
Chapter 21
Parameter Estimation via Instantaneous
Frequency and Damping from Transient
Ring-Down Data

Robert J. Kuether and Matthew R.W. Brake

Broadband impact excitation in structural dynamics is a common technique used to
detect and characterize nonlinearities in mechanical systems since it excites many
frequencies of a structure at once. Nonstationary time signals from transient ring-
down measurements require time-frequency analysis tools to observe variations in
frequency and energy dissipation as the response evolves. This chapter uses the
Short-Time Fourier Transform (STFT) to estimate the instantaneous parameters
from measured or simulated data. By combining the discrete Fourier transform
with an expanding or contracting window function that moves along the time axis,
the resulting spectra are used to estimate the instantaneous frequencies, damping
ratios, and complex Fourier coefficients. Other methods such as Hilbert transforms
in conjunction with the Zeroed Early Fast Fourier Transform (ZEFFT) (Allen and
Mayes 2010) or wavelet based approaches (Kerschen et al. 2006) are also able to be
applied in similar manners as the STFT. From any of these methods, the amplitude-
frequency dependence in the damped response is able to be extracted in order to
determine the parameters for a joint model.

21.1 Overview of Spectra Calculation Methods

Analyzing vibration responses in the frequency domain has long provided insight
into the dynamics of linear structures, such as the identification of invariant
modal frequencies and damping ratios from transient ring-down data. The most
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widespread tool for frequency-domain analysis is the Fourier transform, partly
due to the efficiency of the Fast Fourier Transform (FFT) algorithm (Cooley
and Tukey 1965). One of the limitations of this method is that it only provides
meaningful information for linear systems and responses that are stationary and
periodic (albeit windowing a time signal lightens the latter requirement). Nonlinear
systems and nonstationary time signals require a new set of tools for frequency-
domain analysis of transient responses. One example is the zero-crossing detection
method, developed in Londoño et al. (2015), which uses the zero-crossings of
the time signal to estimate the instantaneous frequency and decaying envelope
of a nonlinear system. The review of Neild et al. (2003) provides a thorough
discussion of various time-frequency distribution tools such as moving window
discrete Fourier transform, moving window auto-regressive model, and harmonic
wavelet transform. These signal processing tools can be used to identify how the
instantaneous frequency and damping of a measurement changes as a function of
time, or response amplitude, providing system parameters conceptually similar to
those obtained from linear systems. A number of techniques have been developed
to estimate the time-varying frequency and damping from transient ring-down data,
as discussed in what follows.

21.1.1 The Hilbert Transform

The Hilbert transform is defined as the convolution of a time history x.t/ and the
function 1=.� t/

H.x.t// D
Z 1

�1
x.�/

1

�.t � �/
d�: (21.1)

This transformation calculates the analytic representation of the measurement x.t/,
from which the amplitude dependent properties of a system can be extracted.
Feldman developed the ‘FREEVIB’ method in Feldman (1994) by processing
the free vibration response with the Hilbert transform and determining a single-
degree-of-freedom (SDOF) modal model based on the analytic signal and its time
derivatives. Later Sumali and Kellogg (2011) improved on this method by fitting
the analytic signal to a polynomial function in order to better estimate the phase and
decaying envelope. The curve fitting procedure is developed to smooth the effects of
noise during experimentation (Sumali and Kellogg 2011; Sracic et al. 2012; Deaner
et al. 2015).

The Hilbert transform is somewhat limited when applied with broadband excita-
tion because this method assumes that the response behaves as a monophase, SDOF
oscillator. These approaches require additional data processing (e.g., band-pass
filtering) for signals with multiple harmonic components. One approach to process
nonstationary signals with multiple harmonics uses empirical mode decomposition
(EMD) to create a set of intrinsic mode functions that are then processed using a
Hilbert transformation (Huang et al. 1998).
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21.1.2 Wavelet Transformations

Wavelet transformations generally condition the time history x.t/ by multiplying it
by a series of square integrable functions (termed wavelets) that effectively window
the data over a narrow range (in this case, in time). In this manner, the response
of the system for a given amplitude is able to be analyzed in isolation, without
contamination from higher or lower amplitude excitations that occurred earlier or
later in the time history, respectively. As compared to the original STFT, the wavelet
transformation is developed to specifically account for adequately resolving both
high and low frequency responses by using windowing functions such as the Morlet
wavelet (Goupillaud et al. 1984/85; Lin and Qu 2000).

