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Preface

The Second School on Engineering Trustworthy Software Systems (SETSS 2016) was
held from March 28 to April 2, 2016, at Southwest University, Chongqing, China.
It was aimed at PhD and master’s students in particular, from around China, as well as
being suitable for university researchers and industry software engineers. The first 50
participants accepted for the school received free places. This volume contains a record
of some of the lectures and seminars delivered at the school.

The school was held when Southwest University was celebrating its 110th
anniversary. It was organized by the School of Computer and Information Science at
Southwest University, providing lectures on leading-edge research in methods as well
as tools for use in computer system engineering. The school aimed to enable partici-
pants to learn about state-of-the-art software engineering methods and technology
advances from experts in the field.

An opening address was delivered by the Vice President of Southwest University,
Professor Yanqiang Cui, followed by an introduction to SETSS 2016 by Prof. Zhiming
Liu. Sessions at the school were chaired by Professors Zili Zhang, Jonathan Bowen,
Zhiming Liu, and Jim Woodcock.

The following lectures (four 90-min lecture sessions each) were delivered during the
school:

– Tao Xie: “Parameterized Unit Testing: Theory and Practice”
– Michael Butler: “Modelling and Verification in Event-B”
– Martin Leucker: “Runtime Verification”
– Yifeng Chen: “Parallel Programming Today”
– Jim Woodcock: “Semantics of Reactive Systems”
– Alvaro Miyazawa: “Java in the Safety-Critical Domain – A Refinement Approach”

In addition, there were two 120-min evening seminars on related subject areas:

– Jonathan P. Bowen: “Alan Turing: Founder of Computer Science”
– Zhilin Wu: “Formal Reasoning About Infinite Data Values: An Ongoing Quest”

These additional presentations complemented the longer lecture courses.



Courses

Modelling and Verification in Event-B

Lecturer: Prof. Michael Butler, University of Southampton, UK

Biography: Michael Butler is Professor of Computer Science at Southampton
University. He is internationally recognized as a leading expert in refinement-based
formal methods. He holds a PhD (Computation) from the University of Oxford. His
research work encompasses applications, tools, and methodology for formal methods,
especially refinement-based method such as B and Event-B. He has made key
methodological contributions to the Event-B formal method, especially around model
composition and decomposition. He plays a leading role in the development of several
tools for B and Event-B, especially the Rodin toolset. Butler has a strong track record
of collaboration with industry on the deployment of formal methods.

Overview: Formal modelling and verification lead to deeper understanding and higher
consistency of specification and design than informal or semi-formal methods. A re-
finement approach means that models represent different abstraction levels of system
design; consistency between abstraction levels is ensured by formal verification. These
lectures provided an introduction to modelling and verification using Event-B offering
guidance on the appropriate use of set theory for domain modelling, use of refinement
to represent systems at different abstraction levels, and use of mathematical proof to
verify the consistency between refinement levels.

Parallel Programming Today

Lecturer: Prof. Yifeng Chen, Peking University, China

Biography: Yifeng Chen is a research professor at the School of Electronics Engi-
neering and Computer Science at Peking University and Vice Head, Department of
Computer Science and Technology. He is a member of the Software Institute and the
theory group. His main research interests include parallel programming model for
multi-core and many-core architectures and parallel computing, (imperative, parallel,
object-oriented, and probabilistic) programming languages, and programming theory.
His research activities include serving as a PC member for conferences such as lCTAC,
UTP, lFM, IPDPS, SC, PPoPP, and CCGrid.

Overview: Today’s parallel computer systems are diverse. This lecture presented
several lower-level tools of parallel programming and explained how to lift the level of
programming in algebraic structures. The parallel programming paradigms of this
lecture included the CUDA parallel computing platform for programming the
General-Purpose Graphics Processor Unit that powers the Tianhe-1A supercomputer,
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OpenMP Offload for programming Intel’s MIC (Many Integrated Core) Architecture
that powers Tianhe 2 supercomputer, and MPI (Message Passing Interface) for pro-
gramming a cluster of servers connected with a high-speed network.

Runtime Verification

Lecturer: Prof. Martin Leucker, University of Lübeck, Germany

Biography: Martin Leucker is Director of the Institute for Software Engineering and
Programming Languages at the University of Lübeck, Germany. He obtained his
Habilitation at TU München (awarded in 2007) while being a member of Manfred
Broy’s group on Software and Systems Engineering. At TU Munich, he also worked as
a Professor of Theoretical Computer Science and Software Reliability. Martin Leucker
is the author of more than 100 reviewed conference and journal papers in software
engineering, formal methods, and theoretical computer science. He is frequently a PC
member of top-ranked conferences and has been the principal investigator in several
research projects with industry participation, especially in the medical devices, auto-
motive, and energy domains.

Overview: This tutorial course gave an introduction to the field of runtime verification.
More specifically, it presented a comprehensive and coherent assessment to linear
temporal logic-based monitor synthesis approaches. Both rewriting and automata-based
techniques, each from a propositional as well as from a data perspective, were covered.
Beyond a formal account, applications, especially in the area of testing, were presented.
To this end, a practical introduction to the tool JUnitRV, which combines traditional
unit testing for Java with runtime verification techniques, was included.

Java in the Safety-Critical Domain – A Refinement Approach

Lecturer: Dr. Alvaro Miyazawa, University of York, UK

Biography: Alvaro Miyazawa is a research associate in the High Integrity Systems
Engineering Group at the University of York. His doctoral work formalized the
semantics of Stateflow charts and defined a refinement strategy for the verification of
sequential and parallel implementations. Since then, he has worked on the COMPASS
project developing a comprehensive and integrated formal semantics for SysML with
particular emphasis on state machine, block definition, and internal block diagrams,
and on the hiJaC project, extending the formal semantics of Safety Critical Java and
refinement strategies for verification and generation of SCJ programs. He has been
working on the RoboCalc project, developing a formal state machine notation tailored
for the design and analysis of robotic applications.
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Overview: Safety Critical Java (SCJ) is a version of Java designed for programming
real-time and safety-critical systems that require certification. A group at the University
of York is working with members of the Open Group committee that is defining a
standard for SCJ to outline techniques for verification of programs. This course pre-
sented SCJ, the challenges involved in verifying SCJ programs, and the approach used
for this. New modelling languages and techniques for automatic generation and veri-
fication of models were also covered.

Semantics of Reactive Systems

Lecturer: Prof. Jim Woodcock, University of York, UK

Biography: Jim Woodcock is Professor of Software Engineering and Head of the
Department of Computer Science at the University of York in England. His main
research interests are in the industrial applications of software engineering, formal
verification, programming language semantics, and cyber-physical systems. The
research team he previous led at Oxford University won the Queen’s Award for
Technological Achievement for its work on the formal development of smart cards. He is
a Fellow of the UK Royal Academy of Engineering.

Overview: Unifying Theories of Programming (UTP) provides a foundation for com-
positional semantics for a variety of different language paradigms. This course showed
how to give semantics to imperative programs, pointer-rich programs, reactive pro-
grams with concurrency and communication, and reactive programs with mobile
channels. It also demonstrated how these different paradigms can be composed to
create a powerful programming language with stateful, reactive, reconfigurable
processes.

Parameterized Unit Testing: Theory and Practice

Lecturer: Prof. Tao Xie, University of Illinois at Urbana-Champaign, USA

Biography: Tao Xie is Associate Professor and Willett Faculty Scholar in the
Department of Computer Science at the University of Illinois at Urbana-Champaign,
USA. His research interests are in software engineering and software security, with a
focus on software testing, software analytics, and educational software engineering.
He was ACM Distinguished Speaker and is an IEEE Computer Society Distinguished
Visitor. He received an NSF CAREER Award in 2009. In addition, he received a 2014
Google Faculty Research Award, a 2011 Microsoft Research Software Engineering
Innovation Foundation (SEIF) Award, the 2008, 2009, and 2010 IBM Faculty Awards,
and a 2008 IBM Jazz Innovation Award. He was the program chair of ISSTA 2015.
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Overview: This course presented the latest research and practice on principles, tech-
niques, and applications of parameterized unit testing in practice, highlighting success
stories, research and education achievements, and future research directions in devel-
oper testing. The course helped improve developer skills and knowledge for writing
PUTs and gave an overview of tool automation in supporting PUTs. Attendees
acquired the skills and knowledge needed to perform research or conduct practice in the
field of developer testing and to integrate developer testing techniques in their own
research, practice, and education.

Seminars

Alan Turing: Founder of Computer Science

Lecturer: Prof. Jonathan P. Bowen, London South Bank University, UK

Biography: Jonathan Bowen, FBCS FRSA, is Chairman of Museophile Limited
(founded in 2002) and Emeritus Professor at London South Bank University, where he
established and headed the Centre for Applied Formal Methods in 2000. During
2013–2015, he was Professor of Computer Science at Birmingham City University. His
interests have ranged from formal methods, safety-critical systems, the Z notation,
provably correct systems, rapid prototyping using logic programming, decompilation,
hardware compilation, software/hardware co-design, linking semantics, and software
testing, to the history of computing, museum informatics, and virtual communities.

Overview: Alan Turing (1912–1954) has been increasingly recognized as an important
mathematician and philosopher, who despite his short life developed ideas that have led
to foundational aspects of computer science and related fields. This seminar talk pro-
vided an overview of the diverse aspects related to Turing’s remarkable achievements,
with respect to the production of a book, The Turing Guide, a collected volume of
42 chapters, published by Oxford University Press in 2017. Although the story of
Turing can be seen as one of tragedy, with his life cut short while still at the height of
his intellectual powers, just short of his 42nd birthday, from a historical viewpoint
Turing’s contribution to humankind has been triumphant.

Formal Reasoning About Infinite Data Values: An Ongoing Quest

Lecturer: Dr. Zhilin Wu, Institute of Software, Chinese Academy of Sciences, China

Biography: Zhilin Wu is an associate research professor at the State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences. His main
research interests include program analysis and verification, computational logic,
automata theory, and database theory.
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Overview: Infinite data values are pervasive in computer systems, e.g., process iden-
tifiers, file names, integer or floating variables in programs, data parameters in network
messages, records in databases, etc. Nevertheless, reasoning about them formally is
notoriously difficult, since the infinity of data domains easily induces the undecidability
of the reasoning tasks. The usual practice in most of the current approaches or tools is
to ignore or abstract away the data infinity. A long-term goal is to show that in many
scenarios, proper formalisms can be found, so that on the one hand the infinite data
values, instead of being abstracted away, can be handled directly and explicitly, and on
the other hand, the reasoning process can still be largely automated and made efficient.
In this seminar, a summary of efforts toward this goal over the previous five years was
given.

From the lectures and seminars, a record of the school has been distilled in six chapters
in this volume as follows:

– Jonathan P. Bowen: “Alan Turing: Founder of Computer Science”
– Jim Woodcock and Simon Foster: “UTP by Example: Designs”
– Michael Butler: “Reasoned Modelling with Event-B”
– Ana Cavalcanti, Alvaro Miyazawa, Andy Wellings, Jim Woodcock,

and Shuai Zhao: “Java in the Safety-Critical Domain”
– Martin Leucker: “Runtime Verification for Linear-Time Temporal Logic”
– Taolue Chen, Fu Song, and Zhilin Wu: “Formal Reasoning on Infinite Data Values:

An Ongoing Quest”

We would like to thank the lecturers and their coauthors for their professional com-
mitment and effort, the strong support of Southwest University, and the enthusiastic
work of the local organization team, without whom SETSS 2016 would not have been
possible. Thank you to Xin Chen (Nanjing University) for help with assembling the
proceedings. We are grateful for the support of Alfred Hofmann and Anna Kramer of
Springer Lecture Notes in Computer Science in the publication of this volume.

February 2017 Jonathan P. Bowen
Zhiming Liu
Zili Zhang
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Alan Turing: Founder of Computer Science

Jonathan P. Bowen1,2(B)

1 Division of Computer Science and Informatics, School of Engineering,
London South Bank University, Borough Road, London SE1 0AA, UK

jonathan.bowen@lsbu.ac.uk

http://www.jpbowen.com
2 Museophile Limited, Oxford, UK

Abstract. In this paper, a biographical overview of Alan Turing, the
20th century mathematician, philosopher and early computer scientist,
is presented. Turing has a rightful claim to the title of ‘Father of modern
computing’. He laid the theoretical groundwork for a universal machine
that models a computer in its most general form before World War II.
During the war, Turing was instrumental in developing and influencing
practical computing devices that have been said to have shortened the
war by up to two years by decoding encrypted enemy messages that were
generally believed to be unbreakable. After the war, he was involved with
the design and programming of early computers. He also wrote founda-
tional papers in the areas of what are now known as Artificial Intelligence
(AI) and mathematical biology shortly before his untimely death. The
paper also considers Turing’s subsequent influence, both scientifically
and culturally.

1 Prologue

Alan Mathison Turing [8,23,33] was born in London, England, on 23 June 1912.
Educated at Sherborne School in Dorset, southern England, and at King’s Col-
lege, Cambridge, he graduated in 1934 with a degree in mathematics. Twenty
years later, after a short but exceptional career, he died on 7 June 1954 in
mysterious circumstances. He is lauded by mathematicians, philosophers, and
computer sciences, as well as increasingly the public in general.

Unlike some theorists, Turing was willing to be involved with practical aspects
and was as happy to wield a soldering iron as he was to wrestle with a mathe-
matical problem, normally from a unique angle. With hindsight, Turing’s 1936
seminal paper on computable numbers foretold the capabilities of the modern
computer. World War II (1939–45) then brought about a radical, but perhaps
fortuitous, change of direction in Turing’s career, as his unique mathematical
abilities were recognized during his time at Cambridge and he was invited to
join Bletchley Park, the centre of the United Kingdom’s efforts to break German
secret codes. Decryption was laborious to do by hand in the time needed and
Turing recognized that machines, together with great human ingenuity, could
tackle the problem far more quickly and reliably.

c© Springer International Publishing AG 2017
J.P. Bowen et al. (Eds.): SETSS 2016, LNCS 10215, pp. 1–15, 2017.
DOI: 10.1007/978-3-319-56841-6 1



2 J.P. Bowen

In 1999, Time magazine listed Turing among the 20th century’s one hun-
dred greatest minds [47], along with the DNA discoverers Crick and Watson,
the physicist Albert Einstein, Alexander Fleming, the discoverer of penicillin,
and the flying pioneers, the Wright brothers. Turing’s achievements during his
short lifetime were extensive. Best known as the genius who broke Germany’s
most secret codes during the Second World War, Turing was also the founding
‘father of computer science’ [5,8,9]. A search of “father of computer science” and
“Alan Turing” together on Google gives over 57,000 results. Today, all who use
information technology are familiar with the impact of his original ideas [17,18].

Turing proposed the insightful innovation of storing applications, and the
other programs necessary for computers to perform for us, inside the computer’s
memory, ready to be opened whenever desired. At a time when the term ‘com-
puter’ meant nothing more than a human clerk who sat at a desk doing calcu-
lations by hand, Turing envisaged a ‘universal computing machine’ [48] whose
function could easily be transformed from acting as a word processor, to a desk
calculator, to an automated chess opponent – or to anything else that can be
formulated as an algorithmic software program. Like many significant ideas, this
now seems as obvious as the arch or the wheel, but with this single invention of
the stored program universal computer, Turing transformed the world.

In 1945, Turing went on to start the design of a stored-program electronic
computer called the Automatic Computing Engine – or ACE. The name was in
homage to the 19th-century computing pioneer Charles Babbage who proposed
large mechanical calculating ‘engines’. Turing’s sophisticated ACE design saw
wider success later in form of the English Electric Company’s DEUCE com-
puter, one of the earliest electronic computers to be available commercially. The
DEUCE became an early success for the developing computer industry in the
United Kingdom and, together with a small number of other computers, all
greatly influenced by Turing’s ideas, the DEUCE helped propel the UK into the
age of the computer.

Turing also contributed to advances at the University of Manchester, where
the engineers Sir Frederic Williams (1911–1977) and his student and then col-
league Tom Kilburn (1921–2001) built the first universal Turing machine to be
realized in electronic hardware. Their ‘Baby’, which can be considered as the
world’s earliest modern computer, first ran in June 1948, the same year that
Turing joined the Computing Machine Laboratory at Manchester. He remained
there for the rest of his life.

In addition to his exceptional theoretical and practical contributions with
respect to the development of the computer, not to mention the new science of
computer programming, Turing was the first pioneer of the areas of computing
now known as Artificial Intelligence (AI) [52]. He also made important contribu-
tions to mathematics, logic, philosophy, theoretical biology, and the study of the
mind. Mathematicians, philosophers, and computer scientists all claim Turing
as their own as a result.
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2 Biography

2.1 Youth and Pre-war

Alan Turing [22] was the son of an British civil servant who worked in India
[33]. In 1912, his parents returned to England for his birth in Maida Vale, west
London, at what is now the Colonnade Hotel [55]. At the age of 14, he was sent
to Sherborne School, a traditional British public school in Dorset in southern
England. In 1926, on crossing the English Channel from France where his family
was living at the time, and arriving at Southampton for his first term at school,
he found that the General Strike was under way and that no trains were running.
He took the initiative and cycled the significant distance from Southampton
to Sherborne, staying the night at Blandford Forum on the way (see Fig. 1),
demonstrating his determination when faced with a practical problem even at
this age.

Fig. 1. The Crown hotel at Blandford Forum, Dorset, where Turing stayed during his
1926 cycle ride to Sherborne School. (Photograph by Jonathan Bowen.)

Turing’s interest in science was noted by his schoolteachers, but was not
particularly encouraged at such a conservative establishment. He was able to
solve advanced problems from first principles, for example without having been
taught calculus. By the age of 16, he had encountered and understood the work
of Albert Einstein (1879–1955). While at school Turing formed a close friendship
with a fellow scientifically minded student, Christopher Morcom, who tragically
died in 1930 during his last term at Sherborne. This had a traumatic effect
on Turing and any religious leanings that Turing may have had were affected,
subsequently making him more atheistic in his outlook, but possibly increasing
his interest in the working of the mind.

Turing went on to study mathematics at King’s College, Cambridge, from
1931 to 1934, graduating with a first-class degree; he was subsequently elected
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at a remarkably young age to be a Fellow of the College in 1935. At Cambridge,
the direction of his research was influenced by the lectures of Max Newman
(1897–1984), one of his few academic collaborators. In 1936, he submitted his
groundbreaking paper on computable numbers [48] that was to form the cor-
nerstone for the rest of his career; this presented the concept of a computing
machine, and in particular a ‘universal machine’ capable of computing a wide
class of numbers. Newman recognized the importance of the work and encour-
aged Turing for much of his subsequent career. Turing’s notion of universality
was what is thought of as ‘programmability’ in computers today. As he stated in
a paper in the context of a human computer, “a man provided with paper, pen-
cil, and rubber, and subject to strict discipline, is in effect a universal machine”
[29,50].

Turing’s efforts developed the 1931 research of the German mathematician
Kurt Gödel (1906–1978) and have led to the use of the term ‘Turing machine’
for his universal machine: he demonstrated that any mathematical calculation
that can be represented as an algorithm can be performed by such a machine.
The Entscheidungsproblem (or ‘decision problem’) was a mathematical challenge
posed by David Hilbert (1862–1943) in 1928 as to whether is there always an
algorithm to determine the truth or falsity of a mathematical statement. Tur-
ing also demonstrated the insolubility of the problem by first showing that it
is impossible to decide algorithmically whether a given Turing machine is satis-
factory. This is now known as the halting problem and the issue was a vexing
one to mathematicians. Turing machines remain a very important concept in the
theory of computation and computability to this day [24].

From 1936 to 1938, Turing studied for a PhD degree at Princeton University
in the USA under the American mathematician Alonzo Church (1903–1995),
obtaining his doctorate in a remarkably short period [1,49]. Earlier, they had
independently developed the Church–Turing thesis, characterizing the nature
of computation and stating that every effectively calculable function produced
by any means is also computable using a Turing machine. Although the the-
sis cannot be proved, it is almost universally accepted by mathematicians and
theoretical computer scientists.

Turing later returned to Cambridge and attended lectures by the philosopher
Ludwig Wittgenstein (1889–1951) about mathematical foundations. Wittgen-
stein argued that mathematicians invented (rather than discovered) truth, but
Turing disagreed.

2.2 World War II

Turing was recruited to Bletchley Park (or ‘Station X’) [32,45], after work-
ing part-time for the Government Code and Cypher School (now known as the
Government Communications Headquarters, or GCHQ). Before World War II,
he had already contributed ideas on breaking the German Enigma machine
(see Fig. 2) for encrypting messages. This meant that within weeks of joining
Bletchley Park he had specified a machine that could be used to help decode
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Enigma messages [46]. This was named the ‘bombe’ after an earlier and less
efficient Polish-designed machine, the ‘bomba’.

Fig. 2. A German Enigma machine (left) and the Turing Bombe rebuild project (right)
at Bletchley Park. (Photographs by Jonathan Bowen.)

The bombe worked by taking a piece of probable plain text from the original
message (known as a ‘crib’) and working through combinations of the Enigma
machine’s rotors and plugboard settings. Most possible settings would quickly
produce contradictions, allowing them to be eliminated and leaving only a few
combinations to be investigated in greater depth. The machine effectively under-
took a mathematical proof mechanically, far more quickly and reliably than a
human (or even a team of humans) was able to do so.

Turing chose to work on naval Enigma decryption because, as he said, “no
one else was doing anything about it and I could have it to myself”. This was
typical of Turing, although he collaborated well with others at Bletchley Park.
During his time there, he developed a number of novel decryption techniques
and devices, which were often given playful slang terms. One of these, developed
in 1942, was ‘Turingery’ or ‘Turingismus’, a hand technique for finding patterns
in the Lorenz cipher wheel cams. It was especially useful because the information
remained valid for a significant period.

Some of Turing’s eccentricities were evident while he worked at Bletchley
Park. He chained his cup to his radiator in his office within the unprepossessing
Hut 6 (see Fig. 3) to avoid it being lost or stolen. He was also known to wear
his gas mask while cycling to work, not because of fear of being gassed, but to
avoid hay fever.

Turing was not averse to dealing with administrative issues when necessary.
At one point when Turing could not obtain the personnel he needed, he and
others at Bletchley Park contacted Winston Churchill about the urgency of the
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Fig. 3. Hut 6 at Bletchley Park, now restored. (Photograph by Jonathan Bowen.)

matter. This elicited the response “Action this day” [46] from Churchill, who
well understood the importance of the work undertaken at Bletchley Park.

Although not directly involved in its design, Turing’s influence on work at
Bletchley Park helped in the development of the world’s first programmable
digital electronic computer there, the Colossus [26], designed by Tommy Flowers
(1905–1998). Turing was awarded the OBE (Officer of the Order of the British
Empire) in 1945 for his war work, but his actual contribution remained secret
for many years afterwards.

2.3 Post-war

After World War II, from 1945 to 1947, Turing worked at the National Physical
Laboratory (NPL), west of London [57]. Here, influenced by his experience at
Bletchley Park, he worked on the design of the very fast Automatic Computing
Engine (ACE), an early computer [20,25]. Unfortunately, delays (partly due to
bureaucracy) meant that Turing became frustrated with the project, and even
the cut-down Pilot ACE was not built until after he left NPL to return to
Cambridge for a sabbatical year. Turing never returned to work at NPL.

In 1948, he joined the mathematics department at the University of
Manchester, where his earlier mentor from Cambridge, Max Newman, was now
based [42]. He was appointed the Deputy Director of the University’s comput-
ing laboratory, working on software for the Manchester Mark 1 ‘Baby’, an early
stored-program computer [37]. Turing worked on software for the Mark 1 and
even produced what may have been the first proof of correctness for a program
[51]. Although this had little influence at the time, its importance in the field of
formal methods [6,15] was realised much later [11,41].
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In 1950, Turing published a seminal paper on the subject of machine intelli-
gence, later known as Artificial Intelligence, in the journal Mind [52]. He devised
what became known as the ‘Turing test’ to provide a possible demonstration of
machine intelligence. To pass the test, a computing machine must appear human
when interacting with a person in such a way that it is indistinguishable from
a real human being. Such a feat has still not been achieved fully, although it
is deemed to be a viable aim and remains relevant to this day. There are now
many variants for the test.

Towards the end of his life until his early and inadequately explained death in
1954, Turing worked in the interdisciplinary area of mathematical biology – and
specifically, morphogenesis, the process that allows organisms to generate their
shape. In 1952, he published a paper, The chemical basis of morphogenesis [53],
which demonstrated that simple mathematical equations can produce complex
patterns; this paper has subsequently been very influential as a foundational
work in the field of computational biology, but much of his work in this area was
not published until his Collected Papers appeared much later [19].

3 Influence

3.1 Coined Terms

Turing’s name is associated with a significant number of different concepts coined
by others and related directly or indirectly to his original ideas. Many can be
found on Wikipedia [56]. Two of the most well-known are Turing’s abstract
concept of a computing device, now known as a ‘Turing machine’, and his idea
of a test for machine intelligence in comparison with a human, the ‘Turing test’.
There are also more specialized versions of these concepts, such as a ‘symmetric
Turing machine’, the ‘reverse Turing test’ where a human attempts to mimic
being a computer, and a ‘visual Turing test’ for computer vision systems.

The ‘Church–Turing thesis’ (aka ‘Turing’s thesis’) is a hypothesis about com-
putable functions named after mathematician and Turings PhD supervisor Tur-
ing himself. The idea was conceived separately and using different approaches by
both of them in the 1930s. Later in 1985, David Deutsch formulated a stronger
physical version of the Church–Turing thesis, the ‘Church–Turing–Deutsch
principle’ [28].

In computability theory, ‘Turing reduction’ is an algorithm that transforms
one problem into another problem using a function that is computable by an
oracle machine, a Turing machine connected to an ‘oracle’ that is able to provide
a solution for a given computational problem. ‘Turing equivalence’ means that
the reduction is possible in both directions. ‘Turing computability’ is the main
form of computability used in recursion theory. The ‘Turing degree’, or degree
of unsolvability of a set of natural numbers, gives a measure for the level of the
set’s algorithmic unsolvability.

The term ‘Turing tarpit’ (or tar-pit) was coined by the American computer
scientist Alan Perlis (1922–1990) in 1982. It is a term for a computer interface
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or programming language that is flexible in the facilities provided, but is hard
to learn in general due to the lack of support for its more widely used features.

There is even a programming language named ‘Turing’, developed in 1982 as a
teaching language in the standard imperative programming style. Further related
languages include ‘Turing+’, introduced in 1987 for programming concurrent
systems, and ‘Object-Oriented Turing’, developed in 1991 as a replacement for
Turing+, providing object-oriented programming features.

Recently, the term ‘Alan Turing law’ entered general use to describe United
Kingdom legislation proposed in 2016 for an amnesty law to pardon homosexual
men retrospectively [2]. This passed into UK law in 2017 [3].

3.2 Online Resources

There is a significant amount of material relating to Turing that is accessible
online. Some of the leading websites in this regard include [10]:

– Alan Turing: The Enigma (http://www.turing.org.uk) [12], maintained by
Turing’s definitive biographer, Andrew Hodges [33];

– The Turing Digital Archive (http://www.turingarchive.org), provided by Tur-
ing’s college, King’s College, Cambridge, with nearly 3,000 images;

– The Turing Archive for the History of Computing (http://www.alanturing.
net), digital facsimiles by Jack Copeland, a leading Turing scholar [19,21], and
Diane Proudfoot, from Canterbury Christ Church University in New Zealand;

– The Alan Turing Year (http://www.turingcentenary.eu), celebrating Turing’s
2012 centenary of his birth, with various events around the world [18].

Google Scholar (http://scholar.google.com) provides information about aca-
demic publications written by researchers around the world, including an entry
for Turing [30] (see Fig. 4). Turing’s three most cited papers have been founda-
tional for three important fields of study.

Google Scholar also presents the number of citations per year for a given
author. Citations to Turing’s work have grown exponentially over the years in
general, with relatively few still at the time of the Hodges biography in 1983
[33] and far more by the time of his 2012 centenary (see Fig. 5). There are now
around six citations a day to Turing’s work in scientific publications around the
world.

Microsoft Academic Search, generated by a research project at Microsoft
Research in Beijing, until recently provided similar facilities to Google Scholar,
although with a smaller number of publications that were no longer being
updated in recent years. It did however have better graphical visualization pre-
sentation of coauthors, citing authors, and transitive coauthorship links between
any two authors [10]. It included an entry for Alan Turing. More recently,
Microsoft has launched a new facility, Microsoft Academic (http://academic.
microsoft.com), with a better corpus of publications but without the same visu-
alization facilities. E.g., for Turing’s entry, see [40].

The Mathematics Genealogy Project is a web-based resource providing
access to a database (http://genealogy.math.ndsu.nodak.edu) of mathematically

http://www.turing.org.uk
http://www.turingarchive.org
http://www.alanturing.net
http://www.alanturing.net
http://www.turingcentenary.eu
http://scholar.google.com
http://academic.microsoft.com
http://academic.microsoft.com
http://genealogy.math.ndsu.nodak.edu
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Fig. 4. Alan Turing’s most cited papers on Google Scholar [30]

Fig. 5. Citations to Alan Turing’s publications by year on Google Scholar [30].

related PhD supervisors and their students. Turing’s PhD supervisor, the Prince-
ton University mathematician Alonzo Church, has an entry that includes Turing
[39]. Turing himself only had one PhD student, the mathematician Robin Gandy
(1919–1995) at the University of Cambridge, who was subsequently an academic
at the University of Oxford.
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3.3 Cultural Influence

Turing has had a very significant scientific influence historically [7], but his now
iconic status has also influenced more mainstream culture too, partly due to
his treatment as a homosexual, now considered unjust, and his short life, most
likely due to his resulting suicide. In theatre for example, Breaking the Code was
a 1986 play by Hugh Whitemore [34], based on Turing’s life and specifically the
biography by Andrew Hodges [33]. It was performed in London’s West End and
later in 1988 on Broadway in New York, starring the British actor Derek Jacobi
in the lead role of Turing on both occasions. In 1996, the play appeared as a
BBC television film, also with Jacobi as Turing.

There have been a number of sculptures dedicated to the memory of Alan
Turing in the UK and elsewhere. In 2001, a memorial to Turing was installed in
Sackville Park, Manchester, where he worked at the end of his life. This is in the
form of a bronze sculpture of Turing sitting on a bench and holding an apple.
It was widely believed that Turing committed suicide due to biting a cyanide-
laced apple. The monument was unveiled on 23 June, Turing’s birthday. It was
inspired by the play Breaking the Code.

A unique slate sculpture of Turing with an Enigma machine by Stephen
Kettle is now on display at Bletchley Park [36]. The slate selected was from
North Wales, which Turing visited both as a child and adult. There are other
memorial sculptures and busts of Turing around the world. For example, at
Southwest University in Chongqing, China, there is a bust outside the computer
science department (see Fig. 6), along with the American mathematician and
computing pioneer John von Neumann (1903–1957), who was himself influenced
by Turing, especially with his concept of the von Neumann machine, a more
practical model of the computer than Turing’s earlier Turing machine. Even
in such a remote location from Turing’s home country, his achievements are
recognised, especially by computer scientists.

In literature, the 1995 novel Enigma by Robert Harris was inspired by the
work of Turing and others at Bletchley Park [31]. The Turing Test by Chris
Beckett in 2008 [4], a collection of 14 science fiction genre short stories, won
the 2009 Edge Hill Short Fiction Award. The stories, first published between
1991 and 2006, include aspects of Artificial Intelligence and its relationship with
humanity.

Turing’s centenary in 2012 was celebrated in a number of ways, including an
exhibition dedicated to him at the Science Museum in London (see Fig. 7). There
were also a number of Turing-related meetings at Bletchley Park, Cambridge,
Manchester, Oxford, and elsewhere [13,18].

In popular music, the musical duo known as the Pet Shop Boys were inspired
by a 2011 UK television documentary on Turing and then the Hodges biography
[33] to write the musical work A Man for the Future, based on the life of Alan
Turing. This included read passages from the Hodges biography, chosen with the
help of Hodges himself. The operatic work, in eight movements, was premiered
in a BBC PROM concert at the Royal Albert Hall in London on 29 July 2014,
including extensive choral contributions by the BBC Singers, and received a
standing ovation.
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Fig. 6. Busts of Alan Turing (left) and John von Neumann (right) on the campus of
Southwest University, Chongqing, China. (Photographs by Jonathan Bowen.)

Fig. 7. The entrance of an exhibition on Alan Turing at the Science Museum, London,
for his centenary in 2012. (Photograph by Jonathan Bowen.)
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In film, The Imitation Game of 2014 [35] was an American Hollywood produc-
tion of a historical drama, loosely based on Turing’s life and incorporating much
fictional dramatic licence, with Andrew Hodges as a consultant. The film starred
the leading film actors Benedict Cumberbatch as Turing and Keira Knightley
as Joan Clarke MBE (1917–1996), his fellow cryptanalyst at Bletchley Park, to
whom Turing proposed marriage in early 1941.

In art, the Lumen Prize winner Andy Lomas has been inspired by mor-
phogenesis to combine his mathematical, programming, and artistic abilities to
produce pseudo-living organisms at the cellular level in 2D, 3D and moving forms
[10,38]. There has also been influence of the Turing test on poetry [16]. No doubt
Turing’s ideas and increasing fame will continue to inspire the arts for the future
too.

4 Epilogue

Turing was a homosexual at the time when homosexuality was illegal in the
United Kingdom. He was charged with gross indecency in 1952, losing his security
clearance as a result, and was forced to take female hormones in an attempt to
‘cure’ him if he wished to avoid imprisonment. On 8 June 1954, his cleaner found
him dead at his home in Wilmslow, Cheshire. The cause of death was certainly
cyanide poisoning, believed to be from a half-eaten apple found by his bed, but
this was never tested. It was determined that he had committed suicide, although
it is possible that his death was an accident since he experimented with cyanide
at home. A verdict in today’s courts would undoubtedly be less decisive from
the evidence available [21].

Earlier that year, in a postcard to his friend, the Cambridge and Oxford
mathematician Robin Gandy, Turing had written a short poem:

Hyperboloids of wondrous Light;
Rolling for aye through Space and Time;
Harbour those Waves which somehow Might;
Play out God’s holy pantomime

– an apposite epitaph for someone who moved from religious belief to disbe-
lief during his lifetime [33]. Geoffrey Jefferson, Professor of Neurosurgery at the
University of Manchester, aptly described Turing as “a sort of scientific Shel-
ley” [54,55]. Both Turing and the poet Percy Bysshe Shelley (1792–1822) were
somewhat maverick and individualistic geniuses who died before their time.

Turing was elected a Fellow of the Royal Society (FRS) in 1951 [42], an indi-
cation of the esteem held for him by scientists in the United Kingdom, but wider
recognition of his contributions came long after his death with the development
of computer science [27] and as the truth of his crucial wartime role at Bletchley
Park began to be revealed [32]. It is notable that Turing’s three most cited papers
by far (currently around 9–10,000 citations each on Google Scholar [30]) (see also
Fig. 4) were published in 1936, 1950, and 1952 [48,52,53]; each of these was foun-
dational in subsequent fields: theoretical computer science, artificial intelligence,
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and mathematical biology. Given Turing’s premature death in 1954, within four
year of the publication of two of his three most significant papers, it is very likely
that he would have gone on to produce further inspirational work had he lived
longer.

The 2012 book The Scientists [43] included Alan Turing as one of the top
43 scientists of all time [8]. Turing is increasingly remembered by the public at
large as well as by scientists. There is now a memorial statue in Manchester
and a unique slate statue is on view at Bletchley Park, as previously mentioned.
There are blue plaques marking his London birthplace, the home where he died
in Cheshire, and elsewhere. In 2009, there was even a UK government apology
by the Prime Minister, Gordon Brown, for his official treatment, followed by a
Royal Pardon by Queen Elizabeth II in 2013 [13].

Perhaps most fittingly, the nearest equivalent to the Nobel Prize, given annu-
ally to an outstanding computer scientist by computing’s international profes-
sional body, the Association for Computing Machinery (ACM), is known as the
A. M. Turing Award (http://amturing.acm.org). Turing’s legacy is explored fur-
ther in [13]. Despite his untimely death at only 41, Alan Turing’s influence will
live on in the field of computing, mathematics, and philosophy.

Acknowledgements. Thank you to my good colleague Prof. Zhiming Liu for acad-
emic support over the years and financial support provided through Southwest Uni-
versity in Chongqing, China. Thank you as well to my coauthors, Prof. Jack Copeland
et al., on The Turing Guide [23,44]. Parts of this paper have been adapted and
updated from [8], with permission of the editor, and from a talk at Gresham College in
London [9].
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Abstract. We present a tutorial introduction to the semantics of a basic
nondeterministic imperative programming language in Unifying Theories
of Programming (UTP). First, we give a simple relational semantics that
accounts for a theory of partial correctness. Second, we give a semantics
based on the theory of precondition-postcondition pairs, known in UTP
as designs. This paper should be read in conjunction with the UTP book
by Hoare & He. Our contribution lies in the large number of examples
we introduce.

1 Introduction

A seminal paper by Hoare and his colleagues [49] describes programming lan-
guage design as the task of a mathematical engineer, and the algebraic laws of
programming as the interface with the language user. This paper is a tutorial
introduction to the Hoare & He approach to programming language semantics,
known as Unifying Theories of Programming (UTP). Our objective is to intro-
duce the topic through a series of examples, showing how UTP is used to give
the denotational semantics of a simple programming language, and how that
semantics supports a rich set of algebraic laws for reasoning about programs
and their specifications. We restrict ourselves here to a nondeterministic pro-
gramming language, but we do supply an extensive set of references to the large
number of different programming paradigms now addressed by UTP.

Our paper is structured as follows. We give an overview of UTP in Sect. 2.
We illustrate the ideas by constructing a UTP theory to capture Boyle’s Law,
which describes the relationship between the temperature, volume, and pressure
of an ideal gas. We describe the meta-language used in UTP in Sect. 3. It is a
point-wise variant of Tarski’s alphabetised relational calculus. We introduce our
nondeterministic imperative programming language in Sect. 4. We describe the
semantics of the assignment, conditional, nondeterministic choice, and sequential
composition statements. Before we can give a meaning to iteration and recur-
sion, we need to cover some basic theory that underpins these constructs. In
Sect. 5, we give an introduction to lattice theory, before returning in Sect. 6 to
discuss recursion. We conclude our discussion of partial correctness in Sect. 7, by
describing how the axioms of Hoare logic and the weakest precondition calculus
can be validated by proving them as theorems in our relational semantics.

The second half of the paper deals with the specification of total correct-
ness of a program. Section 8 introduces the notion of a design: a precondition-
postcondition pair embedded in the larger theory of relations. In Sect. 9,
c© Springer International Publishing AG 2017
J.P. Bowen et al. (Eds.): SETSS 2016, LNCS 10215, pp. 16–50, 2017.
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we describe the complete lattice of designs. We connect our two theories, relations
and designs, by exhibiting in Sect. 10 a Galois connection that maps between
them. Finally, we return to the theory of designs in Sect. 11, and show the two
principal healthiness conditions that characterise the lattice.

In all these sections, we illustrate the ideas with a large number of examples.

2 Unifying Theories of Programming (UTP)

UTP is Hoare & He’s long-term research agenda to provide a common basis
for understanding the semantics of the modelling notations and programming
languages used in describing the behaviour of computer-based systems [50]. The
technique they employ is to describe different modelling and programming para-
digms in a common semantic setting: the alphabetised relational calculus. They
isolate individual features of these languages in order to be able to emphasise
commonalities and differences. They record formal links between the resulting
theories, so that predicates from one theory can be translated into another, often
as approximations. These links can also be used to translate specifications into
designs and programs as part of a program development method.

UTP has been used to describe a wide variety of programming theories.
In [50], Hoare & He formalise theories of sequential programming, with asser-
tional reasoning techniques for both partial and total correctness; a theory of cor-
rect compilation; concurrent computation with reactive processes and commu-
nications; higher-order logic programming; and theories that link denotational,
algebraic, and operational semantics.

Other contributions to UTP theories of programming language semantics,
including: angelic nondeterminism [24,25,63]; aspect-oriented programming [27];
component systems [81]; event-driven programming [52,82,85]; lazy evaluation
semantics [39]; object-oriented programming [20,64,68]; pointer-based program-
ming [41]; probabilistic programming [9,44,47,69,84]; real-time programming [42,
46]; reversible computation [69,70]; timed reactive programming [65–67,71,74];
and transaction programming [43,44]. Individual programming languages have
been given semantics in UTP. This includes the hardware description languages
Handel-C [60,61] and Verilog [83]; the multi-paradigm languages Circus [14,57,58,
71,79] and CML [75,78]; Safety-Critical Java [21–23,26,59]; and Simulink [19]. A
wide variety of programming theories have been formalised in UTP, including con-
fidentiality [6,7]; general correctness [29,32,33,40]; theories of testing [17,18,72];
hybrid systems; theories of flash memory [13,15]; and theories of undefined-
ness [5,76]. These are complemented by a collection of meta-theory, including work
on higher-order UTP [80]; UTP and temporal-logic model checking [2]; and CSP
as a retract of CCS [45].

Mechanisation is a key aspect of any formalisation, and UTP has been
embedded in a variety of theorem provers, notably in ProofPower-Z and
Isabelle [10,12,28,35,37,38,55,56,79]. This allows a theory engineer to mechani-
cally construct UTP theories, experiment with them, prove properties, and even-
tually deploy them for use in program verification. In these notes we focus on
our Isabelle embedding of the UTP called Isabelle/UTP [36].
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UTP has its origins in the work on predicative programming, which was
started by Hehner; see [48] for a summary. The UTP research agenda has as
its ultimate goal to cover all the interesting paradigms of computing, including
both declarative and procedural, hardware and software. It presents a theoretical
foundation for understanding software and systems engineering, and has already
been exploited in areas such as hardware [61,85], hardware/software co-design [8]
and component-based systems [81]. But it also presents an opportunity when
constructing new languages, especially ones with heterogeneous paradigms and
techniques.

Having studied the variety of existing programming languages and identified
the major components of programming languages and theories, we can select
theories for new, perhaps special-purpose languages. The analogy here is of a
theory supermarket, where you shop for exactly those features you need while
being confident that the theories plug-and-play together nicely.

Hoare & He define three axes for their classification of language semantics:
(a) The first is by computational model, such as programming in the follow-
ing styles: imperative, functional, logical, object-based, real-time, concurrent,
or probabilistic. (b) The second is by level of abstraction, with requirements
orientation at the very highest level, through architectural and algorithmic lev-
els, down to platform dependence and hardware specificities at the lowest level.
(c) The third axis is in the method of the presentation of semantics, such as
denotational, operational, algebraic, or axiomatic. Language semantics are usu-
ally structured as complete lattices of predicates linked by Galois connections.

Example 1 (UTP theory: Boyle’s Law). Building a UTP theorem is not unlike
describing a physical phenomenon in physics or chemistry, and so we take as our
first example modelling the behaviour of gas with varying volume and pressure.
This is a physical phenomenon subject to Boyle’s Law, which states

“For a fixed amount of an ideal gas kept at a fixed temperature k , p
(pressure), and V (volume) are inversely proportional (while one doubles,
the other halves).”

Suppose that we want to build a computer simulation of this physical phenom-
enon. We need to decide what we can observe in this electronic experiment.
Fortunately, the statement of Boyle’s Law tells us which observations we can
make in an experiment: the temperature k , the pressure p, and the volume V .
These three variables form the alphabet of predicates of interest: the state of the
system. In fact, they are real-world observations, and this is the model-based
agenda: k , p, and V are all variables shared with real world. There is another
observation hidden in the statement of Boyle’s Law: the fixed amount of the gas.
In a perfect world, we could count n, the number of molecules of the gas, for that
is what we mean by stating that we have a fixed amount of it. But this observa-
tion is finessed by the implicit assumption that the gas is perfectly confined. If
φ is a condition in our theory, then its alphabet is given by α(φ) = {p,V , k}; if
it is a relation, then its alphabet is given by α(φ) = {p,V , k , p′,V ′, k ′}.
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Having fixed on an alphabet for our theory of ideal gases, our next task is
to decide on its signature: the syntax for denoting objects of the theory. Here,
this will comprise three operations on the state of the system: initialisation and
the manipulation of the volume and pressure of the gas. There is no call for an
operation to change the temperature.

The next task is to define some healthiness conditions for predicates in our
theory. These can be thought of as enforcing state and dynamic invariants, and
the statement of Boyle’s Law suggests one of each type. The static invariant
applies to conditions on states and requires that V and p are inversely propor-
tional: p ∗ V = k . The dynamic invariant applies to relations describing state
transitions and requires that k must be constant: k ′ = k .

In UTP, the technique for dealing with invariants is to create a function that
enforces the invariant. Define the function B on predicates as follows:

B(φ) = (∃ k • φ) ∧ (k = p ∗ V )

In this definition, we preserve the values of the pressure and volume and create
a possibly new temperature that is in the right relationship to p and V . So,
regardless of whether or not φ was healthy before application of B, it certainly
is afterwards. For example, suppose that we have

φ = (p = 10) ∧ (V = 5) ∧ (k = 100)

then we have the following derivation

B(φ)= (∃ k • φ) ∧ (k = p ∗ V )
= (∃ k • (p = 10) ∧ (V = 5) ∧ (k = 100)) ∧ (k = p ∗ V )
= (p = 10) ∧ (V = 5) ∧ (k = p ∗ V )
= (p = 10) ∧ (V = 5) ∧ (k = 50)

An obvious and very desirable property is that B is idempotent: B(B(φ)) =
B(φ). This means that taking the medicine twice leaves you as healthy as taking
it once (no overdoses). This gives us a simple test for healthiness. A predicate
φ is already healthy if applying B leaves it unchanged: φ = B(φ). So, in UTP,
the healthy predicates of a theory are the fixed points of idempotent functions,
such as B.

Now suppose that we know that the pressure of the gas is somewhere between
10 and 20 Pa; this is recorded by the predicate ψ:

ψ = (p ∈ 10 . . 20) ∧ (V = 5)

The predicate ψ is rather weak in that it describes a variety of valid states (p
and k are loosely constrained), as well as invalid states where the state invariant
doesn’t hold. In particular, ψ is satisfied by our other predicate φ:

φ ⇒ ψ

Notice that this is still true if we make both predicates healthy with B:

B(φ) ⇒ B(ψ)
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(p = 10) ∧ (V = 5) ∧ (k = 50) ⇒ (p ∈ 10 . . 20) ∧ (V = 5) ∧ (p ∗ V = k)

In this way, B is monotonic with respect to the lattice ordering. �

3 Relational Calculus

As we saw in Example 1, UTP is based on an alphabetised version of the rela-
tional calculus. Relations are written pointwise, as predicates on free variables,
each of which must be in the alphabet of the relation. For example, as we’ll find
out below, the assignment P = (x := x+y) has semantics x ′ = x+y ∧ y ′ = y . It
is a relation between two states. The value of the programming variables x and
x in the after-state are denoted by x ′ and y ′, respectively; the values of x and
y in the before-state are denoted by x and y , respectively. These four variables
must all be in the alphabet of the relation P : αP = {x , y , x ′, y ′}. It is not possi-
ble to determine the exact alphabet of a relation simply from its free variables,
even though they must be included. For this reason, alphabets should be speci-
fied separately. The alphabet is partitioned between before-variables (inαP) and
after-variables (outαP). A relation with an empty output alphabet is called a
condition.

The principal operators of the relational calculus are:

Operator Syntax Operator Syntax

conjunction P ∧ Q disjunction P ∨ Q
negation ¬ P implication P ⇒ Q
universal quantification ∀ x • P existential quantification ∃ x • P
relational composition P ; Q

When two relations P and Q are used to specify programs, there is a correct-
ness relation between them, the former viewed as a specification and the latter
as an implementation. Suppose that both relations are on a vector of program
variable x , then they each relate the values of the variables in this vector in
the states before and after their execution; we denote these values by x and x ′,
respectively. If every pair (x , x ′) that satisfies Q also satisfies P , then Q is said
to be a refinement of P . To formalise this, we introduce the universal closure of
a predicate

[P ] = ∀ x , y , . .z • P [for αP = {x , y , . .z}]

Refinement is then universal inverse implication:

P � Q iff [Q ⇒ P ]

An important law for reasoning about existential quantification is the one-point
rule:

(∃ x : T • P ∧ (x = e)) = e ∈ T ∧ P [e/x ] [providing x is not free in e]
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4 Nondeterministic Imperative Programming Language

We now consider a simple nondeterministic programming language with the
following syntax:

Prog ::= II | x := e | P � b �Q | P 	 Q | while b do P

The syntax is the signature of the theory of nondeterministic imperative pro-
gramming. The alphabet of predicates in this theory consists of a vector of the
programming variables in scope. If P is a condition, then its alphabet is {v}
and if it is a relation, then {v , v ′}. We now give the semantics for each of the
program constructs.

4.1 Skip

The program II (skip) does nothing (many programming languages have such
a no-op instruction). Suppose that the program state consists of a vector of
variables v , then this vector is unchanged by the execution of the program:

II{v} =̂ (v ′ = v) αII{v} =̂ {v , v ′}
Skip plays an important role in the algebra of programs, since as shown below,
it is both a left and a right unit for sequential composition.

P ; IIαP = P = IIαP ; P

4.2 Conditional

The conditional program is written in an infix notation:

P � b �Q =̂ (b ∧ P) ∨ (¬ b ∧ Q) α(P � b �Q) =̂ αP

The condition b constrains the common before-state; the two relations P and
Q must have the same alphabet:

αb ⊆ αP = αQ

The infix notation is chosen so as to make the algebraic properties of condi-
tional more apparent. The following laws of the conditional are familiar algebraic
properties.

P � b �P = P idempotence
P � b �Q = Q �¬ b �P commutativity
(P � b �Q)� c�R = P � b ∧ c�(Q � c�R) associativity
P � b �(Q � c�R) = (P � b �Q)� c�(P � b �R) distributivity
P � true �Q = P = Q � false �P unit

The next two examples are laws that simplify the conditional when one of its
operands is either true or false.
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Example 2 (Conditional).

(P � b � true) = (b ⇒ P) [conditional-right-true]

Proof.

(P � b � true)
= { conditional }

(b ∧ P) ∨ (¬ b ∧ true)
= { and-unit }

(b ∧ P) ∨ ¬ b
= { absorption }

P ∨ ¬ b
= { implication }

b ⇒ P

Example 3 (Conditional).

(P � b � false) = (b ∧ P) [conditional-right-false]

Proof.

(P � b � false)
= { conditional }

(b ∧ P) ∨ (¬ b ∧ false)
= { and-zero }

(b ∧ P) ∨ false
= { or-unit }

b ∧ P

The next law imports the condition into its left-hand operand.

Example 4 (Conditional).

(P � b �Q) = ((b ∧ P)� b �Q) [left-condition]

Proof.

(P � b �Q)
= { conditional }

(b ∧ P) ∨ (¬ b ∧ Q)
= { idempotence of conjunction }

(b ∧ b ∧ P) ∨ (¬ b ∧ Q)
= { conditional }

(b ∧ P)� b �Q

Our next law is reminiscent of modus ponens: it allows us to simplify the condi-
tional if we know the condition is true.
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Example 5 (Conditional).

b ∧ (P � b �Q) = (b ∧ P) [left-simplification-1 ]

Proof.

b ∧ (P � b �Q)
= { conditional-conjunction }

b ∧ P � b � b ∧ Q
= { right-condition }

b ∧ P � b �¬ b ∧ b ∧ Q
= { contradiction }

b ∧ P � b � false
= { conditional-right-false }

b ∧ P

The next law demonstrates that the conditional is associative, taking the encap-
sulated conditions into account.

Example 6 (Conditional).

(P � b �Q)� c�R = P � b ∧ c�(Q � c�R) [associativity ]

Proof.

P � b ∧ c�(Q � c�R)
= { conditional }

(b ∧ c ∧ P) ∨ ((¬ b ∨ ¬ c) ∧ (Q � c�R))
= { and-or-dist. }

(b ∧ c ∧ P) ∨ (¬ b ∧ (Q � c�R)) ∨ (¬ c ∧ (Q � c�R))
= { right-simpl. }

(b ∧ c ∧ P) ∨ (¬ b ∧ (Q � c�R)) ∨ (¬ c ∧ R)
= { conditional }

(b ∧ c ∧ P) ∨ (¬ b ∧ c ∧ Q) ∨ (¬ b ∧ ¬ c ∧ R) ∨ (¬ c ∧ R)
= { absorption }

(b ∧ c ∧ P) ∨ (¬ b ∧ c ∧ Q) ∨ (¬ c ∧ R)
= { and-or-dist }

(c ∧ ((b ∧ P) ∨ (¬ b ∧ Q))) ∨ (¬ c ∧ R)
= { conditional }

((b ∧ P) ∨ (¬ b ∧ Q))� c�R
= { conditional }

(P � b �Q)� c�R

Our final example in this section is taken from [50]. It expresses in a general way
the relationship between the conditional and any truth functional operator. A
logical operator is truth-functional if the truth-value of a compound predicate
is a function of the truth-value of its component predicates. A key fact about
truth-functional operators is that substitution distributes through them.
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Example 7 (Conditional).

(P � Q)� b �(R � S ) = (P � b �R) � (Q � b �S ) [exchange]

where � is any truth-functional operator.

Proof.

(P � b�R) � (Q � b�S)
= { propositional calculus: excluded middle }

(b ∨ ¬ b) ∧ ((P � b�R) � (Q � b�S))
= { and-or-distribution }

(b ∧ ((P � b�R) � (Q � b�S))) ∨ (¬ b ∧ ((P � b�R) � (Q � b�S)))
= { Leibniz }

(b ∧ ((P [true/b]� true �R[true/b]) � (Q [true/b]� true �S [true/b])))
∨ (¬ b ∧ ((P [false/b]� false �R[false/b]) � (Q [false/b]� false �S [false/b])))

= { conditional-unit }
(b ∧ (P [true/b] � Q [true/b])) ∨ (¬ b ∧ (R[false/b] � S [false/b]))

= { Leibniz }
(b ∧ (P � Q)) ∨ (¬ b ∧ (R � S))

= { conditional }
(P � Q)� b�(R � S)

4.3 Sequential Composition

The composition of two programs (P ; Q) first executes P , and then executes Q
on the result of P . If outαP = inαQ ′ = {v ′}, then

P ; Q =̂ ∃ v0 • P [v0/v ′] ∧ Q [v0/v ]

inα(P ; Q) =̂ inαP outα(P ; Q) =̂ outαQ

Sequential composition is associative and distributes leftwards into the condi-
tional.

P ; (Q ; R) = (P ; Q) ; R associativity
(P � b �Q) ; R = (P ; R)� b �(Q ; R) left distributivity

The following trading law allows us to move a condition from the after-state of
P to the before-state of Q .

Example 8 (Sequential composition).

(P ∧ b′) ; Q = P ; (b ∧ Q) [trading ]
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Proof.

(P ∧ b′) ; Q
= { sequence }

∃ v0 • P [v0/v ′] ∧ b′[v0/v ′] ∧ Q [v0/v ]
= { decoration }

∃ v0 • P [v0/v ′] ∧ b[v0/v ] ∧ Q [v0/v ]
= { sequence }

P ; (b ∧ Q)

A special case of the last example is a one-point rule for sequential composition.

Example 9 (Sequential composition). For constant k and x ′ not free in P :

(P ∧ x ′ = k) ; Q = P ; Q [k/x ] [left one-point]

Proof.

(P ∧ x ′ = k) ; Q
= { sequence }

∃ v0, x0 • P [v0/v ′] ∧ x0 = k ∧ Q [v0, x0/v , x ]
= { one-point rule }

∃ v0 • P [v0/v ′] ∧ Q [v0, k/v , x ]
= { sequence }

P ; Q [k/x ]

A similar one-point rule exists for moving in the other direction:

P ; (x = k ∧ Q) = P [k/x ′] ; Q

4.4 Assignment

The assignment (x :=A e) relates two states with alphabet A and A′, respec-
tively, which together include x , x ′, and the free variables of e. It changes x to
take the value e, keeping all other variables constant. For A = {x , y , . . . , z} and
αe ⊆ A, we have

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z ) α(x :=A e) =̂ A ∪ A′

The subscript to the assignment operator is omitted when it can be inferred
from context.

(x := e) = (x , y := e, y) contract frame
(x , y , z := e, f , g) = (y , x , z := f , e, g) commutativity
(x := e ; x := f (x )) = (x := f (e)) assignment-conditional distributivity

A leading assignment can be pushed into a following conditional.
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Example 10 (Sequential composition).

(x := e ; (P � b(x )�Q))
= ((x := e ; P)� b(e)�(x := e ; Q))

[left-assignment-conditional ]

Proof.

x := e ; (P � b(x )�Q)
= { assignment }

(x ′ = e ∧ v ′ = v) ; (P � b(x )�Q)
= { left-one-point, twice }

(P [e/x ]� b(e)�Q [e/x ])
= { left-one-point, twice }

((x ′ = e ∧ v ′ = v) ; P)� b(e)�((x ′ = e ∧ v ′ = v) ; Q)
= { assignment }

(x := e ; P)� b(e)�(x := e ; Q)

Notice how this proof is entirely algebraic.

4.5 Nondeterministic Choice

The nondeterministic choice P 	 Q behaves either like P or like Q :

P 	 Q =̂ P ∨ Q

P 	 P = P idempotence
P 	 Q = Q 	 P commutativity
P 	 (Q 	 R) = (P 	 Q) 	 R associativity
P � b �(Q 	 R) = (P � b �Q) 	 (P � b �R) ��-	 distributivity
P 	 (Q � b �R) = (P 	 Q)� b �(P 	 R) 	-�� distributivity
(P 	 Q) ; R = (P ; R) 	 (Q ; R) sequence disjunctivity
P ; (Q 	 R) = (P ; Q) 	 (P ; R)‘ sequence disjunctivity

5 Lattices

Let (L,�) be a partially ordered set and let a and b be any pair of elements in
L. The meet of a and b, the lattice operator denoted by a 	 b, is the greatest
lower-bound of a and b:

a 	 b =̂ max { c : L | c � a ∧ c � b }

The join of a and b, denoted by a � b, is the least upper-bound of a and b:

a � b =̂ min { c : L | a � c ∧ b � c }
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Both operators are idempotent, commutative, and associative, and satisfy a pair
of absorption laws:

a 	 a = a 	-idempotent
a 	 b = b 	 a 	-commutative
a 	 (b 	 c) = (a 	 b) 	 c 	-associative
a � a = a �-idempotent
a � b = b � a �-commutative
a � (b � c) = (a � b) � c �-associative
a � (a 	 b) = a �-	-absorption
a 	 (a � b) = a 	-�-absorption

A lattice consists of a partially set (L,�), such that any two elements have both
a meet and a join. L is a complete lattice if every subset A of L has both a meet
and a join. The greatest lower-bound of the whole of L is the bottom element
⊥; the least upper-bound of the whole of L is the top element �.

Example 11 (Powerset lattice). The powerset of S ordered by inclusion is a
lattice. The empty set is the least element and S is the greatest element. Inter-
section is the meet operation and union is the join. Figure 1 depicts the lattice
({0, 1, 2},⊆).

Fig. 1. The lattice ({0, 1, 2},⊆).

Example 12 (Divisibility lattice). The natural numbers ordered by divisibility
form a partial order. Divisibility is defined as follows:

m divides n =̂ ∃ k • k ∗ m = n

The natural number 1 is the bottom element: it exactly divides every other
number. The natural number 0 is the top element: it can be divided exactly by
every other number. Figure 2 depicts the lattice (0 . . 8,divides).
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Fig. 2. The lattice (0 . . 8, divides).

A function f is monotonic with respect to an ordering �, providing that

∀ x , y : dom f • x � y ⇒ f (x ) � f (y)

Now we come to the theorem that justifies our interest in complete lattices.
Tarski’s fixed-point theorem states the following:

Let L be a complete lattice and let f : L → L be a monotonic function;
then the set of fixed points of f in L is also a complete lattice.

Example 13 (Fixed points in Powerset lattice). Let f : P{0, 1, 2} → P{0, 1, 2}
be defined as f (s) = s ∪ {0}. Clearly, f is monotonic with respect to the subset
ordering. Figure 3 depicts the lattice of the fixed points of f .

Fig. 3. Fixed points of f (s) = s ∪ {0}.

Tarski’s theorem is interesting for us, since we want to give semantics to iteration
and recursion in terms of fixed points. The theorem guarantees the existence of
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Fig. 4. Complete lattice of fixed points.

a fixed point, so long as the body of the iteration or recursion is monotonic.
Furthermore, it helps us to choose which fixed point to use, by guaranteeing the
arrangement of all fixed points in a lattice. The bottom element of the fixed-
point lattice is conventionally denoted by μF and the top element by νF . The
former is the weakest fixed-point of F and the latter the strongest fixed-point
of F . Figure 4 shows the complete lattice of fixed points of a function F . The
diagram also shows how the lattice of fixed points can be defined using the order
relation on the lattice, since

(X = F (X )) = (X � F (X )) ∧ (F (X ) � X )

A pre-fixed point of F is any X such that F (X ) � X ; a post-fixed point of F is
any X such that X � F (X ). Now, another way to express Tarski’s fixed-point
theorem is

A monotonic function on a complete lattice has a weakest fixed-point that
coincides with its weakest pre-fixed-point; its strongest fixed-point coin-
cides with its strongest post-fixed-point.
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6 Recursion

After our discussion of complete lattices in the last section, we return now to
the alphabetised relational calculus. Predicates with a particular alphabet form a
complete lattice under a refinement ordering that is universal inverse implication

(P � Q) = [Q ⇒ P ]

The bottom of the lattice is abort , the worst program because it can behave
without constraint: true. The top of the lattice is miracle, the best program
because it can achieve the impossible: false.

