the basis of class landscapes comparing the ChEMBL collection to a roughly
equally-sized set of commercial compounds. It was shown how class landscapes
can be used to rapidly identify “unbalanced” zones, dominated by either of the
compound collections. Reading such landscapes in parallel to property landscapes
allows an immediate estimate of the properties of molecules in the unbalanced
chemical space zones. Eventually, any third-party compound set—here, ChEMBL
subsets from the GPCR and Kinase SARfari projects, respectively—can be used as
a filter, specifically focusing the comparison of the two libraries onto chemical
space zones deemed “of interest” for the ongoing research project.

Further on, the usage of GTMs as both a driver and a post hoc analyzer of
diverse subset selection applications is explored. It is shown why relying on RPs to
conduct diverse subset sampling is very much faster than classical methods
requiring the estimation of the full dissimilarity matrix between all compounds.

Eventually, one simple but effective way to link chemical space to biological
activities is discussed: Privileged Responsibility Patterns. Following the now
classical “privileged scaffold” concept in medicinal chemistry, this approach has the
merit of straightforward generation of RPs by mapping a library onto a “mean-
ingful” GTM (as suggested by previous predictive challenges). It is straightforward
to check whether a RP is “privileged” with respect to a given property—in the sense
that its occurrence rate within compounds having that property is much larger than
its occurrence rate throughout the parent library. If so, visual inspection of com-
pounds matching the RP often suffices to find the underlying structural motif behind
that RP. Therefore, since the RP is “privileged”, the underlying structural motif
automatically inherits the “privileged” status and, as already highlighted, this motif
does not have to be a privileged scaffold. The examples of the top most privileged
RPs lead to the discovery of various privileged structural motifs, some being rather
well-defined structural constraints (the aryl-oxadiazol-cyclohexyl moiety), while
others are fuzzy, yet chemically meaningful motifs, such as “peptidomimetics”. It
would have been impossible to a priori guess the peculiar motifs that should be
tested for privileged status. With a chemically meaningful GTM, such guesswork is
not necessary: RPs are naturally emerging hypotheses to regroup compounds
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together, and the key structural motifs behind each such cluster can very often be
found.

We hope this brief overview has convinced the reader of the significant strengths
of GTMs in chemical space navigation and analysis.
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On Applications of QSARs in Food
and Agricultural Sciences: History
and Critical Review of Recent
Developments

Supratik Kar, Kunal Roy and Jerzy Leszczynski

Abstract During the past decade, a large number of reports described the roles of
in silico approaches in the development of new molecules in the field of pharma-
ceuticals, agrochemicals, food science, materials science, environmental science,
etc. In silico techniques like quantitative structure-activity relationships (QSAR),
pharmacophore, docking and virtual screenings are playing crucial roles for the
design of “better” molecules that may later be synthesized and assayed. This
chapter presents the currently available information on diverse groups of molecules
with applications in agriculture and food science that have been subjected to in
silico studies. A hefty numbers of successful applications of QSARs in the
development of agrochemicals, food products and food supplements are thoroughly
discussed. The QSAR studies summarized here would help readers to understand
the proper mechanism for the activity of miscellaneous agrochemicals and food
products as well as the interaction between the free radicals and antioxidant
molecules. This chapter justifies the need to develop additional QSAR models in
combination with other in silico approaches for the design of better agrochemicals,
food and food supplements, especially antioxidants and flavoring agents, in order to
explore the largely unexplored field of plant sources in addition to synthetic
molecules as well as to reduce time and cost involvement in such exercises. Further,
we have enlisted most of the available agrochemical, food and flavor databases for
convenience of researchers working in the area along with an extensive list of
software tools.
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1 Introduction

Agriculture has played a crucial role in the development of human civilization. It is
widely believed that domestication of plants (and animals) allowed humans to settle
in a place and give up their previous migrant life style. Until the industrial revo-
lution, the majority of the human population labored in agriculture. Development of
agricultural techniques and constituents of fertilizers has steadily increased agri-
cultural productivity. However, the agricultural productivity may be greatly
diminished by certain threats like weeds, fungus, pests, insects etc. Additionally,
weakened soil fertility and insufficient plant growth regulators affect the produc-
tivity many folds with the flow of time. To overcome the devastating effects of
those threats, the use of agrochemicals has been increasing in the cultivation fields
(Lamberth et al. 2013) Therefore, there is a consistent requirement to search for
efficient agrochemicals with enhanced productivity and lower health hazards.

In the food science, development of better food, food supplements and neu-
traceuticals are always a challenge. Employing phytochemicals and their structures,
a large number of modifications can be performed using in silico approaches. For a
long time, a number of reports have suggested the use of computer models for the
development of new food materials. Again, food proteins contain peptide sequences
that positively affect specific health markers as shown by different in vitro bioas-
says. Such peptides, which are called bioactive peptides (BAPs), may be released
from a wide range of dietary proteins. The efficacy and activity of BAPs have been
studied in vivo, suggesting in certain instances that food protein-derived BAPs may
be relevant to human health (Le Maux et al. 2015). An increasing number of
peptide sequences identified in various food protein hydrolysates have been
reported in the literature over the past few years. The technology used to identify
these sequences within food protein hydrolysates or their fractions has greatly
evolved. Nevertheless, challenges such as the reliable identification of short peptide
sequences are still an issue for a more comprehensive understanding of dietary BAP
structures where molecular modelling may be effective (Le Maux et al. 2015).

Fragrance and flavor substances are strong-smelling organic compounds. Their
major common characteristic is a pleasant odor and/or a pleasant taste. A fragrance
substance is used as a component in a perfume or a perfumed product, while a
flavor substance is used to enhance the flavor of beverages and food products. The
development and search for new flavoring agent is complicated. There are multiple
factors that affect flavoring efficay; e.g., solubility, stability at wide pH and tem-
perature ranges, clean specific taste without post-flavor effects, and finally, the most
important factor is the safety of human health. Because of all these factors, there is a
clear advantage to develop in silico models in order to understand the mechanism
and to use these models to develop and synthesize new potent flavoring agents
(Zhong et al. 2013).

Antioxidants have occupied a larger area of study in the food science due to
availability of wide range of chemical classes of antioxidants. The antioxidants
have enormous biological significance against an array of deadly diseases caused
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due to systemic free radical overload. Smoking, pollution, consumption of junk
food etc. result in continuous production and accumulation of the deadly free
radicals within the human system. The free radicals are constitutively produced
within the human system during various physiological processes by enzymatic and
non enzymatic reactions. Within the human system, the free radicals are efficiently
neutralized by a series of antioxidant enzymes, maintaining a balance between free
radical production and destruction. However, during free radical overload, these
systemic antioxidants fail to defend the system, leading to oxidative stress. When
there is a large increase in amount of oxidants, damage to normal cells and tissues
occur with DNA being the prime target. Thus, attempts have been made to restore
normal oxidative balance either by the therapeutic application of the endogenous
antioxidants or by using antioxidant rich foods/drugs. The huge importance of
antioxidants has lead researchers to search for synthetic antioxidants with improved
activity and reduced toxicity. Thus, a great deal of recent research has been con-
centrated on the design and synthesis of antioxidants (Roy and Mitra 2009).

Computer-aided molecular design has been generally accepted and extensively
applied in the area of modern drug discovery, ecotoxicological modeling and design
of agrochemicals for its high efficiency in the design of new compounds and opti-
mization of lead compounds, saving both time and economic costs in the large-scale
experimental synthesis and biological tests. Quantitative structure-activity relation-
ship (QSAR) helps us to understand structure-activity relationship (SAR) in a
quantitative manner. It is one of the most important applications of chemometrics,
giving information useful for the design of new compounds acting on a specific
target. The QSAR attempts to find a consistent relationship between biological
activity or toxicity and molecular properties. Thus, QSAR models can be used to
predict the activity of more advanced active agrochemicals. Not only in the field of
agrochemicals, QSAR had also an enormous role in the food industry. The QSAR
enables identification of the response pharmacophore as well as the essential
molecular fragments imparting antioxidant propensity to various classes of chemi-
cals, and serves as a reliable tool for searching efficient antioxidant molecules with
improved activity. Furthermore, several examples of QSAR are found for the study of
food protein-derived BAPs. Although a hefty number of QSAR models have been
reported for the antioxidant activity in the last decade, still a lot of new QSAR studies
are required in the area of food flavor, taste and food supplements for advancement of
food industries to the next advanced level (Roy et al. 2015a, b).

2 Agriculture

With the modern civilization, new agricultural techniques and effective fertilizers
have steadily increased agricultural productivity. Whatever man has reaped must be
well protected. At the same time, future yields must be improved. Unfortunately
this is not so, because between the times a crop is cultivated and consumed by man,
considerable quantity of agricultural product is wasted or destroyed by certain
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threats like weeds, fungus, insects etc. However, the agricultural productivity may
be greatly diminished by those threats. Therefore, before creating the solutions for
the mentioned threats, one has to know the threat types and their diversity along
with the extent of effects. The harmful effects of the mentioned threats have been
discussed here.

2.1 Weeds

In 1967, the Weed Science Society of America defined a weed as “a plant growing
where it is not desired” (Buchholtz 1967). In 1989 the Society’s definition was
changed to define a weed as “any plant that is objectionable or interferes with the
activities or welfare of man” (Vencill 2002). Weeds are generally considered as
unwanted plants in human made settings like agricultural areas, gardens etc.
because (1) they might restrict light to the desirable plants, (2) they can take the
nutrients from soil leaving the desired plant unfed and making them less productive,
(3) they can spread plant pathogens that infect and diminish the quality of crop.

2.2 Fungus

A fungus is a eukaryotic organism that is a member of the kingdom “Fungi”.
Preharvest losses due to fungal diseases in world crop production may amount to
12% or even more in developing countries (Hartman et al. 2004). Phytopathogenic
fungi and their harmful effects are discussed in Table 1.

2.3 Insects

Insects are the biggest class of arthropods. They are the most diverse group of animals
on the planet. They are most diverse at the equator and their diversity declines toward
the poles. There has been an unceasing struggle between man and his insect enemies
to protect the agricultural outcomes. Numerous advances have been made by man in
evolving newer and deadlier weapons to fight the war against insects. We have cited a
few instances of harmful effects of insects in agricultural field in Table 1.

2.4 Viruses

Plant viruses have limited ability to enter intact host cells and they mainly depend
on insect, mite, nematode, or fungus vectors to gain entry. Viruses usually invade
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Table 1 Occurence and disease caused to plants by different agriculture threats

Disease type/occurrence

Fungi
Botrytis A dark to light brown rot forms in the diseased tissue
Thielaviopsis basicola Cause root rot and branch dieback on a number of

woody and herbaceous plants including holly,
begonia, geranium, poinsettia etc.

Botryosphaeria Cause a branch dieback on horse chest nut, tulip
poplar, crabapple, pine, oak etc. Cankers girdle and
kill twigs and branches

Cylindrocladium Attacks azaleas, rhododendrons, camellias, junipers,
white pine and involved in damping-off, wilt, root
rot, stem canker, crown rot etc.

Phytophthora Cause root rot of herbaceous and woody ornamentals
including arborvitae, azalea, dogwood etc., and cause
late blight in Potato

Pythium Three common pythium species are Pythium
irregulare, Pythium aphanidermatum and Pythium
ultimum causes root rot disease

Rhizoctonia The pathogenic fungus known to cause root rots,
stem rots, damping-off, and in some cases, a blight of
leaves of several plants

Verticillium Cause disease called Verticillium wilt. The fungus
plugs the water conducting vessels thus restricting
flow to branches and leaves

Oidium Cause powdery mildew in grapes. White, mealy
fungal growth develops on leaves, flowers, and stems

Alternaria Cause alternaria leaf spot. Small purplish spots form
on leaves. Their centers become brown while the leaf
yellows

Fusarium Causes wilt disease followed by blockage and
breakdown of xylem, symptoms appear in plants
such as leaf wilting, yellowing and death

Uromyces Small blisters containing rust-red spores form on
leaves.

Phoma Cause blight in Vinca, Beet, Sweet potato etc.
Initially branches become dark followed by the entire
plant blackens at the base and dies

Venturia Cause blight or scab in Willow tree
Magnaporthe Infect a number of important cereals including rice,

wheat, rye, barley, and pearl millet causing diseases
called blast disease or blight disease

Phakopsora Causes soybean rust that affects soybeans and other
legumes

Puccinia Causal agents of severe rusts of virtually all cereal
grains and grasses

(continued)
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Table 1 (continued)

Disease type/occurrence

Septoria Causes leaf spot mainly in marigold. Oval to irregular
gray to black spots with tiny dots peppering their
surface

Insects
Aphids Cause injury to plants by sucking the sap and juices

from the soft, new growth. Affect the plant to lose
vigor, wilt, distort or show spots

Earwigs Primarily scavengers of dead insects and rotted plant
materials but may also feed on live plants. Targets are
marigolds, dahlias, zinnias, roses etc.

Geranium budworm Young larvae of this insect tunnel into small flower
buds, while larger caterpillars eat flower petals,
chewing the reproductive flower parts

Spider Mites Produce lesions on the green epidermal cells and thus
can significantly reduce the photosynthetic capability
of plants

Thrips They feed by sucking juices from the plant causing
stippling, or small scars, on leaves, flowers and fruit

Flea beetles Chew small pits into leaves, giving the appearance
that they may have been blasted with fine shot.
Common on cabbages, tomatoes, and beans

Elude corn seed maggot Attacks the seeds of many warm-season vegetables
(bean, corn, melon, cucumber) planted early when
soil is still cool and often damp

Spinach Leaf Miners Tunneling within the leaves especially of spinach,
beets and chard

Squash bugs Large areas of the plant become girdled and wilt
Hornworms Quickly defoliate tomatoes, potatoes, eggplants,

peppers and green fruit
Psyllids The insect causes tomato to stop forming or ripening,

and many small potato tubers to develop and sprout
prematurely before harvest

Rice hispa Cause scraping of the upper surface of the leaf blade
leaving only the lower epidermis as white streaks
parallel to the midrib. Tunneling of larvae through
leaf tissue causes irregular translucent white patches

Stem Borer The drying of growing part of the plant is known as
‘dead heart’. Dead heart is created in early life of the
plant before flowering and ‘White head’ occurs at
flowering resulting in drying of the entire panicle

Army worms Leaf feeding and cut the wheat heads from the plant
stem

Green bug They cause distinct damage by yellowing of leaves
and the occurrence of chlorotic spots (wheat)

(continued)
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Table 1 (continued)

Disease type/occurrence

Scale insects Found on stems and the undersides of leaves but can
be on top of the leaves. Scales suck the juice of
plants, stunting the plants growth

Potato beetle Feed on foliage and may completely eliminate the
crop

Boll weevil Destructive cotton pest which feeds on cotton buds
and flowers

Corn rootworm Damage caused by larval feeding of the insect
Rose chafer The adult beetle feeds on the foliage, flowers, and

fruit of plants
Asian longhorned beetle During the larval stage, this insect bores deep into a

tree’s heartwood causes tunneling damages and
eventually kills the tree

Citrus longhorned beetle They chew into the tree, forming a tunnel and death
of the plant (citrus, pecan, apple etc.)

Bark beetle Kill pine tree by boring through the bark into the
phloem layer

Bacteria related to necrotic diseases
P. syringaepv. Tabaci Wildfire of tobacco
P. syringae pv. Lachrymans Angular leaf spot of cucumber
X. translucens Bacterial streak of barley and black chaff of wheat
X. oryzae pv. Oryzae and X. oryzae pv.
Oryzicola

Bacterial leaf blight and leaf streak of rice

X. vesicatoria and P. syringae pv. Bacterial spot and bacterial speck of tomato

P. syringae pv. Syringae, X. phaseoli
and P. syringae pv. Phaseolicola

Bacterial brown spot, common blight and halo blight
of bean

Streptomyces scabies Scab of potato
Bacteria related to valscular diseases
Ralstonia solanaearum race 1 Southern bacterial wilt of solanaceous plants
R. solanaearum race 2 Moko disease of bananas
Clavibacter michiganensis
subsp. Sepedonicus

Potato ring rot

C. michiganensis subsp. Michiganensis Bacterial canker and wilt of tomato
Bacteria related to the soft rots
Erwinia carotovora subsp. Atroseptica Tomato, potato
Erwinia carotovora
subsp. Betavasculorum

Sugar beet, sunflower, potato

E. chrysanthemi pv. Zeae. Maize, pineapple, potato, banana
E. chrysanthemi pv. Dianthicola. Carnation, chicory, artichoke, dahlia, tomato, potato

(continued)
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their host plants systemically from the initial entry sites. Viral infections are gen-
erally localized in the roots, stems or leaves of the infected plant. They are mosaic
causing necrosis of leaves, petiols and stem on different solanaceous plants.
Tobacco mosaic virus, Cucumber mosaic virus and tobacco spot virus are observed
on digitalis (the infection causes characteristic patterns on the leaves, i.e., mottling
and discoloration) and a strain of cucumber mosaic virus is detected on hyoscya-
mus. The viruses show disease symptoms on rauwolfia, tobacco, datura, vinca and
eucalyptus. Other viruses reported on different medicinal plants are yellow vein
mosaic virus, graft transmissible virus, distortion mosaic virus, rugose leaf curl etc.

2.5 Bacteria

The major groups of bacteria that adversely affect plants are the bacterial plant
pathogens. Although the changes in plant physiology induced by these organisms
are generally considered to be detrimental to plant health, some have been exploited
as favorable from a horticultural perspective. Symptoms induced by phyto patho-
genic bacteria range from local areas of cell death such as leaf spots, cankers and
scabby lesions, to wilts, yellowing, tissue liquefaction, and tumor formation. Plant
pathogenic bacteria have been broadly classified into four classes discussed in
Table 1 (Beattie 2006).

2.6 Other Pests

Rodents cause severe damage to the agricultural products. Rodents have sharp
incisors that they use to gnaw wood and cause considerable spoilage to stored crop.

Table 1 (continued)

Disease type/occurrence

Bacteria related to tumor diseases
Agrobacterium vitis Crown gall, Grape
Agrobacterium rubi Cane gall, Raspberry and blackberry
Agrobacterium rhizogenes Hairy root disease, Apple
Pseudomonas savastanoi Galls, Olive
Pantoea agglomerans pv. gypsophilae Crown and root gall, Gypsophila
Rhizobacter dauci Carrot gall, Carrot
Rhodococcus fascians Leaf gall, Nicotiana
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3 Agrochemicals

“Agrochemical”, a contraction of agricultural chemical, is a generic term for the
various chemical products used in agriculture. In most cases, agrochemicals refer to
the broad range of pesticides, including herbicides, fungicides and insecticides.
They may also include hormones and other chemical growth agents of plant
(Waxman 1998).

3.1 Herbicides

Herbicide comes from the Latin herba, meaning “plant” and caedere, meaning “to
kill”. Therefore, herbicides are chemicals that kill plants. The definition accepted by
the Weed Science Society of America (Vencill 2002) is that a herbicide is “a
chemical substance or cultured organism used to kill or suppress the growth of
plants.” In effect, a herbicide disrupts the physiology of a weed over a long enough
period to kill it or severely limit its growth. The classification of herbicides is cited
below according to their mode of actions. They are broadly classified into seven
groups in Table 2 (Zimdahl 2007).

3.2 Fungicides

Fungicides are chemical compounds used to kill or inhibit fungi or fungal spores. In
a broader sense, fungicides either are mobile or immobile. Systemic fungicides are
mobile compounds that are able to penetrate the cuticle of leaves and stems and
enter the plant deeper tissues, whereas immobile fungicides reside entirely at the
site of application. The classification of fungicides is sited below according to their
mode of actions. They are broadly classified into nine groups in Table 3 (Copping
and Hewitt 1998a).

3.3 Insecticides

The use of insecticides is believed to be one of the major factors behind the increase
in agricultural productivity in the 20th century. Nearly all insecticides have the
potential to significantly alter ecosystems; many are toxic to humans; and others are
concentrated in the food chain. It is necessary to balance agricultural needs with
environmental and health issues while using insecticides. The classification of
insecticides is sited below according to their mode of actions in Table 4 (Copping
and Hewitt 1998b).
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Table 2 Classification of herbicides based on the mechanism of action (MOA) with examples

Classification Site/type of action Example of herbicides

Inhibitors of
photosynthesis

Photosystem II, site A Phenyl-Carbamates, Pyridazinone,
Triazines, Chlorotriazines

Photosystem II, site A but with
different binding behavior

Amides, Urea

Photosystem II, site B Benzothiadiazoles, Nitriles,
Phenyl-pyridazines

Photosystem I-electron diverters Diquat, Paraquat
Inhibitors of
pigment
production

Carotenoid biosynthesis Amitrole
Phytoenedesaturase with blockage of
carotenoid biosynthesis

Norflurazon, Fluridone

1-deoxy-D-xyulose 5 phosphate
synthatase (DOXP synthase)

Clomazone

Protoporphyrinogen oxidase (Protox) Diphenylethers, Acifluorfen,
Phenylthalamides, Thiadiazoles,
Triazinones, Pyrazolotriazinones

Fatty acid
biosynthesis
inhibitors

Acetyl-CoA carboxylase (ACCase) Aryloxyphenoxypropionates
(Clodinafop, Fluazifop, Quizalofop)
and Cyclohexanediones (Clethodim,
Sethoxydim, Tralkoxydim)

Lipid synthesis, but not by ACCase
inhibition

Carbamothioates (Butylate,
Cycloate, Pebulate, Triallate)

Inhibiting biosynthesis of very long
chain fatty acids

Chloroacetamides (Acetochlor,
Alachlor, Dimethenamid, Flufenacet)

Amino acid
biosynthesis
inhibitors

Acetolactate synthase (ALS)-
acetohydroxy acid synthase (AHAS)

Sulfonylureas (Bensulfuron,
Metsulfuron, Triflusulfuron),
Imidazolinones,
Pyrimidinylthio-benzoate,
Triazolopyrimidines

5-enolpyruvyl-shikimate-3-phosphate
synthase (EPSP)

Glyphosate

Glutamine synthatase (GS) Glufosinate
Cell growth
inhibitors

Microtubule assembly Dinitroanilines (Benefin,
Ethalfluralin, Oryzalin, Trifluralin),
Terephthalic acid, Dacthal

Mitosis Carbetamide
Cell wall synthesis Nitriles (Dichlobenil), Benzamides

(Isoxaben)
Auxin-like
action-growth
regulators

Synthetic auxins Phenoxy acids, Arylaliphatic or
benzoic acids, Picolinic acids,
Quinolinecarboxylic acid

Indoleacetic acid (IAA) transport Naptalam, Diflufenzopyr
Inhibition of
respiration

By uncoupling oxidative
phosphorylation

Arsenite, Phenol
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Table 3 Classification of fungicides based on the MOA with examples

Classification Site of action Example of some fungicides

Sterol biosynthesis
inhibitors

Inhibition of C14α-demethylation 1,2,4-triazoles (Triadimenol,
Propiconazole), Imidazoles
(lmatalil, Prochloraz),
Pyrimidinylcarbinols
(Fenarimol, Nuarimol),
Piperazines (Triforine)

Inhibition of Δ8,7Isomerase and
Δ14Reductase

Fenpropimorph, Fenpropidin,
Dodemorph, Spiroxamine

Glycerophospholipid
biosynthesis
inhibitors

Inhibition of phosphatidylcholine
synthesis

Iprobenfos, Edifenphos,
Isoprothiolane

Inhibition of phosphatidylinositol
synthesis

Validamycin A

Nucleic acid
biosynthesis
inhibitors

Inhibition of DNA synthesis Hymexazol
Inhibition of RNA synthesis Acylufanines (Metalaxyl,

Metalaxyl M),
Hydroxypyrimidines (Ethirimol,
Dimethirimol Bupirimate),
Phenoxyquinolines (LY214352)

Tubulin biosynthesis
inhibitors

Inhibition of cell division Benzimidazoles (Benomyl,
Thiabendazole, Carbendazim,
Fuberidazole), Diethofencurb

Chitin biosynthesis
inhibitors

Inhibition induces the collapse of
cell wall integrity, leads to swelling
and bursting of hyphal tips and
spore germ tubes

Polyoxins (Polyoxin B,
Polyoxerim D)

Melanin biosynthesis
inhibitors

Inhibition of development of
infection hyphae and subsequent
penetration of the host epidermis

Tricyclazole, Pyroquilon,
Phthalide, KTU 3616

Protein biosynthesis
inhibitors

Inhibiting the protein synthesis Blasticidin, Kasugamycin

Respiration inhibitors Inhibition of Complex II Carboxamides (Carboxin,
Fenfuram, Methfuroxam),
Thifluzamide

Inhibition of Complex III Famoxadone, Azoxystrobin,
Kresoxim-methyl

Inhibition of oxidative
phosphorylation

Nitrophenols (Dinocap,
Nitrothal-isopropyl, Fluazinam),
Fentins (Fentin acetate, Fentin
hydroxide)

Interference with cell
membrane structure

Destabilizing the cell membrane Guanidines (Dodine, Guazatine)
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3.4 Bactericides

Bactericides are chemicals that prevent bacterial infections. They kill bacteria on
contact and must be used before the bacteria infect a plant. Most of the bacterial
pathogens are systemic, but most of the bactericides are surface protectants
(Table 5). Bacteria also develop resistance to antibiotics very quickly. Persistence
of antibiotics in plants is very low, requiring that antibiotics be applied once every

Table 4 Classification of insecticides based on the MOA with examples

Classification Type of action Example of some insecticides

Inhibitors acting by
insect nervous
system disruption

Organophosphorus Insecticides Phosphate, Phosphonate,
Phosphorothionate,
Phosphorothiolate,
Phosphoramidate,
Phosphorothionate, Parathion,
Terbufos

Carbamate Insecticides Methornyl, Carbofuran,
Carbosulfan, Ethiofencarb,
Pirirnicarb, Carbaryl

Interact with neurotransmitter ligand
recognition sites

Nicotine, Nereistoxin,
Bensultap, Cartap,
Imidacloprid, Amitraz.

Insecticides that interfere with ion
channels

Pyrethroids (Permethrin,
Deltamethrin, Tefluthrin,
Silafluofen), DDT

Inhibition of
oxidative
phosphorylation

Inhibit the mitochondrial electron
transport chain by binding with
complex I at coenzyme site Q

Fipronil, rotenone,
dinitro-o-cresol, pyrimidifen,
fenazaquin

Inhibition of respiration at complex
III

Naphthoquinones

Table 5 A list of bactericides with exhaustive examples

Bactericide Examples

Copper
compounds

Ammoniacal copper sulfate, Copper oxide, Copper oxyquinolate, Copper
hydroxide, Copper oxychloride, (Tri)basic copper sulphate, Copper
sulphate + lime, Copper oxychloride + maneb, mancozeb or chorothalonil

Antibiotics Kasugamycin, Oxytetracyclin, Streptomycin
Disinfectants Acetic acid 1(M), Benzalkonium chloride, Ethanol 70% or 80%, Isopropanol

70%, Propionic acid 1(M), Quaternary ammonium compounds, Calcium
hypochloride, Sodium hypochloride, Chlorine dioxide, Hydrogen peroxide
with peracetic acid, Ozone, Phenolic and cresolic compounds,
Formaldehyde, Potassium permanganate

Other
compounds

Flumequin, Fosetyl-aluminium, 7-Chloro-1-ethyl-6-fluoro-1,4-dihydro-4-
exo-3-quinoline carboxylic acid, Oxolinic acid
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4–5 days. This is impractical and will be uneconomical. The current bactericides
cannot reach sites where bacteria overwinter, such as blighted wood, cankers, and
lesions in the case of woody plants. Only partial control of bacterial diseases is
achievable with the available bactericides (Janse 2005).

3.5 Virucides

Chemical control of viral diseases is almost not practical. However, the vectors
(certain fungi, insects etc.) of viruses can be controlled to a certain extent to reduce
the disease spread. Chemical control of viral diseases is difficult to achieve. Only
ribavirin has been shown to reduce virus diseases. Ribavirin is effective against
Potato S virus (Carlavirus) and Odontoglossumringspot virus (Tobamovirus).
Another method of controlling virus diseases by chemicals is by using plant acti-
vators, which induce systemic resistance against virus infection. Preplant applica-
tion of the plant activator acibenzolar-S-methyl (Actigard) effectively controls
Tomato spotted wilt virus (TSWV) in tomato (Vidhyasekaran 2004).

3.6 Plant Growth Regulators

Plant hormones (also known as phytohormones) are chemicals that regulate plant
growth. Plant hormones are signal molecules produced within the plant, and occur
in extremely low concentrations (Kar and Roy 2012). Hormones also determine the
formation of flowers, stems, leaves, the shedding of leaves, and the development
and ripening of fruit. The functions of those growth regulating agents are reported
below in Table 6.

4 Food, Food Supplements and Phytochemicals

Food science includes the development of new food products, design of processes
to produce foods, choice of packaging materials, shelf-life studies, sensory evalu-
ation of products using panels or potential consumers, as well as microbiological
and chemical testing. Food scientists may study more fundamental phenomena that
are directly linked to the production of food products and their properties. Food
science brings together multiple scientific disciplines such as microbiol-
ogy, chemical engineering, and biochemistry to increase the production rate of food
products due to the immense population growth and decrease efficiency of soil
productivity (Fratamico and Bayles 2005). Food science is one of the unexplored
fields in terms of employing cheminformatics for new molecule design. Although a
large number of studies have been undertaken for antioxidants using in silico tools,
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a large gap remains in respect to develoment of food products, food supplements,
food born chemical toxicity and phytochemicals using in silico tools.

4.1 Antioxidants

Modern lifestyles, such as smoking, pollution, consumption of junk food etc. have
posed severe threats to mankind through continuous production and accumulation
of the deadly free radicals within the human system (Valko et al. 2016). Free radical

Table 6 A list of plant growth regulators, their chemical structure and function

Growth
regulator

Chemical structure Function

Auxins H
N

CH2COOHIAA

H
N

CH2CH2CH2COOH
IBA

OCH2CH2OOH

NOA NAA

CH2CH2OOH

NAD

CH2CONH2

Cl

Cl

OCH2COOH

2,4-D

They are involved in different
growth processes in plants like
internodal elongation, leaf growth,
initiation of vascular tissues,
cambium activity, fruit setting in
absence of pollination, fruit growth,
apical dominance, inhibition of root
growth, inhibition of lateral buds

Gibberellins

COOH
CH2

OH

O

CO

CH3HO
Gibberellic acid

COOH
CH2

O

CO

CH3HO
GA7

They are involved in vegetative and
fruit growth, breaking dormancy
(seed germination), flower initiation
and induction of parthenocarpy

Cytokinins

N

N N

H
N

NHCH2

O

Kinetin N

N N
H

N

NHCH2CH

Zeatin

C
CH3

CH2OH

N

N N
H

N

NHCH2

6-Benzyl aminopurine

The main function is the promotion
of cell division. They help the
development of embryos during seed
development, delaying breakdown of
chlorophyll and degradation of
proteins in ageing leaves

Abscisic
acid

CH3

CH3H3C

OH

CH3

COOH

O
Abscisic acid

It is a negative growth regulator. It
accumulates in many seeds and helps
in seed dormancy. It has an
important role as potential
antitranspirant by closing the
stomata
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formation occurs continuously in the cells as a consequence of both enzymatic and
non-enzymatic reactions. Oxygen molecules are indispensable for performing
various systemic functions. The ability of the antioxidants to control this free
radical attack leads the medicinal chemist’s primary attention to the design and
modeling of efficient synthetic antioxidant molecules. Nature constitutes an abun-
dant source of antioxidants. Fruits and vegetables serve as surplus sources of
antioxidants. Vitamins and carotenoids exhibit the maximum antioxidant activity.
Besides these, minerals like selenium and several phytochemicals like flavonoids,
polyphenols, lucopene, luein and lignans also exert free radical scavenging activity
by varying mechanisms. A very few of such molecules with antioxidant property
have been synthesized till date and even a fewer among them have contributed to be
efficient drugs and food preservatives. The emerging concept is that dietary and
endogenous antioxidants, endowed with different activities and characteristics,
work synergistically contributing to the overall protective effect of plant foods.
Thus, several attempts are now being made by the medicinal chemists to develop
new active antioxidant molecules with improved activity profile.

4.1.1 Antioxidants: The Free Radical Scavengers

The antioxidants are chemical agents that are capable of neutralizing these free
radicals by inhibiting the oxidation process. According to US Food and Drug
Administration (FDA), antioxidants are defined as “substances used to preserve
food by retarding deterioration, rancidity or discoloration due to oxidation” (Hal-
liwell and Gutteridge 1990). The antioxidants primarily function based on the
following mechanisms:

• Chain breaking reaction
• By reducing concentration of reactive oxygen species
• By scavenging initiating radicals
• By chelating transition metal catalyst
• Synergistic agents

4.1.2 Molecular Mechanism of Antioxidant Action

• Hydrogen atom transfer (HAT): The free radical removes a hydrogen atom
from the antioxidant (AH) that itself becomes a radical (Wright et al. 2001).

R ⋅ +AH⟶RH+A ⋅
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• Single-electron transfer followed by proton transfer (SET-PT): The antioxi-
dant can give an electron to the free radical becoming itself a radical cation. In
the first step, electron transfer to a radical (R ⋅ ) while in the second step, proton
is transferred to the formed R− anion (Musialik and Litwinienko 2005).

AH +R⟶AH ⋅ + +R−

AH+R⟶A ⋅ +RH

• Sequential proton loss electron transfer (SPLET): The reaction enthalpy of the
SPLET first step corresponds to the proton affinity of the phenoxide anion (A ⋅ )
(Fujio et al. 1981). In the second step, electron transfer from phenoxide anion to
R. occurs and the phenoxyl radical is formed. The reaction enthalpy of this step
denotes as electron transfer enthalpy.

AH⟶A ⋅ +H+

A ⋅ +R ⋅ ⟶A ⋅ +R−

R− +H+ ⟶RH

4.1.3 Classification of Antioxidants

Various types of antioxidants are used for the benefit of human health classified as
per their sources in Table 7 (Denisov and Afanasev 2005).

4.1.4 Screening Methods of Antioxidants

In vitro methods of screening are qualitative methods to determine antioxidant
potency of a compound. However, IC50 values (concentration which can achieve
50% scavenging) or Trolox equivalents are used to quantify the activity (Kaur and
Geetha 2006). Some of the antioxidant assay methods commonly used are briefly
listed in Table 8.

4.1.5 Need of Synthetic Antioxidants

Considering the wide range of utility of the antioxidants, it may be hypothesized
that the consumption of food rich in antioxidants and/or supplementation of
antioxidants is important for leading a healthy livelihood. The antioxidants may not
totally eradicate the occurrence of different free radical mediated diseases but may
delay the progression of these diseases, and a proper diet rich in antioxidants may
protect the human system from the attack of the fatal diseases. The huge importance

218 S. Kar et al.



of antioxidants has lead the researchers to search for synthetic antioxidants with
improved activity and reduced toxicity. Thus, a great deal of recent research has
been concentrated on the synthesis of antioxidants, which are as stable as the
natural ones after loosing their electron (McCord 2004). The extent of damage
caused by free radicals might be modified through three dietary intervention

Table 7 Classification of different types of antioxidants

Types Endogenous factors Endogenous
enzymes

Nutritional factors

Primary Glutathione and other thiols GSH
reductase

Ascorbic acid (Vitamin C)

Haem proteins GSH
transferases

Tocopherols (Vitamin E)

Coenzymes Q GSH
peroxidases

B-carotene and retinoids

Bilirubin Superoxide
dismutase

Selenium (essential diatary
component of peroxidase)

Urates Catalase Methionine or lipotropes for
choline biosynthesis

Natural Chemical group of
antioxidant

Source

Vitamin A (retinol)
and carotenoids

Carrots, squash, broccoli, sweet potatoes,
tomatoes, cantaloupe, peaches and apricots

Vitamin C (ascorbic acid) Citrus fruits, green peppers, broccoli, green
leafy vegetables, strawberries and tomatoes

Vitamin E (tocopherol) Nuts, seeds, whole grains, green leafy
vegetables, vegetable oil and liver oil

Selenium Fish, red meat, grains, eggs, chicken and garlic
Flavonoids/polyphenols Red wine, purple grapes, pomegranate, soy,

cranberries and tea
Lycopene Tomato, pink grapefruit and watermelon
Lutein Dark green vegetables such as kale, broccoli,

kiwi, brussels sprout and spinach
Lignan Flax seed, oatmeal, barley and rye

Secondary
(synthetic)

Mechanism of action Antioxidant
Break chains by reaction with
the peroxyl radicals

Phenols, napthols, hydroquinones, aromatic
amines

Break chains by reaction with
alkyl radicals

Quinines, nitrones, iminoquinones

Hydroperoxide decomposing
antioxidants

Sulfides, phosphites

Metal-deactivating
antioxidants

Diamines, hydroxy acids

Cyclic chain termination Aromatic amines, nitroxyl radicals
Inhibitors of combined action Anthracene, methylenequinone
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strategies: (a) caloric restriction and thus a depression in free radicals arising due to
normal metabolism; (b) minimizing the intake of components that increase free
radicals such as polyunsaturated fats; and (c) supplementation with one or more
antioxidants. Thus, the ability of the antioxidants to control the free radical attack
lead the medicinal chemist’s primary attention to the design and modeling of
efficient synthetic antioxidant molecules.

4.2 Food Supplements

The FDA regulates both finished food supplements and dietary ingredients under a
different set of regulations than those covering “conventional” foods and drug
products (FDA 2014). Under the Dietary Supplement Health and Education Act of
1994 (DSHEA):

Table 8 Commonly used
methods for screening of
antioxidant potency

In vitro methods of screening
Oxygen radical absorbance capacity (ORAC) method
1,1-diphenyl-2-picryl hydrazyl radical (DPPH) assay
Total radical-trapping antioxidant parameter (TRAP) method
Trolox equivalent antioxidant capacity (TEAC) method
Total oxyradical scavenging capacity (TOSC) method
Peroxyl radical scavenging method
Ferric reducing antioxidant power (FRAP) method
ABTS (2,2-α-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)
method
β carotene bleaching method
Gibb’s Reagent (2,6-dichloroquinonechlorimine)
Nitroblue tetrazolium dye (NBT)
Hydrogen peroxide decomposition method
Assay based on extent of lipid peroxidation inhibition of
antioxidants
Thiobarbituric acid assay
Iodometric method
Ferrous chloride and thiocyanate system
Ex vivo methods
DPPH assay
Singlet oxygen scavenging
In vivo methods
Lipid peroxidation
Nitric oxide scavenging bioassay
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• Manufacturers and distributors of dietary supplements and dietary ingredients
are prohibited from marketing products that are adulterated or misbranded. That
means that these firms are responsible for evaluating the safety and labeling of
their products before marketing to ensure that they meet all the requirements of
DSHEA and FDA regulations.

• FDA is responsible for taking action against any adulterated or misbranded
dietary supplement product after it reaches the market.

A food and/or dietary supplement is projected to supply nutrients that may
otherwise not be consumed in sufficient quantities. Supplements include vita-
mins, minerals, fiber, fatty acids, or amino acids, among other substances. U.S.
authorities define dietary supplements as foods, while elsewhere they may be
classified as drugs or other products. There are more than 50,000 dietary supple-
ments available in present time according to US FDA. More than half of the U.S.
adult populations (53–55%) consume dietary supplements with most common ones
being multivitamins.

4.3 Flavoring Agents

Flavor is the sensory impression of a food or other substance, and is determined
mainly by the chemical senses of taste and smell. The “trigeminal senses”, which
detect chemical irritants in the mouth and throat, may also occasionally determine
flavor. The flavor of the food, as such, can be altered with natural or artificial
flavorants, which affect these senses (Smith et al. 2005). Of the three chemical
senses, smell is the main determinant of a food item’s flavor. While the taste of food
is limited to sweet, sour, bitter, salty, umami, and other basic tastes, the smells of a
food are potentially limitless. A food’s flavor, therefore, can be easily altered by
changing its smell while keeping its taste similar. As chemical structure is highly
responsible for flavors, specific taste and smells, cheminformatics can play
immense role for economical and effective development of flavoring agents for food
industries.

Flavorants are focused on varying or enhancing the flavors of natural food
products such as meats and vegetables, or creating flavor for food products that do
not have the desired flavors. Most types of flavorants are focused on scent and taste.
Few commercial products exist to stimulate the trigeminal senses, since these are
sharp, astringent, and typically unpleasant flavors. As per the legal definition by the
U.S. Code of Federal Regulations, a natural flavorant is: “the essential oil, oleo-
resin, essence or extractive, protein hydrolysate, distillate, or any product of
roasting, heating or enzymolysis, which contains the flavoring constituents derived
from a spice, fruit or fruit juice, vegetable or vegetable juice, edible yeast, herb,
bark, bud, root, leaf or any other edible portions of a plant, meat, seafood, poultry,
eggs, dairy products, or fermentation products thereof, whose primary function in
food is flavoring rather than nutritional.”
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Most artificial flavors are specific and often complex mixtures of singular nat-
urally occurring flavor compounds combined together to either imitate or enhance a
natural flavor. These mixtures are formulated by the flavorist to give a food product
a unique flavor and to maintain flavor consistency between different product bat-
ches or after recipe changes. The National Association of Flavors and
Food-Ingredient Systems (NAFFS) located in Neptune, New Jersey, USA is a
broad-based trade association of manufacturers, processors and suppliers of fruits,
flavors, syrups, stabilizers, emulsifiers, colors, sweeteners, cocoa and related food
ingredients. The NAFFS’ mission is to provide a forum for the exchange of tech-
nology and marketing information about food and flavor industries, and member-
ship is open to all companies related to products and services to the food industry.

4.4 Phytochemicals

Foods of plant origin are an essential part of the diet; however, some plants contain
substances that hold certain health risks also. Therefore, along with positive effects
of phytochemicals, there are some phytochemicals which can induce adverse effects
by different mechanisms (Kar and Roy 2012). Thus, some substances, for example,
soy isoflavones, affect the endocrine system. Other substances are hepatotoxic
(coumarin), neurotoxic (solanine), phototoxic (furocoumarins) or carcinogenic
(estragole). Normal intake of phytochemicals as natural components of fruits,
vegetables, herbs, and spices is regarded to be of low risk. Increased exposure,
however, poses a potential problem, for example in cases of unbalanced diets or
uptake of dietary supplements in isolated and concentrated form. For risk assess-
ment, it is necessary to identify potentially harmful substances based on their
chemical structure. Also, their dose-dependent effects on the organism have to be
described. For this purpose, novel profiling techniques and advanced computational
methods are increasingly used, with promising possibilities.

5 Food Safety and Regulatory Authorities

Food safety monitoring is a great challenge in present times due to adulteration of
agrochemicals and food products. Therefore, the safety issue should be checked
from the beginning of agriculture to a particular finished food product as safety can
be affected at any time of food preparation. Various regulatory agencies are
implementing as well as still preparing diverse white papers for proper monitoring
of agrochemicals in food products along with providing best quality food to the
world wide consumers (Kroes et al. 2004).
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In the United States (US), major agencies responsible for food safety are:

• The United States Environmental Protection Agency (EPA) has set pesticide
tolerances (maximum residue limits) in foods.

• The United States Department of Agriculture (USDA) and United States Food
and Drug Administration (USFDA) are responsible for monitoring foods and
animal feeds to ensure regulatory compliance with the tolerances. The US FDA
is responsible for monitoring all foods with the exception of meat, poultry, and
certain egg products. The USDA’s Food Safety and Inspection Service (FSIS)
also administers the national residue program and inspects sample of meat
processed in slaughter plants for residue testing.

• The Federal Food, Drug, and Cosmetic Act (FFDCA) authorizes the US EPA to
set tolerances with a safety standard in order to meet a “reasonable certainty of
no harm”.

The pesticide safety threshold limit applies to the food products from USA as
well as products imported into the USA intended for human consumption. All the
mentioned federal agencies must coordinate among themselves to accomplish their
mission of ensuring food safety and generating plan on how to upgrade the US food
safety system (http://www.foodsafetyworkinggroup.gov/).

From the beginning of 21st century, in European Union (EU), various regula-
tions were formed to maintain the food safety through harmonizing the use of
agrochemicals and adulteration of food commodities. Significant regulations are
discussed below which are the benchmark in the process of food safety:

• The European Parliament and the Council adopted Regulation (EC)178/2002
(EC 2002) in the year 2002 stated down the overall principles and necessities of
food law and procedures in matters of food safety harmonizing the free
movement of food and feed in the EU. The Regulation ensures the protection of
plants and plant products along with the aim of increasing agricultural pro-
duction through plant protection. It not only gives the regulation of use of proper
pesticides to protect crops before and after harvest against harmful organisms as
well as to check the possible presence of pesticide residues in the treated
products. Therefore, Maximum residue levels (MRLs) are set by the European
Commission at the lowest achievable level consistent with good agricultural
practices to protect consumers from exposure to unacceptable levels of pesticide
residues in food and feed.

A legislative framework Regulation (EC) No 396/2005 of the European Par-
liament and of the Council (EC 2005) on pesticide residues applies in the EU from
1 September 2008. The Regulation attains the synchronization and generalization of
pesticide MRLs ensuring better consumer protection throughout the EU. With the
implication of new rules, MRLs undergo through a collective assessment of all form
of products for all classes of consumers, including children. The decision-making is
strictly science-based and a consumer intake assessment is conceded by the
European Food Safety Authority before concluding on the safety of an MRL.
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A dietary risk assessment is therefore a prerequisite for any MRL-setting.
A major difficulty stems from the fact that only the toxicological properties of the
active substance are normally directly investigated through the range of toxico-
logical studies required according to Directive 91/414/EEC (EC 1991). For this
reason, and within the framework of a collaboration agreement between the
European Food Safety Authority (EFSA) and the European Commission’s Joint
Research Centre (JRC), a project was initiated to evaluate the possible contribution
of computational methods and, in particular, QSAR analysis, to the evaluation of
the toxicological relevance of metabolites and degradates of active substances of
pesticides for dietary risk assessment. This project was one of three pesticide
metabolism related projects sponsored by EFSA during 2009–2010. The other two
addressed the possible use of Threshold of Toxicological Concern (TTC) consid-
erations in assessing metabolite/degradate toxicity carried out by the UK Pesticides
Safety Directorate (CRD 2010) and the impact of metabolism and degradation on
pesticide toxicity performed by the Austrian Agency for Health and Food Safety
(AGES 2010). In the framework of the EFSA funded project ‘‘Applicability of
QSAR analysis to the evaluation of the toxicological relevance of metabolites and
degradates of pesticide active substances for dietary risk assessment” (JRC 2010),
the use of computational tools in the field of food safety was investigated.

In addition to the formalised approach of QSAR analysis, it is possible to
estimate chemical properties and endpoints by using a less formalised approach,
based on the grouping and comparison of chemicals. The grouping approach can be
used, for example, to support the results of QSAR analysis or to generate estimated
data assuming that, in general, similar compounds will exhibit similar biological
activity (ECHA 2008). The use of computational tools in regulatory bodies and the
food industry have many different applications and provide practical examples of
how these methods can be applied and adapted for food safety purposes:

a. Use in US EPA OSCPP (Office of Chemical Safety and Pollution Prevention),
Office of Pesticide Programs

According to the Organization for Economic Cooperation and Development
(OECD) guidance, the US EPA uses the definition of a residue which describes
whether to include pesticide metabolites in food safety assessments (OECD 2009).
Regarding the determinations of hazardous residues of concern and tolerance
expression, the Office of Pesticide Programs relies on the expert committee
judgement of the Residue Of Concern Knowledge based Subcommittee (ROCKS).
The ROCKS committee used QSAR tools routinely as the expert tool for predicting
the hazards of pesticide and its metabolites of potential concern. They performed
following process:

(i) The US EPA has initiated long-term vision for the application of integrated
testing and assessment tools for pesticides.

(ii) Application of QSAR for hazard assessment for metabolites, environmental
degradates and impurities.
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(iii) Application of QSAR in establishing “Threshold of Toxicological Concern”,
non-animal eye irritation study and antimicrobial hazard

(iv) Application of QSAR in ecological risk assessment

b. Use in US FDA CFSAN (Center for Food Safety and Applied Nutrition), OFAS
(Office of Food Additive Safety)

The OFAS at the CFSAN of the US FDA states that QSAR analyses can be used to
supplement genetic toxicity testing or explore endpoints like carcinogenicity,
reproductive and developmental toxicity. Currently FDA CFSAN OFAS uses
QSAR as a decision support tool in the safety evaluation of food products along
with such as packaging materials and antimicrobials used in the food production
(Arvidson et al. 2010).

6 Need of Application of In Silico Approaches in Food
and Agrochemical Sciences

Phytochemicals are ubiquitous in dietary sources and can be found in many reg-
ulated food products as components of natural mixtures (e.g., flavouring agents,
botanicals) and botanical extracts used as ingredients in dietary supplements and
botanical drug products. Regrettably, a frequent setback with these substances is the
lack of toxicology data which are obligatory as well as helpful for evaluating the
safety of chronic human exposure. Chronic toxicity of a chemical is often pivotal
evidence for regulatory decision-making on the safety of the product. Diverse range
of toxicity must be addressed before introducing these phytochemicals into the open
market. The carcinogenicity end point is among the most imperative chronic tox-
icities used to assess risk for human exposure to chemicals and in safety evaluations
of regulated products. The regulatory guidance of United States (US) recommends
the use of 2-year rodent carcinogenicity studies in two species and sexes to support
the safety of US Food and Drug Administration (FDA) regulated products (FDA
2002). Although there is a great need for rodent carcinogenicity study data of
chemicals, relatively few substances, especially phytochemicals, have been tested
for carcinogenicity.

There are numerous reasons for the lack of diverse toxicity test data, including
the excessive financial cost, intensive resources (experts and review), and obviously
long period of time required to conduct the study according to standardized pro-
tocols such as those described in US FDA guidance documents (FDA 2002).
Therefore, in silico studies can play immense role in the context of hazard and risk
characterization of these substances in the interest of protecting public health
(Jacobs 2005).
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Phytochemicals are often encountered as “active” constituents in mixtures for
which there are little or no toxicological data. Given their high potential for human
exposure through dietary sources in conventional food and supplement products,
there is a practical need for assessing their toxicity using efficient and reliable
methods. Moreover, natural products show a vast structural diversity. Phyto-
chemicals are a class of substances that present a data-poor situation in assessment
of toxicity. Thus, there is a huge need for efficient prioritization of phytochemicals
in testing and screening of chemical toxicity.

The use of in silico methods is now supported in the EU by the enacted REACH
legislation in reaction to public desire to reduce the use of animals in testing (EU
2006). Moreover, these methods have been recommended by the US National
Research Council (NRC 2007), and are considered to be useful in setting testing
priorities (Bailey et al. 2005; NRC 2007). In silico models of rodent carcinogenicity
using QSAR analyses of phytochemicals have been previously reported to be a
predictive tool indicating some degree of promise for predicting naturally occurring
carcinogens derived from plants (Arvidson et al. 2008).

At the US FDA Center for Drug Evaluation and Research (CDER), Office of
Pharmaceutical Science (OPS), and the Center for Food Safety and Applied
Nutrition (CFSAN), Office of Food Additive Safety (OFAS), Division of Food
Contact Notifications (DFCN), the use of computational toxicology software is
being employed to help support regulatory decision-making in the safety evaluation
of human pharmaceuticals, their metabolites, and impurities, and indirect food
additives (Arvidson et al. 2008; Mayer et al. 2008).

6.1 What is an In Silico Approach?

A great deal of recent research has been oriented towards the modeling and design
of new molecules with the aim of discovery of potent molecules having improved
response (therapeutic activity, agrochemical activity, or food) and less toxicity. In
silico approaches (Fig. 1) play a crucial role in this protocol of rational new
molecule discovery. The QSAR methodologies are the important computational
tools which deal with the correlation between biological activity/toxicity of a
molecule and its structural features (Helguera et al. 2008). In a QSAR study, the
variations of biological activity within compounds of a congeneric series are cor-
related with changes in measured or computed features of the molecules referred to
as descriptors. A QSAR model developed employing a series of molecules with a
definite response helps in screening large databases of new molecules for identi-
fying potential compounds with the specific response (Perkins et al. 2003). It thus
reduces the huge expenditure of money and time for the preliminary experimental
studies. Moreover, the REACH (Registration, Evaluation and Authorization of
Chemicals) guidelines for animal safety restrict the extensive use of animals for
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initial screening of large databases. The QSAR technique thus provides an alter-
native pathway for design and development of new molecules with improved
activity. The field of QSAR encompasses further studies related to quantitative
structure-property relationship (QSPR) and quantitative structure-toxicity relation-
ship (QSTR) (Kar et al. 2014). The QSPR study deals with the molecular features
governing their physicochemical properties, while the QSTR technique determines
the structural attributes of the molecules responsible for their toxicity profile. The
pharmacophoric features and descriptors obtained from the developed QSAR
models may also be utilized for virtual screening (Tikhonova et al. 2004) of large
libraries of diverse compounds for a definite response parameter. A wide range of
application of QSAR technique in the field of agriculture and food science is
illustrated in Fig. 2.

A pharmacophore can be defined as the ensemble of steric and electronic fea-
tures that is necessary to ensure the optimal supramolecular interactions with a
specific biological target structure and to trigger (or to block) its biological
response. The pharmacophore is generally defined by the following features,
including H-bonding, hydrophobic, and electrostatic interaction sites, defined by
atoms, ring centers, and virtual points. The pharmacophore does not represent a real
molecule or a real association of functional groups, but a purely abstract concept
that accounts for the common molecular interaction capacities of a group of
compounds towards their target structure. Besides this, the identification of the
prime features imparting improved activity to the molecules under a particular study
facilitates the in silico design of new molecules with enhanced potency. Thus, a

Fig. 1 Types of in silico approaches widely applied in new molecule design
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focused library may be developed by compiling the newly designed molecules with
a specific response. QSAR analysis is based on the notion that biological activity
(BA) depends on structure (C) and physicochemical properties (P) of the molecules.
In case of QSTR, activity profile is replaced with the toxicity profile (Roy et al.
2015a, b).

Biological activity ̸toxicity = f Structure, Physicochemical propertiesð Þ

There are various types of QSAR techniques evolved with the time, from
1D-QSAR to 7D-QSAR based on the descriptor dimensionality. Some popularly
used methods are Molecular field analysis (MFA), Comparative molecular field
analysis (CoMFA), Comparative molecular similarity indices (CoMSIA), multi-
variate image analysis-quantitative structure-activity relationship (MIA-QSAR),
Group based QSAR (GQSAR), Hologram QSAR (HQSAR),) etc. More details are
discussed elsewhere (Roy et al. 2015a, b).

Another important in silico technique is docking study when the user has the
clear idea about the selective receptor where the ligand molecule will bind to show
the response in the body. Molecular docking is a study of how two or more
molecular structures, for example drug and enzyme or receptor of protein, fit
together (Roy et al. 2015a, b). The ability to bind large molecules, such as other
proteins and nucleic acids to form supra-molecular complex play an important role
in controlling biological activity. The behaviour of small molecules in the binding
pockets of target proteins can be described by molecular docking. The method aims
to identify correct poses of ligands in binding pocket of a protein and to predict the
affinity between ligand and the protein. It can be classified as: (i) protein-small
molecule docking, (ii) protein-nucleic acid docking and (iii) protein-protein dock-
ing (Roy et al. 2015a, b).

Fig. 2 Application of QSAR in the field of agriculture and food science
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6.2 QSAR in Regulatory Perspective

Considering the occurrence of about 30 million chemicals (Benfenati 2012) serving
varying purposes of industry, academia and household consumption, the assess-
ment of their harmful impacts towards the living ecosystem seems to be an alarming
issue. Along with the determination of specific toxicological impact of chemicals,
specifically pharmaceuticals and agrochemicals, it is also necessary to determine
their fate and impact on the environment. The aim should be to perform ecotoxi-
cological assessment of the chemicals before they are released into the environ-
ment. Evidently it is impracticable to engage animal models for determining
hazardous impact of such a huge number of chemicals. Hence, the concerned
regulatory bodies of different countries across the globe promote the use of
promising alternative techniques in achieving the goal. Computational in silico
techniques such as QSAR modeling, read-across etc. serve as potential alternative
techniques within the scope of predictive toxicology minimizing the time and cost
of the research. Although complete replacement of animal testing is not feasible,
reliable in silico techniques can help in the categorization of the chemicals and
thereby guiding the usage of environmentally friendly chemical agents.

6.2.1 The Acceptance of QSAR Modeling as an Alternative Strategy
to Animal Testing

The deployment of different animal models as testing objects in various chemical
and pharmaceutical suffers from the ethical issues. Various international agencies
on animal rights and ethics such as People for the Ethical Treatment of Animals
(PETA), Fund for the Replacement of Animals in Medical Experiments (FRAME)
etc. encourage the usage of alternative methods to minimize and/or eliminate
harmful effects exerted to the animals. The QSAR modeling formalism involves the
minimal use of animal experiments and accordingly complies with the guidelines
proposed by various animal ethics bodies. The commonest of them is the ‘Three Rs
(3Rs)’ formalism of Russell and Burch (1959) viz. ‘Reduction’, ‘Refinement’ and
‘Replacement’ which advocates the use of humanly methods for treating the animal.
Table 9 shows the ideology of the 3Rs.

Presently, various international regulatory authorities support QSAR technique
and propose its application in biological and risk assessment of chemicals. Some of
the organizations promoting the application of QSAR modeling include European
Commission’s European Centre for the Validation of Alternative Methods
(ECVAM) (Eskes and Zuang 2005), the Council for International Organizations of
Medical Sciences (CIOMS 1985), the REACH (Registration, Evaluation, Autho-
risation and Restriction of Chemicals) regulations of the European Union
(Hengstler et al. 2006), Office of Toxic Substances of the US Environmental
Protection Agency (Auer et al. 1990), the Agency for Toxic Substances and Disease
Registry (ATSDR) (El-Masri et al. 2002), the OECD (2014) etc.
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6.2.2 QSAR and the OECD

The OECD promotes the use of QSAR approach under the financial assistance of
the European Union. With the aim of highlighting QSAR modeling as a reliable
tool for the safety assessment of chemicals, the member countries of the OECD has
developed a set of guidelines enabling its practical application in the regulatory
context. The OECD (Q)SAR project comprising the QSAR toolbox (http://www.
oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm), the principles
for the validation of developed models, and guidance document aims to improve the
application of QSAR modeling by governments and industry to facilitate the
evaluation of chemical safety (OECD 2014). The OECD agreed for the following
set of five principles to facilitate the regulatory use of QSAR modeling.

(i) OECD Principle 1: A defined endpoint

This principle dictates transparency to be maintained while choosing an endpoint
data for modeling. The QSAR models are expected to be developed using homo-
geneous datasets containing single protocol generated response data. Another

Table 9 Principles of 3R

Method Brief description

Replacement Replacement refers to the use of non-sentient material in place of living
conscious beings. That is the implementation of methodologies and techniques
which replace the animal experiments on human ground. Materials with
emaciated nervous and sensory systems are usually designated as the
non-sentient objects namely microorganisms, higher plants, metazoan
endoparasites etc. It encourages the use of experiments involving in vitro
systems such as tissues, whole and part cells, in chimico methods i.e., the use
of synthetic macromolecule as proxy toxicity targets, in silico techniques
involving chemometric modeling, non-testing approach like read-across, and
other models of microorganisms, established animal cell lines, immature form
of vertebrates, invertebrates etc.

Reduction Reduction refers to the minimization of the number of animals used in the
study. This corresponds to all possibilities to reduce the number of animals
used per experiments. Some of the approaches are use of fewer animals to
reach the same goal, obtaining more information from each animal, are duction
in the number of animals implemented in the original methodology, by the
avoid of engaging additional animals etc. Improved experimental design and
statistical analysis, sharing of data between research groups and organizations,
use of imaging methods enabling longitudinal studies in same animal etc.

Refinement Refinement refers to the minimization of animal suffering, pain and distress
when engaged in studies. The objective of refinement is to enhance the
well-being of animals. Now, it is evident that reduction of distress or suffering
during biological experiment also resembles reduced variability in results and
thereby also improving quality of the data. Examples might comprise use of
suitable anaesthetics and analgesics, training of animals to avoid stress during
procedures such as blood sampling, necessary housing of animals e.g., nesting
option for mice to get desired specific behaviour
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crucial point a QSAR modeler needs to consider is the similarity in
mechanism/mode of action for all the chemicals used. Table 10 presents the
commonly used endpoints as identified by the OECD guidelines.

(ii) OECD Principle 2: An unambiguous algorithm

This principle states an explicit methodology to be used while developing predic-
tive QSAR models. This includes the formalisms implemented during data pre-
treatment, dataset division and the selection of features. Hence, this rule focuses to
bring transparency in model building rendering it not only reproducible to others,
but also making it explanatory in achieving the endpoint estimates.

(iii) Principle 3: A defined domain of applicability

The third principle of OECD for development and validation of QSAR model
portrays the importance of chemical/response domain of applicability. A QSAR
model developed using a set of chemicals possesses a specific theoretical space and
it is considered to provide reliable predictive result within that domain. Netzeva
et al. (2005) has defined the applicability domain (AD) of QSAR models as follows:
“The applicability domain of a (Q)SAR model is the response and chemical
structure space in which the model makes predictions with a given reliability.”
Hence, the determination of the domain of applicability of a model using the
training set molecules is necessary to check whether the prediction of test set
molecules is trustworthy or not. The AD of a model depends on three major
attributes (a) structural information, (b) physicochemical feature, and (c) response
space.

Table 10 The commonly employed regulatory endpoints identified by OECD for predictive
modeling analysis

Physicochemical
properties

Environmental fate and toxicity
Ecological effects Human health effects Environmental fate

Melting point
Vapour pressure
Aqueous solubility
Boiling point
K-octanol/water
K-organic C/water

Acute fish toxicity
Acute Daphnid
toxicity
Algae toxicity
Long-term aquatic
toxicity
Terrestrial effects

Acute oral toxicity
Acute inhalation
toxicity
Acute dermal
toxicity
Skin irritation
Eye irritation
Skin sensitization
Repeated dose
Genotoxicity
Reproductive
toxicity
Developmental
toxicity
Carcinogenicity
Organ toxicity

Biodegradation
Bioaccumulation
Hydrolysis
Atmospheric
oxidation
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(iv) OECD Principle 4: Appropriate measures of goodness-of-fit, robustness and
predictivity

The fourth OECD principle gives information on the statistical judgment of stability
and predictivity of a model. The judgment can be made by determining different
metrics characterizing the (a) internal model performance by fitness and robustness
measure using the training set, and (b) external predictivity using a test set. The
objective is to determine a suitable balance between the extreme conditions namely
overfitting and underfitting of the model based prediction.

(v) OECD Principle 5: A mechanistic interpretation, if possible

The fifth OECD principle attempts to draw attention on the diagnostic feature of the
variables aiding a good mechanistic basis for the response being modeled. Definite
information on the mechanism of action of chemicals towards a process can guide
the design and development of only desired analogues. Now, from the statement it
is evident that furnishing mechanistic information may not always be feasible, and
the rule suggests the modeler to report if any such information is available facili-
tating future research on that endpoint.

A quick look at the OECD guidelines for development and validation of QSAR
models is shown in Table 11, while Table 12 gives definition of the some of the
terminologies used in QSAR modeling as per the OECD (2014) guidance
document.

7 Successful Application of QSAR in Agriculture

7.1 QSAR Models of Herbicides

The activity of 69 monosubstituted sulfonylurea analogs (Fig. 3) as inhibitors of
pure recombinant Arabidopsis thaliana Acetohydroxyacid synthase (AHAS) was
studied to develop 3D-QSAR models using comparative molecular field analysis
(CoMFA) and comparative molecular similarity indices analysis (CoMSIA) by
Wang et al. (2005). The studied research demonstrated the abilities of the
3D-QSAR techniques to explain the different affinities of herbicidal sulfonylureas
for A. thaliana AHAS. To check the quality and predictability of the QSAR models,
the authors used different training sets and found that CoMFA and CoMSIA gave
similar correlations of inhibitory data. The CoMSIA analysis suggested steric,
electrostatic, hydrophobic and H-bond acceptor features requirements for increased
potency of this class of inhibitors. Mapping of the resulting fields on to the crystal
structure of the yeast enzyme showed that the steric and hydrophobic fields were in
good agreement with sulfonylurea-AHAS interaction geometry. The authors con-
cluded that for high potency AHAS inhibition, the sole heterocyclic substituent
should be small and hydrophobic while the ortho substituent on the aromatic ring
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Table 11 The OECD guidelines for QSAR model development and validation at a glance

Principle 1: A defined endpoint
Clear definition of the scientific purpose. 
The ability of the model in serving regulatory purpose. 
Important experimental conditions affecting the measurement.
Unit of the endpoint.

Principle 2: An unambiguous algorithm
For SAR: Explicit information on substructure and its substituents.
For QSAR: Explicit information on the equation, algorithm, and the descriptors.

Principle 3: A defined domain of applicability
For SAR

Description of limits using substructure information. 
Rules depicting the impact on the molecular environment of the substructure. 

For QSAR
Inclusion/ exclusion rule using the range of response and descriptors. 
Graphical presentation of training set descriptor values with respect to the response.

Principle 4: Appropriate measures of goodness-of-fit, robustness and predictivity
Internal performance 

Training set information
• Number of compounds 
• Chemical names
• Structural formulae
• Values of all descriptors
• Values of all response variables

Information on the raw data indicating processing method implemented (if any) 
Descriptors selection

• Technique used for selecting initial descriptor pool
• Initial number of considered descriptors
• The feature selection technique used for using final descriptors 
• The final numbers of descriptors present in the model 

Employed statistical techniques 
• Specification of the method 
• Used software/ tool
• Information on the independent application of the model 

Statistical metric showing goodness-of-fit using the training set 
Information on model cross-validation/ resampling

External predictivity
Information on the use of training set independent test set 
Information the external validation

• Number of test set chemicals
• Chemical names of all compounds 
• Structural formulae of all compounds 
• Values of all descriptors
• Values of all response variables

Suitable explanations on 
• The method used for selecting test set
• Information on the size of the test set
• Information on the chemical representativeness with respect to training set
• Specifications of the employed statistical methods

Principle 5: A mechanistic interpretation if possible
For SAR: Description of molecular events caused by the substructure leading to response
For QSAR: Physicochemical interpretation of the descriptors with respect to a known 
mechanism
An indication whether the proposed basis is derived using a priori or a posteriori 
observation
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Table 12 Terminologies defined in the OECD guidance document (OECD 2014) in relation to
QSAR paradigm

Terms Definitions

Applicability
domain (AD)

The AD of a QSAR model is the response and chemical structure space
in which the model makes predictions with a given reliability

Classification Classification is the assignment of chemicals to one of several existing
classes based on a classification rule. A class or category is a distinct
subspace of the whole measurement space. The classes are defined a
priori by groups of objects in the training set. The objects of a class have
one or more characteristics in common, indicated by the same value of a
categorical variable. The classification method attempts to develop a
classification rule using training set objects having known classes and
aims to apply on test set objects bearing unknown classes

Cluster analysis Cluster analysis is the grouping, or clustering, of large data sets on the
basis of similarity criteria for appropriately scaled variables that
represent the data of interest. Similarity criteria (distance based,
associative, correlative, probabilistic) among the several clusters
facilitate the recognition of patterns and reveal otherwise hidden
structures in the data

Collinearity Collinearity is a situation where there is a linear relationship between
two or more of the independent variables in a regression model. In
practical terms, this means there is some degree of redundancy or overlap
the variables. Interpretation of the effects of the independent variables is
difficult in this situation, and the standard error of their estimated effects
may become very large

Congeneric series A group of chemicals with one or more of the following: a common
parent structure, same mechanism of action, and rate-limiting step

Cross-validation Cross-validation refers to the use of one or more statistical techniques in
which different proportions of chemicals are omitted from the training set
(e.g. leave-one-out [LOO], leave-many-out [LMO]). The QSAR model
is developed on the basis of the data for the remaining chemicals, and
then used to make predictions for the chemicals that were omitted. This
procedure is repeated a number of times, so that a number of statistics
can be derived from the comparison of predicted data with the known
data. Cross-validation techniques can be used to assess the robustness of
the model (stability of model parameters), and to make estimates of
predictivity

Degradation Chemicals that are released in the environment are subject to different
(biotic and abiotic) degradation processes: biodegradation by
microorganisms, photolysis by light, hydrolysis by water, oxidation by
different oxidants (for instance, in the atmosphere by hydroxyl and
nitrate radicals or by ozone)

Dependent variable A dependent variable (y) is a variable modelled by an equation in which
one or more independent variables (x) are used as predictors of the
dependent variable

Discriminant
analysis

Discriminant analysis refers to a group of statistical techniques that can
be used to find a set of descriptors to detect and rationalize (in terms of a
predictive model) the separation between activity classes

(continued)
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Table 12 (continued)

Terms Definitions

Expert system Any formalized system, not necessarily computer-based, which enables a
user to obtain rational predictions about the properties or activities of
chemicals. All expert systems for the prediction of chemical properties or
activities are built upon experimental data representing one or more
effects of chemicals in biological systems (the database), and/or rules
derived from such data (the rule base)

External validation External validation refers to a validation exercise in which the chemical
structures elected for inclusion in the test set are different to those
included in the training set, but which should be representative of the
same chemical domain. The QSAR model developed by using the
training set chemicals is then applied to the test set chemicals in order to
verify the predictive ability of the model. In the ideal validation process,
the results of external validation will be used to supplement the results
obtained by internal validation

Internal validation Internal validation refers to a validation exercise in which one or more
statistical methods are applied to the training set of chemicals. Internal
validation results in one or more measures of goodness-of-fit, robustness
of model parameters, and estimates of predictivity

Molecular
descriptor

A molecular descriptor is a structural or physicochemical property of a
molecule, or part of a molecule, which characterizes a specific aspect of a
molecule and is used as an independent variable in a QSAR

Molecular modeling Molecular modeling refers to the investigation of molecular structures
and properties by using computational chemistry and graphical
visualization techniques to provide a plausible three-dimensional (3D)
representation of a chemical. It can refer to the modelling of small
organic molecules, macromolecules (e.g. proteins, DNA), crystals and
inorganic structures. The 3D structure of the molecule is usually obtained
by a process of geometry optimization. The geometry-optimized
molecule provides the basis for calculating molecular properties

Narcosis Narcosis is the non-specific supression of physiological functions by
chemicals which bind reversibly to membranes and proteins. The effect
is brought about by non-reactive chemicals and is thought to result from
an accumulation of the toxicant in cell membranes, diminishing their
functionality. The narcotic effect is reversible, so that an organism will
recover when the toxicant is removed

Pattern recognition Pattern recognition is the identification of patterns in large data sets,
using appropriate chemometric methods. Examples are exploratory
methods like Principal Component Analysis (PCA), Factor Analysis,
Cluster Analysis (CA), Artificial Neural Networks (ANN)

Parameter space The parameter space of a model is a multi-dimensional space in which
the axes are defined by the descriptors of the model

(Model)
Performance

The performance of a QSAR model refers to its goodness-of-fit,
robustness and predictive ability in relation to a defined applicability
domain. Model performance is established by using the techniques of
statistical validation

(continued)
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Table 12 (continued)

Terms Definitions

Persistence The term persistent is used to characterise chemicals that have long
lifetimes in the environment. The persistence of a chemical depends on
its kinetics or reactivity, as expressed by its rates of degradation

Predictivity The predictivity (or predictive capacity/ability) of a model is a measure
of its ability to make reliable predictions for chemical structures not
included in the training set of the model

Reliability Measures of the extent that a test method can be performed reproducibly
within and between laboratories over time, when performed using the
same protocol. It is assessed by calculating intra- and inter-laboratory
reproducibility and intra-laboratory repeatability

Reliable (Q)SAR A (Q)SAR that is considered to be “reliable” or “valid” for a particular
purpose is a model that exhibits an adequate performance for the
intended purpose. The criteria for determining whether the model
performance is “adequate” will depend on the particular purpose and are
highly context-dependent

Relevance Description of relationship of the test to the effect of interest and whether
it is meaningful and useful for a particular purpose. It is the extent to
which the test correctly measures or predicts the biological effect of
interest. Relevance incorporates consideration of the accuracy
(concordance) of a test method

Structural alert A structural alert is a molecular (sub)structure associated with the
presence of a biological activity

Supervised learning Supervised learning refers to the development of an algorithm (e.g.
QSAR model) by a process that uses both the predictor and the response
values, whereas in unsupervised learning, only the predictor values are
used. Examples of supervised learning methods are (multiple) linear
regression and discriminant analysis. Examples of unsupervised learning
methods are different types of cluster analysis and principal components
analysis (PCA)

Training set A training set is a set of chemicals used to derive a QSAR. The data in a
training set are typically organized in the form of a matrix of chemicals
and their measured properties or effects in a consistent test method.
A homogeneous training set is a set of chemicals which belong to a
common chemical class, share a common chemical functionality, have a
common skeleton, or common mechanism of action. A heterogeneous
training set is a set of chemicals which belong to multiple chemical
classes, or which do not share a common chemical functionality or
common mechanism of action

Test set A test set is sometimes called an “independent” or “external” test set (or
validation set), and distinguished from “training set”. It is a set of
chemicals, not present in the training set, selected for their use in
assessing the predictive ability of a QSAR

Toxic endpoint A toxic endpoint is a measure of the deleterious effect to an organism
following exposure to a chemical. A large number of toxic endpoints are
used in regulatory assessments of chemicals. These include lethality,
generation of tumours (carcinogenicity), immunological responses,
organ effects, development and fertility effects. In QSAR analysis, it is

(continued)
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should be small and polar. Compounds with more radical departures in structure
from those of conventional sulfonylureas were generally ineffective inhibitors.

A series of pyrazolo[5,1-d][1,2,3,5]tetrazin-4(3H)one derivatives (Fig. 4) was
designed, synthesized, and evaluated by Zhu et al. (2007) for their herbicidal
activities towards Brassica campestris and Echinochloa crus-galli followed by
QSAR studies employing physicochemical parameters (electronic, Verloop, or
hydrophobic). The comprehensive study demonstrated that herbicidal activity
against B. campestris was mainly affected by the molar refractivity (MR) for R1,
Taft (Eso) for R2 or R6, Verloop (Lm) for R3 or R5, and electronic parameters
(Hammett’s constants) for R4. Again, herbicidal activity against E. crus-galli was
mainly related with the substituents’ hydrophobic parameter. When MR was about
0.95, the compound showed the highest herbicidal activity, and for the di-meta
substituents (R3 and R5) at the benzene ring, their herbicidal activity was mainly
affected by the substituent with higher Verloop’s sterimol (Lm) parameter value. In
the final conclusion the authors reported that these compounds showed greater
herbicidal activity toward B. campestris than E. crus-galli.

