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Abstract Glioblastoma (GBM) is the most common primary brain tumors in adults.
Despite aggressive multimodality therapies, GBM unfortunately remains among the
most resistant cancers to treatment. In the past, traditional chemotherapy which
works by impeding DNA synthesis or cell metabolism has been used to try and slow
the progression of GBM with little success. Recently, research has become more
focused into the development of targeted therapies in which drugs (small molecules
or antibodies) effect specific molecular and genetic alterations in GBM attempting to
inhibit and deregulate cell signaling pathways. The Cancer Genome Atlas (TCGA)
GBM project has provided an in depth description of the distinct molecular and
genetic alterations in GBM stimulating interest in the development of targeted
molecular therapies. While the results of targeted therapy studies to date have failed
to improve the overall survival of GBM patients, there continues to be enthusiasm in
this approach with numerous clinical trials currently underway. Hopefully, knowl-
edge from the previous failed trials will help provide further insight and assist future
clinicians in designing new novel targeted treatments to overcome these barriers.
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4.1 Recent Advances for Targeted Therapies in Glioblastoma

Gliobastoma multiforme (GBM) is the most common malignant primary brain
tumor in adults (Davis et al. 2001; Cloughesy et al. 2014). Currently, 10,000 new
cases of GBM are diagnosed each year in the United States, and approximately
100,000 new cases are diagnosed yearly worldwide (Davis et al. 2001; Cloughesy
et al. 2014; Porter et al. 2010; Ohgaki and Kleihues 2005). Patients often initially
undergo surgical resection to provide symptomatic relief and confirm a pathologic
diagnosis. However, surgery is not curative as the tumor cells invade surrounding
normal brain tissue rendering a complete resection of the tumor impossible
(Cloughesy et al. 2014). Following a maximal safe resection, the standard of care
treatment for newly diagnosed GBM consists of cytotoxic chemotherapy with daily
temozolomide and concurrent radiation therapy for 6 weeks, followed by 6-12 cycles
of adjuvant temozolomide (Masui et al. 2012; Stupp et al. 2005). Despite aggressive
multimodality therapies, GBM unfortunately remains among the most resistant can-
cers to treatment leading to a median survival of around 16 months (Stupp et al.
2005). Several potential reasons have been proposed to explain GBMs resistance to
treatment including the genetic heterogeneity of the tumor, elaborate signaling path-
ways, and difficulties with designing drugs capable of crossing the blood brain bar-
rier (Tanaka et al. 2013). In the past, traditional chemotherapy which works by
impeding DNA synthesis or cell metabolism has been most often used to try and
slow the progression of GBM with little success. Recently, research has become
more focused into the development of targeted therapies in which drugs (small mol-
ecules or antibodies) effect specific molecular and genetic alterations in GBM
attempting to inhibit and deregulate cell signaling pathways. This chapter will
explore current targeted therapies and how they relate to the aberrant signaling path-
ways in GBM.

4.2 The Cancer Genome Atlas

GBM was one of the first cancers studied by The Cancer Genome Atlas (TCGA)
Research Network, a collaboration between the National Cancer Institute (NCI) and
National Human Genome Research Institute (NHGRI). The TCGAs key aims were
to identify changes in each cancer’s genome and understand how these changes
interact to drive the disease, thereby laying the foundation for improved cancer
prevention, early detection, and treatment (Cancer Genome Atlas Research Network
2008; Bredel et al. 2011; Parsons et al. 2008; Verhaak et al. 2010). The TCGA GBM
project was conducted in two phases and developed a genome wide map of the
genetic, epigenetic, and transcriptomic changes, as well as proteomic changes in
over 500 GBM samples (Cancer Genome Atlas Research Network 2008; Brennan
et al. 2013). Based on molecular typing and gene expression profiles, four distinct
subtypes of GBM were found which are the classical, mesenchymal, neural, and
proneural aubtypes (Freije et al. 2004; Gravendeel et al. 2009; Li et al. 2009; Nigro
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et al. 2005; Vitucci et al. 2011; Jue and McDonald 2016). The Classical subtype is
associated with Endothelial growth factor receptor (EGFR) amplification, concomi-
tant chromosome 7 amplification and chromosome 10 loss, and focal deletions of 9p
encompassing cyclin-dependent kinase Inhibitor 2A (CDKN2A) . Tumor protein
p53 (TP53) mutations, while common in GBM, are not seen in the classical subtype
(Jue and McDonald 2016). The Mesenchymal subtype is characterized by deletions
and mutations in Neurofibromin 1 (NF1) and Phosphatase and tensin homolog
(PTEN) genes (Jue and McDonald 2016). The Neural subtype exhibits expression
of neuronal markers and displays various mutations and copy number alterations
including amplification of EGFR and deletion of PTEN (Jue and McDonald 2016).
The Proneural subtype exhibits an oliogodendrocytic expression signature and fea-
tures mutations of the isocitrate dehydrogenase 1(IDH 1) gene (Jue and McDonald
2016). The proneural subtype is associated with younger age and prolonged survival
time, given the IDHI1 mutation, as IDHI mutations are frequently seen in lower
grade gliomas and secondary gliomas (Verhaak et al. 2010; Jue and McDonald
2016). The TCGA analysis further identified three key molecular pathways for
tumorigenesis: the p53 tumor suppressor and Retinoblastoma (RB) pathways, and
the receptor tyrosine kinases (RTKs) signaling pathway (Fig. 4.1).

