Chapter Two: Regular and Semi-Regular Polyhedra

Section 1. Regular Polyhedra.

A polyhedron is a three-dimensional figure bounded by a finite num-
ber of polygonal faces. Its literal meaning is a many-faced figure because
poly means many and hedron means face. Thus a tetrahedron is a four-
faced figure, which can only be the triangular pyramid. The plural form of
polyhedron is polyhedra. Some human beings are bihedra.

We will assume that the polyhedra we deal with are convez. In such a
polyhedron, the line segment joining any of its two points lies entirely in
the polyhedron. Most of the polyhedra we encounter, such as prisms and
pyramids, are in fact convex.

The skeleton of a polyhedron consists of its vertices and edges only, and
it contains all the essential information about the polyhedron. Thus we will
represent any polyhedron by its skeleton.

We can facilitate the drawing of the skeleton of a polyhedron by the
following process. Imagine that the edges are made of elastic strings. Choose
a face as the base and stretch its edges so that the projection of every other
vertex onto this face lies within its interior. For example, the skeleton of the
tetrahedron with base BC'D and opposite vertex A can be drawn as shown
in the Figure 2.1. Such a representation is called the Schlegel diagram of
the polyhedron. B

C D
Figure 2.1

In his December, 1958 Mathematical Games column in Scientific Amer-
ican (see [2]), Martin Gardner wrote about the Platonic solids. They are
named after the Greek philosopher Plato, and are the most pleasing of all
polyhedra.

In a Platonic solid, all faces are the same kind of regular polygons and
each vertex lies on the same number of faces. Thus there is perfect symmetry
among the faces and among the vertices, both geometrically and combinato-
rially. It is not hard to see that there are only five Platonic solids. Suppose
the faces are equilateral triangles. If we put three of them around each
vertex, we have the regular tetrahedron as shown in Figure 2.1. If we put
four of them around each vertex, we have the regular octahedron (double
square pyramid) as shown in Figure 2.2.
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Figure 2.2

If we put five of them around each vertex, we have the regular icosa-
hedron as shown in Figure 2.3. However, if we put six of them around a
vertex, the configuration will be flat.

Figure 2.3

Suppose the faces are squares. If we put three of them around each
vertex, we have the cube as shown in Figure 2.4. However, if we put four of
them around a vertex, the configuration will be flat.

Figure 2.4

Suppose the faces are regular pentagons. If we put three of them around
each vertex, we have the regular dodecahedron as shown in Figure 2.5. How-
ever, if we put four of them around a vertex, they will overlap.
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Figure 2.5

Suppose the faces are regular hexagons. Even if we place three of them
around a vertex, the configuration will be flat. Thus there are indeed only
five Platonic solids.

Schlegel diagrams are special cases of graphs. A graph is a collection of
dots and lines, called vertices and edges respectively. Each edge connects
two vertices. If these two vertices are identical, the edge is called a loop.
If two edges connect the same two vertices, they are said to be multiple
edges. The degree of a vertex is the number of edges which connects it to
other vertices. Thus each edge contributes 2 to the total degree of a graph.
A graph is said to be connected if any two vertices are accessible from each
other via a sequence of edges.

If a graph can be drawn so that its edges meet only at the vertices,
then it is called a planar graph. The Schlegel diagram of a polyhedron is
also called a polyhedral graph, and must be planar. When drawn without
crossing edges, a planar graph divides the plane unambiguously into regions.
These regions are the faces of the graph. They correspond to the faces of
the polyhedron. Clearly, non-planar graphs cannot be polyhedral graphs as
the concept of a face is not well-defined. However, not all planar graphs are
polyhedral graphs.