A nonlinear system identification and model reduction strategy using EMD,
wavelet transforms, and slow flow constructions is presented in Chap. 20, with
further details given in Eriten et al. (2013), Lee et al. (2009), and Vakakis
et al. (2011). In Kurt et al. (2015), the method is further developed for a model
updating strategy for mechanical systems with local nonlinearities by comparing the
instantaneous frequencies and energies from simulated broadband excitation using
the wavelet transform. The “empirical” instantaneous frequencies and amplitudes
are compared with the undamped nonlinear normal modes (NNMs) (Kerschen et al.
2009; Vakakis 1997) of the underlying Hamiltonian system as a metric to update the
model.

21.1.3 The Short-Time Fourier Transform

In this chapter, the STFT is used to estimate the instantaneous frequencies and
damping ratios from measurements under broadband excitation. The STFT takes
a discrete Fourier transform of small windowed sections of the response to estimate
the frequency content at a given time-point (similar to a wavelet transformation). In
this work, the frequency-domain tool is modified to allow the short-time period of
the window function to expand or contract as it slides down the time axis, allowing
for better averaging of the frequencies and amplitudes. This approach is essentially
that of the wavelet transform. From the processed time-frequency distribution, a
peak picking method identifies the instantaneous “natural frequency” and complex
amplitude of the Fourier coefficient from which the instantaneous damping ratio
is estimated. These amplitude dependent properties of the system have a wide
range of applications including nonlinear detection, characterization, and potentially
quantification.

The chapter is outlined as follows: Sect. 21.2 presents the theoretical devel-
opments of the modified STFT algorithm along with the approach to extract the
instantaneous frequency and damping as a function of response amplitude. In order
to demonstrate this methodology, Sect. 21.3 processes measured time data from
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two beams assembled with a lap joint (i.e., the Brake–Reuß beam) and estimates
the parameters of an Iwan model from the instantaneous frequencies and damping
ratios.

21.2 Theoretical Development of the Parameter
Estimation Technique

The STFT operates on the freely decaying time signal x.t/ of a nonlinear mechanical
system measured over a period T . The signal is sampled at N evenly spaced points
in time such that the increment is defined as � D T=N, resulting in N discrete
measurements x0; x1; : : : ; xN�1 with xn D x.n�/. A window function w.t � �/

moves along the time axis at discrete time shifts � D m� and has a much shorter
time period than the measurement period (i.e., Tw � T). The discretized window is
sampled at the same N points in time, denoted as w0�m; w1�m; : : : ; wN�1�m where
wn�m D w..n � m/�/ and is applied to the signal prior to taking the Fourier
transform. The time point m controls the center time of the window, allowing
a Fourier transform to be taken from different sections of the signal and the
instantaneous frequency content to be approximated. Mathematically, the discrete
Fourier transform of the windowed signal is taken as

X.k; m/ D
N�1X
nD0

xnwn�me�i2�kn=N (21.2)

defined at discrete frequencies

!k D 2�k

T
: (21.3)

One of the challenges with using the STFT is that the period of the window
function Tw dictates the accuracy and resolution of the spectrum. For example, if
the window period is too large, then the frequency of the signal will be poorly
averaged. Conversely, if the window is too small, then the poor frequency resolution
makes it difficult to approximate the instantaneous frequency. In an effort to improve
this, the STFT is modified to allow for the time period of the window to change
as it moves down the time axis, making the period Tw.m/ explicitly dependent on
the time instant m. This ability to either expand or contract the window size helps
produce an STFT with better averaging and resolution. The modified STFT becomes