4.3 Tumor Protein P53 Signaling Pathway

Tumor protein p53 is a well-known tumor suppressor gene and transcription factor
involved in the coordination of cell responses that are involved in processes such as
apoptosis, DNA repair, neovascularization, and metabolism (Bogler et al. 1995;
Matlashewski et al. 1984; May and May 1999). p53 has been found mutated in
37.5% and 58% of untreated and treated GBM samples, according to the TCGA
(Cancer Genome Atlas Research Network 2008). Disruptions in the p53 pathway
are achieved by disruptions in genes that regulate its function, including Mouse
double minute homolog (MDM) 2/4 and the tumor suppressor protein alternate
reading frame (ARF) in 70% of GBM samples (Cancer Genome Atlas Research
Network 2008). A complex that can suppress pS3 function is the MDM2-MDM4
heterocomplex through the exertion of degradative control. MDM2-MDM4 protein
amplification may represent a possible mechanism that gliomas escape p53 restricted
growth (Herman et al. 2011; Reifenberger et al. 1993; Riemenschneider et al. 1999).
Inactivation of CDKN2a can also dysregulate the p53 signaling pathway. CDKN2a
encodes two proteins (p16INK4a and pl4ARF) which are tumor suppressors and
are negative regulators of the cell cycle (Ruas and Peters 1998). pl6INK4a and
pl4ARF are deleted in approximately 55% of GBMs (Cancer Genome Atlas
Research Network 2008; Schmidt et al. 1994). An encoded protein product, pl4ARF,
was found to promote degradation of the p53 repressor and lead to stabilization and
accumulation of p53. Loss of pl14ARF results in suppression of p53 and provides a
mechanism for tumorigenesis (Kamijo et al. 1997, 1998; Zhang et al. 1998).
CDKN2a also encodes for pl6INK4a which is a protein that inhibits CDK4/6
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Fig. 4.1 Critical signaling pathways altered in malignant gliomas. Primary sequence alterations
and significant copy number changes for components of the (a) RTK/RAS/PI3K, (b) p53 and (c)
Rb signalling pathways are shown. Red indicates activating genetic alterations. Conversely, blue
indicates inactivating alterations. For each altered component of a particular pathway, the nature of
the alteration and the percentage of tumours affected are indicated. Boxes contain the final percent-
ages of glioblastomas with alterations in at least one known component gene of the designated
pathway. Abbreviation: RTK receptor tyrosine kinase (Permission obtained from Nature Publishing
Group © The Cancer Genome Atlas Research Network (2008))

association with cyclin D. When associated, this forms a complex that promotes
G1/S transition through activation of downstream mediators. This process is
involved in phosphorylating retinoblastoma protein and facilitating the release of
bound E2F, a G1/S transcription factor. If p16INK4a is lost, then CDK4/6 and
cyclin D can associate and the G1/S transition occurs freely. In patients with wild-
type pRB, CDK4/6 is a target for inhibition (Bastien et al. 2015).
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4.4 Retinoblastoma (Rb) Pathway

The Rb protein is encoded by the Rb gene located on chromosome 13q14.1-q14.2.
The function of the protein is to prevent unwanted cell growth by inhibiting cell
cycle progression until the cell is to undergo mitosis, and at that point the Rb protein
becomes phosphorylated by Cyclin D, CDK4, and CDK6, which inactivates it and
allows for cell cycle progression (Murphree and Benedict 1984). Typically what
occurs is a homozygous deletion of CDKN2A which produces a loss of p16INK4a,
a suppressor of CDK4. This leads to a dysregulation of Rb signaling (Murphree and
Benedict 1984; Ohgaki and Kleihues 2009; Lin et al. 2013).