Note that in Figure 2.1, the base BC'D is a face of the polyhedron, but
seems to have disappeared as a face of the polyhedral graph. On the other
hand, the graph has an infinite region which does not seem to be part of the
polyhedron. To handle this apparent anomaly, imagine that the skeleton
is drawn on the surface of a balloon, whose snout is contained in the face
chosen as the base. If we stretch the balloon until the rim of its snout
becomes a large circle enclosing a flat piece of rubber, we can see that the
base has in fact become the infinite region.
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Suppose a vertex of a polyhedron is surrounded in clockwise order by
n faces, with x; sides respectively for 1 < ¢ < n. We define its vertex
sequence as (r1,Z2,...,%,). For a Platonic solid, all vertex sequences
are identical, and it gives us a concise description of the solid. Thus the
regular tetrahedron is (3,3,3), the regular octahedron is (3,3,3,3), the regular
icosahedron is (3,3,3,3,3), the cube is (4,4,4) and the regular dodecahedron
is (5,5,5).

Actually, a vertex sequence describes a whole class of polyhedra. For
instance, (3,3,3) describes any tetrahedron, regular or otherwise.

A polyhedron is said to be regular if it satisfies the following two con-
ditions:
(A) The sequences of all vertices are identical.
(B) All integers in the vertex sequence are identical.

How many regular polyhedra are there? There are at least five as all
Platonic solids are regular polyhedra. Could there be other kinds? The
geometric proof given earlier is no longer valid since we no longer require
the faces to be regular polygons. Surprisingly, the answer is still five, but
we need to give a combinatorial argument.

Our principal tool is a famous result due to the Swiss mathematician
Leonhard Euler. He spent most of his active life in Prussia, under the pa-
tronage of Frederick the Great, and later in Russia, under the patronage of
Catherine the Great. He had made contributions to many fields in math-
ematics, with an Euler’s Formula in each of them. In particular, he was
recognized as the father of graph theory.

Let V, E and F denote the numbers of vertices, edges and faces of
a polyhedral graph. Then Euler’s Formula for Polyhedra states that
V — E+ F =2. It is also valid for connected planar graphs.

We shall prove Euler’s Formula for Polyhedra in a slightly different form.
A component of a graph is a connected subgraph which is not contained
in any larger connected subgraph. In other words, each component is a
connected piece of a graph. Denote by C' the number of components. For
connected graphs, we have C' = 1.

We claim that for any planar graph, V + F = E + C + 1. Erase all the
edges but retaining all the vertices. Initially, V =C, F =1 and F = 0. We
will reinstall the edges one at a time, so that E increases by 1 at each step.
If the edge reinstalled in a particular step connects two vertices in different
components, then C goes down by 1. If it connects two vertices in the same
component, C' remains unchanged but F' goes up by 1 as an existing face is
carved into two. Either way, the balance is maintained. At the end when
all the edges have been reinstalled, we have C =land V+ F=FE+C+1
may be rewritten as V — E + F = 2.
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As an application of Euler’s Formula, we now prove that every planar
graph without loops or multiple edges has a vertex of degree at least 5.
Suppose to the contrary that every vertex has degree at least 6. Cut each
edge into half-edges across its length. The total number of half-edges is
exactly 2F, and at least 61 by our assumption, so that 2E > 6V. On the
other hand, since there are no loops or multiple edges, each face is bounded
by at least 3 edges, yielding 2F > 3F. Substituting into Euler’s Formula,
we have 2=V — E+ F
leg - FE+ 23? = 0, and we have a contradiction.

Condition (A) in the definition of a regular polyhedra implies that all
vertices of the polyhedron lies on the same number n of edges, and condition
(B) implies that all faces of the polyhedron are bounded by the same number
m of edges. Thus the vertex sequence of a regular polyhedra consists of n
copies of m. Since every polyhedral graph has a vertex of degree at most 5,
we see that n < 5. That m < 5 can be proved similarly. Thus we have nine
cases, as shown in the chart below.

m=3 m =4 m=>5
n=3 Standard Cuboid Standard
Tetrahedron Dodecahedron
n==4 Standard
Octahedron Impossible
n=>5 Standard Cases
Icosahedron

To prove that the four cases marked impossible are indeed so, we need a
preliminary result: nV = 2E = kF. Cut each edge in halves at its midpoint.
Each of the V vertices is attached to n half-edges, so that the total number
of half-edges is nV. On the other hand, the total number of half-edges is
clearly 2F since each of the E edges is cut in halves. It follows that nV = 2F.
Similarly, we can prove that 2F = kF but cutting each edge in halves along
its midline and count the half-edges in two ways as before. Recall that we
have used this argument in proving that K5 and K3 3 are non-planar.

