
Reasoned Modelling with Event-B

Michael Butler(B)

University of Southampton, Southampton, UK
mjb@ecs.soton.ac.uk

Abstract. This paper provides an overview of how the Event-B lan-
guage and verification method can be used to model and reason about
system behaviour. Formal modelling and reasoning help to increase
understanding and reduce defects in requirements specification. Sets and
relations play a key role in modelling as do operators on these structures.
Precise definitions and rules are provided in order to help the reader
gain a strong understanding of the mathematical operators for sets and
relations. While the emphasis is on mathematical reasoning, particularly
through invariant proofs, the paper also covers less formal reasoning such
as identification of problem entities supported by class diagrams and val-
idation of formal models against informal requirements. The use of tools
for animation, model checking and proof is also outlined.

1 Introduction

This paper provides an introduction to formal modelling using the Event-B lan-
guage and method [1]. We make no strong assumptions about the existing knowl-
edge of the reader other than in interest in learning about the approach and a
willingness to start to put it into practice.

It is useful to motivate the role and value of the formal methods that we
are outlining and advocating in this paper. Essentially it is about improving the
processes that are used to engineer software-based systems so that specification
and design errors are identified and rectified as soon as possible in the system
development cycle. From the earliest days of software engineering it has been
recognised that the cost of fixing a specification or design error is higher the later
in the development that error is identified. This is summarised by the following
observation about software development by Boehm [2]:

Boehm’s First Law: Errors are more frequent during requirements and
design activities and are more expensive the later they are removed.

This observation is bourne out by many studies of software engineering projects.
For example, a 2013 report from the Carnegie-Mellon Software Engineering Insti-
tute (SEI) highlights studies showing that requirements and architecture defects
make up approximately 70% of all system defects and that 80% of these defects
are discovered late in the development life cycle [3].

c© Springer International Publishing AG 2017
J.P. Bowen et al. (Eds.): SETSS 2016, LNCS 10215, pp. 51–109, 2017.
DOI: 10.1007/978-3-319-56841-6 3

52 M. Butler

Early Identification of Errors Through Formal Modelling

Clearly, identifying errors at the point at which they have become expensive to
fix, long after they were introduced, is undesirable. More desirable would be to
discover errors as soon as possible when they are less expensive to fix. So, why is it
difficult to achieve this ideal profile in practice? Common errors introduced in the
early stages of development are errors in understanding the system requirements
and errors in writing the system specification. Without a rigorous approach
to understanding requirements and constructing specifications, it can be very
difficult to uncover such errors other than through testing of the software product
after a lot of development has already been undertaken. Why is it difficult to
identify errors that are introduced early in the development cycle? One reason
is lack of precision in formulating specifications resulting in ambiguities and
inconsistencies that are difficult to detect and may store up problems for later.
Another reason is too much complexity, whether it is complexity of requirements,
complexity of the operating environment of a system or complexity of the design
of a system.

To overcome the problem of lack of precision, we advocate the use of for-
mal modelling. As well as encouraging precise descriptions, formal modelling
languages are supported by verification methods that support the discovery
and elimination of inconsistencies in models. But precision on its own does not
address the problem of complex requirements and operating environments. Com-
plexity cannot be eliminated but we can try to master it. To master complexity,
we advocate the use of abstraction. Abstraction is about simplifying our under-
standing of a system to arrive at a model that is focused on what we judge to be
the key or critical features of a system. A good abstraction will focus on the pur-
pose of a system and will ignore details of how that purpose is achieved. We do
not ignore the complexity indefinitely: instead, through incremental modelling
and analysis, we can layer our understanding and analysis of a system. This
incremental treatment of complexity is the other side of the coin to abstraction,
namely, refinement.

The Event-B modelling approach is intended for early stage analysis of com-
puter systems. It provides a rich modelling language, based on set theory, that
allows precise descriptions of intended system behaviour (models) to be written
in an abstract way. It provides a mathematical notion of consistency together
with techniques for identifying inconsistencies or verifying consistency within a
model. It also provides a notion of refinement of models together with a notion
of consistency between a model and its refinement. By abstracting and mod-
elling system behaviour in Event-B, it is possible to identify and fix require-
ments ambiguities and inconsistencies at the specification phase, much earlier in
the development cycle than system testing. In this way, rather than having an
error-discovery profile in which most errors are discovered during system testing,
we would arrive at an ideal profile in which more errors are discovered as soon
as they are introduced. This paper will focus on precision and verification of
consistencies in abstract specifications and does not cover refinement of models.
Section 13 points to some further reading on refinement.

Reasoned Modelling with Event-B 53

Requirements and Formal Models

We assume that the results of any requirements analysis phase is a requirements
document written in natural language. There remains a potentially large gap
between these informal requirements and a formal model. In this paper we will
touch on this gap but not address it in any comprehensive way. In the context
of a system development that involves both informal requirements and formal
specification, it is useful to distinguish two notions of validation as follows:

– Requirements validation involves analysing the extent to which the (informal)
requirements satisfy the needs of the stakeholders.

– Model validation involves analysing the extent to which the (formal) model
accurately captures the (informal) requirements.

Both of these forms of validation require the use of human judgement, ideally by
a range of stakeholders. In addition, we can perform mathematical judgements
on a formal model. We refer to this use of mathematical judgements are model
verification, that is, the extent to which a model satisfies a given set of mathe-
matical judgements. Key to the effective use of model verification is strong tool
support that automates the verification effort as much as possible. Arriving at
good abstractions, formalising them, enriching models through refinement and
making mathematical judgements all require skill and effort. This upfront effort
is sometimes referred to as front-loading : putting more effort than is usual into
the early development stages in order to save test and fix effort later.

Overview of Paper

Logic and set theory are the mathematical basis of Event-B. In this paper we
explain how these mathematical concepts are used to write precise specifications
in the form of Event-B models and how we reason about such models using
mathematics. We use sets as a form of abstract data structure to model col-
lections of entities that have a certain status and we define events that specify
ways in which these sets may be manipulated to represent changes in the status
of entities. For example, Sect. 2 shows how a set is used to model collections of
users who have permission to be in a building and presents events for adding
users to this set when they are registered and for removing users from this set
when they are de-registered. Mathematical operators on sets allow us to easily
specify manipulations of sets and Sect. 3 provides a brief overview of the set
operators used throughout this paper while Sect. 5, covers issues that arise with
finiteness of sets and determining the size of sets.

Sets are used to model collections of entities of the same kind. When we want
to model connections between different kinds of entities, we use relations which
are covered in Sects. 6 and 7.

The main unit of specification in Event-B is a machine and this is introduced
in Sect. 4. A machine contains a list of variables and a list of events that modify
the variables in precisely defined ways. A machine also contains a list of invari-
ants that describe desired properties of the variables of a machine, e.g., users
inside the building must have permission to be there.

54 M. Butler

Many set operators are defined using mathematical logic. For example, inter-
section of sets is defined in terms of logical conjunction: an element x is in the
intersection of sets S and T if x is in S and x is in T . Section 3 gives a brief
overview of the main logical operators used and the connection between logic and
sets. At various stages in the paper additional mathematical operators are intro-
duced to support the required modelling. Mathematical definitions are provided
to help the reader’s understanding of the operators and to support mathematical
reasoning. Logic allows us to reason about machines, in particular, it allows us
to prove that events of a machine preserve constraints specified by invariants
and this is covered in several places in the paper.

We use several case studies to illustrate the use of the modelling and reasoning
concepts of Event-B. Sections 2–4 use a simple example of a system for controlling
access to a building. This case study is used to in illustrate the use of sets as
abstract data structures and the use of invariants for specifying desired properties
of structures. The case study is also used to provide the initial illustration of
the use of mathematical reasoning to verify properties of a machine. In Sects. 8
and 9 we use a generalisation of the access control system that manages access
to a collection of buildings rather than a single building. This case study is
used to illustrate the use of relations (e.g., between users and buildings) and to
consolidate the concepts from the earlier sections. A function is a special case
of a relation and we use an example of a simple banking system to illustrate the
use of functions in modelling in Sect. 10.

While reading and understanding a specification written in a language such
as Event-B requires a relatively small amount of training, the ability to write
a formal specification requires more skill and, as with programming, that skill
is best developed through practice. Using the access control example, Sects. 8
and 9 provide guidelines on how an Event-B model can be constructed from
a list of informal system requirements. The author has found that the use of
class diagrams provides a useful initial bridge between informal requirements
and formal models involving relations and functions. Class diagrams help to
identify in a graphical way the various entities appropriate for a system model
and the various connections between the different kinds of entities. For example,
in an access control model, users and buildings are two relevant entities and the
access rights are represented by an association between those entities.

A key advantage of Event-B is the availability of tool support for reasoning
about formal models. Sections 11 and 12 provide an overview of tool support
(animation, model checking, proof obligation generation and automated proof)
that is available to support model validation and verification.

Section 13 briefly overviews some material that provides a deeper treatment
of Event-B than this paper and also overviews other related formal modelling
and analysis methods.

2 Modelling with Sets and Invariants

We illustrate modelling with sets through an example of access control to a
building. The system should allow only registered users to enter the building

Reasoned Modelling with Event-B 55

and should keep track of which users are inside the building. We start by con-
sidering two sets, in, representing the users who are inside the building and out,
representing the users who are outside the building. The two sets are illustrated
by the Venn diagram in Fig. 1.

Fig. 1. Venn diagram for in and out

The diagram illustrates that we might have users in the overlapping area
between the two sets (the intersection) and users in the non-overlapping areas.
However, for this particular example, we would not expect any users to be both
inside and outside the building so we would like to rule this possibility out as
illustrated in Fig. 2. When the intersection of two sets is empty, we say the
sets are disjoint and disjointness is illustrated in Fig. 3 by having no overlap
between the sets. This disjointness property may be represented by the following
mathematical equation:

in ∩ out = ∅

The equation says that the intersection of the two sets (in ∩ out) is empty (∅).
The system we are modelling is dynamic in that users may enter or leave the

building. In our model, this will be reflected by changes to the sets in and out.

in out

Fig. 2. Venn diagram: empty intersection

in out

Fig. 3. Venn diagram: disjoint sets

56 M. Butler

Thus we treat in and out as variables whose values may be changed. We make
the following declaration:

variables in, out

While the values of the variables may change, the disjointness property should
remain true. An invariant is a property of one or more variables that should be
preserved by an changes to the variables so, not matter what changes occur in
the system, it should never get into a state in which the invariant is falsified. We
require the disjointness equation to be an invariant of our access control model
so we declare:

invariant in ∩ out = ∅

We mentioned the concept of registered users at the beginning of this section
so we introduce a set, called register, representing registered users. We will allow
the set of registered user to change, e.g., by adding a new user to the register,
so we declare register to be a variable:

variable register

Only registered users should be allowed in the building and we model this prop-
erty by requiring in to be contained entirely within register as illustrated in
Fig. 4. As the diagram illustrates, a user who is in the building must also be reg-
istered. The diagram also illustrates that some users may be registered without
being in the building. We say that in is a subset of register, written in mathe-
matical notation as: in ⊆ register. We declare this subset property on in and
register as an invariant:

invariant in ⊆ register

in

register

Fig. 4. Venn diagram: subset

What about the relationship between the set out and the set register? Up
to now we have not been clear about whether out represents all possible users
including those that are not registered. Let us make a modelling decision that out
represents exactly those users who are registered and are outside the building.

Reasoned Modelling with Event-B 57

in out

register

Fig. 5. Venn diagram: set union

Thus registered users are either in or out. This is illustrated by Fig. 5 which
shows that register is the union of in and out. Mathematically, the union is
written as in ∪ out and we declare the union property as an invariant:

invariant register = in ∪ out

We can add behaviours to the model, such as a user entering the building or
leaving the building, by specifying events. An event defines an atomic transition
on states, that is, it defines a relationship between a state before the event is
executed and the resulting state after the event is executed. An atomic transition
representing a user entering the building is illustrated by Fig. 6. This shows Venn
diagrams for the variables in and out both before and after execution of the Enter
event. In the before state, user u is in the set out while in the after state u is in
the set in, i.e., the Enter event moves user u from out to in. As shown in Fig. 6,
the specification of the Enter event has three parts:

– parameter u representing the user who is entering the building
– a guard requiring that the user is in the set out
– an action that moves u from out to in,

Fig. 6. Illustrating the Enter event

The Enter event is specified in Event-B notation as follows (including com-
ments):

58 M. Butler

Enter =̂
any u where

grd1: u ∈ out // u must be registered and outside
then

act1: in := in ∪ {u} // add u to in
act2: out := out \ {u} // remove u from out

end

Here the keyword any indicates that u is a parameter. The guard of the
event appears between the where and then keywords while the actions appears
between the then and end keywords. The guard labelled grd1 requires that u
is in the set out, written u ∈ out. The actions of the event specify assignments
that modify some of the variables of the model, e.g., the action labelled act1
assigns the value in ∪ {u} to the variable in. The action labelled act2 uses set
difference to remove u from out: s \ t is the difference between sets s and t, i.e.,
the set elements of s that are not in t.

