Springer Texts in Education

Andy Liu

5.M.A.R.T. Circle
Projects

@ Springer



Springer Texts in Education



More information about this series at http://www.springer.com/series/13812



Andy Liu

S.M.A.R.T. Circle Projects

@ Springer



Andy Liu

Professor Emeritus

Department of Mathematical and Statistical
Sciences

University of Alberta

Edmonton, AB

Canada

ISSN 2366-7672 ISSN 2366-7680 (electronic)
Springer Texts in Education

ISBN 978-3-319-56810-2 ISBN 978-3-319-56811-9  (eBook)

DOI 10.1007/978-3-319-56811-9
Library of Congress Control Number: 2017946034

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



This book is dedicated to the past members of the S. M. A. R. T. Circle,
in particular to the Magnificent Seven:

Mark Rabenstein
Graham Denham
Jason Colwell
Byung-Kyu Chun
Robert Barrington Leigh
David Dong-Uk Rhee

Mariya Sardarli



Preface

A Brief History of the S.M.A.R.T.Circle

A most beneficial side effect of the collapse of the former Soviet Union
in 1992 was the migration of the Mathematical Circles across the Atlantic
to the United States. Mathematical Circles, originated in Hungary during
the nineteenth century, are a glorious tradition in Eastern Europe. They
are organizations which discover and nurture young mathematical talents
through meaningful extra-curricular activities.

The process took a few years, leading to the formation in 1998 of the
Berkeley Mathematical Circle. With the support of the Mathematical Sci-
ences Research Institute, the movement has caught fire in the United States,
culminating in the formation of a Special Interest Group in the Mathemat-
ical Association of America under the leadership of Tatiana Shubin of San
Jose State University.

Unbeknown to this community, a Mathematical Circle had existed in
North America almost two decades earlier. The ultimate inspiration was
still of Soviet origin, but the migration took place across the Pacific, via the
People’s Republic of China in the form of their Youth Palaces. This was the
S.M.A.R.T. Circle in Edmonton, Canada, founded in 1981. The acronym
stood for Saturday Mathematical Activities, Recreations & Tutorials.

I was born in China during the over-time sudden-death period of the
Second World War, but moved to Hong Kong at age six. Thus I had never
attended any session of any Youth Palace. However, I followed reports of
their activities, and this fueled my interest in mathematics. The first math-
ematics book I had was a Chinese translation of Boris Kordemski’s Moscow
Puzzles, which was on their recommended reading list. An English version
is now an inexpensive Dover paperback. Later, I acquired Chinese transla-
tions of several wonderful books by Yakov Perelman. Dover has published
his Figures for Fun in English.

I came to Canada at age twenty, and eventually got a tenure-track posi-
tion at the University of Alberta in 1980. That fall, I was invited to a general
meeting of the Edmonton Chapter of the Association for Bright Children.
My comment was that their activities seemed heavily biased towards the
Fine Arts. Having put my foot in my mouth, I was obliged to take some
concrete action. The next spring, the S.M.A.R.T. Circle was born.

During the first year, the members ranged from Grade 3 to Grade 6, be-
cause of the clientele of the A.B.C. However, to do meaningful mathematical
activities, I preferred the children to be a bit more mature. So the Grade
level rose by one each year, until in 1985, the members ranged from Grade
7 to Grade 10. Many of them stayed throughout this period.

vii



viii Preface

As we moved away from the normal age of the clientele of the A.B.C.,
the Circle practically became an independent operation. This also became
necessary because in 1983, we received a grant of $1,500 from the University
of Alberta, arranged by Vice-President Academic Amy Zelmer. With the
money, I built up a Circle Library containing mathematical books, games
and puzzles. This was the only funding the Circle had received in its thirty-
two year history.

We met on the University of Alberta campus from 2:00 pm to 3:00 pm
every Saturday in October, November, February and March. A second class-
room adjacent to the meeting room was open from 1:30 pm to 3:30 pm as
the Circle Library. Adrian Ashley, a former Circle member, was hired at
$5 an hour to look after it. There was a comedy of error in that for a while,
his salary came out of the Student Union cafeteria account! They soon put
a stop to that, but never bothered to claim readjustment.

Because of the members’ tender ages, most came with their parents, and
some parents stayed in Circle Library during the session. Members also had
half an hour before and half an hour after the session to browse through.
Sometimes, some younger members’ attention span wandered during the
session, and they would drift to the Circle Library for a few minutes.

In 1986, the three-year period of the grant ran out. As I closed the
account, I turned the Circle Library over to the Faculty of Education. Then
I started building a replacement out of my own pocket. Meanwhile, the
A.B.C. had acquired new headquarters in the form of a house, where the
basement was set up as a classroom. The Circle was invited to move its
operation there. As a result, I restarted the session for A.B.C. members
from Grade 3 to Grade 6 again. This went from 1:00 pm to 2:00 pm while
the existing session for the older children ran from 2:30 pm to 3:30 pm. We
had quite a few sibling pairs. Sometimes, one was in class in the basement
while the other waited upstairs and played with mathematical games and
puzzles from the new Circle Library. Sometimes, they sat in the same session
despite any disparity in age.

In 1991, this arrangement came to an end, and the Circle moved back
to the university campus. Only the Grade 7 to Grade 10 session survived
the move. The meeting time was once again from 2:00 pm to 3:00 pm. A
section at the back of the classroom was reserved for the Circle Library.

In 1996, there was a reverse migration of the Circle movement back across
the Pacific, to Taiwan. My friend Wen-Hsien Sun of Taipei started the Chiu
Chang Mathematical Circle, initially based on my model and using much of
the material I had accumulated over a decade and a half. Both Circles closed
in 2012, though mine was reincarnated as the J.A.M.E.S. Circle, standing
for Junior Alberta Mathematics for Eager Students. It is run by my former
student Ryan Morrill.



Preface ix

The activities of the S.M.A.R.T. Circle may be loosely classified into the
following overlapping categories:

1. Mathematical Conversations;
2. Mathematical Competitions;
3. Mathematical Congregations;

4. Mathematical Celebrations.

At the beginning, the Circle activities consist only of the first two. The
last two did not emerge until the second half of our Circle’s thirty-two year
history. For a description of these activities, see the companion volume The
S.M.A.R.T. Circle — Overview.

The Mathematics Conversations are the heart and soul of the Circle.
There is a Fall Session and a Winter Session each academic year. The Fall
Session runs in October and November while the Winter Session runs in
February and March. We meet every Saturday during those months from
two to three in the afternoon at the University of Alberta. Each session
consists of a minicourse plus a number of investigation topics. The latter
lead to projects by Circle members, either independently or in small groups.

Over the thirty-two-year history of the Circle, many of our student
projects have been published in scientific and education journals. This is by
far the most successful aspect of our Circle. The material in this book is
based on these publications.

Andy Liu,
Edmonton, Alberta, 2017.
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Chapter One: Error-Correcting Codes

Section 1. From the Alt Code to the Hamming Code

In a war, those who start it are usually at a safe distance from the front.
Orders are sent to the troops via binary messages, sequences of 0s and 1s
which may be interpreted according to a code by both the transmitter and
the receiver. For example, if we want the troops to “Do nothing”, we send
the message 0. If we want the troops to ”Drop the bomb”, we send the
message 1. This process is called encoding.

When the transmitted message is received, it must be interpreted. This
process is called decoding. Here, 0 is decoded as "Do nothing” and 1 as
”Drop the bomb”. However, electronic transmissions may contain errors,
due to imperfect equipments or enemy sabotage. We will assume that an
error consists of a single digit-reversal per transmission.

In other words, the worst that can happen is that one of the Os may
turn into a 1, or one of the 1s may turn into a 0, but neither can happen
twice and both cannot happen together in a single transmission. Even this
is serious enough. In our example, if a 1 turns into a 0, we may not wake
up in time to find that we have lost World War II. On the other hand, if a 0
turns into a 1, we may have started World War III while still fighting World
War IIL

We would like to have some way of telling whether we can trust what
we have received. So we modify our simple code as follows: 00 would mean
”Do nothing” and 11 would mean ”Drop the bomb”. If an error occurs, we
will receive either 10 or 01, and we will know something has happened to
the message. This is a prototype of what is known as an error-detecting
code.

When we learn that an error has occurred, the natural thing is to ask
headquarters to retransmit the message. If errors occur only infrequently,
this is tolerable. If they occur often enough, it is at least a nuisance. More-
over, the request for retransmission is also sent electronically, and errors can
occur there too.

What we would like is a code which not only tells us when something
has gone wrong, but tells us exactly what has gone wrong. This is asking for
a lot, but as is often the case, when we believe that something can be done,
there may just be a way to do so. We now modify our code again, with 000
meaning " Do nothing” and 111 meaning ”Drop the bomb”. If we receive
001, 010 or 100, we do nothing. If we receive 110, 101 or 011, we drop the
bomb. This is a prototype of what is known as an error-correcting code.

© Springer International Publishing AG 2018 1
A. Liu, S.M.A.R.T. Circle Projects, Springer Texts
in Education, DOI 10.1007/978-3-319-56811-9_1



2 1 Error-Correcting Codes

Note that it is unrealistic to increase the length of the message and
continue to assume that there is at most one error per transmission. So
let us fix the length of any message to 15 binary digits, with at most one
digit-reversal per transmission.

In some sense, even this is unrealistic since if one digit-reversal can occur,
there is no reason why a second one cannot. What must be emphasized is
that our assumption amounts to a mathematical model which simulates
reality, but is not reality itself. We can get away with it if the probability
of a single digit-reversal is high enough to worry us, but the probability of
multiple digit-reversals is low enough to lose any sleep over.

Of the 15 digits, we may view some of them as conveying the intended
message while the remaining ones are for security measure. The efficiency
of a code using this 15-digit transmitter is defined as ;. where n is the
number of digits used for the message.

How can we extend our earlier examples with short messages to 15-digit
messages? In an error-detecting code, we need to distinguish between two
scenarios, whether the message contains an error or not. A single binary
digit would allow us to do so. Hence the efficiency of such a code can be as
high as %é Obviously. we cannot have %g as we will have no protection at

all.

How can we encode the intended message 101101000101117 Should we
add a 0 or a 1 as the fifteen digit? Let us reexamine the simple example
earlier. To the message 0, we add a 0, and to the message 1, we add a
1. Note that we are not copying the message, but arrange for the coded
message to contain an even number of 1s. Since 10110100010111 has 8 1s,
we add a 0 to yield the coded message 101101000101110. This code is called
the parity-check code, and the added digit is called the parity-check digit.

Decoding is straight-forward. Simply count the number of 1s in the
received message. If no digit-reversal has occurred, this number is even as
agreed. If a single digit-reversal has occurred, whether a 0 turned into a 1
or vice versa, the number of 1s will become odd. Thus a received message
001100101010110 contains an error. We do not know the intended message
as any of the 15 digits may be the one which has been reversed.

In an error-correcting code on the 15-digit transmitter, we need to dis-
tinguish between sixteen scenarios, whether the message contains an error,
and if so, which of the 15 digits has been reversed. We need four binary
digits to do so because 2*. = 16. Thus the efficiency of such a code cannot
be higher than %é
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However, there is nothing in our earlier example to suggest how we can
encode an 11-digit message. There, we stretch the message 0 to 000 and the
message 1 to 111. This time, we are copying the message, twice, so that there
are altogether three copies of the intended message. This means that the
efficiency of this code is only as high as 155, with the message 10110 encoded
as 101101011010110. This code is called the triple-repetition code. It is

also called the Alt code after its inventor (see [2]).

Decoding is based on the simple idea of majority rule. With at most one
digit-reversal among three copies of the intended message, at least two copies
must be correct. If all three agree, there are no errors. If not, the copy in the
minority can safely be discarded. Thus a received message 010010000101001
contains an error in the seventh digit, and the intended message is 01001.

In 1984, Mark Rabenstein was an eighth grade student in Edmonton and
a member of the SMART Circle. He had the following complaint about the
Alt code: “If at most one digit-reversal can occur, why do we have to have
three copies of the message?” Wouldn’t two be enough?”

“If an error has occurred so that the two copies are different, how do you
know which is the correct one without reference to a third copy?” I asked.

“Just tag a parity-check digit to one of the copies, and you can tell if
that one is correct.”

That was a brilliant observation. In our fifteen-digit transmitter, we can
use seven digits for the intended messages, repeat it a second time, and tag
a parity-check digit to the second copy. For instance, the intended message
0011001 is encoded as 001100100110011.

Decoding is straight-forward. Compare the two copies of the intended
message. If they agree, we can accept it. If not, apply the parity-check
to the second copy to decide which one we would accept. For instance, if
101010110111011 is received, we see that 1010101 and 1011101 are different.
Applying the parity-check to 10111011, we have an even number of 1s. Thus
the received message contains an error in the fourth digit, and the intended
message is 1011101.

The efficiency of 175 is a big improvement over the Alt code. The Raben-
stein code was published in [10].

The next break-through came in 1997. Han-Shian Liu (no relation to
the author), then a sixth grade student in Taipei, was a member of the Chiu
Chang Mathematical Circle. His (error-free) email message to me contained
a gem.
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“Mark was really smart to think of using the parity-check digit in an
error-correcting code. It works so beautifully. Then I wonder whether I can
make even more use of it. After experimenting with the idea for a while, I
drew a tic-tac-toe board. (See Figure 1.1.) Each of the nine boxes contained
a message digit. Then I added six parity-check digits, one for each row and
one for each column.”

For example, if the intended message is 011101001, we use the digits A
to J are used to convey it, as shown in the grid below on the left. The digits
K to QQ are chosen so that the number of 1s in each row and each column is
even.

A D G N A D G N

0 1 0 1 0 1 0 1
B E H P B E H P

1 0 0 1 1 0 0 1
c F J Q C F J Q

1 1 1 1 0 1 1 1
K L M K L M

0 0 1 0 0 1

Figure 1.1

Suppose the received message is as shown in the grid above on the right.
Then the parity-check fails for the third row and the first column. It follows
that the single digit-reversal occur at their intersection, namely, the box
containing the digit C.

Han-Shian’s code uses parity-check in two dimensions, and has an ef-
ficiency of 195. This Liu code was published in [8], a paper which also
contains an improved version that reaches the efficiency of %g So we are
one step away from a perfect code with efficiency of %%

To mount this final assault, we use a set-theoretic representation of the
tic-tac-toe board. Label the columns with a, b and ¢ from left to right, and
the rows with d, e and f from top to bottom. Then each box containing a
message digit is represented by a two-element subset of {a, b, ¢, d, e, f} while
each box containing a parity-check is represented by a one-element subset.
These two groups are separated from each other by a vertical line. Each
parity-check digit is chosen so that the total number of 1s under columns
containing the element which represents it is even. For example, the message
101111000 is encoded as shown in the chart below.
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a a a a
b b b b
c c c C
d d d d
(& e e (&

f f f f
1 01 1 1 1 0 00 1 1 0 1 0 0
A B CDEVFGH JKLMN P Q

Suppose the message in the chart below has been received. To decode it,
we count the total numbers of 1s under the columns containing the elements
a, b, ¢, d, eand f. They are 0, 3, 2, 2, 3 and 2 respectively. Since parity-
check fails for the elements b and e, the error occurs at the element under
the subset {b, e}. Hence the intended message is 000101010.

0 0 0111 01 0O0O01 111

It is now clear why there is still room for improvement. Han-Shian had
only made use of some of the non-empty subsets but not all of them. If we
cut the set down to {a, b, ¢, d}, there are exactly fifteen non-empty subsets,
four of which are singletons that give rise to the parity-check digits. For
example, the message 10111100011 is encoded as shown in the chart below.

a a a a a a a a

b b b b b b b

c c ¢ c c c

d d d d d d
1 01111 000110100

Decoding is by the same method as in the Liu code. Suppose the message
in the chart below has been received. The total numbers of 1s under the
columns containing the elements a, b, ¢ and d are 3, 5, 4 and 6 respectively.
Since parity-check fails for the elements a and b, the error occurs at the
element under the subset {a, b}. Hence the intended message is 10111100011.

a a a a a a a a

b b b b b b b

c c c c c c

d d d d d d d
1 0111 00O0O011O01O0O0
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This perfect code is due independently to Golay [3] and Hamming [4]
and is commonly known just as the Hamming code. The description given
here is from [1]. Since it was already known early in the history of error-
correcting codes, the Rabenstein code and the Liu code are irrelevant from
an application point of view. However, they are the work of students and
have high pedagogical value. They form a sequence of plausible reasoning
that could eventually lead a lesser mortal from the simplistic Alt code to
the same discovery by the founding fathers of coding theory.

In summary, the first step is to replace three copies of the messages by
two, and incorporating parity-check. The second step is to perform parity-
check in two dimensions instead of one dimension. The third step is to
represent the code in set-theoretic format instead of geometric format. The
chronology is given in [5].
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Section 2. Two Applications of the Hamming Code

We give two unexpected applications of the Hamming code (see [7]).
Both of them have strong recreational flavor.

Alice and Michael, along with thirteen of their friends, enter in a team
competition organized by a certain hi-tech company. They will be put re-
spectively into rooms A to @ (there are no rooms I and O). Each room is
considered to be in one of two states, 0 or 1, assigned completely at random.
Once they are isolated in their rooms, the team members will be informed of
the state of each room except their own. Simultaneously, each must either
pass, or declare the state of her or his room. They will have no further com-
munication with their teammates, and are not aware of the action taken by
any of them. If everybody passes, the team will be disqualified. If at least
one declaration is incorrect, the team will also be disqualified. On the other
hand, if there is at least one declaration, and all declarations are correct,
the team wins a prize.

Alice, Michael and friends are given a short time to come up with some
strategy. For instance, they could designate Alice as the guesser and have
everyone else pass. The probability of winning a prize would then be %
However, they would like to do better. Alice and Michael come up with the
following strategy based on the Hamming code.

We first give an illustration. Suppose Alice is in Room G and Michael
is in Room N, and the actual states are as shown in the chart below.

A B C D FEF F G H J K L M N P @
a a a a a a a a

b b b b b b b b

c c c c ¢ ¢ c c
d d d d d d d
o1 1 1 0 1 1 0 0O 1 1 0O O 1 O

Alice is in Room G which corresponds to the subset {a, c}. So she applies
the parity-check to the element b and to the element d. Both tests pass. Now
she applies the parity-check to the element a and to the element ¢, without
taking the information on her room, which is unknown to her. Both will
pass if the state of Room G is 0. So Alice will declare the opposite state 1.

Michael is in Room N which corresponds to the subset {b}. So he applies
the parity-check to the element a. It fails. So there is no need to apply the
parity-check to the elements ¢ and d. Michael just passes.

This illustrates how things work in general. A team member declares
if, and only if, the state of her or his room can be chosen to correct the
single error in the corresponding Hamming code, but the opposite state is
declared.
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If the original set-up contains no errors when treated as a Hamming
code, every team member will make an incorrect declaration. If the original
set-up contains an error, only the team member in the room corresponding
to where the error occurs will declare, and the declaration will be correct.

Recall that in the Hamming code, the 4 protection digits are uniquely
determined by the 11 message digits. Of the 2% = 16 possible sequences for
those 4 digits, only the one contains no errors. Hence %2 of the time, the
original set-up contains an error. It follows that the probability of winning

a prize is %2

This application is given in [12] as the problem titled Crowning the Mino-
taur. A special case was presented in [6]. The next application, in which we
continue the story of Alice and Michael, is based on a problem in the Fall
Round of the 2007 International Mathematics Tournament of the Towns.
Only the former source mentions the Hamming code.

To celebrate their success in the team competition, the fifteen friends
have a party, during which Alice and Michael perform a magic trick. While
Michael is out of the room, the audience chooses one of the fifteen letters
from A to @ inclusive, but excluding I and O. Then the audience places
fifteen coins in a row, arbitrarily deciding whether each should be heads
or tails. Alice either leave them alone or turns over exactly one coin, and
leaves the room while Michael is brought back in. By looking at the coins
and without knowing which one Alice has turned over, Michael determines
the letter chosen by the audience.

Let us give an illustration. We use 0 to stand for a coin which is heads
and 1 for a coin which is tails. Suppose the audience chooses the letter K
and places the coins as shown in the chart below.

A B C D FEF F G H J K L M N P Q

a a a a a a a a
b b b b b b b b

c ¢ c ¢ c c c c

d d d d d d d
10 1 1 1 0 O O O 1 1 0 1 0 O

Applying the parity-check, Alice finds that it fails for a and b but passes
for ¢ and d. Since the letters under column K are b and d, Alice wants
the parity-check to fail for b and d but pass for a and ¢. So she needs to
reverse the parity for ¢ and d, This can be done by flipping the coin under
the subset {a,d}. Hence she changes the 0 under column H to 1. Had the
audience chosen the letter F', Alice would have left the coins alone.

When Michael returns, he applies the parity-check, and finds that it
passes for a and ¢ but fails for b and d. This tells him that the letter chosen
by the audience is the one associated with {b, d}, namely K.
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Section 3. Reed-Muller Code

We now take up the issue of the correction of multiple errors. Our
primary example is the Reed-Muller code (see [9] and [11]), which may
be considered as an extension of the Hamming code. For a fifteen-digit
transmitter, it can correct up to three errors. We set up a chart as in
the Hamming code, except that there is now an additional vertical line
separating the two-element subsets from the others, as shown below.

Suppose the intended message is 00101. We will now add ten digits for
protection. To see what digit we must add under the column {a,b}, we
consider the digits under the other columns which contain {a, b}, namely,
{a,b,¢,d},{a,b,c} and {a,b,d}. Since they are 0, 0 and 1 respectively, and
we want an even number of 1s, we add the digit 1 under the column {a, b}.
The digits under the next five columns are chosen in an analogous manner,
and the chart is them completed as in the Hamming code, as shown below.

a a a a a a a a
b b b b b b b

c c c c c ¢ ¢ ¢

d d d d d d d d
001011011011 010

Suppose the following transmission via the Reed-Muller code has been
received, with up to three errors.

a a a a a a a a
b b b b b b b

c c c ¢ c ¢ ¢ ¢

d d d d d d d d
0o 1000011010110

We now perform a parity-check on the subset {a,b}. The digits under
the columns {a, b, ¢,d}, {a,b,c}, {a,b,d} and {a, b} are 0, 0, 1 and 0. Hence
the test fails. Note that this is not saying that the digit under {a, b} is an
error. It says that either one of these four digits is an error, or three of the
four are errors. Performing parity-checks on the other two-element subsets,
we find that the test fails for {b,c}, {b,d} and {c,d} but passes for {a,c}
and {a, d}.

We now perform a parity-check on the subset {a}. The digits under the
columns {a, b, ¢,d}, {a,b, c}, {a,b,d}, {a,c,d}, {a,b}, {a,c}, {a,d} and {a}
are 0,0, 1,0, 0,0, 1 and 0. Hence the test passes. Performing parity-checks
on the remaining subsets, we find that the test fails for {b}, {c} and {d}.
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We use P, @ and R to denote the three possible subsets of {a,b,c,d}
which are errors. Then an odd number of them contain {a, b}, {b, ¢}, {b,d},
{¢,d}, {b}, {c} and {d} while an even number of them contain {a, ¢}, {a,d}
and {a}.

So {a} appears either 0 or 2 times in P, @ and R while each of {b}, {c}
and {d} appears either 1 or 3 times. Because {a, b} appears either 1 or 3
times and it cannot appear without {a}, {a} must appear exactly 2 times,
say in P and Q. Also, {b} cannot appear 3 times as otherwise {a, b} will
appear twice, but it must appear together with {a}. We may assume that
it appears only in P.

Since each of {b,c} and {b,d} appears 1 or 3 times, both {c} and {d}
must appear in P. Since each of {a,c} and {a,d} appears 0 or 2 times,
both {c} and {d} must appear in Q. Since {c, d} appears 1 or 3 times, both
{c} and {d} must appear in R also. This is consistent with each of them
appearing 1 or 3 times. Hence the errors are P = {a, b, ¢,d}, Q = {a,c,d}
and R = {c,d}, and the correct message is 10110.

While the decoding procedure in our example seems rather ad hoc, it
does have a firm theoretical basis (see [1]). Let us give a more mathematical
analysis of the above example.

For any set S, we define S? to be the collections of all non-empty subsets
of S of size up to 2. In the above example,

P? {{a}, {0}, {c}{d}, {a, b}, {a, c}, {a, d}, {b, ¢}, {b, d}, {c, d}},
Q? {{a}, {c} {d}, {a, ¢}, {a, d}, {c, d}},
R* = {{c},{d} {c.d}}.

The symmetric difference of a number of collections consists of all ele-
ments which belong to an odd number of these collections. The symbol for
symmetric difference is A. In the above example,

P’AQ*AR? = {{b}, {c},{d},{a, b}, {b,c},{b,d},{c,d}}.

The subsets in this collection are precisely those for which the parity-check
fails. Thus P2ZAQ*AR? may be considered as the pattern of parity distur-
bance caused by the errors P, @ and R.

This pattern of parity disturbance may be caused by a different group
of errors, namely {b, ¢,d}, {a, b}, {a} and {b}, in that
{b,c,d}*A{a, b}2A{a}*A{b}?
= {{o}, {c}, {d}, {b,c}, {b,d}, {c, d}}A{{a}, {b}, {a, b} } A{{a} }A{{b}}
= {b}.{c},{d}, {a, b}, {b, c}, {b,d}, {c, d}}.
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However, this does not invalidate the Reed-Muller Code as the second
group contains four errors, more than the three we are allowed for a 15-digit
transmitter. We claim that if two different groups of errors cause the same
pattern of parity disturbance in a 15-digit transmitter, then one of them will
consist of four or more sets.

Since they cause the same pattern of parity disturbance independently,
they must cause no parity disturbance when acting together. After removing
common sets from the two groups, we are left with a non-empty collection
since the two groups of errors are different. We now prove that in a 15-digit
transmitter, the number of sets in any non-empty collection which causes
no parity disturbance is at least seven. It follows that four or more of them
must come from the same group of errors, and our claim would be justified.
We consider four cases.

Case 1. The collection consists only of 1-element sets.
Since there is at least one of them, the parity for the lone element in this
set will be disturbed.

Case 2. The collection contains at least one 2-element set but no 3-element
or 4-element sets.
The parity for the pair of elements in a 2-element set will be disturbed.

Case 3. The collection contains at least one 3-element set but not {a, b, ¢,d}.
We may assume that the 3-element set is {a, b, c}. By itself, it will disturb
the parity of {a, b}. To nullify this, the collection must contain either {a, b, d}
or {a,b}, but not both. Similarly, the collection must contain exactly one
of {a,¢,d} and {a,c}, and exactly one of {b,¢,d} and {b,c}. Thus there
are four sets in the collection with 2 or 3 elements. Collectively, they will
disturb the parity of each of {a}, {b} and {c}, and we need to include these
three 1-element sets, bringing the total to seven sets.

Case 4. The collection contains {a, b, ¢, d}.
As in Case 3, the collection must contain either one or three of the set in
each column of the chart below.

{a,b,c¢} {a,b,c} {a,b,d} {a,b,c} {a,b,d} {a,c,d}
{a,b,d} {a,c,d} {a,c,d} {b,c,d} {b,c,d} {b,c,d}
{a, b} {a,c} {a,d} {b,c} {b,d} {c,d}

We consider five subcases.

Subcase 4(a). There are no 3-element sets in the collection.

Then we must include all six 2-element sets, bringing the total to seven sets.
Subcase 4(b). There is only one 3-element set in the collection.

We may assume that it is {a, b, ¢}. Then we must include {a, d}, {b,d} and
{c,d}. This in turn forces the inclusion of {a}, {b} and {c}, bringing the
total to eight sets.
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Subcase 4(c). There are exactly two 3-element sets in the collection.

We may assume that they are {a, b, c} and {a, b, d}. Then we must include
{a,b} and {c,d}. This in turn forces the inclusion of {c} and {d}, bringing
the total to seven sets.

Subcase 4(d). There are exactly three 3-element sets in the collection.
We may assume that they are {a, b, c}, {a, b, d} and {a, ¢, d}. Then we must
include {a,b}. {a,c} and {a, d}, already bringing the total to seven sets.
Subcase 4(e). All four 3-element sets are in the collection.

Then we must also include all six 2-element sets, already bringing the total
to eleven sets.

We give some additional examples on the Reed-Muller Code. As before,
we use P, ) and R to denote the three possible subsets of {a, b, ¢, d} which
are errors.

Example 1.
Decode the received message sent under the Reed-Muller code.

a a a a a a a a
b b b b b b b

c c c c c c c ¢

d d d d d d d
11111011001 O0O0O0O

Solution:

The parity-check fails for {a,b}, {b,c} and {b,d}. Thus each of {a}, {b},
{c} and {d} appears an even number of times. Since all are featured in
{a, b}, {b, c} or {b,d}, each appears exactly twice. Let {b} appear in P and
Q. Each of {a}, {c} and {d} appears an odd number of times with {b},
which means exactly once. Hence they must appear together in R. Since
each of {a,c}, {a,d} and {c,d} appears an even number of times, {a}, {c}
and {d} must appear together again, this time with {b}. Hence the errors
are P = {a,b,c¢,d}, Q@ = {b} and R = {a, ¢, d}, and the correct message is
01101.

