
Chapter One: Error-Correcting Codes

Section 1. From the Alt Code to the Hamming Code

In a war, those who start it are usually at a safe distance from the front.
Orders are sent to the troops via binary messages, sequences of 0s and 1s

which may be interpreted according to a code by both the transmitter and
the receiver. For example, if we want the troops to “Do nothing”, we send

the message 0. If we want the troops to ”Drop the bomb”, we send the
message 1. This process is called encoding.

When the transmitted message is received, it must be interpreted. This

process is called decoding. Here, 0 is decoded as ”Do nothing” and 1 as
”Drop the bomb”. However, electronic transmissions may contain errors,

due to imperfect equipments or enemy sabotage. We will assume that an
error consists of a single digit-reversal per transmission.

In other words, the worst that can happen is that one of the 0s may
turn into a 1, or one of the 1s may turn into a 0, but neither can happen

twice and both cannot happen together in a single transmission. Even this
is serious enough. In our example, if a 1 turns into a 0, we may not wake
up in time to find that we have lost World War II. On the other hand, if a 0

turns into a 1, we may have started World War III while still fighting World
War II.

We would like to have some way of telling whether we can trust what
we have received. So we modify our simple code as follows: 00 would mean

”Do nothing” and 11 would mean ”Drop the bomb”. If an error occurs, we
will receive either 10 or 01, and we will know something has happened to

the message. This is a prototype of what is known as an error-detecting
code.

When we learn that an error has occurred, the natural thing is to ask

headquarters to retransmit the message. If errors occur only infrequently,
this is tolerable. If they occur often enough, it is at least a nuisance. More-

over, the request for retransmission is also sent electronically, and errors can
occur there too.

What we would like is a code which not only tells us when something
has gone wrong, but tells us exactly what has gone wrong. This is asking for
a lot, but as is often the case, when we believe that something can be done,

there may just be a way to do so. We now modify our code again, with 000
meaning ”Do nothing” and 111 meaning ”Drop the bomb”. If we receive

001, 010 or 100, we do nothing. If we receive 110, 101 or 011, we drop the
bomb. This is a prototype of what is known as an error-correcting code.

1© Springer International Publishing AG 2018
A. Liu, S.M.A.R.T. Circle Projects, Springer Texts
in Education, DOI 10.1007/978-3-319-56811-9_1

Note that it is unrealistic to increase the length of the message and

continue to assume that there is at most one error per transmission. So
let us fix the length of any message to 15 binary digits, with at most one

digit-reversal per transmission.

In some sense, even this is unrealistic since if one digit-reversal can occur,
there is no reason why a second one cannot. What must be emphasized is

that our assumption amounts to a mathematical model which simulates
reality, but is not reality itself. We can get away with it if the probability

of a single digit-reversal is high enough to worry us, but the probability of
multiple digit-reversals is low enough to lose any sleep over.

Of the 15 digits, we may view some of them as conveying the intended
message while the remaining ones are for security measure. The efficiency

of a code using this 15-digit transmitter is defined as n
15 . where n is the

number of digits used for the message.

How can we extend our earlier examples with short messages to 15-digit

messages? In an error-detecting code, we need to distinguish between two
scenarios, whether the message contains an error or not. A single binary

digit would allow us to do so. Hence the efficiency of such a code can be as
high as 14

15 . Obviously. we cannot have 15
15 as we will have no protection at

all.

How can we encode the intended message 10110100010111? Should we
add a 0 or a 1 as the fifteen digit? Let us reexamine the simple example

earlier. To the message 0, we add a 0, and to the message 1, we add a
1. Note that we are not copying the message, but arrange for the coded

message to contain an even number of 1s. Since 10110100010111 has 8 1s,
we add a 0 to yield the coded message 101101000101110. This code is called

the parity-check code, and the added digit is called the parity-check digit.

Decoding is straight-forward. Simply count the number of 1s in the

received message. If no digit-reversal has occurred, this number is even as
agreed. If a single digit-reversal has occurred, whether a 0 turned into a 1
or vice versa, the number of 1s will become odd. Thus a received message

001100101010110 contains an error. We do not know the intended message
as any of the 15 digits may be the one which has been reversed.