A series of novel 2-cyanoacrylates (Fig. 5) containing different aromatic rings
have been synthesized, characterized and tested for herbicidal activities against four
weeds and inhibition of photosynthetic electron transport against isolated chloro-
plasts by Liu et al. (2008). Analysis of both in vivo and in vitro data showed that the

Table 12 (continued)

Terms Definitions

important to develop models for individual toxic endpoints, and different
methods may be required for different endpoints

Validation The process by which the reliability and relevance of a particular
approach, method, process is established

Validated QSAR A validated (Q)SAR is a model considered to be reliable for a particular
purpose based on the results of the validation process in which the
domain of application and the level of uncertainty required is defined

Valid (Q)SAR A valid (Q)SAR is a model considered to be adequate for the intended
purpose either because reliability has been demonstrated by historical
use or by a validation process

(Q)SAR validity The criteria for judging (Q)SAR validity are determined by specific
regulatory constraints in member countries which include the number of
chemicals, time required in the decision process and the level of
uncertainty acceptable for the regulatory application
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compounds containing benzene, pyridine, and thiazole moieties gave higher
activities than those containing pyrimidine, pyridazine, furan, and tetrahedron furan
moieties which lead to further exploration through QSAR models on the basis of
in vitro data. Therefore, the authors performed CoMFA analysis and the results
showed that a bulky and electronegative group around the para-position of the
aromatic rings would have the potential for higher activity, which offered important
structural insights into designing highly active compounds prior to the next syn-
thesis. The authors presumed that there was a significant electrostatic interaction
between the aromatic ring and the possible receptor

A series of 68 sulfonylurea herbicides was modelled employing the MIA-QSAR
approach by Bitencourt and Freitas (2008). The authors showed that the reported
model seemed to exhibit advantages over traditional QSAR models correlated with
physicochemical descriptors like log P (octanol/water partition coefficient) and MR
(molar refractivity) through multiple linear regression (MLR) approach. Not only
that the result of the presented study was compared with previous COMFA model
and found to be better predictive model in term of external validation. Therefore,
the authors demonstrated that MIA-QSAR might be used as an alternative approach
when existing methods do not work well and it had the capability for predicting
new herbicide by taking a molecule that is a miscellany of substructures of known
herbicides pertaining to two or more different congeneric classes having a minimum
of similarity.
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A predictive QSAR model was reported by Díaz and Delgado (2009) for
pyrimidylsalicylate based herbicides for the prediction of 50% inhibition of the
acetohydroxyacid synthase (AHAS) activity. The training set included 30 substi-
tuted O-(4,6-dimethoxypyrimidin-2-yl) salicylic acids and thio analogs, including
6-substituted(thio)-, 5- and 6-substituted salicylic acids covering pI50 range from
about 3–8 U. The model was validated with an external set of 13 structures not
included in the training set. Acceptable statistical results support the quality
(R2 = 0.89) and predictability (R2

Ttest = 0.84) of the developed QSAR model. The
model involves only four descriptors: two geometric and two quantum chemical,
accounting for the steric, electrostatic and hydrogen bonding interactions respon-
sible for the binding of the herbicides to the enzyme. The result suggested that
pyrimidylsalicylates and sulfonylureas have very similar binding sites which are in
complete agreement with the literature.

Molecular docking-guided active conformation selection was used in a QSAR
study for a series of 35 3H-pyrazolo[3,4-d][1,2,3]triazin-4-one derivatives as novel
protoporphyrinogen oxidase (PPO) inhibitors with herbicidal activities by Lei et al.
(2009). Molecular docking study was carried out to dock the inhibitors into the PPO
active site and to obtain the rational active conformations. Based on the confor-
mations generated from molecular docking, satisfactory predictive results were
reported by a genetic algorithm-MLR (GA-MLR) model according to the internal
and external validations (R2 of 0.972 and 0.953 and an absolute average relative
deviation AARD of 2.24% and 2.75% for the training set and test set, respectively).
The four molecular descriptors contributed to the herbicidal activities of the studied
compounds. Among them, the fragment C-033 (an atom centered fragment
descriptor defined for each ring atom with three neighbours which represents the
number of the R–CH···X fragment in a molecule with the meaning that a central
carbon atom (C) on an aromatic ring has a carbon neighbor (R), a heteroatom
neighbor (X) and the third hydrogen (H) neighbor outside the ring. “–” and “···”
stand for aromatic and aromatic single bonds, respectively) played the essential role
in the correlation between inhibitors and PPO, which can also explain the lower
activities of few compounds. Moreover, a topological charge index descriptor and a
R-GETAWAY descriptor indicated that the molecular conformation is greatly
important in building the QSAR model. The outcome demonstrated that the
molecular docking-guided active conformation selection strategy was rational and
useful in the QSAR study of these PPO inhibitors and for the quantitative prediction
of their herbicidal activities.

A QSAR study has been performed for a data set of 33 diphenyl ether
(DPE) herbicides (Fig. 6) with their inhibition data on protoporphyrinogen oxidase
(PPO) enzyme by Rouhollahi et al. (2010). PPO is the last common enzyme in the
biosynthetic pathway to heme and chlorophyll. First, stepwise regression as a
variable selection method was employed to develop a regression equation based on
26 training compounds, and predictive ability was tested on 7 compounds.
Thereafter, two linear correlating tools, MLR and partial least squares (PLS)
regression methods were used for final models. A multi-parametric equation
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containing four structural descriptors with good statistical impact was reported.
Obtained results concluded that the PCR (ratio of multiple path counts to path
counts), T(Cl..Cl) (sum of topological distances between Cl and Cl atoms),
RDF075m (radial distribution function at 7.5 Å interatomic distances weighted by
atomic mass) and Mor03m (3D-MoRSE—signal 03/weighted by atomic masses)
can be used successfully for modeling biological activity of the studied compounds.
Combination of 2D and 3D descriptors allowed differentiation between activities of
enantiomers. The high correlation coefficients and low prediction errors obtained
confirm good predictive ability of both MLR and PLS based models; resulting the
squared regression coefficients were 0.95 and 0.94 respectively.

Docking and 3D-QSAR studies were carried out by Roy and Paul (2010a) for
AHAS inhibitor sulfonylurea analogues (Fig. 7) having potential herbicidal activ-
ity. Docking studies suggested that the molecules bind within a pocket of the
enzyme formed by important amino acid (Met351, Asp375, Arg377, Gly509,
Met570 and Val571) residues. The inhibitors form hydrogen bonds with some of
the amino acid residues to bind properly with the enzyme. But steric bumps have
detrimental effect on the AHAS inhibition activity. The AHAS inhibitory activities
of those compounds are very high which can form intramolecular or intermolecular
hydrogen bonds. On the contrary, compounds, which formed steric bumps (either
intermolecular or intramolecular), had lower AHAS inhibitory activity. Shape
parameter showed that bulky substitution at R1 position may enhance the AHAS
inhibitory activity. The charged surface area descriptors recommended that the
negative charge distributed over a large surface area may enhance the activity. The
structural parameter (HBondacceptor) supports the charged surface area descriptors
in that, for better activity, number of electronegative atoms present in a molecule
should be high. The spatial descriptors proposed that for better activity the mole-
cules should possess bulky substituent and small substitution at R2 position and R3

position respectively.
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Docking and 3D-QSAR studies have been performed by Roy and Paul (2010b)
for protoporphyrinogen oxidase (PPO) inhibitor 3H-pyrazolo[3,4-d][1,2,3]
triazin-4-one analogues (Fig. 8) which are potential herbicides to protect agricul-
tural products from unwanted weeds. Docking studies suggested that the molecules
bind with a hydrophobic pocket of the enzyme formed by some nonpolar amino
acid (Ile168, Ile311, Ile412, Met365, Phe65 and Val164) residues. The co-enzyme
FAD plays a major role in the receptor binding of the inhibitors. The inhibitors form
hydrogen bonds to bind properly with the enzyme. But, steric bumps have detri-
mental effect on the PPO inhibition activity. Compounds which formed bumps
either intermolecular or intramolecular way, had lower PPO inhibitory activity. The
quantum chemical descriptor LUMO (energy of lowest unoccupied molecular
orbital representing the electrophilicity of a molecule) suggested that, for better
herbicidal activity the molecules should be highly electrophilic. But, another
electronic descriptor HOMO (the energy of highest occupied molecular orbital
representing nucleophilicity of a molecule) also showed positive contribution. So,
there must be a balance between HOMO and LUMO energies, i.e., electrophilic and
nucleophilic characters of the inhibitors. The charged surface area descriptors
suggested that the positive charge distributed over a large surface area may enhance
the activity. The spatial descriptors showed that for better activity the molecules
should have symmetrical shape in all directions in a 3D space. Molecular field
probes recommended that an increase in steric volume may enhance the herbicidal
activity. Additionally, the position of the R1 substituent may affect the PPO inhi-
bition activity. Finally, authors concluded that instead of triazin-4-one ring system,
tetrahydroisoindole-1,3-dione ring structure may enhance the PPO inhibition
activity.

To obtain insights into what/how properties and groups of the 12 phenylurea
herbicides (PUHs) molecules affect the antigen-antibody (Fig. 9) interaction
quantitatively, QSAR methodologies were applied including traditional 2D-QSAR
and hologram QSAR (HQSAR) by Yuan et al. (2011). Both models showed high
predictive abilities with cross-validated Q2 values of 0.820 and 0.752, respectively.
The results demonstrated that (1) the most important impact factor on PUH anti-
body recognition was the PUHs’ hydrophobicity (log P), which provides a quad-
ratic correlation to the antibody recognition. Hapten carrier linking groups were less
exposed to antibodies during immunization; thus, groups of the analytes in the same
position were generally considered to be less contributive to antibody recognition
during immunoassay. But the results of substructure-level analysis showed that

Fig. 8 Parent structures of 3H-pyrazolo [3,4-d][1,2,3] triazin-4-one derivatives and flumioxazin
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these groups played an important role in the antigen-antibody interaction. (2) The
frontier-orbital energy parameter E-LUMO was accountable for antibody recogni-
tion. (3) Although the R3 group is less exposed to antibodies and considered to be
less contributive, the hydrophobicity of the R3 group has a great positive contri-
bution to antibody recognition. To lengthen the R3 group may increase the sensi-
tivity of detection. (4) The R1 and R2 groups have negative contributions to
antibody recognition; however they contribute positively or neutrally when they are
with chlorine atoms on both groups that are same as the hapten.

Virtual screening analysis has been performed for 19 commercially available
isatin analogues and 13 newly synthesized isatin derivatives as novel AHAS
inhibitors for their herbicidal activity by Wang et al. (2011). The CoMFA contour
models followed by density functional theory (DFT), natural bond orbital
(NBO) and docking studies were prepared to understand the SAR for isatin
derivatives. Combination of CoMFA and NBO approaches suggested that isatin
moiety in all of the molecules makes a major contribution to the binding of Ara-
bidopsis thaliana (AtAHAS). These were largely through π-π or hydrophobic
interactions and most obvious in the HOMO maps. The frontier molecular orbital
maps showed that the carbonyl positioned adjacent to the hydrazone nitrogen atom
also played an important role in binding. Docked isatins to the binding site of
AtAHAS demonstrated that the inhibitor fits neatly into the binding cavity and
interact directly with AtAHAS. Docked interactions emphasized that hydrophobic
contacts to the protein were through the indole moiety and the carbonyl carbon
atom in the bridge. Docking binding mode was in good agreement with frontier
molecular orbital from DFT calculations.

Mutation dependent Biomacromolecular QSAR (MB-QSAR) successfully
applied by He et al. (2013) to quantitatively describe molecular mutational resistance
to herbicide chlorimuron ethyl (CE) by AHAS which is one of the most important
targets for herbicides, fungicides and antimicrobial compounds. The MB-QSAR
models were constructed and validated based on the wild type E. coli AHAS II (EC
2.2.1.6) and its 85 mutants. The MB-QSAR models here gave accurate prediction of
the pKi app values for CE against AHAS mutants (MB-QSAR ̸CoMFA:
R2 = 0.927, Q2 = 0.631, R2

pred = 0.684; MB-QSAR/CoMSIA: R2 = 0.940, Q2 =

0.540, R2
pred = 0.690). Interpretation of the 3D molecular interaction diagram gave

detailed information about the structure resistance relationships for the mutated
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AHAS. According to the authors, due to the limited available structural variables for
the modification on small molecular ligands, 3D-QSAR of small molecular ligands
may not give more comprehensive information on the intermolecular interaction than
the MB-QSAR does. Therefore, MB-QSAR might provide further molecular infor-
mation for designing the high potency inhibitors.

Most commonly, herbicides are ethyl to octyl esters of
2,4-dichlorophenoxy-acetic acids (2,4DAA), 2,4-dichlorophenoxy-propionic acids
(2,4DPA) or 2,4-dichlorophenoxy-butyric acids (2,4DBA). Percutaneous penetra-
tion of esters of the 2,4D family was esterase-dependent both in rats and humans.
The enzymatic constants for hydrolysis of each ester by skin esterases were
determined in vitro using skin homogenates from both species. Therefore, SAR
linking the evolution of the ex vivo percutaneous flux of esters and the 2,4D
structure with enzymatic and/or physical parameters were examined by Beydon
et al. (2014) to develop a good flux estimation model. The developed model sug-
gested that although the percutaneous penetration of all of the esters were
“esterase-dependent”, the decreasing linear relationship between percutaneous
penetration and hydrophobicity defined by the logarithm for the octanol-water
partition coefficient (log(kow)) was the most pertinent model for estimating the
percutaneous absorption of esters for both species. The mean flux of the free acid
production by the esterases of the skin was not the limiting factor for percutaneous
penetration. The rate of hydrolysis of the esters in the skin decreases linearly with
log(kow), which would suggest that either the solubility of the esters in the zones of
the skin that were rich in esterases or the accessibility to the active sites of the
enzyme was the key factor. The structure-activity relationship resulting from this
study makes it possible, in humans and in rats, to make a good estimate of the
ex vivo percutaneous fluxes for all pure esters of this family of herbicides.

Bioactive compounds could form aggregates that influence the bio-interactive
processes. Following the theory and based on π–π stacking models, quantitative
aggregation-activity relationship (QAAR) studies were performed on a series of 24
sulfonylurea herbicides (Fig. 10) with good solubility by Xia et al. (2014). First, the
authors generated π–π stacking aggregate models by the B97D/TZVP method.
Then, QAAR investigations were performed on the descriptors calculated from the
optimized aggregate/monomer structures. Four QAAR models were constructed,
which indicated that the bioactivity may strongly depend on both the characters of
the dimeric aggregates and the monomer. The best QSAR equation explored radius
of gyration (rgyr-a standard measure of overall structural change of macro-
molecules), log of the aqueous solubility (log S), log of the octanol/water partition
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coefficient (log P(o/w)), surface globularity (vsurf_G) contributed to the herbicidal
activity. The QAAR model revealed that low values of rgyr and vsurf_G for the
formation and dissociation of dimers, as well as high values of log S and low values
of log P(o/w) would lead to high bioactivity. The authors revealed that the QAAR
approach was not only appropriate for poorly water-soluble insect growth regula-
tors, but also for highly water-soluble sulfonylurea herbicide, and not only
hydrogen bonds but also π–π interactions successfully introduced in QAAR
investigations. The research work concluded that the QAAR approach based on
dimer-aggregates can be applicable for the highly water-soluble sulfonylurea her-
bicides that can form π–π stacking interactions.

The herbicidal activities of a series of novel [1,2,4]triazolo[4,3-a]pyridine
derivatives against monocotyledon weeds such as Echinochloa crusgalli, Digitaria
sanguinalis and Setaria faberii and dicotyldon weeds such as Amaranthus retro-
flexus, Eclipta prostrata and Brassica juncea were evaluated by Liu et al. (2015),
followed by a molecular modelling studyemploying the CoMFA method. A pre-
dictive CoMFA model was established with acceptable correlation coefficient R2

(0.892) and the cross-validated coefficient Q2 (0.61). The contributions of steric and
electrostatic fields were 78.3% and 21.7% respectively. The 3D-QSAR provided
meaningful clues as to the structural features of this family of herbicides that will be
helpful in the design of more potent compounds in the future. The QSAR analysis
indicated that the substituents on the benzene ring greatly affect the activity. The
herbicidal activity with an electron-donating group is higher than that with an
electron-withdrawing group. Compounds with an electron-donating group at the
para position of the benzene ring exhibited significant herbicidal activity. In the
halogen-substituted compounds, only fluorine substituted at the para or meta
position of the benzene ring exhibited excellent herbicidal activity. However, it is
noteworthy that the compounds with an alkyl group showed weaker herbicidal
activity compared with that of aromatic-substituted compounds which showed
moderate herbicidal activity. The effects on herbicidal activity can be placed in the
order aromatic > heteroaromatic > alkyl.

The half-life (t1/2) of 58 herbicides was modelled employing QSPR analysis by
Samghani and Fatemi (2016). MLR and support vector machine (SVM) methods
were used as feature mapping techniques for modelling and prediction the half-life
after feature selection through stepwise-MLR from the large pool of descriptors.
The statistical parameters R2 and standard error for training set of SVM model were
0.96 and 0.087, respectively, and those were 0.93 and 0.092 respectively for the test
set. The established SVM model was used for predicting the half-life of other
herbicides that are located in the applicability domain of model determined via the
leverage approach. The proposed models could identify and provide insight into
what structural features were related to the half-life of these compounds. The result
showed that the SVM model exhibits more reliable statistical and prediction per-
formance than the MLR model. The good agreement between experimental results
and the predicted values of half-life by using SVM indicated that the relationship
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among selected molecular descriptors and herbicide’s half-life is non-linear. The
result emphasised that the process of degradation of herbicides in the environment
is very complex and can be affected by the geometrical and topological aspects of
molecules.

7.2 QSAR Models of Fungicides

A QSAR model was developed using a topological substructural molecular design
(TOPS-MODE) approach to interpret the antifungal activity of 14 benzohydrazides
which were synthesized and evaluated for their in vitro antifungal activity against
the phytopathogenic fungus Botrytis cinerea by Reino et al. (2007). The model
described 98.3% of the experimental variance with a standard deviation of 4.02. The
performed study demonstrated that in addition to N′,N′-dibenzyl and
N-aminoisoindoline substitution, the presence of a substituent in the ortho position
of benzoic acid was critical to the antifungal activity. The QSAR study revealed that
while N′-benzyl substitution seems to play an important role in the inhibition
mechanism by enhancing the antifungal activity of these compounds, the aliphatic
chain on the nitrogen of benzohydrazide does not seem to have a significant effect
on their fungistatic activity, except when the aliphatic chain is sufficiently large for
it to be considered appropriately hydrophobic. The authors concluded that the
enhanced biological properties in that case might be caused by the necessary bal-
ance provided by hydrophobicity to cross the lipophobic or lipidic membranes of
plants.

Three machine learning methods GA-MLR, least squares-SVM (LS-SVM), and
project pursuit regression (PPR) were employed to develop the linear and nonlinear
QSAR models by Du et al. (2008) for predicting the fungicidal activities of 100
thiazoline derivatives (Fig. 11) against rice blast caused by M. grisea. The authors
used GA-MLR method to select the most appropriate molecular descriptors from a
large set of descriptors followed by building of two models (LS-SVM and PPR)
from selected ones. Both the linear and nonlinear models gave good prediction
results, but the nonlinear models showed better prediction ability, which showed
that the LS-SVM and PPR methods could simulate the relationship between the
structural descriptors and fungicidal activities more accurately for this particular
dataset. The study identified and provided significant insight into the structural
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features related to the biological activity providing instruction for further design of
thiazoline derivatives with higher inhibitory activity for the protection of rice blast
disease.

Song et al. (2008) used fungicidal activities of 100 thiazoline derivatives
(Fig. 11) as used by Du et al. (2008) to develop MLR and neural network
(NN) models to study the substituent effects at para site of R1 and at three sites
(ortho, meta, or para) of R2 aromatic rings in. Five descriptors including the
non-overlap steric volume SVR2C2, Connolly surface area SAR1, hydrophobicity
∑ πR2, and Hammett substituent constants (σpR1 and σmR1) were identified as
important factors of fungicidal activities. The authors reported the following con-
clusion from the study. For high fungicidal activities, substituents should have the
small connolly surface area and electro-donation property at para site in R1 aromatic
ring. Fungicidal activities of thiazoline derivatives showed abilities and additive
effects by the substituents as the small volume at ortho site, electron-withdrawing
property at meta site, and high hydrophobicity in the R2 aromatic ring. Again, the
substituent effects in the R1 aromatic ring were highly related to the fungicidal
activities than those in R2 aromatic ring. The correlations between the descriptors
and the activities were improved by NN although the descriptors of optimum MLR
model were used in the NN, which implies that the descriptors used in MLR model
might have non-linear relationships with the response and these descriptors of
thiazoline derivatives play a significant role in the fungicidal activities against
M. grisea.

A series of 38 N-nitrourea derivatives (Fig. 12) were synthesized and their
fungicidal activity were checked against Rhizoctonia solani by Cao et al. (2012)
followed by construction of QSAR models using CoMFA and CoMSIA. Based on
the experimental data, two best CoMFA and CoMSIA models with the
cross-validated Q2

ðLOOÞ values of 0.773 and 0.72 and correlation coefficient (R2)
values of 0.959 and 0.936, respectively were obtained. The testing set of com-
pounds gave a prediction (R2

pred) of 0.662 and 0.568 for CoMFA and CoMSIA
models indicating that the two best models could be effectively used to predict the
activity of new inhibitors and guide the further modification of these compounds by
conforming to the following conclusion from the study. Small and electronegative
groups at the 2-position (2-F), bulky and electronegative substituents at the
3-position (3-CF3, 3-NO2), bulky and electropositive groups at the 4, 5-region, and
small and electronegative groups at the 6-position may increase the fungicidal
activity.
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The relationship between antifungal activity against Alternaria alternata and
structure on the 7-phenyl group of (+)-dihydroguaiaretic acid ((+)-DGA) was
explained by investigating 38 synthesized (+)-DGA derivatives (Fig. 13)
employing the Hansch-Fujita method by Hasebe et al. (2013). The model suggested
that the small electron-withdrawing group at the meta-position of the 7-phenyl
group is important for the higher antifungal activity. It was suggested that the
smaller electron-withdrawing group at the 3-position caused higher activity. This
was the first report of QSAR analysis of simple lignan, which was linked by only
the β,β′-bond of two phenylpropanoid units. This result contributes to the design
and synthesis of more active compounds based on the widely distributed simple
natural lignan structure. For example, the whitening activity of
3-hydroxy-4-methoxyphenyl derivative, 3-hydroxy-4-ethoxyphenyl derivative, and
3-hydroxy-4-isopropoxyphenyl derivative against A. alternata Japanese pear
pathotype was discovered.

He et al. (2015) investigated 22 novel stilbene derivatives (Fig. 14) containing
the 1,3,4-oxadiazole moiety and trimethoxybenzene in 3D-QSAR analysis which
were designed and synthesized previously. The 3D-QSAR approach proved to be
an efficient one to implement structural modification by combination of several
functional fragments and provided reliable clues for mechanistic study and
designing of optimized stilbene derivatives in future. On the basis of the in vivo
bioassay and 3D-QSAR analysis, the authors concluded that the variances (sub-
stituted positions, electronic properties, and steric effects) among substituents
(Ar) on stilbenes showed a significant relationship with fungicidal activity against
the three fungi (Pseudoperonospora cubensis, Colletotrichum lagenarium and
Septoria cucurbitacearum). It is reported that the electron withdrawing substituents
of the phenyl moiety seem to enhance the potency, which may be related to the fact
that they tend to retard mechanisms of oxidative metabolism occurring on (or close
to) the benzene ring. This assumption was consistent with the higher bioactivity of
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the title compounds with electron withdrawing substituents at the meta-position as
proposed by the 3D-QSAR analysis.

Fungicidal activities of a set of 27 active cinnamate derivatives (Fig. 15) were
employed to investigate SAR by Saavedra et al. (2015). The authors explored
constitutional, topological, geometrical and electronic molecular descriptors to
predict the growth inhibition on Pythium sp and Corticium rolfsii fungi species; and
the predicted values were in close agreement to the experimental values. From the
developed QSAR model for the growth inhibition of Pythium sp, the authors
revealed that that increased numerical values of RDF150 m (Radial Distribution
Function—15.0/weighted by atomic masses) or decreased values of RDF020u
(Radial Distribution Function—2.0/unweighted) or HATS2m (GATEWAY
descriptor represent leverage-weighted autocorrelation of lag 2/weighted by mass)
descriptors would lead to structures having a higher growth inhibitory activity on
Pythium sp. The QSAR model for the growth inhibitory activity on C. rolfsii
suggested that the increased numerical values of L3e or decreased values of BELv5
(Lowest eigenvalue n. 5 of Burden matrix/weighted by atomic van der Waals
volumes) or RDF080u (Radial Distribution Function—8.0/unweighted) descriptors
would lead to structures having a higher activity. Along with the development of
QSAR models for two different species, the authors synthesized a set of 21 new
structurally cinnamate compounds and predicted fungicidal activity. Finally, they
have reported 3 and 2 cinnamates, expected to show higher activity for Pythium sp
and C. rolfsii, respectively than the existing derivatives.

7.3 QSAR Models of Pesticides

A new modeling strategy based on the prioritization of fragments contribution to
toxicity was developed and applied to 282 pesticides collected under the EU-funded
project Demetra for predicting their toxicity toward the rainbow trout (Oncor-
hynchus mykiss) by Casalegno et al. (2006). Such toxicity models are important for
the risk assessment of pesticides as well as development of better and greener
pesticides. While there are other fragment based modeling routes, the authors
exploited the possibility of top-prioritizing fragments’ (TPFs) contributions to
toxicity. On the assumption that one fragment might be mainly responsible for the
molecular toxicity, they developed a three-stage modeling strategy to select the
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most important moieties and to establish their priorities at a molecular level.
Quantitative toxicity prediction yielded good results for the training set (R2

TR-0.85)
and the test set (R2

TS-0.75). Analysis of the TPFs assigned during post assignment
enabled to rationalize toxicity at the substructural level for the studied compounds.

Neuroblocking activity of imidacloprid analogs with various substituents at the
5-position of the pyridine ring measured and quantitatively analyzed using
physicochemical substituent parameters by Nishimura et al. (2006). From the
constructed QSAR model, they came to following conclusions. The greater the
electron-releasing resonance effect, the higher is the pesticidal activity. The intro-
duction of sizable and alkoxy substituents was unfavourable and substituents
including halogens, alkoxy groups, alkyls and others into the 5-position of the
pyridine ring of imidacloprid generally reduced neuroblocking activity. The
reducing effect on blocking activity was well explained by the use of steric and
electronic parameters. The introduction of alkoxy groups at this position was
additionally unfavorable for activity. The neonicotinoids tested in this study
probably bind first with nAChR, then cause blockage of the nervous system and kill
the insects. A sequential scheme of this intoxication helped to understand the mode
of action of neonicotinoid insecticides, and the QSAR results offered clues to vary
the combination of 5th and 6th substituents on the pyridine ring or design other
substituted heteroaromatic rings for new potential insecticides.

Bermúdez-Saldaña and Cronin (2006) investigated the development of QSARs
for the toxicity to rainbow trout Onchorhyncus mykiss Walbaum of 75
organophosphorus and carbamate pesticides collected from a regulatory source, the
US EPA database which is an openly available toxicological database. A large
number of physicochemical and structural descriptors were calculated for the
pesticides and QSAR models were developed using MLR and PLS tools. Because
of the chemical heterogeneity of the dataset, relatively unsuccessful models were
produced in term of predictive purposes. The authors reported that reducing the
heterogeneity in the dataset by an MOA based approach gave better results than
those based on chemical classes. The outcome supported that mechanistically based
QSARs were likely to be more successful than those based on chemical classes. In
the conclusion, they demonstrated that when variable selection was based on
mechanistic approaches a highly relevant MLR model can be obtained.

3D-QSAR, docking, Local Binding Energy (LBE) and GRID methods were
integrated together as combined tools for predicting toxicity and to explore the
mechanisms of action on a set of 73 allelochemical-like pesticides particularly
cyclic hydroxamic acids and lactams by Fratev et al. (2007). The 3D-QSAR model
showed high predictive power, and the regression maps indicated the important
toxic chemical substituents. The authors identified significant ligand-protein residue
interactions and oxidation positions in the binding site by docking analysis
employing CYP1A2 homology modelling. Computation of the binding energies of
the compounds and the important substituents demonstrated quantitatively the
substituent contributions in the metabolism and toxicity. The GRID examination
identified the CYP1A2 binding pocket feature, and 3D-QSAR map was compared
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to the GRID map. Interestingly outcome showed good overlaps confirming the
important role of CYP1A2 in allelochemical like compounds toxicity.

Lu et al. (2007) explored the prediction of enzymatic activity of chloroperoxi-
dase on metabolizing of selected Organophosphorus Pesticides (OPPs) by QSAR
models. The authors employed quantum chemical descriptors computed with
ab initio method at HF/6-31G(d) level and PLS analysis as the optimizing proce-
dure for generating QSAR models. The correlation coefficient of the optimal model
is 0.918, and the fitting results showed that it had high fitting precision and good
predicting ability. The PLS assistant analysis indicated that the atomic charges of
sulfur and phosphorus atoms in the S=P bond of an OPP molecule were important
in governing the enzymatic activity and the molecular dipole moment also had
some effect on the enzymatic activity. The authors found that OPPs with high
absolute values of atomic charges on the sulfur and phosphorus atoms tended to be
metabolized faster, whereas OPPs with stronger polarity tended to be metabolized
slower by chloroperoxidase.

Nakagawa (2007) investigated classical QSAR for larvicidal and molting hor-
mone activities and receptor-binding affinity of N,N΄-dibenzoyl-N-t-
butylhydrazines (DBH) using physicochemical parameters of the substituents.
Considering QSAR of DBH for larvicidal and molting hormone activities, the
analysis showed that larvicidal activity against larvae of C. suppressalis and
S. exigua was enhanced with molecular hydrophobicity, but that the introduction of
bulky substituents into any position on the A- and B-ring moieties, except for
the ortho position of the A-ring, decreases the activity. Introduction of electron-
withdrawing groups at the ortho position of the A-ring was favorable to the lar-
vicidal activity to C. suppressalis. For larvicidal activity against S. exigua, the
QSAR was similar to that for C. suppressalis, but, for that against L. decemlineata,
it was somewhat different and a position specific optimum hydrophobicity of
substituents was significant to govern the variations of the activity. The larvicidal
activity of these compounds was lower than ecdysone activity which suggested that
the metabolic detoxication of alkanoyl groups was significant under assay condi-
tions. The QSAR study in the binding of DBH to the ecdysone receptor revealed the
effects of the substituents at the para-position of B-ring of DBH on the binding
affinity to Sf-9 cells quantitatively analyzed with the classical QSAR method. This
analysis identified that the binding was enhanced with the hydrophobicity and
electron-donating property of substituents, but decreased with increasing the width
of substituents.

Ecotoxicological data based on the US EPA dataset consisting of 125 aromatic
pesticides with aquatic toxicity towards trout was investigated using a QSAR
analysis by Slavov et al. (2008). Additionally, the authors utilised an external test
set of 37 compounds for validation purpose. Along with the standard 2D-QSAR
analysis, the authors performed a CoMFA analysis considering the electrostatic and
steric properties of the molecules. The CoMFA analysis helped the recognition of
the steric interactions as playing an important role for aquatic toxicity. The best
multilinear QSAR equation obtained with three variables: CODE_MID, molecular
weight and heat of formation, all having positive regression coefficients. Analyzing
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the outcome of the QSAR study, the following conclusions were made. The pes-
ticides characterized by larger heats of formation were more stable and thus the
probability to reach the target site unchanged was higher. Since no charge distri-
bution related descriptors were involved into the model, they stated that the elec-
trostatic interactions are of much lower importance for the aquatic toxicity than the
steric interactions. This conclusion was fully supported by the outcome from the
CoMFA study which stated that the steric interactions play a much more important
role for the aquatic toxicity than the electrostatic interactions. The visual exami-
nation of the steric interactions map showed that the presence of bulky substituents
around positions 3 and 4 of the aromatic ring and near the heteroatoms of the side
chain will lead to an increased toxicity effect.

Wang et al. (2009) applied a combinatorial approach to a dataset of 1600
compounds with known aquatic toxicity ratings. The dataset consists of compounds
spanning of five classes, i.e., the nontoxic, slightly, moderately, highly and very
highly toxic pesticides, in which about 75% molecules selected randomly as a
training set and the remaining one considered as external test set. Wang et al. (2009)
established a series of classification based QSAR models of these pesticides. By an
analysis of those statistically significant descriptors implicated in these SAR
models, well-known theoretical descriptors such as the molecular weight, molecular
connectivity indices, H-bond donor/acceptor electrotopological parameters were
found dominating the models could be associated with a molecule’s passive dif-
fusion and binding affinity to cell membrane as well as the targeted proteins of
organisms thus leading to its toxicity. These models can be used for estimating the
aquatic toxicity rating of pesticide candidates at the early stages of pesticide dis-
covery projects as well as for exploring their intrinsic toxic mechanisms.

Ruark et al. (2013) addressed the QSAR model to predict pentavalent
organophosphate oxon human acetylcholinesterase bimolecular rate constants of a
database consisting of 278 3D structures and their bimolecular rates. The database
was quite diverse, spanning 7 log units of activity. The authors calculated 675
molecular descriptors employing AMPAC 8.0 and CODESSA 2.7.10. Orthogonal
projection to latent structures regression, bootstrap leave-random-many-out
cross-validation and y-randomization were used to develop an externally vali-
dated consensus QSAR model. The result showed that the HOMO–LUMO energy
gap contributed most significantly to the binding affinity. A mean training R2 of
0.80, a mean test set R2 of 0.76 and a consensus external test set R2 of 0.66
suggested robustness and predictability of the developed QSAR model. The out-
come of this QSAR model can be used in physiologically based pharmacokinetic/
pharmacodynamic models of organophosphate toxicity to determine the rate of
acetylcholinesterase inhibition. This work fulfilled one of these data gaps through
QSAR prediction of OP-AChE bimolecular rate constants which were the initial
driver toward AChE inhibition. Ruark et al. concluded that once the active site of
AChE is inhibited, it can be further modulated by the OP oxon aging and regen-
eration processes.

Tree-based multispecies QSAR models were constructed for predicting the avian
toxicity of pesticides using a set of nine descriptors derived directly from the
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chemical structures and following the OECD guidelines by Basant et al. (2015).
The Bobwhite quail toxicity data was used to construct the single decision tree
(SDT), decision tree forest (DTF), and decision tree boost (DTB) regression QSAR
models and externally validated using the toxicity data in four other test species like
Mallard duck, Ring-necked pheasant, Japanese quail, House sparrow. Intercorre-
lation analysis and PCA methods provided information on the association of the
molecular descriptors related to molecular weight (MW) and topology. The S36 and
MW were the most influential descriptors identified by DTF and DTB models.
The DTF and DTB performed better than the SDT model and yielded a correlation
(R2) of 0.945 and 0.966 between the measured and predicted toxicity values in test
data array. The results suggested for the appropriateness of the developed QSAR
models to reliably predict the toxicity of pesticides in multiple avian test species and
they can be useful tools in screening the new chemical pesticides for regulatory
purposes. Substructural alerts were identified directly from mechanistic knowledge
which was important to predict toxicity. In all five toxicity data sets, carboxamide
(C(=O)N), carbonyl (C=O), aminocarbonyl (NC=O), aromatic amine (CN), aro-
matic halides (Ph−X), halide (X), nitro (N=O), sulfide (CS), phosphate thioate
(P=O), oxophosphorus (P=O), aromatic alkane (Ph−C1), aromatic benzene, ali-
phatic ether (COC), and alkane linear (C2) were the common major substructures
responsible for the avian toxicity.

Hamadache et al. (2016) developed a QSAR model to predict the oral acute
toxicity of pesticides to rats employing 258 pesticides with an additional external
set of 71 pesticides. Oral acute toxicity on rat was modeled based on the multi-layer
perceptron-ANN (MLP-ANN) with descriptors calculated by Dragon software and
selected by a step-wise MLR method. The seventeen selected descriptors showed
that the electronic properties and the specific structural attributes of the molecule
played the main role in the toxicity of the pesticides. The built MLP-ANN model
assessed comprehensively based on internal and external validations parameters.
Based on the comparison with previous models, the proposed QSAR model
achieved better results and provided 98.6% predictions that belong to the applica-
bility domain. The authors suggested that the model can be used to predict the acute
oral toxicity of pesticides, particularly for those that have not been tested as well as
new pesticides and thus help reduce the number of animals used for experimental
purposes.

7.4 QSAR Models of Insecticides

The pharmacophore of the 23 variants of neonicotinoid insecticide was examined
by Kagabu et al. (2008). Analysing the outcome of the in silico study, the authors
concluded that most of the variations of the pharmacophore structure bearing
NNO2, CHNO2, or NCN in the neonicotinoids afforded insecticidal activity against
American cockroaches at nanomolar concentrations under synergistic conditions.
The neuroblocking potency was proportional to the Mulliken charge on the nitro
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oxygen atom or the cyano nitrogen atom, and was related to the log P value with the
optimal value of 1.19. The potency of NCN compounds was lower by a factor of
2.03 in log units than the corresponding nitro compounds in the neuroblocking
activity. Theories at various levels and experiments using several known molecules
have predicted or speculated the crucial involvement of the presented structural
fragments in the activity of neonicotinoids.

Li et al. (2008) successfully constructed an effective pharmacophore model
(RMS = 0.634, Correl = 0.893, Weight = 1.463, Config = 11.940) based on a
series of nAChR (nicotinic acetylcholine receptors) agonists, which consists of a
hydrogen bonding acceptor, a hydrogen-bond donor, a hydrophobic aliphatic and a
hydrophobic aromatic centre. They had designed a series of heterocyclic com-
pounds by this pharmacophore model followed by synthesis of some of them. The
developed pharmacophore model provided useful information for developing novel
insecticides targeting at the nAChR in the near future.

Employing podophyllotoxin as a phytoinsecticidal lead compound, 15 novel
aromatic esters of 4’-demethyl-4-deoxypodophyllotoxin (Fig. 16) were semisyn-
thesized and preliminarily tested for their insecticidal activity against the
pre-third-instar larvae of Mythimna separataWalker in vivo for the first time by Xu
et al. (2009). Followed by synthesis, the authors performed QSAR studies of all 15
compounds and reported that the relative number of benzene rings and final heat of
formation were very important properties to their insecticidal activity. A negative
coefficient before the relative number of benzene rings indicated that increase of
this value led to a decrease in the mortality rate of the compounds due to the
reduction in the solubility of the compound. The final heat of formation was pro-
portionally interrelated with the Gibbs free energy.

QSAR modeling was carried out for ovicidal activity of 2, 4-diphenyl-1,
3-oxazoline analogs (Fig. 17) against two-spotted spider mite Tetranychus urticae
by Roy and Paul (2009). Models obtained by using 2D parameters revealed that the
chain length of the substituent at para position of the 4-phenyl ring was a critical
factor. Initially the ovicidal activity was enhanced as the substituent chain length
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Fig. 16 Chemical structure
of podophyllotoxin
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increases, but after a certain limit the activity reduces though the chain length
increases. This implied that the lipophilicity of the substituents should be optimum.
Electrotopological state indices of specific atoms (S17,S16) and substituent
hydrophobicity parameter suggested that the presence of long chain para sub-
stituents containing electronegative atom directly attached to the 4-phenyl ring or at
its close vicinity may increase the ovicidal activity. The value of substituent
hydrophobicity constant at the para position should be within 1.98 to 2.90 for the
optimal activity. Lipophilicity of the whole molecule also plays a dominant role.
Models generated from 3D descriptors recommended that the shape of the sub-
stituents should be optimum and the lipophilic substituents having electronegative
atoms with distributed positive charge over the surface may enhance the ovicidal
activity. The model obtained from molecular field analysis suggested that bulky
substituents with optimally distributed charge may increase the ovicidal activity.

Liu et al. (2010) explored 3D-QSAR and the pharmacophore models on 38
anthranilic diamides, potent activators of the anthranilic diamide ryanodine receptor
(RyR) employing CoMFA, CoMSIA and distance comparison technique (DIS-
COtech) approaches. Computed CoMFA and CoMSIA models yielded acceptable
cross-validated (q2) values of 0.785 and 0.788 and non-cross-validated (r2) values
of 0.958 and 0.981, respectively. The obtained DISCOtech pharmacophore model
indicated that hydrophobic interaction and hydrogen bonds had important roles in
the interactions between activators and RyRs, which was consistent with CoMSIA
results. The information obtained from CoMFA, CoMSIA and DISCOtech models
enabled interpretation of the SAR of anthranilic diamides. Based on the constructed
models, some vital features for the interaction of anthranilic diamides with RyRs
were identified by the authors, which were helpful in designing more potent RyR
activators.

Wei et al. (2011) isolated a series of 43 natural β-dihydroagarofuran sesquiter-
pene polyesters from Celastrus angulatus and Euonymus japonicus and evaluated
their insecticidal or narcotic activities against the fourth-instar larvae of Mythimna
separata followed by 3D-QSAR study employing CoMFA and CoMSIA analyses.
The observed variances in the insecticidal and narcotic activities were explained
from the optimal CoMFA and CoMSIA models. For the narcotic model, the
electronic field explained as the most influential among all three fields, contributing
52.2% to the optimal QSAR model. A similar result also observed for the insec-
ticidal model where the electronic field provided the highest contribution (38.8%) to
the best model. A hybrid effect of the electrostatic (38.8%) and hydrophobic
(40.2%) interactions governed the insecticidal activities of the molecules which
indicated that the electronic interaction played the most important role in
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determining the biological activities of these molecules. The outcome from both the
experimental and the theoretical investigations proved valuable for the design of
novel β-dihydroagarofuran sesquiterpene polyesters with enhanced activities.

A multi-target QSAR (mt-QSAR) discriminant model was developed by
Speck-Planche et al. (2012) for the search, design and prediction of insecticides
acting through five different MoA using a large heterogeneous database consisting
of 657 molecules. According to the authors, the explored model could predict
insecticidal activity of compounds in more general situations than classical QSAR
models which have as principal limitation the assessment of biological activity
against only one type of MoA or biological receptor. The presented QSAR dis-
criminant model classified correctly more than 90% of insecticides and inactive
compounds in both, training and prediction series. The most striking part was that
the model permitted the automatic and efficient extraction of fragments responsible
of insecticidal activity against several mechanisms of action and new molecular
entities were also suggested as possible multi-target insecticides according to the
posteriori probabilities.

A series of 33 isoxazoline and oxime derivatives of podophyllotoxin modified in
the C and D rings (Fig. 16) were synthesized and characterized by diverse ana-
lytical methods followed by their insecticidal activity was evaluated against the
pre-third-instar larvae of northern armyworm, Mythimna separata (Walker) in vivo
by Wang et al. (2012). To understand the responsible structural fragments and
properties for insecticidal activity, the authors employed GA-MLR calculation
performed by the MOBY DIGS package. QSAR studies demonstrated that the
insecticidal activity of these compounds was mainly influenced by factors like
electronic distribution and steric factors. The developed model attained the standard
deviation error in prediction (SDEP) of 0.0592, the R2 of 0.861, and the Q2

LOO of
0.797. Five descriptors were evolved from the model as the best possible features
important for insecticidal activity as follows: 2D autocorrelation descriptor
(GATS4e), edge adjacency indice (EEig06x), RDF descriptor (RDF080v), 3D
MoRSE descriptor (Mor09v) and atom-centered fragment (H-052) descriptor.
According to the standardized coefficient of the descriptors, EEig06x was identified
as the most significant one calculated from the edge adjacency matrix of a molecule.
The second important parameter GATS4e reflected the information on molecular
dimension and Sanderson electronegativity. H-052 is defined as the number of
specific atom types in a molecule and calculated by knowing the molecular com-
position and atom connectivity. All three descriptors were positively correlated to
the activity. RDF080v interpreted as the probability distribution of finding an atom
in a spherical volume of radius. The descriptor Mor09v was based on the idea of
obtaining information from the 3D atomic coordinates by the transform and
weighted by atomic van der Waal volumes.

Four series of novel cholesterol-based (Fig. 18) hydrazone derivatives were
synthesized and their insecticidal activity was tested against the pre-third-instar
larvae of oriental armyworm, Mythimna separata (Walker) in vivo by Yang et al.
(2013) followed by QSAR study employing GA-MLR by the MOBYDIGS
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software. Interestingly, the synthesized derivatives showed better insecticidal
activity than their precursor cholesterol. The QSAR model demonstrated that six
descriptors such as RDF085v (radial distribution function descriptor representing
the molecular conformation in 3D with a series of weighting schema, such as
weighted by atomic masses, atomic van der Waals volumes, atomic Sanderson
electronegativities and atomic polarizabilities), Mor06u (3D-MoRSE-signal
06/unweighted parameter belongs to 3D-MoRSE descriptor), Mor11u
(3D-MoRSE descriptor representing the 3D-MoRSE signal 23/unweighted), Dv (a
WHIM descriptor, which represents D total accessibility index/weighted by atomic
van der Waals volumes), HATS0v (a GETAWAY descriptor, which represents
leverage-weighted autocorrelation of lag 0/weighted by atomic van der Waals
volumes) and H-046 (an atom-centred fragment descriptor, which indicates the H
attached to CO (sp3) no X attached to next C) were likely to influence the insec-
ticidal activity of these compounds. Among them, two important ones were Mor06u
and RDF085v. Mor06u provides 3D information from the 3D coordinates by using
the same transform as in electron diffraction and RDF085v is related to van der
Waals volumes of molecule.

Three novel series of N3-substituted imidacloprid derivatives were designed,
synthesized, and characterized by NMR spectroscopy, mass spectrometry, ele-
mental analysis, and single-crystal X-ray diffraction analysis by Wang et al. (2014).
Thereafter, the insecticidal activities against Aphis craccivora were evaluated and
QSAR analysis was performed by the authors. The QSAR results indicated that the
size, electron density, and distribution of the substituents at the N3 position were
critical to the derivatives’ activity. Furthermore, the molecular docking analysis
indicated that imidacloprid and active synthesized compounds form the similar
hydrophobic and van der Waals interactions with Trp53, Met114, Trp143, Tyr185,
and Tyr192 in the binding pocket. Compared with imidacloprid, more favorable
van der Waals and hydrophobic interactions were identified from the methylben-
zene group and the aromatic ring of chloro-phenyl group of most active compound.
Stronger hydrogen bonding interactions from the nitro and sulfonyl group with the
binding pocket contributed to higher insecticidal activity. The analysed results
promoted the basic understanding about interaction mechanism of these derivatives
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and nicotinic acetylcholine receptors (nAChR); and provided the useful information
for further structural modification.

The bioactive conformations of anthranilic diamide insecticides were disclosed
from a series of low energy conformations by Jiang et al. (2015) from the combined
approach of DFT-based potential energy surface scanning and 3D-QSAR analysis
like CoMFA and CoMSIA. From the thorough analysis, the authors concluded that
an intramolecular N–H∙∙∙O H-bond was found important for maintaining the
bioactive conformation of chlorantraniliprole. For the bioactive conformation, if the
phenyl was regarded as the paper plane and the methyl group connected with
phenyl was pointing to the down direction, the O and H atoms forming the
N–H∙∙∙O H-bond were out the phenyl plane, and the pyridine was also pointing to
the down direction with the substituted Cl inside the phenyl plane. In addition, the
outcome also supported that DFT-based potential energy surface scanning com-
bined with CoMFA analysis was a good approach for exploring the bioactive
conformation of a compound, when the target structure was unknown.

A QSAR study was performed by Loso et al. (2016) using the sulfoximine
insecticides to reveal the importance of a 3-pyridyl ring and a methyl substituent on
the methylene bridge linking the pyridine and the sulfoximine moiety to achieve
strong Myzus persicae activity. The SlogP driven regression model helped to
explain the highly optimized pyridine substitution pattern for sulfoxaflor. The
developed model was highly predictive one for an external set of 18 sulfoximines
including sulfoxaflor. The model was consistent with and helped in explaining the
highly optimized pyridine substitution pattern for sulfoxaflor.

Seifert (2016) determined the structural requirements of organophosphorus in-
secticides (OPI) for reducing chicken embryo nicotinamide adenine dinucleotide
(NAD+) content in OPI-induced teratogenesis through 3D-QSAR analysis. The
COMFA approach revealed the electrostatic and steric fields as good predictors of
OPI structural requirements to reduce NAD+ content in chicken embryos. The
dominant electrostatic interactions were localized at nitrogen-1, nitrogen-3, nitrogen
of 2-amino substituent of the pyrimidinyl of pyrimidinyl phosphorothioates, and at
the oxygen of crotonamide carbonyl in crotonamide phosphates. Bulkiness of the
substituents at carbon-6 of the pyrimidinyls and/or N-substituents of crotonamides
was the steric structural component that contributed to superiority of those OPI for
reducing embryonic NAD+ levels. The findings of this study provided evidence for
the cause-and-effect relationship between yolk sac membrane KFase inhibition and
reduced embryo NAD+ content in NAD-associated OPI-induced teratogenesis in
chickens.

Niraj et al. (2015) developed novel QSAR models using 2D-QSAR and
3D-QSAR with CoMFA methodology for prediction of insecticidal activity of
organophosphates (OPs) (Fig. 19). The models were validated with an entirely
different external dataset of in-house generated combinatorial library of OPs
employing molecular docking against the target AChE protein of Musca domestica.
The obtained dock scores were in good correlation with 2D-QSAR and 3D-QSAR
with CoMFA predicted activities and had the correlation coefficients of 0.62 and
0.63, respectively. The activities predicted by 2D-QSAR and 3D-QSAR with
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CoMFA were also observed to be highly correlated with the value of 0.82. Niraj
et al. (2015) screened the combinatorial library molecules for toxicity in non-target
organisms and degradability using USEPA-EPI Suite.

7.5 QSAR of Virucides

A 3D-QSAR model was explored by Zhao et al. (2006) based on the antiviral
activity of α-substituted-1, 2, 3-thiadiazoleacetamides tested in vitro against tobacco
mosaic virus (TMV). Analysing the QSAR model, the authors proposed that having
the same linker between 1,2,3-thiadiazole and benzene ring, compounds that were
substituted by solely halogen atom at the 2- or 4-positions of benzene ring had
significant potency against TMV, however if a compound was substituted by two
halogen atoms at both 2- and 5-positions of benzene ring it had hardly any inhi-
bition. Replacement of the halogen with an electron-donating group, such as methyl
or methoxyl, also abolished antiviral activity. Again, exchange of the oxygen linker
with sulphur leads to slight loss in activity. After sulfur was oxidized, the bioassay
indicated that the antiviral activity of the thioether was slightly better than sul-
foxide, whereas worse than sulfone.

7.6 QSAR of Plant Growth Regulators

In the beginning of the 1960s, Hansch et al. (1962) provided momentum to QSAR
research by using Hammett constants and hydrophobicity parameters to develop
correlation models on plant growth regulators. The significant outcome from the
developed equations showed that an increase in activity of the substituted
pehnoxyacetic acid occurred with an increase in Hammett sigma (σ, an electronic
parameter) or as the partition coefficient (log P) was increased, sigma being held
constant. Interestingly, the activity values moved to zero with higher values of log
P, where the values for sigma were essentially constant. The way in which the two
halogens (fluorine and chlorine) affect the electron density at the ortho positions by
resonance was, however, quite different especially in the example of fluorine. The
dramatic difference in activity between the 3- and 4-fluorophenoxyacetic acids
seems best explained in terms of the different electron densities at the ortho
positions.
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Correlation of the biological activity of plant growth regulators and Chlor-
omycetin derivatives had been performed with Hammett constants and Partition
Coefficients by Hansch et al. (1963). A mathematical equation was developed
employing two experimentally based variables, σ and π, for correlating the effect of
a given substituent on the biological activity of a parent compound; where, σ is the
Hammett substituent constant and π is an analogous constant representing the
difference in the logarithms of the partition coefficients of the substituted and
unsubstituted compounds (π = log Px − log PH). Utilizing π and σ, it became
possible to disentangle three of the most important parameters governing the bio-
logical activity of organic compounds: steric, electronic, and rate of penetration.

A QSPR analysis was performed with 59 amino acid conjugates of jasmonic acid
(Fig. 20) with lipophilicity (logP) parameter by Li et al. (2009a). Statistically sig-
nificant 2D-QSPR model (R2 = 0.990, Q2 = 0.987) developed by the GFA method
showed that the calculated logP of amino acid conjugates of jasmonic acid was
influenced by structural descriptors (Hond Donor and Density), electronic
descriptor (Apol) and E-State-keys (S_ssO). Followed by 2D-QSPR model, the
results were further compared with the 3D-QSPR model (R2 = 0.922, Q2 = 0.841)
with good stability and predictability generated by the MFA-GFA method to study
the structural requirements for the logP of these compounds, indicating that bulky
substituents at C7 position were unfavored to the logP and both steric and elec-
trostatic substituents at C3 position were important to logP. The derived QSPR
models were significant to evaluate the important regions and the molecular
structural parameters for these compounds.

Li et al. (2009b) applied QSAR analysis to 18 jasmonates and related com-
pounds to study the relationships between chemical structure and their biological
activity in barley and tomato bioassay. Statistically significant 2D-QSAR models
(R2 > 0.880 and Q2 > 0.820) were developed by GFA, indicating that the bio-
logical activity (pKi-1) was principally influenced by thermodynamic, electronic
and spatial descriptor and the biological activity (pKi-2) was principally governed
by electronic, structural and thermodynamic. Additionally, the authors employed
molecular field analysis (MFA) merged with G/PLS method to derive 3D-QSAR
models investigating the substitutional requirements for the favorable receptor-drug
interaction, and quantitatively indicating the important regions of molecules for
their activity. The 3D-QSAR models showed that electrostatic interactions were
crucial to pKi-1, and moderate steric interactions were favored to pKi-2, indicating
that a tiny transformation in the meso-position and para-position of cyclopentanone
may greatly change the biological activity.
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Molecular docking and molecular dynamics simulations were explored to
identify the mode of interaction between N-substituted phthalimides (NSPs) and the
gibberellin (GA) receptor GID1A in order to clarify the relationship between
structure and GA-like activity in the NSPs by Li et al. (2015). The obtained results
demonstrate that both a multiple-hydrogen-bond network and a ‘hat-shaped’
hydrophobic interaction played imperative roles in the binding of the NSPs to
GID1A (Fig. 21). The carbonyl group of a phthalimide fragment in the NSPs acted
in a comparable manner to the pharmacophore group 6-COOH in GAs, forming
multiple hydrogen-bond interactions with residues Gly115, Ser191 and Tyr322 in
the binding domain of GID1A. The 3D-QSAR study with CoMFA and CoMSIA
analysis also confirmed that the GA-like activity of these NSPs was strongly linked
to a few H-bond donor and acceptor field contributions of the NSPs to the H-bond
interactions with GID1A. The outcome showed that increasing the H-bond donor
character at the R5 position was more likely to lead to NSPs with GA-like activity.
The introduction of a hydrophobic group at the R2 position identified to assist the
binding of the NSP to the GA receptor. The authors finally designed five new NSP
molecules using the binding domain of GID1A and then docked into the receptor.
Interestingly, two of them showed to have good docking scores due to enhanced
hydrophobic contact.

8 Successful Application of QSAR in Food Science

8.1 QSAR of Food Products and Food Supplements

Tilaoui et al. (2007) investigated the performance of the TOPKAT software to
predict the Lowest Observed Adverse Effect Level (LOAEL) for more than 600
food-borne chemicals with experimentally established LOAELs, validated by tox-
icology experts. The reliability of a given prediction was evaluated by the software
internal checking OPS algorithm. The models of classification and prediction of the
LOAEL were developed with a good estimate of the statistical significance. The set
of 2D autocorrelation descriptors correlates well with experimental LOAELs. This
approach was usable and satisfactory in the context of chemical food safety
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assessments and prioritisation of levels of concern in chemical food safety. It should
be kept in mind that the determination of a LOAEL—is still a very challenging
endpoint in terms of QSAR-based computer predictions. This is due to a number of
limitations, including the lack of scientifically valid and reliable information, as
well as the non-specificity of the endpoint. Therefore, the outcome of such pre-
dictions should be carefully scrutinised and validated. Interestingly, the prediction
of the LOAELs with TOPKAT was reliable for 1/3 of the available compounds
(33%) in this study.

Fumonisin B1 (FB1), a Fusarium mycotoxin, has received substantial attention
from food regulatory agencies due to its prominent immunotoxic, neurotoxic,
hepatotoxic, nephrotoxic and carcinogenic properties in animals. In this back-
ground, Dambolena et al. (2011) demonstrated a QSAR study concerning the
antimyctoxigenic activity of natural phenolic compounds in order to evaluate which
molecular properties were important in antifumonisin activity. The obtained results
indicated that lipophilicity was the key step for the target molecule to be reached
inside the fungal cells. Furthermore, the molar refractivity and saturated area
demonstrated the importance of the interactions with specific enzymes, metabolite
pools, or signaling pathways. The model obtained from the QSAR analysis can be
used to predict the antifumonisin activity of other structurally related molecules and
the findings could provide an important contribution in the search for new com-
pounds with antifumonisin activity.

Gu et al. (2011) evaluated systematically the probable of major food proteins as
precursors of angiotensin converting enzyme (ACE) inhibitory peptides using
QSAR-aided in silico approach followed by demonstrated rationale for choosing
the appropriate substrate proteins in preparing ACE inhibitory peptides. Proteins
from 15 common food commodities by thermolysin generated 5709 peptides
ranging from 2 to 6 amino acid residues were systematically studied as the potential
precursors of ACE inhibitory peptides. The results showed that meat proteins from
pork, beef and chicken contain the highest number of potent peptides (IC50b10
M), followed by proteins from egg, soybean and canola, whereas proteins from fish
(with the exception of salmon) and cereals (oat and barley) contain the least number
of peptides. The authors also reported that the release of peptides by in silico
digestion might be different from experimental condition where the release of
peptides could be affected by a number of factors including the state of the sub-
strate, temperature, pH and specificity of enzyme. The authors strongly concluded
that predicted peptides could be released with carefully manipulated digestion
conditions.

Dambolena et al. (2012) performed a QSAR study for the inhibition of Fusarium
verticillioides growth by ten natural phenolic compounds. The results of the
experimental determinations demonstrated that in terms of the antifungal activity of
natural phenolic compounds on F. verticillioides, the following order was found:
carvacrol > thymol > isoeugenol > eugenol > vanillin > creosol > m-cresol >
o-cresol, p-cresol, and guaiacol. Lipophilicity, Molar refractivity and saturated area
were found to be the descriptors that best explained the antifungal activity of these
compounds from the mathematical equation. These models could be used in future
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to predict the activity of new compounds and to guide the search for the synthesis of
phenolic compounds with the capacity to inhibit F. verticillioides growth.

The structural diversity and intrinsic relationship between the multiple bioac-
tivities of 8000 tripeptides have been explored by Wang et al. (2013) by using
various molecular modeling techniques, including statistical test, crystal structural
examination, binding energetic analysis and QSAR modeling. The authors reported
that the first three C-terminal residues were sufficient for a peptide to bind tightly
with the active site of ACE protein to exert significant antihypertensive efficacy.
A systematical investigation of all possible tripeptides further revealed that there is
a good relationship between their ACE-inhibitory potency and antioxidative
activity, but unlike dipeptides, both these two desirable properties exhibited
insignificant correlations with the undesirable bitterness. This finding suggested that
the structural space of tripeptides is sufficiently diverse that makes it possible to
achieve a good compromise between multiple bioactivities in a single molecular
entity simultaneously.

Predictive QSAR models correlating peptide’s structural features with their
multi-bioactivities and bitter taste were established at both sequence and structure
levels by Tan et al. (2013). Thereafter, the authors used the models to conduct
extrapolation on thousands of randomly generated, structurally diverse peptides
with chain lengths ranging from two to six amino acid residues. Based on the
statistical results obtained from QSAR modelling, the relationship between the
antihypertensive activity and bitter taste of peptides at different sequence lengths
was investigated in detail by Tan et al. (2013). Moreover, the structural basis,
energetic property and biological implication underlying peptide interactions with
ACE were analysed at a complex 3D structure level by employing a high-level
hybrid quantum mechanics/molecular mechanics scheme. They found the following
outcome from the study: (a) bitter taste is highly dependent on peptide length,
whereas ACE inhibitory potency has only a modest correlation with the length,
(b) dipeptides and tripeptides perform a moderate relationship between their ACE
inhibition and bitterness, but the relationship could not be observed for those
peptides of more than three amino acid residues and (c) the increase in sequence
length does not cause peptides to exhibit substantial enhancement of antihyper-
tensive activity; this is particularly significant for longer peptides such as pen-
tapeptides and hexapeptides.

Zhou et al. (2013) explored the intrinsic relationship between the ACE inhibition
and bitterness of short peptides in the scaffold of computational peptidology,
attempting to find out the appropriate properties for functional food peptides with
satisfactory bioactivities. The QSARmodel revealed a significant positive correlation
between the ACE inhibition and bitterness of dipeptides, but this correlation was
quite modest for tripeptides and, particularly, tetrapeptides. Moreover,
quantum/molecular mechanics analysis of the structural basis and energetic profile
involved in ACE–peptide complexes unravels that peptides of up to 4 amino acids
long are sufficient to have efficient binding to ACE, and more additional residues do
not bring with substantial enhancement in their ACE-binding affinity and, thus,
antihypertensive capability. The authors came to the conclusion that the tripeptides
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and tetrapeptides could be considered as ideal candidates for seeking potential
functional food additives with both high antihypertensive activity and low bitterness.

Jing et al. (2014) established 3D-QSAR models from 21 anthocyanins (Fig. 22)
based on their oxygen radical absorbing capacity (ORAC) and further applied to
predict anthocyanins in eggplant and radish for their ORAC values. The contour
map results suggested that structural characteristics of anthocyanins favourable for
the high ORAC. Four anthocyanins from eggplant and radish were also screened
based on the QSAR models. Pelargonidin-3-[(6′′-p-coumaroyl)-glucosyl(2 → 1)
glucoside]-5-(6′′-malonyl)-glucoside, delphinidin-3-rutinoside-5-glucoside, and
delphinidin-3-[(4′′-p-coumaroyl)-rhamnosyl(1 → 6)glucoside]-5-glucoside poten-
tial with high ORAC based on the QSAR models were isolated by Jing et al. (2014)
and confirmed their relatively high antioxidant ability. Three key points were
concluded by the authors on anthocyanin structure–ORAC relationships. First, a
bulky and/or electron-donating substituent at the 3-position in the C ring appears to
be necessary for enhancing ORAC of anthocyanins. Additionally, the presence of
additional electron-donating and/or hydrophobic groups around the glycosylation
might enhance the radical scavenging activity. Lastly, the presence of a hydrogen
bond donor group/electron donating group at the R4 position in the B ring might
enhance the radical scavenging activity of anthocyanins.

Vinholes et al. (2014) developed 3D-QSAR models of the hepatoprotective
activity of sesquiterpenoids with different backbone structures using an in vitro
model system. The developed models allowed the extraction of relevant information
suggesting that sesquiterpenoids possessing more compact molecular structures
((−)-∝-neoclovene and (−)-∝-copaene), low ramification (trans-β-farnesene, trans,
trans-farnesol and cis-nerolidol) and less symmetric (according to Gm-total sym-
metry of the molecule) (trans-β-farnesene, trans,trans-farnesol, (−)-∝-copaene,
cis-nerolidol and (−)-∝-neoclovene) will be more effective for endogenous hep-
atoprotection. Additionally, compounds with electronegative substituents (gua-
iazulene, trans,trans-farnesol, trans-β-farnesene, (+)-valencene and (−)-∝-copaene),
less ramified structures (trans,trans-farnesol, trans-β-farnesene, (−)-∝-copaene and
guaiazulene) and with more symmetry (according to G2e-symmetry considering the
second component) with an electronegative terminal fragment (guaiazulene,
trans-β-farnesene and trans,trans-farnesol) seem to be more effective for the induced
hepatoprotection as suggested by Vinholes et al. (2014). This study supports the
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existing tendencies of valorisation of natural products as a source of bioactive
compounds for the formulation of foods and/or nutraceuticals enriched extracts.

Takaki et al. (2015) estimated metabolic rate using existing QSAR biodegra-
dation models of microorganisms (BioWIN) and fish (EPI-HL and IFS-HL). Then
they incorporated the obtained simulated metabolic rate into the mechanistic cattle
biotransfer models (RAIDAR, ACC-HUMAN, OMEGA, and CKow). The good-
ness of fit tests showed that RAIDAR, ACC-HUMAN, OMEGA model perfor-
mances were significantly improved using either of the QSARs when comparing the
new model outputs to observed data. The CKow model was the only one that
separates the processes in the gut and liver. The developed model showed the
lowest residual error of all the models tested when the BioWIN model was used to
represent the ruminant metabolic process in the gut and the two fish QSARs were
used to represent the metabolic process in the liver. The testing included EUSES
and CalTOX which are KOW-regression models that are widely used in regulatory
assessment. New regression models based on the simulated rate of the two meta-
bolic processes were also proposed as an alternative to KOW-regression models for
screening risk assessment. The authors stated that the modified CKow model is
more physiologically realistic, but has equivalent usability to existing
KOW-regression models for estimating cattle biotransfer of organic pollutants.

Kiwamoto et al. (2015) aimed to develop physiologically based kinetic/dynamic
(PBK/D) models to examine dose-dependent detoxification and DNA adduct for-
mation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or
3-alkylation and with no more than one conjugated double bond. The PBK/D
models were obtained using a training set of six aldehydes. Using the developed
QSAR equation, PBK/D models for the other 12 aldehydes were defined. The
results revealed that DNA adduct formation in the liver increases with decreasing
bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal
(acrolein) was identified to induce the highest DNA adduct levels. The authors
concluded that at realistic dietary intake, the predicted DNA adduct levels for all
aldehydes were two orders of magnitude lower than endogenous background levels
observed in disease free human liver, suggesting that for all 18 aldehydes DNA
adduct formation is negligible at the relevant levels of dietary intake. The present
study elucidated a possible negligible DNA adduct formation in the liver upon oral
exposure to a range of acyclic food-borne α,β-unsaturated aldehydes at relevant
levels of dietary intake and provided a proof of principle for the use of QSAR based
PBK/D modelling to facilitate group evaluations and read-across in risk assessment.

8.2 QSAR of Flavor of Food Products and Food
Supplements

Buchbauer et al. (2000) constructed qualitative models to explain the aroma of 46
bell-pepper flavor from pyrazines scaffold (Fig. 23) using the graphic features of
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CoMFA in combination with the “classical” QSAR analysis performed by MLR.
Biological activities were used in terms of the detection threshold value of the
aroma compound in water. The CoMFA analysis concluded that the bulky groups
in the substituent positions R2 and R1 increase the biological activity, whereas the
unfavorable contribution of bulky groups in the substituent positions R3 and R4.
Moreover, the equation suggested that increased positive charges at the first atoms
of substituent R3 (C(R3)) were of advantage for bell-pepper flavor, because their
values were mainly positive and had positive regression coefficients. The unfa-
vorable effect of a negative electrostatic field in the region of substituent R2 resulted
from the values of CR2 which were negative, and the regression coefficient which
was positive, indicating that the more negative CR2 was, the lower the contribution
to “bell-pepper flavor” will be. This was also in agreement with the CoMFA
picture, where a positive field at R2 favors the biological activity. The molecular
surface of the molecules should not be too high, because it caused to a decrease of
the biological activity. The last significant descriptor turned out to be the log
P value of substituent R1. The favorable effect of low log P values at R1 was
suggested by the MLR regression analysis.

Tromelin and Guichard (2003) investigated a 3D-QSAR study using Catalyst
software to explain the nature of interactions between flavor compounds and β-
lactoglobulin. For this purpose, a set of 35 compounds were chosen with dissoci-
ation constant values previously determined by affinity chromatography. An
automated hypothesis generation using the HypoGen software produced a model
that made a precious inference of affinity and provided a clarification for the lack of
correlation previously observed between the hydrophobicity of terpenes and the
affinity for the protein. The outcome of the model suggested that aroma binding to
β-lactoglobulin was caused by both hydrophobic interactions and hydrogen
bonding, which played a critical role. This observation provided an explanation for
the observed binding constants, which were not in relation to the molecules’
hydrophobicities. It was important to note that the hydrophobicity was not the only
important feature; the topology of the hydrocarbon chain and hydrogen bonding
were also essential for the predictive capability of the model.

A QSPR approach was explored to evaluate the influence of the chemical
structure of aqueous matrixes over the partition coefficient between the gas phase
and the matrix by Chana et al. (2006). The determination of the partition coefficient
of flavor ingredients was performed by headspace analysis at equilibrium for both
saline solution and ι-carrageenan gel. The QSAR equation was generated by the
GFA method available in the Cerius2 package. The best obtained equation involved
only five descriptors, which encode electronic properties of charges repartition on
the molecule (Jurs-RNCS and Dipole-Z) and molecules’ shapes (PMI-Y,
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Shadow-XY, and RadOf-Gyration), both for saline solution and for ι-carrageenan
gel. However, the best-fitting equation for carrageenan gel was obtained with a
quadratic relation, suggesting that the effect of carrageenan polymers only modu-
lates, but it did not change the interaction of aroma compounds with water mole-
cules. In case of molecular orientation and alignment, the greater the chain length
and moderate the branching, the larger are the values of the three shape descriptors.
Such results showed that the higher the charge more is the retention, and the more
globular form or the more ramifications within the molecule, less is the retention for
esters and ketones. Such behavior was consistent with the nature of water with a
high ionic force, where hydrophobic compounds, usually highly branched and/or
with long aliphatic chains, were barely soluble.

Tarko et al. (2006) performed QSAR studies with the PRECLAV computer
program using a database containing 136 3-amino-succinamic acid derivatives
(Fig. 24). The developed model suggested that the virtual molecular fragments that
lead to a significant increase of the sweetness power (SP) were –CN (cyano) and –

C6H4–NHCONH– (aryl-substituted urea). The non-conjugated or weakly conju-
gated virtual fragment –NH2 leads to a significant decrease of the SP value.
Additionally, the SP was favorably influenced by the size of the molecule. The
linear functions of the descriptors strongly described the SP of the studied
derivatives.

Wu and Aluko (2007) applied QSAR modeling as a tool to determine the type
and position of amino acids that contribute to bitterness of di- and tri-peptides.
Datasets of bitter di- and tri-peptides were constructed followed by modeling using
PLS regression based on the three z-scores of 20 coded amino acids. The results
showed that a single-component model could explain 52% and 50% of the bitterness
threshold of bitter di- and tri-peptides, respectively. The PLS model determined that
hydrophobic amino acids at the carboxyl-terminus and bulky amino acid residues
adjacent to the carboxyl terminal were the major determinants of the intensity of
bitterness of di- and tri-peptides. However, there was no significant correlation
observed between bitterness of di- and tri-peptides and their angiotensin
I-converting enzyme-inhibitory properties. Knowledge of the type and position of
amino acids that contribute to bitterness could provide a basis for elimination of
certain residues from food proteins or rearrangement of residues on the primary
structure using genetic engineering techniques. The results can also enhance the
production of less bitter protein hydrolysates through appropriate choice of
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enzymes that cleave the bonds between the amino acid residues shown to be
important determinants of peptide bitterness.

A series of aspartame analogues and chemically modified derivatives was
evaluated by Vepuri et al. (2007) as artificial sweeteners using 3D-QSAR with
GFA, CoMFA and CoMSIA analysis. The combination of steric, electrostatic,
hydrophobic, and H-bond acceptor fields in CoMSIA gave better results than
CoMFA model. The predictive ability of 3D-QSAR with GFA, CoMFA, and
CoMSIA were determined using a test set giving predictive correlation coefficients
of 0.375, 0.535, and 0.596, respectively, indicating better predictivity of CoMSIA
compared to the other methods. Combining the outcome of all analysis, the authors
stated following findings from the study:

• Substitution of bulkier groups at the amino terminal end of aspartic acid could
increase the sweetness value.

• Conversely the presence of a bulky group at the oxygen atom of ester linkage
could decrease sweetness.

• The presence of positively charged groups at the amide linkage and negatively
charged groups near the ester linkage should increase the sweetness potency
value.

• Presence of bulky and hydrophobic groups at the amino terminal end of aspartic
acid should increase the sweetness to a greater value.

• Hydrogen-bond acceptor groups at the carbon atom attached to nitrogen of the
amide group should further increase the sweetness. The higher sweetness value
for the ester derivatives of aspartic acid compared to non-ester derivatives was
due to the H-bond acceptor nature of C=O in the ester group.

Yang et al. (2011) constructed three QSAR models for the prediction of
sweetness of 103 compounds. The molecules were represented by three descriptors.
On the basis of the Kohonen’s Self-Organising Neural Network (KohNN) map, the
whole data set was split into a training set including 58 compounds and a test set
including 45 compounds. Then, logarithmic value of sweetness (logSw) was pre-
dicted by using MLRs, ANN and SVM regression analyses. For the test set, the
correlation coefficient of 0.925, 0.932 and 0.943 for the MLR, ANN and SVM,
respectively, were achieved. This work revealed that XlogP, 2DACorr_Ident(2)/
2DACorr_Polariz(0) and SurfACorr_HPP_6 determined the sweetness of the
studied compounds. The authors also concluded that nonlinear methods such as
SVM and ANN provided better models than MLR analysis; therefore nonlinear
methods were preferable in the modelling of sweetness.

Two quantitative models were built by Zhong et al. (2013) to predict the logSw
(the logarithm of sweetness) of 320 unique compounds with a molecular weight
from 132 to 1287 and sweetness from 22 to 22,500,000. The QSAR models were
bulit employing MLR and SVM analysis. For the test set, the correlation coeffi-
cients of 0.87 and 0.88 were obtained by MLR and SVM, respectively. The model
consisted of twelve descriptors (including 2DACorr_Sigchg_2/2DAcorr_Polariz_0,
LogS, 3DACorr_PiChg_5, and 9 RDF descriptors). The selected molecular
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descriptors predicted the sweetness statistically and they could interpret the sweet
taste system theory of a sweetener, such as the AH/B System Theory founded by
Shallenberger and Acree.

Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) (Fig. 25) is known as a
food supplement. Due to the limited toxicological information on raspberry ketone,
Bredsdorff et al. (2015) performed an in silico profiling of raspberry ketone by
QSAR models. The QSAR screening was performed in the Leadscope Model
Applier Version 1.7.4 software (http://www.leadscope.com/). A total of 54 com-
mercial models from 4 suites developed in a collaboration with the U.S. Food and
Drug Administration were run: Developmental Toxicity Suite (27 models for Rats,
Mice, Rabbits and overall Rodents related to foetal growth retardation, foetal
weight decrease, foetal death, post-implantation loss and pre-implantation loss),
Reproductive Toxicity Suite (9 models for Rats, Mice and overall Rodents related
to overall reproductive effects and sperm effects), Human Adverse Hepatobiliary
Effects Suite (5 models), and Human Adverse Cardiological Effects Suite (13
models). In conclusion, the results from QSAR models were mostly negative and
only points towards potential hazards, however, considering the available data it
cannot be excluded that raspberry ketone has potential adverse effects on repro-
duction or development or was cardiotoxic.

A predictive QSPR was developed by Rojas et al. (2015) for modeling the
retention index measured on the OV-101 glass capillary gas chromatography col-
umn, in a set of 1208 flavor and fragrance compounds. Compounds were simul-
taneously analyzed through MLR analysis using the replacement method
(RM) variable subset selection technique. The authors performed the modeling in
three steps, the first one by considering all descriptor blocks, the second one by
excluding conformational descriptors blocks, and the last one by analyzing only
3D-descriptors families. The results clearly suggested that 3D-descriptors do not
offer relevant information for modeling the retention index, while a topological
index such as the solvation connectivity index of first order had a high relevance for
prediction. The authors wrapped up the discussion suggesting that the
conformation-independent QSPR method can emerge as an alternative approach for
developing models based on constitutional and topological molecular features of
compounds.

Rojas et al. (2016) developed predictive QSPR model for natural and synthetic
sweeteners in order to predict and model relative sweetness (RS). The data set was
composed of 233 sweeteners collected from diverse sources of literature and a total
of 3763 non-conformational Dragon molecular descriptors were calculated which
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were simultaneously analyzed through MLR analysis coupled with the replacement
method variable subset selection technique. The established six-parameter model
was validated through the cross-validation techniques, together with
Y-randomization and applicability domain analysis. The important finding of the
study was that the presence of hydrophobicity in a sweetener permits a favorable
partition of the substance between the aqueous saliva fluid and the lipidic taste
receptor membrane. The hydrophilicity of a sweetener allows its diffusion through
the saliva to rapidly interact with the taste receptor.

8.3 QSAR of Antioxidants

Various classes of chemical entities have been found to exhibit antioxidant activity.
A variation in their substitution pattern of these antioxidant molecules imparts a
difference in their physicochemical properties, which in turn influences their
reactivity with toxic free radicals. During the last decade, diverse classes of such
chemical entities have gained remarkable attention from different groups of
medicinal chemists for their ability to scavenge free radicals, and thus inhibit
systemic damages like lipid peroxidation. Successful QSAR models developed by
different groups of authors based on the available diverse classes of antioxidant
molecules are discussed below.

8.3.1 QSAR of Phenolic Antioxidants

Antioxidant activity of wine polyphenols was modeled by Rastija and Medic-Saric
(2009) using the QSAR technique with the descriptors calculated from 2D and 3D
representation of the molecules. The significant models for the antioxidant activity
of the polyphenols showed that the zero-order connectivity index (0χ) and molar
refractivity were the useful parameters for modeling free radical scavenging activity
of polyphenols belonging to different groups (phenolic acids and flavonoids, fla-
vans, flavonols and stilbene). The models thus developed also indicated that
lipophilicity and van der Waals volume were the significant molecular descriptors
for prediction of antioxidant activity of flavonoids in the lipophilic phase. They also
demonstrated that the number and the arrangement of free hydroxyl groups on the
flavonoid skeleton, or on the phenol ring of phenolic acids together with the shape,
size, mass and steric properties of the molecules bear considerable effects on the
activity profile of these molecules.

Cheng et al. (2002) developed QSAR models for studying multiple mechanisms
underlying the reaction between hydroxyl radical and phenolic compounds and
reported that the reaction rate constant (KS) bears good correlation with hydroxyl
O–H bond strength, electron-donating ability [ionization potential approximated by
HOMO energy level], enthalpy of single electron transfer, and spin distribution of
phenoxyl radicals after H-abstraction. MLR analysis indicated that, in addition to
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H-atom transfer, electron transfer process and stability of the resulting phenoxyl
radicals also significantly influence the reactivity of quenching hydroxyl radicals.

Modeling and statistical analysis for DPPH free radical scavenging activity of
phenolic compounds was performed by Velkov et al. (2007). The authors reported
that there existed a significant linear correlation between the free radical scavenging
activity and the spin density as well as the HOMO energy of the molecules, and
inferred that the radical scavenging activity of the phenolic compounds is efficiently
influenced by the electron donor ability of the O–H group to the aromatic ring, the
occurrence of substituents with positive mesomeric and inductive electronic effects
and the presence of hydrogen bonds involving dissociable hydroxyl group
(DHG) and adjacent functional groups.

Ray et al. (2008) performed QSAR studies in order to predict the lipid peroxi-
dation inhibition potential of some phenolic antioxidants in phosphate buffered and
pre-emulsified linoleic acid systems. The models were built in this study using the
stepwise regression and MLR/with factor analysis (FA) as the data processing step
for variable selection (FA-MLR), and it was revealed that the bond dissociation
enthalpy of the O-H bond and the MAXDP (maximal electrotopological positive
variation) descriptor bear negative influences on the lipid peroxidation inhibition
potency of these molecules.

Mitra et al. (2011) explored QSAR models for 33 phenolic derivatives bearing
NO donor groups. These models chiefly inferred that presence of substituted aro-
matic carbons, long chain branched substituents, an oxadiazole-N-oxide ring with
an electronegative atom containing group substituted at the 5 position of the parent
nucleus, increase in the positively charged surface area and the volume of the
molecules favours the antioxidant activity profile of these compounds. Long chain
branched substituents lacking symmetry about the centre of mass of the molecule
exhibit improved antioxidant activity. The authors extended the work through
design of 15 new molecules of this class with subsequent in silico prediction of
their activity based on the developed models.

Chen et al. (2015) investigated the structure-thermodynamics-antioxidant rela-
tionships of 20 natural phenolic acids and derivatives using DPPH• scavenging
assay, DFT calculations at the B3LYP/6-311++G(d,p) levels of theory, and QSAR
modeling. The authors explored three main working mechanisms: hydrogen atom
transfer (HAT), electron transfer-proton transfer (SETPT) and sequential proton
loss-electron transfer (SPLET) in four micro-environments (gas-phase, benzene,
water and ethanol). Subsequently, computed thermodynamics parameters (BDE, IP,
PDE, PA and ETE) were compared with the experimental radical scavenging
activities against DPPH•. Combined theoretical and experimental investigations
demonstrated that the extended delocalization and intra-molecular hydrogen bonds
were the two main contributions to the stability of the radicals. The C=O or C=C in
COOH, COOR, C=CCOOH and C=CCOOR groups, and orthodiphenolic func-
tionalities were shown to favorably stabilize the specific radical species to enhance
the radical scavenging activities, while the presence of the single OH in the ortho
position of the COOH group disfavors the activities. The authors concluded from
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the study that HAT was the thermodynamically preferred mechanism in the gas
phase and benzene, whereas SPLET in water and ethanol.

8.3.2 QSAR of Flavonoids Exhibiting Antioxidant Property

Farkas et al. (2004) studied 36 flavonoids using PLS projection of latent structures
method and developed significant QSAR model with several constitutional
descriptors, 2D topological and connectivity indices. They reported plots for PLS
component scores indicate that the model provides a suitable prediction for most of
the flavonoids, and since the model was developed for antioxidant activities of a
diverse set of flavonoids, the model could be used for classification of different
flavonoid groups.

A series of flavonoids were investigated by Rackova et al. (2005) in order to
examine the structural parameters contributing to the antilipid peroxidative activity.
The significant QSAR models developed by them indicated the importance of the
electronic parameters, viz. hydration energy and energy of LUMO for the lipid
peroxidation inhibitory potential of these flavonoids illustrate the hydrophilic and
electrophilic properties of the molecules respectively, and inferred that the highest
(absolute) values of EHYDR were obtained for most of the potent flavonoids (pos-
sessing the highest number of OH groups), while the lowest (absolute) values of
EHYDR were attributed to flavonoids that exerted low antioxidant activity.

Durand et al. (2007) performed a 2D QSAR analysis of flavonoids and hex-
ahydropyridoindoles in order to predict the antioxidant activity of pinoline
derivatives (1,2,3,4-tetrahydro-β-carbolines). The work highlights that the antioxi-
dant activity of various classes of compounds is also governed by topological and
functional group parameters. In another study, Calgarotto et al. (2007) performed
multivariate study on flavonoids with the aim to select electronic properties
responsible for their peroxynitrite scavenging activity. The authors reported that
higher HOMO energy for the flavonoids compounds facilitates transfer of the
reducing electrons to the peroxynitrite radical, while atomic charges associated with
the hydroxyl groups are involved in the electron transfer process between the
flavonoids and the peroxynitrite radical.

Mitra et al. (2010a) studied a series of isoflavones, isoflavanes and biphenyl
ketones derivatives (Fig. 26) which were modeled previously using the Fujita-Ban
analysis as well as based on different other chemometric tools to explore the
influence of different substituents on the free radical scavenging activity of the
molecules. Mitra et al. (2010a) suggested that the presence of hydroxyl substituent
at different positions of the A and B rings substantially influences the antioxidant
activity of these molecules while a methoxy substituent at R6 position of the B ring
favours activity. An increase in the number of hydroxy substituents enhances the
availability of hydrogen bond donor groups on the antioxidant molecules and
consequently facilitates the neutralization of toxic free radicals. Besides these,
molecules lacking the ene fragment of the pyran ring and molecules with an open
pyran ring show enhanced activity profile.
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8.3.3 Chromone Derivatives

Samee et al. (2008) developed statistically significant QSAR models for a series of
7-hydroxy, 8-hydroxy and 7, 8-dihydroxy synthetic chromone derivatives for their
DPPH free radical scavenging activities using genetic PLS approach for model
development. The MFA equation suggested that electronegative group on benzoyl
ring and electropositive group on phenyl ring are the important factors controlling
the antioxidant activity of these chromone derivatives.

Thirty six synthetic chromone derivatives (Fig. 27) were employed for devel-
opment of four QSAR models, namely 3D-pharmacophore mapping, CoMSIA,
HQSAR and group based QSAR (G-QSAR) techniques by Mitra et al. (2012a). The
importance of the hydrogen-bond acceptor feature was revealed by all four anal-
yses. Thus, the hydroxyl substituent at the R10 position and the benzoyl substituent
at the R3 position of the chromone nucleus were indispensable fragments for an
enhanced antioxidant activity. Additionally, the ketonic group at C4 further
enhances the abilities of the molecules to interact with the toxic free radicals
through a mechanism of electron transfer followed by deprotonation. The CoMSIA
analysis indicated that bulky substituents were disfavored at R2 position. For the 3D
pharmacophore model, the presence of the ring aromatic and the hydrophobic
features over the substituents at the R2 and R3 positions, respectively, indicated that
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such groups separated by the specific distance of 5.890 Å were essential for the
enhanced activities of the molecules. Similar results were also obtained from the
CoMSIA study, where these substituents map to the hydrophobically favored
contours. Moreover, the HQSAR contour study also revealed the importance of
such fragments, with the green color for the substituent at R3 indicating its maxi-
mum contribution. Finally, the G-QSAR models closely matched with those of the
remaining models, indicating the important impact of the hydroxyl substitution at
the R10 position on the antioxidant activity profiles of the chromone derivatives, in
addition to the remaining essential features, such as the presence of the substituted
benzoyl fragment at the R3 position and the substituted aromatic fragment at the R2

position.

8.3.4 Coumarins

Diverse QSAR approaches had been utilized for identifying the essential structural
attributes imparting potential antioxidant activity profile of a series of coumarin
derivatives (Fig. 28) by Mitra et al. (2013a). The descriptor based QSAR model
provided a quantitative outline regarding the structural prerequisites of the mole-
cules, while 3D pharmacophore and HQSAR models emphasized the favourable
spatial arrangement of the various chemical features and the crucial molecular
fragments respectively. All the models inferred that the fused benzene ring and the
oxygen atom of the pyran ring constituting the parent coumarin nucleus captured
the prime pharmacophoric features imparting superior antioxidant activity to the
molecules.

Descriptor based QSAR, 3D pharmacophore, HQSAR and G-QSAR have been
employed for 50 coumarin derivatives by Mitra et al. (2013b). The descriptor-based
QSAR model primarily implicated the importance of ketonic oxygen fragment
followed by the secondary amine group and the unsubstituted aromatic carbon
fragments. Similar observation signifying the importance of the =O fragment was
also obtained from the 3D pharmacophore model as well as the HQSAR and the
G-QSAR analyses. Further, the phenyl group substituted to the side chain attached
at the C3 position of the parent nucleus implicated to be a important feature based
on its mapping with the ring aromatic feature of the 3D pharmacophore model. The

C

O

C
linker obtained from the HQSAR analysis and the =CH– fragment con-

stituting the substituent attached to the C3 position of the coumarin moiety as
marked to be essential by the G-QSAR model enabled the molecules to map with
the essential ring aromatic feature. The G-QSAR model also implicated the
importance of the hydrophobic nature of the substituent at the C4 position of the

O OFig. 28 Scaffold of
Coumarin derivative
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parent moiety. The importance of the benzene fragment of the benzopyran ring was
also implicated by both the 3D pharmacophore model and the HQSAR analysis. In
case of the 3D pharmacophore model, this fragment mapped with the essential
hydrophobic feature, while the HQSAR contribution map implicated its importance
by marking the bonds and atoms of this fragment.

Ferric-reducing antioxidant power (FRAP) assay values were used to explore
QSAR models of 37 antioxidant coumarin derivatives by Erzincan et al. (2015).
The authors developed QSAR models employing fully optimized structures by
semi-empirical PM6 method using SPARTAN 10 software and descriptors were
calculated by DRAGON 6.0 software. The MLR models were developed with
QSARINS 2.2.1 software. Robustness, reliability and predictive power of the
models were tested by internal and external validations (R2 = 0.924; RMSETR =
0.213; R2

ext = 0.887; RMSEext = 0.255; CCCext = 0.939). Descriptors appeared in the
model revealed that complexity, H-bond donor and lipophilic character were
important parameters in describing the antioxidant activity. Additionally, the
authors also designed 31 new antioxidant coumarin derivatives and predicted their
antioxidant activity employing the best two-descriptor model. Interestingly, twelve
compounds showed promising predicted antioxidant activity than the studied ones.

8.3.5 QSAR of Miscellaneous Class of Chemicals with Antioxidant
Activity

Ancerewicz et al. (1998) explored trimetazidine derivatives, mostly having a free
phenolic group, for their radical scavenging and antioxidant properties, and
assessed their reaction with DPPH as a measure of radical scavenging capacity.
From the various significant QSAR models developed, it was revealed that
lipophilicity plays a prime role in the process of inhibition of lipid peroxidation, and
hydrogen abstraction was not the sole mechanism responsible for the reaction
between antioxidants and radicals produced in the Fenton reaction.

The 3D pharmacophore technique and CoMFA methods were employed by
Vajragupta et al. (2000) in order to study the activity of 13 radical scavengers. The
classical QSAR models indicated that the electronic parameters together with steric
molar refractivity and lipophilicity were the determinant factors contributing to the
antioxidant activity of the molecules. Again, the 3D QSAR studies revealed that the
structural properties contributing to the activity were not only lipophilic, but also
the optimum steric property and geometry of side-chain composition.

Beltran et al. (2007) performed QSAR analysis of a series of di-phenyl-tinIV-
salicyliden-ortho-aminophenols with their antioxidant activity values (IC50) calcu-
lated based on their ability to inhibit thiobarbituric acid reactive substances
(TBARS). They reported that there exists a significant correlation between the
TBARS activity and the ortho aminophenol substitutions. Besides the Hammett
constant (σ), one bond tin coupling constants and tin chemical shift also bear a
linear relationship with the activity of these molecules. The authors concluded that
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implied molecular variables can become trackers for the calculation of TBARS
inhibitory activity.

The QSAR models were developed on the basis of DPPH and ABTS tests and
the attack on DNA by hydroxyl radicals, and ANN tool was used for model
development by Prouillac et al. (2009). The network comprised of 12 input nodes in
the input layer, 1 node in the output layer, with no nodes in the hidden layer and
thirty thousand learning cycles. The results from DFT and QSAR studies concluded
that thermodynamically thiol derivatives may react more efficiently with hydroxyl
radicals than with aminothiol compounds and the importance of the HOMO energy
in the SAR strongly suggested the involvement of a hydrogen donation in the free
radical scavenging process.

Predictive pharmacophore models developed by Mitra et al. (2010b) for 26
arylamino-substituted benzo [b] thiophenes exhibiting free radical scavenging
activity through DPPH radical inhibition assay. The most predictive pharmacophore
model developed using the conformers obtained from the BEST method consisted
of three features: hydrogen bond donor, hydrogen bond acceptor and aromatic ring.
The authors extended the study: further pharmacophore hypotheses developed
using conformers obtained from the FAST method yielded models with good pre-
dictivity, with the best one consisting of two features: hydrogen bond donor and
hydrogen bond acceptor. Both of the pharmacophores highlighted the importance of
HBA and HBD features to the potent antioxidant activities of these molecules. The
presence of the secondary amino hydrogen donor group and the electronegative
oxygen atom of the methoxy substituent were the prime structural attributes asso-
ciated with an increased activity profile in this series of substituted benzothio-
phenes. Besides these features, the pharmacophore developed with conformers
generated from the BEST method also indicated the influential role of the ben-
zothiophene moiety in modulating the antioxidant activities of these molecules, as
implied by the presence of a ring aromatic (RA) feature in the selected pharma-
cophore. The models may be utilized to estimate the potential antioxidant activities
of virtual libraries of newly designed antioxidant molecules of this class prior to
synthesis or biological testing.

Li et al. (2011) explored 214 tripeptides containing either His or Tyr residue to
study QSAR of antioxidative tripeptides. The PLS tool was employed to model
antioxidative tripeptides activities with independent parameters computed from
each amino acids, including Divided Physico-chemical Property Scores (DPPS),
Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic,
Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic
Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index
(ISA-ECI) and Z-scale. The model concluded that the DPPS was better to describe
the amino acid of antioxidative tripeptides revealing that the importance of the
center amino acid and the N-terminal amino acid were far more than the importance
of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (pos-
itively to activity) and electronic (negatively to activity) properties of the
N-terminal amino acid were suggested to play the most important significance
towards activity with positive and negative contributions, respectively, followed by
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positive contribution of hydrogen bond of the center amino acid. The N-terminal
amino acid should be a highly hydrophobic and low electronic amino acid (such as
Ala, Gly, Val, and Leu). On the other hand, the center amino acid would be an
amino acid that possesses high hydrogen bond property (basic amino acids like Arg,
Lys, and His). The obtained structural characteristics of antioxidative peptide were
significant to the further research of antioxidative mechanism.

Pérez-Garrido et al. (2012) developed a QSAR model for a heterogeneous group
of substances with TOPS-MODE descriptors for an interpretation of their antiox-
idant activity in the form of bond contributions, which in turn revealed that the
prime driving forces for their radical scavenging activity were hydrogen bond
donation ability and polarity.

A group of cinnamic acid and caffeic acid derivatives having the ability to inhibit
lipid peroxidation composing were modeled by Mitra et al. based on three different
techniques: descriptor based QSAR models, 3D pharmacophore models and
HQSAR models Mitra et al. (2012b). The results obtained from all the models well
corroborate with each other and signify the importance of the ketonic oxygen of the
amide/acid fragment and the ethereal oxygen substituted to the parent phenyl ring
of the molecules under study.

The importance of the different substituents of 59 azole derivatives (Fig. 29) was
quantitatively analyzed employing the descriptor-based QSAR and G-QSAR
models, while the pharmacophore, CoMSIA and HQSAR models were employed to
identify the prime molecular features accounting for the potent antioxidant activity
of the molecules by Mitra et al. (2013c). The descriptor based QSAR model
inferred that an increase in hydrophobicity of the azole molecules due to the
presence of secondary amine fragments with aliphatic and aromatic substituents
together with extensive branching in the molecular structure reduced the activity
profile of the molecules. Additionally, an increase in the positively charged surface
area of the molecules also disfavoured their activity profile. On the contrary,
fragments bearing an aromatic carbon attached to three heteroatoms and a sec-
ondary amine linked by single bonds to any two groups were essential for optimum
antioxidant activity of the molecules. The 3D pharmacophore mapping and the
CoMSIA studies identified the prime molecular features comprising the response
pharmacophore of the azole derivatives. The best pharmacophore model implicated
the importance of the azole ring together with the aryl substituent at C5 position and
the 3-aryl substituted sydonyl fragment attached to the azole moiety at C2 position
by a long aliphatic chain. These fragments rightly captured the three ring aromatic
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and the hydrophobic features essential for the antioxidant activity of the molecules.
This observation rightly matched with the CoMSIA map which bears an electro-
statically favoured contour over the azole fragment and the azo linkage indicating
their importance for influencing the activity data of the molecules. Additionally, the
ability of the phenyl fragment, substituted at the C5 position of the azole ring, to
map with the sterically favoured feature in case of the CoMSIA was well corrob-
orated with the pharmacophore analysis which ensured mapping of this fragment
with the essential hydrophobic feature. Besides these, the HQSAR model also
implicated the importance of the azole moiety as well as the secondary amine
fragment linked to the C2 position of the azole ring and the connection of the azole
ring to the phenyl fragment attached at its C5 position. Similar results were also
obtained from the G-QSAR model which inferred the importance of the five
membered azole ring for the optimum activity profile of the molecules. On the
contrary, the G-QSAR model also implicated the detrimental effects of the five
membered triazole ring, the single bonded thio (–SH) group and the imine (=NH)
group present in the side chain of the parent azole ring bearing fragment.

Li and Li (2013) investigated QSAR modeling of antioxidative peptides for
scavenging radicals in three free radical systems [Trolox-equivalent antioxidant
capacity (TEAC), oxygen radical absorption capacity (ORAC), and superoxide
radical (SOR)] and observed a relationship between the physicochemical properties
of the C-terminal and N-terminal region and antioxidant potency. It is identified that
the properties of amino acids at the C-terminal regions were more important than
those in the N-terminal regions for predicting antioxidant activity. Antioxidant
activity was correlated with structures related to the electronic, hydrophobic, steric,
and hydrogen bonding properties of amino acids at the N-terminal and C-terminal
regions, and each terminus covers the three (or four) amino acid residues of pep-
tides containing up to 20 amino acid residues. The properties of amino acids at
C2 > C1 for TEAC, C3 > C4 > C1 for ORAC, and C4 > C1 > N1 for SOR were
highly correlated with antioxidant activity. Although electronic property most
significantly contributed to antioxidant activity in the three free radical systems, it
had complex effects at each position. Bulky hydrophobic amino acids at the
C-terminal were related to the antioxidant activity of peptides in the three free
radical systems. For peptides in the TEAC database, the relationship between the
N-terminal segment (N2, N3) and the activity increased when longer peptides were
included, which reflects the likely influence of stericity.

Chen et al. (2014) performed a 3D-QSAR study employing CoMSIA on a set of
27 curcumin-like diarylpentanoid analogues (Fig. 30) and their DPPH scavenging
activities. The results indicated that a combination of steric, hydrophobic, hydrogen
bond donor and hydrogen bond acceptor fields showed good correlative and pre-
dictive properties. Moreover, the authors have been able to purposely derive
chemical properties which were important to the activity, and hence adopt a rational
approach towards the selection of substituent’s at various positions in the curcumin
scaffold. Additionally, favored and disfavoured regions for enhanced antioxidative
activity were suggested. A significant cross-validated correlation coefficient
Q2 = 0.784, SEP = 0.042 for CoMSIA was obtained, indicating the statistical
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significance of the correlation scaffold. The result can be used as a guide to design
compounds that potentially have better activity against oxidative damage.

The extensive literature search related to the development of in silico models,
especially QSAR, for agrochemicals, food product, peptides, antioxidants, flavors
revealed that a wide variety of chemicals have been analysed for determining the
structural attributes of the molecules regulating their response profile. However,
there still lies a range of chemical entities that did not attain the significant amount
of analysis in this framework. Analyzing the immense importance of molecular
modeling, the present book chapter supports more modeling work for molecules
belonging to a wide variety of chemical classes from the vast area of practical fields
of agricultural and food interest.

9 Databases

In the food chemistry field, a number of databases have been compiled; though in
certain cases, food components in databases are not single chemicals, but rather
mixtures (Martinez-Mayorga and Medina-Franco 2009). A number of food, phy-
tochemicals and flavor-related molecular databases are available in the present time.
We have made a comprehensive presentation for chemoinformatic characterization
of a subset of the Flavor and Extract Manufacturers Association (FEMA); Generally
Recognized As Safe (GRAS) list of approved flavoring substances (Sprous and
Salemme 2007). A comprehensive list of food/flavour related database is presented
in Tables 13 and 14 depicts a list of databases and organizations (commercial as
well as country specific) for agrochemicals related to plant protection and pest
management along with issue of risk management and risk assessment. Still these
databases are very small compared to drug discovery compound libraries in the
industry. Recent initiatives requiring greater use of in silico technologies have
called for transparency and development of appropriate database information that is
available to the public at no cost. Therefore, the research community should take
initiatives to develop more databases for public and administration uses in the fields
of agrochemicals and food sciences.
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Table 13 A comprehensive list of food/flavour related database (few database are consisting of
pharmaceuticals and chemicals also)

Database Content Size
(Approx.)

Web address

Flavor and Extract
Manufacturers
Association/Generally
Recognized As Safe
(FEMA/GRAS)

Flavors 2244 http://www.femaflavor.
org

AnalytiCon Natural products 2449 http://www.ac-discovery.
com/

Specs NP Natural products 467
TCM Natural products 32357 http://www.tcmpage.com/
SuperScent Flavors and fragrances 2116/1591 M http://bioinf-applied.

charite.de/superscent/
Research Institute for
Fragrance
Materials/Fragrance
and Flavor Database
(RIFM/FEMA)

Flavors and fragrances 5100 http://www.rifm.org/
index.php

International
Organization of the
Flavor Industry (IOFI)

Flavors 2800 http://www.iofi.org

Everything Added to
Food in the United
States (EAFUS)
maintained by the US
FDA Center for Food
Safety and Applied
Nutrition (CFSAN)

Substances directly
added to food

2000 http://www.accessdata.
fda.gov/scripts/fcn/
fcnNavigation.cfm?filter=
&sortColumn=&rpt=
eafusListing&displayAll=
false#1

Food Chemicals Codex
(FCC)

Monographs of
food-grade chemicals,
processing aids,
flavoring agents,
vitamins, and
functional food
ingredients

1200 http://www.usp.org/food-
ingredients/food-
chemicals-codex

Flavor-Base Database
of Flavoring Materials
and Food Additives

Flavor, regulatory,
toxicological, and
related data relevant to
the flavor, food,
beverage, and tobacco
industries

– http://www.leffingwell.
com/flavbase.htm

Volatile Compounds in
Food Database (VCF)

Volatile compounds 8000 http://www.vcf-online.nl/
VcfHome.cfm

(continued)
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Table 13 (continued)

Database Content Size
(Approx.)

Web address

The (Complete)
Database of Essential
Oils (ESO)

Published by the
Boelens Aroma
Chemical Information
Service (BACIS).
Essential oils including
in some cases multiple
samples of the same oil
from different sources,
or having different
countries of growing
origin

4100 http://www.leffingwell.
com/baciseso.htm

Flavor and Fragrance
Materials (FEM)

Information collected
from a variety of
sources, including
flavor and fragrance
suppliers, industry and
government
organizations, as well
as related texts

– http://dir.
perfumerflavorist.com

Flavornet Compilation of aroma
compounds

730 http://www.flavornet.org

Table 14 A comprehensive lists of database and organization of agrochemicals related to plant
protection and pest management

Database/Organization Content Web address

Chemdatas Agrochemical Database contains
7749 Products including 1590
Agrochemical Products, 1042
Agrochemical Intermediate and
5000 other Chemical Raw
Materials

http://www.chemdatas.com/
Chemdatas/AdAgrochemE.aspx

Cropnosis The Agrochemical Products
Database (APD) provides
comprehensive commercial and
technical data on almost 600 of the
most important active ingredients
in the agrochemicals market

http://www.cropnosis.com/
marketing/products/databases

Agrochemicals IUPAC Contains information about
Biopesticides, Codex
Alimentarius, Disposal and
Storage of Pesticides, History of
Pesticide Use, Integrated Pest
Management, Introduction to
Pesticide Profiles, Obsolete
Pesticides, Pesticide Formulations,
Pesticide Resistance, Pesticide
Specifications, Pesticides and

http://agrochemicals.iupac.org/

(continued)
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Table 14 (continued)

Database/Organization Content Web address

Minor Crops, Prior Informed
Consent, Safe Use of Pesticides,
Spray Drift and its Mitigation,
Maximum Residue Levels
(MRLs), Pesticide Residues in
Water, Residue Analytical
Methods, Residue Studies—
Conduct of Trials, Risk
Assessment

Agricultural Chemical Usage
Database

Initiative by Department of
Environment, Government of
Australia. Database contains
certain information on the
agricultural chemicals used in
Australia from 1997 to 2006 by
broadacre farmers. The database
allows governments, chemical
users and the community to view
trends in the usage of chemicals
over an entire decade

https://www.environment.gov.au/
protection/chemicals-
management/agricultural-
chemical-usage-database

Homologa™, The Global Crop
Protection Database

Gives access to information about:
Approved plant protection
products, Registration-Status of
active ingredients on EU-level,
Actual status of registration,
Approved parallel imports, MRLs
in foodstuffs, Export-/import
statistics of food

http://www.homologa-new.com/
pls/apex/f?p=550:1:0:::::

Codex Pesticides Residues in
Food Online Database

User can obtain information on
Codex MRLs and Codex
Extraneous Maximum Residue
Limits (EMRLs) for
pesticide/commodity
combinations. Details of
commodities are found in the
Codex Classification of Foods and
Animal Feeds

http://www.fao.org/fao-who-
codexalimentarius/standards/
pesticide-mrls/en/

EU Pesticides database Follows
Activesubstances-Regulation
(EC) No 1107/2009 and Pesticides
EU-MRLs-Regulation (EC) No
396/2005

http://ec.europa.eu/food/plant/
pesticides/eu-pesticides-database/
public/?event=
homepage&language=EN

National Agricultural Statistics
Service (NASS)

The NASS Agricultural Chemical
Use Program is United States
Department of Agriculture
(USDA) official source of statistics
about on-farm chemical use and
pest management practices. Since
1990, NASS has surveyed U.S.
farmers to collect information on
the chemical ingredients they
apply to agricultural commodities
through fertilizers and pesticides

https://www.nass.usda.gov/
Surveys/Guide_to_NASS_
Surveys/Chemical_Use/

(continued)
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Table 14 (continued)

Database/Organization Content Web address

Phillips McDougall Phillips McDougall offer a number
of products and services aimed at
providing detailed analysis of the
agrochemical and seed industries,
including AgriService, Seed
Service and Agreworld. In
addition to this the company
undertakes consultancy studies on
a confidential single client basis

https://www.phillipsmcdougall.
com/home.asp

Greenbook Worked directly with chemical
plant protection manufacturers to
compile a versatile database of
plant protection products

http://www.greenbook.net/

The Japan Food Chemical
Research Foundation

Contribute to the safety of food
and the maintenance and
enhancement of the health of
people through various activities.
The Foundation supports research
activities aimed at developing
safety evaluation methodologies
for food additives, and at reducing
the use of food additives along
with agrochemicals residue in food

http://www.ffcr.or.jp/zaidan/
FFCRHOME.nsf/pages/agri-
chem

AgNIC (Agricultural Network
Information Center)

Directory of quality
agriculture-related databases,
datasets, and information systems

https://www.agnic.org/

E-Answers Extension and outreach
publications produced by land
grant universities. Information
about agriculture, forestry, fishing,
family/consumer issues, lawn and
garden

http://adec.edu/

EXtensionTOXicologyNETwork
(EXTOXNET)

Supplies toxicology information
and fact sheets, Pesticide
Information Profiles (PIPs), and
Toxicology Information Briefs
(TIBs)

http://extoxnet.orst.edu/

National Ag Safety Database Supplies comprehensive
information regarding agricultural
safety and health education.
Database includes state
publications, OSHA and EPA
standards

http://www.cdc.gov/nasd/

National Pesticide Information
Center (NPIC)

NPIC provides objective,
science-based information about
pesticides and pesticide-related
topics to enable people to make
informed decisions about
pesticides and their use. NPIC is a
cooperative agreement between
Oregon State University and the
U.S. Environmental Protection
Agency (EPA)

http://npic.orst.edu/about.html
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Table 14 (continued)

Database/Organization Content Web address

TOXNET Searching databases on
toxicology, hazardous chemicals,
environmental health, and toxic
releases including Agrochemicals

https://toxnet.nlm.nih.gov/

CDMS Label Database Search engine for agrochemicals
by manufacturer

http://www.cdms.net/Label-
Database

Agricultural pests Information about managing pests,
including University of
California’s official guidelines for
monitoring pests and using
pesticides and nonpesticide
alternatives for managing insect,
mite, nematode, weed, and disease
pests

http://ipm.ucanr.edu/PMG/crops-
agriculture.html

EPA Pesticides Databases Database resources about
environmental effects,
environmental fate, health effects,
and regulatory information

https://www.epa.gov/pesticides

National Pesticide Information
Retrieval System (NPIRS)

Search for federally active
pesticide products using one of the
following methods: EPA
Registration Number, Product
Name, Company Name or Active
Ingredient

http://ppis.ceris.purdue.edu/

PAN Pesticide Database One-stop location for toxicity and
regulatory information for
pesticides, insecticides, herbicides

http://www.pesticideinfo.org/

USDA Plant Health Portal USDA’s clearinghouse on plant
diseases, pest management, weeds
management and plant health
research

http://www.usda.gov//wps/portal/
usda/usdahome?navid=PLANT_
HEALTH&navtype=
RT&parentnav=TOPICS

Pesticide Data Program (PDP) The PDP is a national pesticide
residue monitoring program and
produces the most comprehensive
pesticide residue database in the U.
S.

https://www.ams.usda.gov/
datasets/pdp

European and Mediterranean
Plant Protection Organization
(EPPO)

Under the International Plant
Protection Convention (IPPC),
EPPO is the regional plant
protection organization (RPPO)
within the European and
Mediterranean region.EPPO
Global Database is web-based
database which has the objective
to gather all pest-specific
information that has been
produced by EPPO

https://www.eppo.int/

PHYTOWEB Official information on plant
protection products registered in
Belgium

http://fytoweb.be/en
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Table 14 (continued)

Database/Organization Content Web address

AGES database List of authorised/approved plant
protection products in Austria

http://pmg.ages.at/pls/psmlfrz/
pmgweb4$.Startup

Positivlisten Database on plant protection
products of Denmark

https://www.middeldatabasen.dk/
positiveList.asp

Agricultural Pesticides
Committee (APC)

Provide up-to-date approved
information on pesticides use,
decrease the misuse of unapproved
products, increase transparency
with all stakeholders using
pesticides, ensure the safe use of
pesticides for people and the
environment in Egypt. The APC
supports the crucial necessity of
establishing the “Egyptian
Organization of Pesticide
Management; EOPM” in Egypt;
that may undertake such roles of
the US-EPA

http://www.apc.gov.eg/en/
default.aspx

Plant Protection Product Register
database (Tukes—Finnish Safety
and Chemicals Agency)

Contains key information about
plant protection products
authorised in Finland. In addition
to the authorised use, the register
contains usage restrictions for each
product. The label texts including
the classification of the product
and instructions for use can also be
found in the register

http://tukes.fi/en/Branches/
Chemicals-biocides-plant-
protection-products/Plant-
protection-products/Authorised-
products/Plant-Protection-
Product-Register/

E-phy The catalog of plant protection
products and their uses, fertilizers
and growing media allowed in
France

https://ephy.anses.fr/

AGRITOX Database maintained by ANSES
on physical and chemical
properties, toxicology and
ecotoxicology of plant protection
substances registered in France

http://www.agritox.anses.fr/

Union of Industries of Plant
Protection (UIPP)

French Crop Protection
Association—datasheets on safety
aspects of commercial products

http://www.uipp.org/

BVL database The Federal Office of Consumer
Protection and Food Safety was
founded in 2002 in Germany.
The BVL is an independent higher
federal authority within the
Federal Ministry of Food and
Agriculture

http://www.bvl.bund.de/DE/
Home/homepage_node.html

Ministry of rural development
and food-Greece

List of authorized plant protection
products

http://wwww.minagric.gr/
syspest/syspest_menu_eng.aspx

IOBC Pesticide Side Effect
Database

The database on selectivity of
pesticides has been prepared
jointly by the International
Organization for Biological and
Integrated Control West

http://www.iobc-wprs.org/index.
html
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Table 14 (continued)

Database/Organization Content Web address

Palaearctic Regional
Section (IOBC-WPRS) Working
Group on “Pesticides and
Beneficial Organisms” and the
Commission “Guidelines for
Integrated Production” to assist
organizations and growers in the
choice of pesticides

Pesticides Registration & Control
Division (PRCD)

The Database founded by
Department of Agriculture and
Food, Government of Ireland,
contains details of registered plant
protection products and is updated
on a regular basis. It can be
searched by Product Name, Active
Substance or Function/Crop

http://www.pcs.agriculture.gov.
ie/products/

Plant Protection and Inspection
Services (PPIS)

The database contains information
on safe and proper usage of the
approximately 900 pesticides
registered in Israel. Database
developed by Ministry of
Agriculture and Rural
Development of Israel

http://www.hadbara.moag.gov.il/
hadbara/english/

State Plant Protection Service
(SPPS)

SPPS is a public administration
body to provide the national
phytosanitary safety by taking
effective monitoring measures to
protect the country from
dangerous plant diseases and
pests, and provide plant and plant
product exports. SPPS built on 17
December 1998, adopted by the
Plant Protection Act, and the
Ministry of Agriculture of Latvia

http://www.vaad.gov.lv/sakums/
par-mums.aspx

ASTA List of registered plant protection
products of Luxemburg

https://saturn.etat.lu/tapes/

Index Phyto Sanitary Contains data on agricultural
pesticides registered product
Morocco regardless whether
marketed or not

http://eservice.onssa.gov.ma/
IndPesticide.aspx

CTGB Board for the Authorisation of
Plant Protection Products
(specifically, pesticides) and
Biocides of the Netherlands

http://www.ctgb.nl/en/pesticides-
database

Mattilsynet Database on registered plant
protection products of Norway

http://www.mattilsynet.no/
plantevernmidler/godk.asp?
sortering=preparat&preparat=
Alle&sprak=In+English

Poland plant protection database Online database on plant
protection products of Poland by
Ministry of Agriculture and Rural
Development

http://www.minrol.gov.pl/eng/
Ministry/Online-database-on-
plant-protection-products
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10 Expert Systems

Expert systems allow for the direct entry of a structure into the software followed
by the calculation or prediction of the response without the requirement to compute
descriptors and re-perform the modeling process. This makes expert systems a more
convenient option for quick prediction of activity/response over traditional QSARs.
Expert systems have been frequently employed by regulatory agencies, academia
and industries worldwide for more efficient and fast prediction. Multiple mecha-
nisms can lead to the same activity/response and this complexity requires the
availability of predictive tools that are able to distinguish multiple regions in the
activity space. This need has led to the development of so-called expert systems,
which try to cover broader structural and activity regions in comparison with the
local models. There are a number of commercial or freely available toxicity pre-
diction software packages. They have advantages over the use of traditional
QSARs. A representative list of free and commercially available QSAR expert
systems has been portrayed in Table 15.

11 Conclusion

This chapter presents the current knowledge related to successful QSARs appli-
cation in the field of food and agriculture sciences along with the information on
how one can tactfully utilize this technique for exploring better and efficient food
products, foold supplements as well as agrochemicals and phytochemicals. The
results of a number of studies are analyzed and discussed to provide a solid
rationale for continuing efforts to improve QSAR models in the food and

Table 14 (continued)

Database/Organization Content Web address

Health and Safety Executive
databases (HSE)

Guidance on authorisation for
pesticides used in Agriculture,
Horticulture or the Home Garden
in United Kingdom. Guidance on
how to use these products safely
and information about controls
over pesticide residues in food

http://www.hse.gov.uk/
pesticides/

UKSUP Authorized Plant Protection
Products of Slovakia

http://www.uksup.sk/index.php?
start&t=orp-pripravky-na-
ochranu-rastlin-registre-a-
zoznamy&t2=

KEMI The Pesticides Register contains
information on more than 3,000
Authorised and Previously
Authorized pesticide products in
Sweden

http://webapps.kemi.se/
BkmRegistret/Kemi.Spider.Web.
External/
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agriculture sciences. However, lack of sufficient data related to a particular class of
molecules has hindered the allocation of computational modeling methods to some
extent. Moreover, among the significant number of QSAR models developed,
majority have been concentrated on the development of models for specific class of
derivatives.

Considering future perspectives, with the increasing acceptance that chemical
diversity of plant products is well suited to provide core scaffolds for future drugs,
there is an increasing use of novel plant products and chemical libraries based on
phytochemicals in drug discovery programs. Nevertheless, only a limited number of
in silico models have been reported in the literature so far based on phytochemicals.
The world may truly benefit from the wealth of knowledge of traditional plant
medicine on successful integration of ethnopharmacology and in silico approaches.

There is no doubt that QSAR has come a long way from its inception days in the
form of classical Hansch and Free-Wilson approaches. It has gradually evolved
with the use of newer descriptors, rapid advances in computer power, application of
diverse chemometric tools, employment of rigorous validation tests, and integration
with receptor structure information. QSAR has now emerged as a distinct scientific
discipline in its own right. A good practice of QSAR modeling through usage of
OECD-recommended guidelines can develop good predictive models with
demonstrated practical applications in diverse chemical—biological areas as
applied in the fields of food and agriculture, which may further strengthen its
acceptability to the scientific community. There are many novel molecules tested
for antioxidant activity that are in the pipeline of pre-clinical and clinical trials from
the application of QSAR approach. It is also true for agrochemicals. In Fig. 31 we
depicted already commercialized agrochemicals which have come to the market
with the assist of classical QSAR. We expect that applications of chemoinformatic
methods will intensify in future in all areas where new chemicals are being
developed and tested.

Fig. 31 Important examples of commercialized agrochemicals with the aid of classical QSAR
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Quantitative Structure-Epigenetic Activity
Relationships
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Abstract The relevance of epigenetic drug discovery has increased during the past
few years as revealed by the augmenting number of related publications and the
amount of structure-epigenetic activity data in compound databases. This chapter
discusses the current status of epigenetic target-based therapies. It is also analyzed the
progress of quantitative structure-activity relationship (QSAR) models developed for
compound databases screened with epigenetic targets. A special emphasis is made on
compounds directed to inhibitors of DNA methyltransferases, one of the first epi-
genetic target families associated with therapeutic potential. Novel approaches
applied to develop models for inhibitors of bromodomains, other epigenetic target
families with high relevance in modern drug discovery programs, are also discussed.
The chapter analyses epigenetic activity landscape modeling, activity cliffs, and
activity cliff generators and their relevance to develop QSAR models. Computational
methods applied to elucidate Quantitative Structure-Epigenetic Activity Relation-
ships are in line with the increasing and developing research area of Epi-informatics.
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List of abbreviations

ACG Activity Cliffs Generators
ALM Activity Landscape Modeling
BRD Bromodomain
DNMT DNA Methyltransferase
ERCS Epigenetic Relevant Chemical Space
FDA Food and Drug Administration
HDAC Histone lysine Deacetylase
ISMs Instances that should be Misclassified
MMP Matched Molecular Pairs
MODI Modelability Index
NSG Network-like Similarity Graphs
PLIF Protein-Ligand Interaction Fingerprint
PLM Property Landscape Modeling
QSAR Quantitative Structure-Activity Relationship
SALI Structure Activity Landscape Index
SAR Structure-Activity Relationship
SAS Structure-Activity Similarity
SEARSSEARS Structure-Epigenetic Activity Relationships
SARI Structure-Activity Relationship Index
SmAR Structure-multiple Activity Relationship
SVMs Support Vector Machines

1 Epigenetics and Computational Approaches

1.1 Relevance of Epigenetics and Major Epigenetic Targets

Epigenetics is the study of the elements that participate in the regulation of the
nucleosome-chromatin as determinants of gene expression. The term “Epigenetics”
itself was created by Conrad Waddington while he was attempting to describe “the
interactions of genes with their environment, which brings the phenotype into being
(Waddington 2012). Since the early 1940’s the definition of epigenetics has been
changing to include the analysis of heritable phenotypic traits that result from
modifications to a chromosome that do not modify the basic genetic code (Berger
et al. 2009).

Major epigenetic targets of therapeutic interest are histone lysine deacetylases
(HDACs), bromodomains (BRDs), and DNA methyltransferases (DNMTs). In
depth reviews of these and other epigenetic targets have been published elsewhere
(Dueñas-González et al. 2016). Currently six epigenetic drugs have been approved
by the Food and Drug Administration (FDA) of the United States for cancer
indications: two DNA demethylating and four histone deacetylase inhibitors
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(Dueñas-González et al. 2016). Figure 1 summarizes the agents and year of
approval of these epigenetic drugs. The first four FDA-approved drugs were
identified based on observations of cell phenotypes; several years latter their bio-
chemical targets discovered. It is worth noting that belinostat and panobinostat were
the first drugs developed after their molecular targets were uncovered.

Epigenetic drug discovery is rapidly growing in both industry and academia.
Indeed, the increasing interest in epigenetic drug and probe discovery is reflected in
the growing number of publications. For example, Arguelles et al. have recently
showed the increased number of epigenetic-related publications in the period 2010–
2015 (Arguelles et al. 2016). Similarly, the structure-epigenetic activity information
stored in public molecular databases has increased significantly. Moreover, epige-
netic targets are now abundant in drug discovery pipelines of multiple biotech-
nology companies. In order to accelerate the identification and development of
novel epigenetic drugs and probes, several technological advances have been made
to screen compound databases using low and high throughput assays (Zheng 2015).

The fact that the six drugs (Fig. 1) are approved against cancer by no means
implies that epigenetic alterations are limited to malignant conditions. The study of
epigenetics in many chronic diseases has rapidly evolved and now a large number
of studies have been published on the epigenetic pathogenesis of these diseases.
Table 1 summarizes representative diseases that may be approached with com-
pounds directed to epigenetic targets (Dueñas-González et al. 2016; Alam et al.
2016).

The significance of epigenetic drug and probe development combined with the
large amount of SEA requires computational approaches to organize and mine the
experimental data to further advance the development of epi-drugs and epi-probes
(Dueñas-González et al. 2016). One of the first steps to explore Structure-Epigenetic

Fig. 1 Currently epigenetic drugs approved by the food and drug administration (FDA) of the
United States
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Activity RelationshipS (SEARS) is to characterize the chemical space of epigenetic
compounds, i.e., to quantify the chemical diversity, scaffold content, and their
coverage in chemical space. The first attempts to characterize the so-called Epige-
netic Relevant Chemical Space (ERCS) have been published. For instance, Fer-
nández de-Gortari and Medina-Franco (2015) assembled and curated a molecular
database of inhibitors of DNMT subtype1 (DNMT1). Compounds were analyzed in
terms of physicochemical properties, structural diversity, coverage of chemical
space, and scaffold diversity. In a follow-up work, Prieto-Martinez et al. (2016)
reported the first comprehensive chemoinformatic analysis of BRD and HDAC
inhibitors available in the public domain. Similar to the work of Fernández
de-Gortari, compounds were analyzed in terms of physicochemical properties,
molecular fingerprints and structural scaffolds. In addition, molecular complexity
was measured for inhibitors of DNMTs, HDAC and DNMT1s. It was concluded
that, despite the fact that several compounds have been screened against these
molecular targets, there are not yet molecular scaffold with large enrichment factors,
e.g., epigenetic privileged scaffolds remain to be identified. It was also concluded
that there is a need to increase the molecular complexity of screening libraries to
explore novel regions in chemical space for epigenetic targets. These two works
were aimed to explore parts of the ERCS in a systematic manner (Fernandez-de
Gortari and Medina-Franco 2015; Prieto-Martinez et al. 2016).

1.2 Overview of Computational Studies
for Epigenetic Drug Development

Computational structure—and ligand-based approaches have had numerous appli-
cations to identify and develop drugs and probes for epigenetic targets. Likewise,
chemoinformatic methods are playing a key role to organize, mine, and visualize
the information generated in epigenetic projects (Medina-Franco and Yoo 2016).
For instance, in silico methods have been used to analyze and predict ligand-target
interactions and describe in a systematic manner SARs (Structure Activity

Table 1 Examples of diseases that may be approached with epigenetic therapies

General type of condition
or disorder

Diseases

Neurodegenerative Alzheimer’s, parkinson’s, huntington’s, multiple sclerosis,
epilepsy, schizophrenia, bipolar disorders and other psychiatric
conditions

Respiratory Asthma, chronic obstructive pulmonary disease, pulmonary
hypertension, lung fibrosis

Cardiovascular Atherosclerosis, coronary artery disease, heart failure
Autoimmune Systemic lupus erythematosus, rheumatoid arthritis, systemic

sclerosis and Sjögren’s syndrome

306 M.O. García-Sánchez et al.



Relationships)/SEARS (see below). As discussed in this chapter, the specific
methods applied for a particular problem depend on the experimental information
available as well as the goals of the study (Méndez-Lucio 2016). Overall, major
computational approaches used for epigenetic drug and probe development include,
but are not limited to, virtual screening, molecular dynamics, docking, pharma-
cophore modeling and quantitative structure-activity relationships (QSAR).

Ideally, QSAR models could be interpreted at the molecular level through the
rationalization of protein–ligand interactions, i.e., establishing structure–protein–li-
gand interaction relationships. Certainly, it has been pointed out that understanding
protein–ligand interactions is at the core of molecular recognition and they are
implicated with several practical applications including structure-based design,
docking, virtual screening, and clustering of protein-ligand complexes (Medina-
Franco et al. 2014). As discussed below, protein-ligand interactions can be studied
using protein-ligand interaction fingerprints (PLIFs) also termed structural interaction
fingerprints. PLIFs are designed to ‘capture a 1D representation of the interactions
between ligand and protein either in complexes of known structure or in docked poses’
(Brewerton 2008; Desaphy et al. 2013). In epigenetics and other research areas, PLIFs
are quite useful to analyze large amounts of structural data andget insights into different
areas, for instance (Desaphy et al. 2013; Méndez-Lucio 2016):

• If similar binding sites recognize similar ligands.
• If protein-ligand interaction patterns are conserved across target families.
• If different ligand structures or substructures have similar interaction patterns

with a single target.

PLIFs and their applications to identify hot spots have been reviewed recently
(Medina-Franco et al. 2014).

2 Overview of QSAR

The main idea of any QSAR model is to establish quantitative relationships
between a biological endpoint with the chemical structures that are encoded in a
quantitative manner using molecular descriptors. Overall, the practical application
of such models is two-fold:

• Explain in a retrospective manner the biological endpoint of a series of com-
pounds, and

• Predict the biological endpoint of a novel series of molecules.

Since the first QSAR model published by Hansch et al. in the early 1960’s,
QSAR models have experienced significant modifications(Kubinyi 2002). In the
early models, biological activity was correlated with simple structural parameters as
molecular descriptors such as logP and Hammett’s σ, using linear regression.
Today, more complex descriptors are employed which are applied to larger data sets
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using not only linear regression but sophisticated machine learning techniques
(Méndez-Lucio 2016). With the increasing importance of polypharmacology,
screening data sets are tested across more than one molecular target. Therefore,
QSAR models are being adapted to model quantitatively structure-multiple activity
relationships (SmAR) (Waddell and Medina-Franco 2012; Medina-Franco and
Waddell 2012).

3 Integration of Activity Landscape Modeling
(ALM) and QSAR

Data sets of molecules screened across epigenetic targets represent reach starting
points to analyze SARs in a descriptive and/or predictive manner. Examples of
comprehensive molecular databases that store SEA are ChEMBL (Papadatos and
Overington 2014), Binding Database (Liu et al. 2007), HEMD (Huang et al.
2012a), and Chromohub (Liu et al. 2012). Table 2 summarizes further information
of each database.

It has been recognized that before developing QSAR models and making pre-
dictions, it is convenient to first understand the SAR. In particular, understanding
the SAR of large data sets can be done through the systematic application of
descriptive methods such as activity landscape modeling (ALM) (Medina-Franco
et al. 2015b).

Table 2 Examples of molecular databases that store structure epigenetic-activity data

Database Overall description URL Link

HEMD: Human epigenetic
enzyme and modulator
database

‘Central resource for the display, search, and
analysis of the structure, function, and related
annotation for human epigenetic enzymes and
chemical modulators focused on epigenetic
therapeutics’

http://mdl.
shsmu.edu.cn/
HEMD/

ChromoHub ‘Online resource where users can map on
phylogenetic trees disease associations,
protein structures, chemical inhibitors,
histone substrates, chromosomal aberrations
and other types of data extracted from public
repositories and the published literature’

http://www.
thesgc.org/
chromohub/

ChEMBL ‘Manually curated chemical database of
bioactive molecules with drug-like
properties’

https://www.
ebi.ac.uk/
chembl/

Binding database ‘Public, web-accessible database of measured
binding affinities, focusing chiefly on the
interactions of protein considered to be
drug-targets with small, drug-like molecules’

https://www.
bindingdb.org/
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3.1 Activity Landscape Modeling and Activity Cliffs

The concept of activity landscapes was first introduced in the seminal work of
Maggiora (Maggiora 2006). In that work Maggiora first defined a typical
n-dimensional activity landscape as composed of an (n−1)-dimensional chemical
space where each dimension is described by a coordinate, which is generally defined
by a single molecular descriptor or combination of descriptors. The nth dimension is
defined by the activity space that is derived from the measured activity of each of the
assayed compounds. Therefore, in three dimensions activity landscapes resemble the
landscapes seen in nature (Fig. 2) and as so, represent a useful tool for exploring
SARs (Maggiora 2006; Peltason and Bajorath 2007b; Bajorath et al. 2009; Peltason
et al. 2010; Perez-Villanueva et al. 2010; Vogt et al. 2010; Iyer and Bajorath 2011;
Bajorath 2012; Medina-Franco 2012; Mendez-Lucio et al. 2012b; Waddell and
Medina-Franco 2012; Aguayo-Ortiz et al. 2014; Medina-Franco et al. 2015a;
Méndez-Lucio et al. 2015).

In activity landscapes, smooth regions represent areas where gradual changes in
chemical structure induce moderate changes in biological activity and are associ-
ated with continuous SARs. In contrast, rugged regions are associated with dis-
continuous SARs where small chemical modifications drastically change the
biological response (Bajorath et al. 2009).

Fig. 2 Hypothetical three dimensional activity landscape. The plane defined by descriptors 1 and
2 is a low dimension—representation—of the chemical space. The relationship between the
measured activity on the Z-axis and the chemical space gives rise to a structure-activity surface or
activity landscape

Quantitative Structure-Epigenetic Activity … 309



While there are many areas where the activity landscape concept can provide
guidance such as the pharmaceutical, chemical, food, agricultural and environ-
mental applications (Wassermann and Bajorath 2010; Guha 2012b; Medina-Franco
et al. 2015a), one of the main focuses of this concept relies on activity cliffs,
irrespective of the task. Activity cliffs represent extreme forms of SAR disconti-
nuity in activity landscapes and are formed by pairs of compounds with high
structural similarity but unexpectedly high activity (or property) difference (Pelta-
son and Bajorath 2011; Medina-Franco 2012; Stumpfe and Bajorath 2012a).

As deduced from its outlier nature, the activity cliffs influence on the activity
landscape and the corresponding impact over activity landscapes based tasks can be
significant, in a negative or positive way, depending on the task (Cruz-Monteagudo
et al. 2014). For example, in drug discovery tasks, discontinuous SARs and activity
cliffs provide the basis for lead optimization (Stumpfe and Bajorath 2012a; Dimova
et al. 2013) while continuous SARs provides the basis for SAR progression analysis
for medicinal chemists (Iyer et al. 2011). On the other hand, continuous and smooth
SAR regions are prerequisites for the successful application of similarity-based
methods for scaffold hopping or simply as predictive tools (Guha and Van Drie
2008b; Bajorath et al. 2009). These quantitative approaches rely on the Similarity
Property Principle (Johnson and Maggiora 1990) that states that similar molecules
should have similar activity, thus assuming the presence of continuous SARs. In
contrast, in rugged and discontinuous SAR regions, the application of
similarity-based methods is meaningless. Consequently, multiple definitions of
activity cliffs have been introduced, adapting the essence of the phenomenon to
different formalisms, depending of the task.

For instance, Guha introduced the Structure Activity Landscape Index (SALI)
(Guha Van Drie 2008b), which is designed to identify activity cliffs and compounds
representing key inflection points on activity landscapes. In a set of compounds,
SALI assigns each compound pair a score that combines their pairwise similarity
and the difference between their potency. The SALI approach is appropriate to
detect activity cliffs in a dataset. However, the magnitude of the activity cliffs is not
determined by the SALI metric since its values are compared on a relative scale. In
a different approach, Stumpfe and Bajorath use discrete criteria to define activity
cliffs including the applied similarity criterion, the potency measure and the mag-
nitude of the potency difference. Stumpfe and Bajorath recommend considering a
pair of compounds as an activity cliff only if a pre-established similarity criterion is
satisfied; one compound in the pair has potency in the nanomolar range, and there is
at least a 100-fold difference in potency between the two compounds (Stumpfe et al.
2013).

However, activity cliffs defined using similarity approaches are sometimes
questioned by medicinal chemists because of their limited chemical interpretability
(Wassermann and Bajorath 2010; Stumpfe and Bajorath 2012a). The application of
the matched molecular pairs (MMP) formalism (Kenny and Sadowski 2004)
addresses this issue (Hu et al. 2012a, b). A MMP is defined as a pair of compounds
that only differ at a single site (represented by a substructure) such as a ring or an
R-group. Thus, to classify a molecule pair as an MMP-cliff, the potency difference
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required remains essentially the same as that applied in similarity-based definitions.
Instead, the difference in size of the exchanged fragments and their size are
restricted to a predefined maximum number of non-hydrogen atoms that guarantee
the level of structural similarity expected for an activity cliff (Hu et al. 2012a, b).

Finally, activity cliffs have also been defined on the basis of consistently defined
scaffolds and the presence of different scaffold/R-group relationships (Hu et al.
2012a, b; Aguayo-Ortiz et al. 2014; Medina-Franco et al. 2013) or by calculating
the three dimensional similarity between compound binding modes observed in the
X-ray structure of ligand/target complexes (Hu and Bajorath 2012; Hu et al. 2012a,
b). An extensive review of the existing activity cliffs definitions is published
elsewhere (Hu et al. 2013; Stumpfe et al. 2013).

3.2 Approaches for Activity Landscape Modeling

There are several approaches for ALM which can be classified according to the
quantification of the SAR data, representation and method of visualization used
(Bajorath et al. 2009; Bajorath 2012).

3.2.1 Structure-Activity Similarity (SAS) Maps

Structure-activity similarity (SAS) maps were one of the first approaches for ALM
(Shanmugasundaram and Maggiora 2001) currently and actively used for SAR
mapping and characterization (Mendez-Lucio et al. 2012a, b, 2015; Waddell and
Medina-Franco 2012; Aguayo-Ortiz et al. 2014; Martinez-Mayorga et al. 2013,
2014; Yongye and Medina-Franco 2013; Navarrete-Vázquez and Méndez-Lucio
2015a). SAS maps are represented as two dimensional graphs that plot the simi-
larity relationships between the chemical structure (usually plotted on the X-axis)
and biological activity (usually represented by potency differences and plotted in
the Y-axis) for each pair of molecules in a given dataset.

Basically, any structural representation and similarity metric can be used to
compute structure similarity. On the other hand, the activity similarity can be
computed in a relative scale (range scaled between 0 and 1) by considering the
absolute activity difference of a pair of molecules in the range of activity values
determined by the full set of molecules under study:

SA i, jð Þ=1−
Ai −Aj
�� ��

Amax −Amin
ð1Þ

where Ai and Aj are the activities of molecules i and j while Amax and Amin are the
maximum and minimum activities, respectively.

A hypothetical SAS map is shown in Fig. 3a. As illustrated in the figure, these
maps can be roughly divided into four quadrants in order to focus on particular
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tasks according to the major SAR trend dominating the respective quadrant. The
space determined by quadrant I, for instance, is particularly suitable for scaffold
hopping and virtual screening since it is populated by pairs of molecules with low
structure similarity and low potency difference (high activity similarity). On the
contrary, the quadrant III is populated by pair of molecules with high structure
similarity but large potency difference. Hence, this zone of the SAS map is
appropriate for identifying activity cliffs, providing useful information for lead
optimization tasks. Quadrant IV contains pairs of molecules with high structure
similarity and low potency difference; thus, it is associated with a smooth or
continuous SAR providing the basis for the meaningful application of similarity
based predictive approaches such as QSAR modeling. Finally, quadrant II is in
principle an uninformative region since it is dominated by pairs of molecules with
low structure and activity similarities (Fig. 3a).

3.2.2 Structure Activity Landscape Index (SALI)

SALI (Guha and Van Drie 2008b) is a metric specifically developed to identify and
quantify activity cliffs. SALI assigns each molecule pair a score that combines their
pairwise similarity and the difference between their potency according to the
expression:

SALIi, j =
Ai −Aj
�� ��

1− simði, jÞ ð2Þ

where sim(i, j) is the similarity coefficient between the two molecules.
Just like SAS maps, any structural representation and similarity metric can be

used to compute SALI. Therefore, pairs of molecules with high SALI values rep-
resent key inflection points on activity landscapes and consequently are considered
as potential activity cliffs. The visualization of SALI values and its efficient use as
an ALM approach can be conducted through a matrix representation termed as
SALI heatmaps and the corresponding network representation derived from such
matrices termed as SALI networks (Guha 2012a).

The simplest form to visualize the SALI values corresponding to a given set of
molecules is to directly plot the corresponding SALI matrix as a heatmap, as shown
in Fig. 3b. In SALI heatmaps X- and Y axes are ordered so that less active
molecules are located towards the origin. SALI values in the heatmap are color
coded (i.e., in a black to white scale) where light/dark blocks represent large/smaller
SALI values pointing in this manner to potential activity cliffs.

Alternatively, the SALI matrix can be visualized through a network represen-
tation termed as SALI networks, as shown in Fig. 3b. For this type of visualization,
an arbitrary SALI value must be previously specified as a threshold to select those
pairs whose SALI value is greater. The common practice is to select a percentage of
the maximum SALI value for the dataset that guarantees the significance of the cliff
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pair identified and/or fit to the goals of the ALM analysis. The higher the SALI
threshold, the higher is the significance of the activity cliffs identified; this gives rise
to a sparser network which is easier to explore. On the contrary, at lower SALI
thresholds, the activity cliffs identified are less significant, the resultant network is
more densely populated and consequently, it is more complex its exploration.

3.2.3 Network-like Similarity Graphs (NSG)

The Network-like Similarity Graphs (NSG) (Wawer et al. 2008) approach for ALM
relies on several global and local metrics for the quantification of the SAR encoded
in a given dataset. The main metric behind NSGs is the structure-activity rela-
tionship index (SARI) (Peltason and Bajorath 2007b) which combines continuity

Fig. 3 Graphic representation of main activity landscape modeling approaches
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and discontinuity scores encoding global SAR continuity and discontinuity,
respectively. The continuity score encodes the potency-weighted mean of pairwise
compound dissimilarity, highlighting the presence of structurally diverse and potent
compounds. The continuity score computed from raw data (contraw) is defined as:

contraw =
∑ i≠ jð Þ weight i, jð Þ1 ̸ 1+ sim i, jð Þð Þð Þ

∑i≠ j weight i, jð Þ ð3Þ

weight i, jð Þ= AiAj

1+ Ai −Aj
�� �� ð4Þ

On the other hand, the discontinuity score encodes the similarity-scaled average
potency difference among ligand pairs that exceed a predefined similarity threshold
and have a significant potency difference, highlighting the presence of activity
cliffs. The discontinuity score computed from raw data (discraw) is defined as:

discraw = mean
i, jð Þ simði, jÞj j> thresholdsim , Ai− Ajj j>1f g

Ai −Aj
�� �� sim i, jð Þ� � ð5Þ

Both, the continuity and discontinuity raw scores are normalized (range scaled
between 0 and 1) and combined into the final SARI, as expressed below:

SARI =
1
2

contnorm + 1− discnormð Þð Þ ð6Þ

Finally, SARI can be used to categorize the overall SAR present in a given
dataset as continuous, discontinuous or heterogeneous according the high, low or
medium SARI values obtained, respectively.

To reflect the potential participation of each compound in local activity cliffs and
hence individual contributions to local and global SAR characteristics, a local
variant of the discontinuity score can applied to a given compound and its nearest
neighbors:

discðiÞraw = mean
j≠ i simði, jÞj j> thresholdsimf g

AI −AJj j sim i, jð Þð Þ ð7Þ

In NSGs, like with SAS maps and SALI applications, any structural represen-
tation and similarity metric can be used to compute the structure similarity of a
given pair of compounds sim(i, j). The structural similarity threshold (thresholdsim)
is predefined according to the structural representation used (i.e. MACSS keys
(Durant et al. 2002) or extended connectivity fingerprints (ECFP) (Rogers and
Hahn 2010). The biological activity is usually the corresponding potency measured
as IC50 or Ki in nanomolar units (nM) and expressed in a log scale. So, a potency
difference (|Ai −Aj|) ≥ 1 between a pair of compounds reflects a difference of one
order of magnitude or higher and is usually considered as significant. Therefore,
NSGs represent a compound dataset by showing all molecules and their similarity
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relationships. As shown in Fig. 3c, NSGs are formal graphs in which nodes cor-
respond to molecules. Pair-wise similarity relationships are represented by edges
that connect individual nodes. Only molecule pairs that exceed a predefined simi-
larity threshold are connected by an edge. To visualize the activity (potency) dis-
tribution, nodes are color coded by potency, applying a continuous spectrum from
green (lowest) to red (highest potency). As commented above, the compound
discontinuity score reflects SAR characteristics of individual molecules and is
represented by node scaling reflecting the potency deviation of a compound from its
structural neighbors. Large nodes represent compounds inducing a high disconti-
nuity and vice versa (Wawer and Bajorath 2010, Stumpfe and Bajorath 2012b).
Thus, it identifies molecules that introduce SAR discontinuity and activity cliffs. In
NSGs, combinations of large red and green nodes connected by an edge are activity
cliff markers that can be easily identified. NSGs are implemented in SARANEA
(Lounkine et al. 2009), a freely available program that implements a graphical user
interface to NSGs and NSG-based data mining techniques.

3.2.4 Three-Dimensional Activity Landscapes

The three dimensional activity landscape is the more intuitive but elaborated rep-
resentation used in ALM. This type of activity landscape representation is obtained
by dimension reduction of chemical references spaces and interpolation of com-
pound potency surfaces (Peltason et al. 2010). To derive a 3D activity landscape the
molecules are initially projected into a bi-dimensional chemical reference space that
is spanned by two molecular descriptions defining the x and y axes. From a chosen
molecular representation, a coordinate-free chemical reference space is generated
by calculating pairwise compound distances. Then, multidimensional scaling (Borg
and Groenen 2005) is used to project these molecules from the coordinate-free
reference space onto an x/y-plane on the basis of their chemical distances. A third
axis z is added accounting for the respective potency values of the molecules.
Finally, a coherent potency surface required to obtain an interpretable landscape
topology is obtained by interpolating data points by using a geostatistical technique
termed Kriging (Cressie 1993). The interpolated potency surface is color-coded
applying a gradient from green (lowest potency) to red (highest potency). A hy-
pothetical exemplary representation of a three dimensional activity landscape is
provided in the Fig. 3d. Following the same logic applied in the rest of ALM
approaches the different SAR trends in a dataset can be intuitively identified by
simply exploring the resultant landscape.

3.3 Are All Activity Landscapes Valid?

If all the approaches for ALM have proved to be valid, the same cannot be said for
every activity landscape derived. In general, it is clear that both, activity landscapes
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and activity cliffs, are very dependent on the context, which can be defined in
multiple ways—by target, by chemical series or by molecular representation
(Yongye et al. 2011; Medina-Franco 2012). The main factor contributing to such
limitation is the strong dependence of activity landscapes of structure representa-
tion. Many are the structure representations currently available and in principle, any
can be used to construct an activity landscape. However, not any structure repre-
sentation provides a valid activity landscape, independently of the SAR dataset
modeled. In the same way, not every activity cliffs derived from any structure
representation can be considered as valid (statistically significant). The use of
activity landscapes derived from a consensus of multiple structure representations
(Yongye et al. 2011; Medina-Franco 2012) can alleviate this problem by identifying
pairs of molecules that remains as activity cliffs in the multiple representations used
(Medina-Franco et al. 2009). However, in absence of measures of significance, any
approach to activity landscapes have to be simply assumed as valid and conse-
quently, that a real SAR is present, which is not necessarily true.

In this direction, Guha and Medina-Franco (2014) alerted that methods that
employ the landscape paradigm should first perform checks to assess the validity of
the landscape. These authors proposed a method to validate the statistical signifi-
cance of a given activity landscape which in essence answer the question of whether
or not it is different from one generated by chance. For this, the authors resorted to
the analogous application to activity landscaped of the concept of comparing pre-
dictive models to models developed using random (or scrambled) data, commonly
used for QSAR models validation (Tropsha et al. 2003). The rationale behind this
approach is that activity landscapes that emerge from structural representations not
significantly different from a random landscape are “articrafts” and the structural
representation does not reliably encode a real SAR (Medina-Franco 2013). That is,
since similar landscapes can be generated from randomized activity and structural
data, there is no true connection between the structural features captured by the
representation and the activity data.

The same line of reasoning is applied to consider the validity of individual
activity cliffs, once checked the validity of the landscape. For this, the authors used
the SALI formalism by combining the idea of threshold-based identification of
SALI cliffs (Guha and Van Drie 2008b; Guha 2011) with a permutation test to
identify statistically significant activity cliffs. Depending on the ALM approach,
other metrics such as SARI can be employed to quantify and detect activity cliffs
pairs and consequently are susceptible to be combined with permutation tests to
estimate the statistical significance of activity cliffs.

The results of the experiments presented in (Guha and Medina-Franco 2014)
suggest that not all representations lead to non-random landscapes. This indicates
that neither all molecular representations should be used to interpret the SAR nor be
combined to generate consensus models. Consequently, significance testing of
activity landscape and in particular, activity cliffs, is a key factor to consider prior to
the application of ALM approaches.

316 M.O. García-Sánchez et al.



3.4 Overview on Activity Landscape Modeling Applications

ALM is becoming a common strategy in medicinal chemistry and drug discovery to
systematically explore and describe SAR trends. Although specific applications have
been reported, ALM have been mainly devoted to SAR analysis focused on the role
of activity cliffs in compound class-specific or target-specific collections. Cur-
rent ALM approaches have provided the platform for identifying local SAR trends in
large high throughput screening datasets (Wawer and Bajorath 2009); systematic
studies of chemical substitutions (Wassermann and Bajorath 2010) or scaffolds (Hu
and Bajorath 2010) that exhibit a propensity for activity cliff formation; structure—
selectivity relationships (Peltason and Bajorath 2009); definition and identification
of activity ridges (multiple compounds in a series forming activity cliffs) (Vogt et al.
2011); and the introduction of concepts such as ‘multitarget activity landscapes’
(derived from compounds that are active against multiple targets) (Dimova et al.
2011) or ‘R-cliffs’ (activity cliffs derived from a pair of compounds that differ in a
single R group) (Agrafiotis et al. 2011). A detailed summary of ALM approaches to
SAR analysis is provided in (Wassermann et al. 2010).

Among the most salient applications of the ALM approach, not directly dealing
with SAR analysis, are their use in the estimation of predictive models performance
and quality (Guha and Van Drie 2008a); the introduction of consensus approaches
allowed to identify representation independent activity cliffs termed as ‘consensus
activity cliffs’(Medina-Franco et al. 2009) as well as ‘activity cliffs generators’
(ACG) (Méndez-Lucio et al. 2012b); feature selection approaches based on quan-
titative ALM metrics such as SALI, directed to find a structural representation that
leads a to a good activity landscape and consequently to a predictive model (Guha
2012c); or activity landscape prediction approaches based on ligand structure (Guha
2010) or both ligand and protein information (Seebeck et al. 2011). A summarized
overview of this applications is provided in (Guha 2012b).

More recent applications explore novel or emerging areas beyond biological
activity. An attractive and non-common structure representations termed PLIFs
(Brewerton 2008) was recently used to introduce the concept of ‘interaction cliffs’
(ligand-target complexes with high structural and interaction similarity but with a
large potency difference between ligands) (Méndez-Lucio et al. 2015). This type of
analysis constitutes a primary example of the synergy between chemoinformatics
and molecular modeling to process efficiently large amounts of data from protein–
ligand and protein–protein complexes (Medina-Franco 2014). A novel representa-
tion to address absorption, distribution, metabolism and elimination (ADME)
properties and model property landscape models (PLM) is represented by the recent
study of Yongye and Medina-Franco that discussed the structure-property rela-
tionships (SPR) of 166 molecules screened for kappa-opioid receptor activity
including ADME considerations (Yongye and Medina-Franco 2013). As part of the
emerging area of Food informatics (Martinez-Mayorga and Medina-Franco 2014),
ALM was recently applied to mine structure-flavor associations. Finally, the
problem of scaffold hopping (finding/predicting/screening compounds that are
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structurally diverse, while sharing a biological activity) (Schneider et al. 1999;
Tsunoyama et al. 2008) have been also addressed through the ALM approach
leading to the introduction of the concept of ‘similarity cliffs’ (compounds in a
compound-pair having approximately equal activities but significantly different
structures) (Vogt et al. 2013). A detailed discussion on this novel applications can
be found in (Medina-Franco et al. 2015a).