⊥A =̂ true α⊥A =̂ A
�A =̂ false α�A =̂ A

The lattice greatest lower-bound (
�

) is simply disjunction and the least upper-
bound (

⊔

) is simply conjunction. Two axioms give the essential properties of
these two operators.

P � �

S iff ∀X : S • (P � X ) [greatest lower-bound axiom]
�

S � P iff ∀X : S • (X � P) [least upper-bound axiom]

The next four laws specify useful properties of the two operators:

∀X : S • (
�

S � X ) lower bound
(∀X : S • P � X ) ⇒ (P � �

S ) greatest lower-bound
∀X : S • (X � �

S ) upper bound
(∀X : S • X � P) ⇒ (

�

S � P) least upper-bound

Finally the least and greatest elements have the obvious properties:

⊥ � P bottom element
P � � top element

In this setting, recursion is given a semantics as the strongest fixed-point,
the least upper bound of all the post-fixed points of the recursive function.

νF =̂
⊔{X | X � F (X ) }

The weakest fixed-point has the dual definition:

μF =̂
�{X | F (X ) � X }

These two operators have the following characteristic properties:

(F (Y ) � Y ) ⇒ (μF � Y ) weakest fixed-point
μF = F (μF ) fixed point
(S � F (S )) ⇒ (S � νF ) strongest fixed-point
νF = F (νF ) fixed point
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Example 14 (Hoare logic for while loop). Strongest fixed-point semantics leads to
a simple rule for reasoning about iteration, which is defined in terms of recursion.

{ b ∧ c } P { c }
{ b ∧ c } while b do P {¬ b ∧ c }

The validity of this rule depends on the strongest fixed-point law:

(S � F (S )) ⇒ (S � νF )

This allows us to reason about a recursive implementation, at the risk of pro-
ducing an infeasible program: the miracle is always a correct implementation.
Of course, since it is the predicate false, it has no behaviour, and in particular,
cannot be guaranteed to terminate. So the simplicity of the rule must be balanced
by proving termination separately.

In contrast, the weakest fixed-point law doesn’t allow us to reason about a
recursive implementation, but instead about a recursive specification, since the
fixed-point operator is on the left of the refinement, which is not useful here:

(F (Y ) � Y ) ⇒ (μF � Y )

If we can show that the recursive program terminates, then the weakest and
strongest fixed-points actually coincide.

Our next law shows how to unfold a weakest fixed-point involving the composi-
tion of two functions. This is known as the rolling rule.

Example 15 (Fixed points).

μX • F (G(X )) = F (μX • G(F (X )))

Proof. We prove this by mutual refinement.

1. (�)

μX • F (G(X )) � F (μX • G(F (X )))
= { weakest fixed-point }

�{X | F (G(X )) � X } � F (μX • G(F (X )))
⇐ { lower bound }

F (μX • G(F (X ))) ∈ {X | F (G(X )) � X }
⇐ { comprehension }

F (G(F (μX • G(F (X ))))) � F (μX • G(F (X )))
= { fixed point }

F (μX • G(F (X ))) � F (μX • G(F (X )))
= { refinement reflexive }

true
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2. (�) Suppose by hypothesis that F (G(X )) � X .

F (G(X )) � X
⇒ { G monotonic }

G(F (G(X ))) � G(X )
= { comprehension }

G(X ) ∈ {X | G(F (X )) � X }
⇒ { lower bound }

�{X | G(F (X )) � X } � G(X )
= { weakest fixed-point }

μX • G(F (X )) � G(X )
⇒ { F monotonic }

F (μX • G(F (X ))) � F (G(X ))
⇒ { monotonicity of refinement, hypothesis }

F (μX • G(F (X ))) � X

Therefore,

∀X ∈ {X | F (G(X )) � X } • F (μX • G(F (X ))) � X

and so by the definition of least upper-bound, we have

F (μX • G(F (X ))) � �{X | F (G(X )) � X }

and so by the definition of weakest fixed-point we have

F (μX • G(F (X ))) � μX • F (G(X ))

Example 16. Haskell B. Curry’s Y combinator is a higher-order function that
computes a fixed point of other functions.

Y =̂ λG • (λ g • G(g g))(λ g • G(g g))

We prove that YF really is a fixed point of F .

Proof.

YF
= { Y definition }

(λG • (λ g • G(g g))(λ g • G(g g)))F
= { reduction }

(λ g • F (g g))(λ g • F (g g))
= { above }

(λ g • F (g g))(λ g • F (g g))
= { reduction }

F ((λ g • F (g g))(λ g • F (g g)))
= { above }

F (YF )
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Example 17. Define the body of a function that calculates factorials as follows:

F =̂ λ f • λ x • (1� x = 0� x ∗ f (x − 1))

Calculate the value of (YF )(n) in terms of (YF )(n − 1).

(YF )(n)
= { Y is a fixed point of F }

(F (YF ))(n)
= { F definition }

(λ x • (1� x = 0� x ∗ (YF )(x − 1)))(n)
= { β reduction }

1�n = 0�n ∗ (YF )(n − 1)

Example 18 (Lattices). Suppose that we know that a function F has a unique
fixed-point, modulo C .

(C ∧ μF ) = (C ∧ νF )

Suppose in addition that C is itself a fixed-point of F . Prove that F has an
unconditional unique fixed-point. That is, the weakest and strongest fixed-points
are equal, modulo C . But C is also a fixed point. The last two facts mean that
the strongest fixed-point is actually C .

C ∧ μF = C ∧ νF
= { predicate calculus }

[C ⇒ (μF = νF ) ]
⇒ { C is a fixed point of F }

[C ⇒ (μF = νF ) ∧ μF � C � νF ]
= { Leibniz }

[C ⇒ (μF = νF ) ∧ νF � C � νF ]
⇒ { propositional calculus }

[C ⇒ (νF � C ) ]
⇒ { refinement }

[C ⇒ [C ⇒ νF ] ]
⇒ { propositional calculus }

[C ⇒ νF ]
= { refinement }

νF � C
= { νF is strongest fixed-point, so C � νF , equality }

νF = C

7 Assertional Reasoning

Hoare logic is a system for reasoning about computer programs, in this case,
about programs written in the nondeterministic programming language we have
introduced. In this kind of program logic, each syntactic construct in the lan-
guage’s signature is provided with an introduction rule that can be used to reason
about this construct.
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The key notion in Hoare logic is the Hoare triple {p}Q {r}:
If precondition p holds of the state before the execution of program Q ,
then, if Q terminates, postcondition r will hold afterwards.

Notice that this is a statement of partial correctness. The Hoare triple is defined
in UTP as follows:

{p}Q {r} =̂ (p ⇒ r ′) � Q

The definition constructs a relational specification from the precondition p and
postcondition r as an implication: p ⇒ r ′. (Note how the postcondition must be
decorated as a predicate on the after-state to distinguish it from the precondition,
which is a predicate on the before-state.) If the precondition doesn’t hold, then
this is simply true, which is the semantics of the abort program, which is the
bottom of the refinement lattice and Q automatically refines it.

The rules of Hoare logic can now all be proved valid as theorems from the
definition of the Hoare triple.

L1 if {p}Q {r} and {p}Q {s} then {p}Q {r ∧ s}
L2 if {p}Q {r} and {q}Q {r} then {p ∨ q}Q {r}
L3 if {p}Q {r} then {p ∧ q}Q {r ∨ s}

L4 { r [e/x ] } x := e { r }
L5 if {p ∧ b}Q1 {r} and {p ∧ ¬ b}Q2 {r}

then { p }Q1 � b �Q2 { r }
L6 if {p}Q1 {s} and {s}Q2 {r} then { p }Q1 ; Q2 { r }

L7 if {p}Q1 {r} and {p}Q2 {r} then { p }Q1 	 Q2 { r }
L8 if {b ∧ c}Q {c}

then { c } νX • (Q ; X )� b � II {¬ b ∧ c }
L9 {false}Q {r} and {p}Q {true}

and {p} false{false} and {p} II {p}

We prove the axiom for reasoning about the conditional as a theorem in the
underlying semantics of Hoare logic.

Example 19 (Hoare logic).

if {p}Q {r} and {q}Q {r} then {(p ∨ q)}Q {r}
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Proof.

{(p ∨ q)}Q {r}
= { Hoare triple }

[Q ⇒ ((p ∨ q) ⇒ r ′) ]
= { collecting antecedents }

[Q ∧ (p ∨ q) ⇒ r ′ ]
= { and-or-distribution }

[ (Q ∧ p) ∨ (Q ∧ q) ⇒ r ′ ]
= { or-implies }

[ (Q ∧ p ⇒ r ′) ∧ (Q ∧ q ⇒ r ′) ]
= { for-all-associativity }

[Q ∧ p ⇒ r ′ ] ∧ [Q ∧ q ⇒ r ′ ]
= { collecting antecedents }

[Q ⇒ (p ⇒ r ′) ] ∧ [Q ⇒ (q ⇒ r ′) ]
= { Hoare triple }

({p}Q {r}) ∧ ({q}Q {r})
Next, we prove the rule for reasoning about assignment.

Example 20 (Assignment rule).

{r [e/x ]} x := e {r}
Proof.

{r [e/x ]} x := e {r(x )}
= { Hoare triple }

[ x := e ⇒ (r [e/x ] ⇒ r [x ′/x ]) ]
= { assignment }

[ x ′ = e ∧ v ′ = v ⇒ (r [e/x ] ⇒ r [x ′/x ]) ]
= { universal one-point rule }

[ (r [e/x ] ⇒ r [x ′/x ][e/x ′]) ]
= { substitution, implication }

[ true ]
= { universal quantification }

true

The Hoare triple {p}Q {r} is a tertiary relation between a precondition p,
postcondition r and program Q . If we fix any two of these, then we can find
solutions for the third. The weakest precondition calculus is based on this idea:
it fixes the program Q and a postcondition r and provides the weakest solution
for p [30,31].



36 J. Woodcock and S. Foster

Example 21 (Weakest precondition derivation).

{ p }Q { r }
= { Hoare triple }

[Q ⇒ ( p ⇒ r ′ ) ]
= { implication }

[ p ⇒ (Q ⇒ r ′ ) ]
= { universal closure (v ′ in the alphabet) }

[ p ⇒ (∀ v ′ • Q ⇒ r ′ ) ]
= { De Morgan’s law }

[ p ⇒ ¬ (∃ v ′ • Q ∧ ¬ r ′ ) ]
= { change of bound variable (fresh v0) }

[ p ⇒ ¬ (∃ v0 • Q [v0/v ′] ∧ ¬ r0 ) ]
= { sequential composition }

[ p ⇒ ¬ (Q ; ¬ r ) ]

The final line of this derivation suggests the weakest solution for Q to guarantee
r : p can be equal to any predicate that satisfies this expression, but it cannot
be weaker than ¬ (Q ; ¬ r ). That is, the behaviours other than those where Q
violates the postcondition r . This leads us to the definition:

Q wp r =̂ ¬ (Q ; ¬ r)

We now use this definition to prove some of the laws of the weakest precondition
calculus as theorems of the relational theory.

Example 22 (Weakest precondition for sequential composition).

((P ; Q) wp r) = (P wp (Q wp r))

Proof.

((P ; Q) wp r)
= { wp }

¬ ((P ; Q) ; ¬ r)
= { sequence }

¬ (∃ v0 • (P ; Q [v0/v ′]) ∧ ¬ r0)
= { sequence }

¬ (∃ v0 • (∃ v1 • P [v1/v ′] ∧ Q [v1, v0/v , v ′]) ∧ ¬ r0)
= { expand scope }

¬ (∃ v1, v0 • P [v1/v ′] ∧ Q [v1, v0/v , v ′] ∧ ¬ r0)
= { restrict scope }

¬ (∃ v1 • P [v1/v ′] ∧ (∃ v0 • Q [v1, v0/v , v ′] ∧ ¬ r0))
= { sequence }
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¬ (∃ v1 • P [v1/v ′] ∧ (Q [v1/v ] ; ¬ r))
= { double negation }

¬ (∃ v1 • P [v1/v ′] ∧ ¬ ¬ (Q [v1/v ] ; ¬ r))
= { wp }

¬ (∃ v1 • P [v1/v ′] ∧ ¬ (Q [v1/v ] wp r))
= { sequence }

¬ (P ; ¬ (Q wp r))
= { wp }

(P wp (Q wp r))

Example 23 (Weakest precondition conjunctive).

(Q wp (
∧

R)) =
∧{ (Q wp r) | r ∈ R }

Proof.

Q wp (
∧

R)
= { wp }

¬ (Q ; ¬ (
∧

R))
= { duality }

¬ (Q ;
∨{¬ r | r ∈ R })

= { sequence disjunction }
¬ (

∨{Q ; ¬ r | r ∈ R })
= { duality }

∧{¬ (Q ; ¬ r) | r ∈ R }
= { wp }

∧{Q wp r) | r ∈ R }

8 Designs

We now turn to an important theory in UTP that describes the semantics of
our nondeterministic imperative programming once more, but this time in a
theory of total correctness. Termination is captured in the semantics by using
assumption-commitment pairs. This gives a way of specifying behaviour that is
similar to VDM [51], B [1], and the refinement calculus [3,53,54].

The theory of designs involves two boolean observations: ok , which signals
that the program has started; and ok ′, which signals that the program has ter-
minated. The use of these two observations allows us to encode the precondition
and postcondition as a single relation:

(P � Q) =̂ (ok ∧ P ⇒ ok ′ ∧ Q)

for P and Q not containing ok or ok ′. This definition can be read as

“If the program has started (ok) and the precondition P holds, then it
must terminate (ok ′) in a state where the postcondition Q holds.”
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Example 24 (Search with sentinel). Suppose that we want to specify a program
that searches an array for an element x , and that we assume that x is some-
where in the array (maybe in multiple occurrences). We can arrange for this
assumption to hold by extending the array by one element and inserting x at
the end (Dijkstra’s “sentinel”). We model the array as a function from indexes
to elements. Here is our specification:

x ∈ ran array � array ′ = array ∧ i ′ ∈ dom array ∧ array(i ′) = x

The precondition states that we can assume x ∈ ran array . The postcondition
states that the array isn’t changed by this operation array ′ = array , that the
index ends up pointing to an element of the array i ′ ∈ dom array , and that it
ends up pointing to an occurrence of x in the array array(i ′) = x .

We now re-express the semantics of the nondeterministic programming language
in terms of designs.

8.1 Skip

Skip still does nothing, as before, but we must add a precondition to insist that
it always terminates:

IID =̂ (true � II)

8.2 Conditional

In design semantics, the conditional is a choice between two designs. The result
is, of course, a design:

(P1 � P2)� b �(Q1 � Q2) = (P1 � b �Q1) � (P2 � b �Q2)

Actually, this is not a definition, but a theorem that relies on the previous
definition of the conditional and on the definition of a design.

8.3 Sequential Composition

For the sequential composition operator, we have another theorem:

(p1 � P2) ; (Q1 � Q2) = (p1 ∧ (P2 wp Q1) � P2 ; Q2)

The meaning of the sequential composition augments this precondition by the
weakest precondition for the first postcondition to establish the second precon-
dition. This guarantees that control can be passed successfully from the first
design to the second. Finally, the overall postcondition is simply the relational
composition of the individual postconditions.
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8.4 Assignment

For the design assignment, we need to consider a precondition that guarantees
that the assignment will not abort. In the case of (x := 1/y), the precondition
establishes the definedness of the expression 1/y , which includes y �= 0, as well
as considerations of overflow and underflow. In this paper, we assume that the
expression is well-defined, without these problems. As a result, we simply lift the
semantics of the relational assignment:

x := e =̂ (true � x := e)

8.5 Nondeterministic Choice

For nondeterministic choice, we have another theorem:

(P1 � P2) 	 (Q1 � Q2) = (P1 ∧ Q1 � P2 ∨ Q2)

The resulting design must satisfy the assumptions of both designs, but need
establish the postcondition of only one of them.

9 The Complete Lattice of Designs

The greatest lower-bound of a set of designs has a similar form to the binary case
for nondeterministic choice. Since we don’t know which design will be selected,
all the preconditions must hold in advance of the selection. The postcondition is
nondeterministically selected.

�

i(Pi � Qi) =̂ (
∧

i Pi) � (
∨

i Qi)

The least upper-bound of a set of designs has a weaker precondition than each
individual design (see the discussion on refinement, below). But at the same
time, since it is the least upper-bound, this precondition needs to be as strong
as possible. Thus, the actual precondition is (

∨

i Pi). The postcondition is the
conjunction of all the individual postconditions, each modified to assume its
individual precondition.

⊔

i(Pi � Qi) =̂ (
∨

i Pi) � (
∧

i Pi ⇒ Qi)

To exemplify this, we show how to construct an operation to take the absolute
value of an integer from the least upper bound of the positive and negative cases.

Example 25 (Least upper-bound of designs).

(x ≥ 0 � x ′ = x ) 	 (x ≤ 0 � x ′ = −x )
= (x ≥ 0 ∨ x ≤ 0 � (x ≥ 0 ⇒ x ′ = x ) ∧ (x ≤ 0 ⇒ x ′ = −x ))
= (true � x ′ = |x |)
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With these definitions, designs form a complete lattice. The bottom of the lattice
is abort

⊥D =̂ false � true

The definition of a design allows us to simplify this to true. The top of the lattice
is miracle:

�D =̂ true � false

Again, we can simplify this, and we obtain ¬ ok . So, the program that can
achieve the impossible is the program that cannot be started.

9.1 Recursion

Recursion means exactly the same in the theory of designs as it did in the simpler
theory of relations

μF =̂
�{X | F (X ) � X }

Consider a function F expressed using the other program operators. Since the
lattice of designs is closed under all these operators, we can always express F
as a precondition-postcondition pair: a design. Since μF is expressed using the
lattice operator

�

, it is also a design, and so, the theory of designs is closed under
the least fixed-point operator. Hoare & give a theorem to show how to calculate
the explicit precondition and postcondition of a recursively defined design [50,
p. 81].

A refinement calculus, such as those in [3,53,54], must give ways of imple-
menting such recursively defined designs. Hoare & He’s weakest fixed-point
lemma [50, p. 62] is the foundation of a general condition for proving the termi-
nation of a recursively defined program. We leave the details to the next tutorial.

10 Galois Connections

In UTP, the links between different theories are expressed as Galois connections.
Backhouse [4] introduces a useful example, which we adopt here.

Example 26 (The floor function). The floor function is defined informally as
follows:

For all real numbers x , the floor of x is the greatest integer that is at most
x .

More formally, the floor function is an extreme solution for n in the following
equivalence:

real(n) ≤ x iff n ≤ floor(x )
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Where real :
∫ → is a function that casts an integer to its real number repre-

sentation. It should be noted that we’re overloading the inequality relation. On
one side of the equivalence, it is inequality between two real numbers, whilst on
the other side, it is inequality between integers.

Example 27 (Floor rounds downwards). Instantiating n to floor(x ), our equiv-
alence gives us

real(floor(x )) ≤ x iff floor(x ) ≤ floor(x )

which simplifies to real(floor(x )) ≤ x . So, we now know that the floor function
rounds downwards.

Example 28 (Floor is inverse for real). Instantiating x to real(n), we get

real(n) ≤ real(n) iff n ≤ floor(real(n))

which simplifies to n ≤ floor(real(n)). Now, using our previous result, with x
instantiated to real(n), we have the conjunction

n ≤ floor(real(n)) ∧ real(floor(real(n))) ≤ real(n)

Next, the function that maps an integer to its real representation is injective,
so we have

n ≤ floor(real(n)) ∧ floor(real(n)) ≤ n

which is equivalent to

n = floor(real(n))

So, floor is an exact inverse for real .

Example 29 (Floor brackets real). Let’s take the contrapositive of the equiva-
lence defining the floor function:

real(n) ≤ x iff n ≤ floor(x )
= { contraposition }

¬ (real(n) ≤ x ) iff ¬ (n ≤ floor(x ))
= { arithmetic }

x < real(n) iff floor(x ) < n
= { arithmetic }

x < real(n) iff floor(x ) + 1 ≤ n

Now, instantiate n with floor(x ) + 1:

x < real(floor(x ) + 1) iff floor(x ) + 1 ≤ floor(x ) + 1

But we already know that floor(x ) ≤ x , so we have

floor(x ) ≤ x ≤ floor(x ) + 1
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Example 30 (Floor monotonic). We want to prove that

x ≤ y ⇒ floor(x ) ≤ floor(y)

First, we specialise the definition of the Galois connection between real and
floor :

real(n) ≤ x iff n ≤ floor(x )
⇒ { specialisation with x,n := y,floor(x) }

real(floor(x )) ≤ y = floor(x ) ≤ floor(y)

Now we can use this result to prove the monotonicity of floor :

floor(x ) ≤ floor(y)
= { above }

real(floor(x )) ≤ y
⇐ { transitivity of ≤ }

real(floor(x )) ≤ x ≤ y
= { since floor(x ) ≤ x }

x ≤ y

What we have achieved in the last example is to prove that real and floor form
a Galois connection between the real numbers and the integers and to explore
some of the consequences of this result. Specifically, the floor function provides
the best approximation of a real number as an integer. We now describe the
notion of Galois connections more generally.

Let S and T both be complete lattices. Let L be a function from S to T. Let
R be a function from T to S. The pair (L,R) is a Galois connection if

for all X ∈ S and Y ∈ T :
L(X ) � Y iff X � R(Y )

R is a weak inverse of L (right adjoint); L is a strong inverse of R (left adjoint).

Example 31 (Galois connection: relational theory and designs). There is a Galois
connection between the two semantics that we have provided for the nondeter-
ministic imperative programming language.

The left adjoint, which we’ll call Des(R), maps a plain relation R to a design.
The relation comes from the theory of partial correctness, where we assume that
a relational program R terminates. We record this assumption by adding the
precondition true when we map to the design true � R.

The right adjoint, which we’ll call Rel , maps a design back to a plain relation.
In the theory of designs, we can observe the start and termination of execution,
but these observations cannot be made in the theory of relations. So we must
assume initiation and termination by setting ok and ok ′ both the true. Thus we
have Rel(D) = D [true, true/ok , ok ′].

We introduce the abbreviations: Db = D [b/ok ′], D t = D true , D f = D false .
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Example 32 (Des is the inverse of Rel).

Proof.

Des ◦ Rel(P � Q)
= { definition of Rel }

Des((P � Q)t [true/ok ])
= { substitution }

Des(P ⇒ Q)
= { definition of Des }
= true � P ⇒ Q
= { definition of design, propositional calculus }
= P � Q

Example 33 (Extraction of precondition and postcondition). Every design D can
be expressed as (¬ D f � D t). Without loss of generality, we exploit the fact that
we have characterised designs syntactically. So it is sufficient to prove that

P � Q = ¬ (P � Q)f � (P � Q)t

Proof.

¬ (P � Q)f � (P � Q)t

= { definition of design, substitution }
¬ (ok ∧ P ⇒ false ∧ Q) � ok ∧ P ⇒ true ∧ Q

= { propositional calculus }
ok ∧ P � ok ∧ P ⇒ Q

= { definition of design }
ok ∧ P ⇒ ok ′ ∧ (ok ∧ P ⇒ Q)

= { propositional calculus }
ok ∧ P ⇒ ok ′ ∧ Q

= { definition of design }
P � Q

This example allows us to write the following equation for Rel :

Rel(D) = (¬ D f ⇒ D t)

Example 34 (Refinement for designs). Recall the definition of refinement for
relations:

P � Q = [Q ⇒ P ]

We keep the same order relation on designs; after all, a design is a rather special
kind of relation. In VDM and B, refinement is usually expressed through the two
slogans:
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Weaken the precondition, strengthen the postcondition.

More formally,

(P1 � P2) � (Q1 � Q2) = [P1 ⇒ Q1 ] ∧ [P1 ∧ Q2 ⇒ Q1 ]

We show that the VDM/B slogan is a consequence of the relational view of
refinement. That is,

((P1 � P2) � (Q1 � Q2)) = [P1 ∧ Q2 ⇒ P2 ] ∧ [P1 ⇒ Q1 ]

Proof.

(P1 � P2) � (Q1 � Q2)
= { definition of refinement }

[ (Q1 � Q2) ⇒ (P1 � P2) ]
= { universal closure }

[ (Q1 � Q2)[true/ok ] ⇒ (P1 � P2)[true/ok ] ]
∧ [ (Q1 � Q2)[false/ok ] ⇒ (P1 � P2)[false/ok ] ]

= { definition of design }
[ (Q1 ⇒ ok ′ ∧ Q2) ⇒ (P1 ⇒ ok ′ ∧ P2) ]

= { universal closure }
[ (Q1 ⇒ ok ′ ∧ Q2)[true/ok ′] ⇒ (P1 ⇒ ok ′ ∧ P2)[true/ok ′] ]
∧ [ (Q1 ⇒ ok ′ ∧ Q2)[false/ok ′] ⇒ (P1 ⇒ ok ′ ∧ P2)[false/ok ′] ]

= { propositional calculus }
[ (Q1 ⇒ Q2) ⇒ (P1 ⇒ P2) ] ∧ [¬ Q1 ⇒ ¬ P1 ]

= { propositional calculus }
[P1 ∧ (Q1 ⇒ Q2) ⇒ P2 ] ∧ [P1 ⇒ Q1 ]

= { predicate calculus }
[P1 ∧ Q2 ⇒ P2 ] ∧ [P1 ⇒ Q1 ]

Finally, we use this result to show that Des and Rel form a Galois connection.

Example 35 ((Des,Rel) is a Galois connection).

Proof.

Des(R) � D
= { definition of Des }

(true � R) � D
= { refinement of designs }

[¬ D f ⇒ true ] ∧ [¬ D f ∧ R¬D t ]
= { propositional calculus }

[¬ D f ∧ R¬D t ]
= { propositional calculus }

[R ⇒ (¬ D f ¬D t) ]
= { refinement of relations }

R � (¬ D f ¬D t)
= { definition of Rel }

R � Rel(D)
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11 Design Healthiness Conditions

There are two principal healthiness conditions for design-hood: one for ok and
one for ok ′.

The first concerns starting programs: no observation can be made before the
program starts.

H1 (P) = ok ⇒ P

The second concerns terminating programs: anything is better than
nontermination

H2 : [P [false/ok ′] ⇒ P [true/ok ′] ]

This healthiness condition states that you mustn’t require nontermination as a
property of a program.

Example 36 (H2 as a monotonic idempotent). We’ve expressed H2 as a prop-
erty, but it can also be expressed as a monotonic idempotent function. The H2
property that we’ve specified requires a predicate to be monotonic in ok ′. We
can introduce a pseudo-identity to capture this:

J = (ok ⇒ ok ′) ∧ II(v)

and then redefine H2 as a function:

H2 (P) = P ; J

This leads to a useful lemma, for a H2 -healthy predicate P :

P = P f ∨ (ok ′ ∧ P t)

Proof.

P
= { P is H2 }

P ; J
= { propositional calculus }

P ; (¬ ok ∨ ok ′) ∧ II(v)
= { relational calculus }

(P ; ¬ ok ∧ II(v)) ∨ (P ; ok ′ ∧ II(v))
= { relational calculus }

(P f ; II(v)) ∨ ((P ; II(v)) ∧ ok ′)
= { relational unit (alphabets match) }

P f ∨ ((P ; II(v)) ∧ ok ′)
= { relational calculus }

P f ∨ ((∃ ok ′ • P) ∧ ok ′)
= { case enumeration (ok ′ is boolean) }

P f ∨ ((P t ∨ P f ) ∧ ok ′)
= { propositional calculus }

P f ∨ (P t ∧ ok ′) ∨ (P f ∧ ok ′)
= { absorption }

P f ∨ (P t ∧ ok ′)
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This is known as J -splitting, and it emphasises the asymmetry in the use of ok ′:
you can observe when a program terminates, but not when it doesn’t.

Example 37 (H1 relations). We give four examples of H1 relations.

1. The bottom of the design lattice is false � true, which is equivalent to true,
which, by the propositional calculus, is a fixed point of the H1 healthiness
condition: (ok ⇒ true) = true.

2. The top of the design lattice is true � false, which is equivalent to ¬ ok ,
which, by the propositional calculus, is also a fixed point of the H1 healthiness
condition: (ok ⇒ ¬ ok) = ¬ ok .

3. A property of implication means that any predicate with ok as an implicative
antecedent must be H1 -healthy. For example: (ok ∧ x �= 0 ⇒ x ′ < x ).

4. Finally, every design must be H1 -healthy, since ok is an implicit assumption.
For example: (x �= 0 � x ′ < x ).

Example 38 (H2 predicates). We give four examples of H2 relations.

1. The bottom of the design lattice is H2 -healthy:

⊥f
D
= truef

= true
= truet

= ⊥t
D

2. The top of the design lattice is also H2 -healthy:

�f
D

= (¬ ok)f
= ¬ ok
= (¬ ok)t
= �t

D

3. Any predicate that insists on termination is H2 -healthy. For example:

(ok ′ ∧ (x ′ = 0))f

= false
⇒ (x ′ = 0)
= (ok ′ ∧ x ′ = 0)t

4. Finally, any design is H2 -healthy. For example:

(x �= 0 � x ′ < x )f

= (ok ∧ x �= 0 ⇒ ok ′ ∧ x ′ < x )f

= (ok ∧ x �= 0 ⇒ false)
⇒ (ok ∧ x �= 0 ⇒ x ′ < x )
= (ok ∧ x �= 0 ⇒ ok ′ ∧ x ′ < x )t

= (x �= 0 � x ′ < x )t
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12 In Conclusion

This concludes our tutorial introduction to the theories of relations and designs
in UTP. Other tutorial introductions may be found in [16,77]. Of course, the
interested reader is encouraged to go back to the source of the ideas and read
the book.
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Abstract. This paper provides an overview of how the Event-B lan-
guage and verification method can be used to model and reason about
system behaviour. Formal modelling and reasoning help to increase
understanding and reduce defects in requirements specification. Sets and
relations play a key role in modelling as do operators on these structures.
Precise definitions and rules are provided in order to help the reader
gain a strong understanding of the mathematical operators for sets and
relations. While the emphasis is on mathematical reasoning, particularly
through invariant proofs, the paper also covers less formal reasoning such
as identification of problem entities supported by class diagrams and val-
idation of formal models against informal requirements. The use of tools
for animation, model checking and proof is also outlined.

1 Introduction

This paper provides an introduction to formal modelling using the Event-B lan-
guage and method [1]. We make no strong assumptions about the existing knowl-
edge of the reader other than in interest in learning about the approach and a
willingness to start to put it into practice.

It is useful to motivate the role and value of the formal methods that we
are outlining and advocating in this paper. Essentially it is about improving the
processes that are used to engineer software-based systems so that specification
and design errors are identified and rectified as soon as possible in the system
development cycle. From the earliest days of software engineering it has been
recognised that the cost of fixing a specification or design error is higher the later
in the development that error is identified. This is summarised by the following
observation about software development by Boehm [2]:

Boehm’s First Law: Errors are more frequent during requirements and
design activities and are more expensive the later they are removed.

This observation is bourne out by many studies of software engineering projects.
For example, a 2013 report from the Carnegie-Mellon Software Engineering Insti-
tute (SEI) highlights studies showing that requirements and architecture defects
make up approximately 70% of all system defects and that 80% of these defects
are discovered late in the development life cycle [3].

c© Springer International Publishing AG 2017
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Early Identification of Errors Through Formal Modelling

Clearly, identifying errors at the point at which they have become expensive to
fix, long after they were introduced, is undesirable. More desirable would be to
discover errors as soon as possible when they are less expensive to fix. So, why is it
difficult to achieve this ideal profile in practice? Common errors introduced in the
early stages of development are errors in understanding the system requirements
and errors in writing the system specification. Without a rigorous approach
to understanding requirements and constructing specifications, it can be very
difficult to uncover such errors other than through testing of the software product
after a lot of development has already been undertaken. Why is it difficult to
identify errors that are introduced early in the development cycle? One reason
is lack of precision in formulating specifications resulting in ambiguities and
inconsistencies that are difficult to detect and may store up problems for later.
Another reason is too much complexity, whether it is complexity of requirements,
complexity of the operating environment of a system or complexity of the design
of a system.

To overcome the problem of lack of precision, we advocate the use of for-
mal modelling. As well as encouraging precise descriptions, formal modelling
languages are supported by verification methods that support the discovery
and elimination of inconsistencies in models. But precision on its own does not
address the problem of complex requirements and operating environments. Com-
plexity cannot be eliminated but we can try to master it. To master complexity,
we advocate the use of abstraction. Abstraction is about simplifying our under-
standing of a system to arrive at a model that is focused on what we judge to be
the key or critical features of a system. A good abstraction will focus on the pur-
pose of a system and will ignore details of how that purpose is achieved. We do
not ignore the complexity indefinitely: instead, through incremental modelling
and analysis, we can layer our understanding and analysis of a system. This
incremental treatment of complexity is the other side of the coin to abstraction,
namely, refinement.

The Event-B modelling approach is intended for early stage analysis of com-
puter systems. It provides a rich modelling language, based on set theory, that
allows precise descriptions of intended system behaviour (models) to be written
in an abstract way. It provides a mathematical notion of consistency together
with techniques for identifying inconsistencies or verifying consistency within a
model. It also provides a notion of refinement of models together with a notion
of consistency between a model and its refinement. By abstracting and mod-
elling system behaviour in Event-B, it is possible to identify and fix require-
ments ambiguities and inconsistencies at the specification phase, much earlier in
the development cycle than system testing. In this way, rather than having an
error-discovery profile in which most errors are discovered during system testing,
we would arrive at an ideal profile in which more errors are discovered as soon
as they are introduced. This paper will focus on precision and verification of
consistencies in abstract specifications and does not cover refinement of models.
Section 13 points to some further reading on refinement.
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Requirements and Formal Models

We assume that the results of any requirements analysis phase is a requirements
document written in natural language. There remains a potentially large gap
between these informal requirements and a formal model. In this paper we will
touch on this gap but not address it in any comprehensive way. In the context
of a system development that involves both informal requirements and formal
specification, it is useful to distinguish two notions of validation as follows:

– Requirements validation involves analysing the extent to which the (informal)
requirements satisfy the needs of the stakeholders.

– Model validation involves analysing the extent to which the (formal) model
accurately captures the (informal) requirements.

Both of these forms of validation require the use of human judgement, ideally by
a range of stakeholders. In addition, we can perform mathematical judgements
on a formal model. We refer to this use of mathematical judgements are model
verification, that is, the extent to which a model satisfies a given set of mathe-
matical judgements. Key to the effective use of model verification is strong tool
support that automates the verification effort as much as possible. Arriving at
good abstractions, formalising them, enriching models through refinement and
making mathematical judgements all require skill and effort. This upfront effort
is sometimes referred to as front-loading : putting more effort than is usual into
the early development stages in order to save test and fix effort later.

Overview of Paper

Logic and set theory are the mathematical basis of Event-B. In this paper we
explain how these mathematical concepts are used to write precise specifications
in the form of Event-B models and how we reason about such models using
mathematics. We use sets as a form of abstract data structure to model col-
lections of entities that have a certain status and we define events that specify
ways in which these sets may be manipulated to represent changes in the status
of entities. For example, Sect. 2 shows how a set is used to model collections of
users who have permission to be in a building and presents events for adding
users to this set when they are registered and for removing users from this set
when they are de-registered. Mathematical operators on sets allow us to easily
specify manipulations of sets and Sect. 3 provides a brief overview of the set
operators used throughout this paper while Sect. 5, covers issues that arise with
finiteness of sets and determining the size of sets.

Sets are used to model collections of entities of the same kind. When we want
to model connections between different kinds of entities, we use relations which
are covered in Sects. 6 and 7.

The main unit of specification in Event-B is a machine and this is introduced
in Sect. 4. A machine contains a list of variables and a list of events that modify
the variables in precisely defined ways. A machine also contains a list of invari-
ants that describe desired properties of the variables of a machine, e.g., users
inside the building must have permission to be there.
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Many set operators are defined using mathematical logic. For example, inter-
section of sets is defined in terms of logical conjunction: an element x is in the
intersection of sets S and T if x is in S and x is in T . Section 3 gives a brief
overview of the main logical operators used and the connection between logic and
sets. At various stages in the paper additional mathematical operators are intro-
duced to support the required modelling. Mathematical definitions are provided
to help the reader’s understanding of the operators and to support mathematical
reasoning. Logic allows us to reason about machines, in particular, it allows us
to prove that events of a machine preserve constraints specified by invariants
and this is covered in several places in the paper.

We use several case studies to illustrate the use of the modelling and reasoning
concepts of Event-B. Sections 2–4 use a simple example of a system for controlling
access to a building. This case study is used to in illustrate the use of sets as
abstract data structures and the use of invariants for specifying desired properties
of structures. The case study is also used to provide the initial illustration of
the use of mathematical reasoning to verify properties of a machine. In Sects. 8
and 9 we use a generalisation of the access control system that manages access
to a collection of buildings rather than a single building. This case study is
used to illustrate the use of relations (e.g., between users and buildings) and to
consolidate the concepts from the earlier sections. A function is a special case
of a relation and we use an example of a simple banking system to illustrate the
use of functions in modelling in Sect. 10.

While reading and understanding a specification written in a language such
as Event-B requires a relatively small amount of training, the ability to write
a formal specification requires more skill and, as with programming, that skill
is best developed through practice. Using the access control example, Sects. 8
and 9 provide guidelines on how an Event-B model can be constructed from
a list of informal system requirements. The author has found that the use of
class diagrams provides a useful initial bridge between informal requirements
and formal models involving relations and functions. Class diagrams help to
identify in a graphical way the various entities appropriate for a system model
and the various connections between the different kinds of entities. For example,
in an access control model, users and buildings are two relevant entities and the
access rights are represented by an association between those entities.

A key advantage of Event-B is the availability of tool support for reasoning
about formal models. Sections 11 and 12 provide an overview of tool support
(animation, model checking, proof obligation generation and automated proof)
that is available to support model validation and verification.

Section 13 briefly overviews some material that provides a deeper treatment
of Event-B than this paper and also overviews other related formal modelling
and analysis methods.

2 Modelling with Sets and Invariants

We illustrate modelling with sets through an example of access control to a
building. The system should allow only registered users to enter the building
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and should keep track of which users are inside the building. We start by con-
sidering two sets, in, representing the users who are inside the building and out,
representing the users who are outside the building. The two sets are illustrated
by the Venn diagram in Fig. 1.

Fig. 1. Venn diagram for in and out

The diagram illustrates that we might have users in the overlapping area
between the two sets (the intersection) and users in the non-overlapping areas.
However, for this particular example, we would not expect any users to be both
inside and outside the building so we would like to rule this possibility out as
illustrated in Fig. 2. When the intersection of two sets is empty, we say the
sets are disjoint and disjointness is illustrated in Fig. 3 by having no overlap
between the sets. This disjointness property may be represented by the following
mathematical equation:

in ∩ out = ∅

The equation says that the intersection of the two sets (in ∩ out) is empty (∅).
The system we are modelling is dynamic in that users may enter or leave the

building. In our model, this will be reflected by changes to the sets in and out.

in out

Fig. 2. Venn diagram: empty intersection

in out

Fig. 3. Venn diagram: disjoint sets
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Thus we treat in and out as variables whose values may be changed. We make
the following declaration:

variables in, out

While the values of the variables may change, the disjointness property should
remain true. An invariant is a property of one or more variables that should be
preserved by an changes to the variables so, not matter what changes occur in
the system, it should never get into a state in which the invariant is falsified. We
require the disjointness equation to be an invariant of our access control model
so we declare:

invariant in ∩ out = ∅

We mentioned the concept of registered users at the beginning of this section
so we introduce a set, called register, representing registered users. We will allow
the set of registered user to change, e.g., by adding a new user to the register,
so we declare register to be a variable:

variable register

Only registered users should be allowed in the building and we model this prop-
erty by requiring in to be contained entirely within register as illustrated in
Fig. 4. As the diagram illustrates, a user who is in the building must also be reg-
istered. The diagram also illustrates that some users may be registered without
being in the building. We say that in is a subset of register, written in mathe-
matical notation as: in ⊆ register. We declare this subset property on in and
register as an invariant:

invariant in ⊆ register

in

register

Fig. 4. Venn diagram: subset

What about the relationship between the set out and the set register? Up
to now we have not been clear about whether out represents all possible users
including those that are not registered. Let us make a modelling decision that out
represents exactly those users who are registered and are outside the building.
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in out

register

Fig. 5. Venn diagram: set union

Thus registered users are either in or out. This is illustrated by Fig. 5 which
shows that register is the union of in and out. Mathematically, the union is
written as in ∪ out and we declare the union property as an invariant:

invariant register = in ∪ out

We can add behaviours to the model, such as a user entering the building or
leaving the building, by specifying events. An event defines an atomic transition
on states, that is, it defines a relationship between a state before the event is
executed and the resulting state after the event is executed. An atomic transition
representing a user entering the building is illustrated by Fig. 6. This shows Venn
diagrams for the variables in and out both before and after execution of the Enter
event. In the before state, user u is in the set out while in the after state u is in
the set in, i.e., the Enter event moves user u from out to in. As shown in Fig. 6,
the specification of the Enter event has three parts:

– parameter u representing the user who is entering the building
– a guard requiring that the user is in the set out
– an action that moves u from out to in,

Fig. 6. Illustrating the Enter event

The Enter event is specified in Event-B notation as follows (including com-
ments):
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Enter =̂
any u where

grd1: u ∈ out // u must be registered and outside
then

act1: in := in ∪ {u} // add u to in
act2: out := out \ {u} // remove u from out

end

Here the keyword any indicates that u is a parameter. The guard of the
event appears between the where and then keywords while the actions appears
between the then and end keywords. The guard labelled grd1 requires that u
is in the set out, written u ∈ out. The actions of the event specify assignments
that modify some of the variables of the model, e.g., the action labelled act1
assigns the value in ∪ {u} to the variable in. The action labelled act2 uses set
difference to remove u from out: s \ t is the difference between sets s and t, i.e.,
the set elements of s that are not in t.

Although the Enter event contains several actions, the order in which the
actions appear does not matter as all of the actions are executed together, not
in series.

The syntax for specifying events will be described systematically in Sect. 4.
Before presenting further details of the model of the building access control we
give a quick overview, in the next section, of the key concepts of set theory that
are important in the Event-B notation.

3 Overview of Set Theory

Here we list some key features of sets:

– A set is a collection of elements.
– Elements are not ordered by a set.
– Set membership is an important relationship between an element and a set.

We write x ∈ S to specify that element x is a member of set S.
– Elements may themselves be sets, i.e., we can have a set of sets.
– Sets may be enumerated within braces, e.g., the set {a, b, c} contains three

elements, a, b and c.
– The set containing no elements, the empty set, is written ∅.

Set membership is a boolean property relating an element and a set, i.e.,
either x is in S or x is not in S. This means that there is no concept of an
element occurring more that once in a set, e.g.,

{a, a, b, c} = {a, b, c}.
Set membership says nothing about the relationship between the elements of a
set other than that they are members of the same set. This means that the order
in which we enumerate a set is not significant, e.g.,

{a, b, c} = {b, a, c}.
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These two characteristics distinguish sets from data structures such as lists or
arrays where elements appear in order and the same element my occur multiple
times.

3.1 Typing and Powersets

All the elements of a set must have the same type where a type is a special kind
of set known as a carrier set. Figure 7 illustrates that the variables register, in
and out are all subsets of the carrier set USER. In Event-B we use an invariant
to define the carrier set of a variable, e.g.,

invariant register ⊆ USER

This declaration means that all the elements of the set register have the type
USER. If we also have the invariant register = in ∪ out, the elements of in and
out must have the same type as the elements of register. That is, the type of
in and out can be inferred from the type of register because of the invariant
register = in ∪ out. All the elements of a set must have the same type.

USER

register

in out

Fig. 7. Carrier set USER

A carrier set is maximal in that it is not a subset of any other set. A model
may contain several carrier sets and these are implicitly disjoint from each other.
For example, we could have a model that contains two carrier sets USER and
BUILDING. We cannot combine carrier sets using set union, intersection or
difference, e.g., USER ∪ BUILDING is invalid. In Sect. 6 we will see that we
can combine carrier sets in another way to form relations. A carrier set remains
fixed during the execution of a model, i.e., actions of an event cannot assign to
a carrier set.

Suppose C is a carrier set. To define the type of an element x to be C, we
simply declare x ∈ C. If S is not a carrier set and S ⊆ C, then the declaration
x ∈ S means that the type of x is C.

The Event-B notation has an in-built carrier set representing integers, written
Z. Elements of this set can be written using the usual literals, e.g., 1, 2, 3. The
Event-B notation supports the usual arithmetic operators for integers such as
addition and multiplication.
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A powerset of a set is the set of all subsets of that set. For set S, we write
P (S) for the powerset of S. For example,

P ({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
Note that both the empty set and the set itself are contained within a set’s
powerset.

Up to now we have referred to the type of the elements of a set, e.g., all the
elements of register have type USER. What about the type of the set itself (as
opposed to the elements of the set)? We use the powerset operator to define the
type of the set itself:

If the elements of a set S are of type C then the type of S is P (C).

For example, we have:

– the type of the set register is P (USER)
– the type of the set {1, 2, 3} is P (Z)

3.2 Expressions and Predicates

Expressions are syntactic structures for specifying values (elements or sets). Lit-
erals (e.g., 3, ∅) are basic expressions as are variables (e.g., register) and carrier
sets (e.g., USER). Compound expressions are formed by applying expressions to
operators such as x + y and S ∪ T to any level of nesting.

Predicates are syntactic structures for specifying logical statements, i.e.,
statements that are either true or false (but not both). Equality of expressions
is an example predicate, e.g., register = in ∪ out. Set membership and subset
relations are other examples. For integer elements we can write ordering pred-
icates such as x ≤ y. Assume that a, S, T , x and y are expressions (S and T
are set expressions while x and y are integer expressions). We have available the
following basic predicates:

Basic Predicates: a ∈ S, S ⊆ T , S = T , x = y, x < y, x ≤ y

Predicate Operators: Compound predicates are formed using the standard
logical operators listed in the following table (assume P and Q are predicates):

Name Predicate Definition

Negation ¬P P does not hold

Conjunction P ∧ Q Both P and Q hold

Disjunction P ∨ Q Either P holds or Q holds

Implication P ⇒ Q If P holds, then Q holds

Quantified Predicates: We have seen that a predicate P may refer to one
or more variables, e.g., x ≤ y. We can quantify over a variable of a predicate
universally or existentially:
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Name Predicate Definition

Universal quantification ∀x · P P holds for all x

Existential quantification ∃x · P P holds for some x

In the predicate ∀x · P the quantification is over all possible values in the type
of the variable x. Typically we constrain the range of values using implication,
e.g., we could specify that every element of the set in is also an element of the
set register:

∀u · u ∈ in ⇒ u ∈ register

In the case of existential quantification we typically constraint the range of values
using conjunction, e.g., we could specify that integer z has a positive square root
as follows:

∃y · 0 ≤ y ∧ y × y = z

Free and Bound Variables: A variable that is universally or existentially
quantified in a predicate is said to be a bound variable. A variable referenced in
a predicate that is not bound variable is called a free variable. For example, in
the above predicate, y is bound while z is free.

Predicates on sets can be defined in terms of the logical operators as follows:

Name Predicate Definition

Subset S ⊆ T ∀x · x ∈ S ⇒ x ∈ T

Set equality S = T S ⊆ T ∧ T ⊆ S

3.3 Set Operators

We already used expression operators on sets such as union and intersection. We
now defines these operators more precisely using predicates. A predicate provides
a way of defining a set: the set of elements that satisfy the predicate. Consider
the union S ∪ T . The elements of the union are those elements that are either
in S or in T . More precisely, the set S ∪ T is defined by the set of elements x
satisfying the predicate x ∈ S ∨ x ∈ T . The following table provides definitions
of the set operators using logical operators:

Name Predicate Definition

Union x ∈ S ∪ T x ∈ S ∨ x ∈ T

Intersection x ∈ S ∩ T x ∈ S ∧ x ∈ T

Difference x ∈ S \ T x ∈ S ∧ x �∈ T

Powerset x ∈ P (S) x ⊆ S

Empty set x ∈ ∅ False
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Note that x �∈ T is a shorthand for ¬(x ∈ T ). Similarly we can use the
shorthand S �= T for ¬(S = T ).

4 Structuring Models with Machines

We have already introduced several Event-B constructs such as carrier sets,
variables, invariants and events. So is there a way of packaging these into com-
ponents? A machine is an Event-B component in which the variables, invariants,
and events are placed. Carrier sets that are required by a machine are placed
in a separate component called a context. An Event-B context can also con-
tain constants and axioms. The axioms are predicates that define properties of
the carrier sets and the constants. For example, for our building access control
example, we might want to model a capacity constraint on the building. We
could do this by introducing a constant max capacity and an axiom stating that
max capacity is greater than zero.

4.1 Context

A context with name C1 has the following form:

context C1

sets 〈list of carrier sets〉

constants 〈list of constants〉

axioms 〈list of labelled axioms〉

end

The following example is a context for the building access model which intro-
duces a carrier set and a constant:

context BuildingContext
sets USER
constants max capacity
axioms

axm1: max capacity ∈ Z

axm2: max capacity > 0
end

Each axiom in the context is a predicate. For traceability purposes, each axiom
in a context is given a unique label (e.g., axm1). The axioms in this context
specify that max capacity is an integer (axm1) whose value is assumed to be
greater than zero (axm2).
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4.2 Machine

In Event-B, a machine defines the dynamic behaviour of a model through events
that are guarded by and act on the variables. The events are expected to maintain
the invariants; we will see later how this is verified. A machine may see one or
more contexts which provide the carrier sets, constants and axioms to be used
by the machine. A machine with name M has the following form:

machine M1

sees 〈list of context names〉

variables 〈list of variables〉

invariants 〈list of labelled invariants〉

events 〈list of events〉

end

For example, part of the machine for the building access is specified as follows:

machine Building
sees BuildingContext
variables register, in, out
invariants

inv1: register ⊆ USER
inv2: register = in ∪ out
inv3: in ∩ out = ∅

events . . .

This machine is named Building ; it sees the previously defined BuildingContext
and it contains three variables. register, in and out. As discussed previously, the
invariants specify that registered users are of type USER (inv1), registered users
are either inside or outside (inv2) and no user is both inside and outside (inv3).

We postpone treatment of any building capacity constraint to later.
In Sect. 2 we showed the Enter event which models a user entering the build-

ing. Here we present the general syntax of event definitions. Each event of a
machine has a name, a list of parameters, a list of guards and a list of actions
structured as follows:

〈name〉 =̂
any 〈list of parameters〉 where

〈list of labelled guards〉
then

〈list of labelled actions〉
end
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Guards are predicates that specify conditions on the machine variables and the
event parameters. Each action assigns a value to a machine variable and has the
form:

〈variable〉 := 〈expression〉
For example, here is the Enter event again:

Enter =̂
any u where

grd1: u ∈ out
then

act1: in := in ∪ {u}
act2: out := out \ {u}

end

An event may be executed for particular values of the parameters when all its
guards are satisfied. When an event is executed, all of the actions of that event
are performed simultaneously. Because of the simultaneity, it is not allowed for
two different actions in an event to assign to the same variable as this would lead
to conflicting updates. As with invariants, the guards and actions are labelled.

4.3 Preserving Invariants

When specifying an event, it is important to ensure that the invariants are
preserved by its actions. We can assume that the invariants are satisfied prior
to execution of the event and we need to demonstrate that the actions do not
result in any invariant being violated.

Let us consider whether the Enter event preserves the invariants of the access
control model. Invariant inv1 refers to the register variable only and, since none
of the actions modify register, this invariant is trivially preserved. Invariant inv2
is an equation specifying that register is the union of in and out:

register = in ∪ out (1)

The actions of the Enter event modify the variables in right-hand side of the
equation but not the left-hand side. However since u is moved from out to in,
the overall value on the right-hand side remains unchanged and the equation
remains valid. More precisely, the effect of the actions of the Enter event on the
invariant can be represented by replacing each variable in the invariant by the
expression on the right-hand side of the assignment to that variable, i.e., replace
in by in ∪ {u} and out by out \ {u}, giving:

register = (in ∪ {u}) ∪ (out \ {u}) (2)

The result of replacing in and out are underlined in Eq. (2). We say that invariant
inv2 is preserved when Eq. (2) follows from Eq. (1) and the guard of Enter, that
is, when proving Eq. (2), we can assume that Eq. (1) holds and that the guards
of the Enter event hold. The proof is as follows:
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(in ∪ {u}) ∪ (out \ {u})
= “ ∪ is associative and commutative”

in ∪ (out \ {u}) ∪ {u}
= “grd1 : u ∈ out′′

in ∪ out
= “inv2′′

register

Each step in the simple proof is justified either by appealing to a rule of set the-
ory (the first step), by appealing to an event guard (the second step) or to the
invariant inv2 (the third step) with the justification indicated by “inverted com-
mas”. Both union and intersection are associative and commutative as captured
in this table:

Description Rule

Union associative (s ∪ t) ∪ u = s ∪ (t ∪ u)

Union commutative s ∪ t = t ∪ s

Intersection associative (s ∩ t) ∩ u = s ∩ (t ∩ u)

Intersection commutative s ∩ t = t ∩ s

The second step in the above proof of Eq. (2) relies on the following simplification
rule for sets which states that if x is in set s, then subtracting x from s and adding
x to the result yields s:

Description Rule

Simplify x ∈ s ⇒ (s \ {x}) ∪ {x} = s

An advantage of the actions of an event being executed simultaneously is
that we do not need to consider intermediate states in which invariants might be
violated. For example, if act1 and act2 were executed sequentially, inv2 would
be violated in between act1 and act2 before being re-established by act2. To
re-iterate: the actions within an event are always executed simultaneously and
not sequentially.

We have shown that the Enter event maintains inv1 and inv2. We now
consider the remaining invariant, inv3. Invariant inv3 specifies that in and out
are disjoint. If we removed action act2 from the Enter event, this would lead
to a violation of inv2 as u would end up both in and out. However, since both
actions together move u from out to in, their disjointness is preserved. Let us
prove this mathematically. Invariant inv2 is:

in ∩ out = ∅ (3)

As we have seen, the effect of the actions of the Enter event on the invariant can
be represented by replacing each variable in the invariant by the expression on



66 M. Butler

the right-hand side of the assignment to that variable, i.e., replace in by in∪{u}
and out by out \ {u}, giving:

(in ∪ {u}) ∩ (out \ {u}) = ∅ (4)

The proof of this is captured by the following general rule about sets which
states that if two sets are disjoint then removing elements from one and adding
them to the other maintains the disjointness:

Description Rule

Keep disjoint s ∩ t = ∅ ⇒ (s \ r) ∩ (t ∪ r) = ∅

4.4 Machine Initialisation

Every machine has a special event (named initialisation) that initialises the
machine variables. The acccess control machine is initialised by setting all three
variables to be empty:

initialisation =̂
act1: in := ∅

act2: out := ∅

act3: register := ∅

An initialisation event has no guards nor parameters and the assignment expres-
sions (right-hand side) cannot refer to the machine variables. This is because no
assumptions can be made about the values of the variables prior to initialisation.
The initialisation should establish the invariant, i.e., the values assigned to the
variables together should satisfy the invariants. In this case, all three invariants
are trivially established, i.e.,

∅ ⊆ USER
∅ ∩ ∅ = ∅

∅ = ∅ ∪ ∅

4.5 Other Access Control Events

We now look at some of the other events for access control: exiting the building,
registering a new user and de-registering a user. The Exit event is the opposite
of the Enter event: the user should be in the building and is moved from in to
out:

Exit =̂
any u where

grd1: u ∈ in
then

act1: in := in \ {u}
act2: out := out ∪ {u}

end
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This event maintains the invariants based on similar arguments that we used
previously for the Enter event.

When registering a user, we need a ‘fresh’ value to represent the new user,
i.e., a value that is not already in the set register. This fresh value is then added
to the set of registered users. The event could be specified as follows:

RegisterUser1 =̂
any u where

grd1: u ∈ USER
grd2: u �∈ register

then
act1: register := register ∪ {u}

end

The first guard gives a type to u while the second guard ensures that u is fresh.
Let us consider whether the action violates any invariants. It turns out that the
action violates the equation of inv2 (register = in ∪ out): it expands the left-
hand side without expanding the right-hand side. We can resolve this by adding
an action that also expands the right-hand side of the equation. We can do this
by adding u to in or to out. In this case, it makes more sense to add u to out
rather than in, as we would not expect that the new user would end up inside
the building immediately at the point at which they are registered. Thus, an
improved version of the event is specified as follows:

RegisterUser2 =̂
any u where

grd1: u ∈ USER
grd2: u �∈ register

then
act1: register := register ∪ {u}
act2: out := out ∪ {u}

end

This specification of the user registration does maintain inv3. Let us prove this
mathematically. Invariant inv3 is:

register = in ∪ out (5)

The actions of the event modify this to the following equation:

register ∪ {u} = in ∪ (out ∪ {u}) (6)

We prove that this equation follows from the invariant:

register ∪ {u}
= “inv3′′

(in ∪ out) ∪ {u}
= “ ∪ is associative”

in ∪ (out ∪ {u})
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A user who is already registered may be de-registered by removing them from
register. Removing u from register without removing u from in or out will lead
to a violation of inv2. One solution is to remove u from both in and out leading
to the following specification of the event for de-registering:

DeRegisterUser1 =̂
any u where

grd1: u ∈ register
then

act1: register := register \ {u}
act2: out := out \ {u}
act3: in := in \ {u}

end

This specification will preserve inv2 since u is removed from both sides of the
equation. This event is applicable whether registered user u is inside or outside
the building. However, if we consider a building access control system, it probably
does not make sense to de-register a user while they are inside the building so
we strengthen the guard to specify that u is outside (and registered):

DeRegisterUser2 =̂
any u where

grd1: u ∈ out
then

act1: register := register \ {u}
act2: out := out \ {u}

end

Note that this version does not modify in. If u was a member of in, this would
result in a violation of inv2. However, from the guard of the event we know that
u is an element of out and, since in and out are disjoint (inv3), we know that u
cannot be an element of in. Thus it is sufficient to remove u from out in order
to maintain inv2.

We leave it as an exercise for the reader to prove that DeRegisterUser2 pre-
serves the invariants. The following rules are used in the proofs:

Description Rule

Distribute difference (s ∪ t) \ r = (s \ r) ∪ (t \ r)

Simplify x �∈ s ⇒ s \ {x} = s

Keep disjoint s ∩ t = ∅ ⇒ (s \ r) ∩ t = ∅

4.6 Machine Behaviour and Nondeterminism

A simple way of thinking about the behaviour of an Event-B machine is as a
transition system that moves from one state to another through execution of
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events. The states of a machine are represented by the different configurations
of values for the variables. The variables of a machine are initialised by execution
of the special initialisation event. An event is enabled in some state for some
parameter values if all of the guards of the event are satisfied. For example, the
Enter event in the access control model is enabled for parameter value u1 in any
state in which u1 is an element of the variable out.

In any state that a machine can reach, an enabled event is chosen to be
executed to define the next transition. If several events are enabled in a state,
then the choice of which event occurs is nondeterministic. Also, if an event
is enabled for several different parameter values, the choice of value for the
parameters is nondeterministic – the choice just needs to satisfy the event guards.
For example, in the RegisterUser2 event, the choice of value for parameter u is
nondeterministic, with the choice of value being constrained by the guards of
the event to ensure that it is a fresh value.

Treating the choice of event and parameter values as nondeterministic is an
abstraction of different ways in which the choice might be made in an implemen-
tation of the model. For example, if it is an interactive system, the choice might
be offered to a user via a graphical interface. If it is an information processing
system, the choice might be made by some scheduler. If the machine reaches a
state in which no event is enabled, then it is said to be deadlocked.

5 Finiteness, Cardinality and Well-Definedness

Previously we considered the possibility of placing a constraint on the the number
of users allowed inside the building at any one time. We could represent this as
an invariant specifying that the number of elements in the set in is bounded
by the constant max capacity. In set theory, the number of elements in a set is
called its cardinality and in Event-B this is written as card(S). For example,

card({a, b, c}) = 3.

However a word of caution: cardinality is only defined for finite sets. If S is an
infinite set, then card(S) is undefined. Whenever we use the card operator, we
must ensure that it is only applied to a finite set. This issue of well-definedness
applies to some other operators as well. For example, division by zero is not
well-defined and when using division we must ensure that the divisor is not zero.

As is standard in set theory, sets in Event-B may be finite or infinite. For
example, the set of integers is infinite. A carrier set defined in a context is infinite
unless we explicitly specify that it is finite. Naturally, an enumerated set, e.g.,
S = {a, b, c}, is finite. We can specify that a set S is finite using the predicate
finite(S). In the building access system, we would expect the set of people who
are inside the building to be finite which we write as finite(in). Initially in is
empty and thus finite. The only way of expanding the set in is through the Enter
event which adds one user at a time. Thus the set in can never become infinite.