Substituting into Euler’s Formula, we have 2E+ 2 E — E =2 or

1+1_1+1>1
n m 2 E_ 2

If n = m = 4, we have only 711 + nl@ = % In the other three cases, we have

1y T}l < % All contradict the above inequality.

n
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Section 2. A Polyhedral Metamorphosis.

Circle members participate in the International Mathematics Competi-
tion, a sample paper of which is given in [5]. An important event in the
competition is the Cultural Evening, during which each country presents a
short performance that highlights their heritage. As a multi-cultural nation,
Canada have had a hard time finding suitable things to do. Finally, in 2010
when the competition was in Inchon, South Korea, we decided to express
ourselves in a universal language, namely, mathematics.

The performance is described in [4]. Ten students use six strings to
construct the skeleton of each of the five Platonic solids in a sequence of
continual transformation. Start with four students forming the tetrahedron.
At some point, six students join in. After a while, the original four drop
out. Eventually, the remaining six students form the octahedron. During
this sequence, all of the other Platonic solids appear. At the end, the original
four take over from the final six and restore the tetrahedron! This is adapted
from the design by Karl Schaffer [6].

Step 1. Construction of the Tetrahedron

We start of with four students identified as N(orth), S(outh), E(ast)
and W(est). Each designates one hand as the U(pper) hand and the other
hand as the L(ower) hand. N and S hold out their U hands while E and
W hold out their L hands. String 1 is held between UN and LW, string 2
between UN and LE, string 3 between LW and LE, string 4 between LW
and US, string 5 between LE and US, and string 6 between UN and US.
The completed tetrahedron is shown in Figure 2.6, with string 6 drawn in
such a way to facilitate the next step.

Figure 2.6
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Step 2. Transformation into the Cube
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Figure 2.7

Each of the four students holds out the other hand and places it at the
center of one of the four faces of the tetrahedron, as shown on the left side
of Figure 2.7. Each of these hands will grab the three sides of the triangular
face. The end result is a cube, as shown on the right side of Figure 2.7.
Each string forms a face of the cube.

Step 3. Transformation into the Dodecahedron

We first redraw the cube as shown in Figure 2.8.

e . A
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Figure 2.8



24 2 Regular and Semi-Regular Polyhedra

Now six other students enter the picture. They are identified as T(op
face), B(ottom face), H (northwest face), I (southwest face), J (southeast
face) and K (northeast face). Each of these students hold out both hands
and places them symmetrically about the center of the assigned face of the
cube. The line segment joining the two hands of each student is parallel to
a side of the cube, and the segments on adjacent faces are perpendicular to
each other. Each pair of these hands will grab the two sides of the square
face parallel to the segment they form. Each hand will also grab the nearer
one of the remaining two sides of the square face. The end result is a
dodecahedron, as shown in Figure 2.9.

Figure 2.9

It should be emphasized that while each face of the cube is formed of one
string, no part of this string is to be grabbed by the hands assigned to this
face. Instead, the other four strings joining adjacent pairs of vertices of
the face are grabbed, as illustrated in Figure 2.10. Failure to exercise the
caution in the preceding paragraph will still produce a dodecahedron, but
the whole structure will then fall apart in Step 4.

\ /
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Figure 2.10
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Step 4. Transformation into the Icosahedron

The original four students let go of their strings. The end result is an
icosahedron, as shown in Figure 2.11.
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Step 5. Transformation into the Octahedron

Each of the remaining six students slides both hands together. The end
result is an octahedron, as shown in Figure 2.12. Two strings which are
opposite sides of the original tetrahedron now form the same square cross-
section of the octahedron.

Step 6. Return to the Tetrahedron

The original four students N, S, E and W re-enter the picture. N puts
the U hand in triangle HKT (north and top), S puts the U hand in triangle
IJT (south and top), E puts the L hand in triangle JKB (bottom and east)
and W puts the L hand in triangle HIB (bottom and west). This is shown
in Figure 2.13.
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Figure 2.13

Each hands grabs the three strings it originally holds, and then the other
six students let go of theirs. The end result is a tetrahedron, as shown in
Figure 2.14.