In an error-correcting code on the 15-digit transmitter, we need to dis-
tinguish between sixteen scenarios, whether the message contains an error,

and if so, which of the 15 digits has been reversed. We need four binary
digits to do so because 24. = 16. Thus the efficiency of such a code cannot

be higher than 11
15 .

2 1 Error-Correcting Codes

However, there is nothing in our earlier example to suggest how we can

encode an 11-digit message. There, we stretch the message 0 to 000 and the
message 1 to 111. This time, we are copying the message, twice, so that there

are altogether three copies of the intended message. This means that the
efficiency of this code is only as high as 5

15 , with the message 10110 encoded

as 101101011010110. This code is called the triple-repetition code. It is
also called the Alt code after its inventor (see [2]).

Decoding is based on the simple idea of majority rule. With at most one

digit-reversal among three copies of the intended message, at least two copies
must be correct. If all three agree, there are no errors. If not, the copy in the

minority can safely be discarded. Thus a received message 010010000101001
contains an error in the seventh digit, and the intended message is 01001.

In 1984, Mark Rabenstein was an eighth grade student in Edmonton and
a member of the SMART Circle. He had the following complaint about the
Alt code: “If at most one digit-reversal can occur, why do we have to have

three copies of the message? Wouldn’t two be enough?”

“If an error has occurred so that the two copies are different, how do you

know which is the correct one without reference to a third copy?” I asked.

“Just tag a parity-check digit to one of the copies, and you can tell if

that one is correct.”

That was a brilliant observation. In our fifteen-digit transmitter, we can
use seven digits for the intended messages, repeat it a second time, and tag

a parity-check digit to the second copy. For instance, the intended message
0011001 is encoded as 001100100110011.

Decoding is straight-forward. Compare the two copies of the intended
message. If they agree, we can accept it. If not, apply the parity-check

to the second copy to decide which one we would accept. For instance, if
101010110111011 is received, we see that 1010101 and 1011101 are different.
Applying the parity-check to 10111011, we have an even number of 1s. Thus

the received message contains an error in the fourth digit, and the intended
message is 1011101.

The efficiency of 7
15 is a big improvement over the Alt code. The Raben-

stein code was published in [10].

The next break-through came in 1997. Han-Shian Liu (no relation to
the author), then a sixth grade student in Taipei, was a member of the Chiu
Chang Mathematical Circle. His (error-free) email message to me contained

a gem.

From the Alt Code to the Hamming Code 3

“Mark was really smart to think of using the parity-check digit in an

error-correcting code. It works so beautifully. Then I wonder whether I can
make even more use of it. After experimenting with the idea for a while, I

drew a tic-tac-toe board. (See Figure 1.1.) Each of the nine boxes contained
a message digit. Then I added six parity-check digits, one for each row and

one for each column.”

For example, if the intended message is 011101001, we use the digits A
to J are used to convey it, as shown in the grid below on the left. The digits

K to Q are chosen so that the number of 1s in each row and each column is
even.

A D G N

B E H P

C F J Q

K L M

0 1 0 1

1 0 0 1

1 1 1 1

0 0 1

A D G N

B E H P

C F J Q

K L M

0 1 0 1

1 0 0 1

0 1 1 1

0 0 1

Figure 1.1

Suppose the received message is as shown in the grid above on the right.

Then the parity-check fails for the third row and the first column. It follows
that the single digit-reversal occur at their intersection, namely, the box

containing the digit C.

Han-Shian’s code uses parity-check in two dimensions, and has an ef-
ficiency of 9

15 . This Liu code was published in [8], a paper which also

contains an improved version that reaches the efficiency of 10
15 . So we are

one step away from a perfect code with efficiency of 11
15 .

To mount this final assault, we use a set-theoretic representation of the
tic-tac-toe board. Label the columns with a, b and c from left to right, and

the rows with d, e and f from top to bottom. Then each box containing a
message digit is represented by a two-element subset of {a, b, c, d, e, f} while
each box containing a parity-check is represented by a one-element subset.