4.5 Receptor Tyrosine Kinases Pathway

Recurring molecular alterations have recently been identified in GBM, leading to a
better understanding of the pathways that become disrupted in this disease.
Frequently seen are gene amplifications and deletions, with deletions most often in
chromosomes 1, 9, and 10 and amplifications in chromosomes 7 and 12 (Bello et al.
1994; James et al. 1991; Reifenberger et al. 1995; Rey et al. 1987). Amplifications
of a gene can cause an upregulation of various oncogenes while deletions can target
tumor suppressors (Purow and Schiff 2009). These are mediated by receptor tyro-
sine kinases (RTKs), which are also key targets for deregulation in cancers (Zwick
et al. 2001). Examples of RTKs in GBM include vascular endothelial growth factor
(VEGFR), EGFR, Platelet-derived growth factor receptor (PDGFR), and hepato-
cyte growth factor receptor (MET) (Blume-Jensen and Hunter 2001). Mutations in
these receptors act to relieve auto-inhibitory constraints to prevent degradation
(Blume-Jensen and Hunter 2001). Growth factors and RTKs are typically strong
candidates for therapeutic targets because mutations here are driver mutations criti-
cal for oncogenesis and because kinase receptors are targets for inhibitors that block
kinase activation. Moreover, there has been success in other solid tumors (such as
erlotinib in lung cancer) and in utilizing RTKSs as a target.

4.5.1 VEGFR

A feature of high grade gliomas is angiogenesis, which may be attributed to high
levels of VEGF-A in and around the tumor. Bevacizumab is a humanized monoclo-
nal antibody which functions to bind VEGF-A ligand and alter binding to endothe-
lial cells (Ferrara et al. 2005). Studies of bevacizumab have shown high radiographic
response rate, prolonged progression-free survival (PFS), and reduced glucocorti-
coid requirements, all of which led to approval by the Food and Drug administration
for patients with GBM (Gilbert et al. 2014). However, several phase III studies have
indicated that despite the improved radiographic response, as well as PFS, there is
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no significant overall survival benefit (Gilbert et al. 2014; Chinot et al. 2014). Both
of these studies showed a prolonged PFS with bevacizumab, however the Avaglio
trial indicated that health-related quality of life was stable prior to progression while
the RTOG-0825 indicated overall quality of life based on symptom burden was
significantly worse in some domains with bevacizumab (Gilbert et al. 2014; Chinot
etal. 2014). A post-hoc subgroup analysis of the Avaglio study identified a 4.3 month
potential increase in median survival with the addition of bevacizumab for IDH1
wild-type GBM in the proneural subgroup (Sandmann et al. 2015). Phase III studies
have not demonstrated a survival benefit in recurrent GBM for bevacizumab. The
phase II BELOB trial initially suggested a benefit with combined bevacizumab and
lomustine, however the phase III trial EORTC 26101 recently underwent an interim
analysis and found no overall survival benefit with the addition of bevacizumab to
lomustine compared to lomustine alone for recurrent GBM (Taal et al. 2014).
Cediranib, another anti-angiogenic agent whose mechanism of action is as a VEGF
receptor tyrosine kinase inhibitor, has been tested in phase III trials with GBM and
were found to be ineffective in altering overall outcome (Swartz et al. 2014).
Additionally, other VEGF inhibitors such as Pazopanib, Sorafenib, Nintedanib,
Sunitib, Vandetanib, Aflibercept, Vatalanib, and Cabozantinib have also failed to
improve survival in glioblastoma patients (Table 4.1).

4.5.2 EGFR

In GBM there is evidence EGFR plays an important role in oncogenesis and tumor
biology (Swartz et al. 2014). EGFR is amplified in approximately 50% of GBM
samples and is associated with an active, mutant form of the EGFRVIIIL receptor,
which when overexpressed enhances GBM cell growth and contributes to GBM
pathogenesis (Jaros et al. 1992; Nishikawa et al. 1994; Schlegel et al. 1994).
EGFRVIII, has been identified in 30% of newly diagnosed GBM and is character-
ized by deletion of exons 2—7 (Gan et al. 2009). The receptor is rendered active and
thereby enhances the tumorigenicity by promoting tumor cell migration, conferring
protection from radiation and temozolomide, and secreting EGFRvIII-bound onco-
somes onto plasma membranes of neighboring cells (Prados et al. 2015).

Furthermore, EGFR can stimulate increased signaling through the RAS, RAF,
MEK, MAP, and mTOR pathways, as well as downregulating cell cycle inhibitor
proteins (Mao et al. 2012; Nishikawa et al. 2004). A set of studies found that
increased levels of EGFR and EGFRVIII co-activates the RTK MET which leads
to ligand-independent activation of the EGFR receptor (Huang et al. 2007; Jo
et al. 2000; Stommel et al. 2007). This suggests that a mechanism for tumor cells
to reduce dependence on either RTK for downstream signaling exists due to the
interaction between the c-MET and EGFR/EGFRVIII signaling pathways.
Studies have suggested that RTK MET overexpression may correlate with a
shorter median survival time (Kong et al. 2009; Koochekpour et al. 1997;
Lamszus et al. 1999).