Although the Enter event contains several actions, the order in which the
actions appear does not matter as all of the actions are executed together, not
in series.

The syntax for specifying events will be described systematically in Sect. 4.
Before presenting further details of the model of the building access control we
give a quick overview, in the next section, of the key concepts of set theory that
are important in the Event-B notation.

3 Overview of Set Theory

Here we list some key features of sets:

– A set is a collection of elements.
– Elements are not ordered by a set.
– Set membership is an important relationship between an element and a set.

We write x ∈ S to specify that element x is a member of set S.
– Elements may themselves be sets, i.e., we can have a set of sets.
– Sets may be enumerated within braces, e.g., the set {a, b, c} contains three

elements, a, b and c.
– The set containing no elements, the empty set, is written ∅.

Set membership is a boolean property relating an element and a set, i.e.,
either x is in S or x is not in S. This means that there is no concept of an
element occurring more that once in a set, e.g.,

{a, a, b, c} = {a, b, c}.
Set membership says nothing about the relationship between the elements of a
set other than that they are members of the same set. This means that the order
in which we enumerate a set is not significant, e.g.,

{a, b, c} = {b, a, c}.

Reasoned Modelling with Event-B 59

These two characteristics distinguish sets from data structures such as lists or
arrays where elements appear in order and the same element my occur multiple
times.

3.1 Typing and Powersets

All the elements of a set must have the same type where a type is a special kind
of set known as a carrier set. Figure 7 illustrates that the variables register, in
and out are all subsets of the carrier set USER. In Event-B we use an invariant
to define the carrier set of a variable, e.g.,

invariant register ⊆ USER

This declaration means that all the elements of the set register have the type
USER. If we also have the invariant register = in ∪ out, the elements of in and
out must have the same type as the elements of register. That is, the type of
in and out can be inferred from the type of register because of the invariant
register = in ∪ out. All the elements of a set must have the same type.

USER

register

in out

Fig. 7. Carrier set USER

A carrier set is maximal in that it is not a subset of any other set. A model
may contain several carrier sets and these are implicitly disjoint from each other.
For example, we could have a model that contains two carrier sets USER and
BUILDING. We cannot combine carrier sets using set union, intersection or
difference, e.g., USER ∪ BUILDING is invalid. In Sect. 6 we will see that we
can combine carrier sets in another way to form relations. A carrier set remains
fixed during the execution of a model, i.e., actions of an event cannot assign to
a carrier set.

Suppose C is a carrier set. To define the type of an element x to be C, we
simply declare x ∈ C. If S is not a carrier set and S ⊆ C, then the declaration
x ∈ S means that the type of x is C.

The Event-B notation has an in-built carrier set representing integers, written
Z. Elements of this set can be written using the usual literals, e.g., 1, 2, 3. The
Event-B notation supports the usual arithmetic operators for integers such as
addition and multiplication.

60 M. Butler

A powerset of a set is the set of all subsets of that set. For set S, we write
P (S) for the powerset of S. For example,

P ({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
Note that both the empty set and the set itself are contained within a set’s
powerset.

Up to now we have referred to the type of the elements of a set, e.g., all the
elements of register have type USER. What about the type of the set itself (as
opposed to the elements of the set)? We use the powerset operator to define the
type of the set itself:

If the elements of a set S are of type C then the type of S is P (C).

For example, we have:

– the type of the set register is P (USER)
– the type of the set {1, 2, 3} is P (Z)

3.2 Expressions and Predicates

Expressions are syntactic structures for specifying values (elements or sets). Lit-
erals (e.g., 3, ∅) are basic expressions as are variables (e.g., register) and carrier
sets (e.g., USER). Compound expressions are formed by applying expressions to
operators such as x + y and S ∪ T to any level of nesting.

Predicates are syntactic structures for specifying logical statements, i.e.,
statements that are either true or false (but not both). Equality of expressions
is an example predicate, e.g., register = in ∪ out. Set membership and subset
relations are other examples. For integer elements we can write ordering pred-
icates such as x ≤ y. Assume that a, S, T , x and y are expressions (S and T
are set expressions while x and y are integer expressions). We have available the
following basic predicates:

Basic Predicates: a ∈ S, S ⊆ T , S = T , x = y, x < y, x ≤ y

Predicate Operators: Compound predicates are formed using the standard
logical operators listed in the following table (assume P and Q are predicates):

Name Predicate Definition

Negation ¬P P does not hold

Conjunction P ∧ Q Both P and Q hold

Disjunction P ∨ Q Either P holds or Q holds

Implication P ⇒ Q If P holds, then Q holds

Quantified Predicates: We have seen that a predicate P may refer to one
or more variables, e.g., x ≤ y. We can quantify over a variable of a predicate
universally or existentially:

Reasoned Modelling with Event-B 61

Name Predicate Definition

Universal quantification ∀x · P P holds for all x

Existential quantification ∃x · P P holds for some x

In the predicate ∀x · P the quantification is over all possible values in the type
of the variable x. Typically we constrain the range of values using implication,
e.g., we could specify that every element of the set in is also an element of the
set register:

∀u · u ∈ in ⇒ u ∈ register

In the case of existential quantification we typically constraint the range of values
using conjunction, e.g., we could specify that integer z has a positive square root
as follows:

∃y · 0 ≤ y ∧ y × y = z

Free and Bound Variables: A variable that is universally or existentially
quantified in a predicate is said to be a bound variable. A variable referenced in
a predicate that is not bound variable is called a free variable. For example, in
the above predicate, y is bound while z is free.

Predicates on sets can be defined in terms of the logical operators as follows:

Name Predicate Definition

Subset S ⊆ T ∀x · x ∈ S ⇒ x ∈ T

Set equality S = T S ⊆ T ∧ T ⊆ S

3.3 Set Operators

We already used expression operators on sets such as union and intersection. We
now defines these operators more precisely using predicates. A predicate provides
a way of defining a set: the set of elements that satisfy the predicate. Consider
the union S ∪ T . The elements of the union are those elements that are either
in S or in T . More precisely, the set S ∪ T is defined by the set of elements x
satisfying the predicate x ∈ S ∨ x ∈ T . The following table provides definitions
of the set operators using logical operators:

Name Predicate Definition

Union x ∈ S ∪ T x ∈ S ∨ x ∈ T

Intersection x ∈ S ∩ T x ∈ S ∧ x ∈ T

Difference x ∈ S \ T x ∈ S ∧ x �∈ T

Powerset x ∈ P (S) x ⊆ S

Empty set x ∈ ∅ False

62 M. Butler

Note that x �∈ T is a shorthand for ¬(x ∈ T). Similarly we can use the
shorthand S �= T for ¬(S = T).

4 Structuring Models with Machines

We have already introduced several Event-B constructs such as carrier sets,
variables, invariants and events. So is there a way of packaging these into com-
ponents? A machine is an Event-B component in which the variables, invariants,
and events are placed. Carrier sets that are required by a machine are placed
in a separate component called a context. An Event-B context can also con-
tain constants and axioms. The axioms are predicates that define properties of
the carrier sets and the constants. For example, for our building access control
example, we might want to model a capacity constraint on the building. We
could do this by introducing a constant max capacity and an axiom stating that
max capacity is greater than zero.

4.1 Context

A context with name C1 has the following form:

context C1

sets 〈list of carrier sets〉

constants 〈list of constants〉

axioms 〈list of labelled axioms〉

end

The following example is a context for the building access model which intro-
duces a carrier set and a constant:

context BuildingContext
sets USER
constants max capacity
axioms

axm1: max capacity ∈ Z

axm2: max capacity > 0
end

Each axiom in the context is a predicate. For traceability purposes, each axiom
in a context is given a unique label (e.g., axm1). The axioms in this context
specify that max capacity is an integer (axm1) whose value is assumed to be
greater than zero (axm2).

Reasoned Modelling with Event-B 63

4.2 Machine

In Event-B, a machine defines the dynamic behaviour of a model through events
that are guarded by and act on the variables. The events are expected to maintain
the invariants; we will see later how this is verified. A machine may see one or
more contexts which provide the carrier sets, constants and axioms to be used
by the machine. A machine with name M has the following form:

machine M1

sees 〈list of context names〉

variables 〈list of variables〉

invariants 〈list of labelled invariants〉

events 〈list of events〉

end

For example, part of the machine for the building access is specified as follows:

machine Building
sees BuildingContext
variables register, in, out
invariants

inv1: register ⊆ USER
inv2: register = in ∪ out
inv3: in ∩ out = ∅

events . . .

This machine is named Building ; it sees the previously defined BuildingContext
and it contains three variables. register, in and out. As discussed previously, the
invariants specify that registered users are of type USER (inv1), registered users
are either inside or outside (inv2) and no user is both inside and outside (inv3).

We postpone treatment of any building capacity constraint to later.
In Sect. 2 we showed the Enter event which models a user entering the build-

ing. Here we present the general syntax of event definitions. Each event of a
machine has a name, a list of parameters, a list of guards and a list of actions
structured as follows:

〈name〉 =̂
any 〈list of parameters〉 where

〈list of labelled guards〉
then

〈list of labelled actions〉
end

64 M. Butler

Guards are predicates that specify conditions on the machine variables and the
event parameters. Each action assigns a value to a machine variable and has the
form:

〈variable〉 := 〈expression〉
For example, here is the Enter event again:

Enter =̂
any u where

grd1: u ∈ out
then

act1: in := in ∪ {u}
act2: out := out \ {u}

end

An event may be executed for particular values of the parameters when all its
guards are satisfied. When an event is executed, all of the actions of that event
are performed simultaneously. Because of the simultaneity, it is not allowed for
two different actions in an event to assign to the same variable as this would lead
to conflicting updates. As with invariants, the guards and actions are labelled.

4.3 Preserving Invariants

When specifying an event, it is important to ensure that the invariants are
preserved by its actions. We can assume that the invariants are satisfied prior
to execution of the event and we need to demonstrate that the actions do not
result in any invariant being violated.

Let us consider whether the Enter event preserves the invariants of the access
control model. Invariant inv1 refers to the register variable only and, since none
of the actions modify register, this invariant is trivially preserved. Invariant inv2
is an equation specifying that register is the union of in and out:

register = in ∪ out (1)

The actions of the Enter event modify the variables in right-hand side of the
equation but not the left-hand side. However since u is moved from out to in,
the overall value on the right-hand side remains unchanged and the equation
remains valid. More precisely, the effect of the actions of the Enter event on the
invariant can be represented by replacing each variable in the invariant by the
expression on the right-hand side of the assignment to that variable, i.e., replace
in by in ∪ {u} and out by out \ {u}, giving:

register = (in ∪ {u}) ∪ (out \ {u}) (2)

The result of replacing in and out are underlined in Eq. (2). We say that invariant
inv2 is preserved when Eq. (2) follows from Eq. (1) and the guard of Enter, that
is, when proving Eq. (2), we can assume that Eq. (1) holds and that the guards
of the Enter event hold. The proof is as follows:

Reasoned Modelling with Event-B 65

(in ∪ {u}) ∪ (out \ {u})
= “ ∪ is associative and commutative”

in ∪ (out \ {u}) ∪ {u}
= “grd1 : u ∈ out′′

in ∪ out
= “inv2′′

register

Each step in the simple proof is justified either by appealing to a rule of set the-
ory (the first step), by appealing to an event guard (the second step) or to the
invariant inv2 (the third step) with the justification indicated by “inverted com-
mas”. Both union and intersection are associative and commutative as captured
in this table:

Description Rule

Union associative (s ∪ t) ∪ u = s ∪ (t ∪ u)

Union commutative s ∪ t = t ∪ s

Intersection associative (s ∩ t) ∩ u = s ∩ (t ∩ u)

Intersection commutative s ∩ t = t ∩ s

The second step in the above proof of Eq. (2) relies on the following simplification
rule for sets which states that if x is in set s, then subtracting x from s and adding
x to the result yields s:

Description Rule

Simplify x ∈ s ⇒ (s \ {x}) ∪ {x} = s

An advantage of the actions of an event being executed simultaneously is
that we do not need to consider intermediate states in which invariants might be
violated. For example, if act1 and act2 were executed sequentially, inv2 would
be violated in between act1 and act2 before being re-established by act2. To
re-iterate: the actions within an event are always executed simultaneously and
not sequentially.