Example 2.
Decode the received message sent under the Reed-Muller code.

a a a a a a a a
b b b b b b b

c ¢ c ¢ c ¢ ¢ ¢

d d d d d d d d
1 0101 1 01 101 1010
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Solution:
All ten parity-checks fail. Hence P = {a,b,c¢,d} and Q@ = R = (), and the
correct message is 00101.

Example 3.
Decode the received message sent under the Reed-Muller code.

a a a a a a a a
b b b b b b

c c c c c c c ¢

d d d d d d d d
110 01 1 01 1 1 00110

Solution:

The parity-check fails for {b}, {c}, {a,b} and {b,d}. Thus each of {a},
and {d} appears an even number of times. Since the parity-check for {a, d}
passes, they must appear together twice, say in P and Q. Now {b} must
appear with {a} an odd number of times and with {d} an odd number of
times. Hence it appears in exactly one of P and @, sat P, and not in R.
Since the parity-check for {b, ¢} pass, {c} does not appear together with {b},
and similarly, it does not appear together with {a} or with {c}. Hence the
errors are P = {a,b,d}, Q@ = {a,d} and R = {c}, and the correct message
is 11101.

Example 4.
Decode the received message sent under the Reed-Muller code.

a a a a a a a a
b b b Db b b b b
c c c ¢ ¢ ¢ ¢ ¢
d d d d d d d
110 01 001 011 1 1 11

Solution:

The parity-check fails for {b}, {c}, {b,c}, {b,d} and {¢,d}. Thus each of
{a} and {d} appears an even number of times. Since {a} is not featured
in {b,c}, {b,d} or {c,d}, it does not appear at all. Since {d} is featured
in {b,d} and {c,d}, it appears exactly twice, say in P and (. Each of {b}
and {c} appears once with {d}. Hence each appears exactly once. Since the
parity check for {b, c} fails, they appear together once, say in P. Hence the
errors are P = {b,c,d}, @ = {d} and R = (), and the correct message is
11000.
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If in our chart listing the subsets of {a, b, ¢, d}, we put in a third ver-
tical line separating all three-element subsets from the others (well, just
{a,b,¢,d}), we can correct up to seven errors. The message now consists of
a single digit, and it is easy to see that encoding simply repeats it to yield a
total of fifteen copies. We have come full circle and return to the majority
rule (eight out of fifteen in this case) which is the basis for the Alt Code.
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Exercises

1. Design an error-correcting code with efficiency %g

2. Random justice is applied to three prisoners. On Decision Day, each
prisoner will be given a hat to wear, which may be black or white.
He can see the other two hats but not his own. At some point, the
Warden will call for a simultaneous declaration from each prisoner,
which he must make without the benefit of knowing how the other
two will declare. He must declare “pass”, “black” or “white”. If the
declaration is indeed’ the color of his hat, he is right. If it is the other
color, he is wrong. The prisoners will only go free if at least one of them
declares, and all those who declare are right. The three prisoners get
together the night before Decision Day and discuss strategies. What
can they do to make the probability of their going free as high as Z?

3. For a 15-digit transmitter, the efficiency of the Reed-Muller Code is
155. Can this be improved?
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Chapter Two: Regular and Semi-Regular Polyhedra

Section 1. Regular Polyhedra.

A polyhedron is a three-dimensional figure bounded by a finite num-
ber of polygonal faces. Its literal meaning is a many-faced figure because
poly means many and hedron means face. Thus a tetrahedron is a four-
faced figure, which can only be the triangular pyramid. The plural form of
polyhedron is polyhedra. Some human beings are bihedra.

We will assume that the polyhedra we deal with are convez. In such a
polyhedron, the line segment joining any of its two points lies entirely in
the polyhedron. Most of the polyhedra we encounter, such as prisms and
pyramids, are in fact convex.

The skeleton of a polyhedron consists of its vertices and edges only, and
it contains all the essential information about the polyhedron. Thus we will
represent any polyhedron by its skeleton.

We can facilitate the drawing of the skeleton of a polyhedron by the
following process. Imagine that the edges are made of elastic strings. Choose
a face as the base and stretch its edges so that the projection of every other
vertex onto this face lies within its interior. For example, the skeleton of the
tetrahedron with base BC'D and opposite vertex A can be drawn as shown
in the Figure 2.1. Such a representation is called the Schlegel diagram of
the polyhedron. B

C D
Figure 2.1

In his December, 1958 Mathematical Games column in Scientific Amer-
ican (see [2]), Martin Gardner wrote about the Platonic solids. They are
named after the Greek philosopher Plato, and are the most pleasing of all
polyhedra.

In a Platonic solid, all faces are the same kind of regular polygons and
each vertex lies on the same number of faces. Thus there is perfect symmetry
among the faces and among the vertices, both geometrically and combinato-
rially. It is not hard to see that there are only five Platonic solids. Suppose
the faces are equilateral triangles. If we put three of them around each
vertex, we have the regular tetrahedron as shown in Figure 2.1. If we put
four of them around each vertex, we have the regular octahedron (double
square pyramid) as shown in Figure 2.2.

© Springer International Publishing AG 2018 17
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Figure 2.2

If we put five of them around each vertex, we have the regular icosa-
hedron as shown in Figure 2.3. However, if we put six of them around a
vertex, the configuration will be flat.

Figure 2.3

Suppose the faces are squares. If we put three of them around each
vertex, we have the cube as shown in Figure 2.4. However, if we put four of
them around a vertex, the configuration will be flat.

Figure 2.4

Suppose the faces are regular pentagons. If we put three of them around
each vertex, we have the regular dodecahedron as shown in Figure 2.5. How-
ever, if we put four of them around a vertex, they will overlap.
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Figure 2.5

Suppose the faces are regular hexagons. Even if we place three of them
around a vertex, the configuration will be flat. Thus there are indeed only
five Platonic solids.

Schlegel diagrams are special cases of graphs. A graph is a collection of
dots and lines, called vertices and edges respectively. Each edge connects
two vertices. If these two vertices are identical, the edge is called a loop.
If two edges connect the same two vertices, they are said to be multiple
edges. The degree of a vertex is the number of edges which connects it to
other vertices. Thus each edge contributes 2 to the total degree of a graph.
A graph is said to be connected if any two vertices are accessible from each
other via a sequence of edges.

If a graph can be drawn so that its edges meet only at the vertices,
then it is called a planar graph. The Schlegel diagram of a polyhedron is
also called a polyhedral graph, and must be planar. When drawn without
crossing edges, a planar graph divides the plane unambiguously into regions.
These regions are the faces of the graph. They correspond to the faces of
the polyhedron. Clearly, non-planar graphs cannot be polyhedral graphs as
the concept of a face is not well-defined. However, not all planar graphs are
polyhedral graphs.

Note that in Figure 2.1, the base BC'D is a face of the polyhedron, but
seems to have disappeared as a face of the polyhedral graph. On the other
hand, the graph has an infinite region which does not seem to be part of the
polyhedron. To handle this apparent anomaly, imagine that the skeleton
is drawn on the surface of a balloon, whose snout is contained in the face
chosen as the base. If we stretch the balloon until the rim of its snout
becomes a large circle enclosing a flat piece of rubber, we can see that the
base has in fact become the infinite region.
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Suppose a vertex of a polyhedron is surrounded in clockwise order by
n faces, with x; sides respectively for 1 < ¢ < n. We define its vertex
sequence as (r1,Z2,...,%,). For a Platonic solid, all vertex sequences
are identical, and it gives us a concise description of the solid. Thus the
regular tetrahedron is (3,3,3), the regular octahedron is (3,3,3,3), the regular
icosahedron is (3,3,3,3,3), the cube is (4,4,4) and the regular dodecahedron
is (5,5,5).

Actually, a vertex sequence describes a whole class of polyhedra. For
instance, (3,3,3) describes any tetrahedron, regular or otherwise.

A polyhedron is said to be regular if it satisfies the following two con-
ditions:
(A) The sequences of all vertices are identical.
(B) All integers in the vertex sequence are identical.

How many regular polyhedra are there? There are at least five as all
Platonic solids are regular polyhedra. Could there be other kinds? The
geometric proof given earlier is no longer valid since we no longer require
the faces to be regular polygons. Surprisingly, the answer is still five, but
we need to give a combinatorial argument.

Our principal tool is a famous result due to the Swiss mathematician
Leonhard Euler. He spent most of his active life in Prussia, under the pa-
tronage of Frederick the Great, and later in Russia, under the patronage of
Catherine the Great. He had made contributions to many fields in math-
ematics, with an Euler’s Formula in each of them. In particular, he was
recognized as the father of graph theory.

Let V, E and F denote the numbers of vertices, edges and faces of
a polyhedral graph. Then Euler’s Formula for Polyhedra states that
V — E+ F =2. It is also valid for connected planar graphs.

We shall prove Euler’s Formula for Polyhedra in a slightly different form.
A component of a graph is a connected subgraph which is not contained
in any larger connected subgraph. In other words, each component is a
connected piece of a graph. Denote by C' the number of components. For
connected graphs, we have C' = 1.

We claim that for any planar graph, V + F = E + C + 1. Erase all the
edges but retaining all the vertices. Initially, V =C, F =1 and F = 0. We
will reinstall the edges one at a time, so that E increases by 1 at each step.
If the edge reinstalled in a particular step connects two vertices in different
components, then C goes down by 1. If it connects two vertices in the same
component, C' remains unchanged but F' goes up by 1 as an existing face is
carved into two. Either way, the balance is maintained. At the end when
all the edges have been reinstalled, we have C =land V+ F=FE+C+1
may be rewritten as V — E + F = 2.
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As an application of Euler’s Formula, we now prove that every planar
graph without loops or multiple edges has a vertex of degree at least 5.
Suppose to the contrary that every vertex has degree at least 6. Cut each
edge into half-edges across its length. The total number of half-edges is
exactly 2F, and at least 61 by our assumption, so that 2E > 6V. On the
other hand, since there are no loops or multiple edges, each face is bounded
by at least 3 edges, yielding 2F > 3F. Substituting into Euler’s Formula,
we have 2=V — E+ F
leg - FE+ 23? = 0, and we have a contradiction.

Condition (A) in the definition of a regular polyhedra implies that all
vertices of the polyhedron lies on the same number n of edges, and condition
(B) implies that all faces of the polyhedron are bounded by the same number
m of edges. Thus the vertex sequence of a regular polyhedra consists of n
copies of m. Since every polyhedral graph has a vertex of degree at most 5,
we see that n < 5. That m < 5 can be proved similarly. Thus we have nine
cases, as shown in the chart below.

m=3 m =4 m=>5
n=3 Standard Cuboid Standard
Tetrahedron Dodecahedron
n==4 Standard
Octahedron Impossible
n=>5 Standard Cases
Icosahedron

To prove that the four cases marked impossible are indeed so, we need a
preliminary result: nV = 2E = kF. Cut each edge in halves at its midpoint.
Each of the V vertices is attached to n half-edges, so that the total number
of half-edges is nV. On the other hand, the total number of half-edges is
clearly 2F since each of the E edges is cut in halves. It follows that nV = 2F.
Similarly, we can prove that 2F = kF but cutting each edge in halves along
its midline and count the half-edges in two ways as before. Recall that we
have used this argument in proving that K5 and K3 3 are non-planar.

Substituting into Euler’s Formula, we have 2E+ 2 E — E =2 or

1+1_1+1>1
n m 2 E_ 2

If n = m = 4, we have only 711 + nl@ = % In the other three cases, we have

1y T}l < % All contradict the above inequality.

n
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Section 2. A Polyhedral Metamorphosis.

Circle members participate in the International Mathematics Competi-
tion, a sample paper of which is given in [5]. An important event in the
competition is the Cultural Evening, during which each country presents a
short performance that highlights their heritage. As a multi-cultural nation,
Canada have had a hard time finding suitable things to do. Finally, in 2010
when the competition was in Inchon, South Korea, we decided to express
ourselves in a universal language, namely, mathematics.

The performance is described in [4]. Ten students use six strings to
construct the skeleton of each of the five Platonic solids in a sequence of
continual transformation. Start with four students forming the tetrahedron.
At some point, six students join in. After a while, the original four drop
out. Eventually, the remaining six students form the octahedron. During
this sequence, all of the other Platonic solids appear. At the end, the original
four take over from the final six and restore the tetrahedron! This is adapted
from the design by Karl Schaffer [6].

Step 1. Construction of the Tetrahedron

We start of with four students identified as N(orth), S(outh), E(ast)
and W(est). Each designates one hand as the U(pper) hand and the other
hand as the L(ower) hand. N and S hold out their U hands while E and
W hold out their L hands. String 1 is held between UN and LW, string 2
between UN and LE, string 3 between LW and LE, string 4 between LW
and US, string 5 between LE and US, and string 6 between UN and US.
The completed tetrahedron is shown in Figure 2.6, with string 6 drawn in
such a way to facilitate the next step.

Figure 2.6
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Step 2. Transformation into the Cube
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Figure 2.7

Each of the four students holds out the other hand and places it at the
center of one of the four faces of the tetrahedron, as shown on the left side
of Figure 2.7. Each of these hands will grab the three sides of the triangular
face. The end result is a cube, as shown on the right side of Figure 2.7.
Each string forms a face of the cube.

Step 3. Transformation into the Dodecahedron

We first redraw the cube as shown in Figure 2.8.

e . A
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Figure 2.8
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Now six other students enter the picture. They are identified as T(op
face), B(ottom face), H (northwest face), I (southwest face), J (southeast
face) and K (northeast face). Each of these students hold out both hands
and places them symmetrically about the center of the assigned face of the
cube. The line segment joining the two hands of each student is parallel to
a side of the cube, and the segments on adjacent faces are perpendicular to
each other. Each pair of these hands will grab the two sides of the square
face parallel to the segment they form. Each hand will also grab the nearer
one of the remaining two sides of the square face. The end result is a
dodecahedron, as shown in Figure 2.9.

Figure 2.9

It should be emphasized that while each face of the cube is formed of one
string, no part of this string is to be grabbed by the hands assigned to this
face. Instead, the other four strings joining adjacent pairs of vertices of
the face are grabbed, as illustrated in Figure 2.10. Failure to exercise the
caution in the preceding paragraph will still produce a dodecahedron, but
the whole structure will then fall apart in Step 4.

\ /

/ \

Figure 2.10



A Polyhedral Metamorphosis 25

Step 4. Transformation into the Icosahedron

The original four students let go of their strings. The end result is an
icosahedron, as shown in Figure 2.11.

4 N
4 2
N J
Figure 2.11
]

H
4 I
4 2
\ J

Figure 2.12
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Step 5. Transformation into the Octahedron

Each of the remaining six students slides both hands together. The end
result is an octahedron, as shown in Figure 2.12. Two strings which are
opposite sides of the original tetrahedron now form the same square cross-
section of the octahedron.

Step 6. Return to the Tetrahedron

The original four students N, S, E and W re-enter the picture. N puts
the U hand in triangle HKT (north and top), S puts the U hand in triangle
IJT (south and top), E puts the L hand in triangle JKB (bottom and east)
and W puts the L hand in triangle HIB (bottom and west). This is shown
in Figure 2.13.

e ™
[ J
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Ny J

Figure 2.13

Each hands grabs the three strings it originally holds, and then the other
six students let go of theirs. The end result is a tetrahedron, as shown in
Figure 2.14.

Figure 2.14
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Section 3. Semi-Regular Polyhedra.

A polyhedron is said to be semi-regular if it satisfies condition (B) in
the definition of a regular polyhedron. Clearly the Platonic solids are semi-
regular, but they are now joined by infinitely many others. In Figure 2.15,
we depict the case n = 8 from each of two infinite classes of semi-regular
polyhedra — the prisms (4, 4, n) and the antiprisms (3, 3, 3, n), where n > 3.
In particular, the cube is the order-4 prism, and the regular octahedron is
the order-3 antiprism.

Figure 2.15

Apart from these three classes, there are other semi-regular polyhedra.
Let us use a geometric approach to see if we can unearth some of them.

By slicing off, in a systematic manner, the corners of the regular tetra-
hedron, we obtain the truncated tetrahedron (3,6,6), as shown in Figure
2.16.

Figure 2.16

The same process applied to the cube, the regular dodecahedron, the
regular octahedron and the regular icosahedron produces the truncated cube
(3,8,8), the truncated dodecahedron (3,10,10), the truncated octahedron
(4,6,6) and the truncated icosahedron (5,6,6), as shown in Figures 2.17,
2.18, 2.19 and 2.20.
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Figure 2.17

Figure 2.18

Figure 2.19
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Figure 2.20

If we truncate the cube or the octahedron to the midpoints of the edges,
we obtain the cuboctahedron (3,4,3,4). If we truncate the dodecahedron or
the icosahedron to the midpoints of the edges, we obtain the icosadodeca-
hedron (3,5,3,5). These are shown in Figures 2.21 and 2.22.

Figure 2.21
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Figure 2.22

Figure 2.23 shows the great rhombicuboctahedron (4,6,8) which are ob-
tained by truncation from the cuboctahedron.

Figure 2.23

Figure 2.24 shows the great rhombicosadodecahedron (4,6,10) which is
obtained by truncation from the icosadodecahedron.
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Figure 2.24

Figure 2.25 shows the small rhombicuboctahedron (3,4,4,4) which is ob-
tained from the cuboctahedron by taking the truncation to the midpoints
of the edges.

Figure 2.25
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By rotating the octagon in Figure 2.25 45°, we obtain a polyhedron which
has the same vertex sequence (3,4,4,4) as the small rhombicuboctahedron.
It has much less geometric symmetry and is not considered to be a new
semi-regular polyhedron. It is not obtained by truncation.

Figure 2.26 shows the small rhombicosadodecahedron (3,4,5,4) which
is obtained from the icosadedecahedron by taking the truncation to the
midpoints of the edges.

Figure 2.26

Are there some semi-regular polyhedra which are not obtained by trun-
cation? In any case, how can we find all of them? To do so, we return to
the combinatorial approach in Section 1 to prove our main result.

Theorem.
The vertex sequence of any semi-regular polyhedron is among the following:

(I (3,3,3), (4,4,4), (5,5,5), (3,3,3,3), (3,3,3,3,3);
(I1) (4,4,n),n > 3;
(II1) (3,3,3,n),n > 3;
(IvV) (3,6,6), (3,8,8), (3,10,10), (4,6,6), (5,6,6), (4,6,8), (4,6,10), (3,4,3,4),
(3,5,3,5), (3,4,4,4), (3,4,5,4), (3,3,3,3,4), (3,3,3,3,5).
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The thirteen polyhedra in (IV) are called sporadic semi-regular polyhe-
dra, and if their faces are regular polygons, they are called Archimedean
solids, named after another Greek philosopher.

Note that the combinatorial approach yields two additional semi-regular
polyhedra not obtained geometrically by truncation. They are the snub cube
(3,3,3,3,4) and the snub dodecahedron (3,3,3,3,5). Both have two versions
in opposite orientations, but they are not considered to be different semi-
regular polyhedra.

To prove the Theorem, let there be ¢ kinds of faces. For 1 < i < t, let
each face of the i-th kind be bounded by z; edges, and let the number of
such faces be F;. Suppose the vertex sequence of the solid has length n and
consists of \; copies of z; for 1 <i <t, with Ay + Ag+---+ X\t =n.

Count the vertices of each face bounded by z; edges. The total is z; F;.
Each vertex has been counted \; times for a total of \;V. It follows that
Fy=" 2'V. This is a generalization of our earlier result nV' = mF. Moreover,
we stlll have nV = 2F. Putting these into Euler’s Formula, we have V +
MV 4+ 2V -2V =20r

Al /\t 2 n—2
4+ .
1 z V 2
We call this the characteristic equation.

Each of n, z1, ..., x; is at least 3. We shall deduce from the charac-
teristic equation that at least one of the z’s is less than 6. Assuming the
contrary, we have the following contradiction:

2+n_2—/\1+ +)\<n<n+(n71)_n—2
Vv 2 6~ 6 3 2

Similarly, we can show that n = 3, 4 or 5. Assuming the contrary, we
have the following contradiction:

2+n—2_/\1+ +)\<n<n+(n 1)_n—2
1% 2 3~ 3 N

We now divide the proof into three parts, forn =3, n=4and n =5
respectively.
Part One. n = 3.

Let the vertex sequence be (a,b,c) with a < b < ¢, where 3 < a < 5. We
consider four cases.

Case l. a=b=c.

Since 3 < a < 5, the only possibilities here are (3,3,3), (4,4,4) and (5,5,5).
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Case 2. a=b<ec.

Consider a typical a-sided face ABCD ... (see Figure 2.27). Of the
other two faces at the vertex B, one must be a-sided, and the other c-sided.
Assume without loss of generality that the face alongside BC' is c-sided.
If we consider the vertex C, it follows that the face alongside C'D is a-
sided. Thus the neighbors of ABC'D ... have alternately a sides and c sides.
Hence ABCD ... must have an even number of neighbors, showing that a
is even. Since 3 < a < 5, we have a = 4. This gives rise to the infinite class
(4,4,m),n > 5.

a-sided

c-sided
a-sided

a-sided

Figure 2.27

Case 3. a<b=c.

The characteristic equation in this case is

o2 2 1

o Tb vy
Recall that 3 < a < 5. As in Case 2, b must be even. Suppose a = 3. We
have V = 1122_1’1). Since V' is a positive integer, the only meaningful values are
b =4, 6, 8 and 10. This gives rise to the vertex sequences (3,4,4), (3,6,6),
(3,8,8) and (3,10,10). Suppose a = 4. We have V = 88_bb. Hence b = 6,
giving rise to (4,6,6). Finally, suppose a = 5. We have V = 23%1). Hence
b = 6, giving rise to (5,6,6).

Case 4. a<b<ec.
The characteristic equation in this case is

11 1
+ o+

21
a b ¢ V 2



Semi-Regular Polyhedra 35

Here, as in Case 2, all of a,b and ¢ must be even. Since 3 < a < 5, we
have a = 4, and the characteristic equation simplifies to

1 n 12 n 1

b ¢ Vo4
Suppose b > 8. Recall ¢ > b, so ‘Q/Jr}l = ;+ i < 411' We have a contradiction,
so b =6. We have V = 1224_‘20. Hence ¢ = 8 or 10, giving rise to the vertex
sequences (4,6,8) and (4,6,10).

Part Two. n =4.

Let the vertex sequence be some permutation of {a,b,c,d} such that
a<b<c<d, where 3 <a <5. The characteristic equation is
1 1 1 1 2

et etaTyth

Suppose a > 4. Then ‘2, +1= i + 11) + (1, + (11 < 1. This is a contradiction,
so a = 3, and the characteristic equation simplifies to }7 + i + é = ‘2/ + 3
Suppose b > 5. Then 12, + g = ; + (1: + ; < g This is another contradiction,

hence b = 3 or 4. We consider the two cases separately.

Case 1. b= 3.
Here, the characteristic equation simplifies further to
1 n 2 n 1
c d V3

Suppose ¢ > 6. Then ‘2/ + zl,) = i + é < :1)) Again this is a contradiction, so
¢ =3, 4 or 5. If ¢ = 3, we have the infinite class (3,3,3,n),n > 3.

We now have a = b =3 and ¢ = 4 or 5. We shall first show that the two
3’s cannot be consecutive in the vertex sequence. Assuming the contrary,
we let the vertex sequence be (3,3, ¢,d) and consider a typical triangular
face ABC' (see Figure 2.28). The vertex A must belong to a triangular face
adjacent to ABC'. Let this be ABD. Now the vertex C' must also belong to
a triangular face adjacent to ABC, so either A or B must belong to three
triangular faces, which is a contradiction.

D

Figure 2.28
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We shall now prove that ¢ = d, so that the only possible vertex sequences
are (3,4,3,4) and (3,5,3,5). Suppose ¢ < d. Consider a typical triangular face
ABC'. The other triangular faces shown in Figure 2.29 are dictated by the
form of the vertex sequence, which is (3, ¢, 3, d). Of the three faces adjacent
to ABC, two must contain the same number of edges, and one of A, B or
C cannot have (3, ¢, 3,d) as its sequence, a contradiction.

A
C
B
Figure 2.29

Case 2. b =4.

Here, the characteristic equation becomes

1 1 2 )

Suppose ¢ > 5. Then ‘2/ + 152 = i + (11 < g This is a contradiction, so ¢ = 4.
We have V = gz‘(li. Hence d = 4 or 5. As in Case 1, it can be shown that
(3,4,4,5) cannot be a vertex sequence, leaving (3,4,4,4) and (3,4,5,4) as the

only possibilities.
Part Three. n =5.

Let the vertex sequence be some permutation of {a, b, ¢, d, e} such that
a<b<c<d<e, where 3 <a <5. The characteristic equation is

1+1+1+1+1_2+3
a b ¢ d e V 2

Suppose d > 4. Then

2+3_1+1+1+1+1<1+1+1+1+1_3

V.2 a b ¢ d e~ 3 3 3 4 4 2
which shows the supposition to be untenable. Hence a = b =c¢ = d = 3.
We have V = 612"; Hence e = 3, 4 or 5, giving rise to the vertex sequences
(3,3,3,3,3), (3,3,3,3,4) and (3,3,3,3,5).

This completes the proof of the theorem.
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The argument was due to Tom Boag, Charles Boberg and David Hughes
[1]. They were junior high school students at the time, when the SMART
Circle was not yet in existence. An earlier and different proof of the theorem
was given by L. Lines in [3], a book which is now out of print.

The statistics for the Archimedean solids are summarized in the following
chart, where F; denotes the number of faces with 7 edges. These are obtained
by expressing all other variables in terms of V' and then substituting into
Euler’s Formula.

Vertex Statistics
Sequences E vV F3 Fy F5 Fg Fg Fi
(3,6,6) 18 12 4 0 0 4 0 0
(3,8,8) 36 24 8 0O 0 0 6 0
(3,10,10) 9 60 20 0O O O O 12
(4,6,6) 36 24 0O 6 0 8 0 0
(5,6,6) 90 60 0O 0 12 20 O 0
(3,4,3,4) 24 12 8 6 0 0 0 0
(3,5,3,5) 60 30 20 0 12 0 O 0
(4,6,8) 72 48 0 12 0 8 6 0
(4,6,10) 180 120 0 30 0 20 O 12
(3,4,4,4) 48 24 8 18 0 0 O 0
(3,4,5,4) 120 60 20 30 12 0 O 0
(3,3,334) 60 24 32 6 0 0 O 0
(3,3,3,35) 150 60 8 0 12 0 O 0
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Exercises

1. The tetrahedron has 6 edges and the square pyramid has 8 edges.
These are the simplest two polyhedra. Intuitively, no polyhedron can
have exactly 7 edges. Prove this algebraically using Euler’s Formula.

2. (a) With two students and one string, form the skeleton of a tetra-
hedron.

(b) With three students and one string, form the skeleton of a stan-
dard octahedron.

(¢) With four students and one string, form the skeleton of a cuboid.

3. (a) Draw the Schlegel diagram of one orientation of the snub cube.

(b) Draw the Schlegel diagram of one orientation of the snub dodec-
ahedron.
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Chapter Three: Polyform Compatibility

Section 1. Tetris Number Theory.

Polyominoes are connected plane figures formed of joining unit squares
edge to edge. We have a monomino, a domino, and two trominoes named I
and V, shown in Figure 3.1.

Figure 3.1

The five tetrominoes, featured in the popular video game Tetris, are
named I, I; S, O and T, respectively. They are shown in Figure 3.2.

Figure 3.2

A polyomino A is said to divide another polyomino B if a copy of B
may be assembled from copies of A. We also say that A is a divisor of B, B
is divisible by A, and B is a multiple of A. The monomino divides every
polyomino.

A polyomino is said to be a common divisor of two other polyominoes
if it is a divisor of both. It is said to be a greatest common divisor if no
other common divisor has greater area. Note that we say a greatest common
divisor rather than the greatest common divisor since it is not necessarily
unique. For instance, the two hexominoes in Figure 3.3 have both the I-
tromino and the V-tromino as their greatest common divisors.

Figure 3.3
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When two polyominoes have at least two greatest common divisors, each
divisor is clearly not divisible by any of the others. However, even if a unique
greatest common divisor exists, it is still not necessarily divisible by the other
common divisors. For instance, the two dodecominoes in Figure 3.4 have the
I-tetromino as their unique greatest common divisor, but it is not divisible
by the I-tromino which is also a common divisor.