These two groups are separated from each other by a vertical line. Each
parity-check digit is chosen so that the total number of 1s under columns

containing the element which represents it is even. For example, the message

4 1 Error-Correcting Codes

101111000 is encoded as shown in the chart below.

a a a a

b b b b
c c c c

d d d d

e e e e
f f f f

1 0 1 1 1 1 0 0 0 1 1 0 1 0 0

A B C D E F G H J K L M N P Q

Suppose the message in the chart below has been received. To decode it,
we count the total numbers of 1s under the columns containing the elements

a, b, c, d, e and f . They are 0, 3, 2, 2, 3 and 2 respectively. Since parity-
check fails for the elements b and e, the error occurs at the element under

the subset {b, e}. Hence the intended message is 000101010.

a a a a
b b b b

c c c c
d d d d

e e e e

f f f f

0 0 0 1 1 1 0 1 0 0 0 1 1 1 1

It is now clear why there is still room for improvement. Han-Shian had

only made use of some of the non-empty subsets but not all of them. If we
cut the set down to {a, b, c, d}, there are exactly fifteen non-empty subsets,

four of which are singletons that give rise to the parity-check digits. For
example, the message 10111100011 is encoded as shown in the chart below.

a a a a a a a a

b b b b b b b b
c c c c c c c c
d d d d d d d d

1 0 1 1 1 1 0 0 0 1 1 0 1 0 0

Decoding is by the same method as in the Liu code. Suppose the message
in the chart below has been received. The total numbers of 1s under the

columns containing the elements a, b, c and d are 3, 5, 4 and 6 respectively.
Since parity-check fails for the elements a and b, the error occurs at the

element under the subset {a, b}. Hence the intended message is 10111100011.

From the Alt Code to the Hamming Code 5

a a a a a a a a
b b b b b b b b

c c c c c c c c
d d d d d d d d

1 0 1 1 1 0 0 0 0 1 1 0 1 0 0

This perfect code is due independently to Golay [3] and Hamming [4]

and is commonly known just as the Hamming code. The description given
here is from [1]. Since it was already known early in the history of error-

correcting codes, the Rabenstein code and the Liu code are irrelevant from
an application point of view. However, they are the work of students and

have high pedagogical value. They form a sequence of plausible reasoning
that could eventually lead a lesser mortal from the simplistic Alt code to

the same discovery by the founding fathers of coding theory.

In summary, the first step is to replace three copies of the messages by
two, and incorporating parity-check. The second step is to perform parity-

check in two dimensions instead of one dimension. The third step is to
represent the code in set-theoretic format instead of geometric format. The

chronology is given in [5].

6 1 Error-Correcting Codes

Section 2. Two Applications of the Hamming Code

We give two unexpected applications of the Hamming code (see [7]).
Both of them have strong recreational flavor.

Alice and Michael, along with thirteen of their friends, enter in a team

competition organized by a certain hi-tech company. They will be put re-
spectively into rooms A to Q (there are no rooms I and O). Each room is

considered to be in one of two states, 0 or 1, assigned completely at random.
Once they are isolated in their rooms, the team members will be informed of

the state of each room except their own. Simultaneously, each must either
pass, or declare the state of her or his room. They will have no further com-

munication with their teammates, and are not aware of the action taken by
any of them. If everybody passes, the team will be disqualified. If at least

one declaration is incorrect, the team will also be disqualified. On the other
hand, if there is at least one declaration, and all declarations are correct,
the team wins a prize.

Alice, Michael and friends are given a short time to come up with some
strategy. For instance, they could designate Alice as the guesser and have

everyone else pass. The probability of winning a prize would then be 1
2 .

However, they would like to do better. Alice and Michael come up with the

following strategy based on the Hamming code.

We first give an illustration. Suppose Alice is in Room G and Michael
is in Room N , and the actual states are as shown in the chart below.

A B C D E F G H J K L M N P Q

a a a a a a a a
b b b b b b b b

c c c c c c c c
d d d d d d d d

0 1 1 1 0 1 1 0 0 1 1 0 0 1 0

Alice is in Room G which corresponds to the subset {a, c}. So she applies

the parity-check to the element b and to the element d. Both tests pass. Now
she applies the parity-check to the element a and to the element c, without

taking the information on her room, which is unknown to her. Both will
pass if the state of Room G is 0. So Alice will declare the opposite state 1.