We have shown that the Enter event maintains inv1 and inv2. We now
consider the remaining invariant, inv3. Invariant inv3 specifies that in and out
are disjoint. If we removed action act2 from the Enter event, this would lead
to a violation of inv2 as u would end up both in and out. However, since both
actions together move u from out to in, their disjointness is preserved. Let us
prove this mathematically. Invariant inv2 is:

in ∩ out = ∅ (3)

As we have seen, the effect of the actions of the Enter event on the invariant can
be represented by replacing each variable in the invariant by the expression on

66 M. Butler

the right-hand side of the assignment to that variable, i.e., replace in by in∪{u}
and out by out \ {u}, giving:

(in ∪ {u}) ∩ (out \ {u}) = ∅ (4)

The proof of this is captured by the following general rule about sets which
states that if two sets are disjoint then removing elements from one and adding
them to the other maintains the disjointness:

Description Rule

Keep disjoint s ∩ t = ∅ ⇒ (s \ r) ∩ (t ∪ r) = ∅

4.4 Machine Initialisation

Every machine has a special event (named initialisation) that initialises the
machine variables. The acccess control machine is initialised by setting all three
variables to be empty:

initialisation =̂
act1: in := ∅

act2: out := ∅

act3: register := ∅

An initialisation event has no guards nor parameters and the assignment expres-
sions (right-hand side) cannot refer to the machine variables. This is because no
assumptions can be made about the values of the variables prior to initialisation.
The initialisation should establish the invariant, i.e., the values assigned to the
variables together should satisfy the invariants. In this case, all three invariants
are trivially established, i.e.,

∅ ⊆ USER
∅ ∩ ∅ = ∅

∅ = ∅ ∪ ∅

4.5 Other Access Control Events

We now look at some of the other events for access control: exiting the building,
registering a new user and de-registering a user. The Exit event is the opposite
of the Enter event: the user should be in the building and is moved from in to
out:

Exit =̂
any u where

grd1: u ∈ in
then

act1: in := in \ {u}
act2: out := out ∪ {u}

end

Reasoned Modelling with Event-B 67

This event maintains the invariants based on similar arguments that we used
previously for the Enter event.

When registering a user, we need a ‘fresh’ value to represent the new user,
i.e., a value that is not already in the set register. This fresh value is then added
to the set of registered users. The event could be specified as follows:

RegisterUser1 =̂
any u where

grd1: u ∈ USER
grd2: u �∈ register

then
act1: register := register ∪ {u}

end

The first guard gives a type to u while the second guard ensures that u is fresh.
Let us consider whether the action violates any invariants. It turns out that the
action violates the equation of inv2 (register = in ∪ out): it expands the left-
hand side without expanding the right-hand side. We can resolve this by adding
an action that also expands the right-hand side of the equation. We can do this
by adding u to in or to out. In this case, it makes more sense to add u to out
rather than in, as we would not expect that the new user would end up inside
the building immediately at the point at which they are registered. Thus, an
improved version of the event is specified as follows:

RegisterUser2 =̂
any u where

grd1: u ∈ USER
grd2: u �∈ register

then
act1: register := register ∪ {u}
act2: out := out ∪ {u}

end

This specification of the user registration does maintain inv3. Let us prove this
mathematically. Invariant inv3 is:

register = in ∪ out (5)

The actions of the event modify this to the following equation:

register ∪ {u} = in ∪ (out ∪ {u}) (6)

We prove that this equation follows from the invariant:

register ∪ {u}
= “inv3′′

(in ∪ out) ∪ {u}
= “ ∪ is associative”

in ∪ (out ∪ {u})

68 M. Butler

A user who is already registered may be de-registered by removing them from
register. Removing u from register without removing u from in or out will lead
to a violation of inv2. One solution is to remove u from both in and out leading
to the following specification of the event for de-registering:

DeRegisterUser1 =̂
any u where

grd1: u ∈ register
then

act1: register := register \ {u}
act2: out := out \ {u}
act3: in := in \ {u}

end

This specification will preserve inv2 since u is removed from both sides of the
equation. This event is applicable whether registered user u is inside or outside
the building. However, if we consider a building access control system, it probably
does not make sense to de-register a user while they are inside the building so
we strengthen the guard to specify that u is outside (and registered):

DeRegisterUser2 =̂
any u where

grd1: u ∈ out
then

act1: register := register \ {u}
act2: out := out \ {u}

end

Note that this version does not modify in. If u was a member of in, this would
result in a violation of inv2. However, from the guard of the event we know that
u is an element of out and, since in and out are disjoint (inv3), we know that u
cannot be an element of in. Thus it is sufficient to remove u from out in order
to maintain inv2.

We leave it as an exercise for the reader to prove that DeRegisterUser2 pre-
serves the invariants. The following rules are used in the proofs:

Description Rule

Distribute difference (s ∪ t) \ r = (s \ r) ∪ (t \ r)

Simplify x �∈ s ⇒ s \ {x} = s

Keep disjoint s ∩ t = ∅ ⇒ (s \ r) ∩ t = ∅

4.6 Machine Behaviour and Nondeterminism

A simple way of thinking about the behaviour of an Event-B machine is as a
transition system that moves from one state to another through execution of

Reasoned Modelling with Event-B 69

events. The states of a machine are represented by the different configurations
of values for the variables. The variables of a machine are initialised by execution
of the special initialisation event. An event is enabled in some state for some
parameter values if all of the guards of the event are satisfied. For example, the
Enter event in the access control model is enabled for parameter value u1 in any
state in which u1 is an element of the variable out.

In any state that a machine can reach, an enabled event is chosen to be
executed to define the next transition. If several events are enabled in a state,
then the choice of which event occurs is nondeterministic. Also, if an event
is enabled for several different parameter values, the choice of value for the
parameters is nondeterministic – the choice just needs to satisfy the event guards.
For example, in the RegisterUser2 event, the choice of value for parameter u is
nondeterministic, with the choice of value being constrained by the guards of
the event to ensure that it is a fresh value.

Treating the choice of event and parameter values as nondeterministic is an
abstraction of different ways in which the choice might be made in an implemen-
tation of the model. For example, if it is an interactive system, the choice might
be offered to a user via a graphical interface. If it is an information processing
system, the choice might be made by some scheduler. If the machine reaches a
state in which no event is enabled, then it is said to be deadlocked.

5 Finiteness, Cardinality and Well-Definedness

Previously we considered the possibility of placing a constraint on the the number
of users allowed inside the building at any one time. We could represent this as
an invariant specifying that the number of elements in the set in is bounded
by the constant max capacity. In set theory, the number of elements in a set is
called its cardinality and in Event-B this is written as card(S). For example,

card({a, b, c}) = 3.

However a word of caution: cardinality is only defined for finite sets. If S is an
infinite set, then card(S) is undefined. Whenever we use the card operator, we
must ensure that it is only applied to a finite set. This issue of well-definedness
applies to some other operators as well. For example, division by zero is not
well-defined and when using division we must ensure that the divisor is not zero.

As is standard in set theory, sets in Event-B may be finite or infinite. For
example, the set of integers is infinite. A carrier set defined in a context is infinite
unless we explicitly specify that it is finite. Naturally, an enumerated set, e.g.,
S = {a, b, c}, is finite. We can specify that a set S is finite using the predicate
finite(S). In the building access system, we would expect the set of people who
are inside the building to be finite which we write as finite(in). Initially in is
empty and thus finite. The only way of expanding the set in is through the Enter
event which adds one user at a time. Thus the set in can never become infinite.

To model the finiteness and capacity constraints on the access control, we
extend the set of invariants of the machine as follows:

70 M. Butler

invariants

· · ·
inv4: finite(in)
inv5: card(in) ≤ max capacity

In inv5, card(in) is well-defined since we know that in is finite from inv4.
Considering preservation of inv4, the only event that expands in is the Enter
event and it maintains the finiteness of in (inv4) by the argument outlined
above. For inv5, max capacity is a constant so cannot decrease during execution
of the machine so we only need to consider events that might cause card(in)
to increase. As we have already said, Enter is the only event that expands
in and thus increases card(in). The Enter event as previoulsy specified places
no constraint on the number of people already in the building so we need to
strengthen it by adding guard grd2 as follows:

Enter2 =̂
any u where

grd1: u ∈ out
grd2: card(in) < max capacity

then
act1: in := in ∪ {u}
act2: out := out \ {u}

end

Note that grd2 requires card(in) to be strictly less that max capacity in order
to ensure that the size of the resulting value for in is less than or equal to
max capacity.

The following table summaries the finiteness and cardinality operators we
have just introduced. The table also includes a column to indicate when a pred-
icate or expression is well-defined:

Name Operator Meaning Well-definedness

Finite finite(S) Set S is finite True

Cardinality card(S) Number of elements in set S finite(S)

Note that some of our definition tables do not have a well-definedness column.
In these cases the predicate or expression is always well-defined.

The following rules about finiteness and cardinality are used to prove that
inv4 and inv5 are preserved by the events:

Reasoned Modelling with Event-B 71

Description Rule

Finite union finite(s) ∧ finite(t) ⇒ finite(s ∪ t)

Finite difference finite(s) ⇒ finite(s \ t)

Increase card x �∈ s ⇒ card(s ∪ {x}) = card(s) + 1

Decrease card x ∈ s ⇒ card(s \ {x}) = card(s) − 1

6 Introducing Relations

We have seen how sets can be used to model access control for a building. We
introduced a carrier set to represent users but we did not introduce a carrier set
to represent buildings. The reason for not introducing buildings is that our model
was intended for a single building and the identity of that building was implicit.
Let us consider generalising our modelling of access control to a system with
multiple buildings. For this we introduce a carrier set representing buildings so
that we can distinguish different buildings. Figure 8 illustrates the two distinct
carrier sets, one for users and the other for buildings.

USER BUILDING

b1
u1

u2

u3

u4

b2

b3

Fig. 8. Distinct carrier sets

Rather than allowing registered users to enter any building, we would like
to model a more fine-grained control over which buildings a user is allowed to
enter. This is illustrated in Fig. 9 which represents a permission relation between
users and buildings. An arrow from a user to a building indicates that particular
user has permission to enter that building. For example, in Fig. 9, user u1 has

72 M. Butler

permission to enter two of the buildings, b1 and b2. Figure 9 represents three
different sets: a set of users, a set of buildings and a set of arrows between users
and buildings. Mathematically an arrow from user u to building b is represented
by a pair of elements, written u �→ b. A relation is represented by a set of pairs,
for example, the permission relation of Fig. 9 is represented by the following set
P of pairs:

P = {u1 �→ b1, u1 �→ b2, u2 �→ b1, u2 �→ b3, u4 �→ b2, u4 �→ b3}
The permission model demonstrates that a relation allows us to connect distinct
carrier sets. Management of relationships between different kinds of entities is
a key role of many computerised systems, including access control, business
systems, information systems and communications systems. Thus relations are
a useful mathematical structure for modelling such systems.

A pair u �→ b has a first element u and a second element b. Given a set
of pairs, it is useful to refer to the set of the first elements of all pairs, called
the domain, and the set of second elements, called the range. For the example
relation P above, we have

dom(P) = {u1, u2, u4}
ran(P) = {b1, b2, b3}

Here, dom(P) represents the set of users who have permission to enter some
building while ran(P) represents the set of buildings for which some user has
permission to enter.

Figure 9 labels the permission relation as many-to-many. This means that
many different domain elements can be mapped to the same range element, e.g.,
u1 and u2 are both mapped to b1, and also that the same domain element can be
mapped to many different range elements, e.g., u1 is mapped to both b1 and b2.

As well as modelling the permission relation, we can also model the current
location of a user using a relation as illustrated in Fig. 10. We would not expect
a user to be located in more than one building at a time and thus the location
relation is required to be a many-to-one relation, meaning that a domain element

u1

u2

u3

u4

b1

b2

b3

permission

Many-to-many relation

Fig. 9. Permission relation

Reasoned Modelling with Event-B 73

location
u1

u2

u3

u4

b1

b2

b3

Many-to-one relation

Fig. 10. Location relation

can be mapped to exactly one range element rather than many. A many-to-one
relation still allows many different domain elements to be mapped to the same
range element, e.g., u2 and u4 are both located in the same building in Fig. 10.
Many-to-one relations are also called functions and are covered in more detail
in Sect. 7.3.

Since the permission and location relations are themselves sets, we can for-
mulate a connection between them. For an access control system we require that
if a user is located in a building, then they have permission to be in that build-
ing. This requirement is represented by specifying that location is a subset of
permission, i.e., any pair in the location relation is also a pair of the permission
relation. The connection between the two relations is illustrated in Fig. 11 where
location is clearly a subset of permission.

u1

u2

u3

u4

b1

b2

b3

Fig. 11. Location satisfies permission

A many-to-one relation is a special case of a many-to-many relation. A further
special case is a one-to-one relation in which each domain element is related to
exactly one range element and each range element is related to exactly one
domain element. This is illustrated in Fig. 12 where the location relation is such
that users are mapped one-to-one with buildings, i.e., no two users are located
in the same building. If we required single occupancy for the buildings, then we
could represent this with an invariant specifying that location is one-to-one.