Figure 3.4

Any two polyominoes have a greatest common divisor, since we can
always fall back on the monomino. When the greatest common divisor is
the monomino, we say that these two polyominoes are relatively prime to
each other. The monomino is relatively prime to every other polyomino. A
prime polyomino is one which is divisible only by itself and the monomino,
and it is also relatively prime to every other polyomino. Note that the
monomino is not considered to be a prime polyomino.

If the area of a polyomino is a prime number, then it must be a prime
itself. The converse is not true. The smallest counter-example is the T-
tetromino. It has area 4, but is a prime polyomino.

A polyomino is said to be a common multiple of two other polyominoes
if it is a multiple of both. If two polyominoes have common multiples, they
are said to be compatible. A least common multiple of two compatible
polyominoes is a common multiple with minimum area. As shown earlier,
the I-tromino and the V-tromino have at least two least common multiples.
Clearly, neither multiple divides the other. These two trominoes even have
a common multiple, as shown in Figure 3.5, which has an area not divisible
by 6, the area of their least common multiple.
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Figure 3.5

However, the area of every common multiple of the I-tromino and the I-
tetromino must be a multiple of 12, the area of their least common multiple.

Given two small polyominoes, it is a trivial matter to determine all com-
mon divisors of them. It is a different situation with common multiples. To
determine whether they are even compatible is often an interesting question.
Finding the area of a least common multiple of two compatible polyominoes
can also be challenging.

The monomino is trivially compatible with every polyomino. This prop-
erty is not shared even by the domino, which is incompatible with the ico-
somino in Figure 3.6. Thus compatibility is not a transitive relation.

B
s s
B B
R spnssenen R
s
Figure 3.6

We have seen that the two tetrominoes are compatible with each other.
They are also compatible with all five tetrominoes. Figure 3.7 shows the
constructions of the common multiples with the tetrominoes. The same
construction is used for both trominoes except in the case of the T-tetromino.

Figure 3.7
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Figure 3.8 gives a least common multiple of each pair of tetrominoes.
The tetrominoes are featured along the main diagonal. The figure in the
i-th row and the j-th column shows how a least common multiple of the i-th
and j-th tetrominoes can be constructed from the i-th one.

E

Figure 3.8

Note that the minimum possible area is attained in all but two cases,
between the O-tetromino on the one hand, and the T-tetromino and the S-
tetromino on the other. We now justify that these are indeed least common
multiples.

Suppose we wish to find a least common multiple of the O-tetromino
with either the T-tetromino or the S-tetromino. Clearly, the area of any
multiple of a tetromino is a multiple of 4. Since the tetrominoes in question
are distinct, the smallest possible area of a common multiple is 8.
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Note that two copies of the O-tetromino can abut in essentially two ways
as shown in Figure 3.9. Neither figure can be assembled from copies of either
the T-tetromino or the S-tetromino. Hence a common multiple has area at
least 12.

Figure 3.9

If we paint the squares of the infinite grid black and white in the usual
checkerboard fashion as shown on the left of Figure 3.10, then three copies of
the O-tetromino always cover an even number of white squares while three
copies of the T-tetromino always cover an odd number of white squares.
Hence they have no common multiples with area 12.

Figure 3.10

If we paint the squares of the infinite grid black and white in the check-
ered pattern shown on the right of Figure 3.10, then three copies of the O-
tetromino always cover an even number of white squares while three copies
of the S-tetromino always cover an odd number of white squares. Hence
they have no common multiples with area 12 either. It follows that in both
cases, the minimum area of a common multiple is indeed 16, as shown in
Figure 3.8.

The structure considered in this section is an example of a Normed Di-
vision Domain considered by Solomon W. Golomb [7]. The presentation is
a slight modification of [4]. See also [1] and [2].
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Section 2. Tetris Algebra

In Tetris Algebra, a different variable such as u, v, w,x or y stands for
a different tetromino. A sum of variables means a figure constructed from
a specified combination of tetrominoes. T'wo sums are equal if the figures
constructed are identical.

For a sum involving two tetrominoes, there are two cases:

(A) The two tetrominoes are identical.

(B) The two tetromineos are different.

These lead to three situations and five equations.

(A) versus (A): 2z = 2y (1)
(A) versus (B): 2r = w+y; (2)
20 = z+vy. (3)

(B) versus (B): w+zr = wty; (4)
r+y = u-+to. (5)

In ordinary algebra, each of equations (2) and (4) implies = y. Since
two different tetrominoes cannot be identical, it would appear that neither
equation can be satisfied. However, the Cancellation Law does not apply in
Tetris Algebra. As it turns out, one of them has solutions while the other
does not. Note that we cannot cancel the common factor 2 from equation
(1) either.

When an equation has solutions, our task is to find all possible ones.
When it does not, we will have to present a proof of non-existence. A useful
tool is to consider various colorings of the infinite grid. We have employed
this technique in the last section, with two colorings in Figure 3.10. We
shall call them Colorings I and III. The two in Figure 3.11 will be called

XX X
X X X
X X X

POKNK
HOAKNK
HOAKAKNK

Figure 3.11
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In the chart below, we show the possible distributions of black and white
squares covered by each tetromino when it is placed on the infinite grid with
a specific coloring.

Tetrominoes Coloring I Coloring IT  Coloring IIT  Coloring IV

T 3+1 341 3+1 3+1
242 242 242/440

L 3+1 3+1 3+1
242 242 24+2/440

N 3+1 3+1
242 242

0 3+1
242 242 24+2/4+0

I
242 242/4+0 242 242/440

Note the diagonal of entries in boldface. In each case, the number of
black squares and the number of white squares covered must be odd. In
each entry below this diagonal, the number of black squares and the number
of white squares covered must be even. In each entry above this diagonal,
both are possible except for the S-tetromino in Coloring IV.

Consider equation (5): z+y = u+wv. If the T-tetromino is used, the sum
with the T-tetromino will cover an odd number of black squares in Coloring
I while the other sum will cover an even number of black squares. Hence
the two figures cannot be identical. This means that we must use the other
four tetrominoes. However, the sum with the L-tetromino will cover an odd
number of black squares in Coloring II while the other sum will cover an
even number of black squares. Hence the two figures cannot be identical,
and equation (5) has no solutions.

Consider now equation (2): 2z = z 4+ y. As in the above argument,
Coloring I eliminates the T-tetromino and Coloring II eliminates the L-
tetromino. Now the Coloring III eliminates the S-tetromino and Coloring
IV eliminates the O-tetromino. Hence equation (2) also has no solutions.

Below are all possible solutions to equations (1), (3) and (4).
Equation (1): 2z = 2y.

As we have seen in Section 1, two of the pairs, namely T-O and S-O, are
unsolvable, while the other eight cases have solutions.
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Equation (3): 2w =z +y.

Coloring I shows that T can only play the part of w. If w is T, then =
and y can be any two of the other four, at least theoretically. In practice,
four of the pairs, namely 1-O, S-O, S-T and O-I, are unsolvable. If T is not
used, Coloring IT shows that L can only play the part of w. If w is L, then x
and y can be any two of N, O and I. Finally, if L is also not used, Coloring
IIT shows that w must be N and x and y must be O and I. However, Coloring
IV shows that there are no solutions. The five solvable cases are shown in
Figure 3.12.

Figure 3.12

Equation (4): w+ 2 =w+y.

Coloring I shows that T can only play the part of w. If w is T, then z
and y can be any two of the other four, at least theoretically. In practice,
two of the pairs, namely S-O and O-I, are unsolvable. If T is not used,
Coloring IT shows that L can only play the part of w. If w is L, then x and
y can be any two of N, O and I. Finally, if L is also not used, Coloring III
shows that w must be N and « and y must be O and I. However, Coloring
IV shows that there are no solutions. The seven solvable cases are shown in
Figure 3.13.
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Figure 3.13

This section is based on a paper [6] by David Chou and Neo Lin, members
of the Chiu Chang Mathematics Circle.
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Section 3. Other Compatibility Problems.

The polyominoes are but one special case of polyforms. Another special
case consists of the polyiamonds. They are connected plane figures formed
of joining unit equilateral triangles edge to edges.

Figure 3.14 shows the moniamond, the diamond, the triamond, three
tetriamonds named A, I and V, and four pentiamonds named A, I, J and U.

RN

Figure 3.14

We investigate compatibility among the tetriamonds and pentiamonds
as well as between the tetriamonds and the pentiamonds.

Figure 3.15 shows that the tetriamonds are compatible with one another.

/N )))
EAVAS =

Figure 3.15

The compatibility of the A-Tetriamond with the pentiamonds is the
most difficult case. There are no known common multiples of it and the
U-Pentiamond. Figure 3.16 shows that it is compatible with the other three
pentiamonds.



Figure 3.16

Figure 3.17 shows that the I-Tetriamond is compatible with all four
pentiamonds.

Figure 3.17(a)
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Ay N A
VLV

Figure 3.17(b)

Figure 3.18 shows that the V-Tetriamond is compatible with all four
pentiamonds.

Sy (D
AU
S e

Figure 3.18

Figure 3.19 shows that the pentiamonds are compatible with one another.

Figure 3.19(a)
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Figure 3.19(b)

The third and last regular polygon which tiles the plane is the hexagon,
which gives rise to the polyhexes. Figure 3.20 shows the monohex, the dihex,
three trihexes named A, I and V, and seven tetrahexes named I, J, O, P, S,
Uand Y.

SOOOROROORESS

oo G-
S Yo Y

Figure 3.20

Figure 3.21 shows that the trihexes are compatible with one another.

(WSLRSSRLSH

Figure 3.21

Interested readers are invited to extend our investigation to the tetra-
hexes. We should mention that there are no known common multiples of
the I- and Y-Tetrahexes.
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This section is based on [3] and [5]. A polyiamond compatibility problem
was posed in the Internaitonal Mathematics Competition. In preparation for
this contest, Circle members Richard Mah, Ryan Nowakowsky and William
Wei carried out a further investigation independent of [3]. Their work was
published in [8].
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Exercises

1.

(a) Find a tetromino such that we can use three copies of it to form
a multiple of the V-tromino which contains a completely sur-
rounded 1 x 1 hole (that is, all eight neighboring squares are part
of the figure).

(b) Are there other tetrominoes with the same property?

. Find all solutions to solvable equations with each side a sum of two

polyominoes, when only the domino and the two trominoes are avail-
able.

(a) Show that the triamond is compatible with all three tetriamonds.

(b) Show that the triamond is compatible with all four pentiamonds.
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Chapter Four: Mathematical Chess Problems

Section 1. Adventures of an Apprentice Rook

The Pawn Timmy had just been promoted to a Rook, and was being ap-
prenticed to the King’s Rook. During his training period, he was instructed
to move slowly and cautiously, one square at a time.

“Starting tomorrow, you must visit each of the 64 squares of the chess-
board exactly once each day,” the King’s Rook said. “You may choose to
always start at square al or always start at square b2. You must take a
different path everyday. When all paths have been exhausted, you will have
completed your training.”

Timmy wished to make his training period as short as possible. Since
he had to choose his starting point the next morning, he began counting
the number of different paths starting from al, and the number of different
paths starting from b2. It was a difficult task. He was never sure whether
he was counting some of them more than once, or whether he had missed
some. In any case, the numbers were large enough to put him in despair.

Nevertheless, making the right choice would be a small victory. He drew
a diagram of the chessboard and marked square al as A and square b2 as
B. He also marked square bl as Y and square a2 as Z. See Figure 4.1. Then
he drew a path from A through Y and B to Z.

> N
< W

Figure 4.1

This did not help at first. Then Timmy realized that both A and B are
black squares. Since the squares along a path must alternate in color, no
path can start from A and end at B, or vice versa. This allowed him to see
that there must be more paths starting from A than those starting from B.
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Timmy’s reasoning is as follows. For each path starting from B, since the
path cannot end at A, it must visit A between visits to Y and Z. Suppose
the path visits Y first. Then it corresponds to the following one starting
from A: move to Y, follow the original path in reverse to B, move to Z, and
follow the original path to the end. Figure 4.2 shows an example.

Figure 4.2

If the path visits Z first, then start from A, move to Z, follow the original
path in reverse to B, move to Y, and follow the original path to the end.
Hence every path from B corresponds to some path from A. Figure 4.3 shows
an example.

Figure 4.3

On the other hand, the path in the original diagram does not correspond
to any path from B because no such path can end at Z unless it moves from
A to Z. Thus there are more paths from A than from B.

So the next morning, Timmy chose square b2 as his starting point. The
King’s Rook said nothing, but Timmy sensed that he had passed his first
test.

One day, Timmy found some barriers placed between pairs of adjacent
squares. He was able to traverse the entire chessboard without crossing
any barriers. However, he realized that had some the barriers been placed
differently, his task might not have been possible. He filed a modest protest
to the King’s Rook.
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“The King is trying to turn the chessboard into a labyrinth for the up-
coming celebration of the Queen’s birthday. Don’t worry, I will make sure
that it is a good labyrinth, that is, one that allows you complete your task.”

“Thank you, sir,” said Timmy. Then he added, “Surely, there must be
more bad labyrinths than good ones.”

“Why?”

Timy was stuck for an answer. He went away and tried to work things
out. He remembered the one-to-one correspondence approach which helped
him choose the starting point of his path. He was soon able to justify his
somewhat rash statement to the King’s Rook.

Timmy’s reasoning is as follows. The chessboard has 7 internal vertical
grid line, each divided into 8 segments. Hence there are 56 possible vertical
barriers. Similarly, there are 56 possible horizontal barriers. Since a path
consists of 63 moves, a good labyrinth can have at most 49 barriers. Two
labyrinths are said to be complementary if every possible barrier appears in
exactly one of them. In any such pair, at least one of them has at least 56
barriers and is bad. Hence there are at least as many bad labyrinths as good
ones. Consider the labyrinth with only two barriers isolating a corner square
of the chessboard. Then both it and its complement are bad. It follows that
there are more bad labyrinths than good ones.

One day, the Queen’s Rook came over for a visit. The two Rooks played
the following game. The Queen’s Rook placed Timmy on any square in
column a. Then the two Rooks alternately ordered Timmy to move, the
King’s Rook issuing the first order. Timmy might not be ordered to move
to the left, and not to a square which he had already visited in the game.
Eventually, someone had to order him to move to column h, and that player
would be the loser.

Timmy was able to figure out a winning strategy for the King’s Rook,
and told him in a whisper. The King’s Rook was very pleased. He followed
Timmy’s strategy, and won the game.

Timmy’s strategy is as follows. If the Queen’s Rook places him on square
al, a3, ab or a7, the King’s Rook orders him to move up. If neither player
orders Timmy to move to the right, he will be ordered to move to a8 by the
King’s Rook, after which the Queen’s Rook must order Timmy to move to
the right. If the Queen’s Rook places Timmy initially on square a2, a4, a6
or a8, the King’s Rook orders him to move down. In any case, the Queen’s
Rook must order Timmy to move to column b sooner or later. Then the
situation is the same as before, so that the Queen’s Rook must lose the
game.
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The next day, the Queen’s Rook brought along his apprentice Tommy,
another newly promoted Rook. The King’s Rook placed Timmy on one
square of the chessboard, and the Queen’s Rook placed Tommy on another
square. Then they alternately ordered their apprentices to move. What
they wanted was that every possible position of the two boys on the chess-
board would appear exactly once. They were unable to do so. That evening,
Timmy came to the conclusion that what the two Rooks sought was a mis-
sion impossible.

His reasoning is as follows. For any position of Timmy, there are 63
possible positions for Tommy. Since they move alternately, each visit of
Timmy to that square accounts for 2 of the 63 possible positions for Tommy.
Since 63 is odd, this means that Timmy must either end his moves there or
begin there. It is clearly not possible for Timmy to do so in every square.

The Queen’s Rook came back the next day, and the exercise was re-
peated, except that Timmy and Tommy did not have to move alternately.
They were still unable to make every possible position of the two boys on
the chessboard appear exactly once. Again, Timmy saw why this was im-
possible.

His reasoning is as follows. Define a position as even if both boys are on
squares of the same color, and odd otherwise. The positions must necessarily
be alternately odd and even. The number of even positions is 2(322) = 992
while the number of odd positions is 322 = 1024. If all even positions appear,
then some odd positions must appear more than once.

Well into his training period, Timmy was taken along by the King’s Rook
for a Jamboree for Apprentice Rooks. There were so many of them that the
chessboard was enlarged to 10 x 10. Each of them was placed on a different
square, and ordered to make one move every minute. They might not change
directions until they reached the border of the chessboard, whereupon they
would reverse their directions. Miraculously, no two of them ever occupied
the same square at any time during the hour-long exercise.

“How many of you were there?” asked the King’s Rook.
“I did not count, sir, but there seemed to be lots of us.”
“What is the maximum number of apprentice Rooks on the chessboard?”

“Well, sir,” Timmy said as he thought things out, “Suppose there were
three of us moving along a row or column. By the Pigeonhole Principle, two
of us must occupy squares of the same color, and these two must occupy the
same square sooner or later.”

“What does that mean?” asked the King’s Rook.



Adventures of an Apprentice Rook 59

“That means there are at most two of us moving along a row or column,

sir.”

“Go on.”

“Since there are ten rows and ten columns, sir, there are at most forty
of us. Could there have been that many?”

“What do you think?”

“Well, sir, T have to construct a placement for forty of us, and assign
an initial direction to each which will preclude simultaneous occupation of
the same square by two of us. This is a tall order. For any row or column,
although there are only two of us moving along it, there are on the average
four of us occupying squares on it at a time.”

“Give it a try. You have been making good progress. I am sure you can
work it out.”

Thus encouraged, Timmy went away to find pencil and paper. Eventu-
ally, he came up with Figure 4.4, which showed that there could have been
as many as forty apprentice Rooks on the 10 x 10 chessboard.
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Figure 4.4

The next day, the Jamboree was over, and most of the participants had
left. Only sixteen apprentice Rooks were left, and they were given the
following exercise on the standard 8 x 8 chessboard. Eight of them occupied
the squares on the top row and the remaining eight occupied the square on
the bottom row. They were instructed to move to the opposite edge of the
chessboard. At no time could two of them occupy the same square.
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Timmy wondered about the minimum number of moves the group must
make in order to accomplish the task. Clearly, each of them must make at
least 7 vertical moves in order to reach the opposite border. In each column,
at least one apprentice Rook must make a horizontal move in order to allow
the apprentice Rook coming from the opposite direction to get past. Thus
the total number of moves could not be less than 16 x 7+ 8 = 120.

It was still necessary to show that 120 moves were sufficient. Timmy
constructed a sequence of moves in four stages. He used black circles to
represent the apprentice Rooks on the top row and white circles to represent
those on the bottom row.

CeOeOeO0e O O O ©O

e o o o e o o o

O O O O CeOeOeOe
Figure 4.5

The first two stages were shown in Figure 4.5 and the next two stages
in Figure 4.6. They required 4 x (2 +8) = 40, 4 x 7 = 28, 4 x 8 = 32
and 4 x 5 = 20 moves respectively. The total number of moves was indeed
404-28+4-32+-20=120.
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Figure 4.6

“What if the exercise was carried out by eighteen of you on a 9 x 9
chessboard instead?” the King’s Rook, whose approach was not noticed by
Timmy while he was concentrating on his deliberation.

“Well, sir,” Timmy answered almost immediately. “On a 9 x 9 chess-
board, each of us has to make at least 8 vertical moves. At least one of us
from each column must make a horizontal move. So the total number of
moves is 18 x 8 +9 = 153.”

“This won’t work,” said the King’s Rook.
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Timmy thought for a little and said, “I see now, sir. If only 9 horizontal
moves are made, there will be five of us in the four even-numbered columns
and only four of us in the five odd-numbered columns. So at least one more
horizontal move has to be made, bringing the total to 154. I am sure my
diagrams may be modified to make this work.”

On the final day of his training, Timmy’s path ends on a square adjacent
to square al. So he made a 64th move and completed a closed path. He
reported this to the King’s Rook.

“Could you have made 32 horizontal and 32 vertical moves?”
“I didn’t count, sir. It is quite possible.”
“It is not,” remarked the King’s Rook dryly.

Timmy was puzzled. He was the one moving, and he could not remember
whether he had made 32 horizontal and 32 vertical moves. How could the
King’s Rook tell that this was impossible? Timmy remained puzzled for the
whole day, until he finally realized that the King’s Rook was right, as usual.

Timmy’s reasoning is as follows. Each time he moves from one square
to the next one, connect the centers of these squares by a segment of length
1. Thus we have a closed path Lj of length 64. Note that this path encloses
a region which does not contain a complete square of the chessboard, since
the center of each square is on the path. Figure 4.7 shows a typical closed
path.

Figure 4.7

Consider all the vertices of the squares of the chessboard that are inside
this region as vertices of a graph. If two of them are adjacent vertices of
the same square, connect them by the corresponding edge of that square. If
this graph has a cycle, it would enclose at least one complete square of the
chessboard, and this square would be inside the region enclosed by L.
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Since this is not the case, the graph is a tree and has a vertex of degree
1. In Figure 4.7, the vertex at the bottom right corner is such a vertex. We
remove it and shorten the closed path to Lq of length 62. Now two squares
are not visited, and we glue them together to form a vertical domino, as
shown in Figure 4.8.

Figure 4.8

Note that L; has two horizontal segments less than Ly but the same
number of vertical segments. If the domino is horizontal instead, L; will
have two vertical segments less than Ly but the same number of horizontal
segments.

Now L, still encloses tree, so that further reduction can be made. In
Figure 4.9, we reach Lg with length 48.

Figure 4.9
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Eventually, we reach L3y which consists of four segments forming a unit
square, with the rest of the chessboard partitioned into 30 dominoes, as
shown in Figure 4.10.

Figure 4.10

Suppose Ly has 32 horizontal segments and 32 vertical ones. Then 15
of these 30 dominoes are vertical and 15 of them are horizontal. We divide
the 2 x 2 square covered by Ljg into 2 horizontal dominoes. They are either
both horizontal or both vertical. By symmetry, we may assume that they
are both horizontal. Then the whole chessboard has been partitioned into
17 horizontal and 15 vertical dominoes. It means that some horizontal grid
line of the chessboard must cut across an odd number of vertical dominoes.
This is a contradiction since the part above and the part below this grid
line outside of the cut dominoes both contain an odd number of squares,
and cannot be covered by un-cut dominoes. It follows that the number of
horizontal segments cannot be equal to the number of vertical segments.

Although it was well past midnight, Timmy was so excited that he roused
the King’s Rook out of bed. He listened to Timmy patiently, and then
nodded. “Excellent, Timmy!” he said. “Congratulations! You are now a
full-fledged Rook!”
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Section 2. Martin Gardner’s Royal Problem

The Red Queen was furious, as usual. Her current ire was brought on
by the absence of the Red King from his Palace. On her rare visits, shc
expected to see whom she had come to see.

“Bring the old fool back here, or else!” roared the Red Queen, who was
related to the Queen of Hearts.

“Or else what?” asked Alice, but only after Her Majesty had swept
radiantly out of earshot back to her side of the Palace.

“Off with your head!” Tweedledum said.
“What else?” added Tweedledee rhetorically.

“Oh, dear,” said Alice, “this puts a new meaning to ten percent off the
top. What shall I do? I don’t even know where the Red King is.”

The twins brought out a map of the land. It was the familiar 8 x 8
chessboard in Figure 4.11.
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Figure 4.11

)

“I bet I know where His Majesty is,” said Tweedledum.
“On h4!” exclaimed T'weedledee.
“How do you know that?” Alice asked.

“Well,” said Tweedledum, ”the Red King plays it safe. He never ventures
into the White Kingdom.”

“He also refuses to cross over to the Queen Side,” added Tweedledee.
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“So he is confined to twenty squares in Figure 4.12. That is helpful, but
I still don’t see how you can be so sure that he is on h4.”

8 Q
7
6
5
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Figure 4.12

“His Majesty likes to be as far away from the Red Queen as he possibly
can,” Tweedledum said.

“Actually, as far from the Red Queen’s Palace as possible,” corrected
Tweedledee. “He has no control over the whereabouts of Her Majesty.”

“There is another problem,” said Alice. “If the Red King does not want
to come back to e8, how can I persuade him against his wish?”

The twins thought for a while, and fought for a while just to pass the
time. Then they both came up with a brilliant idea. Not surprisingly, it was
the same idea.

“Are you in mortal fear of the Red Queen?” Tweedledum asked Alice.
“Of course. Who isn’t?”
“Of all people, who fears her the most?” asked Tweedledee.

“Hard to say,” Alice replied. Then it occurred to her. “The Red King,
of course.”

“Right!” said Tweedledum. “He could not risk getting caught in a
mating situation with the White Queen.”

“So if you disguise yourself as that good lady, you can drive His Majesty
back here,” declared Tweedledee triumphantly.

“It is worth a try,” said Alice, somewhat encouraged. “I should not
waste any time by venturing outside of those twenty squares either.”

“Make sure you do not corner His Majesty on h8 with no legal moves,”
Tweedledum advised Alice.

“Also, do not drive him into the White Kingdom,” said T'weedledee.
“His Majesty may find out that it is not as dangerous as he makes it out to
be.”
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“Well, I'd better hurry and bring His Majesty back as soon as I can. The
Red Queen’s patience is shorter than her temper!”

We summarize Alice’s strategy in the following chart.

Moves (1) (2) (3) (4 (5) (6) (7)

White e5 {6 f4 eb £5 eb h6
Red gd hbH g6 h6 g7 h8 g8

Notes (a) (b)

Moves (8) (9) (10) (11) (12) (13) (14)

White g6 gb {6 h6 g5 g6 £5
Red h8 h7 g8 f7 f8 ev el

Notes  (c) (d)

Notes:

(a) If (4) ... {7, continue from (12). If (4) ...
(b) If (6) ... 18, continue from (13). If (6) ...
(c) If (8) ... 18, then (9) h7 e8.

(d) If (12) ... 6, then (13) f4 €7, and continue from (14).

h7, continue from (10).
h7, continue from (10).

~ ~—

Alice drove the Red King back to his Palace just in time.

“Come along,” roared the Red Queen. “We have to attend a summit
conference with the White Queen and her consort.”

“What is the matter this time, dear?” asked the Red King timidly.

“We have been discussing the partition of the Borderland. There is too
much goings-on here, especially on h4, or so I hear.”

“I can’t imagine what,” murmured the Red King.

“Anyway, the White Queen and I have agreed to establish our borders
between ranks 4 and 5. We just meet to formalize the deal.”

“If you say so, dear.”

As soon as the new treaty was signed, the Red King headed for h5,
the furthest haven within his domain. Alice was dispatched after him once
again. As it turned out, her efforts were futile.

We generalize the problem to an m x n chessboard, m > n > 3. A
White Queen is on square (1,1), while a Red King is on square (m,n). The
Queen moves first unless m = n, in which case the King must move out of
check. Thereafter, moves alternate. The Queen wins if and only if the King
is forced to her initial square (1,1) in a finite number of moves. With perfect
play, the King wins if and only if m = n. In our analysis, all positions are
considered at the moment when it is the King’s turn to move.
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We first prove that the King wins if m = n > 3. We consider the game
from his point of view and define a “forbidden zone” into which he must
not move. This zone consists of all squares (7,j) where i +j < n— 1. It
always contains the forbidden square (1,1). For n = 3, it consists only of
this square. The case n = 4 is shown in Figure 4.13, with the squares in the
forbidden zone marked by black dots.
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Figure 4.13

We’ll prove that not only can the King avoid going to (1,1), he can’t
even be forced into the forbidden zone by the Queen. For this to happen,
the King must be on one of the following types of squares:

A-(n—11)or (I,n—1);

B. (i,7), where i + j = n, with¢ > 1 and j > 1;

C. (i,j), where i + j =n+1, withé > 1 and j > 1.
For n = 4, the relevant squares are marked accordingly in Figure 4.13.
Consider Case A. Suppose the King is on (n — 1,1) as shown in Figure

4.14. He can move to (n —2,2),(n—1,2),(n,1) or (n,2), none of which is
in the forbidden zone. These moves are marked with x’s in Figure 4.14.

n-3 o e

n—2 ® X

n—1 K x
n X
1 2 3
Figure 4.14

The only squares from which the Queen can control all four squares are
(n—1,1),(n—1,2) and (n,2). The first is already occupied by the King.
If the Queen is on either of the other two squares, she will be captured. So
the King can’t be forced into the forbidden zone when he is on (n—1,1) or,
by symmetry, on (1,n —1).
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Cases B and C can be handled similarly, the King having even more
options. This completes the proof that the King wins if m =n > 3.

While this proof is very simple, one may well ask how we came to think of
the forbidden zone in the first place. Our initial approach is by mathematical
induction on n. It’s not difficult to see that the King wins if n = 3.

For n = 4, we mark off two overlapping 3 x 3 boards on the 4 x 4 board,
as shown in Figure 4.15. Each smaller board has its own forbidden square,
and the two join up with the actual forbidden square to form the forbidden
zone in Figure 4.13.
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Figure 4.15

We now consider two cases. If the King and Queen are on the same 3 x 3
board, we already know that the King has a safe square within the same
board. If the King and Queen aren’t on the same 3 x 3 board, the Queen is
too far away to restrict the King’s movement effectively. It’s easy to see how
the general inductive step goes. We omit the details because our simplified
proof makes mathematical induction unnecessary here.