To model the finiteness and capacity constraints on the access control, we
extend the set of invariants of the machine as follows:
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invariants

· · ·
inv4: finite(in)
inv5: card(in) ≤ max capacity

In inv5, card(in) is well-defined since we know that in is finite from inv4.
Considering preservation of inv4, the only event that expands in is the Enter
event and it maintains the finiteness of in (inv4) by the argument outlined
above. For inv5, max capacity is a constant so cannot decrease during execution
of the machine so we only need to consider events that might cause card(in)
to increase. As we have already said, Enter is the only event that expands
in and thus increases card(in). The Enter event as previoulsy specified places
no constraint on the number of people already in the building so we need to
strengthen it by adding guard grd2 as follows:

Enter2 =̂
any u where

grd1: u ∈ out
grd2: card(in) < max capacity

then
act1: in := in ∪ {u}
act2: out := out \ {u}

end

Note that grd2 requires card(in) to be strictly less that max capacity in order
to ensure that the size of the resulting value for in is less than or equal to
max capacity.

The following table summaries the finiteness and cardinality operators we
have just introduced. The table also includes a column to indicate when a pred-
icate or expression is well-defined:

Name Operator Meaning Well-definedness

Finite finite(S) Set S is finite True

Cardinality card(S) Number of elements in set S finite(S)

Note that some of our definition tables do not have a well-definedness column.
In these cases the predicate or expression is always well-defined.

The following rules about finiteness and cardinality are used to prove that
inv4 and inv5 are preserved by the events:
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Description Rule

Finite union finite(s) ∧ finite(t) ⇒ finite(s ∪ t)

Finite difference finite(s) ⇒ finite(s \ t)

Increase card x �∈ s ⇒ card(s ∪ {x}) = card(s) + 1

Decrease card x ∈ s ⇒ card(s \ {x}) = card(s) − 1

6 Introducing Relations

We have seen how sets can be used to model access control for a building. We
introduced a carrier set to represent users but we did not introduce a carrier set
to represent buildings. The reason for not introducing buildings is that our model
was intended for a single building and the identity of that building was implicit.
Let us consider generalising our modelling of access control to a system with
multiple buildings. For this we introduce a carrier set representing buildings so
that we can distinguish different buildings. Figure 8 illustrates the two distinct
carrier sets, one for users and the other for buildings.

USER BUILDING

b1
u1

u2

u3

u4

b2

b3

Fig. 8. Distinct carrier sets

Rather than allowing registered users to enter any building, we would like
to model a more fine-grained control over which buildings a user is allowed to
enter. This is illustrated in Fig. 9 which represents a permission relation between
users and buildings. An arrow from a user to a building indicates that particular
user has permission to enter that building. For example, in Fig. 9, user u1 has
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permission to enter two of the buildings, b1 and b2. Figure 9 represents three
different sets: a set of users, a set of buildings and a set of arrows between users
and buildings. Mathematically an arrow from user u to building b is represented
by a pair of elements, written u �→ b. A relation is represented by a set of pairs,
for example, the permission relation of Fig. 9 is represented by the following set
P of pairs:

P = {u1 �→ b1, u1 �→ b2, u2 �→ b1, u2 �→ b3, u4 �→ b2, u4 �→ b3}
The permission model demonstrates that a relation allows us to connect distinct
carrier sets. Management of relationships between different kinds of entities is
a key role of many computerised systems, including access control, business
systems, information systems and communications systems. Thus relations are
a useful mathematical structure for modelling such systems.

A pair u �→ b has a first element u and a second element b. Given a set
of pairs, it is useful to refer to the set of the first elements of all pairs, called
the domain, and the set of second elements, called the range. For the example
relation P above, we have

dom(P ) = {u1, u2, u4}
ran(P ) = {b1, b2, b3}

Here, dom(P ) represents the set of users who have permission to enter some
building while ran(P ) represents the set of buildings for which some user has
permission to enter.

Figure 9 labels the permission relation as many-to-many. This means that
many different domain elements can be mapped to the same range element, e.g.,
u1 and u2 are both mapped to b1, and also that the same domain element can be
mapped to many different range elements, e.g., u1 is mapped to both b1 and b2.

As well as modelling the permission relation, we can also model the current
location of a user using a relation as illustrated in Fig. 10. We would not expect
a user to be located in more than one building at a time and thus the location
relation is required to be a many-to-one relation, meaning that a domain element

u1

u2

u3

u4

b1

b2

b3

permission

Many-to-many relation

Fig. 9. Permission relation
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location
u1

u2

u3

u4

b1

b2

b3

Many-to-one relation

Fig. 10. Location relation

can be mapped to exactly one range element rather than many. A many-to-one
relation still allows many different domain elements to be mapped to the same
range element, e.g., u2 and u4 are both located in the same building in Fig. 10.
Many-to-one relations are also called functions and are covered in more detail
in Sect. 7.3.

Since the permission and location relations are themselves sets, we can for-
mulate a connection between them. For an access control system we require that
if a user is located in a building, then they have permission to be in that build-
ing. This requirement is represented by specifying that location is a subset of
permission, i.e., any pair in the location relation is also a pair of the permission
relation. The connection between the two relations is illustrated in Fig. 11 where
location is clearly a subset of permission.

u1

u2

u3

u4

b1

b2

b3

Fig. 11. Location satisfies permission

A many-to-one relation is a special case of a many-to-many relation. A further
special case is a one-to-one relation in which each domain element is related to
exactly one range element and each range element is related to exactly one
domain element. This is illustrated in Fig. 12 where the location relation is such
that users are mapped one-to-one with buildings, i.e., no two users are located
in the same building. If we required single occupancy for the buildings, then we
could represent this with an invariant specifying that location is one-to-one.



74 M. Butler

location
u1

u2

u3

u4

b1

b2

b3

One-to-one relation

Fig. 12. Location with single occupancy

7 Cartesian Products and Relations

We have seen that an ordered pair is an element consisting of two parts, a first
part and a second part, and is written as x �→ y. Given two sets S and T , we
can form what is called their Cartesian product. This is the set of all those pairs
whose first component is in S and second component is in T . The Cartesian
product of S with T is written S × T . For example, the Cartesian product of
{a, b, c} with {1, 2} is expanded to a set of pairs as follows:

{a, b, c} × {1, 2} = {a �→ 1, a �→ 2,
b �→ 1, b �→ 2,
c �→ 1, c �→ 2}

Here we see, for example, that a �→ 1 is an element of the Cartesian product
since a is in {a, b, c} and 1 is in {1, 2}. More generally x �→ y is an element of
S × T when x is in S and y is in T as shown in the following table:

Name Predicate Definition

Cartesian product x �→ y ∈ S × T x ∈ S ∧ y ∈ T

The following derivation shows that the product of any set with the empty
set is itself empty (S × ∅ = ∅):

x �→ y ∈ S × ∅

= “Definition of × ”
x ∈ S ∧ y ∈ ∅

= “Definition of ∅”
x ∈ S ∧ false

= “Logic′′

false

= “Definition of ∅”
x �→ y ∈ ∅
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7.1 Type Constructors and Structured Types

In Sect. 3.1, we saw that the powerset operator is used to define the type of a
set. The powerset operator can be used to construct a type P (T ) from a type
T so we refer to it as a type constructor. Similarly, Cartesian product is a type
constructor: the type S ×T is constructed from the types S and T . A structured
type is a type formed using a type constructor such as P or ×.

– Powerset (P ) is the type constructor for sets.
– Cartesian product (×) is the type constructor for ordered pairs.

In Event-B, constants, variables, parameter and expressions have a type and
these types come in three forms

– Basic type: integer (Z), Boolean.
– Carrier set, e.g., USER, BUILDING.
– Structured type: P (S), S × T .

The type constructors can be nested and combined to form more complex
structured types such as:

– Set of sets: P (P (T ))
– Set of pairs: P (S × T )
– Pair of sets: P (S) × P (T ), S × P (T ), P (S) × T

The following table presents some example expressions and their correspond-
ing structured type:

Expression Type

{5, 6, 3} P (Z)

4 �→ 7 Z × Z

{5, 6, 3} �→ 7 P (Z) × Z

{4 �→ 8, 3 �→ 0, 2 �→ 9} P (Z × Z)

7.2 Relations

Through the permission example (Fig. 9) we have seen that a relation is mod-
elled as a set of pairs, i.e., a structured type formed using both the × and P

constructors. Because this structured type is a useful modelling construct, it is
given its own symbol in Event-B: we write S ↔ T as a shorthand for P (S × T ).
The following table provides the definition of the relation arrow:

Name Predicate Definition

Relation r ∈ S ↔ T r ∈ P (S × T )
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For the access control example, we may specify that the permission variable is
a (many-to-many) relation with the following invariant:

invariant permission ∈ USER ↔ BUILDING

Here is another example of a relation, named directory, that relates people
to phone numbers:

invariant directory ∈ PERSON ↔ NUMBER

A possible value for the directory is as follows:

directory = {mary �→ 287573,
mary �→ 398620,
john �→ 829483,
jim �→ 398620}

It is worth pointing out the difference between the two arrow symbols used
in representing relations:

↔ combines two sets to form a set.
�→ combines two elements to form an ordered pair.

We already introduced the domain and range of a relation. These are defined
by the following table:

Name Predicate Definition

Domain x ∈ dom(R) ∃y · x �→ y ∈ R

Range y ∈ ran(R) ∃x · x �→ y ∈ R

For the example directory shown above, we have:

dom(directory) = {mary, john, jim}
ran(directory) = {287573, 398620, 829483}

Note that when we declare a constant or variable to be a relation between
two sets, as well as defining its type, we are implicitly constraining the domain
and range of the relation: Suppose we have s ⊆ S and t ⊆ T and we declare
r ∈ s ↔ t, then it follows that

r ∈ P (S × T )
dom(r) ⊆ s

ran(r) ⊆ t
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7.3 Functions

From Fig. 10 we saw that the location relation should be a many-to-one relation,
i.e., each user is located in at most one building at any moment. The many-
to-one property means that if a user u is in the domain of location, then that
user is mapped to a single building by the location relation. In that case, we can
write location(u) to refer to the building that u is located in. For example, from
Fig. 10, we have:

location(u1) = b1
location(u2) = b3
location(u4) = b3

If a user u is not in the domain of location, then location(u) is not well-
defined. For example, from Fig. 10, u3 is not in the domain of location therefore
location(u3) is not well-defined.

In general, a many-to-one relation f is said to be functional. This is written as
f ∈ S �→T and means that every element in the domain of f is mapped to exactly
one element in the range. The functionality property is specified mathematically
by stating that if a domain value x is mapped to range value y, then x cannot
be mapped to any other range value y′. This is shown in the following table:

Name Predicate Definition

Partial function f ∈ S �→ T f ∈ S ↔ T ∧
∀x, y, y′ · x �→ y ∈ f ∧ y′ �= y

⇒ x �→ y′ �∈ f

Note that when we declare f ∈ S �→ T we say that f is a partial function. It
is said to be partial because there may be values in the set S that are not in the
domain of f . For example, from Fig. 10, u3 is in USER but is not in the domain
of location. A relation is said to be a total function from S to T when it is a
partial function and its domain is exactly S:

Name Predicate Definition

Total function f ∈ S → T f ∈ S �→ T ∧ dom(f) = S

We have seen that we can write location(u1) since location is functional.
In general, when a relation f is functional, we can treat it as a mathematical
function and write f(x) for the value that x is mapped to. For f(x) to be well-
defined, two conditions must hold: f must be functional and x must be in the
domain of f . This is shown in the following definition:
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Name Expression Meaning Well-definedness

Function application f(x) f(x) = y f ∈ S �→ T ∧
⇔ x �→ y ∈ f x ∈ dom(f)

This definition uses the if and only if (⇔) logical operator: P ⇔ Q is short for
P ⇒ Q ∧ Q ⇒ P .

8 Access Control Specification

Now that we have explained relations and functions, we will make use of them to
construct an Event-B specification of access control for multiple buildings. We
start by presenting the high-level requirements in an informal way. As already
stated, computer-based system is designed to satisfy some requirements in the
real world and it is usual to express system requirements in natural language.
Documentation of the requirements in natural language will guide the construc-
tion of the Event-B specification and will also provide a form of “sanity check”
against which to validate the Event-B specification. It helps understanding if we
try to describe the intended purpose of the system being designed in a concise
way. For the access control system this is as follows:

Purpose: The purpose of the access control system is to ensure that users
may be in a building only if they have permission to be in that building.

We provide a more detailed list of requirements, giving each one a label so that
we can refer to it later. In each of the following requirements “the system” refers
to the access control system:

– FUN1: The system shall maintain a register of recognised users and shall
provide operations for managing the user register.

– FUN2: The system shall maintain a register of protected buildings and shall
provide operations for managing the building register.

– FUN3: The system shall maintain the permissions for each user, determin-
ing the building they are allowed to enter, and shall provide operations for
managing the permissions.

– FUN4: The system shall allow a user to enter a building provided they have
permission.

– FUN5: The system shall allow a user to exit a building without constraint.
– ASM1: A user will be in at most one building at any time.
– ASM2: A user cannot move directly from one building to another building.

Most of these requirements are functional requirements1, that is, requirements
defining the intended function of the system. The last requirements in the list
are assumptions about the environment in which the system is operating, e.g.,
1 Not to be confused with a functional (many-to-one) relation!
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we assume that there is a physical constraint on users which means they cannot
be in more than one building at any time.

We referrred to the requirements as high-level. By this we mean there is not
necessarily enough detail in the requirements to build the system. For example,
FUN4 does not provide detail on how a user would enter a building or how they
might be prevented from entering. Nonetheless, we will see that it is still feasible
and useful to make a formal analysis of the high-level requirements in Event-B.

8.1 Set and Relations for Access Control

From the requirements FUN1 and FUN2 we identify two kinds of entity in the
system, users and buildings. These give rise to two carrier sets for our specifica-
tion of the system as defined in the following context:

context BuildingAccessContext
sets USER, BUILDING
end

Having identified the carrier sets, we consider what set variables to include
in the model, i.e., variables that are subsets of a carrier set. Looking at FUN1,
we see that a variable set of registered users is required. We will call this variable
user, where user ⊆ USER. Similarly, FUN2 suggests a variable set of buildings
so we introduce a variable building ⊆ BUILDING. These two set variables are
specified in an Event-B machine as follows:

machine BuildingAccess
sees BuildingAccessContext
variables user, building, ...
invariants

inv1: user ⊆ USER
inv2: building ⊆ BUILDING

Naming Convention: Although it is not required by the Event-B language,
we will use all UPPER case letters for names of carrier sets. When a model has
multiple carrier sets representing different kinds of entity, we will use a lower
case version of a carrier set name for the variable corresponding to the set of
instances of that entity. For example, the user entity is represented by the carrier
set USER and the set of instances (i.e., the register users) is represented by the
variable user. While the carrier set is fixed, the instance set may be expanded
or reduced through execution of events.

We also want to identify any required relational variables for our specification.
FUN3 suggests a relation to represent user permissions, while FUN4 suggests a
relation to represent user location. The diagrams in Figs. 9 and 10 illustrate the
permission and location relations between users and buildings. These diagrams
are useful for illustrating specific instances of relations but they do not provide a
general representation. To illustrate relations between sets more generally we use
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Fig. 13. Relations for access control

the class diagram shown in Fig. 13. A class diagram is a construct from object
oriented design that is used to represent classes and associations between classes.
In Fig. 13, the sets are represented as classes (the boxes) while the relations
are presented as associations (the arrows). An association represents a relation
between the indicated sets. We place the relevant mathematical symbol next
to the name of the relation to indicate its nature (many-to-many, many-to-one,
etc.). Thus Fig. 13 indicates that permission is a relation between user and
building :

permission ∈ user ↔ building

Because of ASM1, Fig. 13 indicates that location is a partial function from user
to building, giving rise to the following mathematical specification:

location ∈ user �→ building

From the requirements, and with the aid of a class diagram, we have identified
two kinds of variables for our Event-B specification:

– Set variables: user, building
– Relation variables: permission, location

The full list of variables and corresponding invariants is specified as follows:

variables user, building, location, permission
invariants

inv1: user ⊆ USER
inv2: building ⊆ BUILDING
inv3: permission ∈ user ↔ building
inv4: location ∈ user �→ building

It is important to observe that invariants inv3 and inv4 specify constraints
between multiple variables (as well as defining the types of the relation variables).
For example, included in inv3 is the constraint that the domain of permission is
included in user. This means that the system only maintains permission informa-
tion for registered users. The range of permission is constrained to be included
in building which means that any permissions that a user has can only be for
registered buildings. Requirement FUN3 does not precisely state these two con-
straints though FUN3 could be interpreted as requiring that permission is only
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between registered users and registered buildings. In the mathematical repre-
sentation, the constraints are specified precisely. Similarly, inv4 specifies that
only registered users may be located in buildings and those buildings must be
registered.

Our access control specification contains two relation variables and we con-
sider whether we can identify an invariant that constrains the connection between
these two variables. In fact we have already identified such an invariant in Fig. 11
where location is required to be included in permission. Thus our model has one
additional invariant:

invariants
· · ·
inv5: location ⊆ permission

Invariant inv5 addresses FUN4, the main access control requirement.
The list of invariants for the BuildingAccess machine may be classified into

three kinds:

1. Constraints between set variables (inv1, inv2).
2. Constraints between a relational variable and set variables (inv3, inv4).
3. Constraints between relational variables (inv5).

The first two kinds of invariant can often be easily identified from a class diagram
derived from the requirements. The class diagram is constructed by identifying
the main entities suggested by the requirements (e.g., USER and BUILDING)
and the relevant relationships between them (e.g. permission and location). The
third kind of invariant does not always follow directly from a class diagram
and may come directly from the requirements. In Fig. 13, because permission
and location have the same source and target, the question of whether one is a
subset of the other is suggested.

From the requirements, we have identified carrier sets, variables and invari-
ants but the requirements also suggest events to be included in the Event-B
specification. Here we identify a list of events by systematically reviewing each
requirement:

– FUN1: Suggests RegisterUser and DeRegisterUser events.
– FUN2: RegisterBuilding and DeRegisterBuilding.
– FUN3: AddPermission and RemovePermission.
– FUN4: EnterBuilding.
– FUN5: ExitBuilding.
– ASM1: EnterBuilding.
– ASM2: EnterBuilding.

As can be seen with the EnterBuilding event, it is sometimes the case that dif-
ferent requirements will give rise to the same event. This is because the require-
ments may describe different aspects of the behaviour represented by the event.
For example, both FUN4 and ASM1 put constraints on when a user may enter
a building.
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8.2 Expansion Events

When a specification involves sets, it is common to have events for expanding
sets (e.g., RegisterUser) and reducing sets (e.g., DeRegisterUser). We look at
the expansion events first. Events to specify registration of users and buildings
are similar to the registration event presented in Sect. 4.5:

RegisterUser =̂
any u where

grd1: u �∈ user
then

act1: user := user ∪ {u}
end

RegisterBuilding =̂
any b where

grd1: u �∈ building
then

act1: building := building ∪ {u}
end

Notice that we omitted a guard specifying that parameter b is an element of
BUILDING. This is because the type of b can be inferred from grd1 since the
set building has type P (BUILDING). Similarly for the RegisterUser event.

The AddPermission event gives a registered user b permission to enter a
registered building b by adding the ordered pair u �→ b to the permission relation:

AddPermission =̂
any u, b where

grd1: u ∈ user
grd2: b ∈ building

then
act1: permission := permission ∪ {u �→ b}

end

The guards of this event are required in order to preserve invariant inv3 which
constrains the domain and range of the permission relation. For example, if
grd1 was u ∈ USER instead then the event might violate the invariant by giving
permission to a non-registered user.

Here is an alternative version of the event that adds a set of buildings bs to
the users permission rather than a single building:

AddMultiPermission =̂
any u, bs where

grd1: u ∈ user
grd2: bs ⊆ building

then
act1: permission := permission ∪ ({u} × bs)

end



Reasoned Modelling with Event-B 83

The expression {u} × bs defines a relation that maps u to each element in bs.
The following rules are used to prove that inv3 is preserved:

Description Rule

Product s ⊆ S ∧
relation t ⊆ T

⇒ s × t ∈ S ↔ T

Union q ∈ S ↔ T ∧
relation r ∈ S ↔ T

⇒ (q ∪ r) ∈ S ↔ T

The event modelling a user entering a building is parameterised by the enter-
ing user and the building they are entering:

EnterBuilding =̂
any u, b where

grd1: u �∈ dom(location)
grd2: u �→ b ∈ permission

then
act1: location := location ∪ {u �→ b}

end

From ASM2 we expect that a user is not located in any building when they
try to enter a building hence grd1 which specifies that u is not in the domain
of location. From FUN4, we identify grd2 which specifies that u has permission
to enter b. The effect of act1 is to add the ordered pair u �→ b to location.

The invariants that the EnterBuilding event affects are inv4 and inv5. Invari-
ant inv5, which specifies that location is included in permission, is maintained
because of grd2. Invariant inv4 specifies that location is functional. Adding a
mapping for u to location maintains the functionality of location because grd1
specifies that u is not already mapped to any buildings. Without grd1, the event
could violate the functionality as u might end up being mapped to more than
one building in location. The following rule about expanding a partial function
captures this property. It states that if f is functional and x is not in the domain
of f , then f ∪ {x �→ y} is also functional:

Description Rule
Function f ∈ S �→ T ∧
extension x �∈ dom(f) ∧

x �→ y ∈ S × T
⇒ (f ∪ {x �→ y}) ∈ S �→ T
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8.3 Reduction Events and Domain Subtraction

We have already seen how we can reduce sets using the set difference operator.
We can use this to model a user u exiting a building b as follows:

ExitBuilding =̂
any u, b where

grd1: u �→ b ∈ location
then

act1: location := location \ {u �→ b}
end

Alternatively, we can use an operator on relations called domain subtraction to
model a user exiting a building. Domain subtraction, written A �− R, takes two
arguments, a relation a relation R ∈ S ↔ T and a set A ⊆ S, and removes
those pairs from R whose first part is in A. This is illustrated by the following
equation which shows the result of domain subtracting a set containing a user
from an example of the location relation:

{u2} �− {u1 �→ b1, u2 �→ b3, u4 �→ b3} = {u1 �→ b1, u4 �→ b3}
Here we see that the mapping from u2 to b3 is removed to give the reduced set
on the right-hand side. The general definition of the operator is as follows:

Name Predicate Definition

Domain subtraction x �→ y ∈ A �− R x �→ y ∈ R ∧ x �∈ A

Here is a specification of the ExitBuilding event that has just one parameter,
the user u. It removes u from the location function using domain subtraction:

ExitBuilding =̂
any u where

grd1: u ∈ dom(building)
then

act1: location := {u} �− location
end

This event preserves the permission invariant (inv5) and the functionality of
location (inv3). This follows from the following rules which show that domain
subtraction reduces a relation and that inclusion preserves functionality:

Description Rule

Domain subtract (A �− R) ⊆ R
inclusion

Inclusion f ∈ S �→ T ∧
functional g ⊆ f

⇒ g ∈ S �→ T
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8.4 Invariant Violation

While exiting a building causes no problems from the point of view of invariant
preservation, removing permissions can be problematic. Consider the following
specification of an event that removes all permissions for a user u using the
domain subtraction operation:

RemovePermissions1 =̂
any u where

grd1: u ∈ user
then

act1: permission := {u} �− permission
end

Here is a reminder of the permission inclusion invariant:

inv5: location ⊆ permission

Action act1 of the RemovePermissions1 event results in the following modified
version of inv5:

location ⊆ {u} �− permission

This does not follow from inv5. The problem is that we are reducing the right-
hand side of this set inclusion without reducing the left-hand side. If the user
u was located in a building and we remove all their permissions, then after
executing the RemovePermissions1 event, u would still be in a building but
they would no longer have permission to be there, thus violating inv5!

8.5 Fixing the Violation

One solution to this invariant violation problem would be to add an action to
also remove the user from whatever building they are in by removing them from
the domain of location as well:

RemovePermissions2 =̂
any u where

grd1: u ∈ user
then

act1: permission := {u} �− permission
act2: location := {u} �− location

end

With this version of the event, the modified invariant becomes:

{u} �− location ⊆ {u} �− permission

This inclusion follows from invariant inv5 which means that RemovePermis-
sions2 preserves inv5. Mathematically this is because domain subtraction is
monotonic. In general, an operation op is said to be monotonic when it pre-
serves inclusion between sets:
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Name Definition

Monotonic S ⊆ T ⇒ op(S) ⊆ op(T )

Description Rule

Domain subtract monotonic R ⊆ Q ⇒ A �− R ⊆ A �− Q

Another way of ensuring that inv5 is maintained would be to allow permis-
sions for u to be removed only if they are not currently inside a building. Here is
a version that only modifies permission but has an additional guard, specifying
that the user is not located in any building:

RemovePermissions3 =̂
any u where

grd1: u ∈ user
grd2: u �∈ dom(location)

then
act1: permission := {u} �− permission

end

To see why this preserves the permission invariant we make use of the following
rule; this states that if x is not in the domain of relation R then removing x
from the domain of R has no effect:

Description Rule

Simplify domain subtract x �∈ dom(R) ⇒ ({x} �− R) = R

The modified invariant resulting from RemovePermissions3 is

location ⊆ {u} �− permission

Because of grd1 we can assume that u �∈ dom(location) and therefore that
location = {u} �− location so this is the same as the following inclusion:

{u} �− location ⊆ {u} �− permission

As before, this inclusion follows from inv5 by monotonicity.
We have seen that the RemovePermissions1 event does not preserve the

permission inclusion invariant (inv5) while the other two versions of permis-
sion removal, RemovePermissions2 and RemovePermissions3, do preserve the
invariant. Clearly we would want to rule out RemovePermissions1 since it fails
to satisfy a mathematical judgement. Although RemovePermissions2 preserves
the permission inclusion invariant, it does combine two separate functions into
one atomic event. At the very least it would be more appropriate to reflect
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the dual role in the name the event, e.g., ExitAndRemovePermission. We note
that location is a monitoring variable that is used to keep track of the physical
location of users while permission is a conceptual variable that models a key
concept in access control which does not reflect any physical entities. We prefer
to keep changes to monitoring variables (e.g., location) separate from changes
to conceptual variables (e.g., permission) so we use RemovePermissions3 as our
specification of permission removal. This choice does mean that permission can-
not be removed from a user for a building they are currently located in until after
they exit the building. If it was deemed important, we might have a mechanism
to force a user to exit a building but we treat this as out of scope of our analy-
sis. Whenever the construction of the Event-B model raises ambiguities about
the requirements (such as whether we can remove permissions for a user who is
located in a building), then we should consider asking the system provider (the
client) to clarify the requirements.

It is ok to remove permission from a user for a particular building even if
they are located in another building? Here is an event that does this:

RemoveSinglePermission =̂
any u, b where

grd1: u �→ b ∈ permission
grd2: u �→ b �∈ location

then
act1: permission := permission \ {u �→ b}

end

Here grd2 does not prevent u from being located in some building b′ that is
different to b. To see why this event preserves inv5, consider the effect of the
action act1 on the invariant:

location ⊆ permission \ {u �→ b}
Because of grd2, location = location \ {u �→ b}, so this inclusion is the same as

location \ {u �→ b} ⊆ permission \ {u �→ b}
This inclusion follows from inv5 by monotonicity of set difference (set difference,
set union and set intersection are all monotonic).

8.6 Range Subtraction

The domain subtraction operator (�−) is used to remove pairs from a relation
based a domain set argument. There is also a range subtraction operator (�−)
that removes pairs based on a range set argument. For example:

{u1 �→ b1, u2 �→ b3, u4 �→ b3} �− {b1} = {u2 �→ b3, u4 �→ b3}
Notice that in the case of domain subtraction, the set argument comes first and
the relation comes second (A �− R) while the arguments are swapped for the
range operator (R �− B). The operator definition is as follows:
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Name Predicate Definition

Range subtraction x �→ y ∈ R �− B x �→ y ∈ R ∧ y �∈ B

The event to remove a building from the registered buildings makes use of
range subtraction to remove all permissions associated with that building:

DeRegisterBuilding =̂
any b where

grd1: b ∈ building
grd2: b �∈ ran(location)

then
act1: building := building \ {b}
act2: permission := permission �− {b}

end

While b is removed from building by action act1, action act2 removes any permis-
sion associated with b from permission. This is required in order preserve invari-
ant inv3 which specifies that permission is a relation between user and building.
The following rules show how the relational subtraction operators reduce the
domain/range of a relation:

Description Rule

Domain/range R ∈ S ↔ T ⇒
reduction (A �− R) ∈ (S \ A) ↔ T

(R �− B) ∈ S ↔ (T \ B)

Notice that grd2 of the DeRegisterBuilding event requires that b has no occu-
pants (no users are located in b). This ensures that the event maintains inv4
stating that the range of location is included in building and also maintains the
permission inclusion invariant inv5 when the permissions for b are removed by
act2.

The event to de-register a user is specified as follows:

DeRegisterUser =̂
any b where

grd1: u ∈ user
grd2: u �∈ dom(location)

then
act1: user := user \ {u}
act2: permission := {u} �− permission

end

Guard grd2 requires that u is not located in a building (preserving inv5), while
action act2 removes all permissions for u (preserving inv3).
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For both of the de-register events, we required that the building is un-
occupied (for DeRegisterBuilding) or the user is not in a building (for DeRegis-
terUser). This was to ensure the preservation of the invariant inv5. An alterna-
tive way of preserving inv5, that does not require guards on location, would be
to reduce location as well, as we saw with Remove Permission2. As with permis-
sion removal, we prefer to keep location changes and user registration changes
as separate events. This is again because location is a monitoring variable while
the property of being registered is conceptual.

9 Query Events

The events we have looked at so far all include actions that change one or more
variables. Sometimes we are interested in querying information about a system
such as the location of a user. Here is the specification of such an event:

QueryLocation =̂
any u, result where

grd1: u ∈ dom(location)
grd2: result ∈ BUILDING
grd3: result = location(u)

end

The event has two parameters: u, the user whose location is being queried,
and result, the result of the query. In this case the result of the query is the
location of u. The Event-B language does not have an explicit notion of an
output parameter. We adopt the convention of naming a parameter representing
an output as result. Typically the value of a result parameter will be defined
by an exact equation such as grd3 above. We refer to an event that specifies a
result but does not modify any variables as a query event.

The guard that specifies the type of the result in QueryLocation, grd2, is
not strictly necessary since the type can be inferred from the equation in grd3.
However making the type of result explicit makes the specification clearer.

Another query we could perform on the access control system would be to
find out the set of buildings that a particular user has permission to enter. To do
that we use the relational image operator. Given a relation R ∈ S ↔ T and a set
A ⊆ S, the expression R[A] represents the set of range elements corresponding
to some domain element in A. For example, consider again the following simple
relation:

directory = {mary �→ 287573,
mary �→ 398620,
john �→ 829483,
jim �→ 398620}

If we want to identify the set of numbers that mary is mapped to, we write
directory[{mary}] where

directory[{mary}] = {287573, 398620}
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Note the argument within the brackets must be a set of domain elements rather
than a single element which is why we do not write directory[mary].

In general, a range element y is in the relational image of A under R if there
is some element x in A that is mapped to y by R. This specified precisely in the
following table:

Name Predicate Definition

Relational image y ∈ R[A] ∃x · x ∈ A ∧ x �→ y ∈ R

Suppose there are no elements of A mapped to range elements by R. In that
case there is no x in A satisfying x �→ y ∈ R and therefore R[A] will be empty.

The event to query the permissions of a user makes use of relational image:

QueryPermissions =̂
any u, result where

grd1: u ∈ user
grd2: result ⊆ BUILDING
grd3: result = permission[{u}]

end

Here the result is specified as the relational image of {u} under the permission
relation, i.e., the set of buildings for which u has permission. In the case that
the user has no permissions, then the result will be the empty set.

We have seen that relational image allows us to specify a query on a rela-
tion going from domain elements to range elements. To perform a query in the
opposite direction, from range to domain, we can take the inverse of a relation,
written R−1. The inverse of R is the result of swapping the order of each pair in
R. For example, the inverse of the directory relation specified above is as follows:

directory−1 = {287573 �→ mary,

398620 �→ mary,

829483 �→ john,

398620 �→ jim}
We can use this to query the people associated with phone number 398620 as
follows:

directory−1[ {398620} ] = {mary, jim}
The inverse operator is defined in the following table:

Name Predicate Definition

Relational inverse y �→ x ∈ R−1 x �→ y ∈ R

Using inverse and image, a query event that provides the set of users who
have permission to enter building b is specified as follows:
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QueryBuildingUsers =̂
any b, result where

grd1: b ∈ building
grd2: result ⊆ USER
grd3: result = permission−1[{b}]

end

We can use a similar query event to provide the set of occupants of a building:

QueryBuildingOccupants =̂
any b, result where

grd1: b ∈ building
grd2: result ⊆ USER
grd3: result = location−1[{b}]

end

Note that while location is functional, the inverse of location might not be. This
is illustrated by Fig. 10 where two different users, u2 and u4 are located in b3.
This means that in the inverse relation, b3 is mapped to two different users and
thus location−1 is not functional. If a relation is one-to-one, e.g., Fig. 12, then
its inverse is also functional. A one-to-one function is also called injective and
is declared as f ∈ S �� T . An injective function is defined as a function whose
inverse is also functional:

Name Predicate Definition

Injective function f ∈ S �� T f ∈ S �→ T ∧ f−1 ∈ T �→ S

9.1 Requirements Tracing

In order to be systematic about validation of the model against the requirements,
we will re-visit the list of requirements and annotate each one with a explanation
of how it is represented in the Event-B model. This is a form of tracing infor-
mation: a means of tracing from a requirement through to a part, or parts, of
the formal model. This is shown as a table in Fig. 14 where the explanations of
how a requirement is represented in the formal model are in shown in the second
column. For example, the annotation on FUN1 provides an explanation of how
that requirement is represented in the formal model through the user variable
and the RegisterUser and UnRegisterUser events.

10 Simple Bank

We make use of some of the techniques shown so far to develop a model of a
simple banking system. This case study emphasises the use of functions and
introduces an additional mathematical concept (function override). The case
study also serves to re-enforce the steps that may be taken in developing an
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Requirement Representation in model

FUN1 This is represented by the user variable modelling registered
users (inv1) and by the RegisterUser and DeRegisterUser
events.

FUN2 This is represented by the building variable modelling registered
buildings (inv2) and by the RegisterBuilding and DeRegister-
Building events.

FUN3 This is represented by the permissions variable (inv3) and by
the AddPermission and RemovePermission events.

FUN4 This is represented by the permission invariant (inv5) and by
the EnterBuilding event. Guard grd2 of the EnterBuilding event
ensures that the entering user has permission.

FUN5 This is represented by the ExitBuilding event. There is no con-
straint on this event other than the user is located in a building
(grd1).

ASM1 This is represented by the location being functional (inv4).

ASM2 This is represented by grd1 of the EnterBuilding event which
requires that the entering user is not currently located in any
building.

Fig. 14. List of requirement labels with tracing information

Event-B model from a list of requirements including the use of a class diagram
to identify the main entities and the relationship between them. Here is a list of
functional requirements for the simple bank:

– FUN1: The system shall maintain a register of bank customers and shall
provide operations for managing the customer set.

– FUN2: The system shall maintain a name and address for each customer
and shall provide operations for managing these.

– FUN3: The system shall allow customers to have several accounts and allow
customers to share accounts.

– FUN4: The system shall provide operations for managing the account set.
– FUN5: The system shall maintain a balance for each account.
– FUN6: The system shall ensure that account balances are never negative.
– FUN7: The system shall provide operations for depositing and withdrawing

funds to and from an account and for transferring funds between accounts.

10.1 Sets and Relations

The first step in developing the model is to identify some carrier sets. In the
functional requirements above we have highlighted some nouns in bold, e.g.,
customers in FUN1. Requirement FUN2 introduces names and addresses
at a high level and does not define a specific format. We will treat names and
addresses as abstract values and model them using carrier sets. These highlighted
nouns suggest the carrier sets shown in Fig. 15. Note that we only highlighted
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the first occurrence of a noun to avoid duplication. Figure 15 does not identify a
carrier set for balance in FUN5. For simplicity we decide to model the amount
of money in an account as an integer value; we could have chosen more detail
such as currency units (e.g., euros) and subunits (e.g., cents). Integers are already
part of the Event-B language.

Fig. 15. Carrier sets for simple bank

Figure 15 gives rise to the following context for our simple bank model:

context BankContext
sets ACCOUNT, CUSTOMER, NAME, ADDRESS
end

Next we identify whether any of the requirements suggest relations between
sets. FUN2 suggests a relation between CUSTOMER and NAME and between
CUSTOMER and ADDRESS. We name these relations name and address
respectively and they are shown in Fig. 16. FUN3 suggests a relation between
CUSTOMER and ACCOUNT which we name as accounts. FUN5 suggests a
relation between ACCOUNT and integers which we name as balance.

Fig. 16. Adding relations for the bank

Having identified the main sets and required relationships between them,
we add a bit more precision to the diagram. For the building access model
we distinguished the (fixed) carrier sets for users and buildings from the (vari-
able) registered sets and we do the same for the simple bank. In Fig. 17 we
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have replaced the CUSTOMER and ACCOUNT carrier sets by the customer
and account variable sets. The variable sets represent registered customers and
accounts respectively and they allow us to represent constraints such as requiring
customers to be registered in order to have accounts. In order to avoid confusion
with the set account, we have changed the name of the relation between cus-
tomer and account to cust acc in Fig. 17. The other way in which we finesse the
diagram is to determine the nature of each relation (many-to-many, etc.). Since
FUN3 requires that a customers may have multiple accounts, we conclude that
cust acc should be a many-to-many relation. From FUN2 we conclude that each
customer has one name and one address hence we conclude that these should
be functional. We mark them as total functions from customer to indicate that
each registered customer has a name and an address. Similarly from FUN5 we
conclude that balance should be a total function from account.

Fig. 17. Finessing the bank model

We have not introduced variable sets corresponding to NAME nor
ADDRESS. The reason is that we regard these sets as secondary. By this
we mean that we are not interested in the values from these sets in their own
right and we are only interested in them as attributes of the other sets. We refer
to the non-secondary sets (customer, account) as primary. One indicator of a
secondary set is that it has no outgoing arrows in the class diagram, and only has
incoming arrows. This is the case for the sets NAME, ADDRESS and indeed Z

in Fig. 17. However this is not a hard-and-fast rule: the building set of Fig. 13 has
no out-going arrows but we still treat it as a primary set since the requirements
explicitly stated that a set of registered buildings should be maintained. In the
simple bank there is no requirement to maintain a set of registered addresses
and names independent of the customer to which they belong. Neither is there
a requirement to maintain a set of balance values independent of the accounts
to which they belong.

Construction of the class diagram of Fig. 17 allows to identify the set and
relation variables. The primary sets customer and account become variable sets
while the relations name, address, cust acc and balance become relation vari-
ables:
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machine Bank
sees BankContext
variables customer, account, name, address, cust acc, balance
invariants

inv1: customer ⊆ CUSTOMER
inv2: account ⊆ ACCOUNT
inv3: name ∈ customer → NAME
inv4: address ∈ customer → ADDRESS
inv5: cust acc ∈ customer ↔ account
inv6: balance ∈ account → Z

An advantage of having the variable set customer in the model is that it allows us
to specify that the functions name and address have exactly the same domain.
All of the above invariants are derived directly from Fig. 17 (which in turn was
derived from the requirements via the other two class diagrams).

We study the requirements again to check if there are any further invariants
we could identify. The only requirement from which we can identify a further
invariant is FUN6 which states that account balances are never negative (a
rather conservative requirement for a bank!). We can represent this requirement
by strengthening inv6 to specify that the range of balance is the set of naturals
rather than integers (naturals are written N and represent all the non-negative
integers, i.e., those n ∈ Z where n ≥ 0):

invariants
...
inv6b: balance ∈ account → N

An alternative formulation of FUN5 is to specify that the balance of each account
is non-negative using universal quantification:

invariants
...
inv6: balance ∈ account → Z

inv7: ∀a · a ∈ account ⇒ balance(a) ≥ 0

In inv7 we restrict the quantification to those a in the set account. Since balance
is total on the set account, the expression balance(a) is guaranteed to be well-
defined.

We are not yet done with identifying invariants. Although we might not be
able to identify this explicitly from the requirements, we need to be careful about
the domain and range of the cust acc relation. Invariant inv5 specifies that the
domain of cust acc is a subset of customer but does not specify that the domain
is equal to customer. This means we may have customers who have no accounts
associated with them. Similarly inv5 allows for register accounts that have no
customers associated with them. The requirements are not clear on this and we
now have the opportunity to be more precise.

We decide that we may have a customer who has no accounts, e.g., this might
arise when we register a customer before we create any accounts for them. Thus
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dom(cust acc) does not need to equal customer and can be a subset. However, we
decide that it is not ok to have an account that has no customers associated with
it. We introduce a further invariant to specify that every account is associated
with some customer:

invariants
...
inv8: ran(cust acc) = account

The combination of inv5 and inv8 means that each customer has zero or more
accounts, while each account has one or more customers.

10.2 Expansion Events

We introduced a distinction between primary and secondary sets and we iden-
tified that customer and account as the primary sets in Fig. 17. It is for the
primary sets that we introduce expansion events (events that expand some set
of elements). The customer set is expanded by the event for registering a new
customer:

RegisterCustomer =̂
any c, n, a where

grd1: c �∈ customer
grd2: n ∈ NAME
grd3: a ∈ ADDRESS

then
act1: customer := customer ∪ {c}
act2: name := name ∪ {c �→ n}
act3: address := address ∪ {c �→ a}

end

Similar to registration of new users in the building access example, the new
customer c is represented by a ‘fresh’ value (grd1). Since we are expanding
customer (act1), and since name and address are total functions on customer,
we also need to expand name and address (act2 and act3). The values for the
name and address of the new customer are provided as parameters n and a.

The following rule shows how extending a total function maintains function-
ality. It shows that the extended function (f ∪{x �→ y}) is total on an expanded
domain (S ∪ {x}).

Description Rule

Total f ∈ S → T ∧
function x �∈ S ∧ y ∈ T
extension ⇒ (f ∪ {x �→ y}) ∈ (S ∪ {x}) → T
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Our RegisterCustomer event does not associate any accounts to the new cus-
tomer. This does not violate any invariants since we concluded that a customer
may have zero or more accounts. Since we also concluded that an account must
have at least one associated customer (inv8), we need to associate at least one
customer with a newly created account. We chose to associate a set of customers
with a newly created account and this set will need to be non-empty. Since
balance is total on account, we also need to associate a balance value with the
newly created account; we will set the balance to be zero. We specify the event
as follows:

CreateAccount =̂
any a, cs where

grd1: a �∈ account
grd2: cs ⊆ customer
grd3: cs �= ∅

then
act1: account := account ∪ {a}
act2: cust acc := cust acc ∪ (cs × {a})
act3: balance := balance ∪ {a �→ 0}

end

A note on the naming of these events: we used ‘register’ to name expan-
sion event for customers (RegisterCustomer) while we used ‘create’ for accounts
(CreateAccount). The reason is that values in customer correspond to entities
that are external to the bank while accounts are entities that are internal to the
bank. To use our previously-introduced terminology, customer is a monitoring
variable while account is a conceptual variable. Of course naming is matter of
taste and judgement. Our distinction between registration and creation is simply
a guideline.

The above expansion events contribute to addressing the requirements for
‘managing’ the set of accounts (FUN1) and the set of accounts (FUN4).
Both these requirements also suggest reduction events for the primary sets,
e.g., DeRegisterCustomer and DeleteAccount. FUN4 also suggests events for
expanding and reducing the set of customers associated with an account, e.g.,
AddAccountCustomer and RemoveAccountCustomer. We leave the specification
of these to the reader. As before, care must be taken to ensure that all the
invariants are preserved by these reduction events.

10.3 Function Override

Requirement FUN2 suggests events for modifying the address of a customer
and possibly even the name of a customer. FUN7 suggests events for increasing
and decreasing the balance of an account and for transferring funds between
accounts. Specification of all of these involve modifying a function so that the
range value that some domain element is mapped to is updated, e.g., to withdraw
money from account a, the balance function gets updated so that the value
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associated with a is changed to a smaller value. To represent function update
mathematically we use the function override operator.

We illustrate the use of this operator with an example first. Assume that the
balance function has the following value:

balance = {a1 �→ 100, a2 �→ 350, a3 �→ 800, a4 �→ 50}
If we want to change the balance of account a2 to 300, we use function override
(�−) with balance as the first argument and a mapping from a2 to 300 as the
second argument, written balance�− {a2 �→ 300}. The following equation shows
the result of this overriding:

balance �− {a2 �→ 300} = {a1 �→ 100, a2 �→ 300, a3 �→ 800, a4 �→ 50}
As highlighted in the resulting function on the right-hand side, 350 has been
replaced by 300. Function override is a combination of domain subtraction and
set union, i.e., f �− {a �→ b} is the same as removing the existing mapping for a
from f using domain subtraction and adding the updated mapping using union:

f �− {a �→ b} = ({a} �− f) ∪ {a �→ b}
More generally, the second argument for function override is itself a function,
f �−g, rather than just a singleton mapping f �−{a �→ b}. The general definition
also uses domain subtraction and set union as shown in the following table:

Name Expression Definition

Function override f �− g (dom(g) �− f) ∪ g

The specification of the event for depositing money in an account, Increase-
Balance, uses function override to update the value of balance:

IncreaseBalance =̂
any a,m where

grd1: a ∈ account
grd2: m > 0

then
act1: balance := balance �− {a �→ balance(a) + m}

end

Here m is the amount to be deposited in account a. We require m to be greater
than zero since adding zero would seem rather pointless (grd2). In act1 the
balance of account a is updated to the value balance(a) + m.

It is worth noting the difference between extending a function using union
and updating a function using function override. Function extension is used when
adding a new value to the domain, e.g., expanding the domain of balance when
creating an account. Function override is used when modifying the range value
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associated with an existing domain element, e.g., modifying the balance of an
existing account when depositing money.

The following rules about function override support mathematical reasoning.
The first rule shows the conditions under which a function override (f�−{x �→ y})
remains a total function. The second rule shows that the result of applying a
function override (f �− {x �→ y}) to domain value w depends on whether w is
the same as or different to x:

Description Rule

Total f ∈ S → T ∧
function x ∈ S ∧ y ∈ T
update ⇒ (f �− {x �→ y}) ∈ S → T

Apply f ∈ S → T ∧ w ∈ S ⇒
function w = x ⇒ (f �− {x �→ y})(w) = y
update w �= x ⇒ (f �− {x �→ y})(w) = f(w)

The shape of action act1 in IncreaseBalance is a common one when updating
functions at a single domain point, i.e., it has the form f := f �− {x �→ E}.
Because update of a function at a single point is a common action in Event-B,
it may be written in a simple syntactic form f(x) := E. This syntactic form is
defined by the following table:

Name Action Definition

Function single assignment f(x) := E f := f �− {x �→ E}

Using this form, the IncreaseBalance event is specified as follows:

IncreaseBalance =̂
any a,m where

grd1: a ∈ account
grd2: m > 0

then
act1: balance(a) := balance(a) + m

end

The DecreaseBalance event is specified in a similar way with the balance
being decreased:
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DecreaseBalance =̂
any a,m where

grd1: a ∈ account
grd2: m > 0
grd3: m ≤ balance(a)

then
act1: balance(a) := balance(a) − m

end

With this event, the amount to be withdrawn should not exceed the current
balance of the account (grd3). This is to ensure that the balance does not go
negative (inv7). Let us reason about this more precisely. Recall that inv7 is a
quantification over accounts as follows:

inv7: ∀a · a ∈ account ⇒ balance(a) ≥ 0

Action act1 of DecreaseBalance is equivalent to assigning an overridden function
to balance and so gives rise to the following modified invariant:

∀a′ · a′ ∈ account ⇒ (balance �− {a �→ balance(a) − m})(a′) ≥ 0 (7)

Note that here we have renamed the quantified variable a to a′. This is to avoid a
name clash with the event parameter a. The Apply Function Update rule shown
above suggests that we reason about (7) by considering two cases: a = a′ and
a �= a′.

In the case that a = a′, (7) is simplified by the Apply Function Update rule
to the following:

∀a′ · a′ ∈ account ∧ a′ = a ⇒ balance(a) − m ≥ 0 (8)

This is equivalent to balance(a) ≥ m which follows from grd3 of DecreaseBal-
ance.

In the case that a �= a′, (7) is simplified to the following:

∀a′ · a′ ∈ account ∧ a′ �= a ⇒ balance(a′) ≥ 0 (9)

This follows from inv7.
Requirement FUN7 requires an event for transferring money from one

account, a, to another account, b. This is specified as follows, and as with the
DecreaseBalance event, requires that the amount to be transferred does not
exceed the balance of the source account a:
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TransferBalance =̂
any a, b,m where

grd1: a ∈ account
grd2: b ∈ account
grd3: a �= b
grd4: m > 0
grd5: m ≤ balance(a)

then
act1: balance := balance �− { a �→ balance(a) − m,

b �→ balance(b) + m }
end

Note that grd3 requires that the source and target accounts are distinct (to
avoid pointless transfers). The action act1 uses function override to update the
two account balances simultaneously. We might be tempted to write the actions
of TransferBalance as two single updates as follows:

act1: balance(a) := balance(a) − m
act2: balance(b) := balance(b) + m

This is syntactically invalid in Event-B as it involves two actions assigning to
the same variable in a single event and so we avoid this form.

We can introduce event parameters representing values local to the event to
increase the readability of the specification of TransferBalance:

TransferBalance =̂
any a, b,m, na, nb where

grd1: a ∈ account
grd2: b ∈ account
grd3: a �= b
grd4: m > 0
grd5: m ≤ balance(a)
grd6: na = balance(a) − m
grd7: nb = balance(b) + m

then
act1: balance := balance �− { a �→ na, b �→ nb }

end

Here na and nb represent the new balances of a and b respectively whose values
are defined by grd6 and grd7.

Events to update the name or address of a customer can also be specified
using function override. We leave these to the reader. The requirements do not
explicitly mention queries on the bank data such as the balance of an account
or the customers associated with an account. We leave these for the reader to
specify.
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11 Model Validation Through Animation

A very useful validation technique for Event-B models is to use an animation
tool such as ProB [4] or AnimB2. With these tools, the carrier sets are instan-
tiated with some illustrative values, e.g., the carrier set USER is instantiated
with the values u1, u2, u3, and the model can be executed with these values. The
execution is driven by the modeller and at each step the state can be inspected.
For the purposes of animating our access control model, let us assume that the
carrier set USER is instantiated with the values u1, u2, u3 and that BUILD-
ING is instantiated with the values b1, b2, b3. Figure 18 represents the state that
is reached by executing the following sequence of events on our model of the
building access control system:

initialisation
RegisterBuilding(b1)
RegisterBuilding(b2)
RegisterUser(u1)
AddPermission(u1, b1)
EnterBuilding(u1, b1)

Figure 18 shows the values of the sets user and building and the relations permis-
sion and location as tables. The user and building tables show that there is one
registered user and two registered buildings. The permission table shows that
u1 has permission to enter b1 while the location table shows that u1 is located in
building b1. These values for the variables are what we would expect to see after
execution of the given sequence of events. Figure 18 also shows the events that
are enabled in the reached state. We see that two more users (u2, u3) and one
more building (b3) can be registered. At the bottom of the list of enabled events
we see that user u1 may leave building b1. We can see that the EnterBuilding
event is not in the list of enabled events. This is as expected since the only

u1

user

b1, b2

building

u1 b1

permission

u1 b1

location

Enabled Events

RegisterUser(u2), RegisterUser(u3)

DeRegisterUser(u1)

RegisterBuilding(b3)

DeRegisterBuilding(b1), DeRegisterBuilding(b2)

AddPermission(u1, b2)

RemovePermissions(u1)

ExitBuilding(u1)

Fig. 18. Result of animating model through first sequence of events

2 www.animb.org.

www.animb.org
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registered user, u1, is currently in building b1 and there is no means to directly
enter one building from another.

The value of the animation is that it helps us make human judgements about
whether the behaviour specified by the model is what we would expect given the
informal requirements. In this case we can make a judgement that the values of
the tables correspond to what we would expect after the given sequence of event
executions is performed. Inspecting the enabled events allows to check that the
guards of the events are sufficiently strong, e.g., the fact that EnterBuilding is
not in the list of enabled events in Fig. 18 helps us to validate the guards specified
for that event.

The event sequence above registers two buildings and one user. Here is a
second event sequence that continues from the first, adding a second user u2,
giving that user permissions, entering u2 in building b2 and exiting user u1:

RegisterUser(u2)
AddPermission(u2, b1)
AddPermission(u2, b2)
EnterBuilding(u2, b2)
ExitBuilding(u1)

The state resulting from continuing from the state of Fig. 18 is shown in Fig. 19.
In this figure, u2 has been added to user, two rows have been added to permission
and the location table has been updated. We see that an animation tool allows
us to execute sequences of events on sample data values and inspect the effect
of these on a representation of the state of a machine and on the enabledness of
events.

u1, u2

user

b1, b2

building

u1 b1

u2 b1

u2 b2

permission

u2 b2

location

Enabled Events

RegisterUser(u3)

DeRegisterUser(u1), DeRegisterUser(u2)

RegisterBuilding(b3)

DeRegisterBuilding(b1), DeRegisterBuilding(b2)

AddPermission(u1, b2)

RemovePermissions(u1), RemovePermissions(u2)

EnterBuilding(u1, b1)

ExitBuilding(u2)

Fig. 19. Result of animating model through second sequence of events
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12 Model Verification

Manual inspection of the tables in Figs. 18 and 19 shows that they both repre-
sent states satisfying invariants inv1 to inv5. However, rather than using manual
inspection to check for satisfaction of invariants, model verification can be used
to do this in a systematic and automated way. Model verification involves making
mathematical judgements about the model. The main mathematical judgement
we apply to the abstract model is to determine whether the invariants are guaran-
teed to be maintained by the events. Mathematical judgements are formulated
as proof obligations (PO). These are mathematical theorems whose proof we
attempt to discharge using a deductive proof system. In the Rodin toolset [5] for
Event-B, mechanical proof of POs may be complemented by the use of the ProB
model checker which searches for invariant violations by exploring the reachable
states of a model.

Previously we argued that the RemovePermissions1 event could violate the
permission inclusion invariant (inv5). Let us see how this plays out in animation
of the model. Consider the state of the access control system shown in Fig. 19.
As already explained, this state is reachable by executing a particular sequence
of events. In this state, u2 is in building b2 and has permission to be there.
Now if the next event to be performed was RemovePermissions1(u2), the state
reached would be as shown in Fig. 20. This new state is an incorrect state, that
is, it violates the permission inclusion invariant since user u2 is still in building
b2 even though u2 not longer has permission to be there. Indeed, ProB can
automatically find a sequence of events that lead to an invariant violation (known
as a counterexample). The counterexample that leads to the state in Fig. 20 is
not the shortest possible counterexample. ProB can automatically find a shorter
counterexample that leads to violation of the permission inclusion invariant such
as the following:

initialisation
RegisterBuilding(b1)
RegisterUser(u1)
AddPermission(u1, b1)
EnterBuilding(u1, b1)
RemovePermissions1(u1)

We look at how the error is reflected in the proof obligation (PO) for invari-
ant preservation. Figure 21 shows a definition of this PO. The left side of the
figure provides a schematic specification of an event E with a guard represented
by G(p, v) and an action represented by F (p, v). Here p represents the event
parameters and v represents the variables on the machine on which the event

u1, u2

user

b1, b2

building

u1 b1

permission

u2 b2

location

Fig. 20. Incorrect state reached when RemovePermissions1(u2) is applied to state in
Fig. 19
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operates. We write G(p, v) to indicate that p and v are free variables of the
predicate G. Assuming that I(v) represents a invariant of the machine, the right
hand side of Fig. 21 shows the PO used to prove that the invariant is maintained
by event E. The PO is in the form of a list of hypotheses and a goal. The PO
is discharged by proving that the goal is true assuming that the hypotheses are
true. In this case, the hypotheses are the invariant itself (Hyp1) and the guard of
the event (Hyp2). The goal is the invariant with the free occurrences of variable
v replaced by F (p, v), the value assigned to v by the action of the event.

E ˆ
any p where

@grd G(p, v)
then

@act v := F (p, v)
end

Invariant Preservation PO:

Hyp1 : I(v)

Hyp2 : G(p, v)

Goal : I( F (p, v) )

=

Fig. 21. Invariant preservation proof obligation for an event

The Rodin tool for Event-B generates the invariant preservation POs for all
of the events of the access control model and the automated provers of Rodin
are able to discharge all of the generated POs except for one: the specification
of the RemovePermissions1 event together with invariant inv5 give rise to the
following PO that cannot be proved:

Hyp1 : location ⊆ permission

Hyp2 : u ∈ user

Goal : location ⊆ {u} �− permission

Here, Hyp1 is the invariant to be preserved and Hyp2 is the guard of the event.
The event makes an assignment to the permission variable and thus the goal
is formed by substituting permission by {u} �− permission. The result of the
substitution is underlined in the goal. The problem here is that the right-hand
side of the set inequality in the goal, {u} �− permission, is reduced compared
with that in the hypothesis, Hyp1, while the left-had side, location, remains
unchanged (as discussed in Sect. 8.4).

To address this problem with the RemovePermissions1 event, we provided
two alternative specifications of permission removal. For example, the specifi-
cation of the RemovePermissions3 event together with inv5 gives rise to the
following PO that can be proved beause of the additional hypothesis provided
by the additional guard:
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Hyp1 : location ⊆ permission

Hyp2a : u ∈ user

Hyp2b : u �∈ dom(location)
Goal : location ⊆ {u} �− permission

The counterexample generated by the ProB model checker highlighted a
problem with the specification of the RemovePermissions1 event. This stronger
condition for removing permission was identified through our attempt to prove
that the original specification of the event maintained the permission inclu-
sion invariant, leading to RemovePermission3. It is appropriate that we make a
(human) judgement about the validity of this stronger specification of removing
authorisation. Is it a reasonable constraint? Well, if we expect the access control
policy to hold always, we have no choice: without the stronger guard, the event
cannot maintain the permission inclusion invariant. We could remove the invari-
ant completely from the model but that seems like an unsatisfactory solution
since it would mean we were not addressing the main purpose of access control
in our formalisation and would undermine what we can reasonably state in our
requirements. For the purposes of this paper, we make the judgement that the
invariant should stay and thus the revised version of the event, RemovePermis-
sion3, with the stronger guards holds.

13 Further Reading

Refinement is a key concept in Event-B and is used for structuring complex spec-
ifications and for relating abstract models with more concrete, implementation-
oriented models. We have not covered refinement in this paper because of space
limitations. For a comprehensive introduction to modelling, refinement and proof
in Event-B see Abrial’s book on the topic [1]. For an overview of the role and
practice of refinement in Event-B see [6]. Event-B evolved from the B Method
which was also developed by Abrial [7]. The B Method was developed to model
and reason about software systems and has module structuring mechanisms sim-
ilar to modular programming languages. Event-B was designed to reason about
systems that may include hardware and physical components as well as software.
Some component-based structuring mechanisms for Event-B are described in [8].

In Sect. 4.6 we saw that the choice of value for a parameter is treated as
nondeterministic: any value that satisfies the guards may be chosen. In Event-B,
it is also possible to specify nondeterministic actions of the following form [1]:

v := v′ | P (v, v′)

Here P (v, v′) is a predicate that describes a relation between the before and
after values of variable v. The nondeterministic action states that v should be
assigned a new value v′ such that P (v, v′) holds. For example, assuming that x is
an integer variable, then the following action increases x by a nondeterministic
amount:
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x := x′ | x < x′

Nondeterministic actions have a feasibility proof obligation which requires that
there exists some value v′ satisfying P (v, v′) when the invariant and event guards
hold [1]. In this paper, we only made use of deterministic actions and used
the choice of parameter values to represent nondeterminism within an event.
Our reason for using this style is that it allows the nondeterministically chosen
value to be available across all of the actions of an event. For example, in the
RegisterUser2 event in Sect. 4.5, the parameter u is used in both actions so that
the same nondeterministically chosen value for u is added to register and to
out.

The mathematical language of Event-B (logic and set theory) is similar to the
mathematical language of the B Method. These in turn were influenced by the
Z notation [9] and VDM [10]. The use of class diagrams to aid the construction
of Event-B models, as used in this paper, was inspired by the UML-B notation
which provides a graphical syntax for parts of Event-B [11].

For more information on the Rodin tool see [5]. The Rodin tool can be down-
loaded via the Event-B.org3 website which also contains a Rodin User Manual4.
The Atelier B tool5 supports the B Method. For details of the ProB tool see [4]
and the ProB website6. ProB is available as a plug-in for Rodin as is the AnimB
tool7.

14 Concluding

This paper provided an overview of how the Event-B language and verification
method can be used to model and reason about system behaviour. Reasoning
about the system is not just about proving invariant properties. Several different
forms of reasoning were deployed in addition to mathematical reasoning: iden-
tification of the main purpose of a system, abstraction from design details in
requirements, identification of the various entities in the system and their rela-
tionships – all of these are forms of reasoning. Constructing the formal model
based on the requirements is another form of reasoning as is validation of the
model against the requirements through human judgement. All these forms of
reasoning complement each other in helping us to understand the purpose of a
system and the constraints on the system.

Event-B encourages us to identify the main entities of the problem under con-
sideration and the relationships between those entities. It also encourages us to
identify what properties should always hold (invariants), under what conditions
system transitions are allowed (guards) and the effect of those transitions on

3 www.event-b.org.
4 www3.hhu.de/stups/handbook/rodin/current/html/index.html.
5 www.atelierb.eu/en/outil-atelier-b/.
6 www3.hhu.de/stups/prob/index.php/The ProB Animator and Model Checker.
7 www.animb.org.

www.event-b.org
www3.hhu.de/stups/handbook/rodin/current/html/index.html
www.atelierb.eu/en/outil-atelier-b/
www3.hhu.de/stups/prob/index.php/The_ProB_Animator_and_Model_Checker
www.animb.org
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the system state (actions). We have seen how the mathematical structures cho-
sen can encourage us to identify different kinds of events such as set expansion
events, set reduction events and query events.