97

4 Recent Advances for Targeted Therapies in Glioblastoma

(ponunuoo)
€d
(€T0T T8 10 STUB[RD) qeUINZIOBAdE O k| 1I L0 “¥dDdAd Jed ‘T-UIDAA qlusjelo§
€d
(BTTOT T8 10 UOPIEAY) OPIWO[OZOWR], O | 1I LI-0 “Y4DAd ey ‘T-YADIA qrusjelo§
(010T T2 39 YHOMSUIRE) €I
OPIWO[OZOWR, *OPIWO[OZOWR [ /UONRIPEY O N 1I LI “Y4DAd ey ‘T-YADdA qrusjelo§
d4Ddd
(€107 "Te 10 uopIeay) qruneder O | 11 PUe YADA ‘LI “YIDAA qruedozeq
d4Ddd
(010T 'Te 10 O10WeM]) N | 1I PUB YADA ‘LI “¥ADAA qruedozed
-0 “[-¥4D ‘g/0-¥1Dad
(€10C "Te 10 I0[oYDIEE) QUNSNWOT d | M| ‘€-¥IDFA T-¥4IDFA ‘[-4dDFIA qQIuelrpay
-0 “[-¥AD ‘g/o-¥1Dad
(010 'Te 10 I0[oydIeq) A | | ‘€¥ADIA ‘TYIDFA ‘1-¥IDdA qQIUBIpay
(S10T T8 10 prorg) unerdoqie) o) d 11 V-dDHA | qewnzioeasq
(¥10T ‘T8 19 DI9YJOS) 2UNSNUWI0] o) d 11 V-ADHdA | qewnzioeasq
(AOBS[RLIL [EOTUT[)
10T T8 19 [BBL) SUNSNWO] d d| 1rm V-A4DHdA | qewnzioeasq
(P10T 'Te 19 10UIYD) “HTOT T8 10 Mq[ID)
9PIWO[OZOW], ‘OPIWIO[0ZOW] /UOTIRIPEY D N I V-IDHA | qewnzioeadqg
(8600 T8 19 [SIoTY :600T T8 12
UBWPALL] ‘600T ‘[ 10 UAY0)D)) ULI)OULI] q M i V-IDHA | qewnzioeadqg
pasn sarderay) JYI0 YIIym ‘UOTBUIqUIOD J] (q) aseasip () | oseyd s/1e31e], Adexayg,
y1oq J0 Aderay) uoneurquod | JuarmdaI o (N) | [e],
‘(IN) Ade1oy) ouopy | pesouerp A[mou-

juswjealy Jo Quilj,

BWOISB[QOI[S 10J S[eLn [edrul[d url saideroy) pajasdie], [ qeL



M. Youssef et al.

98

(¥00T ' 12 yory

*LO0T 'T® 19 Is0URL]) ] k! 1I AdDH qrunygan
(€10T 'T® 19 DIeARDRYD)
OPIWO[OZOWR], *PIWO[OZOWR [ /UONRIPEY o) N /1 d45d quunyan
(1102 18 12 wyn) W N 11 d4Dd qrunygean
(010T T8 12 tIM) N k! 11 139 pue THN T-4dDHA | qrunuezoqe)
(010T 'T® 10 sopuelq)
SPIWO[OZOWR], ‘SPIUO[OZOWS] /UONRIPEY o) N /1 I0-0 pue YDA “UIDIA qrueferep
(a600c
“T& 10 UOpILdY) BaMAXOIPAH pue qrunewy o) N 1 I0[-0 puB Y4DAd YIDIA qIuereIep
(110T T8 10 1oWIsIaD)
SPIO[OZOWR, ‘dPIUO[OZOWR] /UONRIPEY o) N 1 I0[-0 puB Y4DAd YIDIA qQIUuereIeA
(110T T8 1210010 9p) W k! 11 dDId pue JDFA 1deoroqiyy
(QITOT T8 19 UOpIeay]) uedsjouL] o) d 1 LI-0 pue “0-44Ddd TIIDIA quunuung
(€10T T8 19 [SIIY “T10T '8 12
ued ‘][0T T8 12 SUKON) N k< 11 LI-0 pue “0-44Ddd TIIDIA quunuung
(ST0T '[e 12 BPayyD) snwijolls o) d 1 YADHT-YDIA qluelopueA
(T10T T8 12 [S1IY) N k! /1 AIDF T-UDIFA qiuelopues
g/0-440ad
(€10T '8 12 OIYNA) qeuunzIoRAdgq q k! 1I ‘€1 4404 ‘€T YIDFA qiuepajuIN
€4
(T10T '8 10 997) SNWIONISW, o) k! /1 ‘LI YADAd oy ‘T YIDFA qiuejelos
€4
(€10T '8 12 W00Qqa133() qIuNoLIy o) k! 11 ‘LI YADAd ‘Fod ‘TYIDHA qiuojelos
pasn sardeIay) IYI0 YOTYM ‘UOTIRUIQUIOD J] (D aseastp (3) | oseyd s/1a31e], Aderoyy,
yjoq Jo Ade1oy) UoneUIqUOD | JUALNOAI IO (N) | [RLL