X.k; m/ D
N�1X
nD0

xnwn�m.m/e�i2�kn=N (21.4)
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and from this, the approximation of the Fourier series coefficients is

OX.k; m/ D 2X.k; m/PN�1
nD0 wn�m.m/

: (21.5)

Each windowed Fourier transform is related to the time point at the center of the
window

tcw.m/ D mT

N
C Tw.m/

2
: (21.6)

Unlike the discrete Fourier transform, the STFT is a two-dimensional spectrum
that changes as the window moves on the time axis. The moving window is zero-
padded to improve the frequency resolution, but this does not actually improve
on the estimation of the Fourier coefficients in Eq. (21.5). A variety of window
functions can be used (e.g., Rectangle, Hamming, etc.) depending on the application
of interest. The Hanning window generally offers good results for transient ring-
down data and is thus the one used throughout this work. The discretized function
for the time-varying Hanning window is

wn�m.m/ D
(

1
2

�
1 � cos

�
2�.n�m/T

Tw.m/N

��
0 � .n � m/ t

N < Tw.m/

0 otherwise:
(21.7)

The period of the Hanning window explicitly depends on the time instant m allowing
for the period to expand or contract as the window moves position. In what follows,
only three forms for w.m/ are considered: a constant window, a linearly varying
window, and an exponentially varying window. The constant window is the original
definition of the STFT. The linear and exponentially varying windows are more
appropriate for signals that decrease in frequency as time increases (and energy
decreases in the ring-down data). The variable window gives more flexibility when
analyzing nonstationary signals and results in a better estimate of the instantaneous
frequency content.

21.2.1 Instantaneous Stiffness and Damping Estimation
from Ring-Down Data

The transient ring-down response x.t/ can be represented as a summation of
decaying harmonic functions of the form

x.t/ D
PX

rD1

RefAr;0e�ˇr.t/tei�r.t/g: (21.8)
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The assumed form of the signal has a total of p decaying harmonic functions each
having an initial complex amplitude Ar;0, time dependent decay rate ˇr.t/, and
time dependent phase �r.t/. Time-frequency analyses such as the modified STFT
described above are needed to identify the time dependency of the phase and decay
rate. Following the approach in Sumali and Kellogg (2011), the decay rate and phase
are rewritten as

ˇr.t/ D �r.t/!r.t/ (21.9)

�r.t/ D !r;D.t/t: (21.10)

In keeping notation with the free response of an underdamped, linear oscillator,
the decaying harmonic functions are described by a time dependent damping
ratio �r.t/, and damped and undamped natural frequencies !r;D.t/ and !r.t/,
respectively. Substituting Eqs. (21.9) and (21.10) into Eq. (21.8) would produce a
form similar to the linear solution. The time dependent frequencies and damping
ratios are estimated from the STFT data by using peak picking methods. The
damped frequency occurs where there is a maximum absolute value of the Fourier
coefficient, within a specified frequency range of the spectrum for each windowed
response.

Thus, the goal is to define a method to calculate !r.t/, �r.t/, and Ar;0 for the rth
decaying harmonic function in Eq. (21.8). The same process is repeated to extract
the coefficients of other harmonic functions from the same STFT data by looking
for peaks in a different frequency range. Starting with the collection of Fourier
coefficients in Eq. (21.5) with a center time tcw.mj/, the maximum amplitude of
OX.k; mj/ is found within a subset of frequencies defined by the set fkl kug, as given
by Eq. (21.3). The maximum amplitude of the Fourier coefficient is determined via

Ar.tcw.mj// D max
k2fkl; kug

�ˇ̌
ˇ OX.k; mj/

ˇ̌
ˇ
�

; (21.11)

and the damped frequency at the peak is

!r;D.tcw.mj// D 2�kmax

T
: (21.12)