This paper emphasised mathematical reasoning as this is a particular
strength of a specification language such as Event-B. The paper presented defi-
nitions and rules in order to help the reader gain a strong understanding of the
mathematical operators and their properties. Understanding the properties of
the mathematical operators helps ensure that we are choosing the appropriate
operators in order to specify an intended effect. It allows us to check that the
mathematics is being used in an appropriate way, both from a validation point
of view (is the specification meeting the requirements?) and a correctness point
of view (is the specification maintaining invariants?).

Many of the invariants used in this paper were in the form of equations
(E = F ) and inclusions (E ⊆ F ). Typically the actions of an event modify one
or both sides of an equation or inclusion. We used two main ways of preserving
the equations and inclusions: either adding sufficient actions to ensure both sides
of an equation or inclusion are modified in similar ways or using guards and
properties of the operators to verify that modifying only one side still preserves
the equation or inclusion.

We quoted Boehm’s First Law in the introduction. Let us quote Boehm’s
Second Law [2] in the conclusion:

Boehm’s Second Law: Prototyping significantly reduces requirements
and design errors, especially for user errors.

We would argue that a formal model in a language such as Event-B acts as a
form of early prototype allowing us to uncover and fix errors in requirements. Of
course, while formal modelling addresses the key concepts in the problem being
solved by a software system, it does not deal with the important issue of user
interfaces (which can cause the user errors referred to in Boehm’s Second Law); a
software prototype remains an important tool in uncovering requirements on user
interfaces. Formal modelling and reasoning help to uncover conceptual errors in
requirements while software prototypes help uncover user interface errors.

We conclude by summarising some key messages:

– The role of problem abstraction and formal modelling is to increase under-
standing of a problem leading to good quality requirements and design docu-
ments with low error rates.

– The role of model validation is to ensure that formal models adequately rep-
resent the intended behaviour of a system.

– The role of model verification is to improve the quality of models through
formulation of invariants and reasoning about those invariants, including rec-
tifying specifications where appropriate.
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Abstract. Safety-Critical Java (SCJ) is an Open Group standard that
defines a novel version of Java suitable for programming systems with
various levels of criticality. SCJ enables real-time programming and cer-
tification of safety-critical applications. This tutorial presents SCJ and
an associated verification technique to prove correctness of programs
based on refinement. For modelling, we use the Circus family of notations,
which combine Z, CSP, Timed CSP, and object orientation. The tech-
nique caters for the specification of functional and timing requirements,
and establishes the correctness of designs based on architectures that
use the structure of missions and event handlers of SCJ. It also considers
the integrated refinement of value-based specifications into class-based
designs using SCJ scoped memory areas. As an example, we use an SCJ
implementation of a widely used leadership-election protocol.

1 Introduction

Java needs no introductions: it has a wide base of programmers, an impressive
collection of libraries, and continues to evolve with the backing of a very large
number of companies. However, it lacks effective support for real-time application
development, in particular it has poor facilities for real-time scheduling and
unpredictable memory management. This has led to the creation of the Real-
Time Specification for Java (RTSJ) [47], which augments the Java platform
to provide a real-time virtual machine and support preemptive priority-based
scheduling and a complementary region-based memory management mechanism.

Java augmented by the RTSJ provides a comprehensive set of facilities suit-
able for a wide range of real-time applications. Safety-critical applications, how-
ever, require the use of a controlled engineering approach, to ensure reliability,
robustness, maintainability, and traceability. Many of them also require certifi-
cation based on standards before they can be deployed. For these reasons, it is
common to reduce complexity (and with it flexibility) via the adoption of lan-
guage subsets. Examples are SPARK Ada [3] and MISRA C [37]. In this context,
RTSJ is far too rich: it includes the whole of Java, and more.

SCJ has been designed under the Java Community Process: JSR 302. It
defines a minimal set of capabilities required for safety-critical applications
using Java implementations. As a result of this effort, we have an SCJ speci-
fication, a reference implementation, and a technology compatibility kit, which
contains benchmark examples used to confirm that a particular implementation
c© Springer International Publishing AG 2017
J.P. Bowen et al. (Eds.): SETSS 2016, LNCS 10215, pp. 110–150, 2017.
DOI: 10.1007/978-3-319-56841-6 4



Java in the Safety-Critical Domain 111

is compatible with the SCJ specification. The goal is to support certification
under, for example, the DO-178 [42]. Nothing is said, however, about design
techniques.

As opposed to the RTSJ, SCJ enforces a constrained execution model based
on missions, event handlers, and memory areas [46]. SCJ restricts the RTSJ.
It prohibits use of the heap and defines a policy for the use of memory areas,
which are cleared at specific points of the program flow to avoid the unpredictable
garbage collection of the heap. The SCJ design is organised in Levels (0, 1, and
2), with a decreasing amount of restrictions to the execution model.

In this tutorial, we give a detailed description of SCJ and its programming
and memory models. For illustration, we use a Level 1 implementation of a
leadership-election protocol, which is widely used for coordination of distributed
systems. SCJ Level 1 corresponds roughly to the Ravenscar profile for Ada [6].

We also present here a technique for verification by refinement of SCJ Level 1
programs [12]. It uses the Circus family of notations [10], which combine con-
structs from Z [49] for data modelling, CSP [40] for behavioural specification,
and standard imperative commands from Morgan’s refinement calculus [34]. We
cover Circus Time [45], with facilities for time modelling from Timed CSP [39],
and OhCircus [11], based on the Java model of object-orientation. This tutorial
gives an overview of Circus and its constructs relevant for modelling SCJ designs.

Our technique is based on the stepwise development of SCJ programs based
on specification models that do not consider the details of either the SCJ mission
or memory models. Development proceeds by model transformation justified by
the application of algebraic laws that guarantee that the transformed model
is a refinement of the original model. Before, presenting the SCJ refinement
technique, we give an overview of algebraic refinement.

The verification technique is a refinement strategy: a procedure for appli-
cation of algebraic refinement laws. Four Circus specifications characterise the
major development steps: we call them anchors, as they identify the (interme-
diate) targets for model transformation and the design aspects treated in each
step of development. Each anchor is written using a different combination of the
Circus family of notations. The first anchor is the abstract specification written
in Circus Time. The last is written in SCJ-Circus; it is so close to an SCJ program
as to enable automatic code generation. This tutorial describes this technique
using the verification of the leadership-election protocol as an example.

Next, we present the notations used in our work, namely, SCJ, in Sect. 2, and
Circus, in Sect. 3. Algebraic refinement is the subject of Sect. 4. Finally, Sect. 5
presents our refinement strategy. We draw some conclusions, where we identify
open problems on refinement for SCJ, in Sect. 6.

2 Safety-Critical Java

This section provides an introduction to the Safety-Critical Java programming
model and gives an example of a simple program that can control several robots.
The robots are shown in Fig. 1 and they perform a coordinated dance. One of
them is elected the leader robot and initiates the dance routine. The others are
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Fig. 1. Dancing robots

followers and perform the actions indicated by the leader. During the dance,
robots can fail and, if necessary, a new leader can be elected. An identical SCJ
program runs on each robot. We present the overall architecture of the applica-
tion and then focus on the details of the election algorithm.

An SCJ program is executed under the auspices of an SCJ virtual machine,
which provides core Java services and an infrastructure to manage the life-cycle
of safety-critical applications. The core services are those typically provided by
a standard Java virtual machine and include support for bytecode execution and
memory management. The infrastructure is provided in a Java extension library
named javax.safetycritical. It supports the main programming abstractions
defined by SCJ and requires specialised support from the core services, not found
in standard Java virtual machines. Typically, an SCJ virtual machine is hosted
on a high-integrity operating system (such as Green Hills Integrity real-time
operating system), as illustrated in Fig. 2.

Fig. 2. Safety-critical Java: VM and infrastructure (Color figure online)

In order to understand the SCJ programming model, there are three
main topic areas that must be mastered:

1. applications, missions and mission sequencers;
2. concurrency and scheduling; and
3. memory management.
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These topics are covered in the next three sections. Throughout, we use the
robot leadership-election application as an illustrative example.

2.1 Applications, Missions and Mission Sequencers

An SCJ program is started by invoking the SCJ virtual machine with a parameter
that identifies the application’s main program. This is called a safelet in SCJ, as
it is analogous to an applet in which Java code executes in a constrained web-
browser environment. The SCJ infrastructure defines the interface to a safelet,
and the application must provide a class that implements this interface.

The application itself consists of the execution of a sequence of missions,
where a mission represents an application’s activity that must be completed.
For example, a program that controls the flight of an aircraft might have three
main missions: one that manages the take-off activity, one that maintains the
flight at its cruising altitude, and one that oversees the landing procedures.

In our robot application, there are two missions. During the first mission a
leader is elected. Once the election is completed, the robots perform their dance
mission. If a failure occurs, the robots return to the election mission.

As illustrated in Fig. 3, each mission has three phases of operation:

Fig. 3. Safety-critical application phases [29]

1. Initialization – during which the resources needed to complete the mission
are acquired and initialised. In our robot application, the initialisation of the
election mission acquires access to a wireless network and establishes links
with the other robots.

2. Execution – during which the activity of the mission is performed: it starts
after the initialization phase has been completed. In our robot application, the
execution phase of the election mission implements a communication protocol
to elect a new leader robot.

3. Cleanup – starts after completion of the execution phase, and is responsi-
ble for returning any resources and performing any other needed finalization
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code. In our robot application, all resources are returned automatically to the
operating system when the program terminates. Hence, there is no explicit
application cleanup code.

The order of execution of missions is controlled by an application-defined mission
sequencer as also illustrated in Fig. 3.

Hence, the Safelet interface contains the following two methods:

1 package javax.safetycritical;
2
3 public interface Safelet<M extends Mission<M>> {
4 public void initializeApplication();
5 public MissionSequencer<M> getSequencer();
6 ...
7 }

The initializeApplication method is called by the SCJ infrastructure after
the SCJ virtual machine has been initialised. Following this, it calls the
getSequencer method to obtain the application mission sequencer that will
oversee the sequence of execution of the missions.

As mentioned in the previous section, SCJ has three compliance levels. The
SCJ uses Java generics to ensure that a mission sequencer and its missions have
been designed for the same compliance level and are type safe.

The structure of the code for the robots example is shown below:

1 import javax.safetycritical.∗;
2
3 class RobotApp implements Safelet<RobotMission> {
4
5 @Override
6 public MissionSequencer<RobotMission> getSequencer() {
7 return new RobotSequencer(...);
8 }
9

10 @Override
11 public void initializeApplication() {
12 ...
13 }
14 }
All missions that are scheduled by an application must have a common super-
class. In the robots example, this is called RobotMission and appears as the
generic parameter at line 2. The getSequencer method at line 5 now can only
return a mission sequencer that schedules missions of type RobotMission.

For this tutorial, we ignore a mission sequencer’s parameters and just con-
sider one of its main methods: getNextMission on line 10 below. This method
is called by the infrastructure to select the initial mission to execute, and subse-
quently, each time a mission terminates, in order to determine the next mission
to execute.
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1 package javax.safetycritical;
2
3 public abstract class MissionSequencer<M extends Mission<M>>
4 extends ManagedEventHandler {
5
6 /∗∗ Construct a MissionSequencer object to oversee
7 ∗ a sequence of mission executions
8 ∗/
9 public MissionSequencer(...) {

10 ...
11 }
12
13 protected abstract M getNextMission() {
14 ...
15 }
16 ...
17 }

A mission sequencer is an asynchronous event handler (ASEH): it executes in
its own thread of control. This is considered in depth in Sect. 2.2.

The structure of the robot mission sequencer can now be given:

1 import javax.safetycritical.∗;
2
3 class RobotSequencer extends MissionSequencer<RobotMission> {
4
5 private Mission mission;
6 private boolean electing = true;
7
8 public RobotSequencer(...) {
9 super(...); . . .

10 }
11
12 @Override
13 public Mission getNextMission() {
14 if (electing) {
15 return new ElectionMission();
16 } else {
17 return new DanceMission();
18 }
19 }
20
21 }

The boolean variable electing on line 4 indicates whether a new leader needs
to be elected. If it has value true, then the method getNextMission in line 12
returns a mission to perform this task: an instance of ElectionMission.
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The Mission class encapsulates the direct infrastructure support for an SCJ
mission; its main methods are shown below. The application extends this class
and overrides its initialize and cleanUp methods.

1 package javax.safetycritical;
2 public abstract class Mission<M extends Mission<M>> {
3 public Mission() {}
4
5 protected abstract void initialize();
6 protected boolean cleanUp() {...}
7
8 /∗ Request that this mission be terminated ∗/
9 public final boolean requestTermination() {...}

10
11 /∗ Is there an outstanding termination request for this mission ∗/
12 public final boolean terminationPending() {...}
13
14 /∗ Obtain the controlling sequencer ∗/
15 public MissionSequencer<M> getSequencer() {...}
16
17 /∗ Obtain the current mission.∗/
18 public static <M extends Mission<M>> M getMission() {...}
19 }
A typical implementation of initialize instantiates and registers all the ASEHs
that constitute the Mission. Besides, initialize may also instantiate and ini-
tialise mission-level data structures. The infrastructure ensures that ASEHs
can only be instantiated and registered during the initialize method. The
infrastructure also arranges to begin executing the registered ASEHs associated
with a particular Mission upon return from its initialize method.

The cleanUp method is called by the infrastructure after all asynchronous
event handlers registered with the mission have terminated.

The requestTermination method is called by the application to initiate
mission termination. When it is called, the infrastructure invokes the method
signalTermination (see Sect. 2.2) on each ASEH registered in the mission.
Additionally, the infrastructure (1) disables all periodic event handlers (PEHs)
associated with this Mission, so that they experience no further releases; (2) dis-
ables all aperiodic event handlers (APEHs), so that no further releases are hon-
oured; (3) clears the pending event (if any) for each event handler (including any
one-shot event handlers), so that the event handler can be effectively shut down
following completion of any event handling that is currently active; (4) waits for
all of the ASEH objects associated with this mission to terminate their execu-
tion; (5) invokes the cleanUp methods for each of the ASEHs associated with
this mission; and (6) invokes the cleanUp method associated with this mission.

In our robot example, the Election and Dance missions have a common
superclass: the RobotMission class sketched below. Irrespective of the mission’s
main functionality, it must manage communication between the robots across
the wireless network. The common initialization code, therefore, creates and
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registers two ASEHs. On line 4 below, the Receiver class is a PEH. Its goal is
to receive communication from the robots.

1 public abstract class RobotMission extends Mission<RobotMission> {
2 ...
3 protected void initialize() {
4 Receiver receiver = new Receiver(...);
5 receiver.register();
6
7 Sender sender = new Sender(...);
8 sender.register();
9 }

10 }

Similarly on line 7, the Sender class is also a PEH. Its goal is to broadcast
communication to the other robots. Both of the robot’s missions extend this
class; for instance, the election mission is given below.

1 class ElectionMission extends RobotMission {
2 @Override
3 protected void initialize() {
4 super();
5 Elector elector = new Elector(...);
6 elector.register();
7 }
8 ...
9 }

ElectionMission creates and registers an additional PEH. Its goal is to use the
state of each robot to determine whether it should be a leader or a follower.

2.2 Concurrency and Scheduling

In general, there are two models for creating concurrent programs. The first is a
thread-based model in which each concurrent entity is represented by a thread
of control. The second is an event-based model, where an event handler executes
in direct response to the firing of its associated event. The RTSJ, upon which
SCJ is based, supports a rich concurrency model allowing real-time threads and
asynchronous events. The SCJ Level 1 concurrency model simplifies this and
relies exclusively on asynchronous event handling.

An ASEH executes in response to invocation requests (known as release
events); the resulting execution of the associated logic is a release. Release
requests are categorised as follows: periodic, sporadic, or aperiodic. If Ri denote
the time at which an ASEH has had the i th release event occur, then:

1. an ASEH is periodic when there exists a value T > 0 such that, for all i ,
Ri+1 − Ri = T , where T is called the period;

2. an ASEH that is not periodic is said to be aperiodic; and
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3. an aperiodic ASEH is said to be sporadic when there is a known value T > 0
such that for all i , Ri+1 −Ri ≥ T . T is then called the minimum interarrival
time (MIT).

PEHs are timed triggered in SCJ, which means that they are indirectly released
via the passage of time (using a real-time clock). APEHs and sporadic (SEH)
handlers can be both timed triggered or released directly from application code.

SCJ specifies a set of constraints on the RTSJ concurrency model. This con-
strained model is enforced by defining a new set of classes, all of which are
implementable using the concurrency constructs defined by the RTSJ. As an
example, the following shows the class for a PEH. This class permits the auto-
matic periodic execution of code. The handleAsyncEvent method behaves as
if the handler were attached to a periodic timer. This method is executed once
for every release. The class is abstract; non-abstract sub-classes must override
handleAsyncEvent and may override the default cleanUp method.

1 package javax.safetycritical;
2
3 public abstract class PeriodicEventHandler extends ManagedEventHandler
4 {
5 /∗ Constructs a periodic event handler.
6 ∗ priority: specifies the priority parameters for this periodic event handler.
7 ∗ release: specifies the periodic release parameters, in particular the
8 ∗ start time, period and deadline miss handler.
9 ∗/

10 public PeriodicEventHandler(PriorityParameters priority,
11 PeriodicParameters release, ...) {...}
12
13 /∗ Applications override this method to provide
14 the code to be executed on each release ∗/
15 public void handleAsyncEvent() {...}
16
17 /∗ Register this handler with its mission ∗/
18 public void register() {...}
19
20 /∗ Called by the infrastructure during the mission cleanup phase ∗
21 public void cleanUp() {...}
22
23 /∗ Called by the infrastructure to indicate that the enclosing mission
24 ∗ has been instructed to terminate. SS∗/
25 public void signalTermination() {...}
26 }
The SCJ supports communication between ASEHs using shared variables, and so
requires support for synchronisation and priority-inversion management proto-
cols. On multiprocessor platforms, it is assumed that all processors can access all
shared data and resources, although not necessarily with uniform access times.
SCJ requires implementations to support priority-ceiling emulation, a particular
protocol that allows the synchronisation to be analysed for its timing properties.
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Scheduling in SCJ is performed in the context of a scheduling allocation
domain. The scheduling allocation domain of an ASEH consists of the set of
processors on which that schedulable object may be executed. Each ASEH can
be scheduled for execution in only one scheduling allocation domain. At Level 1,
multiple allocation domains may be supported, but each domain must consist of
a single processor. Hence, from a scheduling perspective, a Level 1 system is a
fully partitioned system. Within a scheduling allocation domain, multiple ASEHs
are scheduled for execution in priority order using a priority-based scheduler. If
ASEHs have the same priority, then they are scheduled in a FIFO order, that
is, the order in which they become schedulable.

In the robot example, there are several PEHs in each mission. Two handlers
are responsible for robot-to-robot communication in each mission. The other
ones focus on the main activity of the mission (electing a leader, detecting a
change in leadership, and performing the dance). The full software architecture
of the program is illustrated in Fig. 4.

Fig. 4. The architecture of the robots safety-critical application

For small embedded systems, it is often required that we optimise the solution
in order to reduce the scheduling overheads. One possibility is to combine the
PEHs responsible for communication into one handler. The Elector can then be
transformed into an APEH which is released on successful receipt of one round
of communication. This is illustrated in Fig. 5.

2.3 Memory Management

In standard Java all objects are allocated on a heap. Traditionally, dynamic
memory allocation and the resulting heap management (garbage collection) has
been vetoed by the authorities who certify safety-critical systems on the grounds

Fig. 5. Optimised architecture of the election mission
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that it is too unpredictable. For this reason, the RTSJ introduces the notion of
a memory area; this is a chunk of memory from where the memory for object
allocation is taken. The Java heap is an example of a memory area.

The RTSJ supports two additional types of memory areas: immortal and
scoped memory. Every object allocation is performed with an allocation context.
It can change dynamically by a thread of control entering into and exiting from
a memory area. The current allocation context at the time an object allocation
is requested determines which memory area its space comes from.

Objects created in immortal memory are never collected: once created they
exist for the lifetime of the application. Objects in scoped memory areas are
automatically freed when no thread of control has an active allocation context
for that memory area, that is, it has entered but not exited that memory area.

SCJ constrains the memory model of RTSJ by not allowing the heap memory
area. It also distinguishes between scoped memory areas that can be entered by
multiple ASEHs (called mission memory) and those that are private to an ASEH
(called private memory). Each mission has a single mission memory. Each ASEH
has a single private memory area (called per-release memory area), which is
entered into automatically when the ASEH is released and exited automatically
(and hence has all its objects collected) when the release completes. Each ASEH
may also have nested private memories for ephemeral objects. All objects stored
in mission memory are collected at the end of each mission.

In addition, all ASEHs have a thread stack where they can store references
to objects created in the various memory areas. Figure 6 illustrates the memory
hierarchy of an SCJ program. In order to maintain the referential integrity of all
objects in SCJ programs, a reference to an object A cannot be assigned in a field
of an object B if object A’s lifetime is less than object B’s lifetime. If allowed,
object A could disappear and leave object B with a dangling pointer.

In our robot example, the system state is stored in immortal memory, data
that must be communicated between handlers is stored in mission memory, and
all other data is stored in private memory areas or on the handlers stack. This
is a typical data design for valid and efficient SCJ programs.

2.4 The Election Details

For the election, each robot has the following associated information:

– Id: this uniquely identifies the robot and its IP address;
– Petition: a unique ranking among the robots that indicates how badly the

robot wants to be the leader. The robot with the highest petition that is
online is elected the leader;

– Status: an indication of whether the robot is the leader, a follower or
undecided.

The application maintains in immortal memory an array with this information;
it has one position for each robot. The array includes a logical timestamp that
indicates the freshness of the state of the information received. The timestamp
is incremented by the Elector and Detector handlers in every period.
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Fig. 6. Memory hierarchy of an SCJ program

The Sender PEH broadcasts its robot’s state every 500 ms. The Receiver
PEH receives as many messages as are available every 500 ms. The Elector
reviews the global state each 3000 ms and decides whether its robot should elect
itself as leader or become a follower. When the global state shows that all robots
have decided and that there is only one leader, the mission terminates, and the
Dancing mission is executed. During this mission, the Detector continues to
monitor the global state every 3000 ms. If the status quo is changed, then the
Dance mission terminates and a new Election mission is executed. The Dancer
PEH sends and receives dancing commands every 3000 ms depending on whether
it is the leader or the follower.

The full code for the leadership-election example that is presented here is
at www.cs.york.ac.uk/circus/hijac/code/LeaderElectionPaper.zip. The pseudo
code shown Fig. 7 summarises the overall optimized approach.

Essentially there are two parallel activities (the Communicator – lines 4–9
and the Elector – lines 9–19). The Communicator is responsible for periodically
sending out a robot’s state to its neighbouring robots, and then acquiring their
current states. The Elector is aperiodic and is released after the Communicator has
acquired all its neighbours states. It analyses the global state and if a leader has
been globally agreed, it requests termination of the current mission. Otherwise,
if its petition is the highest among all the robots, then it makes a claim to be
the leader, or then it settles for being a follower.

In the next section, we present a formal specification for the robot application.
We develop the optimized approach.

www.cs.york.ac.uk/circus/hijac/code/LeaderElectionPaper.zip
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Fig. 7. Pseudo-code for the optimised leadership-election algorithm

3 Circus

The search for increasing levels of abstraction is a key feature in software engi-
neering, and, particularly, in language design. For example, the concept of class
embeds a notion of an abstract data type and allows a structured modelling
of real-world entities, capturing both their static and dynamic properties. The
notion of process abstracts from low-level control structures, allowing a system
architecture to be decomposed into cooperative and active components.

Despite the complementary nature of constructs for describing data and con-
trol behaviour, most programming languages focus only on one or the other
aspect. Java is no exception: it offers (abstract) classes, interfaces, and packages;
in contrast, only the low-level notion of threads is available. There are excep-
tions like Ada [23], whose design has clearly addressed abstract data and control
behaviour (with packages and tasks), but even so there are several limitations;
for example, a package is not a first-class value.

The design of specification languages has followed a similar trend, with state-
based and property-oriented formalisms concentrating on high-level data con-
structs [5], and process algebras exploring control mechanisms. A current and
active research topic is the integration of notations to achieve the benefits of
both abstract data and control behaviour [20,44]. Circus is one of these inte-
grated notations, whose focus is refinement (to code).

In this section, we present a combination of Z [49] and CSP [41], traditional
languages for data modelling and a process algebra. Their combination in a
language called Circus supports the specification of both data and behavioural
aspects of concurrent systems, and a development technique. Such a combination
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has obvious advantages: Z is good at describing rich information structures using
a predicative style (based on invariants, and pre and postconditions), and CSP is
good at describing behavioural patterns of communication and synchronisation.

In Circus, Z constructs can be combined with executable commands, like
assignments, conditionals, and loops. Reactive behaviour, including communica-
tion, parallelism, and choice, is defined with the use of CSP constructs.

In this section, we give an overview of Circus: we describe the structure of the
Circus models, and explain how Z and CSP are combined. Beforehand, we say a
bit more about Z (Sect. 3.1) and CSP themselves (Sect. 3.2). As an example, we
provide a model of the leadership-election protocol (Sect. 3.3).

3.1 Z

A system specification in Z consists basically of a definition for a state and a
collection of operations. The state is composed by variables representing infor-
mation used and recorded in the system. The operations take inputs and produce
outputs, and possibly update the state. Both the state and the operations are
defined by schemas, which group variable declarations and a predicate.

Example 1. As a very simple example, we consider a system presented in [35]
that calculates the mean of a sequence of numbers. The state of this system has
only one component: the sequence seq of integers input so far.

Calculator
seq : seqZ

The state definition gives it a name, Calculator , and declares its component.
This system has three operations. The first, Init , initialises the state.

Init
Calculator ′

seq ′ = 〈〉

The reference to Calculator indicates that this is an operation over that state. In
an operation definition, we can refer to seq and to seq ′. The former refers to the
value of the state component before the operation, and the latter, to the value
after the operation. The dash decoration on Calculator , however, indicates that
Init , as an initialisation, can refer to seq ′ only. The predicate of Init specifies
that, after the initialisation, the value of seq is the empty sequence.

The second operation, Enter , records an input value in the sequence.
Enter
ΔCalculator
n? : Z

seq ′ = seq�〈n?〉

The Δ in front of Calculator indicates that Enter changes the state. The variable
n? represents an input of Enter : the number to be inserted. The predicate defines



124 A. Cavalcanti et al.

that the new sequence of numbers can be obtained by inserting the input at the
end of the existing sequence; � is the concatenation operator.

The last operation, Mean, calculates the mean of the numbers input so far.

Mean
ΞCalculator
m! : Z

seq �= 〈〉
m! = (Σseq) div (# seq)

The Ξ indicates that Mean does not change the state. The output is repre-
sented by the variable m!. The specification requires that the sequence seq is
non-empty. This is a precondition for this operation: even though Mean can be
executed when this condition is not satisfied, its result is not predictable in such
a situation. If, however, the precondition is satisfied, the specification requires
the output to be the sum of the elements in the sequence divided by its size.
The Σ operator is not directly available in Z, but can be easily specified. �

3.2 CSP

In CSP, a system and its components are modelled by processes that interact
with their environment not via inputs and outputs, like in Z, but via synchro-
nisations that characterise events. These events, however, can model exchange
of data, as well as simple interactions of interest. In the description of a CSP
process, a first element of interest is the set of events in which it can participate;
the definition of an event simply gives it a name.

Example 2. A process that controls a revolving door can be characterised in
terms of the events step-in, revolve, step-out , and stop; the first denotes the
arrival of someone in the area around the door, the second represents the start
of the revolving movement, step-out is the event that captures the exit of a
person from the door area, and, finally, stop occurs when the door stops moving.

In the specification of the door, inputs and outputs are not a concern; the
relevant issue is the form in which the door interacts with the environment: the
people that use the door. Below, we present the definition of processes Door(i),
where i is the number of people already using the door.

If there are no people using the door, the only possible event is for someone to
arrive; afterwards, the door starts revolving, and proceeds to behave as a door
that is being used by one person. In the specification of Door(0), we use the
prefix operator a → P , which gives the unique event a in which the process is
prepared to engage, and a process P that characterises its behaviour afterwards.

Door(0) = step-in → revolve → Door(1)

We use prefixing twice: first, the door is prepared to record the event step-in,
then the only possible event is revolve, before the door behaves as Door(1).
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If there is one person using the door, then either someone else arrives or that
person leaves. We use the choice operator P �Q to specify this behaviour: this
process is prepared to behave as P or Q ; the choice is made by the environment.

Door(1) = step-in → Door(2)� step-out → stop → Door(0)

If the event step-in takes place, then the door behaves as a door used by two
people. If step-out takes place, the only possible event is stop, and then we have
the behaviour of Door(0) again. The definitions of Door(0) and Door(1) are
mutually recursive; the use of recursion is very common in CSP.

Doors with two or more people are similar; for n > 1, Door(n) is below.

Door(n) = step-in → Door(n + 1)� step-out → Door(n − 1)

If someone steps in an door with n people, for n greater than 1, then we have the
behaviour of a door with n + 1 people. If someone steps out, then the behaviour
is that of a door with n − 1 people.

In a big building, we usually have a number of these doors. They work in
parallel, but independently. We define a process entrance with m doors as follows.

Entrance = |||i : 1 . .m •
Door(0)[step-in.i , revolve.i , step-out .i , stop.i/step-in, revolve, step-out , stop]

In this process we have m copies of Door(0) recording events step-in.i , revolve.i ,
step-out .i , stop.i , for i between 1 and m. The set of events of Entrance comprise
all of the m × 4 events: 4 for each of the m doors. The parallel operator � is for
an interleaving composition, where the parallel processes do not interact with
each other. Above we use the iterated form (|||) of this operator.

A polite door contains an additional component: a process that detects that
someone has arrived and welcomes this person with a greeting message. This
Polite process can be specified as follows.

Polite = step-in → welcome → Polite

The extra event welcome signals the play of the greeting. The polite door can
be characterised by the parallel execution of the standard Door(0) and Polite.

PDoor = Door(0)�{step-in}� Polite

In this parallel process (�. . .�), there is interaction between the two components;
they are not independent as in the previous example. Since step-in is an event
of both Door and Polite, they synchronise on this event. Every time someone
steps in, Door(0) and Polite act jointly; from the point of view of PDoor , just
one event occurs. �

As already explained, Circus includes both Z and CSP constructs. We present
Circus next via our running example: the leadership-election protocol.
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3.3 Leadership Election in Circus

A Circus model is formed by a sequence of paragraphs that specify types, con-
stants, functions, and, crucially, processes. Like in CSP, processes define systems
and their components. Their definitions use the types, constants and functions
defined globally, as well Z and CSP constructs.

In our example, we first define two types: DEVICEID and STATUS .

DEVICEID == N

STATUS :: = leader | follower | undecided | off

These types are sets that contain the valid identifiers for devices, and constants
leader , follower , undecided , and off that represent the status of a device. For
simplicity, we define the identifiers of the devices to be natural numbers. We
need to use an ordered set, because the election conditions use the order of the
devices to resolve ties. We could make this more abstract by requiring only a set
of identifiers with a total order, but it is simpler to use the natural numbers.

We also have some global constants. UP LMT is the maximum value for
the petition of a device. P is the period of the protocol. TIMEOUT is how long
a device waits for information from a neighbour before giving up, and marking
it as offline. ID and OD are the input and output deadlines. The set devices
contains all the identifiers of the devices in the network: a subset of DEVICEID .

UP LMT : N
P ,TIMEOUT , ID ,OD : N
devices : PDEVICEID

TIMEOUT ≤ P ∧ ID ≤ P ∧ OD ≤ P ∧ # devices > 0

A constraint ensures that the timeout, input and output deadlines are all less
than or equal to the period P . Moreover, there must be at least one device.

The process that defines the functional requirements of the protocol is called
ABReqsLE . It is introduced below.

processABReqsLE =̂ begin

In its body, the first few paragraphs define the state space.
The state of a device includes its identifier id , status, and petition.

DeviceState
id : DEVICEID
status : STATUS
petition : N

id ∈ devices
petition ≤ UP LMT

Constraints on the type ensure that id is for a device in the network, and the
petition is valid, that is, below the limit defined by UP LMT .



Java in the Safety-Critical Domain 127

To execute the election protocol, a device needs additional information, cap-
tured in records of the type ElectionState. In addition to the state components
in DeviceState described above, ElectionState records the highest petition of a
device claiming to be a leader as well as its identifier: highest and highestid in
the schema, that is, record type, Highest below.

Highest == [highest : N; highestid : DEVICEID ]

The schema ElectionState includes all the components of DeviceState and
Highest . It also records the number nLeaders of leaders in the network, the index
i of the device currently communicating (lines 7–8 in Fig. 7) in a sequence nodes
that records information about individual devices, and a function next that gives
the index (in nodes) of the device considered in the next cycle.

ElectionState
DeviceState
Highest
nLeaders : N
i : N; nodes : seqDeviceState; next : N → N

+

i ∈ domnodes
∀n : N+ • next n = ((n − 1) mod (#nodes)) + 1
devices = {d : rannodes • d .id}
#nodes = # devices
θ DeviceState ∈ rannodes

The invariant states that the index i is an index for nodes. Moreover, the function
next identifies indices of nodes in a way that iterates through this sequence,
circling back to the beginning at the end.

The set devices includes the identifiers in the range of nodes. By requiring
that the size of this set and the size of nodes are equal, we ensure that the range
of nodes does not include two records for the same device identifier. Finally, the
invariant establishes that the current device, identified by a record θ DeviceState,
containing the fields of DeviceState in ElectionState, is also in the range of nodes.

Unlike CSP processes, a Circus process has a state defined by a schema. It
ElectionState that defines the state of the process ABREqsLE being specified.

state st == ElectionState

The next few paragraphs define data operations. Initially, there is no leader, the
highest petition is 0 and the index i is that for the device itself.

InitElectionState
ElectionState ′

nLeaders ′ = 0 ∧ highest ′ = 0 ∧ (nodes ′ i ′).id = id

This means that when all devices are in a network, in the first step of the
protocol, they all broadcast their status to the others.
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When a status valC ? and petition valP? is received from a device whose
identifier is idDev?, we can update the fields of Highest if the device claims to
be a leader and the petition valP? is higher than previously recorded, or if it is
the same and the identifier idDev? is greater than the previous identifier.

UpdateHighest
ΔHighest
idDev? : ID ; valC ? : STATUS ; valP? : N

valC ? = leader
valP? > highest ∨ (valP? = highest ∧ idDev? > highestid)
valP? > highest ⇒ highest ′ = valP? ∧ highestid ′ = idDev?
valP? = highest ⇒ highest ′ = valP? ∧ highestid ′ = idDev?

This operation is partial; it should only be used when an update to highest or
highestid is needed as indicated. This is ensured by its use in UpdateDevice,
shown below, which also modifies the remaining components of ElectionState.

UpdateDevice
ΔElectionState
idDev? : ID ; valC ? : STATUS ; valP? : N

let d == (μ x : rannodes | x .id = idDev? • x ) •
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d .status = leader ∧ valC ? �= leader ∧ nLeaders ′ = nLeaders − 1
∨
d .status �= leader ∧ valC ? = leader ∧ nLeaders ′ = nLeaders + 1
∨
d .status = leader ∧ valC ? = leader ∧ nLeaders ′ = nLeaders
∨
d .status �= leader ∧ valC ? �= leader ∧ nLeaders ′ = nLeaders

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

nodes ′ = nodes ⊕ {(nodes∼ d))�→
〈|id == idDev?, status == valC ?, petition == valP?|〉}

θ DeviceState = θ DeviceState ′ ∧ next ′ = next ∧ i ′ = i
UpdateHighest ∨ [ΞHighest | ¬ (preUpdateHighest)]

UpdateDevice takes the information d on idDev? in nodes using the definite
description operator μ and updates the number of leaders nLeaders depending on
the previous d .status and current value valC ? of its status. It also overrides (⊕)
nodes with the newly received information; with nodes∼d , we get the index of d .
UpdateDevice also leaves the components of DeviceState, the function next and
index i unchanged, and updates the components of Highest using UpdateHighest ,
if necessary, as captured by the precondition preUpdateHighest of this operation.

In a Circus process, the Z data operations can be combined to define actions.
In the definition of actions, we can also use CSP constructs.

The action BReq1 specifies the communications the protocol. It identifies
which device ((nodes i).id) is to be considered (recorded by i). If it is id itself,
it broadcasts its state using the action Broacast .
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BReq1=̂
if(nodes i).id = id −→ Broadcast(id , status, petition)
�(nodes i).id �= id−→

⎛

⎜

⎜

⎝

receive.(nodes i).id?valC ?valP−→
UpdateDevice((nodes i).id , valC , valP)

�
timeout −→ UpdateOff ((nodes i).id)

⎞

⎟

⎟

⎠

;

if status = undecided−→
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

if nLeader > 0 −→ status := follower
�nLeader ≤ 0−→
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

if id = next i−→
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

if
(

(highest = petition ∧ highestid < id) ∨
highest < petition

)

−→
status := leader

�¬
(

(highest = petition ∧ highestid < id) ∨
highest < petition

)

−→
status := follower

fi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�id �= next i −→ status := undecided
fi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

fi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�status = leader−→
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

if nLeader > 0 −→ status := undecided
�nLeader ≤ 0−→
⎛

⎜

⎜

⎝

if id = next i−→
petition := min(UP LMT , petition + 1) ; status := leader

�id �= next i −→ status := leader
fi

⎞

⎟

⎟

⎠

fi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�status = follower−→
⎛

⎝

if nLeader = 0 −→ status := undecided
�nLeader �= 0 −→ status := follower
fi

⎞

⎠

fi
fi

If the device under consideration ((nodes i)) is not id itself, the protocol waits
for information about the device on the channel receive and updates the state
using the operation UpdateDevice shown above, or for a timeout on the channel
timeout , in which case it udpates the state using the action UpdateOff . The CSP
operator � offers an external choice between these actions. The next section
gives a concise overview of basic features of the CSP notation. After updating
the state with the received information, the device decides its own status based
on its previous status (if status = undecided −→ . . .fi). We notice that the
operation UpdateDevice does not change the device’s own state.
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If the device is undecided, its new status depends on the number of leaders.
If there are leaders, it becomes a follower (assignment status := follower), other-
wise, the protocols considers the device next i . If it is id itself, then it compares
its petition to the highest petition and becomes a leader or follower depending on
whether or not its petition (or identifier) is greater than the highest petition (or
identifier) recorded. If the next device is not id , the status remains undecided.

If id ’s status is leader , and there are other leaders (besides itself as nLeaders
only refer to leaders among the neighbours), then it becomes undecided. Other-
wise, it remains a leader and increments its own petition (up to the maximum
UP LMT ) if it is the next device to be considered. Finally, if id is a follower
and there are no leaders, it becomes undecided. Otherwise, it stays a follower.

The actions used in BReq1 above are defined next.

Broadcast =̂ val id : DEVICEID ; status : STATUS ; petition : N •
||| i : devices \ {id} • send .id .i .status.petition −→ skip

Broadcast sends in interleaving (|||) the status and petition of the device to each
of the neighbouring devices using the channel send . These are the devices d in
nodes whose identifier is not id itself. The parameters of send are the identifiers
of the source and target devices, the status and petition values. The protocol
assumes an asynchronous bus, so this communication does not deadlock even if
the target device is unavailable. Since communications in Circus are synchronous,
the model requires the definition of the bus (omitted here).

UpdateOff =̂ val idDev : DEVICEID • var valC : STATUS ; valP : N •
valC , valP := off , 0 ; UpdateDevice

UpdateOff uses the schema operation UpdateDevice to update the state of the
process. It sets the status and petition to off and 0, before updating the state.

As already said, the process ABReqsLE describes the behavioural require-
ments for the protocol on a single device. Its behaviour is defined below by the
main action. It initialises the state using the schema operation InitElectionState
and starts a recursive action (µX • ...X ), which at each step executes the action
BReq1 and updates the index i using the function next .

•InitElectionState ; (µX • BReq1 ; i := next i ; X )
end

The timing requirements are specified in a separate process ATReqsLE shown
below. Its main behaviour is also defined by a recursion, but at each iteration
it offers a choice between receiving information on receive, indicating a timeout
using the channel timeout , or sending information to all neighbours in inter-
leaving through the channel send . The particular values communicated through
these channels are irrelevant here; they are defined in ABReqsLE specified above.
Here, on the other hand, the time in which these events occur is important.

Communications on send and receive must start within OD and ID time
units as defined by the deadline operator �. OD and ID are global constants
previously defined. All communications lead to an action that potentially lets
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time pass until the end of a period P . The Circus statement wait 0 . . (P − t) is a
nondeterministic choice of a delay of 0 up to P − t time units. In the example, t
is the time between the communication being offered and actually taking place.
In each case, that is recorded via the @ operator, like in timeout@t .

processATReqsLE =̂ begin
TReq1 =̂ (TReqCycle � P � waitP) ; TReq1
TReqCycle =̂
(||| i : 1 . . # devices − 1 • (send?x?y?z?w@t −→ wait 0 . . (P − t)) � OD)
�
(receive?x?y?z?w@t −→ wait 0 . . (P − t)) � ID
�
(timeout@t −→ wait 0 . . (P − t)) � P

•TReq1
end

Finally, the overall specification is given by the process LeaderElection.

processLeaderElection=̂
(ABReqsLE �{| send , receive, timeout |}�ATReqsLE ) \ {| timeout |}

It is the parallel composition (�. . .�) of the behavioural and timing processes,
synchronising on the external channels send and receive, and on timeout , which is
hidden (\) and, therefore, internal to LeaderElection. We note that parallelism is
used not to define a parallel architecture for a design, but to define a conjunction
of requirements: the behavioural requirements of ABReqsLE and the timing
requirements of ATReqsLE . Synchronisation ensures that the communications
transmit values as defined in ABReqsLE within the times defined by ATReqsLE .

In Sect. 5, we explain how we can refine this abstract specification of the
leadership-election protocol to obtain a model of an SCJ program. Beforehand,
in the next section, we say more about refinement and the Circus approach.

4 Algebraic Refinement

Circus distinguishes itself in that it is aimed at the (calculational) refinement of
specifications. Besides Z and CSP, Circus also includes specification constructs
usually found in refinement calculi [2,34,36] and Dijkstra’s language of guarded
commands [16], a simple imperative language with nondeterminism. The extra
constructs that we use here are familiar: assignments, conditionals, and so on.

As a refinement language, Circus is a unified programming language, in which
we can write specifications (in a combination of Z, Morgan’s specification state-
ments, and CSP), designs (using choice and concurrency constructs of CSP, for
instance), and programs, and can relate all these kinds of artefacts to each other
via refinement. Data refinement, failures-divergences refinement, and refinement
to code (as a special case of data refinement) can all be carried out using Circus.
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The notion of refinement captures the essence of the daily tasks of software
engineers, who design systems based on their specifications, and programmers,
who implement these designs. In both cases, the main objective is the construc-
tion of systems and programs in accordance with their specifications. The final
product, above all, should be, or has to be, correct.

Refinement is the relationship that holds between a specification and its cor-
rect designs and implementations. Formal methods of program development are
based on this notion, as are all other methods in some way. A formal technique,
however, goes further since refinement of an initial specification to obtain an
acceptable implementation is the primary aim. Acceptability may be judged,
for instance, in terms of performance, but the guarantee provided is that the
specification and the implementation are related by refinement.

In this section, at first we present the classical notions of refinement. Initially,
refinement was extensively studied in the context of sequential programs [4,
26,27], where the concern is the relation between inputs and outputs. It was
identified that there are basically two ways of refining a specification. The first
is the introduction and transformation of programming and control structures,
like assignments, conditions, and loops. This is called algorithmic refinement.

The second form of refinement is related to the data structures used in the
program. Systems may be specified in terms of data types that are appropri-
ate to describe properties of the application domain, without, for example, any
considerations related to efficiency. During design, however, ingenious decisions
usually involve the introduction of data structures that are available in the pro-
gramming language and make the computation tasks easier or faster. The change
of data representation involved in this task is called data refinement [21,24,25].

For an object-oriented language like Java, there are new concerns related
to the presence of classes and their use as data types [28]. Refining a class
is very much like refining a data structure in a traditional imperative setting.
Nevertheless, due to the presence of, for instance, type tests, type casts, and
dynamic binding, new techniques are needed. Type tests and casts may be used
to distinguish objects of different classes. Even if we have two classes with the
same fields and methods, but different names, type tests (and casts) can be used
to distinguish objects of these classes. Dynamic binding means that a method
call may lead to the execution of several different pieces of code. To ensure
correctness, we need to consider all possibilities. Pointers are also a challenge.

For concurrent reactive systems like those that we can specify in Circus and
program in SCJ, the main concern is their interactions with other systems and
the environment [40]. Like we have discussed in the previous section, function-
ality is not characterised by a relation between inputs and outputs, but by the
ways in which communications and synchronisations can take place; inputs and
outputs are particular forms of communications. Termination is not a strong
requirement as systems that run indefinitely, but continuously interact with their
environments in a useful way, are very much of interest. Refinement, in this con-
text, has to consider the behaviour of the systems in each of their interactions.
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Refinement of imperative programs, including data and algorithmic refine-
ment is the subject of Sect. 4.1; there we use Z as a concrete notation. Refinement
of concurrent reactive systems is addressed in Sect. 4.2.

4.1 Basic Concepts

A formal specification is the starting point of any formal development method.
Correctness is a relative notion: a program is correct or wrong depending on
whether it implements its specification or not; the specification is the basis for
the evaluation. To guarantee correctness, we need a formal specification.

Specifying a system is the first step to get its implementation right. A formal
development method takes such a specification as a basis to produce a correct
implementation: one that refines the specification.

Refinement is based on the idea that a specification is a contract between
the client and the developer. The client cannot complain if, when executed in
situations that satisfy their preconditions, the operations of the implementation
produce outputs that satisfy the properties stated in the specification. In this
case we have a correct implementation.

Data Refinement. Our first opportunity for refinement typically comes in the
change of representation of state components. As said before, a Z specification
describes the relation between inputs and outputs when the system is initialised
and a sequence of operations is executed. The values of the state components,
however, are not visible. Similarly, in Circus, the state of a process, which is
defined in Z, is not visible. We can only observe the behaviour of a process via
its interactions with its environment, which use the channels that are in scope.

In Example 1, for instance, we use a sequence to record the numbers input;
this is a natural way of describing the system. It is less space-consuming, however,
to record just the sum and the number of integers input. If the operations are
updated accordingly, it is perfectly valid to change the representation of the
state in this way. This sort of change is known as data refinement; the original
specification is regarded as abstract and the new specification, as concrete.

The other opportunity for refinement is the development of implementations
for the operations; this is the subject of the next section, where we discuss algo-
rithmic refinement. Since these implementations are affected by changes in the
state, we consider data refinement first. At this stage, we change the opera-
tions only to adapt them to the new data types. In Z, we write the concrete
specification in the same style as that used for the abstract specification.

Example 3. The concrete state suggested above can be defined as follows.

CalculatorC
size, sum : Z

There are two components: the size of the sequence input and its sum.
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The new definition for the operations is as follows. The initialisation, InitC ,
records that no numbers have been input.

InitC
CalculatorC ′

size ′ = 0 ∧ sum ′ = 0

The operation EnterC , which inputs a number, increments size and updates
sum by adding the input to it.

EnterC
ΔCalculatorC ′

n? : Z

size ′ = size + 1 ∧ sum ′ = sum + n?

The operation that calculates the mean has a much simpler specification.

MeanC
ΞCalculatorC ′

m! : Z

size �= 0
m! = sum div size

The needed values are readily available in sum and size. �
After providing the concrete specification, we have to prove that it satisfies

the refinement property mentioned above: clients that agreed on the abstract
specification cannot complain if they get an implementation of the concrete
specification [17,38,49]. The most widely used technique to carry out such a
proof is known as simulation. It involves the definition of a relation between the
abstract and concrete states that specifies how the information in the abstract
state is represented in the concrete state. In the context of Z, this relation is
known as a retrieve relation and is specified using a schema.

There are, actually, two simulation techniques that can be applied: for-
wards (or downwards) simulation and backwards (or upwards) simulation. Here,
we concentrate on the forwards simulation technique, as it is often enough in
practice. Upwards simulation is a similar technique. (The difference lies in the
way it handles nondeterminism in data operations.)

For our example, the appropriate retrieve relation can be specified as follows.

Retrieve
Calculator
CalculatorC

size = # seq ∧ sum = Σseq

The inclusion of the abstract and of the concrete state definitions Calculator
and CalculatorC reflects the fact that we are specifying a relation between them.
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Basically, a concrete state is related to an abstract state when the value of size
is indeed the size of seq and sum is the sum of the numbers in this sequence.

Given the retrieve relation, we need to check first that the initialisation is
adequate: given an initial concrete state, there is a corresponding abstract initial
state. In general, if A and C are the schemas that specify the abstract and
concrete states, AI and CI are the corresponding initialisation operations, and
R is the retrieve relation, then we have to prove the following.

∀C ′ • CI ⇒ ∃A′ • AI ∧ R′ (initialisation)

The use of schemas in predicates is common in Z. We are required to prove that,
for all values that the components of the concrete state may assume, if these val-
ues are those of an initial state, then there are initial values that can be assigned
to the abstract state components that are related to those of the concrete initial
state. The use of C ′, A′, and R′ is necessary because the predicates of CI and
AI are written in terms of the dashed version of the state components.

For our data refinement, we are required to prove the following property.

∀ size ′, sum ′ : Z • size ′ = 0 ∧ sum ′ = 0 ⇒
∃ seq ′ : seqZ • seq ′ = 〈〉 ∧ size ′ = # seq ′ ∧ sum ′ = Σseq ′

With two applications of a one-point rule we get 0 = #〈〉 ∧ 0 = Σ〈〉, which is
true as the size of and the sum of the elements of the empty sequence are 0.
This reflects the fact that the initialisation of CalculatorC chooses values to size
and sum that are in accordance with the initial value of seq . This is, of course,
relative to the way in which we represent seq using size and sum.

We also need to prove that each of the operations CO of the concrete spec-
ification is in accordance with the specification of the corresponding operation
AO of the abstract specification. We have to prove the following, where preAO
and preCO refer to the precondition of the operations.

∀A; C • preAO ∧ R ⇒ preCO (applicability)
∀A; C • preAO ∧ R ⇒ (∀C ′ • CO ⇒ ∃A′ • AO ∧ R′) (correctness)

When refining an operation, there are usually two separate concerns: its pre-
condition and its effect, also known as postcondition. The precondition of an
operation characterises the situations in which it behaves properly. The first
proof obligation above, applicability, requires that, whenever the precondition of
the abstract operation holds, the related concrete states satisfy the precondition
of the concrete operation. So, this proof obligation requires that whenever the
abstract operation behaves properly, so does the concrete operation.

In our example, the preconditions of Enter and EnterC are both true, there-
fore applicability is not interesting. For Mean, the precondition is seq �= 〈〉. For
MeanC , the precondition is size �= 0. Applicability is as follows.

∀ seq : seqZ; size, sum : Z •
seq �= 〈〉 ∧ size = # seq ∧ sum = Σseq ⇒ size �= 0

This is also a simple proof-obligation: if seq is not empty, and size is its length,
then size is certainly different from 0.
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The second proof-obligation, correctness, is related to the effect of the opera-
tions. First of all, we are only interested in the situations in which the precondi-
tion of the abstract operation holds; if it does not, then there are no requirements
on the concrete operation. If it does, for all states resulting from the execution
of the concrete operation in a related state, exists a related abstract state that
could be obtained with the execution of the abstract operation.

For Mean and MeanC , correctness is as follows.

∀Calculator ; CalculatorC • seq �= 〈〉 ∧ Retrieve ⇒
(∀CalculatorC ′ • MeanC ⇒ ∃Calculator ′ • Mean ∧ Retrieve ′)

Three applications of the one-point rule (and basic predicate calculus properties)
reduces this predicate to true.

A special case of simulation that involves simpler proof obligations is that in
which the retrieve relation is a total function from the concrete to the abstract
state. Most proof-obligations generated in a refinement, however, are long, but
simple, and a lot of help is provided by tools [31]. Data refinement can also be
applied to variable blocks and to modules. As long as we have a structure for
information hiding, this kind of change of representation is always possible.

Algorithmic Refinement. Once we have decided on the data types to be used
in the program, we can proceed to work on the implementation of the operations.
There are basically two approaches to refinement in general: verification and
calculation. For data refinement, we have proposed a new specification and then
proved that it is satisfactory: we verified the proposed refinement to be correct.

For algorithmic refinement, we can use a calculational approach [2,34,36].
In such techniques, the initial specification is the starting point for a sequence
of transformations, each captured by a refinement law, to gradually transform
the specification into a program. Because refinement is a transitive relation, this
establishes that the initial specification is refined by the final program.

Each law captures a model transformation, which is the essence of the very
popular model-based approach to design and programming. Distinctively, how-
ever, laws of refinement, guarantee that the transformations that they specify
preserve the behaviour of the original program. For Z, such a refinement calculus
has been presented in [7,9,13], and it is called ZRC. Its laws can also be used to
transform Z operations defined in a Circus process.

The language of ZRC, as of all refinement calculi, can be used to write spec-
ifications, designs, which involve programming and specification constructs, and
programs. Besides Z, this language includes assignments, conditionals, iterations,
and procedures, among other constructs, like in Circus. In a design, we may have,
for instance, a loop whose body is a schema. Specifications, designs, and pro-
grams are all regarded as programs; refinement is a relation between programs
in this more general sense. The refinement relation is usually denoted by �.

For a calculation, the differentiated roles of preconditions and postconditions
are very relevant. Since schemas do not distinguish them, it can be convenient to
transform a schema into a so called specification statement. This is a construct
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that takes the form w : [pre, post ], where w is a list of variables, and pre and
post are predicates: the precondition and the postcondition. The list of variables
is the frame, which determines the variables that can be changed.

For instance, EnterC can be specified by the specification statement
size, sum : [true, size ′ = size + 1 ∧ sum ′ = sum + n?], where the state compo-
nents are explicitly listed as part of the frame. Similarly, MeanC can be specified
as m! : [size �= 0,m! = sum div size]. A refinement law in [13] explains how the
conversion can take place. That work also includes laws that refine elaborate
schema expressions to more refined programs; we have, for instance, a law to
translate schema disjunctions into conditionals.

Refinement laws can be applied to transform a specification statement into
a design or program; they embody common intuition about programming. We
present assigI , a law that transforms a specification statement to an assignment.

Law assigI Assignment introduction
w , v : [pre, post ] � v := e provided pre ⇒ post [e/v ′][ /′]

Since the assignment v := e potentially modifies the variable v , it must be in
the frame of the specification statement. The proviso ensures that, when the
precondition of the specification statement holds, its postcondition is satisfied
if v ′ assumes the value e established by v := e. To put it more simply, it
certifies that this assignment really implements the specification statement. The
predicate post [e/v ′][ /′] is that obtained by substituting the expression e for v ′

and removing the dashes from the free variables of post .
With an application of assigI , we can transform the second specification

statement presented above to m! := sum div size. The proviso generates the
proof-obligation size �= 0 ⇒ sum div size = sum div size, which follows by
reflexivity of equality. The precondition is ignored; if it does not hold, the result
of the assignment is not predictable. This is in accordance with the specification.

More interesting developments give rise to a sequence of law applications.
Substantial examples can be found later on in Sect. 5. To give a flavour of the
approach, we consider the law below, which splits a specification statement into
another specification statement and an assignment.

Law fassigI Following assignment introduction
w , v : [pre, post ] � w , v : [pre, post [e ′/v ′] ]; v := e

This law introduces an assignment, which does not implement the specification
statement by itself. We are still left with a specification before the assignment,
which has the same precondition as the original one, but a modified postcon-
dition. A substitution of e, with its free variables dashed, for v ′ records the
fact that the assignment that follows makes the value of v to become e. With
the substitution, the original postcondition is required to be established when v
takes value e. This should be an easier task as illustrated next.
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To refine size, sum : [true, size ′ = size +1 ∧ sum ′ = sum +n?], we can apply
fassigI to introduce the assignment to sum. We are left with the program below.

size, sum : [true, size ′ = size + 1 ∧ sum ′ + n? = sum + n?];
sum := sum + n?

Since, the assignment already updates the sum, the new postcondition actually
requires only that its value is not changed: sum ′ + n? = sum + n? is equivalent
to sum ′ = sum. This is an easier task. With an application of law assigI we can
refine the remaining specification statement to size := size + 1.

Due to space restrictions, we cannot discuss ZRC or refinement calculi in more
detail. Many interesting issues are involved in the development of code from
specification using these techniques. An important point is that the sequence
of laws applied defines the structure of the obtained program. In the simple
examples above, we have just an assignment, or a sequence whose last component
is an assignment. Conversely, if we have a program of a particular structure in
mind, to a large extent, that defines the sequence of laws that need to be applied.
So, we can use the calculational approach also to verify an existing program, by
reconstructing the sequence of laws that can be used to generate it.

The refinement strategy presented in the next section can be applied in this
spirit, to verify an existing SCJ program. As we discuss there, the constrained
architecture of an SCJ program determines to some extent a particular sequence
of Circus refinement laws that are useful to establish refinement. It is, therefore,
possible to define a procedure (or strategy) to apply such laws.

We note, however, that the applications of the laws require additional infor-
mation. For instance, if our target program has a sequence of statements ending
in an assignment, we may decide to use the Law fassigI above to derive it. We,
however, still need to define the particular variable that is to be assigned last,
and the expression that is to be assigned to it. Specifically, in the application of
fassigI , we need to define v and e; these are parameters of this law. If the target
program is known in advance, it determines the right arguments for v and e. In
this case, the application of the refinement law is fully determined.

Before presenting the refinement strategy for SCJ, we discuss refinement of
processes, considering both CSP and Circus processes as examples.

4.2 Process Refinement

Further challenges are present when we consider the development of concurrent
programs: processes that interact with each other and an external environment.
When developing a process, we are not only interested in the inputs and out-
puts, but also in each of the interactions in which the process may engage. As
previously explained, inputs and outputs are forms of interaction in this context.

Specification, design, and implementation of processes has been carefully
studied in the context of CSP [22,40]. Like the languages of the refinement
calculi discussed in Sect. 4.1, this is a unified language with an associated notion
of refinement that can support the development of programs.
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Refinement is based on the possible interactions of the processes. Basically,
the interactions of the implementation process have to be interactions that could
be performed by the specification process. For our example, we observe that it is
not realistic to assume that an arbitrary number of people can use a door at the
same time. A possible implementation of Door(0) can be obtained if we consider
that there is a limit max to this number of people and define Door(max ) as
follows, where we assume max > 2.

Door(max ) = step-out → Door(max − 1)

When the maximum number of people is reached, the door is not prepared to
accept the arrival of any further people. The only event enabled is step-out .

We observe that the number of people using a door is part of the state of
Door and is not visible to the environment. In Circus and CSP, each process
encapsulates its state information; interaction between the processes is achieved
through events. Refinement, as said above, is concerned with these events.

On the other hand, since the state is hidden, we can consider data refinement.
In the case of Circus, since the state and its data operations are defined using Z,
the simulation technique adopted in Z can be used to data refine Circus processes.
In CSP, the state is defined by parameters and the data model uses a functional
language, so we have a simpler set up. For instance, we could use the negative
integers to represent the number of people using a door, as shown below.

DoorN (0) = step-in → revolve → DoorN (−1)
DoorN (−1) = step-in → DoorN (−2)� step-out → stop → DoorN (0)
DoorN (−n) = step-in → DoorN (−n − 1)

�
step-out → stop → DoorN (−n + 1) if − n < −1

The processes Door(0) and DoorN (0) are equivalent. This sort of refinement,
however, has not been the interest of the CSP community as the data language
of CSP is very simple. The main concern is really interaction.

A further concern involved in the refinement of concurrent processes is related
to the events in which a process may refuse to engage, and to the sequence of
events that may lead to a divergent process. For instance, the specification of the
door is a process that does not refuse the arrival of people in any circumstance;
the implementation, on the other hand, may refuse this event if the door is full.
From this point of view, it is not really a proper implementation.

Due to space restrictions, we do not discuss this any further. We note, how-
ever, that refinement in CSP and Circus ensures that safety and liveness proper-
ties are preserved. Safety requires that the sequences of interactions (traces) of
the program are possible for the specification. Liveness requires that deadlock
or divergence in the program can occur only if allowed in the specification.

Finally, we note that we use Circus Time in our work for SCJ. Refinement in
Circus Time also ensures preservation of time properties. This requires that the
deadlines and budgets defined in the specification are enforced by the deadlines
and budgets defined for the components of the program.
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Fig. 8. Our approach to development and verification

5 Refining from Circus to SCJ

In this section, we describe the steps of our refinement approach.
In our strategy, refinement is carried out in three main steps, each charac-

terised by an anchor: a Circus model written in a particular subset of Circus
and following a particular pattern. Besides defining a target for a model
transformation, an anchor captures a significant aspect of an SCJ program
development: abstract specification, object-oriented design, missions, and SCJ
infrastructure. Figure 8 shows the four Anchors: A, O, E, and S. The objective
is to guarantee that the anchors are related by refinement.