3.5 Importance of Integrating ALM with QSAR

QSAR modeling is one of the major computational tools employed in medicinal
chemistry and drug discovery. However, from the beginning, there has been the
focus of both approval and criticism concerning its reliability (Cherkasov et al.
2014). In essence, despite almost limitless availability of molecular descriptors and
the increasing variety and efficiency of machine learning techniques available for
implementing QSAR models, their predictive capability is still limited. Significant
wrong predictions of activity still arise among similar molecules even in cases where
overall predictivity is high. Unfortunately, this observation made by Maggiora
(2006) still holds 10 years later. As noted in his editorial (Maggiora 2006), the reason
why QSAR often disappoints is essentially related to the nature of the underlying
SAR. That is, the main assumption of QSAR and similarity-based approaches is SAR
continuity. As above mentioned, it is founded on the similarity property principle
(Johnson and Maggiora 1990) and consequently assumes that gradual changes in
structure should necessarily leads to gradual changes in activity. However, sys-
tematic quantitative profiling of many different sets of active compounds has shown
that the majority of global SARs are heterogeneous in nature (Peltason and Bajorath
2007a), that is, their activity landscapes contain both gently sloped regions (con-
tinuous SAR) but also sharp cliffs (discontinuous SAR). Therefore, the presence of
SAR continuity provides a fundamental basis for QSAR analyses and resulting
compound activity predictions, while the presence of SAR discontinuity falls outside
the applicability domain of the QSAR paradigm (Maggiora 2006).

Currently, machine learning algorithms are the most extended tools in QSAR
modeling and chemoinformatics applications (Witten and Frank 2005; Ivanciuc
2009; Aguiar-Pulido et al. 2013). As discussed above, since QSAR modeling is
essentially based on a similarity-based approach, the meaningful application of
machine learning algorithms to chemoinformatics and drug discovery tasks heavily
relies in the fulfilment of the Similarity Property Principle.

The two general purposes for which machine learning is used in QSAR modeling
are classification and generalization of data, where machine learning is used to
extract regularity from data. In a drug discovery context, machine learning uses SAR
knowledge to guide the process in favor of producing classifications and general-
izations that are conceptually meaningful (Rose 2003). Accordingly, special data
cases such as activity cliffs represent exceptions for the regular trend encoded in the
whole data; or even worst, represent examples that contradicts that regular trend.
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Therefore, if the classification mechanism in machine learning is understood as a
function that maps a description (chemical structure encoded by molecular
descriptors) of an example to its label, i.e., a continuous value or a class mem-
bership, the counterproductive influence of pair of molecules that form activity
cliffs is obvious. That is, most machine learning techniques just capture major
trends encoded in continuous SAR regions but fail to recognize activity cliffs. Thus,
due to the very likely variable constitution of an activity landscapes the reliability of
the resultant predictions will be reduced. Even for advanced techniques capable of
handling nonlinear relationships such as neural networks or support vector
machines (SVMs), it is difficult to capture activity cliffs together with the rest of the
landscape. But even if the machine learning model succeeds in capturing more of
the significant activity cliffs it comes at a cost. To account for the most significant
activity cliffs (which correspond to discontinuities in the SAR landscape), it would
have to be “memorized” by the model, which introduces some degree of overfitting.
Hence, a model that learns from a training dataset including a significant number of
activity cliffs is prone to be overfitted (Guha 2011). Consequently, the conscien-
tious application of SAR/SPR exploration based on ALM approaches previous to
QSAR models development and deployment is a key to guarantee a meaningful
decision making and a desirable prediction performance of the resultant models.

3.5.1 In Machine Learning Activity Cliffs Are Instances that Should
Be Misclassified

The recently introduced concept of ‘instances that should be misclassified’ (ISMs)
(Smith and Martinez 2011) can be used to establish a parallelism for activity cliffs in
the machine learning area. In this paper, the authors introduced a novel filtering
method that identifies ISMs using heuristics that predict how likely it is that an
instance will be misclassified. By ISMs the authors mean that in the absence of
additional information other than what the dataset provides, the label assigned by the
learning algorithm to the instance is the most appropriate one, even if it happens to be
different from the instance’s actual label. In this work ISMs are distinguished from
traditional outliers and class noise on that ISMs exhibit a high degree of class over-
lap. That is, how similar an instance is to other instances of different classes in a region
of the task space. A similar rationale is also behind the dataset ‘modelability index’
(MODI) proposed by Tropsha (Golbraikh et al. 2014) to estimate the feasibility of
obtaining predictive QSAR models for a binary data set of bioactive compounds.

Although ISMs are defined in a classification context, a good analogy can be
established with the activity cliff concept. If in machine learning terms ISMs are
similar instances with different labels in a region of the task space, in activity
landscape terms, activity cliffs represent small steps in chemical space that are
accompanied by large changes in activity. However, this analogy becomes almost
perfect if the activity cliff concept is extended to also take inactive compounds into
consideration, reinterpreting the activity landscape as an active/inactive classifica-
tion task rather than the usual regression task.
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Smith and Martinez demonstrated that removing ISMs before training achieved
the highest overall classification accuracy compared with the machine learning
algorithms trained on the original data sets as well as with outliers removed by the
other methods (Smith and Martinez 2011). Rather than focusing on correctly
classifying the ISMs and arbitrarily adjusting the classification boundary, removing
the ISMs for training allows the machine learning algorithms to focus on the
instances that can be correctly classified. So, removing the ISMs allows a more
appropriate decision surface to be discovered since the ISMs do not arbitrarily pull
the decision surface from its more optimal position which leads to an improved
classification accuracy. In terms of activity landscape, this can be translated into
‘remove activity cliffs to make the activity landscape smoother’.

Therefore, although in the QSAR and chemoinformatics community the benefits
of removing problematic instances from training to improve the prediction accuracy
of machine learning models is not widely accepted, from a machine learning per-
spective the effectiveness of this procedure is well justified and documented (Byeon
et al. 2008; Smith and Martinez 2011; Smith et al. 2014; Yang and Gao 2013).
Putting together the previous considerations give rise to the hypothesis: ‘removing
activity cliffs will make the activity landscape smoother and improve the prediction
accuracy of QSAR models’. After all, current QSAR and chemoinformatics tools
are mainly based on machine learning algorithms.

3.5.2 SAR Continuity Restoration by Identification and Removal
of Activity Cliffs Generators

To accept and keep in mind the negative influence of activity cliffs in QSAR
modeling is the usual behavior among best QSAR practices (Scior et al. 2009;
Tropsha 2010). Recently, the detection and identification of activity cliffs have been
included as a key step in the process of chemogenomics data curation (Fourches
et al. 2016). These authors propose that prior to initiating the computational study
of a dataset, all activity cliffs forming compounds must be detected, verified, and
treated by the modeler in order to decide whether to keep or discard them. However,
little work has been devoted to alleviate it by reducing the SAR discontinuity on a
dataset seeking to restore as much as possible the fundamental principle of QSAR
and similarity-based methods.

In this sense, the closest concept to ISMs is ACG, which is defined in terms of
single molecules instead of molecule pairs. An ACG is defined as a molecular
structure that has a high probability to form activity cliffs with molecules tested in
the same biological assay (Méndez-Lucio et al. 2012). So, problematic instances
identified in machine learning terms as ISMs could be termed in chemoinformatics
and computational medicinal chemistry terms as ACGs.

To minimize the risk of finding false ACGs, the reference space(s) used for their
identification must be different and independent from the reference spaces that will
be used for modeling. Ideally, the concept of consensus activity cliffs (Medina-
Franco et al. 2009) (or a related concept such as the MMP-cliffs (Hu et al. 2012a, b)
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should be applied for the identification of ACGs due to the well-known represen-
tation dependence of the activity cliffs concept (Dimova et al. 2012). In this way,
the consensus ACGs identified by using several representations (preferably global
representations such as fingerprints) should behave as such, irrespective of the
reference space used or, at least, for most of the possible reference spaces.

Then, the goal is that the original training set, once removed the consensus
ACGs previously identified, fulfills the assumption made by the machine learning
algorithm intended to be used for model construction which is also the main pre-
mise of QSAR modeling: the SAR continuity implicit in the Similarity Property
Principle. Additional curation (Fourches et al. 2010) and balancing procedures
(Japkowicz 2000a, b) should be also applied to match the goals of both the QSAR
paradigm (Maggiora 2006) and the machine learning algorithm (Witten and Frank
2005).

The essence of this solution is to remove from the training process those com-
pounds responsible for the SAR discontinuity, and consequently restore the SAR
continuity required for deriving reliable and predictive QSAR models. The main
assumption behind this solution is that a machine learning algorithm that learns
from a training set free of the noise induced by these problematic examples should
produce a model able to identify the structural and/or physicochemical patterns
determining the desired activity in a sharper way than when learning from a training
set including those problematic examples. However, the question that remains is to
what extent the learning process is affected and so, the generalization ability of the
pattern found by the loss of the information encoded in the activity cliff pairs
(Maggiora 2006). Other drawback of removing ACGs is the unavoidable reduction
of the applicability domain of the model.

A remedial measure to soften the loss of applicability domain can be that of
deriving several diverse machine learning models to implement a consensus clas-
sifier (Zhang et al. 2013; Polikar 2006). It is well known that multi-classifiers,
ensemble or consensus classifiers are effective, among other reasons, because they
span the decision space since each base classifier covers a different region of the
decision space (chemical space or SAR) and the union of all the base classifiers
produce a common region that results in a wider chemical coverage or applicability
domain (Kuncheva 2004; Polikar 2006). So, in our opinion, at least it is worth to
test the hypothesis of ACGs removal since reduction of the applicability domain
seems to have a remedial solution whereas overfitting does not.

Actually, a successful example of the positive effect of removing ACGs in
prospective virtual screening tasks was recently provided by Cruz-Monteagudo
et al. (Castillo-Gonzalez et al. 2015). Here the authors proposed a virtual screening
methodology for the discovery of novel G-quadruplex stabilizing agents with a hit
rate higher than 20%. This methodology combined a consensus QSAR modeling
and molecular docking including as a key step in the QSAR modeling stage the
detection and removal of ACGs. However, even when the results obtained by the
application of such VS methodology are encouraging, removing ACGs could sig-
nificantly aid or not such results. Additionally, this little more than anecdotic
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evidence does not demonstrate whether or not the elimination of ACGs is certainly
beneficial, detrimental or useless in terms of generalization ability.

This last, and specifically, the hypothesis of SAR continuity restoration by
ACGs removal was recently probed in a recent work (Cruz-Monteagudo et al.
2016). In this work, Cruz-Monteagudo et al. report the first attempt to study the
effect of activity cliffs over the generalization ability of machine learning based
QSAR classifiers, using as a case study a previously reported diverse and noisy
dataset focused on drug induced liver injury (Fourches et al. 2010) and more than
40 ML classification algorithms. Here, the hypothesis of SAR continuity restoration
by activity cliffs removal is tested as a potential solution to overcome such limi-
tation. Based on a previously established parallelism between ACGs and ISMs
(Cruz-Monteagudo et al. 2014), the classification performance of multiple machine
learning classifiers as well as the consensus classifier derived from predictive
classifiers obtained from training sets including or excluding ACGs was compar-
atively studied.

The influence of the removal of ACGs from the training set over the virtual
screening performance was also studied for the respective consensus classifiers
algorithms. In general terms, the removal of the ACGs from the training process
slightly decreased the overall accuracy of the ML classifiers and multi-classifiers,
improving their sensitivity (the weakest feature of ML classifiers trained with
ACGs) but decreasing their specificity. Although these results did not support a
positive effect of the removal of ACGs over the classification performance of ML
classifiers, the “balancing effect” of ACG removal demonstrated to positively
influence the virtual screening performance of multi-classifiers based on valid base
ML classifiers. Specially, the early recognition ability was significantly favored
after ACG removal. Finally, although the results presented and discussed in this
work provided evidences supporting the positive effect of ACG removal, mainly for
virtual screening applications, extensive benchmark studies including multiple SAR
datasets are still required to go beyond anecdotic evidences.

4 QSAR and ALM Studies Applied to Epigenetic Targets

As discussed above, the large amount of SEA stored in compound databases requires
the application of computational approaches to extract useful information that can
help to understand the activity of compounds at the molecular level. Similarly,
computer-based analysis of structure-epigenetic activity information can be used to
predict the activity of tested compounds, i.e., to conduct virtual screening of com-
pound databases. Indeed, both applications have been published for epigenetic
compounds. In this sub-section is discussed progress on the computer-based analysis
of SEA. The discussion is organized in major parts: analysis of QSAR and ALM.

322 M.O. García-Sánchez et al.



4.1 QSAR in Epigenetics

A number of QSAR studies have been reported for compounds screened across
epigenetic targets. Several of these studies have been recently collected and dis-
cussed Méndez-Lucio (Méndez-Lucio 2016). Table 3 summarizes additional
examples of QSAR models developed for epigenetic targets (Maldonado-Rojas
et al. 2015; Sharma et al. 2013; Silvestri et al. 2012; Wei et al. 2012; Noor et al.
2015; Choubey et al. 2016; Sun et al. 2016). Most of the published QSAR studies
have been done for HDACs and inhibitors (Méndez-Lucio 2016). The number of
studies for BRDS is scarce.

Maldonado-Rojas et al. reported a QSAR study of 800 compounds to discrim-
inate active and inactive DNMT inhibitors from a data collection of natural prod-
ucts. The QSAR model gave rise to the identification of 447 compounds for later
molecular docking, cluster analysis and biological evaluation. The QSAR method
included a Linear Discriminant Analysis, a statistical tool to obtain the best
equation that permits the separation of two regions (actives-inactives). Statistical
parameters for the QSAR model (Table 3) showed high correlation coefficients,
accuracy, and sensitivity rate values.

As mentioned at the beginning of this section, most of the QSAR studies for
epigenetic targets have been developed for HDACs. The main function of HDACs
is to remove acetyl groups from the acetylated lysines located in the histone tails.
Consequently, the positive charge of the amino group in the lysines interacts with
the negative charge in the DNA phosphates, promoting chromatin condensation. As
a result, gene silencing is observed since the transcription machinery cannot access
gene-promoter regions (Sterner and Berger 2000). Gene silencing product of
HDACs activity can produce different cancer types. For this reason several research
groups are trying to identify and develop HDAC inhibitors. HDACs are classified
structurally and functionally into several classes, namely class I (HDACs subtypes
1–3 and 8), class II (HDACs subtypes 4–7, 9 and 10), class IV (HDAC subtype 11),
and class III(Ruijter et al. 2003). The class III HDACs (also known as the sirtuins
SIRT1–7) is zinc-dependent but is structurally distinct from the other classes and
requires the cofactor NAD+ for their deacetylase function.

The paper published by Sharma et al. (Table 3) did not take into account specific
HDAC isoforms, generating a 2D-QSAR model to design novel HDAC inhibitors
in general. The study used a data collection of 34 compounds derived from α-amino
souberic acid generating models with multiple linear regression analysis. The
statistics of the best models are shown in Table 3. Other validation analyses also
were developed, like partial least squares (r2 = 0.88 and r2(CV) = 0.76) and neural
networking analysis (R2

Training = 0.86 and R2
Test = 0.66). All of them generated

comparable results which prove that the model formed is sound and has good
predictivity.

More specific studies were carried out by Silvestrini et al. and Wei et al. who
emphasize specific isoforms, class I, II, IV and HDAC4-Class II respectively. In
both studies, 3D-QSAR studies were developed. In the first study the authors used
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the comparative binding energy approach—COMBINEr-, a novel comprehensive
tool for data mining that uses a series of receptor-ligand complexes to quantify
interaction energies with molecular mechanics (Ortiz et al. 1995). Three different
energy fields were used to compute the enzyme-ligand interactions, electrostatics-
(ELE), steric-(STE) and desolvation-(DRY). The results indicated the ELE + DRY
model was the best (Table 3). In the second study, 3D-QSAR models were built by
aligning inhibitor series of compounds with docking of a protein receptor into the
active site. Based on same structurally aligned sets, pharmacophore hypotheses
were also generated. The best values of CoMFA and CoMSIA models (Table 3)
and pharmacophore hypothesis let to the development of a c-3D-QSAR (consensus)
model whose aim was to improve the prediction accuracy on some of the less active
compounds.

Noor et al. and Choubey et al. (Table 3) published papers focused on QSARs
studies of HDAC inhibitors of Class I (HDAC 1–3 and 8). Noor et al. generated a
2D-QSAR model employing a multiple linear regression technique of compounds
with HDAC inhibitory activity. This model was used jointly with pharmacophore
models for virtual screening of compounds libraries.

In a similar manner, Choubey et al. generated pharmacophore hypothesis and
QSAR models. However, they developed only one 3D-QSAR model that was
applied to HDAC1. The model was employed for virtual screening against com-
pound libraries in order to identify novel scaffolds which can be experimentally
validated to design future drug molecule, the statistical significance reveals the high
predictive power of 3D-QSAR model (Table 3). Regression analysis was done by
constructing partial least squares factors. Descriptors like hydrogen bond acceptor
(A), hydrogen bond donor (D), one positively ionizable (P), negatively ionizable
(N), aromatic ring (R) and hydrophobic group (H) were used for representing the
structures of the training set.

The most recent study summarized in Table 3 was reported by Sun et al., and
that is about one isoform of HDAC Class III, also known as SIRT1 or sirtuin1. The
authors had the goal to construct QSAR models of SIRT1 ligands for virtual
screening of 1444880 chemical structures collected from molecular databases.
The QSAR model was carried out using an inductive logic programming to gen-
erate molecular models of SIRT1 inhibitors. Inductive logic programming repre-
sents a particular model as formal logics that would facilitate inductive reasoning
among data (examples or facts), background knowledge (rules), and hypotheses.

4.2 ALM in Epigenetics

As reviewed above, several QSAR studies have been developed for epigenetic
targets. However, studies towards the identification of ‘epigenetic activity cliffs’
and epigenetic scaffold/R-hops is still limited and represents an area of research for
further development (Méndez-Lucio 2016).
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4.2.1 DNA Methyltransferase Inhibitors

ALM has also been applied to epigenetic data sets, in particular for inhibitors of
DNMTs (Naveja and Medina-Franco 2015a). One of the first published studies
aimed to explain at the molecular level the large activity difference of compounds
identified from high-throughput screening (Medina-Franco et al. 2014). The sul-
fonamide SW155246 (Fig. 4) forms two activity cliffs with structural related ana-
logues such that the methylation or loss of the hydroxyl group is associated with a
large decrease in the biological activity. Validated molecular docking and
induced-fit docking protocols were applied to the sulfonamide compounds. It was
concluded that induced-fit docking had a significant impact on the docking scores
and the predicted binding modes as compared to docking where the structure of the
protein is kept fixed. It was also concluded that the most active compound,
SW155246 had a distinct binding mode as compared to the inactive sulfonamide
analogues occupying part of the co-factor binding site as well as the catalytic site.
Overall, the results of the computational simulations were in excellent agreement
with the experimental activity (Medina-Franco et al. 2014).

More recently, Naveja et al. conducted a comprehensive ALM of 280 com-
pounds screened against DNMT1 and available in ChEMBL (Naveja and
Medina-Franco 2015b). In that work, the chemical space of the compound data set
was explored first yielding to main type of structures, namely, nucleoside and
non-nucleoside analogues. Since each type of chemical structures had different
activity landscapes, ALMs were developed independently for each data set.

Based on the contents of ChEMBL available at the time of the study, it was
found that nucleoside analogues presented a rough and heterogeneous landscape
with the existence of deep activity cliffs (similar compounds with large potency

Fig. 4 Chemical structures of representative inhibitors of DNA methyltransferase or associated
with DNA demethylating activity discussed in this work
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difference). In contrast, non-nucleoside molecules presented a smoother SAR. The
significance of that result was that almost any active non-SAM-like DNMT1
inhibitor in ChEMBL could be used as a reference in similarity-based virtual
screening. Due to the presence of few activity cliffs, it was also concluded that
non-nucleoside inhibitors represent a promising set of compounds to develop
predictive models such as classical QSAR models. In contrast, the presence of deep
activity cliffs for compounds related to the co-factor strongly suggest that that part
of the chemical space may be not suitable to develop predictive QSAR models that
rely on the similarity principle; e.g., classical predictive approaches that assume
linear relationships (Naveja and Medina-Franco 2015b).

It was found that activity cliffs belong to the same structural class: regioisomers
of the quinolone-based inhibitor SGI-1027 (Fig. 4). Molecular docking of the
activity cliff generators with a crystallographic structure of DNMT1 further sup-
ported the idea that this type of inhibitors could be acting as stabilizers of the
auto-inhibitory linker domain of DNMT1 (Yoo et al. 2013). The results of the
docking model were also in line of the SAR of the activity cliffs formed with
compound CHEMBL3126646 (Fig. 4). The results of the computational analysis
were also in line with the experimental results that showed that CHEMBL3126646
is not a competitive inhibitor of the co-factor(Naveja and Medina-Franco 2015b).

As part of that work, density SAS maps (a modification to SAS maps) were
employed to improve the visual interpretation and analysis (Naveja and
Medina-Franco 2015a). Furthermore, the independent analysis of the activity
landscape of compounds that are located indifferent regions of the chemical space
led to the proposal of an ‘activity landscape sweeping’ approach: this is to explore
systematically the SAR of structurally related compounds, e.g., explore local SARs.
The activity landscape sweeping’ methodology has been applied to conduct ALM
of inhibitors of 5-alpha-reductase (Naveja et al. 2016) and can be extended to
analyze the ALM of virtually any other epigenetic data sets.

4.2.2 Bromodomain Inhibitors

To further illustrate the application of ALM to the analysis of epigenetic data sets, it
was conducted a preliminary survey of the activity landscape of a set of BRD
inhibitors. A data set of 86 BRD subtype 4 (BRD4) inhibitors was considered as a
case study. The set of compounds was obtained from ChEMBL and curated as
recently reported (Prieto-Martinez et al. 2016). As discussed above, BRDs represent
one of the major epigenetic targets not only to develop drugs but also molecular
probes or chemical tools (Galdeano and Ciulli 2016).

Figure 5 depicts a SAS map for the 86 compounds. A SAS map portrays the
relationship between the structure similarity (plotted on the X-axis) and the activity
similarity or potency difference (plotted on the Y-axis) for all possible 3655 pair-
wise comparisons in the data set. In the map illustrated in the figure, the structural
similarity was computed with MACCS keys fingerprints (Durant et al. 2002) and
the Tanimoto coefficient (Jaccard 1901; Medina-Franco and Maggiora 2014). In
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order to identify the most interesting regions in the activity landscape, a SAS map
can be roughly divided in four quadrants (Medina-Franco 2012). Although there are
several considerations that should be taken into account to set up the thresholds to
distinguish the four quadrants in a quantitative manner, as discussed above, there
are at least two major regions in a SAS map of significant interest:

• The activity cliffs region located in the upper-right part of the graph contains
pair of compounds with high structure similarity and high potency difference. In
other words, this region of the SAS map identifies pair of molecules that have
similar structures but their biological activity is significantly different, for
instance, they differ in more than one logarithmic unit.

Fig. 5 Structure-Activity Similarity (SAS) map for 86 inhibitors of bromodomain 4. The plot in
the upper part of the figure depicts 3655 pairwise comparisons. Data points are colored by the most
active compound in the pair as indicated in the color scale. Square data points indicate pair of
compounds with the same cyclic system. Circle data points indicate data points with different
cyclic system. Four representative activity cliffs are labeled in the plot. SAS map on the lower left
shows only active data points i.e., 334 pairs of molecules where the activity of the most active
compound in the pair has a pIC50 = 7.0 (IC50 = 100 nM). SAS map on the lower right shows 226
data points where both compounds in the pair have the same cyclic system
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• The scaffold hop region located in the lower-left part of the graph, i.e., pair of
compounds with low structure similarity and low potency difference. In other
words, compounds that are quite different in structure but have similar biological
activity.

Data points in the SAS map of Fig. 5 are further differentiated by a color that
represents the activity of the most active compound in the pair. The color is in a
continuous scale as indicated in the figure. The most attractive data points are those
with at least one potent molecule in the pair. To facilitate the visualization of the
most active pairs, Fig. 5 shows a SAS map showing only 334 pairs of compounds
that contain at least one compound with IC50 = 100 nM (pIC50 = 7.0).

The SAS map in the case study shown in Fig. 5 also includes information of the
cyclic system (also called molecular scaffold) of the molecules in each pair of
compounds. The molecular scaffolds were computed with the program Molecular
Equivalence Indices of Johnson and Xu (Xu and Johnson 2002). If both compounds
in the pair share the same cyclic system, the data point has a squared shape. But if
the cyclic system is different the shape of the data point is a circle. To facilitate the
visual representation of the data points with the same or different cyclic systems,
Fig. 5 includes a visualization of the SAS map showing only 226 data points where
both compounds in the pair have the same cyclic system (square points). Similar
strategies to represent pairs of compounds with the same or different cyclic systems
in a SAS map have been reported (Pérez-Villanueva et al. 2012, 2015). This
approach is valuable to add information of the cyclic system; information that is not
directly encoded by the MACCS keys fingerprints. Interestingly and not surpris-
ingly, compounds with the same cyclic system have, overall, higher values of
molecular similarity than pairs of compounds with different cyclic system.

Examples of representative activity cliffs for inhibitors of BRD4 are labeled in
Fig. 5. The pair of compounds with label a-a1 (compounds with Compound
Identifier, CID from PubChem: 44243549-5325760) and label a-a2
(54757750-5325760) are the most pronounced, i.e., deep cliffs in the data set.
These two pairs of molecules have MACCS keys/Tanimoto similarity of 0.893 and
0.862, respectively; and potency difference of more than four logarithm units i.e.,
4.49 and 4.09, respectively. The most active compound in each pair (5325760) has
an IC50 = 0.8 nM (pIC50 = 9.1). This compound is the most active in the entire
data set. The chemical structures shown in Fig. 5 indicate that substitution of the
phenyl ring of 5325760 has a pronounced effect in the activity decreasing the
potency in about one thousand times. Both pairs of molecules a-a1 and a-a2 share
the same cyclic system.

Two additional representative activity cliffs in data set of BRD4 inhibitors are
the pairs of molecules labeled as b-b1 (68186034-53318989) and b-b2
(52933407-53318989) (Fig. 5). Also, chemical compounds in both pairs share
the same cyclic system (as identified by the squares points) although the chemical
scaffold is different from the pairs of molecules a-a1 and a-a2. The most active
compound in pairs b-b1 and b-b2 is molecule 53318989 which has an IC50 =
15.5 nM (pIC50 = 7.81). The position of the compounds pairs in the SAS map
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indicate that pairs of molecules b-b1 and b-b2 have high structure similarity (0.877
and 0.980, respectively) but potency difference of more than two logarithmic units
(2.51 and 2.21, respectively). Visual inspection of the chemical structures in the
activity cliffs reveals that a methoxy (68186034) or methyl substitution (52933407)
decreases the activity of 53318989 by more than hundred times. Further analysis of
other data points and regions in the SAS map, including the scaffold hop region, can
be performed as reported for several other data sets (Medina-Franco 2012).

5 Conclusions and Future Outlook

Epigenetic drug discovery is becoming a promising strategy to develop new ther-
apies for several diseases. A number of computational approaches are being applied
to speed up the development of epigenetic-based therapies. Elucidation of SEARS
has been conducted with traditional and innovative approaches for a number of
epigenetic targets including inhibitors of HDACs, DNMTs and BRDs, to name a
few. Thus far, the principles of ALM have been applied mostly to inhibitors of
DNMT and BRDs but they can be used in basically any other epigenetic data set to
identify cliff generators or scaffold hops. ‘Activity landscape sweeping’ method-
ologies can be used to develop local models of SEARS. ALM can point to specific
data sets suitable to develop predictive QSAR models and identify compounds to
conduct similarity-based virtual screening. In line with the emerging concept of
multi-epigenetic target drug discovery, structure-multiple epigenetic activity rela-
tionships can be performed. It is also anticipated that SEARS models will be used in
drug repurposing. In fact, computer-aided drug repurposing has been applied to
individual epigenetic targets such as DNMTs (Méndez-Lucio et al. 2014). How-
ever, it is expected that these strategies will be applied to other epigenetic targets.
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QSAR/QSPR Modeling in the Design
of Drug Candidates with Balanced
Pharmacodynamic and Pharmacokinetic
Properties

George Lambrinidis, Fotios Tsopelas, Costas Giaginis
and Anna Tsantili-Kakoulidou

Abstract Drug discovery and development is a slow complicated multi-objective
and expensive enterprise. Drug candidates are a compromise output of competing
pharmacodynamics and pharmacokinetic processes. To facilitate this task and avoid
failures in clinical phases, computational techniques and in silico modeling using
the endpoints offered by high technology, are extremely valuable. In this chapter,
some historical aspects and a background overview for constructing Quantitative
Structure-Activity Relationships (QSAR) and Quantitative Structure-Property
Relationships (QSPR) are provided. The different goals for the establishment of
QSAR/QSPR models are defined. Representative examples and success stories of in
silico modeling along the different drug discovery processes are presented.
Examples include models for optimizing efficient binding to receptor, using both
ligand- and structure-based approaches, for in vitro permeability predictions, pre-
dictions for human intestinal absorption and blood brain barrier penetration, as well
as for plasma protein binding and drug metabolism. The value of global and local
models as well as their interpretability and the criteria for their evaluation and
proper use are discussed throughout this chapter.
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1 Introduction

The advancement of a new chemical entity (NCEs) to become a drug candidate is a
slow, complex, expensive and multi task process. Along this long road, identifi-
cation of the disease and the isolation and validation of the molecular target(s) are
the first crucial steps. Next, the right drug candidates to interact with the validated
target are designed, synthesized and tested for their preclinical and clinical efficacy
and safety (Satyanarayanajois 2011; Speck-Planche and Cordeiro 2015). Despite
the great advances in science and technology, this process can take around 15 years
with a cost of hundreds of millions of dollars (Paul et al. 2010). In fact, much of this
cost comes from failures, which account for 75% of the total drug discovery and
development expenses. On the other hand such failures if appropriately consoli-
dated, contribute to the body of knowledge on biological complexity.

To prevent late-stage project interruptions, research is shifted to reduce the
uncertainties and obtain a proof of concept (POC) for a molecule as a potential
medicine in earlier phases of development. Thus, investigation of the fate of a
molecule in the organism, considering appropriate pharmacokinetics as well as
safety and adverse reactions profiles should advance in parallel with affinity for the
target receptor(s) (Gaviraghi et al. 2001; Swift and Amaro 2013). The fate of drug
molecules within the organism is principally controlled by ADME properties which
stand for absorption, distribution, metabolism and elimination. (Rogge and Taft
2010; Testa et al. 2005b). Poor absorption and thereupon poor bioavailability have
been in the past one of the main reasons for the failure of drug candidates.
According to more recent statistics, the most important issues to be confronted are
drug efficacy and drug safety, associated mainly with plasma protein binding,
metabolism and off target activity (Kola and Landis 2004).

Computer-aided approaches and chemoinformatics, applied during the different
stages of the pipeline, permit an effective handling of such failures and uncer-
tainties, facilitate candidate selection and speed up their long journey to the market.
Reliable models obtained by Quantitative Structure-Activity Relationships (QSAR)
and Quantitative Structure-Property Relationships (QSPR) offer decision support
upon rationalizing the drug discovery procedure in line with the Quick Win, Fast
Fail concept, allowing a pre-selection of compounds with more chances to succeed
in later phases (Owens et al. 2015). In this context, a new scientific area has
emerged, defined as pharmacoinformatics, which enables the management of all
available information from binding to kinetics and toxicity for safer drug candidates
(Goldmann et al. 2014).

In fact, successful drug candidates usually represent a compromise between the
numerous, sometimes competing objectives so that the advantages for patients

340 G. Lambrinidis et al.



outweigh potential drawbacks and risks. However, in order to benefit from
QSAR/QSPR models, the appropriate criteria for their evaluation and thereupon
their proper use and/or interpretation are essential. Such criteria as well as the
ultimate goal of the models may differ according to the timeline and the particular
process modeled.

The present chapter provides an outline of the philosophy, the state of the art and
the strategies for QSAR/QSPR generation. Distinction between QSAR and QSPR is
primarily associated with the traditional drug design steps, concerning lead opti-
mization for efficient receptor binding and predictions of pharmacokinetic/toxicity
properties, respectively. After an overview of the common features for in silico
modeling, QSAR models for pharmacodynamics properties, e.g., binding to target
receptor(s) or off-target proteins and QSPR models for pharmacokinetic process
(ADME properties) are discussed in separate sections. According to the underlying
mechanism QSPR models concern both models for passive phenomena and for
bonding to proteins. In all cases, two critical interdependent issues are addressed
throughout the chapter: (i) the value of global models built on large and chemically
diverse datasets and that of local models, built specifically for a series or project,
and (ii) the importance or not of model interpretability (Cox et al. 2013; Fujita and
Winkler 2016).

2 Historical Aspects and Background

Early QSAR studies were based on the assumption that biological activity can be
quantitatively expressed as a function of chemical structure (Brown and Fraser
1868). They involved the establishment of model equations in order to understand
and if possible to predict biological activity on the basis of structural parameters, as
expressed by equation of type (1).

Biological activity = a0 + a1P1 + a2P2 +⋯+ anPn ð1Þ

where P1…Pn are physicochemical/molecular properties characterizing the com-
pound structures and ao a1…an the constants derived by multiple linear regression
analysis (Hansch et al. 1995b; Hansch and Fujita 1964; Martin 1978).

Although biological activity was not always considered at the molecular level, it
was recognized as an essential prerequisite that the analyzing compounds should act
at the same receptor and with the same mechanism of action. Within a congeneric
series it was assumed that all other factors influencing the manifestation of drug
action should have similar impact. In regard to the description of chemical structure,
the well-known Hansch analysis recognized three major categories of physico-
chemical parameters, namely lipophilicity, electronic properties and steric (geo-
metric) properties (Eq. 2).
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logBR= − alogP2 + blogP+ ρσ+ δEς+c ð2Þ

where logBR is a general expression for biological activity in its logarithmic form
to be linearly related to free energy, logP is the logarithm of octanol-water partition
coefficient, the widely accepted measure of lipophilicity, σ Hammett’s electronic
substituent constant and Eς Taft’s steric substituent constant (Hansch 1969; Hansch
and Fujita 1964).

Evidently, early QSAR models could be developed only for congeneric com-
pounds, having a common skeleton and different substituents. In those models,
lipophilicity was considered as the physicochemical property of primary impor-
tance, since it was understood to influence both pharmacokinetics and pharmaco-
dynamics (Kubinyi 1979; Leo et al. 1971; Pliška et al. 1996; Van de Waterbeemd
and Testa 1987). A parabolic relationship between lipophilicity and membrane
passage was assumed; thus the quadratic term in Eq. 2 reflects transport to the
active site, considering all other pharmacokinetic issues equal within a congeneric
series (Hansch and Clayton 1973). Since, the parabolic relationship between
potency and logP did not fit all datasets, Kubinyi proposed a bilinear relationship,
which allows for different slopes at low and high logP values (Kubinyi and
Kehrhahn 1978). At the same time calculation methods for logP were developed,
based on the additivity principle. The hydrophobic substituent constant π and soon
later the hydrophobic fragmental constant f or their Σπ and Σf, accounting for all
substituents/fragments on the parent structure, could replace logP of the whole
molecule, in line with the other substituent constants in Hansch analysis (Hansch
and Leo 1979; Rekker and Mannhold 1992).

In fact, Hansch analysis, firstly applied in agrochemistry, drug design, toxicol-
ogy, industrial and environmental chemistry (Dunn 1988; Hansch et al. 1995a,
1963; Muir et al. 1967), marked a breakthrough in the way of thinking in medicinal
chemistry and the start of the new discipline of QSAR (Ganellin 2004), with the
mission to exploit the increasing amount of information in the aim to facilitate drug
discovery.

Since those early days, QSAR has undergone a tremendous evolution in regard
to all aspects, the target end points, the structural representation, the implemented
statistical tools, as well as its own standpoints (Cherkasov et al. 2014; Cramer 2012;
Puzyn et al. 2010; Tsantili-Kakoulidou and Agrafiotis 2011). In view of biological
complexity QSAR has adapted to the multi-task concept, taking advantage of
technological achievements and moving from the perception of single-objective
drug design to the multi-objective drug discovery and development (Fujita and
Winkler 2016; Jorgensen 2004; Speck-Planche and Cordeiro 2015). The multiple
tasks addressed by QSAR/QSPR and the tools implemented to construct the models
are illustrated in Fig. 1.

Thus, QSAR/QSPR models are generated to address two goals, each of which
has its own value: One goal is to establish models which provide an insight of the
properties or chemical features that correlate with a biological assay and thereupon
an understanding of the mechanism of action. Such models are valuable support for
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the design of novel compounds with affinity to a target protein. The second goal is
to create models, which provide accurate prediction of large chemically diverse
datasets and address a variety of biological endpoints, as well as different phar-
macokinetic processes. Such models allow ranking of compounds prior to synthesis
or set priorities among drug candidates for proceeding to further development
(Birchall et al. 2008a, b; Nicolotti et al. 2002).

3 Experimental Data and Endpoints in QSAR/QSPR

The multi-objective QSAR starts with data analysis for hit identification, followed
by hit-to-lead optimization (lead discovery) and lead optimization (Jorgensen
2009). For hit identification, virtual screening has gained a crucial role, as a con-
sequence also of the continuous emergence of novel biological targets (Schneider
2010; Vasudevan and Churchill 2009). QSAR end-points are usually measured at
the molecular or cellular level. The advent of robotized biological testing in the
1990s (Ashour et al. 1987; Houston and Banks 1997; Löfås and Johnsson 1990;
Navratilova et al. 2007) has led to the creation of large databases, freely accessible
in the public domain, which incorporate millions of compounds with associated
bioactivities. PubChem (https://pubchem.ncbi.nlm.nih.gov) and ChemSpider
(http://www.chemspider.com), the two major collections of chemical structures on
the web, currently include over 30 million compounds each. ZINC (http://zinc.
docking.org), a database frequently used for virtual screening applications, incor-
porates a total of approximately 21 million compounds (Irwin 2008; Moura Barbosa

Fig. 1 Tasks addressed by QSAR/QSPR and tools implemented in model construction
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and Del Rio 2012; Wang et al. 2012). In such databases the results of many screens
are presented in the form of scores for many compounds on a given assay, while
they also contain information on the structures of compounds and the target of
particular assays. More detailed data about binding assays can also be found in
Binding Database (www.bindingdb.org) which is a public web-accessible database
of measured binding affinities containing more than 1 million binding data for
nearly 500,000 small molecules and thousands of proteins (Gilson et al. 2016).

However there is a warning on the use of the databases, since they may include
inconsistencies concerning both chemical and biological data, while the chemical
structures may be inaccurate or presented in a non-consistent way. Therefore
curation of the data sets is recognized as a critical step for the establishment of good
quality models (Akhondi et al. 2012; Cherkasov et al. 2014).

More to the point, there are databases with sets of inactive compounds (decoys)
for several biological targets together with a small set of known active compounds
(Mysinger et al. 2012) or even software to produce decoy datasets based on sim-
ilarity with known active compounds (Cereto-Massagué et al. 2012). Decoy data
sets are useful for validation of the QSAR/QSPR models.

When searching in structural databases for experimental binding affinities, one
could find different biological data. They may be expressed as continuous response
such as IC50, EC50, Ki, Kd, % inhibition, etc., or as categorical response, e.g.,
active/inactive. Continuous response values are preferably used in their negative
logarithms, so as to be in linear correlation with free energy. In line with this concept,
ChEMBL database introduced the pChEMBL activity value, defined as −log(IC50,
XC50, EC50, AC50, Ki, Kd or Potency) in M units (Papadatos et al. 2015). This value
allows a number of roughly comparable measures of half-maximal response
concentration/potency/affinity to be compared on a negative logarithmic scale
(https://www.ebi.ac.uk/chembl/faq#faq67). This approach has also been imple-
mented in software for large scale off-target pharmacology and predictive safety of
small molecule such as CTLink (http://www.chemotargets.com).

Besides the compound databases, there is also a wealth of deposited gene
expression data available for downloading and/or online interrogation For example,
the NCBI gene expression omnibus (GEO) (Barrett et al. 2007) hosts over half a
million single array chip expression profiles and the EBI hosts the Array Express
database (Parkinson et al. 2010) with a similar largely overlapping number of
arrays. Gene expression-based screening (GE-HTS) represents a strategy for
identifying modulators of biological processes with little a priori information about
their underlying mechanisms. It is mainly used in cancer research, where it detects
compounds, which may revert undesired oncogenic states to nonmalignant or
drug-sensitive states (Evans and Guy 2004; Williams 2012). It is evident that for the
screening procedure, good prediction models are necessary, complying with the
second goal as described in Sect. 2. In such case model interpretability is not a
priority. In contrast, the transition from hit identification to lead discovery and
optimization requires models which should provide an understanding of the
molecular factors involved and a sound physicochemical interpretation, while
in-house affinity measurements of the novel compounds are used as endpoints.
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The range of affinity values is a crucial issue for model construction. Generally it
should be significantly greater than the experimental error among the biological
data. Considering that such errors can often exceed half a log unit (Gedeck et al.
2006) it is recommended an endpoint value range of at least 1.0 log unit to obtain a
reasonable QSAR model (Cherkasov et al. 2014).

Lead optimization in regard to other pharmaceutical properties, while main-
taining affinity, is a next important step. This is a multi-objective process involving
many experimental parameters (assays) related to physicochemical properties,
ADME properties, plasma and tissue protein binding, target selectivity, off-target
activities and toxicity. These properties influence considerably the efficacy and
safety of drug candidates and are potential causes for attrition. Rapid in vitro
measurements have been and are being developed for permeability and for plasma
protein binding assessment and toxicity protocols have been established (Artursson
et al. 2001; Kansy et al. 1998; Kariv et al. 2001; Rich and Myszka 2000). On the
other hand, there are many efforts for in silico prediction of many of these endpoints
by constructing appropriate QSARs or QSPRs (A Cabrera-Perez et al. 2012;
Dearden 2007; Lambrinidis et al. 2015; Swift and Amaro 2013). Certain global
models for toxicity predictions are approved by OECD and provide support to
regulatory authorities (Larregieu and Benet 2013). More to the point, predictions on
secondary targets may be useful for the safety profile as well as for drug repur-
posing (Hodos et al. 2016; Sheridan et al. 2015).The implementation of
QSAR/QSPR in the complex drug discovery process is demonstrated in Fig. 2.

Fig. 2 Implementation of QSAR/QSPR in the drug discovery process
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The splitting of QSAR models to encompass various areas of biological com-
plexity has challenged the development of workflows, which integrate QSAR/QSPR
models of selected endpoints, including affinities for different target proteins/
off-targets and pharmacokinetic data (Cartmell et al. 2005). Consensus predictions
using all acceptable models may contribute to further decisions in selecting future
experimental screening sets. In inductive knowledge transfer approaches, treating
multi-task modeling, the individual QSAR models are not considered separately but
they are viewed as nodes in a network of inter-related models (Cherkasov et al. 2014;
Qiu et al. 2016). Evidently, the quality of such integrated models largely depends on
the quality of the available experimental data compiled in relevant databases, which
should be carefully curated, as well as on the range of endpoint values, as already
commented (Cherkasov et al. 2014; Gedeck et al. 2006). Interpretability of such
models as a prerequisite depends on the purpose and the timeline that they are used
along the drug discovery process. In regard to toxicity, for QSAR models to be
accepted for regulatory purposes, interpretability is often a crucial issue. According
to OECD “To facilitate the consideration of a QSAR model for regulatory purposes,
it should be associated with… a mechanistic interpretation, if possible” (www.oecd.
org/chemicalsafety/risk-assessment/37849783.pdf).

4 Tools Implemented in Model Construction

4.1 Molecular Structure Representation-Descriptors

Molecular structures are represented by descriptors which mediate their relation
with activity. Thus, molecular descriptors are at the core of QSAR modeling.

In line with the definition of Todeschini and Consonni (2009), molecular rep-
resentation has moved forward from substituent constants to variables suitable to
portray diverse molecules, belonging to different chemical classes. A variety of
software calculates a large number of different physicochemical/molecular prop-
erties and theoretical descriptors, starting from SMILES, 2D-chemical graphs to
3D-x, y, z-coordinates or based on mathematical algorithms or statistics. Some
of the most popular software are DRAGON, which calculates more than 4000
descriptors (http://www.talete.mi.it/products/dragon_description.htm), ADAPT
(Stuper and Jurs 1976) (http://research.chem.psu.edu/pcjgroup/adapt.html), OASIS
(Mekenyan and Bonchev 1986), CODESSA (Katritzky et al. 1994),
MOE-Chemical Computing Group (https://www.chemcomp.com/) and MolConnZ
(http://www.edusoft-lc.com/molconn/).

According to molecular structure representation, descriptors may reflect various
levels of dimensionality, ranging from 0D to 4D and xD. 0D are based on molecular
formula and are independent from molecular connectivity and conformations. 1D
descriptors, reflect the substructure representation of a molecule, 2D descriptors are
based on the two-dimensional structural formula (2D), while 3D descriptors are

346 G. Lambrinidis et al.

http://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf
http://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf
http://www.talete.mi.it/products/dragon_description.htm
http://research.chem.psu.edu/pcjgroup/adapt.html
https://www.chemcomp.com/
http://www.edusoft-lc.com/molconn/


conformation dependent. 3D descriptors are based on thermodynamically favored
conformation and necessitate geometry optimization. 4D descriptors reflect inter-
actions with some probe within a grid, while higher dimension (xD) are receptor
dependent descriptors. They represent each ligand molecule as an ensemble of
conformations, orientations, tautomeric forms and protonation states (Ekins et al.
1999; Hopfinger et al. 1997; Vedani et al. 2000, 2005). Using enhanced molecular
dynamic simulations, the overall conformational change of the receptor upon ligand
binding can be simulated, producing more vital structural descriptors (Sohn et al.
2013). Such approaches can be considered as a promising link between structure
and ligand based strategies (Polanski 2009; Caporuscio and Tafi 2011). An atlas of
the available descriptors, the theory used for their calculation and their information
content, has been compiled by Todeschini and Consonni (2009). In Table 1,
a classification of representative descriptors is presented.

Among the physicochemical descriptors, logP keeps its central role in
drug-protein and drug-membrane interactions, as well as in permeability models.
Nowadays, there are many algorithms for logP or logD calculation, implemented in
relevant software. They are based on the additivity principle and have been
developed upon analysis of a large amount of experimental data (Mannhold and
Dross 1996). More to the point, calculation of logD necessitates knowledge on pKa,
while charge is a crucial determinant also in drug action (Csizmadia et al. 1997).
Actually most of the logP, pKa and solubility prediction algorithms are QSPR
models per se. Some global logP models are implemented in software workflows,
which allow the user to utilize his/her own compound library as input in order to
refine predictions (Tetko et al. 2001). A comprehensive description and classifi-
cation of the logP/logD calculation systems and software is provided by Mannhold
et al. (Mannhold et al. 2009). Among them, ClogP is often considered as a reference
calculation system, while it has been included in most rules for druglikeness (see
Sect. 5). Some software for logP/logD prediction are free available on the web.

Despite the large arsenal of available software, the correct selection for
logP/logD prediction is not always easy, since often the outcome of the different
algorithms shows considerable variations. Although this is not an issue for models
intended to screen large compound libraries, it becomes crucial for local models
established for lead optimization or for predictions within congeneric compounds
(Chrysanthakopoulos et al. 2009; de Melo et al. 2009). In such cases it is important
that the compounds analyzed fall within the applicability domain of the training set,
used to construct the prediction algorithm (see Sect. 4.3) (Tetko et al. 2009).

Next to lipophilicity, other molecular properties such as molecular volume and
surface area, polarizability, molar refractivity, polarity descriptors, dipole moments,
hydrogen bond acidity/basicity, as well quantum chemical descriptors, including
energy parameters like EHOMO and ELUMO, maximum and minimum electrostatic
potentials, partial charges etc., are most commonly used by medicinal chemists.
Such descriptors considered as “well-founded”; actually fall within the frame of the
three categories: lipophilicity, electronic and geometric descriptors, reflecting
the recognition forces and steric requirements of binding to receptor active site.
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Thus they provide insight into the mechanism of action. More to the point, easily
calculated physicochemical and molecular properties have created the basis for the
development of the drug-like concept (see Sect. 4.1.1).

On the other hand, theoretical descriptors may be considered to reflect a direct
detailed representation of molecular structure. However they are not easily inter-
pretable and they do not provide a straightforward perception of the mechanism of
action. Their use in QSAR/QSPR models is often faced with some skepticism and
their contribution to model quality and validity performance compared to classical
descriptors has been questioned in the case of lead optimization (Vallianatou et al.
2013). However, it is true that in some cases the most predictive model may not be
the most interpretable (Birchall et al. 2008a, b; Nicolotti et al. 2002). The value of
models with high prediction accuracy but low interpretability has already been
discussed in Sect. 3.

To obtain information about molecular structure from QSAR/QSPR models with
low interpretability, a procedure called reversible decoding or inverse QSAR is
being developed. Topological and molecular signature descriptors are considered to
be more suitable for inverse QSAR/QSPR (Faulon et al. 2005; Gozalbes et al.
2002).

Moreover, sub-structural descriptors and molecular fingerprints are important to
establish similarity/diversity approaches, which gain increasing interest within the
scientific community (Willett 2004). Such approaches are widely used for virtual
screening and design of chemical libraries, which aid in the primary identification
of promising hits.

Recently, chemical similarity between molecules is being extended to evaluate
clinical effects, if combined with information derived from computing similarity
based upon lexical analysis of patient package inserts. It is expected, that drugs with
highly structurally similarity (both by 2D and 3D comparison) are much more likely
to have significant overlap of their clinical effects, compared to drugs that are
structurally different (low 2D similarity but high 3D similarity Yera et al. 2014).
However in the search of new candidates chemical similarity does not always lead
to biological similarity. Structure-Activity landscape may present the so called
activity cliffs. Such discontinuities cannot be predicted by statistically derived
QSAR models (Guha 2011).

In the case of toxicity predictions the incorporation of biodescriptors (short-term
assays) as independent variables is suggested. Such descriptors are derived by
in vitro quantitative high through put screening (qHTS) and in combination with
chemical descriptors lead to hybrid models, which may exhibit higher accuracy
(Sedykh et al. 2011).

Gene expression signatures of a desired biological state, derived from gene
expression data are used to screen a compound library to identify compounds that
induce this target signature and corresponding phenotype, while they may also be
used as descriptors (Hieronymus et al. 2006; Stegmaier et al. 2004).
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4.1.1 Drug-Like Filtering

The use of combinatorial methods during the last 30 years has produced a vast
number of compounds, which tend to be more lipophilic, less soluble and with
higher molecular weight than conventional drug entities (Hertzberg and Pope
2000). Such properties are often associated with unfavorable absorption, poor or
inconsistent bioavailability, as well as with lack of selectivity and increased toxicity
(Oprea 2000). To face this situation the concept of druglikeness was launched,
defining boundaries on the chemical space and functioning as filter to guarantee a
physicochemical profile enabling further development (Leeson and Springthorpe
2007; Yusof et al. 2013). Druglikeness provides useful guidelines for early stage
drug discovery, following simple rules of thumb, which suggest cut-off values or
ranges for certain properties. According to the rule of 5 (RoF), molecular weight
(MW) should not exceed 500 Da, calculated lipophilicity (clogP) should not exceed
5, hydrogen bond donor sites (HBD) should not be more than 5, and hydrogen bond
acceptor (HBA) sites not more than 10. Upon pairwise violation of these limits,
bioavailability problems may occur in the case of orally administered drugs (Lip-
inski et al. 1997). RoF was further extended including cutoff values or ranges for
additional properties, the most common being: Polar Surface Area (PSA) < 140,
number of rotatable bonds (ROTB) < 10, Molar Refractivity (MR) in the range of
40–130, number of aromatic rings (AROM) < 3, total number of atoms in the range
of 20–70 (Ursu et al. 2011; Veber et al. 2002). Lipophilicity is related also to safety
endpoints. Increased relative risk (6:1) for an adverse event may be anticipated for
compounds possessing high lipophilicity (ClogP > 3) and low topological polar
surface area (TPSA < 75 A) (Hughes et al. 2008). It is also reported that for
ClogP > 3 there is a dramatic higher risk for hERG channel inhibition, an endpoint
associated with cardiotoxicity (Wager et al. 2011). More strict cutoff values are
proposed for compounds intended to act in the Central Nervous System
(CNS-likeness Pajouhesh and Lenz 2005). A quantitative estimate of drug-likeness
(QED) has been proposed by Bickerton et al. (Bickerton et al. 2012) which relates
the similarity of a compound’s properties to those of oral drugs based on eight
commonly used molecular properties: MW, log P, HBDs, HBAs, PSA, ROTBs,
AROMs and count of alerts for undesirable substructures.

For lead compounds the rule of 3 is suggested according to which MW < 300,
logP < 3, HD < 3, and HA < 6 (Congreve et al. 2003). The rule of 3 is applicable
mainly for fragment-based lead generation.

The rules of thumb are very simple and understandable, however they do not
take into account inaccuracies in the prediction of logP and more important they do
not consider the receptor demands. For instance, receptors of the PPAR family
possess a very large hydrophobic cavity in their active center, requiring lipophilic
ligands with high molecular weight, which in many cases violate twice the rule of 5
(Giaginis et al. 2008, 2007). Target specific lipophilicity profiles obtained through
calculation of the logP and logD of ligand series for different receptors have
recently investigated, showing also other targets where the compound libraries had
mean logP ≥ 5, i.e., outside of traditional RoF space with respect to lipophilicity.
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Such knowledge in the early stages of drug development is very useful for the
formulation strategy in later stage (Bergström et al. 2016).

The advantages of smaller and less lipophilic compounds as safer and more
selective drug candidates were further recognized in terms of receptor binding.
According to metrics such as ligand efficiency (LE) and ligand lipophilicity effi-
ciency (LLE) affinity is normalized against molecular size, expressed as heavy
atoms, or lipophilicity respectively (Abad-Zapatero 2007; Hopkins et al. 2014).
Ligand efficiency dependent lipophilicity (LELP) takes both lipophilicity and
molecular size into consideration by dividing logP (clogP) by LE (Tarcsay et al.
2012). In terms of thermodynamics, according to the above metrics drug—receptor
binding should be optimized in regard rather to the enthalpic component through
specific interactions. Such metrics may be used to prioritize drug candidates with
quasi equal potency (Hann 2011; Leeson and Springthorpe 2007).

An update on recent applications of efficiency metrics and strategies to control
drug-like properties and to replace problematic elements for improving drug design,
is recently published by Meanwell (2016).

4.2 Modeling Techniques

Statistical tools mediate the relationship between structural descriptors and the
response variable(s) leading either to regression or to classification models. Model
building methods are incorporated in different software packages (Bruce et al.
2007). Multiple linear regression (MLR) analysis is a simple and still widely used
technique, which however can handle a limited number of variables. Thus, as a first
step, variable selection methods are applied to reduce the large number of calcu-
lated descriptors to a set which is information rich but as small as possible.
Redundant descriptors and descriptors which show low variance or/and collinearity
are removed. For further descriptor reduction, stepwise regression approaches are
commonly used, with the drawback however that they are local search processes
and may converge to local optima (Paterlini and Minerva 2010).

A promising alternative for variable selection is the use of genetic algorithms
(GA). GAs explore the descriptor space simultaneously by a population of candi-
date solutions which compete and recombine, mimicking the process of natural
selection (Mitchell 1998).

Reduction of the descriptors space is inherent in multivariate data analysis
(MDVA) a popular statistical technique, which permits the simultaneous (not one at
a time) treatment of large number of descriptors, while tolerating inter-relation
between them (Eriksson et al. 2001; Wold et al. 2001). It is a projection method
from a space with high dimensionality to a space with few dimensions (latent
variables), characterized as principal components. Principal component analysis
(PCA) is a powerful unsupervised classification method. Projection to latent
structures defined also as partial least squares (PLS) is the regression extension of
PCA. PLS can handle more than one response variables, under the precondition that
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they are to some degree inter-related. This is very important for multi-target drug
design, for toxicity models or for the establishment of activity profiles of antimi-
crobial or anticancer agents (Vallianatou et al. 2013; Koukoulitsa et al. 2009). PLS
analysis generates coefficients for the original variables (descriptors), which permit
a straight-forward interpretation of the model.

MLR and PLS are linear methods and any non-linearity should be incorporated
through data transformation before the analysis. On the other hand, machine
learning (ML) methods are gaining increasingly important roles in the construction
of classification and/or prediction models in several steps of the drug discovery
process (Tao et al. 2015). They are effective dimension reduction methods, while
allowing for non-linearity to be included in the models and the incorporation of
variable interactions. Thus they can reflect biological complexity leading to models
with high accuracy. Their drawback is their black box character, e.g., the inability
for their rationalization and interpretation in chemical terms. Most popular ML
techniques are artificial neural networks (ANN) and associative neural networks
(ASNN), inspired by the function and structure of neural network correlations in
brain, the k-nearest neighbor technique (k-NN), support vector machines (SVM),
regression trees (RT) or random forest (RF) (Byvatov et al. 2003; Sakiyama 2009).
The latter are also very useful in the creation of gene expression signatures (Lima
et al. 2016). An overview of the machine learning methods, used mainly as pre-
diction tools for ADME properties is given in a recent review by Tao et al. (Tao
et al. 2015). Table 2 includes commonly used statistical tools, which are referred in
the representative QSAR and QSPR examples, discussed in Sect. 5.

Models are evaluated by statistical data, the most commonly being correlation
coefficient (R or r) and determination coefficient (R2 or r2), standard error of esti-
mate(s), given also as root mean square error of estimate (RMSE). The adjusted
determination coefficient (Radj

2 ) for degrees of freedom allows for comparison
between QSARs with different numbers of descriptors and can indicate if a given
QSAR model is overfit incorporating too many descriptors. The Fisher test F pro-
vides an indication of a chance correlation, while the Student test t is used to
evaluate the significance of descriptors in MLR. In multivariate data analysis, the
variable importance to projection (VIP) criterion is used instead. In ANN, the
contribution of molecular descriptors is based on the ratio between the performance
of neural network before and after the elimination of each descriptor (sensibility
analysis).

Visualization of the results, fitting the line on the graph of observed versus
predicted values, enables to check for outliers or trends in the data, while it provides
an overview of the predictive power of the model. In fact a good model should
show an 1:1 correlation between observed and predicted values. Detected outliers
should be submitted to further investigation—they may unravel interesting infor-
mation. Further statistical data are related to model internal or external validation
(Sect. 4.3).

For classification models, % sensitivity defined as the ratio of percentage of true
positives in respect to the sum of true positives + false negatives, % specificity,
defined as the ratio of percentage of true negatives in respect to the sum of true
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negatives + false positives and %CCR (correct classification rate or balanced
accuracy) equal to (sensitivity + specificity)/2 are common statistical data to
evaluate the merit of the models. It should be noted that acceptance criteria depend
on the quality of experimental data, as well as on the ultimate goal of the
QSAR/QSPR performed.

4.3 Model Validation

Whatever modeling technique is used, validation of QSAR models has received
considerable attention in the last decades (Guha and Jurs 2005; Tropsha et al. 2003;
Veerasamy et al. 2011). Validation requirements are becoming increasingly strict so
as to assure robust models, which can lead to reliable predictions and to proof of
concepts. According to the European center for the validation of alternative
methods (ECVAM) four tools, the methods accepted for estimating the prediction
accuracy include (i) cross-validation, (ii) bootstrapping, (iii) randomization of the
response data, and (iv) external validation (Worth et al. 2004).

Cross-validation as an internal model validation method is usually performed by
the ‘leave-one out’ (LOO) or ‘leave many out’ (LMO) procedure to determine
PRESS and cross-validated correlation coefficient q2, which are metrics reflecting

Table 2 Statistical tools, commonly used in QSAR/QSPR prediction or classification models

Linear Non-linear Prediction Classification

Multiple Linear Regression Analysis
(MLR)

x x

Partial Least Square/Projection latent
Structures, PLS

x x

Principal Component Regression, PCR x x

Principal Component Analysis, PCA x x(unsupervised)

PLS-Discriminant Analysis, PLS-DA x x (supervised)

Linear Discriminant Analysis (LDA) x x (supervised)

Artificial neural networks, ANN
Bayesian NN
Associative NN

x x x (unsupervised/
supervised)

Support Vector Machine, SVM x x x (supervised)

k-Nearest Neighbors non-parametric x x (supervised)

K-means x x x(unsupervised)

Decision trees and Random forests x x x(unsupervised)

Classification and Regression Tree
(CART)

x x x (supervised)

Ensemble methods-Bagging-
Boosting trees

x x x (supervised)
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the internal predictive ability of the model. In contrast to r2 which increases with the
number of variables included in the model with a tendency to approximate the value
of 1, Q2 follows a quadratic relationship reaching a maximum corresponding to
optimal number of variables.

To check that the obtained model is not a result of chance factors, randomization
of the Y response is recommended (Rücker et al. 2007). All models obtained with
the randomized training set should be inferior, with r2 and q2 values around 0 or
with negative values respectively for a set with 0% similarity with the original set
(Gasteiger et al. 2003; Klopman and Kalos 1985).

A prerequisite for model validation is external validation, either by dividing the
data set into training and test sets and rebuilding the models or/and using a blind
test set. The errors produced in the predictions should be comparable to those
achieved for the training set. Recently, Roy et al. have proposed a modified cor-
relation coefficient rm

2 as a novel metric for external validation, which represents the
actual difference between the observed and predicted response data without con-
sideration of training set mean and taking into account the r2 with intercept and r0

2,
without intercept. Change of the axes denoting observed and predicted y modified
correlation coefficient r′m

2 may be different from rm
2 A threshold for the difference

delta rm
2 = abs(rm

2 −r′m2 ) less than 0.2 and an average rm
2 = (rm

2 + r′m
2 )/2 higher than

0.5 indicate robustness of the model (Roy et al. 2009; Roy et al. 2012).
Model applicability domain (AD), defined as the region of chemical space where

predictions can be made without extrapolation is an important issue that should be
taken into consideration for the proper use of QSAR/QSPR. There are different
methods for the assessment of applicability domain, for particular types of QSAR
models (Jaworska et al. 2005; Netzeva et al. 2005; Sahigara et al. 2012).
Distance/leverage based methods are usually applied. In regard to QSAR models
for regulatory purposes, OECD clearly states that the AD should be described “in
terms of the most relevant parameters, i.e., usually those that are descriptors of the
model” (Jaworska et al. 2003).

The performance of the models over time, in particular in the case of global
QSPR models, has been addressed by continuous updating of the original models,
so as to extend the applicability domain allowing predictions for new compounds of
different chemotypes (Rodgers et al. 2011).

5 QSAR/QSPR Applications in the Drug
Discovery Process

QSAR/QSPR models can be established for all processes across the drug discovery
pipeline. Initial virtual screening may be followed by modeling of the affinity of
ligand series to the receptor or to other off-target proteins. In parallel, models for
permeability and other pharmacokinetic properties like plasma protein binding,
affinity to uptake or efflux transporters and metabolic stability may be established to
evaluate safety and efficacy of the candidates.
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5.1 Modeling Pharmacodynamics

Pharmacodynamic models focus on predictions of receptor affinity. It should be
noted however that binding to proteins is governed by the same recognition forces,
regardless if they are target receptors, plasma and tissue proteins, metabolizing
enzymes or off-target proteins. They reflect interactions between the small mole-
cules and the amino acid residues within the active site of the protein.

Computational techniques to detect and/or and optimize efficient binding involve
both ligand- and structure-based methods and are applied to optimize receptor
binding as well as to predict ADME properties involving proteins, like plasma
protein binding, binding to metabolizing enzymes or transporters (Fig. 2).

5.1.1 Ligand-Based Drug Design (LBDD)

Ligand-based Quantitative Structure-Activity Relationships (QSAR), established by
the procedures, already discussed in Sects. 3–5, do not require or ignore knowledge
on the structure of the target protein. In most cases, they are two dimensional
models, although they may embrace three dimensional information by incorporat-
ing 3-D descriptors. Such models take advantage of the large number of available
descriptors and the progress in the statistical techniques as well as of the associated
philosophy (see Sect. 4). They can be further classified as global or local models.

Global models are useful for virtual screening, off target screening or for
plasma/tissue protein binding (Helgee et al. 2010; Sheridan 2014). For global
models, the goal is to encompass a large applicability domain, while interpretability
may not be an issue, at least in the early stages. More important may be the
continuous updating of the models to incorporate new chemotypes, so as to expand
their applicability domain (Rodgers et al. 2011). In fact, the goal of such global
models is not the search for new chemical entities, but to prioritize existing or
virtual compounds. In contrast, for lead optimization on receptor binding, local
models are more helpful. They are built under the precondition that all analyzed
molecules interact with the same type of receptor in the same manner. Evidently, in
these cases interpretability defines a determinant factor since the primary goal is to
understand the receptor requirements and search for novel compounds with the
desired physicochemical/molecular properties. Yet, the inverse-QSAR methodol-
ogy (see Sect. 4), although based on descriptors which do not confer inter-
pretability, may still allow to construct viable molecules (Wong and Burkowski
2009).

The three dimensional structure of the molecules can serve to create 3-D QSAR
models, which provide a direct link to potency. 3D-QSAR has emerged as an
extension to the classical 2D-QSAR, using robust chemometric techniques, such as
PLS. In 3D-QSAR the precondition for identical binding sites in the same relative
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geometry for all molecules should be strictly obeyed. After geometry optimization,
molecules are superimposed and carefully, aligned in a rational and consistent way
to create a hypermolecule. A sufficiently large box is positioned around this
hypermolecule and a grid distance is defined. Different atomic probes, e.g., a carbon
atom, a positively or negatively charged atom, a hydrogen bond donor or acceptor,
or a lipophilic probe, are used to calculate field values in each grid point, i.e., the
energy values which the probe would experience in the corresponding position of
the regular 3D lattice. Using these fields as input descriptors in PLS analysis,
principal components, defined by different proportions of the fields, are generated.

The most popular 3D-QSAR methodology is Comparative Molecular Field
Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis
(CoMSIA). CoMFA, developed by Cramer in 1988, is based upon the calculated
energies of steric and electrostatic fields (Cramer et al. 1988). CoMSIA, instead of
interaction fields, calculates similarity indices using a distance-depended Gaussian
functional form. Five types of similarity indices are calculated, steric, electrostatic,
hydrophobic, and hydrogen-bond donor and acceptor (Klebe 1998). An important
advantage of CoMFA and CoMSIA is the graphical representation of the results.
3-D contour maps in CoMFA display the different contributions of the potentials to
the activity, while in CoMSIA they highlight the areas within the region occupied
by the ligands, that ‘favor’ or ‘dislike’ the presence of a structural feature with a
given physicochemical property. In this sense the CoMSIA representation is more
easily interpretable than CoMFA contour maps.

The difficulties of both methods are associated with the structure alignment,
which may affect the results, while it limits their application to strictly similar
compounds. The use of a single conformation for a given ligand represents a
limitation of 3D-QSAR since the bioactive conformation may not be necessarily the
thermodynamically optimal one. Moreover, orientation in the binding site may be
ambiguous, especially in the absence of structural information on the biological
receptor. To face such problems, higher dimension QSAR methodologies
(xD-QSAR) have been developed. Additional dimensions offer the possibility to
represent each ligand molecule as an ensemble of conformations, orientations,
tautomeric forms and protonation states (Ekins et al. 1999; Hopfinger et al. 1997;
Vedani et al. 2005, 2000).

A general drawback of ligand-based QSAR models is the underlying assumption
that chemical similarity correlates with biological similarity, considering a rather
smooth structure-activity landscape. The presence of activity outliers however
shows that this is not always the case and structure-activity landscape may present
activity cliffs (Guha 2011). In such cases, outliers deserve special attention and
should be investigated separately. Outliers representing activity cliffs can be
identified by structure-based methods, like docking or pharmacophore approaches.
In this aspect combination of both ligand- and structure-based approaches may
provide insight on the behavior of such outliers (Vallianatou et al. 2013).
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5.1.2 Structure-Based Drug Design (SBDD)

Structure-based methods rely on detailed knowledge of target protein structures and
target protein-ligand complex providing a more straightforward understanding of
the mechanistic aspects in drug-receptor interactions. X-ray crystallography as well
as NMR have contributed immensely in this field (Anderson 2003).

In the PDB database (http://rcsb.org), more than 120,000 biological macro-
molecular structures are deposited, covering more than 40,000 organisms and
38,000 distinct protein sequences. However, in order to use those data, a proper and
detailed preparation of the protein must be performed (Anderson 2003; Sastry et al.
2013). The preparation process includes hydrogen addition, protonation or depro-
tonation based on pKa prediction of acid or basic side chains, and side chain
optimization to achieve the optimum number of hydrogen bond interactions. Once
the structure of the protein is well studied and analyzed, all essential parts for
interactions between the co-crystalized ligand and the protein are gathered to design
new optimized molecules. In this aspect, the key issue for a successful
structure-based design is the identification of the target and the appropriate binding
site. In Fig. 3 a representative crystal structure of a protein-ligand complex and the
interaction points is illustrated. In Fig. 3a, PPARα receptor is represented by rib-
bons in complex with aleglitazar, represented in space-filling way (CPK repre-
sentation). Figure 3b shows the ligand interaction diagram of aleglitazar inside the
binding pocket.

Additionally, the crystal structure of a protein-target can be used for virtual
screening procedure. Virtual screening procedures are based on the structure of a
protein while a large database is screened and all molecules are ranked based on
empirical docking scoring function for binding affinity (Hillisch et al. 2015). Top
ranked molecules are than tested in vitro to validate the model, and the new lead
compounds are optimized using computer-aided combinatorial techniques (Com-
biGlide, version 4.1, Schrödinger, LLC, New York, NY, 2016). Thus, using
fragment based algorithms, new virtual chemical libraries are designed based on the
core skeleton of the hit compound previous, and top ranked “theoretical” molecules
are passed to medicinal chemists for synthesis and further in vitro testing.

However prediction of binding constants based on the correlation with docking
scores is not always feasible, especially in the case of structurally diverse com-
pounds. ΔG values calculated by molecular docking may have an acceptable cal-
culation error of 2 kcal/mol corresponding to 2 log units of dissociation constants
Kd (Enyedy and Egan 2008; Keserü 2001). Moreover, they may show little dif-
ferentiation, since they are the outcome of enthalpy–entropy compensation (Brandt
et al. 2011). Therefore docking calculations alone are not sufficient, if the principal
query is to predict binding constants.

In the past years, many success stories have been achieved using structure-based
drug design (SBDD). Some representative examples are reported below:

Amprenavir (Agenerae) and nelfinavir (Viracept) (Kaldor et al. 1997) were the first
drugs reaching the market designed against HIV protease using SBDD methodology.
Zanamivir (Relenza) was designed against neuraminidase (Varghese 1999),
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Tomudex against thymidylate synthase (Rutenber and Stroud 1996) and imitin-
abmesylate (Glivec) against Abl tyrosine kinase (Schindler et al. 2000). Moreover,
SBDD has contributed to address more complicated targets, like nucleic acids as
well as protein-protein interactions. Thus, inhibitors have been developed for HIV-1
RNA target TAR (Lind et al. 2002, Filikov et al. 2000), the IL2/IL2Rα receptor
interaction (Tilley et al. 1997), the VEGF/VEGF receptor (Wiesmann et al. 1998)
and Bcl2 (Enyedy et al. 2001).

5.2 Modeling Pharmacokinetics

Pharmacokinetic processes are controlled both by passive phenomena and binding
to proteins, the latter concerning plasma and tissue proteins, metabolizing enzymes
and transporters. Passive phenomena include passive diffusion through various
biological barriers, hemolysis or cell retention. They are governed primarily by
lipophilicity, while molecular weight and hydrogen bonding may contribute as
additional factors (Avdeef 2012; van de Waterbeemd and Smith 2001). There are
also border cases between passive diffusion and binding such as phospholipidosis
or drug membrane interactions (Hanumegowda et al. 2010). Volume of distribution
is also the outcome of membrane permeability and tissue binding (Hollósy et al.
2006). Among the biological barriers, the gastrointestinal tract and the blood brain
barrier are of highest interest and relevant QSPR models are discussed in the
following sections.

Fig. 3 a Ribbon representation of PPARα in complex with aleglitazar (CPK representation),
b Ligand interaction diagram of Aleglitazar inside the binding pocket. Hydrophobic residues are
colored green, hydrophilic residues are colored cyan, positive charged residues are colored blue
and negative charged residues are colored red. Hydrogen bonds are depicted with dashed lines
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5.2.1 Modeling Permeability

Several in vitro techniques have been developed for rapid estimation of membrane
permeability in vitro. Artificial membranes used in parallel artificial membrane
permeability assay (PAMPA) (Kansy et al. 1998) or in immobilized artificial
membrane (IAM) chromatography (Tsopelas et al. 2016a, b) provide easy mea-
surements. However, cell-based protocols such as Caco2 or MDCK cell lines are
more widely accepted as measures of effective permeability, which is considered as
a reliable index mainly for intestinal human absorption (Thiel-Demby et al. 2008;
Usansky and Sinko 2005; Volpe 2008; Yee 1997). The Caco-2 model is recom-
mended by the US FDA for the classification of compounds according to the
bio-classification system (BCS) (Larregieu and Benet 2013). Several QSPR models
to predict Caco-2 or MDCK permeability have been published, which however
include a limited number of compounds (Castillo-Garit et al. 2008; Irvine et al.
1999; van De Waterbeemd et al. 1996). It has been shown however from local
models, that high Caco-2 permeability rate should correspond to the high human
intestinal permeability rate (or extent of absorption), independent of the laboratories
of origin and regardless of whether carrier-mediated transport is occurring (Lar-
regieu and Benet 2014).

Due to the considerable inter- and intra-laboratory variability of Caco-2 effective
permeability, classification models may be a better option, while meeting the
requirements for BCS. Two representative studies performed on large datasets are
reported below. Sherrer et al. applied random forest (RF) to the largest dataset ever
reported (15791 compounds) to establish a moderate model with a R2 = 0.52,
RMSE = 0.20 using 8 descriptors (Sherer et al. 2012). A later model derived by
ruled-based decision trees using 1289 compounds achieved determination of 3
permeability classes (High-H, Medium-M, Low-L). The best rule, based on the
combination of PSA-MW-logD (3P Rule), was able to identify the H, M and L
classes with accuracy of 72.2, 72.9 and 70.6%, respectively, while a consensus
system based on three voting binary classification trees predicted 78.4/76.1/79.1%
of H/M/L compounds on the training and 78.6/71.1/77.6% on the test set
(Pham-The et al. 2013).