To complete the justification of our claim, we give a winning algorithm
for the Queen if m > n > 3. We consider the game now from her point of
view. She will win if she can achieve the position in Figure 4.16, with the
King on (4, j), provided that i + j < n.
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Figure 4.16

From this position, all possible moves by the King are indicated by ar-
rows. The Queen’s responses are shown by arrows with matching labels.
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Note that after each move, the position is again that in Figure 4.16.
The King’s column number never increases, and it can’t remain constant
forever. Thus, the King will be driven to column 1 eventually. It’s now a
simple matter for the Queen to march him up column 1 to (1,1).

We’ve already proved that the Queen can’t win on a square board. This
is a good place to pause and see why the squareness of the board makes
such a big difference. It’s certainly possible for the Queen to get the King
into the position in Figure 4.16, with the King on (i, j), where i + j < n.
It’s also possible for the King to keep i+ j = n. By choosing option C every
time, he will reach column 1 on (n — 1,1). The Queen must now move to
(n+ 1,2), but this is possible if and only if m > n.

We now prove that the Queen can win, with or without getting the King
into the position in Figure 4.16. Her initial objective is to achieve any of
the three positions shown in Figure 4.17.

If n > 5, this is easily accomplished by the Queen giving check on (m, 1).
The King can move to either (m — 1,n— 1) or (m — 1,n). The Queen then
goes to (m,n — 3) or (m,n — 2) accordingly. For n = 4, the Queen first
moves to (m — 1,1). For n = 3, the Queen first gives check on (m — 2,1).
In each of these two special cases, at most two more moves will lead to a
desired position. The reader can work out the details.

X=A or C Y=B or D
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(a) (b) (c)
Figure 4.17

From the positions in Figure 4.17, all possible moves by the King are
indicated by arrows. The Queen’s responses are indicated by arrows with
matching labels. If the King happens to be in column 1 or n, option A or D
for the Queen in Figure 4.17(b) is impossible. She should make the alternate
response with a matching label in the lower case.

Note that after each move, the position is again one of the three in Figure
4.17. The King’s row number never increases, and it can’t remain constant
forever. So the King will be driven to row 1 eventually.
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When the King reaches row 1 at (1, j), the Queen abandons the strategy
indicated in Figure 4.17. Instead she gives check at (3,j), which she can
always do. We now consider three cases.

Case 1: j < n and the King moves to (1,5 — 1).
The Queen moves to (2,j + 1) and marches the King along row 1 to (1,1).

Case 2: j < n and the King moves to (1,5 + 1).

The Queen continues to check along row 3. If the King moves back toward
(1,1) before reaching (1,n), the Queen can convert the situation to that in
Case 1. If the King goes to (1,n), the Queen makes an unexpected move,
from (3,n — 1) to (4,n — 1). The King’s moves are now forced: King to
(2,n), Queen to (3,n —2), King to (1,n — 1), and Queen to (3,n). She has
now achieved the winning position in Figure 4.16, since 1 + (n — 1) = n.

Case 3: i = n. The King must move to (1,n — 1). The Queen gives check
at (3,n—1). The King’s response will lead to either Case 1 or Case 2.

This completes the proof that the Queen wins if m > n > 3.
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Section 3. Knight Tours

A knight tour on a chessboard is a sequence of moves of a knight which
takes it over very square of the chessboard. If the tour ends on a square
which is a knight’s move away from the starting square, the tour is said to
be re-entrant.

The problem of knight tours is very old. For popular accounts, see [1]
and [6]. However, these references describe methods of construction which
are not supported by arguments that they will never fail. It is not until
recently that constructions with proofs are supplied. See [2] and [8], both of
which deal with rectangular boards, and [5], which deals with more general
boards.

The aim of our investigation is to find re-entrant knight tours on an nxn
chessboard for even n. Our overall plan of attack is to classify the n x n
boards according to the congruence class of n modulo 6. Thus there are
three cases, n =0 (mod 6), n = 2 (mod 6) and n =4 (mod 6).

Figure 4.18 shows a re-entrant knight tour on the 6 x 6 board called
T6A. Henceforth, all re-entrant tours will be identified by A.

Figure 4.18

Figure 4.19 shows a tour T6B which is not re-entrant. It will be used as
our basic building block. Henceforth, copies of T6B will not be labeled.

Figure 4.19
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Figure 4.20 shows that if we put together 4 copies of T6B, we have T12A!
The same idea works for all 12k x 12k boards.

VoL

Figure 4.20

In investigating the 18 x 18 board, we first construct T12B by putting
together 3 copies of T6B and 1 copy of T6A, as shown in Figure 4.21.

.\. T6A
/‘
Figure 4.21

This is then used to construct re-entrant tours on all (12k+6) x (12k+6)
boards. T18A is shown in Figure 4.22.
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Figure 4.22
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We turn to the next case, where n = 2 (mod 6). Clearly, there are no
re-entrant tours on the 2 x 2 board. Many on the 8 x 8 board are known.
After all, this is the standard chessboard, and the problem has been around
for a long time. We call the one in Figure 4.23 T8A.

Figure 4.23

Figure 2.24 shows a tour T8B which is not re-entrant.

Figure 4.24

Figure 2.25 shows a board which not rectangular but elbow-shaped, with
a tour T8C on it. Henceforth, all tours on elbow-shaped boards will be
identified by C.
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Figure 4.25

Using these, we construct T14B in Figure 4.26.
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Figure 4.26

This is in turn used to construct re-entrant tours on all (12k+8) x (12k+
8) boards. T20A is shown in Figure 4.27.

Using T8B and T8C, we can get T14A as shown in Figure 4.28, and T26A
as shown in Figure 4.29. The method works for all (12k + 2) x (12k + 2)
boards.
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Figure 4.29

We now come to the last case, where n = 4 (mod 6). It is easy to show
that there are no re-entrant knight tours on the 4 x 4 board. This is the
only exception. The general construction is analogous to that in the case
n = 2 (mod 6), but using instead the pieces T10A in Figure 4.30, T10B in
Figure 4.31 and T10C in Figure 4.32.

Figure 4.30
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Figure 4.32

In summary, re-entrant knight tours exist on n x n boards for all even
n > 6.

When n is odd, a re-entrant tour is not possible on the n x n board. If
we paint the squares black and white in the usual chessboard fashion, the
numbers of white squares and of black squares differ by 1. Now the Knight
always moves between squares of opposite colors. Hence the tour starts and
ends on squares of the same color, and they cannot be a Knight’s move
apart. In a sense, this makes our task easier since we just have to find any
knight tour.
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Continuing our overall plan of attack, we also have three cases here,
n =1 (mod 6), n =3 (mopd 6) and n =5 (mod 6).

T1B a trivial knight tour on a 1 x 1 board. Figure 4.33 shows an elbow-
shaped T7C.

Figure 4.33

T1B and T7C combine easily into T7B. T13B is constructed using T7B,
T7C and two copies of T6B, as shown in Figure 4.34.

7

T7C

T7B

. -

Figure 4.34

The same construction can be used to get a tour on all n x n boards,
n =1 (mod 6). T19B is shown in Figure 4.35.
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Figure 4.35

Tt is now clear that the cases n = 3 (mod 6) and n = 5 (mod 6) can be
handled in the same way. There are no knight tours on the 3 x 3 board since
the central square is isolated. Apart from this exception, knight tours exists
on all other boards of odd sizes. All that remains to be done is to construct
T9B, T9C, T5B and T11C. These are shown in Figures 4.36, 4.37, 4.38 and
4.39, respectively.

Figure 4.36
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Figure 4.37

Figure 4.38

In summary, knight tours exist on n x n boards for all odd n # 3.

The Royal Problem [7] was my only collaboration with Martin Gardner.
There was a sort of role reversal in that usually Martin did the narrative
while his collaborator supplied the mathematical contents. Here, Martin
dug up the problem from a Russian source while I concocted the exchange
between Alice and the Tweedle twins. The analysis of the square board
was the work [4] of Circle members Jesse Chan, Peter Laffin and Da Li.
The novel approach in the Lego-style construction of knight tours was the
work [3] of Circle members Hubert Chan, Steven Laffin and Daniel van Vliet.
Hubert and Steven are the younger brothers of Jesse and Peter, respectively.
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Figure 4.39
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Exercises

1. The King’s Rook was so well established that he always moved at
least two squares at a time. The King ordered him and his apprentice
Timmy to visit every square of a 4 x 4 board exactly once and return
to the starting square. In such a confined space, Timmy had a decided
advantage since he moved only one square at a time. Was the task
possible for each of them?

2. On the miniature chessboard in Figure 4.18, White has a lone Queen
on e8 and Red has a lone King on h6. White moves first, and wins
if the Red King is driven back to e8 within 10 moves. If this is not
accomplished, then Red wins. Other than what is noted above, normal
chess rules apply. With perfect play, which royalty wins?

K
h
Figure 4.18

3. Prove that there are no re-entrant knight tours on the 4 x n board.



Bibliography 83

[

Bibliography
W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations
and Essays, Dover Publications Inc., Mineola (1978) 175-186.

R. Cannon and S. Dolan, The knight’s tour, Mathematical Gazette 70
(1986) 91-100.

Hubert Chan, Steven Laffin and Daniel van Vliet, Knight Tours, Math-
ematics and Informatics Quarterly 2 (1992) 135-150.

Jesse Chan, Peter Laffin and Da Li, Martin Gardner’s Royal Problem,
Quantum 4 (1993) 45-46.

R. B. Eggleton and A. Eid, Knight’s circuits and tours, Ars Combina-
toria. 17A (1984) 145-167.

Martin Gardner, Mathematical Magic Show, Mathematical Associa-
tion of America, Washington (1990) 188—-202.

Martin Gardner and A. Liu, A Royal Problem, Quantum 3 (1993)
30-31.

A. J. Schwenk, Which rectangular chessboards have knight’s tours?
Mathematics Magazine 64 (1991) 325-332.



Chapter Five: Mathematical Induction

Section 1. The Towers of Hanoi
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In a famous puzzle known as the Tower of Hanoi, there are three pegs
in the playing board. There are several disks of different sizes, all stacked
on the first peg, in ascending order of size from the top. The objective is to
transfer this tower to the third peg. The rule is that we may only move a
disk on top of a peg to the top of another peg, and a disk may not be placed
on top of a smaller disk.

If the number of disk is 1, the task can be accomplished in 1 move. If
the number of disks is 2, the task can be accomplished in 3 moves. Figure
5.1 shows that if the number of disks is 3, the task can be accomplished in 7
moves: ABACABA. Based on these three simple cases, we conjecture that
the minimum number of moves required to transfer a tower with n disks is
2" — 1.

To prove this, we turn to a powerful general method.

Principle of Mathematical Induction

Let P(n) be a sequence of statements such that P(k) is true for some positive
integer k, and P(n + 1) is true whenever P(n) is true. Then P(n) is true
for all integers n > k.

Usually, we have k = 1, and wish to conclude that P(n) is true for
all positive integers n. A proof by mathematical induction consists of the
following two steps.

(1) Basis. Prove that P(k) is true for some positive integer k. Usually,
we have k = 1.

(2) Induction. Assuming that P(n) is true for some integer n > k, prove
that P(n+ 1) is also true. P(n) is called the induction hypothesis.

Let us carry out the proof by mathematical induction for our problem.
Here, P(n) is the statement that the minimum number of moves required
to transfer a tower with n disks is 2” — 1. We have already established
P(1), P(2) and P(3). Assume that P(n) is true for some integer n > 3. To
prove P(n+ 1), let us try to transfer a tower with n + 1 disks.

A critical moment occurs when the bottom disk is moving, from the first
peg to the third. In order for this move to be possible, the n smaller disks
must form a tower on the second peg. Thus before the move of the bottom
disk, we must transfer a tower with n disks from the first peg to the second.
Since P(n) is true, this takes 2" — 1 moves. After the move of the bottom
disk, we must complete the task by transferring the tower on the second peg,
consisting of the n smaller disks, to the third peg. By P(n), this also takes
2" — 1 moves. Together with the move of the bottom disk, the minimum
number is (2" — 1) + 1+ (2" — 1) = 2""! — 1, which establishes P(n + 1).
Hence P(n) is true for all integers n > 1.
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We can express the solution to the problem of the Tower of Hanoi using
a different terminology. Let a, be the minimum number of moves to transfer
a tower of height n from one peg to another. From our analysis above, we
see that a, = 2a,_1 + 1. This result, which defines a,, in terms of a,,_1, is
an example of what is called a recurrence relation. Along with a; = 1,
which is called an initial value, they define the sequence {a,} uniquely.

Using the recurrence relation and the initial value, we can generate ad-
ditional terms of the sequence, as shown in the chart below.

a1:1 a2:3 a3:7
CL4=15 ag =31 CL6=63
a7y =127 ag =255 ag =511

We now consider a variant which we call the Twin Towers of Hanoi (see
[1]). As before, there are three pegs in the playing board. There are n disks
of sizes 1, 2, 3, ..., n. Those of odd sizes are stacked on the first peg, and
those of even sizes are stacked on the third peg. On both pegs, the disks
are in ascending order of size from the top. The rule is the same, in that
we may only move a disk on top of a peg to the top of another peg, and a
disk may not be placed on top of a smaller disk. Figure 5.2 illustrates the
starting position of the case n = 6.

Figure 5.2

The objective is to have the two towers trade places. As in the Tower of
Hanoi, a critical moment occurs when disk 6 is moving, from the third peg
to the first. In order for this move to be possible, the 5 smaller disks must
form a tower on the second peg, as illustrated in Figure 5.3. Thus before the
move of disk 6, we must merge the disks 1 to 5 into a tower on the second

peg.

'~
T N =
/

Figure 5.3



88 5 Mathematical Induction

We have identified an intermediate objective for the Twin Towers of
Hanoi, that of merging the n disks on the second peg. Figure 5.4 illustrates
the case n = 5.

C D,
1
(CC % ))D
) 4
¢ C D) C D 3
1
O
) 4
C C ) C D) 3

Figure 5.4

We first merge disks 1 and 2 on the second peg to pave the way for the
move of disk 3. After disk 3 moves on top of disk 4, we transfer disks 1 and
2 on top of disk 3 to pave the way for the move of disk 5. After disk 5 moves
to the second peg, we transfer disks 1, 2, 3 and 4 on top of it to complete
the task.

In general, we merge disks 1, 2, 3, ..., n — 3 on the second peg, move
disk n — 2 on top of disk n — 1, transfer disks 1, 2, 3, ..., n — 3 on top of
disk n — 2, move disk n to the second peg and transfer disks 1, 2, 3, ...,
n — 1 on top of disk n.
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This means that if we let b,, be the minimum number of moves for merg-
ing n disks, then we have b, = b,,_3+1+a,—3+1+a,—1. Since a,, = 2" —1,
we have

by =bp_3+5-2"73.

This is a three-step recurrence relation since b,, is not defined in terms
of b,_1 but in terms of b,,_3. Hence we need three initial values. It is not
hard to determine by, bs and b3, and generate the chart of values below.

by =1 by =2 b3 =5
by=11 b5=22 bg=45
by =91 bg =182 by =365

We notice that b,, is either equal to 2b,_1 or 2b,_1 + 1, but it is not
immediately clear what the general formula for b, is. We also notice that
the numbers in the last column so far are all multiples of 5. Dividing them
by 5 yields the quotients 1, 9 and 73. In the table of values of a, given
earlier, we notice that the numbers in the last column there are all multiples
of 7. Dividing them by 7 yields the quotients 1, 9 and 73 also. Thus we
suspect that b, is roughly ?an.

?alzl—g ?CLQ:Q—F% ?(I3:5
?a4:11—§ bas=22+1  Sag=45
car=91—2 Dag=182+1 Dag= 365

Thus we conjecture that b, is equal to ?an rounded off to the nearest
integer. More specifically, we conjecture that

by = 5(2"-1) when n =0 (mod 3);
by = 2(2"—2)+1 whenn=1 (mod 3)and
by = 5(2"—4)+2 whenn=2 (mod 3).

We now use mathematical induction to prove these three formulas. First,
let n =0 (mod 3). We have 3(2% — 1) = 5 = bs. Suppose b, = ?(2” —1) for
some n > 3. Then

bn+3 = bn—52n
— 2" 1)4+5.0m
7
- ?(2"—1+7.2")
5

7(2n+3 _ 1).

The other two formulas can be proved in an analogous manner.
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We now return to the main task of having the two towers trade places.
Let the minimum number of moves required be ¢, where n is the total
number of disks. We have already identified that the critical moment is
when disk n moves, either from the first peg to the third or vice versa. In
order for this move to be possible, the n — 1 smaller disks must form a tower
on the second peg. This merger requires b,,_1 moves. After the move of disk
n, we must disperse the merged tower. This also takes b,,_1 moves since the
process is reversible. It follows that ¢, = 2b,_1 + 1. We have the chart of
values below.

Cc1 = 1 Coy = 3 C3 — 5
cg=11 c¢5=23 cg=14>5
cr =91 g =183 ¢9 =365

It follows that ¢, and b,, are identical, except for n = 2 (mod 3), when
they differ by 1. It may be interesting to discover what may have caused
this discrepancy.

Our solution of the recurrence relation b,, = b,,_3-+5-2""3 largely depends
on our observation that b,, is roughly ?an. This we may obtain in a system-
atic manner. Because of the term 5-2"73, it is reasonable to conjecture that
b, = K2" for some constant K. Then K2" = K2" 3 4+ 5.2"3, Canceling

the factor 272 yields 8K = K + 5. Hence K = 5 so that b, = 52",

This formula is a particular solution to our three-step recurrence relation.
We point out that b, = ?2” + K for an arbitrary constant K is also a
solution, as shown below.

5
bp_g+5-2"73 72"—3 +Ki+5-2"73
= 57)(2"_3 +7-2" 1 K,
= ?2”+K1
= b

n-

This is not surprising since b,, = K is a solution to b,, = b, _3. Since our
specific solution depends on three initial values, we need a general solution
with three arbitrary constants. So we need two more solutions of b,, = b,,_3.
Let b, = 2" where > 0. Then 2" = "3, so that

0=2-1=(x—-1)@*+z+1).

The first factor yields the root x = 1 while the second factor yields complex
roots w and w?, where w is a complex root of unity. It satisfies w3 = 1 and
w? 4w+ 1= 0. The general solution is

)
b, = 72n + K1 + Kow" + nggn.
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We have
5 = b3
11 = by
22 = by
It follows that

K1+ Kow + K3w2

K+ K2w2 + K3w

We can solve this system

2 2
Ki=-35 Ko=—5

—%w and K3 =

91

470 + K1+ Ko+ K3
0+ K1+ Kow + Ksw?
1(730 + K1 + Kow? + Ksw

K1+ Ko+ K3

N OO Wy Ot

of three equations in three unknowns and obtain

2 1,2
—5; — w”. However, we do not really

need these values. For n = 0 (mod 3), we have

bn

For n =1 (mod 3), we have

bn

For n = 2 (mod 3), we have

bn

2"+ K1+ Ko+ K3
5

2" —
7

(2" —1).

Gl Ot Ot

7

2" + Ky + Kow + Kqw?
2"—3
7

(2" —2) + 1.

N O O >t

2" + Ky + K2w2 + Ksw

~N Ot Ot Ot

6
2" —
7
(2" —4) + 2.
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Section 2. A Problem on Greatest Common Divisors

The point of mathematical induction is to establish that a certain pattern
continues. However, it is necessary to recognize the pattern in the first place.
We give here an example where the pattern is not all that easy to spot. Once
we have it, the induction part is not that difficult.

We consider two companion sequences {a, } and {d,} defined by a; = 3,
an = ap—1 +dp—1 for n > 2 and d,, is the greatest common divisor of n and
ap, for n > 1. Tt is only necessary to determine one of {a,} and {d,}. We
focus on {d,}.

Let us generate some initial data.

n a, d, n a, d, n a, d, n a, dp
1 3 1 31 78 1 61 162 1 91 192 1
2 4 2 32 7 1 62 163 1 92 193 1
3 6 3 33 8 1 63 164 1 93 194 1
4 9 1 34 81 1 64 165 1 94 195 1
5 10 5 35 8 1 65 166 1 95 196 1
6 15 3 36 &8 1 66 167 1 9 197 1
7 18 1 37 8 1 67 168 1 97 198 1
8 19 1 38 8 1 68 169 1 98 199 1
9 20 1 39 8 1 69 170 1 99 200 1
10 21 1 40 8 1 70 171 1 100 201 1
11 22 11 41 88 1 71 172 1 101 202 101
12 33 3 42 89 1 72 173 1 102 303 3
13 36 1 43 90 1 73 174 1 103 306 1
14 37 1 44 91 1 74 175 1 104 307 1
15 38 1 45 92 1 75 176 1 105 308 7
16 39 1 46 93 1 76 177 1 106 315 1
17 40 1 47 94 47 77 178 1 107 316 1
18 41 1 48 141 3 78 179 1 108 317 1
19 42 1 49 144 1 79 180 1 109 318 1
20 43 1 50 145 5 80 181 1 110 319 11
21 44 1 51 150 3 81 182 1 111 330 3
22 45 1 52 153 1 82 183 1 112 333 1
23 46 23 53 154 1 83 184 1 113 334 1
24 69 3 54 155 1 84 18 1 114 335 1
25 72 1 55 156 1 85 186 1 115 336 1
26 73 1 56 157 1 8 187 1 116 337 1
27 74 1 57 158 1 87 188 1 117 338 13
28 75 1 58 159 1 88 189 1 118 351 1
29 76 1 59 160 1 89 190 1 119 352 1
30 77 1 60 161 1 90 191 1 120 353 1
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It appears that d, = 1 most of the time. When it is not, it is always a
prime so far. Is this true? And if so, can we determine when the next prime
will appear? The pattern so far is most obscure.

For n > 3, let us count the lengths of the blocks of successive 1s for d,
separated by values of d,, > 1.

03 (1)5 (0)3 ()11 (0)3 (10)23 (0)3 (22)47 (0)3
(1)5 (0)3 (49)101 (0)3 (2)7 (411 (0)3 (7)17 (0)3

A pattern is emerging. The number of values of d,, = 1 preceding a value
of d,, = p for some prime p is equal to ? ;3 so far. Apparently, this pattern
is not particularly useful since it is a mere observation after the fact, and
does not indicate how the sequence {d, } will continue.

At the start, every other prime value of d,, is 3, and if we ignore them, the
first four primes are 5, 11, 23 and 47. We have 5x2+41 =11, 11 x2+1 = 23
and 23 x 2+ 1 = 47. According to this pattern, the next value for d,, > 1,
skipping over a 3, should be 2 x 47+ 1 = 95. However 95 is not a prime.

As it turns out, the next prime value of d,, is 5. Note that 5 is the
smallest prime divisor of the composite number 95. An easy way out is to
modify our pattern so that when a composite value for d,, is predicted, we
take its smallest prime divisor instead.

Whether this is correct remains to be seen, but in any case, now that we
are back to 5, how are we going to predict when the next prime will appear?
Moreover, the pattern of every other prime value of d,, being 3 does not hold
out either.

We now reexamine our initial data, focusing on a,. Another pattern
emerges: any+1 = 3n if and only if d,, is prime.

At this point, we digress and introduce a symbol for the greatest common
divisor of two positive integers a and b. The usual notation ged(a,b) is
cumbersome, while the simplified notation (a,b) can be ambiguous. We
want a notation which emphasizes the fact that finding the greatest common
divisor of two numbers is a binary operation, just as finding their sum or
their product.

Let a and b be positive integers. We use a A b to denote their greatest
common divisor, and a 37 b to denote their least common multiple. They
mirror the logical connectives V and A which underlie their definitions. With
the new symbols, statements about these concepts become very succinct. For
instance, the key equation in the Euclidean Algorithm is a Ab=a A (b—a).
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We now return to the sequences. Suppose we have a1 = 3n. We want
to know for what range of k will we have ap4+1+% = 3(n)+k. This is certainly
true for k = 0. If d4q = 1, then apq9 = any1 + 1 =3(n) + 2, and it is true
for kK = 1. This will be true for k + 1 as long as d,1x = 1. During this run,
apt1+k —(n+14k) = 2n—1. Hence dy 114k is a divisor of 2n — 1. Tt follows
that the next value of d,, > 1 occurs when it is equal to the smallest prime
divisor of 2n — 1.

Suppose that a,11 = 3n, and the smallest prime divisor of 2n — 1 is p.
We will have apt14x = 3n+ k for 0 < k < pES. We now prove this by
induction. Clearly, this holds for k¥ = 0. Suppose an+1+1 = 3n + k for some
k< pg?’. Then

dpt1+k = Gpp14x D (n+14k)
= Bn+k)AMn+1+k)

(2n—1) A (2n+ 2 + 2k)
= 2n—-1)A(2k+3)

1

)

because 2k + 3 < 2p§3 +3 = p. Hence a, 114 (k11) = 3n + (k+1). This
completes the inductive argument. Thus dp 11 = dpio = -+ = dn_i_pfs =1
2

and Ay r=s :3n+p;3. Now

—3
p2 )
= 3(n+pg3)A(n+1+p; )
= 2n—-1)A2Mn+1)+p-—3)
= (2n—1)Ap

=

dn+1+p;3 = an+1+p;3A(n+1+

It follows that Upyyyrss = 3(n+ p;3) +p=3(n+ p;l).

This validates the earlier observation that a,4+1 = 3n if and only if d,, is
prime. For any such value of n, the next such value is n+ A, where A = ? ;1
and p is the smallest prime divisor of m = 2n — 1. We can now summarize
the construction of all such values of n as follows.

n m p A n m p A n m P A
2 3 3 1 23 45 3 1 101 201 3 1
3 5 5 2 24 47 47 23 102 203 7 3
5 9 3 1 47 93 3 1 105 209 11 5
6 11 11 5 48 95 5 2 110 219 3 1
1 21 3 1 50 99 3 1 111 221 13 6
12 23 23 11 51 101 101 50 117 233 233 105
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The next such value of n will be 1174+105=222. This established pattern
determines both {a,} and {d,}.

Having dealt successfully with the problem when a; = 3, it is natural
to ask what the situation is for other values of a;. Here the pattern is even
more obscure.

Again, we generate some initial data.

n a, d, a, d, a, d, a, d, a, d, a, d,
1 1 1 2 1 3 1 4 1 5 1 6 1
2 2 2 3 1 4 2 5 1 6 2 7 1
3 4 1 4 1 6 3 6 3 8 1 8 1
4 5 1 5 1 9 1 9 1 9 1 9 1

Within the first four rows, the sequences generated by a; = 2 coincide
with those generated by a; = 1, and the sequences generated by a; = 4, 5 or
6 coincide with those generated by a; = 3. It follows that these coincidences
will hold if we add 6k to a; for any positive integer k. Hence the only
meaningful values for a; are numbers congruent modulo 6 to 1 or 3.

From our analysis of the case a; = 3, the key is finding a value of n for
which a,41 = 3n. For a1 =7, dy = 2 is prime but a3 # 3(2). On the other
hand, a5 = 3(4), but dy4 is not prime. However, this value correctly predicts
the next value ag = 3(7), and this time, d7 = 7 is prime. After these early
anomalies, the sequences behave themselves. For a; = 9, the sequences {a, }
and {d,} behave themselves right from the beginning.

It would be tempting to conjecture that d,, is never composite for any
value of a;. However, programming wizard Dr. George Sicherman of
New Jersey discovers that dig = 9 for a; = 531. Thus the general problem
remains open.
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Section 3. Congo Bongo

The following problem was posed in the Senior A-Level paper in the 2009
Fall Round of the International Mathematics Tournament of the Towns.
It was solved on the spot by Hsin-Po Wang, a member of Chiu Chang
Mathematical Circle. His solution was published in [6].

An expedition into Congo uncovered a round treasure chest. Evenly
spaced around the circumference were n identical bongo drums. A scroll
attached to the chest said that there was a monkey inside each bongo drum.
The monkey might be standing upright or doing a handstand, but it was
not visible from outside. One might hit a number of bongo drums at the
same time. If a bongo drum was hit, the monkey inside would change its
posture, from right side up to upside down or vice versa. The treasure chest
would open if and only if all monkeys were right side up, or all were upside
down. However, the treasure chest would spin on its vertical axis each time
some bongo drums were hit, so that in general it would not be possible to
tell which had just been hit. For what values of n could the treasure chest
be opened for sure?

The case n = 1 is trivial since the chest will open automatically. The
case n = 2 is not hard either. If the chest is not already open, hitting
either of the drums will work. For the purpose of later reference, we call
this operation A.