‘(JN) Aderoyy ouopy

pasouserp A[mou-
JUAUIIEAI) JO QUIL],

(Panunuod) [y AqeL



4 Recent Advances for Targeted Therapies in Glioblastoma

(panunuoo)

(€10T T8 19 YOI “T10T T8 19 Dismoing)

QPIWO[OZOW], “OPTWO[OZOWS] /UOTIRIPRY o) N I PV pue “Y¢Id D oseury urojoxd uLme)sezuyg
Tvudg
(ST0T 'Te 30 uewsse]) N J II|  pue -2 [qvy-1og 9IS “YIDAd quuneseq
(010T 'Te 12 uuRWISA
6002 ‘SO0T ‘T8 32 UOpIEy) LAINAXOIPAH o) K| I I[-0 pue ‘[qV-10g “YIDAd qrunewy
(600T 'Te 30 s1zey) N AN I I3[0 puE ‘[qV-10d “YIDAd qrunew]
(900T 'Te 10 uop) IN q| 11 -0 pue ‘[qV-19g YIDAd qrunew|
(€102 'Te 30 uowo[os) N N| 11 YO | qewnznjowiN
(€10T 'Te 19 SI[ISLABIEY]) SPIWO[OZOW], D d I TIHH Pue ¥IDH quunede|
(€102 "8 30 uopIeay) qruedozeq o) d| 11 TYHH pue Y1049 quunede]
(010 T& 39 uassaIyL) I Al 11 TYdH pue Y40 quunede|
(010T TE 3
[O[eQ[oSSEH) UBJIIOULI] PUB qBWNZIORADY D i 11 Rl qewrrxnid)
(600T "Te 32 SukaN) IN J I Lk qewIxnd)
(010T 'T& 32 uopIeay
2102 " 30 nydwary3N) snwirjoirg D d| 1T ROk quunopyg
(o107
‘T 12 99)oWNSUIOYIRS) qRWNZIORAdY D N 11 NEE! qrunoryg
(800 "Te 32 10019 3p) une[doqie) D d I Y404 quunopyg
(900T 'Te 2 sopeld) 9pIWO[OZOW?], q | I 4049 qrunoprg
(600T ‘T 12 sopeld <010T ‘T8 12 Wo0oqaIadd
1900¢ "Te 32 UeUYSIIY :800T ¢ 10 umord) I
9PIWO[OZOWR], ‘dPIWO[OZOWR /UOHRIPEY o) N | AT JA0d quunopyg
(0102 "Te W0 1ZIY) N I A9 qrunoprg
(0102 "Te 30 Sung) I R I REE! qrunoprg
(46007 'Te 32 [SIoT]) SNWI[OIAY o) J I Lk qunyen
(900T 'Te 10 UOpIeay]) sNwIoIg D d I 441949 quunyan




M. Youssef et al.

100

(£10T T8 32 Z3eY-ISNX ) OPIUO[OZOWI], o) d I sey qruIejeuo |
(110€ 'Te 32 surpefsaQ) W K 11 sey qruIejeuo |
(9007 'Te 10 Asaysno)) W A II sey qrureyidiy,
(170T 'Te 10 nydwory3N)
OPIWO[OZOWR], ‘OPIWO[0ZOWI] /UOTIRIPEY o) N 1 sey qrureyidi,
(010T ' 10 uopieay
*Z102 ‘T8 19 nyduniySN) qrunoprg o) k! II'T JOoLw SnuifoIrs
(900€ ' 10 uopIeay) qruNyan 0) d I AOLw SNWI[OIIS
(ST0T '8 12 BPayyD) qIUBIopUBA o) k! I JOoLw SOOI
(€10 'Te 12 uasse]) qeunzioeadg o) d 11 MOLW | SNUWIOIISWA],
(010T 'Te 10 vLIRYIERS)
OPIWO[OZOWR], ‘OPIO[0ZOW] /UOTIRIPEY o) N 11 MOLW | SNUWIOIISWA],
(S00T [e 10 stur[en
'600T ‘e 30 Suey)) W K 11 JOLW | SnWI[OISWI],
(Z10T 'Te 32 YJOMSUIRH) qBWNZIoBADY
‘QRUINZIORADE /OPIIO[OZOWI] /UOTIRIPRY o) N 11 qOoLw SNWI[OIOAT]
(S10T T8 12 BIN)
OPIWO[OZOWR], ‘OPIO[0ZOW] /UOTIRIPEY o) N I MoLw SNWIT[OTOAT
(110T "Te 10 Asaysno)) W q 11 MOLW | SNWI[OIoAT
(010T 1B 12
YOI f010T ‘T8 39 [S1er]) N A 11 PV pue ¢Id D oseury urjoid | uLmejsezug
pasn sarde1ay) 19YI0 YoIyM ‘UOHBUIqUIOD J| (€:)) aseasip () | oseyd s/1931e], Aderayg,
y10q 10 Ade1oy) uONBUIQUOD | JUALINDAI IO (N) | [BLL],
‘(IN) AdeIoy) ouopy | pesouerp A[mou-

juawjealy Jo auilj,

(ponunuod) Ty Aqel,



4 Recent Advances for Targeted Therapies in Glioblastoma 101

EGFR remains an elusive target for therapy in GBM as initial studies have sug-
gested activity of some EGFR inhibitors in molecular subsets of GBM but larger
studies failed to replicate these results (Haas-Kogan et al. 2005; Mellinghoff et al.
2005; Reardon et al. 2014).