Figure 2.14
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Section 3. Semi-Regular Polyhedra.

A polyhedron is said to be semi-regular if it satisfies condition (B) in
the definition of a regular polyhedron. Clearly the Platonic solids are semi-
regular, but they are now joined by infinitely many others. In Figure 2.15,
we depict the case n = 8 from each of two infinite classes of semi-regular
polyhedra — the prisms (4, 4, n) and the antiprisms (3, 3, 3, n), where n > 3.
In particular, the cube is the order-4 prism, and the regular octahedron is
the order-3 antiprism.

Figure 2.15

Apart from these three classes, there are other semi-regular polyhedra.
Let us use a geometric approach to see if we can unearth some of them.

By slicing off, in a systematic manner, the corners of the regular tetra-
hedron, we obtain the truncated tetrahedron (3,6,6), as shown in Figure
2.16.

Figure 2.16

The same process applied to the cube, the regular dodecahedron, the
regular octahedron and the regular icosahedron produces the truncated cube
(3,8,8), the truncated dodecahedron (3,10,10), the truncated octahedron
(4,6,6) and the truncated icosahedron (5,6,6), as shown in Figures 2.17,
2.18, 2.19 and 2.20.
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Figure 2.17

Figure 2.18

Figure 2.19
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Figure 2.20

If we truncate the cube or the octahedron to the midpoints of the edges,
we obtain the cuboctahedron (3,4,3,4). If we truncate the dodecahedron or
the icosahedron to the midpoints of the edges, we obtain the icosadodeca-
hedron (3,5,3,5). These are shown in Figures 2.21 and 2.22.

Figure 2.21
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Figure 2.22

Figure 2.23 shows the great rhombicuboctahedron (4,6,8) which are ob-
tained by truncation from the cuboctahedron.

Figure 2.23

Figure 2.24 shows the great rhombicosadodecahedron (4,6,10) which is
obtained by truncation from the icosadodecahedron.
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Figure 2.24

Figure 2.25 shows the small rhombicuboctahedron (3,4,4,4) which is ob-
tained from the cuboctahedron by taking the truncation to the midpoints
of the edges.

Figure 2.25
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By rotating the octagon in Figure 2.25 45°, we obtain a polyhedron which
has the same vertex sequence (3,4,4,4) as the small rhombicuboctahedron.
It has much less geometric symmetry and is not considered to be a new
semi-regular polyhedron. It is not obtained by truncation.

Figure 2.26 shows the small rhombicosadodecahedron (3,4,5,4) which
is obtained from the icosadedecahedron by taking the truncation to the
midpoints of the edges.

Figure 2.26

Are there some semi-regular polyhedra which are not obtained by trun-
cation? In any case, how can we find all of them? To do so, we return to
the combinatorial approach in Section 1 to prove our main result.

Theorem.
The vertex sequence of any semi-regular polyhedron is among the following:

(I (3,3,3), (4,4,4), (5,5,5), (3,3,3,3), (3,3,3,3,3);
(I1) (4,4,n),n > 3;
(II1) (3,3,3,n),n > 3;
(IvV) (3,6,6), (3,8,8), (3,10,10), (4,6,6), (5,6,6), (4,6,8), (4,6,10), (3,4,3,4),
(3,5,3,5), (3,4,4,4), (3,4,5,4), (3,3,3,3,4), (3,3,3,3,5).
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The thirteen polyhedra in (IV) are called sporadic semi-regular polyhe-
dra, and if their faces are regular polygons, they are called Archimedean
solids, named after another Greek philosopher.

Note that the combinatorial approach yields two additional semi-regular
polyhedra not obtained geometrically by truncation. They are the snub cube
(3,3,3,3,4) and the snub dodecahedron (3,3,3,3,5). Both have two versions
in opposite orientations, but they are not considered to be different semi-
regular polyhedra.

To prove the Theorem, let there be ¢ kinds of faces. For 1 < i < t, let
each face of the i-th kind be bounded by z; edges, and let the number of
such faces be F;. Suppose the vertex sequence of the solid has length n and
consists of \; copies of z; for 1 <i <t, with Ay + Ag+---+ X\t =n.