For n = 3 we hit only one drum. This is because hitting two is just
the same as hitting the third one, and hitting all three serves no purpose.
Suppose the chest is not already open. This means that two monkeys have
the same posture while the third one has the opposite posture. If we hit
either of the first two drums, we are left with essentially the same situation
as before, and this can continue indefinitely. Hence we cannot be sure to
open the chest.

Suppose n is not a power of 2. Then it has a smallest odd divisor d > 1.
Focus on d evenly spaced drums and ignore all others. Initially, the monkeys
in these drums are not all in the same posture. Since d is odd, the number
of drums with right side up monkeys inside is different from the number of
drums with upside down monkeys inside at any time. In order for us to
succeed, we must at some point hit all bongo drums in one group. However,
it is always possible for us to hit at least one drum from the opposite group,
and we can be kept from opening the treasure chest forever.

So the task is only possible if n is a power of 2, but is this so for all
powers of 27 The next case is n = 4, and we have to consider sixteen
possible configurations regarding the postures of the monkeys.
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Let 0 or 1 indicate whether a monkey is right side up or upside down.
If we are really lucky, the initial state may already be (0,0,0,0) or (1,1,1,1).
We may regard them as the same state, and call it State 0. It is also referred
to as an absorbing state, in that once we enter it, we do not leave, since the
chest will have opened already.

Note that we will be hitting one or two drums, and in the latter case, we
may be hitting two adjacent drums or two opposite drums. Let us examine
which operation may take a particular configuration to State 0.

Suppose the configuration is (0,1,0,1) or (1,0,1,0). The chest will open
if we hit two opposite drums. We call this operation A, and put these two
configurations in State 1.

Suppose the configuration is (1,1,0,0), (1,0,0,1), (0,0,1,1) or (0,1,1,0).
The chest may open if we hit two adjacent drums. We call this operation B,
and put these four configurations in State 2. Note that if we do not get to
State 0, we will get to State 1. On the other hand, if we perform operation
A while we are in State 2, we will stay in State 2.

Suppose the configuration is any of the remaining eight, namely (1,0,0,0),
(0,1,0,0), (0,0,1,0), (0,0,0,1), (0,1,1,1), (1,0,,1), (1,1,0,1) or (1,1,1,0). The
chest may open if we hit just one drum. We call this operation C, and put
these eight configurations into State 3. Note that if we do not get to State
0, we will get to either State 1 or State 2. On the other hand, if we perform
operation A or B while we are in State 3, we stay in State 3.

The state transition diagram is shown in Figure 5.5.

State 0 State 1 State 2 State 3
e B AN A A/B
0 1 0 0o - 0 1 =
0 01 1 = 1 1 = 0 1 = 0 01 1

Figure 5.5

Remember that we cannot see the monkeys, so that we cannot tell in
which state we are, unless we are already in State 0. Let us see what happens
if we perform operation A. If we are in State 1, we will get to State 0 and
know it. If we are in State 2 or State 3, nothing changes. So we can only
conclude that we cannot be in State 1 just after performing operation A.

What happens if we perform operation B right after performing opera-
tion A. We know that we are not in State 0 or 1. If we are in State 2, we will
either get to State 0 or State 1. If we are in State 3, nothing changes. So all
we know is that we will not be in State 2 just after performing operation B.



98 5 Mathematical Induction

We must not hurry and perform operation C. This is because while State
1 has been cleared out by operation A, it may be restocked by operation
B. Thus we should perform operation A once more to make sure State 1 is
cleared out as well as State 2.

We are now ready to perform operation C, which will clear State 3. We
must then clear States 1 and 2 again, and this can be accomplished by
performing operation A, operation B and operation A again in that order.
Thus the chest will open in seven moves: ABACABA. Note that this is
exactly the same solution as the Tower of Hanoi with three disks at the
beginning of Section 1.

The solution to the Congo Bongo problem with four drums is already
reasonably complex. It would be hard to visualize what a solution to the
eight-drum case may entail, let alone the general case. Thus we must use a
more systematic approach. The Principle of Mathematical Induction comes
immediately to mind as we are trying to prove for all positive integers n the
statement P(n), which states that the chest will open whenever the number
of drums is 2™.

In order to reduce the case with 2”1 drums to the case with 2" drums,
we use the strategy in Section 2. We will identify pairs of drums as a single
drum, just as we combine two slices of bread into a sandwich.

How can we choose partners for the drums? We must pair a drum with
the one directly opposite. This relation is not affected by the spinning of the
chest, whereas partnership under any other relation becomes ambiguous.

Let us consider P(3). The simplest states are those in which the monkeys
in each opposite pair of drums have the same posture. Figure 5.6 shows this
part of the state transition diagram.

00 00 A/B
-

0o 0* B N A O 1

0000 1010 1001< 1000

11 YA o 1B 1 1 ¢ 11

11 10 00 10

11 0o 1

11 N C X /U

Figure 5.6

It is really the same as Figure 5.5, except that operation A means hitting
every other drum; operation B means hitting any two adjacent pairs of
opposite drums; and operation C means hitting any pair of opposite drums.
By performing the sequence ABACABA, the treasure chest will open.
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These states together form an expanded absorbing state in the overall
diagram in Figure 5.7. It is the box marked 4. For 0 < m < 4, the box
marked m contains all states with m opposite pairs of drums containing
monkeys with the same posture. It looks suspiciously like Figure 5.5, except
that States 4 and 0 are no longer equivalent. The states with 2 matching
pairs are classified according to whether they are alternating or adjacent.
The former states are grouped under State 2 while the latter states are
grouped under State 2'.

/ E N F D\

/!
4 D 0 E 2 “F 2 e 1 3
\ a AN X /
Figure 5.7

Operation D means hitting any 4 adjacent drums. Operation E means
hitting any two drums separated by one other drum. Operation F means
hitting any two adjacent drums. Operation G means hitting any drum. If
we denote the sequence ABACABA by X, then the sequence which will open
the chest is

XDXEXDXFXDXEXDXGXDXEXDXFXDXEXDX.

We keep repeating X so that whenever we enter State 4, we will not return
to another State. Whatever state the chest is in initially, it will open by the
end of this sequence.

This case is isomorphic to the Tower of Hanoi with seven disks.

There is a related problem posed by Martin Gardner [2] in his famous
Mathematical Games column in the magazine Scientific American. That
version has been studied by others. See [3], [4] and [5].
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Exercises

1. An arbitrary square of a 2™ x 2™ chessboard is removed. Prove that
the remaining part can be covered by copies of the shape in Figure
5.8. When placed on the chessboard, it covers exactly three of its
squares. The copies may not overlap or stick out beyond the border
of the chessboard.

Figure 5.8

2. In the problem on greatest common divisors, suppose that
(a) a1 = 13; (b) a1 = 15; (¢) a; = 19; (d) a1 = 21.
Find the first value of n for which a,4+1 = 3n and d,, is prime, and
predict when the next such value of n will occur.

3. An expedition into Tonga uncovered a round treasure chest. Evenly
spaced around the circumference were n identical conga drums. A
scroll attached to the chest said that there was a monkey inside each
conga drum. The monkey might be standing upright or doing a hand-
stand, but it was not visible from outside. One might touch two conga
drums at the same time, and the monkeys inside became visible. One
might then decide to hit neither, either or both conga drums. If a conga
drum was hit, the monkey inside would change its posture, from right
side up to upside down or vice versa. The treasure chest would open
if and only if all monkeys were right side up, or all were upside down.
However, the treasure chest would spin on its vertical axis each time
some conga drums were hit, so that in general it would not be pos-
sible to tell which had just been hit. Moreover, the monkeys became
invisible from outside again. How could the treasure chest be opened
for sure if

(a)
(b)

n=3;
n =47
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Chapter Six: Number Triangles

Section 1. Pascal’s Triangle

Imagine that you are the owner of a small coffee shop, and you have just
imported a box of the finest Columbian coffee beans. As you open it, you
savor the aroma. Suddenly, your smile turns into a frown as you realize that
some of the essence of the coffee has evaporated into thin air.

We use the following mathematical model to measure the loss. We
assume that there are n kilograms of coffee beans initially, where n is a
positive integer, and that you will use 1 kilogram each day. Each kilogram
in a box loses 1 aroma point every time the box is opened. Fortunately,
you have some empty boxes which help in reducing future losses. Let k be
the number of boxes available, including the one in which the coffee beans
come. You want to minimize the total number of points lost.

Let us first work out an example with & = 2 and n = 6. After checking
all cases, we find this optimal strategy. Let the boxes be numbered 1 and 2.

Day Open Points Shift to Amount in  Amount in

Number Box Lost Box 2 Box 1 Box 2
1 1 6 2 kg 3 kg 2 kg
2 2 2 3 kg 1 kg
3 2 1 3 kg
4 1 3 1 kg 1 kg 1 kg
5 2 1 1 kg
6 1 1
Total = 14

We now consider the general problem. Clearly, counting the number of
points lost each day is not a promising approach, especially since we do not
even know how many kilograms of coffee beans are to be transferred from
which box to which, and when. The main idea behind our attack of this
problem is to count the number of points lost by each kilogram.

The number of points each kilogram of coffee beans loses is equal to the
number of times it is exposed. We keep track of this by putting a label
on each kilogram. Number the boxes 1 to k. A label is initially empty.
Every time the kilogram is exposed while in box i, add an i to the end of
its current label. The label changes progressively until the kilogram is used
up. Its length at that time is the total number of points lost.

Each label starts with a 1. By symmetry, we can arrange to have no
more coffee beans in a box with a higher number than in a box with a lower
one. Each day, we always open the non-empty box with the highest number.
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Thus we never transfer coffee beans from a box with a higher number
to a box with a lower one. This means that the terms in each label are
non-descending. Since exactly one kilogram of coffee beans is used each day,
no two kilograms can have the same label. What we want is a set of the
shortest n labels.

Let us return to our example with £k = 2 and n = 6. There is only one
label of length 1, namely 1. There are two labels of length 2 and three labels
of length 3. They are 11, 12, 111, 112 and 122. Thus the minimum number
of points lost is 1+ 2+ 2+ 3 4+ 3+ 3 = 14. This justifies that our strategy is
indeed optimal. In fact, it is the only one that leads to the optimal result,
since the labels tell us precisely what to do.

Each kilogram is exposed in box 1 on day 1. The kilogram labeled 1 is
used immediately. The kilograms labeled 12 and 122 must be shifted to box
2 then. They are used on days 2 and 3. The remaining three kilograms are
all exposed in box 1 on day 4. The kilogram labeled 11 is used immediately,
while the kilogram labeled 112 must be shifted to box 2. It is used on day
5, while the kilogram labeled 111 stays in box 1 throughout, and is used on
day 6.

The general problem is solved if we can count the number of distinct
labels of length ¢ with non-descending terms such that the first is 1 and
none exceeds k. As another example, consider the case £k = 3 and ¢/ = 5.
There are 15 such labels, listed below.

11111 11133 12222
11112 11222 12223
11113 11223 12233
11122 11233 12333
11123 11333 13333

Counting the labels directly is no easy matter either. We now change
each into a binary sequence as follows. Write down a number of 0s equal to
the number of 1s in the label. Insert a 1 after this block. Then write down
a number of 0s equal to the number of 2s, followed by another 1, and so on.
Note that each binary sequence consists of k£ 1s and ¢ Os, starts with a 0 and
ends with a 1.

As an example, consider the label 11122. We start off with three 0Os
followed by a 1. Then we write down two Os followed by a 1. Finally, since
the label contains no 3s, we just write down one more 1, yielding the binary
sequence 00010011. Conversely, consider the binary sequence 01000101. We
start off with one 1, followed by three 2s and then one 3, yielding the label
12223.
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It is clear that each label is matched with a unique binary sequence
whose first term is 0 and last term 1, and vice versa. The corresponding
binary sequences are listed after the labels in the chart below.

11111 00000111 11133 00011001 12222 01000011
11112 00001011 11222 00100011 12223 01000101
11113 00001101 11223 00100101 12233 01001001
11122 00010011 11233 00101001 12333 01010001
11123 00010101 11333 00110001 13333 01100001

It is not too difficult to count such binary sequences. As noted before,
they are of length k + £. Since the first term is always 0 and the last term
is always 1, we only need to consider the k + ¢ — 2 terms in between. They
consist of £ —1 0s and k£ —1 1s, and all we have to do is count the number of
ways of placing the 1s, by choosing k — 1 of the k + ¢ — 2 available positions.

This is a very basic problem. A combination is a selection of some of
the objects in a set. The number of ways of choosing k objects from a set of
n objects is denoted by (), which is verbalized as “n choose k”. We begin
by making a few simple observations:

o () =0ifn <k
e (p)=1

° (=1

o (1) ="("1)

In the last item, the number of ways of choosing k objects from a set of
n is equal to the number of ways of eliminating n — k objects from the set
of n. This is a prototype of a combinatorial argument, which we will pursue
further. Such an argument is also featured in the proof of the following
result.

Pascal’s Formula: (}) = G-+ (”21)

k—1
Proof:
Fix an arbitrary one of the n objects. If we take it, we can choose k — 1
more from the remaining n— 1. If we leave it, we will be choosing all k from
the remaining n — 1. The desired result follows from the Addition Principle
since we either take it or leave it.

We can compute the value of (Z) recursively by building the famous
Pascal’s Triangle, the first few rows of which are shown in Figure 6.1.
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(o)=1 (1)=2 (5)=1
(-1 GRS (-3 B
(1 (4 (-6 (- (-1
Figure 6.1

It is also possible to express (}) directly in terms of the factorial func-
tion, For a positive integer n, we define n! =n(n—1)(n—2)---3-2-1. We
also take 0!=1.

Factorial Formula.
For integers n > k > 0, (Z) n!

= kl(n—k)"
Proof:
We first verify the boundary conditions on Pascal’s Triangle. We have
Ol(gioi! =1= () and n!(gin)! =1 = (7). Thus the first two rows of
Pascal’s Triangles conform. We now proceed row by row. In each, the two
outside entries have been verified. Each inside entry is the sum of two entries

of the preceding row by Pascal’s Formula. Indeed,

() = Go)+ (1)

B (n—1)! (n—1)!
T k=Dlin—k) " Kl(n—k—1)!
= =D R
kl(n—k)!
n!
T kl(n—k)

Returning to the original problem (see [2]), the number of binary se-
quences consisting of /—1 0s and £ —1 1s is (kﬁf) When k& =3 and ¢ = 5,
(kzﬁg) = (5) = 15. Hence there are indeed 15 labels of length five, as we

have seen earlier.

For n kilograms of coffee beans, let the longest labels have length m.
This means that we use all labels of length less than m, and as many labels
of length m as needed to bring the total up to n. Hence m is the largest
integer such that the total number N of labels of length from 1 to m — 1 is
less than n. Clearly,

= ()G e ()



Pascal’s Triangle 107

Using (Zj) =1= (Z) and Pascal’s Formula, we can simplify this ex-
pression as follows.

e
() (e ()
D)) ()

ol

N

For any positive integer n, let m be the largest positive integer such that

n > (kH,?*Q). Let r =n — (kJFZHQ)7 where

l<r< k4+m-—1 _ k+m—2 _ k+m—2.
- - k k k—1

Then the n labels consists of (’,:j) of length 1, (kfl) oflength 2, .. ., (kznffd)
of length m — 1, and r of length m. It follows that the minimum number of

points lost is

k—1 k k4+m—3
1 24 ... —1
(kl) +<k1> + +< k1 >(m )+ rm,

and that this optimal value can be attained.

In our original example, n = 6 and k = 2. Now m is determined by
6 > (), so that m = 3. Hence 7 = 6 — (3) = 3 and the minimum number of
points lost is (})14—(%)24—(‘;’)3 =14, as we found. Ifk = 3,thenm =3, r =2
and 13 points lost. If kK =4, then m =3, r = 1 and 12 points lost. If £ = 5,
then m = 2, r = 5 and 11 points lost. This is the best that can be done with
n = 6, and we leave to the reader the details of how to move the kilograms
of coffee around.

This was the work [2] of Circle members Robert Barrington Leigh and
Richard Ng.



108 6 Number Triangles

Section 2. Rascal’s Triangle

An 1.Q. test question asked for the next row of numbers in the triangular
array in Figure 6.2.

1
1 1
1 2 1
1 3 3 1
? ? ? ? ?
Figure 6.2

Our answer was “14541”.

“WRONG!” said our teacher. “The answer is 1 4 6 4 1, part of the
well-known Pascal triangle.”

“The question does not ask for the next row in the Pascal triangle,”
we complained. “Without telling us what the triangle is, any five numbers
should be acceptable.”

“Perhaps it was not stated clearly,” our teacher conceded, “but the pur-
pose of the question is to find a way of filling in the new row according
to some simple rule. For the Pascal triangle, the rule is that the outside
numbers on each row are 1s and the inside numbers are determined by the
inverted triangle formula: South=West+Fast. For example, 6=3+3 (see
Figure 6.3).”

N

Figure 6.3

“Our rule is that the outside numbers on each row are 1s and the inside
numbers are determined by the diamond formula:

South = (West x Fast+ 1) + North.

For example, 5 = (3 x 3+ 1) + 2 (see Figure 6.4).”
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Figure 6.4

“That is not as simple as the inverted triangle formula,” said our teacher.
“Moreover, the diamond formula involves division. How do you even know
that all numbers in your triangle are integers?”

“We have worked out the next few rows.” We produced a piece of paper
containing Figure 6.5. “Seel!”

1
1 1
1 2 1
1 3 3 1
1 4 5 4 1
1 5 7 7 5 1
1 6 9 10 9 6 1
1 7 11 13 13 11 7 1
Figure 6.5

“That may be, but you do not know for sure. The first non-integer may
just be round the corner. In the Pascal triangle, only addition is involved,
and we can be sure that all numbers are integers.”

We went away, still believing we were right. However, before showing
that our triangle was simpler than the Pascal triangle, we had to show that
all numbers in our triangle were indeed integers. How?

Since our triangle is not quite the Pascal triangle, we call it the rascal
triangle. We conceive of the two triangles as finished products rather than as
expanding structures. We notice that the two triangles are the same for the
first two diagonals running from northwest to southeast. The Oth diagonal
consists of all 1s while the 1st diagonal consists of the positive integers.
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The 2nd diagonal in the Pascal triangle is 1, 3, 6, 10, 15, .... Each term
after the first is obtained from the preceding one by adding successively
larger integers, namely, 142=3, 3+3=6, 6+4=10, 10+5=15, .... The second
diagonal in the rascal triangle is 1, 3, 5, 7, 9, ..., which consists of just the
odd numbers. Surely, we have a simpler pattern, namely, 142=3, 34+2=5,
5+2=7, 74+2=9, ....

The third diagonal in the Pascal triangle is 1, 4, 10, 20, 35, ..., and
it is already not quite easy for us to see a pattern. The third diagonal in
the rascal triangle is 1, 4, 7, 10, 13, .... FEach term is obtained from the
preceding one by simply adding 3. In fact, the mth diagonal in the rascal
triangle starts with 1 as its O-th term, and each subsequent term is obtained
from the preceding one by simply adding m. Hence the nth term on this
diagonal is mn + 1.

If this pattern continues, all numbers in the rascal triangle will be inte-
gers. To show this, consider the triangle in which this pattern does continue.
All we have to do is show that it is the same as the rascal triangle. In other
words, the diamond formula holds here. So suppose North is the nth term
on the mth diagonal. Then West is the nth term on the (m+ 1)st diagonal,
East is the (n 4 1)st term on the mth diagonal, and South is the (n + 1)st
term on the (m + 1)st diagonal. The calculation below shows that the di-
amond formula holds, so that all numbers in the rascal triangle are indeed
integers!

West x East + 1
North
(mn+ 1)+ D((m+1)n)+1)+1
mn + 1
(mn+m+1)(mn+n+1)+1
mn + 1
m2n?2 + m2n+mn2 +3mn+m+n-+2
mn + 1
mn(mn+1) + m(mn+ 1) + n(mn + 1) + 2(mn + 1)
mn + 1
= mn+m-+n-+2
= (m+1)n+1)+1
= South.

The k-th number on the 7-th row of the Pascal triangle is (}) = k!(rTik)I'

When written in full, it is

rir—1)(r—-2)---3-2-1
k(k—1)(k—2)---3-2-1-(r—k)(r—k—-1)(r—k—2)---3-2-1°

which has multiplications and divisions galore.
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In the rascal triangle, the kth number on the rth row is the kth number
on the (r — k)th diagonal. Hence this number is k(r — k) + 1. Which triangle
is simpler now?

The three little rascals, Circle member Angus Tulloch and his interna-
tional friends Alif Anggoro from Indonesia and Eddy Liu from the United
States, gained quite a bit of notoriety when this work [1] was published.
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Section 3. Triangles of Absolute Difference

In 1976, George Sicherman thought of the following problem while watch-
ing a pool game in Buffalo. Could the fifteen pool balls be arranged in the
usual triangular array so that apart from the back row of five numbers, each
number in a subsequent row is the absolute difference of the two numbers
immediately behind it?

As an illustration, possible arrangements with the pool balls numbered
from 1 to 6 and from 1 to 10 are shown in Figure 6.6.

6 1 10 8 6 10 1 8
1 6 4 4 1 6
5 9 2 4 9 7
5 2 3 5
4 7 5 2
3 2
3 3
8§ 3 10 9 8§ 10 3 9
2 6 5 5 2 6
5 7 1 2 7 6
4 1 3 4
2 6 5 1
3 1
4 4
Figure 6.6

George found a solution to his problem, and established its uniqueness
up to reflection about the triangle’s vertical axis of symmetry. He communi-
cated the problem to Martin Gardner [5] who published the problem in his
famed column Mathematical Games in the magazine Scientific American in
April 1977 [4].

A triangle of absolute difference, or TOAD for short, is defined to
be a triangular array of integers having the following properties.

1. There are n integers on the top row for some positive integer n.
2. Each row below has one less number than the row above it.

3. Each number below the top row is the absolute difference of the two

adjacent numbers in the row immediately above.
4. The integers are from 1 to 1 +2+---+n = "(";1), each appearing

exactly once.

Such a TOAD is said to be of order n. We shall prove that TOADs of
order greater than 5 do not exist.
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Note that the reflection of a TOAD about its vertical axis of symmetry
is another TOAD. We will treat each pair of mirror twins as a single TOAD.
Without loss of generality, we may use either form of the TOAD at our
convenience.

We now study the anatomy of a TOAD. It has a spine defined by the
following construction. We call the bottom number of a TOAD its foot.
From the foot, we draw two line segments connecting it to the two numbers
of which it is the absolute difference, a thin line segment to the smaller one
and a thick line segment to the larger one. The smaller number is called a
hand and no further line segments are drawn from it.

From the larger number, we draw two more line segments as before. This
is continued until the spine reaches the top row. The larger number on the
top row is called its head. This is illustrated in Figure 6.7 for the unique
TOAD of order 5. The spine consists of the numbers 5 (foot), 9, 11, 12 and
15 (head) while the hands consist of the numbers 4, 2, 1 and 3.

Figure 6.7

A TOAD of order n has a spine consisting of n numbers from foot to head
and n — 1 hands. The head is equal to the sum of the foot and all the hands.

Since the head is at most """ while the sum is at least 14+2+---+n, the

2
n(n+1)
2

head must be equal to and the foot and all the hands must collectively

bel,2,...,n.
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Note that there is exactly one hand or foot on each row, so that the hand
or foot is the smallest number of the row. The head is clearly the largest
number of the top row. It follows that the largest number on each row is on
the spine.

From the head and the top hand, if we draw two slanting lines towards
the sides of the TOAD, as shown in the diagram above, we can divide the
TOAD into three parts. The two triangles on the side are called quasi-
TOADs, with their own feet, spines, heads and hands. They are TOADs
except for the fact that they do not have property 4 of the definition of a
TOAD.

In the diagram above, the quasi-TOAD on the right is of order 1. Its
foot and head coincide (number 13), and it has no hands. The quasi-TOAD
on the left is of order 2. The spine connects the foot (number 8) directly to
the head (number 14), and it has a single hand (number 6).

For n > 3, the quasi-TOADs of a TOAD of order n have spines of
combined length n — 2, and a total of n — 2 feet and hands. This is still true
even if one of the quasi-TOADs is empty, which happens if the spine runs
along one side of the TOAD.

Suppose we have a TOAD of order n > 3. The minimum values of the
n — 2 feet and hands of the quasi-TOADs are n+ 1, n+2, ..., 2n — 2.
Hence the sum of their heads is at least

(n—2)(3n—1)  3n*—Tn+2

(n+1)+n+2)+--+2n—2) = )

If there is only one quasi-TOAD, its head is at most "(njl) — 1. From

3”2*27’”2 < "2+2”*2, we have n? < 4n — 2. This holds if and only if n < 3.

On the other hand, if there are two quasi-TOADs, the sum of their heads
is at most n(";l) -1+ "(”;1) — 2. From 3"2*277”2 < n?+n— 3, we have
n? < 9n —8. This holds if and only if n < 8. It follows that TOADs of order
9 or higher do not exist.

This proof was found in 1977 by Herbert Taylor who communicated it
to Martin Gardner [6]. It has not been published until now.

For n = 8, the inequality n? < 9n — 8 obtained earlier becomes an
equality. If a TOAD of order 8 exists, its head is 36 and its foot and hands
arel, 2, ..., 8. It follows that we have two quasi-TOADs. Their heads are 35
and 34, and their feet and hands are 9, 10, ..., 14. Thus each quasi-TOAD
must be of order 3.

Consider the bottom three rows of the TOAD. Let the foot be z, the
hand on the second row from the bottom y and the hand on the third row
from the bottom z.
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Without loss of generality, we may assume that the spine starts off to-
wards the left. There are two cases, according to where the spine intersects
the third row from the bottom.

Case 1. The spine continues towards the left. (See Figure 6.8.)

Figure 6.8

Since the numbers 1 to 14 form the hands and feet of the TOAD and
the two quasi-TOADs, the number = + y must be at least 15. Hence one of
x and y is 8 and the other is 7, so that z < 6. Since z < y, we must have
A=y + z < 14. This is a contradiction since A is neither a foot nor a hand
of either the TOAD or one of the quasi-TOADs. Thus this case does not
yield a TOAD of order 8.

Case 2. The spine turns towards the right. (See Figure 6.9.)

Ho

Figure 6.9
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As in Case 1, one of x and y is 8 and the other is 7, so that z < 6.
Since the number on the spine is the largest of the row, we must have
A=(x+y+2)—y=ax+2z<14. We have the same contradiction as before.
Thus this case does not yield a TOAD of order 8 either.

When n = 7, the inequality n? < 9n — 8 is no longer tight. Nevertheless,
if a TOAD of order 7 exists, we can still make deductions about its structure.
Its head is 28 and its foot and hands are 1, 2, ..., 7. Now 84+9+10=27. It
follows that one of the quasi-TOADs is of order 3, with 27 as its head and
8, 9 and 10 as its foot and hands, and the remaining two numbers chosen
from 17, 18 and 19. Without loss of generality, we may assume that this
quasi-TOAD is on the left side, as shown in Figure 6.10. We consider two
cases.

Figure 6.10

Case 1. C> 19.
Then C>D>8. Hence E=27 or 28. However, these numbers had been re-
served for the heads of the TOAD and the quasi-TOAD of order 3. We have
a contradiction.

Case 2. C<18. (See Figure 6.11.)

Since B=8, 9 or 10, A must be a hand of the TOAD. It follows that the
spine of the TOAD must start off as shown in the diagram above, where x
is the foot of the TOAD. Since z — y < 7, F=y + 2. Since the head is the
largest number on the top row, G=z + y + w and H=z + w — 2. Each of
y+ 2, x+w—zand x + y is at most 13. Since 8, 9 and 10 are the foot
and hands of the quasi-TOAD of order 3, these three numbers must be 11,
12 and 13 in some order. However, this means that both the foot and the
hand of the quasi-TOAD of order 2 are at least 14, but its head is at most
26. We have a contradiction.
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() (D (© &

Figure 6.11

For n = 6, we abandon the anatomy of a TOAD and turn to the proof
found in 1976 by George [2]. We work with arithmetic modulo 2 so we
may replace differences by sums. The first six rows of the reduced Pascal’s
Triangle are shown in Figure 6.12.

1
1 1
1 0 1
1 1 1 1
1 0 0 0 1
1 1 0 0 1 1
Figure 6.12

Suppose an order 6 TOAD exists. Let the numbers on the top row be
a, b, ¢, d, e and f in that order. Then the numbers in the second row are
a+b, b+c, c+d, d+eand e+ f. In modulo 2, those in the third row are
a+c, b+d, c+eand d+ f, those in the fourth are a+b+c+d, b+c+d+e
and c+d+ e+ f, those in the fifth a + e and b+ f, and the only number in
the sixth row is a+ b+ e+ f. Hence their sum is 6a + 8b+ 8c+8d+8e+6f,
which is even. Since 142+ ---+ 21 = 231 is odd, we have a contradiction.
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Our study concludes with the consideration of TOADs of order 5 or
lower. The unique TOAD of order 1 is trivial, and there are two elementary
TOADs of order 2. An order 3 TOAD has an order 1 quasi-TOAD which
must be the number 4 or 5. If it is 4, this leads to the TOADs with top
rows (4,1,6) and (1,6,4). If it is 5, this leads to the TOADs with top rows
(5,2,6) and (2,6,5). Hence there are only four TOADs of order 3. They are
shown in Figure 6.6.