Rindopepimut is a tumor vaccine which is a conjugate of peptides that span
the EGFRVIII mutation site with an immunogenic carrier protein keyhole limpet
hemocyanin. Phase I and II trials in newly diagnosed GBM patients treated with
rindopepimut along with temozolomide indicated a PFS of 10-15 months and
overall survival of 22-26 months, which was improved compared to historical
controls of 6 and 15 months respectively (Swartz et al. 2014). Another multi-
center trial with rindopepimut in newly diagnosed GBM, the ACTIVATE trial,
demonstrated an immune response after vaccination. In ACTIVATE, 43% of
those treated had a positive humoral response, and the majority of patients with
relapse had lost all of the EGFRVIII expression, a phenomenon known as anti-
gen escape which suggested that the immune system successfully targeted
EGFRvIII-expressing cells (Swartz et al. 2014). Furthermore a similar response
in recurrent disease was noted in the ReACT trial, where rindopepimut report-
edly caused an immune response and significantly prolonged survival when
administered with bevacizumab (Phillips et al. 2016). However, in the phase III
study ACT IV, rindopepimut combined with temozolomide did not increase
overall survival in newly diagnosed EGFRvIII-positive GBM (Reardon et al.
2015; Inman 2016).

Therapy remains ongoing to identify new targets and mechanisms, such as
ABT-414, which is a conjugate of a potent microtubule inhibitor and a monoclo-
nal antibody against a tumor-selective EGFR epitope found in EGFR wild-type-
overexpressing tumors and EGFRVIII mutant-expressing tumors. Preclinical
studies have indicated that ABT-414 is selective and a phase I study, as well as a
phase III study are ongoing (Gan et al. 2015; Phillips et al. 2016). Unfortunately,
other EGFR inhibitors such as Gefitinib, Erlotinib, Cetuximab, Nimotuzumab,
and Lapatinib, have similarly failed to improve survival in glioblastoma patients
(Table 4.1).

4.5.3 PDGFR

Platelet derived growth factor receptors (PDGFR) are cell surface receptors for
members of the platelet derived growth factor family and signal through the alpha
and beta platelet derived growth factor receptor tyrosine kinases (Matsui et al.
1989). Chromosome 7p22 contains the PDGFR alpha gene which is amplified in
approximately 13% of GBM samples (Cancer Genome Atlas Research Network
2008; Stenman et al. 1992). Multiple aberrations in expression of PDGFR have
been observed, including overexpression, amplification, mutations, and truncations,
however point mutations are exclusively seen in GBM (Alentorn et al. 2012).
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An inhibitor of PDGFR is Imatinib mesylate, which also functions to inhibit ber-
abl and c-kit tyrosine kinases and is beneficial in the treatment of CML and in GI
stromal tumors (Buchdunger et al. 2000; Druker et al. 2001; Demetri et al. 2002).
Imatinib however has shown minimal activity in recurrent gliomas as well as newly
diagnosed GBM (Wen et al. 2006; Razis et al. 2009). Others studies have been per-
formed looking at the addition of hydroxyurea to imatinib in recurrent malignant
gliomas and found that it failed to show any meaningful anti-tumor activity (Reardon
et al. 2005, 2009a; Dresemann et al. 2010; Desjardins et al. 2007).

Another drug that has been studied is dastinib, which is an inhibitor of PDGFR,
SRC, ber-abl, c-Kit, and EphA2 receptors. The study was conducted in patients with
recurrent GBM and found that dastinib was ineffective with no radiographic
responses (Lassman et al. 2015). Another phase 1 trial of dastinib in combination
with CCNU found hematological toxicities, which limited the amount of exposure
available for both therapeutic agents, in contrast to a trial with dastinib and erlotinib
which was much better tolerated (Reardon et al. 2012; Franceschi et al. 2012).