The first refinement step produces the O anchor, and tackles the object-
oriented data model of the program. The second step introduces the E anchor,
and tackles the correctness of the mission and handler decomposition and of the
use of memory areas. Finally, the third step, produces the S anchor, and tackles
the correctness of the algorithms implemented. It also describes the sequence of
missions and parallelism of handlers in the E anchor in terms of SCJ constructs.

Each of these refinement steps is divided into phases, which tackle individ-
ual aspects of the design of the target anchor. Typically, a refinement phase is
realised in a series of stages, captured by the application of refinement laws. For
some phases, specific refinement laws are always applicable. In other cases, there
is a choice of laws depending on the design of the target anchor.

For the leadership-election protocol, for example, the Circus model described
in Sect. 3 is the A anchor. Below, Sects. 5.1 to 5.3 describe the phases of each of
the three refinement steps, and their stages.

5.1 Anchor O: Concrete State with Objects

The first step of our refinement strategy is a data refinement: it introduces
concrete data to represent the abstract data types of the A anchor, and the
shared data. The target is an O anchor, which introduces the use of classes
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and objects. The object-oriented constructs employed are those of OhCircus,
which basically includes the possibility to define types via classes. The design of
OhCircus is inspired by the Java approach to inheritance.

Due to the nature of data refinement (in Circus), the structure of the O
anchor, in terms of processes and actions, is the same as that of the corresponding
A anchor. As explained in Sect. 4, data refinement only replaces or adds state
components to the model. The types of the concrete components may be specified
by OhCircus classes, but creation and allocation of objects are not considered yet.
The structure of the actions is not changed.

Although in a data refinement particular algorithms are not considered, it
is unrealistic to assume that the developer makes no consideration of how the
concrete data types proposed can be efficiently used to realise the functionality
of the program. In the case of our strategy, in this step we do not consider
explicitly the structure of missions and handlers of the target program. On the
other hand, it is only to be expected that a developer is aware of the need to
provide the program functionality via missions and handlers, and of the sharing
of data that might be required between them.

Figure 9 describes our proposed strategy for this step. We take inspiration
from Morgan’s auxiliary variables technique [33] to facilitate the specification of
the concrete components. So, in the first two phases of this step, CS and SD, we
introduce components of the concrete model, but eliminate those of the abstract
model only in the third and final phase, EL.

Fig. 9. Overview of the strategy for the Anchor O Step

Automation is restricted here, since data refinement embeds design decisions
related to the way in which data is to be efficiently represented and shared
in the program. On the other hand, once that creative design is carried out, as
discussed, it may be possible to calculate the specification of the concrete model,
if there is a functional relation between the concrete and the abstract states.

The phases address the following concerns: (a) refinement of abstract (model)
variables by concrete variables used by the program (in Phase CS); and (b) intro-
duction of state components for data shared between handlers and missions (in
Phase SD). In all phases, including EL, we carry out a data refinement using sim-
ulation. If any of the new components have a class type, it needs to be declared.
Introduction of a new class definition is a trivial refinement; the only complexity
comes from the specification of the class itself.

For the leadership-election protocol, this step is not needed. In the case of a
protocol, even the A anchor provides a data model that is already very concrete.
So, in this case, the A and O anchors are the same. For an example of a refinement
to an SCJ program that involves a substantial data refinement, we refer to [14].
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Fig. 10. Anchor E: sketch of its structure

5.2 Anchor E: Execution Model

The second step of the refinement strategy introduces the architectural design
of the program in accordance with the SCJ paradigm. The target E anchor
embeds the structure of the missions and handlers. It is defined by a single
process (and associated type and class definitions), still written using standard
Circus, OhCircus, and Circus Time constructs.

The E anchor process for a non-terminating program takes the shape sketched
in Fig. 10, where we consider a process named SCJsystem. Other patterns are
considered in [32]. The state components of the E anchor, in Fig. 10, x , y , and
z , are the variables that should be allocated in immortal memory (since they
can be referenced by all missions). In the SCJ program, they can become, for
instance, static fields of the Safelet subclass.

In the main action of the E anchor process, we call the local actions Init and
System in sequence. Init is the specification of the program initialisation (which
can be implemented in the initialize method of the Safelet subclass). System
is a sequence of Mission actions; in Fig. 10, we have Mission1, Mission2, and so
on. For applications in which the sequence of missions to be executed is defined
dynamically (on the basis of values of variables in the immortal memory), the
specification of System needs to be more elaborate.

For each mission, the E anchor process has a group of actions; in Fig. 10
we show those for Mission1. The variables to be allocated in mission memory
are defined as local variables of an action MArea. These are the variables that
are shared between two or more handlers. In Fig. 10, we show MArea1 with
variables l , m, and n. Internal channels represent calls to data operations that
use or change these variables. Typically, these are methods of the objects held
in these variables. An initialisation action, InitM 1 in Fig. 10, specifies how the
values of these variables are to be initialised.



Java in the Safety-Critical Domain 143

The handler actions, which in Fig. 10 are Handler1, Handler2, and so on,
define the behaviour of the releases of the handlers. Their local variables are
allocated in per-release memory. More elaborate algorithms may use temporary
private memory areas to control allocation and deallocation of objects.

The Handlers action specifies the behaviour of the handler releases during
the mission; in Fig. 10, we show HandlersM 1. In the parallelisms between the
handler actions, the synchronisation sets (omitted in Fig. 10) contain channels
that represent the releases, if any, of aperiodic handlers by other handlers.

Access of handlers to objects in immortal memory is determined by the name
sets in these parallelisms. Due to the restrictions on parallelism in Circus, we
cannot have a race condition arising from handlers accessing the same state
component (here, variable in immortal memory) at the same time.

As already said, the behaviour of the mission itself is given by a mission
action; in Fig. 10, we sketch Mission1. What we have is a parallelism between the
Handlers and the MArea actions. The synchronisation set mcs in this parallelism
contains all channels representing calls to methods of the objects in the mission
memory (which are defined in the MArea action). The name set associated with
the Handlers action (that is, ns in Fig. 10) identifies the objects in immortal
memory used by the handlers. The name set associated with the MArea action
is always empty, since this action already encapsulates the data that it uses: the
object variables to be allocated in mission memory.

The E anchor for the optimised leadership-election protocol in Fig. 7 is
sketched in Fig. 11. In this case, we have a single mission, which we model using
the action ElectionMission. All variables are allocated in the mission memory,
and so are all local to MArea. As indicated in Fig. 7, we also have one periodic
handler CommunicatorH and am aperiodic handler ElectorH .

It is the objective of the second step of our strategy to transform the O
anchor to obtain a process in the shape of the E anchor identified in Fig. 10. Five
phases define the refinement strategy in this step as depicted in Fig. 12. The
first phase, CP, removes any parallelism used in the A anchor (and preserved in
the O anchor) to specify requirements, since these parallelisms are typically not
related to the concurrent design of the program.

As already mentioned, for the leadership-election protocol, for instance, we
use parallelism in the A anchor to separate the behavioural and timing require-
ments. In Circus models automatically generated from domain-specific languages,
typically, we have a parallelism between the components of the high-level model.
It is the objective of our refinement strategy to change that architecture to that
adopted by the mission paradigm of SCJ, without introducing errors.

The second phase, MS, introduces the sequences that reflect the architecture
of the missions. The next two phases, HS and SH are repeated for each of the
missions. In HS, we introduce the parallelism that reflects the behaviour of the
handlers releases, and the control mechanisms that orchestrate their execution.
In SH, we define how variables are shared between handlers. The final phase AR
uses algorithmic refinement to derive the implementation of the methods.
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Fig. 11. E anchor for the leadership-election protocol

Fig. 12. Overview of the strategy for the Anchor E Step
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5.3 Anchor S: Safety-Critical Java

The S anchor is written using SCJ-Circus. As explained in Sect. 3, a Circus model
is composed of a sequence of paragraphs: syntactic units that introduce types,
constants, processes, and so on. SCJ-Circus is based on Circus, OhCircus, and
Circus Time, but includes several new paragraphs [32]. We have paragraphs for
the declaration of safelets, mission sequencers, missions, and handlers. Their
semantics is defined by standard Circus processes and actions.

In the last step of our refinement strategy, the process that defines the E
anchor is split to yield the definition of these special SCJ paragraphs that com-
pose the S anchor. For example, the state components of the E anchor, if any,
become state components of the safelet paragraph. The Init action gives rise to
the definition of the safelet initialize paragraph. For statically defined sequences
of missions, a simple sequencer paragraph is always adequate. Each Mission
action gives rise to a mission paragraph, and so on.

The introduction of the new SCJ paragraphs in this last step is justified by
a refinement strategy detailed in [32]. The missions and handlers are already
identified in the E anchor. What the transformations in this final step of the
refinement strategy check is whether the design suggested in the structure of the
E anchor indeed matches the concurrency model of SCJ.

As an example, we present, the S anchor for the leadership-election protocol.
The paragraph safelet defines the initialize and cleanUp methods. In our
example, they are empty (skip), and so this paragraph is omitted.

The paragraph for our mission sequencer is shown below. We note that, since
we are considering just the election mission, the getNextMission paragraph
only ever returns the identifier ElectionMission of a single mission.

sequencer MainMissionSequencer =̂ begin

state MainMissionSequencerState == [mission done : bool ]

initial =̂mission done := false

getNextMission =̂
if mission done = false−→

mission done := true; ret := ElectionMission
� mission done = true −→ ret := null
fi

end

The state paragraph of an SCJ-Circus component defines the fields of the corre-
sponding SCJ class, and the initial paragraph defines its constructor. The other
paragraphs of these specialised components define methods of the SCJ class.
Special paragraphs correspond to API methods. For instance, above we have
getNextMission corresponding to the SCJ getNextMission method.

We use identifiers to refer to specific components: missions and handlers.
For example, above, we use ElectionMission as an identifier for a mission. It is
defined by the next SCJ-Circus paragraph.
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The fields and constructor of the mission Election are defined by the schemas
ElectionState and InitElectionState previously presented. In its API initialize
method, it simply instantiates and registers the handlers CommunicatorH and
ElectionH . As previously shown, the first is a periodic handler and the sec-
ond, aperiodic. Creation of a handler H , specified by an SCJ-Circus paragraph
periodic H or aperiodic H , is defined by the special expression newHdlr H .

missionElectionMission =̂ begin
state st == ElectionState
initial =̂ InitElectionState
initialize =̂ var ch, eh : ID •

eh = newHdlrElectorH ;
ch = newHdlrCommunicatorH (eh);
eh.register() ; ch.register()

end

Like in SCJ, corresponding to handlers, we have objects, instances of an OhCircus
class. Such objects, like eh and ch in the example above, respond to a register
method. It identifies the handler as part of the mission.

We note how close the definition of ElectionMission above is to an SCJ
class that implements a mission. On the other hand, ElectionMission defines a
Circus process, as do CommunicatorH and ElectorH used there, although these
processes use classes that model the data of the handlers and mission. The
meaning of the special method calls, like the calls to register , for instance, is
given by a (hidden) event. In the case of register , it triggers a data operation that
enriches the (encapsulated) state of the mission process to record an instance
of the relevant handler. So, what we have is a Circus semantics for the SCJ
paradigm, (very much as explained in [50] for SCJ itself).

The periodic handler CommunicatorH is introduced as shown below.

periodicCommunicatorH =̂ begin start 0periodP

This paragraph also defines the start time and the period of the protocol as
P (as required in the timing specification given by ATReqsLE in the A anchor).
It starts right at the beginning of the mission.

The state of CommunicatorH records the instance of ElectionH used in the
mission. Its value is defined by the constructor.

state st == [electorH : ID ]
initial =̂ val eh : ID • electorH := eh

At each cycle, the release of ElectionH checks which device is being considered.
If the current device is itself, then it broadcasts its information just like in
ABReqsLE and increments the index i to point to the next device. Otherwise it
waits for either a communication on receive that must happen within ID time
units and updates the state accordingly. If ID +1 time units pass without receive
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occurring, it updates the current device’s information to indicate it is inactive.
It then initiates an election by releasing the aperiodic handler electorH .

handleAsyncEvent =̂
if(nodes i).id = id −→ Broadcast(id , status, petition) ; i := next i
�(nodes i).id �= id−→

⎛

⎜

⎜

⎝

receive.(nodes i).id?valC ?valP−→
UpdateDevice((nodes i).id , valC , valP)) � ID

�
wait(ID + 1) ; UpdateOff ((nodes i).id)

⎞

⎟

⎟

⎠

;

electorH .release()
fi

end

The actions used in handleAsyncEvent are also defined inside ElectionH .
Their definitions are as presented previously.

The variables in the state of the mission ElectionMission are those to be
allocated in mission memory. Accordingly, they are directly accessible in the
handlers, like nodes, id , status, petition, and next above.

The ElectorH handler implements the conditional over status in ABReqsLE .

aperiodicElectorH =̂ begin
handleAsyncEvent =̂

⎛

⎜

⎜

⎝

if status = undecided −→ ...
�status = leader −→ ...
�status = follower −→ ...
fi

⎞

⎟

⎟

⎠

;

i := next i
end

It is not difficult to see that thee SCJ-Circus model can be automatically trans-
lated to SCJ code, actual Java code that can be compiled and executed.

6 Conclusions

In this tutorial, besides a didactic account of SCJ, we have given a brief introduc-
tion to Circus. In both cases, we have used the practical examples of a leadership-
election protocol to illustrate the notations and concepts. Furthermore, we have
reviewed the notion of refinement and formal techniques of program develop-
ment in the context of both a traditional modelling language, like Z, and process
algebra, namely, CSP and Circus.

To the best of our knowledge, all existing combinations of Z with a process
algebra [19,30,44] model concurrent programs as communicating abstract data
types, where events are identified with operations that change the state. This is
not the Circus approach. Events are just atomic instantaneous interactions like
in CSP, and data operations have to be explicitly called, if needed. This is in
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keeping with the approach used in programming languages, and facilitates the
use Circus to verify correctness of programs. Besides the general Circus refinement
calculus [10], there are results for Ada [8].

We did not, of course, aim at a comprehensive view of all the issues and
techniques available. We hope, however, to have given general pointers to the
subject to support further reading. Most of all, we hope to have made it clear
that refinement is about organised and clear justification of the intuition that
millions of programmers use everyday to reassure themselves and others of the
correctness of their designs and programs. The lack of such a framework has lead
to poorly documented, intricated, and many times mistaken developments.

An understanding of refinement as the underpinning notion of all develop-
ment methods can help good engineers or programmers to achieve their goal
more successfully. Knowledge of the properties of the refinement relation, in the
form, for example, of refinement laws, can lead to improved programming skills,
even if a formal refinement technique is not really applied.

Other tasks involved in the construction of programs, like testing [1], refactor-
ing [15], and compilation [18,43,48] have already been characterised as related to
refinement. A lot has already been achieved by the formal methods community
in the last two or three decades; there is a lot yet to be done.

Acknowledgments. This work is funded by EPSRC grant EP/H017461/1. No pri-
mary data arises from the work reported here. We have benefitted from discussions
with Frank Zeyda in the development of our case study.
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Abstract. In this paper and its accompanying tutorial, we discuss the
topic of runtime verification for linear-time temporal logic specifications.
We recall the idea of runtime verification, give ideas about specification
languages for runtime verification and develop a solid theory for linear-
time temporal logic. Concepts like monitors, impartiality, and anticipa-
tion are explained based on this logic.

1 Introduction

Software and software systems are increasingly ubiquitous in everyday life.
Besides traditional applications such as word processors or spreadsheets run-
ning on workstations, software is an important part of consumer devices such as
mobile phones or digital cameras, and functions as embedded control devices in
cars or in power plants. Especially in such embedded application domains, it is
essential to guarantee that the deployed software works in a correct, secure, and
reliable manner, as life may depend on it.

For example, the software within a car’s anti-skid system must speed with
exactly the right velocity to stabilize the car. Moreover, for a power plant it is
important that no intruder gets control over the plant and that it works also in
case of a partial break-down of some of its parts.

Software engineering has been driven as a field by the struggle for guaran-
teed quality properties ever since, but nowadays and especially in the embedded
domain, legislation and certification authorities are requiring proof of the most
critical software properties in terms of a documented verification process.

Traditionally, one considers three main verification techniques: theorem prov-
ing [BC04], model checking [CGP01], and testing [Mye04,BJK+05]. Theorem
proving, which is mostly applied manually, allows to show correctness of pro-
grams similarly as a proof in mathematics shows correctness of a theorem. Model
checking, which is an automatic verification technique, is mainly applicable to
finite-state systems. Testing covers a wide field of diverse, often ad-hoc, and
incomplete methods for showing correctness, or, more precisely, for finding bugs.

These techniques are subject to a number of forces imposed by the software
to build and the development process followed, and provide different trade-offs
between them. For example, some require a formal model, like model checking,
c© Springer International Publishing AG 2017
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give stronger or weaker confidence, like theorem proving over testing, or are
graceful in case of error handling.

Runtime verification is being pursued as a lightweight verification technique
complementing verification techniques such as model checking and testing and
establishes another trade-off point between these forces. One of the main distin-
guishing features of runtime verification is due to its nature of being performed
at runtime, which opens up the possibility to act whenever incorrect behavior
of a software system is detected.

The aim of this course is to give a comprehensive introduction into runtime
verification based on linear-time temporal logic. Rather than completeness, we
aim for a solid formal underpinning of the concepts.

The paper is organized as follows: In the next section, we provide an informal
introduction to the field of runtime verification. We sketch main ideas intuitively
and describe several application areas. At the heart of runtime verification, we
identify the specification of correctness properties and the synthesis of corre-
sponding monitors, which may then be used for verification but also for steering
a system. In Sects. 3–5, we develop formal semantics for one specification lan-
guage viz. linear-time temporal logic together with corresponding monitoring
procedures. In Sect. 3, we assume the execution be terminated, while in Sects. 4
and 5, we consider online monitoring with continuously expanding executions.
In Sect. 4, we discuss the concept of impartiality in detail while Sect. 5 focusses
on anticipation.

2 Fundamental Ideas of Runtime Verification

Let us start with recalling the fundamental concepts of verification and let us
describe, from an abstract point of view, the concept of runtime verification.

First, let us clarify the terms verification and, to contrast its idea, also val-
idation. Validation and verification can be distinguished by checking which of
the following two questions gets answered: [Boe81]

Validation. Are we building the right product? – (Does the system meet the
client’s expectations?)

Verification. “Are we building the product right?” – (Does the system meet
its specification?)

Definition 1 (Verification). Verification is comparing code with its specifica-
tion.

A verification technique should therefore always be of a formal nature, while
validation, necessarily, cannot fully rely on formal concepts as the customer’s
expectations are not formalized. As we will see, runtime verification is a verifi-
cation technique, despite it only verifies partially the system under scrutiny.

We follow [DGR04] and define a software failure as a deviation between the
observed behavior and the required behavior of the software system. A fault is
defined as the deviation between the current behavior and the expected behavior,
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which is typically identified by a deviation of the current and the expected state
of the system. A fault might lead to a failure, but not necessarily. An error,
on the other hand, is a mistake made by a human that results in a fault and
possibly in a failure.

As we have just learned, verification comprises all techniques suitable for
showing that a system satisfies its specification.

Traditional verification techniques comprise theorem proving [BC04], model
checking [CGP01], and testing [Mye04,BJK+05]. Runtime verification,1 is a rel-
atively new verification technique, which manifested itself within the previous
years as a lightweight verification technique:

Definition 2 (Runtime Verification). Runtime verification (RV) is the dis-
cipline of computer science that deals with the study, development and application
of those verification techniques that allow for checking whether a run of a system
under scrutiny satisfies or violates a given correctness property.

Definition 3 (Run). A run of a system is a possibly infinite sequence of the
system’s states. Formally, a run may be considered as a possibly infinite word
or trace.

Runs are formed by current variable assignments, or as the sequence of
actions a system is emitting or performing.

Definition 4 (Execution). An execution of a system is a finite prefix of a
run and, formally, it is a finite trace. When running a program, we can only
observe executions, which, however, restrict the corresponding evolving run as
being their prefix.

In runtime verification, we check whether a run of a system adhere to given
correctness properties. RV is primarily used on executions. A monitor checks
whether an execution meets a correctness property.

Definition 5 (Monitor). A monitor is a device that reads a finite trace and
yields a certain verdict.

Figure 1 shows a monitor M which tests an execution of the system consisting
of the components Ci against a formal correctness property. These components
can be hardware components, procedures or any other structuring element of
the system. The lines can be the wiring of hardware components, the call stack
of procedures or any other connection of the components.

A monitor may use more than one input stream as opposed to what is
shown in Fig. 1. Likewise, a monitor can check the relations of multiple val-
ues. In distributed runtime verification, a set of monitors operating at different
locations may combine their monitoring power to deduce the suitable verdict
[SVAR04,MB15,SS14,BLS06a].

Here, a verdict is typically a truth value from some truth domain. A truth
domain is a lattice with a unique top element true and a unique bottom
1 http://www.runtime-verification.org.

http://www.runtime-verification.org
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Fig. 1. Monitor M checks correctness of components Ci.

element false. This definition covers the standard two-valued truth domain
B = {true, false} but also fits for monitors yielding a probability in [0, 1] with
which a given correctness property is satisfied. Sometimes, one might be even
more liberal and consider also verdicts that are not elements of a truth domain,
though we do not follow this view in this paper.

A monitor may on one hand be used to check the current execution of a
system. In this setting, which is termed online monitoring, the monitor should
be designed to consider executions in an incremental fashion and in an efficient
manner. On the other hand, a monitor may work on a (finite set of) recorded
execution(s), in which case we speak of offline monitoring.

RV and the Word Problem. In its simplest form, a monitor decides whether
the current execution satisfies a given correctness property by outputting either
yes/true or no/false. Formally, when[[ϕ]] denotes the set of valid executions given
by property ϕ, runtime verification boils down to checking whether the execution
w is an element of [[ϕ]]. Thus, in its mathematical essence, runtime verification
answers the word problem, i. e. the problem whether a given word is included in
some language. Note that often, the word problem can be decided with lower
complexity compared to, for example, the subset problem: Language contain-
ment for non-deterministic finite-automata is PSPACE-complete [SC85], while
deciding whether a given word is accepted by a non-deterministic automaton is
NLOGSPACE-complete [HU79].

2.1 Some Requirements on Monitors

Definition 6 (Impartiality). Impartiality requires that a finite trace is not
evaluated to true or, respectively false, if there still exists a (possibly infinite)
continuation leading to another verdict.

Definition 7 (Anticipation). Anticipation requires that once every (possibly
infinite) continuation of a finite trace leads to the same verdict, then the finite
trace evaluates to this very same verdict.

Intuitively, the first maxim postulates that a monitor only decides for false—
meaning that a misbehavior has been observed—or true—meaning that the
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current behavior fulfills the correctness property, regardless of how it continues—
only if this is indeed the case. Clearly, this maxim requires to have at least three
different truth values: true, false, and inconclusive, but of course more than
three truth values might give a more precise assessment of correctness. The sec-
ond maxim requires a monitor to indeed report true or false, if the correctness
property is indeed violated or satisfied. In simple words, impartiality and antic-
ipation, guarantee that the semantics is neither premature nor overcautious in
its evaluations.

See the forthcoming sections for a more elaborate discussion of these issues
in the context of linear temporal logic.

In runtime verification, monitors are typically generated automatically from
some high-level specification. As runtime verification has its roots in model check-
ing, often some variant of linear temporal logic, such as LTL [Pnu77], is employed.
But also formalisms inspired by the linear μ-calculus have been introduced, for
example in [DSS+05], which explains an accompanying monitoring framework.

Actually, one of the key problems addressed in runtime verification is the
generation of monitors from high-level specifications, and we discuss this issue
in much more detail in this course.

2.2 Runtime Verification in the Plethora of Verification Techniques

RV Versus Testing. As runtime verification does not consider each possible exe-
cution of a system, but just a single or a finite subset, it shares similarities with
testing, which terms a variety of usually incomplete verification techniques.

Typically, in testing one considers a finite set of finite input-output sequences
forming a test suite [PL04]. Test-case execution is then checking whether the
output of a system agrees with the predicted one, when giving the input sequence
to the system under test.

A different form of testing, however, is closer to runtime verification, which
is sometimes termed oracle-based testing. Here, a test-suite is only formed by
input-sequences. To make sure that the output of the system is as anticipated,
a so-called test oracle has to be designed and “attached” to the system under
test. Thus, in essence, runtime verification can be understood as this form of
testing. There are, however, differences in the foci of runtime verification and
oracle-based testing:

– In testing, an oracle is typically defined directly, rather than generated from
some high-level specification.

– On the other hand, providing a suitable set of input sequences to “exhaus-
tively” test a system, is rarely considered in the domain of runtime verification.

Thus, runtime verification can also considered as a form of passive testing.
When monitors are equipped in the final software system, one may also under-

stand runtime verification as “testing forever”, which makes it, in a certain sense,
complete.
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RV Versus Model Checking. In essence, model checking describes the problem
of determining whether, given a model M and a correctness property ϕ, all
computations of M satisfy ϕ. Model checking [CGP01], which is an automatic
verification technique, is mainly applicable to finite-state systems, for which
all computations can exhaustively be enumerated, though model checking tech-
niques for certain pushdown systems or counter machines exist as well.

In the automata theoretic approach to model checking [VW86], a correctness
property ϕ is transformed to an automaton M¬ϕ accepting all runs violating ϕ.
This automaton is put in parallel to a model M to check whether M has a run
violating ϕ.

Runtime verification has its origins in model checking, and, to a certain
extend, the key problem of generating monitors is similar to the generation of
automata in model checking. However, there are also important differences to
model checking:

– While in model checking, all executions of a given system are examined to
answer whether they satisfy a given correctness property ϕ, which corresponds
to the language inclusion problem, runtime verification deals with the word
problem.

– While model checking typically considers infinite traces, runtime verification
deals with finite executions—as executions have necessarily to be finite.

– While in model checking a complete model is given allowing to consider arbi-
trary positions of a trace, runtime verification, especially when dealing with
online monitoring, considers finite executions of increasing size. For this, a
monitor should be designed to consider executions in an incremental fashion.

These differences make it necessary to adapt the concepts developed in model
checking to be applicable in runtime verification. For example, while checking
a property in model checking using a kind of backwards search in the model is
sometimes a good choice, it should be avoided in online monitoring as this would
require, in the worst case, the whole execution trace to be stored for evaluation.

From an application point of view, there are also important differences
between model checking and runtime verification.

Runtime verification deals only with observed executions as they are gen-
erated by the real system. Thus runtime verification is applicable to black box
systems for which no system model is at hand. In model checking, however,
a suitable model of the system to be checked must be constructed as—before
actually running the system—all possible executions must be checked.

If such a precise model of the underlying system is given, and, if moreover
a bound on the size of its state space is known, powerful, so-called bounded
model-checking techniques can be applied [BCC+03] for analyzing the system.
The crucial idea, which is equally used in conformance testing [Vas73,Cho78],
is that for every finite-state system, an infinite trace must reach at least one
state twice. Thus, if a finite trace reaches a state a second time, the trace can be
extended to an infinite trace by taking the corresponding loop infinitely often.
Likewise, considering all finite traces of length up-to the state-place plus one, one



Runtime Verification for Linear-Time Temporal Logic 157

has information on all possible loops of the underlying system, without actually
working on the system’s state space directly.

Clearly, similar correspondences would be helpful in runtime verification as
well. However, in runtime verification, an upper bound on the system’s state
space is typically not known. More importantly, the states of an observed exe-
cution usually do not reflect the system’s state completely but do only con-
tain the value of certain variables of interest. Thus, seeing a state twice in an
observed execution does not allow to infer that the observed loop can be taken ad
infinitum.

That said, current research also focusses on the combination of runtime
verification and model checking respectively formal verification techniques. See
[Leu12,CAPS15] for details.

Furthermore, model checking suffers from the so-called state explosion prob-
lem, which terms the fact that analyzing all executions of a system is typically
been carried out by generating the whole state space of the underlying system,
which is often huge. Considering a single run, on the other hand, does usually
not yield any memory problems, provided that when monitoring online only a
finite history of the execution has to be stored.

Last but not least, in online monitoring, the complexity for generating the
monitor is typically negligible, as the monitor is often only generated once.
However, the complexity of the monitor, i. e. its memory and computation time
requirements for checking an execution are of important interest, as the monitor
is part of the running system and should influence the system as less as possible.

2.3 Applications

Runtime Reflection. Runtime verification itself deals (only) with the detection
of violations (or satisfactions) of correctness properties. Thus, whenever a viola-
tion has been observed, it typically does not influence or change the program’s
execution, say for trying to repair the observed violation. However, runtime ver-
ification is the basis for concepts also dealing with observed problems, as we
discuss in this section.

The idea of monitoring a system and reacting are to a certain extent covered
by the popular notion of FDIR, which stands for Fault Detection, Identifica-
tion, and Recovery or sometimes for Fault Diagnosis, Isolation, and Recovery or
various combinations thereof [CR94]. The general idea of FDIR is that a failure
within a system shows up by a fault. A fault, however, does typically not identify
the failure: for example, there might be different reasons why a monitored client
does not follow a certain protocol, one of them, e.g., that it uses an old version
of a protocol. If this is identified as the failure, reconfiguration may switch the
server to work with the old version of the protocol.

Crow and Rushby instantiated the scheme FDIR using Reiter’s theory of
diagnosis from first principles in [CR94]. Especially, the detection of errors is
carried out using diagnosis techniques. In runtime reflection [BLS06b], runtime
verification is proposed as a tool for fault detection, while a simplified version of
Reiter’s diagnosis is suggested for identification.
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Runtime reflection (RR) is an architecture pattern for the development of
reliable systems.

– A monitoring layer is enriched with
– a diagnosis layer and a subsequent
– mitigation layer.

Fig. 2. An application and the layers of the runtime reflection framework.

The architecture consists of four layers as shown in Fig. 2, whose role will be
sketched in the subsequent paragraphs.

The role of the logging layer is to observe system events and to provide
them in a suitable format for the monitoring layer. Typically, the logging layer
is realized by adding code annotations within the system to build. However,
separated stand-alone loggers, logging for example network traffic, can realize
this layer as well. While the goal of a logger is to provide information on the
current run to a monitor, it may not assume (much) on the properties to be
monitored.

The monitoring layer consists of a number of monitors (complying to the
logger interface of the logging layer) which observe the stream of system events
provided by the logging layer. Its task is to detect the presence of faults in
the system without actually affecting its behavior. In runtime reflection, it is
assumed to be implemented using runtime verification techniques. If a violation
of a correctness property is detected in some part of the system, the generated
monitors will respond with an alarm signal for subsequent diagnosis.

Following FDIR, we separate the detections of faults from the identification
of failures. The diagnosis layer collects the verdicts of the distributed monitors
and deduces an explanation for the current system state. For this purpose, the
diagnosis layer may infer a (minimal) set of system components, which must be
assumed faulty in order to explain the currently observed system state. The pro-
cedure is solely based upon the results of the monitors and general information
on the system. Thus, the diagnostic layer is not directly communicating with
the application.
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The results of the system’s diagnosis are then used in order to reconfigure
the system to mitigate the failure, if possible. However, depending on the diag-
nosis and the occurred failure, it may not always be possible to re-establish
a determined system behavior. Hence, in some situations, e. g., occurrence of
fatal errors, a recovery system may merely be able to store detailed diagnosis
information for off-line treatment.

Monitor-Oriented Programming. Monitoring-Oriented Programming
(MOP) [CR07], proposed by Feng and Rosu, is a software development method-
ology, in which the developer specifies desired properties using a variety of (freely
definable) specification formalisms, along with code to execute when properties
are violated or validated. The MOP framework automatically generates monitors
from the specified properties and then integrates them together with the user-
defined code into the original system. Thus, it extends ideas from runtime verifi-
cation by means for reacting on detected violations (or validations) of properties
to check. This allows the development of reflective software systems: A software
system can monitor its own execution such that the subsequent execution is
influenced by the code a monitor is executing in reaction to its observations–
again influencing the observed behavior and consequently the behavior of the
monitor itself.

RR differs from monitor-oriented programming in two dimensions. First,
MOP aims at a programming methodology, while RR should be understood
as an architecture pattern. This implies that MOP support has to be tight to
a programming language, for example Java resulting in jMOP, while in RR, a
program’s structure should highlight that it follows the RR pattern. The second
difference of RR in comparison to MOP is that RR introduces a diagnosis layer
not found in MOP.2

When to Use RV?. Let us conclude the description of runtime verification
by listing certain application domains, highlighting the distinguishing features
of runtime verification:

– The verification verdict, as obtained by model checking or theorem proving,
is often referring to a model of the real system under analysis, since applying
these techniques directly to the real implementation would be intractable. The
model typically reflects most important aspects of the corresponding imple-
mentation, and checking the model for correctness gives useful insights to the
implementation. Nevertheless, the implementation might behave slightly dif-
ferent than predicted by the model. Runtime verification may then be used to
easily check the actual execution of the system, to make sure that the imple-
mentation really meets its correctness properties. Thus, runtime verification
may act as a partner to theorem proving and model checking.

2 Clearly, in the MOP framework, a diagnosis can be carried out in the code triggered
by a monitor. This yields a program using the MOP methodology and following the
RR pattern.
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– Often, some information is available only at runtime or is conveniently checked
at runtime. For example, whenever library code with no accompanying source
code is part of the system to build, only a vague description of the behavior of
the code might be available. In such cases, runtime verification is an alternative
to theorem proving and model checking.

– The behavior of an application may depend heavily on the environment of the
target system, but a precise description of this environment might not exist.
Then it is not possible to obtain the information necessary to test the system
in an adequate manner. Moreover, formal correctness proofs by model checking
or theorem proving may only be achievable by taking certain assumptions on
the behavior of the environment—which should be checked at runtime. In this
scenario, runtime verification outperforms classical testing and adds on formal
correctness proofs by model checking and theorem proving.

– In the case of systems where security is important or in the case of safety-
critical systems, it is useful also to monitor behavior or properties that have
been statically proved or tested, mainly to have a double check that everything
goes well: Here, runtime verification acts as a partner of theorem proving,
model checking, and testing.

The above mentioned items can be found in a combined manner especially in
highly dynamic systems such as adaptive, self-organizing, or self-healing systems
(see [HS06] for an overview on such approaches towards self-management).

The behavior of such systems depends heavily on the environment and
changes over time, which makes their behavior hard to predict—and hard to
analyze prior to execution. To assure certain correctness properties of especially
such systems, we expect runtime verification to become a major verification
technique.

Let us conclude this subsection with a general taxonomy of runtime verifica-
tion aspects shown in Fig. 3.

2.4 Gathering Information About Executions

In this course, we mainly focus on specification means for correctness properties
and corresponding monitor synthesis procedures. However, one of the fundamen-
tal question in runtime verification is also how to obtain the underlying atomic
system events or observations that build the basis for correctness specifications.
We leave details on this to other works but only list fundamental concepts.

A typical approach is instrument the code to provide logging information, say
be means of code manipulations. These may be applied directly on the source
code, the byte code or binary code level. The programmer of the underlying
software may have also used dedicated logging frameworks and these are the
sequence of log events is to be analyzed. Operating system typically also pro-
vide tools for providing trace information of running processes. A relatively new
direction is to use debug capabilities of the processors of underlying execution
platform and to monitor the system using dedicated hardware. Especially the
latter approach caters for analyzing timing properties as the system does not get
influenced itself by the monitoring process. Figure 4 summarizes the options.
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Fig. 3. Taxonomy for RV

2.5 RV Frameworks

The popularity of runtime verification can also be witnessed by the large number
of corresponding runtime verification frameworks. An (incomplete) list of current
runtime verification frameworks as shown in Fig. 5.

We will now study several high-level specification languages and discuss adap-
tions of their semantics suitable for runtime verification. Mostly, we consider the
linear-time temporal logic LTL, first considered for specifications of computa-
tions by Amir Pnueli [Pnu77].

2.6 A Primer on Linear-Time Temporal Logic

Runs are Words. The system to monitor is typically driven by some program
that consists of several commands and hereby interacts with its environment.
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Fig. 4. Observing the System

Fig. 5. An (imcomplete) list of runtime verification framworks

The idea of monitoring is now to observe and analyze partially such an execu-
tion which is built-up by artefacts. These artifacts may vary depending on the
application of runtime verification. For example, we may observe events that
occur within the system’s execution, or, we may have access to the system’s
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variables in each execution step, giving a comprehensive picture of the system’s
state. Often, we can monitor the system’s input-/output behavior. These settings
have in common that an execution can easily be described by a linear sequence
of the artifacts to be observed.

In runtime verification, we therefore aim at specifying the shape of linear
sequences. In a second step, the goal is to synthesize monitors that check whether
a single or a set of linear sequences adheres to the specification.

Formally, executions and runs can be understood as (finite or infinite, respec-
tively) words over the corresponding alphabet, i.e., the power set of the atomic
propositions.

Let Σ be an alphabet and n ∈ N.
We then use the following notation shown in Table 1.

Table 1. Notation for words.

Notation Meaning

Σ∗ Set of all finite words over Σ

Σn All words in Σ∗ of length n

Σ≤n All words in Σ∗ of length at most n

Σ≥n All words in Σ∗ of length at least n

Σ+ = Σ≥1

Σω Set of all infinite words over Σ

Σ∞ = Σ∗ ∪ Σω

A state can be seen as an element a ∈ Σ. Now a run is an infinite word
w ∈ Σω and an execution a finite prefix w ∈ Σ∗. Runtime verification is about
checking if an execution is correct, so we need to specify the set of correct exe-
cutions as a language L ⊆ Σ∗. Therefore a correctness property is a language L.

In general, logical calculi are a versatile tool and basis for deriving specifica-
tion formalisms. Linear-time temporal logic (LTL) is especially useful for speci-
fying properties of linear sequences. In the following we study different versions
of LTL with a semantics adapted towards its application in runtime verification.

Linear temporal logic builds on propositional logic. As such, it allows the
definition of atomic propositions, typically denoted by letters such as p or q, as
well as the combination of formulas by conjunction, denoted by ∧, disjunction,
denoted by ∨, and negation, denoted by ¬. Clearly, only one of conjunction or
disjunction is necessary in the presence of negation. However, for convenience,
we typically use both operators in our logics.

Propositional logic can only talk about the current situation, let it be a
certain time step, an event, a current memory assignment etc. It becomes a
temporal logic by adding temporal quantifiers (sometimes also called operators).

Using propositional logic without temporal operators we describe only the
first state.
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Example 1. Consider AP = {p, q, r, s} and an initial state s0 of an execution w
in which p and r holds. We then have

In LTL, we usually have two operators next, denoted by X , and, until, denoted
by U . Next is a unary operator and the meaning of a formula Xϕ is that ϕ has
to hold in the next situation, formally the next position of a linear sequence,
or word. Until is a binary operator and the meaning of ϕ U ψ is that ψ has
to hold at some point and ϕ has to hold up-to this moment. With these two
temporal operators, it is now possible to specify not only propositions of the
current situation but also on future situations. However, for convenience, we
work with further operators, as visualized in the following.

Formula: ϕ The formula ϕ holds for an execution if ϕ holds in the first state s0
of that execution.

Next: Xϕ The formula Xϕ holds in state si if ϕ holds in state si+1.
If there is no state si+1 then Xϕ never holds.

Weak Next: Xϕ The formula Xϕ holds in state si if ϕ holds in state si+1.
If there is no state si+1 then Xϕ always holds.

Globally: Gϕ The formula Gϕ holds in state si if ϕ holds in all states sj for
j ≥ i.

Finally: Fϕ The formula Fϕ holds in state si if there is a state sj for j ≥ i in
which ϕ holds.
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Until: ϕ U ψ The formula ϕUψ holds in state si if there is a state sj for j ≥ i in
which ψ holds and ϕ holds in all states sk for i ≤ k < j.

Notice that a state in which ϕ holds is not required in all cases!

Release: ϕ R ψ The formula ϕRψ holds in state si if there is a state sj for j ≥ i
in which ϕ holds and ψ holds in all states sk for i ≤ k ≤ j.

If there is no such state sj then the ϕRψ holds if ψ holds in all states sk for
k ≥ i.

LTL Syntax. Let us give a precisedefinition of LTL’s syntax.

Definition 8 (Syntax of LTL Formulae). Let p ∈ AP be an atomic propo-
sition from a finite set of atomic propositions AP. The set of LTL formulae is
inductively defined by the following grammar:

ϕ :: = true | p | ϕ ∨ ϕ | Xϕ | ϕUϕ | Fϕ |
false | ¬p | ϕ ∧ ϕ | Xϕ | ϕRϕ | Gϕ |
¬ϕ

Thus, in total LTL’s syntax as considered here consists of the logical contants
true and false, conjunction and disjunction, negation, and the temporal operators
next X, weak next X, until U, and release R and its special casses finally F and
globally G.

The previous definition of LTL’s syntax is not minimal in the sense that, as
we will see when considering the semantics, some operators can be expressed by
others. For example, negation is only added for convenience as for every operator
true, ∨, X, U and F also its dual operator false, ∧, X, R and G, respectively is
added, and each atomic proposition p may be used positively as p or negatively
as ¬p.

The operator precedence is needed to determine an unambiguous derivation
of an LTL formula if braces are left out in nested expressions. The higher the
rank of an operator is the later it is derivated.

Braces only need to be added if an operator of lower or same rank should be
derivated later than the current one.
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Definition 9 (operator precedence of LTL).

1. negation operator: ¬
2. unary temporal operators: X, X̄,G,F
3. binary temporal logic operators: U,R
4. conjunction operator: ∧
5. disjunction operator: ∨
Example 2. G ¬x ∨ ¬x U Gy ∧z

≡G (¬x) ∨
((

(¬x) U (Gy)
) ∧z

)

3 FLTL Semantics

3.1 Semantics

We will now give a formal sematics matching the informal ideas from the last
section on how LTL works. We first assume that the execution under scrutiny
has terminated. Thus, we are given a final complete word over the alphabet
Σ = 2AP and we are after a two-valued semantics for Finite Linear Temporal
Logic (FLTL), which tells us wether the execution/run fulfills the correctness
property or not.

Given a word w ∈ Σ+, we define when the word satisfies a given property ϕ.
If so, we write w |= ϕ, and, if not, we sometimes write w 	|= ϕ. In other words, the
semantics of LTL formula with respect to words is typically given as a relation
|= but we write, to simplify readability, w |= ϕ rather than (w,ϕ) ∈|=.

In the formal definition of LTL semantics we denote parts of a word as follows:
Let w = a1a2 . . . an ∈ Σn be a finite word over the alphabet Σ = 2AP and let
i ∈ N with 1 ≤ i ≤ n be a position in this word. Then

– |w| := n is the length of the word,
– wi = ai is the i-th letter of the word and
– wi = aiai+1 . . . an is the subword starting with letter i.

We now give the formal two-valued semantics for LTL on finite completed
non-empty words. It uses the standard ideas of LTL derived in the previous
section. Recall that X and X represent that idea that property at the end of the
trace is not or respectively, is satisfied.

Definition 10 (FLTL Semantics). Let ϕ,ψ be LTL formulae and let w ∈ Σ+

be a finite word. Then the semantics of ϕ with respect to w is inductively defined
as in Fig. 6.

Let us consider several examples. More specifically, let us consider several
patterns. The patterns are taken from [DAC99]. On the website http://patterns.
projects.cis.ksu.edu/ many more real world pattern are described.

In the following examples we consider a property ϕ whose validity should be
specified with respect to a scope expressed by a property ψ. We consider these
scopes:

http://patterns.projects.cis.ksu.edu/
http://patterns.projects.cis.ksu.edu/
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Fig. 6. Semantics of FLTL

everytime: all states
before ψ: all states before the first state in which ψ holds

(if there is such a state)
after ψ: all states after and including the first state in which ψ holds

(if there is such a state)

And we consider the patterns Absence, Existence, and Universality.

Example 3 (Absence). The formula ϕ does not hold

everytime: G¬ϕ
before ψ: (Fψ) → (¬ϕUψ)
after ψ: G(ψ → (G¬ϕ))

Example 4 (Existence). The formula ϕ holds in the future

everytime: Fϕ
before ψ: G¬ψ ∨ ¬ψU(ϕ ∧ ¬ψ)
after ψ: G¬ψ ∨ F(ψ ∧ Fϕ)

Example 5 (Universality). The formula ϕ holds

everytime: Gϕ
before ψ: (Fψ) → (ϕUψ)
after ψ: G(ψ → Gϕ)

Let us now recall the idea of equivalent formulas
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Definition 11 (Equivalence of Formulae). Let Σ = 2AP and ϕ and ψ be
LTL formulae over AP. ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, iff

∀w ∈ Σ+ : w |= ϕ ⇔ w |= ψ.

Globally and finally can easily be expressed using until and release:

Fϕ ≡ true Uϕ Gϕ ≡ false Rϕ

The negation can always be moved in front of the atomic propositions using
the dual operators:

De Morgan Rules of Propositional Logic

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ

De Morgan Rules of Temporal Logic

¬(ϕUψ) ≡ ¬ϕR¬ψ

¬(ϕRψ) ≡ ¬ϕU¬ψ

¬(Gϕ) ≡ F¬ϕ

¬(Fϕ) ≡ G¬ϕ

¬(Xϕ) ≡ X¬ϕ

¬(Xϕ) ≡ X¬ϕ

Fixed Point Equations. The following fixed point equations can be used to step-
wise unwind until and release:

ϕUψ ≡ ψ ∨ (ϕ ∧ X(ϕUψ))

ϕRψ ≡ ψ ∧ (ϕ ∨ X(ϕRψ))

Consequently such fix point equations for globally and finally are special cases
of the above ones:

Gϕ ≡ ϕ ∧ X(Gϕ)
Fϕ ≡ ϕ ∨ X(Fϕ)

Using all these equivalences one may notice that only a small set of LTL
operators is needed in a minimal syntax to provide the full expressiveness of
LTL.

Definition 12 (Negation Normal Form (NNF)). An LTL formula ϕ is in
Negation Normal Form (NNF) iff ¬ only occurs in front of atomic propositions
p ∈ AP.
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Lemma 1. For every LTL formula there exists an equivalent formula in NNF.

Proof. Recursively apply De Morgan rules of propositional logic and De Morgan
rules of temporal logic.

Given the semantics of FLTL, it is easy to create a monitoring device that
reads a finite string and an LTL formula and outputs the semantics of the string
as a monitoring verdict. We leave this as an excercise to the reader. In the next
section, we will elaborate a semantics that is suitable for finite but continuesly
expanding words and we provide a more sophisticated monitoring procedure that
may be slightly adapted to serve also for FLTL.

4 Impartial Runtime Verification

For now we are able to decide if a finite terminated execution/word models an
LTL formula. This approach is reasonable whenever a terminated run of system is
analyzed. Often, especially in online monitoring, the execution is still running so
that the word to analyze is continuously expanding. Thus, instead of considering
a terminated word we will start thinking about what happens if the word gets
extended with more letters step by step. Regarding the maxims impartiality and
anticipation, we will address the impartiality in this section. To this end, our
monitor will be able to answer the question if a word models an LTL formula
with one of the following statements:

– Yes it does and it will always do.
– Yes it does, but this may change.
– No it does not, but this may change.
– No it does not and will never do.

We will introduce the concept of truth domains providing multiple logical values
that can be used as results if an LTL formula gets evaluated. Here, we build on
the theory of lattices. After presenting a first monitoring approach for such a
four-valued LTL semantics we will introduce automata-based monitoring. This
answers the question on how the recursive evaluation function can be imple-
mented in an efficient way. It gets translated into a Mealy machine—one of the
most basic and easy to implement machine models.

4.1 Truth Domains

Definition 13 (Lattice). A lattice is a partially ordered set (L,) where for
each x, y ∈ L, there exists

1. a unique greatest lower bound (glb), which is called the meet of x and y, and
is denoted with x � y, and

2. a unique least upper bound (lub), which is called the join of x and y, and is
denoted with x � y.
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If the ordering relation  is obvious we denote the lattice with the set L.

Definition 14 (Finite Lattice). A lattice (L,) is called finite iff L is finite.

Every non-empty finite lattice has two well-defined unique elements: A least
element, called bottom, denoted with ⊥ and a greatest element, called top,
denoted with �.

Hasse diagrams are used to represent a finite partially ordered set. Each
element of the set is represented as a vertex in the plane. For all x, y ∈ L where
x  y but no z ∈ L exists where x  z  y a line that goes upward from x to y
is drawn.

Example 6 (Hasse Diagram). Hasse diagram for B2 = {⊥,�} with ⊥  �:

Example 7 (Lattices).

Definition 15 (Distributive Lattices). A lattice (L,) is called a distribu-
tive lattice iff we have for all elements x, y, z ∈ L

x � (y � z) = (x � y) � (x � z) and
x � (y � z) = (x � y) � (x � z).
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Definition 16 (De Morgan Lattice). A distributive lattice (L,) is called a
De Morgan lattice iff every element x ∈ L has a unique dual element x, such
that

x = x and x  y implies y  x.

Definition 17 (Boolean Lattice). A De Morgan lattice is called Boolean lat-
tice iff for every element x and its dual element x we have

x � x = � and x � x = ⊥.

Every Boolean lattice has 2n elements for some n ∈ N.

Definition 18 (Truth Domain). A Truth Domain is a finite De Morgan Lat-
tice.

Example 8 (Truth Domains). The following lattices are all Truth Domains:

– B2 = {�,⊥} with ⊥  � and
� = ⊥ and ⊥ = �.

– B3 = {�, ?,⊥} with ⊥  ?  � and
� = ⊥, ? = ? and ⊥ = �.

– B4 = {�,�p,⊥p,⊥} with ⊥  ⊥p  �p  � and
� = ⊥, �p = ⊥p, ⊥p = �p and ⊥ = �.

where we call ? also inconclusive/don’t know and �p and ⊥p presumably true
and presumably false, respectively.

4.2 Four-Valued Impartial LTL Semantics: FLTL4

Let us now continue with the development of an impartial semantics of FLTL.
Recall that the idea of impartiality is to for a go for a final verdict (� or ⊥) only
if you really know. In other words, impartiality requires that a finite trace is not
evaluated to true or, respectively false, if there still exists an (possibly infinite)
continuation leading to another verdict. Impartiality requires more than two
truth values so that in general the semantics of a formula with respect to a trace
is no longer a relation but a semantic function yielding a suitable truth value.

Definition 19 (Semantic Function). The semantic function

semk : Σ+ × LTL → Bk

maps a word w ∈ Σ+ and a an LTL formula ϕ to a logic value b ∈ Bk.
We use [[w |= ϕ]]k = b instead of semk(w,ϕ) = b.

Clearly, this is a conservative extension and the semantics for (two-valued)
FLTL can easily be given as a function:
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We defined the FLTL semantics as relation w |= ϕ between a word w ∈ Σ+

and an LTL formula ϕ. This can be interpreted as semantic function

sem2 : Σ+ × LTL → B2,

sem2(w,ϕ) =[[w |= ϕ]]2 :=

{
� if w |= ϕ

⊥ else.

We can now define the notion of an impartial semantics formally:

Definition 20 (Impartial Semantics). Let Σ = 2AP be an alphabet, w ∈ Σ+

a word and ϕ an LTL formula. A semantic function is called impartial iff for
all u ∈ Σ∗

[[w |= ϕ]] = � implies [[wu |= ϕ]] = �
[[w |= ϕ]] = ⊥ implies [[wu |= ϕ]] = ⊥.

We want to create impartial four-valued semantics for LTL on finite, non-
completed words using the truth domain (B4,). Let us look at examples our
semantics should adhere to:

Example 9 ((FLTL vs. FLTL4).

The indices 2 and 4 denote FLTL resp. FLTL4.

[[∅ |= Xa]]2 = ⊥ [[∅ |= Xa]]4 = ⊥p

[[∅∅ |= Xa]]2 = ⊥ [[∅∅ |= Xa]]4 = ⊥
[[∅{a} |= Xa]]2 = � [[∅{a} |= Xa]]4 = �

[[∅ |= Xa]]2 = � [[∅ |= Xa]]4 = �p

[[∅∅ |= Xa]]2 = ⊥ [[∅∅ |= Xa]]4 = ⊥
[[∅{a} |= Xa]]2 = � [[∅{a} |= Xa]]4 = �

At the end of the word X evaluates to ⊥p instead of ⊥ and X evaluates to
�p instead of �. The idea of •p is that it identifies the (two-valued) semantics
if the word ends here but may change depending on the future. Fulfilling the
introduced equivalences and fix point equations we get at the end of the word:
U evaluates to ⊥p instead of ⊥, R evaluates to �p instead of �.

We now give the formal four-valued semantics for LTL on finite, non-
completed and non-empty words:

Definition 21 (FLTL4 Semantics). Let ϕ,ψ be LTL formulae and let w ∈ Σ+

be a finite word. Then the semantics of ϕ with respect to w is inductively defined
as follows:
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[[w |= true]]4 = �
[[w |= false]]4 = ⊥

[[w |= p]]4 =

{
� if p ∈ w1

⊥ if p 	∈ w1

[[w |= ¬p]]4 =

{
� if p 	∈ w1

⊥ if p ∈ w1

[[w |= ¬ϕ]]4 =[[w |= ϕ]]4
[[w |= ϕ ∨ ψ]]4 =[[w |= ϕ]]4 �[[w |= ψ]]4
[[w |= ϕ ∧ ψ]]4 =[[w |= ϕ]]4 �[[w |= ψ]]4

[[w |= Xϕ]]4 =

{
[[w2 |= ϕ]]4 if |w| > 1
⊥p else

[[w |= Xϕ]]4 =

{
[[w2 |= ϕ]]4 if |w| > 1
�p else

[[w |= ϕUψ]]4

=

⎛
⎝ ⊔

1≤i≤|w|

⎛
⎝[[wi |= ψ]]4 �

�

1≤j<i

[[wj |= ϕ]]4

⎞
⎠

⎞
⎠

�
⎛
⎝⊥p �

�

1≤i≤|w|
[[wi |= ϕ]]4

⎞
⎠

[[w |= ϕRψ]]4

=

⎛
⎝ ⊔

1≤i≤|w|

⎛
⎝[[wi |= ϕ]]4 �

�

1≤j≤i

[[wj |= ψ]]4

⎞
⎠

⎞
⎠

�
⎛
⎝�p �

�

1≤i≤|w|
[[wi |= ψ]]4

⎞
⎠

[[w |= Fϕ]]4 = ⊥p �
⊔

1≤i≤|w|
[[wi |= ϕ]]4

[[w |= Gϕ]]4 = �p �
�

1≤i≤|w|
[[wi |= ϕ]]4

Definition 22 (Equivalence of Formulae). Let Σ = 2AP and ϕ and ψ be
LTL formulae over AP. ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, iff

∀w ∈ Σ+ : [[w |= ϕ]] =[[w |= ψ]].
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Monitor Function. The idea of the monitoring function is to process a word
while it is read, from-left-right. In other words, our goal is to build up a monitor
function for evaluating each subsequent letter of non-completed words. Such a
function takes an LTL formula ϕ in NNF and a letter a ∈ Σ, performs (not
recursive) formula rewriting (progression) and returns [[a |= ϕ]]4 and a new LTL
formula ϕ′ that the next letter has to fulfill. To this end, we rewrite the LTL
formula to keep track of what is done and what still needs to be checked.

For example, let w ∈ Σ+ be a word and p ∈ AP a letter. We can compute
[[w |= Xp]]4 by doing nothing and letting someone else check [[w2 |= p]]4. We can
compute [[w |= a]]4 by checking p ∈ w1.

Then the LTL formula is over. This is denoted by true or false as new formula.
It is straight forward to evaluate atomic propositions, positive operators of

propositional logic (∧,∨) and next-formulas. Thanks to De Morgan rules of
propositional and temporal logic for negation (¬) and fixed point equations for
U and R those formulas do not have be treated explicitly.

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic proposition, a ∈ Σ a
letter, and ϕ and ψ LTL formulae.

We then define the function evlFLTL4 : Σ ×LTL → B4 ×LTL inductively as
shown in Fig. 7.

Example 10 (Impartial Evaluation of Globally).
Consider w = {a}{a}∅. First letter:

evlFLTL4({a},Ga) = evlFLTL4({a}, a ∧ XGa)
= (v1 � v2, ϕ1 ∧ ϕ2)
= (� � �p, true ∧ Ga)
= (�p,Ga)

where (v1, ϕ1) = evlFLTL4({a}, a) = (�, true)

(v2, ϕ2) = evlFLTL4({a},XGa) = (�p,Ga).

Next letters:

– evlFLTL4({a},Ga) = (�p,Ga)
– evlFLTL4(∅,Ga) = (⊥, false)

4.3 Automata-Based Monitoring for FLTL4

Within the automata-theoretic approach to monitoring, one creates an automa-
ton, for example a deterministic one with output. Whenever a new observation
on the underlying system is made, it is send to the automaton as input and the
output yields the verdict for the trace observed so far.

The automaton synthesized for a property to check can typically be under-
stood as a pre-computation of the respective monitoring function developed in
the previous section. If, for example, the monitor is deterministic and realized as
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Fig. 7. Evaluation of LTL formulas with an impartial, four-valued semantics

a transition table, only a simple look-up in the table is necessary for processing
the observation. Thus, the automata-theoretic approach to monitoring is consid-
ered to be efficient at runtime but of course, the precomputed transition table
may be huge.

The goal of this subsection is to provide a synthesis procedure for FLTL4,
based on the evaluation function given in the previous subsection.

The translation is guided by the following observation: evlFLTL4 gets a letter
and a formula and outputs a logic value and a new formula. We use formula as
state of the Mealy machine and letter as input and logic value as output. The
next state (new formula) depends on the state (formula) and input (letter), while
theOutput depends on state (formula) and input (letter).

Definition 23 (Deterministic Mealy Machine). A (deterministic) Mealy
machine is a tupel M = (Σ,Q, q0, Γ, δ) where

– Σ is the input alphabet,
– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– Γ is the output alphabet and
– δ : Q × Σ → Γ × Q is the transition function
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Definition 24 (Run of a Deterministic Mealy Machine). A run of a
(deterministic) Mealy machine M = (Σ,Q, q0, Γ, δ) on a finite word w ∈ Σn

with outputs oi ∈ Γ is a sequence

t0
(w1,o1)→ t1

(w2,o2)→ . . .
(wn−1,on−1)→ tn−1

(wn,on)→ tn

such that

– t0 = q0 and
– (ti, oi) = δ(ti−1, wi)

The output of the run is on.

Our synthesis procedure will first generate alternating machines, which then
may be translated into non-deterministic or deterministic machines. Intuitively,
an alternating machine may proceed from a boolean combination of states to
a subsequent boolean combination of states, following the transition function.
Non-deterministic and deterministic machines are, respectively, intuitively in a
set or a single state.

Alternating Mealy Machine

Definition 25 (Positive Boolean Combination (PBC)). Given a set Q we
define the set of all positive Boolean combinations (PBC) over Q, denoted by
B+(Q), inductively as follows:

– {true, false} ⊆ B+(Q),
– Q ⊆ B+(Q) and
– ∀α, β ∈ B+(Q) : α ∨ β, α ∧ β ∈ B+(Q).

Example 11. Consider AP = {a, b, c}
– a ∈ B+(AP), {a} 	∈ B+(AP),
– a ∧ b ∨ a ∧ c ∈ B+(AP),
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– true ∈ B+(AP) and false ∈ B+(AP).

Now, we are ready to define alternating Mealy machines, their extended
transition function as well as their runs:

Definition 26 (Alternating Mealy Machine (AMM)). A alternating
Mealy machine (AMM) is a tupel M = (Σ,Q, q0, Γ, δ) where

– Σ is the input alphabet,
– Q is a finite set of states,
– q0 ∈ Q is the initial state and
– Γ is a finite, distributive lattice, the output lattice,
– δ : Q × Σ → B+(Γ × Q) is the transition function

Sometimes, we understand δ : Q×Σ → B+(Γ ×Q) as a function δ : Q×Σ →
Γ × B+(Q), yielding a tuple with the first component having the value of the
respective meets and joins of individual outputs and second component having
the positive Boolean combination of the respective second components.

Definition 27 (Extended Transition Function). Let δ : Q × Σ → Γ ×
B+(Q) be the transition function of an alternating mealy machine. Then the
extended transition function δ̂ : B+(Q) × Σ → Γ × B+(Q) is inductively defined
as follows

– δ̂(q, a) = δ(q, a),
– δ̂(true, a) = (�, true), δ̂(false, a) = (⊥, false),
– δ̂(q1 ∨ q2, a) = (o1 � o2, q

′
1 ∨ q′

2) and
– δ̂(q1 ∧ q2, a) = (o1 � o2, q

′
1 ∧ q′

2),
where (o1, q′

1) = δ̂(q1, a) and (o2, q′
2) = δ̂(q2, a).

Definition 28 (Run of an Alternating Mealy Machine). A run of an
alternating Mealy machine M = (Σ,Q, q0, Γ, δ) on a finite word w ∈ Σn with
outputs oi ∈ Γ is a sequence

t0
(w1,o1)→ t1

(w2,o2)→ . . .
(wn−1,on−1)→ tn−1

(wn,on)→ tn

such that

t0 = q0 and (ti, oi) = δ̂(ti−1, wi),

where δ̂ is the extended transition function of M.
The output of the run is on.

Let us now derive the necessary machinery for translation alternating
machines to deterministic ones.

Definition 29 (Model Relation for PBCs). Let Q be a set. A subset S ⊆ Q
is a model of a positive Boolean combination α ∈ B+(Q), denoted by S |= α, iff
α evaluates to true in propositional logic interpreting all p ∈ S as true and all
p ∈ Q\S as false.
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Definition 30 (Equivalence of PBCs). Let Q be a set and α ∈ B+(Q) and
β ∈ B+(Q) be positive Boolean combinations over Q. α and β are equivalent,
denoted by α ≡ β, iff

∀S ⊆ Q : S |= α ⇔ S |= β.