74 M. Butler

location
u1

u2

u3

u4

b1

b2

b3

One-to-one relation

Fig. 12. Location with single occupancy

7 Cartesian Products and Relations

We have seen that an ordered pair is an element consisting of two parts, a first
part and a second part, and is written as x �→ y. Given two sets S and T , we
can form what is called their Cartesian product. This is the set of all those pairs
whose first component is in S and second component is in T . The Cartesian
product of S with T is written S × T . For example, the Cartesian product of
{a, b, c} with {1, 2} is expanded to a set of pairs as follows:

{a, b, c} × {1, 2} = {a �→ 1, a �→ 2,
b �→ 1, b �→ 2,
c �→ 1, c �→ 2}

Here we see, for example, that a �→ 1 is an element of the Cartesian product
since a is in {a, b, c} and 1 is in {1, 2}. More generally x �→ y is an element of
S × T when x is in S and y is in T as shown in the following table:

Name Predicate Definition

Cartesian product x �→ y ∈ S × T x ∈ S ∧ y ∈ T

The following derivation shows that the product of any set with the empty
set is itself empty (S × ∅ = ∅):

x �→ y ∈ S × ∅

= “Definition of × ”
x ∈ S ∧ y ∈ ∅

= “Definition of ∅”
x ∈ S ∧ false

= “Logic′′

false

= “Definition of ∅”
x �→ y ∈ ∅

Reasoned Modelling with Event-B 75

7.1 Type Constructors and Structured Types

In Sect. 3.1, we saw that the powerset operator is used to define the type of a
set. The powerset operator can be used to construct a type P (T) from a type
T so we refer to it as a type constructor. Similarly, Cartesian product is a type
constructor: the type S ×T is constructed from the types S and T . A structured
type is a type formed using a type constructor such as P or ×.

– Powerset (P) is the type constructor for sets.
– Cartesian product (×) is the type constructor for ordered pairs.

In Event-B, constants, variables, parameter and expressions have a type and
these types come in three forms

– Basic type: integer (Z), Boolean.
– Carrier set, e.g., USER, BUILDING.
– Structured type: P (S), S × T .

The type constructors can be nested and combined to form more complex
structured types such as:

– Set of sets: P (P (T))
– Set of pairs: P (S × T)
– Pair of sets: P (S) × P (T), S × P (T), P (S) × T

The following table presents some example expressions and their correspond-
ing structured type:

Expression Type

{5, 6, 3} P (Z)

4 �→ 7 Z × Z

{5, 6, 3} �→ 7 P (Z) × Z

{4 �→ 8, 3 �→ 0, 2 �→ 9} P (Z × Z)

7.2 Relations

Through the permission example (Fig. 9) we have seen that a relation is mod-
elled as a set of pairs, i.e., a structured type formed using both the × and P

constructors. Because this structured type is a useful modelling construct, it is
given its own symbol in Event-B: we write S ↔ T as a shorthand for P (S × T).
The following table provides the definition of the relation arrow:

Name Predicate Definition

Relation r ∈ S ↔ T r ∈ P (S × T)

76 M. Butler

For the access control example, we may specify that the permission variable is
a (many-to-many) relation with the following invariant:

invariant permission ∈ USER ↔ BUILDING

Here is another example of a relation, named directory, that relates people
to phone numbers:

invariant directory ∈ PERSON ↔ NUMBER

A possible value for the directory is as follows:

directory = {mary �→ 287573,
mary �→ 398620,
john �→ 829483,
jim �→ 398620}

It is worth pointing out the difference between the two arrow symbols used
in representing relations:

↔ combines two sets to form a set.
�→ combines two elements to form an ordered pair.

We already introduced the domain and range of a relation. These are defined
by the following table:

Name Predicate Definition

Domain x ∈ dom(R) ∃y · x �→ y ∈ R

Range y ∈ ran(R) ∃x · x �→ y ∈ R

For the example directory shown above, we have:

dom(directory) = {mary, john, jim}
ran(directory) = {287573, 398620, 829483}

Note that when we declare a constant or variable to be a relation between
two sets, as well as defining its type, we are implicitly constraining the domain
and range of the relation: Suppose we have s ⊆ S and t ⊆ T and we declare
r ∈ s ↔ t, then it follows that

r ∈ P (S × T)
dom(r) ⊆ s

ran(r) ⊆ t

Reasoned Modelling with Event-B 77

7.3 Functions

From Fig. 10 we saw that the location relation should be a many-to-one relation,
i.e., each user is located in at most one building at any moment. The many-
to-one property means that if a user u is in the domain of location, then that
user is mapped to a single building by the location relation. In that case, we can
write location(u) to refer to the building that u is located in. For example, from
Fig. 10, we have:

location(u1) = b1
location(u2) = b3
location(u4) = b3

If a user u is not in the domain of location, then location(u) is not well-
defined. For example, from Fig. 10, u3 is not in the domain of location therefore
location(u3) is not well-defined.

In general, a many-to-one relation f is said to be functional. This is written as
f ∈ S �→T and means that every element in the domain of f is mapped to exactly
one element in the range. The functionality property is specified mathematically
by stating that if a domain value x is mapped to range value y, then x cannot
be mapped to any other range value y′. This is shown in the following table:

Name Predicate Definition

Partial function f ∈ S �→ T f ∈ S ↔ T ∧
∀x, y, y′ · x �→ y ∈ f ∧ y′ �= y

⇒ x �→ y′ �∈ f

Note that when we declare f ∈ S �→ T we say that f is a partial function. It
is said to be partial because there may be values in the set S that are not in the
domain of f . For example, from Fig. 10, u3 is in USER but is not in the domain
of location. A relation is said to be a total function from S to T when it is a
partial function and its domain is exactly S:

Name Predicate Definition

Total function f ∈ S → T f ∈ S �→ T ∧ dom(f) = S

We have seen that we can write location(u1) since location is functional.
In general, when a relation f is functional, we can treat it as a mathematical
function and write f(x) for the value that x is mapped to. For f(x) to be well-
defined, two conditions must hold: f must be functional and x must be in the
domain of f . This is shown in the following definition:

78 M. Butler

Name Expression Meaning Well-definedness

Function application f(x) f(x) = y f ∈ S �→ T ∧
⇔ x �→ y ∈ f x ∈ dom(f)

This definition uses the if and only if (⇔) logical operator: P ⇔ Q is short for
P ⇒ Q ∧ Q ⇒ P .

8 Access Control Specification

Now that we have explained relations and functions, we will make use of them to
construct an Event-B specification of access control for multiple buildings. We
start by presenting the high-level requirements in an informal way. As already
stated, computer-based system is designed to satisfy some requirements in the
real world and it is usual to express system requirements in natural language.
Documentation of the requirements in natural language will guide the construc-
tion of the Event-B specification and will also provide a form of “sanity check”
against which to validate the Event-B specification. It helps understanding if we
try to describe the intended purpose of the system being designed in a concise
way. For the access control system this is as follows:

Purpose: The purpose of the access control system is to ensure that users
may be in a building only if they have permission to be in that building.

We provide a more detailed list of requirements, giving each one a label so that
we can refer to it later. In each of the following requirements “the system” refers
to the access control system:

– FUN1: The system shall maintain a register of recognised users and shall
provide operations for managing the user register.

– FUN2: The system shall maintain a register of protected buildings and shall
provide operations for managing the building register.

– FUN3: The system shall maintain the permissions for each user, determin-
ing the building they are allowed to enter, and shall provide operations for
managing the permissions.

– FUN4: The system shall allow a user to enter a building provided they have
permission.

– FUN5: The system shall allow a user to exit a building without constraint.
– ASM1: A user will be in at most one building at any time.
– ASM2: A user cannot move directly from one building to another building.

Most of these requirements are functional requirements1, that is, requirements
defining the intended function of the system. The last requirements in the list
are assumptions about the environment in which the system is operating, e.g.,
1 Not to be confused with a functional (many-to-one) relation!

Reasoned Modelling with Event-B 79

we assume that there is a physical constraint on users which means they cannot
be in more than one building at any time.

We referrred to the requirements as high-level. By this we mean there is not
necessarily enough detail in the requirements to build the system. For example,
FUN4 does not provide detail on how a user would enter a building or how they
might be prevented from entering. Nonetheless, we will see that it is still feasible
and useful to make a formal analysis of the high-level requirements in Event-B.

8.1 Set and Relations for Access Control

From the requirements FUN1 and FUN2 we identify two kinds of entity in the
system, users and buildings. These give rise to two carrier sets for our specifica-
tion of the system as defined in the following context:

context BuildingAccessContext
sets USER, BUILDING
end

Having identified the carrier sets, we consider what set variables to include
in the model, i.e., variables that are subsets of a carrier set. Looking at FUN1,
we see that a variable set of registered users is required. We will call this variable
user, where user ⊆ USER. Similarly, FUN2 suggests a variable set of buildings
so we introduce a variable building ⊆ BUILDING. These two set variables are
specified in an Event-B machine as follows:

machine BuildingAccess
sees BuildingAccessContext
variables user, building, ...
invariants

inv1: user ⊆ USER
inv2: building ⊆ BUILDING

Naming Convention: Although it is not required by the Event-B language,
we will use all UPPER case letters for names of carrier sets. When a model has
multiple carrier sets representing different kinds of entity, we will use a lower
case version of a carrier set name for the variable corresponding to the set of
instances of that entity. For example, the user entity is represented by the carrier
set USER and the set of instances (i.e., the register users) is represented by the
variable user. While the carrier set is fixed, the instance set may be expanded
or reduced through execution of events.

We also want to identify any required relational variables for our specification.
FUN3 suggests a relation to represent user permissions, while FUN4 suggests a
relation to represent user location. The diagrams in Figs. 9 and 10 illustrate the
permission and location relations between users and buildings. These diagrams
are useful for illustrating specific instances of relations but they do not provide a
general representation. To illustrate relations between sets more generally we use

80 M. Butler

Fig. 13. Relations for access control

the class diagram shown in Fig. 13. A class diagram is a construct from object
oriented design that is used to represent classes and associations between classes.
In Fig. 13, the sets are represented as classes (the boxes) while the relations
are presented as associations (the arrows). An association represents a relation
between the indicated sets. We place the relevant mathematical symbol next
to the name of the relation to indicate its nature (many-to-many, many-to-one,
etc.). Thus Fig. 13 indicates that permission is a relation between user and
building :

permission ∈ user ↔ building

Because of ASM1, Fig. 13 indicates that location is a partial function from user
to building, giving rise to the following mathematical specification:

location ∈ user �→ building

From the requirements, and with the aid of a class diagram, we have identified
two kinds of variables for our Event-B specification:

– Set variables: user, building
– Relation variables: permission, location

The full list of variables and corresponding invariants is specified as follows:

variables user, building, location, permission
invariants

inv1: user ⊆ USER
inv2: building ⊆ BUILDING
inv3: permission ∈ user ↔ building
inv4: location ∈ user �→ building

It is important to observe that invariants inv3 and inv4 specify constraints
between multiple variables (as well as defining the types of the relation variables).
For example, included in inv3 is the constraint that the domain of permission is
included in user. This means that the system only maintains permission informa-
tion for registered users. The range of permission is constrained to be included
in building which means that any permissions that a user has can only be for
registered buildings. Requirement FUN3 does not precisely state these two con-
straints though FUN3 could be interpreted as requiring that permission is only

Reasoned Modelling with Event-B 81

between registered users and registered buildings. In the mathematical repre-
sentation, the constraints are specified precisely. Similarly, inv4 specifies that
only registered users may be located in buildings and those buildings must be
registered.

Our access control specification contains two relation variables and we con-
sider whether we can identify an invariant that constrains the connection between
these two variables. In fact we have already identified such an invariant in Fig. 11
where location is required to be included in permission. Thus our model has one
additional invariant:

invariants
· · ·
inv5: location ⊆ permission

Invariant inv5 addresses FUN4, the main access control requirement.
The list of invariants for the BuildingAccess machine may be classified into

three kinds:

1. Constraints between set variables (inv1, inv2).
2. Constraints between a relational variable and set variables (inv3, inv4).
3. Constraints between relational variables (inv5).

The first two kinds of invariant can often be easily identified from a class diagram
derived from the requirements. The class diagram is constructed by identifying
the main entities suggested by the requirements (e.g., USER and BUILDING)
and the relevant relationships between them (e.g. permission and location). The
third kind of invariant does not always follow directly from a class diagram
and may come directly from the requirements. In Fig. 13, because permission
and location have the same source and target, the question of whether one is a
subset of the other is suggested.