4.5.4 PI3K/AKT/PTEN/mTOR

Stimulation of the PI3K/AKT/PTEN/mTOR pathway enhances growth via activa-
tion of receptor tyrosine kinases. This occurs via the regulation of cell division, pro-
liferation, differentiation, metabolism, and survival (Carnero et al. 2008; Morgensztern
and McLeod 2005). Several genomic alterations in GBM activate this pathway, most
often of which is the amplification of EGFR (Peraud et al. 1997; Watanabe et al.
1996; Wong et al. 1992). Other alterations leading to activation of this pathway
include lesions in PIK3R1/PIK3CA and mutations or deletions of AKT, which occur
in 84% of GBM cell lines and/or PTEN mutations, which occur in 30-44% of high-
grade gliomas (Wang et al. 1997, 2004; Tohma et al. 1998; Teng et al. 1997; Koul
2008). PTEN typically inhibits the AKT pathway, therefore deletion of PTEN leads
to activation of this pathway (Liu et al. 1997; Li et al. 1997; Stambolic et al. 1998).
PTEN also facilitates the degradation of EGFR, which leads to termination of EGFR
signaling, leading to an explanation for why PTEN confers resistance to epidermal
growth factor inhibitors in vitro (Vivanco et al. 2010; Bianco et al. 2003).

mTOR is a master nutrient and energy sensor which regulates processes including
transcription, protein synthesis, as well as other cellular functions including prolif-
eration, cell motility survival, and anabolism (Hay and Sonenberg 2004; Kim et al.
2002; Sarbassov et al. 2004, 2005; Facchinetti et al. 2008; Ikenoue et al. 2008).
mTOR is made of two different complexes—mammalian target of rapamycin com-
plex I mTORCI and mTORC2—and acts as a regulator of PI3K upstream and as its
effector downstream (Akhavan et al. 2010). Inhibitors of mTOR have been devel-
oped, including Sirolimus, a mTORCT1 inhibitor, which leads to reduced expression
of neural stem cell progenitor markers and neurosphere formation in GBM (Sami
and Karsy 2013; Sunayama et al. 2010). Another mTOR inhibitor, Dactolisib, a
potent dual PI3K-mTOR inhibitor has shown potential benefit as a radiosensitizer for
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GBMs in preclinical studies (Fan et al. 2010; Mukherjee et al. 2012). Regrettably,
mTOR inhibitors examined to date including Sirolimus, Everolimus and Temsirolimus
have not prolonged overall survival in glioblastoma patients (Table 4.1).

4.5.5 RAS/RAF/MEK/MAP (ERK) Kinase

The RAS/RAF/MEK/MAP kinase pathway mediates cellular responses via growth,
migration, apoptosis, proliferation, differentiation, and cell survival. This pathway
can be activated by EGFR and PDGFR via signal transmission through indirect
associations with cytosolic mediator proteins growth factor receptor-bound protein
2 (GRB2) and son of sevenless (SOS) to RAS. RAS then stimulates RAF, which
activates MAPK and MEK (Moodie et al. 1993; Thomas et al. 1992).

RAS has been found to be upregulated in GBM samples, and activation is typi-
cally through loss of the NF-1 gene, which encodes a tumor suppressor protein and
is a negative regulator of RAS and mTOR signaling in astrocytes (Banerjee et al.
2011; Nissan et al. 2014; Dasgupta et al. 2005). NF-1 mutation has been implicated
in prior studies in glioma tumorigenesis, specifically noting that the homozygous
loss of NF-1 in glial cells has been shown to develop fully malignant astrocytomas
with a p53-null background (Alcantara Llaguno et al. 2009; Zhu et al. 2005; Kwon
et al. 2008). Hyper activation of protein kinase C also causes increased degradation
of NF-1, which also puts patients at an increased risk of developing gliomas
(McGillicuddy et al. 2009). NF-1 mutations are a defining feature of the mesenchy-
mal GBM subtype, and therefore this subgroup may potentially be good candidates
for agents that target NF-1 driven pathways (Cancer Genome Atlas Research
Network 2008; Phillips et al. 2006). Loss of NF-1 function leads to enhanced RAS
activity, which will lead to increased RAS/RAF/MEK/MAPK pathway activation,
leading to the hypothesis that MEK inhibitors were good therapeutic targets. Two
MEK inhibitors, PD0325901 and AZD6244, both appeared effective against NF-1
deficient GBM cells dependent on RAF/MEK signaling in preclinical studies (See
et al. 2012). Furthermore, this study showed that MEK inhibitor-resistant NF-1 defi-
cient cells could be re-sensitized to MEK inhibitors with the co-application of dual
PI3K-mOTR inhibitor PI-103, also suggesting that NF-1 deficient GBM patients
may respond to a MEK inhibitor based chemotherapy (See et al. 2012). Drugs that
have been tested that target RAS specifically (Tipifarnib, Lonafarnib) have not
shown any improvement in overall survival for GBM patients (Table 4.1).