Recently, a QSPR study to predict Caco-2 cell permeability was performed on a
large data set of 1272 compounds, which were filtered and curated (Wang et al.
2016). Four different methods including multiple linear regression (MLR), partial
least squares (PLS), support vector machine (SVM) regression, and boosting trees
were employed to build prediction models with 30 molecular descriptors.
The nonlinear model derived by Boosting performed better with R2 = 0.97,
RMSE = 0.12, Q2 = 0.83, RMSECV = 0.31 for the training set and R2 = 0.81,
RMSE = 0.31 for the test set.
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5.2.2 Predicting Human Intestinal Absorption/Oral Bioavailability

Considerable efforts are oriented to establish QSPR models for human intestinal
absorption and oral bioavailability. Relevant software packages are available either
for direct predictions or for predictions of ADME properties like lipophilicity,
solubility, ionization, which would allow a rough evaluation of the potential of
drugs to be orally absorbed. The rules of thumb, discussed in Sect. 4.1, are very
helpful in this case.

Human intestinal absorption (HIA) is usually measured as the percentage of the
dose that reaches the portal vein after passing the intestinal wall (%HIA). On the
other hand, oral bioavailability (%F) describes the passage of a substance from
the site of absorption into the systemic circulation after first pass hepatic metabo-
lism. Intestinal metabolism, acidic stability and the effect of transporters contribute
to the outcome. Absorption in gastrointestinal tract is governed by permeability
through cell membranes (transcellular absorption) or through the intercellular space
between cells of the gastrointestinal mucosa (paracellular transport). The effect of
lipophilicity on absorption has been previously described by linear, bilinear, sig-
moidal or parabolic models (Kubinyi et al. 1993; Kubinyi and Kehrhahn 1978).
However, for the establishment of global QSPR models, which would permit
predictions for different chemotypes of novel compounds, additional physico-
chemical parameters or molecular descriptors, should be implemented. Molecular
weight, polarity or hydrogen bonding parameters as well as the charge state are
most commonly used, being also consistent to describe Caco-2 permeability as
discussed above (Kumar et al. 2011; Tsopelas et al. 2016a, b; Veber et al. 2002).

The main problems to be addressed for the establishment of robust global HIA
models concern the significant variability of the datasets from one source to another
and the distribution of endpoints, since they include commercially available drugs
and are often heavily biased towards compounds with high intestinal absorption
values (Hou et al. 2007). This fact will influence the predictive capacity of the in
silico models and better predictions will be obtained for compounds with high
intestinal absorption values, compared to the rest of the dataset. A scientific and
technical report of the European Commission Joint Research Centre and the
Institute for Health and Consumer Protection compiles literature models for HIA
published till 2010, along with databases with ADME endpoints (Mostrag-
Szlichtyng and Worth 2010). In this chapter, representative examples and latest
investigations are discussed.

One of the first attempts to predict %HIA was published by Wessel et al. who
applied a genetic algorithm with a neural network (GA-NN) technique to develop a
non-linear model for set of 86 drugs. They identified six most significant variables,
namely: the cube root of gravitational index, related to the size of molecule, the
normalized 2D projection of the molecule on the YZ plane (SHDW-6, related to the
shape, the number of single bonds (NSB), related to flexibility, as well as the charge
on hydrogen bond donor atoms (CHDH-1), the surface area multiplied by the
charge of hydrogen bond acceptor atoms (SCAA-s) and the surface area of
hydrogen bond acceptor atoms (SAAA-2), related to hydrogen-bonding properties.
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The predicted %HIA values achieved good statistics with root mean square errors
(RMSE) of 9.4%HIA units for the training set, 19.7%HIA units for the
cross-validation (CV) set, and 16.0%HIA units for the external prediction set
(Wessel et al. 1998).

The general solvation equation developed by Abraham’s group (Abraham et al.
2002) was used by Zhao et to model the human intestinal absorption data of 169
drugs (Zhao et al. 2001). The model Eq. (3) derived by stepwise MLR was based
on Abraham’s linear solvation energy (LSE) descriptors, namely: excess molar
refraction (E), solute polarity/polarizability (S), the McGowan characteristic vol-
ume (V), solute overall hydrogen bond acidity (A) and basicity (B).

%HIA=92+ 2.94E+4.10S+ 10.6V− 21.7A− 21.1B

R2 = 0.74, s = 14
ð3Þ

According to Eq. (3) the volume and the hydrogen bond descriptors were found
to be the most important.

Klopman et al. compiled a large dataset of 467 drug molecules for human
intestinal absorption. The data were split into a training set of 417 and external
prediction set of 50 molecules. Structural fragments promoting or preventing HIA
were identified using the CASE program (http://www.multicase.com/) and their
occurrence was subsequently used in a multiparameter linear equation (4) to predict
human intestinal absorption (Klopman et al. 2002).

%HIA= c0 + ciGi, ð4Þ

where c0 is a constant, ci are the regression coefficients and Gi is the presence (1) or
absence (0) of a certain structural fragment. The final QSAR model included 37
descriptors: 36 statistically significant structural descriptors identified by CASE
analysis and one important physicochemical parameter—the number of hydrogen
bond donors (H donors). The model was able to predict the %HIA with an r2 = 0.79
and a standard deviation s = 12.32% for the compounds of the training set. The
standard deviation for the external test set (50 drugs) was 12.34%. The merit of the
model is that it indicates certain substructures with negative impact in %HIA, such
as quaternary nitrogens, SO2 groups connected to an aromatic ring and others with
positive impact on HIA. A drawback of the model is that the training set was biased
towards high absorption values (Klopman et al. 2002).

Using Zhao’s data set, Sun proposed a PLS-DA classification approach for
human intestinal absorption modeling, using atom type descriptors. Drugs were
classified as classified them as “good” (absorption > 80%) “medium” (80% < ab-
sorption > 20%) or “poor” (absorption < 20%), according to their %HIA. A five
component PLS-DA model separated very well all 169 compounds with r2 = 0.921
and q2 = 0.787. Since in the case of virtual screening, only poorly absorbed
compounds would need to be identified and removed the authors proposed also a
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three-component PLS-DA with r2 = 0.939 and q2 = 0.861 to separate the com-
pounds with less than 20% absorption (Sun 2004).

Recently, a dataset of 578 compounds, split into a training set of 403 compounds
a validation set of 87 and an external prediction set of 87, was analyzed, using
ensemble learning (EL) techniques, (gradient boosted tree, GBT and bagged
decision tree, BDT) to derive both qualitative (classification) and quantitative
models. Topological polar surface area proved to be the most important descriptor
with negative contribution, followed by lipophilicity expressed as XlogP. Classifi-
cation accuracy > 99% was reported, while the QSAR models yielded correlation
coefficients R2 > 0.91 between the measured and predicted HIA values (Basant
et al. 2016).

Prediction models are available also for the more complex process of oral
bioavailability (Andrews et al. 2000; Hou et al. 2007; Kim et al. 2014; Kumar et al.
2011; Martin 2005; Moda et al. 2007; Tian et al. 2011). Till the year 2010 they are
compiled in the scientific and technical report of the Joint Research Center of the
European Union. In the same report relevant software for prediction of oral
bioavailability are provided (Mostrag-Szlichtyng and Worth 2010).

Recently, in silico approaches focus more on physiologically based pharma-
cokinetics (PBPK), which go beyond human intestinal absorption and oral
bioavailability, providing realistic descriptions of absorption, distribution, meta-
bolism, and excretion processes (Bois and Brochot 2016; Jamei 2016). PBPK
modeling has gained a significant impact on regulatory science and decisions
(Huang et al. 2013) and best practice for its use to address regulatory questions, has
been reported (Zhao et al. 2012).

5.2.3 Predicting Blood Brain Barrier Penetration

In drug discovery for CNS active drugs, it is important to determine whether a
candidate molecule is capable of penetrating the blood brain barrier (BBB). For
drugs targeted at the CNS, the BBB penetration is a necessity, whereas for drugs
acting in peripheral tissues, the BBB penetration may lead to undesirable adverse
effects (Di et al. 2009; Ecker and Noe 2004). The log BB, defined as the logarithm
of the ratio of the concentration of a drug in the brain and in the blood, measured at
equilibrium, is an index of BBB permeability. The optimal threshold for classifi-
cation as a CNS acting drug is typically specified between 0 and −1 (Clark 2003).
Log BB values, although widely used, do not take into account plasma and tissue
binding, and therefore, do not reflect the free amount of the drug in the brain.
Permeability surface area product (PS, quantified as logPS) representing the uptake
clearance across the BB is used as a direct measure of permeability and theoretically
is not confounded by the plasma and brain tissue binding.

Several models have been published trying to predict blood-brain barrier per-
meability from various physicochemical properties of molecules, including,
among others, molecular size, lipophilicity or number of groups that can establish
potential hydrogen bonds (Clark 1999; Kaliszan and Markuszewski 1996;
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Konovalov et al. 2007; Luco 1999; Vastag and Keseru 2009). Rules of thumbs are
also suggested, as discussed in Sect. 4.1. Till the year 2010, literature models are
compiled in the scientific and technical report of the European Commission Joint
Research Centre and the Institute for Health and Consumer Protection
(Mostrag-Szlichtyng and Worth 2010). Some representative models and recent
publications are discussed in this chapter.

Already in 1980, Levin had related log Pc (which is close analog of log PS) to a
simple linear function of logP and molecular weight. The overall effect was rep-
resented as log (P � MW−1/2) = logP−½logMW, whereby increasing log P was
supposed to reflect a steady increasing log PS effect, whereas increasing MW had
an opposite effect (Levin 1980). In 1999, Clark analyzed a set of 55 diverse organic
compounds and generated a multiple linear regression model based on in silico
calculated polar surface area (PSA) and logP values with negative and positive
contribution respectively (Clark 1999).

The linear solvation energy relationship approach (LSER), also used to model
human intestinal absorption, has been applied to blood/brain permeability predic-
tion (Platts et al. 2001). For a dataset of 148 diverse compounds using MLR, they
obtained a transparent QSAR incorporating 5 Abraham descriptors and an indicator
variable (equal 1 for carboxylic acids and 0 for other compounds) has been
reported. The model shows good statistics (R2 = 0.74, s = 0.34, RCV2 = 0.71).
According to the model, the increasing size of molecules strongly enhances brain
uptake, while increasing polarity/polarizability, hydrogen-bond acidity, basicity and
the presence of carboxylic acid groups have a detrimental effect. Platt’s model has
been implemented in the commercially available ADME Boxes software (previ-
ously Pharma Algorithms; now ACD Labs, http://www.acdlabs.com/), providing a
very fast estimation of logBB. Later, the data set was extended to include 328
compounds with in vivo and in vitro logBB values. A correlation coefficient r2 = 0.
75 and a standard deviation s = 0.3 was achieved by incorporating an additional
indicator for in vitro data (Abraham et al. 2006).

For a data set of 88 diverse compounds using a variable selection and modeling
method, a QSAR with three or four descriptors out of 324 descriptors has been
reported for logBB prediction. In both models, calculated lipophilicity (AlogP98)
was combined either with the atomic type E-state index (SsssN) and Van der
Waal’s surface (r = 0.842, q = 0.823, and s = 0.416) or with kappa shape index of
order 1, atomic type E-state index (SsssN), atomic level based AI topological
descriptor (AIssssC) (r = 0.864, q = 0.847, and SE = 0.392). The success rate of
the reported models in test sets was 82% in the case of BBB + compounds.
A similar success rate was observed with BBB-compounds (Narayanan and Gunturi
2005).

The VolSurf technique, which is based on molecular interaction fields, has also
been used for blood/brain partitioning modeling (Crivori et al. 2000). The model
was built on the basis of 230 diverse compounds and more than 70 VolSurf
descriptors. Its prediction accuracy (assessed against an external test set) is 90% for
BBB permeable molecules and 60% for non-permeable ones. The computational
procedure is fully automated and fast and it provides a valuable tool for the virtual
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screening of large datasets of diverse molecules (Cruciani et al. 2000). The short-
coming of this approach however is its low interpretability.

Linear discriminant analysis (LDA) based on physicochemical descriptors cal-
culated in silico has been used to establish two distinct classification models (Vilar
et al. 2010). The data set consisted of the 307 compounds used by Abraham et al.
(Abraham et al. 2006) for which in vivo logBB values were available. Considering
that molecules with log BB > 0.3 cross the BBB readily while molecules with log
BB < −1 are poorly distributed to the brain, these values were selected thresholds
for classifying the compounds into two categories. For the threshold 0.3, a two
component model was obtained with lipophilicity and topological polar surface area
(TPSA), the latter with a negative coefficient. For the threshold-1, the total number
of acidic and basic atoms was additionally incorporated, also with a negative sign.
The models were validated with external data sets using the area under receiver
operating characteristic (ROC) curves as evaluation criterion. In ROC the fraction
of true positives (sensitivity) is plotted against the fraction of false positives
(1-specificity). An area under the ROC curve of 0.95 for model 1 and 0.97 for
model 2 is reported, demonstrating the high predictive power of the models, con-
sidering that for a perfect classifier the area under the curve is 1 and for a random
classifier it is 0.5 (Vilar et al. 2010).

Based on logPS values in rats, Suenderhauf et al. developed predictive com-
putational models (decision tree induction) for a dataset of 153 compounds. The
established models exhibited a corrected classification rate of 90%. The models
confirmed the involvement of lipophilicity, molecular size and charge in BBB
permeation (Suenderhauf et al. 2012).

5.2.4 Modeling Plasma Protein Binding

A special case of binding of small molecules to macromolecules is plasma protein
binding. Plasma protein binding (PPB) is the reversible association of a drug with
the proteins of the plasma and is mainly due to hydrophobic and electrostatic
interactions. Since only the fraction of unbound (fu) drug is able to pass across cell
membranes, PPB strongly influences volume of distribution, half-life and efficacy
of drugs. Extended plasma protein binding may be associated with drug safety
issues, low clearance, low brain penetration, as well as drug–drug interactions (Ito
et al. 1998; Rowley et al. 1997). In fact, plasma protein binding belongs to the
ADME properties, representing mainly the “D” of the acronym.

Among the plasma proteins, human serum albumin (HSA) has a central role and
the affinity of drugs to this protein is considered to dominate PPB and the thereupon
related pharmacokinetic issues. Two primary active sites on HSA have been rec-
ognized for drug binding, the Sudlow’s sites 1 (warfarin site) and 2 (benzodiazepine
site), α1-acid glycoprotein (AGP) is the second essential plasma protein with two
main variants and a complicated physiological role (Lambrinidis et al. 2015).

Modeling of total plasma protein binding or/and of HSA binding has been the
objective of many researchers and offers a representative case where combined
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structure- and ligand-based methods act synergistically. Structure based methods
are very helpful to initially classify the compounds according to the preferred
binding site or protein, prior to proceeding to ligand-based methods. Since PPB is
practically involved in any class of therapeutics, the ultimate goal is to construct
global HSA or PPB models, where structural diversity plays an important role.
Representative successful efforts are described below. Often more than one model
are suggested by the same research group, where interpretability may compete with
accuracy in predictions.

A multiple computer-automated structure evaluation method (M-CASE) was
used by Saiakhov et al. (Saiakhov et al. 2000) to analyze 154 structurally diverse
compounds for total plasma protein binding. M-CASE starts by searching for
‘baseline correlation’ via an internal baseline activity identification algorithm
subroutine (BAIA), using the octanol–water partition coefficient which is the most
important parameter. For compounds showing residual binding when predicted by
the baseline correlation, the algorithm continues to identify responsible structural
characteristics, called biophores. Several local QSAR models built for subsets with
common biophores are included in the final global model. The binding site(s) of
each biophore, including the warfarin, benzodiazepine and digitoxin sites, as well
as AGP and lipoproteins, are also characterized. Lipophilicity as the prevalent
parameter showed different contribution in each local QSAR, indicating different
lipophilicity requirements for each binding site. A crucial structural fragment pre-
sent in the molecules was found to be part of a phenyl ring. The model, after
classifying the compounds according to their biophores, was able to predict cor-
rectly the percentage bound to plasma for 80% of the compounds with an average
error of 14%.

A large data set of 1008 compounds, partitioned into a training set of 808
compounds and an external validation test set of 200 compounds was used by
Votano et al. for model construction of human serum protein binding (Votano et al.
2006). A robust ANN model based of topological descriptors in combination with
logP was established with r2 = 0.90, MAE = 7.6 and r2 = 0.70, MAE = 14.1
respectively. MAE stands for Mean Absolute Error.

Votano’s data set was used by Ghafourian et al. (Ghafourian and Amin 2013) to
construct linear regression and nonlinear models using classification and regression
trees (CART), boosted trees and random forest. Interpretable linear regression and
simple regression trees models were able to identify the important contribution of
hydrophobicity, van der Waals surface area and aromaticity for high PPB. On the
other hand, the more complicated ensemble method of boosted regression trees
produced the most accurate PPB predictions.

Combination of chemometrics with molecular modeling confirmed the prepon-
derant contribution of hydrophobic regions of drug molecules and the specific roles
of polar groups, which anchor drugs to HSA 1 and 2 binding sites (Estrada et al.
2006). Identification of the binding site before performing QSAR analysis can
evidently lead to better models. For 889 chemically diverse compounds with
binding affinity for domain III-A, a group contribution model was developed
based on 74 chemical fragments. (R2 = 0.94, Q2 = 0.90) (Hajduk et al. 2003).
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The authors further suggested a combination of QSAR models for full-length
albumin and for domain-IIIA to allow for discrimination between compounds that
bind to the latter site and those that bind elsewhere on the protein. An important
issue is that the fragments used in the model are mapped by most of the topological
descriptors included in Votano’s model, indicating that they can be considered quite
universal. Thus, they provide a convenient look-up table for quantitatively esti-
mation of the effect of a particular group to albumin binding.

A free web prediction platform was constructed by Zsila et al. who combined
support vector machine (SVM) classification model with molecular docking cal-
culations. The classification model was based on 45 descriptors, with logP being the
most important. The platform (http://albumin.althotas.com) enables the users (i) to
predict if albumin binds the query ligand, (ii) to determine the probable ligand
binding site (site 1 or site 2) according to the classification model (iii) to select
using the Tanimoto similarity the albumin X-ray structure which is complexed with
the most similar ligand and (iv) to calculate complex geometry using molecular
docking calculations (Zsila 2013).

The continuous update of the HSA models in order to maintain their perfor-
mance over time is essential for the drug discovery and development settings,
extending their applicability domain and robustness. In this sense, Rodgers et al.
proposed a procedure for monthly updating human plasma protein binding models
over a period of 21 months (Rodgers et al. 2007), which was extended to three
years, using partial least squares (PLS), random forest (RF) and Bayesian neural
networks (BNN). The authors started with a large data set, the size of which was
doubled by the end of the study (Rodgers et al. 2011). Consensus predictions of
HSA binding constants using the final models, generated by all three techniques
showed, RMSE = 0.55. These results justified the need for the automatic regular
updating of QSAR models (autoQSAR) in the case of ADME properties.

An analogous approach for modeling HSA binding, as well as other ADME
properties, over time is implemented in a software architecture, the so called
“Discovery Bus” which allows exhaustive exploration of descriptor and model
space, automates model validation and their continuous updating providing an
automated QSPR through competitive workflow (Cartmell et al. 2005).

Recently, ensemble machine learning-based QSPR models have been estab-
lished for a four-category classification and PPB affinity prediction, using a dataset
of 930 compounds. The structural diversity of the compounds was tested by the
Tanimoto similarity index. In the test set, the classification QSPR models proved
superior with an accuracy > 93%, while the regression QSPR models yielded
r2 > 0.920 between the measured and predicted PPB affinities, with the root mean
squared error < 9.77. Lipophilicity, expressed as XLogP, was the most important
descriptor (Basant et al. 2016).

For further PPB models and for the state of the art in predicting binding to
a1-acid glycoprotein, the second important plasma protein, the reader is referred to
a recent comprehensive review by Lambrinidis et al. (2015).
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5.2.5 Prediction Models for Metabolism

Metabolism, the M in ‘ADME’, is one of the main factors influencing the fate and
toxicity of a chemical. Metabolism or (biotransformation) includes a large set of
chemical reactions, which generally convert drugs or other xenobiotics into more
polar and more easily excreted, i.e., less toxic forms. However, in some cases,
metabolism may lead to toxic metabolites or/and intermediates. Thus, metabolites
with physicochemical and pharmacological properties that differ substantially from
those of the parent drug have important implications for both drug safety and
efficacy (Testa et al. 2004; Testa 2009).

The utility of conventional QSARs predicting the metabolic fate of chemicals is
rather limited. Most of the models are established to predict the phase I metabolism,
mainly addressing cytochrome P450 (CYP450) isoforms, a superfamily of enzymes
including more than 70 families of proteins, which play a predominant role in the
biotransformation of drugs and xenobiotics. Based on a ‘guesstimate’ of the number
of drug metabolites that are known to be produced by cytochromes P450 isoforms
and other oxidoreductases (EC 1), as well as hydrolases (EC 3), and transferases
(EC 2), it is supposed that oxidoreductases are the main enzymes responsible for the
formation of toxic or active metabolites, whereas transferases play the major role in
producing inactive and nontoxic metabolites (Testa 2009).

Terfloth et al. (2007) investigated the application of several model-building
techniques, such as k-NN, decision trees, Multilayer Perceptron as Neural Networks
(MLPNN), Radial Basis Function Neural Networks (RBF-NN), Logistic Regres-
sion (LR) and Support Vector Machine (SVM), to predict the isoform specificity for
CYP450 3A4, 2D6 and 2C9 substrates (Terfloth et al. 2007). The applied
descriptors included simple molecular properties and functional group accounts,
topological descriptors, descriptors related to the shape of molecules or the distri-
bution of interatomic distances considering the 3D structures of the molecules.
A 9-descriptor model, established by combining automatic variable selection with
the SVM technique, gave the best results. The achieved predictivity for an external
data set of 233 compounds was equal 83%. Promising results were also obtained for
the decision tree based model with three descriptors only, and 80% predictivity for
the external data set was achieved. Burton et al. (2006) constructed classification
models for human CYP1A2 and CYP2D6 inhibition using binary decision tree. The
decision tree for CYP2D6 had sensitivity 88%, specificity 92% and positive pre-
dictivity 90%. The external validation hada ccuracy 89%, sensitivity 91%, speci-
ficity 92% and precision 90%. For CYP1A2, accuracy was 89%, sensitivity 95%,
specificity 83% and precision 85% for the training set while the test set had 81%
accuracy, 76% sensitivity, 86% specificity and 85% precision. The authors identified
a range of useful descriptors. Van der Waals surface area (VSA) was particularly
efficient and allowed to develop models reaching 95% correct classification. 3D
descriptors also provided promising results. Sheridan et al. (2007) applied Random
Forest (RF) technique for predicting CYP450 (3A4, 2D6, 2C9) sites of the meta-
bolism, using descriptors that describe the environment around each non-hydrogen
atom in each molecule. The authors identified several descriptors positively and
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negatively related to the oxidation sites of molecules. Compared to the results using
MetaSite software (Molecular Discovery) of Cruciani et al. (2005), Sheridan’s
model performed better in the case of CYP3A4. For CYP2D6 and CYP2C9 the
predictions of Sheridan’s model were only slightly better.

In the case of metabolism, computer-based expert systems have a much broader
applicability. Among them MetaSite is widely used (Cruciani et al. 2005). It makes
predictions based on the lability of hydrogens and orientation effects derived from
the 3D structure of a CYP active site, independently of the availability of
pre-existing data. MetaSite can handle 3A4, 2D6, 2C9, 1A2, 2C9, and 2C19 and
can be extended to any CYP for which a homology model can be generated. It is
advantageous for enzymes such as CYP1A2 and CYP2C19, where there are not
currently enough data in the literature to generate a QSAR model. Moreover, the
MetaSite methodology is easy to use, fast and fully automated. Other expert sys-
tems are MetabolExpert, developed by CompuDrug (Darvas 1988), METEOR
(Testa et al. 2005a) COMPACT (Computer-Optimised Molecular Parametric
Analysis of Chemical Toxicity) (Lewis et al. 1996; Lewis 2001) and META,
implemented in MCASE ADME Module (MultiCASE) (Klopman et al. 1999,
1997; Talafous et al. 1994).

More information about for predicting drug metabolism can be found in a recent
review by Kirchmair et al. (2015).

5.2.6 Integrated ADME Prediction Models

In previous sections, separate models for different processes along the drug dis-
covery and development pipeline are discussed. The medicinal chemist team should
try to take advantage by applying them in their project compounds, selected by
early stage techniques, e.g., virtual screening, structure or ligand based design for
the target of interest, drug-like filtering. The multi-objective character of drug
development however has challenged the creation of software tools and web
platforms mainly for the purpose of integrated ADME and ADME-related predic-
tions. Many of them are commercial. They differ greatly in terms of their capa-
bilities and applications. Prediction software for physicochemical properties like
lipophilicity and ionization, related to ADME, has already been discussed in
Sect. 4. Solubility is another endpoint of interest for oral absorption as well as for
formulation issues. Such predictions serve as inputs to models of key ADME
properties, mainly for gastrointestinal absorption, BBB permeability, oral
bioavailability (including affinity to uptake or efflux transporter) and plasma protein
binding. Predictions of possible metabolite, as well as toxicity endpoints like
mutagenicity, carcinogenicity or teratogenicity are also implemented in certain
software. Some popular software are Know-it-All (Bio-Rad Laboratories http://
www.bio-rad.com/), ADME Boxes (Pharma Algorithms—now included in
ACD/ADME Suite), and ADMET Predictor (Simulations Plus Inc. http://www.
simulations-plus.com/). VolSurf/VolSurf + (Molecular Discovery and Tripos) also
predicts various ADME properties including passive intestinal absorption,
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blood-brain barrier permeation, solubility, protein binding, volume of distribution,
and metabolic stability on the basis of different models based on VolSurf
descriptors.

Moreover, there is a trend towards developing more sophisticated, mathematical
PBPK models, see also Sect. 5.2.2. In these software tools, in vitro and/or in vivo
ADME data are integrated with the results of QSAR/QSPR models (e.g., for per-
centage plasma protein binding or blood/brain barrier penetration) for
organism-based ADME modeling. GastroPlus and Cloe, which mimic the processes
inside living organisms, are more commonly used. Simcyp (http://www.simcyp.
com/) is a proprietary PBPK simulator that provides a platform for modeling the
ADME properties of drugs and their metabolites, as well as drug-drug interactions,
in virtual patient populations (Jamei et al. 2009).

It should be noted as a warning for using software for ADME prediction that the
results should be considered as rough estimates, useful for screening purposes or as
starting points for further modeling or experimental evidence.

6 Conclusions

Drug discovery and development is a complicated multi-objective and expensive
enterprise, with drug candidates being a compromise of competing pharmacody-
namics and pharmacokinetic processes. In silico predictions along the different
stages of the pipeline provide valuable support in the selection of drug candidates
with balanced properties, so as to control each stage early enough and reduce
failures at clinical phases. High technology provides new endpoints that may serve
to establish efficient QSAR and QSPR models, which themselves profit of the
evolution in computational and statistical techniques. Local and global models have
their own value, dependent on the underlying goal and the timeline. Initial
screening, off-target affinities or ADME properties benefit more by global models,
while local models are suitable for selected project ligands with potential affinity for
a target receptor. Interpretability of models is an important issue. The medicinal
chemist is more familiar with models containing well understandable physico-
chemical or molecular descriptors, which provide an insight in the mechanism of
action. However the most accurate model is not always the most interpretable. In
such cases the intended use of the model is the determinant factor. Nevertheless,
toxicity models for regulatory purpose must have a certain degree of interpretability
as required by OECD.

The correct use of the models implies that the user is aware of their merits and
pitfalls. Their evaluation should consider the accuracy and range of the endpoints,
while external validation with blind test sets is a strict prerequisite in particular for
global models. In such cases, determination of their applicability is useful in order
to evaluate when predictions are reliable.

In conclusion, the results of the in silico models at the different stages of drug
discovery should be taken into consideration for prioritizing the drug candidates,
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before proceeding to the next step. The ultimate goal is to produce safe and efficient
drug candidates, a goal, which can be achieved by finding the golden ratio between
affinity to the target receptor, in regard also to off-targets and the appropriate
pharmacokinetic properties in compliance with the concept of druglikeness. The
tools are available, they need to be properly used.
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Strategy for Identification
of Nanomaterials’ Critical Properties
Linked to Biological Impacts: Interlinking
of Experimental and Computational
Approaches

Iseult Lynch, Antreas Afantitis, Georgios Leonis, Georgia Melagraki
and Eugenia Valsami-Jones

Abstract Significant progress has been made over the last 10 years towards
understanding those characteristics of nanoscale particles which correlate with
enhanced biological activity and/or toxicity, as the basis for development of pre-
dictive tools for risk assessment and safer-by-design strategies. However, there are
still a number of disconnects in the nanosafety workflow that hamper rapid progress
towards full understanding of nano-specific mechanisms of action and nanomate-
rials (NMs)-induced adverse outcome pathways. One such disconnect is between
physico-chemical characteristics determined experimentally as part of routine NMs
characterisation, and the ability to predict a NM’s uptake and impacts on biological
systems based on its pristine physico-chemical characteristics. Identification of
critical properties (physico-chemical descriptors) that confer the ability to induce
harm in biological systems under the relevant exposure conditions is central, in
order to enable both prediction of impacts from related NMs [via quantitative
property-activity or structure-activity relationships (QPARs/QSARs)] and
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development of strategies to ensure that these features are avoided in NM pro-
duction in the future (“safety by design”). For this purpose, we have launched the
Enalos InSilico platform, which is dedicated to the dissemination of our developed
in silico workflows for NM risk assessment. So far, two predictive models have
been made available online. The first tool is a Quantitative Nanostructure-Activity
Relationship (QNAR) model for the prediction of the cellular uptake of NMs in
pancreatic cancer cells and the second is an online tool for in silico screening of iron
oxide NMs with a predictive classification model for their toxicological assessment.

Keywords Nanomaterial characterization ⋅ Physico-chemical/structural proper-
ties ⋅ Data mining ⋅ Machine learning for nanomaterial data ⋅ Quantitative
Nanostructure-Activity Relationship (QNAR)

List of Abbreviations

AOP Adverse Outcome Pathway
BSAI Biological Surface Adsorption Index
CCC Critical Coagulation Concentration
EU European Union
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
MIE Molecular Initiating Event
NM Nanomaterial
NP Nanoparticle
PS-NH2 Amino-functionalized polystyrene
PZC Point of Zero Charge
QNAR Quantitative Nanomaterial-Activity Relationship
QPAR Quantitative Property-Activity Relationship
QSAR Quantitative Structure-Activity Relationship
ROS Reactive Oxygen Species
TEM Transmission Electron Microscopy

1 Introduction

Nanomaterials (NMs) are a highly diverse group of chemicals, defined mainly by
their small size, which ranges from 1 to 100 nm, but varying enormously regarding
their physico-chemical properties, such as composition, shape, surface charge,
crystallinity, and reactivity, among others (Stamm 2011). Researchers in the field of
NM science are struggling to associate the primary properties of NMs with their
biological reactivity and toxicity (Valsami-Jones 2015; Nel 2015), as well as for-
mulating appropriate methodologies to understand and utilize them to their full
potential. Due to the widespread application and commercial usefulness of NMs in
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products ranging from industrial to consumer goods (Tsuzuki 2009), it is necessary
to view NMs from a regulatory perspective. However, this is particularly chal-
lenging, in part because methods to identify many of the important
physico-chemical properties are lacking, or are not yet sufficiently validated (von
der Kammer et al. 2012). Consequently, there is an extensive literature indicating
that only size measurements are currently reliable to establish a regulatory defini-
tion of NMs (Linsinger 2012). Three main NM-associated concerns have been
implicated in making regulation, read-across and impact prediction of NMs prob-
lematic: (1) the fact that many properties are non-scalable, (2) the need to distin-
guish between intrinsic versus extrinsic (i.e., context dependent) properties, (Lynch
et al. 2014a) and (3) the fact that many properties are interlinked (e.g., changing one
property may induce changes to another) which renders the description of
property-activity relationships arduous and makes the development of systemic
libraries of NMs challenging. These concerns are presented below in detail.

As part of continuing EU efforts to define NMs for regulatory purposes, the Joint
Research Centre (JRC) of the European Commission have classified
physico-chemical parameters of NMs into those that scale with size (scalable) and
those that display unique nanoscale characteristics below a certain size
(non-scalable) (Lövestam 2010). Examples of non-scalable properties include
confinement effects, such as the broad HOMO-LUMO gap (or the related band gap)
of semiconductor NMs that increases drastically for diameters below 5 nm, thermal
properties, such as the exponential decrease of the melting point of In and Sn NMs
below a diameter of 15 nm, and the solubility via dependence on the surface
tension, which deviates significantly from the classical behaviour when particle
sizes drop below 25 nm (Lövestam 2010). Size-dependent crystallinity also alters
the interface properties of NMs, such as surface reaction rates, adsorption capacity,
catalytic processes and redox potential, which control molecular processes that are
related to diverse cell functions. The challenge is evident since non-scalable
properties are material-dependent, and there is no straightforward,
material-independent relation between particle size and properties or functions
(Lövestam 2010).

In connection with the non-scalable parameters, several NM properties depend
on the context in which they are studied, meaning that they are affected by the
“environment”. For example, the layer of biological molecules that surrounds
certain NMs upon dispersion in a biological fluid has been implicated in conferring
a “biological identity” (Walczyk 2010), which derives from the elemental synthetic
identity, (Fadeel 2013) as this determines which biomolecules bind to the surface
(e.g., through electrostatic and hydrophobic interactions, as well as favourable
entropy contributions) (Dawson 2007). A critical article from Yang et al. outlines
the relationship among NM surface properties, the properties of the surrounding
medium (e.g., pH, ionic strength, salt composition) and the properties of the bio- or
macro-molecules under study (Yang 2013). A related approach has been considered
to describe and predict NM interactions in the natural environment, thus high-
lighting the ecological identity of NMs (Lynch et al. 2014a). A suggested classi-
fication framework assumed that NM toxicity can be predicted as the sum of three
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“quantifiable” parameters (principal components). These parameters include the
diversity of modes of action of NMs, and are classified as intrinsic properties (e.g.,
structural features), extrinsic properties (e.g., surface interactions, changes induced
upon binding of biomolecules and other environmental interactions), and compo-
sition (Lynch et al. 2014b). Several NM physico-chemical properties belong to the
intrinsic category (for example, strain which also includes shape, porosity, structure
and HOMO-LUMO gap), and our consideration allows the construction of a scale
depicting their relative contributions to this category. Similarly, conformational
changes due to binding of biomolecules, such as protein unfolding, receptor acti-
vation, membrane damage, and fibrillation comprise the second category. Chemical
composition is the third category and properties linked to the inherent molecular
toxicity, charge, hydrophobicity and coating (also associated with both the intrinsic
and extrinsic descriptions) are important (Lynch et al. 2014a). Table 1 provides an
initial estimation of the key physico-chemical features that are considered crucial
for NM toxicity, and whether they are likely to be context-dependent and thus
require additional characterisation under the relevant exposure conditions as well as
in the pristine form. The importance of such changes to the NMs properties and
their adsorbed layers of biomolecules (the so-called biological and ecological
identities of NMs), in terms of predicting NM uptake and toxicity is one of the key
questions to be addressed by QSARs/QPARs currently. As yet however, limited
attention has been paid to the physical transformations that NMs themselves
undergo during, for example, environmental ageing (Lowry 2012) in terms of
incorporation into QSARs.

The third challenge is the inter-dependency of many NM properties. Unfortu-
nately, the exact relationships governing these interdependencies have yet to be
established, in part due to the lack of available libraries of systematically varied
individual NM properties. This would require property variation in a precise
manner to identify crucial parameters driving toxicity, and to evaluate toxicity
thresholds for various descriptors. However, the development of systematically
varied NMs libraries is hampered by the fact that the variation of one property may
inadvertently induce changes to several others, for example synthesis strategies to
change the shape or length of a NM may require use of different templating
molecules that result in differences in the surface chemistry of the particles also
(Soler 2007; Bussy 2012; Zhang 2012b). This is illustrated in Fig. 1 for two dif-
ferent NMs (Au and ZnO, being typical examples of a metal and a soluble metal
oxide, respectively), where the obviously interlinked properties are highlighted,
although other inter-linkages likely also exist. This interdependence of
physico-chemical properties also contributes to the inadequacy of the scientific
efforts to date to obtain a set of agreed descriptors for NMs classification [even on a
limited set of physico-chemical end-points against which to characterise NMs (see
Stefaniak 2013 and discussion therein)].

The schematic representation (Fig. 1) shows some of the descriptor space that
can, in principle, be varied through development of NM libraries and also
demonstrates that (i) not all descriptors are relevant to all NM types, and (ii) not all
parameters can be varied independently as in some cases the method used to vary
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one parameter also changes another. The examples show gold (Au) NMs and ZnO
NMs, which are used to represent easily versus poorly soluble NMs. In the example
of Au NMs, several of the parameters are automatically ruled out as the atomic
structure and subsequent packing of Au molecules does not result in particles with
different crystal structures [at least at sizes beyond ∼1 nm whereupon the cluster
structure is templated into the particles (Wells 2015)]. In the example of ZnO NMs,
it is clear that changing the capping agent will impact on dissolution potential, and
surface properties such as charge and hydrophobicity, and thus the capping agent
cannot be varied in insolation from other (interlinked) properties.

Table 1 Initial assessment of the potential context-dependent changes in physico-chemical
properties of NMs

Parameter/Descriptor Context
dependent?

Potential impacts of surroundings

Size/Size
distribution

Yes In the environment, most likely decreased by binding of
natural organic matter (stabilization). Protein binding may
lead to either increased or decreased size via bridging or
steric stabilisation
pH/ionic strength may alter agglomeration

Surface area Yes Aggregation/agglomeration will reduce available surface
area

Purity
(particle/dispersant)

Maybe Impurities/dispersants may be more effectively released
from NM surface under different environmental conditions

Dissolution potential Yes pH, ionic strength, redox potential and adsorbed
biomolecules affect dissolution rate

Photochemical
activity

Most likely Differences in pH and ionic strength and presence/absence
of organic matter may affect electron transfer and result in
protonation of different excited states

Surface
charge/chemistry

Yes Binding of ions/biomolecules may confer a different
charge/charge distribution and surface groups but this may
be dynamic

Hydrophobicity Yes Binding of biomolecules typically results in a more
hydrophilic surface presentation, although may be dynamic

Redox activity Most likely Different surfaces/coatings/bound ligands may result in
different radical species being generated (Li 2013)

Shape Most likely Agglomeration will result in different overall shape.
Bundling/unbundling of nanotubes is an example

Crystal structure Unlikely Structure is a bulk property, established during the
formation of an NM and cannot change by processes
occurring on the surface, unless if the NM dissolves
completely and re-precipitates

Porosity/Surface
defects

Most likely Though dependent on pore size or nature of defect, most
likely decreased due to biomolecule absorption; may also be
influenced by dissolution if NMs do not dissolve
congruently or are a mixed phase
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In addition to the direct interdependencies of physico-chemical properties, there
is also the potential for additive (cooperative) or competitive effects in terms of how
NMs properties result in interactions with, and impacts on, living systems.
Enhanced binding to target cells using multiple physical and chemical interactions,
and a range of distances where the addition of two effective repulsive interactions
became an attraction, has been demonstrated (Nap 2013). Such models give insight
into the competing and highly non-additive nature of different effective interactions
in nanoscale systems in constrained environments, such as are ubiquitous in syn-
thetic and biological systems, and suggest that these should be taken into account in
the development of QNARs.

Besides the aforementioned NM challenges, there are also practical concerns
among the diverse communities working with NMs to communicate with each
other, regarding terminology, limitations of synthetic procedures, characterisation
and modelling approaches, etc. as well realistic plans to produce the experimental
results needed to underpin and validate models in the short and medium terms.
Thus, there are two major obstacles regarding successful development of QNARs:
(a) the lack of adequate and systematic experimental data (which requires
high-quality systematically varied NM libraries) and (b) the currently limited
knowledge on mechanisms of toxic action of NMs under realistic exposure and
ageing conditions. Subsequent sections of this chapter offer insights into the current
state of the art in terms of NM libraries and the QSARs that have been developed
using these libraries, as well as the present understanding of the main
physico-chemical properties of toxicological relevance (see also Table 1).

An understanding of the relationship between the physico-chemical properties of
a particular NM and its in vitro and in vivo behaviour would provide the basic
information for assessing toxic response and more importantly may yield predictive
models for sub-classes of NMs allowing grouping of NMs in a similar manner to
that applied for chemicals. Thus, we also outline current efforts to bridge the current
disconnect between the modelling and experimental communities, and thereby to
enhance progress. Among the successes listed so far are the development of a tool
for surface chemistry, which is challenging experimentalists to re-think the way
NMs and their surfaces are described and connect these with cellular uptake, and a

Fig. 1 Graphical presentation of the principles of NM library development and how systematic
variation of one parameter can result in changes to other (interlinked) parameters
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model for toxicity assessment of iron oxides with different core, coating and surface
modifications.

Here, we propose a living classification system that incorporates the
context-dependent evolution of several physico-chemical features of NMs (as
shown in Table 1) and evolves continuously with new data generation and as new
patterns emerge. Practically, this process may be likened to a modelling scheme,
where the initial steps constitute a training process, populating it with data, which
associate physico-chemical descriptors of NMs (including aged and biologically or
environmentally transformed forms) with biological impacts. This would be the
cornerstone for a second phase of testing the classification system against less well
defined NMs to ensure that the predicted classifications match the data generated,
and then following an approach where less and less experimental data is needed in
order to evaluate classification and safety implications. This will produce a valuable
set of tools for QSARs/QPARs and prediction of NM effects for risk assessment,
regulation, and re-design of NMs synthesis according to the principles of safety by
design to minimise the occurrence and effect of descriptors found to link directly to
a toxicological mechanism or end-point as shown in Fig. 2.

Fig. 2 Spiralling-type approach to NM classification, where earlier phases are “inspired” by
tentative efforts at defining the later stages. Note graphical illustrations for stages 2 and 3 are from
Hassellöv (2009) and Meng (2009), respectively

Strategy for Identification of Nanomaterials’ Critical … 391



2 NM Physico-chemical Properties of Toxicological
Relevance

The establishment of a safe nanotechnology necessitates the development of
evaluation procedures to determine hazardous NM properties that could be modi-
fied to improve NM safety (George 2012).

(i) the release of toxic compounds from NMs (e.g., Cd from quantum dots)—
i.e., NM dissolution;

(ii) the direct effects induced after physical contact with NMs, influenced by their
size, shape and surface features, and which interfere with important bio-
logical functions—i.e., NM interactions; (so-called extrinsic factors)

(iii) the inherent features of the NM, such as photochemical and redox properties
resulting from band gap or crystalline phase—i.e., NM (surface) specific
effects; (so-called intrinsic factors), and

(iv) the capacity of NMs to act as transporters of toxic chemicals to sensitive
tissues—i.e., NM Trojan horse effects.

Once a NM enters a cell, toxicity may occur via one or a combination of these
mechanisms. Some toxicity patterns are also emerging; for example, positively
charged NMs are generally more toxic than negatively charged NMs (Bexiga 2011;
Pagnout 2012; Zheng 2013), although this is not always the case (Lee 2013; Merhi
2012).

Most physico-chemical properties from Table 1 are somehow related to toxicity
in several of the mechanisms, however, the quantitative relationships between these
properties and the biological uptake and toxicity are not yet clarified. Some
examples of the four aforementioned mechanisms are presented below, with an
emphasis on the physico-chemical properties, which have been implicated in direct
associations with toxicity.

2.1 NM Dissolution

As a representative example of the first toxicity pathway, dissolution of ZnO NMs
and subsequent Zn2+ release is known to induce cytotoxicity effects, with the
mechanisms having recently been elucidated as reactive oxygen species
(ROS) generation and activation of an integrated cytotoxic pathway, which involves
intracellular calcium flux, mitochondrial depolarization, and plasma membrane
leakage (George 2012). A recent seminal work has shown that ZnO cytotoxicity
could be reduced by iron doping, which altered the material matrix to diminish
Zn2+ release (George 2012). This study showed a workflow for identification of an
NM descriptor of toxicological relevance, and also provided a strategy to “design
out” the toxicity by Fe doping in order to reduce the ZnO NM dissolution potential.
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While coating is a typical approach to slow or prevent NM dissolution, recent
work has suggested that surface coating or passivation may itself affect the NM
core, with more fundamental consequences for stability and toxicity. Thus, surface
passivation of 8 nm cobalt ferrite NMs, besides the formation of an iron-rich sur-
face layer, was observed to improve the crystal quality while altering the Fe/Co
cation distribution and the NM dissolution rate profile (Soler 2007). Magnetic data
revealed that the saturation magnetization increased for surface-passivated NMs
compared to the non-passivated ones, though coercivity decreased after passivation.
These two phenomena occurred due to changes in the cation distribution among the
available tetrahedral and octahedral sites (Soler 2007). Another important outcome
from this study is that all of the aged magnetic fluid NM samples deviated from the
precursor stoichiometry, thus revealing a discrepancy in the dissolution of cobalt
ferrite NMs, which influenced the lattice parameter value (Soler 2007). This
highlights the fact that change of one parameter may inadvertently affect another
(or several other) parameter(s) with direct consequences for quantitative
property-activity relationships.

NM composition is the main determinant of whether a NM will dissolve or not,
which is linked to the elements’ solubility in water. However, as shown in Table 2,
particle size and size distribution, which are linked to particle surface area, also
influence the rate of dissolution, which typically occurs from the surface. Crystal

Table 2 Contributions of various physico-chemical properties (from Table 1) to the different
toxicity mechanisms described here

Measured parameters Dissolution NM
interactions

NM (surface) specific
effects

Trojan
Horse

Size/size distribution ✓✓ ✓ ✓ ✓✓

Surface area ✓✓ ✓✓ ✓✓ ✓✓

Purity
(particle/dispersant)

∼ ✓ – –

Photochemical activity ✓ ✓ ✓ –

Surface
charge/chemistry

✓ ✓✓ ✓ ✓✓

Hydrophobicity ∼ ✓✓ – ✓✓

Redox activity ✓ – ✓ –

Shape ✓✓ ✓ ✓✓ ✓

Crystal structure ✓✓ ✓✓ ✓✓ ✓✓

Porosity/surface defects ✓ ✓ ✓✓ ✓

Two ticks indicate strong contribution, one tick indicates some contribution, ∼ indicates not clear
as yet while – indicates likely no significant contribution. Note that these are opinions rather that
quantitative values. Measuring the relative contributions quantitatively is challenging and has yet
to be achieved
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structure and phase also play a role, with faces having coordination numbers {1 1
1} and {1 1 0} dissolving faster than others such as the {1 0 0} face of nanocrystals
(Liu 2008; Misra 2012). Shape is also an important parameter, again linked to
surface area, but also as narrow areas will dissolve faster that thicker ones. To a
lesser degree (although this has not been quantified but is rather an opinion)
porosity, again linked to surface area, as well as photochemical and redox activity
will drive dissolution, as most cases of nanoparticle (NP) dissolution under envi-
ronmental conditions are driven by oxidative processes (Ho 2010).

2.2 NM Interactions

2.2.1 Cationic Surface Charge (as Determined by Zeta Potential)
Linked to Membrane Damage

The toxic mechanism of a 60-nm cationic (amino-functionalized) polystyrene NM
(PS-NH2) in bacterial cells was explored using a genome-wide collection of bac-
terial single-gene deletion mutants (Ivask 2012). Over 4000 single nonessential
mutants of Escherichia coli were screened for the growth phenotype of each strain
in the presence and absence of PS-NH2. The largest number of genes contributing
to bacterial sensitivity for PS-NH2 nanospheres was associated with the formation
and functioning of the bacterial cell membrane, followed by defects in
lipopolysaccharide and ubiquinone biosynthesis, flagellar formation, and DNA
repair. The authors assumed that the proper formation, stability, and functionality of
the bacterial cell wall are necessary for the bacteria’s ability to compete against
cationic NM-induced stress (Ivask 2012). ROS production was also shown to be a
crucial pathway of toxicity for PS-NH2; importantly, it was observed that there is at
least one mutant for which there is an additive effect between ROS sensitivity and
disruption of membrane integrity. This finding indicates that these two toxicity
mechanisms are independent (i.e., disruption of membrane integrity is not neces-
sarily due to ROS production by the NM) (Ivask 2012).

As indicated in Table 2, surface charge thus plays an important role in deter-
mining NM interactions with biological and environmental macromolecules,
including those incorporated into key biological membranes. Here, hydrophobicity
and redox activity will also play a key role in moderating the observed toxicity,
with hydrophobicity helping to anchor the NMs close to membranes, and redox
activity providing a supply of ROS to amplify the damage from the NMs.

2.2.2 Point of Zero Charge (PZC) and Critical Coagulation
Concentration (CCC)

A useful alternative to zeta potential (ζ-potential) measurements [which are very
often poorly presented and misinterpreted in the literature, as zeta potential depends
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on ionic strength, pH and agglomeration/aggregation (Lowry 2016)] is to take into
account the context-dependent parameters, such as the point of zero charge
(PZC) and the critical coagulation concentration (CCC), since these properties
require experimentation under titrating conditions, therefore having less room for
dangerous misunderstandings.

An elegant approach to evaluate which physico-chemical properties of TiO2

NMs and carbon nanotubes determine their environmental stability and transport
was recently proposed, although full implementation was prevented by the lack of
relevant data under realistic exposure conditions (Liu 2013b). This study showed a
high correlation among impurities (including Si and P) resulting from the synthesis
route and the PZC, which was in turn correlated with the CCC (Fig. 3) and some
implications for transport were discussed. It was suggested that in order to diminish
the environmental risks of TiO2 NMs alternative procedure or chemicals that are Si-
and P-free are preferable to use during synthesis (Liu 2013b).

However, in the environment, the adsorption of natural organic matter
(NOM) can significantly influence the surface properties and behaviour of TiO2

NMs (from Liu 2013a and references therein). Thus, further studies are needed
regarding the interactions between NOM and TiO2 of varying properties, as well as
to determine whether the property of adsorbed NOM or TiO2 mainly controls the
stability and transport in the natural environment (Liu 2013a).

Fig. 3 Comparison of CCC for the TiO2 NMs with different crystallinity, morphology, and
composition at various pH values as reported in the literature (from Liu 2013b and references
therein). The CCC values at acidic pH (e.g., pH 5) were generally higher than at neutral pH (e.g.,
pH 7), which is close to the PZC. The CCC for 10 × 40 nm rutile (10 mM) and 50 nm anatase
(18 mM) were higher compared with the 5 nm anatase (5 mM), due to the detected impurities of
Si and P and consequently more negative surface charge at pH 7. Further analysis on the material
properties of the other TiO2 is not feasible, due to the insufficient information on the composition
of the pristine TiO2. The star symbol stands for the estimated value of CCC, due to the
unavailability of the aggregation kinetics data. Ana anatase, Rut rutile, Bro brookite. From Liu
(2013b)
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Other physico-chemical properties strongly linked with NM stability and thus
exposure dose and resulting toxicity are photochemical activity, in so much as this
can alter the surface composition and thus the PZC and CCC, and likely also crystal
structure.

2.2.3 Biological Surface Adsorption Index (BSAI)

A biological surface adsorption index (BSAI) has been proposed as a way to
describe the interactions between NMs and biomolecules by estimating the com-
petitive adsorption of a set of small molecule probes onto the NMs (Fig. 4). This is
achieved by mimicking the molecular interactions of the NM with the protein
residues (Xia 2010). The adsorption of NMs is assumed to depend on Coulomb
forces (charged particles), London dispersion (hydrophobic interactions),
hydrogen-bond (HB) interactions, dipolarity/polarizability, and lone-pair electrons.
Adsorption coefficients of the probe compounds were measured and then were used
to construct a set of nanodescriptors representing the contributions and relative
strengths of each molecular interaction. The method successfully predicted the

Fig. 4 Left in a physiological environment, NMs are exposed to various proteins and small
molecules. Right the competitive adsorption of small molecules (upper) and the residues of
proteins (lower) on an NM. The orange ring on the NM with blue irregular shapes represents the
adsorption sites that are not uniformly distributed on the surface. Small molecules with known
molecular descriptors [R, π, α, β, V] can be used as probes to measure the molecular interaction
strengths of the NMs with small molecules and biomolecules. From Xia (2010)
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adsorption of various small molecules onto carbon nanotubes, and the nanode-
scriptors were also calculated for 12 other NMs (Xia 2010).

The adsorption coefficients of the probe compounds on a given NM (e.g.,
multi-walled carbon nanotubes—MWCNTs) were measured using a solid-phase
microextraction (SPME)–gas chromatography mass spectrometry (GC–MS)
method. The correlation of logk with the solute descriptors was established after
multiple linear regression analysis of the [logk, R, π, α, β, V] matrix, where logk is
the adsorption coefficients of a probe compound (that binds to the MWCNT) and
[R, π, α, β and V] are solvation descriptors of the probe compounds—Coulomb
forces, London dispersion, hydrogen-bond acidity and basicity, polarizability and
lone-pair electrons (Xia 2010). Thus, the BSAI approach provides rational inter-
pretations for the molecular interactions, and also yields five physico-chemical
parameters, which characterize the relative strengths of the molecular interactions of
the NMs (Xia 2010).

The BSAI nanodescriptors can be related to membrane interaction and biodis-
tribution properties (e.g., absorption rate, distribution coefficient and extent of
cellular uptake) of the NM to develop physiologically based pharmacokinetic
models, and also for quantitative risk assessment and safety evaluation of NMs (Xia
2010).

Other key physico-chemical parameters affecting biomolecule binding, and thus
conferring a biological identity and influencing NM toxicity, include hydropho-
bicity, surface area and surface curvature (linked to NM size), and crystal structure,
as indicated in Table 2. Different NM crystal faces have different energies, resulting
in different binding affinities for biomolecules (Lynch et al. 2014a; Sund 2011).

2.2.4 NM-Binding Induced Changes in Protein Conformation May Lead
to Receptor Activation

A series of studies using negatively charged poly(acrylic acid)-conjugated gold
NMs of various sizes has shown that particle size may affect protein structural
changes resulting from binding, which can then induce different modes of inter-
action between NMs and cells or tissues (Deng 2011, 2013). Activation of the
integrin receptor (Mac-1) by 5 nm poly(acrylic acid)-conjugated gold NMs was
found to occur due to conformational changes of the bound fibrinogen, leading to
increased nuclear factor NF-κB signalling, which in turn resulted in the release of
inflammatory cytokines (Deng 2011). However, larger [20 nm poly(acrylic acid)-
conjugated] gold NMs, which also bound fibrinogen, did not induce this effect. This
is a clear demonstration of a NM-protein binding-induced signalling pathway and
suggests an alternative mechanism to the more commonly described role of
oxidative stress in the inflammatory response to NMs.

A follow-on study to estimate the effect of binding to gold NMs of different size
(5–20 nm) with different surface charge on fibrinogen conformation showed that
fibrinogen bound with high affinity to both (positively and negatively charged) NM
(Deng 2013). However, binding kinetics and protease digestion suggested that each
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NM adopted a different binding orientation, and verified that only the negatively
charged NMs induced cytokine release from THP-1 cells (Deng 2011). It was
concluded that “since common proteins can bind to different NMs with quite dif-
ferent biological outcomes, knowledge of the composition of the protein corona is
not sufficient to predict biological effects of NMs, and conformational and orien-
tational information is also required”.

Other NM factors known to influence protein unfolding and formation of
so-called cryptic epitopes which can lead to novel toxicities (Lynch 2007), include
hydrophobicity, surface curvature [linked to NM size (Klein 2007)] and porosity or
surface defects (Clemments 2015).

2.3 NM (Surface) Specific Effects

2.3.1 Surface Defects, Including Those Induced by Surface Oxidation

A study of the effect of nanosize Ag spheres, plates, and wires on a fish gill
epithelial cell line (RT-W1) and on zebrafish embryos showed significantly
increased toxicity from the Ag nanoplates compared to the other particle shapes
(George 2012). Features, such as Ag ion shedding and bioavailability failed to
thoroughly explain the enhanced toxicity of the nanoplates. High-resolution
transmission electron microscopy showed a high level of crystal defects (stacking
faults and point defects) on the nanoplate surfaces. A noticeable reduction of
toxicity in RT-W1 cells and zebrafish embryos was observed upon surface coating
with cysteine to passivate the surface defects (George 2012).

Graphene oxide (GO) is considered as being biocompatible, but until recently
there has been a limited amount of data to verify this. Currently, four general
top-down routes for GO production use different acids to oxidise the surface and
offer hydrophilicity. The cytotoxicity of GOs (prepared by the four oxidative
treatments above) was measured by means of the mitochondrial activity in adherent
lung epithelial cells (A549), using commercially available viability assays (MTT
and WST-8) (Chng 2013). All four GO NMs yielded strong dose-dependent
cytotoxic responses after 24 h exposure, and a relation between the oxygen
content/functional groups of GOs with their toxicological response against the
A549 cells was observed: The various oxidative approaches produced GOs with
different properties due to varying C/O ratios and proportions of the types of
oxygen-containing groups (e.g., carbonyl group) (Chng 2013). This is the first
study, which demonstrates how the oxidative routes employed to prepare GOs (also
other carbon-based NMs) may profoundly affect their toxicity.

Another article demonstrating that the selected method to vary the NM
physico-chemical features can itself induce other unwanted effects is that of Bussy
et al. (2012), where the impact of carbon nanotube length on toxicity was inves-
tigated (Bussy 2012). A broad study was designed to compare the effects of two
samples of MWCNT (synthesized following a similar production process, i.e.,
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aerosol-assisted CVD) on murine macrophages; a soft ultrasonic treatment in water
was used to change the length of one of the MWCNTs (Bussy 2012). It was shown
that altering the length of MWCNT leads to associated structural (i.e., defects) and
chemical (i.e., oxidation) changes that affect both surface and residual catalyst iron
NM content of the CNT. The structural defects and oxidation (induced by the length
reduction process) were shown to be at least as responsible as the length reduction
itself for the increased pro-inflammatory and pro-oxidative response observed with
short (oxidized) MWCNT compared to long (pristine) MWCNT (Bussy 2012). This
further demonstrates the problem of the inter-dependence of various
physico-chemical properties and the significant challenges inherent in the devel-
opment of systematically varied libraries of NMs as the basis for mechanistic
studies. However, designing libraries with this knowledge of predicted
physico-chemical interdependencies in place will allow this information to be
included into the physico-chemical testing strategy and into the structure-property
relationships under development.

2.3.2 Bandgap as a Proxy for Oxidative Stress

Oxide semiconductors can serve as channels for electron transfer between aqueous
reactants. The occurrence of these transfers depends on similarities in the energetic
states of the NMs and ambient redox-active aqueous substances (Zhang 2012b).
Burello and Worth proposed a theoretical scheme where the relationship between
the cellular redox potential to metal oxide (MOx) band gap clarifies the observed
oxidative stress and toxicity generation by some of these materials (Burello 2011).
According to this band gap hypothesis, it is possible to predict the oxidative stress
potential of MOx NMs by comparing the Ev (valence band) and Ec (conduction
band) levels to the cellular redox potential (Burello 2011).

Using a panel of 24 MOx NMs (George et al. 2012) showed that with the use of
conduction band energy levels (band gap), it is possible to describe their toxico-
logical potential at cellular and whole organism levels. Among the NMs, the
overlap of conduction band energy (Ec) levels with the cellular redox potential
(−4.12 to −4.84 eV) was strongly associated with the ability of Co3O4, Cr2O3,
Ni2O3, Mn2O3 and CoO NMs to induce oxygen radicals, oxidative stress, and
inflammation (George 2012). Although CuO and ZnO produced oxidative stress
and acute pulmonary inflammation, which is not predicted by Ec levels, the adverse
biological effects of these NMs are explained by their solubility, as demonstrated by
ICP-MS experiments (George 2012). These results indicated that the toxicity of a
large series of MOx NMs can be predicted in the lung based on semiconductor
properties and an integrated in vitro/in vivo hazard ranking model based on
oxidative stress. It is not yet clear whether there are additional factors that con-
tribute to band-gap in addition to crystal structure and composition, although for
silicon wires bond angles and bond strain cause a transition from direct to indirect
band gap behaviour and the properties can be tailored through surface chemistry
(Brus 1994). This could be an area for future nanosafety research, focussing on, for
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example, the role of porosity, defects, doping or anion exchange on energy transfer
within nanocrystals.

2.4 NM Trojan Horse Effects—Increased Local
Concentrations of (Dissolved) Species

In medicine, the Trojan horse effect is defined as “Any disastrous result of an
anticipated gain; or, the masking of a dangerous agent within an innocent garb”.1

There are numerous cases where NMs act as Trojan horses, both when the NM
alone releases high concentrations of ionic species in sites that they would not
normally reach such high concentrations (Park 2010; Studer 2010), and when the
NM carries another compound along, thus accessing an otherwise inaccessible
location (Baun 2008). Both types of the Trojan horse effect are based on the size
properties and biomolecule adsorption of NMs, which enable them to participate in
the active receptor-mediated transport processes of cells and organisms that are
often less accessible to ionic or molecular species, which are typically internalised
based on passive diffusion (Salvati 2011).

Silver NMs (distributed in foetal bovine serum, average size: 68.9 nm, con-
centrations: 0.2, 0.4, 0.8, and 1.6 ppm, exposure time: 24, 48, 72, and 96 h)
appeared cytotoxic to cultured RAW264.7 cells by increasing sub G1 fraction,
which denotes cellular apoptosis (Park 2010). Silver NMs were found in the cytosol
of activated cells, whereas were absent in the dead cells, thus suggesting their
dissolution and release of ions and cytotoxicity by a Trojan-horse type mechanism
(Park 2010). Studer et al. (2010) studied the toxicities of copper oxide and carbon
coated copper metal NMs at constant copper exposure dose, and observed
noticeably different responses from the two NM forms: while copper oxide was
highly cytotoxic, carbon-coated copper NMs were much less cytotoxic and more
tolerated, which corresponded with the two material’s intra- and extracellular sol-
ubility in model buffers (Studer 2010). Thus, the differences in toxicity correlated
with different copper release in line with a Trojan horse-type scenario.

C60-NMs (Buckminster fullerenes) are known to function as carriers of contami-
nants in aqueous systems. This has been verified in a series of toxicity tests with algae
(Pseudokirchneriella subcapitata) and crustaceans (Daphnia magna) with four
common environmental contaminants (atrazine,methyl parathion, pentachlorophenol
(PCP), and phenanthrene) as model compounds with different physico-chemical
properties and toxic modes of action (Baun 2008). In algal tests, C60-aggregates
increased the toxicity of phenanthrene by 60% and decreased the toxicity of PCP about
twofold. Addition of C60-aggregates increased the toxicity of phenanthrene ten fold
when results were expressed as water phase concentrations. Metals, such as Cd bound
to NM (e.g., titania) surface, show increased bioavailability in fish (carp) (Shaw

1http://medical-dictionary.thefreedictionary.com/Trojan+Horse+Effect.
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2008). Since many NMs are negatively charged, they act as suitable carriers for
cationic metals. The data mentioned above underline that both inherent toxicity of
manufactured NMs, and interactions with other compounds and characterisation of
NMs in aqueous suspension are crucial data for risk assessment of NMs.

Table 2 also highlighted the range of physiochemical parameters that can play a
role in determining pollutant binding to NMs, as a prerequisite for Trojan horse
effects resulting from the pollutant gaining a new access route carried on the NM.
This also shows that the same NM physico-chemical parameter may contribute to
multiple modes of action, which may occur simultaneously.

3 Systematic NM Libraries Reported in the Literature

To associate particular physico-chemical properties of an NM with its toxicity, it is
imperative to establish combinatorial libraries, constructed in a way that systematic
variation of important physico-chemical properties (probably related to toxicity) can
occur (Xia 2012). Property variations may include NM size, shape, surface area,
band gap, porosity, crystallinity, charge, solubility, and surface functionalization, as
shown in Fig. 5.

Fig. 5 Examples of combinatorial NM libraries. Combinatorial libraries are constructed by
synthesizing one of the compositional NMs to vary physico-chemical properties, which may be
involved in toxicity. Property variations apply to NM size, shape, charge, porosity, hydrophilicity,
hydrophobicity, crystallinity, band gap, photoactivation, solubility, and surface area. A single
property change may also affect other properties, thus rigorous re-characterization is required.
From Xia (2012)
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Here, we offer an overview of the types of NM libraries that have been devel-
oped in academic groups to date, although these are not available commercially,
and they have typically varied only one or two materials, thus preventing safe
generalisations. Important attempts to develop QNARs based on these libraries are
also presented. So far, two tools to address the need for constructing validated
QNARs have been developed and are disseminated as ready-to-use applications for
anyone interested in NMs risk assessment. These tools aim to investigate the NMs’
diverse effects by estimating the impact of different surface modifiers on cellular
uptake and by exploring the dependency between various physico-chemical
descriptors of iron oxide and toxicity. These two approaches may facilitate ongoing
research on the identification of the crucial descriptors for the virtual screening of
NMs diverse effects.

One of the few organized datasets of NMs that has been presented in the liter-
ature contains the cellular uptake of 109 NMs in pancreatic cancer cells (PaCa2).
Each NM within this dataset involves the same metal core (iron oxide/NH2 cores)
but different surface modifiers, which are small organic molecules conjugated to the
NM surface (Weissleder 2005). For the development of our first tool, we have
constructed and validated a QNSAR model for the prediction of the cellular uptake
in pancreatic cancer cells based on this dataset. The in silico workflow is available
online through the Enalos InSilicoNano platform (http://enalos.insilicotox.com/
QNAR_PaCa2/), which is a web service based solely on open source and freely
available software that was developed to make our model available to any one
aiming at acquiring knowledge on potential biological effects in the decision
making framework (Fig. 6). To test the usefulness of the web service, the entire
PubChem database was exploited to select compounds similar to a known active
structure. Next, the Enalos InSilicoNano platform was used to identify novel potent
NMs from a prioritized list of compounds (Melagraki 2014).

Fig. 6 Screenshot of the Enalos Platform input page for the prediction of NMs uptake in PaCa2
cells
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A second online tool for the computational screening of iron oxide NMs was
also developed to complement our previously reported efforts to extract valuable
information from available datasets and to develop user friendly applications for the
risk assessment of NMs. For this purpose, a predictive classification model was
developed for the toxicological evaluation of 44 iron oxide NMs with different core,
coating and surface modifications based on several different properties, such as size,
relaxivities, zeta potential and type of coating (Shaw 2008).

The model was fully validated through several validation tests and was released
online via the Enalos InSilicoNano Platform (http://enalos.insilicotox.com/QNAR_
IronOxide_Toxicity/). This web service allows a user to insert specific properties
(Fig. 7) and subsequently to obtain a toxicity prediction (and an indication of the
reliability of the prediction) based on the domain of applicability (Melagraki 2015).

Fig. 7 Screen shot of Enalos QNAR iron oxide toxicity platform input page
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These freely available web services are the first efforts to establish an online tool
that the wider scientific community can easily apply in the computer-aided NM
design and may be a means to reliably predict the activity of novel nano-structures.
The user friendly environment enables different datasets to be directly imported
based on the particular requirements of the user. Both web services offered via the
Enalos InSilicoNano platform aim to provide significant aid within a virtual
screening framework, for the design of novel NMs or their prioritization based on
predicted diverse effects.

3.1 Gold Nanoparticle Libraries

Gold nanoparticles were selected by a group at the university of Oregon to represent
an ideal platform for the systematic evaluation of the effect of various
physico-chemical properties (including core size, charge, and surface chemistry) on
biological responses to NM exposure (Harper 2011). A matrix of nine structurally
diverse, precision-engineered Au NMs of high purity and known composition was
constructed. This included three core sizes and four unique surface coatings that
contain positively and negatively charged head groups, as shown in Fig. 8.

Testing the different combinations of core sizes and ligand shells enabled
evaluation of the importance of small changes in core size and ligand composition
independently. Zebrafish embryo mortality, malformations, uptake, and elimination
of Au NMs depended on the above parameters, thus highlighting the need for very
careful experimental design and NM characterization (Harper 2011).

Besides the great control over particle size and the simple functionalization
through surface modification (Fig. 9), gold NMs are excellent systems for further
development of NMs libraries, due to the recent developments in controlling the
shape of the nanocrystals (Sau 2009). The size, shape, and structural control of the
nanocrystals is achieved through handling of the kinetic and thermodynamic
parameters of the systems with the aid of additives, light and thermal energy, as
well as their combinations (Sau 2009 and references therein). The formation of
diverse shapes most likely arises from the relationship between the faceting ten-
dency of the stabilizing agent and the growth kinetics (rate of supply of Au0 to the
crystal planes) (Ahmadi 1996). Sau et al. presented a seed-mediated growth method
to regulate the morphology and dimensions of gold nanocrystals by manipulating
the experimental parameters in aqueous medium at room temperature (Sau 2009).
This chemical procedure generated several architectures with rod-, rectangle-, tri-
angle-, hexagon-, cube-, and star likes structures and branched (i.e., bi-, tri-, tetra-,
and multipod) Au nanocrystals of varied dimensions in high yield, in the presence
of a single surfactant (cetyltrimethylammonium bromide, Fig. 8) (Sau 2004).
Although this surfactant is not typically used in toxicology studies, this work makes
evident that shape maybe changed in a manner such that all shapes result from
identical starting structures. This observation is important because it suggests that
only the shape changes from one material to another, while other parameters (e.g.,
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defects, faceting face etc.) are also obviously affected. Moreover, this approach
would allow the experimental evaluation of differences in biomolecule binding,
diffusion and interaction with receptors etc. based on NM shape in a systematic
manner. This may constitute the basis for further improvement and validation of
models and QSARs. For example, molecular dynamics (MD) simulations have
shown that the efficacy of passive endocytosis is higher for spherocylindrical par-
ticles compared to spheres and that endocytosis is abolished for sharp-edge particles
(Vácha 2011).

Walkey et al. have recently presented the synthesis and experimental evaluation
of a chemically diverse set of 105 gold NMs with various surface modifiers
(Walkey 2014). The authors considered three different core sizes, namely 15, 30

Fig. 8 Gold NM synthesis, structure, and properties. a Synthesis reaction of functionalized gold
NMs from gold triphenylphosphine (AuTTP) NM building blocks. b Name, charge, and structure
are provided for each ligand tested. c Properties with implications for dose metrics for the different
NM core sizes are also given. From Harper (2011)
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and 60 nm, and employed 67 organic surface modifiers, which included small
molecules, polymers, peptides, surfactants and lipids that can be identified as
“neutral”, “anionic” and “cationic” according to their structural and charge prop-
erties at physiological pH. Different parameters for each NM were measured before
and after exposure in blood serum stimulating the biomolecular environment during
in vitro cell culture experiments. In total, 21 physico-chemical parameters before
and after exposure were calculated and 785 distinct serum proteins were recognized
on the NMs. Furthermore, all NMs were evaluated regarding their association with
A549 human lung epithelial carcinoma cells (Albanese 2014).

3.2 Metal Oxide Nanoparticle Libraries

The Centre for Environmental Implications of Nanoscience and Nanotechnologies
at UCLA have developed a compositional library of 24 different metal oxide NMs
(whose compositions, size distribution and zeta potential are shown in Table 3),
which was constructed to explore the correlation of NM electronic properties and
their toxicity results (Lin et al. 2013). Most of the NMs were directly purchased,
and others (CuO, Co3O4, Fe3O4, Sb2O3, TiO2, WO3, and ZnO) were synthesized
in-house by flame spray pyrolysis (Teoh 2010). The results of Table 3 suggested
that the hydrodynamic size of these NMs in Holtfreter’s medium (pH 7.0) ranges
from 200 to 500 nm, with only a few materials (Al2O3, Fe3O4, Ni2O3, SnO2, Y2O3,
Yb2O3) reaching 500 nm. The ζ-potentials of all NMs were negative (−20 to
−30 mV) due to alginate coating.

Using the above NM library, Lin et al. (2013) established a predictive toxico-
logical paradigm (that of metal oxide dissolution and ligation of the zebrafish
hatching enzyme 1 (ZHE1) enzyme centre by specific metal ions), which can be
used for the safety evaluation of dissolved metal oxide NMs in aqueous media. The
excellent correlation between ZHE1 inactivation and hatching interference in intact
embryos rationalized the molecular mechanism of hatching interference exerted by
CuO, ZnO, Cr2O3 and NiO NMs (Lin et al. 2013). The authors concluded that
shedding of metal ions by dissolvable metal oxide NMs interferes with recombinant

Fig. 9 Schematic illustration of the variation of gold NM morphology and dimensions (shape and
structure) by manipulation of the experimental parameters in aqueous solution at room
temperature. From Sau (2004)
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ZHE1 activity. Consequently, it was anticipated that CuO, ZnO, Cr2O3 and NiO
NMs should interfere in embryo hatching (Lin et al. 2013).

A classification-based cytotoxicity nanostructure-activity relationship (nano-
SAR) with excellent classification accuracy was developed based on four descrip-
tors: atomization energy of the metal oxide, period of the NM metal, NM primary
size, and NM volume fraction (in solution). Based on a set of 9 metal oxide NMs to
which transformed bronchial epithelial cells (BEAS-2B) were exposed over a range
of concentrations and exposure times up to 24 h, the best-performing model had a
100% classification accuracy in both internal and external validation (Liu 2011).