From the requirements, we have identified carrier sets, variables and invari-
ants but the requirements also suggest events to be included in the Event-B
specification. Here we identify a list of events by systematically reviewing each
requirement:

– FUN1: Suggests RegisterUser and DeRegisterUser events.
– FUN2: RegisterBuilding and DeRegisterBuilding.
– FUN3: AddPermission and RemovePermission.
– FUN4: EnterBuilding.
– FUN5: ExitBuilding.
– ASM1: EnterBuilding.
– ASM2: EnterBuilding.

As can be seen with the EnterBuilding event, it is sometimes the case that dif-
ferent requirements will give rise to the same event. This is because the require-
ments may describe different aspects of the behaviour represented by the event.
For example, both FUN4 and ASM1 put constraints on when a user may enter
a building.

82 M. Butler

8.2 Expansion Events

When a specification involves sets, it is common to have events for expanding
sets (e.g., RegisterUser) and reducing sets (e.g., DeRegisterUser). We look at
the expansion events first. Events to specify registration of users and buildings
are similar to the registration event presented in Sect. 4.5:

RegisterUser =̂
any u where

grd1: u �∈ user
then

act1: user := user ∪ {u}
end

RegisterBuilding =̂
any b where

grd1: u �∈ building
then

act1: building := building ∪ {u}
end

Notice that we omitted a guard specifying that parameter b is an element of
BUILDING. This is because the type of b can be inferred from grd1 since the
set building has type P (BUILDING). Similarly for the RegisterUser event.

The AddPermission event gives a registered user b permission to enter a
registered building b by adding the ordered pair u �→ b to the permission relation:

AddPermission =̂
any u, b where

grd1: u ∈ user
grd2: b ∈ building

then
act1: permission := permission ∪ {u �→ b}

end

The guards of this event are required in order to preserve invariant inv3 which
constrains the domain and range of the permission relation. For example, if
grd1 was u ∈ USER instead then the event might violate the invariant by giving
permission to a non-registered user.

Here is an alternative version of the event that adds a set of buildings bs to
the users permission rather than a single building:

AddMultiPermission =̂
any u, bs where

grd1: u ∈ user
grd2: bs ⊆ building

then
act1: permission := permission ∪ ({u} × bs)

end

Reasoned Modelling with Event-B 83

The expression {u} × bs defines a relation that maps u to each element in bs.
The following rules are used to prove that inv3 is preserved:

Description Rule

Product s ⊆ S ∧
relation t ⊆ T

⇒ s × t ∈ S ↔ T

Union q ∈ S ↔ T ∧
relation r ∈ S ↔ T

⇒ (q ∪ r) ∈ S ↔ T

The event modelling a user entering a building is parameterised by the enter-
ing user and the building they are entering:

EnterBuilding =̂
any u, b where

grd1: u �∈ dom(location)
grd2: u �→ b ∈ permission

then
act1: location := location ∪ {u �→ b}

end

From ASM2 we expect that a user is not located in any building when they
try to enter a building hence grd1 which specifies that u is not in the domain
of location. From FUN4, we identify grd2 which specifies that u has permission
to enter b. The effect of act1 is to add the ordered pair u �→ b to location.

The invariants that the EnterBuilding event affects are inv4 and inv5. Invari-
ant inv5, which specifies that location is included in permission, is maintained
because of grd2. Invariant inv4 specifies that location is functional. Adding a
mapping for u to location maintains the functionality of location because grd1
specifies that u is not already mapped to any buildings. Without grd1, the event
could violate the functionality as u might end up being mapped to more than
one building in location. The following rule about expanding a partial function
captures this property. It states that if f is functional and x is not in the domain
of f , then f ∪ {x �→ y} is also functional:

Description Rule
Function f ∈ S �→ T ∧
extension x �∈ dom(f) ∧

x �→ y ∈ S × T
⇒ (f ∪ {x �→ y}) ∈ S �→ T

84 M. Butler

8.3 Reduction Events and Domain Subtraction

We have already seen how we can reduce sets using the set difference operator.
We can use this to model a user u exiting a building b as follows:

ExitBuilding =̂
any u, b where

grd1: u �→ b ∈ location
then

act1: location := location \ {u �→ b}
end

Alternatively, we can use an operator on relations called domain subtraction to
model a user exiting a building. Domain subtraction, written A �− R, takes two
arguments, a relation a relation R ∈ S ↔ T and a set A ⊆ S, and removes
those pairs from R whose first part is in A. This is illustrated by the following
equation which shows the result of domain subtracting a set containing a user
from an example of the location relation:

{u2} �− {u1 �→ b1, u2 �→ b3, u4 �→ b3} = {u1 �→ b1, u4 �→ b3}
Here we see that the mapping from u2 to b3 is removed to give the reduced set
on the right-hand side. The general definition of the operator is as follows:

Name Predicate Definition

Domain subtraction x �→ y ∈ A �− R x �→ y ∈ R ∧ x �∈ A

Here is a specification of the ExitBuilding event that has just one parameter,
the user u. It removes u from the location function using domain subtraction:

ExitBuilding =̂
any u where

grd1: u ∈ dom(building)
then

act1: location := {u} �− location
end

This event preserves the permission invariant (inv5) and the functionality of
location (inv3). This follows from the following rules which show that domain
subtraction reduces a relation and that inclusion preserves functionality:

Description Rule

Domain subtract (A �− R) ⊆ R
inclusion

Inclusion f ∈ S �→ T ∧
functional g ⊆ f

⇒ g ∈ S �→ T

Reasoned Modelling with Event-B 85

8.4 Invariant Violation

While exiting a building causes no problems from the point of view of invariant
preservation, removing permissions can be problematic. Consider the following
specification of an event that removes all permissions for a user u using the
domain subtraction operation:

RemovePermissions1 =̂
any u where

grd1: u ∈ user
then

act1: permission := {u} �− permission
end

Here is a reminder of the permission inclusion invariant:

inv5: location ⊆ permission

Action act1 of the RemovePermissions1 event results in the following modified
version of inv5:

location ⊆ {u} �− permission

This does not follow from inv5. The problem is that we are reducing the right-
hand side of this set inclusion without reducing the left-hand side. If the user
u was located in a building and we remove all their permissions, then after
executing the RemovePermissions1 event, u would still be in a building but
they would no longer have permission to be there, thus violating inv5!

8.5 Fixing the Violation

One solution to this invariant violation problem would be to add an action to
also remove the user from whatever building they are in by removing them from
the domain of location as well:

RemovePermissions2 =̂
any u where

grd1: u ∈ user
then

act1: permission := {u} �− permission
act2: location := {u} �− location

end

With this version of the event, the modified invariant becomes:

{u} �− location ⊆ {u} �− permission

This inclusion follows from invariant inv5 which means that RemovePermis-
sions2 preserves inv5. Mathematically this is because domain subtraction is
monotonic. In general, an operation op is said to be monotonic when it pre-
serves inclusion between sets:

86 M. Butler

Name Definition

Monotonic S ⊆ T ⇒ op(S) ⊆ op(T)

Description Rule

Domain subtract monotonic R ⊆ Q ⇒ A �− R ⊆ A �− Q

Another way of ensuring that inv5 is maintained would be to allow permis-
sions for u to be removed only if they are not currently inside a building. Here is
a version that only modifies permission but has an additional guard, specifying
that the user is not located in any building:

RemovePermissions3 =̂
any u where

grd1: u ∈ user
grd2: u �∈ dom(location)

then
act1: permission := {u} �− permission

end

To see why this preserves the permission invariant we make use of the following
rule; this states that if x is not in the domain of relation R then removing x
from the domain of R has no effect:

Description Rule

Simplify domain subtract x �∈ dom(R) ⇒ ({x} �− R) = R

The modified invariant resulting from RemovePermissions3 is

location ⊆ {u} �− permission

Because of grd1 we can assume that u �∈ dom(location) and therefore that
location = {u} �− location so this is the same as the following inclusion:

{u} �− location ⊆ {u} �− permission

As before, this inclusion follows from inv5 by monotonicity.
We have seen that the RemovePermissions1 event does not preserve the

permission inclusion invariant (inv5) while the other two versions of permis-
sion removal, RemovePermissions2 and RemovePermissions3, do preserve the
invariant. Clearly we would want to rule out RemovePermissions1 since it fails
to satisfy a mathematical judgement. Although RemovePermissions2 preserves
the permission inclusion invariant, it does combine two separate functions into
one atomic event. At the very least it would be more appropriate to reflect

Reasoned Modelling with Event-B 87

the dual role in the name the event, e.g., ExitAndRemovePermission. We note
that location is a monitoring variable that is used to keep track of the physical
location of users while permission is a conceptual variable that models a key
concept in access control which does not reflect any physical entities. We prefer
to keep changes to monitoring variables (e.g., location) separate from changes
to conceptual variables (e.g., permission) so we use RemovePermissions3 as our
specification of permission removal. This choice does mean that permission can-
not be removed from a user for a building they are currently located in until after
they exit the building. If it was deemed important, we might have a mechanism
to force a user to exit a building but we treat this as out of scope of our analy-
sis. Whenever the construction of the Event-B model raises ambiguities about
the requirements (such as whether we can remove permissions for a user who is
located in a building), then we should consider asking the system provider (the
client) to clarify the requirements.

It is ok to remove permission from a user for a particular building even if
they are located in another building? Here is an event that does this:

RemoveSinglePermission =̂
any u, b where

grd1: u �→ b ∈ permission
grd2: u �→ b �∈ location

then
act1: permission := permission \ {u �→ b}

end

Here grd2 does not prevent u from being located in some building b′ that is
different to b. To see why this event preserves inv5, consider the effect of the
action act1 on the invariant:

location ⊆ permission \ {u �→ b}
Because of grd2, location = location \ {u �→ b}, so this inclusion is the same as

location \ {u �→ b} ⊆ permission \ {u �→ b}
This inclusion follows from inv5 by monotonicity of set difference (set difference,
set union and set intersection are all monotonic).

8.6 Range Subtraction

The domain subtraction operator (�−) is used to remove pairs from a relation
based a domain set argument. There is also a range subtraction operator (�−)
that removes pairs based on a range set argument. For example:

{u1 �→ b1, u2 �→ b3, u4 �→ b3} �− {b1} = {u2 �→ b3, u4 �→ b3}
Notice that in the case of domain subtraction, the set argument comes first and
the relation comes second (A �− R) while the arguments are swapped for the
range operator (R �− B). The operator definition is as follows:

88 M. Butler

Name Predicate Definition

Range subtraction x �→ y ∈ R �− B x �→ y ∈ R ∧ y �∈ B

The event to remove a building from the registered buildings makes use of
range subtraction to remove all permissions associated with that building:

DeRegisterBuilding =̂
any b where

grd1: b ∈ building
grd2: b �∈ ran(location)

then
act1: building := building \ {b}
act2: permission := permission �− {b}

end

While b is removed from building by action act1, action act2 removes any permis-
sion associated with b from permission. This is required in order preserve invari-
ant inv3 which specifies that permission is a relation between user and building.
The following rules show how the relational subtraction operators reduce the
domain/range of a relation:

Description Rule

Domain/range R ∈ S ↔ T ⇒
reduction (A �− R) ∈ (S \ A) ↔ T

(R �− B) ∈ S ↔ (T \ B)

Notice that grd2 of the DeRegisterBuilding event requires that b has no occu-
pants (no users are located in b). This ensures that the event maintains inv4
stating that the range of location is included in building and also maintains the
permission inclusion invariant inv5 when the permissions for b are removed by
act2.

The event to de-register a user is specified as follows:

DeRegisterUser =̂
any b where

grd1: u ∈ user
grd2: u �∈ dom(location)

then
act1: user := user \ {u}
act2: permission := {u} �− permission

end

Guard grd2 requires that u is not located in a building (preserving inv5), while
action act2 removes all permissions for u (preserving inv3).

Reasoned Modelling with Event-B 89

For both of the de-register events, we required that the building is un-
occupied (for DeRegisterBuilding) or the user is not in a building (for DeRegis-
terUser). This was to ensure the preservation of the invariant inv5. An alterna-
tive way of preserving inv5, that does not require guards on location, would be
to reduce location as well, as we saw with Remove Permission2. As with permis-
sion removal, we prefer to keep location changes and user registration changes
as separate events. This is again because location is a monitoring variable while
the property of being registered is conceptual.

9 Query Events

The events we have looked at so far all include actions that change one or more
variables. Sometimes we are interested in querying information about a system
such as the location of a user. Here is the specification of such an event:

QueryLocation =̂
any u, result where

grd1: u ∈ dom(location)
grd2: result ∈ BUILDING
grd3: result = location(u)

end

The event has two parameters: u, the user whose location is being queried,
and result, the result of the query. In this case the result of the query is the
location of u. The Event-B language does not have an explicit notion of an
output parameter. We adopt the convention of naming a parameter representing
an output as result. Typically the value of a result parameter will be defined
by an exact equation such as grd3 above. We refer to an event that specifies a
result but does not modify any variables as a query event.