4.6 IDHI1/IDH2 Mutations

The identifications of mutations in the metabolic enzymes IDH 1 and 2 is one of the
most important discoveries that has led to a remodeling of our understanding of
gliomas, including GBMS (Parsons et al. 2008). The majority of tumor samples in
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this study bore this mutation and were classified as secondary GBMs, suggesting
that IDH 1 and IDH 2 mutations can serve as a genetic marker for this type of
GBM. When IDH 1 and 2 were mutated, the result was enzymes with a neomorphic
function, meaning that the mutant enzymes acquired the ability to catalyze the
NADPH-dependentreduction of alpha-KGto the R-enantiomer of 2-hydroxyglutarate
(2-HG) (Dang et al. 2010). This study showed that IDH 1 and 2 mutants had high
levels of 2-HG, which is also found in primary IDH 1 mutant gliomas, and is also
found in AML patients (Gross et al. 2010; Ward et al. 2010). IDH 1 and 2 mutant
expression results in inhibition of alpha-KG-dependent dioxygenases by 2-HG. The
enzymes that are dependent on this regulate physiological processes including
hypoxia sensing, histone demethylation, and changes in DNA methylation (Loenarz
and Schofield 2008). The glioma CpG island methylator phenotype (C-CIMP) is a
distinctive and nearly invariable feature of IDH 1 and 2 mutant gliomas that has
been studied to indicate that gliomas with this mutant expression are correlated with
better prognosis (Baysan et al. 2012; Noushmehr et al. 2010). IDH 1 and 2 mutant
gliomas are detected with the IDH-R132H antibody as well as with DNA sequenc-
ing of antibody-negative cases, which provides more accurate diagnosis and predic-
tion of patient outcomes and prognosis.

IDH 1 and 2 mutational status also provides a prognostic marker in patients with
lower grade gliomas and GBMs, as well as providing insights about the origin of
gliomas (Parsons et al. 2008; Hartmann et al. 2009; Sanson et al. 2009; Weller et al.
2009; Yan et al. 2009). IDH 1 and 2 wild-type GBMs typically exhibit a character-
istic pattern of genetic changes associated with primary GBMs such as a gain of
chromosome 7, loss of chromosome 10, and amplification of EGFR which are not
seen in IDH 1 and 2 mutant GBMs.

The importance of IDH mutation is eminent as the new 2016 WHO Classification
of tumors of the central nervous system now defines glioblastoma based upon IDH
status (Louis et al. 2016). Currently, several phase I studies examining IDH muta-
tion inhibitors in advanced malignancies including glioblastoma are underway.
However, as IDH is thought to be an early driver mutation in glioma, it remains
unknown the potential impact of its inhibition in recurrent glioblastoma (Watanabe
et al. 2009; Mandel et al. 2016).

4.7 Discussion

The Cancer Genome Atlas analysis revealed multiple molecular pathways and
potential therapeutic genetic targets ushering in a new era for glioblastoma treat-
ment. Bevacizumab, an anti-VEGF agent, has displayed an increased time to
progression and improved imaging response but disappointingly has been unsuc-
cessful in increasing patient overall survival. Furthermore, it remains an area of
debate whether bevacizumab has any anti-tumor benefit (Kruser et al. 2016).
Despite our increased knowledge of these tumors, our ability to divide them into
molecular subgroups, and several promising therapeutic targets, every targeted
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therapy examined to date unfortunately has failed to demonstrate any benefit in
overall survival.

Several possible explanations for this lack of success have been proposed includ-
ing lack of tumor dependence on the pathway targeted, inadequate CNS penetration
of the drug, intratumoral heterogeneity, and clonal evolution.

In regards to lack of pathway dependence, evidence suggests that tumors may be
able upregulate a different pathway when another pathway is inhibited. This has been
seen in the use of EGFR inhibitors, where treatment has demonstrated the lack of
ability to change targets downstream like Akt and can even upregulate the PI3K/Akt
pathway (Hegi et al. 2011; Chakravarti et al. 2002). Another possible area of concern
is that many of the mutations targeted are essential for early tumor development and
may be subsequently superseded by secondary pathways of tumor growth (Lee et al.
2012). Additionally, mutations present in a tumor on initial presentation may change
or no longer be expressed on disease recurrence (van den Bent et al. 2015).

Drug penetrance is also major concern as it is frequently difficult to deter-
mine how well therapeutic agents cross the blood brain barrier in brain tumor
patients. Due to the eloquent location, it is often unfeasible to obtain tissue
samples at recurrence making it impossible to assess how much of a chemo-
therapeutic agent is being delivered to its intended target. It is also possible that
a targeted agent may fail, not due to being a poor genetic target, but rather
because the drug is not reaching that target in adequate quantity to cause the
desired or intended treatment effect.

Additionally, tumor heterogeneity and clonal evolution is an issue that may affect
targeted therapies. GBM’s are heterogenous in nature, and it is possible that when
one cell group is inhibited via a targeted therapy to one pathway, another is left to
proliferate unabated as their development is uninhibited.

While the results of targeted therapy studies to date in glioblastoma have been
disappointing, there continues to be enthusiasm in this approach with numerous
clinical trials currently underway. Hopefully, knowledge from the previous failed
trials will help provide further insight and assist future clinicians in designing new
novel targeted treatments to overcome these barriers.
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