Michael is in Room N which corresponds to the subset {b}. So he applies

the parity-check to the element a. It fails. So there is no need to apply the
parity-check to the elements c and d. Michael just passes.

This illustrates how things work in general. A team member declares
if, and only if, the state of her or his room can be chosen to correct the

single error in the corresponding Hamming code, but the opposite state is
declared.

Two Applications of the Hamming Code 7

If the original set-up contains no errors when treated as a Hamming

code, every team member will make an incorrect declaration. If the original
set-up contains an error, only the team member in the room corresponding

to where the error occurs will declare, and the declaration will be correct.

Recall that in the Hamming code, the 4 protection digits are uniquely
determined by the 11 message digits. Of the 24 = 16 possible sequences for

those 4 digits, only the one contains no errors. Hence 15
16 of the time, the

original set-up contains an error. It follows that the probability of winning

a prize is 15
16 .

This application is given in [12] as the problem titled Crowning the Mino-

taur. A special case was presented in [6]. The next application, in which we
continue the story of Alice and Michael, is based on a problem in the Fall

Round of the 2007 International Mathematics Tournament of the Towns.
Only the former source mentions the Hamming code.

To celebrate their success in the team competition, the fifteen friends

have a party, during which Alice and Michael perform a magic trick. While
Michael is out of the room, the audience chooses one of the fifteen letters

from A to Q inclusive, but excluding I and O. Then the audience places
fifteen coins in a row, arbitrarily deciding whether each should be heads

or tails. Alice either leave them alone or turns over exactly one coin, and
leaves the room while Michael is brought back in. By looking at the coins

and without knowing which one Alice has turned over, Michael determines
the letter chosen by the audience.

Let us give an illustration. We use 0 to stand for a coin which is heads

and 1 for a coin which is tails. Suppose the audience chooses the letter K
and places the coins as shown in the chart below.

A B C D E F G H J K L M N P Q

a a a a a a a a
b b b b b b b b
c c c c c c c c

d d d d d d d d

1 0 1 1 1 0 0 0 0 1 1 0 1 0 0

Applying the parity-check, Alice finds that it fails for a and b but passes

for c and d. Since the letters under column K are b and d, Alice wants
the parity-check to fail for b and d but pass for a and c. So she needs to

reverse the parity for a and d, This can be done by flipping the coin under
the subset {a, d}. Hence she changes the 0 under column H to 1. Had the

audience chosen the letter F , Alice would have left the coins alone.

When Michael returns, he applies the parity-check, and finds that it
passes for a and c but fails for b and d. This tells him that the letter chosen

by the audience is the one associated with {b, d}, namely K.

8 1 Error-Correcting Codes

Section 3. Reed-Muller Code

We now take up the issue of the correction of multiple errors. Our
primary example is the Reed-Muller code (see [9] and [11]), which may

be considered as an extension of the Hamming code. For a fifteen-digit
transmitter, it can correct up to three errors. We set up a chart as in
the Hamming code, except that there is now an additional vertical line

separating the two-element subsets from the others, as shown below.

Suppose the intended message is 00101. We will now add ten digits for

protection. To see what digit we must add under the column {a, b}, we
consider the digits under the other columns which contain {a, b}, namely,

{a, b, c, d}, {a, b, c} and {a, b, d}. Since they are 0, 0 and 1 respectively, and
we want an even number of 1s, we add the digit 1 under the column {a, b}.
The digits under the next five columns are chosen in an analogous manner,
and the chart is them completed as in the Hamming code, as shown below.

a a a a a a a a

b b b b b b b b
c c c c c c c c

d d d d d d d d

0 0 1 0 1 1 0 1 1 0 1 1 0 1 0

Suppose the following transmission via the Reed-Muller code has been

received, with up to three errors.

a a a a a a a a
b b b b b b b b

c c c c c c c c
d d d d d d d d

0 0 1 0 0 0 0 1 1 0 1 0 1 1 0

We now perform a parity-check on the subset {a, b}. The digits under

the columns {a, b, c, d}, {a, b, c}, {a, b, d} and {a, b} are 0, 0, 1 and 0. Hence
the test fails. Note that this is not saying that the digit under {a, b} is an
error. It says that either one of these four digits is an error, or three of the

four are errors. Performing parity-checks on the other two-element subsets,
we find that the test fails for {b, c}, {b, d} and {c, d} but passes for {a, c}
and {a, d}.