The guard that specifies the type of the result in QueryLocation, grd2, is
not strictly necessary since the type can be inferred from the equation in grd3.
However making the type of result explicit makes the specification clearer.

Another query we could perform on the access control system would be to
find out the set of buildings that a particular user has permission to enter. To do
that we use the relational image operator. Given a relation R ∈ S ↔ T and a set
A ⊆ S, the expression R[A] represents the set of range elements corresponding
to some domain element in A. For example, consider again the following simple
relation:

directory = {mary �→ 287573,
mary �→ 398620,
john �→ 829483,
jim �→ 398620}

If we want to identify the set of numbers that mary is mapped to, we write
directory[{mary}] where

directory[{mary}] = {287573, 398620}

90 M. Butler

Note the argument within the brackets must be a set of domain elements rather
than a single element which is why we do not write directory[mary].

In general, a range element y is in the relational image of A under R if there
is some element x in A that is mapped to y by R. This specified precisely in the
following table:

Name Predicate Definition

Relational image y ∈ R[A] ∃x · x ∈ A ∧ x �→ y ∈ R

Suppose there are no elements of A mapped to range elements by R. In that
case there is no x in A satisfying x �→ y ∈ R and therefore R[A] will be empty.

The event to query the permissions of a user makes use of relational image:

QueryPermissions =̂
any u, result where

grd1: u ∈ user
grd2: result ⊆ BUILDING
grd3: result = permission[{u}]

end

Here the result is specified as the relational image of {u} under the permission
relation, i.e., the set of buildings for which u has permission. In the case that
the user has no permissions, then the result will be the empty set.

We have seen that relational image allows us to specify a query on a rela-
tion going from domain elements to range elements. To perform a query in the
opposite direction, from range to domain, we can take the inverse of a relation,
written R−1. The inverse of R is the result of swapping the order of each pair in
R. For example, the inverse of the directory relation specified above is as follows:

directory−1 = {287573 �→ mary,

398620 �→ mary,

829483 �→ john,

398620 �→ jim}
We can use this to query the people associated with phone number 398620 as
follows:

directory−1[{398620}] = {mary, jim}
The inverse operator is defined in the following table:

Name Predicate Definition

Relational inverse y �→ x ∈ R−1 x �→ y ∈ R

Using inverse and image, a query event that provides the set of users who
have permission to enter building b is specified as follows:

Reasoned Modelling with Event-B 91

QueryBuildingUsers =̂
any b, result where

grd1: b ∈ building
grd2: result ⊆ USER
grd3: result = permission−1[{b}]

end

We can use a similar query event to provide the set of occupants of a building:

QueryBuildingOccupants =̂
any b, result where

grd1: b ∈ building
grd2: result ⊆ USER
grd3: result = location−1[{b}]

end

Note that while location is functional, the inverse of location might not be. This
is illustrated by Fig. 10 where two different users, u2 and u4 are located in b3.
This means that in the inverse relation, b3 is mapped to two different users and
thus location−1 is not functional. If a relation is one-to-one, e.g., Fig. 12, then
its inverse is also functional. A one-to-one function is also called injective and
is declared as f ∈ S �� T . An injective function is defined as a function whose
inverse is also functional:

Name Predicate Definition

Injective function f ∈ S �� T f ∈ S �→ T ∧ f−1 ∈ T �→ S

9.1 Requirements Tracing

In order to be systematic about validation of the model against the requirements,
we will re-visit the list of requirements and annotate each one with a explanation
of how it is represented in the Event-B model. This is a form of tracing infor-
mation: a means of tracing from a requirement through to a part, or parts, of
the formal model. This is shown as a table in Fig. 14 where the explanations of
how a requirement is represented in the formal model are in shown in the second
column. For example, the annotation on FUN1 provides an explanation of how
that requirement is represented in the formal model through the user variable
and the RegisterUser and UnRegisterUser events.

10 Simple Bank

We make use of some of the techniques shown so far to develop a model of a
simple banking system. This case study emphasises the use of functions and
introduces an additional mathematical concept (function override). The case
study also serves to re-enforce the steps that may be taken in developing an

92 M. Butler

Requirement Representation in model

FUN1 This is represented by the user variable modelling registered
users (inv1) and by the RegisterUser and DeRegisterUser
events.

FUN2 This is represented by the building variable modelling registered
buildings (inv2) and by the RegisterBuilding and DeRegister-
Building events.

FUN3 This is represented by the permissions variable (inv3) and by
the AddPermission and RemovePermission events.

FUN4 This is represented by the permission invariant (inv5) and by
the EnterBuilding event. Guard grd2 of the EnterBuilding event
ensures that the entering user has permission.

FUN5 This is represented by the ExitBuilding event. There is no con-
straint on this event other than the user is located in a building
(grd1).

ASM1 This is represented by the location being functional (inv4).

ASM2 This is represented by grd1 of the EnterBuilding event which
requires that the entering user is not currently located in any
building.

Fig. 14. List of requirement labels with tracing information

Event-B model from a list of requirements including the use of a class diagram
to identify the main entities and the relationship between them. Here is a list of
functional requirements for the simple bank:

– FUN1: The system shall maintain a register of bank customers and shall
provide operations for managing the customer set.

– FUN2: The system shall maintain a name and address for each customer
and shall provide operations for managing these.

– FUN3: The system shall allow customers to have several accounts and allow
customers to share accounts.

– FUN4: The system shall provide operations for managing the account set.
– FUN5: The system shall maintain a balance for each account.
– FUN6: The system shall ensure that account balances are never negative.
– FUN7: The system shall provide operations for depositing and withdrawing

funds to and from an account and for transferring funds between accounts.

10.1 Sets and Relations

The first step in developing the model is to identify some carrier sets. In the
functional requirements above we have highlighted some nouns in bold, e.g.,
customers in FUN1. Requirement FUN2 introduces names and addresses
at a high level and does not define a specific format. We will treat names and
addresses as abstract values and model them using carrier sets. These highlighted
nouns suggest the carrier sets shown in Fig. 15. Note that we only highlighted

Reasoned Modelling with Event-B 93

the first occurrence of a noun to avoid duplication. Figure 15 does not identify a
carrier set for balance in FUN5. For simplicity we decide to model the amount
of money in an account as an integer value; we could have chosen more detail
such as currency units (e.g., euros) and subunits (e.g., cents). Integers are already
part of the Event-B language.

Fig. 15. Carrier sets for simple bank

Figure 15 gives rise to the following context for our simple bank model:

context BankContext
sets ACCOUNT, CUSTOMER, NAME, ADDRESS
end

Next we identify whether any of the requirements suggest relations between
sets. FUN2 suggests a relation between CUSTOMER and NAME and between
CUSTOMER and ADDRESS. We name these relations name and address
respectively and they are shown in Fig. 16. FUN3 suggests a relation between
CUSTOMER and ACCOUNT which we name as accounts. FUN5 suggests a
relation between ACCOUNT and integers which we name as balance.

Fig. 16. Adding relations for the bank

Having identified the main sets and required relationships between them,
we add a bit more precision to the diagram. For the building access model
we distinguished the (fixed) carrier sets for users and buildings from the (vari-
able) registered sets and we do the same for the simple bank. In Fig. 17 we

94 M. Butler

have replaced the CUSTOMER and ACCOUNT carrier sets by the customer
and account variable sets. The variable sets represent registered customers and
accounts respectively and they allow us to represent constraints such as requiring
customers to be registered in order to have accounts. In order to avoid confusion
with the set account, we have changed the name of the relation between cus-
tomer and account to cust acc in Fig. 17. The other way in which we finesse the
diagram is to determine the nature of each relation (many-to-many, etc.). Since
FUN3 requires that a customers may have multiple accounts, we conclude that
cust acc should be a many-to-many relation. From FUN2 we conclude that each
customer has one name and one address hence we conclude that these should
be functional. We mark them as total functions from customer to indicate that
each registered customer has a name and an address. Similarly from FUN5 we
conclude that balance should be a total function from account.

Fig. 17. Finessing the bank model

We have not introduced variable sets corresponding to NAME nor
ADDRESS. The reason is that we regard these sets as secondary. By this
we mean that we are not interested in the values from these sets in their own
right and we are only interested in them as attributes of the other sets. We refer
to the non-secondary sets (customer, account) as primary. One indicator of a
secondary set is that it has no outgoing arrows in the class diagram, and only has
incoming arrows. This is the case for the sets NAME, ADDRESS and indeed Z

in Fig. 17. However this is not a hard-and-fast rule: the building set of Fig. 13 has
no out-going arrows but we still treat it as a primary set since the requirements
explicitly stated that a set of registered buildings should be maintained. In the
simple bank there is no requirement to maintain a set of registered addresses
and names independent of the customer to which they belong. Neither is there
a requirement to maintain a set of balance values independent of the accounts
to which they belong.

Construction of the class diagram of Fig. 17 allows to identify the set and
relation variables. The primary sets customer and account become variable sets
while the relations name, address, cust acc and balance become relation vari-
ables:

Reasoned Modelling with Event-B 95

machine Bank
sees BankContext
variables customer, account, name, address, cust acc, balance
invariants

inv1: customer ⊆ CUSTOMER
inv2: account ⊆ ACCOUNT
inv3: name ∈ customer → NAME
inv4: address ∈ customer → ADDRESS
inv5: cust acc ∈ customer ↔ account
inv6: balance ∈ account → Z

An advantage of having the variable set customer in the model is that it allows us
to specify that the functions name and address have exactly the same domain.
All of the above invariants are derived directly from Fig. 17 (which in turn was
derived from the requirements via the other two class diagrams).

We study the requirements again to check if there are any further invariants
we could identify. The only requirement from which we can identify a further
invariant is FUN6 which states that account balances are never negative (a
rather conservative requirement for a bank!). We can represent this requirement
by strengthening inv6 to specify that the range of balance is the set of naturals
rather than integers (naturals are written N and represent all the non-negative
integers, i.e., those n ∈ Z where n ≥ 0):

invariants
...
inv6b: balance ∈ account → N

An alternative formulation of FUN5 is to specify that the balance of each account
is non-negative using universal quantification:

invariants
...
inv6: balance ∈ account → Z

inv7: ∀a · a ∈ account ⇒ balance(a) ≥ 0

In inv7 we restrict the quantification to those a in the set account. Since balance
is total on the set account, the expression balance(a) is guaranteed to be well-
defined.

We are not yet done with identifying invariants. Although we might not be
able to identify this explicitly from the requirements, we need to be careful about
the domain and range of the cust acc relation. Invariant inv5 specifies that the
domain of cust acc is a subset of customer but does not specify that the domain
is equal to customer. This means we may have customers who have no accounts
associated with them. Similarly inv5 allows for register accounts that have no
customers associated with them. The requirements are not clear on this and we
now have the opportunity to be more precise.

We decide that we may have a customer who has no accounts, e.g., this might
arise when we register a customer before we create any accounts for them. Thus

96 M. Butler

dom(cust acc) does not need to equal customer and can be a subset. However, we
decide that it is not ok to have an account that has no customers associated with
it. We introduce a further invariant to specify that every account is associated
with some customer:

invariants
...
inv8: ran(cust acc) = account

The combination of inv5 and inv8 means that each customer has zero or more
accounts, while each account has one or more customers.

10.2 Expansion Events

We introduced a distinction between primary and secondary sets and we iden-
tified that customer and account as the primary sets in Fig. 17. It is for the
primary sets that we introduce expansion events (events that expand some set
of elements). The customer set is expanded by the event for registering a new
customer:

RegisterCustomer =̂
any c, n, a where

grd1: c �∈ customer
grd2: n ∈ NAME
grd3: a ∈ ADDRESS

then
act1: customer := customer ∪ {c}
act2: name := name ∪ {c �→ n}
act3: address := address ∪ {c �→ a}

end

Similar to registration of new users in the building access example, the new
customer c is represented by a ‘fresh’ value (grd1). Since we are expanding
customer (act1), and since name and address are total functions on customer,
we also need to expand name and address (act2 and act3). The values for the
name and address of the new customer are provided as parameters n and a.

The following rule shows how extending a total function maintains function-
ality. It shows that the extended function (f ∪{x �→ y}) is total on an expanded
domain (S ∪ {x}).