Taking the magnitude of the rth decaying harmonic function, this is related to the
peak Fourier coefficient at window time tcw.mj/ as

Ar.tcw.mj// D jAr;0je�ˇr.tcw.mj//tcw.mj/: (21.13)

This equation alone does not uniquely solve for all unknown values of Ar;0 and
ˇr.tcw.mj//, so it is assumed that the decay rate at the end of the windowed response
has decayed to a linear response amplitude such that

ˇr.tcw.mend�1// D ˇr.tcw.mend//: (21.14)

Combining this relationship with Eq. (21.13) offers the unique solution to Ar;0 and
ˇr.tcw.mj//.
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Assuming that the damped natural frequency relates to the undamped frequency
via

!r;D.tcw.mj// D !r.tcw.mj//

q
1 � �2

r .tcw.mj//; (21.15)

the instantaneous (undamped) frequency is estimated by combining Eqs. (21.9)
and (21.15)

!r.tcw.mj// D
q

!2
r;D.tcw.mj// C ˇ2

r .tcw.mj//: (21.16)

Thus, the instantaneous damping ratio is defined to be

�r.tcw.mj// D ˇr.tcw.mj//

!r.tcw.mj//
: (21.17)

21.3 Application to the Brake–Reuß Beam

To demonstrate the application of the STFT method for determining joint parame-
ters, measurements from the Brake–Reuß beam (Chap. 9) are used. For this example,
the Brake–Reuß beam is suspended via bungee cords, and an impact hammer is used
to provide a broadband excitation to the system. The impact force from the hammer
is recorded by its load cell and records of acceleration time histories are obtained
from accelerometers mounted on the beam. The bolts are torqued to 15 Nm for the
data reported here, and the experimental setup for these tests is shown in Fig. 21.1.

Fig. 21.1 Experimental
setup for the impact hammer
tests on the Brake–Reuß
beam
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Fig. 21.2 Representative time history for a large amplitude impulse excitation
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Fig. 21.3 Spectrogram for the time history shown in Fig. 21.2

A typical response for a large amplitude impact is shown in Fig. 21.2. Due to
the lap joint located in the center of the system, the response is dependent upon
excitation amplitude. That is, as the response amplitude decreases, the system
is expected to stiffen (increase in frequency) due to a transition from macroslip
to microslip, and the amount of energy dissipated per oscillation is expected to
reduce (again, due to the transition from macroslip to microslip). In these specific
experiments, the system is not excited to macroslip since that would plastically
damage the system. Consequently, the shift from high amplitudes to low amplitudes
is subtle, but still observable in Fig. 21.3, which is the spectrogram of the time
history response from Fig. 21.2.

In order to deduce the parameters to describe the interface with a RIPP joint
(Chap. 16), 18 different impact tests are used in which the impact excitation is varied
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Fig. 21.4 Frequency versus amplitude data synthesized from 18 different impact tests

from approximately 100 to 2000 N. While 18 tests are used, only a subset is needed
to deduce a set of parameters for a RIPP joint model; the benefit of 18 tests is in
being able to develop a statistical distribution of parameters for the RIPP joint model
that describe test-to-test variability. The development of a statistical distribution of
parameters is further discussed in Bonney et al. (2016); here, the derivation of each
parameter is discussed in detail as an example of parameter estimation techniques
for the RIPP joint model. One important caveat is that in systems with multiple
modes in the response, such as the present system, the following techniques are for
deriving the modal joint properties [see, for instance, Deaner et al. (2015), Roettgen
et al. (2014)] instead of global joint properties; however, for the purpose of this
example, the properties are derived as if the response is unimodal by first applying
a modal filter to the data.