We have proved earlier that any TOAD of order 4 or more must have two
non-empty quasi-TOADs. Thus an order 4 TOAD has two quasi-TOADs of
order 1. There are four cases.

Case 1. The top hand of the TOAD is 1.

Then 9 is not in the top row, so that 8 must be one of the quasi-TOADs.
Whether it appears next to 1 or 10, 7 will not appear in the top row. Hence
the other quasi-TOAD must be 6. This leads to the TOADs with top rows
(6,1,10,8) and (6,10,1,8) respectively.

Case 2. The top hand is 2.

Then one of the quasi-TOAD must be 9. Whether it appears next to 2 or 10,
8 and 7 will not appear in the top row so that the other quasi-TOAD must
be 6. It is routine to verify that we will need two copies of 4 to complete
the TOAD.

Case 3. The top hand is 3.

Then the quasi-TOADs must be 8 and 9. This leads to the TOADs with
top rows (8,3,10,9) and (8,10,3,9) respectively.

Case 4. The top hand is 4. Then all of 7, 8 and 9 need to be quasi-TOADs,
which is clearly impossible.

Hence there are only four TOADs of order 4. These are shown in Figure
6.6.

An order 5 TOAD has a quasi-TOAD of order 1 and a quasi-TOAD of
order 2. The latter comes from either 84+6=14 or 7+6=13. We may assume
that it is on the left side, and let H be its head. There are four cases,
according to the positions of H and 15. Note that 15—H=1 or 2.

s
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Figure 6.13

Case 1. H and 15 are in the first and third positions from the left. (See
Figure 6.13.)

A must be 7, 8 or 9, and cannot be a hand. It follows that B cannot be a

hand either. However, B must be 1 or 2. This is a contradiction.

Case 2. H and 15 are in the second and fourth positions from the left. (See
Figure 6.14.)

C is either 1 or 2 and is therefore a hand. In order for B=A—v not to be

a hand, we must have A=8 and v=1, but then H=14 and 14 will appear

again in the second row from the top. Hence B and C are both hands, a

contradiction.

Figure 6.14

%? %@

Figure 6.15
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Case 3. H and 15 are in the first and fourth positions from the left. (See
Figure 6.15.)

As in Case 2, B=A—v must be a hand, so that C is on the spine. Now

C=15—A must be 9 as otherwise there is no possible value for the number

on the spine below it. Now all of the numbers from 10 to 15 must appear

in the top two rows, and we are one space short since A, v, H—A and B are

all less than 9.

Case 4. H and 15 are in the second and third positions from the left. (See
Figure 6.16.)

We have B=1 or 2, and as in Case 3, C=10, 11 or 12. Routine checking

yields the unique solution shown in Figure 6.7.

Wy

Figure 6.16

This work [3] was presented in 2010 at the Ninth Gathering for Gardner
by Brian Chen, who was then in Grade 6. Two years earlier, he obtained
an alternative proof for the non-existence of order 6 TOADs. Two years
later, he won a Gold Medal in the International Mathematical Olympiad in
Argentina.
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Exercises

[5]
[6]

Prove directly that (]“7;71) is the number of distinct labels of length
less than m, with non-descending terms such that the first is 1 and
none exceeds k.

. Find and prove a simpler Diamond Formula for Rascal’s Triangle.

Give an alternative proof for the non-existence of an order 6 TOAD.
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Chapter Seven: Summation Problems

Section 1. Sums of Powers of Two

We consider some problems on expressing positive integers as sums of
powers of 2.

Problem 1.
In how many ways can we express a positive integer n as a sum of powers
of 2, if distinct powers may not be used more than once?

The number of ways is 1 for n = 1, namely, 1 itself. The number of
ways is 1 for n = 2, namely, 2. The number of ways for n = 3 is also
1, namely, 24+1. Let the number of expressions for n be a,. After some
experimentation, we notice a pattern. We have a; = 1, as = 1, a3 = 1,
ag=1, a5 =1,a6 =1, ay =1, and so on. We can also throw in ag = 1 for
the empty sum. The pattern suggests that the general formula is a, = 1.
We give a formal proof via two auxiliary results.

Lemma 1. aggq1 = agk.

Proof:

Every expression for 2k 4+ 1 must contain a 1. The exclusion of this 1 yields
an expression for 2k. On the other hand, every expression for 2k contains
no 1s. The inclusion of a 1 yields an expression for 2k + 1. This one-to-one
correspondence establishes the desired result.

Lemma 2. asi = ag.

Proof:

Every expression for 2k contains no 1s. Dividing each term by 2 yields
an expression for k. This process is clearly reversible, and the one-to-one
correspondence yields the desired result.

We now prove by mathematical induction that a,, = 1. Note that ag = 1.
Suppose the result holds up to a,—; = 1. If n = 2k 41, then agi+1 = agr by
Lemma 1, and as; = 1 since 2k < n—1. If n = 2k, then asx = ar by Lemma
2, and a; = 1 since kK < n — 1. This completes the inductive argument.

Since the pattern for a, is relatively simple, we seek an alternative ap-

o0
proach to Problem 1. Let A(x) = Z anx™. This is called the generating
n=0

function of the sequence {ay,}. Note that z does not represent any numer-
ical value but serves as a counter. The general term a,z"” means that the
number of ways of expressing n as a sum of powers of 2 is a,,.

© Springer International Publishing AG 2018 123
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o0
What does A(z?) = Z anx®™ generate? The general term a,z>" means

that the number of ways of expressing 2n as a sum of powers of 2 with some
restrictions is a,, which is the number of ways of expressing n as a sum of
powers of 2. From Lemma 2, we see that this restriction is that we are not

oo
allowed to use 1. Similarly zA(z?) = Z anz®™ ! generates the number of

n
ways of expressing 2n + 1 with exactly one 1. It follows that

Alz) = (1+2)A(z?)

1—2?
= A(z?
1 A
1—2? 1—24
— . A 4
N 2 (z%)
B 1
C1-a
Now 1i$:1+x+x2+x3+~~. Hence a, =1 for all n.

Problem 2.
In how many ways can we express a positive integer n as a sum of powers
of 2, if distinct powers may not be used more than twice?

Let the number of expressions for n be b, = b(n). The first 16 values are
bi=1 by=2 b3=1 by=3
bs=2 bg=3 br=1 1bg=4
bg=3 big=4 bi1=2 bia=4
bi3=3 buu=4 bis=1 bg=5
We can also throw in by = 1 for the empty sum.

The general pattern is unclear, but we make some observations. For
t > 1, we have

b(2' —1) 1, (6)

b(2%) t+1, (7)

b2t +1) = ¢, (8)
b3 -1) = 2 9)

For a general approach, we first prove two auxiliary results.

Lemma 3. by = by.
Proof:
The proof is exactly the same as that for Lemma 1.
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Lemma 4. by, = by, + bi_1.

Proof:

Every expression for 2k contains either no 1s or two 1s. In the former
case, dividing each term by 2 yields an expression for k. In the latter case,
dividing each term by 2 after the exclusion of the two 1s yields an expression
for n — 1. These two processes are clearly reversible, and the one-to-one
correspondences yield the desired result.

A general formula for b,, does not seem to be within reach. The method
of generating functions does not work here either. However, with Lemma 3
and Lemma 4, we can compute the value of b,, for any positive integer n.
We can also prove that the observations are indeed correct.

We shall establish (1) and (2) by simultaneous induction. For t = 1,
we have b(2 — 1) = 1 and b(2) = 2. Suppose (1) and (2) hold for some
t > 1. Then b(2!™! — 1) = b(2(2! — 1) +1) = b(2! — 1) = 1 by Lemma 3, and
b(2tH1) = b(2(2Y)) = b(2") +b(2! — 1) =t + 1 by Lemma 4.

We can also establish (3) and (4) by mathematical induction. For ¢t = 1,
we have b(2+1) = 1 and b(3(1) — 1) = 2. Suppose (3) and (4) hold for some
t > 1. By Lemma 3, we have

b2 1) =b(22) +1) =b(2") =t + 1

and
b(3(25) — 1) =b(2(3(2"" 1 = 1) + 1) =b(3(27 L — 1) = 2.

Note also the palindrome blocks (1,2,1), (1,3,2,3,1), (1,4,3,4,2,4,3,4,1),
.... For t > 1, they are centered at b(3(2/~!) — 1) and extend from b(2! — 1)
to b(21H — 1).

Problem 3.
In how many ways can we express a positive integer n as a sum of powers
of 2, if distinct powers may not be used more than thrice?

Let the number of expressions for n be ¢,. The first 7 values are 1, 2, 2,
3, 3, 4 and 4. We can also throw in ¢y = 1 for the empty sum. The pattern
suggests that the general formula is co, = conr1 = n + 1. A slightly more
compact way to express this result is ¢, = ["3?%].

As before, we first prove two auxiliary results.

Lemma 5. cop11 = cox.

Proof:

Every expression for 2k + 1 must contain at least one 1. The exclusion of
one 1 yields an expression for 2k. On the other hand, every expression for
2k can contain at most two 1s. The inclusion of one 1 yields an expression
for 2k + 1. This one-to-one correspondence establishes the desired result.
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Lemma 6. cop, = ¢, + cp—1.
Proof:
The proof is exactly the same as that for Lemma 4.

We now prove by mathematical induction that ca, = copy1 = n + 1.
Note that cg = ¢y = 1. Suppose the result holds up to co,_2 = cop_1 = n.
By the Lemmas, we have co,, = copy1 = ¢ + ¢n—1. Suppose n = 2k. Then
cntcpn1=copt+cop-1=k+14+k=2k+1=n+1. Suppose n = 2k + 1.
Then ¢, + ¢p—1 = cok41 + 2k = k+1+k+1=2k+2 =n-+1. This
completes the inductive argument.

oo
Using the generating function approach, let C(z) = ch:ﬂ". Then
=0

n—
C(2?) generates the number of expressions with no 1s, zC(x?) generates
the number of those with one 1, x2C(z?) generates the number of those
with two 1s and 23 f(22) generates the number of those with three 1s. It
follows that

Clz) = (1+z+2*+2%C?

_ 4

= 17" o)
1—2
1—a* 1-2a8 4

B l—x.l—xQC(x)
1—2* 1—28% 1—2'6 8
l—x.l—xQ.l—m‘lC(x)

- 1

(1 —2)(1 - 2?)

-« P Y

1—x (1—30)2—’_1—1—1:'

Clearing fractions, we have 1 = a(1 — z)(1 + z) + B(1 + 2) + (1 — z)%
Setting x = —1, 1 = 4~ so that v = 411' Setting x = 1, 1 = 2 so that § = é
Setting x =0, 1 = a+ [+ so that a = 411' Now lix =l4+z+z?+23+---

and 1J1rz =1—xz+2%—23+---. On the other hand,

1
(1-=)

1+z+a22+2°+-.)>
= 142c+322+423+ ..

Hence ¢, = 5(n+1)+ j(1+ (-1)") = ["$?].

This work, by Circle members Dennis Situ and Steven Xia, was published
as [7].
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Section 2. Zig-Zag

The following problem, which has become a classic, first appeared in a
Hungarian competition [5].

Determine which positive integers cannot be expressed as sums of two or
more consecutive positive integers.

Testing the numbers from 1 to 10, we have 3=1+2, 5=2+3, 6=1+2+3,
7=344, 9=4+5=2+43+4 and 10=1+243+4. The missing numbers are 1, 2,
4 and 8. It is reasonable to conjecture that the powers of 2 are the undoable
numbers we were looking for.

All odd numbers 2n + 1 where n > 0 are doable because it is equal to
n + (n+ 1). All numbers of the form "("; U where n > 1 are also doable
because it is equal to 14+ 2+ - - -4+ n. Neither of the two expressions for the
number 9 starts with 1. Still, we can draw a pair of staircases which will
form a box, as shown in Figure 7.1. By a boz, we mean a rectangle with
integer dimensions greater than 1.

Figure 7.1.

Each box is divided into halves by a central zigzag. Now any such zigzag
starts with a vertical zag followed by a horizontal zig. Then comes another
zag followed by a zig, and so on. It ends with a zag, but it is not followed
by a zig. This means that the total number of zigzags is odd. It follows
that the central zigzag has a middle zig or zag. We have a middle zig in one
diagram for the number 9, and a middle zag in the other. This does not
really matter.

If we have a middle zig, then the horizontal dimension of the box must
be odd. This is because the two staircases are symmetric about this middle
zig. Similarly, if we have a middle zag, then the vertical dimension of the
box must be odd. Thus a positive integer n is doable if we can find a box
of area 2n with one of its dimensions odd.

Let us say that it is the horizontal one. Then we have a middle column.
Because the area of the box is even, the vertical dimension must be even.
Then we have a horizontal line which divides the box into halves. Where
this line meets the middle column is the middle zig for our central zigzag.
It is now easy to construct the central zigzag by extending the middle zig
in opposite directions. The situation is analogous if the vertical dimension
of the box is odd.
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If there is such a box, n must have an odd divisor greater than 1. This is
the case if n is not a power of 2. Thus all numbers which are not powers of
2 can be expressed as the sum of two or more consecutive positive integers.
Moreover, the number of such expressions for n is the same as the number
of odd factors of n which are greater than 1. This is because different boxes
give us different expressions.

What happens if n is a power of 27 Then 2n is also a power of 2. In any
box with area 2n, both dimensions are even. So there will not be a middle
column or a middle row. Thus there is nothing that can serve as the middle
zig or zag of a central zigzag, and it is impossible to divide the box into two
identical staircases. Therefore, a power of 2 cannot be expressed as a sum
of two or more consecutive integers.

This beautiful geometric solution was the work of Circle members Robert
Barrington Leigh and Richard Ng, who were in grades 6 and 7 respectively
at the time. Their work was published as [1].

It is possible to give a completely algebraic treatment to this problem.
Suppose we have an expression (a+ 1) + (a+2) + - - -+ b. We can rewrite it
as the difference between 1 +2+---+band 1+ 2+ - - -+ a. Therefore, the
value of our expression is b(bQH) - a(QQH). It can be factored into (bfa)(gﬂlﬂ) )
Since b+ a and b+ a + 1 are consecutive, one is odd and the other is even.
Since (b+a)+ (b—a) = 2b, either both are even or both are odd. It follows
that one of b —a and b+ a + 1 is odd. Their product is 2n, and it can only
be a power of 2 if the odd factor is 1. Obviously, a+b+1>1. If b—a =1,
then a+1 =5, and (a4 1)+ (a+2) 4 - - - + b reduces to a single term b. It

follows that a power of 2 is undoable.

Suppose n = cd where ¢ > 1 is odd. We can write down ¢ copies of
the number d. Since ¢ is odd, there is a middle number. Keep it as d. On
one side, replace the d’s by d+1,d+2,...,d+ 051, and on the other side,
replace the d’s withd—1,d—2,...,d— 851. If some of these numbers become
negative, there will be a 0 and positive numbers immediately on the other
side of 0 which will cancel the negative numbers off, so that the string of
consecutive numbers is not broken. For example, we have

9=3+3+3=2+3+14
and
9 = 1+1+14+1+14+1+14+141 = (=3)+(—2)+(—1)+0+1+24+3+4+5 = 4+5.

Since ¢ > 1 and d > %, we have d(c—1) > Cgl and cd > d + 051. Hence the
cancellation cannot reduce the expression to a single term.
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Section 3. Two Great Escapes.

Having encountered arithmetic progressions in the previous sections, it is
natural to ask whether there is any sequence called a geometric progres-
sion. Indeed there is. In fact, we have met a prototype already, namely,
the powers of 2. Here, the first term is arbitrary. Each subsequent term
is obtained from the preceding one by multiplying with a constant called
the common ratio. The special case where the common ratio is 1 yields a
constant sequence. The special case where the common ratio is 0 yields a
sequence in which every term except possibly the first one is 0.

Here are some examples of geometric progressions.

(1)
(2)1,-1,1,-1,1, -1 ....
11 1
(3) 4, 2, 1, 2408
(4) _67 37 _12a 40 7 8% 167
The summation method will be introduced in the following two adven-

tures.
The Great Amoeba Escape

The world of the amoeba consists of the first quadrant of the plane
divided into unit squares. Initially, a solitary amoeba is imprisoned in the
bottom left corner square. The prison consists of the six shaded squares as
shown in Figure 7.2. It is unguarded, and the Great Escape is successful if
the entire prison is unoccupied.

Figure 7.2.

In each move, an amoeba splits into two, with one going to the square
directly north and one going to the square directly east. However, the move
is not permitted if either of those two squares is already occupied. Can the
Great Escape be achieved?
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After a few moves, we arrive at the situation in Figure 7.3, where only
one amoeba is still in jail. However, we are already in a very heavy traffic
jam, and it is not clear whether this last one can get out. So we need to
work out some sort of strategy.

e
i
%&ﬁ"ﬁ% o d
=,
s

Figure 7.3.

Note that the configuration keeps changing, with more and more amoe-
bas. The changes must be carefully monitored before things get out of hand.
What we seek is a quantity which remains unchanged throughout. Such a
quantity is called an invariant.

At the start, we have only one amoeba. After one move, we have two
amoebas. However, each is really less than one full amoeba. Suppose we
assign the value 1 to the initial amoeba, x to the one going north and y to
the one going east. After the move, the initial amoeba is replaced by the
other two. If we want the total value of amoebas to remain constant, we

must have z + y = 1. By symmetry, we may take y = = so that x = %

Clearly, the value of an amoeba is determined by its location. So we may
assign values to the squares themselves, as shown in Figure 7.4.

16 32 64 128 256

8 16 32 64 128

,ﬁ 8 16 32 64
a1
%{g{% 8 16 32
w%%%%%%%g 5o
b 16

Figure 7.4.
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The total value of the squares in the first row is

S—1+1+1+1+
T 2480

This is a geometric progression. We have

25=2+1 L b1
=241+, gt
Subtracting the previous equation from this one, we have S = 2. Since each
square in the second row is half in value of the corresponding square in the
first row, the total value of the squares in the second row is 1. Similarly, the
total values of the squares in the remaining rows are %, 4117 é, .... Hence

the total value of the squares in the entire quadrant is 4.

Note that the total value of the six prison squares is 2?1. Remember that
the total value of the amoebas is the invariant 1. If the Great Escape is to
be successful, the amoebas must fit into the non-prison squares with total
value 1}1. While there is no immediate contradiction, we do not have much
room to play about.

The amount of amoeba that the first row can hold outside of the prison
is é + 116 + 312 4+ = }l, and the same amount can be held in the first
column outside of the prison. Thus the remaining space can hold only i of
an amoeba, as shown in Figure 7.5.

> w

§

i

S
% R
SR

%ﬁw
.§§”
i

&

Figure 7.5.

Each of the first row and the first column holds exactly one amoeba at
any time. If the amoeba on the first row is outside the prison, its value is at
most é. The remaining space with total value i - é = é must be wasted.
Similarly, we have to leave vacant squares in the first column with total

value at least é. Since 1}1 —2 X é = 1, we have no room to play at all.

In order for the Great Escape to be successful, all squares outside the
prison and not on the first row or first column must be occupied. However,
this requires that the number of moves must be infinite. Hence the Great
Escape cannot be achieved in a finite number of moves.
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The Great Beetle Escape

The world of the beetles consists of the entire plane divided into unit
squares. Initially, all squares south of a wall constitute the prison, and each
is occupied by a beetle. There is a corridor of length 5 extending beyond
the wall. On the last square, which is shaded in Figure 7.6, there is a special
telephone. If any beetle reaches there, it can call the Great Beetle in the
Sky, who will then come to release all beetles still in prison. In that case,
the Great Escape is successful.

O 0O 0O 0O 0O o oo o
0O O 0O 0O 0O 0O o 0 O
0 O 0O 0O 0O 0O 0O 0 O

Figure 7.6.

In each move, a beetle can jump over another beetle in an adjacent
square and land on the square immediately beyond. However, the move is
not permitted if that square is already occupied. The beetle being jumped
over is removed, making a sacrifice for the common good. The jump may
be northward, eastward or westward. Can the Great Escape be achieved?

Again, we seek an invariant. Assign 1 to the beetle at the telephone
at the end. It gets to its present position by jumping over another beetle.
Assign x to that beetle and y to the beetle before making the jump. After
the move, the final beetle replaces the other two. In order for the total value
of the beetles to be invariant, we must have z +y = 1.

Now a beetle with value z could jump over the one of value y to become
the one with value x. If we choose y = x as in the Amoeba Problem, then
we must take z = 0 in order to maintain z + y = z. This is undesirable. A
better choice is y = 2. Then we can take z = z3. Since 22 +z = 1, we
indeed have z +y = 2% + 2% = 2(2? + ) = z. By the Quadratic Formula,
the positive root of 2 +z —1 = 0 is given by z = ‘/52_1 ~ 0.618. It is known
as the Golden Ratio.
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The value of a beetle is also determined by its location. So we may assign

values to the squares themselves, as shown in Figure 7.7.

e
s
s

Figure 7.7.

The total value of the squares in the prison is
S =1 +32° + 52" 4728 - - ..

We have
x2S =2+ 32"+ 528 + 727 + - -

Subtracting this equation from the previous one, we have

1-2)8 = 2" +28+2"+285+--)

246
1—=x
sc5—i—:r6

1—z

It follows that S = 2 +2 . Recall that 22 + z = 1, so that 1 — 2 = 22,

(1-z)2"

Hence the denominator of S is (1 —x)? = (2%)? = z*. The numerator of S is
25 + 25 = 2*(22 + x) = 2% also, so that S = 1. Thus the Great Escape can
only be successful by sacrificing all but one beetle, and cannot be achieved

in a finite number of moves.

This section is based on the paper [6] by Circle member J. Lo. The Great
Amoeba Escape is due to M. Kontsevich (see [9]) and the Great Beetle
Escape is due to J. H. Conway (see [4]). The idea of an invariant is an
important problem-solving technique. For further discussions and practices,

see [2], [3] and [8].
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7 Summation Problems

Exercises

How many of the first 100 positive integers can be expressed as a sum
of powers of 2 if no two identical or consecutive powers of 2 are used?

. The number 336 has an odd divisor 7, and 7=3+4. Use this as a

starting point to find an expression of 336 as a sum of consecutive
positive integers.

How many beetles do we need to accomplish the Great Beetle Escape
if the length of the corridor is
(@)1;  (b) 2 ()3 (d)4?
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Chapter Eight: Finite Projective Geometries

Section 1. Lions and Ponies

Many students have difficulties with proofs. This is understandable since
the concept of proofs lies in the heart of mathematics, and proofs are not
the most intuitive things to do. On top of that, proofs cannot exist in a
vacuum, and often, the subject matter adds to the difficulty.

What we will do now is to consider a situation which does not apparently
involve any mathematical concepts. We will then do some proofs without
being encumbered by having to deal with contents. Thus we can focus on
the proof process itself.

A certain community of lions and ponies is defined by the following
postulates.
(1) There are at least two lions.
(2) Each lion has bitten at least three ponies.
(3) For any pair of lions, there is exactly one pony that both have bitten.
(4) For any pair of ponies, there is at least one lion that has bitten both.

So far, there is nothing that would scare students, apart from being
bitten by lions. Nevertheless, from this humble beginning, we can derive
many interesting results.

Theorem 1.
For any lion, there is at least one pony that it has not bitten.

Theorem 1 is essentially a negative statement. To prove it, we let L
be a given lion. We have to find a pony which it has not bitten. Where
do we begin? We know nothing about this community except for the four
postulates which define it. All of them are positive statements.

In the absence of any good ideas, we may use an indirect approach.
Assume the opposite of what we have to prove, and see what may be wrong
with it. So we suppose that L has bitten every pony. By Postulate 1, there
is another lion M. By Postulate 3, there is exactly one pony which both L
and M have bitten. Since L has bitten every pony, this means that M can
have bitten only one pony.

However, Postulate 2 states clearly that M has bitten at least three
ponies. What is going on? What we have is a contradiction. Where does
it arise? Did we make any mistakes in our logical reasoning? Going over
the steps carefully, they are all correct. Hence the problem arises from our
initial assumption, that L has bitten every pony. It follows that L has not
bitten every pony, and Theorem 1 has been proved.

© Springer International Publishing AG 2018 135
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We can now turn this argument around and give a direct proof of The-
orem 1. For a given lion L, we wish to prove that there is a pony which it
has not bitten. By Postulate 1, there is another lion M. By Postulate 2, M
has bitten at least three ponies P, Q and R. By Postulate 3, there is exactly
one pony, say P, which both L and M have bitten. Then Q is a pony which
L has not bitten.

Theorem 2.
For any pony, there is at least one lion that has not bitten it.

Theorem 2 is obtained from Theorem 1 by interchanging the roles of the
lions and ponies. It is called the dual of Theorem 1. Of course, Theorem 1
is also the dual of Theorem 2.

Again, we start with an indirect approach. Assume that there is a pony
P that every lion has bitten. By Postulate 1, there are two lions L and M.
By Postulate 2, L has bitten a pony Q other than P and M has bitten a
pony R other than P. By Postulate 3, L has not bitten R and M has not
bitten Q. Hence Q and R are not the same pony. By Postulate 4, there is a
lion N that has bitten both Q and R. Hence N and L are two different lions
but they have both bitten P and Q. This contradicts Postulate 3.

Very minor changes yield a direct proof. By Postulate 1, there are two
lions L and M. If one of them has not bitten P, there is nothing else to
prove. So assume that they both have. By Postulate 2, L. has bitten a pony
Q other than P and M has bitten a pony R other than P. By Postulate 3, L
has not bitten R and M has not bitten Q. Hence Q and R are not the same
pony. By Postulate 4, there is a lion N that has bitten both Q and R. Hence
N and L are two different lions. Since they have both bitten Q, N is a lion
which has not bitten P by Postulate 3.

Theorem 3.
For any pair of lions, there is at least one pony that neither has bitten.

Let L and M be any pair of lions. By Postulate 3, there is a pony P that
both L and M have bitten. By Theorem 2, there is a lion N that has not
bitten P. By Postulate 2, N has bitten at least three ponies. By Postulate
3, L has bitten at most one of these three and so has M. Hence there is a
pony that neither L nor M has bitten.

Theorem 4.
For any pair of ponies, there is at least one lion that has not bitten either.

Let P and Q be any pair of ponies. By Postulate 4, there is a lion L that
has bitten both of them. By Postulate 2, this lion has bitten a third pony
R. By Theorem 1, there is a pony S that L has not bitten. By Postulate 4,
there is a lion M that has bitten both R and S. By Postulate 3, M has not
bitten either P or Q.
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Just as Theorems 1 and 2 are the duals of each other, Theorems 3 and
4 are the duals of each other.

We have done some reasonably sophisticated proofs without delving into
any formal subject matter. Clearly, there cannot be a community in the real
world where lions bite ponies according to a set of postulates. Nevertheless,
one should raise the question whether such an abstract structure can in fact
exist. If not, all our proofs so far are for nothing.

Before we pursue this angle, let us recall that duality is a central concept
in our community of lions and ponies. Duality allows us to obtain two results
for the price of one, which is a very good thing. It was this search for duality
that led to a very important development in the history of mathematics.

In Euclidean geometry, the first postulate is that every two points de-
termine a line. The dual of this result is that every two lines determine a
point. It is almost true, except in the case where the lines are parallel to
each other. If we wish this dual to hold true, then parallel lines must also
meet at some point.

In everyday life, the two rails of a straight railway track must be parallel,
as otherwise any train running on them must derail. However, in a painting
or photograph of a railway track, the two rails may perhaps not come to a
point, but they are most certainly not parallel. They come closer and closer
to each other as they recede into the background, which leads to the saying
that parallel lines meet at infinity.

So we add a point at infinity to each line in the Euclidean plane. We call
them dieal points, to distinguish them from the ordinary points. Parallel
lines have the same ideal point while non-parallel lines have different ideal
points. In a sense, an ideal point represents the common slope of a set of
parallel lines. In this extended plane, every two lines determine a point.

We have plugged one hole, but we may have cracked another leak. Is it
still true that every two points determine a line?

If both points are ordinary points, then they determine a line as usual.
If one point is ordinary and the other is ideal, they still determine a line.
This is the familiar point-slope formula in analytic geometry. However, if
both points are ideal, they do not determine a line.

To plug this new hole, we now add an ideal line which passes through all
the ideal points and only the ideal points. So two ideal points will determine
the ideal line. Moreover, the ideal line and an ordinary line determines the
ideal point on that ordinary line, so we have indeed achieved duality.