Definition 31 (Equivalence Classes of PBCs). Let Q be a set. The equiv-
alence class [α] of a positive Boolean combination α ∈ B+(Q) over Q is defined
as follows

[α] = {β ∈ B+(Q) | α ≡ β}.

The set of all equivalence classes of positive Boolean combinations over Q is
denoted by the following quotient set

B+(Q)/≡ = {[α] | α ∈ B+(Q)}.

Alternating Mealy machines can easily be translated into (deterministic)
Mealy machines. The idea is to use B+(Q)/≡ instead of B+(Q) as a state space
and to extend the transition function correspondingly. This is well defined:

Lemma 2. Let δ̂ be the extended transition function of an AMM M =
(Σ,Q, q0, Γ, δ), a ∈ Σ, o, p ∈ Γ and α, β, α′, β′ ∈ B+(Q) such that

α ≡ β,

(o, α′) = δ̂(α, a) and

(p, β′) = δ̂(β, a).

Then

o = p and (∗)
α′ ≡ β′.

The proof of (∗) requires the output lattice to be distributive.
In other words, equivalent combinations of states yield the same output and

an equivalent combination of successor states. Thus, whenever we perform a
transition, we can normalize the resulting Boolean combination of states without
changing the output for an input word. As for any fixed set of states, there are
only finitely many non-equivalent formulae, we have the general result that we
can transform an alternating machine to a deterministic one. However, let us be
more specific.

We can use B+(Q)/≡ instead of Q as states. We still need a well defined
representative for [α] for α ∈ B+(Q). In other words: Given α ∈ Q, how to find
[α]? We use disjunctive normal form of α.

Definition 32 (Disjunctive Normal Form (DNF)). A positive Boolean
combination α ∈ B+(Q) over a set Q is in disjunctive normal form (DNF)
iff

α =
n∨

i=1

m∧
j=1

qi,j
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for qi,j ∈ Q. A disjunctive normal form α ∈ B+(Q) is called minimal if there is
no disjunctive normal form β ∈ B+(Q) s. t. α ≡ β and β contains less operators.

Lemma 3. For every positive Boolean combination α ∈ B+(Q) there exists a
positive Boolean combination β such that α ≡ β and β is in minimal DNF.

Proof uses distributivity of propositional logic.

B+(Q)/≡ is finite. Let Q be the set of states of an AMM. Then Q is finite.
Then there are at most 2|Q| many different α for

α =
n∨

i=1

qi and n different qi ∈ Q.

Then there are at most 22
|Q|

many different β for

β =
n∨

i=1

m∧
j=1

qi,j minimal and qi,j ∈ Q.

Then there are at most 22
|Q|

many different [β] for β ∈ B+(Q).

Example 12 (Alternating Mealy Machine).

Example 13 (Translated Mealy Machine).

Using similar ideas, we can translate an AMM to Non-Deterministic or Uni-
versal MM.
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Automata Based RV. We monitor an LTL formula ϕ by evaluating its current
subformula ψ w.r.t. the current letter a.

The monitor function evlFLTL4, which takes an LTL formula ψ in NNF and a
letter a ∈ Σ and returns [[a |= ψ]]4 and a new LTL formula ψ′, can be interpreted
as transition function of an AMM where the states are subformulae of ϕ, the
initial state is ϕ, the current state is ψ, we read the letter a, we output [[a |= ψ]]4
and the next state is the new formula ψ′.

Let Σ = 2AP be the finite alphabet, p ∈ AP an atomic proposition, a ∈ Σ a
letter, ϕ,ψ1, ψ2 LTL formulae in NNF and Q the set of all subformulae of ϕ.

We then define the transition function δa
4 : Q × Σ → B+(B4 × Q) of the

monitor AMM Mϕ = (Σ,Q,ϕ,B4, δ
a
4 ) inductively as follows:

δa
4 (true, a) = (�, true)

δa
4 (false, a) = (⊥, false)

δa
4 (p, a) =

{
(�, true) if p ∈ a

(⊥, false) else

δa
4 (¬p, a) =

{
(�, true) if p 	∈ a

(⊥, false) else

δa
4 (ψ1 ∨ ψ2, a) = δa

4 (ψ1, a) ∨ δa
4 (ψ2, a)

δa
4 (ψ1 ∧ ψ2, a) = δa

4 (ψ1, a) ∧ δa
4 (ψ2, a)

δa
4 (Xψ1, a) = (⊥p, ψ1)

δa
4 (Xψ1, a) = (�p, ψ1)

δa
4 (ψ1Uψ2, a) = δa

4 (ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2)), a)

δa
4 (ψ1Rψ2, a) = δa

4 (ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2)), a)
δa
4 (Fψ1, a) = δa

4 (ψ1 ∨ (X(Fψ1)), a)

δa
4 (Gψ1, a) = δa

4 (ψ1 ∧ (X(Gψ1)), a)

Example 14. Graph of the monitor Mϕ of the formula ϕ = G(p → XGq):

In practical implementations one may omit the AMM and generate the MM
directly out of the LTL formula. Define a function smplfy : LTL → LTL that
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transforms LTL formulae into a unique normal form. Use all simplified positive
Boolean combinations of subformulae of ϕ as states for Mϕ. Define δ4 : Q×Σ →
B4 × Q inductively as follows:

δ4(ψ1 ∨ ψ2, a) = (vψ1 � vψ2 , smplfy(ψ′
1 ∨ ψ′

2)), where
(vψ1 , ψ

′
1) = δ4(ψ1, a) and

(vψ2 , ψ
′
2) = δ4(ψ2, a)

δ4(ψ1 ∧ ψ2, a) = (vψ1 � vψ2 , smplfy(ψ′
1 ∧ ψ′

2)), where
(vψ1 , ψ

′
1) = δ4(ψ1, a) and

(vψ2 , ψ
′
2) = δ4(ψ2, a)

δ4(ψ1, a) = δa
4 (ψ1, a) for any other formula ψ1.

5 Anticipatory LTL Semantics

Using the monitor construction for FLTL4 we are able to build an automata
based impartial LTL monitor. Our monitor can tell us if a property is fulfilled
or violated by a run and if this may change or will last forever. In this section
we will go for anticipation. Recall that, in simple words, impartiality means to
say � or ⊥ only if you are sure while anticipation means to say � or ⊥ once you
can be sure.

In the next sections we will follow the same steps as for creating the impartial
monitor:

– Define an anticipatory LTL semantics.
– Recall a suitable automaton type and its translation towards a deterministic

one.
– Define a monitor construction based on the new semantics.

In the next subsections we will introduce the necessary machinery to finally
be able to present a monitor construction for LTL3.

LTL on Infinite Words. The idea of the anticipatory semantics is to say �
once every infinite continuation evaluates to �, to say ⊥ once every infinite
continuation evaluates to ⊥, and to otherwise say ?, as the verdict may depend
on the future of the underlying execution.

As our anticipatory semantics depends on infinite continuations, we recall
the LTL semantics on infinite words.

An infinite word w is an infinite sequence over the alphabet Σ = 2AP. w can
be interpreted as function w : N\{0} → Σ. w can be interpreted as concatenation
of many finite and one infinite words.

Example 15 (Infinite Words).
Consider the alphabet Σ = 2AP with AP = {p, q}.

– {p}ω denotes the infinite word where every letter is {p} and can be interpreted
as w(i) = {p} for all i ≥ 1.
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– ∅({q}{p})ω can be interpreted as

w(i) =

⎧
⎪⎨
⎪⎩

∅ if i = 1
{q} if i ≡ 0 mod 2
{p} else

Semantics. We have introduced LTL first for finite words, as this was needed for
runtime verification on finite, terminated executions. However LTL on infnite
words is currently the traditional way to define LTL semantics due to its typical
use in model checking, where most often infinite runs are considered. Moreover,
the semantics is slightly simpler to define for the next-operators. Actually the
semantics of Xϕ and Xϕ do not differ—on infinite traces. This is due to the fact
that for an infinite trace, there always exists a subsequent positon in which ϕ
can be evaluated.

In the formal definition of LTL semantics we denote parts of a word as follows:
Let w = a1a2a3 . . . ∈ Σω be an infinite word over the alphabet Σ = 2AP and let
i ∈ N with i ≥ 1 be a position in this word. Then

– wi = ai is the i-th letter of the word,
– w(i) = a1a2 . . . ai is the prefix of w of length i and
– wi is the subword of w s. t. w = w(i−1)wi.

We now give the formal two-valued semantics for LTL on infinite words:

Definition 33 (LTL Semantics on Infinite Words). Let ϕ,ψ be LTL for-
mulae and let w ∈ Σω be an infinite word. Then the semantics of ϕ with respect
to w is inductively defined as follows:

w |= true
w |= p iff p ∈ w1

w |= ¬p iff p 	∈ w1

w |= ¬ϕ iff w 	|= ϕ

w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ

w |= Xϕ iff w2 |= ϕ

w |= Xϕ iff w2 |= ϕ

w |= ϕUψ iff ∃i ≥ 1 : (wi |= ψ and ∀k, 1 ≤ k < i : wk |= ϕ)

w |= ϕRψ iff ∃i ≥ 1 : (wi |= ϕ and ∀k, 1 ≤ k ≤ i : wk |= ψ)

or ∀i ≥ 1 : wi |= ψ

w |= Fϕ iff ∃i ≥ 1 : wi |= ϕ

w |= Gϕ iff ∀i ≥ 1 : wi |= ϕ
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We defined the LTL semantics on infinite words as relation w |= ϕ between a
word w ∈ Σω and a LTL formula ϕ. This can be interpreted as semantic function

semω : Σω × LTL → B2,

semω(w,ϕ) =[[w |= ϕ]]ω :=

{
� if w |= ϕ

⊥ else.

The set of models of an LTL formula ϕ defines a language L(ϕ) ⊆ Σω of
infinite words over Σ = 2AP as follows:

L(ϕ) = {w ∈ Σω | [[w |= ϕ]]ω = �}.

Note that the De Morgan rules, equivalences for G and F and the fixed point
equations for U and R are still valid.

5.1 Anticipatory LTL Semantics: LTL3

Recall that anticipation requires that once every (possibly infinite) continuation
of a finite trace leads to the same verdict, then the finite trace evaluates to this
very same verdict.

FLTL4 is not anticipatory: [[{p} |= XXfalse]]4 = ⊥p but it should yield ⊥ as
any finite extension will eventually reveal that the formula is falsified.

Definition 34 LTL3 (Semantics). Let ϕ be an LTL formula and let u ∈ Σ∗

be a finite word. Then the semantics of ϕ with respect to u is defined as follows:

[[u |= ϕ]]3 =

⎧
⎪⎪⎨
⎪⎪⎩

� if ∀w ∈ Σω : [[uw |= ϕ]]ω = �
⊥ if ∀w ∈ Σω : [[uw |= ϕ]]ω = ⊥
? else.

Example 16. Consider ϕ = G(p → Ffalse) and ∅{q}{p}∅ ∈ Σ∗ for Σ = 2AP

and AP = {p, q}. We then have

– [[∅ |= ϕ]]3 =?

– [[∅{q} |= ϕ]]3 =?

– [[∅{q}{p} |= ϕ]]3 = ⊥
– [[∅{q}{p}∅ |= ϕ]]3 = ⊥
– [[∅{q}{p}u |= ϕ]]3 = ⊥ for all u ∈ Σ∗

Possible Verdicts of LTL Formulae. Consider a word w ∈ Σ∗ for Σ = 2AP and
propositions p, q ∈ AP. We then have

– [[w |= pUq]]3 ∈ {�, ?,⊥}
– [[w |= pRq]]3 ∈ {�, ?,⊥}
– [[w |= Fp]]3 ∈ {�, ?}
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– [[w |= Gp]]3 ∈ {?,⊥}
– [[w |= GFp]]3 = ?

– [[w |= FGp]]3 = ?

5.2 Monitorable Properties

In this subsection, we study the notion of monitorable properties. In essence, a
property is called monitorable if there is no finite point in time from we may
conclude that we stay with the verdict? for ever. For comparison, we also recall
the notion of safety and co-safety properties, which we do first.

Definition 35 (Good, Bad and Ugly Prefixes). Given a language L ⊆ Σω

of infinite words over Σ we call a finite word u ∈ Σ∗

– a good prefix for L if ∀w ∈ Σω : uw ∈ L,
– a bad prefix for L if ∀w ∈ Σω : uw 	∈ L and
– an ugly prefix for L if ∀v ∈ Σ∗ : uv is neither a good prefix nor a bad prefix.

Example 17 (The Good, The Bad and The Ugly).

– {p}{q} is a good prefix for L(Fq).
– {p}{q}{p} is a good prefix for L(Fq).
– {p}{q} is a bad prefix for L(Gp).
– every w ∈ Σ∗ is an ugly prefix for L(GFp).
– {p} is an ugly prefix for L(p → GFp).

LTL3 indentifies good/bad prefixes Given an LTL formula ϕ and a finite word
u ∈ Σ∗, then

[[u |= ϕ]]3 =

⎧
⎪⎨
⎪⎩

� if u is a good prefix forL(ϕ)
⊥ if u is a bad prefix forL(ϕ)
? otherwise

Safety Properties assert that nothing bad happens. Such a property is violated
iff something bad happens after finitely many steps. (→ A bad prefix exists.)

Co-Safety Properties assert that something good happens. Such a property
is fulfilled iff something good happens after finitely many steps. (→ A good
prefix exists.)

Definition 36 ((Co-)Safety Languages). A language L ⊆ Σω is called

– a safety language if for all w 	∈ L there is a prefix u ∈ Σ∗ of w which is a bad
prefix for L.

– a co-safety language if for all w ∈ L there is a prefix u ∈ Σ∗ of w which is a
good prefix for L.
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Definition 37 ((Co-)Safety Properties). An LTL formula ϕ is called

– a safety property if its set of models L(ϕ) is a safety language.
– a co-safety property if its set of models L(ϕ) is a co-safety language.

Example 18 Consider propositions p, q ∈ AP.

– pUq is not a safety property, because {p}ω 	|= pUq, but there is no bad prefix.
– pUq is a co-safety property, because every infinite word w ∈ Σω with w |= pUq

must contain the releasing q in a finite prefix.
– pRq is not a co-safety property, because {q}ω |= pRq, but there is no good

prefix.
– pRq is a safety property, because every infinite word w ∈ Σω with w 	|= pRq

must contain the violating absence of q in a finite prefix.

Let us now turn our attention to the notion of monitorabilty, which intuitively
characterizes a property as monitorable, if eventually, we might get a definite
verdict when monitoring it.

Definition 38 (Monitorable Languages). A language L ⊆ Σω is called
monitorable iff L has no ugly prefix.

Definition 39 (Monitorable Properties). An LTL formula ϕ is called mon-
itorable iff its set of models L(ϕ) is monitorable.
Safety Properties

Co-Safety Properties

Remark 1. Safety and Co-Safety Properties are monitorable.

Theorem 1. The class of monitorable properties

– comprises safety- and co-safety properties, but
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– is strictly larger than their union.

Proof. Consider AP = {p, q, r} and ϕ = ((p ∨ q)Ur) ∨ Gp.{p}ω |= ϕ without
good prefix, therefore ϕ is not a co-safety property. {q}ω 	|= ϕ without bad
prefix, therefore ϕ is not a safety property. Every finite word u ∈ Σ∗ that is
not a bad prefix can become a good prefix by appending {r}. Every finite word
u ∈ Σ∗ that is not a good prefix can become a bad prefix by appending ∅. No
ugly prefix exists as every prefix is either good, bad or can become good or bad
by appending {r} or ∅.

5.3 Monitor Construction for Anticipatory Runtime Verification

In this section we will recall the idea of translating LTL (with its two-valued
semantics on infinite words) into Büchi automata and then use this to present a
monitor construction for anticipatory and impartial runtime verification.

Our goal is to construct a Moore machine Mϕ for an LTL formula ϕ that
reads a word letter by letter and outputs in every state the value of [[w |= ϕ]]3
where w is the word read so far.

A first idea would be to reuse the evlFLTL4 function and to perform an
additional check on the resulting formula. More precisely, one could return � or
⊥ if the formula is a tautology or unsatisfiable, respectively, and to return? in
any other case. However, a satisfiability check is a complex task so that we are
after a different approach.

Instead, we follow the idea to construct a Büchi automaton (BA) accept-
ing precisely the models of the LTL formula and analyse it. More precisely,
we identify good states � in which the BA will accept on every continua-
tion, bad states ⊥, in which the BA will reject on every continuation, yielding
other states ?, in which no conclusion is possible yet.

For example consider AP = {p, q} and Σ = 2AP and the following automaton:

Our goal is to create a Moore machine using these labels as outputs.
While it is algorithmically easy to identify the ⊥-states in a non-deterministic

machine, the �-states are difficult to estimate as they require universality check.
Therefore, we take a slighltly different approach. We only identify bad states (⊥)
and label everything else as not bad (	= ⊥). Perform this for the LTL formulae
ϕ and ¬ϕ. Good states for ϕ are bad states for ¬ϕ.
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Note that an LTL formula can be complemented by adding ¬. And that
complementing a BA potentially needs exponential time.

Büchi Automata (BA).

Definition 40 (ω-regular Languages). A language L ⊆ Σω over an alpha-
bet Σ is called ω-regular iff there are regular languages Ui, Vi ⊆ Σ∗ for i ∈
{1, . . . , m} such that

L =
m⋃

i=1

Ui ◦ V ω
i .

Example 19 (ω-regular Languages). Consider an alphabet Σ = 2AP for AP =
{p, q}.

L(Gp) = {{p}, {p, q}}ω

L(Fp) = Σ∗ ◦ {{p}, {p, q}} ◦ Σω

Fig. 8. A examplifying Büchi automaton

Büchi automata were first introduced by Büchi in [Buc62] for obtaining a
decision procedure for the monadic second-order theory of structures with one
successor. Let us establish the key concepts of this kind of automata to the
extent needed in our thesis. For a thorough introduction to Büchi automata we
refer to [Tho90]. We start directly with their definition:
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Definition 41 (Non-deterministic Büchi Automata (BA)). A (non-
deterministic) Büchi automaton is a tuple A = (Σ,Q,Q0,Δ, F ) such that

– Σ is the input alphabet,
– Q is the finite non-empty set of states,
– Q0 ⊆ Q is the set of initial states,
– Δ ⊆ Q × Σ × Q is the transition relation and
– F ⊆ Q is the set of accepting states.

A Büchi automaton may be represented as an edge-labeled directed graph.
Its nodes are the states and an edge labeled by a ∈ Σ leads from a node (state)
q ∈ Q to a node (state) q′ ∈ Q iff (q, a, q′) ∈ Δ. The initial state is marked with
an incoming arrow. A final state, on the other hand, is identified by a second
circle around the node. Figure 8 shows an exemplifying Büchi automaton over
the alphabet Σ = 2AP for AP = {p, q}.

The automaton operates on infinite input words. The idea of its behavior
is that it chooses (non-deterministically) a possible successor state q′ such that
(q, a, q′) ∈ Δ, provided it is in the state q and reads an action a. Of course, the
automaton starts in its initial state.

Definition 42 (Run of a BA). A run of a BA A = (Σ,Q,Q0,Δ, F ) on an
infinite word w ∈ Σω is a function ρ : N → Q such that

– ρ(0) ∈ Q0 and
– ∀i ∈ N\{0} : (ρ(i − 1), wi, ρ(i)) ∈ Δ.

Sometimes, we represent a run ρ only by its sequence of images. For example,
a run of the automaton shown in Fig. 8 on the word {p}{p, q}({q}{p})ω is given
by the sequence q0q0q1(q2q1)ω.

Definition 43 (Accepting Runs of a BA). A run ρ of a BA A = (Σ,Q,
Q0,Δ, F ) is called accepting iff

Inf(ρ) ∩ F 	= ∅,

where Inf(ρ) denotes the set of states visited infinitely often given by

Inf(ρ) =
{

q ∈ Q
∣∣∣ |{k ∈ N | ρ(k) = q}| = ∞

}
.

A accepts w if there is an accepting run ρ of A on w.

Again the language L(A) ⊆ Σω of an automata A with the alphabet Σ is
defined as follows:

L(A) = {w ∈ Σω | A accepts w}.

We make use of the fundamental result by Vardi and Wolper:

Theorem 2 (From LTL to BA [VW86]). For a given LTL formula ϕ over
an alphabet Σ we can construct a BA Aϕ that accepts precisely the models of ϕ.
Moreover, the size of the automaton is exponential in the lenght of the formula.
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5.4 Emptiness per State

For a given LTL formula ϕ over an alphabet Σ we will construct a Moore machine
Mϕ that reads finite words w ∈ Σ∗ and outputs [[w |= ϕ]]3 ∈ B3.

For the next steps let

Aϕ = (Σ,Qϕ, Qϕ
0 , δϕ, Fϕ)

denote the BA accepting all models of ϕ and

A¬ϕ = (Σ,Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F¬ϕ)

denote the BA accepting all words falsifying ϕ.

Definition 44 (BA With Adjusted Initial State). For an BA A, we denote
by A(q) the BA that coincides with A except for the set of initial states Q0, which
is redefined in A(q) as Q0 = {q}.
Definition 45 (Emptiness per State). We then define a function Fϕ : Qϕ →
B2 (with B2 = {�,⊥}) where we set Fϕ(q) = � iff L(Aϕ(q)) 	= ∅.

Using Fϕ, we define the NFA Âϕ = (Σ,Qϕ, Qϕ
0 , δϕ, F̂ϕ) with F̂ϕ = {q ∈

Qϕ | Fϕ(q) = �}. Analogously, we set Â¬ϕ = (Σ,Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F̂¬ϕ) with

F̂¬ϕ = {q ∈ Q¬ϕ | F¬ϕ(q) = �}.
To determine Fϕ(q), we identify in linear time the strongly connected com-

ponents in Aϕ, which can be done using Tarjan’s algorithm [Tar72] or nested
depth-first algorithms as examined in [SE05].

Lemma 4 (LTL3 Evaluation). With the notation as before, we have

[[w |= ϕ]]3 =

⎧
⎪⎨
⎪⎩

� if w /∈ L(Â¬ϕ)
⊥ if w /∈ L(Âϕ)
? if w ∈ L(Âϕ ∩ L(Â¬ϕ))

Proof. [[w |= ϕ]]3 = � if w /∈ L(Â¬ϕ)

– Feeding a finite prefix w ∈ Σ∗ to the BA A¬ϕ,
we reach the set δ¬ϕ(Q¬ϕ

0 , w) ⊆ Q¬ϕ of states.
– If ∃q ∈ δ¬ϕ(Q¬ϕ

0 , w) : L(A¬ϕ(q)) 	= ∅ then
we can choose σ ∈ L(A¬ϕ(q)) such that wσ ∈ L(A¬ϕ).

– Such a state q exists by definition iff w ∈ L(Â¬ϕ).
– If w /∈ L(Â¬ϕ) then every possible continuation wσ of w will be rejected by

A¬ϕ, i.e. [[wσ |= ϕ]]ω = � for all σ ∈ Σω. Therefore we have [[w |= ϕ]]3 = �.
[[w |= ϕ]]3 = ⊥ if w /∈ L(Âϕ)

– can be seen by substituting ϕ for ¬ϕ.
[[w |= ϕ]]3 =? if w ∈ L(Â¬ϕ) ∩ L(Âϕ)

– If ∃q ∈ δ¬ϕ(Q¬ϕ
0 , w) : L(A¬ϕ(q)) 	= ∅ and

∃q′ ∈ δϕ(Qϕ
0 , w) : L(Aϕ(q′)) 	= ∅ then

we can choose σ ∈ L(A¬ϕ(q)) and σ′ ∈ L(Aϕ(q′)) such that [[wσ |= ϕ]]2 = ⊥
and [[wσ′ |= ϕ]]2 = �.

– Hence we have [[w |= ϕ]]3 = ?.
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Deterministic Moore Machine (FSM). Our goal is now to derive a deterministic
Moore machine. As an example, let us consider the Moore machine that we will
obtain for pUq

Definition 46 (Deterministic Moore Machine (FSM)). A (deterministic)
Moore machine is a tupel M = (Σ,Q, q0, Γ, δ, λ) where
– Σ is the input alphabet,
– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– Γ is the output alphabet,
– δ : Q × Σ → Q is the transition function and
– λ : Q → Γ is the output function.

Definition 47 (Run of a Deterministic Moore Machine). A run of a
(deterministic) Moore machine M = (Σ,Q, q0, Γ, δ, λ) on a finite word w ∈ Σn

with outputs oi ∈ Γ is a sequence

t0
w1→ t1

w2→ . . .
wn−1→ tn−1

wn→ tn

such that
– t0 = q0,
– ti = δ(ti−1, wi) and
– oi = λ(ti).

The output of the run is on = λ(tn).

Let Ãϕ = (Σ, Q̃ϕ, qϕ
0 , δ̃ϕ, F̃ϕ) and Ã¬ϕ = (Σ, Q̃¬ϕ, q¬ϕ

0 , δ̃¬ϕ, F̃¬ϕ) be the
equivalent DFAs of the NFAs Âϕ and Â¬ϕ.

Definition 48 (Monitor Mϕ for an LTL formula ϕ). We define the product
automaton Aϕ

= Ãϕ × Ã¬ϕ as the Moore machine (Σ,Q, q0,B3, δ, λ), where
– Q = Q̃ϕ × Q̃¬ϕ,
– q0 = (q̃ϕ

0 , q̃¬ϕ
0 ),

– δ((q, q′), a) = (δ̃ϕ(q, a), δ̃¬ϕ(q′, a)) and
– λ : Q → B3 with

λ((q, q′)) =

⎧
⎪⎨
⎪⎩

� if q′ /∈ F̃¬ϕ

⊥ if q /∈ F̃ϕ

? if q ∈ F̃ϕ and q′ ∈ F̃¬ϕ.

The monitor Mϕ of ϕ is obtained by minimizing Aϕ
.

The overall construction is summarized in Fig. 9.
Figure 10 shows an example construction for the formula pUq.
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Fig. 9. The overall construction for LTL3 monitors.

Fig. 10. The monitor construction for pUq in LTL3

5.5 Analysis

Let us first look at the complexity of the monitor construction. To this, recall
the construction as depicted in Fig. 11.

Fig. 11. The complexity of the LTL3 monitor construction

Thus, |M | ∈ 22
O(|ϕ|)

and the complexity is dominated by the translation of
the underlying formulas into the Büchi automaton and the determinisation of
the respective NFA. As the resulting monitor is unique, the whole construction
is optimal. That said, the latter steps of the translation can also by done “on-
the-fly” allowing to trade space for runtime.
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Practical examples show that resulting monitors for typical properties are of
small sizes. See [BLS11] for details.

Let us briefly look at the general shape of a monitor. Due to minimization,
there are at most two sinks outputting ⊥ or �. In all other states, the output
is ?. However, there might be (single) sink outputting ?, while other states out-
putting ? may reach the � or ⊥-states. A simple analysis reveals that a sink
labelled ? is there if and only if the underlying property is monitorable. The pre-
vious constructions yield a 2EXPTIME algorithm for deciding monitorability.
However, the exact complexity of deciding monitorability is so-far unknown.

Let us close this section by sketching the general shape of an LTL3 monitor
and the corresponding types of prefixes leading to respectively bad, ugly, and
good states.

Structure of Monitors

Classification of Prefixes of Words

Bad prefixes Ugly prefixes Good prefixes

6 Conclusion

In this paper, we provided an introduction to the field of runtime verification and
a detailed overview of the approach based on monitoring linear-time temporal
logic specifications. On this road, we learned about the difference of monitoring
completed runs and monitoring ongoing executions. In the latter case, we realized
that multiple verdicts rather than two are more appropriate. We provided two
approaches for the monitoring expanding executions incorporating the ideas of
impartiality and anticipation. Impartiality means to stay with the verdicts � and
⊥ once decided for them while anticipation requires to go for � and ⊥ (and stay
there) as soon as possible (in the sense made precise in the previous sections).
Moreover, we discussed that automata-based approaches can be understood as
pre-computations of rewriting-based approaches and hereby, we were able to
bridge these two worlds.

We have explored only a very limited area of the rapidly expanding field
of runtime verification. We have not covered applications where further entities
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come into play such as data or concurrency. Moreover, we only touched monitor-
ing but did not discuss steering of a system or enforcing properties at runtime.
Nevertheless, we have given a first detailed introduction into one main part of
the field.

Acknowledgement. Many thanks goes to the team at ISP for fruitful discussions
about the content of this chapter, especially to Malte Schmitz.
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Abstract. With motivations from formal verification and databases,
formal models to reason about software systems that contain data values
from an infinite domain became a research focus in theoretical computer
science community during the last decade. In this chapter, we present
a tutorial to summarise the state of the art of these formal models. We
focus on automata models and logics. We organise the models accord-
ing to the different approaches to deal with the data values from an
infinite domain. Specifically, we present the following models, register
automata (and related logics), data automata (and related logics), peb-
ble automata, and symbolic automata and transducers. In addition, we
also incorporate two application-oriented sections, respectively on for-
mal models to reason about programs manipulating dynamic data struc-
tures, and on formal models for the static analysis of data-parallel pro-
grams. For these two sections, we choose to present separation logic with
data constraints, logic of graph reachability and stratified sets, stream-
ing transducers, and streaming numerical transducers. For each model,
we introduce the basic definitions, use some examples to illustrate the
model, and state the main theoretical properties of the model. We hope
that this tutorial will be useful if one wants to have a bird’s eye of view
on this field and know the basic concepts underlying those models.

1 Introduction

In computer science, formal models usually refer to mathematical models to
specify, recognise, generate, and transform a specific class of structures (e.g.,
words and trees). They typically include logic, automata, formal grammars, and
rewriting systems. Formal models, as the basis of many branches of computer
science, are subject to extensive investigations through the history of computer
science [vL90]. Turing machines, together with λ-calculus, recursive functions,
etc., are one of the first formal models of computation, which have a profound
impact on almost every area of computer science. Another example is context-
free grammars, which are the foundations of syntax analysis of programming
languages, and hence all modern compliers.
c© Springer International Publishing AG 2017
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Logic and automata are two classes of the most well-known formal models.
They have found numerous applications in algorithms and complexity, program-
ming languages, verification, databases, artificial intelligence, etc. For instance,
most automated verification techniques, in particular model checking, are based
on logics and automata over infinite words and trees. In the database commu-
nity, the query languages on semi-structured data (e.g. XML documents) are
based on logics and automata over unranked trees. In addition, path query lan-
guages for graph databases are typically based on finite automata and regular
expressions. Logic and automata are closely related: logics are usually succinct,
declarative, and abstract, whilst automata are specific, imperative, and of low-
level. It is quite common that logics are used as specification languages, and
automata, accounting for the combinatorial aspect of the logics somehow, pro-
vide algorithmic means to reason about the specifications. A classical example is
the satisfiability problem and model checking problem of linear temporal logics
(LTL), which can be reduced to the nonemptiness and language inclusion prob-
lem of Büchi automata respectively [WVS83,VW86], yielding an efficient and
elegant solution.

To some extent, it is fair to say that classical formal models deal with objects
from a finite domain, which can be formalized by a finite alphabet. Intuitively,
finite alphabets can be used to represent the events in concurrent systems and
tags in XML documents. Formal models (logics and automata) over the finite
alphabets have been investigated extensively and intensively. The Chomsky hier-
archy classified the language (and the associated automata models) over finite
alphabets into four levels: linear grammars and finite-state automata, context-
free grammars and pushdown automata, context-sensitive grammars and linear-
bounded automata, and phrase structure grammars and Turing machines. The
theoretical properties of each level of the hierarchy, as well as their relationships,
have been thoroughly investigated [HU79]. Over finite words and trees, finite-
state automata have been shown to be expressively equivalent to the monadic
second-order logic (MSO) [Büc60,Elg61,TW68]. On the other hand, over infinite
words, Büchi automata and MSO have been proved to have the same expressibil-
ity [Büc62]. It is also worth mentioning that algebraic foundations of finite-state
automata on finite words and trees have been established. One classical result
in this field is that a regular language on finite words is expressible in first-order
logic if and only if the syntactic monoid associated with the language is aperiodic
[Sch65,MP71].

In the last decade, motivated by the formal analysis and verification of com-
puter programs and query languages for XML documents and graph databases,
formal models to reason about data values from an infinite domain have become
a research focus of (theoretical) computer science [Seg06,D’A12,Kar16]. In these
models, the alphabet is extended from a finite set Σ to Σ × D, where D is an
infinite data domain (e.g., the set of integers). These infinite alphabets can be
intuitively interpreted as follows:
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– if Σ denotes the events, then D denotes the time of the events or the identifiers
of the processes or threads where the event occurs,

– in XML documents and graph databases, if Σ denotes tags of elements in
XML documents or labels of graph nodes, then D denotes the attributes of
elements or nodes.

In many cases, adding infinite data to the formal models with finite alpha-
bets leads to undecidability of even very basic algorithmic problems. However,
researchers have managed to discover quite a few remarkable exceptions where
decidability, or even efficiency, are preserved. It is usually an art to identify the
trade-off between decidability and expressiveness, which makes the field versatile
and intricate. Nevertheless, this field is of vital importance from both theoretical
and practical viewpoints: on the one hand, formal models over infinite alpha-
bets are natural extensions of their counterparts over finite alphabets, so are of
particular theoretical interests; on the other hand, they are intimately related to
various applications from, for example, formal verification and XML databases.

The current chapter aims to provide a tutorial and survey for the state-of-
the-art research in automata and logics over infinite alphabets and, in partic-
ular, their applications in program verification. This is not the first attempt,
because of the importance of the subject. Segoufin provided an extensive survey
on automata and logics over infinite alphabets in 2006 [Seg06]. In addition, we
are aware of at least two other related surveys:

– D’Antoni’s survey [D’A12] covered the automata and logics on data words
and trees up to 2012, including register automata, data automata, pebble
automata, symbolic automata, and related logics.

– Chap. 4 of Kara’s dissertation [Kar16] included an up-to-date survey on
automata and logics on data words, for instance, register automata, data
automata, first-order logic, and temporal logics on data words.

This chapter provides a broader and up-to-date survey which covers the latest
developments in this field (for example, formalisms for reasoning about dynamic
data structures and data-parallel programs).

However, the reader should bear in mind that our survey is by no means com-
prehensive, nor subsumes the other excellent surveys mentioned above. Indeed,
our selection of material may be subjective with respect to our own research
interests and is bounded by the volume of this chapter. In particular

– we restrict the discussions to finite words and trees and do not present the
results of these models and logics on ω-words and trees,

– we are mostly driven by program verification, so do not include a huge body
of work on atoms (also known as nominal sets or Fraenkel-Mostowski sets)
which are used to define properties on data words and data trees in an abstract
manner (see, e.g., [Boj13,BKLT13]),

– we do not include the work of extending Petri nets with data [HLL+16],
– finally, we do not cover the work on the automatic verification of database-

driven systems [Via09].



198 T. Chen et al.

Plan of the Chapter. Section 2 describes some notations used throughout this
chapter. Section 3 presents register automata and related logics. Section 4 dis-
cusses data automata and first-order logic on data words. Section 5 introduces
pebble automata, including their various sub-models. Section 6 discusses vari-
able automata and temporal logics with data variable quantifications. Section 7
is devoted to symbolic automata and transducers. Sections 8 and 9 describe the
formalisms for reasoning about programs manipulating dynamic data structures
and data-parallel programs respectively.

2 Preliminaries

We use N, Z, Q to denote the set of natural numbers, the set of integers, and the
set of rational numbers respectively. For any n ∈ N, we write [n] for {1, · · · , n}.

We make use of a finite alphabet Σ and an infinite set D of data values.

Words and Data Words. A word w is a finite sequence over Σ. A data word
w is a finite sequence over Σ × D. In particular, ε is used to denote the empty
word or data word. A language is a set of words and a data language is a set of
data words. Let w = (σ1, d1) . . . (σn, dn) be a data word and i ∈ [n]. Then the
type of i in w, denoted by typew(i), is � if i < n and � otherwise. Intuitively, �

means that the current position is not the rightmost position of the data word
and � denotes the negation of this condition. In addition, the Σ-projection of
w, denoted by prjΣ(w), is σ1 . . . σn. When Σ is obvious from the context, we also
write prjΣ(w) as prj(w) for brevity. For a data word w = (σ1, d1) . . . (σn, dn), let
|w| denote the length of w, that is, n.

Trees and Data Trees. A tree domain T is a nonempty finite subset of N
∗ such

that (1) for every xi ∈ T with i ∈ N, we have x ∈ T , and (2) for every xi ∈ T
with i ∈ N and every j : 0 ≤ j < i, we have xj ∈ T . In particular, we have ε ∈ T
for every tree domain T . Let t, t′ ∈ T . We use t �a t′ to denote the fact that t is
an ancestor of t′, that is, t′ = tt′′ for some t′′ ∈ N

∗. In addition, we use t �s t′

to denote the fact that t a left-sibling of t′, that is, t = t′′i and t′ = t′′j for some
t′′ ∈ N

∗ such that i ≤ j. A Σ-labeled tree T is pair (T,L), where T is a tree
domain and L : T → Σ is a labeling function. A Σ-labeled data tree T is a pair
(T,L,D), where (T,L) is a Σ-labeled tree, and D : T → D assigns each node a
data value. A tree language is a set of Σ-labeled trees and a data tree language
is a set of Σ-labeled data trees. Let T be a Σ-labeled tree (T,L) or a Σ-labeled
data tree (T,L,D), and t ∈ T . Then the type of t in T , denoted by typeT (t), is
defined as a subset of {�,�,�,�} such that

– if ti ∈ T for some i ∈ N, then � ∈ typeT (t), otherwise, � ∈ typeT (t),
– if t = t′i and t′j ∈ T for some j ∈ N such that j > i, then � ∈ typeT (t),

otherwise, � ∈ typeT (t).

Intuitively, � means that the current node is not a leaf and � denotes the
negation of this condition. Similarly, � means that the current node is not the
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rightmost sibling of its parent and � denotes the negation of this condition. We
use TreeTypes to denote the set of all possible types of nodes in trees or data trees.
More specifically, TreeTypes = {{type1, type2} | type1 ∈ {�,�}, type2 ∈ {�,�}}.
When Σ is obvious from the context, we usually use data trees to denote Σ-
labeled data trees.

Nondeterministic Finite-State Automata (NFA). An NFA A is a tuple
(Q,Σ, q0, δ, F ) such that Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q
is the initial state, δ ⊆ Q×Σ×Q is a finite set of transitions, and F ⊆ Q is a finite
set of final states. A deterministic NFA (DFA) is an NFA A = (Q,Σ, q0, δ, F )
such that for each (q, σ) ∈ Q × Σ, there is at most one q′ ∈ Q satisfying that
(q, σ, q′) ∈ δ. A NFA or DFA A = (Q,Σ, q0, δ, F ) is complete if for each q ∈ Q
and σ ∈ Σ, there is q′ ∈ Q such that (q, σ, q′) ∈ δ.

The semantics of NFAs is defined as follows: We use δ∗ to denote the reflexive
and transitive closure of δ, that is, (q, ε, q) ∈ δ∗ and (q, w1w2, q

′) ∈ δ∗ iff there is
q′′ ∈ Q such that (q, w1, q

′′) ∈ δ∗ and (q′′, w2, q
′) ∈ δ∗. A word w is accepted by

an NFA A = (Q,Σ, q0, δ, F ) if (q0, w, q′) ∈ δ∗ for some q′ ∈ F . Let L(A) denote
the language defined by A, that is, the set of words accepted by A.

The following decision problems are considered for NFAs:

– Nonemptiness problem: Given an NFA A, decide whether L(A) �= ∅.
– Universality problem: Given an NFA A, decide whether L(A) = Σ∗.
– Language inclusion problem: Given two NFAs A1 and A2, decide whether

L(A1) ⊆ L(A2).
– Equivalence problem: Given two NFAs A1 and A2, decide whether L(A1) =

L(A2).

A language L ⊆ Σ∗ is regular if there is an NFA A defining L, that is, L = L(A).
Given a regular language L, the complement language of L is Σ∗\L. We say that
NFAs are closed under intersection (resp. union) if for every pair of NFAs A1 and
A2, there is an NFA A such that L(A) = L(A1)∩L(A2) (resp. L(A) = L(A1)∪
L(A2)). On the other hand, NFAs are closed under complementation if for each
NFA A, there is an NFA A′ such that L(A′) = Σ∗ \ L(A). A complete DFA
A = (Q,Σ, q0, δ, F ) is minimal if for each complete DFA A′ = (Q′, Σ, q′

0, δ
′, F ′)

such that L(A) = L(A′), it holds that |Q| ≤ |Q′|.

Theorem 1 ([HU79]). The following results hold for NFAs:

– NFAs are closed under all Boolean operations (i.e. intersection, union and
complementation).

– For each NFA, an equivalent DFA can be constructed in exponential time.
– For each regular language L, there is an unique minimal complete DFA (up to

isomorphism) defining L.
– The nonemptiness problem of NFAs is in NLOGSPACE and the universality

problem (as well as language inclusion problem and equivalence problem) of
NFAs is PSPACE-complete.
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Many-Sorted First-Order Logic. We assume a signature Ω = (S,F,P), where
S is a countable set of sorts, F is a countable set of function symbols, and P is
a countable set of predicate symbols. Each function and predicate symbol has an
associated arity, which is a tuple of sorts in S. A function symbol with a single
sort is called a constant. A predicate symbol with a single sort is called a set,
which intuitively denotes a set of elements of that sort.

An Ω-term is built as usual from the function symbols in F and variables
taken from a set X that is disjoint from S, F, and P. Each variable x ∈ X
has an associated sort in S. In addition, we assume that the variables in X
are linearly ordered �X . When writing t(x ) for a vector of distinct variables
x such that x = (x1, . . . , xn) follows the ascending order of the linear order
�X , we assume that the variables occurring in the term t are from x . For a
term t(x ) of sort s such that x = (x1, . . . , xn) and each xi for i ∈ [n] is of
sort si ∈ S, the term t is said to be of arity (s1 × · · · × sn) → s. In addition,
for a vector of terms (t1, . . . , tm) such that all the variables of t1, . . . , tm are
from x = (x1, . . . , xn), if x1 �X x2 �X · · · �X xn, each xi for i ∈ [n] is
of sort si, and each tj for j ∈ [m] is of sort s′

j , then (t1, . . . , tm) is said to
be a term of arity (s1, . . . , sn) → (s′

1, . . . , s
′
m). For readability, a term of arity

(s1, . . . , sn) → (s′
1, . . . , s

′
m) is also called a (s1, . . . , sn)

/
(s′

1, . . . , s
′
m)-term. We

use (t1, . . . , tm)(x ) to denote a vector of terms whose variables are from x . For
convenience, we also write t(x ) as λx . t and (t1, . . . , tm)(x ) as λx . (t1, . . . , tm).

We assume the standard notions of Ω-atoms, Ω-literals, and Ω-formulae,
whose definitions can be found in some textbooks on mathematical logic (see
e.g. [Gal85]). The set of free variables of a Ω-formula ψ is denoted by free(ψ).
When writing ψ(x ), we assume that the free variables of ψ are from x . For a
formula ψ(x ) such that x = (x1, . . . , xn) and each xi for i ∈ [n] is of sort si ∈ S,
the formula ψ is said to be of arity s1 × · · · × sn. A formula ψ that contains
exactly one free variable (resp. two, n ≥ 3 free variables) is called a unary (resp.
binary, n-ary) Ω-formula. A formula ψ contains no free variables is called a 0-
ary formula, aka a sentence. For i, j ∈ N\{0}, a formula ψ(x ) of arity sj (where
x = (x1, . . . , xj)), and an si/sj-term f = (f1, . . . , fj), we use ψ[f /x ] to denote
the formula obtained from ψ by simultaneously replacing x1 with f1, . . . , and
xj with fj .

An Ω-interpretation I maps: (i) each sort s ∈ S to a set sI , (ii) each function
symbol f ∈ F of arity s1×· · ·×sn → s to a total function f I : sI

1×· · ·×sI
n → sI

if n > 0, and to an element of sI if n = 0, and (iii) each predicate symbol p ∈ P
of sort s1 × · · · × sn to a subset of pI ⊆ sI

1 × · · · sI
n. An Ω-assignment η maps

each variable x ∈ X of sort s ∈ S to an element of sI .

– For a term t, the interpretation of t under (I, η) for an Ω-interpretation I and
Ω-assignment η, denoted by t(I,η), can be defined inductively on the syntax
of terms.

– The satisfiability relation between pairs of an Ω-interpretation and an Ω-
assignment, and Ω-formulae, written I |=η ψ, is defined inductively, as usual.

We say that (I, η) is a model of ψ if I |=η ψ. For an Ω-sentence ψ, we also write
I |= ψ if there is an Ω-assignment η such that I |=η ψ.
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Let Ω be a signature and I be a set of Ω-interpretations. Then Th(I), the
Ω-theory associated with I, is the set of Ω-sentences ψ such that for each I ∈ I,
I |= ψ.

Linear Temporal Logic. Let Σ be an alphabet. Then linear temporal logic (LTL)
over Σ is defined by the following rules,

ϕ
def= σ | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ,

where σ ∈ Σ.
Some additional temporal operators, F and G, can be derived from U, Fϕ1 ≡

true U ϕ1 and Gϕ1 ≡ ¬F¬ϕ1.
LTL formulae ϕ are interpreted on pairs (w, i), where w is a word over Σ and

i is a position of w. The semantics is formalised as a relation (w, i) |= ϕ defined
as follows. Let ϕ be an LTL formula, w = σ1 . . . σn be a word, and i ∈ [n].

– (w, i) |= σ iff σi = σ,
– (w, i) |= ¬ϕ1 iff not (w, i) |= ϕ1,
– (w, i) |= ϕ1 ∨ ϕ2 iff (w, i) |= ϕ1 or (w, i) |= ϕ2,
– (w, i) |= X ϕ1 iff i < n and (w, i + 1) |= ϕ1,
– (w, i) |= ϕ1 U ϕ2 iff there is k : i ≤ k ≤ n such that (w, k) |= ϕ2 and for each

j : i ≤ j < k, (w, j) |= ϕ1.

In addition, LTL formulae can be turned into positive normal forms, where
the negation symbols are only before atomic formulae, by introducing the dual
operators X and R for X and U, that is, Xϕ1 ≡ ¬X¬ϕ1 and ϕ1 R ϕ2 ≡
¬((¬ϕ1) U (¬ϕ2)). To help understand the semantics of R, we present its seman-
tics explicitly here: (w, i) |= ϕ1 R ϕ2 iff either for all k : i ≤ k ≤ n, we have
(w, k) |= ϕ2, or there is k : i ≤ k ≤ n such that (w, k) |= ϕ1, and for each
j : i ≤ j ≤ k, (w, j) |= ϕ2. For instance, ¬F(a ∧ XGb) can be turned into the
positive normal form G(a ∨ XF¬b).

More specifically, the positive normal forms of LTL formulae are defined by
the following rules,

ϕ
def= σ | ¬σ | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ,

where σ ∈ Σ.

3 Register Automata, LTL with Freeze Quantifiers,
and XPath

Kaminski and Francez initialised the research of automata models over infi-
nite alphabets. They introduced nondeterministic register automata ([KF94]),
an extension of finite state automata with a set of registers which can store a
symbol from an infinite alphabet.

Let R be a finite set of registers. In addition, we assume that cur �∈ R is a
distinguished register which stores the data value in the current position of data
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words. We use R c© to denote R ∪ {cur}. A guard formula over R is defined by
the rules g

def= true | false | r1 = r2 | r1 �= r2 | g ∧ g | g ∨ g, where r1, r2 ∈ R c©.
Let GR denote the set of all guard formulae over R. An assignment η over R is
a partial function from R to R c©. Let AR denote the set of assignments over R.
A valuation ρ over R is a function from R c© to D. For a valuation η, r ∈ R c©,
and d ∈ D, we use η[d/r] to denote the valuation which is the same as η, except
that d is assigned to the register r.

Definition 1 (Nondeterministic register automata). A nondeterministic
register automaton (NRA) A is a tuple (Q,Σ,R, q0, τ0, δ, F ) where:

– Q is a finite set of states,
– Σ is the finite alphabet,
– R is a finite set of registers,
– q0 ∈ Q is the initial state,
– τ0 : R → D assigns initial values to the registers;
– δ ⊆ Q × Σ × GR × AR × Q is a finite set of transition rules (for readability,

we also write a transition (q, σ, g, η, q′) as q
(σ,g,η)−−−−→ q′),

– F ⊆ Q is the set of final states.

Semantics of NRAs. Given an NRA A = (Q,R, q0, τ0, δ, F ), a configuration of A
is a pair (q, ρ), where q ∈ Q and ρ is a valuation. A configuration (q, ρ) is said to
be initial if q = q0 and ρ(r) = τ0(r) for each r ∈ R. A run of A over a data word
w = (σ1, d1) . . . (σn, dn) is a sequence of configurations (q0, ρ0) . . . (qn, ρn) such
that (q0, ρ0) is the initial configuration, and for each i ∈ [n], there is a transition

qi−1
(σi,gi,ηi)−−−−−−→ qi in δ such that ρi−1[di/cur] |= gi and ρi is obtained from ρi−1 and

ηi as follows: for each r ∈ R, if r ∈ dom(ηi), then ρi(r) = (ρi−1[di/cur])(ηi(r)),
otherwise, ρi(r) = ρi−1(r). A run is said to be accepting if qn ∈ F . A data word
w is said to be accepted by A if there is an accepting run of A on w. Let L(A)
denote the set of data words accepted by A. We say that a data language L is
defined by an NRA A if L(A) = L.

Example 1. Let Σ = {a}. The NRA illustrated in Fig. 1 defines the data lan-
guage L “in the data word, a data value occurs twice”, where q0 is the initial
state, q2 is an accepting state, and ∅ denotes the assignment with the empty
domain.

Fig. 1. An example of NRAs: “a data value occurs twice”
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A deterministic NRA (DRA) is an NRA A = (Q,R, q0, τ0, δ, F ) such that for
each pair of distinct transitions (q, σ, g1, η1, q

′
1) and (q, σ, g2, η2, q

′
2) in A, it holds

that g1 ∧ g2 is unsatisfiable.

Theorem 2 ([KF94,NSV01,DL09]). The following results hold for NRAs:

– NRAs are closed under union and intersection, but not closed under
complementation.

– The nonemptiness problem of NRAs is PSPACE-complete, the universality
problem of NRAs (as well as the language inclusion and equivalence problems)
is undecidable.

– The nonemptiness, language inclusion, and equivalence problems of DRAs are
PSPACE-complete.

For instance, the complement of the data language L in Example 1, that is,
the data language comprising the data words where each data value occurs at
most once, cannot be defined by NRAs. Intuitively, to guarantee that each data
value occurs at most once, one needs unbounded many registers to store the data
values that have been met so far when reading a data word from left to right.

Researchers also considered two extensions of nondeterministic register
automata, alternating register automata and two-way nondeterministic register
automata.

We next define alternating register automata over data words. We follow the
notations in [Fig12].

Definition 2 (Alternating register automata). An alternating register
automaton with k registers (ARAk) over data words is a tuple A =
(Σ,R,Q, q0, τ0, δ), where R = {r1, . . . , rk} is a set of k registers, Σ,Q, q0, τ0
are the same as those in NRAs, and δ : Q → Φ is the transition function, where
Φ is defined by the following grammar,

Φ
def= true | false | σ | σ | �? | �? | eqr | eqr | q ∨ q′ | q ∧ q′ | storer(q) | �q,

where r ∈ R and q, q′ ∈ Q.

Intuitively, σ, σ are used to detect the occurrences of letters from Σ. �? and
�? are used to describe the types of positions in data words, eqr and eqr are
used to check whether the data value in the register r is equal to the current
one, q ∨ q′ makes a nondeterministic choice, q ∧ q′ creates two threads with the
state q and q′ respectively, storer(q) stores the current data value to the register
r and transfers to the state q, �q moves the reading head of the current thread
one position to the right and transfers to the state q.

Semantics of ARAs. For defining semantics of ARAs, we introduce the concept
of configurations.

Let A be an ARAk. A configuration c of A is a tuple (i, α, σ, d, Λ), where
i ∈ N \ {0} denotes a position of a data word, α ∈ {�,�} denotes the type of
position i in the data word, (σ, d) ∈ Σ × D is the letter-data pair in position
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i, Λ ⊆ Q × D
R is a finite set of active threads in position i where each thread

(q, ρ) ∈ Λ denotes that the state of the thread is q and the valuation of the
registers of the thread is ρ. Let CA denote the set of configurations of A.

To define runs of A on data words, we introduce two types of transition rela-
tions on configurations, the non-moving relation −→ε⊆ PA×PA and the moving
relation −→�⊆ CA × CA. For a given configuration c = (i, α, σ, d, {(q, ρ)} ∪ Λ),
the non-moving relation updates a thread (q, ρ) of c according to the transition
function δ(q), and does not move the reading head. Formally, −→ε⊆ CA × CA is
defined as follows,

– (i, α, σ, d, {(q, ρ)} ∪ Λ) −→ε (i, α, σ, d, Λ), if δ(q) = true;
– (i, α, σ, d, {(q, ρ)} ∪ Λ) −→ε (i, α, σ, d, Λ), if δ(q) = σ;
– (i, α, σ, d, {(q, ρ)} ∪ Λ) −→ε (i, α, σ, d, Λ), if δ(q) = σ′ and σ �= σ′;
– (i, α, σ, d, {(q, ρ)} ∪ Λ) −→ε (i, α, σ, d, Λ), if δ(q) = �? and α = �;
– (i, α, σ, d, {(q, ρ)} ∪ Λ) −→ε (i, α, σ, d, Λ), if δ(q) = �? and α = �;
– (i, α, σ, d, {(q, ρ)} ∪ Λ) −→ε (i, α, σ, d, Λ), if δ(q) = eqr and ρ(r) = d;
– (i, α, σ, d, {(q, ρ)} ∪ Λ) −→ε (i, α, σ, d, Λ), if δ(q) = eqr and ρ(r) �= d;
– for j = 1, 2, (i, α, σ, d, {(q, ρ)}∪Λ) −→ε (i, α, σ, d, {(qj , ρ)}∪Λ), if δ(q) = q1∨q2;
– (i, α, σ, d, {(q, ρ)} ∪ Λ) −→ε (i, α, σ, d, {(q1, ρ), (q2, ρ)} ∪ Λ), if δ(q) = q1 ∧ q2;
– (i, α, σ, d, {(q, ρ)} ∪ Λ) −→ε (i, α, σ, d, {(q′, ρ′)} ∪ Λ), if δ(q) = storer(q′) and

ρ′ = ρ[di/r].

A configuration (i, α, σ, d, Λ) is moving if α = �, Λ �= ∅, and for every (q, ρ) ∈ Λ,
we have δ(q) = �q′. The moving relation −→� advances some threads of a
moving configuration to the right. More precisely,

(i, α, σ, d, Λ) −→� (i + 1, α′, σ′, d′, Λ′),

if (i, α, σ, d, Λ) is a moving configuration, α′ ∈ {�,�}, σ′ ∈ Σ, d′ ∈ D, and
Λ′ = {(q′, ρ) | (q, ρ) ∈ Λ, δ(q) = �q′}.

Finally, we define the transition relation � = −→ε ∪ −→�.
A run of A over a data word w = (σ1, d1) . . . (σn, dn) is a sequence of config-

urations C0 . . . Cm such that

– C0 = (1, typew(1), σ1, d1, {(q0, τ0)}),
– for each j ∈ [m], there is i ∈ [n] such that Cj = (i, typew(i), σi, di, Λ),
– for each j ∈ [m], Cj−1 � Cj .

A run C0 . . . Cm is accepting if Cm = (i, typew(i), σi, di, ∅) for some i ∈ [n]. A
data word w is accepted by A if there is an accepting run of A over w. Let L(A)
denote the set of data words accepted by A.

Example 2. Let Σ = {a}. Then the ARA1 A = ({q0, q1, . . . , q7, qa, qeqr
}, Σ,R =

{r}, q0, τ0, δ) defines the data language “in the data word, no data values occur
twice”, that is, the complement language of L in Example 1. Here τ0(r) = c for
some arbitrary c ∈ D, δ(q0) = qa ∧ q1, δ(qa) = a, δ(q1) = storer(q2), δ(q2) = �q3,
δ(q3) = qa ∧ q4, δ(q4) = qeqr

∧ q5, δ(qeqr
) = eqr, δ(q5) = q6 ∧ q7, δ(q6) = �q3,

δ(q7) = storer(q3). Intuitively, in each position, the data value in the position is
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stored into the register r and a new thread is created, moreover, this data value
(stored in r) will be checked to be different from each data value in the right of
the position.

Theorem 3 ([DL09,Fig12]). The following facts hold for ARAk’s:

– For each k ≥ 1, ARAk’s are closed under all Boolean operations.
– The nonemptiness problem of ARA2’s is undecidable.
– The nonemptiness problem of ARA1’s is decidable and non-primitive

recursive.

The nonemptiness of ARA1 was proved by defining a well-quasi-order over
the set of configurations and utilising the framework of well-structured transition
systems to achieve the decidability.

In [DL09], alternating register automata were introduced to solve the satis-
fiability problem of LTL with freezing quantifiers. Therefore, in the following,
we define LTL with freezing quantifiers and illustrate how the satisfiability of
LTL with freeze quantifiers can be reduced to the nonemptiness of alternating
register automata.

Definition 3 (LTL with freeze quantifiers). Let R = {r1, . . . , rk}. The syn-
tax of Linear Temporal Logic with freeze quantifiers over Σ and R (denoted by
LTL↓

k) is defined by the following rules,

ϕ
def= σ | ↓ri

ϕ | ↑ri
| ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕ U ϕ,

where σ ∈ Σ, ri ∈ R.

Semantics of LTL↓
k. LTL↓

k formulae are interpreted over a tuple (w, j, ρ), where
w = (σ1, d1) . . . (σn, dn) is a data word, j ∈ [n] is a position of w, and ρ is an
assignment over R. The semantics of LTL↓

k is classical for Boolean and temporal
operators. For the modalities σ, ↓ri

and ↑ri
,

– (w, j, ρ) |= σ, if σj = σ,
– (w, j, ρ) |=↓ri

ϕ, if (w, j, ρ[dj/ri]) |= ϕ,
– (w, j, ρ) |=↑ri

if ρ(ri) = dj .

An LTL↓
k formula ϕ is said to be closed if each occurrence of ↑ri

is in the scope
of an occurrence of ↓ri

. For a closed LTL↓
k formula ϕ, if (w, 1, ρ) |= ϕ, then

(w, 1, ρ′) |= ϕ for any assignment ρ′. We define L(ϕ) as the set of data words w
such that (w, 1, ρ) |= ϕ for some ρ. A data language L is said to be defined by a
closed LTL↓

k formula ϕ if L(ϕ) = L. An LTL↓
k formula ϕ is said to be satisfiable

if L(ϕ) �= ∅.
Similarly to LTL, LTL↓

k formulae can be turned into positive normal form,
that is, the formulae where the negation symbols are only before atomic formulae
σ and ↑ri

.
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Example 3. The LTL↓
1 formula G(↓r1 ¬XF ↑r1) defines the data language in

Example 2. In addition, the LTL↓
1 formula G(a → ↓r1 F(b∧ ↑r1)), or G(¬a∨ ↓r1

F(b∧ ↑r1)) in positive normal form, defines the data language “for each occur-
rence of a, there is an occurrence of b on the right with the same data value”.

Theorem 4 ([DL09]). The following facts hold for LTL↓
k:

– The satisfiability problem of LTL↓
2 is undecidable.

– The satisfiability problem of LTL↓
1 is decidable.

From each LTL↓
1 formula, an equivalent ARA1 can be constructed by an easy

induction on the syntax of the positive normal form of LTL↓
1 formulae. Then the

decidability of LTL↓
1 follows from Theorem 3. We use the following example to

illustrate the construction of ARA1 from LTL↓
1 formulae.

Example 4. Consider the LTL↓
1 formula ϕ = G(¬a ∨ ↓r1 F(b∧ ↑r1)). From ϕ, we

construct an ARA1 Aϕ as follows:

– The set of states are qψ, where ψ is a subformula of ϕ or ψ = Xψ1 where ψ1

is a subformula of ϕ.
– The initial state is qϕ.
– The transition function δ is defined as follows.

• δ(qϕ) = q¬a∨ ↓r1F(b∧↑r1 )
∧ qXϕ, δ(qXϕ) = �qϕ,

• δ(q¬a∨ ↓r1F(b∧↑r1 )
) = q¬a ∨ q↓r1F(b∧↑r1 )

, δ(q¬a) = a, δ(q↓r1F(b∧↑r1 )
) =

storer1(qF(b∧↑r1 )
),

• δ(qF(b∧↑r1 )
) = qb∧↑r1

∨ qXF(b∧↑r1 )
,

• δ(qb∧↑r1
) = qb ∧ q↑r1

, δ(qb) = b, δ(q↑r1
) = eqr1

, δ(qXF(b∧↑r1 )
) = �qF(b∧↑r1 )

.

Two-way nondeterministic register automata can be defined as an extension
of nondeterministic register automata in the same way as the two-way exten-
sion of finite-state automata. It turns out that the nonemptiness of two-way
deterministic register automata is already undecidable.

Theorem 5 ([DL09]). The nonemptiness problem of two-way deterministic reg-
ister automata is undecidable.