Table 3 Physico-chemical features of 24 metal oxides in the UCLA library

Number MOx Primary size (nm)a Hydrodynamic size (nm)b Zeta-potential (mV)c

1 Al2O3 14.7 ± 5.2 524.8 ± 32.8 −24.0 ± 0.5
2 CeO2 12.8 ± 3.4 321.3 ± 8.6 −28.9 ± 3.3
3 CoO 18.3 ± 6.8 378.3 ± 16.4 −25.5 ± 1.3
4 Co3O4 10.0 ± 2.4 247.6 ± 16.9 −29.0 ± 2.2
5 Cr2O3 71.8 ± 16.2 478.5 ± 7.2 −26.2 ± 3.1
6 CuO 193.0 ± 90.0 289.5 ± 31.0 −26.9 ± 0.8
7 Fe2O3 12.3 ± 2.9 385.2 ± 6.3 −24.1 ± 2.0
8 Fe3O4 12.0 ± 3.2 831.7 ± 41.8 −27.0 ± 2.3
9 Gd2O3 43.8 ± 15.8 726.7 ± 54.8 −34.7 ± 0.7
10 HfO2 28.4 ± 7.3 349.9 ± 5.2 −24.3 ± 2.1
11 In2O3 59.6 ± 19.0 303.2 ± 5.2 −35.5 ± 2.4
12 La2O3 24.6 ± 5.3 471.2 ± 20.9 −27.8 ± 0.6
13 Mn2O3 51.5 ± 7.3 525.9 ± 7.8 −30.9 ± 0.4
14 NiO 13.1 ± 5.9 277.5 ± 23.0 −23.1 ± 2.0
15 Ni2O3 140.6 ± 52.5 665.8 ± 46.4 −24.4 ± 2.2
16 Sb2O3 11.8 ± 3.3 459.9 ± 22.7 −25.8 ± 0.9
17 SiO2 13.5 ± 4.2 374.9 ± 29.0 −16.8 ± 2.0
18 SnO2 62.4 ± 13.2 635.0 ± 52.0 −26.4 ± 0.3
19 TiO2 12.6 ± 4.3 497.0 ± 17.1 −31.5 ± 1.4
20 WO2 16.6 ± 4.3 511.9 ± 19.4 −23.3 ± 1.1
21 Y2O3 32.7 ± 8.1 594.5 ± 33.0 −27.6 ± 0.4
22 Yb2O3 61.7 ± 11.3 682.6 ± 56.2 −29.7 ± 0.5
23 ZnO 22.6 ± 5.1 379.0 ± 11.0 −27.0 ± 1.1
24 ZrO2 40.1 ± 12.6 384.4 ± 25.0 −19.7 ± 3.6
From Lin et al. (2013)
aPrimary size of particles in their dry state was obtained by transmission electron microscopy
(JEOL, 1200 EX)
bHydrodynamic size was determined by high throughput dynamic light scattering (HT-DLS,
Dynapro Plate Reader, Wyatt Tech)
cParticle ζ-potential was measured using ZetaPALS (Brookhaven Instruments, Holtsville, NY).
Introduction of the NPs in Holtfreter’s medium (pH 7.0) did not significantly change the medium
pH in spite of the dissolution of metal oxide NPs
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Additional applications of this NM library include the evaluation of a possible
connection between conduction band energy levels and toxicity, specifically
oxidative stress and acute pulmonary inflammation (Zhang 2012b). The authors
employed the same set of NMs from Table 3 to prove that the overlap of con-
duction band energy (Ec) levels with the cellular redox potential (−4.12 to
−4.84 eV) was highly correlated to the ability of Co3O4, Mn2O3, Cr2O3, Ni2O3 and
CoO NMs to induce oxygen radicals, oxidative stress, and inflammation (Zhang
2012b).

Recently, the UCLA Centre have also used the flame spray pyrolysis
(FSP) technique to construct NM libraries where metal oxides are doped with Fe to
diminish their solubility or toxicity (e.g., pure or Fe-doped ZnO or TiO2 NMs)
(Pokhrel 2012). It was demonstrated that FSP is a flexible method for the effective
design of a homologous library (i.e., a library based on a parent oxide, which is
doped with various amounts of dopant) and may also serve as a tool for exploring
the properties of the resulting compounds (Pokhrel 2012).

Another NM library of 17 metal oxides (size range: 15–90 nm) was established
by Puzyn et al. (2011). Experimental and computational results related to the
toxicity of the NMs in terms of predicted EC50 values (calculated using a single
descriptor, ΔHMe+ describing ionization enthalpy of the detached metal atoms) are
shown in Table 4 (Puzyn et al. 2011). Since particle size does not significantly
affect toxicity in the above size range, the chosen descriptors essentially represent
reactivity-related electronic properties. The NMs, which were used in the training
set to develop the QSAR equation are denoted by T (Table 4), and the NMs in the
validation sets by V1 and V2. The model reliably predicted the toxicity of all
compounds under study (Puzyn et al. 2011).

3.3 Silica Nanoparticle Library

A silica NM library consisting of 12 variants of amorphous Stöber silica, meso-
porous silica, amorphous fumed silica, silicalite and α-quartz was constructed to
investigate the crystallinity and surface effects of silica NMs (Zhang 2012a). Par-
ticular physico-chemical properties, such as size, size distribution and zeta potential
in water and two different media (containing protein or serum) of the different NMs
are presented in Table 5. Initial studies indicated that fumed silica is the most toxic
among the silicas in the library (Zhang 2012a). The toxicity can be reduced by
heating and re-imposed by hydration. The changes are most likely related to the
number of surface silanol groups and strained three-member Si rings (Zhang
2012a).
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3.4 Single-Wall Carbon Nanotube Library

A three-particle (HiPco-D, SG65-D, and P2-D), single-walled carbon nanotube
(SWCNT) library was created to explore the impact of hydrophobicity, metal
impurity, and dispersion state on NM toxicity (Chowdhury et al. 2012). In Table 6,
the physico-chemical features and the metal contaminants are presented. Using
these three SWCNTs, Chowdhury et al. (2012) initiated a study to correlate their
transport with the various synthetic methods and residual catalyst contents in order
to elucidate their effect on the nanotubes (Chowdhury et al. 2012). After purifica-
tion, the residual metal catalyst between the SWCNTs follows the trend:
HiPco-D > SG65-D > P2-D. The electrophoretic mobility (EPM) and hydrody-
namic diameter of SWCNTs remained unaffected by SWCNT type, pH, and
presence of natural organic matter (NOM); nevertheless, the ionic strength (IS) and
ion valence (K+, Ca2+) altered the hydrodynamic diameter and EPM properties of
SWCNTs. Overall, it was concluded that the different synthetic approaches resulted
in unique breakthrough trends, which were related to metal content (Chowdhury
et al. 2012).

Table 4 Experimental and predicted features of metal oxides used in the Puzyn study

Metal
oxide

Descriptor Leverage
value, h

Observed log
1/EC50 (mol l−1)

Predicted log
1/EC50 (mol l−1)

Residuals Set
ΔHMe+

(kcal mol−1)

ZnO 662.44 0.33 3.45 3.30 0.15 T

CuO 706.25 0.29 3.20 3.24 –0.04 T

V2O3 1,097.73 0.11 3.14 2.74 0.40 V1

Y2O3 837.15 0.21 2.87 3.08 –0.21 T

Bi2O3 1,137.40 0.10 2.82 2.69 0.13 T

In2O3 1,271.13 0.10 2.81 2.52 0.29 T

Sb2O3 1,233.06 0.10 2.64 2.57 0.07 V1

Al2O3 1,187.83 0.10 2.49 2.63 –0.14 T

Fe2O3 1,408.29 0.13 2.29 2.35 –0.06 T

SiO2 1,686.38 0.26 2.20 1.99 0.21 T

ZrO2 1,357.66 0.11 2.15 2.41 –0.26 V1

SnO2 1,717.32 0.28 2.01 1.95 0.06 T

TiO2 1,575.73 0.19 1.74 2.13 –0.39 T

CoO 601.80 0.38 3.51 3.38 0.13 V2

NiO 596.70 0.39 3.45 3.38 0.07 V2

Cr2O3 1,268.70 0.10 2.51 2.52 –0.01 V2

La2O3 1,017.22 0.13 2.87 2.85 0.02 V2

From Puzyn et al. (2011)
The leverage value h (acceptable if not higher than 0.6) indicates deviations of the structure of the
compound from those used for the QSAR development
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3.5 Combinatorial Synthesis of (Biodegradable) Polymers

Intensive research related to nanomedicine and nanosafety assessment is also
evolving. For instance, combinatorial techniques are widely used in the pharma-
ceutical industry, and are increasingly being applied to the development of polymer
coatings. A combinatorial synthesis of biodegradable polyanhydride film and NM
libraries as well as the high-throughput detection of protein release from these
libraries has recently been reported (Petersen 2012). The method enables the rapid
construction of micro-scale polymer libraries, reducing the batch size while creating
multivariant polymer systems. Moreover, the combinatorial polymer library can be
fabricated into blank or protein-loaded geometries upon dissolution of the polymer
library in a solvent and precipitation into a non-solvent (for NMs) or by vacuum
drying (for films). The libraries have been screened for protein release kinetics,
stability and antigenicity; in vitro cellular toxicity, cytokine production, surface
marker expression, adhesion, proliferation and differentiation; and in vivo biodis-
tribution and mucoadhesion (Petersen 2012 and references therein). Such approa-
ches are very promising regarding the development of systematically varied NM
libraries and their evaluation.

4 Gap Between Measured Physico-chemical Parameters
and Calculated QSAR Descriptors

Given the dynamic nature of NMs, and their context-dependence, there is a dis-
connect between the physico-chemical parameters characterised routinely and those
utilised in QSAR models (Valsami-Jones 2015). Indeed there is still considerable
variability in the various lists of minimal characterisation parameters that have been
discussed over the last 10 years (see Stefaniak 2013 for a review of these lists) and
their degree of overlap. A recent editorial in ACS Nano described this succinctly:

Table 6 Physical Characterization of different single-walled carbon nanotubes

Diameter range
(nm)a

Length
(nm)b

Metal mass
(%)c

Speciesc Species mass
(%)c

Metal species
(%)c

HiPco-D 0.696–1.129 383 ± 281 6.52 Fe 6.52 100
SG65-D 0.682–0.981 449 ± 316 1.80 Co 0.22 12.26

Mo 1.58 87.74
P2-D 1.158–1.699 404 ± 221 0.21 Y 0.06 30.24

Ni 0.15 69.76
From Chowdhury et al. (2012)
aThe diameters of SWCNTs are determined by vis-NIR and TEM
bLengths of SWCNTs were determined from atomic force microscopy
cResidual metal species and mass determined via inductively coupled plasma atomic emission
spectroscopy
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“Structure-activity analyses of well-characterized material libraries (used for
exploring a series of nano/bio interfaces) have elucidated nanoscale-specific
properties that go beyond the traditional lists of intrinsic and extrinsic property
characterization” (Nel 2015). Examples of novel or non-traditional characteristics
or descriptors linked to novel toxicities include band gap and hydration energies
which have been linked to generation of oxidative stress in bacteria and mammalian
cells by metal oxide semiconductor materials (Zhang 2012b); surface strain
resulting from highly reactive silanols leading to membrane damage by pyrolytic
silica (Zhang 2012a), or unfolding of proteins at the NM surface leading to acti-
vation of inflammatory receptors (Deng 2011). Examples related to the occurrence
of dynamic changes or interactions (which have been termed extrinsic effects)
include the complexation of structural cellular phosphate residues on the surface of
rare earth oxides and up-conversion NP leading to lysosome damage (Li 2014); and
the degradation of surface coatings attached to NMs in the acidic lysosomal
environment, leading to lysosomal injury (Wang 2015). As pointed out by Nel
et al., none of these structure-activity relationships could have been predicted using
the traditional list of intrinsic and extrinsic property evaluations (Nel 2015). To
further illustrate this point, we have reviewed the QSAR literature and extracted the
descriptors that were used as the basis of predictive models compared to those
physico-chemical parameters of the NMs that were characterised, with very clear
divergence and discrepancies apparent (See Table 7). Thus, we either need to
develop models utilising the easily measured physico-chemical parameters, find
ways to extract more useful data from the traditional methods, or develop
approaches to routinely measure those parameters more directly linked to
structure-activity relationships.

As evident from this snapshot of QSAR models for NMs, most models are based
on calculated parameters that take no or limited account of the NMs characteristics
in the exposure medium or are derived from crystallographic data (for example)
(Puzyn et al. 2011) and are certainly not reliant on detailed physico-chemical
characterisation of the dynamics of NM behaviour in the biological medium and
organism. More recent efforts include extraction of detailed parameters from TEM
images (e.g. Gajewicz 2015) or protein adsorption to the NMs (e.g. Liu 2015a)
which are experimentally determined parameters, although corona characterisation
is not yet a routine characterisation or required as part of regulatory dossiers for
NMs, in large part due to the cost involved and the early stages in terms of
verification of a predictive relationship for NM uptake/toxicity. Figure 10 shows an
example utilising a calculated version of acid-base properties, which increased with
the number of oxygens in the oxide NM and proportion of surface molecules to
molecules in volume as descriptors to model NM toxicity to bacteria (Sizochenko
2014). As available datasets increase in number and size, models comparing
increasingly diverse NMs and exposure conditions are becoming available, sug-
gesting that significant progress is being made in this arena, although there is still a
need for concerted effort in this research field.

It is clear that there is a need for development of a strategy for identification of
NMs’ critical properties linked to biological impacts, and in particular to tease out
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the various pathways involved. One potential starting point is to link with the
emerging Adverse Outcome Pathways (AOP) approach, which aims to identify
so-called molecular initiating events (MIE) and follow these through the subsequent
effects to adverse outcomes and cellular, organismal, community and population
levels. Initial conceptualization for nanotoxicology is already underway (Gerloff
2016), and a case study of liver toxicity proposed that the differences between NM
and chemically-induced adversity were primarily related to differences in toxi-
cokinetics and the nature of the initial Key Events in the AOP. NM reactivity was
associated with the NM’s potential to generate oxidative stress, determined as the
ability of the NMs to exchange electrons with biological redox species in the cell
(Gerloff 2016). The model was tested using the metal oxide libraries described in
Table 5 (Zhang 2012) and was only partially accurate in predicting the capacity of
metal oxide NMs to induce oxidative stress, since other metal oxide NMs induce
similar effects through ion dissolution, illustrating the importance of relating QSAR
properties to proposed MIEs (Gerloff 2016). Thus, teasing out the relative contri-
butions of different NM physico-chemical parameters to specific MIEs, and
grouping of NMs based on all properties that link to specific MIEs might be a useful
way forward. One proposal of how to do such a mapping of the partial contributions
of multiple parameters to a specific endpoint was proposed by Lynch et al., using
principle components analysis which could then be complemented with factorial

Fig. 10 Schematic representation of the mechanism of metal oxide nanoparticle toxicity for
E. coli cells. From Sizochenko (2014). The important descriptors for E. coli cytotoxicity of the
metal oxide NMs were determined to be: S1 unbonded two-atomic fragments [Me] ⋅ ⋅ ⋅ [Me],
which were encoded based on SiRMS-derived descriptors, encoding the distance where the
potential reaches minimum at van der Waals interactions (7%); rw Wigner–Seitz radius (22%); ρ
mass density (2%); CPP, cation polarizing power (30%); S2 SiRMS-derived electronegativity
aligned descriptor of oxides molecules—in a sense the acid–base property of oxides. This
parameter increases with the number of oxygen atoms in a molecule (3%); S3 tri-atomic fragments
[Me]–[O]–[Me], which were encoded by SiRMS-derived descriptors, encoding electronegativity
(29%); and SV, the proportion of surface molecules to molecules in volume (7%). % is used to
represent the absolute impacts for each descriptor
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analysis to determine contributions to the different modes of action (Lynch et al.
2014a). The commonality of NM physico-chemical parameters confirmed to con-
tribute across the different modes of action shown in Table 2 shows the scale of the
computational and experiment challenge, and highlights the need for much closer
cooperation between the two approaches, and the need for involvement of mod-
ellers in co-designing experimental studies to ensure they provide the full spectrum
of temporal and spatial datasets needed for computational and in silico approaches.

5 Conclusions

This chapter summarises the current state of the art in terms of mechanisms of NM
toxicity, in light of the emerging understanding of the context-dependence of
physico-chemical characteristics of NMs that may be specifically linked to their
toxicity. In addition, the chapter summarises some of the challenges for defining
and regulating NMs, and in particular for developing predictive read-across tools
including QSARs/QPARs, which result from the fact that NMs are a highly diverse
and highly dynamic group of materials. While there is growing consensus that
many of the biological effects from manufactured or engineered NMs may not be all
that different from ultrafine anthropogenic particles of similar compositions, it is
clear that the variety of materials that can be engineered at the nanoscale, and the
variety of forms (shapes, structures, morphologies, composites and hybrids etc.) that
can be produced opens up significantly more challenges than arise from
combustion-related particles.

In particular, the current state of the art in terms of NM libraries with accom-
panying physico-chemical characterisation and uptake or toxicity datasets available
in the literature that can be used as the basis for development of QSARs/QPARs is
presented. Building on this, some initial progress towards QSAR models was
presented, and the challenges and ongoing disconnect between measured properties
and those found to be predictive in QSARs, which are almost entirely calculated,
often entirely independently from the measured datasets was discussed.

An ongoing challenge for the field is that access to the NMs themselves for
additional experimentation/validation is generally limited outside the group that
produced the NMs. Thus, it would be valuable for journals to require that NMs
underpinning datasets be made available for sharing upon request or placement of
samples in a repository, although there are significant cost challenges associated
with this, as well as issues related to NMs ageing and evolution. However, it is
unlikely that the costs would be more significant than those associated with protein
synthesis or development of transgenic animal models, so approaches could be
adopted from these fields alternatively. An alternative would be that full SOPs for
production of the NMs be published (or included as part of the supplementary
information) and detailed accompanying characterisation information (including
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SOPs, instrument details and calibrations), and that authors are provided with
facilities for cross-checking of outputs by the original NM-library developer, as part
of the publication requirements for NMs datasets.
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In Silico Approaches for the Prediction
of In Vivo Biotransformation Rates

Ester Papa, Jon A. Arnot, Alessandro Sangion and Paola Gramatica

Abstract The assessment of chemical bioaccumulation is a required procedure
under several regulatory frameworks. However, since the experimental quantifi-
cation of bioaccumulation and related metrics (such as the Bioconcentration Factor,
BCF) is resource intensive (money, animals) and time consuming, several com-
putational approaches have been proposed as an alternative. Most bioaccumulation
model estimates based on the octanol water partition coefficient (KOW) alone can be
inaccurate, if they do not take into account additional processes that influence
chemical partitioning, chemical uptake and elimination rates. In particular, the
biotransformation rate constant (kB) can play a significant role in mitigating the
bioaccumulation potential of hydrophobic chemicals. Bioaccumulation model (e.g.,
BCF) estimates can be refined when experimental or predicted kBvalues are
available. The aim of this chapter is to illustrate the development and the appli-
cation of in silico models for in vivo biotransformation rates, for the cost-effective
estimation of kBfor screening assessment. The chapter includes several examples of
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quantitative structure-activity relationships (QSARs), which predict kB or the
associated half-life from the chemical structure. Furthermore, the chapter describes
the complementary role of in vitro biotransformation rate estimation and the sub-
sequent in vitro-to-in vivo extrapolation (IVIVE) calculations for refining bioac-
cumulation model predictions.

Keywords Biotransformation prediction ⋅ Bioaccumulation refinement
In silico ⋅ QSARINS ⋅ IVIVE ⋅ Metabolism

1 Introduction

The correct identification and quantification of properties like Persistence, Bioac-
cumulation and Toxicity of chemicals represents a primary issue for the assessment
of chemical hazards and potential risks posed to humans and the environment
(European Union, REACH regulation 2006; Cowan-Ellsberry et al. 2008; European
Chemicals Agency 2008; Lillicrap et al. 2016; UNEP 2016). The investigation of
the potential effects due to the accumulation of substances in humans and animals
has been a challenging topic in the last few decades (Arnot and Gobas 2006; Kim
et al. 2016; Mackay et al. 2016). The assessment of bioaccumulation potential is a
required procedure under several regulatory frameworks, and different bioaccu-
mulation assessment metrics are available, such as the Bioconcentration Factor
(BCF) and the Bioaccumulation Factor (BAF). The BCF is measured under con-
trolled laboratory experiments in which the test organism (typically fish) is exposed
to chemical in the water only (OECD 2012). The BAF is measured in the envi-
ronment in which the organisms are exposed to chemical from the surrounding
environment and their diet (Burkhard et al. 2012). A main limitation in bioaccu-
mulation studies is the large cost of laboratory experiments and field studies nec-
essary to quantify the bioaccumulation metrics and related process parameters.
A study by Arnot and Gobas (2006) highlighted that less than 5% of commercial
organic chemicals have measured BCF or BAF data for fish. This suggests the
importance of modelling approaches, such as those based on quantitative
structure-activity relationships (QSARs) or mechanistic mass balance models, to
predict the missing information and gain additional knowledge in this area of
research. In addition, the use of QSAR models is suggested under several regulatory
frameworks as a cost effective solution to be adopted in the absence of experimental
data, which can support and integrate hazard assessment procedures (e.g., European
Union, REACH regulation 2006; European Union, Cosmetic Regulation 2009;
European Union, Biocidal Products Regulation 2012). Several QSAR approaches
have been proposed for the prediction of bioaccumulation related parameters
mainly based on physical-chemical properties, in particular those related to
chemical hydrophobicity such as water solubility and the octanol-water partition
coefficient (KOW). However, estimates based on chemical properties alone can be
inaccurate since they do not take into account bioaccumulation processes such as
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biotransformation (also commonly referred to as metabolism) (Veith et al. 1979;
Mackay 1982; Cowan-Ellsberry et al. 2008; Arnot et al. 2009; Segner 2015).

The first-order, whole body, primary biotransformation rate constant (kB) and
corresponding half-life (HL) play an important role in mitigating the bioaccumu-
lation potential of hydrophobic chemicals in aquatic organisms. For example, when
the BCF estimation is refined with in vitro experimental or QSAR predicted kB
values, the calculated BCFs are in better agreement with measured BCFs
(Cowan-Ellsberry et al. 2008; Laue et al. 2014; Segner 2015). Biotransformation
was highlighted in the 1980s as a determinant factor for the refinement of BAF
related estimations in fish (Lech and Bend 1980) and continues to be indicated as a
key element for bioaccumulation science (Burkhard et al. 2012). The influence of
biotransformation on BAF related processes has been investigated by several
experimental and modelling approaches (e.g., Burkhard 2003; Arnot et al. 2008a;
Barber 2008; Kim et al. 2016; Mackay et al. 2016). Moreover, the biotransfor-
mation process has been studied at different levels of complexity and biological
organization (e.g., cellular or whole body), and by different methods, which include
experimental, in vitro and in vivo studies and in silico quantification of biotrans-
formation kinetic parameters, metabolic pathways, and mechanisms (Wilk-Zasadna
et al. 2015). Several in silico simulators are currently available for the prediction of
metabolic pathways, metabolites, and/or of molecular sites potentially susceptible
to biotransformation, such as METEORTM (Lhasa Ltd.), METATM (MultiCASE
Inc.), PASS, (Borodina et al. 2003) CATABOL, and TIMES (Dimitrov et al. 2011;
Mekenyan 2012). More examples have been recently reviewed by Peach and col-
leagues (Peach et al. 2012).

Other studies (Long and Walker 2003; Pirovano et al. 2012, 2015) describe
quantitative models for the prediction, from the molecular structure of chemicals, of
kinetic parameters (i.e., intrinsic clearance (CLINT), Michaelis-Menten constant
(KM) and maximum velocity of the reaction (VMAX)) for different enzymatic
reactions. In vitro-to-in vivo Extrapolation (IVIVE) methods for extrapolating
in vitro metabolism rate data to liver clearance in mammals have been developed
and applied in the pharmaceutical industry for decades (Wilkinson and Shand
1975). More recently, these types of in vitro assays (commonly using hepatocytes
and microsomal or S9 liver fractions) and IVIVE approaches have been developed
and applied to estimate hepatic clearance and whole body kB values and refine
model calculated BCFs in fish (Nichols et al. 2006, 2007, 2013; Cowan-Ellsberry
et al. 2008). Methods to estimate empirically-based in vivo kB values from labo-
ratory experimental testing data, such as BCFs and other toxicokinetic studies, have
been developed (de Wolf et al. 1993; Van der Linde et al. 2001; Arnot et al. 2008a),
and from these methods kB databases have been created (Arnot et al. 2008b). From
these databases of in vivo whole body kB estimates various QSAR approaches have
been applied to generate and evaluate models to predict kB from chemical structure
(Arnot et al. 2009, 2014; Brown et al. 2012; Kuo and Di Toro 2013; Papa et al.
2014, 2016).

The aim of this chapter is to illustrate the challenging role of developing
alternative methods to animal testing, and in particular of in silico models, for the

In Silico Approaches for the Prediction of In Vivo … 427



cost-effective estimation of kB. To this end, a short overview of biotransformation
processes and related parameters is reported in Sect. 2. Strengths and limitations of
in silico and in vitro methods are commented in Sects. 3 and 4. In particular, Sect. 3
describes several examples of models based on QSARs, which are available to
predict kB or the associated half-life from the chemical structure. Section 4
describes the general approach for using in vitro biotransformation assays and
IVIVE models to estimate hepatic clearance in vivo and related in silico models.

Although the intention of this chapter is not to be a comprehensive review of all
available datasets and models for predicting in vivo biotransformation rates, we
hope that it can provide leads to readers interested in learning more about this active
area of scientific research.

2 Biotransformation Processes

The fate of chemicals in the environment is heavily determined by degradation
processes that transform the original structure of a compound (i.e., the parent
compound) into another chemical structure. Degradations may be the result of
abiotic reactions, such as photolysis or hydrolysis after direct interaction with
sunlight and water, respectively, or may be operated by organisms (i.e., biotrans-
formation) (Fig. 1).

In particular, microbial biotransformation may lead to the complete mineral-
ization of chemicals (i.e., transformation to carbon dioxide and water), also known
as ultimate biodegradation, or to intermediate compounds within different metabolic
pathways.

Fig. 1 Scheme of the main degradation reactions at abiotic and biotic level. Models commented
in Sect. 3 are referred to biotic biotransformation operated by fish and mammals (i.e., within the
grey shaded rectangle)
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Biotransformation by higher organisms (e.g., fish or mammals) includes all the
metabolic reactions which involve normal body constituents (e.g., lipids, proteins
and carbohydrates) or xenobiotics: “a man-made chemical or material not pro-
duced in nature and not normally considered a constituent component of a specified
biological system” (van Leeuwen and Vermeire 2007). These biotransformation
processes generally occur in a two-phase series of reactions which can occur in
multiple tissues but for most xenobiotics primarily in the liver (Weisbrod et al.
2009; Sevior et al. 2012; Walker et al. 2012; Mekenyan et al. 2012). During Phase I
reactions, hydrophobic chemicals are typically functionalised to generate more
polar (water soluble) metabolites. During Phase II reactions compounds are con-
jugated to large molecules to further increase polarity and generate more water
soluble metabolites, which may be more easily excreted from the organism (Walker
et al. 2012).

Phase I enzymes are located mainly in the endoplasmic reticulum. In particular,
enzymes of the Cytochrome P450 system (CYP) are responsible for Phase I
reactions (Sevior et al. 2012; Walker et al. 2012; Mekenyan et al. 2012). The
principal enzymes in Phase II conjugation reactions are Glucuronyl transferases
(UGT), Glutathione-S-transferases (GST) and Sulfotransferases (SULT) which are
located on the endoplasmic reticulum and in the cytosol (Walker et al. 2012).

Biotransformation reactions seek to detoxify an organism by removing xeno-
biotics from the body; however, in some cases biotransformation may increase
toxicity, leading to metabolites that are more toxic than the respective parent
compound. Some examples of bioactivation are the generation of toxic epoxides,
such as in the conversion of aldrin to dieldrin and of heptachlor to heptachlor
epoxide, as well as the formation of DNA-binding epoxides such as in the
bio-activation of benzo-[a]-pyrene (Sijm et al. 2007). Therefore, the identification
of metabolites, and metabolic pathways, and the quantification of biotransformation
rate parameters are critical steps in the determination of the possible toxic profile of
chemicals (Arnot and Gobas 2003; Arnot et al. 2008b; Pirovano et al. 2016).
Several approaches are available for the quantification of biotransformation using
different testing strategies and models (Sijm et al. 2007; Weisbrod et al. 2009).

Biotransformation rates can be measured in vitro and in vivo by quantifying the
rate of formation of a biotransformation product from a parent compound or by
determining the rate of chemical loss (i.e., substrate depletion) in the defined sys-
tem. For the former method, the metabolites of a particular chemical must be
known. Measured data can then be used to develop in silico approaches for pre-
dicting rates and pathways (Borodina et al. 2003; Long and Walker 2003; Arnot
et al. 2009, 2014; Dimitrov et al. 2011; Brown et al. 2012; Mekenyan et al. 2012;
Papa et al. 2014; Pirovano et al. 2016). A list of the main parameters available to
quantify different aspects of the biotransformation process (which will be com-
mented on in the following sections of this chapter) is reported in Table 1.
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3 QSAR Prediction of in Vivo Biotransformation Rates
and Half-Lives

As was mentioned in Sect. 1, few QSARs are currently available to predict kB and
the corresponding HLs (Arnot et al. 2009, 2014; Brown et al. 2012; Kuo and
Di Toro 2013; Papa et al. 2014). These models are mathematical expressions of the
quantitative relationships between the molecular structure of substances and the
inferred in vivo biotransformation rates in fish and mammals. These QSARs are
described in the following Sects. 3.1 and 3.2 where we first discuss the kB data used
for their development.

Table 1 List of the main biotransformation related parameters used in QSAR and IVIVE
approaches. See e.g., Nichols et al. (2013) for more details

Parameter Units (e.g.,) Definition Derivation (e.g.,)

KM pmol/mL Michaelis-Menten (affinity)
constant—substrate
concentration resulting in
half-maximal activity

From experimental data

VMAX pmol/h/mg-protein Maximum rate of the
reaction

From experimental data

kIN VITRO,

INT

1/h In vitro depletion rate
constant

From experimental data

CLIN
VITRO,INT

ml/h/mg protein or
mg/h/106 cells

In vitro intrinsic clearance VMAX/KM

or kIN VITRO,INT × CS9

or kIN VITRO,INT × CHEP

CLIN
VIVO,INT

L/d/kg In vivo intrinsic clearance CLIN VITRO,

INTLHEPLFBW × 24
or CLIN VITRO,

INTLS9LFBW × 24
CLH L/d/kg Hepatic clearance QHfUCLIN VIVO,INT /

(QH + fUCLIN VIVO,INT)
kT 1/d Whole body, total

elimination rate constant
Empirically-derived from
in vivo experiment

kB 1/d Whole body, primary
biotransformation rate
constant

Empirically-derived from
in vivo experiment or from
in vivo experimental data and
models (e.g., Arnot et al.
2008) or from IVIVE
methods, e.g., kB = CLH /VD

HLT d Whole body, total
elimination half-life

ln2/kT

HLB d Whole body, primary
biotransformation half-life

ln2/kB

CS9—S9 protein concentration; CHEP—hepatocyte concentration; LHEP—hepatocellularity; LS9—
liver S9 protein concentration; LFBW—fraction liver weight to whole body weight; QH—hepatic
blood flow; fu—hepatic clearance binding term; VD—apparent volume of distribution referenced
to blood (L/kg)
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3.1 Models for Predicting Biotransformation Rates
of Organic Chemicals in Fish

Prior to 2008 in vivo kB estimates for fish were limited to about 30 chemicals
(Arnot et al. 2008a). A kinetic mass balance method to obtain in vivo estimates of
kB from laboratory testing data was developed (Arnot et al. 2008a). Laboratory tests
provide BCFs and total elimination rate constants kT and half-lives. The general
approach for the in vivo kB estimation method is to use a model to predict rates of
chemical elimination in fish for major routes of chemical elimination other than
biotransformation and subtract the sum of these predicted rates (kX) from the
measured total elimination as (Arnot et al. 2008a):

kB = kT − kx

This method includes an uncertainty analysis to propagate the uncertainty in the
measured and predicted data (e.g., kT and kX, respectively) into the kB estimate. The
estimation method was corroborated with other available kB estimates and subse-
quently applied to a large dataset of critically evaluated laboratory bioaccumulation
data in fish to develop a database of approximately 700 discrete organic chemicals
(Arnot et al. 2008b). Experimental data were measured in freshwater fish of dif-
ferent species mainly represented by Oncorhynchus mykiss, Pimephales promelas,
Cyprinus carpio and Poecilia reticulata. Temperature and body size are known to
influence toxicokinetics in fish (Peters 1983; Hendriks et al. 2001). In order to
address some of the variability in the experimental data, kB estimates were stan-
dardised to a mass and temperature specific rate constant (referred to as kB,N) for a
10 g fish at 15 °C (median values from the database).

In addition, to characterize the uncertainty and assumed reliability of the kB
estimates, the empirically derived kB,NS were assigned to six categories on the basis
of data confidence (very high, high, good, moderate, low, and uncertain) (Arnot
et al. 2008b). Finally, kB,N values were converted to the respective primary bio-
transformation half-lives (HLN) standardized for mass and temperature as:

HLN =
ln2
kB,N

The kB,N (HLN) dataset is included in the U.S. Environmental Protection
Agency’s Estimation Program Interface EPI Suite™ package Ver.4.1 (https://www.
epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface), in the
OECD Toolbox (http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsar
toolbox.htm) and is available on-line at http://www.arnotresearch.com.

This kB (HLN) dataset is highly heterogeneous including among others halo-
genated organics (polychlorinated biphenyls, dioxins and furans), aliphatic and
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aromatic hydrocarbons, amines, imides, alcohols, phenols, ethers, ketones and
esters etc…, as well as fluorinated compounds and siloxanes. Due to a general lack
of measured bioaccumulation data in fish for highly dissociated ionisable organic
chemicals (IOCs) and the uncertainty in estimating rate constants (kX) for IOCs, the
database does not include many IOCs. Nonetheless, the available data indicate that
kB values in fish span approximately 6 orders of magnitude. The database is for
discrete organic chemicals only.

3.1.1 EPI Suite BCFBAF-QSAR

The first QSAR for the prediction of kB in fish from the chemical structure of a
heterogeneous set of 634 organic chemicals was developed by Arnot and colleagues
in 2009 (Arnot et al. 2009).

A multiple linear regression model (which is included in the EPI Suite™ soft-
ware and is here named EPI-QSAR) was derived by the method of ordinary least
squares using 59 descriptors of which 57 are molecular fragments, in addition to
KOW and molar mass (MW) (Arnot et al. 2009).

The EPI-QSAR was developed after splitting the available data into training and
the prediction set used for external validation on the basis of property similarity
according to the ranges of HLN, KOW and MW, using a 2:1 ratio (i.e., 421 com-
pounds in the training set, 211 compounds in the prediction set). The modelled data
were transformed into logarithmic units (Log10 HLN) in order to linearize the dis-
tribution of the response. The equation for this model can be expressed as:

LogHLN = a0 + a1f1 + a2f2 +⋯+ anfn + aMW + aLogKow+ e

where a1, …, an are the regression coefficients calculated for the n descriptors,
f1, …, fn are the molecular fragments, and e is the error term. This model was
characterized by good fitting (R2 = 0.82) and robustness (Q2 = 0.75). The Mean
Absolute Error calculated for the training set chemicals (MAE = 0.38 log units)
was comparable with MAE calculated for the prediction set (0.45 log units) which
suggests that the model is able to provide external predictions with similar accuracy
as in the training set.

The applicability of this model is determined by the large set of heterogeneous
fragments included in the equation; however, the dataset does not cover the domain
of all the possible fragments included in organic chemicals. Moreover training and
prediction sets included only a few substances with appreciable ionization at
physiological pH and with MW > 600. Finally, as all the other models presented in
this chapter, the BCFBAF model is not suitable for application on metals and
organometallic compounds. These limitations in the applicability domain should be
considered to avoid the generation of unreliable predictions.
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3.1.2 IFS HLN-QSAR

A second modelling study was conducted by Brown and colleagues (Brown et al.
2012) on the kB (HLN) dataset included in EPI Suite™. The new model was based
on the Iterative Fragment Selection (IFS) method, which covered fragment gener-
ation, data splitting and model generation. The typology of fragments included in
the model differs from those included in the EPI-QSAR model commented above,
which had been pre-selected on the basis of a priori expert judgement (Arnot et al.
2009). In the IFS method, a pool of fragments is initially generated within the
studied dataset by breaking all single and aromatic bonds with the exception of
bonds with hydrogen. Through an automated iterative process of model fitting and
cross-validation a final set of fragments (model descriptors) is selected (Brown et al.
2012). The IFS method was used to develop two multiple linear regression
(MLR) models using two slightly different training sets depending on the splitting.
The model named IFS-EPI was based on the same training set as the EPI-QSAR
commented above, and the model IFS-HLN was based on a new splitting generated
with the IFS approach, keeping the 2:1 partition balance described in Sect. 3.1.1
(Brown et al. 2012).

The models proposed by Brown and colleagues have similar performances to the
EPI-QSAR model; however, they are based on a lower number of fragments (i.e.,
36–38 vs. 59) and they do not include logKOW and MW as descriptors. The
IFS-QSAR study included an analysis for the prediction of HLNS for 25 IOCs
contained in the studied dataset (i.e., acids with pKa < 9.5 and bases with
pKa > 5.5). The MAE values calculated for the IOCs (0.50 and 0.40 for the
training and the prediction set, respectively) were comparable to those calculated
for the remaining neutral compounds (i.e., MAE training 0.39, MAE prediction
0.45). The fragments selected by the IFS method were similar to those included in
the EPI-QSAR model. This convergence is important since it demonstrates that the
same structural information selected a priori by expert judgement can be selected on
an objective statistical basis from a larger pool of structural fragments.

3.1.3 QSARINS-HLNQSAR

A third study was performed on the kB (HLN) dataset by Papa and colleagues (Papa
et al. 2014). They applied a statistical approach to develop multiple HLN-QSAR
models, which were generated on the basis of different partitions of the kB (HLN)
dataset into training and prediction sets (keeping the proportion 2:1). Differently
from the EPI-QSAR (Arnot et al. 2009) and the IFS HLN –QSAR (Brown et al.
2012) these new models were based on a limited number of theoretical molecular
descriptors, which included global descriptors and fragments. The advantage of
using global descriptors is that they encode for holistic structural information taking
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into account the whole molecular structure and the various intermolecular inter-
actions (Todeschini and Consonni 2000), which cannot be captured by descriptors
characterizing the presence and the chemical composition of isolated fragments.

The equations and performance of the best three models developed in this study
are reported in Table 2. These models are also available in the QSARINS-Chem
(Gramatica et al. 2014) module in the software QSARINS (Gramatica et al. 2013).

All the models have good statistical performance and adequate ability to fit the
training sets and predict external data points (Q2

ext > 0.75, and similar values of
Residual Mean Squared Errors (RMSE) calculated for each training and the related
prediction set). Statistical performances reported in Table 2 are comparable to those
reported for the EPI- and the IFS-QSARs. However, the main advantage of the new
HLN-QSARs (i.e. M1, M2 and M3 in Table 2) is the lower complexity since they
are based on 9 molecular descriptors, which is about 1/5 of the number of fragments
used to develop the EPI-QSAR (Arnot et al. 2009).

Three molecular descriptors recurred in all three models and were the most
relevant for modelling the selected response. These were the vertex adjacency index
(VAdjMat), the number of halogen atoms (nX) and the minimum
electrotopological-state energy for the hydrogen bond donor (minHBd). The first
two descriptors have a positive correlation with the response and encode for

Table 2 List of the QSAR models developed in Papa et al. (2014), summary of the number of
compounds in training (n°TR) and prediction sets (n°PR), and of the main parameters calculated to
quantify fitting (R2) and internal/external validation (Q2

loo, Q
2
ext, RMSE training (RMSE TR),

RMSE prediction (RMSE PR))

Equation n
°TR

n
°PR

R2 Q2
loo Range RMSE RMSE

Q2
ext

a TR PR

(M1) Log HLN = − 4.081 + 1.082
VAdjMat − 0.122 gmax − 0.205
nHBAcc + 0.119 nX − 0.116
SaaaC + 0.387 FP503 + 2.294
FP29 − 0.666 minHBd + 0.241
ndSCH

421 211 0.7 0.73 0.76–
0.77

0.6 0.56

(M2) Log HLN = − 3.883 + 0.400
nX + 1.052 VAdjMat − 0.111
gmax − 0.147 nHBa − 0.007
ATSm4 + 0.149 MDEC-11 − 0.853
minHBd − 0.095 SaaaC − 0.188
nHCHnX

405 227 0.8 0.73 0.76–
0.77

0.59 0.56

(M3) Log HLN = − 4.19 + 1.058
VAdjMat − 0.254 MAXDP + 0.112
nX − 0.154 nHBAcc + 0.154
MDEC-11 + 0.464 FP362 − 0.141
naaaC − 0.804 minHBd − 0.311
FP376

421 211 0.8 0.74 0.75 0.57 0.58

aBased on the calculation of the parameters Q2
F1, Q

2
F2 and Q2

F3 (Papa et al. 2014)

434 E. Papa et al.



information about molecular dimension, and presence of halogen atoms, which are
related to hydrophobicity and persistence. The latter, is inversely correlated to the
response and describes the ability of the chemical to participate in intramolecular
interactions, such as hydrogen bonds responsible of hydrophilicity. Other variables,
which encode for information about the electrotopological state, were alternatively
selected in the models. These are, respectively, the maximum electrotopological
state (gmax) (Kier and Hall 1999), the maximum electrotopological positive vari-
ation (MAXDP), the count of the atom type E-state ::C: (naaaC) and the sum of
atom type E-state ::C: (SaaaC).

Descriptors selected in the models suggested that HLN is associated to the ability
of the chemicals to participate in non-covalent intramolecular interactions, i.e.,
limited reactivity of the chemicals with the surrounding environment is associated
to longer HLN. This is the case of chemicals characterized by large, hydrophobic,
halogenated structures, with one or more aromatic rings. Large, non-aromatic ring
systems are also included in this group of chemicals, such as hexabromocyclodo-
decane and chlordane, as well as long aliphatic chains. On the contrary, the
increasing presence of polar and ionisable groups, as well as the number and variety
of reactive functional substitutes simultaneously present in the molecule, is asso-
ciated with shorter HLN (i.e., faster biotransformation rates).

Finally, predictions generated by M1–M3 QSARINS models and the EPI-QSAR
were combined (i.e., averaged predictions) in order to improve the quality of single
model predictions and possibly to enlarge the applicability domain than individual
models (Zhu et al. 2008), and therefore the reliability of predictions. Results
reported by Papa et al. (2014) demonstrated that the combinatorial approach
improved the correct prediction of slow and very slow biotransformed compounds,
thereby reducing the number of possible false negatives that may be predicted when
using the individual models separately in screening procedures. The aforemen-
tioned QSARs (Sects. 3.1.1–3.1.3) were developed following OECD QSAR
guidance (OECD 2007).

3.1.4 Abraham Solvation Descriptors HLdissQSAR

Another QSAR was developed by Kuo and Di Toro (2013) and this addressed the
prediction of biotransformation of neutral and weakly polar compounds by using
some Abraham Solvation descriptors. Abraham descriptors (Todeschini and
Consonni 2000) are calculated directly from the molecular structure and describe
chemical partitioning as a linear combination of different intermolecular interac-
tions. In this paper the descriptors E, S, A, B, V quantified respectively dispersive
and polarization interactions, dipolar interactions, H-bond donation, H-bond
acceptance and molar volume relating to the energy required for cavity formation.

In this QSAR the empirically-based kB values were transformed to generate HLs
based on estimates of the freely dissolved chemical concentrations in the fish. The
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basic assumption is that chemicals more accessible for interactions with the
enzymes are those freely dissolved, i.e., not bound to storage lipids or bulk protein
phases. Thus the whole body biotransformation half-life for the dissolved fraction
HLdiss can be expressed as:

HLdiss =HLΦfish

Where Φfish is the freely dissolved fraction of chemical in the fish. HLdisscould
be calculated for 424 chemicals because of the required information on fish com-
position necessary to calculate Φfish. The Abraham approach (i.e., based on the
calculation of the Abraham descriptors) was then applied to model HLdiss values of
64 molecules randomly chosen out of the 424 chemicals with empirically derived
HLdiss values. The equation of this model is reported as follows:

LogHLdiss = − 0.6 ±0.3ð Þ+2.2 ±0.3ð ÞB− 2.1 ±0.2ð ÞV

The model is based on the descriptors B and V, which encode respectively for
hydrogen bond acceptance and molar volume relating to the energy required
for cavity formation. Even though the performances of the HLdiss-QSAR are
slightly inferior to other models presented in this chapter, this model is still satis-
factory in terms of fitting and predictivity (R2 = 0.70; RMSE training = 0.71;
RMSE prediction = 0.71). Other than some limitations related to the domain of
applicability of this model (i.e., the applicability domain was not quantified, the
model is based on only two descriptors and has been trained on a smaller training
set in comparison to other HLN-QSARs), it represents a relatively simple approach
to predict biotransformation half-lives on the basis of chemical bioavailability in the
fish.

3.2 Models for Predicting Biotransformation Rates
of Organic Chemicals in Humans

Following the methods developed for estimating biotransformation rate constants
for fish, Arnot and colleagues (Arnot et al. 2014) developed an approach to derive
whole body in vivo biotransformation half-life (HLB) estimates from measured total
elimination half-lives (HLT) in human adults (e.g., Obach et al. 2008). The HLT
dataset is composed of 1105 heterogeneous organic compounds of measured and
estimated adult total elimination half-lives, primarily for pharmaceuticals (80% of
the dataset) and well known environmental contaminants (20% of the dataset). All
of these data were collected from peer-reviewed sources that had been reported with
some data quality assurance methods. Four HLB datasets were derived from the
empirically-based HLT values and different parameterizations (assumptions) of a
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1-compartment mass balance model for humans. Uncertainty analysis was also
included in the HLB estimates in this study (Arnot et al. 2014). Half-lives were
transformed to base 10 logarithmic prior to QSAR modelling.

3.2.1 IFS HLT, B-QSAR

Five externally validated QSARs were developed for five half-life datasets (splits
performed at 50:50 proportion) using the IFS QSAR approach (Brown et al. 2012;
Arnot et al. 2014) and multiple linear regression. Satisfactory values of R2 > 0.70
were reported for all the models with ranges of RMSE from 0.45 to 0.49 in the
training sets and from 0.70 to 0.75 in the prediction sets. The HLTQSAR and the
best among the HLB QSARs were developed using 63 and 62 molecular fragments
respectively. In general, those fragments encoding for halogenation, presence of
carbon-carbon double bonds, aromatic and aliphatic carbons and non-aromatic
nitrogen were associated to increasing HLs.

3.2.2 QSARINS-HLT, B QSAR

Recent works of Papa and colleagues (Papa et al. 2016) were also focused on the
development of QSAR models for the prediction of HLT and HLB on the basis of
the five datasets created by Arnot et al. (2014) described above. Multiple Linear
Regression (MLR) models were generated by the Ordinary Least Squares
(OLS) method and variable selection by Genetic Algorithm in QSARINS
(Gramatica et al. 2013).

Performances calculated for the five models are summarized in Table 3.
Particular attention was paid to the quality of the models by verifying robustness,

external predictivity, and applicability domain, while looking for the best inter-
pretability of the descriptors. It is interesting to note that RMSE values calculated
for the training and the prediction sets are well balanced. Moreover, the external

Table 3 List of the QSAR models developed in Papa et al. (2016), number of compounds in
training (n°TR) and prediction sets (n°PR) and summary of the main parameters calculated to
quantify fitting (R2) and internal/external validation (Q2

loo, Q2
ext, RMSE training, RMSE

prediction)

Mod. n
°TR

n
°PR

R2 Q2
loo Range

Qext
2

RMSE
training

RMSE
prediction

HLT 552 553 0.78 0.77 0.74-0.75 0.62 0.66
HLB1 505 506 0.77 0.76 0.75 0.64 0.67
HLB2 507 508 0.79 0.77 0.76 0.63 0.66
HLB3 467 468 0.79 0.78 0.75-0.76 0.62 0.68
HLB4 470 470 0.8 0.79 0.76 0.62 0.69
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predictivity of these models, which have been developed using 9 molecular
descriptors each, is better (RMSE Prediction range from 0.66 to 0.69) than QSARs
developed by the ISF method (Arnot et al. 2014) based on more than 60 descriptors
(RMSE Prediction range from 0.70 to 0.75).

The most relevant descriptors for HL-QSARs, reported in Table 3, are the sum
of atom-type E-State:-Cl (SsCl), the average Broto-Moreau autocorrelation of lag 7
or 8, weighted by polarizabilities (AATS7p or AATS8p) and the number of
Halogen atoms (nX). It is interesting to note that these recurrent variables are
similar to those selected in the fish models described above (Papa et al. 2014).
According to these findings, biotransformation potential seems to be influenced,
and reduced, mainly by the presence of halogen atoms covalently bonded to carbon
atoms, as well as by the presence of polar atoms on large molecules (e.g., poly-
brominated diphenyl ethers, polychlorinated biphenyls, polychlorinated dibenzo-
dioxins and polychlorinated dibenzofurans).

These observations are in line with other studies where covalent bonds between
aromatic carbon and halogen atoms, in particular chlorine, are described as very
stable and possibly enhancing persistence and biopersistence of chemicals (Meylan
et al. 2007; Howard and Muir 2011).

The utility of these QSARs was demonstrated by predicting biotransformation
half-lives in humans and fish (Papa et al. 2016) for over 1300 Pharmaceuticals and
Personal Care Products (PPCPs). The information obtained from the biotransfor-
mation models was used to refine the screening of their intrinsic potential behaviour
as Persistent, Bioaccumulative, and Toxic compounds (i.e., PBTs) performed in
former studies (Cassani and Gramatica 2015; Sangion and Gramatica 2016).
The PBT screening was obtained by applying two different QSAR models (US EPA
2006; Papa and Gramatica 2010), and led to the creation of two priority lists for
personal care products and pharmaceuticals (Cassani and Gramatica 2015; Sangion
and Gramatica 2016).

Papa and colleagues (Papa et al. 2016) performed Principal Component Anal-
ysis (PCA) to combine fish and human HLs predicted by different models, and to
project the studied PPCPs in a new multidimensional space (Fig. 2a and b).

The direction of the loadings (i.e., the weights of the original variables in the
principal components, which are represented as segments with origin in 0 in
Fig. 2b) indicates that the compounds are ranked from left to right according to
their increasing HLs (i.e., increasing biopersistence).

PC1 distinguishes between PPCPs which have fast (small squares on the left side
of Fig. 2a) or slow (rounds on the right side of Fig. 2a) biotransformation. PC2
separates the original variables (loadings) in two main groups (Fig. 2b) depending
on the organism (i.e., human and fish).

In addition, PPCPs are distinguished (i.e., whole and empty symbols) accord-
ingly to results of the PBT screening performed by Cassani and Gramatica (2015)
and Sangion and Gramatica (2016).

PPCPs, which were previously screened as PBTs and included in the former
priority lists, are indicated in Fig. 2a as whole symbols, while empty symbols are
PPCPs, which were screened as of no relevant concern for their PBT properties.
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Fig. 2 a Plot of PC1 and PC2 scores from the PCA performed on fish and human HLs. The dotted
line on the right side of the plot includes slowly biotransformed compounds with HLs > 10 days.
The dotted line on the left side includes easily biotransformed compounds (i.e., HL < 10 days).
b Plot of PC1 and PC2 loadings from the PCA performed on fish and human HLs
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Therefore, using this combination between the PCA results based on predicted
biotransformation HLs and the PBT screening, Papa and colleagues (Papa et al.
2016) were able to refine the earlier results obtained by Cassani and Gramatica
(2015) and Sangion and Gramatica (2016). In fact they could highlight easily
biotransformed PPCPs, which were previously predicted as PBTs (possible over-
estimation of the PBT behaviour), and slowly biotransformed PPCPs, which were
previously predicted as non-PBTs. In particular, some PCPPs from the latter group,
which had no agreement in predictions calculated by the models used to perform the
PBT screening, were highlighted by Papa et al. (2016) as new priority compounds
on the basis of the refinement of the PBT assessment.

3.3 Key Points and Limitations in the Development
and Application of QSAR Models

Scientists and regulators have recently summarized the key points for the correct
development of QSARs to increase transparency, harmonize calculations, provide
better usability of the results and increase confidence in predictions generated by
these tools (Gramatica 2007; OECD 2007; Fourches et al. 2010; Gramatica et al.
2012). The availability and correct use of (i) chemical structures, (ii) molecular
descriptors which encode for the structural information, (iii) experimental data,
which need to be numerically sufficient to generate statistically robust models,
(iv) statistical procedures, are serious limiting factors which may strongly affect the
final quality and application of the models.

The scarcity and the quality of experimental datasets, which are mostly collec-
tions of data scattered in the literature (Arnot et al. 2008b, 2014), and therefore are
characterized by noise (uncertainty) due to experimental variability, are typical
issues in the development of QSARs for biotransformation related processes. For
instance, experimental variability was highlighted by Pirovano et al. (2015) as
possible reason for the scarce performance of models derived for metabolic con-
stants. Moreover, as specified in Sects. 3 and 3.2, the curation of empirically
derived biotransformation data was the basic assumption of the work of Arnot and
colleagues (Arnot et al. 2008b, 2014) in order to increase the quality of the mod-
elled response and the accuracy of the derived QSAR models.

Another issue is the potential bias in the structural domain of biotransformation
datasets representative for specific classes of compounds, such as pharmaceuticals
in the human biotransformation dataset (Arnot et al. 2014) (Sect. 3.2), which may
be not relevant for the structural features related to the biotransformation behaviour
of other substances. Furthermore, the current lack of overlapping biotransformation
datasets measured in different systems and conditions limits the possibility of
extrapolation of QSAR results, i.e., from in vitro-to-in vivo or across different
species.
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Fig. 3 Step-by-step procedure for the development of QSAR models. With permission from
Gramatica et al. (2012)
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These limitations impose a strict evaluation of the performance of the models, to
guarantee the statistical reliability, and of the applicability domain intended as the
structural space defined by the modelling descriptors, the range of the modelled
response, and possibly the experimental/mechanistic context.

A step-by-step procedure for the development of QSAR models is reported in
Fig. 3 (Gramatica et al. 2012). These steps are based the so-called “OECD prin-
ciples for QSAR development and validation” (OECD 2007) and can be followed
to generate statistically relevant and predictive models, independently of the
modelled response (e.g., biotransformation) or the intended use (academic, com-
mercial or regulatory).

4 In Vitro-to-In Vivo Calculations and In Silico Prediction

While in vivo experiments provide a more realistic representation of biotransfor-
mation in whole animals, costs and ethical concerns associated to animal testing
represent a practical limitation for using in vivo methods for a large number of
chemicals in a range of species. The desire to reduce costs and animal testing has
provided the impetus for advancing in vitro biotransformation assays and IVIVE
calculation methods, particularly for chemical hazard assessment. The pharma-
ceutical industry has been developing and refining methods for conducting in vitro
biotransformation (metabolism) assays and using mathematical models for
extrapolating in vitro rate estimates to in vivo clearance rates for several decades to
aid in drug development screening (Wilkinson and Shand 1975; Rane et al. 1977;
Wilkinson 1987; Brian Houston 1994; Iwatsubo et al. 1997; Obach et al. 1997;
Austin et al. 2002; Riley et al. 2005; Fagerholm 2007; Rotroff et al. 2010; Obach
2011; Wetmore et al. 2014). The methods now used in environmental sciences (e.g.,
for fish Cravedi et al. 1999; Xing Han et al. 2007; Cowan-Ellsberry et al. 2008;
Nichols et al. 2013) have evolved from the pharmaceutical sciences (e.g., for
mammals). The biotransformation rate IVIVE methods are briefly described below.

The mathematical (in silico) models used to translate the in vitro measurements
to in vivo tissue clearance are based on reaction rates, bioavailability (bound vs.
“freely dissolved” unbound chemical), chemical partitioning, and blood/tissue flow
rates. The extrapolation methods can include various measurement and QSAR
models for the unbound (bioavailable) fraction (Zhu et al. 2013; Basant et al. 2016)
and simplifying assumptions for the complex biological and chemical processes
that occur during the biotransformation process, e.g., “well-stirred” or “parallel
tube” models (Rane et al. 1977; Ito and Houston 2005; Fagerholm 2007; Yang et al.
2007). Although biotransformation can occur in multiple tissues and organs (ex-
ample, gastrointestinal tract, gill, lung, skin, kidneys, blood, etc.), the liver is often
assumed to be the organ primarily responsible for biotransformation in vertebrates.
Therefore, the in vitro quantification of biotransformation is generally based on test
systems which reflect the hepatic biotransformation processes, such as primary cell
cultures (i.e., cells isolated from the liver), and subcellular fractions
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(i.e., supernatant isolated from subcellular fractions such as cytosolic, microsomal,
and S9 fractions after centrifugation at different speeds) (Weisbrod et al. 2009). In
vitro rates can be determined from the rate of product (metabolite) formation and
Michaelis-Menten kinetic parameters (i.e., VMAX/KM) and from rates of substrate
depletion (i.e., rate of parent chemical loss over time) (Nichols et al. 2006, 2007).
The in vitro intrinsic clearance rates (CLINT, IN VITRO) are converted to in vivo
intrinsic clearance rates (CLINT, IN VIVO; mL h−1 kg−1) using scaling factors.
CLINT, IN VIVO is further extrapolated to the tissue or organ clearance from which
the in vitro materials were obtained, (e.g., liver) using a mathematical model. For
example, hepatic clearance (CLH; mL h−1 kg BW−1) can be calculated using the
well-stirred liver model as (Wilkinson and Shand 1975):

CLH =
QHfUCLINT , INVIVO

ðQH + fUCLINT , INVIVOÞ

where QH (mL h−1 kg−1) is the rate of blood flow to the liver per kilogram of body
weight, fU (unitless) is the fraction of unbound chemical in the blood plasma (fU,P)
divided by the fraction of unbound blood in the incubation medium (fU,IN VITRO).
The CLH estimates and other possible in vitro based estimates for other compart-
ments (e.g., kidney) can be used to parameterize physiologically-based pharma-
cokinetic (PBPK) models to calculate kinetic and bioaccumulation parameters in
various species (Nichols et al. 2007).

Assuming there is no extra-hepatic biotransformation, kB can be calculated from
CLH and the steady state volume of distribution (VDSS; mL kg−1) as:

kB =
CLH
VDSS

If there is extra-hepatic biotransformation occurring, then the aforementioned
estimate is expected to underestimate the actual rate of whole body biotransfor-
mation. The kB values can be used to parameterize 1-compartment bioaccumulation
models. To-date, 1-compartment models have been more commonly applied for
bioaccumulation hazard assessments (i.e., for fish), whereas PBPK models have
been more commonly used in the pharmaceutical and veterinary industries and for
human health assessments.

One limitation with in vitro assays for testing environmental contaminants is the
relatively short lifespan of the enzymatic material in the test system (hours to a few
days) and it can be difficult to accurately determine slower rates of biotransfor-
mation in these short-lived systems (Hutzler et al. 2015). More recently, the
development of three-dimensional liver spheroids have shown promise, particularly
for more slowly biotransformed chemicals because of the longer viability of the
enzymes (Miranda et al. 2009; Wilk-Zasadna et al. 2015; Pinheiro et al. 2016).
Another limitation of the in vitro assays for testing environmental contaminants is
that most chemicals that have high bioaccumulation potential have high KOW (i.e.,
very low water solubility) and it is technically challenging to dose and quantify the
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required low chemical concentrations in the systems. A related confounding issue
when performing in vitro analysis is the reduction of the nominal concentration due
to loss from plates and vials caused by evaporation and/or adsorption phenomena
(Kramer et al. 2010; Armitage et al. 2014). For this reason, the use of nominal
concentrations to quantify the results of in vitro test may result in an overestimation
of biotransformation activity (Sijm et al. 2007). Standardized methods for hepa-
tocyte (Fay et al. 2014, 2015) and S9 (Johanning et al. 2012) assays have recently
been developed for fish to aid in chemical hazard (bioaccumulation) and risk
evaluations. Standardized methods for mammalian test systems would be valuable
contributions for the regulatory process.

There are in vitro stability and biotransformation rate data for thousands of
chemicals tested in mammalian models, (e.g., https://www.ebi.ac.uk/chembl/);
however, because most of these data were, or are proprietary, many of the pertinent
test details, i.e., test concentrations, are not available and the applicability of the
data are uncertain. Almost all of these data are for pharmaceuticals or pharma-
ceutical candidates; there are relatively fewer in vitro biotransformation rate data for
environmental contaminants. Furthermore, there are comparatively much fewer
in vitro biotransformation rate data for fish (about 100 chemicals). However, as the
regulatory need to evaluate chemicals continues to grow, it is expected that more
in vitro biotransformation rate data for pharmaceuticals and commercial chemicals
in ecological receptors will be generated.

Extrapolated estimates of in vivo liver clearance data (CLH) for mammals have
been used to develop and test in silico QSAR models for predicting CLH from
chemical structure (Hsiao et al. 2013; Li et al. 2009; Lombardo et al. 2014; Paixão
et al. 2010; Pirovano et al. 2016; Schneider et al. 1999). One structural property that
commonly remains relevant in these models is chemical hydrophobicity. There are
no QSARs for CLH in fish, likely because of the relatively fewer measured data
currently available. Finally, it is worth mentioning that there are several models that
predict whole body, total clearance in mammals (i.e., humans), e.g., Obach et al.
(1997), Wajima et al. (2002), Jolivette and Ward (2005), Yap et al. (2006),
McGinnity et al. (2007), Lavé et al. (2009), Yu (2010), Obach (2011),
Demir-Kavuk et al. (2011), Berellini et al. (2012), Tonnelier et al. (2012), Gombar
and Hall (2013), Arnot et al. (2014), Lombardo et al. (2014), Huang et al. (2015),
Varma et al. (2015).

5 Conclusions

The estimation of in vivo biotransformation rates using in silico approaches is a
complex process. The present chapter provides an overview on the approaches,
which have been recently proposed to generate biotransformation-QSARs and to
perform in vitro-in vivo extrapolations. The proposed examples show that some
limitations to the application of in silico approaches still exist primarily related to
the number and quality of the experimental data available to describe in vitro and
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in vivo processes. However, some reliable QSARs are available for the prediction
of whole body biotransformation of heterogeneous chemicals in fish and humans to
screen large amount of chemicals and possibly to support and refine
hazard-assessment procedures. This is particularly useful to reduce the possibility of
overestimation of the bioaccumulation potential of chemicals that exhibit a high rate
of biotransformation (i.e., short HLs).

The benefits eventually gained through the application of the in silico approa-
ches summarised in this chapter (i.e., reduction of experimental costs and ethical
concerns associated to animal testing, as well as possibility to include these pre-
dictions in green design of chemicals prior to synthesis), should call for further
commitment of the scientific and regulatory community to improve the current
methodologies of estimation, and to focus future experimental needs for the
refinement of the models. The use of combinatorial and weighted approaches
should also be actively pursued to maximise the information content in the available
experimental data.
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Development of Monte Carlo Approaches
in Support of Environmental Research

Alla P. Toropova, Andrey A. Toropov, Emilio Benfenati,
Robert Rallo, Danuta Leszczynska and Jerzy Leszczynski

Abstract CORAL software (http://www.insilico.eu/coral) was developed to assist
the computational research based on quantitative structure—activity relationships
(QSAR). It has been successfully applied in a number of research projects. CORAL
is based on molecular features extracted from the simplified input-line entry system
(SMILES) by means of additional molecular features extracted from hydrogen
suppressed molecular graphs. Among vital applications of CORAL are those related
to the evaluation of environmental effects of various chemical compounds. Few
such examples are discussed in this chapter. The toxicity of a large group of
chemicals towards fish, rat, and quail was examined as endpoint for the QSAR
analysis. This study resulted in model improvement. Based on the obtained results,
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the mechanistic interpretation and domain of applicability of the models for the
above-mentioned endpoints was suggested.

Keywords QSAR ⋅ CORAL ⋅ Fish toxicity ⋅ Rat toxicity ⋅ Quail toxicity

1 Introduction

Environmental sciences cover a broad space of areas. It is useful to define some
sectors of this space. The topics of major concerns related to environment that we
will address include three major compartments: (i) water; (ii) soil; and (iii) air. Both
industry and agriculture activities significantly impact all compartments.

The environmental impacts caused by industry and agriculture represent a
complex problem and are also notably connected with the economical evolution
and further societal advances. The obligation of modern natural sciences encom-
passes the protection of the biological diversity, and the improvement of the life
conditions for our society. Though the last task seems to be the most important for
the human beings, it can not be accomplished without proper addressing the
environmental and biological related endpoints.

In order to survive and advance the modern society has to develop valuable and
long-range strategies to tackle all of these challenges. The impacts of industry and
agriculture should be explored and evaluated through large set outcomes. They
could be transferred to a volume of scientific data that forms “endpoints”—vari-
ables that could be quantified and examined.

The focus of this book chapter is the discussion of such data—three endpoints
related to water, soil, and air. This provides a guide for broader investigations,
including the use of more experimental data when available. In this chapter, we will
present predictive models for three endpoints reflecting environmental impacts
upon: (i) fish (water), (ii) rats (soil), and (iii) birds (air).

The data is arranged as follows:
Water: The toxicity of 568 industrial organic compounds expressed as 50%

lethal concentration (LC50) for Fathead minnow;
Soil: The lethal rat toxicity expressed as negative decimal logarithm of the lethal

dose in mg/kg (pLD50) for 525 compounds described in the literature;
Air: Toxicity towards quail of 115 compounds, expressed as the decimal log-

arithm log(1/C), where C is the concentration, in mmol/kg, expressed as
LC50-96 h, the dose that kills 50% of quail population in 96 h.

Every year the list of compounds, used by the industry or in agriculture, becomes
longer. The experimental assessment of each new compound is impossible. Under
such circumstances, one needs a reliable tool to estimate possible damage that each
new compound could cause. It should be done without expensive experiments.

There are a number of computational techniques developed in the last 20 years
that might provide estimation of the environmental impacts of chemical
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compounds. The CORAL software represents a numerical implementation of such
techniques. The main principle that was applied when this software was developed
was to properly address so-called correlation weights for various molecular features
extracted from the simplified molecular input-line entry systems (SMILES) (Wei-
ninger 1988, 1990; Weininger et al. 1989). The application of Monte Carlo method
allows providing the numerical data for these correlation weights.

CORAL is the abbreviation derived from “CORrelations And Logic” terms. The
software generates both the structural descriptors and quantitative structure—
property/activity relationship (QSPRs/or QSARs) models. In the first approxima-
tion, the structural descriptors are calculated based on the SMILES structural for-
mat, which is a very compact and useful way to describe the chemical in a string of
characters, related to the atoms and bonds. CORAL uses SMILES according to the
following scheme:

1. Each SMILES is converted into a group of attributes. An attribute can represent
a fragment of SMILES line. This kind of attribute is a local one. Furthermore, a
descriptor related to some molecular features such as, the presence or absence of
various kinds of atoms (nitrogen, oxygen, chlorine, etc.) or various kinds of
chemical bonds (simple covalent bond, double bond, triple bond) can represent
an attribute.

2. The numerical data on so-called correlation weights of the above-mentioned
attributes are calculated by the Monte Carlo method. For the training set, the
correlation weights must give the maximal correlation coefficient between the
sum of correlation weights of SMILES and the endpoint of interest.

Having the numerical data on the correlation weights, one can build up pre-
dictive models (QSPR or QSAR) as one-variable correlation between “endpoint—
optimal descriptor”, where the optimal descriptor for a given SMILES is the sum of
correlation weights of the above-mentioned attributes.

Unquestionably, the developed model should be checked up with external val-
idation set. Such model can be useful if and only when the predictive potential of
the model is confirmed for external validation set. Thus, similarly to other
approaches, the CORAL model is sensitive to the distribution of available data into
the training and validation sets.

The scheme is based solely on the characteristics of the molecular structure of
the investigated compounds. Consequently, the CORAL approach retains defini-
tions of the domain of applicability and mechanistic interpretation caused by the
presence (and absence) of various SMILES attributes. Hence, the applicability
domain and mechanistic interpretations can vary with different distributions of the
data into the training and validation sets. This can be interpreted as a disadvantage
of the approach because it affects the reproducibility of the statistical results.
However, it can also be considered as an advantage because it allows comparing
different distributions of the data into the training and validation sets and conse-
quently, one can select the most reliable distribution. Such a distribution is char-
acterized by a good prevalence for all important molecular features (attributes). In
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addition, it gives possibility to detect uninformative molecular features with small
prevalence.

Detailed description of the CORAL software is available on the Internet (http://
www.insilico.eu/coral).

This chapter demonstrates and discusses the application of the above-mentioned
approach to get data necessary for risk assessment of various chemicals, which are
potential contaminants of water, soil, and air. This separation of the various envi-
ronmental compartments (water, soil, air) provides a convenient and simple way to
demonstrate the use of the Monte Carlo method to solve ecological tasks related to
the various cases of risk assessment.

2 Method

2.1 Data

Water: The environmental effects of various chemicals dissolved in water have
been studied by many groups. Here, we selected a toxicity study of a large group
(568 industrial organic compounds). Their acute toxicity data expressed as 50%
lethal concentration (LC50) for the juvenile stage of the Fathead minnow has been
taken from the literature (Russom et al. 1997). The LC50 concentration is expressed
in mmol/L. The experimental data was used to develop a QSAR model of toxicity.
In the QSAR analysis, the endpoint was expressed as the negative decimal loga-
rithm of the LC50, i.e.,—log LC50 or pLC50. The SMILES for examined com-
pounds were generated with the ACD/ChemSketch software. QSAR models have
been developed in work (Toropova et al. 2012) using data taken from (Russom
et al. 1997).

Soil: The various chemicals have a significant effect on the health and population
of soil organisms. To model such phenomena many experimental studies were
performed on rats. We adopted the data on lethal rat toxicity data in mg/kg from the
study published in the literature (Toropova et al. 2015a). The predicted endpoint
represents the negative logarithm of the lethal dose (pLD50). The group of random
distributions of all 525 compounds into the training, calibration, and validation sets
was studied as the basis for building up model for pLD50. The SMILES were
generated with ACD/ChemSketch software.

Air: Birds represent a fundamental group of the animals. The investigation of the
influence of chemicals on birds can provide important clues on air quality. We
selected a recent study on 114 chemical compounds performed on the quails.
Decimal logarithm of the concentration, in mmol/kg, expressed as LC50-96 h,
which is the dose that kills 50% of quails in 96 h was used as the endpoint to
develop a QSAR relationship (Toropov and Benfenati 2007).

The computational studies described in this chapter were performed using
commonly adopted rules. The experimental data were used to develop a QSAR
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model and then to test it quality. It was done by splitting data set into two general
groups. For all examined endpoints, the splits of experimental data into training and
test sets were carried out according to the following principles: (i) the range of the
endpoint values is approximately the same for each sub-set; (ii) the splits are
random; and (iii) the splits are not identical.

2.2 Optimal Descriptors

The CORAL software (http://www.insilico.eu/coral) provides a tool to build up
QSAR models utilizing the Monte Carlo method. The possible representations of
the molecular structure for these models are: (i) simplified molecular input-line
entry system (SMILES) (Weininger 1988, 1990; Weininger et al. 1989), and
(ii) molecular graphs. The CORAL software can convert SMILES into three kinds
of the molecular graphs: (i) hydrogen suppressed graph (HSG) (Toropov et al.
2011); (ii) hydrogen filled graph (HFG) (Toropov et al. 2011); and graph of atomic
orbitals (GAO) (Toropov et al. 2011).

The generalized form of a CORAL model could be described by the following
one-variable equation (Fig. 1):

Activity=C0 +C1 ×DCWðT*,N*Þ ð1Þ

where, the Activity is an endpoint; C0 and C1 are regression coefficients; DCW(T*,
N*) is the optimal descriptor, which is a mathematical function of molecular fea-
tures extracted from SMILES and/ or graph. The numerical value of the DCW(T*,
N*) is calculated with so-called correlation weights (CW) of the above-mentioned
molecular features. The numerical data on the correlation weights calculated with
the Monte Carlo optimization is described in a series of studies (Toropov and
Toropova 2002a, b; Toropova et al. 2016). There are two possible versions of the
Monte Carlo optimization: (i) the classic scheme “training-calibration-validation”;
and (ii) the balance of correlations, according to the scheme “training-invisible
training-calibration-validation”. Thus, there is a number of possible ways to
building up QSAR models using the CORAL software. The example of organi-
zation of the CORAL optimal descriptors is shown in Table 1. It follows the
development of the computational model. The general scheme of planning of such
tasks is depictured in Fig. 2. The CORAL program is well designed and performs
all necessary tasks. Figure 3 displays a screenshot that provides an example of the
organization of the optimal descriptor displayed in the Table 1.

This procedure was used to investigate the effects of chemicals for three major
environmental compartments. Optimal descriptors were used in this work to build
up models for the above-mentioned three endpoints. The following equations
provide the details:
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Water (lethal concentration pLC50 for Fathead minnow):

DCWðT ,NÞ= ∑CWðNNCkÞ+ ∑CWðSkÞ+ ∑CWðSSkÞ+ ∑CWðSSSkÞ ð2Þ

Soil (rat toxicity, lethal dose pLD50):

DCWðT ,NÞ= ∑CWðNNCkÞ+ ∑CWðSkÞ+ ∑CWðSSkÞ+ ∑CWðSSSkÞ
+CWðBONDÞ+CWðNOSPÞ+CWðPAIRÞ ð3Þ

Air (quail toxicity, lethal dose pLC50):

DCWðT ,NÞ= ∑CWðNNCkÞ+ ∑CWðSkÞ+ ∑CWðSSkÞ
+CWðBONDÞ+CWðNOSPÞ+CWðHALOÞ ð4Þ

Fig. 1 General representation of main ecological problems
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Table 1 List of all available parameters for the CORAL software to build up QSPR/QSAR
models by extracting molecular features from SMILES or molecular graph. Example of the
selection of options for the case of the fish toxicity are indicated by grey background (selection of
balance correlation)

SMILES Sk SSk SSSk Local attributes

BOND NOSP HALO PAIR Global attributes
GS(HSG) EC0k EC1k EC2k EC3k Local attributes

PT2k PT3k VS2k VS3k NNCk

C3 C4 C5 C6 C7 Global attributes
GS(HFG) EC0k EC1k EC2k EC3k Local attributes

PT2k PT3k VS2k VS3k NNCk

C3 C4 C5 C6 C7 Global attributes
GS(GAO) EC0k EC1k EC2k EC3k Local attributes

PT2k PT3k VS2k VS3k NNCk
(*)There are two additional options: (i) classic scheme and (ii) balance of correlations; EC0, EC1,
…, EC3 are the extended connectivity of zero, first, …, third orders (Toropov et al. 2013); PT2,
PT3 are paths of length 2 and 3, respectively (Toropov et al. 2012); VS2, VS3 are valence shells of
second and third orders, respectively (Toropov et al. 2012); NNC are nearest neighbours codes
(Toropov et al. 2013); C3, C4, …, C7 are global molecular attributes related to various rings (from
three members till seven members rings); SS is SMILES system; GS is graph system; HSG, HFG,
and GAO are hydrogen suppressed graph, hydrogen filled graph, and graph of atomic orbitals,
respectively

Fig. 2 The generalized scheme of planning of the study using CORAL software to build up a
QSAR model
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The nearest neighbouring codes NNCk are described in the recent work (Toropov
and Toropova 2002a):

NNC k½ �=100*Nall + 10*Ncarbon +Nnoncarbon Nall, Ncarbon, and Nnoncarbon are the
total number of neighbors for kth vertex, the number of vertices which are carbon,
and the number of vertices which are not carbon, respectively. For example, if kth
vertex is as in Fig. 4, the NNC[k] = 3 * 100 + 10 * 2 + 1 = 321.