This new plane is called the projective plane, and a new branch of math-
ematics called projective geometry is born. The quest for duality, though
apparently an exercise in abstraction, does have important consequences.
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The church paintings (only the churches could afford paintings in those
days) up until about the twelfth century did not have depth perception. This
was because the concept of perspective views had not yet existed. Paintings
since then have benefited from the development of projective geometry.

We now see that if we replace the ponies by points and the lions by lines,
our community becomes a projective geometry. However, it is clear that we
intend only to have a finite number of lions and a finite number of ponies.
So we turn our attention to the subject of finite geometry.

Figure 8.1 shows the simplest finite model of the Euclidean plane. There
are four points A, B, C and D, with coordinates (z,y) = (0,0), (1,0), (0,1)
and (1,1) respectively There are six lines AB (y = 0), CD (y = 1), AC
(x =0), BD (x = 1), AD (x +y = 0) and BC (x +y = 1). Note that
addition is in modulo 2, so that the point (1,1) lies on x +y = 0.

A B

Figure 8.1

Clearly, AB and CD are parallel to each other, as are AC and BD.
Moreover, AD and BC' are also parallel to each other, as they do not inter-
sect at any of the points in this geometry. We have deliberately drawn BC
in such a way to emphasize this point. We call this finite plane the affine
plane of order 2.

We now add an ideal point E to AB and CD, an ideal point F' to AC
and BD, an ideal point G to AD and BC|, and an ideal line passing through
FE, F and G. This extended plane, shown on the left of Figure 8.2, is called
the projective plane of order 2. It is redrawn in a more stylish form on the
right of Figure 8.2, where the line BC is still drawn as a curve. This is a
famous example called the Fano plane.
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Figure 8.2

Now let the seven points represent the ponies and let the seven lines
represent the lions. Each lion bites the three ponies represented by points
on the line representing the lion. We can verify that the four postulates
of the community of lions and ponies indeed hold. They now become the
postulates of the projective geometry, and we restate them as follows.

(1) There are at least two lines.

(2) Each line passes through at least three points.

(3) For any pair of lines, there is exactly one point that both pass through.
(4) For any pair of points, there is at least one line that passes through both.

Figure 8.3 shows the projective plane of order 3, with the affine plane of
order 3 embedded in it.

Figure 8.3

We must exercise caution in trying to construct an affine plane of order 4.
It would appear natural to take the points with coordinates (x,y) = (0, 0),
(0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3), (3,0),
(3,1), (3,2) and (3,3). The lines may be divided into the following five
groups of parallel lines.
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y=0 =0 Yy=2x y =2z y =3
y=1 x= y=x+1 y=2z+1 y=3z+1
y=2 =2 y=zxz+2 y=2r+2 y=3x+2
y=3 z=3 y=z+3 y=2z+3 y=3z+3

Consider the line y = 2z which passes through the four points (0,0),
(1,2), (2,0) and (3,2). It will intersect the line y = 0 in two points, namely,
(0,0) and (2,0), and this violates the first postulate of Euclidean geometry.
The reason for this is that 4 is not a prime number, so that we can have
2 x 2 =0 (mod 4). Nevertheless, there is an affine plane of order 4, but it
is based on a concept called Galois theory which we will not discuss here.

In general, if n is a prime number, then we can construct an affine plane
of order n in the usual way. It has n? points and n? + n lines which may
be divided into n + 1 classes of n parallel lines. Each line passes through n
points and each point lies on n + 1 lines. By adding an ideal point to each
line and joining them by an ideal line, we have a projective plane of order
n. It has n? +n + 1 points and n? + n + 1 lines. Each line passes through
n+ 1 points and each point lies on n + 1 lines. Observe the duality between
the points and the lines here.

To conclude this section, let us return to the community of lions and
ponies and work on some counting problems. Let L be a lion and P be a
pony such that L has not bitten P. We claim that the number of ponies that
L has bitten is equal to the number of lions that have bitten P.

Let M be another lion which has bitten P and Q be another pony L
has bitten. By Postulate 3 and its dual (proof left as an exercise), there is
exactly one pony that both L and M have bitten and exactly one lion that
has bitten both P and Q. Hence the ponies that L has bitten and the lions
that have bitten P can be paired off, and their numbers are equal. This
justifies our claim.

We now prove that each lion has bitten the same number of ponies. Let
L and M be any two lions. We have proved earlier that there is a pony P
that neither has bitten. Hence the number of ponies that L has bitten is
equal to the number of ponies that M has bitten. This follows from the
claim above since both are equal to the number of lions that have bitten P.
In an analogous manner, we can prove that each pony has been bitten by
the same number of lions.

Suppose one of the lions, say L, has bitten exactly n 4+ 1 ponies. Then
every lion has bitten exactly n 4+ 1 ponies. Now there is a pony P that L
has not bitten. It follows that exactly n + 1 lions has bitten P, so that each
pony has been bitten by exactly n + 1 lions.
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Consider the n + 1 ponies that L has bitten. Each has been bitten by
n other lions. This yields a count of n(n + 1) lions besides L. By Postulate
3, each lion other than L has bitten exactly one of these ponies, and is
therefore counted exactly once. Hence there are exactly n? +n+ 1 lions. In
an analogous manner, we can prove that the total number of ponies is also
n?+n+1.

The community of lions and ponies was introduced by me in [3], with
the ponies replaced by lambs. In thinking that the lambs were the most
likely candidates to have been bitten, I totally missed the point.
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Section 2. Starwars

Space Station Intelligentia received a call for help on the hyperradio from
Spaceship Academia. Captain Philip said, “We are on the way home after
a successful promotion of higher learning in distant star systems. We are
surrounded by a Kleingon Fleet. Because we are on a peaceful mission, we
are unarmed. Please send a relief force.”

“Unfortunately, due to budget cuts, there are no other Spaceships on
base at the moment,” said Commander Gilbert. “Can you hold out?”

“Affirmative,” said Captain Philip, “but we cannot disengage. It would
help if you can get a Space Cannon to us.”

“No problem. We will send one over by a Space Pod.”

“Hang on a minute! Oh, no! There is a Space Tetropus in the Kleingon
Fleet. It can grab one Space Pod at a time.”

“I will send two Space Pods, each carrying a Space Cannon,” said Com-
mander Gilbert.

“Do not do that! Repeat! Do not do that!” Captain Philip said urgently.
“If a Space Cannon falls into the hands of the Kleingons, we are history. It
is too powerful even for us.”

“I will send two, but only one has a Space Cannon. We will get the
empty one to nudge up to the Space Tetropus.”

“I don’t think we can assume that the Space Tetropus is stupid.”

“I wish I have one hundred Space Pods that I can send at the same time.
With only one of them carrying a Space Cannon, our chance of success is
99%.”

“That is easy for you to say, safely on the Space Station. Up here in the
Spaceship, we do not like the 1% chance of failure.”

“I will get back to you as soon as possible.”

Commander Gilbert consulted Lieutenant Kenneth, the scientific advi-
sor. He said, “We can break up a Space Cannon into two parts and send
them separately. This way, the Kleingons can only get half of it, which is of
absolutely no use to them.”

“Unfortunately, Spaceship Academia will not get too much out of the
other half either. However, your idea is an excellent one. If we break up
two Space Cannons into two parts in identical fashion and send them by
four Space Pods, the Kleingons will still be out of luck, while Spaceship
Academia will have enough parts to reassemble a complete one.”
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The two officers were very pleased with their plan. However, when they
tried to put it in operation, they found that there were only three Space
Pods available on base.

Lieutenant Kenneth thought for a while and said, “Our main difficulty is
not knowing which Space Pod the Space Tetropus will take. So to minimize
our loss, we should distribute the Space Cannons as evenly as possible among
the Space Pods.”

“We must use two Space Cannons,” said Commander Gilbert, “as we
are bound to lose some parts. However, if we do not put the same part in
the same Space Pod, we cannot lose them both. So two Space Cannons is
exactly what we need to use.”

“With two Space Cannons and three Space Pods, each Space Pod should
carry two-thirds of a Space Cannon. So this means breaking up a Space
Cannon into three parts, in identical fashion. Let us call them A, B and C.
The first Space Pod will carry A and B, the second B and C, and the third
C and A. So Spaceship Academia can still get a complete Space Cannon,
while the Kleingons can only get two-thirds of one.”

“It would be best if we do not break up the Space Cannons into too
many parts. Couldn’t we still have done it with only two?”

“No. Since we have four copies and three Space Pods, one of them
must carry two. These must be different as there is no point in any Space
Pod carrying two identical parts. If the Space Tetropus grabs this one, the
Kleingons can put the two parts together to get a complete Space Cannon.”

“I guess you are right,” said Commander Gilbert. “It is lucky that we
have three Space Pods. Had there been only two, we could not have done
anything.”

“Yes, each of Spaceship Academia and the Kleingons will get one. Either
both have a chance of getting a complete Space Cannon, or neither has,
which is definitely not good for us.”

“Let us stop theorizing and put our plan to work. We cannot count on
Spaceship Academia holding out forever against the Kleingons.”

This was done, and soon words came over the hyperradio that all was
well. Before long, Spaceship Academia was docking at Space Station Intel-
ligentia. Commander Gilbert and Lieutenant Kenneth welcomed Captain
Philip’s safe return.

“That was a close call,” reported Captain Philip. “The Kleingons were
about to replace the Space Tetropus with a Space Octopus, which can grab
two Space Pods at a time.”
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“This is serious,” said Commander Gilbert. “Let us go to work at once
and figure out a way around it, rather than wait until we have to face the
situation.”

“To begin with,” said Lieutenant Kenneth, “we have to break up three
Space Cannons. This way, we cannot lose every copy of any part. On the
other hand, we do not need to break up more than three, as that will only
make things easier for the Kleingons.”

“Also, each Space Cannon must be broken up into at least three parts,”
Captain Philip said. “If there are only two, the Space Octopus can just nab
one Space Pod carrying each part, and the Kleingons will have a complete
Space Cannon. If we break it up into exactly three parts, we will need nine
Space Pods so that each one will carry one part. Nothing less will do.”

“We seldom have that many Space Pods on base,” Commander Gilbert
pointed out. “What is the smallest number of Space Pods that can carry
out a successful convoy?”

“It has to be five or more. If we send only four, each side will get two,
and that is bad news. It is the same argument which explains why two Space
Pods are not enough for getting around a Space Tetropus.”

“Are five Space Pods enough though?” Commander Gilbert pressed the
point.

Nobody had an answer for a few days. Then Commander Gilbert found
a diagram which his son Atticus drew.

Figure 8.4



Starwars 145

It was a regular five-pointed star, the emblem of Space Station Intelli-
gentia. Atticus had labeled the ten points of intersections A, B, C, D, E, F,
G, H, I and J in some random order, as shown in Figure 8.4.

“That gives me an idea,” said Lieutenant Kenneth. “Let us break up
each of three Space Cannons into ten parts labeled A to J. Let each of the
five lines in Figure 8.4 represent a Space Pod, carrying all the parts whose
labels do not appear on that line. Call DA line 1, AE line 2, EH line 3, HJ
line 3 and JD line 5. Here is a list of the parts carried by the five Space
Pods.”

Space Pod 1: E, F, G, H, I and J
Space Pod 2: B, C, D, H, I and J
Space Pod 3: A, C,D, F, G and J
Space Pod 4: A, B, D, E, G and I
Space Pod 5: A, B, C, E, F and H

“Why would this work?” questioned Captain Philip.

“I'see,” said Commander Gilbert. “Whichever two Space Pods the Space
Octopus captures, the two lines representing them will intersect. So it will
be missing the part represented by that intersection. This is brilliant.”

“Yes, indeed,” agreed Captain Philip. “However, let us see if we can
still work something out even if we have not been blessed with this divine
revelation. Consider all possible scenarios. The Space Octopus may nab
Space Pods 1 and 2, 1 and 3,1 and 4, 1 and 5, 2 and 3, 2 and 4, 2 and 5, 3
and 4, 3 and 5, or 4 and 5. So for any of these ten pairs, there must be at
least one part neither of which is carrying.”

)

“Going back to what I said earlier,” chimed in Lieutenant Kenneth, “we
must have three copies of each part. Let the parts be labeled from A on. If
Space Pods 1 and 2 are missing part A, then Space Pods 3, 4 and 5 must
have it.”

“This means that we cannot have two different pairs missing the same
part,” said Captain Gilbert, “even if the pairs overlap. In other words, we
must break up each Space Cannon into ten parts, so that each of the ten
pairs will be missing a different part.”

“So 1 and 3 must be missing some part other than A, say B,” said
Captain Philip. “Then 2, 4 and 5 must have B. I think this will work. Let
us draw a chart to show what each Space Pod should be carrying.”

“Look!” exclaimed Lieutenant Kenneth. “You have come up with ex-
actly the same solution obtained earlier!”

“What?” said Captain Philip. “Yes, I do believe you are right. It is nice
to be able to get this in two ways.”
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Captured 1 1 1 1 2 2 2 3 3 4 S
Space Pods 2 3 3 4 5 4 5 5 P
Parts G H I J 1
carried B C D H I J 2
by each A C D F G J 3
of the A B D E G I 4
Space Pods A B C E F H 5

“I think you should write a book called MENSA for Dummies and put
this in,” laughed Commander Gilbert. “It is very pedantic and not brilliant
at all, but it does work all the same.”

The officers did not have much time to enjoy their discovery. Words
just came in that the Kleingons had stepped up the arms race. Instead of
replacing the Space Tetropus by a Space Octopus, they had replaced it by
a Space Dodecopus. It had twelve arms and could grab three Space Pods at
a time.

“Well,” said Lieutenant Kenneth, “we must use four Space Cannons.
We can break up each of them into only four parts if we have sixteen Space
Pods.”

“In view of the new development, we should have our budget increased.
However, I seriously doubt that we could afford sixteen Space Pods. The
minimum number of Space Pods we must have is seven,” said Commander
Gilbert.

“This would be a nightmare,” complained Captain Philip. “Here is a
list of thirty-five trios of seven Space Pods. This means we have to break up
each Space Cannon into thirty-five parts. I am not sure if we can put them
back together again.”

(1,2,3) (1,24) (1,2,5) (1,2,6) (12,7 (1,34) (1,3,5)
(1,3,6) (1,3,7) (1,45) (1,46) (1,47 (1,56) (1,5,7)
(1,6,7) (2,34) (2,3,5) (2,3,6) (2,3,7) (2/45) (2/4,6)
(2,4,7) (2,56) (2,57) (2,6,7) (3,45) (34,6) (34,7
(3,5,6) (3,57 (36,7 (456) (457 (467 (56,7

The new budget allowed for eight Space Pods, one more than the absolute
minimum.

“We have to break up each Space Cannon into at least fourteen parts,”
lamented Lieutenant Kenneth. “Suppose we have only thirteen parts. Then
there are fifty-two pieces of equipments. On the average, each of the eight
Space Pods must carry more than six pieces. Hence some Space Pod must
carry at least seven parts.”
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“Let us assume that the Space Dodecopus will grab this one,” said Com-
mander Gilbert, picking up the train of thought. “Then the six parts it is
missing are carried by the other seven Space Pods. Now there are twenty-
four pieces of equipment. On the average, each of these seven Space Pods
must carry more than three pieces, so that some Space Pod must carry at

least four parts.”

“Let this be the second Space Pod captured by the Space Dodecopus,”
said Captain Philip. “Now the two parts it is still missing are carried by the
six Space Pods. Since there are eight pieces of equipment, some Space Pod
must carry two pieces. If the Space Dodecopus captures this one too, it will
have all the parts to put a Space Cannon back together.”.

“Well, fourteen parts is much better than thirty-five parts,” remarked
Lieutenant Kenneth, ”but can we do it with only fourteen parts?”

It was quite a while before any progress was made. The officers remem-
bered the Finite Projective Geometry course they took during basic training.
In particular, they recalled the Fano plane. They took two copies of it and
labeled the points A, B, C, D, E, F and G in one, and T, U, V, W, X, Y
and Z in the other, as shown in Figure 8.5.

Figure 8.5

Captain Philip said, “Let line 1 be ABC, line 2 be CDE, line 3 be EFA,
line 4 be ADG, line 5 by CFG, line 6 be BEG and line 7 be BDF. Following
our earlier example, each line represents a Space Pod carrying all the parts
whose labels do not appear on that line in the first copy. In addition, it
carries all the parts whose labels do appear on that line in the second copy.
The last Space Pod carries every part in the second copy. Here is a list of
the parts carried by the eight Space Pods.”



148 8 Finite Projective Geometries

Space Pod 1: D, E, F, G, T, U and V
Space Pod 2: A, B, F, G, V, W and X
Space Pod 3: A, B,C,D, T, X and Y
Space Pod 4: B, C, E, F, T, W and Z
Space Pod 5: A, B, D, E, V, Y and Z
Space Pod 6: A, C,D, F, U, X and Z
Space Pod 7: A, C,E, G, U, W and Y
Space Pod 8: T, U, V, W, X, Y and Z.

“Suppose the Space Dodecopus captures Space Pod 8. Then it captures
only two of the other seven,” said Lieutenant Kenneth. “The two lines
representing them will intersect. So the Space Dodecopus will be missing
the part represented by that intersection in the first copy.”

“On the other hand,” observed Commander Gilbert, “suppose that the
Space Dodecopus does not capture Space Pod 8. In order for it to have all of
T, U, V, W, X, Y and Z, they have to capture three Space Pods represented
by lines all passing through the same point. However, the Space Dodecopus
will be missing the part represented by that intersection in the first copy.”

“So it works,” said Captain Philip. “Let us hope that this stupid war
ends soon.”

Remark:

The problem in this section appears in [5] with a different story line. The
results appeared in [2], a paper by Circle members Gilbert Lee, Kenneth
Ng and Philip Stein. The extension into the Space Dodecopus are a small
part of [1], a paper by Sven Chou and Jason Liao, two members of Chiu
Chang Mathematical Circle. By the way, Kleingon was not a misspelling of
Klingon of Star Trek fame. The word referred to an underling of a certain
Albertan politician at the time, who was at odds with education.
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Section 3. Convenient Buildings

A building is said to be convenient if for any two floors, there is at least
one elevator which stops on both of them. Suppose the building has m
elevators each of which stops on n floors. There are no restrictions on the
choice of these floors. They do not have to be consecutive, and need not
include the ground floor. What is the maximum number f(m,n) of floors
in this convenient building?

To establish the answer to this or any extremal problem, we need to
do two things. First, we must show by an explicit construction that the
answer can be attained. The finite projective planes would be useful for this
purpose. Second, we must prove by a general argument that the answer
cannot be improved.

We first prove three useful preliminary results.
Observation 1. f(m+1,n) > f(m,n).

Proof:
Having an extra elevator never hurts, though it may not help.

Observation 2. f(m,n+1) > f(m,n)+ 1.

Proof:
The extra stop for each elevator can all be on a new floor.

Observation 3. f(m, kn) > kf(m,n).

Proof:

Pile k copies of a convenient building with f(m,n) floors on top of one an-
other to form a building with k f(m, n) floors and connect the corresponding
elevators in each copy so that each stops on kn floors. The same elevator
which links the ¢-th and j-th floors in each copy will link the i-th floor of
any copy to the j-th floor of any other copy. Thus the new building is
convenient, and we have f(m, kn) > kf(m,n).

We now study the function f(m,n) by keeping m constant.

For m = 1, we have f(1,n) = n. The building can certainly have n
floors. If it has more, the elevator will not stop on some floor. No elevator
will stop on both this floor and any other floor.

For m = 2, we still have f(2,n) = n. By Observation 1, f(2,n) >
f(1,n) = n. If the building has more floors, each elevator will not stop on
some floor. If they skip different floors, no elevator will stop on both. If
they skip the same floor, no elevator will stop on both this floor and any
other floor.
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The first interesting case is m = 3. Let there be three floors 1, 2 and 3.
Let the first elevator stop on floors 1 and 2, the second elevator on floors 1
and 3, and the third elevator on 2 and 3. Thus we have the lower bound
f(3,2) > 3. This is a perfect building because there is no duplication of
services.

We next prove that f(3,2k) = 3k. By f(3,2) > 3 and Observation 3,
f(3,2k) > 3k. The total number of stops is 6k. If each floor is served by at
least 2 elevators, then the number of floors is at most 3k. If some floor is
served by at most 1 elevator, it can be linked to at most 2k — 1 other floors.
Counting this floor, the building can have at most 2k floors. It follows that
f(3,2k) = 3k.

We now prove that f(3,2k+ 1) = 3k + 1. By Observation 2,
F(3,2k+1) > £(3,2k) + 1 = 3k + 1.

The total number of stops is 6k + 3. If each floor is served by at least
2 elevators, then the number of floors is at most 3k + 1. If some floor is
served by at most 1 elevator, it can be linked to at most 2k other floors.
Counting this floor, the building can have at most 2k + 1 floors. It follows
that f(3,2k+ 1) = 3k + 1.

The cases m = 4 and m = 5 are slightly more difficult because of the
absence of perfect buildings. The next perfect building occurs at m = 6.
Here the floors are 1, 2, 3 and 4, and each of the six elevators stop on a
different pair of the four floors, namely, (1,2), (1,3), (1,4), (2,3), (2,4) and
(3,4). This yields the lower bound f(6,2) > 4.

We next prove that f(6,2k) = 4k. By f(6,2) > 4 and Observation 3,
f(6,2k) > 4k. The total number of stops is 12k. If each floor is served by
at least 3 elevators, then the number of floors is at most 4k. If some floor
is served by at most 2 elevators, it can be linked to at most 4k — 2 other
floors. Counting this floor, the building can have at most 4k — 1 floors. It
follows that f(6,2k) = 4k.

We now prove that f(6,2k+1) < 4k+2. Observe that the total number
of stops is 12k + 6. If each floor is served by at least 3 elevators, then the
number of floors is at most 4k + 2. If some floor is served by at most 2
elevators, it can be linked to at most 4k other floors. Counting this floor,
the building can have at most 4k + 1 floors.

Finally, we give a general construction to show that f(6,2k+1) > 4k+2.
Let the floors be a1, as,...,ag, b1,bo, ..., bk, c1,C2, ..., Ck, d1,da,...,dg, €
and f. Let the first elevator stop at all the a’s and b’s, the second at all
the a’s and ¢’s, the third at all the a’s and d’s, the fourth at all the b’s and
c’s, the fifth at all the b’s and d’s, and the sixth at all the ¢’s and d’s. Then
these 4k floors are all linked.
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If we add e as the last stop of the first and sixth elevator and f as the
last stop of the second and fifth elevator, they are also linked to the other
4k floors. However, e and f are not linked. So we replace di by f in the
sixth elevator. This destroys the links between dj on the one hand and e
and the ¢’s on the other. The remedy is to add e as the last stop of the
third elevator and dj, as the last stop of the fourth elevator. It follows that
f(6,2k+1) = 4k + 2.

The Fano plane is the next example of a perfect building. It leads to the
lower bound f(7,3) > 7. By this and Observation 3, we have f(7,3k) > 7k.
Now the total number of stops is 21k. If each floor is served by at least 3
elevators, then the number of floors is at most 7k. If some floor is served
by at most 2 elevators, it can be linked to at most 6k — 2 other floors.
Counting this floor, the building can have at most 6k — 1 floors. It follows
that f(7,3k) = Tk.

Our final result is that f(7,3k+2) = 7k+4. To prove that f(7,3k+2) <
Tk + 4, observe that the total number of stops is 21k + 14. If each floor is
served by at least 3 elevators, then the number of floors is at most 7k + 4.
If some floor is served by at most 2 elevators, it can be linked to at most
6k + 2 other floors. Counting this floor, the building can have at most 6k +3
floors.

We now give a general construction to show that f(7,3k+2) > 7k + 4.
Let the floors be a1, a2, ..., akt1, b1, b2, ..., bpt1, €1, C2y .., Cktl,
dl7 dg, ey dk+1, €1, €2, ..., €, fl7 f27 ey fk and g, 92, ..., Gk-
Let the first elevator stop at all the a’s, b’s and €’s, the second at all the
a’s, ¢’s and f’s, the third at all the a’s, d’s and g¢’s, the fourth at all the
b’s, ¢’s and ¢’s, the fifth at all the b’s, d’s and f’s, the sixth at all the ¢’s,
d’s and €’s, and the seventh at all the e’s, f’s and ¢’s. Then all the floors
are linked, with two wasted stops in the seventh elevator. It follows that
f(7,3k+2) =Tk + 4.

We are unable to determine f(7,3k + 1).

The results in this section are contained in [4], the work of Jerry Lo, a
member of Chiu Chang Mathematical Circle, and Circle David Rhee.
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Exercises

1.

Prove the duals of the four postulates of the community of lions and
ponies:

(a) There are at least two ponies.

(b) Each pony has been bitten by at least three lions.

(¢) For any pair of ponies, there is exactly one lion that has bitten
both.

(d) For any pair of lions, there is at least one pony that both have
bitten.

Show that to get around the Space Dodecapus with nine Space Pods,
it is enough to break up each of four Space Cannons into twelve parts.

Prove that 7Tk+1 < f(7,3k+1) < 7Tk+2 where f(m,n) is the function
associated with convenient buildings.
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Chapter Nine: Sharing Loots

Section 1. Sharing Jewels.

Captain Crook and his pirates had salvaged from the Spanish Main a
giant necklace. It consisted of six enormous jewels linked together by five
chains, each connecting one jewel to another. The value of each jewel was
assessed and announced to everyone.

It was agreed that Captain Crook would keep three jewels for himself,
while the crew would share the proceed from selling the other three. Captain
Crook and the crew would alternately take one jewel at a time, cutting one
chain which would separate the jewel being taken from the rest. Captain
Crook would start, and when he made the last cut which would separate
the last two jewels, he could choose either one.

With the advantage of going first, Captain Crook would not be satisfied
unless he could get three jewels whose total worth was at least as much as
the total worth of the other three. In that case, he was said to have won.
Now there were many different configurations for the necklace. For the
same configuration, jewels of different values might be in different locations.
Could Captain Crook always win?

An exhaustive analysis appears daunting. So let us conduct some prelim-
inary analysis. A basic technique in problem-solving is down-sizing. Instead
of dealing with six jewels, we reduce their number while keeping it even.

Figure 9.1

Figure 9.1 shows a necklace with two jewels, where the black circles
represent the jewels and the line segment represents the chain. Since there
is only one chain, the two jewels will be separated once Captain Crook cuts
the chain. Obviously, he will take the jewel of higher value. (If two jewels
have equal value, either may be considered to have higher value). In this

case, Captain Crook can win.

Figure 9.2

When there are four jewels, there are two different ways in which they
may be linked together. In the first case, as shown in Figure 9.2, there are
three jewels which Captain Crook can take in his opening move.
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In the opening round, each side takes one of these three jewels. Clearly,
Captain Crook will take the available jewel of the highest value. Thus he
will get at least as much value as the crew in this round. Now there are
only two jewels left, and we already know that Captain Crook can get at
least half of the total value of the remaining jewels. It follows that Captain
Crook can win.

For later references, we give this idea a formal name.

The Induction Argument.

Suppose we have proved that Captain Crook wins when the number of jewels
is 2n for some positive integer n. Consider the case when the number of
jewels is 2n 4 2. If Captain Crook can get at least as much value as the crew
in the opening round, then he can win.

® O
O e

Figure 9.3

In the second case, as shown in Figure 9.3, there are two jewels available
initially, but it may be counter-productive for Captain Crook to take the
one of higher value. The reason is that this action may made available a
previously inaccessible jewel that may be more valuable. We need a new
idea.

Captain Crook repaints two of the jewels white as shown in Figure 9.3.
If the total value of the two black jewels is at least as much as the total value
of the two white jewels, he takes the available black jewel. The crew have
no choice but to take a white jewel, which allows Captain Crook to take the
other black jewel and win. The situation is symmetric if the total value of
the two white jewels is more than the total value of the two black jewels.

Again, for later references, we give this idea a formal name.

The Coloring Argument.
Suppose Captain Crook can paint the 2n jewels with n in each of two color,
and can take all the jewels of either color, then he wins.

ces o%e

Figure 9.4
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Having solved the simpler problems with two and four jewels, we now
return to the original problem with six jewels. There are six different con-
figurations for the necklace. In the first two cases, as shown in Figure 9.4,
Captain Crook wins by induction.

CeOeO e

Figure 9.5

In the third case, as shown in Figure 9.5, Captain Crook wins by coloring.

[
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Figure 9.6

In the fourth case, as shown in Figure 9.6, Captain Crook checks to see
whether the total value of the black jewels is at least as much as the value
of the white jewels. If so, he takes the only black jewel that is available and
wins by coloring. If not, he takes the available white jewel with of higher
value. If the crew take a black jewel, Captain Crook wins by coloring. If
the crew take the white jewel, Captain Crook wins by induction.