Alternating register automata on unranked trees have also been considered,
mainly motivated to solve the satisfiability problem of fragments of Data-XPath
(XPath with data value comparisons). In the following, we introduce a model
of alternating one-register tree automata with guess and spread mechanism,
denoted by ATRA1(guess, spread), then illustrate how the satisfiability of for-
ward Data-XPath, a fragment of Data-XPath containing only forward navigation
modalities, can be reduced to the nonemptiness of ATRA1(guess, spread).

Definition 4 (Alternating one-register tree automata with guess and
spread mechanism). An alternating one-register tree automaton with the guess
and spread mechanism (denoted by ATRA1(guess, spread)) A is defined as a
tuple (Σ,Q, q0, τ0, δ), such that Σ,Q, q0 are as in ARA1, τ0 ∈ D denotes the
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initial value of the (unique) register, and δ : Q → Φ is the transition function,
where Φ is defined by the following grammar,

Φ
def= true | false | σ | σ | �? | �? | eq | eq | q ∨ q′ | q ∧ q′ |

store(q) | �q | �q | guess(q) | spread(q, q′),

where q, q′ ∈ Q, and � ∈ {�,�}. An ATRA1 is an ATRA1(guess, spread)
without guess and spread mechanisms.

Semantics of ATRA1(guess, spread). Let A be an ATRA1(guess, spread). We
introduce the concepts of node configurations and tree configurations as follows.

A node configuration c of A is a tuple (t, α, σ, d, Λ), where t ∈ N
∗, α ∈

TreeTypes, σ ∈ Σ, d ∈ D, and Λ ⊆ Q × D is a finite set of active threads where
each thread (q, d) ∈ Λ denotes that the state of the thread is q and the register
holds the data value d.

A tree configuration C of A is a finite set of node configurations. Let NA
denote the set of node configurations of A, and TA ⊆ 2NA be the set of tree con-
figurations. In addition, to define a run of A, we introduce two types of transition
relations, the non-moving relation −→ε ⊆ NA × NA and the moving relation
−→� ⊆ NA × NA. For a given node configuration c = (t, α, σ, d, {(q, d′)} ∪ Λ),
the non-moving relation updates a thread (q, d′) of c according to the transition
function δ(q), and does not move the reading head. Formally, −→ε ⊆ NA × NA
is defined as follows:

– (t, α, σ, d, {(q, d′)} ∪ Λ) −→ε (t, α, σ, d, Λ), if δ(q) = true;
– (t, α, σ, d, {(q, d′)} ∪ Λ) −→ε (t, α, σ, d, Λ), if δ(q) = σ;
– (t, α, σ, d, {(q, d′)} ∪ Λ) −→ε (t, α, σ, d, Λ), if δ(q) = σ′ and σ �= σ′;
– (t, α, σ, d, {(q, d′)} ∪ Λ) −→ε (t, α, σ, d, Λ), if δ(q) = �? and � ∈ α, where
� = � or �;

– (t, α, σ, d, {(q, d′)} ∪ Λ) −→ε (t, α, σ, d, Λ), if δ(q) = �? and � ∈ α, where
� = � or �;

– (t, α, σ, d, {(q, d′)} ∪ Λ) −→ε (t, α, σ, d, Λ), if δ(q) = eq and d′ = d;
– (t, α, σ, d, {(q, d′)} ∪ Λ) −→ε (t, α, σ, d, Λ), if δ(q) = eq and d′ �= d;
– for j = 1, 2, (t, α, σ, d, {(q, d′)} ∪ Λ) −→ε (t, α, σ, d, {(qj , d

′)} ∪ Λ), if δ(q) =
q1 ∨ q2;

– (t, α, σ, d, {(q, d′)} ∪Λ) −→ε (t, α, σ, d, {(q1, d′), (q2, d′)} ∪Λ), if δ(q) = q1 ∧ q2;
– (t, α, σ, d, {(q, d′)} ∪ Λ) −→ε (t, α, σ, d, {(q′, d)} ∪ Λ), if δ(q) = store(q′).
– (t, α, σ, d, {(q, d′)}∪Λ) −→ε (t, α, σ, d, {(q′, d′′)}∪Λ) for each d′′ ∈ D, if δ(q) =
guess(q′).

– (t, α, σ, d, Λ) −→ε (t, α, σ, d, {(q′, d′) | (q, d′) ∈ Λ} ∪ Λ), if δ(q) = spread(q, q′).

A node configuration (t, α, σ, d, Λ) is moving if

– Λ �= ∅, and for every (q, d) ∈ Λ, we have δ(q) = �q′ or �q′,
– if there is (q, d) ∈ Λ such that δ(q) = �q′, then � ∈ α, where � = � or �.
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The moving relation −→� (resp. −→�) advances some threads of a mov-
ing node configuration to its leftmost child (resp. to its right sibling). Suppose
(t, α, σ, d, Λ) is a moving node configuration.

– If � ∈ α, then

(t, α, σ, d, Λ) −→� (t0, α′, σ′, d′, Λ′),

where α′ ∈ TreeTypes, σ′ ∈ Σ, d′ ∈ D, and Λ′ = {(q′, d) | (q, d) ∈ Λ, δ(q) =
�q′}.

– If � ∈ α and t = t′i, then

(t, α, σ, d, Λ) −→� (t′(i + 1), α′, σ′, d′, Λ′),

where α′ ∈ TreeTypes, σ′ ∈ Σ, d′ ∈ D, and Λ′ = {(q′, d) | (q, d) ∈ Λ, δ(q) =
�q′}.

The transition relation � of tree configurations is defined as follows. Let
C1, C2 be two tree configurations. Then C1 � C2 if one of the following condi-
tions hold:

– C1 = {c} ∪ C ′ and C2 = {c′} ∪ C ′ such that c −→ε c′.
– C1 = {c} ∪ C ′, c = (t, α, σ, d, Λ), α = {�,�}, C2 = {c′} ∪ C ′ such that

c −→� c′.
– C1 = {c} ∪ C ′, c = (t, α, σ, d, Λ), α = {�,�}, C2 = {c′} ∪ C ′ such that

c −→� c′.
– C1 = {c} ∪ C ′, c = (t, α, σ, d, Λ), α = {�,�}, C2 = {c′

1, c
′
2} ∪ C ′ such that

c −→� c′
1 and c −→� c′

2.

A run of A over a data tree T = (T,L,D) is a sequence of tree configurations
C0 . . . Cn such that

– C0 = {(ε, typeT (ε), L(ε),D(ε), {(q0, τ0)})},
– for each i ∈ [n] and each (t, α, σ, d, Λ) ∈ Ci, we have t ∈ T , α = typeT (t),

σ = L(t), and d = D(t),
– for each i ∈ [n], Ci−1 � Ci.

A run C0 . . . Cn is accepting if Cn ⊆ {(t, typeT (t), L(t),D(t), ∅) | t ∈ T}. A data
tree T is accepted by A if there is an accepting run of A over T . Let L(A) denote
the set of data trees accepted by A.

Theorem 6 ([Fig12]). The following results hold for ATRA1’s and
ATRA1(guess, spread)’s:

– ATRA1’s are closed under all Boolean operations. On the other hand,
ATRA1(guess, spread)’s are closed under union and intersection, but not
closed under complementation.

– The nonemptiness problem of ATRA1(guess, spread)’s is decidable and non-
primitive recursive.
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It was shown in [Fig12] that the data tree language L in Example 5 is not defin-
able in ATRA1(guess, spread)’s. On the other hand, the complement of L is defin-
able in ATRA1(guess, spread)’s. This demonstrates that ATRA1(guess, spread)’s
are not closed under complementation. Similarly to ARA1’s, the decidability of
the nonemptiness problem of ATRA1(guess, spread)’s is also proved by utilising
well-structured transition systems.

Data trees can also be seen as an abstraction of XML documents. XPath is
a widely used query and navigation language for XML documents.

Definition 5 (Data-aware XPath). Let O ⊆ {↓, ↑,→,←, ↓∗, ↑∗,→∗,←∗}.
Data-aware XPath with set of axes from O, denoted by XPath(O,=), comprises
two types of formulae, path expressions α and node expressions ϕ, defined as
follows:

α
def= o | [ϕ] | α · α, where o ∈ O,

ϕ
def= σ | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈α〉 | 〈α = α〉 | 〈α �= α〉, where σ ∈ Σ.

Suppose F = {↓,→, ↓∗,→∗}. Then we call XPath(F ,=) as the forward fragment
of XPath(O,=).

Semantics of XPath(O,=). XPath(O,=) formulae are interpreted on data trees
T = (T,L,D). The semantics of path expressions and node expressions are
specified by [[α]]T ⊆ T × T and [[ϕ]]T ⊆ T as follows:

– [[↓]]T = {(t, ti) | ti ∈ T}, [[↑]]T = {(ti, t) | ti ∈ T},
– [[→]]T = {(ti, t(i + 1)) | t(i + 1) ∈ T}, [[←]]T = {(t(i + 1), ti) | t(i + 1) ∈ T},
– [[↓∗]]T = {(t, t′) | t, t′ ∈ T, t �a t′}, [[↑∗]]T = {(t′, t) | t, t′ ∈ T, t �a t′},
– [[→∗]]T = {(t, t′) | t, t′ ∈ T, t �s t′}, [[←∗]]T = {(t′, t) | t, t′ ∈ T, t �s t′},
– [[[ϕ]]]T = {(t, t) | t ∈ [[ϕ]]T },
– [[α1 · α2]]T = {(t, t′) ∈ T × T | ∃t′′ ∈ T. (t, t′′) ∈ [[α1]]T , (t′′, t′) ∈ [[α2]]T },
– [[σ]]T = {t ∈ T | L(t) = σ}, [[¬ϕ]]T = T \ [[ϕ]]T ,
– [[ϕ1 ∨ ϕ2]]T = [[ϕ1]]T ∪ [[ϕ2]]T , [[ϕ1 ∧ ϕ2]]T = [[ϕ1]]T ∩ [[ϕ2]]T ,
– [[〈α〉]]T = {t ∈ T | ∃t′. (t, t′) ∈ [[α]]T },
– [[〈α1 = α2〉]]T = {t ∈ T | ∃t′, t′′. (t, t′) ∈ [[α1]]T , (t, t′′) ∈ [[α2]]T ,D(t′) =

D(t′′)},
– [[〈α1 �= α2〉]]T = {t ∈ T | ∃t′, t′′. (t, t′) ∈ [[α1]]T , (t, t′′) ∈ [[α2]]T ,D(t′) �=

D(t′′)}.

Let ϕ be a node expression in XPath(O,=) and T be a data tree. Then T
satisfies ϕ, denoted by T |= ϕ, if ε ∈ [[ϕ]]T . We use L(ϕ) denote the set of data
trees satisfying ϕ. The satisfiability problem of XPath(O,=) is defined as follows:
Given a node expression ϕ, decide whether L(ϕ) �= ∅. The query containment
problem of XPath(O,=) is defined as follows: Given two node expressions ϕ1, ϕ2,
decide whether L(ϕ1) ⊆ L(ϕ2). Since the node expressions of XPath(O,=) are
closed under complementation, it follows that the query containment problem
of XPath(O,=) can be reduced to the satisfiability problem.



210 T. Chen et al.

Example 5. Let L be the data tree language comprising the data trees such that
“no data values in two distinct positions are the same”. Then L can be defined
by the XPath(F ,=) formula ϕ,

ϕ
def= ¬〈↓∗ [〈αε =↓+〉 ∨ 〈↓∗=→+↓∗〉]〉,

where αε
def= [

∨
σ∈Σ σ], ↓+=↓ · ↓∗ and →+=→ · →∗.

Theorem 7 ([Fig12]). The satisfiability problem (hence the query containment
problem) of XPath(F ,=) is decidable.

Theorem 7 is proved by a reduction to the nonemptiness of ATRA1(guess,
spread), that is, for each XPath(F ,=) node expression ϕ, an ATRA1(guess,
spread) Aϕ can be constructed such that ϕ is satisfiable iff Aϕ is nonempty.
Nevertheless, although the satisfiability of XPath(F ,=) can be reduced to the
nonemptiness of ATRA1(guess, spread), ATRA1(guess, spread)’s are still unable
to capture XPath(F ,=). For instance, the XPath(F ,=) formula ϕ in Example 5
is not definable in ATRA1(guess, spread)’s [Fig12].

Further Reading. Kaminski and Tan initialised the investigation on regular
expressions over infinite alphabets in [KT06]. Later on, with the motivations
from path query processing in graph databases, Libkin et al. revisited this topic,
proposed regular expressions with memories, and showed they are expressively
equivalent to NRAs [LTV15]. Cheng and Kaminski investigated context free
languages over infinite alphabets and showed that context free grammars over
infinite alphabets and pushdown register automata are expressively equivalent
[CK98]. Murawski et al. showed that the emptiness problem of pushdown register
automata is EXPTIME-complete [MRT14].

4 Data Automata and First-Order Logic on Data Words

In the following, we will introduce data automata and its variants, as well as
first-order logic on data words. Data automata were introduced by Bojanczyk
et al. in [BMS+06,BDM+11], aiming at solving the satisfiability problem of
first-order logic with two variables on data words.

We introduce some additional notations for data words first.
Let w = (σ1, d1) . . . (σn, dn) be a data word and i ∈ [n]. The profile of w,

denoted by prof(w), is σ′
1 . . . σ′

n such that σ′
1 = (σ,⊥), and for each i : 2 ≤ i ≤ n,

σ′
i = (σ,�) if di = di−1, and σ′

i = (σ,⊥) otherwise. A class of w is a maximal
nonempty set of positions X ⊆ [n] with the same data value. Let X ⊆ [n]. Then
w|X denotes the restriction of w to the set of positions in X. For instance, let
w = (a, 1)(b, 2)(a, 2)(b, 1), then prof(w) = (a,⊥)(b,⊥)(a,�)(b,⊥), the class of w
corresponding to the data value 1 is X = {1, 4}, and w|X = (a, 1)(b, 1).

The concept of class strings is used in the definition of data automata and
its variants.
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Definition 6 (Class strings). Suppose the alphabet Σ satisfies that 0, 1 �∈ Σ.
For a data word w = (σ1, d1) . . . (σn, dn) and a class X of w:

– the X-class string of w, denoted by cstrX(w), is defined as w|X ,
– the position-preserving X-class string of w, denoted by pcstrX(w), is defined

as the word σ′
1 . . . σ′

n such that for each i ∈ [n], if i ∈ X, then σ′
i = σ′

i,
otherwise, σ′

i = 0,
– the letter-preserving X-class string of w, denoted by lcstrX(w), is defined as

the word (σ1, b1) . . . (σn, dn) such that for each i ∈ [n], if i ∈ X, then bi = 1,
otherwise, bi = 0.

Example 6. Suppose w = (a, 1)(b, 2)(a, 2)(b, 1) and X = {1, 4}. Then cstrX(w) =
w|X = ab, pcstrX(w) = a00b, and lcstrX(w) = (a, 1)(b, 0)(a, 0)(b, 1).

Definition 7 (Data automata). A data automaton (DA) D is a tuple (A,B)
s.t. A = (Q1, Σ × {⊥,�}, Γ, q1,0, δ1, F1) is a nondeterministic letter-to-letter
transducer over finite words from the alphabet Σ×{⊥,�} to some output alpha-
bet Γ , and B = (Q2, Γ, q2,0, δ2, F2), called the class condition, is a finite-state
automaton over Γ .

Semantics of DAs. We first introduce the concept of class strings. Let D = (A,B)
be a DA and w = (σ1, d1) . . . (σn, dn) be a data word. Then w is accepted by
D if over prof(w), the transducer A produces a word γ1 . . . γn over the alphabet
Γ , such that for each class X of w′ = (γ1, d1) . . . (γn, dn), cstrX(w′), the X-class
string of w′, is accepted by B. Let L(D) denote the set of data words accepted
by D.

Example 7. Let Σ = {a}. Then the data language comprising the “data words
where at least one data value occurs twice” is accepted by the data automaton
D = (A,B) (see Fig. 2, where (a,⊥)/# denotes the input and output letter are
(a,⊥) and #, similarly for (a,�)/#, and so on), where

Fig. 2. An example of data automata
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– A, upon reading prof(w) for a data word w, guesses two positions, relabels the
two positions by $, and relabels all the other positions by #,

– and B accepts the language #∗$#∗$#∗ ∪ #∗.

Let w = (a, 1)(a, 2)(a, 3)(a, 1). Then A produces a word $##$ on prof(w). Since
the three class strings of w′ = ($, 1)(#, 2)(#, 3)($, 1), that is, $$, #, and #, are
accepted by B, it follows that w is accepted by D.
On the other hand, let Σ = {a, b}, then the data language comprising the data
words w such that “for each occurrence of a, there is an occurrence of b in
the right with the same data value” can be accepted by the data automaton
D′ = (A′,B′), where

– A′ is the transducer that outputs a (resp. b) when reading (a,⊥) or (a,�)
(resp. (b,⊥) or (b,�)),

– and B′ is the finite-state automaton accepting a∗b.

Let w = (a, 1)(a, 2)(b, 2)(a, 1)(b, 1). Then A′ outputs w′ = aabab on prof(w).
Let X1 and X2 be two classes of w′′ = w corresponding to the data value 1
and 2 respectively. Then the X1-class string and X2-class string of w′′, that is,
prj(w′′|X1) = aab and prj(w′′|X2) = ab, are accepted by B′, it follows that w is
accepted by D′.

Theorem 8 ([BMS+06,BDM+11,BS10]). The following facts hold for DAs:

– DAs are closed under intersection and union, but not under complementation.
– DAs are strictly more expressive than NRAs.
– The nonemptiness problem of DAs is decidable and has the same complexity

as the reachability problem of Petri nets.

By using data automata, it was shown in [BDM+11] that the satisfiabil-
ity problem of first-order logic with two variables on data words is decidable,
whereas, the satisfiability problem of first-order logic with three variables on
data words is undecidable.

Definition 8 (FO over data words). Let Vars denote a countably infinite
set of variables. First-order logic over data words (FO[+1, <,∼]) comprises the
formulae ϕ defined by the rules,

ϕ
def= x = y | x + 1 = y | x < y | Pσ(x) | x ∼ y | ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ,

where x, y ∈ Vars and σ ∈ Σ. Intuitively, x ∼ y is used to denote the equivalence
of data values in two positions represented by x, y. In addition, FO2[+1, <,∼]
(resp. FO3[+1, <,∼]) is used to denote the fragment of FO[+1, <,∼] where only
two variables (resp. three variables) can be used.

Semantics of FO[ +1, <,∼]. An FO[+1, <,∼] formula ϕ is interpreted on a tuple
(w, θ), where w = (σ1, d1) . . . (σn, dn) is a data word, and θ : free(ϕ) → [n] assigns
each free variable of ϕ a position of w:
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– (w, θ) |= x = y iff θ(x) = θ(y),
– (w, θ) |= x + 1 = y iff θ(x) + 1 = θ(y),
– (w, θ) |= x < y iff θ(x) < θ(y),
– (w, θ) |= Pσ(x) iff σθ(x) = σ,
– (w, θ) |= x ∼ y iff dθ(x) = dθ(y),
– (w, θ) |= ¬ϕ iff not (w, θ) |= ϕ,
– (w, θ) |= ϕ1 ∨ ϕ2 iff (w, θ) |= ϕ1 or (w, θ) |= ϕ2,
– (w, θ) |= ∃x. ϕ1 iff there is i′ ∈ [n] such that (w, θ[i′/x]) |= ϕ1, where θ[i′/x]

is the same as θ, except assigning i′ to x.

Let ϕ be a FO[+1, <,∼] sentence. Then a data word w satisfies ϕ, denoted by
w |= ϕ, if (w, θ) |= ϕ for some θ. Let L(ϕ) denote the set of data words satisfying
ϕ. The satisfiability problem of FO[+1, <,∼] is to decide whether L(ϕ) �= ∅, for
a given FO[+1, <,∼] sentence ϕ.

Example 8. The data language “each data value occurs at most once” can be
expressed by the FO2[+1, <,∼] formula ϕ = ∀x. ∀y. (x < y → ¬ x ∼ y).

Theorem 9 ([BMS+06,BDM+11]). The following facts hold for FO[+1, <,∼]:

– The satisfiability problem of FO3[+1, <,∼] is undecidable.
– The satisfiability problem of FO2[+1, <,∼] is decidable.

The decidability of FO2[+1, <,∼] is proved by a reduction to the nonemptiness
problem of data automata, that is, for each FO2[+1, <,∼] formula ϕ, a data
automaton Dϕ can be constructed such that L(ϕ) = L(Dϕ).

In [ACW12], Alur et al. considered a variant of data automata, called
extended data automata, defined as follows.

Definition 9 (Extended data automata). An extended data automaton
(EDA) D is a tuple (A,B) s.t. A = (Q1, Σ × {⊥,�}, Γ, q1,0, δ1, F1) is a non-
deterministic letter-to-letter transducer over finite words from the alphabet Σ
to some output alphabet Γ , and B = (Q2, Γ ∪ {0}, q2,0, δ2, F2) is a finite-state
automaton over Γ ∪ {0} such that 0 �∈ Γ .

Semantics of EDAs. The semantics of EDAs is defined similarly as that of DAs,
with cstrX(w′) replaced by pcstrX(w′).

It turns out that the expressibility of EDAs is the same as that of DAs.

Theorem 10 ([ACW12]). EDAs are expressively equivalent to DAs.

Since it is a famous open problem whether the reachability of Petri nets can
be decided with elementary complexity, it is also open whether the nonempti-
ness of data automata can be decided in elementary time. In order to lower
the complexity, weaker versions of data automata were introduced. Kara et al.
introduced weak data automata (WDA) in [KST12] and showed that the non-
emptiness problem of WDAs can be decided in 2NEXPTIME (nondeterministic
double exponential time). Later on, Wu introduced commutative data automata
(CDA), which are strictly more expressive than WDAs, showed that the non-
emptiness problem of CDAs can be solved in 3NEXPTIME (nondeterministic
triple exponential time) [Wu12].



214 T. Chen et al.

Definition 10 (Weak data automata). A weak data automaton (WDA) is
a tuple (A, C) such that A = (Q,Σ × {⊥,�}, Γ, δ, q0, F ) is a letter-to-letter
transducer and C is a class condition specified by a collection of

– key constraints of the form Key(γ) (where γ ∈ Γ ), interpreted as “every two
γ-positions have different data values”,

– inclusion constraints of the form D(γ) ⊆
⋃

γ′∈R D(γ′) (where γ ∈ Γ,R ⊆ Γ ),
interpreted as “for every data value occurring in a γ-position, there is γ′ ∈ R
such that the data value also occurs in a γ′-position”,

– and denial constraints of the form D(γ) ∩ D(γ′) = ∅ (where γ, γ′ ∈ Γ ),
interpreted as “no data value occurs in both a γ-position and a γ′-position”.

Semantics of WDAs. A data word w = (σ1, d1) . . . (σn, dn) is accepted by a
WDA D = (A, C) iff there is an accepting run of A over prof(w) which produces
a word γ1 . . . γn such that the data word w′ = (γ1, d1) . . . (γn, dn) satisfies all
the constraints in C, where the satisfaction of the constraints on w′ is defined as
follows:

– w′ satisfies Key(γ) iff for every pair of positions i, j ∈ [n] such that i �= j and
γi = γj = γ, it holds that di �= dj ,

– w′ satisfies D(γ) ⊆
⋃

γ′∈R D(γ′) iff for each i ∈ [n] such that γi = γ, there is
j ∈ [n] such that γj ∈ R and di = dj .

– w′ satisfies D(γ)∩D(γ′) = ∅ iff for every pair of positions i, j ∈ [n] such that
γi = γ and γj = γ′, it holds that di �= dj .

Let L be a language over the alphabet Σ. Then L is commutative iff for
every σ1, σ2 ∈ Σ and u, v ∈ Σ∗, uσ1σ2v ∈ L iff uσ2σ1v ∈ L. Commutative
regular languages have a characterisation in quantifier-free simple Presburger
formulae defined in the following: Quantifier-free simple Presburger formulae
(QFSP formulae) over a variable set X are Boolean combinations of atomic
formulae of the form x1+ · · ·+xm ≤ c, or x1+ · · ·+xm ≥ c, or x1+ · · ·+xm = c,
or x1 + · · · + xm ≡ r mod p, where x1, . . . , xm ∈ X, c, r, p ∈ N, p ≥ 2, and
0 ≤ r < p.

Suppose Σ = {σ1, . . . , σk} and v ∈ Σ∗. The Parikh image of v, denoted by
Parikh(v), is a k-tuple (#σ1(v), . . . ,#σk

(v)), where for each i : 1 ≤ i ≤ k, #σi
(v)

is the number of occurrences of σi in v. Let VΣ = {xσ1 , . . . , xσk
} and ϕ be an

QFSP formula over VΣ . The word v is said to satisfy ϕ, denoted by v |= ϕ,
iff ϕ[Parikh(v)/VΣ ] holds, where ϕ[Parikh(v)/VΣ ] denotes the formula obtained
from ϕ by replacing each xσi

with #σi
(v). The language defined by ϕ, denoted

by L(ϕ), is the set of words v ∈ Σ∗ such that v |= ϕ.

Definition 11 (Commutative data automata). A commutative data
automaton (CDA) D is a tuple (A, ϕ) such that A = (Q,Σ ×{⊥,�}, Γ, δ, q0, F )
is a letter-to-letter transducer and ϕ is a QFSP formula over the variable set
VΓ , where VΓ = {xγ | γ ∈ Γ}.
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Semantics of CDAs. A data word w = (σ1, d1) . . . (σn, dn) is accepted by a CDA
D = (A, ϕ) iff there is an accepting run of A over prof(w) which produces a word
γ1 . . . γn such that the data word w′ = (γ1, d1) . . . (γn, dn) satisfies that for each
class X of w′, cstrX(w′) |= ϕ.

Theorem 11 ([KST12,Wu12]). The following results hold for WDAs and
CDAs:

– DAs are strictly more expressive than CDAs, which is in turn strictly more
expressive than WDAs.

– WDAs and CDAs are closed under union and intersection, but not under
complementation.

– The nonemptiness problem of WDAs and CDAs can be decided in 2NEXP-
TIME and 3NEXPTIME respectively.

An extension of data automata, called class automata, were introduced, in
order to capture the expressiveness of XPath with data comparison modalities
([BL12]). Class automata in [BL12] were defined on data trees, here for simplicity,
we restrict our attention to class automata on data words.

Definition 12 (Class automata). A class automaton (CA) C is a tuple (A,B)
such that A = (Q,Σ × {⊥,�}, Γ, δ, q0, F ) is a letter-to-letter transducer and
B = (Q2, Γ × {0, 1}, q2,0, δ2, F2) is a finite-state automaton over Γ × {0, 1}.

Semantics of CAs. The semantics of CAs is defined similarly as that of DAs,
with cstrX(w′) replaced by lcstrX(w′).

It turns out class automata are expressive enough to simulate two-counter
machines and its nonemptiness problem is undecidable.

Theorem 12 ([BL12]). The nonemptiness problem of CAs is undecidable.

In [Wu11], Wu proposed a restriction of class automata, called class automata
with priority class condition (PCA), and showed that PCAs strictly extend data
automata, and at the same time have a decidable nonemptiness problem.

Further Reading. Manuel and Ramanujam proposed class counting automata,
which includes a counter for each data value occurring in a data word,
and showed that the nonemptiness problem of class counting automata is
EXPSPACE-complete [MR11a]. The model is in a style similar to class memory
automata. In addition, Tan studied data trees over a linearly ordered infinite
data domain and proposed ordered-data tree automata, which is in the same
flavour as data automata, and showed their nonemptiness problem can be solved
in 3NEXPTIME [Tan14]. To solve the satisfiability problem of an extension of
LTL over multi-attributed data words (i.e. data words where a tuple of data
values, instead of a single one, occur in each position), Decker et al. introduced
nested data automata (NDA) and showed that although the nonemptiness of
NDAs is undecidable in general, the nonemptiness problems of two natural sub-
models are decidable [DHLT14].
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5 Pebble Automata

Pebble automata were introduced by Neven et al. in [NSV01,NSV04]. In contrast
to register automata which are finite state machines equipped with registers,
pebble automata are finite state machines equipped with a finite number of
pebbles. These pebbles are placed on, or lifted from, the input data word in a
stack discipline, i.e., first in last out, with the purpose of marking positions of
the data word. One pebble can only mark one position and the most recently
placed pebble serves as the head of the automaton.

As we are dealing with two-way automata here, as a convention, we delimit
the input data word by two special symbols {�,�} /∈ D for the left and the right
hand of the data word. Hence, automata always work on the extended data word
of the form �w�. The positions of � and � are 0 and |w|+1, respectively. (Recall
that |w| denotes the length of the data word w.)

Definition 13 (Pebble automata, [NSV04]). A nondeterministic two-way
k-pebble automaton (2N-kPA) A is a tuple (Q,Σ, q0, δ, F ) where:

– Q is a finite set of states,
– Σ is a finite alphabet,
– q0 ∈ Q is the initial state,
– F ⊆ Q is the set of final states, and
– δ is a finite set of transitions of the form α → β where:

• α is of the form (i, σ, V, q), where i ∈ [k], σ ∈ Σ, V ⊆ [i − 1]; and
• β is of the form (q, act) with q ∈ Q and

act ∈ {stay, left, right, place-new-pebble, lift-current-pebble}.

Semantics of 2N-kPAs. Given a data word w = (σ1, d1) . . . (σn, dn), a configura-
tion of A on w is a triple [i, q, θ] where i ∈ [k], q ∈ Q, and θ : [i] → [n]∪{0, n+1}.
The function θ is the pebble assignment which defines the positions of the peb-
bles. (Recall that, as mentioned earlier, we assume an extended data word
where position 0 is � and position (n + 1) is �.) The initial configuration is
γ0 = [1, q0, θ0] where θ0(1) = 0 is the initial pebble assignment. A configuration
(i, q, θ) is accepting if q ∈ F .

A transition (i, σ, V, p) → β applies to a configuration [j, q, θ] if the following
three conditions hold:

1. i = j and p = q;
2. V = {l < i | dθ(l) = dθ(i)};
3. σθ(i) = σ

Intuitively, in a configuration [i, q, θ], pebble i is in control, serving as the head
pebble. (i, σ, V, p) → β applies to the configuration if pebble i is the current
head, p is the current state, V is the set of pebbles that see the same data value
as the head pebble, and the current symbol seen by the head pebble is σ.

We then define the transition relation � as follows: [i, q, θ] � [i′, q′, θ′] iff there
is a transition α → (p, act) that applies to [i, q, θ] such that q′ = p, θ′(j) = θ(j)
for all j < i, and
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– if act = stay, then i′ = i and θ′(i) = θ(i),
– if act = left, then i′ = i and θ′(i) = θ(i) − 1,
– if act = right, then i′ = i and θ′(i) = θ(i) + 1,
– if act = place-new-pebble, then i′ = i + 1 and θ′(i + 1) = θ′(i) = θ(i),
– if act = lift-current-pebble, then i′ = i − 1.

Strong vs Weak PAs. In the above definition, new pebbles are placed at
the position of the most recent pebble. (Formally, in the definition of act =
place-new-pebble, one has θ′(i + 1) = θ′(i) = θ(i).) An alternative would be
to place new pebbles at the beginning of the data word. Formally, in the
place-new-pebble case, one has θ′(i + 1) = 1, and θ′(i) = θ(i). In literature, the
former is often referred to as weak PAs, and the latter is referred to as strong
(a.k.a., ordinary) PAs. While the choice makes no difference in the two-way case
(as defined here), it is significant in the one-way case (i.e., when act = left is not
allowed). For instance, it is known that one-way non-deterministic weak PAs are
weaker than one-way strong PAs, see [NSV04, Theorem 4.5].

Alternating PAs. As in Sect. 3, we can define the alternating version of PAs.
Alternating automata additionally have a set U ⊆ Q of universal states. The
sets from Q \U are called existential. (Clearly, if U = ∅, then we have a nonde-
terministic PA as in Definition 13.)

Acceptance. The acceptance criteria are based on the notion of leads to accep-
tance as follows. For every configuration γ = [i, q, θ],

– if q ∈ F , then γ leads to acceptance;
– if q ∈ U , then γ leads to acceptance if and only if for all configurations γ′

such that γ � γ′, γ′ leads to acceptance;
– if q �∈ F ∪ U , then γ leads to acceptance if and only if there is at least one

configuration γ′ such that γ � γ′ and γ′ leads to acceptance.

A data word w is said to be accepted by A if γ0 leads to acceptance. Let
L(A) denote the set of data words accepted by A. We say that a data language
L is defined by a PA A if L(A) = L.

Remark 1. In Definition 13, we adopt the pebble numbering from [NSV04], in
which the pebbles placed on the input word are numbered from 1 to i. However,
in some literature, for instance, in [Tan10,BSSS06], the pebble numbering is
used differently—it is from k to i. The reason for this reverse numbering is that
it allows to view the computation between placing and lifting pebble i as a
computation of an (i − 1)-pebble automaton.

Example 9. To show how a PA works, we consider the data language L com-
prising the data words where at least one data value occurs twice. The reader
should be easily convinced that L is accepted by the 1N-2PA A = (Q, q1, F, δ),
where
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– Q = {q1, q2, q→, qacc};
– F = {qacc};
– δ consists of the following transitions:

1. (1, σ, ∅, q1) → (q1, right)
2. (1, σ, ∅, q1) → (q→, place-new-pebble)
3. (2, σ, {1}, q→) → (q2, right)
4. (2, σ, ∅, q2) → (q2, right)
5. (2, σ, {1}, q2) → (qacc, stay)

Some sub-classes of PAs can be defined in a standard way. A PA is determinis-
tic, if in each configuration at most one transition rule applies. And, as mentioned
before, if there are no left-transitions, then the PA is one-way. For the automata
models we consider “control” as deterministic (D), non-deterministic (N), or
alternating (A), as well as the one-way and two-way variants. We denote these
automata models by dC-kPA where d ∈ {1, 2}, C = {D, N, A}, and k ∈ N \ {0}.
Here, 1 and 2 stand for one- and two-way, respectively, D, N, and A stand for
deterministic, non-deterministic, and alternating, and k stands for the number
of pebbles. In addition, when necessary we also write S for Strong and W for
Weak, which are specific to one-way PAs.

Expressiveness of PA Models. As we have introduced a variety of pebble
automata, it is natural to ask their expressiveness. A class C1 of PAs is strictly
stronger than the class C2 of PAs is for all data languages L accepted by a PA in
C2, L can be accepted by a PA in C1 and there exists at least one language which
can be accepted by a PA in C1, but not by any PA in C1. Figure 3 summarises
the known results, where, all classes of PAs in the same box are equivalent in
expressiveness, while → means the source class is at least as expressive as the
target, and the arrow decorated by �= means it is strictly more expressive. The
only class which was not addressed in Fig. 3 is strong 1A-PAs, whose relation
with other classes does not appear in literature and is to be studied.

Fig. 3. Expressiveness of PAs

5.1 (Un)Decidability of Emptiness of PAs

As usual, one of the fundamental problems regarding PAs is the emptiness prob-
lem, which is to determine, given a PA A, whether L(A) = ∅. It was shown in
[NSV04] that this problem is generally undecidable, even for weak 1D-PAs. The
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intuition is, when a PA lifts pebble i, the control is transferred to pebble (i− 1).
Therefore, even weak 1D-PAs can make several left-to-right sweeps of the input
data word. This result is very strong in the sense that it implies that almost
all standard decision problems are undecidable for virtually all classes of pebble
automata (cf. Fig. 3).

More technically, [NSV04] gave a reduction from the PCP to the emptiness
of weak 1D-5PAs. Tan observed that the proof can be adapted to weak 1D-3PAs,
yielding an even stronger result. In [Tan10,KT10], a tighter boundary between
decidability and undecidability was drawn in terms of the number of pebbles. In
summary,

Theorem 13 ([NSV04,Tan10,KT10]). The following facts hold for pebble
automata:

– The nonemptiness problem for strong 2N-2PAs is undecidable.
– The nonemptiness problem for weak 1D-3PAs is undecidable.
– The nonemptiness problem for weak 1D-2PAs is decidable, but is not primitive

recursive.

Top View Weak PAs. Theorem 13 suggests that PAs are in general highly unde-
cidable. To mitigate this, Tan [Tan10] proposed a subclass of pebble automata,
the top view weak pebble automata. Roughly speaking, top view weak PAs are
weak one-way PAs where the equality test is performed only between the data
values seen by the two most recently placed pebbles. That is, if pebble i is the
head pebble, then it can only compare the data value it reads with the data
value read by pebble (i − 1). It is not allowed to compare its data value with
those read by pebble 1, . . . , (i − 2). Formally,

Definition 14 (Top view weak PA, [Tan10]). A top view (weak) k-PA is a
tuple A = (Q,Σ, q0, δ, F ) where Q, q0, F are defined as before, and δ consists of
transitions of the form (i, σ, V, q) → (q′, act), where V is either ∅ or {i− 1} and
act �= left.

A transition (i, σ, V, q) → (q′, act) applies to a configuration [j, q, θ] if

1. i = j and p = q;

2. V =

{
∅ if dθ(i−1) �= dθ(i)

{i − 1} if dθ(i−1) = dθ(i)

3. σθ(i) = σ

Note that evidently top view weak 2-PAs and weak 2-PAs are the same.

Theorem 14 ([Tan10]). For every top view weak k-PA A, there is a (one-way)
ARA1 A′ such that they accept the same language. Moreover, the construction
of A′ is effective.

The following result follows from Theorem14 and Theorem 3.

Corollary 1. The emptiness problem for top view weak k-PAs is decidable.
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It turns out that top view weak PAs admits many nice properties [Tan13]:

– Expressiveness: it is shown that for every LTL↓
1 formula ψ, there exists a weak

k-PA Aψ, such that L(Aψ) = L(ψ). It turns out that the automaton Aψ is a
top view weak k-PA. Thus, the class of languages accepted by top view weak
k-PAs contains the languages definable by LTL with one freeze quantifier.

– Decidability: The emptiness problem is decidable.
– Efficiency: The membership problem, that is, testing whether a given data

word of length n is accepted by a deterministic top view weak k-PA can be
solved in O(nk) time.

– Closure properties: Top view weak k-PAs are closed under all boolean
operations.

– Robustness: Alternation and non-determinism do not add expressive power to
top view weak k-PAs.

Tan [Tan10] observed that the finiteness of the number of pebbles for top
view weak PAs is not necessary. He defined top view weak PAs with unbounded
number of pebbles, i.e., top view weak unbounded PAs. It is straightforward
to show that 1-way deterministic 1-RAs can be simulated by top view weak
unbounded PAs. (Each time the register automaton changes the content of the
register, the top view weak unbounded PAs places a new pebble.) Furthermore,
top view weak unbounded PAs can be simulated by ARA1’s (1-way alternating
one-register automata), similar to Theorem 14. Thus, the emptiness problem for
top view unbounded weak PAs is still decidable.

Further Reading. Tan [Tan13] used graph reachability problem to investigate
the strict hierarchy of pebble automata based on the number of pebbles and the
comparison of the expressiveness of pebble automata with the other formalisms
over infinite alphabets. [BSSS06] studied pebble tree-walking automata on trees.

6 Variable Automata and LTL with Data Variable
Quantifications

Another idea to deal with data values from an infinite data domain is to use log-
ical variables to represent data values. The differences between logical variables
and registers are as follows: While logical variables and registers are both used
to represent the data values from an infinite data domain, logical variables are
declarative in the sense that they cannot be updated, but can be existentially or
universally quantified, on the other hand, registers are imperative in the sense
that they can be updated, but cannot be quantified.

In this section, we introduce variable automata, LTL with data variable quan-
tifications, and its variant, indexed temporal logics, where the data values are
interpreted as process identifiers.

Variable automata were proposed by Grumberg et al. as a natural extension
of NFAs to infinite alphabets [GKS10].
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Definition 15 (Variable automata). Let Σ be a finite alphabet and X ∪ {y}
be a finite set of variables, where X is a set of bound variables, and y �∈ X is a free
variable. A variable automaton (VA) A is an NFA (Q,Σ × (X ∪ {y}), q0, δ, F ).

Semantics of VAs. Suppose A = (Q,Σ × (X ∪ {y}), q0, δ, F ) is a VA and w =
(σ1, d1) . . . (σn, dn) is a data word. A run of A on w is a sequence of transitions

q0
(σ1,z1)−−−−→ q1 . . . qn−1

(σn,zn)−−−−−→ qn such that
– for each i ∈ [n], (qi−1, (σi, zi), qi) ∈ δ,
– for every i, j ∈ [n] such that zi, zj ∈ X, it holds that zi = zj iff di = dj ,
– for each i, j ∈ [n] such that zi ∈ X and zj = y, it holds that di �= dj .

A run of A on w is accepting if qn ∈ F . Let L(A) denote the set of data words
accepted by A.

Example 10. Let Σ = {a, b} and L be the data language comprising the data
words w = (a, d1)(b, d2) . . . (b, dn−1)(a, dn) such that d1 = dn and for each i :
1 < i < n, di �= d1. Then L can be defined the VA A illustrated in Fig. 4.

Fig. 4. An example of VA

Theorem 15 ([GKS10]). The following results hold for variable automata:
– VAs are closed under union, but not closed under intersection or

complementation.
– VAs and NRAs are incomparable with respect to the expressive power.
– The nonemptiness problem of VAs is NL-complete, the universality and lan-

guage inclusion problems of VAs are undecidable.

Mens and Rahonis consisdered variable tree automata (VTA) in [MR11b].
They showed VTAs have similar theoretical properties as VAs.

LTL with data variable quantifications (VLTL) is obtained by extending LTL
with existential and universal quantifications on data variables. VLTL was first
considered by Grumberg et al. in [GKS12,GKS13,GKS14]. Later on, Song and
Wu did an extensive investigation on the decision problems of different fragments
of VLTL in [SW14,SW16].

Definition 16 (LTL with data variable quantifications). Let X be a count-
able set of variables. Then LTL with data variable quantifications (denoted by
VLTL) is defined by the following rules:

ϕ
def= σ | val(x) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | ∃x. ϕ,

where σ ∈ Σ and x ∈ X .

The set of free variables of VLTL formula ϕ, denoted by free(ϕ), can be defined in
a standard way as first-order logics. A VLTL formula ϕ is closed if free(ϕ) = ∅.
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Semantics of VLTL. VLTL formulae ϕ are interpreted on a tuple (w, i, θ), where
w = (σ1, d1) . . . (σn, dn) is a data word, i is a position of the data word, and
θ : free(ϕ) → D assigns each variable from free(ϕ) a data value:

– (w, i, θ) |= σ iff σi = σ,
– (w, i, θ) |= val(x) iff di = θ(x),
– (w, i, θ) |= ¬ϕ iff not (w, i, θ) |= ϕ,
– (w, i, θ) |= ϕ1 ∨ ϕ2 iff (w, i, θ) |= ϕ1 or (w, i, θ) |= ϕ2,
– (w, i, θ) |= Xϕ iff i < n and (w, i + 1, θ) |= ϕ,
– (w, i, θ) |= ϕ1 U ϕ2 iff there exists k : i ≤ k ≤ n such that (w, k, θ) |= ϕ2 and

for each j : i ≤ j < k, (w, j, θ) |= ϕ1,
– (w, i, θ) |= ∃x. ϕ iff there exists d ∈ D such that (w, i, θ[d/x]) |= ϕ, where

θ[d/x] denotes the assignment function that is the same as θ, except that x is
assigned with the data value d.

Similarly to LTL, we can also define the positive normal form of VLTL.
Specifically, VLTL formulae in positive normal form are defined by the following
rules,

ϕ
def= σ | ¬σ | val(x) | ¬val(x) | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Xϕ |

ϕ U ϕ | ϕ R ϕ | ∃x. ϕ | ∀x. ϕ.

In the following, we assume that all VLTL formulae are in positive normal
form.

We consider the following fragments of VLTL:

– Let ∃∗-VLTL denote the fragment of VLTL where no universal quantifiers
appear.

– Let NN-∃∗-VLTL denote the fragment of ∃∗-VLTL where the existential quan-
tifiers are non-nested, more precisely, the formulae ϕ in ∃∗-VLTL such that
for each subformula ∃x. ϕ′ and each subformula of ∃y. ϕ′′ of ϕ′, there are no
free occurrences of x in ϕ′′.

– Let VLTLpnf denote the fragment of VLTL where the formulae in prenex
normal form, that is, VLTL formulae of the form Q1x1. . . .Qnxn. ϕ, where
Q1, . . . ,Qn ∈ {∃,∀} and ϕ is a quantifier-free VLTL formula. Moreover, for a
quantifier prefix Θ = Q1 . . .Qk ∈ {∃,∀}+, let Θ-VLTLpnf denote the fragment
of VLTLpnf where all the formulae are of the form Q1x1. . . .Qkxk. ϕ, where
ϕ is a quantifier-free VLTL formula.

– Let ∀-VLTLgdlt
pnf denote the set of ∀-VLTLpnf formulae ∀x. ψ such that all the

occurrences of σ and ¬σ in ψ are guarded by the positive occurrences of val(x).
More precisely, ψ is a quantifier-free VLTL formula defined by the following
rules,

ψ := σ ∧ val(x) | ¬(σ ∧ val(x)) | ¬σ ∧ val(x) | ¬(¬σ ∧ val(x))
val(x) | ¬val(x) | ψ ∨ ψ | ψ ∧ ψ | Xψ | Xψ | ψ U ψ | ψ R ψ,
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where σ ∈ Σ, x ∈ X, and the superscript “gdlt” means “guarded letters”. For
instance, the formula ∀x. G[(openFile ∧ val(x)) → XF(closeF ile ∧ val(x))] is
in ∀-VLTLgdlt

pnf , while the formula

∀x. G[(openFile ∧ val(x)) → (write ∧ ¬val(x)) U (closeF ile ∧ val(x))]

is not, since the occurrence of write is not guarded by a positive occurrence
of val(x).

Theorem 16 ([SW14,SW16]). The following results hold for VLTL:

– The satisfiability problem of ∃∗-VLTL is undecidable.
– The satisfiability problem of ∀-VLTLpnf is undecidable.
– The satisfiability problem of NN-∃∗-VLTL is decidable and non-primitive

recursive.
– The satisfiability problem of ∀-VLTLgdlt

pnf is decidable.

As mentioned before, since process identifiers are a concrete type of data
values, indexed linear temporal logic (ILTL) used to specify and reason about
parameterized concurrent systems can be seen as variants of VLTL. ILTL was
first proposed by German and Sistla in ([SG87,GS92]). They showed that the
validity (resp. model checking) problem of the indexed LTL is decidable (resp.
undecidable). The differences between ILTL and VLTL are as follows:

– VLTL interpreted over data words where each position carries only one data
value or a fixed number of data values, whereas ILTL is interpreted over com-
putation traces in parameterised systems (cf. the semantics of ILTL formulae
below).

– While computation traces can also be seen as data words by treating process
identifiers as data values, these data words are significantly different than the
traditional ones studied before. Namely, each position of these data words
carries an unbounded number of data values, and all the data values occur in
every position.

Definition 17 (Indexed Linear Temporal Logics). Let AP and AP ′ be
the set of global and local atomic propositions. The formulae of indexed linear
temporal logic (ILTL) are defined by the following rules,

ϕ
def= true | false | p | ¬p | p′(x) | ¬p′(x) | ϕ ∨ ϕ | ϕ ∧ ϕ |

Xϕ | ϕ U ϕ | ϕ R ϕ | ∃x. ϕ | ∀x. ϕ,

where p ∈ AP , p′ ∈ AP ′, and x ∈ X.

Let free(ϕ) denote the set of free variables occurring in ϕ. An ILTL formula
containing no free variables is called a closed ILTL formula. For an ILTL formula
ϕ, let ¬ϕ denote its complement (negation), and let ϕ denote the positive normal
form of ¬ϕ, that is obtained by pushing the negation inside of operators. For
instance, if ϕ = ∃x. Fp′(x), then ϕ = ∀x. G¬p′(x).
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Semantics of ILTL. ILTL formulae are interpreted over computation traces of
parameterised systems. Let I be an infinite set of process identifiers. A compu-
tation trace over AP ∪ AP ′ is a tuple trc = (α, I, (βi)i∈I), where α ∈ (2AP )ω

is an ω-sequence of valuations over the global atomic propositions from AP ,
I ⊆ I is a finite set of process identifiers, and for each i ∈ I, βi ∈ (2AP ′

)ω is a
local computation trace, i.e. an ω-sequence of valuations over the local atomic
propositions from AP ′.

Let ϕ be an ILTL formula, trc = (α, I, (βi)i∈I) be a computation trace,
θ : free(ϕ) → I be an assignment of the process identifiers (from I) to the free
variables in ϕ, and n ∈ N. Then (trc, θ, n) satisfies ϕ, denoted by (trc, θ, n) |= ϕ,
is defined as follows:

– (trc, θ, n) |= p (resp. ¬p) if p ∈ α[n] (resp. p /∈ α[n]),
– (trc, θ, n) |= p′(x) (resp. ¬p′(x)) if p′ ∈ βθ(x)[n] (resp. p′ �∈ βθ(x)[n]),
– (trc, θ, n) |= ∃x. ϕ1 if there is i ∈ I such that (trc, θ[i/x], n) |= ϕ1, where

θ[i/x] is the same as θ, except for assigning i to x,
– (trc, θ, n) |= ∀x. ϕ1 if for each i ∈ I, (trc, θ[i/x], n) |= ϕ1,
– (trc, θ, n) |= ϕ1 ∨ ϕ2 if (trc, θ, n) |= ϕ1 or (trc, θ, n) |= ϕ2,
– (trc, θ, n) |= ϕ1 ∧ ϕ2 if (trc, θ, n) |= ϕ1 and (trc, θ, n) |= ϕ2,
– (trc, θ, n) |= Xϕ if (trc, θ, n + 1) |= ϕ,
– (trc, θ, n) |= ϕ1 U ϕ2 if there is m ≥ n s.t. (trc, θ,m) |= ϕ2, and for all

l : n ≤ l < m, (trc, θ, l) |= ϕ1,
– (trc, θ, n) |= ϕ1 R ϕ2 if either for all m ≥ n, (trc, θ,m) |= ϕ2, or there is m ≥ n

s.t. (trc, θ,m) |= ϕ1, and for all l : n ≤ l ≤ m, (trc, θ, l) |= ϕ2.

Note that if ϕ is a closed ILTL formula, then θ has an empty domain and
thus is omitted. Namely we simply write (trc, n) |= ϕ. In addition, for a closed
ILTL formula ϕ, we use trc |= ϕ to abbreviate (trc, 0) |= ϕ. For a closed ILTL
formula ϕ, let L(ϕ) denote the set of computation traces trc such that trc |= ϕ.
The satisfiability problem of ILTL is defined as follows: Given a closed ILTL
formula ϕ, decide whether L(ϕ) is empty.

We shall consider the following fragments of ILTL with abbreviations:

– ILTLpnf denotes the fragment of ILTL where formulae are in prenex normal
form, that is {∀,∃} quantifications appear only at the beginning of the for-
mula. In particular, let Θ ⊆ {∃,∀}∗. Then Θ-ILTLpnf denotes the fragment
of ILTLpnf where the quantifier prefixes belong to Θ.

– NN-ILTL denotes the fragment of ILTL where the quantifiers are not nested,
that is, for each formula Q1x.ϕ1 such that Q2y.ϕ2 is a subformula of ϕ1, it
holds that x is not a free variable of ϕ2, where Q1,Q2 ∈ {∀,∃}.

– ILTL(O) for O ⊆ {X,F,G,U,R} denotes the fragment of ILTL where only tem-
poral operators from O are used. Moreover, we use ILTL\X as an abbreviation
of ILTL(U,R), where the X operator is forbidden.

– ILTLlocap denotes the fragment of ILTL where there are no global atomic
propositions, that is, AP = ∅.

These notations might be combined to define more (refined) fragments, e.g. the
logic (ILTL(F,G))pnf denotes the fragment of ILTLpnf where only temporal
operators F and G are used.
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Theorem 17. The following results hold for ILTL:

– The satisfiability problems of ∀∃-ILTLpnf and ∃∀∃-ILTLlocap
pnf are undecidable.

– The satisfiability problems of ∃∗∀∗-ILTLpnf and ∃∗∀∗-(ILTL \X)pnf are
EXPSPACE-complete, and the satisfiability problem of ∃∗∀∗-(ILTL(F,G))pnf

is NEXPTIME-complete.
– The satisfiability problems of NN-ILTL, NN-ILTL(X,F,G), NN-ILTL\X, and

NN-ILTL(F,G) are EXPSPACE-complete.

7 Symbolic Automata and Transducers

In this section, we introduce symbolic automata and transducers, another line
of work to reason about data values from an infinite domain. Unlike the data
domain D discussed in previous sections, where only the equality and inequality
relation between data values are available, the data domain D in this section has
a richer structure where more complex predicates, e.g. the predicate defining
the set of even natural numbers, can be used. Over an infinite data domain,
where complex predicates can be used, symbolic automata and transducers are
natural extensions of finite automata and transducers over finite alphabets, by
replacing the letters from a finite alphabet with the predicates over the infinite
data domain. The concept of symbolic finite-state automata/transducers was
initially introduced by Watson in [Wat96], then investigated by van Noord and
Gerdemann in [vNG01], with motivation from natural language processing. The
recent development of this topic by Veanes, Bjørner, et al., was mainly driven by
regular expression analysis and advanced web security analysis [VB11a,VHL+12,
Vea13].

In the following, we first present symbolic automata and then symbolic trans-
ducers. In the literature on symbolic automata and transducers, a data word is
normally defined as an element of D

∗, instead of an element of (Σ × D)∗ as in
the previous sections. In this section, we follow this convention and define data
words as elements of D

∗.

7.1 Symbolic Automata

The data domain D equipped with predicates used in symbolic automata is
formalised by effective Boolean algebra, which is defined as follows.

Definition 18 (Effective Boolean algebra). An effective Boolean algebra Υ
is a tuple (Ω, ‖ ◦ ‖, Ψ) satisfying the following constraints:

– Ω = (S,F,P) is a signature such that S is a singleton set {s}, F, and P are
recursively enumerable sets.

– ‖◦‖ is an Ω-interpretation such that ‖s‖ is a recursively enumerable set, called
the universe (denoted by D).
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– Ψ =
⋃

i∈N\{0}
Ψ (i) such that for each i ∈ N\{0}, Ψ (i) is a recursively enumerable

set of i-ary Ω-formulae closed under Boolean connectives ∨,∧,¬. For each
ψ(x) ∈ Ψ , we use ‖ψ‖ to denote the set {η(x) | η is anΩ-assignment, and ‖◦‖
|=η ψ(x)}. Elements of ‖ψ‖ are called the witnesses of ψ.

Let Υ = (Ω, ‖ ◦ ‖, Ψ) be an effective Boolean algebra and ψ ∈ Ψ . Then ψ is
satisfiable, denoted by isSat(ψ), if ‖ψ‖ �= ∅. In addition, Υ is decidable iff it is
decidable to check isSat(ψ) for ψ ∈ Ψ .

Definition 19 (Symbolic finite-state automata). A symbolic finite-state
automaton (SFA) is a tuple A = (Q,Υ, q0, δ, F ), where:

– Q is a finite set of states,
– Υ = (Ω, ‖ ◦ ‖, Ψ) is a decidable effective Boolean algebra,
– q0 ∈ Q is the initial state,
– F ⊆ Q is the set of final states,
– δ ⊆ Q × Ψ (1) × Q is a finite set of symbolic transitions.

An SFA A = (Q,Υ, q0, δ, F ) is deterministic if for every (q1, ψ, q2), (q1, ψ′, q′
2) ∈

δ, if isSat(ψ ∧ ψ′) holds, then q2 = q′
2.

Semantics of SFAs. Let A = (Q,Υ, q0, δ, F ) be an SFA. A symbolic transition
t = (q1, ψ, q2) ∈ δ in the SFA A can be concretised into a set ‖t‖ of concrete
(standard) transitions →⊆ Q × D × Q defined as follows: For every d ∈ D,
q1

d−→ q2 ∈ ‖t‖ iff d ∈ ‖ψ‖. Intuitively, suppose that A is in the state q1 and
reading a data value d, if there is a transition (q1, ψ, q2) ∈ δ such that d ∈ ‖ψ‖,
then A moves from q1 to q2 after consuming the input data value d.

Given a data word w = d1...dn ∈ D
∗, q1

w� qn+1 if there exist states
q2, ..., qn ∈ Q such that for all i ∈ [n], qi

di−→ qi+1 ∈ ‖t‖ for some transition
t ∈ δ. A data word w is accepted at the state q of A iff there exists a state
qf ∈ F such that q

w� qf . Let Lq(A) denote the set of data words accepted at
the state q of A. Then the data language defined by A, denoted by L(A), is
Lq0(A).

Example 11. Let us consider the language L231 over integers, in which either
the second letter is less than −231 and the last letter is greater than 231,
or the second letter is greater than 231 and the last letter is less than −231.
L231 cannot be defined by any finite state automaton. Let A231 = ({q0, q1, q2,
q3, q4}, Υ, q0, δ, {q4}) be the SFA such that Υ is linear arithmetic over integers
and δ is illustrated in Fig. 5 (where 231 is an abbreviation the sequence of 32
bits 1031). A231 defines the data language L231 .

An ε-SFA A is a tuple A = (Q,Υ ∪ {ε}, q0, δ, F ), where Q, Υ , q0 and F are
defined as for SFAs, and δ ⊆ Q×(Ψ (1)∪{ε})×Q. An ε-transition (q1, ε, q2) in an ε-
SFA A allows it to move from the state q1 to the state q2 without consuming any
input data value. The semantics of ε-SFA can be defined as a natural extension
of that of SFAs.
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Fig. 5. The SFT A231

Let A = (Q,Υ, q0, δ, F ) be an SFA. A state q ∈ Q is called partial if there is
d ∈ D such that there are no q′ ∈ Q satisfying that q

d−→ q′. Note that given a
state q ∈ Q, we can decide whether q is partial by checking whether

∨

(q,ψ,q′)∈δ

ψ

is valid, that is, whether
∧

(q,ψ,q′)∈δ

¬ψ is unsatisfiable. Then A is minimal if the

following conditions hold:

– A is deterministic,
– A is complete, that is, A contains no partial states,
– A is clean, that is, for every (q1, ψ, q2) ∈ δ, it holds that isSat(ψ) and there is

w ∈ D
∗ such that q0

w� q1,
– A is normalized, that is, for each pair of states q1, q2 ∈ Q, there is at most one

transition between them (otherwise, two transitions (q1, ψ1, q2), (q1, ψ2, q2) ∈ δ
can be combined into one transition (q1, ψ1 ∨ ψ2, q2)),

– for all q1, q2 ∈ Q, q1 = q2 iff Lq1(A) = Lq2(A).

Let L ⊆ D
∗ be a data language. Then the Kleene-closure of L, denoted by

L∗, is defined as {ε} ∪ {w1 . . . wn | n ≥ 1, wi ∈ L}. The reversal of L, denoted
by Lrev, is defined as {d1 . . . dn | dn . . . d1 ∈ L}.

It turns out SFAs preserve all the nice properties of finite-state automata.

Theorem 18 ([vNG01,VHL+12,DV14]). The following results hold for SFAs:

– Each ε-SFA can be transformed into an equivalent SFA in linear time.
– SFAs are closed under determinization, all the Boolean operations, concatena-

tion, Kleene-closure and reversal.
– The nonemptiness, the universality and the equivalence problems of SFAs are

decidable.

SFAs can only enforce constraints on the data value of a single position, and
are incapable of comparing data values in different positions, which is the main
reason why SFAs preserve all the nice properties of finite-state automata. In
the following, we introduce an extension of SFAs that are capable of comparing
data values in different positions, called extended symbolic finite-state automata
(ESFA). ESFAs extend SFAs with lookahead, that is, by allowing to read several
consecutive input data values in a single transition.
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Definition 20 (Extended symbolic finite-state automata). An extended
symbolic finite-state automaton (ESFA) over the sort s is a tuple A =
(Q,Υ, q0, δ, F ), where:

– Q is a finite set of states including a specific state qf ,
– Υ = (Ω, ‖ ◦ ‖, Ψ) is a decidable effective Boolean algebra such that Ω =

(S,F,P) and S = {s},
– q0 ∈ Q is the initial state,
– δ is a finite set of transition rules of the form t = (q1, �, ψ, q2), where

• q1 ∈ Q\{qf} and q2 ∈ Q are respectively the source and target states of t,
• � ∈ N \ {0} is the lookahead of t,
• ψ ∈ Ψ (�), that is, ψ is an �-ary formula in Ψ ,

– F is a set of final rules of the form t = (q1, �, ψ, qf ) such that if � > 0, then
t satisfies the same constraints as for transition rules, otherwise (i.e. � = 0),
then ψ = true. Intuitively, a final rule (q1, �, ψ, qf ) is used when the rest of the
input data word is of length �, where � = 0 corresponds to the situation that A
already reaches the right end of the data word. It is a generalisation of final
states in finite-state automata.

The lookahead of an ESFA A is the maximum of the lookaheads of the (transition
or final) rules in A.

Semantics of ESFAs. Let A = (Q,Υ, q0, δ, F ) be an ESFA. The semantics of the
rules t = (q1, �, ψ, q2) ∈ δ of A is defined as follows: If � = 0, then ψ = true and
q2 = qf , therefore, ‖t‖ = {q1 ε−→ qf}. Otherwise,

‖t‖ = {q1 w−→ q2 | w = d1 . . . d� ∈ (Ds)�, (d1, . . . , d�) ∈ ‖ψ‖}.