We now perform a parity-check on the subset {a}. The digits under the

columns {a, b, c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {a, b}, {a, c}, {a, d} and {a}
are 0, 0, 1, 0, 0, 0, 1 and 0. Hence the test passes. Performing parity-checks

on the remaining subsets, we find that the test fails for {b}, {c} and {d}.

Reed-Muller Code 9

We use P, Q and R to denote the three possible subsets of {a, b, c, d}
which are errors. Then an odd number of them contain {a, b}, {b, c}, {b, d},
{c, d}, {b}, {c} and {d} while an even number of them contain {a, c}, {a, d}
and {a}.

So {a} appears either 0 or 2 times in P, Q and R while each of {b}, {c}
and {d} appears either 1 or 3 times. Because {a, b} appears either 1 or 3

times and it cannot appear without {a}, {a} must appear exactly 2 times,
say in P and Q. Also, {b} cannot appear 3 times as otherwise {a, b} will

appear twice, but it must appear together with {a}. We may assume that
it appears only in P .

Since each of {b, c} and {b, d} appears 1 or 3 times, both {c} and {d}
must appear in P . Since each of {a, c} and {a, d} appears 0 or 2 times,

both {c} and {d} must appear in Q. Since {c, d} appears 1 or 3 times, both
{c} and {d} must appear in R also. This is consistent with each of them
appearing 1 or 3 times. Hence the errors are P = {a, b, c, d}, Q = {a, c, d}
and R = {c, d}, and the correct message is 10110.

While the decoding procedure in our example seems rather ad hoc, it

does have a firm theoretical basis (see [1]). Let us give a more mathematical
analysis of the above example.

For any set S, we define S2 to be the collections of all non-empty subsets
of S of size up to 2. In the above example,

P 2 = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}},

Q2 = {{a}, {c}, {d}, {a, c}, {a, d}, {c, d}},

R2 = {{c}, {d}, {c, d}}.

The symmetric difference of a number of collections consists of all ele-
ments which belong to an odd number of these collections. The symbol for

symmetric difference is Δ. In the above example,

P 2ΔQ2ΔR2 = {{b}, {c}, {d}, {a, b}, {b, c}, {b, d}, {c, d}}.

The subsets in this collection are precisely those for which the parity-check

fails. Thus P 2ΔQ2ΔR2 may be considered as the pattern of parity distur-
bance caused by the errors P, Q and R.

This pattern of parity disturbance may be caused by a different group

of errors, namely {b, c, d}, {a, b}, {a} and {b}, in that

{b, c, d}2Δ{a, b}2Δ{a}2Δ{b}2

= {{b}, {c}, {d}, {b, c}, {b, d}, {c, d}}Δ{{a}, {b}, {a, b}}Δ{{a}}Δ{{b}}

= {{b}, {c}, {d}, {a, b}, {b, c}, {b, d}, {c, d}}.

10 1 Error-Correcting Codes

However, this does not invalidate the Reed-Muller Code as the second

group contains four errors, more than the three we are allowed for a 15-digit
transmitter. We claim that if two different groups of errors cause the same

pattern of parity disturbance in a 15-digit transmitter, then one of them will
consist of four or more sets.

Since they cause the same pattern of parity disturbance independently,

they must cause no parity disturbance when acting together. After removing
common sets from the two groups, we are left with a non-empty collection

since the two groups of errors are different. We now prove that in a 15-digit
transmitter, the number of sets in any non-empty collection which causes

no parity disturbance is at least seven. It follows that four or more of them
must come from the same group of errors, and our claim would be justified.

We consider four cases.

Case 1. The collection consists only of 1-element sets.
Since there is at least one of them, the parity for the lone element in this

set will be disturbed.

Case 2. The collection contains at least one 2-element set but no 3-element

or 4-element sets.
The parity for the pair of elements in a 2-element set will be disturbed.