The stiffness of the system is inferred from the evolution of the primary natural
frequency with response amplitude (Fig. 21.4). For response amplitudes below 4 µm,
the natural frequency is constant at approximately 230 Hz. Some noise is observed,
though, due to the process of extracting frequency and dissipation data from the
impact experiments. At response amplitudes above 4 µm, a significant decrease is
observed in the natural frequency such that at an amplitude of 100 µm, the natural
frequency is approximately 213 Hz. This change in frequency (4!) is directly
related to KT as

KT D M � 4!2 � 1:1 � 106 N=m: (21.18)

In this calculation (with the unimodal assumption), M is taken as the system mass,
3.67 kg.

A second quantity that can be discerned from the stiffness plot is �MAX , which
is later used to deduce FS. Here, as macroslip is not observed in the data, �MAX
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is approximated as ten times the largest response amplitude since the system does
not transition to complete macroslip. In this case, �MAX D 2 mm. The consequence
of this approximation is that this parameter is valid for the experiments reported,
but “small” errors are expected to occur for larger excitation amplitudes as no data
regarding macroslip is recorded. The term “small” is used as the model is still
expected to be reasonable, but not precise in describing the transition from microslip
to macroslip.

The STFT method also calculates the damping ratio as a function of excitation
amplitude. Using the definition of the log decrement

ı D 2��p
1 � �2

D log

�
xj

xjC1

�
; (21.19)

with two adjacent peaks in a decaying transient signal having amplitudes xj and xjC1,
the dissipation per cycle D is calculated as the difference in energy between the two
peaks

D D 1

2
!2MA2

0

��
e2��=

p
1��2

�2

� 1

�
; (21.20)

where A0 is the response amplitude. From Segalman (2005), D is directly related to
� by the slope of D as a function of amplitude on a log–log plot being 3 C �. From
the dissipation information in Fig. 21.5, � � �0:76. The features of the plot near
the start of each set of data (i.e., at high amplitudes where the dissipation curves
have negative slopes) are artifacts of the signal processing techniques.
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Fig. 21.5 Calculated energy dissipation curves from 18 different impact tests
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Fig. 21.6 Calculated macroslip force value from low amplitude impact tests

To calculate the remaining two parameters, ˇ and FS, first FS is estimated from
�MAX as

FS � �MAXM!2
�; (21.21)

with frequency !� at the response amplitude equal to �MAX (or largest recorded
amplitude when macroslip is not observed). Second, ˇ is calculated using this
approximation via (Segalman 2005)

ˇ D
�

FS

�MAXKT
� � C 1

� C 2

� , �
1 � FS

�MAXKT

�
: (21.22)

As macroslip is not observed in the experiments, these results are valid only for low
response amplitudes as the constitutive behavior of the joint at low amplitudes is
dominated by the tangential stiffness KT shown in Fig. 21.6. Each of the parameters
deduced from the experiments reported in Bonney et al. (2016) is summarized in
Table 21.1.

21.4 Perspectives on the Short-Time Fourier
Transform Method

In this chapter, a modification to the STFT is presented and used to extract the
instantaneous frequency and damping ratio from measured transient ring-down
responses. The short-time period of the window function can expand or contract
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Table 21.1 Joint parameters
deduced from the
experiments of Bonney et al.
(2016)

Property Value

Tangential stiffness, KT 1.1�106 N/m

Macroslip displacement, �MAX 2 mm

Macroslip force, FS 400 N

Dissipation exponent, � �0.76

Stiffness ratio, ˇ 0.16

Pinning stiffness, KP 107 N/m

Pinning clearance, ıP 2 mm

as it moves down the time axis, allowing for better estimates of the frequency
content at a given time instant. The time-frequency distribution is then used to find
the peak Fourier coefficients in the spectra and estimate the instantaneous natural
frequency and damping ratio. One advantage to this approach is that it can be applied
to any time signal with multi-harmonic components without the need to do any
preprocessing such as band-pass or modal filtering.

The methodology is demonstrated on experimental measurements taken from
the Brake–Reuß beam. The response spectra show how nonlinearities in jointed
structures can be detected for various amplitudes of excitation. The lap joint has
a softening effect on the overall stiffness and introduces amplitude dependent
damping that increases with response amplitude.
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