Description Rule

Total f ∈ S → T ∧
function x �∈ S ∧ y ∈ T
extension ⇒ (f ∪ {x �→ y}) ∈ (S ∪ {x}) → T

Reasoned Modelling with Event-B 97

Our RegisterCustomer event does not associate any accounts to the new cus-
tomer. This does not violate any invariants since we concluded that a customer
may have zero or more accounts. Since we also concluded that an account must
have at least one associated customer (inv8), we need to associate at least one
customer with a newly created account. We chose to associate a set of customers
with a newly created account and this set will need to be non-empty. Since
balance is total on account, we also need to associate a balance value with the
newly created account; we will set the balance to be zero. We specify the event
as follows:

CreateAccount =̂
any a, cs where

grd1: a �∈ account
grd2: cs ⊆ customer
grd3: cs �= ∅

then
act1: account := account ∪ {a}
act2: cust acc := cust acc ∪ (cs × {a})
act3: balance := balance ∪ {a �→ 0}

end

A note on the naming of these events: we used ‘register’ to name expan-
sion event for customers (RegisterCustomer) while we used ‘create’ for accounts
(CreateAccount). The reason is that values in customer correspond to entities
that are external to the bank while accounts are entities that are internal to the
bank. To use our previously-introduced terminology, customer is a monitoring
variable while account is a conceptual variable. Of course naming is matter of
taste and judgement. Our distinction between registration and creation is simply
a guideline.

The above expansion events contribute to addressing the requirements for
‘managing’ the set of accounts (FUN1) and the set of accounts (FUN4).
Both these requirements also suggest reduction events for the primary sets,
e.g., DeRegisterCustomer and DeleteAccount. FUN4 also suggests events for
expanding and reducing the set of customers associated with an account, e.g.,
AddAccountCustomer and RemoveAccountCustomer. We leave the specification
of these to the reader. As before, care must be taken to ensure that all the
invariants are preserved by these reduction events.

10.3 Function Override

Requirement FUN2 suggests events for modifying the address of a customer
and possibly even the name of a customer. FUN7 suggests events for increasing
and decreasing the balance of an account and for transferring funds between
accounts. Specification of all of these involve modifying a function so that the
range value that some domain element is mapped to is updated, e.g., to withdraw
money from account a, the balance function gets updated so that the value

98 M. Butler

associated with a is changed to a smaller value. To represent function update
mathematically we use the function override operator.

We illustrate the use of this operator with an example first. Assume that the
balance function has the following value:

balance = {a1 �→ 100, a2 �→ 350, a3 �→ 800, a4 �→ 50}
If we want to change the balance of account a2 to 300, we use function override
(�−) with balance as the first argument and a mapping from a2 to 300 as the
second argument, written balance�− {a2 �→ 300}. The following equation shows
the result of this overriding:

balance �− {a2 �→ 300} = {a1 �→ 100, a2 �→ 300, a3 �→ 800, a4 �→ 50}
As highlighted in the resulting function on the right-hand side, 350 has been
replaced by 300. Function override is a combination of domain subtraction and
set union, i.e., f �− {a �→ b} is the same as removing the existing mapping for a
from f using domain subtraction and adding the updated mapping using union:

f �− {a �→ b} = ({a} �− f) ∪ {a �→ b}
More generally, the second argument for function override is itself a function,
f �−g, rather than just a singleton mapping f �−{a �→ b}. The general definition
also uses domain subtraction and set union as shown in the following table:

Name Expression Definition

Function override f �− g (dom(g) �− f) ∪ g

The specification of the event for depositing money in an account, Increase-
Balance, uses function override to update the value of balance:

IncreaseBalance =̂
any a,m where

grd1: a ∈ account
grd2: m > 0

then
act1: balance := balance �− {a �→ balance(a) + m}

end

Here m is the amount to be deposited in account a. We require m to be greater
than zero since adding zero would seem rather pointless (grd2). In act1 the
balance of account a is updated to the value balance(a) + m.

It is worth noting the difference between extending a function using union
and updating a function using function override. Function extension is used when
adding a new value to the domain, e.g., expanding the domain of balance when
creating an account. Function override is used when modifying the range value

Reasoned Modelling with Event-B 99

associated with an existing domain element, e.g., modifying the balance of an
existing account when depositing money.

The following rules about function override support mathematical reasoning.
The first rule shows the conditions under which a function override (f�−{x �→ y})
remains a total function. The second rule shows that the result of applying a
function override (f �− {x �→ y}) to domain value w depends on whether w is
the same as or different to x:

Description Rule

Total f ∈ S → T ∧
function x ∈ S ∧ y ∈ T
update ⇒ (f �− {x �→ y}) ∈ S → T

Apply f ∈ S → T ∧ w ∈ S ⇒
function w = x ⇒ (f �− {x �→ y})(w) = y
update w �= x ⇒ (f �− {x �→ y})(w) = f(w)

The shape of action act1 in IncreaseBalance is a common one when updating
functions at a single domain point, i.e., it has the form f := f �− {x �→ E}.
Because update of a function at a single point is a common action in Event-B,
it may be written in a simple syntactic form f(x) := E. This syntactic form is
defined by the following table:

Name Action Definition

Function single assignment f(x) := E f := f �− {x �→ E}

Using this form, the IncreaseBalance event is specified as follows:

IncreaseBalance =̂
any a,m where

grd1: a ∈ account
grd2: m > 0

then
act1: balance(a) := balance(a) + m

end

The DecreaseBalance event is specified in a similar way with the balance
being decreased:

100 M. Butler

DecreaseBalance =̂
any a,m where

grd1: a ∈ account
grd2: m > 0
grd3: m ≤ balance(a)

then
act1: balance(a) := balance(a) − m

end

With this event, the amount to be withdrawn should not exceed the current
balance of the account (grd3). This is to ensure that the balance does not go
negative (inv7). Let us reason about this more precisely. Recall that inv7 is a
quantification over accounts as follows:

inv7: ∀a · a ∈ account ⇒ balance(a) ≥ 0

Action act1 of DecreaseBalance is equivalent to assigning an overridden function
to balance and so gives rise to the following modified invariant:

∀a′ · a′ ∈ account ⇒ (balance �− {a �→ balance(a) − m})(a′) ≥ 0 (7)

Note that here we have renamed the quantified variable a to a′. This is to avoid a
name clash with the event parameter a. The Apply Function Update rule shown
above suggests that we reason about (7) by considering two cases: a = a′ and
a �= a′.

In the case that a = a′, (7) is simplified by the Apply Function Update rule
to the following:

∀a′ · a′ ∈ account ∧ a′ = a ⇒ balance(a) − m ≥ 0 (8)

This is equivalent to balance(a) ≥ m which follows from grd3 of DecreaseBal-
ance.

In the case that a �= a′, (7) is simplified to the following:

∀a′ · a′ ∈ account ∧ a′ �= a ⇒ balance(a′) ≥ 0 (9)

This follows from inv7.
Requirement FUN7 requires an event for transferring money from one

account, a, to another account, b. This is specified as follows, and as with the
DecreaseBalance event, requires that the amount to be transferred does not
exceed the balance of the source account a:

Reasoned Modelling with Event-B 101

TransferBalance =̂
any a, b,m where

grd1: a ∈ account
grd2: b ∈ account
grd3: a �= b
grd4: m > 0
grd5: m ≤ balance(a)

then
act1: balance := balance �− { a �→ balance(a) − m,

b �→ balance(b) + m }
end

Note that grd3 requires that the source and target accounts are distinct (to
avoid pointless transfers). The action act1 uses function override to update the
two account balances simultaneously. We might be tempted to write the actions
of TransferBalance as two single updates as follows:

act1: balance(a) := balance(a) − m
act2: balance(b) := balance(b) + m

This is syntactically invalid in Event-B as it involves two actions assigning to
the same variable in a single event and so we avoid this form.

We can introduce event parameters representing values local to the event to
increase the readability of the specification of TransferBalance:

TransferBalance =̂
any a, b,m, na, nb where

grd1: a ∈ account
grd2: b ∈ account
grd3: a �= b
grd4: m > 0
grd5: m ≤ balance(a)
grd6: na = balance(a) − m
grd7: nb = balance(b) + m

then
act1: balance := balance �− { a �→ na, b �→ nb }

end

Here na and nb represent the new balances of a and b respectively whose values
are defined by grd6 and grd7.

Events to update the name or address of a customer can also be specified
using function override. We leave these to the reader. The requirements do not
explicitly mention queries on the bank data such as the balance of an account
or the customers associated with an account. We leave these for the reader to
specify.

102 M. Butler

11 Model Validation Through Animation

A very useful validation technique for Event-B models is to use an animation
tool such as ProB [4] or AnimB2. With these tools, the carrier sets are instan-
tiated with some illustrative values, e.g., the carrier set USER is instantiated
with the values u1, u2, u3, and the model can be executed with these values. The
execution is driven by the modeller and at each step the state can be inspected.
For the purposes of animating our access control model, let us assume that the
carrier set USER is instantiated with the values u1, u2, u3 and that BUILD-
ING is instantiated with the values b1, b2, b3. Figure 18 represents the state that
is reached by executing the following sequence of events on our model of the
building access control system:

initialisation
RegisterBuilding(b1)
RegisterBuilding(b2)
RegisterUser(u1)
AddPermission(u1, b1)
EnterBuilding(u1, b1)

Figure 18 shows the values of the sets user and building and the relations permis-
sion and location as tables. The user and building tables show that there is one
registered user and two registered buildings. The permission table shows that
u1 has permission to enter b1 while the location table shows that u1 is located in
building b1. These values for the variables are what we would expect to see after
execution of the given sequence of events. Figure 18 also shows the events that
are enabled in the reached state. We see that two more users (u2, u3) and one
more building (b3) can be registered. At the bottom of the list of enabled events
we see that user u1 may leave building b1. We can see that the EnterBuilding
event is not in the list of enabled events. This is as expected since the only

u1

user

b1, b2

building

u1 b1

permission

u1 b1

location

Enabled Events

RegisterUser(u2), RegisterUser(u3)

DeRegisterUser(u1)

RegisterBuilding(b3)

DeRegisterBuilding(b1), DeRegisterBuilding(b2)

AddPermission(u1, b2)

RemovePermissions(u1)

ExitBuilding(u1)

Fig. 18. Result of animating model through first sequence of events

2 www.animb.org.

www.animb.org

Reasoned Modelling with Event-B 103

registered user, u1, is currently in building b1 and there is no means to directly
enter one building from another.

The value of the animation is that it helps us make human judgements about
whether the behaviour specified by the model is what we would expect given the
informal requirements. In this case we can make a judgement that the values of
the tables correspond to what we would expect after the given sequence of event
executions is performed. Inspecting the enabled events allows to check that the
guards of the events are sufficiently strong, e.g., the fact that EnterBuilding is
not in the list of enabled events in Fig. 18 helps us to validate the guards specified
for that event.

The event sequence above registers two buildings and one user. Here is a
second event sequence that continues from the first, adding a second user u2,
giving that user permissions, entering u2 in building b2 and exiting user u1:

RegisterUser(u2)
AddPermission(u2, b1)
AddPermission(u2, b2)
EnterBuilding(u2, b2)
ExitBuilding(u1)

The state resulting from continuing from the state of Fig. 18 is shown in Fig. 19.
In this figure, u2 has been added to user, two rows have been added to permission
and the location table has been updated. We see that an animation tool allows
us to execute sequences of events on sample data values and inspect the effect
of these on a representation of the state of a machine and on the enabledness of
events.

u1, u2

user

b1, b2

building

u1 b1

u2 b1

u2 b2

permission

u2 b2

location

Enabled Events

RegisterUser(u3)

DeRegisterUser(u1), DeRegisterUser(u2)

RegisterBuilding(b3)

DeRegisterBuilding(b1), DeRegisterBuilding(b2)

AddPermission(u1, b2)

RemovePermissions(u1), RemovePermissions(u2)

EnterBuilding(u1, b1)

ExitBuilding(u2)

Fig. 19. Result of animating model through second sequence of events

104 M. Butler

12 Model Verification

Manual inspection of the tables in Figs. 18 and 19 shows that they both repre-
sent states satisfying invariants inv1 to inv5. However, rather than using manual
inspection to check for satisfaction of invariants, model verification can be used
to do this in a systematic and automated way. Model verification involves making
mathematical judgements about the model. The main mathematical judgement
we apply to the abstract model is to determine whether the invariants are guaran-
teed to be maintained by the events. Mathematical judgements are formulated
as proof obligations (PO). These are mathematical theorems whose proof we
attempt to discharge using a deductive proof system. In the Rodin toolset [5] for
Event-B, mechanical proof of POs may be complemented by the use of the ProB
model checker which searches for invariant violations by exploring the reachable
states of a model.