Count the vertices of each face bounded by z; edges. The total is z; F;.
Each vertex has been counted \; times for a total of \;V. It follows that
Fy=" 2'V. This is a generalization of our earlier result nV' = mF. Moreover,
we stlll have nV = 2F. Putting these into Euler’s Formula, we have V +
MV 4+ 2V -2V =20r

Al /\t 2 n—2
4+ .
1 z V 2
We call this the characteristic equation.

Each of n, z1, ..., x; is at least 3. We shall deduce from the charac-
teristic equation that at least one of the z’s is less than 6. Assuming the
contrary, we have the following contradiction:

2+n_2—/\1+ +)\<n<n+(n71)_n—2
Vv 2 6~ 6 3 2

Similarly, we can show that n = 3, 4 or 5. Assuming the contrary, we
have the following contradiction:

2+n—2_/\1+ +)\<n<n+(n 1)_n—2
1% 2 3~ 3 N

We now divide the proof into three parts, forn =3, n=4and n =5
respectively.
Part One. n = 3.

Let the vertex sequence be (a,b,c) with a < b < ¢, where 3 < a < 5. We
consider four cases.

Case l. a=b=c.

Since 3 < a < 5, the only possibilities here are (3,3,3), (4,4,4) and (5,5,5).
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Case 2. a=b<ec.

Consider a typical a-sided face ABCD ... (see Figure 2.27). Of the
other two faces at the vertex B, one must be a-sided, and the other c-sided.
Assume without loss of generality that the face alongside BC' is c-sided.
If we consider the vertex C, it follows that the face alongside C'D is a-
sided. Thus the neighbors of ABC'D ... have alternately a sides and c sides.
Hence ABCD ... must have an even number of neighbors, showing that a
is even. Since 3 < a < 5, we have a = 4. This gives rise to the infinite class
(4,4,m),n > 5.

a-sided

c-sided
a-sided

a-sided

Figure 2.27

Case 3. a<b=c.

The characteristic equation in this case is

o2 2 1

o Tb vy
Recall that 3 < a < 5. As in Case 2, b must be even. Suppose a = 3. We
have V = 1122_1’1). Since V' is a positive integer, the only meaningful values are
b =4, 6, 8 and 10. This gives rise to the vertex sequences (3,4,4), (3,6,6),
(3,8,8) and (3,10,10). Suppose a = 4. We have V = 88_bb. Hence b = 6,
giving rise to (4,6,6). Finally, suppose a = 5. We have V = 23%1). Hence
b = 6, giving rise to (5,6,6).

Case 4. a<b<ec.
The characteristic equation in this case is

11 1
+ o+

21
a b ¢ V 2
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Here, as in Case 2, all of a,b and ¢ must be even. Since 3 < a < 5, we
have a = 4, and the characteristic equation simplifies to

1 n 12 n 1

b ¢ Vo4
Suppose b > 8. Recall ¢ > b, so ‘Q/Jr}l = ;+ i < 411' We have a contradiction,
so b =6. We have V = 1224_‘20. Hence ¢ = 8 or 10, giving rise to the vertex
sequences (4,6,8) and (4,6,10).

Part Two. n =4.

Let the vertex sequence be some permutation of {a,b,c,d} such that
a<b<c<d, where 3 <a <5. The characteristic equation is
1 1 1 1 2

et etaTyth

Suppose a > 4. Then ‘2, +1= i + 11) + (1, + (11 < 1. This is a contradiction,
so a = 3, and the characteristic equation simplifies to }7 + i + é = ‘2/ + 3
Suppose b > 5. Then 12, + g = ; + (1: + ; < g This is another contradiction,

hence b = 3 or 4. We consider the two cases separately.

Case 1. b= 3.
Here, the characteristic equation simplifies further to
1 n 2 n 1
c d V3

Suppose ¢ > 6. Then ‘2/ + zl,) = i + é < :1)) Again this is a contradiction, so
¢ =3, 4 or 5. If ¢ = 3, we have the infinite class (3,3,3,n),n > 3.