Case 3. The collection contains at least one 3-element set but not {a, b, c, d}.
We may assume that the 3-element set is {a, b, c}. By itself, it will disturb
the parity of {a, b}. To nullify this, the collection must contain either {a, b, d}
or {a, b}, but not both. Similarly, the collection must contain exactly one
of {a, c, d} and {a, c}, and exactly one of {b, c, d} and {b, c}. Thus there

are four sets in the collection with 2 or 3 elements. Collectively, they will
disturb the parity of each of {a}, {b} and {c}, and we need to include these

three 1-element sets, bringing the total to seven sets.

Case 4. The collection contains {a, b, c, d}.
As in Case 3, the collection must contain either one or three of the set in
each column of the chart below.

{a, b, c} {a, b, c} {a, b, d} {a, b, c} {a, b, d} {a, c, d}
{a, b, d} {a, c, d} {a, c, d} {b, c, d} {b, c, d} {b, c, d}
{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

We consider five subcases.
Subcase 4(a). There are no 3-element sets in the collection.

Then we must include all six 2-element sets, bringing the total to seven sets.
Subcase 4(b). There is only one 3-element set in the collection.

We may assume that it is {a, b, c}. Then we must include {a, d}, {b, d} and
{c, d}. This in turn forces the inclusion of {a}, {b} and {c}, bringing the
total to eight sets.

Reed-Muller Code 11

Subcase 4(c). There are exactly two 3-element sets in the collection.

We may assume that they are {a, b, c} and {a, b, d}. Then we must include
{a, b} and {c, d}. This in turn forces the inclusion of {c} and {d}, bringing

the total to seven sets.
Subcase 4(d). There are exactly three 3-element sets in the collection.

We may assume that they are {a, b, c}, {a, b, d} and {a, c, d}. Then we must
include {a, b}. {a, c} and {a, d}, already bringing the total to seven sets.
Subcase 4(e). All four 3-element sets are in the collection.

Then we must also include all six 2-element sets, already bringing the total
to eleven sets.

We give some additional examples on the Reed-Muller Code. As before,
we use P, Q and R to denote the three possible subsets of {a, b, c, d} which

are errors.

Example 1.
Decode the received message sent under the Reed-Muller code.

a a a a a a a a
b b b b b b b b

c c c c c c c c
d d d d d d d d

1 1 1 1 1 0 1 1 0 0 1 0 0 0 0

Solution:
The parity-check fails for {a, b}, {b, c} and {b, d}. Thus each of {a}, {b},
{c} and {d} appears an even number of times. Since all are featured in

{a, b}, {b, c} or {b, d}, each appears exactly twice. Let {b} appear in P and
Q. Each of {a}, {c} and {d} appears an odd number of times with {b},
which means exactly once. Hence they must appear together in R. Since
each of {a, c}, {a, d} and {c, d} appears an even number of times, {a}, {c}
and {d} must appear together again, this time with {b}. Hence the errors
are P = {a, b, c, d}, Q = {b} and R = {a, c, d}, and the correct message is

01101.

Example 2.
Decode the received message sent under the Reed-Muller code.

a a a a a a a a
b b b b b b b b

c c c c c c c c
d d d d d d d d

1 0 1 0 1 1 0 1 1 0 1 1 0 1 0

12 1 Error-Correcting Codes

Solution:

All ten parity-checks fail. Hence P = {a, b, c, d} and Q = R = ∅, and the
correct message is 00101.

Example 3.
Decode the received message sent under the Reed-Muller code.

a a a a a a a a

b b b b b b b b
c c c c c c c c

d d d d d d d d

1 1 0 0 1 1 0 1 1 1 0 0 1 1 0

Solution:

The parity-check fails for {b}, {c}, {a, b} and {b, d}. Thus each of {a},
and {d} appears an even number of times. Since the parity-check for {a, d}
passes, they must appear together twice, say in P and Q. Now {b} must

appear with {a} an odd number of times and with {d} an odd number of
times. Hence it appears in exactly one of P and Q, sat P , and not in R.