Previously we argued that the RemovePermissions1 event could violate the
permission inclusion invariant (inv5). Let us see how this plays out in animation
of the model. Consider the state of the access control system shown in Fig. 19.
As already explained, this state is reachable by executing a particular sequence
of events. In this state, u2 is in building b2 and has permission to be there.
Now if the next event to be performed was RemovePermissions1(u2), the state
reached would be as shown in Fig. 20. This new state is an incorrect state, that
is, it violates the permission inclusion invariant since user u2 is still in building
b2 even though u2 not longer has permission to be there. Indeed, ProB can
automatically find a sequence of events that lead to an invariant violation (known
as a counterexample). The counterexample that leads to the state in Fig. 20 is
not the shortest possible counterexample. ProB can automatically find a shorter
counterexample that leads to violation of the permission inclusion invariant such
as the following:

initialisation
RegisterBuilding(b1)
RegisterUser(u1)
AddPermission(u1, b1)
EnterBuilding(u1, b1)
RemovePermissions1(u1)

We look at how the error is reflected in the proof obligation (PO) for invari-
ant preservation. Figure 21 shows a definition of this PO. The left side of the
figure provides a schematic specification of an event E with a guard represented
by G(p, v) and an action represented by F (p, v). Here p represents the event
parameters and v represents the variables on the machine on which the event

u1, u2

user

b1, b2

building

u1 b1

permission

u2 b2

location

Fig. 20. Incorrect state reached when RemovePermissions1(u2) is applied to state in
Fig. 19

Reasoned Modelling with Event-B 105

operates. We write G(p, v) to indicate that p and v are free variables of the
predicate G. Assuming that I(v) represents a invariant of the machine, the right
hand side of Fig. 21 shows the PO used to prove that the invariant is maintained
by event E. The PO is in the form of a list of hypotheses and a goal. The PO
is discharged by proving that the goal is true assuming that the hypotheses are
true. In this case, the hypotheses are the invariant itself (Hyp1) and the guard of
the event (Hyp2). The goal is the invariant with the free occurrences of variable
v replaced by F (p, v), the value assigned to v by the action of the event.

E ˆ
any p where

@grd G(p, v)
then

@act v := F (p, v)
end

Invariant Preservation PO:

Hyp1 : I(v)

Hyp2 : G(p, v)

Goal : I(F (p, v))

=

Fig. 21. Invariant preservation proof obligation for an event

The Rodin tool for Event-B generates the invariant preservation POs for all
of the events of the access control model and the automated provers of Rodin
are able to discharge all of the generated POs except for one: the specification
of the RemovePermissions1 event together with invariant inv5 give rise to the
following PO that cannot be proved:

Hyp1 : location ⊆ permission

Hyp2 : u ∈ user

Goal : location ⊆ {u} �− permission

Here, Hyp1 is the invariant to be preserved and Hyp2 is the guard of the event.
The event makes an assignment to the permission variable and thus the goal
is formed by substituting permission by {u} �− permission. The result of the
substitution is underlined in the goal. The problem here is that the right-hand
side of the set inequality in the goal, {u} �− permission, is reduced compared
with that in the hypothesis, Hyp1, while the left-had side, location, remains
unchanged (as discussed in Sect. 8.4).

To address this problem with the RemovePermissions1 event, we provided
two alternative specifications of permission removal. For example, the specifi-
cation of the RemovePermissions3 event together with inv5 gives rise to the
following PO that can be proved beause of the additional hypothesis provided
by the additional guard:

106 M. Butler

Hyp1 : location ⊆ permission

Hyp2a : u ∈ user

Hyp2b : u �∈ dom(location)
Goal : location ⊆ {u} �− permission

The counterexample generated by the ProB model checker highlighted a
problem with the specification of the RemovePermissions1 event. This stronger
condition for removing permission was identified through our attempt to prove
that the original specification of the event maintained the permission inclu-
sion invariant, leading to RemovePermission3. It is appropriate that we make a
(human) judgement about the validity of this stronger specification of removing
authorisation. Is it a reasonable constraint? Well, if we expect the access control
policy to hold always, we have no choice: without the stronger guard, the event
cannot maintain the permission inclusion invariant. We could remove the invari-
ant completely from the model but that seems like an unsatisfactory solution
since it would mean we were not addressing the main purpose of access control
in our formalisation and would undermine what we can reasonably state in our
requirements. For the purposes of this paper, we make the judgement that the
invariant should stay and thus the revised version of the event, RemovePermis-
sion3, with the stronger guards holds.

13 Further Reading

Refinement is a key concept in Event-B and is used for structuring complex spec-
ifications and for relating abstract models with more concrete, implementation-
oriented models. We have not covered refinement in this paper because of space
limitations. For a comprehensive introduction to modelling, refinement and proof
in Event-B see Abrial’s book on the topic [1]. For an overview of the role and
practice of refinement in Event-B see [6]. Event-B evolved from the B Method
which was also developed by Abrial [7]. The B Method was developed to model
and reason about software systems and has module structuring mechanisms sim-
ilar to modular programming languages. Event-B was designed to reason about
systems that may include hardware and physical components as well as software.
Some component-based structuring mechanisms for Event-B are described in [8].

In Sect. 4.6 we saw that the choice of value for a parameter is treated as
nondeterministic: any value that satisfies the guards may be chosen. In Event-B,
it is also possible to specify nondeterministic actions of the following form [1]:

v := v′ | P (v, v′)

Here P (v, v′) is a predicate that describes a relation between the before and
after values of variable v. The nondeterministic action states that v should be
assigned a new value v′ such that P (v, v′) holds. For example, assuming that x is
an integer variable, then the following action increases x by a nondeterministic
amount:

Reasoned Modelling with Event-B 107

x := x′ | x < x′

Nondeterministic actions have a feasibility proof obligation which requires that
there exists some value v′ satisfying P (v, v′) when the invariant and event guards
hold [1]. In this paper, we only made use of deterministic actions and used
the choice of parameter values to represent nondeterminism within an event.
Our reason for using this style is that it allows the nondeterministically chosen
value to be available across all of the actions of an event. For example, in the
RegisterUser2 event in Sect. 4.5, the parameter u is used in both actions so that
the same nondeterministically chosen value for u is added to register and to
out.

The mathematical language of Event-B (logic and set theory) is similar to the
mathematical language of the B Method. These in turn were influenced by the
Z notation [9] and VDM [10]. The use of class diagrams to aid the construction
of Event-B models, as used in this paper, was inspired by the UML-B notation
which provides a graphical syntax for parts of Event-B [11].

For more information on the Rodin tool see [5]. The Rodin tool can be down-
loaded via the Event-B.org3 website which also contains a Rodin User Manual4.
The Atelier B tool5 supports the B Method. For details of the ProB tool see [4]
and the ProB website6. ProB is available as a plug-in for Rodin as is the AnimB
tool7.

14 Concluding

This paper provided an overview of how the Event-B language and verification
method can be used to model and reason about system behaviour. Reasoning
about the system is not just about proving invariant properties. Several different
forms of reasoning were deployed in addition to mathematical reasoning: iden-
tification of the main purpose of a system, abstraction from design details in
requirements, identification of the various entities in the system and their rela-
tionships – all of these are forms of reasoning. Constructing the formal model
based on the requirements is another form of reasoning as is validation of the
model against the requirements through human judgement. All these forms of
reasoning complement each other in helping us to understand the purpose of a
system and the constraints on the system.

Event-B encourages us to identify the main entities of the problem under con-
sideration and the relationships between those entities. It also encourages us to
identify what properties should always hold (invariants), under what conditions
system transitions are allowed (guards) and the effect of those transitions on

3 www.event-b.org.
4 www3.hhu.de/stups/handbook/rodin/current/html/index.html.
5 www.atelierb.eu/en/outil-atelier-b/.
6 www3.hhu.de/stups/prob/index.php/The ProB Animator and Model Checker.
7 www.animb.org.

www.event-b.org
www3.hhu.de/stups/handbook/rodin/current/html/index.html
www.atelierb.eu/en/outil-atelier-b/
www3.hhu.de/stups/prob/index.php/The_ProB_Animator_and_Model_Checker
www.animb.org

108 M. Butler

the system state (actions). We have seen how the mathematical structures cho-
sen can encourage us to identify different kinds of events such as set expansion
events, set reduction events and query events.

This paper emphasised mathematical reasoning as this is a particular
strength of a specification language such as Event-B. The paper presented defi-
nitions and rules in order to help the reader gain a strong understanding of the
mathematical operators and their properties. Understanding the properties of
the mathematical operators helps ensure that we are choosing the appropriate
operators in order to specify an intended effect. It allows us to check that the
mathematics is being used in an appropriate way, both from a validation point
of view (is the specification meeting the requirements?) and a correctness point
of view (is the specification maintaining invariants?).

Many of the invariants used in this paper were in the form of equations
(E = F) and inclusions (E ⊆ F). Typically the actions of an event modify one
or both sides of an equation or inclusion. We used two main ways of preserving
the equations and inclusions: either adding sufficient actions to ensure both sides
of an equation or inclusion are modified in similar ways or using guards and
properties of the operators to verify that modifying only one side still preserves
the equation or inclusion.

We quoted Boehm’s First Law in the introduction. Let us quote Boehm’s
Second Law [2] in the conclusion:

Boehm’s Second Law: Prototyping significantly reduces requirements
and design errors, especially for user errors.

We would argue that a formal model in a language such as Event-B acts as a
form of early prototype allowing us to uncover and fix errors in requirements. Of
course, while formal modelling addresses the key concepts in the problem being
solved by a software system, it does not deal with the important issue of user
interfaces (which can cause the user errors referred to in Boehm’s Second Law); a
software prototype remains an important tool in uncovering requirements on user
interfaces. Formal modelling and reasoning help to uncover conceptual errors in
requirements while software prototypes help uncover user interface errors.

We conclude by summarising some key messages:

– The role of problem abstraction and formal modelling is to increase under-
standing of a problem leading to good quality requirements and design docu-
ments with low error rates.

– The role of model validation is to ensure that formal models adequately rep-
resent the intended behaviour of a system.

– The role of model verification is to improve the quality of models through
formulation of invariants and reasoning about those invariants, including rec-
tifying specifications where appropriate.

Reasoned Modelling with Event-B 109

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Boehm, B.W.: Software Engineering Economics, 1st edn. Prentice Hall PTR, Upper
Saddle River (1981)

3. Feiler, P., Goodenough, J., Gurfinkel, A., Weinstock, C., Wrage, L.: Four pil-
lars for improving the quality of safety-critical software-reliant systems. Tech-
nical report, Software Engineering Institute, Carnegie-Mellon University (2013).
https://resources.sei.cmu.edu/asset files/WhitePaper/2013 019 001 47803.pdf

4. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the
B Method. Int. J. Softw. Tools Technol. Trans. 10(2), 185–203 (2008).
http://eprints.soton.ac.uk/262886/

5. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010). http://dx.doi.org/10.1007/s10009-010-0145-y

6. Butler, M.: Mastering system analysis and design through abstraction and refine-
ment. In: Engineering Dependable Software Systems. IOS Press (2013). http://
eprints.soton.ac.uk/349769/

7. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (1996)

8. Silva, R., Pascal, C., Hoang, T., Butler, M.: Decomposition tool for Event-B. Softw.
Pract. Exp. 41(2), 199–208 (2011). http://www.eprints.soton.ac.uk/271714/

9. Woodcock, J., Davies, J.: Using Z - Specification, Refinement, and Proof. Prentice-
Hall, Upper Saddle River (1996). http://www.usingz.com

10. Jones, C.: Systematic Software Development using VDM. Prentice Hall, Upper
Saddle River (1990)

11. Snook, C., Butler, M.: UML-B: formal modelling and design aided
by UML. ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006).
http://eprints.soton.ac.uk/260169/

https://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_47803.pdf
http://eprints.soton.ac.uk/262886/
http://dx.doi.org/10.1007/s10009-010-0145-y
http://eprints.soton.ac.uk/349769/
http://eprints.soton.ac.uk/349769/
http://www.eprints.soton.ac.uk/271714/
http://www.usingz.com
http://eprints.soton.ac.uk/260169/

	Reasoned Modelling with Event-B
	1 Introduction
	2 Modelling with Sets and Invariants
	3 Overview of Set Theory
	3.1 Typing and Powersets
	3.2 Expressions and Predicates
	3.3 Set Operators

	4 Structuring Models with Machines
	4.1 Context
	4.2 Machine
	4.3 Preserving Invariants
	4.4 Machine Initialisation
	4.5 Other Access Control Events
	4.6 Machine Behaviour and Nondeterminism

	5 Finiteness, Cardinality and Well-Definedness
	6 Introducing Relations
	7 Cartesian Products and Relations
	7.1 Type Constructors and Structured Types
	7.2 Relations
	7.3 Functions

	8 Access Control Specification
	8.1 Set and Relations for Access Control
	8.2 Expansion Events
	8.3 Reduction Events and Domain Subtraction
	8.4 Invariant Violation
	8.5 Fixing the Violation
	8.6 Range Subtraction

	9 Query Events
	9.1 Requirements Tracing

	10 Simple Bank
	10.1 Sets and Relations
	10.2 Expansion Events
	10.3 Function Override

	11 Model Validation Through Animation
	12 Model Verification
	13 Further Reading
	14 Concluding
	References