The Sk, SSk, and SSSk are local SMILES attributes described in work (Toropova
et al. 2016);

For example SMILES = Clc1ccccc1

Sk = Cl, c, 1, c, c, c, c, c, 1ð Þ;
SSk = Clc, c1, cc, cc, cc, cc, cc, c1ð Þ;

SSSk = Clc1, c1c, ccc, ccc, ccc, ccc, cc1ð Þ.

Fig. 3 Screenshot for method utilized to build up model for fish toxicity

Fig. 4 An example of k-th
vertex
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BOND, NOSP, HALO, and PAIR are global SMILES attributes described in
work (Toropova et al. 2016).

Table 2 contains examples of calculation for BOND, NOSP, HALO, and PAIR
descriptors.

The CW(NNCk) are the correlation weights for nearest neighbouring codes in
HSG (Toropov and Toropova 2002a). The CW(Sk), CW(SSk), CW(SSSk), CW
(BOND), CW(NOSP), CW(HALO), and CW(PAIR) are the correlation weights of
the above SMILES attributes. T and N are parameters of the Monte Carlo opti-
mization procedure (Toropov and Toropova 2002a, b; Toropova et al. 2016). T is
the threshold used to classify structural attributes into two classes: (i) rare; and
(ii) active. The rare attributes are blocked: their correlation weights are zero. The
active attributes are involved in building up a model. N is the number of epochs of
the optimization. If the N → ∞, the overtraining becomes very plausible. T = T*
and N = N* are the parameters that give best statistical quality of a model calcu-
lated with Eq. (1) for the calibration set (Toropova et al. 2016). T* and N* are

Table 2 Examples of definition for BOND, NOSP, HALO, and PAIR descriptors

Global
attribute

Comment

BOND The presence/absence of double (‘=’), triple (‘#’), and stereo chemical (‘@’)
bonds, e.g. if SMILES = “C\C = C\O”

NOSP Presence (absence) of nitrogen, oxygen, sulphur, and phosphorus, e.g. if
SMILES = “CCC(O)CC”

HALO Presence (absence) of fluorine, chlorine, bromine, and iodine atoms, e.g. if
SMILES = ‘ClCC(=O)CCl’

PAIR Simultaneous presence of two SMILES-components from the list: F, Cl, Br, I,
N, O, S, P, #, =, and @; e.g. if SMILES = “ClCC(=O)CCl” the following

pairs will be extracted:
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calculated by means of analysis of results of the Monte Carlo optimization in the
ranges of T ∈ ðTmin,TmaxÞ and N ∈ ð1,NmaxÞ Toropov et al. (2016, 2015b, 2013). In
this work, the range of the threshold is (1, 3) and the range of the number of epochs
is (1, 25).

There are certain conditions to be fulfilled when a QSAR approach is applied.
QSAR is a statistically based model (Toropov et al. 2016, 2015b, 2013).This means
that one should check up the developed equations related to a given endpoint using
different splits of experimental data into the training and validation sets. The cal-
culations with Eqs. (2)–(4) are carried out with the balance of correlations. Con-
sequently, the training set examined in this work is organized as the training set
(builder of a model), invisible training set (inspector of quality of a model during
the Monte Carlo optimization), and calibration set (expert to define the moment of
the rational stopping of the optimization process to avoid overtraining).

2.3 Tests of the CORAL Models and Definition
of the Applicability Domain

It is important to evaluate the developed model for its predictability. This has been
carefully done in the reported studies. Table 3 contains the list of criteria that
estimate the reliability of the CORAL model from the probabilistic point of view.
All these criteria have been checked in the three cases reported here.

2.4 Mechanistic Interpretation

The possibility to assess features related to the mechanisms of the studied phe-
nomena represents a considerable advantage of the theoretical approaches we
presented. The mechanistic interpretation of the developed QSAR models can be
obtained from several runs of the Monte Carlo optimization. One can select three
categories of attributes: (i) structural attributes, which have only positive values of
the correlation weights. These are classified as promoters of the endpoint increase;
(ii) structural attributes, which have only negative values of the correlation weights.
These data are referred to as promoters of the endpoint decrease; and (iii) structural
attributes, which have both positive and negative correlation weights in several runs
of the Monte Carlo optimization. Obviously, these attributes should be considered
as attributes with unclear role.
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3 Results and Discussion

Each QSAR model is characterized by a set of statistical parameters. There is the
need for broad tools to develop QSAR models in a facilitated way, which is flexible
to different collections of data, and can be easily implemented. Possibly, the tools to
be used should be freely available, for the broader dissemination, and they should
wrap the calculation of the descriptors and the model algorithm into the same
architecture.

In the past years we developed and updated the CORAL software, which is
consistent with the criteria above introduced. In this chapter, we present some
examples, to discuss the use of CORAL and the results which can be obtained. The
following statistical characteristics were utilized in this work: (i) n is the number of
compounds in a set; (ii) r2 is the determination coefficient; (iii) q2 is the cross

Table 3 The statistical criteria for probabilistic estimation of quality of (i) molecular feature
extracted from SMILES or graph; (ii) split into the training and validation sets; (iii) domain of
applicability

Criterion Notes Comment

SADefect = ∑
active

∑ PðSAÞ−P′ðSAÞ�
�

�
� Defect of structural

attribute (SA), in terms
of the inequality of
probabilities in the
training set P(SA) and
in calibration set
P’(SA). Defect = 0, if
these probabilities are
equal

This is estimation of
significance of the
structural attribute

PðSAÞ= NsetðSAÞ
Nset

Nset(SA) is the number
of SMILES which
contain the given
structural attribute; Nset

is the total number of
SMILES in a set (i.e. in
training set or in
calibration set)

SMILESdefect = ∑
SAdefect ∈ SMILES

SADefect Defect of SMILES is
sum of not blocked
structural attributes

This estimation of
reliability of prediction
for the SMILES: if,
defect is too large the
prediction is
problematic

Splitdefect = ∑
SMILES ∈ Training

SMILESDefect This criterion allows to
select preferable split
into the training and
calibration sets

SMILESdefect <2× SMILESdefect This criterion allows to
select the domain of
applicability
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validated r2; (iv) the s is root-mean squared error; (v) R2
m (should be larger than 0.5)

and ΔR2
m (should be less than 0.2) Ojha et al. (2011) as suggested metrics of

predictability.

3.1 Fish Toxicity

The QSAR model for the fish toxicity was developed base on the experimental data
provided in the previous works (Russom et al. 1997; Toropova et al. 2012). The
data was divided into two groups—training and validation sets. This data splitting
was randomly performed three times. Table 4 contains the statistical characteristics
of models for fish toxicity observed in the cases of three different splits of data into
the training and validation sets. The validation set is invisible (not used) during
building up the model.

Table 4 The statistical characteristics of QSAR for fish toxicity obtained by (i) balance of
correlations (BC); and (ii) classic scheme (CS)

Split Method Set n r2 q2 s R2
m

ΔR2
m

1. Eq. (5) BC Training 153 0.8052 0.8007 0.618
Invisible training 153 0.8050 0.7989 0.625
Calibration 130 0.8017 0.7953 0.611 0.65 0.12
Validation 131 0.8037 0.719

CS Training 306 0.8256 0.8232 0.583
Calibration 130 0.7593 0.7512 0.669 0.65 0.12
Validation 131 0.7839 0.739

2. Eq. (6) BC Training 156 0.7804 0.7745 0.687
Invisible training 158 0.7677 0.7625 0.697
Calibration 127 0.7244 0.7152 0.625 0.55 0.13
Validation 126 0.8065 0.663

CS Training 314 0.8186 0.8163 0.613
Calibration 127 0.7205 0.7116 0.634 0.56 0.12
Validation 126 0.7771 0.739

3. Eq. (7) BC Training 157 0.7973 0.7914 0.662
Invisible training 153 0.7962 0.7907 0.603
Calibration 129 0.7465 0.7319 0.708 0.63 0.12
Validation 128 0.8051 0.638

CS Training 310 0.8133 0.8106 0.607
Calibration 129 0.7475 0.7339 0.696 0.65 0.11
Validation 128 0.7942 0.640
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The fish toxicity was also investigated before the study reported here using
different QSAR models. A previous model (Toropova et al. 2012) is characterized
by the average correlation coefficient between pLC50 (experiment) and pLC50
(calculated) equal to 0.787. Thus, the values reported in Table 4 show that the
model calculated with Eq. (2) is better than the model suggested in work (Toropova
et al. 2012).

The description of models obtained for three random split is given below:

pLC50= − 0.6459022+ 0.1023858*DCW 1, 11ð Þ ð5Þ

pLC50= − 1.0325851+ 0.0679094*DCW 1, 6ð Þ ð6Þ

pLC50= − 0.8779432+ 0.0857614*DCW 1, 7ð Þ ð7Þ

3.2 Rat Toxicity

Also for rat toxicity we obtained results better than those previously published.
Table 5 contains the statistical characteristics of the models for rat toxicity obtained
in the cases of three splits into the training and validation sets. The validation set is
invisible during building up the model. The previous model (Toropova et al. 2015a)
is characterized by the average correlation coefficient between pLD50 (experiment)
and pLD50 (calculated) equal to 0.754. Obviously, the predictive potential of model
calculated with Eq. (3) is better than predictive potential of model suggested in
work (Toropova et al. 2015a).

The models obtained for three random split are the followings:

PLD50= − 3.1121700+ 0.0947844*DCW 1, 12ð Þ ð8Þ

PLD50= − 3.1311260+ 0.0686280*DCW 1, 10ð Þ ð9Þ

PLD50= − 3.0450211+ 0.0659596*DCW 1, 12ð Þ ð10Þ

3.3 Bird Toxicity

Two models were developed for quail toxicity. Table 6 contains their statistical
characteristics. The results were obtained for three data splits into the training and
validation sets. The validation set is invisible during building up the model. The
obtained results can be compared to the results of a previous study (Toropov and

Development of Monte Carlo Approaches in Support … 465



Benfenati 2007). The previously developed model (Toropov and Benfenati 2007) is
characterized by the average correlation coefficient between log(1/C) (experiment)
and log(1/C) (calculated) equal to 0.731. The predictive potential of the model
calculated with Eq. (4) is better than predictive potential of model suggested in
work (Toropova et al. 2015a).

Three models obtained as the results of random splits of data are given below:

Log 1 ̸Cð Þ= − 0.7120291+ 0.1055524*DCW 1, 14ð Þ ð11Þ

Log 1 ̸Cð Þ= − 1.0170942+ 0.0546808*DCW 1, 7ð Þ ð12Þ

Log 1 ̸Cð Þ= − 0.8511373+ 0.0376830*DCW 1, 5ð Þ ð13Þ

Table 5 The statistical characteristics of QSAR for rat toxicity obtained by (i) balance of
correlations (BC); and (ii) classic scheme (CS)

Split Method Set n r2 q2 s R2
m

ΔR2
m

1. Eq. (8) BC Training 151 0.7729 0.7676 0.494
Invisible training 150 0.7721 0.7659 0.534
Calibration 112 0.7189 0.7049 0.525 0.61 0.18
Validation 112 0.7188 0.598

CS Training 301 0.7889 0.7863 0.489
Calibration 112 0.7016 0.6879 0.512 0.59 0.09
Validation 112 0.6694 0.635

2. Eq. (9) BC Training 161 0.7201 0.7136 0.588
Invisible training 151 0.7598 0.7531 0.509
Calibration 105 0.6580 0.6470 0.548 0.53 0.15
Validation 108 0.7206 0.511

CS Training 312 0.7667 0.7640 0.517
Calibration 105 0.6207 0.6057 0.591 0.49 0.05
Validation 108 0.7779 0.492

3. Eq. (10) BC Training 160 0.7484 0.7420 0.544
Invisible training 155 0.7488 0.7426 0.507
Calibration 105 0.7155 0.7053 0.579 0.57 0.24
Validation 105 0.6438 0.532

CS Training 315 0.7866 0.7840 0.483
Calibration 105 0.6990 0.6867 0.592 0.58 0.24
Validation 105 0.6298 0.547
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4 Conclusions

The CORAL software provides a useful tool that can be used in various research
projects. Examples of its applications to environmental studies are discussed in the
chapter. QSAR models were developed to investigate toxicity of chemical com-
pounds towards fish, rat, and quail. The split of experimental data into the training
and validation sets has a clear influence on the statistical quality of QSAR models.
The obtained models for three endpoints are quite satisfactory for various distri-
butions of the data into the training and validation sets. The hybrid optimal
descriptors (calculated with SMILES together with graphs) which are modifications
of previously studied versions of the optimal descriptors calculated with solely
SMILES provide better predictive potential in comparison with previous models
suggested in the works (Toropova et al. 2012, 2015a; Toropov and Benfenati 2007)
for fish, rats, and birds, respectively. As a rule, the balance of correlations approach
improves the models, in comparison with the classic scheme where the training set
is combination of training-calibration sets. However, some exceptions have been
noticed (for instance, the second split in Table 4 for rat toxicity).

Table 6 The statistical characteristics of QSAR for quail toxicity obtained by (i) balance of
correlations (BC); and (ii) classic scheme (CS)

Split Method Set n r2 q2 s R2
m

ΔR2
m

1. Eq. (11) BC Training 41 0.9194 0.9129 0.267
Invisible training 37 0.9143 0.9037 0.270
Calibration 18 0.9001 0.8659 0.380 0.83 0.16
Validation 18 0.8175 0.617

CS Training 78 0.9249 0.9212 0.250
Calibration 18 0.8183 0.7707 0.464 0.81 0.00
Validation 18 0.7496 0.622

2. Eq. (12) BC Training 38 0.7999 0.7768 0.378
Invisible training 41 0.8140 0.7969 0.532
Calibration 17 0.6668 0.5864 0.467 0.51 0.06
Validation 18 0.7504 0.669

CS Training 79 0.8101 0.8013 0.418
Calibration 17 0.6218 0.4918 0.520 0.61 0.00
Validation 18 0.7448 0.590

3. Eq. (13) BC Training 41 0.6616 0.6372 0.547
Invisible training 37 0.6751 0.6248 0.620
Calibration 18 0.5862 0.4030 0.599 0.58 0.00
Validation 18 0.7875 0.473

CS Training 78 0.7497 0.7373 0.478
Calibration 18 0.5975 0.4615 0.594 0.52 0.02
Validation 18 0.7727 0.427
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Models discussed in this chapter were built up and validated according to the
OECD principles (OECD 2007). It is expected that QSAR models will be more and
more applied within a broad series of studies related to environmental endpoints,
and the recent review by Roy and Kar (2016) is a clear example of the high number
of studies in this sector. The collections of data, as in this review, could be easily
used to open out the CORAL software for further applications.

Acknowledgements The authors are grateful for the contribution of the EC
project LIFE-COMBASE (LIFE15 ENV/ES/000416). This work was financially supported by
National Science Foundation: NSF-CREST grant #HRD-1547754.

References

OECD. (2007). (Organization for Economic Co-operation and Development). Guidance document
on the validation of (quantitative) structure-activity relationship [(Q)SAR] Models No. 69.

Ojha, P. K., Mitra, I., Das, R. N., & Roy, K. (2011). Further exploring rm
2 metrics for validation of

QSPR models. Chemometrics and Intelligent Laboratory Systems, 107, 194–205.
Roy, K., & Kar, S. (2016). In Silico models for ecotoxicity of pharmaceuticals. In: E. Benfenati

(Ed.), Silico methods for predicting drug toxicity. Methods in molecular biology 1425
(pp. 237–304). Springer.

Russom, C. L., Bradbury, S. P., Broderius, S. J., Hammermeister, D. E., & Drummond, R. A.
(1997). Predicting modes of action from chemical structure: acute toxicity in the Fathead
minnow (PimephalesPromelas). Environmental Toxicology and Chemistry, 16, 948–957.

Toropov, A. A., & Toropova, A. P. (2002a). Modeling of acyclic carbonyl compounds normal
boiling points by correlation weighting of nearest neighboring codes. Journal of Molecular
Structure: THEOCHEM, 581, 11–15.

Toropov, A. A., & Toropova, A. P. (2002b). QSAR modeling of toxicity on optimization of
correlation weights of Morgan extended connectivity. Journal of Molecular Structure:
THEOCHEM, 578, 129–134.

Toropov, A. A., & Benfenati, E. (2007). Optimisation of correlation weights of SMILES invariants
for modelling oral. European Journal of Medicinal Chemistry, 42, 606–613.

Toropov, A. A., Toropova, A. P., Martyanov, S. E., Benfenati, E., Gini, G., Leszczynska, D., et al.
(2011). Comparison of SMILES and molecular graphs as the representation of the molecular
structure for QSAR analysis for mutagenic potential of polyaromatic amines. Chemometrics
and Intelligent Laboratory Systems, 109, 94–100.

Toropov, A. A., Toropova, A. P., Puzyn, T., Benfenati, E., Gini, G., Leszczynska, D., et al. (2013).
QSAR as a random event: Modeling of nanoparticles uptake in PaCa2 cancer cells.
Chemosphere, 92, 31–37.

Toropov, A. A., Toropova, A. P., Benfenati, E., & Fanelli, R. (2016). QSAR as a random event:
Selecting of the molecular structure for potential anti-tuberculosis agents. Anti-Infective Agents,
14, 3–10.

Toropova, A. P., Toropov, A. A., Lombardo, A., Roncaglioni, A., Benfenati, E., & Gini, G.
(2012). CORAL: QSAR model for acute toxicity in Fathead Minnow (Pimephalespromelas).
Journal of Computational Chemistry, 33, 1218–1223.

Toropova, A. P., Toropov, A. A., Benfenati, E., Leszczynska, D., & Leszczynski, J. (2015a).
QSAR model as a random event: A case of. Bioorganic & Medicinal Chemistry, 23, 1223–
1230.

468 A.P. Toropova et al.



Toropova, A. P., Toropov, A. A., Veselinović, J. B., & Veselinović, A. M. (2015b). QSAR as a
random event: a case of NOAEL. Environmental Science and Pollution Research Interna-
tional, 22, 8264–8271.

Toropova, A. P., Schultz, T. W., & Toropov, A. A. (2016). Building up a QSAR model for toxicity
towards TetrahymenaPyriformis by the Monte Carlo method: A case of benzene derivatives.
Environmental Toxicology and Pharmacology, 42, 135–145.

Weininger, D. (1988). SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. Journal of Chemical Information and Computer Sciences,
28, 31–36.

Weininger, D., Weininger, A., & Weininger, J. L. (1989). SMILES. 2. Algorithm for generation of
unique SMILES notation. Journal of Chemical Information and Computer Sciences, 29, 97–
101.

Weininger, D. (1990). SMILES. 3. Depict. Graphical depiction of chemical structures. Journal of
Chemical Information and Computer Sciences, 30, 237–243.

Development of Monte Carlo Approaches in Support … 469



Environmental Toxicity of Pesticides,
and Its Modeling by QSAR Approaches

Mabrouk Hamadache, Abdeltif Amrane, Othmane Benkortbi,
Salah Hanini, Latifa Khaouane and Cherif Si Moussa

Abstract Thousands of environmental pollutants including pesticides, issued from
human activities, are accumulated in the environment making a source of danger for
the whole ecosystem. Also, the risk assessment process has become a vital and
necessary discipline in the legislation to ensure that these pollutants pose no risk or
negligible risk to human health, wildlife and the whole ecosystem. The risk
assessment carried out for the three natural compartments, namely the terrestrial, the
aquatic environment and air, is usually based on experimental studies whose cost is
especially high in terms of money, time and laboratory animals. Thus, regulatory
agencies are turning to the search for alternative methods less expensive, reliable
and fast, which may have a power to predict the potential risks of chemical pol-
lutants. One such toxicological predictive approach is obtained by the development
of quantitative models of structure-activity relationships (QSAR). They provide the
means for estimating the toxicity of a variety of chemicals in the absence of
experimental data on toxicity. In this chapter, a review of publications dedicated to
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pollution by pesticides and their effects on the entire ecosystem is described. The
general principles of the development and validation of QSAR models are also
described. Then a critical review of QSAR models published in the literature to date
for the prediction of the toxicity of pesticides is also covered.

Keywords Toxicity ⋅ Pesticides ⋅ QSAR models ⋅ Prediction

1 Introduction

For a long time the main concern of humankind has been to ensure food security
given the rapid population growth. To do this, it has been imperative to take all
measures to increase agricultural production. However, this objective could not be
achieved without a struggle against all organisms responsible for crop damage. The
discovery of pesticides was hailed as a major breakthrough for mankind. After the
synthesis of dichlorodiphenyltrichloroethane (DDT) in 1939 by Paul Müller, the
number and amount of pesticides has grown continuously. Diversified pesticides
were produced and pesticide consumption worldwide has increased dramatically
from 1960 to 2012 (Fig. 1).

The pesticides are a diverse group of inorganic and organic chemicals widely
used against insects, fungi, rodents, noxious weeds, etc. The conventional pesti-
cides are classified as herbicides, insecticides, nematicides, and fungicides. The
worldwide consumption of pesticides is estimated over 2.27 million ton each year
for agricultural, residential, commercial or industrial settings (Saeedi Saravi and
Dehpour 2016).

Fig. 1 Worldwide pesticide market (Peshin and Zhung 2014)
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To enhance the production of foodstuffs needed to meet the needs of the ever
expanding human population ensuring stable and predictable food supplies and
high productivity, the pesticides are widely used in agriculture, and horticulture.
They are also used in domestic applications, to slow the spread of insects, to
maintain lawns, recreational areas and highways. Pesticides have also contributed to
the control of many human diseases transmitted by insects. In view of the current
intensification of agricultural activities and increased intensity of pesticide use, and
despite their advantages, these compounds entail a number of risks and problems.
Indeed, many studies made internationally highlight the environmental pollution by
pesticides. They are found in the environment in all parts of the world, both in areas
where pesticides are used and in areas where they never have been used. Due to the
excessive use of these products, they are found in the environment (water, soil, air)
and in terrestrial and aquatic food chains. In addition, they also pose a threat to the
environment, humans, animals and other organisms.

The health hazards of pesticides are a major concern internationally. Long-term
exposure to pesticides can cause harm to human life and can disrupt the functioning
of various organs in the body. This significant relationship between exposure to
pesticides and some chronic diseases has been the subject of several scientific
publications. Acute poisonings by agricultural pesticides are currently considered to
be an important cause of human morbidity and mortality worldwide, with some 26
million human pesticide poisonings and with about 220,000 deaths per annum in
the world (Peshin and Zhang 2014). Furthermore, the discovery of pesticide resi-
dues in various sections of the environment has raised serious concerns. As a result,
human beings are exposed to the effects of these compounds by eating foods in
contact with contaminated soil or water.

As seen, humans and the environment are exposed to thousands of pesticides.
This pollution caused by pesticides has become an important issue affecting the
survival and development of human being. It is evident that risk assessment for
pesticides can provide a precaution against the corresponding pollution. One of the
procedures currently used for human and environmental risk assessment is the
determination of the acute toxicity of pesticides. Toxicity studies aim at investi-
gating the effects of pesticides in laboratory animals exposed to various dosage
regimen for different durations. The information from toxicity studies is used in
hazard and risk assessment of pesticides occurring in foodstuffs, in water, and in air.
Unfortunately, experimental determination of the toxicity takes time, requires a
high expense and poses an ethical problem (demands to reduce or abolish the use of
animals). Also, there is a very large body of research going on in many countries
with the aim of replacing in vivo tests by in silico prediction methods according to
the European Directive on the Protection of Laboratory Animals (Golbamaki et al.
2014) and the Registration, Evaluation, Authorization and restriction of Chemicals
(REACH) regulation (Cassotti et al. 2014). Despite being significantly cheaper than
in vivo study, in vitro tests are still costly compared with in silico methods
(Sazonovas et al. 2010). The use of in silico predictive methods, based on computer
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tools, offers a rapid, cost-effective and ethical alternative to testing toxicity of
chemical substances in animals (Sullivan et al. 2014). These methods include the
Quantitative Structure–Activity Relationship (QSARs) models. QSAR models
describe a mathematical relationship between the structural properties of a set of
compounds and the particular activity (toxicological or other), associated with
them. The use of QSAR in environmental studies experienced an increasing
development in the past two decades. One of the main areas of interest in these
studies is the modeling and prediction of toxicological effects.

The aim of this chapter is to briefly review in the literature, the QSAR models
established for predicting the toxicological properties of pesticides. In Sect. 2 we
will talk about pesticide pollution of all components of our environment and that of
food. In Sect. 3 we give an overview of proven or suspected impacts of pesticides
on health. Section 4 briefly presents the QSAR models for predicting the toxico-
logical properties of pesticides published in literature so far. In Sect. 5 some con-
clusions are presented.

2 Pesticides and Pollution

Depending on the conditions of use and the characteristics of the environment,
pesticides are likely to be found in different compartments of the environment and
in food. For nearly fifty years, pesticides have been detected in the waters of rivers
and groundwater, air and rainwater. They are also found in fruits, vegetables,
cereals and animal products (eggs, milk, meat, fish, etc.). They exist in their original
form, but they can also be degraded (residues or metabolites). The potential of a
pesticide to move depends on its chemical properties (ionization, water solubility,
volatility, persistence in the environment), its formulation, soil properties (moisture
content, pH, percentage of organic matter), the rate and method of application,
weather conditions (frequency and distribution of rainfall) and the depth of the
water. Other methods which influence the fate of the chemical include the
absorption of the plant, the adherence of soil, and the volatilization.

Many works made internationally highlight the environmental pollution by
pesticides. The literature review in this area has focused on the pollution of the
various environmental compartments. The literature review was carried out on the
basis of keywords in PubMed using combinations of the following keywords: ‘soil
pollution by pesticides* air pollution by pesticides* water pollution by pesticides*
foodstuffs pollution by pesticides*’ in Topics. We retrieved several thousands
publications (Fig. 2). Those which appeared relevant for the review were sorted
using the titles, the abstracts and the full texts. To complete the review, starting
from the selected references, authors contributing to the references on the subject of
interest were identified and all their publications were studied.
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2.1 Pesticides and Environmental Pollution

2.1.1 Atmospheric Pollution

Pesticides in the atmosphere are mainly from the release of pesticides from treated
plants, evaporation of pesticide residuals in soils and water bodies, and
volatilization of pesticides sprayed. This contamination is chronic.

Studies from various research groups (Briand et al. 2003; Scheyer et al. 2005;
Takazawa et al. 2016; Yusà et al. 2014; Hogarh et al. 2013; MOEJ 2015;
Schummer et al. 2010; Borras et al. 2011; Coscolla et al. 2013) conducted pesticide
concentration measurements in the atmosphere. All these works revealed the
presence of pesticides in all atmospheric phases, whether gaseous, liquid or par-
ticulate in aerosols, droplets fog or rain (Bedos et al. 2002). In another study,
researchers were able to observe in rainwater in Denmark a number of compounds
banned in that country but permitted in other European countries, indicating a
significant contribution of atmospheric transport in the local contamination (Asman
et al. 2005). An active substance (Epoxiconazole fungicide) used on plants was
found in the air (Coscolla et al. 2010), despite its low volatilization. A similar
observation was made for the insecticide chlorpyrifos, which was also found in the
atmosphere (Yao et al. 2008; Zhou et al. 2010).

A recent study (Gunier et al. 2011) shows that agricultural pesticides used near
homes eventually contaminate the inside of these houses. This study shows that the
use of agricultural pesticides, some of which are suspected carcinogens, has an

Fig. 2 Number of publications on the environmental contamination by pesticides (PubMed
accessed 18/03/2016)
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impact on the contamination of the air breathed every day by their inhabitants.
Furthermore, the analysis during a full year of air of Yangtze (China) revealed the
presence of high concentrations of organochlorine pesticides. The authors claim
that air pollution may cause cancer by inhalation following the results of the cal-
culated risk factor (Zhang et al. 2013). In another study, 6 pesticides were analyzed
in the atmosphere of northern Algeria by Moussaoui et al. (2012). Pesticides found
in urban gas phase showed high levels relative to sampling a rural area. Malathion
and chlorpyrifos were present at high concentrations.

In a study conducted in the atmosphere of Spain, Hart et al. (2012) have detected
24 pesticides with different concentrations. The same authors also have reported the
levels of 17 more polar pesticides in the Valencia Region in Spain (Coscolla et al.
2013). More recently Raeppel et al. (2014) have described the levels of 9 pesticides
detected in the atmosphere of Strasbourg (France).

2.1.2 Water Pollution

This part describes information with respect to pesticide levels found in aquatic
environments. Water contamination by pesticides has become increasingly worri-
some. Given the risks they represent, the presence of pesticides in rivers, coastal
waters and groundwater is the subject of regular monitoring that has steadily
increased during the last decade. The concentration of pesticides in streams has
been reported by several authors. Several recent research studies have shown that in
many parts of the world, water systems show significant contamination by pesti-
cides (Cruzeiro et al. 2016; Liu et al. 2016a; Haddaoui et al. 2016; Wu et al. 2014;
Dabrowski et al. 2014; Rasmussen et al. 2015; De Geronimo et al. 2014; Silva et al.
2015; Palma et al. 2014; Papadakis et al. 2015; Grung et al. 2015; Zheng et al.
2016). The levels of waters’ pollution by pesticides are different and can be ranked
as: cropland water > runoff > pond water > groundwater > river water > deep
groundwater > sea water (Zhang et al. 2011).

For example, the small coastal rivers (Louros and Arachthos) in Greece have
occasionally substantial herbicide content (Munaron 2004). In addition, Steen et al.
(2001) detected on the Scheldt River, peaks of residues of certain pesticides far in
excess of the required standard. In aquatic compartments, traces of chlorpyrifos
were also detected (Coupe and Blomquist 2004). In Poland, studies indicate con-
tamination of precipitation by pesticides (Polkowska et al. 2000; Grynkiewicz et al.
2001). In studies on contamination of waters of the Aquitaine region of France led
by Barjhoux (2011), it was found that 2.6% of contaminants are pesticides.

Surface water samples were collected in Mississippi to assess pesticide levels in
two separate studies. Traces of pesticides as metolachlor and acetochlor and some
of their metabolites have been reported by Rebich et al. (2004). For their part,
Tagert et al. (2014) detected hexazinone in 94% of samples, followed by meto-
lachlor (76%), tebuthiuron (48%), atrazine (47%) and metribuzin (6%). Italian water
resources are contaminated with terbuthylazine and its metabolite (Desethyl ter-
buthylazine); this was reported by Bottoni et al. (2013) in a study of this potentially
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toxic pesticide. In Guadeloupe, organochlorine pesticide residues were detected in
very high concentrations in freshwater ecosystems. These levels far exceed the
permitted limit of residual Chlordecone in fish and shrimp (Coat et al. 2011).

Moreover, the majority of rivers and sources of drinking water in India are
contaminated by pesticides (Agrawal et al. 2010). In Pakistan, a number of samples
of fish and shellfish were analyzed for the determination of pesticide contamination
due to pollution of the marine environment. For the authors, the results of this study
do not seem to be very alarming compared to trace levels found in other parts of the
world (Hina et al. 2013). An analysis of the Guanting reservoir waters (China)
revealed the presence of no less than 18 kinds of organochlorine pesticides (Wan
et al. 2009). A total of 27 samples of shallow groundwater were collected from the
Taihu Lake region in china. DDT and hexachlorocyclohexane (HCH) are the most
predominant contaminants in those waters. In a very recent study on the contam-
ination of shallow groundwater, Wu et al. (2014) concluded that the calculated
values of the carcinogenic risk of contaminants raise a risk of potentially serious
cancer for those who consume drinking water from these waters.

2.1.3 Soil Pollution

According to various studies conducted all over the world, it was established that a
variety of soils, including cultivated fields, vegetable fields and forest land are
contaminated by various pesticides (Sun et al. 2016a, b; Qu et al. 2015; Gao et al.
2013; Zhang et al. 2006; Verma et al. 2014). The best documented examples relate
organochlorine pesticides (Galiulin et al. 2002). For example, in a monitoring
carried out in 2002, Mast et al. (2003) estimated that the annual input to the soil
level reaches 45.8, 14.2 and 54.8 mg/ha for atrazine, dacthal and carbaryl,
respectively.

The effect of this contamination is decreasing soil fertility following the
destruction of microorganisms and earthworms. In a study on indicators of soil
contamination by pesticides, Floch et al. (2011) suggest that pesticides may indi-
rectly affect the enzymatic activities of soil through their action on soil microor-
ganisms. Furthermore, contamination by organochlorine pesticides of two soils
located respectively near an old and new pesticide factory was the subject of a study
in China (Zhang et al. 2009). This study found that these soils were contaminated
differently by the following materials: HCH, DDT, HCB and chlordane. According
to Zhao et al. (2009), different types of soil in the area of Haihe River China) are
contaminated with pesticides DDT and HCH. The same pesticides were also found
in the Pearl River Delta soils in China (Ma and Ran 2009).

Degradation of pesticides according to the nature of the soil has been the subject
of studies. For example, in a study of the nature of the soils that suffer most from
contamination by chlorpyrifos pesticide, Chai et al. (2013) conclude that the
degradation of this substance is slower for acid soils, soils with high clay content
and soils at low temperature. A study by Oukali-Haouchine et al. (2013) showed
that metribuzin is effectively adsorbed by Algerian clay soils. However, the
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adsorbed amounts remain low. According to the authors, about 3/4 of the metri-
buzin introduced are not retained by the soil and could be transferred into the
groundwater, which could pose a significant risk of groundwater contamination.

2.2 Pesticides and Food Contamination

Pesticides continue to be used in the production of foods. They are therefore
dangerous substances for living beings and humans. Pollution is caused by spraying
pesticides, seed treatment and soil treatment with pesticides. Pesticide residues are
found in agricultural and animal products such as wheat, corn, fruits, vegetables,
cereals, tea, fish, milk, eggs, meat, honey and medicinal herbs (Lozowicka et al.
2014; Shoiful et al. 2013; Tsakiris et al. 2015; Wu et al. 2013a; Feng et al. 2015;
Skretteberg et al. 2015; Arias et al. 2014; Xu et al. 2015; Calatayud-Vernich et al.
2016; Barjanska et al. 2013; Juan-Borras et al. 2016; Liu et al. 2016b; Yuan et al.
2014; Wang et al. 2014; Ahsan et al. 2013; Singh et al. 2014).

In a study on the contamination of crops on land contaminated with chlordane, it
was noticed a transfer of this pesticide to crops. All tubers of different crops (sweet
potato, turnip, radish, zucchini and tomato) were contaminated (Cabidoche and
Lesueur-Jannoyer 2012). Nougadère et al. (2012) have investigated the presence of
residues of three hundred twenty five pesticides and their transformation products in
food samples covering 90% of the diet of a population. The results showed that 37%
contained one or more residues. Seventy-three pesticides were detected and
quantified. The most frequently detected pesticides were insecticides
pirimiphos-methyl and chlorpyrifos-methyl. Dimethoate pesticide and its metabo-
lite were detected in two samples of cherries at levels above the allowable daily
dose. A study on phosphorylated pesticide residues in the Kuwait’s food was
undertaken by Saeed et al. (2005). The results indicated that 18% of the samples
contained residues. Monocrotophos (0.2 mg/kg), diazinon (0.05 mg/kg), quinal-
phos (0.022 mg/kg), chlorpyriphos-methyl (0.01–0.33 mg/kg) and fenitrothion
(0.16–0.84 mg/kg) were the most frequently detected pesticides. The use of pes-
ticides in vegetable production was the subject of a study in the rural town of
Tori-Bossito in southern Benin (Ahouangninou et al. 2012). Pesticide residues were
found in 42% of samples of eggplant leaves, cucumber, amaranth and Solanum. In
Ghana, a study was conducted to evaluate the residues of organochlorine and
organophosphorus pesticides in fruits and vegetables sold in markets (Bempah et al.
2012). 9.8% of 309 samples of fruits and vegetables showed rates of residues above
the permitted limit.

Eight different pesticides were detected in the analysis of pesticide residues in
wheat imported by South Africa. The most frequently detected pesticides were
mercaptothion, permethrin and chlorpyrifos. The authors point out that this
wheat-based foods could be a source of contamination for both humans and animals
(Dalvie and London 2009). Moreover, the pesticides diazinon, chlorpyrifos and
quinalphos were found in analyzes of a variety of fruits (Sanagi et al. 2013). Other
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food products including fruit, vegetables and cereals were the subject of analysis.
Thus, organochlorine and pyrethroid pesticide residues were found in samples of
tea during a scan through the use of a new chromatographic technique, sensitive and
effective (Liu and Min 2012). The contamination of milk and milk products was the
subject of a scientific publication (Fischer et al. 2011). This article gives an over-
view of the nature, sources, appearance, detection and the potential risk for human
health of major chemical contaminants of this aliment. Traces of pesticides (DDT,
lindane, dieldrin, etc.) have actually been detected. Farajzadeh et al. (2014) have
highlighted a chromatographic method that allowed them to observe the contami-
nation of vegetable oils by the following pesticides: fenpropathrine, Sumithrin,
cyhalothrin, permethrin and deltamethrin. We can also report the existence of a
study whose results showed that the concentrations of organochlorine pesticides are
higher in honey from developing countries than in honey of developed countries
(Wang et al. 2010).

Davodi et al. (2011) have determined the concentrations of pesticides in 8 fish
species collected from marshes Shadegan in Iran. In all samples, the concentrations
were higher than the guidance standards for food safety issued by the European
Union (EU) and the Food and Drug Administration (United States). Other
researchers (Arzi et al. 2011) calculated the concentrations of aldrin, dieldrin,
heptachlor, heptachlor epoxide and methoxychlor in fish caught in the province of
Khozestan in Iran. All fish examined were contaminated with organochlorine
pesticides studied, with concentrations found for some pesticides. Furthermore, a
survey was conducted to evaluate pesticide residues in fish samples from the river
Densu in Ghana (Fianko et al. 2011). The data obtained indicate that the rate of
γ-HCH, heptachlor, of α-endosulfan, endosulfan sulfate and dieldrin exceeded the
reference dose, thereby indicating great potential for systemic toxicity consumers.
Akan et al. (2013) used four fish species of Borno, one of Nigeria’s states, for
residue analysis. Eleven organochlorine pesticides were detected in all the samples
examined. This study also revealed that all pesticide residues in samples of fish
studied were above the maximum allowable limits.

3 Actual or Suspected Health Impacts of Pesticides

Although pesticides have largely benefited mankind through the development of
agricultural products and the control of infectious diseases, their intensive use, in
turn, threatens human health and environmental components. The long-term
exposure to pesticides can harm human life and can disrupt the functioning of
various organs in the body, including the nervous, endocrine, immune, reproduc-
tive, renal, and cardiovascular and respiratory systems (McKinlay et al. 2008; Jiang
et al. 2011; Ali et al. 2014; Cachot 2014; Koureas et al. 2012; Ge et al. 2013; Lee
et al. 2015; Saeedi Saravi and Dehpour 2016; Lebov et al. 2016; Zhang et al. 2016).
In this regard, there is evidence on the link between pesticide exposure and the
incidence of human chronic diseases, such as cancer, Parkinson’s disease,
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Alzheimer’s disease, diabetes, aging, cardiovascular disease and chronic kidney
disease (Mostafalou and Abdollahi 2013; Van Maele-Fabry et al. 2011, 2012, 2013;
Furlong et al. 2015; Jaacks and Staimez 2015; Evangelou et al. 2016; Lerro et al.
2015).

This significant relationship between exposure to pesticides and some chronic
diseases has been the subject of several scientific publications. The literature review
was carried out on the basis of keywords in PubMed, with the following formula:
‘health effect* and (pesticide* or herbicide* or fungicide* or insecticide*)’ in
Topics. We retrieved more than 3200 publications between 2005 and 2015. Those
which appeared relevant for the review were sorted using the titles, the abstracts and
the full texts. To complete the review starting from the previously selected refer-
ences, authors contributing to the papers on the subject of interest were identified
and their publications were studied. This allowed us to select relevant references.
By way of an illustration, is shown below in Fig. 3 the number of scientific pub-
lications of the years 2005–2015.

3.1 Pesticides and Reproductive Disorders

For reproductive disorders, studies have suggested the possibility of a link between
pesticide exposure and the risk of male infertility, excess of spontaneous abortion,
premature, stillborn and certain fetal malformations (AIRPARIF 2007). Research

Fig. 3 Number of publications inherent to the effects of pesticides on health (PubMed accessed
03/22/2016)
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showed that conazole fungicides (e.g., Epoxiconazole) act as endocrine disruptors
(Kjaerstad et al. 2010). Also, it was observed in rats a disruption of reproductive
development such as longer duration of gestation or fetal death (Christiansen et al.
2010) and in quail, a reduction of the number of spermatids (Grote et al. 2008).

A wide range of literature details the adverse effects of environmental exposures,
including pesticides, and on both male and female reproductive systems (Shojaei
Saadi and Abdollahi 2012). Following a study on the evaluation of reproductive
disorders in men and women working in greenhouses, Bretveld et al. (2008)
claimed to have evidence on the assumption that pesticide exposure affects human
reproduction leading to miscarriage. The general population may be affected by
these fertility problems due to exposure to pesticides. Thus, another study (Orton
et al. 2011) reveals that pesticides to which the European population is exposed are
potentially threatening to the male fertility.

A study by Andersen et al. (2008) shows that boys whose mothers worked in
greenhouses where pesticides were used during pregnancy have a development of
reproductive functions disrupted. The study focused on the development of
reproductive functions of 110 boys. The results of the study demonstrate the
prevalence of cryptorchidism (undescended testicles), a lower testicular volume and
a lower serum concentration of testosterone in boys of mothers exposed to pesti-
cides in greenhouses than boys of not exposed mothers. For the authors, these
results suggest a negative effect of the professional use of pesticides by mothers,
during pregnancy, on the development of function reproduction of their boys,
despite the precautions taken for use.

3.2 Malformations and Immune System Disorders

A recent study (Chevrier et al. 2011) reinforces the hypothesis that environmental
exposure of pregnant women to the pesticide atrazine increases the risk of adverse
effects on the fetus. Scientists followed a cohort of pregnant women from 2002 to
2006 in Britain. The authors noted increased risks of low weight and small head
circumference at birth for babies whose mothers were exposed to atrazine by their
environment. In mammals, it has been observed that insecticides affect the immune
system (Nandi et al. 2011).

3.3 Pesticides and Cancer

The pesticides DDT, lindane, simazine and the risk of prostate cancer occurrence
were mentioned in a study on the exposure of farmers of British Columbia to these
compounds (Band et al. 2011). In later studies on the impact of pesticides on the
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health of agricultural workers, Mills and Yang (2007) arrived at a similar conclu-
sion to that of other studies on gastric cancer conducted in Europe. They suggest
that the risk of stomach cancer experienced by agricultural workers can be attrib-
uted to exposure in the workplace. Chrisman et al. (2009) evaluated statistically the
degree of correlation between pesticide sales in 1985 and the death rate from cancer
between 1996 and 1998 in 11 Brazilian states. The results suggest a significant
correlation with a coefficient varying from 0.61 (esophageal cancer) to 0.73 (lip
cancer). In addition, these authors suggest that the population exposure to pesticides
in the 1980s in some Brazilian states may be associated with the development of
cancer a decade later.

Provost et al. (2007) showed an increased risk of developing certain brain cancer
for people exposed to pesticides through their professional activities or home. The
study found that the increased risk is statistically significant for strong pesticide
exposure levels. For farmers exposed to the higher levels, the risk is more than
doubled. Women working on the farm are more likely to develop breast cancer than
others, according to a Canadian study (Brophy et al. 2002). Researchers who have
studied the work history of 564 women with breast cancer in the Windsor area
(central Canada), noted that the risk was 2.8 times higher for those who worked in a
farm a moment of their lives.

The risk of leukemia in children is associated with maternal exposure to pesti-
cides during pregnancy (Wigle et al. 2009). The researchers studied the results of 31
epidemiological studies published between 1950 and 2009 studying the link
between childhood leukemia and pesticides exposure for parents. The result states
that the leukemia risk was doubled among children whose mothers were occupa-
tionally exposed to pesticides during pregnancy, compared to children of unex-
posed women. For farmers, the risk was increased by 40%. Moreover, the risk of
leukemia is related to the nature of the pesticide.

3.4 Pesticides and Diabetes

Users of pesticides who used chlorinated pesticides for more than 100 days in their
lifetime have an increased risk of diabetes, according to a study from the National
Institute of researchers for the US Health (Montgomery et al. 2008). Depending on
the nature of pesticides, the risk may be increased by 20–200%. This study which
was conducted on more than 30,000 farmers shows that among the 50 different
pesticides that the researchers studied, 7 products especially have retained their
attention (aldrin, chlordane, heptachlor, dichlorvos, trichlorfon, alachlor and
cynazine). More Recently several studies confirmed that some pesticides are sig-
nificantly associated with type 2 diabetes (Wu et al. 2013b) and with abnormal
glucose tolerance determined from oral glucose tolerance test among obese indi-
viduals (Dirinck et al. 2014).
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3.5 Pesticides and Neurological Pathologies

Among the delayed neurotoxic effects that may be related to the use of pesticides,
Baldi et al. (2012) hold the following disorders: polyneuropathy, neuropsycho-
logical disorders, Parkinson’s disease. In another study on the delayed effects of
pesticides on human health, it was concluded that occupational exposure to
organochlorine and organophosphate pesticides is associated with the onset of
neuropsychological and neurobehavioral disorders (Multigner 2005). Several
studies showed that people exposed to pesticides (insecticides and herbicides) are
those at high risk of contracting Parkinson’s disease (Freire and Koifman 2012; Van
Maele-Fabry et al. 2012; Van der Mark et al. 2012). During tests on pesticides,
some authors have found a significant direct link between occupational exposure to
organophosphate pesticides and the development of Alzheimer’s disease in their
lifetime (Hayden et al. 2010). Moreover, Parron et al. (2011) showed that people
living in areas with high levels of pesticide have a high risk of contracting Alz-
heimer’s disease. Exposure to pesticides also seems linked to a greater risk of
developing Parkinson’s disease. Another recent study (Costello et al. 2009) shows
that exposure to pesticides maneb and/or paraquat increases on average by 75% the
risk of developing Parkinson’s disease in people exposed. The risk is multiplied by
2.27 following exposure to one of these two pesticides or multiplied by 4.17 when
young subjects are exposed to the two pesticides.

3.6 Respiratory Affection and Pesticides

An analysis (Hoppin et al. 2007) showed an excess risk for the occurrence of
chronic bronchitis during the use of two insecticides, diazinon and Malathion.
Furthermore, in a study on farmers employing forty pesticides, wheezing’s respi-
ratory were reported by 19% of farmers (Hoppin et al. 2002).

4 Quantitative Structure-Activity Relationships (QSAR)

4.1 Introduction

Thousands of pesticides are released into the environment. Several studies have
shown the toxic potential of these compounds on human health and wildlife (Mas
et al. 2010). Also, regulators worldwide look for assessing toxicological and eco-
toxicological risks posed by the release of these substances. The risk assessment
process is traditionally performed using experiments on laboratory animals. These
tests represent 8% of the total number of animals used in experiments (Devillers and
Devillers 2009). However, a full evaluation of the toxic properties by experimental
testing is time consuming, expensive and poses an ethical problem.
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Given the growing demand for toxicity assessment, many countries and/or
organizations are studying the use of alternatives to animal testing. Such is the case
of REACH (Registration, Evaluation and Authorisation of CHemicals), the new
European legislation on chemicals, which requires, when it is possible, to replace
the animal tests by alternative methods (Devillers and Devillers 2009). The aim of
REACH is to improve the protection of human beings and the environment through
a better and earlier identification of the toxic properties of the compounds (EU
2006). We can also mention FRAME (Fund for the Replacement of Animals in
Medical Experiments: http://www.frame.org.uk) which is engaged in the develop-
ment and acceptance of methods to replace animal testing for regulatory and other
purposes (Dearden 2002).

The use of computer technology to predict the chemical impact on the envi-
ronment and human health is an alternative to animal testing. With software tools,
several toxicity prediction approaches were developed. Among these approaches
were the traditional QSAR methods, qualitative structure-activity relationships
(SAR) methods, expert systems and 3D-QSAR like comparative molecular field
analysis (CoMFA). The advantage of these prediction methods is their low cost,
short duration, high efficiency and reproducibility using the same model. In this
chapter, we will focus on QSAR methods for predicting the toxicity of pesticides.

4.2 The General Principles of QSAR Models for Toxicity
Prediction

The QSAR Toxicological models are mainly used for predicting the toxicity of new
compounds. These models are mainly developed from the training set of com-
pounds with known activity. At the origin of any model, there is a basic assump-
tion. In the case of QSAR for toxicology, it is assumed that the toxicity is related to
the chemical structure. Also, a QSAR is a mathematical equation that correlates a
particular activity (toxicological or other) and the structural properties of a series of
compounds. This equation can then be used to predict toxicity or property of other
compounds. The use of QSAR models is of great importance in the risk assessment
of pollutants because they provide quick answers, reliable and quite accurate. They
can serve as alternatives to existing experimental techniques. It is useful to note that
the commercial models that can predict the toxicity of chemicals (such TOPKAT,
CAESAR or DEREK) are available on the market (Venkatapathy and Wang 2013).

To be used in a regulatory context, the QSAR models must respect the five
principles proposed by the Organisation for Economic Co-operation and Devel-
opment (OECD) (Dearden and Rowe 2015): (1) a defined endpoint (2) an unam-
biguous algorithm, (3) a defined domain of applicability, (4) appropriate measures
of goodness of fit, robustness, and predictivity, (5) a mechanistic interpretation, if
possible. In particular, a series of internal and external validation tests are used to
demonstrate the reliability of a QSAR model. The goodness of fit is evaluated for
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the compounds used to establish the model (i.e., the compounds of the training set).
Robustness is estimated by cross-validation and/or randomization techniques. The
predictive power is generally evaluated by means of a set of external validation of
compounds which are not used to develop the model. Currently, external validation
of QSAR models is a standard requirement.

The construction of a QSAR model for toxicological prediction requires the
following three phases:

1. An experimental base of high quality for the studied chemical compounds. It
must include the following elements: structure of compounds, physico-chemical
and toxicological properties with reference to the species, strain and laboratory
animal sex used (Zakharov and Lagunin 2014). Note that a huge amount of
information from toxicity databases is free. For pesticides, we can cite two
databases: the Pesticide Properties DataBase (PPDB) and the Pesticide Action
Network (PAN). However, the appropriate selection of high quality experi-
mental data, which will be used to create the model, is of utmost importance for
the development of a reliable model.

2. In the second phase, it is necessary to calculate the descriptors. The latter are
used for the description of chemical structures. There are software programs that
generate different types of molecular descriptors. One of the most popular
software provided by Talete Italian company is called Dragon. In addition,
several methods are used to select the most relevant descriptors. The regression,
principal component analysis (PCA) and genetic algorithms (GA) have been
proposed in the literature. These are probably the most powerful tools because
they are able to fully explore the molecular space (Lagunin et al. 2011).

3. The next step is to use a mathematical method to identify the relationship
between the descriptors and their biological effects (e.g., toxicity). There are
several manuals with descriptions of mathematical methods (or statistical
learning techniques) used in modeling QSAR (Zakharov and Lagunin 2014).
The best known methods are: linear regression (LR), multilinear regression
(MLR), and nonlinear techniques such as artificial neural networks (ANN) and
support vector machines (SVM).

4.3 QSARs for Predicting Toxicity of Pesticides

The REACH legislation (Dearden and Rowe 2015) recommends evaluation of
nineteen toxicological properties in terms of annual tonnage. Among these prop-
erties, we can cite: skin and eye irritation, acute toxicity, aquatic toxicity, repro-
ductive toxicity, chronic toxicity, effects on terrestrial organisms, the carcinogenic
effect and long-term toxicity for invertebrates, micro-organisms and sediments,
plants and birds. In the present section, we try to examine and evaluate QSAR
models published in the literature devoted to the prediction of the toxicological
properties.
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4.3.1 QSARs for Acute Toxicity

Acute toxicity describes the adverse effects caused by a single exposure to a
chemical substance. Exposure is generally oral, dermal or inhalation. LD50 (Lethal
Dose) is a way to measure the acute toxicity of a given compound. The LD50 is the
amount of compound that causes death of 50% (half) of a group of test animals. It is
usually expressed as amount of chemicals administered (e.g., milligrams) per
kilogram weight of the test animal. Note that the use of the LD50 data presents some
drawbacks when used for QSAR modeling. This is due to the fact that the available
data are highly variable and are from different laboratories that do not use the same
experimental protocol.

Various QSAR models to predict the acute oral toxicity in rodents were estab-
lished. Organophosphorus pesticides and herbicides have received particular
attention. For example, Enslein (1978) developed regression models using two sets
of large data. The R2 value for the entire test was 0.33, which means that these
models are characterized by low power external prediction. For their part, Adamson
et al. (1984) attempted to establish a QSAR model linking LD50 rat oral for 129
herbicide (trifluoromethyl) benzimidazoles and their chemical structure using a
multiple regression analysis and the structural descriptors. The authors suggested
that reliable forecasts of high precision are not feasible. Nendza (1991) established
two models of prediction of the LD50 (mmol/kg) of 12 phenylurea herbicides in rats
orally. Hydrophobic and electronic parameters were used and the results obtained
are interesting with R values of 0.94 and 0.81.

A set of forty four amide herbicides was used by Zakarya et al. (1996) for
establishing two QSAR models for prediction of the LD50. The performance
comparison of the ANN model with a three-layer perceptron and a regression model
showed that the first model was more efficient. Zakarya et al. (1997) studied
structure–toxicity relationships for 120 diverse insecticidal 1, 1, 1-trichloro-2, 2-bis
(4-chlorophenyl) ethane-type (DDT-type) molecules using a neural network. Based
on the results of the training set, neural networks were found superior to the
regression analysis. Eldred and Jurs (1999) proposed two models for predicting the
oral LD50 in male rats. The first linear regression-based model focused on a training
set of 49 organophosphorus pesticides and a test set consisting of 5 pesticides. The
second model was obtained by use of artificial neural networks for 44 and 5
pesticides in learning and test sets, respectively. Twenty nine descriptors were
selected from a set of 212 descriptors. The ANN model with seven neurons in the
input layer gave RMS values of 0.22 and 0.25 for the sets of learning and testing
respectively. In another research work, the acute oral toxicity of 50 amide herbi-
cides in rats (LD50 in mmol/kg) was used to establish a QSAR (Gough and Hall
1999). The model was used to predict the toxicity of new amides, not used
throughout the training. The mean absolute error for the test set was equal to 0.27.

QSAR models for prediction of the rat LD50 orally of 67 organophosphorus
pesticides (47 in the training set and 20 in the test set) were obtained by Zahouily
et al. (2002). Acute toxicity data were converted into mol/kg. Three descriptors
were used as inputs of a three layer perceptron trained by backpropagation
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algorithm. The optimal neural model has a 3/5/1 structure with R2 = 0.93 and
q2 = 0.65. Quantitative structure-toxicity relationship (QSTR) models were derived
for estimating the acute oral toxicity of 51 organophosphorus pesticides to male and
female rats using regression by partial least squares (PLS) and artificial neural
networks (ANN) (Devillers 2004). The first model was able to explain 64% of the
variability of the dependent variable. The second nonlinear model obtained with a
multilayer perceptron (8/4/1) provided mean square error of 0.29 and 0.26 for the
training and test sets respectively. These values were much higher than those of
PLS regression. Furthermore, this study has highlighted the importance of the molar
refractivity and lipophilicity.

Moreover, Garcia-Domenech and his colleagues (2007) proposed two models for
predicting acute toxicity in rats of 62 organophosphorus pesticides. The LD50 were
expressed in mmol/kg and then log transformed prior to their use. The prediction of
the LD50 of a test set of 23 pesticides from the second model gave a determination
coefficient R2 = 0.73. This work has identified the useful descriptors for developing
new QSAR models. Five QSAR models for acute oral toxicity in rats were devel-
oped by Zhu et al. (2009a). These models were built using large datasets (253 rats
and 235 mice), several methods for statistical modeling and several sets of
descriptors. Although the initiative is interesting, these models are not useful in
practice owing to the complexity of the development process. Zhu et al. (2009b) also
proposed a new modeling approach for predicting acute toxicity. In this study, the
authors used chemical descriptors (calculated by DRAGON) and a set of the ZEBET
database. The accuracy of the prediction of the LD50 of the resulting models exceeds
the TOPKAT models applied to the same set of external test.

Recently, Can et al. (2013) have established models for prediction of acute oral
toxicity (LD50) of 27 phenyl sulfonylurea herbicides in rats. A method of multi-
linear regression with four descriptors were selected in this study. The best model
gave a value of 0.93 for the coefficient R2. The model was validated by internal and
external testing. The authors conclude that the test results indicate that the model
obtained can be used with confidence to predict the toxicity of molecules phenyl
urea herbicides. Hamadache et al. (2014) used multiple linear regression (MLR) and
artificial neural network (ANN) to predict acute oral toxicity of a diverse set of 62
herbicides on rats. Both QSAR models obtained using the relevant descriptors
showed good predictability. The comparison of results obtained using the ANN
model with those of the MLR model revealed the superiority of the ANN model.
The statistical parameters for the prediction of acute oral toxicity for MLR and
ANN were R2 = 0.855, RMSE = 0.270; and R2 = 0.960, RMSE = 0.118,
respectively. The comparison of the validation results with those of other studies
have shown the superiority of the model developed in this work. In a second study
for the prediction of acute oral toxicity of 77 herbicides to rats, a QSAR model
using an artificial neural network (ANN) was developed (Hamadache et al. 2016a).
The internal and external validations of the model showed high values of Q

2
and r2m

in the range 0.782–0.997 for training and testing. In addition, the major contribution
of the work was to develop an equation based on artificial neural network to predict
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the toxicity of 13 other herbicides. The mathematical equation yielded very sig-
nificant results, which led to an R2 value of 0.959. The agreement between the
calculated and experimental values of acute toxicity confirmed the equation
capacity based on ANN to predict the toxicity of herbicides that have not been
tested, as well as that of new herbicides.

Very recently, a study on the establishment of a QSAR prediction of acute
toxicity of 329 pesticides on rats was undertaken by Hamadache et al. (2016b).
The QSAR model based on 17 molecular descriptors is characterized by a good
domain of applicability. The best results were obtained with an Artificial Neural
Network model with an architecture 17/9/1 established with the Quasi Newton back
propagation (BFGS) algorithm. The accuracy of the prediction for the entire
external validation was estimated by the Q2

ext and the mean square error
(RMS) being equal to 0.948 and 0.201, respectively. 98.6% Compounds of external
validation group were correctly predicted and the current model proved to be
superior to previously published models. Consequently, the model developed in
that study provides excellent predictions and can be used to predict acute oral
toxicity of pesticides, especially for those which have not been tested, as well as
new pesticides.

4.3.2 QSARs for Aquatic Toxicity

The acute toxicity to the aquatic environment is determined using a lethal con-
centration (LC50 96 h) on fish, median effective concentration (EC50 48 h) on
crustaceans and a median effective concentration (EC50 72 or 96 h) on alga. The
review of the literature shows that the QSAR models dedicated to the aquatic
toxicity have been developed mainly for Daphnia magna and fathead minnow
(Pimephales promelas). We note that Daphnia magna is classified as the preferred
organism for short-term aquatic toxicity testing as suggested in Annex XVII of
REACH.

Numbers of QSAR models were developed to predict aquatic toxicity. Some
have been developed from a set of homogeneous data, while others from a
heterogeneous set. For our part, we will focus on models developed for predicting
the aquatic toxicity of pesticides irrespective of the nature of the data sets. An
example of these QSAR models can be found in (Agatonovic-Kustrin et al. 2014),
where the prediction of the aquatic toxicity of pesticides in terms of lethal dose
(LD50) for fish was done using an artificial neural network to a set of 230 pesticides
including fungicides, herbicides and insecticides. Thirteen molecular descriptors
related to lipophilicity, the hydrogen bond and polarity were selected on 62 cal-
culated descriptors. The authors concluded that this model has predictive power
knowing that the value of the predictive coefficient q2 for the final model was 0.748.
Moreover, the experimental values of LC50 to fish of 150 pesticide metabolites
(retrieved from the PPDB database: http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm)
were used to develop QSAR model for prediction of acute toxicity using the

488 M. Hamadache et al.

http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm


software ECOSAR US EPA (Burden et al. 2016). The results show a significant
correlation between the values of the predicted and experimental LC50. However, a
few outliers were reported. Also, the authors suggest further refining the approach
to improve the prediction model and allow future integration in the guidelines and
regulatory practices.

Basant et al. (2015a) have established two Quantitative Structure-Toxicity
Relationship (QSTR) nonlinear models to predict the toxicity of pesticides for many
aquatic species in accordance with the OECD guidelines. A set of six descriptors
was used. Model validation was performed using several statistical coefficients for
test sets. The two established models applied to data on the toxicity of aquatic
species gave R2 values > 0.92 and 0.97, respectively. The results suggest the rel-
evance of the QSTR models developed to reliably predict the aquatic toxicity of
chemical substances and that they can be used for regulatory purposes. The
development of QSAR models to predict the acute toxicity of organothiophosphate
pesticides on fish was the objective of the study by Zvinavashe et al. (2009). A set
of data on acute toxicity of 15 organothiophosphates to Daphnia magna and 3
descriptors were used. In addition, it was examined whether the toxicity data for
invertebrate Daphnia magna could be used to build a QSAR model to predict
toxicity to fish. Appropriate QSAR models (with 0.80 < R2 < 0.82) were devel-
oped to predict the acute toxicity of organothiophosphates to fish (Cyprinus carpio)
and to invertebrate (Daphnia magna). Internal and external validation was per-
formed on QSAR models and a scope was defined.

A dataset of 125 aromatic pesticides with aquatic toxicity towards trout was used
to develop a QSAR model (Slavov et al. 2008). In addition to the standard
2D-QSAR analysis, a comparative molecular field analysis (CoMFA) was also
carried out for comparison purposes. The CoMFA analysis contributed to the
recognition of steric interactions which play an important role in aquatic toxicity.
The QSAR approach initiated by Mazzatorta et al. (2005) was applied for the
prediction of acute aquatic toxicity of a set of pesticides. Various linear regression
techniques and nonlinear were used to obtain QSAR models. The final model,
developed by a counter propagation neural network coupled with genetic algo-
rithms produced good results for the entire test set with R2 = 0.79. Toxicities
(EC50 − 24 h) of 18 biphenyls substituted for Daphnia magna were used to
develop three linear one descriptor QSAR models (Wang et al. 2004). A good
correlation between the predicted and experimental values was noted. However, it
was found that the model obtained with quantum chemistry parameter had good
predictive ability. Another example of a QSAR model was reported by Devillers
(2001). This model was developed using a feed-forward neural network with three
layers formed by the back-propagation algorithm; it was used for the prediction of
acute toxicity of pesticides against Lepomis macrochirus (freshwater fish). How-
ever, the authors stress that the model may tend to overfitting for all training data if
external validation strategies are not implemented.
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Several QSAR models established for homogeneous series of pesticides were
used for the prediction of acute toxicity on Daphnia magna. For example, Vighi
et al. (1991) used the acute toxicity (EC50 − 24 h) of 22 organophosphorus pes-
ticides to establish a QSAR model based on multi-linear regression. A good cor-
relation was obtained with a coefficient of determination R2 = 0.90. The authors
noted that the major contribution to the toxicity for daphnia is the lipophilic nature.
Another QSAR study for the prediction of aquatic toxicity (EC50 − 24 h) involving
a set of 20 organophosphate pesticides and WHIM descriptors was conducted by
Todeschini et al. (1996). The model based on multi-linear regression provided an
excellent predictive power with a coefficient R2 = 0.92. Recently, new QSAR
models for predicting the aquatic toxicity (EC50 − 48 h) of 97 triazole compounds
and benzo-triazoles against Daphnia magna were established by Cassani et al.
(2013). These models, developed by using the multilinear regression were validated
in accordance on OECD principles. They are characterized by a strong external
predictability (Q2

ext = 0.69–0.83) and a wide applicability domain.

4.3.3 QSARs for Effects on Terrestrial Organisms
(Birds, Invertebrates, Plants)

A number of QSAR models have been developed to predict the pesticide toxicity
with respect to terrestrial organisms like birds, invertebrates, microorganisms and
plants. In this context, we cite some models reported in the literature.

Avian toxicity in four species (Mallard duck, Ring-necked pheasant, Japanese
quail, House sparrow) of a set of pesticides was modeled with 9 descriptors and
artificial neural networks (Basant et al. 2015b). Three QSAR models (SDT: single
decision tree, DTF: decision tree forest, and DTB: decision tree boost) were built
according to the OECD guidelines. The second and third models with coefficients
R2 = 0.945 and 0.966 respectively gave better prediction results than the first
model. The authors emphasize the relevance of QSAR models developed and
suggest that they may be useful tools in screening for new pesticides for regulatory
purposes. In another study, the QSAR analyses for fungicidal activities of thiazoline
derivatives against rice blast (Magnaporthe grisea) were developed with physico-
chemical descriptors using multiple linear regression (MLR) and neural network
(NN) (Song et al. 2008). Three sets of thiazoline derivatives with different sub-
stitution patterns were used. The models developed according to the OECD prin-
ciples were subjected to internal and external validation showing good results. For
example, a sample consisting of 82 compounds in the training set was accredited
with a standard error equal to 0.097 (ANN) and 0.139 (MLR), whereas the standard
error values for the test set were 0.122 (ANN) and 0.162 (MLR).

Devillers et al. (2002) have developed a feed-forward neural model for the
prediction of acute toxicity of 100 pesticides to Apis mellifera (European bee) by
using the physicochemical properties as descriptors. The root mean square residual
(RMSR) values for the training and testing sets were 0.430 and 0.386, respectively.
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The model developed according to the principles 1 and 4 of the OECD underwent
internal and external validation tests. Neural models of quantitative
structure-toxicity relationship were established for predicting the qualitative and
quantitative toxicity of pesticides in honey bee (Apis mellifera) using experimental
values of the toxicity of 237 pesticides (Singh et al. 2014). The predictive power of
the models was tested by internal and external validation with different statistical
metrics. One of the models gave a correlation value of R2 of 0.841 and a mean
squared error (MSE) of 0.22. The authors suggest that the two built models can be
useful tools for predicting the qualitative and quantitative toxicities of new pesti-
cides for regulatory purposes.

5 Conclusions

Based on the review of the literature on QSAR models dedicated to predicting the
toxicity of pesticides in the context of risk assessment, two types of models are
currently available: those generated by commercial software and those published in
the literature. Since a lot of literature has been devoted to the application of
commercial software in predicting toxicity, our literature review was devoted
essentially to the QSAR models published in the literature.

Critical evaluation of the QSAR models for predicting the toxicity of pesticides
that are reported so far in the literature allowed us to draw the following conclu-
sions. First, to achieve the objectives established under the REACH inherent to
toxicity of chemical compounds, efforts are necessary and imperative to develop
very effective in silico prediction methods. Among these methods, we can cite
quantitative structure-activity relationships, which are essential. Then, thanks to the
remarks made by some authors (Stouch et al. 2003; Johnson 2008) on the feasibility
and reliability of the use of QSAR approaches in toxicity studies: QSAR models
should be established strictly under the principles established by the OECD.
Finally, QSAR methods based on neural networks have also provided promising
results in predicting the toxicity of compounds with respect to certain species.
These models can be faster and less expensive, and are alternatives to toxicity
testing involving animal experiments.

In this review, a number of QSAR models for prediction of certain toxicological
properties of pesticides are summarized. Compared with the number of models
available in the literature for predicting the toxicity of chemicals, those dedicated to
pesticides remain insignificant. Furthermore, the study revealed considerable
imbalances in the availability of models compared to the toxicological endpoint of
regulatory significance studied. In one hand, there is abundant literature for the
prediction of acute toxicity and aquatic toxicity and on the other hand, there is a few
or no QSAR models devoted to the prediction of other toxicity properties.

In general, most QSAR models for the prediction of acute and aquatic toxicities
available in the literature were drawn from limited data sets of pesticides that have
similar chemical structures, such as organophosphates. However, some models
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derived from heterogeneous data sets have also been reported in the literature
(Benfenati et al. 2007; Zhu et al. 2009a; Hamadache et al. 2016b; Agatonovic-Kustrin
et al. 2014; Burden et al. 2016). In addition, the number of statistical parameters used
for validation is limited, especially in the case of older old works. Moreover, these
models are acceptable with regard to some of the OECD guidelines for validation of
QSAR, especially the first and the fourth principles. Furthermore, in the regulatory
assessment of pesticides, most of the established models are far from meeting the
requirements of other OECD validation principles. Therefore, despite the fact that the
QSAR models developed in some very recent studies are promising in that they
showed very interesting predictive capabilities, efforts are needed to explore their
applicability and implement them in a useful form in the practice. Concerning the
parameters having a great contribution to the toxicity of pesticides, hydrophobicity,
steric effects and electronic effects, can bementioned.Moreover, they can be useful in
improving the understanding of the mechanisms involved in the toxicity of the
substances studied.
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Counter-Propagation Artificial Neural
Network Models for Prediction
of Carcinogenicity of Non-congeneric
Chemicals for Regulatory Uses

N. Fjodorova, M. Novic, S. Zuperl and K. Venko

Abstract The evaluation of carcinogenic hazard of chemicals to human is nowa-
days one of the most challenging tasks. Quantitative structure–activity relationship
(QSAR) models are welcome tools to cope with complex, expensive and time
consuming experimental methods for evaluation of carcinogenic potency. Therefore,
in last decade, vast effort was involved to introduce new in silico models for pre-
diction of carcinogenicity of non-congeneric chemicals that can be effectively used
for regulatory purposes in the scope of new legislation REACH (Registration,
Evaluation, Authorisation and Restriction of Chemicals). In this chapter we focus on
models developed in the scope of CAESAR and PROSIL projects which were
implemented in on-line available internet platform VEGA (http://www.vega-qsar.
eu/use-qsar.html). These QSAR models for prediction of carcinogenic potency are
based on counter propagation artificial neural network algorithm (CPANN). CP
ANN algorithm represents a suitable tool for modeling of complex biological data
like carcinogenicity. We emphasized on the representation of key development steps
needed to be involved in model construction to meet requirement of five OECD
principles. First of all, it reported the description of carcinogenicity endpoint and
analysis of quality of chemical and biological data (principle 1), followed by an
explanation of the CPANN algorithm selected for modelling (principle 2). Next, the
interpretation of domain of applicability for non-congeneric chemicals (principle 3)
was given. Furthermore, the statistical performance characteristics of models in
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sense of its goodness-of-fit, robustness and predictivity was reported (principle 4),
and finally, the mechanistic interpretation of models on the basis of selected types of
descriptors and structural alerts of studied chemicals was represented (principle 5).

Keywords Counter propagation artificial network (CPANN) ⋅ In silico models ⋅
(Quantitative) structure-activity relationship ((Q)SAR) ⋅ Carcinogenicity ⋅
Models for regulatory use ⋅ Non-congeneric chemicals ⋅ REACH

Abbreviations

AC Accuracy
AD Applicability domain
CAESAR Computer Assisted Evaluation of industrial chemical Substances

According to Regulation
CPANN Counter propagation artificial neural network
CPDB Carcinogenic Potency Database
ECHA European Chemical Agency
ED Euclidean distances
FN False negatives
FP False positives
IARC International Agency for Research of Cancer
IATA Integrated Approach to Testing and Assessment
NP Not positive
P Positive
QSAR Quantitative structure–activity relationship
REACH Registration, Evaluation, Authorization and Restriction of Chemicals
SA Structural alerts
SAR Structure–activity relationship
TD Tumourgenic dose
TN True negatives
TP True positives

1 Introduction

The carcinogenic potency of chemicals is of great importance in assessment of
human health safety. The experimental carcinogenicity tests are expensive and
require animal testing, which is contrary to the policy in EU member states to
replace, reduce and refine the use of animals in science, (the so called 3Rs policy).
The implementation of REACH, which aims to fill information gaps for large
number of chemicals in order to minimize animal testing, initiated the employment
of in silico models for safety assessment of chemicals EC (2008) including the
(Quantitative)Structure-Activity Relationships (Q)SAR approach.
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A thorough analysis of the use of in silico information in a regulatory setting
shows that the number of REACH dossiers for which read-across and/or (Q)SAR
was used to replace experimental evidence hovers around 30% (ECHA 2014).

The more detailed information of QSAR models and software tools for pre-
dicting genotoxicity and carcinogenicity was published as JRS Scientific and
Technical Reports by Serafimova et al. (2010). The following databases are used for
QSAR modeling of genotoxicity and carcinogenicity: CPDB, Danish QSAR
database, DSSTOX, ECHA CHEM, ESIS, EXCHEM, GAP, IARC, ISSCAN, NTP,
ToxRefDB, TOXNET, GENE-TOX. The evaluation of carcinogenic potency
started with so called structure-activity relationships (SAR) method. At first, the
nineteen (19) structural alerts (SA) for carcinogenicity was proposed by Ashby
(1985), then thirty three (33) SAs were offered by Bailey et al. (2005) and twenty
nine (29) SAs was submitted by Kazius et al. (2005) and, finally, the thirty three
(33) SAs were developed by Benigni and Bossa (2008a) and incorporated into Tox
Tree expert system by Benigni et al. (2008b). It should be noted that SAR models
only use (sub) structure information and can therefore be seen as a more formal way
of performing read-across with a given reference set of data, as the property of one
or more substances is directly used to predict the property of the substance of
interest Jacobs et al. (2016).

The most widespread approaches used in carcinogenicity models are rule-based,
statistical and hybrid (Serafimova et al. 2010).

The most well-known public or/and commercial software for genotoxicity and
carcinogenicity with indication of web sources and authors are represented in the
Table 1.

The needs of industry and regulators to assess thousands of compounds initiate
the development of high-throughput assays combined with innovative data-mining
and in silico methods. Various initiatives in this regard have begun, including
CAESAR, OSIRIS, CHEMOMENTUM, CHEMPREDICT, OpenTox, EPAA, and
ToxCast™ (Benfenati et al. 2009).

European Chemical Agency (ECHA) declared that non-testing methods to assess
carcinogenic hazard to humans include the Quantitative Structure-Activity Rela-
tionships ((Q)SARs) as well as chemical grouping for read across approaches
ECHA (2014). The QSAR models for prediction of toxicological properties of
substances take into account the quantitative parameters describing the structure as
well as physico-chemical (reactivity) properties of considered substances. SAR
models only use the (sub) structures information (fragments), therefore they can be
considered as a more formal way of performing read across with a given reference
set of data. The property of one or more substances here is directly used to predict
the property of a new substance. It should be highlighted that QSAR method is
based on a large good quality dataset using the robust scientific and statistical
concept. Read across in some sense is more subjective approach, but it can provide
the more specific information. In the latest article by Jacobs et al. (2016), the
Integrated Approach to Testing and Assessment (IATA) was proposed. The authors
supposed that in future a combination of (Q)SAR with read across (local validity
analysis of models), may be of greater reliability for decision making. VEGA
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platform represents the example of application QSAR and read across methods.
VEGA was developed and accepted for regulatory use (Jacobs et al. 2016).