Since the parity-check for {b, c} pass, {c} does not appear together with {b},
and similarly, it does not appear together with {a} or with {c}. Hence the

errors are P = {a, b, d}, Q = {a, d} and R = {c}, and the correct message
is 11101.

Example 4.
Decode the received message sent under the Reed-Muller code.

a a a a a a a a

b b b b b b b b
c c c c c c c c

d d d d d d d d

1 1 0 0 1 0 0 1 0 1 1 1 1 1 1

Solution:

The parity-check fails for {b}, {c}, {b, c}, {b, d} and {c, d}. Thus each of
{a} and {d} appears an even number of times. Since {a} is not featured
in {b, c}, {b, d} or {c, d}, it does not appear at all. Since {d} is featured

in {b, d} and {c, d}, it appears exactly twice, say in P and Q. Each of {b}
and {c} appears once with {d}. Hence each appears exactly once. Since the

parity check for {b, c} fails, they appear together once, say in P . Hence the
errors are P = {b, c, d}, Q = {d} and R = ∅, and the correct message is

11000.

Reed-Muller Code 13

If in our chart listing the subsets of {a, b, c, d}, we put in a third ver-

tical line separating all three-element subsets from the others (well, just
{a, b, c, d}), we can correct up to seven errors. The message now consists of

a single digit, and it is easy to see that encoding simply repeats it to yield a
total of fifteen copies. We have come full circle and return to the majority

rule (eight out of fifteen in this case) which is the basis for the Alt Code.

14 1 Error-Correcting Codes

Exercises

1. Design an error-correcting code with efficiency 10
15 .

2. Random justice is applied to three prisoners. On Decision Day, each

prisoner will be given a hat to wear, which may be black or white.
He can see the other two hats but not his own. At some point, the

Warden will call for a simultaneous declaration from each prisoner,
which he must make without the benefit of knowing how the other

two will declare. He must declare “pass”, “black” or “white”. If the
declaration is indeed’ the color of his hat, he is right. If it is the other
color, he is wrong. The prisoners will only go free if at least one of them

declares, and all those who declare are right. The three prisoners get
together the night before Decision Day and discuss strategies. What

can they do to make the probability of their going free as high as 3
4?

3. For a 15-digit transmitter, the efficiency of the Reed-Muller Code is
5
15 . Can this be improved?

Exercises 15

Bibliography

[1] N. Alon and A. Liu, An application of set theory to coding theory,

Math. Mag. 62 (1989) 233–237.

[2] F. L. Alt, A Bell Telephone Laboratories’ computing machine (I),
Math. Comput. 3 (1948/49) 1–13.

[3] M. J. E, Golay, Notes on digital coding, Proc. I.E.E.E. 37 (1949) 657.

[4] R. W. Hamming, Error detecting and correcting codes, Bell System

Tech. J. 29 (1950) 147–160.

[5] A. Liu, In Search of a Missing Link: A Case Study in Error-Correcting

Codes, Math. Mag., 32 (2001) 343–347.

[6] A. Liu, A Magic Trick with Eight Coins, 8th Gathering for Gardner

Exchange Book, Vol. 1 (2006) 131–133.

[7] A. Liu, Two Applications of a Hamming Code, Coll. Math. J. 40
(2009) 2–5.

[8] H.-S. Liu and A. Liu, Error-correcting codes (in Chinese), Math. Media

91 #3 (1999) 59–63.

[9] D. E. Muller, Application of Boolean algebra to switching circuit de-

sign and to error detection, IEEE Trans. Comput. 3 (1954) 6–12.

[10] M. Rabenstein, An example of an error correcting code, Math. Mag.

58 (1985) 225–226.

[11] I. S. Reed, A class of multiple-error-correcting codes and the decoding
scheme, em IEEE Trans. Inf. Theory 4 (1954) 38–49.

[12] D. E. Shasha, Puzzling Adventures, W. W. Norton, New York, (2005)
35–37 and 160–163.

16 1 Error-Correcting Codes

	1 Error-Correcting Codes
	Section 1. From the Alt Code to the Hamming Code
	Section 2. Two Applications of the Hamming Code
	Section 3. Reed-Muller Code
	Exercises
	Bibliography