Intuitively, using the transition t = (q1, �, ψ, q2), A reads the next � input data
values w (including the one in the current position), if the corresponding tuple
of data values satisfies ψ, then A consumes the word w and moves from the state
q1 to the state q2.

Given a data word w ∈ D
∗, q1

w� qn+1 if there exist states q2, ..., qn ∈ Q and
data words w1, ..., wn ∈ D

∗ such that w = w1...wn and for all i ∈ [n], qi
wi−→ qi+1.

A data word w ∈ D
∗ is accepted by A iff q0

w� qf . The data language defined by
A, denoted by L(A), is the set of data words accepted by A.

An ESFA A = (Q,Υ, q0, δ, F ) is deterministic if for every pair of rules
(q1, �, ψ, q2) and (q1, �′, ψ′, q′

2) in A,

– if q2, q′
2 ∈ Q \ {qf} and isSat(ψ ∧ ψ′), then q2 = q′

2 and � = �′;
– if q2 = q′

2 = qf and isSat(ψ ∧ ψ′), then � = �′;
– if q2 ∈ Q \ {qf}, q′

2 = qf and isSat(ψ ∧ ψ′), then � > �′.

Example 12. Let us consider the ESFA Ascript = ({q0, q1, qf}, Υ, q0, δ, F ) such
that
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Fig. 6. The ESFA Ascript

– Υ is the theory of UTF-8 characters where all the function symbols are con-
stants and the set of predicate symbols is empty,

– δ and F are illustrated in Fig. 6, where ψ1 is an abbreviation of the formula
x1 = 〈 ∧ x2 = s ∧ x3 = c ∧ · · · ∧ x8 =〉 and ψ2 is an abbreviation of the
formula x1 = 〈 ∧ x2 = / ∧ x3 = s ∧ · · · ∧ x9 =〉.

Then the ESFA Ascript defines the set of words w such that each occurrence
of 〈script〉 is followed by an occurrence of 〈/script〉 in the future. Note that
although Ascript is over a finite alphabet, it is much more succinct than the cor-
responding finite-state automaton defining the same language, where an enumer-
ation of all the possible subwords of length 9 satisfying ¬ψ1 or ¬ψ2 is necessary.

A formula ψ ∈ Ψ (�) (where � > 0) is Cartesian if ‖ψ‖ is equivalent to D1 ×
· · · × D� for some D1, . . . , D� ⊆ Ds. An ESFA A is Cartesian if for each rule
(q1, �, ψ, q2) in A such that � > 0, it holds that ψ is Cartesian. For a satisfiable
formula ψ(x ) ∈ Ψ (�) (where � > 0), to decide whether ψ is Cartesian is equivalent
to check whether for some witness (d1, ..., d�) of ψ,

∀x1, ...x�(ψ(x1, ..., x�)) ⇐⇒
∧

1≤i≤�

ψ(d1, ..., di−1, xi, di+1, ..., d�).

A formula ψ(x ) ∈ Ψ (�) (where � > 0) is monadic if it is equivalent to a Boolean
combination of unary formulae. For instance, ψ(x1, x2)

def= x1 = x2 mod 2 is a
monadic formula since it is equivalent to (x1 = 0 mod 2∧x2 = 0 mod 2)∨(x1 = 1
mod 2 ∧ x2 = 1 mod 2), while ψ(x1, x2)

def= x1 < x2 is not. In [VBNB14], a semi-
decision procedure was provided to compute an equivalent Boolean combination
of unary formulae, from a given quantifier-free formula over a decidable back-
ground theory.

An ESFA A is monadic if for each rule (q1, �, ψ, q2) of A such that � > 0, ψ
is monadic.

Theorem 19 ([DV15]). The following results hold for ESFAs:

– Cartesian ESFAs, monadic ESFAs and SFAs are expressively equivalent,
moreover, this also holds for the deterministic case.
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– The membership and nonemptiness problems of ESFAs are decidable, but
the universality, language inclusion and equivalence problems of ESFAs are
undecidable.

– For each � ∈ N \ {0}, ESFAs with lookahead � + 1 are more expressive than
ESFAs with lookahead �.

– ESFAs are closed under union, but not closed under intersection or comple-
mentation. Moreover, checking whether there exists an input word accepted by
two ESFAs A and A′ with lookahead 2 over quantifier free successor arithmetic
and tuples is undecidable.

In [DV15], the last result in Theorem 19 was shown by reducing the reacha-
bility problem of Minsky machines to the problem checking whether there exists
an input word accepted by two ESFAs A and A′ with lookahead 2 over quantifier
free successor arithmetic and tuples from N

3.

Remark 2. In the definition of ESFAs, when the reading head is in the position
i and a transition with � ≥ 2 lookahead is used, then after the transition, the
reading head will be moved to the position i + �, instead of the next position
to the right of i, that is, i + 1. This special semantics of lookaheads in ESFAs
is essential for the decidability of nonemptiness problem. (Otherwise, we are
already be able to reduce the reachability problem of Minsky machines to the
nonemptiness problem of ESFAs.)

7.2 Symbolic Transducers

Similar to symbolic automata, symbolic transducers are introduced as extensions
of finite-state transducers, where the input letters are replaced by formulae over
an infinite data domain and the output letters are replaced by terms.

For the definition of symbolic transducers, we introduce the concept of back-
ground theories and label theories. Intuitively, background theories are many-
sorted Boolean algebra satisfying the additional constraint that the set of for-
mulae is closed under substitutions. Label theories extend background theories
further by adding inequalities of terms into the set of formulae.

Definition 21 (Background theories). A background theory Υ is a tuple
(Ω, ‖ ◦ ‖, Ψ) satisfying the following constraints:

– Ω = (S,F,P) is a signature satisfying that each of S,F,P is a recursively
enumerable set.

– ‖ ◦ ‖ is an Ω-interpretation such that for each s ∈ S, ‖s‖ is a recursively
enumerable set (denoted by Ds).

– Ψ =
⋃

s∈S+
Ψ (s) such that for each s = (s1, . . . , si) ∈ S+, Ψ (s) is a recursively

enumerable set of Ω-formulae of arity s1 × · · · × si closed under Boolean con-
nectives ∨,∧,¬. In addition, Ψ is closed under substitutions, that is, for each
s/s′-term f and ψ(x) ∈ Ψ (s′), we have ψ[f/x] ∈ Ψ (s). For each ψ(x) ∈ Ψ , we
use ‖ψ‖ to denote the set {η(x) | η is anΩ-assignment, and ‖ ◦ ‖ |=η ψ(x)}.
Elements of ‖ψ‖ are called the witnesses of ψ.
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The notion isSat(ψ) for ψ ∈ Ψ and the decidability of Υ can be defined similarly
as effective Boolean algebra.

Definition 22 (Label theories). A label theory Υ with the input sort sin and
output sort sout is a tuple (Ω, ‖ ◦ ‖, Ψ, Ψ ′) satisfying the following constraints:

– (Ω, ‖ ◦ ‖, Ψ) is a background theory such that Ω = (S,F,P) and sin, sout ∈ S,
– Ψ ′ =

⋃

i∈N\{0}
(Ψ ′)(s

i
in) such that for each i ∈ N \ {0}, (Ψ ′)(s

i
in) comprises the

formulae of the form ψ(x) ∧ f(x) �= g(x), where ψ(x) ∈ Ψ (si
in) and f, g are

si
in/sout-terms.

A label theory is decidable if it is decidable to check isSat(ψ) for ψ ∈ Ψ ∪ Ψ ′.

Given a formula ψ(x ) ∈ (Ψ)(s
i
in) and two si

in/sout-terms f(x ), g(x ), f and g
are equivalent up to ψ, denoted by f �ψ g, if isSat(ψ(x )∧f(x ) �= g(x )) does not
hold. Two sequences of si

in/sout-terms f = f1...fn and g = g1...gm are equivalent
up to ψ, denoted by f �ψ g , iff n = m and for every j ∈ [n], fj �ψ gj .

Given a si
in/sout-term f = f1...fn and a sequence of data values d =

(d1, . . . , di) ∈ (Dsin)
i, let ‖f ‖(d) denote the sequence ‖f1‖(d)...‖fn‖(d), that

is, a data word of sort sout.

Definition 23 (Symbolic finite-state transducers). A symbolic finite-state
transducer (SFT) is a tuple A = (Q,Υ, sin, sout, q0, δ, F ), where:

– Q, q0 and F are defined as those for SFAs,
– Υ = (S,F,P) is a decidable label theory with the input sort sin and output

sort sout,
– δ is a finite set of symbolic transitions (q, ψ, f, q′) such that q, q′ ∈ Q, ψ ∈ Ψsin

and f is a sequence of sin/sout-terms.

Let A = (Q,Υ, sin, sout, q0, δ, F ) be an SFT. Then A is deterministic if for all
(q1, ψ, f , q2), (q1, ψ′, f’ , q′

2) ∈ δ, if isSat(ψ ∧ ψ′), then q2 = q′
2 and f �ψ∧ψ′ f’ .

Semantics of SFTs. Similar to SFAs, a symbolic transition t = (q1, ψ, f , q2) ∈ δ
in the SFT A can be concretised into a potentially infinite set ‖t‖ of concrete

transitions →⊆ Q × Dsin × (Dsout)
∗ × Q, where q1

d/w−→ q2 ∈ ‖t‖ iff d ∈ ‖ψ‖ and
w = ‖f ‖(d). Intuitively, suppose A is at the state q1 and reading the input data
value d ∈ Dsin , if there is a transition (q1, ψ, f , q2) ∈ δ such that d ∈ ‖ψ‖, then A
can move from the state q1 to the state q2 after reading d, moreover it produces
a data word w ∈ (Dsout)

∗.

Given a data word u = d1...dn ∈ (Dsin)
∗, q1

u/w
� qn+1 if there exist states

q2, ..., qn ∈ Q and data words w1, ..., wn ∈ (Dsout)
∗ such that w = w1...wn and

for each i ∈ [n], qi
di/wi−→ qi+1. The transduction TA defined by the SFT A is

a relation TA ⊆ (Dsin)
∗ × (Dsout)

∗ defined as follows: For each u ∈ (Dsin)
∗ and

w ∈ (Dsout)
∗, (u,w) ∈ TA iff there exists q′ ∈ F such that q0

u/w
� q′. For each
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u ∈ (Dsin)
∗, define TA(u) = {w ∈ (Dsout)

∗ | (u,w) ∈ TA}. The SFT A is single-
valued if for all u ∈ (Dsin)

∗, |TA(u)| ≤ 1. The SFT A is finite-valued if there
exists a bound K ≥ 0 such that for all u ∈ (Dsin)

∗, |TA(u)| ≤ K.

Example 13. Let us consider the simple SFT

Axor = ({q0}, Υ,BV 2, BV, q0, {(q0, true, f, q0)}, {q0}),

where BV 2 and BV are respectively bit vectors with length 2 and 1, the function
f

def= λb0, b1. b0 xor b1 (xor is the bitwise exclusive or operator). The SFT Axor

transforms each sequence of bit pairs (b10, b
1
1)...(b

n
0 , bn

1 ) into a sequence of bits
b1...bn such that for all i ∈ [n], bi = bi

0 xor bi
1.

Let Υ1 = (Ω1, ‖ ◦ ‖1, Ψ1, Ψ
′
1) be a label theory with input sort s1 and out-

put sort s2, and Υ2 = (Ω2, ‖ ◦ ‖2, Ψ2, Ψ
′
2) be a label theory with input sort s2

and output sort s3. Then Υ1 and Υ2 are said to be composable if the following
constraints hold: Let Ω1 = (S1,F1,P1) and Ω2 = (S2,F2,P2), then

– S1 ∩S2 = {s2},
– for each i, j ∈ N \ {0}, the set of functions from F1 of arity si

2 → sj
2 is the

same as the set of functions from F2 of arity si
2 → sj

2, moreover, for each such
function f , ‖f‖1 = ‖f‖2, finally, all these function symbols are the only ones
shared by F1 and F2,

– for each i ∈ N \ {0}, the set of predicates from P1 of arity si
2 is the same as

the set of predicates from P2 of arity si
2, moreover, for each such predicate p,

‖p‖1 = ‖p‖2, finally, all these predicate symbols are the only ones shared by
P1 and P2.

From two composable label theories Υ1 and Υ2, a label theory Υ = (Ω, ‖◦‖, Ψ, Ψ ′),
called the composition of Υ1 and Υ2, can be defined as follows.

– the input sort and output sort of Υ are s1 and s3 respectively,
– Ω = (S1 ∪S2,F1 ∪ F2,P1 ∪P2).
– The ‖ ◦ ‖-interpretations of sorts, function symbols, and predicate symbols

from Ω1 ∩Ω2 are those of ‖ ◦ ‖1. On the other hand, the ‖ ◦ ‖-interpretations
of sorts, function symbols, and predicate symbols from (Ω1 \ Ω2) ∪ (Ω2 \ Ω1)
inherit from ‖ ◦ ‖1 or ‖ ◦ ‖2.

– Ψ is closure of Ψ1 ∪ Ψ2 under Boolean connectives and substitutions (i.e. the
minimum set of formulae that subsumes Ψ1 ∪ Ψ2 and is closed under Boolean
connectives and substitutions).

– Ψ ′ =
⋃

i∈N\{0}
(Ψ ′)(s

i
1) such that for each i ∈ N \ {0}, (Ψ ′)(s

i
1) comprises the

formulae of the form ψ(x ) ∧ f(x ) �= g(x ), where ψ(x ) ∈ Ψ (si
1) and f, g are

si
1/s3-terms.

SFTs are said to be closed under composition if for each pair of SFTs A1

with the input/output sort s1/s2, and A2 with the input/output sort s2/s3,
there is an SFT A such that for each data word w ∈ (Ds1)

∗, it holds that
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TA(w) = TA2(TA1(w)). Two SFTs A1 and A2 with the input/output sort s1/s2
are equivalent if for each w ∈ (Ds1)

∗, TA1(w) = TA2(w). The equivalence prob-
lem of SFTs is to decide the equivalence of two given SFTs with the same
input/output sorts.

Theorem 20 ([vNG01,VHL+12,VB16]). The following results hold for SFTs:

– SFTs are closed under composition if their label theories are composable.
– The equivalence problem of finite-valued SFTs is decidable.

We would like to mention that the equivalence problem of finite state trans-
ducers (hence for SFTs) is undecidable [FV98].

Similarly to the extension of SFAs into ESFAs, SFTs can be naturally gen-
eralised into extended symbolic finite-state transducers (ESFTs).

Definition 24 (Extended symbolic finite-state transducers). An
extended symbolic finite-state transducer (ESFT) A is a tuple (Q,Υ, sin,
sout, q0, δ, F ), where Q, Υ, sin, sout and q0 ∈ Q are defined as those for SFTs,
and δ is a finite set of transition rules of the form t = (q1, �, ψ, f, q2), where:

– q1 ∈ Q \ {qf} and q2 ∈ Q are respectively the source and target states of t,
– � ∈ N \ {0} is the lookahead of t,
– ψ ∈ Ψ (s�

in),
– f is a sequence of s�

in/sout-terms, each of them representing a function from
(Dsin)

i to Dsout ,

and F is a set of final rules t = (q1, �, ψ, f, qf ) such that if � > 0, then t satisfies
the same constraints as transition rules, otherwise (i.e. � = 0), ψ = true.

The lookahead of an ESFT is defined similarly as for ESFAs.

Semantics of ESFTs. Let A = (Q,Υ, sin, sout, q0, δ, F ) be an ESFT. The seman-
tics of rules t = (q1, �, ψ, f , q2) of A is defined as follows:

‖t‖ = {q1
u/w−→ q2 | u ∈ ‖ψ‖, w ∈ ‖f ‖(u)}.

Intuitively, the transition t = (q1, �, ψ, f , q2) reads � adjacent input data values
u that satisfies ψ, then produces a sequence of data values w ∈ ‖f ‖(u).

Given a data word u ∈ (Dsin)
∗, q1

u/w
� qn+1 if there exist states q2, ..., qn ∈ Q,

words u1, ..., un ∈ (Dsin)
∗ and words w1, ..., wn ∈ (Dsout)

∗ such that u = u1...un,

w = w1...wn and for each i ∈ [n], qi
ui/wi−→ qi+1. The transduction TA defined by

A is a relation on (Dsin)
∗ × (Dsout)

∗ defined as follows: For each u ∈ (Dsin)
∗ and

w ∈ (Dsout)
∗, (u,w) ∈ TA iff q0

u/w
� qf . In addition, we use TA(u) to denote the

set {w ∈ (Dsout)
∗ | (u,w) ∈ TA}.
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Fig. 7. The ESFT Ascript

Example 14. Let us consider the ESFT Ascript = ({q0, q1, qf}, Υ, s, s, q0, δ,
{q0, q1}), where Υ is the theory of UTF-8 characters where all the function
symbols are constants and the set of predicate symbols is empty, s is the sort of
UTF-8 characters, δ is shown in Fig. 7. Ascript removes all the non-empty data
subwords following each occurrence of 〈script〉 until 〈/script〉 occurs.

An ESFT A = (Q,Υ, sin, sout, q0, δ, F ) is deterministic if for all rules
(q1, �, ψ, f , q2), (q1, �′, ψ′, f ′, q′

2) ∈ δ ∪ F :

– if q2, q′
2 ∈ Q \ {qf} and isSat(ψ ∧ ψ′), then q2 = q′

2, � = �′ and f �ψ∧ψ′ f ′,
– if q2 = q′

2 = qf , isSat(ψ ∧ ψ′) and � = �′, then f �ψ∧ψ′ f ′,
– if q2 ∈ Q \ {qf}, q′

2 = qf and isSat(ψ ∧ ψ′), then � > �′.

An ESFT A is single-valued if |TA(u)| ≤ 1 for all u ∈ (Dsin)
∗. An ESFT A

is finite-valued if there exists K ≥ 0 such that |TA(u)| ≤ K for all u ∈ (Dsin)
∗.

Cartesian and monadic ESFTs are defined similarly as for ESFAs.

Theorem 21 ([DV15]). The following results hold for ESFTs:

– Cartesian ESFTs, monadic ESFTs, and SFTs are expressively equivalent,
moreover, this fact holds in the deterministic case.

– ESFTs with lookahead �+1 are more expressive than ESFTs with lookahead �.
– ESFTs are not closed under composition (even if the label theories are

composable).
– The equivalence problem of single-valued ESFTs over quantifier free successor

arithmetic and tuples is undecidable, but is decidable for single-valued Carte-
sian ESFTs.

It is open whether the equivalence problem of finite-valued Cartesian ESFTs
is decidable or not.

Further Reading. Symbolic visibly pushdown automata (SVPA) were inves-
tigated in [DA14]. Another extension of SFAs, called symbolic finite-state
automata with registers (SRA), was also investigated in [DV15]. It turns out
that adding registers into SFAs entails undecidability, even for the nonemptiness
problem, since Minsky machines can be easily simulated by SRAs. In addition,



Formal Reasoning About Infinite Data Values 235

symbolic finite-state tree automata (SFTAs) were investigated in [VB11a,VB15,
VD16]. It was shown that SVPAs and SFTAs preserve all the desirable proper-
ties of visibly pushdown automata and tree automata respectively. Symbolic tree
transducers (STT) were also investigated. It was shown in [FV14] that symbolic
tree transducers are not closed under compositions, which corrected an incorrect
claim in [VB11b].

8 Formalisms with Data Constraints for the Verification
of Programs Manipulating Dynamic Data Structures

Dynamic data structures, or heaps, are widely used in system software, e.g., oper-
ating systems and device drivers. Formal analysis and verification of programs
manipulating dynamic data structures are notoriously difficult. For instance, the
sizes of dynamic data structures are unbounded, their shapes may change dur-
ing the execution of the program, and their nodes may contain data values from
an infinite domain, or even worse, there may be pointer arithmetics applied to
the pointer variables. Researchers have proposed various approaches to reason
about dynamic data structures, e.g., shape analysis [SRW02], separation logic
[Rey02], and forest automata [HHR+12]. Noteworthily most work focuses on the
shape properties, e.g., whether the data structure is a list, or a binary tree, but
disregards data and size constraints, e.g., whether the lists and trees are sorted
or the trees are balanced.

8.1 Separation Logic with Inductive Definitions and Data
Constraints

Separation logic (SL) is an extension of Hoare logic. Since its introduction, SL has
become a widely used formalism for analysing and verifying heap-manipulating
programs [BCO05,DOY06,CDOY11]. As an assertion language, SL can express
how data structures are laid out in memory in a succinct way. In a nutshell,
this language features: (i) a spatial conjunction operator that decomposes the
heap into disjoint regions, each of which can be reasoned about independently,
and (ii) inductive predicates that describe the shape of unbounded linked data
structures such as lists, trees, etc. We shall present a version of separation logic
with data constraints, which may include pure constraints on data values and
capture desired properties of structural heaps such as the size, height, sortedness
and even near-balanced tree properties.

As in Sect. 7, we consider a data domain D, but this time we have an explicit
logical language to specify (much) more involved properties over D. As a general
framework, we are a bit abstract here and assume a theory (D,L) where L is
a suitable logical structure interpreted over D. Typical cases include Presburger
arithmetic (in which (D,L) = (N,+,≤, 0, 1)), logical theories supported by mod-
ern SMT solvers, or even logical theories on sets or multisets. As a convention,
data variables are typically denoted by DVars, ranged over by lowercase letters
x, y, · · · .
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To define a separation logic with data constraints, we further assume an infi-
nite set L of locations. As a convention, l, l′, · · · ∈ L denote locations. Accord-
ingly, we introduce a set of location variables LVars ranged over by uppercase
letters E,F,X, Y, · · · . We further consider two kinds of fields, i.e., location fields
from F and data fields from D. Each field f ∈ F (resp. d ∈ D) is associated
with L (resp. D). A term is either a variable from DVars∪LVars, or the constant
symbol nil. We usually use t and t to denote a term and a tuple of terms.

Logic formulae may contain a set of (user-defined) inductive predicates, which
are collected in P and will defined momentarily. In the following, the logic is
denoted by SLID[P,L].

Syntax. SLID[P,L] formulae comprise three types of formulae: pure formulae
Π, data formulae Δ, and spatial formulae Σ, which are defined by the following
rules:

Π
def= E = F | E �= F | Π ∧ Π (pure formulae)

Σ
def= emp | E �→ ρ | P (t) | Σ ∗ Σ (spatial formulae)

ρ
def= (f,X) | (d, x) | ρ, ρ

Δ
def= formulae from L (data formulae)

where P ∈ P, f ∈ F , and d ∈ D. For spatial formulae Σ, formulae of the form
emp, E �→ ρ, or P (t) are called spatial atoms. In particular, formulae of the form
E �→ ρ and P (t) are called points-to atoms and predicate atoms respectively.
Each predicate P ∈ P has a fixed arity, and is of the form

P (t) def=
n∨

i=1

∃w i.(Πi ∧ Δi ∧ Σi),

We call ∃w i.(Πi∧Δi∧Σi) the rule of P (t). In addition, if in a rule ∃w i.(Πi∧Δi∧
Σi), Σi contains predicate atoms, the rule is called an inductive rule; otherwise,
it is called a base rule.

Remark 3. Separation logic, as an extension of first-order logic, usually encom-
passes two connectives: the separating conjunction (∗) and its adjoin (the sepa-
rating implication −∗, aka the magic wand). It turns out that the magic wand is
so powerful that, adding it to the logic would make the logic undecidable immedi-
ately (with only very few exceptions). Moreover, although very interesting from
a theoretical perspective, its importance in program verification is debatable,
since in many cases, the use of the magic wand can be avoided. In light of this,
we exclude this connective in our logic.

Semantics. Formulae of SLID[P,L] are interpreted on the (memory) states. For-
mally, a state is a pair (s, h), where

– s is a stack, which is a partial function from LVars∪DVars to L∪D such that
dom(s) is finite and s respects the data type,
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– h is a heap, which is a partial function from L × (F ∪ D) to L ∪ D such that
• h respects the data type of fields, that is, for each l ∈ L and f ∈ F (resp.

l ∈ L and d ∈ D), if h(l, f) (resp. h(l, d)) is defined, then h(l, f) ∈ L

(resp. h(l, d) ∈ D); and
• h is field-consistent, i.e. every location in h possess the same set of fields.

For a heap h, we use ldom(h) to denote the set of locations l ∈ L such that
h(l, f) or h(l, d) is defined for some f ∈ F and d ∈ D. Moreover, we use Flds(h)
to denote the set of fields f ∈ F or d ∈ D such that h(l, f) or h(l, d) is defined
for some l ∈ L. Two heaps h1 and h2 are said to be field-compatible if Flds(h1) =
Flds(h2). We write h1#h2 if ldom(h1)∩ldom(h2) = ∅. Moreover, we write h1!h2

for the disjoint union of two field-compatible fields h1 and h2 (this implies that
h1#h2).

Let (s, h) be a state and ϕ be an SLID[P,L] formula. The semantics of
SLID[P,L] formulae is defined as follows,

– (s, h) � E = F if s(E) = s(F ),
– (s, h) � E �= F if s(E) �= s(F ),
– (s, h) � Π1 ∧ Π2 if (s, h) � Π1 and (s, h) � Π2,
– (s, h) � emp if ldom(h) = ∅,
– (s, h) � E �→ ρ if ldom(h) = s(E), and for each (f,X) ∈ ρ, h(s(E), f) = s(X),

and for each (d, x) ∈ ρ, h(s(E), d) = s(x),
– (s, h) � P (t) if (s, h) ∈ [[P (t)]],
– (s, h) � Σ1 ∗ Σ2 if there are h1, h2 such that h = h1 ! h2, (s, h1) � Σ1 and

(s, h2) � Σ2.

where the semantics of predicates [[P (t)]] is given by the least fixpoint of a
monotone operator constructed from the body of rules for P in a standard way,
as in [BFGP14].

Example 15. Linked list segments are defined by the inductive predicate
ls(E,F ),

ls(E,F ) def= (E = F ∧ emp) ∨ (∃X. E �→ (next,X) ∗ ls(X,F )).

In addition, acyclic list segments are defined by the inductive predicate als(E,F )
whose definition is obtained from that of ls(E,F ) by adding E �= F to the induc-
tive rule. Sorted list segments are defined by the inductive predicate sls(E,F, x),

sls(E,F, x) def= (E = F ∧ emp) ∨ (∃X,x′. x ≤ x′∧
E �→ ((next,X), (data, x)) ∗ sls(X,F, x′)).

And sorted acyclic list segments are defined by the inductive predicate
asls(E,F, x) whose definition is obtained from that of sls(E,F, x) by adding
E �= F to the inductive rule. Linked list segments with consecutive data values
are defined by

pls(E,F, x) def= (E = F ∧ emp) ∨ (∃X,x′. x′ = x + 1∧
E �→ ((next,X), (data, x)) ∗ pls(X,F, x′)).
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For the purpose of program verification, the following two decision problems
play a vital role, which are the subjects of much of the current research in this
area.

– Satisfiability: Given an SLID[P,L] formula ϕ, decide whether [[ϕ]] is empty.
– Entailment: Given two SLID[P,L] formulae ϕ,ψ such that Vars(ψ) ⊆ Vars(ϕ),

decide whether ϕ � ψ holds.

We comment that the former problem is fundamental in studying logics, and
usually serves as the first task in developing (automated) tool support. The
latter question enables automated verification of programs with SL assertions in
a Hoare logic style.

Not surprisingly, these questions are challenging, since in general the entail-
ment problem of separation logic with inductive predicates (even without
data constraints) is already undecidable [AGH+14]. Over the past ten years,
researchers have developed various techniques to tackle the challenges, by con-
sidering different fragments, or utilizing incomplete decision procedures (in par-
ticular, by considering heuristics).

Linearly Compositional Fragment. In [GCW16], Gu et al. defined a linearly
compositional fragment, where the inductive predicates, as well as the data con-
straints, must obey certain restrictions. A predicate P ∈ P is linearly composi-
tional if

– the parameters of P can be divided into three categories: source parameters
E,α, destination parameters F,β, and static parameters ξ, such that E,α
and F,β are symmetric, in the sense that the two vectors of parameters are
of the same length, and the two parameters in the same positions of the two
vectors are of the same data type, in addition, E,F are location variables,

– the inductive definition of P is given by

P (E,α;F,β; ξ) def= (E = F ∧ α = β ∧ emp) (R0)
∨ (∃X∃x. Δ ∧ E �→ ρ ∗ P (Y,γ;F,β; ξ)) (R1)

The term “linearly compositional” reflects that: (1) P (E,α;F,β; ξ) can only
define linear data structures, for instance, singly or doubly linked lists, lists
with tail pointers, (2) P (E,α;F,β; ξ) satisfies the so-called composition lemma
P (E1,α1;E2,α2; ξ) ∗ P (E2,α2;E3,α3; ξ) ⇒ P (E1,α1;E3,α3; ξ), which is
essential for deciding the entailment problem by extending the procedure based
on graph homomorphism introduced in [CHO+11].

Furthermore, the data formulae are defined as:

Δ
def= true | x o c | x o y + c | Δ ∧ Δ

where o ∈ {=,≤,≥} and c is an integer constant.
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We have the following constraints on the inductive rule (R1):

1. None of the variables from F,β occur elsewhere in R1, that is, in Δ, or E �→ ρ.
2. Each conjunct of Δ is of the form αi o c, αi o ξj , or αi o γi+c for o ∈ {=,≤,≥},

1 ≤ i ≤ |α| = |γ|, 1 ≤ j ≤ |ξ|, and c ∈ Z.
3. For each 1 ≤ i ≤ |α| such that αi is a data variable, either αi occurs in ρ, or

Δ contains αi = γi + c for some c ∈ Z.
4. Each variable occurs in P (Y,γ;F,β; ξ) (resp. ρ) at most once.
5. All location variables from α ∪ ξ ∪X occur in ρ.
6. Y ∈ X and γ ⊆ {E} ∪X ∪ x .

The first constraint on (R1) above is essential to guarantee that P (E,α;F,β; ξ)
satisfies the composition lemma (cf. [ESW15]). We will use Flds(P ) to denote
the set of fields occurring in the inductive rule (R1) of P and PLFld(P ) to denote
the unique location field f such that (f, Y ) occurs in the inductive rule (R1) of
P (the uniqueness of f is due to the aforementioned 4-th constraint of (R1)).

We write SLIDLC[P] for the collection of separation logic formulae ϕ = Π ∧
Δ ∧ Σ satisfying the following constraints,

– linearly compositional predicates: all predicates from P are linearly com-
positional,

– domination of principal location field: for each pair of predicates P1, P2 ∈
P, if Flds(P1) = Flds(P2), then PLFld(P1) = PLFld(P2),

– uniqueness of predicates: there is P ∈ P such that each predicate atom of
Σ is of the form P (−), and for each points-to atom occurring in Σ, the set of
fields of this atom is Flds(P ).

Example 16. The inductive predicate ls(E,F ) in Example 15 is linearly com-
positional, while all the others therein are not. For instance, als does not sat-
isfy the constraint that the source parameter F occurs only once in the induc-
tive rule, sls(E,F, x) does not satisfy that the source parameters and desti-
nation parameters are symmetric. Nevertheless, the predicates sls(E,F, x) and
pls(E,F, x) can be adapted into linearly compositional predicates sls(F, x;F, x′)
and pls′(E, x;F, x′) by adding one extra destination parameter x′,

sls′(E, x;F, x′) def= (E = F ∧ x = x′ ∧ emp) ∨ (∃X,x1. x ≤ x1∧
E �→ ((next,X), (data, x)) ∗ sls′(X,x1;F, x′)),

pls′(E, x;F, x′) def= (E = F ∧ x = x′ ∧ emp) ∨ (∃X,x′
1. x1 = x + 1∧

E �→ ((next,X), (data, x)) ∗ pls′(X,x1;F, x′)).

Theorem 22. The following facts hold for SLIDLC[P].

– The satisfiability problem of SLIDLC[P] is in NP.
– The entailment problem of SLIDLC[P] formulae is in ΠP

3 .

It is an interesting open problem to extend the results in Theorem22 to
compositional inductive predicates that are capable of defining non-linear data
structures, e.g. trees.
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Semi-decision Procedures for Separation Logic with Inductive Definitions and
Data Constriants. Bouajjani et al. considered a fragment of separation logic
with the ls predicate and data constraints, called SLD (Singly-linked list with
Data Logic), where data constraints are specified by universal quantifiers over
index variables [BDES12]. They showed that the entailment problem of SLD is
undecidable in general, but provided a sound—but incomplete—decision proce-
dure. In addition, they identified a decidable fragment of SLD. The logic SLD in
[BDES12] focuses on singly linked lists, and it is unclear how to extend to other
linear structures such as doubly linked lists. The decision procedure in [BDES12]
is incomplete for fragments that can express list segments where the data val-
ues are consecutive. (Note that this can be expressed in the logic SLIDLC[P]
aforementioned; see pls′(E, x;F, x′) in Example 16.)

In [CDNQ12], Chin et al. proposed an entailment checking procedure that
can handle well-founded predicates (that may be recursively defined) using
unfold/fold reasoning. In [LSC16], the authors present a semi-decision proce-
dure for a fragment of separation logic with inductive predicates and Presburger
arithmetic. The authors present S2SAT, a decision procedure combining under-
approximation and over-approximation for simultaneously checking SAT and
UNSAT properties for a sound and complete theory augmented with inductive
predicates. To check the satisfiability (but not entailment) of a formula, the pro-
cedure iteratively unfolds the formula and examines the derived disjuncts. In
each iteration, it searches for a proof of either satisfiability or unsatisfiability.
They also identify a syntactically restricted fragment of the logic for which the
procedure is terminating and thus complete.

Other Work on Decision Procedures for First-Order Separation Logic with Data
Constraints. Bansal et al. considered first-order separation logic on lists with
ordered data and identified the decidability frontier of the satisfiability prob-
lem [BBL09]. Very recently, Reynolds et al. proposed a decision procedure for
the quantifier-free fragment of first-order separation logic interpreted over heap
graphs with data elements ranging over a parametric multi-sorted (possibly infi-
nite) domain [RISK16].

8.2 GRASS: Logic of Graph Reachability and Stratified Sets

GRASS stands for logic of Graph Reachability And Stratified Sets, which was
introduced by Piskac et al. [PWZ13,PWZ14]. The main motivation of these logics
is to encode separation logic with inductive predicates into decidable fragments
of many-sorted first-order logic, where inductive predicates (e.g. singly linked
lists) are encoded by reachability predicates without relying on induction and
separating conjunction is encoded by set constraints, and thus offering an SMT-
based decision procedure and tool support for separation logic with inductive
definitions. An appealing feature of this approach is that the translation into
many-sorted first-order logic offers a convenient way to combine shape properties
and data constraints, by utilising the Nelson-Oppen framework [NO79].
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In the following, we first define the logic GRASS.

Definition 25 (GRASS logic, [PWZ14]). The GRASS logic can be defined as
many-sorted first-order logic with the signature ΩGS = (SGS,FGS,PGS), where

– SGS = {node, field, set};
– FGS consists of null : node, read : field × node → node, write : field × node ×

node → node, and a countable infinite set of constant symbols for each sort in
SGS;

– PGS consists of B : field× node× node× node and ∈: node× set.

Semantics. The semantics of GRASS formulae is defined with respect to a
theory Th(IGS), where IGS is a set of ΩGS-interpretations such that an ΩGS-
interpretation I is in IGS if I satisfies the following conditions.

– I interprets the sort node as a finite set nodeI .
– The sort field is interpreted as the set of all functions nodeI → nodeI .
– The sort set is interpreted as the set of all subsets of nodeI .
– The function symbols read and write represent field look-up and field update.

They must satisfy the following properties,
• ∀u ∈ nodeI , f ∈ fieldI , readI(f, u) = f(u),
• ∀u, v ∈ nodeI , f ∈ fieldI , writeI(f, u, v) is the function f ′ ∈ fieldI such that

for each w ∈ nodeI , if w = u, then f ′(w) = u, otherwise, f ′(w) = f(w).
– The between predicate B(f, x, y, z) denotes that x reaches z via an f -path that

must go though y. Formally, B(f, x, y, z) satisfies that for each (f, u, v, w) ∈
fieldI × nodeI × nodeI × nodeI , BI(f, u, v, w) holds iff (u,w) ∈ f∗ ∧ (u, v) ∈
({(u1, f(u1)) | u1 ∈ nodeI ∧u1 �= w})∗, where f∗ is the reflexive and transitive
closure of f , similarly for ({(u1, f(u1)) | u1 ∈ nodeI ∧ u1 �= w})∗.

– Finally, ∈I , the interpretation of ∈ in I, is the set membership relation, that
is, for each u ∈ nodeI and S ∈ set, u ∈I S holds iff u is an element of S.

We will use R(f, x, y) as a short-hand for B(f, x, y, y), which intuitively means
that there is an f -path from x to y.

Although the satisfiability problem of GRASS is undecidable in general,
decidable fragments have been considered in [PWZ13,PWZ14]. In the follow-
ing, we will use the fragment of GRASS in [PWZ13] to illustrate the idea, where
the specialisation of GRASS to lists was considered and it was shown how to
translate separation logic formulae over lists into GRASS. The interested reader
can refer to [PWZ14] for the fragment GRIT which is devoted to tree structures.

Let us call the fragment of GRASS in [PWZ13] as GRASSlist.

Definition 26 (GRASSlist, [PWZ13]). We assume that X is a countably infi-
nite set of variables of sorts node and set. We use the lower-case symbols x, y ∈ X
for variables of sort node and upper-case symbols X,Y ∈ X for variables of
sort set. In addition, we assume that next ∈ field is used to denote the next-
pointers between locations in lists. Then the syntax of GRASSlist is defined by
the following rules,
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TL
def= x | next(TL), where x ∈ X ,

A
def= TL = TL | TL

next\TL−−−−−→ TL,

U
def= A | ¬U | U ∧ U | U ∨ U,

TS
def= X |∅ | TS \ TS | TS ∪ TS | TS ∩ TS | {x.U}, s.t. next(x) does not occur inU,

B
def= TS = TS | TL ∈ TS ,

F
def= A | B | ¬F | F ∧ F | F ∨ F.

A GRASS formula is a propositional combination of atoms. There are two types
of atoms.

– Atoms of type A are either equalities between terms of type TL and reachabil-
ity predicates. The terms of type TL represent nodes in the graph. They are
associated with the sort node and are constructed from variables and applica-

tion of next. Reachability predicates t1
next\t3−−−−−→ t2 intuitively means that there

is a path in the graph that from t1 to t2 without going through t3.
– Atoms of type B are equalities between terms of sort set and membership tests.

Terms of type set represent stratified sets1, i.e., their elements are interpreted
as nodes in the graph. Terms of sort set include set comprehensions of the
form {x.U}, where U is a Boolean combination of atoms of type A.

We will use t1
next−−−→ t2 as an abbreviation of t1

next\t2−−−−−→ t2, which intuitively
means that t2 is reachable from t1 by following the field next. In addition, we
use t1 �= t2 as an abbreviation of ¬(t1 = t2). For a variable x ∈ X , we use {x} to
denote the singleton set {y. y = x}. The side condition that next(x) does not
occur in U in the terms {x. U} is important to ensure the decidability of the
logic.

Note that GRASSlist includes some syntactic sugar that is not in GRASS
defined above. We will illustrate how this syntactic sugar can be casted into the
original definition of GRASS.

– next(t) ≡ read(next, t),

– t1
next\t3−−−−−→ t2 ≡ R(next, t1, t2) ∧ ∀x. (B(next, t1, x, t2) ∧ x �= t2) → x �= t3,

– Set operations can be reformulated into GRASS as well. For instance, (X1 \
X2) ∪ X3 = Y ≡ ∀x. ((x ∈ X1 ∧ ¬x ∈ X2) ∨ x ∈ X3) ↔ x ∈ Y , and
X = {x} ≡ x ∈ X ∧ ∀y. y ∈ X ↔ y = x.

We use X = Y ! Z as an abbreviation of the formula X = Y ∪ Z ∧ Y ∩ Z = ∅,
which intuitively means that X is the disjoint union of Y and Z.

Example 17. Consider the formula F ≡ Y = {x. x
next−−−→ y} ∧ Z = {x. x

next−−−→
z} ∧ X = Y ! Z. This formula expresses that the subgraph of the heap graph
induced by the set of nodes X comprises two disjoint connected components,
one in which all nodes reach y, and one in which all nodes reach z.

1 The notion of stratified sets comes from [Zar03].
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Theorem 23 ([PWZ13]). The satisfiability problem of GRASSlist is NP-
complete.

In the following, we first illustrate how SLID[als], i.e. the logic SLID with only
a single inductive predicate als(x, y) and no data constraints (cf. Example 15
for the definition of als, adapted slightly by replacing E,F with x, y), can be
translated into GRASSlist. Specifically, SLID[als] formulae Π ∧Σ are defined by
the following rules,

Π
def= x = y | x �= y | Π ∧ Π, Σ

def= x �→ (next, y) | als(x, y) | Σ ∗ Σ,

where Π and Σ are called the pure and spatial formulae respectively.
The translation is done by induction the syntax of SLID[als] formulae. Since

the translation of pure formulae is trivial (the identity translation), we only
describe the translation of spatial formulae, denoted by trX(Σ) (where X denotes
the set of locations), below.

– trX(emp) def= X = ∅,
– trX(x �→ (next, y)) def= X = {x} ∧ next(x) = y,

– trX(als(x, y)) def= x
next−−−→ y ∧ X = {z. x

f\y−−→ z ∧ z �= y},
– trX(Σ1 ∗ Σ2)

def= X = X1 ! X2 ∧ trX1(Σ1) ∧ trX2(Σ2), where X1 and X2 are
two fresh variables of sort set.

As a matter of fact, we can even translate the Boolean combination of SLID[ls]
formulae into GRASSlist since GRASSlist is closed under negations.

Extension with Data Constraints. One notable feature of this translation of
separation logic formulae into GRASSlist is that it offers a convenient way to
specify and reason about data constraints in dynamic data structures, by using
the Nelson-Oppen combination framework. To support reasoning about data
constraints, we extend the signature of GRASSlist with an additional sort data
for data values, data fields interpreted as the functions from nodeI to dataI , and
sets with data elements. The read and write functions are extended accordingly.
In the following, we assume that there is a unique data field d and we use d(x)
to denote the value of a node x corresponding to field d.

We can combine GRASSlist with any decidable quantifier-free first-order the-
ory that is signature-disjoint from GRASSlist and stably-infinite to interpret the
data sort. The extensions that we discuss build on such quantifier-free combina-
tions. [PWZ14] considers three categories of extensions with data: (1) monadic
predicates on the data value of one node, (2) binary predicates between the
data values of two distinct nodes, and (3) constraints on the content of data
structures, that is, sets of data values occurring in data structures.

– Monadic predicates. These predicates are able to express properties such as
upper and lower bounds on the values contained in a tree. Such formulae have
the following form: ∀x.x ∈ X → Q(d(x)) where Q is a monadic predicate
over data and X a variable of sort set. This class of formulae also forms a
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so-called Ψ-local theory extension [IJS08]. Then we can slightly adapt the
decision procedure for GRASSlist to obtain a complete decision procedure for
the extension of GRASSlist with monadic-predicate data constraints.

– Binary predicates. These predicates are introduced to define, for instance,
a sorted linked list, in which we need to relate data values in two distinct
nodes. To ensure completeness of the decision procedure, the binary predi-
cates must satisfy that the expressed binary relations are transitive as well
as some other constraints. (They are too technical to be stated here clearly.
Those who are interested can read Sect. 7 of [PWZ14] for these additional con-
straints) One typical transitive binary predicate is the order relation between
data values. The transitivity requirement prevents us from expressing data
constraints involving counting, e.g., length constraints or multiset constraints.
With binary predicates, we can express the sortedness property as follows:
∀x, y ∈ X. x

next−−−→ y → d(x) ≤ d(y).
– Set constraints. This class of extensions enables reasoning about functional

correctness properties. Essentially a way of referring to the content of lists
is needed. While one can define the content of a list whose footprint is X as
C(X) = {z | ∃x ∈ X. z = x.d}. This definition goes beyond GRASSlist, due to
the existential quantifier appearing inside the set comprehension. In [PWZ13],
the authors proposed a solution by adding a witness function that maps a data
value back to a node in the graph which stores the data value. They define
the witness function in an axiomatic way, any show that the axioms still give
a Ψ -local theory extension.

Limitations of This Approach. Unfortunately, there is no precise characteriza-
tion of the limit of extensions that preserve the property of local theory exten-
sions on which the decision procedure is built. However, not all extensions are
local, in particular, the constraints involving counting, e.g. length constraints
and multiset constraints.

Other Works on First-/Second-Order Logics Combining Shape Prop-
erties and Data Constraints. Bouajjani et al. proposed a fragment of many-
sorted first-order logic with reachability predicates, called CSL (Composite
Structure Logic [BDES09]), to reason about programs manipulating composite
dynamic data structures. The formulae in CSL allow a limited form of alternation
between existential and universal quantifiers and they can express constraints
on reachability between positions in the heap following some pointer fields, lin-
ear constraints on the lengths of the lists, as well as constraints on the data
values attached to these positions. For data constraints, the logic CSL is para-
meterized by a first-order logic over the associated data domain. They proved
that the satisfiability problem of CSL is decidable whenever the underlying data
logic is decidable. In addition, Madhusudan et al. defined a fragment of monadic
second-order logic, called STRAND (STRucture ANd Data), to reason about
both shape properties and data constraints, in tree structures [MPQ11]. While
the satisfiability of STRAND logic is undecidable in general, several decidable
fragments were identified in [MPQ11].
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8.3 Streaming Transducers

In [AC11], Alur and Cerny proposed streaming transducers to show that for
a class of single-pass list processing programs, the equivalence problem of the
programs in this class is decidable. The intuition of streaming transducers is
to model linked lists as data words, use a set of data word variables to store
some intermediate information for the outputs, and at the same time use a set
of registers ranging over an ordered data domain to guide the control flow of
transducers. In the following, we present the definition of streaming transducers
and some basic facts known for streaming transducers.

Let D be an infinite set of data values. We will use < to denote the strict
total order over D. Examples of (D, <) include (Z, <), the set of integers with the
order relation, and (Q, <), the set of rational numbers with the order relation.
As for NRAs in Sect. 3, let R be a set of registers and cur �∈ R be a distinguished
register to denote the data value in the current position, in addition, let R c©

denote R ∪ {cur}. A guard formula over R is defined by the rules g
def= true |

false | cur o r | g∧g∧g∨g, where r ∈ R and o ∈ {=, �=, <,>}. Let GR denote the
set of guards over R. Let ρ be a valuation that assigns each r ∈ R a data value
from D, and d ∈ D. Then ρ[d/cur] satisfies a guard g, denoted by ρ[d/cur] |= g,
is defined as follows:

– ρ[d/cur] |= cur = r if d = ρ(r), similarly for ρ[d/cur] |= cur �= r, ρ[d/cur] |=
cur < r, and ρ[d/cur] |= cur > r,

– ρ[d/cur] |= g ∧ g and ρ[d/cur] |= g ∨ g are defined in a standard way.

Definition 27 (Streaming transducers). A streaming transducer (ST) S is
a tuple (Q,Σ, Γ,R,X, q0, τ0, δ, O), where:

– Q is a finite set of states,
– R is a finite set of registers,
– X is a finite set of data word variables,
– q0 ∈ Q is the initial state,
– τ0 : R → D assigns each register an initial data value,
– δ is a finite set of transitions comprising the tuples (q, σ, g, q′, α), where q, q′ ∈

Q, σ ∈ Σ, g is a guard on R, α is a function (instead of a partial function)
which assigns each r ∈ R a variable r′ ∈ R c©, and assigns each x ∈ X a
sequence from ((Γ × R c©) ∪ X)∗,

– O is a partial output function from Q to ((Γ × R) ∪ X)∗.

In addition, S satisfies the following constraints.

– deterministic: for each pair of distinct transitions (q, σ, g1, q1, α1), (q, σ, g2,
q2, α) ∈ δ, it holds that g1 ∧ g2 is unsatisfiable,

– copyless: for each q ∈ Q and x ∈ X, there is at most one occurrence of x in
O(q), in addition, for each x ∈ X and (q, σ, g, q′, α) ∈ δ, there is at most one
occurrence of x in the set of words {α(y) | y ∈ X}.
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Semantics of STs. Given a data word w = (σ1, d1) . . . (σn, dn) and an ST S =
(Q,Σ, Γ,R,X, q0, δ, O), a configuration of S on w, is a pair (i, ρ), where ρ is
a valuation ρ on R ∪ X, that is, a function which assigns each r ∈ R a data
value from D, and assigns each x ∈ X ∩ dom(ρ) a data word over the alphabet
Γ . The initial configuration is (q0, ρ0) where ρ0(r) = τ0(r) for each r ∈ R, and
ρ0(x) = ε for each x ∈ X. A configuration (q′, ρ′) is said to be a successor of
another configuration (q, ρ), denoted by (q, ρ) −→ (q′, ρ′), if there are d ∈ D

and a transition (q, σ, g, q′, α) ∈ δ such that ρ[d/cur] |= g and for each r ∈ R,
ρ′(r) = (ρ[d/cur])(α(r)), and for each x ∈ X, ρ′(x) = (ρ[d/cur])(α(x)), where
(ρ[d/cur])(α(x)) is obtained from α(x) by replacing each occurrence of y ∈ R∪X
in α(x) with (ρ[d/cur])(y). A run of S on w is a sequence of configurations
(q0, ρ0)(q1, ρ1) . . . (qn, ρn) such that (q, ρi) −→ (q, ρi+1) for each i : 0 ≤ i < n.
Note that since S is deterministic, there is at most one run of S on w. The output
of S on w, denoted by S(w), is defined as ρn(O(qn)), if there is a run of S on
w, say (q0, ρ0)(q1, ρ1) . . . (qn, ρn), such that O(qn) is defined, otherwise, S(w) is
undefined.

Fig. 8. Examples of streaming transducers

Example 18. Here are a few examples of streaming transducers (see Fig. 8).

– Let Σ = {a}. Let F1 be the transduction that reverses a data word. Then F1

is defined by an ST S1 = ({q}, Σ,Σ,R = ∅,X = {x}, q, δ, O), where
• δ = {(q, a, true, q, α)} such that α(x) = (a, cur) · x,
• O(q) = x.
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– Let Σ = {private, public}. Let F2 be the transduction that outputs w1 ·w2 from
w, where w1 and w2 are the subsequences of w that contain the private and
public entries respectively. Then F2 is defined by an ST S2 = ({q}, Σ,Σ,R =
∅,X = {x1, x2}, q, δ, O), where
• δ = {(q, private, true, q, α1), (q, public, true, q, α2)} such that α1(x1) = x1 ·

(private, cur), α1(x2) = x2, α2(x1) = x1, and α2(x2) = x2 · (public, cur),
• O(q) = x1 · x2.

– Let Σ = {a}. Let F3 be the transduction to move the data value in the first
position to the last position, provided that the sequence of data values in the
data word, except the data value in the first position, is sorted, in addition,
all these data values are less than the data value in the first position. Then F3

is defined by an ST S3 = ({q0, q1}, Σ,Σ,R = {r},X = {x}, q0, δ, O), where:
• δ = {(q0, true, q1, α1), (q1, cur < r, q1, α2)} such that α1(r) = cur, α1(x) =

x, α2(r) = r, and α2(x) = x · (a, cur).
• O(q1) = x · (a, r).

It is easy to check that each of S1,S2,S3 defined above satisfies the copyless
constraint.

STs are said to be closed under composition if for each pair of STs S1 with
the input/output alphabet Σ/Γ , and S2 with the input/output alphabet Γ/Π,
there is an ST S such that for each data word w over the alphabet Σ, it holds
that S(w) = S2(S1(w)).

The equivalence problem of SNTs: Given two STs S1 and S2, decide whether
they are equivalent, in the sense that for each data word w, S1(w) = S2(w).

Theorem 24 ([AC11]). The following results hold for streaming transducers:

– STs are not closed under composition.
– The equivalence problem of STs is PSPACE-complete.
– The equivalence problem of the two-way extension of STs is undecidable.

The PSPACE-hardness of the equivalence problem follows from the fact that the
equivalence of DRAs is PSPACE-hard (cf. Theorem2).

At last, we would like to remark that since its introduction, most of the
work on streaming transducers focus on finite alphabets, see e.g. [AC10,AD12,
ADGT13].

Other Automata Models to Reason About Dynamic Data Structures with Data
Constraints. Forest automata were also extended with order constraints to rea-
son about the behaviour of programs manipulating dynamic data structures,
where a sound but incomplete procedure was proposed to decide the language
inclusion problem of two forest automata [AHJ+13].
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9 Formalisms for Analysing Programs in the MapReduce
Framework

The MapReduce framework is a popular programming model proposed by Dean
and Ghemawat from Google Inc. for data-parallel computations [DG04]. Since
its introduction, various data-parallel computing platforms based on the MapRe-
duce framework, e.g. Apache Hadoop2, Apache SPARK3, Microsoft SCOPE
[CJL+08], Yahoo! Pig Latin [ORS+08], and Facebook Hive [TSJ+09], have
appeared and a huge number of big-data processing jobs are executed on these
platforms daily.

In the MapReduce framework, the reducer produces an output from a list of
inputs. Due to the scheduling policy of the platform, the inputs may arrive at
the reducers in different order. The commutativity problem of reducers asks if the
output of a reducer is independent of the order of its inputs. A formal analysis
of the commutativity problem of reducers in the MapReduce framework was
first considered in [CHSW15], where it was shown that (1) the commutativity
problem is undecidable in general, if multiplication operators are available, and
(2) if the data domain is a finite set, then the commutativity problem is decidable
and reduced to the equivalence problem of two-way finite-state automata.

Very recently, Chen et al. proposed a model of reducers, called streaming
numerical transducers (SNTs), and extended the decidability result in [CHSW15]
to the infinite data domain [CSW16]. The model of SNTs originates from the
observation that in practice MapReduce programs are usually used for data
analytics and thus require very simple control flow. By exploiting this simplicity,
in SNTs, the control and data flow of programs are separated and arithmetic
operations are disallowed in the control flow. The design of SNTs is inspired
by streaming transducers [AC11] (see Sect. 8.3). Nevertheless, the two models
are intrinsically different since the outputs of SNTs are integers while those of
streaming transducers are data words.

In this section, as in symbolic automata, we assume data words are elements
of D

∗. In addition, we assume this data domain is the integer domain Z. An
SNT scans a data word w = d1 . . . dn from left to right, records and aggregates
information in variables, and outputs an integer when it finishes reading the data
word.

Let Z be a set of variables. Then an expression over Z is defined recursively
by the following rules: e ∈ EZ

def= c | z | (e + e) | (e − e), where z ∈ Z and
c ∈ Z. We use EZ to denote the set of all possible expressions over Z. For an
expression e, let var(e) denote the set of variables in e. Given a set of expressions
E, we also use var(E) to denote the set of all variables appeared in E, i.e.,
var(E) =

⋃
e∈E var(e). A guard over Z is defined recursively by the following

rules: g ∈ GZ
def= true | v < v | v = v | v > v | g ∧ g, where v ∈ Z ∪ Z. We use

GZ to denote the set of guards over Z. A guarded expression over Z is a pair
(g, e) ∈ GZ × EZ .
2 http://hadoop.apache.com.
3 http://spark.apache.com.

http://hadoop.apache.com
http://spark.apache.com
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A valuation ρ of Z is a function from Z to Z. The value of an expression
e ∈ EZ under a valuation ρ over Z, denoted by [[e]]ρ, is defined recursively in the
standard way. Let ρ be a valuation of Z and g be a guard in GZ . Then ρ satisfies
g, denoted by ρ |= g, iff g is evaluated to true under ρ. We say that a guard g is
satisfiable if there exists a valuation ρ satisfying g.

Definition 28 (Streaming numerical transducers). A streaming numerical
transducer (SNT) S is a tuple (Q,R,X, δ, q0, O), where Q is a finite set of states,
R is a finite set of control registers, X is a finite set of data variables, δ is the
set of transitions, q0 ∈ Q is the initial state, O is the output function, which is a
total function from Q to 2GR×ER∪X , i.e. O(q) for q ∈ Q is a finite set of guarded
expressions over X ∪Y where the guards only put constraints on R. In addition,
a distinguished register cur �∈ R is used to denote the data value in the current
position. For convenience, let R c© denote R ∪ {cur}.

The set of transitions δ comprises the tuples (q, g, η, q′), where q, q′ ∈ Q, g is a
guard over R c©, and η is an assignment function which is a partial function from
R ∪ X to ER c©∪X such that for each r ∈ dom(η) ∩ R, η(r) ∈ R c©. Informally, η
maps a data variable to an expression over R c©∪X and a control register to either

cur or another control register. We write q
(g,η)−−−→ q′ to denote (q, g, η, q′) ∈ δ for

convenience. Moreover, we assume that an SNT S is deterministic. That is,
(1) for each pair of distinct transitions originating from q, say (q, g1, η1, q′

1) and
(q, g2, η2, q′

2), it holds that g1 ∧ g2 is unsatisfiable, (2) for any state q ∈ Q and
each pair of distinct guarded expressions (g1, e1) and (g2, e2) in O(q), it holds
that g1 ∧ g2 is unsatisfiable.

Semantics of SNTs. The semantics of an SNT S is defined as follows. A con-
figuration of S is a pair (q, ρ), where q ∈ Q and ρ is a valuation of R ∪ X. An
initial configuration of S is (q0, ρ0), where ρ0 assigns zero to all variables in
R ∪ X. A sequence of configurations R = (q0, ρ0)(q1, ρ1) . . . (qn, ρn) is a run of
S over a data word w = d1 . . . dn iff there exists a path (sequence of transitions)

P = q0
(g1,η1)−−−−→ q1

(g2,η2)−−−−→ q2 . . . qn−1
(gn,ηn)−−−−−→ qn such that for each i ∈ [n + 1],

ρi−1[di/cur] |= gi, and ρi is obtained from ρi−1 as follows: (1) For each r ∈ R,
if r ∈ dom(ηi), then ρi(r) = [[ηi(r)]]ρi−1[di/cur], otherwise ρi(r) = ρi−1(r). (2)
For each x ∈ X, if x ∈ dom(ηi), then ρi(x) = [[ηi(x)]]ρi−1[di/cur], otherwise,
ρi(x) = ρi−1(x). We call (qn, ρn) the final configuration of the run. In this case,
we also say that the run R follows the path P . We say that a path P in S is
feasible iff there exists a run of S following P . Given a data word w = d1 . . . dn,
if there is a run of S over w from (q0, ρ0) to (qn, ρn) and there exists a guarded
expression (g, e) ∈ O(qn) such that ρn |= g, then the output of S over w, denoted
by S(w), is [[e]]ρn

. Otherwise, S(w) is undefined, denoted by ⊥.

Example 19 (SNT for max). The SNT Smax for computing the maximum value
of an input data word is defined as ({q0, q1, q2}, {max}, ∅, δ, q0, O), where the
set of transitions δ and the output function O are illustrated in Fig. 9 (here
R = {max}, X = ∅, and max := cur denotes the assignment of cur to the
variable max).
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Fig. 9. The SNT Smax for computing the maximum value

We focus on three decision problems of SNTs defined as follows: (1) Commu-
tativity : Given an SNT S, decide whether S is commutative, that is, whether for
each data word w and each permutation w′ of w, S(w) = S(w′). (2) Equivalence:
Given two SNTs S,S ′, decide whether S and S ′ are equivalent, that is, whether
over each data word w, S(w) = S ′(w). (3) Non-zero output : Given an SNT S,
decide whether S has a non-zero output, that is, whether there exists a data
word w such that S(w) /∈ {⊥, 0}.

Theorem 25 ([CSW16,CLTW16]). The commutativity, equivalence, and non-
zero output problem of SNTs can be decided in exponential time.

In [CSW16,CLTW16], Theorem 25 was proved as follows:

1. The commutativity problem of SNTs is reduced to the equivalence problem
of SNTs in polynomial time, which can be further reduced to the non-zero
output problem of SNTs in polynomial time.

2. Then it is shown that the non-zero output problem of SNTs can be decided
in exponential time, by extending Karr’s algorithm for computing affine rela-
tionships in affine programs [MS04].

Further Reading. Recently, Neven et al. proposed variants of register automata
and transducers as formal models for the distributed evaluation of relational
algebra on relational databases in MapReduce framework [NSST15]. They intro-
duced three models and investigated the expressibility issues.

10 Conclusion

This chapter has provided a tutorial and survey on the state of the art of
automata models and logics to reason about the behaviour of software sys-
tems which embrace data values from an infinite domain. We have presented
the models with different mechanisms to deal with infinite data values, regis-
ter automata (and related logics), data automata (and related logics), pebble
automata, and symbolic automata and transducers. In addition, we included
two application-oriented sections, on formal models to reason about programs
manipulating dynamic data structures and for the static analysis of data-parallel
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programs respectively. For these two sections, we presented separation logic with
data constraints, logic of graph reachability and stratified sets, streaming trans-
ducers, and streaming numerical transducers. For each model, we introduced
the basic definitions, used some examples to illustrate the model, and stated the
main theoretical properties of the model.

For the perspectives of this field, in our opinion, researchers should strengthen
the connections of the models with applications to better motivate, or to achieve
greater impact of, their work. In particular, symbolic automata and transducers,
separation logic with data constraints, and streaming numerical transducers are
the formalisms that are better motivated by applications. These formalisms are
still the research focus in the verification and database community. In addition,
in order to produce practical tools to solve industrial-scale problems, there are
still various challenges, and interested readers are encouraged to work on, and
contribute to, this promising field.
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[Büc60] Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math.
Log. Grundl. Math. 6, 66–92 (1960)
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