In this chapter we discussed the main features of models employed in VEGA
platform (Vega web site: http://www.vega-qsar.eu/) developed within European
Commission (EC) funded project CAESAR (Computer Assisted Evaluation of
industrial chemical Substances According to Regulation) (CAESAR web site:
http://www.caesar-project.eu) and ongoing project PROSIL (PROSIL web site:
http://www.life-prosil.eu/).

The categorical or qualitative models for prediction of carcinogenic potency of
non-congeneric chemicals using Counter Propagation Artificial Neural Network
(CPANN) method were presented in this chapter. These models have been
developed in accordance with 5 principles of validation (Q)SAR models for their
use in regulatory assessment of chemical safety adopted by OECD member
countries in November 2004 OECD (2004a). A full report from the OECD Expert

Table 1 The list of software for genotoxicity and carcinogenicity

Name of software Web source References and/or organization

CAESAR (VEGA
platform)

(http://www.caesar-project.eu/); Fjodorova et al. (2010a)

HazardExpert (http://www.compudrug.com) Lewis et al. (2002)
Lazar http://lazar.in-silico.de Helma (2006)
MDL-QSAR http://www.symyx.com Contrera et al. (2005a) and

Valerio et al. (2007)
Multicase
(MCASE/MC4PC)
MultiCASE Inc.

http://www.multicase.com Matthews and Contrera (1998)
and Matthews et al. (2006a, b)

OncoLogic™ http://www.epa.gov/oppt/
newchems/tools/oncologic.
htm

Woo and Lai (2005)

TOPKAT (Accelrys) http://www.accelrys.com Enslein et al. (1994) and Prival
(2001)

Toxtree http://ecb.jrc.ec.europa.eu/
qsar/

Benigni et al. (2010) and Benigni
et al. (2009)

OECD toolbox http://toolbox.oasis-lmc.org Benigni et al. (2008b),Serafimova
et al. (2007)

PASS http://www.way2drug.com/
http://www.way2drug.com/
PASSOnline/downloads.php

Poroikov et al. (2010)

GAP—genetic activity
profile database

http://www.ils-inc.com Initially developed by US EPA
and IARC, and now by ILS

Derek https://www.lhasalimited.org/
products/derek-nexus.htm

Lhasa Ltd., Marchant (1996)

MolCode toolbox http://www.chemistry-
software.com/molcode/index.
html

Molcode Ltd.
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Group on (Q)SARs was also published in 2004: OECD (2004b). In February 2007,
the OECD published a “Guidance Document on the Validation of (Q)SAR Models”
(OECD 2007).

Within CAESAR project, the data mining approach has been improved using a
highly verified set of compounds (all chemical structures have been
double-checked, and experimental data verified in case of some unusual finding,
compared to similar compounds). A wide series of chemical descriptors were
adopted. Different algorithms have been developed, this resulted in a series of
models. The best performance was obtained in the case of CPANN algorithm which
is reported here. The predictive power of models is one of the most important
characteristics in QSAR modeling. Benigni et al. (2008c) pointed out that the
prediction reliability should be checked by means of an external test set with new
chemicals not used in modeling. It was stressed that the models for regulatory
purposes should be connected with high sensitivity, i.e., the ability to correctly
identify true positives. In the CAESAR project, an external dataset of 738 chem-
icals was composed and external validation of models was done. It was shown how
one can increase the number of correctly predicted carcinogens using correlation
between threshold of categorical models and sensitivity and specificity. It was
demonstrated how threshold influences overall performance of models.

Preliminary results of carcinogenicity modeling using CPANN algorithm
obtained in the scope of CAESAR project are described in an article by Fjodorova
et al. (2010a), while final results were reported in the other articles of Fjodorova
et al. (2010b, c, 2012). The differences in carcinogenic potency obtained in
CAESAR CPANN models and Toxtree expert system were discussed in the article
Fjodorova et al. (2014).

The main advantage of neural network modeling is that the complex, non-linear
relationships can be modeled without any assumptions about the form of the model.
Large datasets can be examined. Vračko et al. (2004) described why the neural
networks are able to cope with noisy data and are fault-tolerant.

The CPANN models were incorporated in the VEGA platform and could serve
for the preliminary ranking and prioritization of chemicals for carcinogenic
potency, as required by REACH.

2 The Determination of Endpoint and Quality of Chemical
and Biological Data (Principle 1)

2.1 The Criteria for Cancer Risk Assessment and Test
Guidelines

International Agency for Research of Cancer (IARC 2016) established the criteria
for Cancer Risk Assessment in the IARC Monographs. According to these criteria,
chemicals can be classified as Carcinogenic to humans (Group 1), Probably
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carcinogenic to humans (Group 2A), Possibly carcinogenic to humans (Group 2B),
Not classifiable as to its carcinogenicity to humans (Group 3) and Probably not
carcinogenic to humans (Group 4)

Carcinogenic potency can be assigned by studies in human, in experimental
animals as well as using mechanistic and other relevant data.

Chronic oral toxicity and carcinogenicity tests are described in “OECD Envi-
ronment, Health and Safety Publications Series on Testing and Assessment №35
Guidance Notes for Analysis and Evaluation of Chronic Toxicity and Carcino-
genicity Studies (OECD 2002). Additionally, description of the Chronic Toxicity
and Carcinogenicity Studies is given in OECD Test Guidelines 451–453. The
original Test Guideline 453 for Combined Chronic Toxicity/Carcinogenicity
Studies was adopted in 1981. It includes the carcinogenicity hazard testing and
assessment as described in OECD Guidelines TG 453 available as OECD TG 453
(2009) and the test guideline TG 451 on Carcinogenicity Studies available as
OECD TG 451 (2009). OECD Guidelines for the Testing of Chemicals (TGs) are
periodically reviewed in the light of scientific progress, changing assessment
practices and animal welfare considerations.

The majority of carcinogenicity studies are carried out in rodent species, and this
Test Guideline is intended therefore to apply primarily to studies carried out in these
species.

2.2 The Carcinogenicity Endpoint Used in VEGA Models

In the CAESAR and PROSUL models, the carcinogenic potency for rats was
selected as response because such data in risk assessment (Combes et al. 2008) are
often considered to be more suitable for human carcinogenicity prediction. The
term “carcinogen” generally refers to an agent, mixture, or exposure that increases
the age-specific incidence of cancer. Carcinogen identification is an activity
grounded in the evaluation of the results of scientific research. Tumourgenic dose is
accepted for characterization of carcinogenicity. The tumourgenic dose TD50 used
in our study is defined as the tumourgenic dose rate where 50% of the test animals
got any kind of cancer. In other words, the TD50 is that chronic dose rate (in mg/kg
body weight/day or mmol/kg body weight/day (mmol/kg-bw/day)) which would
give half of animal tumors within some standard experiment time, the “standard life
span” for the species (Peto et al. 1984).

An assignment of carcinogenic categorical activity based on evidence for or
against activity within the species group in Target Sites of Rats (Male, Female or
Both) has been accepted. Hence, “active” or positive (P) or carcinogen was
assigned for a compound if one or more TD50 and the tumor site are listed for one
or more rat carcinogenicity sex/species cell (rat male, rat female, rat both) and
“inactive” or not positive (NP) or non- carcinogens was assigned for a compound if
no TD50 or tumor site are listed and one or more “no positive results” entry for one
or more rat carcinogenicity sex/species cell, i.e., one or more experiments are
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reported in the Carcinogenic Potency Database (CPDB) (https://toxnet.nlm.nih.gov/
cpdb/cpdb.html) for species, but none are positive. In other words, chemicals were
classified as not carcinogenic when the results obtained during all animal tests on
rats were assigned as not positive (NP) (or not active) and in contrary, compounds
were classified as positive (P) (or active) when any of the in vivo assays gave a
well-defined TD50 value.

In the CAESAR model, the studied database contained 805 compounds. Among
them the 421 chemicals were classified as carcinogenic (P) and remaining 384 as
non-carcinogens (NP). In PROSIL model, the dataset of 792 chemicals was used.
Among these chemicals, 609 compounds were carcinogens and 185 chemicals were
non-carcinogens.

2.3 Quality of Chemical and Biological Data Used
in the Model

The chemicals involved in the study belong to different chemical classes (including
halogenated hydrocarbons, aromatic compounds, ketones, aldehydes, organic acids,
heterocyclic and polycyclic compounds, amines, amides, sulfonates, etc.), so called
non-congeneric substances. The work in CAESAR and PROSIL projects was
addressed to industrial chemicals, referring to the REACH initiative. The aim was
to cover chemical space as much as possible. In the scope of CAESAR project, the
initial dataset of 1481 chemicals was taken from Distributed Structure-Searchable
Toxicity (DSSTox) Public Database Network described in the articles by Richard
and Williams (2001), Richard (2004). DSSToxPublic Database was built from the
Lois Gold Carcinogenic Database (CPDB), CPDB (https://toxnet.nlm.nih.gov/
cpdb/cpdb.html).

The data used in QSAR modelling should be homogeneous to get reliable
models. Moreover, for some structures it is not possible to transform them into
descriptors, therefore they should be eliminated from the model. Hence, the initial
dataset in CAESAR project has been cleaned of all incorrect structures, ambiguous
or mixed structures, polymers, inorganic compounds, metallo-organic compounds,
salts, complexes and compounds without well-defined structure. The obtained data
and structures of chemicals were cross-checked by at least two partners.

The final data set was composed of 805 chemicals in CAESAR project and 792
chemicals in PROSIL project.

The detailed information about the dataset used in the carcinogenicity modeling
in CAESAR project was published in the article (Fjodorova and Novič 2013).

It should be highlighted that data used in the study were obtained from standard
protocols and meet requirements for QSAR modeling.
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2.4 Training, Test and External Validation Sets

To prepare data for modelling, the dataset of 805 chemicals was subdivided into
training (644 chemicals) and test (161 chemicals) sets using the sub-sorting of
chemicals according to functional groups and following procedure aimed to dis-
tinguish between connectivity aspects. This part of study has been done in the
Helmholtz Centre for Environmental Research-UFZ in Germany by a partner in the
CAESAR project. The sorting of the compounds pointed here is implemented in the
software system ChemProp (Schüürmann et al. 1997; Schüürmann et al. 2007).

Additional 738 chemicals different from those in the data set of 805 compounds
were used as the external validation set, being described by the same type of
structural descriptors as employed in our model. To assess predictive abilities of the
selected CAESAR model, a commercial database has been queried to extract new
chemical compounds to be tested. Leadscope software allows accessing some
QSAR ready database and the “FDA 2009 SAR Carcinogenicity—SAR Structures”
database consisting of 2090 compounds has been extracted from the Leadscope
environment in terms of structure information and carcinogenic activity label (based
on different mammalian species) and compared with the CAESAR dataset of 805
compounds (ChemFinder Ultra 10.0 2009).

The two databases were prepared in the form of SDF files and specific check to
search for duplicates has been performed. The compounds in common between the
two sources were analysed to verify consistency in the experimental carcinogenicity
class assigned by the two sources.

A total of 655 compounds were in common and for them the CAESAR
assignment was compared with the Leadscope one. The assignment of toxicity class
for Leadscope chemicals was based on rat data only and chemicals have been
classified as carcinogens if at least one of the two genders (male or female rat) was
labelled in Leadscope as positive or intermediate level carcinogen.

Based on this group of 655 compounds, the concordance of the two assignments
was of 367 positive chemicals and 257 non-carcinogenic ones. Only 31 compounds
were classified differently (11 positive in CAESAR dataset but negative for
Leadscope and 20 in the opposite situation); hence the overall concordance was
above 95%.

Since the concordance between the two experimental sources is very high, the
Leadscope database was considered as a reliable source of new compounds to test
the CAESAR model.

After exclusion of those chemicals already present in the CAESAR dataset, it
was possible to select as an external test set 738 compounds with experimental data
on rats. The external test compounds have been submitted to the CAESAR model to
obtain the predicted power of model.
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3 CPANN Algorithm (Principle 2)

The CPANN method was used in modelling; it belongs to self-organizing map
technique that is often used to analyse the data in multi-dimensional space. The
basis of this technique is a non-linear projection from multi-dimensional space onto
a two-dimensional map. The topology preserving projection is achieved via a
non-linear algorithm known as training. The fundamental property of the trained
network is close vicinity of similar objects. Therefore, it is expected that chemicals
with similar structure will form the clusters, which is the case of examination.

The architecture of CPANN is shown in Fig. 1.
The network constructed of neurons has two layers: input layer (Kohonen layer)

containing encoded information of structure expressed as descriptors values and
output layer (response). Both layers of neurons are placed exactly one above the
other and the output layer has exactly the same layout of neurons as the input one
(Zupan et al. 1997).

The input layer has a number of levels (weights of the input neurons corre-
sponding to the number of descriptors, i.e., the dimension of input vector X), while
the output layer has as many levels as the target vectors have responses.

Kohonen maps enable visualisation of the distribution of chemicals (in the top
map) and distribution of descriptors values (in weight levels maps). CPANN, in
turn, is a generalization of self-organizing map. Additionally, it takes into account
the property (output) values (Vračko et al. 1999, 2004) and is encompassed in the
output layer. The learning in the input layer in the CPANN is the same as in
Kohonen neural network, i.e., the similarity among input variables determines the
arrangement of objects in the input layer map. When the arrangement is set, the

Fig. 1 The architecture of CPANN
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positions of objects are projected to the output where the weights are modified in a
way that the weights on projected positions are getting similar to the values of
corresponding objects.

The model for prediction of carcinogenic class (P/NP) is represented in the
study.

In Fig. 1, the inputs x1, x2, x3, …, xn are vector components representing
chemical structure which corresponds to descriptors calculated for all chemicals
used in training dataset. In the other words, x1i, x2i, x3i,…, xni can be represented as
a matrix of descriptors 1, 2, 3, …, n values for all chemicals in the training dataset,
respectively. The distribution of chemicals and their clusters in 2D space is
examined in the Kohonen top map. Weight levels 1, 2, 3, …, n are the maps with
distribution of particular descriptors 1, 2, 3, …, n, correspondingly.

The output layer is associated with the output values so called target Tn =
(tn1,tn2, …tnj…tnp) which is a p-component vector of zeros and ones (for classifi-
cation model). One dimensional target in our classification models expresses car-
cinogenicity class (P-positive = 1 and NP-not positive = 0). The neural network is
trained to respond for each input structure representation Xn from the training set
with the output vector Outn identical to the target (class-vector) Tn. Thus, the output
variables in Fig. 1 are expressed in the output layer as a carcinogenicity class (class
1 was marked as positive (P)-carcinogen and class 2 as non-positive (NP)-
non-carcinogen).

The Kohonen input layer of the CP ANN consists of nx × ny neurons. After the
learning, the objects are organized in such a way that similar objects are situated
close to each other. It is to emphasize that only the input values participate in this
phase of learning (unsupervised step). For this step, no knowledge about the target
vector is needed (Zupan et al. 1997).

In the second step the positions of objects are projected to the output layer,
where the weights are adjusted to output values (supervised step). The trained
output layer consists of nx × nyoutput neurons arranged in squared neighborhood.
After the training, each weight of the output neurons outj is a real number between
0.0 and 1.0. For the final prediction of classes, the response surface values must be
again transformed into discrete values, 0 and 1. The threshold value between 0.01
and 0.99 must be determined for each class.

More detailed description of CPANN can be found in the literature (Zupan and
Gasteiger 1999; Zupan et al. 1997; Mazzatorta et al. 2003).

4 Domain of Applicability (Principle 3)

The definition of the applicability domain (AD) of a QSAR model is very useful to
define boundaries whereby the obtained predicted values can be trusted with con-
fidence. So far no standard solutions have been agreed within the scientific com-
munity to optimally define these boundaries, but often the proposed solutions rely
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on chemometrics methods. The state of art of methods for identifying the domain of
applicability of (Q)SARs is given in paper (Netzeva et al. 2005).

Amongst the model builders there are different interpretations of the definition of
the term “applicability domain” (VEGA, TOPKAT, MultiCASE all have their own
definitions) (Jacobs et al. 2016).

For carcinogenicity endpoint, CAESAR implemented a tool for the general
evaluation of the AD based on the descriptor range for the dataset. Therefore,
predicted values for chemicals outside the descriptor range can be judged as less
reliable. Though, this kind of estimation of the AD does not address two key
aspects. Firstly, the chemical space characterised by the descriptor range does not
take into account the density of compounds distribution, so it might happen that the
target chemical falls in an area poorly represented in the training set. Moreover,
since the AD relies on the chemical descriptors alone, the output layer (the property
under investigation) is neglected. To overcome these aspects, CAESAR developed
a further tool for the AD assessment, based on the measurement, through a simi-
larity score, of the six most similar chemicals in the training set. It can be used to
evaluate if these compounds are really representative for the unknown compound.
Furthermore, a visualisation of these compounds is offered, which can be used to
independently evaluate the compounds. Finally, a quantitative report of the error
between the observed and predicted activity is also provided for these substances,
so that it is possible to argue about wrong behaviour for the model in the chemical
area that better represents the compound of interest. This feature was incorporated
in the VEGA platform.

Because the CPANN models were employed in the study, the future search for
the characterization of domain of applicability for this kind of models was per-
formed. As an outcome, the new metrics for the evaluation of an AD for the
non-linear models (like neural networks) for the diverse set of chemicals was
proposed and described in the articles (Fjodorova et al. 2011; Minovski et al. 2013).
The authors proposed to use the Euclidean distances (ED) between an object
(molecule) and the corresponding excited neuron of the neural network (Fjodorova
et al. 2011; Minovski et al. 2013) and between an object (molecule) and the
representative object (vector of average values of descriptors) (Fjodorova et al.
2011).

The ED between objects (molecules) and central neuron in Kohonen layer of CP
ANN models is the essential characteristic of neural network. This metric was used
to compare the training and test sets chemical coverage of models with respect to
false predicted chemical space.

The ED represents the interval between a node in the Kohonen layer and an
input pattern. The distances are unitless, because all descriptors have been auto
scaled. It was noted in the literature (Maran et al. 2004) that in fact, the sum of
distances of all molecules obtained after training of the network during one epoch is
equal to the cumulative training error associated with the Kohonen layer. Thus, the
ED depends on the input values of descriptors from one side and is connected with
the errors from the other.
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If the ED between objects (molecules) and central neuron in Kohonen layer of
CPANN models gave us ability to compare the training and test sets chemical
coverage of models with respect to false predicted chemical space, the ED between
vectors of real values of descriptors and the vector of average values of descriptors
was used to explore the coverage of the descriptor space for the training and the test
set chemicals in the models with respect to the space of wrongly predicted
chemicals.

The ED in the non-linear models demonstrates boundaries where the model was
built and is applicable with the determined reliability.

5 Statistical Performance Characteristics of Model
(Goodness-of-Fit, Robustness and Predictivity)
(Principle 4)

5.1 Parameters Used for Evaluation of Classification
Models

A common way to evaluate the performance of classification models (or classifiers)
is to employ a confusion matrix (see Table 2) according to the method of Cooper
et al. (1979).

In the confusion matrix the four different possible outcomes of a single pre-
diction for two-class problem are displayed. The rows represent the number of
entries belonging to actual (observed) class, while the columns represent the entries
belonging to predicted class. Nnegative and Npositive are the number of negative
(non-carcinogens) and positive compounds (carcinogens) in the dataset. TP denotes

Table 2 Confusion matrix for two class classifier (P-positive and N-negative)

Predicted

Non-carcinogens
(Negative)

Carcinogens
(Positive)

Total predicted

Observed Non-carcinogens
(Negative)

TN FP Nnegative = TN + FP

Carcinogens
(Positive)

FN TP Npositive = FN + TP

Total observed TN + FN FP + TP Ntotal = Nnegative + Npositive

*Definitions in Table 1
TP-True positive
TN-True negative
FP-False positive
FN-False negative
Nnegative is the number of negative (non-carcinogens) in the dataset
Npositive is the number of positive compounds (carcinogens) in the dataset
Ntotal is total number of negative (non-carcinogens) and positive compounds (carcinogens) in the dataset
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the number of true positives, and TN denotes the number of true negatives. FP
(false positives) is the number of errors made by predicting a compound of being
active (carcinogen) while it is not; FN (false negatives) is the number of incorrectly
predicted negatives (non-carcinogens).

Cooper statistics express the ability of classification models to detect known
active compounds (sensitivity), non-active compounds (specificity), and all chem-
icals in general (accuracy). See Eqs. (1)–(3).

The main classification parameter is the accuracy (AC) (or concordance). It is
determined using the equation:

AC=
TN+TP

TN +FN+FP+TP
ð1Þ

AC is defined as the total number of non-carcinogens and carcinogens correctly
predicted among the total number of compounds.

The others statistical parameters of interest are sensitivity, specificity, positive
predictivity, negative predictivity, false negative rate, false positive rate and etc.
Sensitivity is defined as the percentage of correctly classified carcinogens among the
total number of carcinogens. It can be determined as the true positive rate and can
be expressed as follows:

TP rate =
TP

TP+FN
= Sensitivity ð2Þ

Specificity shows the percentage of correctly classified non-carcinogens among
the total number of non-carcinogens and relates to true negative rate. The following
equation corresponds to specificity:

TN rate =
TN

TN +FP
= Specificity ð3Þ

Training and test sets were composed for evaluation of models. Training set
represents class values for learning. Test set represents class values for evaluation.
Hypothesis is used to establish classification in the test set, which is compared to
known one.

5.2 Internal Validation

For evaluation of goodness-of-fit or robustness of CAESAR models, the internal
performance of model based on the training set (644 compounds) was applied.
Several diagnostic statistical tools were implemented for characterization the
goodness-of-prediction or predictability of the obtained models. Firstly, statistical
performance of the test set (161 compounds) was calculated. Secondly, internal
cross-validation (Eriksson et al. 1996, 2003) (CV) using “leave 20% out” test was
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done. It was performed on a training set of 644 compounds, so that the set was
divided into five training sets, each containing 80% of compounds, and five test sets
with 20% of compounds. The sets were selected randomly in a way that each
compound was exactly one time a part of the test set and four times a part of the
training set.

5.3 External Validation

External validation is commonly used for the predictivity and reliability of QSAR
models (Perkins et al. 2003; Golbraikh and Tropsha 2002).

Therefore, the predictive performance of QSAR models should be evaluated
using a validation set of compounds that were not used to generate the model. The
validation set of 738 compounds was provided by the CAESAR project partner
(Istituto di RicercheFarmacologiche “Mario Negri” (IRFMN), Milano, Italy) and
implemented for validation of models.

In conclusion, it should be highlighted that the evaluation of the classification
system was done using the so-called internal training set (644 compounds) and test
set (161 compounds), cross validation using leave-20%-out test, and external val-
idation test set (738 compounds). The external test set included chemicals that were
not considered in the modeling. The results of different CAESAR models are
described below.

5.4 Model Using Eight MDL Descriptors

With 8 MDL descriptors and CP ANN algorithms described above, dozens of
models were produced. After their evaluation, one model was accepted as the best
one (Model A). The statistical performance of this model is presented in Table 3.
The Cooper statistics based on the training set indicated an accuracy of 91%, high
value of sensitivity (96%) and specificity (86%). Again, for the test set (161 com-
pounds), we obtained accuracy equal to 73%, sensitivity (75%) and specificity
(69%). Cross validation (leave 20% out) results gave us accuracy 66%. From the

Table 3 Statistical performance of models using 8MDL descriptors (Model A) and 12 Dragon
descriptors (Model B)

Model A (8MDL descriptors) Model B (12Dragon descriptors)
Internal
validation (%)

Training (644
compounds)

Test (161
compounds)

Training (644
compounds)

Test (161
compounds)

Accuracy 91 73 89 69
Sensitivity 96 75 90 75

Specificity 86 69 87 61
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results of external validation (738 compounds), we have got an accuracy of 61.4%.
The obtained results indicated that models possessed good stability. Reliability and
robustness of model are high as we get good statistical performance for all criteria,
on both the internal and external sets.

The model reliability should be connected with high sensitivity (correctly pre-
dicted carcinogens) to ensure public safety (Benigni et al. 2008c). In this chapter,
the way to increase sensitivity by changing the threshold of a model is demon-
strated. Figure 2 shows the accuracy, sensitivity and specificity for the test set for
model A depending on the threshold. From a regulatory perspective, the higher
sensitivity (correctly predicted carcinogens) in prediction of carcinogens is more
desirable than high specificity (correctly predicted non-carcinogens). Changing the
threshold in model A, one can vary sensitivity and specificity depending on the
needs. In the interval of threshold from 0.05 to 0.9, the accuracy is greater than
60%. Setting on threshold to 0.05, it is possible to increase the sensitivity till 90%
without considerable reduction of accuracy as it still remains at the level of 60%. On
the other hand one should keep in mind that increasing of sensitivity leads to
considerable reduction of specificity till approximately 20% in case of threshold
0.05 (see Fig. 2).
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Fig. 2 Accuracy (ACC), sensitivity (SE) and specificity (SP) of test set (161 compounds) versus
threshold for CP ANN model A
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Another important feature of models for regulatory purposes is the repro-
ducibility. Therefore the parameters of model have to be fixed. The user does not
need to optimize the model parameters. In Fig. 2 the optimal model performance
corresponding to the threshold equal to 0.45 is shown.

5.5 Model Using Twelve Dragon Descriptors

As an alternative choice, Dragon descriptors have been used for prediction of
carcinogenicity using CPANN algorithm. 12 Dragon descriptors were employed in
the model. The same dataset of 805 chemicals was used. An optimal model with
dimension of neural network 35 * 35 and number of learning epochs equal to 200
was selected. The threshold was set up at 0.5.

The Cooper statistics of the model with 12 Dragon descriptors based on the
training set (644 compounds) indicated the accuracy 89%, sensitivity 90% and
specificity 87%, while for the test set (161 compounds) the accuracy was equal to
69%, sensitivity 75% and specificity 61%. The threshold was set at 0.5. The
characterization of this model B is given in the Table 1.

5.6 Validation of Models Using External Set
of 738 Compounds

The CAESAR applet available on the intranet was used to predict a set of 738
compounds which were not used in modelling (not presented in the CAESAR
dataset of 805 chemicals). These chemicals were provided with carcinogenicity
class assigned on the basis of experiments and extracted from the Leadscope
software. The predictions obtained for these compounds were summarized.

Overall, the performances obtained with this externally predicted dataset are as
follows: accuracy = 61.4 and 60.0%; sensitivity = 64.0 and 61.8% and speci-
ficity = 58.9% and 58.4% respectively for the model with MDL Dragon
descriptors.

6 Mechanistic Interpretation of Models (Principle 5)

According to five OECD principles for establishing the validity of quantitative
structure-activity relationship (QSAR) models for use in regulatory assessment of
chemical safety, a QSAR should be associated with a mechanistic interpretation, if
possible. The intent of this principle is to consider the relationship between
descriptors and an endpoint to find out a potential mechanism of action.
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Development of a structure-information approach which is based on application
of different structural descriptors including the electrotopological ones shows the
new opportunities in prediction of biological activity and properties in contrast to
the mechanism based approach (Hall 2004; Kier and Hall 2005; Hall and Hall
2005).

The models based on the above pointed approaches are established independent
of explicit three-dimensional (3-D) structure information and are directly inter-
pretable in terms of the implicit structure information (Rose and Hall 2003). The
authors (Hall 2004) demonstrated a wide range of applicability of such models for
relatively big datasets (e.g., for prediction of aqueous solubility, AMES muta-
genicity, fish toxicity and others). In the case of carcinogenicity there are a variety
of mechanisms and pathways, including genotoxic and epigenetic ones that might
play a role in the observed toxic effect. The application of structure-information
approach which is “mechanism-free” makes our task simpler and thus feasible
because it is not necessary to assume various mechanistic steps in order to make
computations for such complicated biological property like carcinogenicity. This
method is free of approximations and computations related to assumed mechanism
of interaction. This aspect is very important especially for modelling carcino-
genicity using non-congeneric set of substances and aimed for prediction of a wide
diversity of chemicals.

The MDL and Dragon chemical descriptors selected within the CAESAR
models are presented in Tables 4 and 5, correspondingly.

MDL descriptors (see Table 4) contain electrotopological E-state, connectivity
and others descriptors. E-state indices are a combination of electronic, topological
and valence state information. These indices incorporate information related to
atom, types and electron accessibility, hydrogen atom E-states, and connectivities
that are influenced by all of the sub-structural features of a molecule (Kier and Hall
1999a, b, 2001).

Elements identity and skeletal connection contain structure information while
valence state definition includes relationship for valence state electronegativity and
atom/group molar volume. Based on these important features of molecules, together

Table 4 Eight MDL descriptors employed in CAESAR model

MDL_ID
descriptor code

Symbol Definition

MDL005 SdsCH Sum of all (= CH –) E-State values in molecule
MDL051 SdssC_acnt Count of all (= C <) groups in molecule
MDL062 SdsN_acnt Count of all (= N) groups in molecule
MDL114 dxp9 Difference simple 9th order path chi indices
MDL130 nxch6 Number of 6-membered rings
MDL187 Gmin Smallest atom E-State value in molecule
MDL190 SHCsats Sum of hydrogen E-State on sp3 C on saturated bond
MDL210 SHBint2_Acnt Count of internal hydrogen bonds with 2 skeletal bonds

between donor and acceptor
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with skeletal branching pattern, both the electrotopological state (E-state) and
molecular connectivity (Chi indices) structural descriptors were successfully
implemented for prediction of genotoxicity and carcinogenicity (Contrera et al.
2003, 2005b). The authors (Votano et al. 2004) contend that one of the critical
determining factors for good prediction results depend on nature of molecular
structure representation employed in the model development process.

A complete set of whole molecular descriptors encode information on general
structure features such as molecular size and shape, as well as specific information
on skeletal variation and complexity. These structural features are expected to have
a relationship to properties arising from intermolecular interactions and may also
function to provide discrimination among multiple structural classes.

The atom-type, group-type, bond-type and single-atom E-state descriptors
encode information on specific molecular features such as atom and bond types
associated with important functional groups. Many of the descriptors relate directly
to or associated with structural alerts as was reported in papers of Ashby and
Tennant (1991) and Tennant and Zeiger (1993).

Some of E-state descriptors can be associated with structural alerts for car-
cinogenicity. For example, in Table 4 the SdsN_acount descriptor belongs to
atom-type E-State account descriptors and expresses the count for the nitrogen atom
type = N-associated with the azo group. The last one is also a structure alert and is
correlated with carcinogenicity (Votano et al. 2004).

In Table 5 nRNNOx and N-078 descriptors are accounting for some specific
fragments, whose presence is characterizing for the carcinogenic while the nPO4
descriptor accounts for non-carcinogenic class.

Table 5 Twelve Dragon descriptors employed in CAESAR model

Dragon
Descriptor’s code

Symbol Definition

DRA0107 PW5 Path/walk 5—Randic shape index
DRA0123 D/Dr06 Distance/detour ring index of order 6
DRA0341 MATS2p Moran autocorrelation—lag 2/weighted by atomic

polarizabilities
DRA0391 EEig10x Eigenvalue 10 from edge adj. matrix weighted by edge

degrees
DRA0451 ESpm11x Spectral moment 11 from edge adj. matrix weighted by

edge degrees
DRA0464 ESpm09d Spectral moment 09 from edge adj. matrix weighted by

dipole moments
DRA0551 GGI2 Topological charge index of order 2
DRA0565 JGI6 Mean topological charge index of order6
DRA0670 nRNNOx Number of N-nitroso groups (aliphatic)
DRA0695 nPO4 Number of phosphates/thiophosphates
DRA0791 N-067 Al2-NH
DRA0802 N-078 Ar-N = X/X-N = X
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The global E-State descriptor Gmin is a measure of the most electrophilic atom
in the molecule. Mechanistically, an electrophilic center is important for covalent
bond formation with nucleophilic DNA. This is the reason why this descriptor was
found between the most important descriptors correlated with carcinogenicity.

Hydrogen E-State descriptor SHCsats encodes E-state values for hydrogens on
sp3 hybrid carbons bonded only with other sp3 carbon atoms. The electron acces-
sibility of these sp3 hydrogens may relate in some manner to hydrophobic inter-
actions between substrates and DNA or may have a relation to alkyl chlorides that
are known toxicophores.

Thus, the descriptors used in our study refer to topological characteristics as well
as to polarizability and charge distribution (related to reactivity).

Interestingly, some descriptors that we applied in our CAESAR models were
also used by others authors (Contrera et al. 2005b; Votano et al. 2004) in car-
cinogenicity and genotoxicity modelling. It means that probably in future research it
will be possible to find some common features for modelling carcinogenicity and
genotoxicity.

It should be highlighted that the application of structure-information approach
based on such descriptors like E-State has the following advantage: a model based
on E-State descriptors (expressed as continuous value) can correlate carcinogenicity
to a specific value of descriptor, whereas the use of fragment based structural alerts
limits the model to a correlation of presence or absence of fragments or simple
count of given fragments which can lead to false prediction for this reason.

The transparency of CP ANN algorithm using electro-topological MDL
descriptors was demonstrated in the article by Fjodorova and Novič (2011).

A statistically-based method (counter propagation artificial neural network (CP
ANN) was integrated with the knowledge-based one (structural alerts (SA)
approach) to obtain the mechanistic interpretation of models. Mechanistic insight in
CPANN models was demonstrated using the inherent mapping technique (i.e.,
Kohonen maps) which enables the visualization of the following features in 2D
space: the carcinogenic potency; the distribution of descriptors in individual layers
which express structural and electronic features such as molecular shape (linear,
branched, cyclic, and polycyclic), bond length, taking into account electronic sur-
roundings of molecules; and the distribution of congeneric groups of chemicals
with indication of specific carcinogenic SAs with indication of broad mechanisms
of action.

It was shown that some E-state descriptors relate directly or are associated with
known SAs for carcinogenicity for such classes of chemicals like nitro compounds,
nitro-aromatic, primary aromatic amines, and consequently carcinogens and non-
carcinogens. Of cause, not for all groups of chemicals clear clusters were obtained
due to different mechanism of action inside one group of chemicals like in case of
aliphatic halogens. But the advantage of the CPANN model is in a non-linear
topological distribution of several small clusters of particular chemicals that are
based on different modes of action.
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The MDL topological, electrotopological and hydrogen bonding descriptors
which express different aspects of shape and size of molecules encode information
about electronic interactions of the atom and comprise features of electrostatic
interaction between molecules. These important structural features contribute to the
carcinogenicity and are expected to have a relationship to properties arising from
intermolecular interactions and may also function to provide discrimination among
multiple structural classes.

7 Conclusions

The implementation of REACH has provided an impetus to employ in silico models
for the safety assessment of chemicals (EC 2008). Non-testing methods to assess
genotoxic or carcinogenic hazard to humans include (Q)SARs as well as chemical
grouping for read-across approaches.

Though read-across approaches are more frequently applied for cancer hazard
assessment (ECHA 2014), (Q)SAR models represent the most formalized
non-testing approach because it is grounded on the a large good quality database
using robust scientific and statistical concepts. Read across in turn provide more
specific information although it belongs to more subjective non-testing approach.
A combination of (Q)SARs with read across was employed in the VEGA platform.
The models such as VEGA, TOPKAT and MultiCASE give valid predictions of the
presence and absence of genotoxicity/carcinogenicity (Jacobs et al. 2016). They are
accepted for regulatory uses.

The models represented in VEGA (Fjodorova et al. 2010b) were built in accor-
dance with 5 OECD principles for acceptance of QSAR models for regulatory use.

The CPDB rodent carcinogenic database was used for development of models
for categorization of carcinogenic potency. Initial preprocessing of data and
selection of data with carcinogenic potency for rats provided the consistent, ho-
mogeneous data suitable for QSAR modeling with carcinogenic potency response
closer to human. The MDL and Dragon software programs were applied for cal-
culating the molecular descriptors. The topological structure descriptors provided a
sound bases for classifying molecular structures.

The CPANN algorithm was employed in modelling.
The statistical performance of models demonstrated good prediction statistics on

the test set of 161 compounds with sensitivity of 75%, specificity of 61–69% in
addition to accuracy 69–73%. A diverse external validation set of 738 compounds
confirmed the robustness of our models regarding a large applicability domain,
yielding the accuracy 60.0–61.4%, sensitivity 61.8–64.0%, and specificity 58.4–
58.9%.

The new metric (Euclidian Distance (ED)) for evaluation applicability domain
(AD) of neural network models was proposed.
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A mechanistic interpretation of CPANN models was provided based on expla-
nation of nature of descriptors used in the modelling with their possible chemical
and/or biological activity. The integration of QSAR and SAR approach gave a solid
fundament for robust prediction and mechanistic interpretation of obtained models.

The OECD has recently published new guidance principals for QSAR analysis
of chemical carcinogens with mechanistic considerations (OECD 2015) for further
assessment.

The carcinogenicity models incorporated in the VEGA platform can be used as a
support in risk assessment, for instance, in setting priorities among chemicals for
further testing.

VEGA models are described in detail in the help file of the software freely
downloadable from the Vega website http://www.vega-qsar.eu/.
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Big Data in Structure-Property
Studies—From Definitions to Models

Jaroslaw Polanski

Abstract What is big data and how important is big data in drug design? We
analyze the big data types that are available in drug design as well as the methods
that are used for their analyses. In particular, we discuss the definitions of the
substantial molecular data concepts of a property and a descriptor to distinguish
molecular big data types. The fact that measured property data are seldom available
often requires property predictions. At the same time, this property deficit is among
the main obstacles that limit big data structure-property studies.

Keywords Big data ⋅ Business intelligence ⋅ Chemical databases ⋅ Chemical
space ⋅ CoMFA ⋅ Data analysis ⋅ Data binning ⋅ Data management ⋅ Data
populations in chemistry ⋅ Economics ⋅ Google algorithm for spread of flu
prediction ⋅ Hierarchy of scientific explanation ⋅ logP ⋅ Molecular big data
architectures ⋅ Molecular big data by a large number of objects with a single
property annotation (PE-LPA) ⋅ Molecular big data by descriptor expansion
(DE) ⋅ Molecular big data by property expansion (PE) ⋅ Molecular big data by
the increase of objects with predicted property annotation (PE-PPA) ⋅ Molecular
descriptor ⋅ PASS ⋅ Property ⋅ Property deficit ⋅ QSAR ⋅ QSPR ⋅
Quantitative structure-economics relationship

1 Introduction

Chemistry attempts to find the rules that control the behavior of chemical com-
pounds. Preferably, for the universal laws, e.g., conservation energy law, this refers
to a whole population of molecules and/or substances. The relationship between the
structure and a property of a chemical compound is an essential concept in
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chemistry that guides, for example, drug design. This problem is addressed by
classical QSAR (QSPR) which, however, only describes a small series of con-
generic compounds, usually chemotypes, i.e. structurally related molecules.
Therefore, in practice we usually analyze chemical data that cannot give us a
broad-spectrum structure-property mapping, which results in unconvincing and
weakly innovative projects. With an enlargement of the chemical space, we could
modify the questions that are asked. For example, we were interested in whether a
general rule exists that would differentiate drugs from non-drugs and which
molecular descriptors determine this. Can anything like drug-like molecules be
identified and what does drug-likeness mean? At the same time, the availability of
computers has resulted in an explosion of information. Accordingly, we realized
that data has also become bigger and bigger in chemistry.

There are many definitions of big data but generally what determines the dif-
ference between conventional and big datasets are volume, velocity and variety,
where volume refers to the massive size of datasets; velocity to the rate of the
increase of information and variety to the diverse data forms. Alternatively, big data
is sometimes defined by a high degree of information complexity (Laney 2016),
which causes traditional methods to fail when they are used for processing.

How should big data be gathered and managed? What questions should be asked
in order to address and answer actual problems? In science, we often need reduc-
tionism to answer questions. This implies that a certain field of study relies on the
disciplines that focus on less complex systems. Thus, chemistry is founded on
physics, while biology needs chemistry in order to understand its molecular
mechanisms. This is defined as the so-called hierarchy of scientific explanation. In
this concept, scientists use a reasoning mode by using the tools of the underlying
science. Therefore, in order to explain psychology, we need biology and medicine,
which in turn can be explained by chemistry, which is situated over physics, which
relies on the empirical facts and is located at the very bottom (Rosenblum and
Kuttner 2011). The newest discipline of behavioural economics investigates the
effects of psychological, social, cognitive and emotional factors on economics
(Kahneman 2011). These objectives include a variety of topics involving, for

Fig. 1 The increase in
information complexity
(precision decrease) from
physics to economy
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example, psychology; therefore; situating economics on the top position in this
hierarchy. Accordingly, complexity increases here from physics to economics,
while precision of the model moves in backward direction (Fig. 1). Therefore, if we
try to find the most complex and challenging applications of big data, economics is
at the top. However, at the same time, this area will also provide us with a manifold
and multi-dimensional insight into a variety of problems. For example, just to
illustrate the importance of economics in drug design, we should realize that we
need economic considerations to fully understand the fate of drugs on the market. In
fact, only this understanding can make decision-making in pharma effective
enough. Accordingly, the first quantitative structure-economics relationship that is
based on big data and merges chemical descriptors and economic indicators has just
been explored (Polanski et al. 2016a).

Business intelligence is a term that is sometimes used to describe the variety of
IT technologies that are used to understand, explain and make decisions in eco-
nomics. From the economics and business point of view, drug design is a part of
medicine and healthcare, which is one of the most advanced sectors in the current
economy, where the so-called evidence-based medicine is a hard data based trend
here that can contribute to (Maheshwari 2014)

• Patient diagnostics
• Treatment evaluation
• Wellness management
• Fraud and abuses
• Public health management

Can analyses of big data significantly improve our wellness in the context of
drug design? A good example that can provide a positive answer here is thoroughly
discussed in reference (Cukier and Mayer-Schönberger 2013). Google, which
processes as much as 24 petabytes (peta means 1015) of information per day, is
probably the largest available data store that is currently available. By analyzing
what people queried on the Internet, Google was able to efficiently predict the
spread of flu (Ginsberg et al. 2009). It was the pattern of the big data describing the
search history that enabled this analysis. It is worth mentioning here that the
original Google algorithm was questioned, which however brought about its
improvement (Lazer et al. 2014).

The role of big data and advanced analytics in drug discovery, development and
commercialization has recently been carefully analyzed by Szlezák et al. (2014),
who indicated several big data sources in health care, i.e.

• Claims
• Clinical
• Sales and dispensing
• Clinical research, safety and pharmacovigilance
• Patient generated data
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It is generally believed that big data will bring new value and innovation. For
example, Szlezák et al. cited the recent McKinsey research that suggests that the
potential use of the big data in the US health care could reduce costs by $300 billion
a year. However, this kind of information is also much less clearly defined and
messy. Accordingly, its analysis causes serious problems. The first of which is that
conventional statistics is designed for conventional data. We are not aware enough
of the differences and we are not ready to change the addiction to small data sets.
The analysis of big systems allows us to observe the details we would never have
detected using traditional small data sampling. However, measurement errors can
be much larger for big data. It is hard to believe that the accuracy or exactitude can
be similar to that of conventional traditional (small) data processing. This also
means that there is an enormous complication in explaining, modeling or under-
standing the medical, pharmacological or chemical effects represented by big data.
Bio- and chemoinformatics are tools that are used for in silico data processing in
chemistry, pharmacy and medicine. Chemoinformatics was originally defined as the
combination of all of the information resources that a scientist needs in order to
optimize the properties of a ligand in order for it to become a drug. Similar goals are
targeted by bioinformatics but the focus of the latter discipline is more biologically
oriented. Therefore, bio- and chemoinformatics design tools for drug discovery and
development. More recently, what can be observed is that both terms are merging
into a single discipline. This discipline should also coordinate the search for the
solutions for managing and processing big data in drug design.

Accordingly, what precisely does the term (big) data mean? What is the dif-
ference between traditional and big data systems? Last but not least, where can we
find this in chemistry and chemo- or bioinformatics? The broadest definition
interprets data as anything that is recorded. This also involves metadata, i.e., data
that refers to other data. This means that data can be both ordered and unordered
collections of values. Moreover, the values can be both nominal and numerical
values, whereas the latter can be discrete numbers, intervals or ratios. Another type
of data (Binary Large Objects, BLOBs) is used to describe audio, video and graphic
files. A special analysis type is used to explore these (Maheshwari 2014). In drug
design, another data feature is of crucial importance. This is the data ownership
attribute, which can cause a problem with data availability. Although we are aware
of how important it is to share data with limited or unlimited parties (sharable data;
data sharing problem), it is still much more common that data in confidence is the
reality in pharma R&D. The decreasing efficiency in pharma has inspired the
collaborative drug design projects where all of the collaborators that are involved
share the data among themselves (CDD, collaborativedrug.com). Although data
sharing between traditional pharma companies is still a matter of controversy, more
and more people are convinced that this could significantly improve the efficiency
in this field. Let us now try to identify and define big data sources as well as the
methods that are used to manipulate big data in chemoinformatics.
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2 Molecular Definitions and Data Populations
in Chemistry and Drug Design

Datafication is a term that drew our attention to the fact of the growing importance
of data acquisition and management. We can also observe this trend in chemistry.
Accordingly, the term chemical space (CS) has recently appeared. In its broadest
sense, the CS can be interpreted as a structure to organize chemical data. As the
majority of data in chemistry can be connected directly to chemical compounds and
molecules, molecular data is a substantial type of information and chemists have
realized the need to bring some organization into the molecular world with the
increasing importance of molecular design. Accordingly, the chemical space (CS) is
first of all a concept that is designed to organize a whole population of chemical
compounds. In the context of big data, we should realize that the whole molecular
population is included here. The original definition was rather vague and drew our
attention to a cosmological analogy; therefore; the universe space is populated by
stars, where the chemical space is populated by chemical compounds. Accordingly,
Lipinski and Hopkins (2004) coined the phrase that chemists are navigating
chemical space. Actually, we should see CS as a structure for the mapping of
chemical compounds by molecular data, i.e., descriptors or indicators relating to
molecular structures and properties that can be measured in experiments (Polanski
2009a; Polanski and Gasteiger 2016).

An attempt to define the CS that is related to mathematics is illustrated in Fig. 2.
Thus, the CS is a structure for the arrangement of chemical compounds (Polanski
2009a). Since the term ‘chemical compounds’ includes both molecules and sub-
stances, both representations are recorded in the CS. The CS can be divided into
two basic moieties—the factual chemical space (FCS) that is described by the
chemical compounds that have already been obtained and registered and the virtual
CS (VCS) that maps potential substances. The CS structure can be used to design

Fig. 2 Chemical space (CS) formed by putting together factual (FCS) and virtual (VCS) chemical
compound data represented by descriptors S and properties P (a). An operator shown below
provides formal notation for QSAR, therefore, in QSAR domain for the substances in FCS we are
mapping structure (S) to property (P) to further use the modeled relationship to find new structures
(S) now in CS of the designed properties (P). Modified from Polanski (2009a) and Polanski and
Gasteiger (2016)
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mathematically inspired operators to illustrate and explain chemical problems.
Accordingly, we use this notation to define QSAR (QSPR) modeling where we
used a series of FCS compounds with the measured property (biological activity) to
model the QSAR function, then we used this function to predict the activity of novel
compounds (which in fact can be both FCS or VCS elements) that should, of
course, be kept within the QSAR domain. Both of these steps were performed in
silico (Fig. 2b). We can use this concept to illustrate the chemical operators that
occur in vitro, e.g., chemical synthesis, or both in vitro and in silico, e.g. drug
design or synthesis design problems.

Because mathematics, including mathematics in chemistry, needs precise defi-
nitions and a deep understanding of the molecular concepts, we will now focus on
this. Chemical compounds, or more precisely, chemical compound data can be
represented in the CS by descriptors or properties, which are two possible chemical
record types. The term property in chemistry is precisely defined by IUPAC.
Therefore, we understand a property to be

A set of data elements (system, component, kind-of-property) common to a set of particular
properties, e.g. substance concentration of glucose in blood plasma. Information about
identification, time and result is not considered.

Properties are measured and such an operation is also a precisely IUPAC defined
operation.

A description of a property of a system by means of a set of specified rules, that maps the
property onto a scale of specified values, by direct or ‘mathematical’ comparison with
specified reference(s). The demand for rules makes ‘measurement’ a scientific concept in
contrast to the mere colloquial sense of ‘description’. However, in the present definition,
‘measurement’ has a wider meaning than given in elementary physics. Even a very
incomplete description of, for instance, a patient (at a stated time) has to be given by a set of
measurements, that are easier to manage and grasp.

The term molecular descriptor has been defined by Todeschini (definition DES)
to describe all of the numbers that relate to molecules that are obtained as:

A final result of a logic and mathematical procedure transforming chemical information
encoded within a symbolic representation of a molecule into a useful number (Todeschini
and Consonni 2000).

This gives us a chance to distinguish between a molecule and a substance as two
counterparts of the description of a chemical compound that differentiate between
experimental measurements, i.e., properties (mainly for real substances) and other
numbers that describe in silico simulated molecules or substances, namely,
molecular descriptors. However, Todeschini is not consistent here and we can read,
for example:

[…] molecular descriptors are divided into two main classes: experimental measurements,
such as logP, molar refractivity, dipole moment, polarizability, and, in general,
physico-chemical properties and theoretical molecular descriptors (Consonni and Todeschini
2010).
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Interestingly, the latter definition combines properties and descriptors into a
single class of molecular descriptors.

In reverse, if we compare the IUPAC definition, it does not differentiate between
descriptors and properties and defines the structure-property correlations as
follows:

Structure-property correlations (SPC) refer to all statistical mathematical methods used to
correlate any molecular property (intrinsic, chemical or biological) to any other property,
using statistical regression or pattern recognition techniques.

Accordingly, in the SPC definition, the single category of property represents
both descriptors (according to the DES Todeschini definition) and properties.

For the requirements of (Q)SAR and (Q)SPR, it is, however, highly recom-
mended to clearly distinguish between descriptors and properties. In the context of
the IUPAC definition, these categories are more or less defined as properties
referring to a molecule (intrinsic property or molecular descriptor) or a substance
(chemical or biological property), respectively. For a broader discussion of the
problem, including the complications within the identification of the meaning of
chemical compounds, molecules and substances in chemistry, the reader can
compare (Polanski and Gasteiger 2016). Therein, the reader can also find the
examples that illustrate how precisely differentiating properties from descriptors can
be in chemistry. For example, let us ask a question about molecular weight (MW).
Is it a property or a descriptor? According to our definitions, it can be both a
property and descriptor. Therefore, if measured in the experiment, e.g., in a MS
spectrometer in vitro, this is a property. However, we usually calculate MW simply
by summing the MWs of the atoms that form a molecule, which means it is
molecular descriptor of the dimension zero (Polanski 2009a; Polanski and Gasteiger
2016). Both numbers will be practically, but not theoretically, the same.

The differentiation of properties versus descriptors is of substantial importance
for understanding molecular design where we can make property predictions on the
basis of the calculations of molecular descriptors for hypothetical molecular
structures (in silico) which are not available for in vitro substance measurements. It
should further be realized that in reality there is not much difference when we are
designing in the FCS or VCS sub-spaces, because FCS compounds are not usually
available for measurements in vitro. They have been obtained and registered in
databases or literature but are not usually available any longer. The low availability
of chemical compounds in the FCS is a major problem in molecular design.
Moreover, despite the common belief, property measurements in chemistry are rare
(Polanski and Gasteiger 2016). The reason for this is economics. Measurements are
expensive because they need not only the measurement step itself but also the
synthesis and often purification of chemical compounds. These problems were
realized and large chemical compound libraries have recently been offered com-
mercially on the market to close this gap.

Let us now ask the question how big are the molecular populations of the
chemical compounds, in which chemical compounds represent both molecules and
substances? Figure 2a is an illustration of the chemical space consisting of its
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factual and virtual parts. The common belief is that a large molecular population has
been described in organic chemistry. In fact, the Chemical Abstract Service
(CAS) registers slightly more than 100 mln compounds, i.e., ca. 108. Of the 100
million substances in the CAS REGISTRY, approximately 75 million were added
over the past ten years. On average, CAS has registered one substance every
2.5 min over the past 50 years (CAS). For a better illustration, let us compare this
to the human population, which has reached ca. 7.4 billion, i.e. ca. 109. How does
the FCS population compare to the virtual chemical space fraction VCS? Different
numbers are cited for the latter that range from 1060 to 10200. This means only a
small fraction of the potential molecular population has currently been described.

On the other hand, Wang et al. (2014) estimated the data connected to the
measured property values to:

• 700,000 bioassays
• 200,000,000 bioactivity outcomes
• 1,200,000,000 data points
• 2,800,000 small molecule samples
• 1,900,000 chemical structures
• 108,000 RNAi reagents

Compare also Cheng et al. (2014) for the bibliometric analysis of the PubChem
database. Properties are stored in chemical databases. Basically, a good example of
a property database is the CAS, which registers the descriptors and properties for
real compounds. In particular, the CAS registers all of the chemical compounds that
have ever been reported in the literature, i.e., the VCS part of CS. If we would like
to include a structure of the molecular data offered by the CAS, we can see that this
is a typical big data where the number of analyzed objects (chemical compounds)
determines the volume of information.

The molecular databases that are available are listed in Table 1. Both descriptors
and properties are registered here, however, as could be expected molecular
properties are the most essential records for the FCS compounds. However,
molecular descriptors are in fact also an important information type here, e.g.,
compare the 3D molecular structures predicted (simulated in silico) to the molecular
docking studies in the ZINC database.

The properties that are actually measured are by definition not available for VCS
compounds. We should remember that they are also rare for most of FCS popu-
lation. Thus, we often have to replace them with predicted values. In this context,
the CAS service has recently also offered the predicted property values for chemical
substances. The problem of the big data that is generated by predicted properties
will be addressed in detail in Sect. 4.4.

Besides the data discussed above, the molecular populations in chemistry and
drug design can be arranged into another type of big data. These are the data where
a relatively low number of objects are described by an extremely large number of
molecular descriptors. The best examples of such data are descriptors generated by
the Molecular Interaction Filed (MIF) method for 3D QSAR studies, e.g.,
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Comparable Molecular Field Analysis (CoMFA). In such a study, a single molecule
is represented by a series of calculated MIF descriptors whose numbers can reach as
much as an order of 103 or even 104. Therefore, a typical CoMFA study engages no
more than 102 molecules described by a much larger descriptor data series. These
data types are big based on their complexity and not the number of objects engaged.
It is worth mentioning that since all descriptors are calculated here and 3D
molecular representations are also simulated in silico, the majority of data are not
connected with the FCS data. The most important data of this type are generated by
receptor independent or receptor dependent 3D-7D QSAR (Polanski 2009b),
molecular dynamics, molecular docking, etc. Typically, these data are generated
and processed in silico, but are not stored for further use and/or control. The big
data that is generated by molecular descriptors will be analyzed in Sect. 4.1.

Accordingly, we can now attempt to categorize the data types that we can
encounter as big records. Let us define the data as simply the collection of infor-
mation that is formed by records. As was discussed above, this can grow big
through an increase in the number of objects, by an increase in the number of
variable entries that describe an individual object or by an increase in both the
objects and observables (Fig. 3). If we now focus our attention on chemistry, we
can further observe that several basic data variants can be formally indicated. This
involves:

• properties measured for FCS substances
• properties predicted for FCS or VCS substances
• descriptors calculated for FCS or VCS molecules

Alternatively, we can more precisely indicate systems in which a big size is
determined by

Fig. 3 A scheme of data architecture in drug design. Descriptors (yellow) and properties (blue) are
arranged horizontally (1 to n) for the objects put together vertically (1 to k) (a). In classical
(multidimensional) m-QSAR the data are usually dominated by descriptors, descriptor expansion
(b), ideal big data composed for a large number of objects annotated by the equable numbers of
descriptors and properties (c), actual situation where the data get bigger by the increase of property
annotation in a single property column (d)
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• Property annotation expansion
• Predicted property annotation expansion
• Descriptor expansion

For better clarity, we will code these categories as PE (property expansion) or
DE (descriptor expansion). As we explained before, measured properties are rare,
therefore, the structure of PE is usually large due to the number of objects that are
annotated with a single property type and not by a large number of property types.
Conversely, the variety of descriptors that are designed to describe molecules
makes DE data large due to the number of descriptor variables. Moreover, the
deficiency of properties means that the measured property values must often be
replaced by the predicted property values. This creates a specific data type that we
will refer to as the PPA (predicted property annotation) data, which will be dis-
cussed in detail in Sect. 4.4.

3 From Molecular Big Data to Knowledge

Processing big data requires efficient data management, e.g., searches or screening,
etc. Therefore, molecular databases are indispensible. It is worth mentioning that
molecular descriptors, in particular, molecular and chemical formulae often
replaced recently with SMILES codes, are generally used in databases for
addressing the individual chemical compounds in FCS. What about VCS? This part
is also interesting as a potential source of novel chemical compounds. Accordingly,
the generation of virtual drug candidate libraries is an important problem (Blum and
Reymond 2009; Reymond 2015). Therefore, the databases of virtual molecules are
as important as those of real compounds. The main difference between FCS and (V)
CS chemical databases is the fact that the latter cannot register measured properties.
Thus, the most important information here is the molecular address, i.e., the
molecular descriptors coding this individual molecule. In fact, while constructing
VCS databases we usually do not care if all elements of the database have never
been registered among the FCS structures, which we indicated here by the notation
(V)CS. Molecular (V)CS databases do not differ from those that register real
molecular bodies with properties in their information structure, i.e., they register a
large number of molecular objects, i.e., millions 106 or billions 109. Compare
Table 1 for the examples of the individual databases.

Data analysis is the next problem. Statistics developed a variety of methods that
allowed us to explore data and convert them into knowledge. Formally, this can be
grouped into several categories of which those enumerated below are often used in
chemistry, chemoinformatics and chemometrics:

• Basic statistics, e.g. mean, sum, regression, correlation analysis
• Neural networks
• Pattern recognition
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• Dimensionality reduction (feature selection, feature reduction)
• Principal component analysis (PCA)
• Partial least squares (PLS)
• Fourier analysis
• Wavelet transformations
• Machine learning
• Experimental design

For further analysis the reader can compare reference (Gasteiger 2003; Gasteiger
and Engel 2003; Polanski and Gasteiger 2016).

Among these, let us analyze a single regression to show how important and
informative simple statistics can be for data processing. Regression is a tool that can
be used not only for data modeling but also for data compression. As the com-
pression capability may not be understandable, let us focus on the example of
experimental data that is recorded by two variables noted by a matrix of the indi-
vidual parameters of size 10,000 × 2, which results in 20,000 numbers. This data
if modeled using regression can replace this by two numbers (regression) or even a
single number for ridge regression (Polanski 2009a; Polanski and Gasteiger 2016).
This method is also the most important method for predicting and forecasting, i.e.,
design, thus also illustrating the potential power of regression for big data analysis.
However, simple regression as a modeling method is often insufficiently robust and
is prone to errors and therefore too fragile to process big data.

The methods enumerated below are usually associated with processing big data
(Ldtopology; Polanski et al. 2016a).

• Projection
• Feature Selection or Extraction
• Clustering
• Classification, in particular data binning

In projection the original high dimensionality vector space is transformed to
align in a novel lower dimensionality space that can provide patterns that are easier
to interpret. At the same time, the original relationships between the observables
during projection can be distorted but the extent of the distortion should be as low
as possible. Principal component analysis (PCA) and self organizing maps
(SOM) are typical examples of this method. Formally, we can also divide projec-
tions into linear and nonlinear ones.

Feature selection or extraction focus on the elimination of the part of high
dimensionality data that cannot be correlated with the analyzed target signal. In
other words it is designed to eliminate a noise. This method is often used as
preprocessing for other algorithms. Last but not the least, it can also be used to
reduce the dimensionality of the signals because with an increase in the data size,
the models become more precise (internal data modeling) but at the same time
much less predictive (new data). This problem is often referred to as over-fitting.
Practically, the reduction of data dimensions also makes data processing less
expensive.
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The term classification is used to define a variety of algorithms which results in
labeling the data in such a way that reasonable relations can be discovered in the
analyzed data. A variety of individual methods have been developed by the
so-called machine learning techniques generally based on supervised learning
where the latter means that a computer is instructed (trained) what is expected from
reasonable labeling during the process.

Clustering differs from classification in that data are distributed into output
groups (clusters) without supervising (unsupervised learning), which more or less
means that the data are not labeled. Once more, a variety of individual methods
have been developed for data clustering.

Data binning is sometimes used as a synonym of classification but will be here
used in the more specific way to refer to the preprocessing method. How are data
treated when there are a large number of measurements available? For example,
temperature measurements around the globe are analyzed to evaluate the impor-
tance of the alleged effect of global warming. These analyses are often based on the
mean values of temperatures that are averaged for a certain month through several
years. Such a procedure is called data binning. The formal definition reads as
follows: binning or bucketing is a method in which the original [continuous] data
values which fall into a given small interval, a bin, is replaced by a value repre-
sentative of that interval. Accordingly, we often use monthly binned data for the
assessment of global temperature changes. Actually, data binning is typically used
to understand and explain the substantial effects on our everyday life.

4 Molecular Big Data Architectures

Figure 3 presents the possible architectures of molecular data schematically.
Therefore, the chemical descriptors S and properties P of the chemical compounds
probed in the chemical space (Fig. 2) are merged to form the data matrix in Fig. 3a.
A special type of molecular descriptors is used to code the molecules, e.g.,
SMILES. Theoretically, we can have several situations depending on the number of
properties and descriptors that are registered in the matrix in Fig. 3. Thus, the
matrix can be balanced when the number of descriptors and properties is similar
(Fig. 3a). Alternatively, the descriptors or properties could dominate in unbalanced
cases.

Further, the data matrix can get bigger by horizontal (Fig. 3b) or vertical
(Fig. 3c, d) expansions. In practice, however, molecular data are always unbalanced
with the domination of molecular descriptors horizontally and usually a single
property column is available in both cases (Fig. 3b, d).

The vertical data matrix expansion (Fig. 3d) resulting from an increase in the
number of molecular objects increases at the same time the number of the single
property annotations that have been measured.
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4.1 Molecular Big Data Resulted from the Descriptor
Expansion (DE)

The DE data architectures are the most common examples of big data in drug
design. Descriptors are relatively easily available from calculations or computer
simulations and are clearly much cheaper than experimental measurements. This
means that we can meet such data types very often.

Typical applications are enumerated below:

• 3D-7D QSAR
• Molecular interaction Mi-QSAR
• Genomic (structure-target) QSAR
• Microarray (genomic) data analyses
• Structure-target (multiple target) QSAR
• Docking analyses, e.g. Comparative Molecular Binding Analysis COMBINE

The data processing methods used for these analyses are relatively well recog-
nized. Typical data usually involves fewer than 100 molecules for a single property,
typically biological activity value, and a large number of descriptors. We are aware
that in drug design the credibility of the analysis increases with the number of
molecules that are probed in an analysis and decreases with an increase in the
number of descriptors involved.

Partial Least Squares data modeling with data projection to latent variables are
the typical statistics that are used. The crucial steps involve

• splitting data into the so-called training and test sets
• PLS modeling
• optional feature selection (data reduction step)
• evaluation of the predictive power of the model
• property prediction for an external set of novel compounds
• optional synthesis of novel compounds
• optional comparison of the predicted versus measured property values for newly

synthesized compounds (test set)

In comparison to 3D QSAR in which conformations remain stable in time, 4D
QSAR analyses increases in the number of descriptors by the molecular dynamics
conformations (poses) that are generated. Further, QSAR dimensions also increase
the number of data involved.

Illustrative examples of property prediction in Comparative Molecular Field
Analysis (CoMFA) and Comparative Molecular Surface Analysis (CoMSA)
modeling are shown in Fig. 4. The data reduction step in CoMSA versus CoMFA
can significantly improve the robustness of the models resulted.

The most important question that appears in DE studies is whether the
descriptors that are calculated for the molecular objects are really independent
values. In fact, calculation often means that the mathematical function that connects
the calculated values to some original ones is known. We will not discuss the
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problems of the DE type data further and the reader should go to the widely
available references in this field.

4.2 Molecular Big Data Resulting
from Property Expansion (PE)

Alternatively to the DE scheme data could get big through the expansion of the
number of properties that are measured.

The PASS method, Prediction of Activity Spectra for Substances (PASS)
approach is a method that declares the importance of the analyses of the whole
activity spectra of chemical compound, i.e., a compound’s interaction with various
biological systems. However, in reality a single property is usually targeted and
examples in which more property values are analyzed can be only found occa-
sionally. For example, we indicated a property deficit relatively early and decided to
investigate the biological activity spectrum instead of a single activity in experi-
mental practice, e.g. for quinolines (Musiol et al. 2007).

At the same time, PASS is designed for property prediction rather than for
registering the actual measured properties. PASS Online predicts over 4000 kinds of
biological activity, including pharmacological effects, mechanisms of action, toxic
and adverse effects, interaction with metabolic enzymes and transporters, influence
on gene expression, etc. (PASS).

In practice, however, property deficit means that the main scheme in PE analyses
is usually replaced by architectures with a single property but measured for a large
number of objects or even where a property that is probed for a small number of
actual FCS compounds are then predicted in the VCS population. In such proce-
dures, both the FCS and VCS compounds are coded by the same molecular

Fig. 4 Visualization of m-QSAR molecular prediction for the descriptor expanded big data in the
CoMSA and CoMFA analyses. Modified from Cramer et al. (1988) and Polanski and Walczak
(2000)
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descriptors that are more or less relatively easy for in silico calculation, which
means that they could be available inexpensively. Accordingly, in the next two
paragraphs we will discuss two types of PE data with:

• large number of property annotations (PE-LPE) or even
• property prediction (PE-PPE).

4.3 Molecular Big Data by a Large Number of Objects
with a Single Property Annotation (PE-LPA)

The expansion of the PE into big data using actual property measurements for large
FCS domains has been known for years. This includes screening. We can identify
this approach in the screening of random compounds versus different biological
targets. Some important drugs have been found by screening, e.g. the diketo acid
(DKA) drugs against HIV integrase (Koehler 2000). More or less combinatorial
chemistry also targets the property measurements of random compounds (Schneider
2002; Teague et al. 1999). Formally, we increase the number of property data simply
by the increase of the number of objects for which a single property was usually
measured. In other words, if the height of a single property column increases, the
number of property measurements also increases. However, public access to the data
from random screening or combinatorial chemistry of pharma R&D is limited.

A property deficit can be better understood if we realize that in recent years all of
the biological activity data that has been published in the literature, e.g., Journal of
Medicinal Chemistry has been carefully analyzed (Walters et al. 2011). This
indicates the specific quality of this data. In particular, journals are only accepting
reports that have positive results. This means that the mean values of biological
activity of the drug candidate that are published in medicinal chemistry are skewed
into higher numbers in comparison to the activity of actual drugs, while low activity
data is less available. In one of the largest study that used more than three million
structure-activity relationship data points that were collected for 898 human targets
that compared marketed drugs and clinical candidates with bioactive compounds,
some problems with optimizing pIC50 were addressed (Tyrchan et al. 2009). Can
pIC50 data be used to model and analyze the fate of drug candidates and drugs on
the market? An interesting study of the pIC50 values for all drugs versus those at the
top bestseller list was recently reported (Polanski et al. 2016b). However, does the
inclusion of all of the available data mean that we have big data? The answer could
be yes if this is determined by data complexity and no when the number of data
entries is considered.

The classical quantitative structure activity/property relationship (QSAR/QSPR)
still focuses on a relatively small series of compounds. At the same time, the
development of combinatorial synthesis has not only led to large collections of
chemical compounds but has also substantially enriched the market of chemical
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reagents and building blocks. In fact, ready-to-use building block libraries of mil-
lions of compounds are now offered on the market. This provides an interesting
source of big data annotated with prices that can be interpreted as the economic
property of chemical compounds. Recently, quantitative structure-economic rela-
tionships (QSER) for a large dataset of a commercial building block library of over
2.2 million chemicals have been analyzed. It appears that on average what we are
paying for is a quantity of matter. On the other hand, the influence of the synthetic
availability scores is also revealed. Finally, we are buying substances by looking at
molecular graphs or molecular formulas. Thus, those molecules that have a higher
number of atoms look more attractive and are, on average, also more expensive
(Polanski et al. 2016a).

Fialkowski et al. (2005) and Grzybowski et al. (2009) in the broadest
structure-property studies ever reported investigated all Beilstein registered chem-
ical compounds to analyze the architecture and evolution of organic chemistry
(AEOC). The structure was here represented by the MW value, while the property
—by chemical reactivity, i.e., the number of the entries of the given compound as
the reagent or product in the reaction database, respectively. Probing the distri-
bution of the MWs of the Beilstein registered compounds is another interesting
example of the AEOC analysis. As we discussed above MW can be both the
descriptor (if calculated) and the property (if measured). As we know, however, in
the AEOC model all compounds were really synthesized, thus, represented here the
FCS subspace. Therefore, their MWs could be measured, which means that in fact
for some of these compounds the MW has been measured, e.g., by the MS spec-
troscopy. For the other, the MWs were obviously predicted from the other mea-
surements, e.g., NMR, X-ray structures, etc. The credibility of such MW prediction
is very high and the only exceptions are the errors in the structure determination.
Therefore, formally the MW distribution analysis is somewhere in between PE-LPE
analysis and the PE with predicted property annotation that is analyzed in Sect. 4.4.

Technically, data binning was used in both in the WUOC or the QSER studies.
In Fig. 5 different versions of binning opportunities are analyzed while Fig. 6
illustrates the QSER and Fig. 7—AEOC model, respectively. Obviously, the
analysis of million of observables must provide the representation that is much
more superficial but at the same time more general that the small data analyses.
Accordingly, this means higher complexity but lower precision. The term molecular
statistics was coined to describe such a probe. We use here molecular classes more
often than individual compounds massive probing of the formal structure of
chemical space, by sampling chemical compounds to measure the statistics of
molecular descriptors and/or properties. Obviously, molecular statistics is a type of
SAR, but the difference is that we focus here more on the compound classes that are
more fuzzy than on individual drugs or chemotypes, e.g., all drugs, non-drugs, FDA
approvals, etc. (Polanski et al. 2016a).

An interesting statistical verification of the binning in molecular analyses can
be found in Polanski et al. (2016a) and Kenny and Montanari (2013). While
Kenny indicated the statistical malfunction of binning by the substantial signal
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noise reduction, Polanski et al. have shown that the characteristics of the infor-
mative molecular statistics is significantly different from this of the random signals
(Fig. 6b vs. c).

4.4 Molecular Big Data by the Increase of Objects
with Predicted Property Annotation (PE-PPA)

The lack of activity data means we are frequently attempting to predict a property
for a large chemical compound set on the basis of a relatively small compound
series. Obviously, the complication here is perhaps even larger than in the records
that are traditionally called big data. Therefore, we will call this type of information
the statistics of the large number of objects with the expansion of the predicted
property annotation (PPA).

The most obvious example is the prediction of the partition coefficient. Actually,
partition coefficients have been measured experimentally for only 30,000 sub-
stances (Martel et al. 2013), a tiny fraction of the FCS population. Based on this
measurement, we are estimating the logP for millions of virtual designed molecules
or not measured substances, because the actual partition coefficient values will be
measured for chemical compounds only in rare cases, even if they have been
synthesized. Formally, this operation can be classified as the mapping of partition
coefficients into logP (both for unmeasured FCS and unavailable VCS compounds).

Fig. 5 Equi-width (a) and depth (b) binning schemes. Modified from (Kulkarni)
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For a number of substances this means a prediction of the partition coefficient
property based on the calculation of the log P value. The additivity concept allows
to calculate the logP by summing the contributions from structure fragments.
Technically, individual contributions are calculated from the regression model that
relates the partition coefficient measured for the substances to fragmental molecular
descriptors in the FCS. The logP value for the whole molecule can then be cal-
culated by simply putting together the increments that describe the individual
molecular fragments. This operation that can be performed for each molecule in the
whole chemical space means we are predicting partition coefficient based on the log
P versus partition coefficient regression. In particular, a number of different cal-
culation systems have been developed here, e.g., the fragmental Rekker algorithm
(Rekker 1977). Statistically, prediction is prone to failures; however; from the
chemical point we can explain the problems with prediction accuracy if we
understand that we are replacing here a substance (in vitro) with an isolated
molecule (in silico) and then come back to the substance (in vitro) after its actual
synthesis.

Fig. 6 The big data quantitative structure-price analysis of the building block library of ca. 2.5
million chemical compounds. The prices shown as a function of MW bins. On average we are
paying here for the sample weight (a), the prices on the weight basis, WBM, b compared to the
randomly shuffled prices c indicating substantial differences, which proves the information
extracted from the model is not a random noise. Modified from Polanski et al. (2016a)
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Another example of the PE-PPA model is the application of molecular data in
virtual screening in which a small series of compounds of a known structure and
activity can be used to screen a million populations of VCS compounds that are
represented only by descriptors in order to predict their potential activity. Let us
take an example where 1.5 million databases of the available commercial com-
pounds were screened in the search for potential new HIV1 active chemotypes
(Kurczyk et al. 2015). Thus, a set of 1,140 compounds with a determined HIV-1 IN
inhibition was fetched from the ChEMBL v.12 database (ChEMBL). The library of
these compounds was further divided according to their HIV-1 IN inhibition ranges
(Fig. 8) to obtain the subsets of actives and inactives. The Klekota-Roth fingerprint
(Klekota and Roth 2008) was used as the molecular descriptor representation for
developing the classification models. The HIV-specific privileged fragment
descriptors were identified in the ChEMBL-EBI compound subset with a known
activity and used for screening using the weight-based scoring function method.
Actually, the new chemotype hits when the tested compound appeared to indicate a
low anti-HIV activity.

Fig. 7 Representative AEOC models. The number of edges, reactions and compounds for the
network linking reagents with products versus publication year (a) and the distribution of the MW
(g/mol) for the products (b) and reagents (c), respectively. The data are binned in years (a) or MWs
(b, c), respectively. Modified from Fialkowski et al. (2005)
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5 Conclusions

We discussed what big data is and how important big data can be in drug design. In
particular, we analyzed the big data types that are available, in particular, in
structure-property studies. We also indicated several basic big molecular data types.
Basically, these are the big data that are generated by descriptor (DE) or property
(PE) expansion. Actually, however, measured property data are seldom available, in
other words, we are under a property deficit. Property deficit means that the PE data
are usually getting bigger not by the number of property types but by an increase in
the number of chemical compounds that are annotated with a single property type.
This also means that property prediction data is an important architecture in the big
structure-property data. At the same time, the property deficit is among the main
obstacles that limit the application of big data in structure-property studies.
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