We now have a = b =3 and ¢ = 4 or 5. We shall first show that the two
3’s cannot be consecutive in the vertex sequence. Assuming the contrary,
we let the vertex sequence be (3,3, ¢,d) and consider a typical triangular
face ABC' (see Figure 2.28). The vertex A must belong to a triangular face
adjacent to ABC'. Let this be ABD. Now the vertex C' must also belong to
a triangular face adjacent to ABC, so either A or B must belong to three
triangular faces, which is a contradiction.

D

Figure 2.28
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We shall now prove that ¢ = d, so that the only possible vertex sequences
are (3,4,3,4) and (3,5,3,5). Suppose ¢ < d. Consider a typical triangular face
ABC'. The other triangular faces shown in Figure 2.29 are dictated by the
form of the vertex sequence, which is (3, ¢, 3, d). Of the three faces adjacent
to ABC, two must contain the same number of edges, and one of A, B or
C cannot have (3, ¢, 3,d) as its sequence, a contradiction.

A
C
B
Figure 2.29

Case 2. b =4.

Here, the characteristic equation becomes

1 1 2 )

Suppose ¢ > 5. Then ‘2/ + 152 = i + (11 < g This is a contradiction, so ¢ = 4.
We have V = gz‘(li. Hence d = 4 or 5. As in Case 1, it can be shown that
(3,4,4,5) cannot be a vertex sequence, leaving (3,4,4,4) and (3,4,5,4) as the

only possibilities.
Part Three. n =5.

Let the vertex sequence be some permutation of {a, b, ¢, d, e} such that
a<b<c<d<e, where 3 <a <5. The characteristic equation is

1+1+1+1+1_2+3
a b ¢ d e V 2

Suppose d > 4. Then

2+3_1+1+1+1+1<1+1+1+1+1_3

V.2 a b ¢ d e~ 3 3 3 4 4 2
which shows the supposition to be untenable. Hence a = b =c¢ = d = 3.
We have V = 612"; Hence e = 3, 4 or 5, giving rise to the vertex sequences
(3,3,3,3,3), (3,3,3,3,4) and (3,3,3,3,5).

This completes the proof of the theorem.
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The argument was due to Tom Boag, Charles Boberg and David Hughes
[1]. They were junior high school students at the time, when the SMART
Circle was not yet in existence. An earlier and different proof of the theorem
was given by L. Lines in [3], a book which is now out of print.

The statistics for the Archimedean solids are summarized in the following
chart, where F; denotes the number of faces with 7 edges. These are obtained
by expressing all other variables in terms of V' and then substituting into
Euler’s Formula.

Vertex Statistics
Sequences E vV F3 Fy F5 Fg Fg Fi
(3,6,6) 18 12 4 0 0 4 0 0
(3,8,8) 36 24 8 0O 0 0 6 0
(3,10,10) 9 60 20 0O O O O 12
(4,6,6) 36 24 0O 6 0 8 0 0
(5,6,6) 90 60 0O 0 12 20 O 0
(3,4,3,4) 24 12 8 6 0 0 0 0
(3,5,3,5) 60 30 20 0 12 0 O 0
(4,6,8) 72 48 0 12 0 8 6 0
(4,6,10) 180 120 0 30 0 20 O 12
(3,4,4,4) 48 24 8 18 0 0 O 0
(3,4,5,4) 120 60 20 30 12 0 O 0
(3,3,334) 60 24 32 6 0 0 O 0
(3,3,3,35) 150 60 8 0 12 0 O 0
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Exercises

1. The tetrahedron has 6 edges and the square pyramid has 8 edges.
These are the simplest two polyhedra. Intuitively, no polyhedron can
have exactly 7 edges. Prove this algebraically using Euler’s Formula.

2. (a) With two students and one string, form the skeleton of a tetra-
hedron.

(b) With three students and one string, form the skeleton of a stan-
dard octahedron.

(¢) With four students and one string, form the skeleton of a cuboid.

3. (a) Draw the Schlegel diagram of one orientation of the snub cube.

(b) Draw the Schlegel diagram of one orientation of the snub dodec-
ahedron.
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