N
W.C
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Figure 9.7

Figure 9.7 shows the fifth case, with a label for each of the jewels. Sup-
pose E; has no less value than Ey. Captain Crook takes the available jewel
with the most value and wins by induction. Suppose Ey has higher value
than E;. Captain Crook takes among N, W and S the one with the most
value. If the crew also take from what are left of N, W and S, Captain Crook
wins by induction. Hence the crew must take E;. Now Captain Crook takes
Es. Since the crew must now take from what are left of N, W and S, Captain
Crook wins by a modified induction argument, getting higher value of the
opening two rounds instead of in the opening round.

N

W _C B3 Er Fy
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Figure 9.8

Figure 9.8 shows the sixth case with a label for each of the the jewels.
Suppose E; has no less value than E,. Captain Crook takes the available
jewel with the most value and wins by induction. Suppose Eg has higher
value than E;. Captain Crook paints in white C, Eo and whichever of N
and W has higher value, say N. Then he checks whether the total value of
the white jewels is at least as much as the total value of the black jewels.
If so, he takes N and wins by coloring. If not, Captain Crook takes E;. If
the crew now take N, Captain Crook wins by coloring. If the crew instead
take W, Captain Crook takes N. Although he does not get all the black
jewels, he still wins by a modified coloring argument, getting a jewel (N) in
the minority color with higher value of place of a jewel (W) in the majority
color with less value. Finally, if the crew take Ey, Captain Crook takes Es.
If the crew then take N, Captain Crook wins by coloring. If the crew instead
take W, Captain Crook takes N and wins by modified coloring. If C has
higher value than N, of course Captain Crook will take C instead, and be
still better off.

This work [5] by Hsin-Po Wang, a member of Chiu Chang Mathematical
Circle, was motivated by the “Coins in a row” problem in [3]. For other
intriguing problems, see [4] by the same author.
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Section 2. Sharing Gold and Silver.

Captain Crook and his pirates had salvaged 100 boxes from the Spanish
Main. Each contained some gold and some silver. Naturally, he wanted the
lion’s share, after which his crew would divide the rest among themselves.
In order not to appear overly greedy, he limited himself to taking only a
certain number of boxes. However, he had to make this announcement right
away, and there was no time to examine in detail the contents of each box.
Of course, he would have the chance to do so when he made his selections.
What was the minimum number of boxes he must take in order to guarantee
that he could get at least one half of the total amount of gold and one half
the total amount of silver?

General Formulation.

In each of m boxes, there are k different metals in varying amounts. Suppose
we wish to get at least Z of the total amount of each metal. We wish to
determine f(k, Z ,m), the minimum number of boxes we must take regardless
of the distribution of metals among the boxes.

We will focus on & = 2. We begin our investigation with a simple general
observation.

Lemma 1.
We have f(k,f}’,m) < f(k,f}’,m—l— 1) < f(k, z,m) + 1.
Proof:

To establish the lower bound, consider the special case where one box is
empty. Set it aside, and we have to take f(k, Z ,m) of the remaining ones in
order to get Z of each metal. To establish the upper bound, we set aside an
arbitrary box, and take f(k, 57 m) of the remaining one so as to get at least
P of each metal in these m boxes. Adding the box set aside to our collection
will not reduce this fraction.

The cases p = 1 and p = ¢ — 1 yield most readily to our approach. For
q = 2, these two cases merge into a single case p = 1, which is the original
problem when k = 2.

Theorem 1A.
For g(n —1)+1<m < qn, f(1,1,m) =n.

v
Proof:

To establish the lower bound, we consider the distribution with the same
amount of gold in each box. Since there are at least ¢(n — 1) + 1 equal
shares, we must take n boxes. To establish the upper bound, consider any
distribution and arrange the boxes in non-ascending order of amount of gold.
If we take the first box, skip the next g — 1, take the next box, skip the next
q — 1, and so on, we would have taken n boxes with at least ; of the total
amount of gold.
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Theorem 1B.
Forgn <m <qn+q -1, f(l,qgl,m)zm—n.

Proof:

To establish the lower bound, we consider the distribution with the same
amount of gold in each box. To get at least q? of the gold, the number of
boxes we must take is at least

[(q—l)mw S {mJ —m—n.

q

To establish the upper bound, consider any distribution and arrange the
boxes in non-ascending order of amount of gold. If we take the first ¢ — 1
boxes, skip the next, take the next ¢ — 1 boxes, skip the next, and so on. we
would have taken m — n boxes with at least ; of the total amount of gold.

The next observation is the key in going from £ =1 to k = 2.

Lemma 2.

Each of m boxes contains some gold. If the maximum amount of gold in
any of the boxes is a kilograms, then the boxes can be divided into g groups
such that the total number of boxes in one group differs from that in any
other by at most 1, and the total amount of gold in the boxes of one group
differs from that of any other by at most a kilograms.

Proof:

Let m = gn + ¢ where 0 < ¢ < q. Let the amount of gold in the t-th box
be a; kilograms. We may assume that a = a1 > a9 > -+ - > a,,. Put all the
boxes with indices congruent to ¢ (mod ¢) in the ¢-th group for ¢ > 0 and
all the boxes with indices divisible by ¢ in the g-th group. Clearly the total
number of boxes in one group differs from that in any other by at most 1,
the total amount of gold in the boxes of the first group is the largest, and
the total amount of gold in the boxes of the last group is the smallest, but

the difference is a1 — (ag — ag41) — -+ — (agn — Ggn+1) < a1 = a kilograms.
Theorem 2A.

For gln—1)+2<m <qn+1, f(Q,;,m) =n+1.

Proof:

We first give a specific construction which establishes the lower bound. Sup-
pose the gold is all in one box while the silver is evenly distributed among
the other boxes. Then we must take the box containing all the gold. Since
there are at least g(n — 1) + 1 equal shares of silver, we must take n of
the remaining boxes. To establish the upper bound, set aside the box with
the highest amount of gold. Let this amount be ag kilograms, and let the
highest amount of gold in any of the other boxes be a; kilograms.
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By Lemma 2, we may divide the remaining boxes into g groups such that the
total number of boxes in one group differs from the total number of boxes
in any other by at most 1, and the total amount of gold in the boxes of one
group differs from the total amount of gold in the boxes of the other group
by at most a; kilograms. Now choose the group of boxes containing the
highest total amount of silver, and take as well the box set aside initially.
We have taken either n or n + 1 boxes. Clearly, we have taken at least !
of the silver. Now the group of boxes taken contains a total amount of gold
at most a1 kilograms less than the total amount of gold in the boxes of any
other group. Since ag > a1, adding ag kilograms means that we have taken
at least ; of the gold.

Theorem 2B.
Forgn—1<m<qgn+q—2, f(2,q;1,m):m—n—|—1.
Proof:

We first give a specific construction which establishes the lower bound.
Suppose the gold is evenly distributed among ¢ — 1 boxes and the silver
among the other boxes. Then we must take the ¢ — 1 boxes containing all
the gold and at least [(qfl)(zlfﬁl)] of the remaining boxes. The total is

q—1+m—q+1-— Lm75+1j =m —n+ 1. To establish the upper bound,
set aside the ¢ — 1 boxes with the highest amounts of gold. Let the highest
amount of gold in any of the other boxes be a kilograms. By Lemma 2, we
may divide the remaining boxes into g groups such that the total number
of boxes in one group differs from the total number of boxes in any other
by at most 1, and the total amount of gold in the boxes of one group differs
from the total amount of gold in the boxes of the other group by at most
a kilograms. Now choose the ¢ — 1 groups of boxes containing the highest
total amounts of silver. Take also the ¢ — 1 boxes set aside initially, each

containing at least a kilograms of gold. Clearly, we have at least q;1 of the
silver and at least 7! of the gold. Since the group of boxes we skip contains
n or n — 1 boxes, we have taken at most m — n + 1 boxes.

When 1 < p < g — 1, the problem becomes more difficult except when
k = 1. Theorems 1A and 1B are corollaries of the following result.

Theorem 3.
Write m = gn + i where 0 < i < ¢q. Then f(l,Z,anri) = pn + j where
Proof:

To establish the lower bound, we consider the distrubtion with the same
amount of gold in each box, say 1 kilogram. Then Z of the total amount is

’Z(qn +i)=pn+ Z’ kilograms. Hence we must take pn + j boxes.
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To establish the upper bound, consider any distribution and arrange the
boxes in non-ascending order of amount of gold. Divide them into n groups
of ¢, with i boxes left over. If we take the first p boxes of each group and
the first j boxes of the left over, we certainly have at least Z of the total
amount of gold.

Lemma 3.

Each of several boxes contains some gold and some silver. They are arranged
in non-ascending order of the amounts of gold inside them. In problems
where we try to get at least a certain amount of gold and at least a certain
amount of silver by taking a certain number of boxes, we may assume that
the amounts of silver inside the boxes are in non-descending order.

Proof:

Suppose there exist two boxes X and Y such that there are more gold and
more silver in X than in Y. Simply interchange their silver contents. Suppose
the boxes are now in non-descending order of the amount of silver inside, and
we proceed to choose our boxes. If this calls for the taking of both or neither
of the new boxes, we may pretend that the interchange never happened. If
this calls for the taking of either one of the new boxes but not the other,
we can always do better by taking X. Suppose the interchange does not
produce immediately the desired arrangement. Then further interchanges
can be made. Moreover, only a finite number of interchanges are needed to
obtain the desired arrangement.

The first meaningful case for k =2 and 1 <p < ¢—1is when ¢ = 5. We
now show how instrumental Lemma 3 is in the analysis.

Theorem 4A.
We have
2
f(2,5,5n) = 2n+1;
2
f(2,5,5n+1) = 2n+2;
2
f(2,5,5n+2) = 2n+2;
2
f(2,5,5n+3) = 2n+2
2
and f(2,5,5n+4) = 2n+3.
Proof:

We first give a specific construction which establishes the lower bound. Sup-
pose the gold is evenly distributed among three boxes while the silver is
evenly distributed among the other boxes. Then we must take two of the
boxes containing gold.



Sharing Gold and Silver 161

We now consider the following two cases:

Case 1. f(2,2,5n+4) > 2n + 3.
2n g 2n+1

Since 'V, < 5 < 5.7, we must take 2n + 1 of the 5n + 1 boxes containing
silver.
Case 2. f(2,2,5n+2) > 2n+2.

Since gz:; < g < 5522, we must take 2n of the 5n — 2 boxes containing

silver.
By Lemma 1, f(2,2,5(n+ 1)) > f(2,2,5n+4) > 2(n+ 1) + 1. Hence

f(2,%,5n) > 2n+ 1. By Lemma 1 again,

2 2 2
f2, 5,5n+3) > f(2, 5,5n+2) > f(2, 5,5n+ 1) >2n+2.
To establish the upper bound, assume that the boxes have been arranged

according to Lemma 3. We consider the following two cases:
Case 1. f(2,2,5n) <2n+ 1.

)59
Divide the boxes into groups of five. In each group, take the first and
: ai1+a 2
third boxes. Also take the very last box. We have a1-4as +1a3 fa4 +as <:

since this is equivalent to 3(ay 4+ a3) > 2(ay 4+ a4 + as), which holds since
a1 > as > az > ayg > as. Thus we have taken at least g of the gold in the
first group. Since the situation is repeated in the other groups, and taking
the last box can only help, we have at least g of all the gold. For silver,
start from the other end and switch the last box of each group with the first
box of the next group. The amount of silver in the boxes of each group is
still in non-ascending order, and we have exactly the same situation as with
gold. Figure 9.9 illustrates the case n = 3.

Figure 9.9

Case 2. f(2,2,5n+3) < 2n+2.
Divide the boxes into groups of five, with the last group consisting only of
three boxes. In each group including the last incomplete group, take the
first and third boxes. As in Case 1, we have taken at least g of all the gold.
For silver, start from the other end. This time, we already have exactly the

same situation as with gold. Figure 9.10 illustrates the case n = 3.

Figure 9.10
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By Lemma 1, f(2,2,5n+4) < f(2,2,5(n+1)) <2(n+1)+1=2n+3. By
Lemma 1 again, f(2,2,5n+1) < f(2,2,5n+2) < f(2,2,5n+3) < 2n+2.

Theorem 4B.
We have
3
f2m) = e
3
f(2,5,5n+1) = 3n+2;
3
f(2,5,5n+2) = 3n+2;
3
f(2,5,5n+3) = 3n+3
3
and f(2,5,5n+4) = 3n+4.
Proof:

We first give a specific construction which establishes the lower bound. Sup-
pose the gold is evenly distributed among two boxes while the silver is evenly
distributed among the other boxes. Then we must take both boxes contain-
ing all the gold. We now consider the following three cases:

Case 1. f(2,3,5n+4) > 3n+4.

Since gzg < § < ?Zﬁv we must take 3n + 2 of the 5n + 2 boxes containing
silver.

Case 2. f(2,3,5n+1) > 3n+2.

Since gz:i < g < 52%, we must take 3n of the 5n — 1 boxes containing
silver.

Case 3. f(2,2,5n+3)>3n+3.

Since 52% < § < gZﬂ, we must take 3n + 1 of the 5n + 1 boxes containing
silver.

By Lemma 1, f(2,2,5(n+ 1)) > f(2,2,5n+4) > 3(n+ 1) + 1. Hence
f(2, g, 5n) > 3n+ 1. By Lemma 1 again,

3 3
f(2,5,5n+2) 2f(275,5n+ 1) >3n+2.

To establish the upper bound, assume that the boxes have been arranged
according to Lemma 3. We consider the following two cases:

Case 1. f(2, g, 5n) < 3n+ 1.

Divide the boxes into groups of five. In each group, take the first, second
and fourth boxes. Also take the very last box. We have +Z;ig§igj oy S g
since this is equivalent to 2(ay 4+ as + a4) > 3(as + as), which holds since
a1 > as > az > ayg > as. Thus we have taken at least g of the gold in the
first group. Since the situation is repeated in the other groups, and taking

the last box can only help, we have at least g of all the gold.
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For silver, start from the other end and switch the last box of each group
with the first box of the next group. The amount of silver in the boxes of
each group is still in non-ascending order, and we have exactly the same
situation as with gold. Figure 9.11 illustrates the case n = 3.

Figure 9.11

Case 2. f(2, §,5n+ 2) <3n+2.

Divide the boxes into groups of five, with the last group consisting only of
two boxes. In each group, take the first, second and fourth boxes. For the
last incomplete group, this means taking both boxes. As in Case 1, we have
taken at least g of all the gold. For silver, start from the other end. This
time, we already have exactly the same situation as with gold. Figure 9.12
illustrates the case n = 3.

Figure 9.12

By Lemma 1,
f(2, § Sn+1) < f(2,2,5n+2) < 3n+2,
f(2,g,5n—|—3) < f(2,§,5n+2)—|—1 < 3n+3,
f(2,5,5n+4) < f(2,5,5n+3)+1 < 3n+4

At this point, we made a bold conjecture. We claim that
p . .
f (k q,qn+2> =pn+7j,
. _ . - pi—(k—1)
where 0 <i<g—1landj=(k—1)+["" "]

This general formula agrees with all preceding results. We now show
that it is at least a lower bound.
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Theorem 5. ‘
F0<i<g—Tandj=(k—1)+["" (D], then f(k, 7 qn+i) = pn +j,

Proof:

Let ! be the lower Farey fraction which generates Z. Then 0 < s < g,
< 5 < ”Jsrl and ps = gr + 1. For each metal except the last one, distribute
the total amount equally among s boxes which contain no other metals.
From each group, we must take r + 1 boxes for a total of (kK — 1)(r + 1).
Distribute the total amount of the last metal equally among the remaining
gn +1 — (k —1)s boxes, and we must take from this group [p(q”H)qf(k*l)s}
boxes. For 0 < <qg—1,

plgn+1i) — (k — 1)5"
q
pi— (k—1)(¢gr+ 1)"
q

f(k,z,anri) > (kf1)(r+1)+[

= (k—=D(r+ 1)+pn+[

~ ey [P ]

= pn+j,

where j = (k— 1) + fpi_((f_l)].

We are as yet unable to establish this formula as an upper bound.

This problem is a special case of a general problem posed in the 2005
International Mathematics Tournament of the Towns Summer Seminar in

Mir Town, Belarus, attended by Circle member David Rhee. For results on
qg="7,8and9, see [2].
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Section 3. Sharing Rum.

Captain Crook and his pirates had salvaged a giantic barrel of rum from
the Spanish Main. They would share it with the aid of four empty barrels.
In the first stage, the rum would be distributed among the five barrels. The
crew and Captain Crook alternately subdivide the content of a barrel into
two, pouring some into an empty barrel. The amount poured could be 0; in
other words, either side could pass. The crew would make the first move so
that Captain Crook would get the last move.

In the second stage, Captain Crook and the crew would choose the bar-
rels alternately. Captain Crook chose first, thereby getting three barrels
while the crew would get only two. What was the maximum amount of rum
he could get?

The total volume of the rum is taken to be 1. By the volume of a barrel,
we mean the volume of the rum in that barrel. A barrel is said to be larger
than another barrel if the first one contains more rum than the second.

Suppose in the first move. the crew subdivides it into a < b. There are
four cases.

Case A. g%gaglsothatOSbS ég

Captain Crook subdivides b into g and g. If the crew does not subdivide
a, Captain Crook just pours out 513 from another barrel. He will get three
barrels with total volume at least a + 513 > gg Suppose the crew subdivides
a into ¢ < d. Captain Crook subdivides d into ‘21 and ‘21. He will get three

: d | b 1< 35
barrels with total volume at least ¢+ § + 5 > Z +5 255

Case B. ?g <a< gg so that ég <b< gg
Captain Crook subdivides b into ég and b— ég If the crew does not subdivide
a, Captain Crook just pours out 523 from another barrel. He will get three
barrels with total volume at least a + 523 > 25

3. Suppose the crew subdivides
a into ¢ < d. We consider four subcases.

18 17 18
Subcase B1. 55 2 C2 55 > d>b— 53"

Captain Crook subdivides ¢ into d and ¢ — d. He will get three barrels with

total volume at least ég +d+min{c—d,b— ég }. In the former instance, it is

at least ég +c> gg In the latter instance, it is at least d+b=1—¢ > gg
Subcase B2. ég >c>d>b— ég
Captain Crook subdivides b — ég into g — 593 and g — 593. He will get three
barrels with total volume at least %g +d+ 12’ — 395 = gg — g —c> gg
Subcase B3. ¢ > ég >d>b— ég

Captain Crook subdivides ég into d and ég — d. He will get three barrels

with total volume at least ¢+d+min{ ig —d,b— ;g }. In the former instance,

it is at least ¢+ ég > g’g In the latter instance, it is at least a +b— j;)g = gg
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18 18
Subcase B4. ¢ > ;3 > b— 5 > d.

Captain Crook subdivides 13 into j; and ;. Sinced <b— 1§ < 2, ¢ > 21

Hence he will get three barrels with total volume at least ¢ + 593 > §3.

27 33 20 26
Case C. 53 S a < 5580 that 53 < b < 53

Catpain Corrk subdivides a into g; and a — g; If the crew does not sub-
divide g;, Captain Crook just pour out 583 from another barrel. If it is the

second largest, then the crew gets two barrels with total volume at most ég
Otherwise, Captain Crook will get three barrels with total volume at least
gg + 583 = gg Suppose the crew subdivides gg into ¢ > d. There are four
subcases.

27 15 12 27
Subcase C1. [j; <c < 3 sothat 5 <d < [
Captain Crook subdivides a — 27 = 25 — b into 13 — % and 3 — 5. He will

get three barrels with total volume b+d + (1 — 5) > 2.

Subcase C2. ég <c< ég so that 5?3 <d< ég
Captain Crook subdivides ¢ into d and ¢ — d. He will get three pieces with
total volume b+ d 4+ min{c—d, a — gg} In the former instance, it is at least

b+c> ?3 In the latter instance, it is at least d + 1 — gz > gg

Subcase C3. ég <c< gg so that 533 <d< 593.
Captain Crook subdivides ¢ into 5 and 5. The crew gets two barrels with
total volume at most § + max{d,a — gg} In the former instance, it is at

27 18 : L 12 , 6 _ 18
most ;5 —c < 5. In the latter instance, it is at most 53 T 53 = 53-

Subcase C4. §§ <c< gg so that 0 < d < 533.
Captain Crook subdivides b into g and g He will get three barrels with
total volume at least ¢ + 3 +min{d, a — gg} In the former instance, it is at

least g; + g > g; In the latter instance, it is at least ¢ + 1 — gg — 3 > g;

Case D. % Saggg so that gggbg ;
Captain Crook passes. Whicever barrel the crew now subdivides, Captain
Crook pour out from the larger of the two modified barrels an amount equal
to é of the barrel the crew has just subdivided. This will be the third largest
barrel, and Captain Crook will get three barrels with total volume at least
b+a:1_2a>35_

3 3 = 53

This completes the proof that Captain Crook can always get gg of the
rum. We now prove that the crew can always get at least ég of the rum.
We will need the following two preliminary results.

Lemma 1.

Suppose before the fourth and last move (by Captain Crook), the amount
of rum in the first four barrels are w > x > y > 2z . If x < 2y, then the crew
can get two barrels with total volume at least x.
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Proof:

If Captain Crook subdivides either of the smallest two barrels, the second
largest barrel will have volume z. There is nothing further to prove. Hence
Captain Crook must subdivide either of the largest two barrels, into two
barrels each with volume smaller than xz. Because z < 2y, at least one
of the modified barrels has volume less than y. If the original barrel with
volume y is still the third largest, then the largest has volume at most w
and the smallest has volume at most z. Hence Captain Crook gets three
barrels with total volume at most w + y + 2, so that the crew will get two
pieces with total volume at least 1 — w —y — z = z. On the other hand,
if the barrel with volume y is now the second largest, then the volume of
each of the two modified barrels lies between y and x — y. Thus the second
smallest barrel has volume at least * — y, and the crew will get two barrels
with total volume at least y + (z — y) = .

Lemma 2.

Suppose before the fourth and last move (by Captain Crook), the amount
of rum in the first four barrels are w > = > y > z. If z > 2z, then the crew
can get two barrels with total volume at least min{y 4 z,z + 5 }.

Proof:

If Captain Crook subdivides either of the smallest two barrels, the second
smallest barrel will have volume at least  while the second largest barrel
will have volume x. Hence the crew will get two barrels with total volume
at least z + 5. If Captain Crook subdivides either of the largest two barrels
into two barrels each with volume smaller than x, not both can have volume
smaller than z since x > 2z. Hence the second smallest barrel has volume
at least z while the second largest piece has volume at least y. Hence the
crew will get two barrels with total volume at least y + z.

The crew’s strategy begins with the crew subdivides 1 into gg and gg

There are two cases.

Case A. Captain Crook subdivides gg into a > b.
There are three subcases.

18 20 2
Subcase Al. 53 < a < ;580 that 0 < b < 53"

The crew subdivides gi into éi and ég In Lemma 1, let w = a, x = ég,
y = ég and z = b, with < 2y. Hence the crew will get two barrels with

total volume at least ég

Subcase A2. é; <a< ég so that 523 <b< 533.

The crew subdivides gg into ég and ég In Lemma 2, let w = a, z = ég,
Yy = ég and z = b, with x > 2z. Note that y + z = ég+b > ég while
T+ 5= 1; + g > ég Either way, the crew will get two barrels with total

1
volume 5.
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Subcase A3. ég <a< é; so that 533 <b< ég

The crew still subdivides 22 into ég and ég The total volume of the smallest

3
four barrel is 1 — ég = gg The crew is guaranteed to get at least half of

that, which is ég

Case B. Captain Crook subdivides gg into a > b.
There are seven subcases.

Subcase B1. 27 <a < 33 sothat 0<b < §.

53
The crew subdivides a into ég and a — ég In Lemma 1, let w = gg, T = ég,

y=a— ég and z = b, with x < 2y. Hence the crew will get two barrels with

total volume at least j;)g

51 27 6 15
Subcase B2. 106 <a g 53 ,1580 that ., 1% b< 106 " .
The crew subdivides a into ;3 and a — ;5. In Lemma 2, let w = 5,z = 33,

_ ., _15 _ : _ _ 15 _ 33" 15 _'18
y=a— g and z =b, withaz > 22. Nowy+z2=a+b— ;3 =355 — 53 = 55

while z + 5 = ég + g > ég Either way, the crew will get two barrels with
total volume at least ég

Subcase B3. 2

53

51 15 8
< a < jpg, 80 that 55 <b < .

The crew subdivides a into a—b— 533 and b+ 533. If Captain Crook subdivides
either b+ 533 or b, the second smallest barrel is at least g, and the crew will

get two barrels with total volume at least a—b— 5?3 + g =a+b— 533 — 32b > ég

Suppose Captain Crook subdivides either gg ora—b— 533. If both new barrels
are less than b, then the crew will get two barrels with total volume at least
b+ 2 +3(a—b— 2) = 15, If at least one of the new barrels is greater than
b, then the second largest barrel is at least b + 533 so that the crew will get
two barrels with total volume at least b + 533 +b> ég

Subcase B4. gg <a< gg, so that 583 <b< ég

The crew passes. If Captain Crook then subdivides b, the crew will get at

least gg Hence he must subdivide a or gg After Captain Crook’s final cut,

if b is still the third largest, then he gets three barrels with total volume at
most a+b+0 = gg, so that the crew will get two barrels with total volume at
least ég If b becomes the second smallest, then the second largest is at least
ég, and the crew will get two barrels with total volume at least ég +b> })g

Subcase B5. gg <a< gg, so that ég <b< })g
The crew also passes. In Lemma 1, let w = a, x = gg, y=>band z = 0,

with z < 2y. Hence the crew will get two barrels with total volume at least

20
53"

Subcase B6. ég <a< gg, so that ég <b< %g
The crew still passes. In Lemma 1, let w = 75, * =a, y =0 amd 2z =0,
with < 2y. Hence the crew will get two barrels with total volume at least
18
53°
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Subcase BT. 13036 <a< ég, so that ég <b< fg’ﬁ.
The crew subdivides gg into ég and 563. In Lemma 2, let w =a, =0,y = ég
and z = 563 with z > 2z. Now y 4+ 2z = gg while x + 5 = b+ 533 > j;)g Either

way, the crew will get two barrels with total volume at least ég.
This was the work [1] by Circle member Robert Barrington Leigh. Some

editing and simplifications were made after his untimely death in 2006 by
YunHao Fu, Zhichao Li and circle member David Rhee.
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Exercises

Suppose the necklace is as shown in Figure 9.13. The values of the
five jewels are 1, 2, 3, 4 and 5 in some order. What is the probability
that the three jewels Captain Crook gets will be worth 8 or more?

Figure 9.13

Each of m boxes contains some gold and some silver. The maximum
amount of gold in any of the boxes is a kilograms and the maximum
amount of silver in any of the boxes is b kilograms. Prove that the
boxes can be divided into ¢ groups such that the total number of
boxes in one group differs from that in any other by at most 1, the
total amount of gold in the boxes of one group differs from that of any
other by at most a kilograms, and the total amount of silver in the
boxes of one group differs from that of any other group by at most b
kilograms.

. If in the first stage of sharing rum, Captain Crook makes the first move

instead of the crew, what is the maximum amount of rum he can get?
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Chapter Ten: Puzzling Adventures

In this last chapter, we consider three problems from a delightful book
[7]. For more problems which are important, instructive and interesting, see
[8], [9], [10], [11] and [12] by the same author.

Section 1. Circuits Checking Circuits

A small airport has four ports A, B, C and D, but only one runway.
Most of the time, at most one port will require the runway for either taking
off or landing, so that no intervention from the control tower is necessary.
It is desired to construct a circuit which would sound an alarm if and only
if two or more ports want to use the runway at the same time.

The circuit consists of a number of gates each of which takes in a number
of binary signals, that is, Os and 1s, and combines them into a single one.
There are two kinds of gates.

In Figure 10.1, an “OR” gate is illustrated on the left. Its output is 0 if
all the inputs are 0s; otherwise, it is 1. An “AND” gate is illustrated on the
right. Its output is 1 if all the inputs are 1s; otherwise, it is 0.

N

1
1 1
0

O
(oz»)
o

O
R
A4
Figure 10.1

Fach port will send out a binary signal: 0 if it does not require the
runway, and 1 if it does. These inputs maybe fed into several gates of the
circuit. An output from a gate may be fed into another gate further down
the line. There is a final gate such that if its output is 0, this means no
intervention is necessary, but if it is a 1, then an alarm will sound for the
control tower to take charge.

A simplistic idea is to send each pair of inputs, namely (A,B), (A,C),
(A,D), (B,C), (B,D) and (C,D) to a different AND gate, and send all six
outputs into a final OR gate. Whenever two or more ports require the
runway, at least one of the AND gates will output a 1, which will go through
the OR gate as the final output. On the other hand, if at most one port
requires the runway, then each AND gate outputs a 0 and so will the final
OR gate.

This circuit has two drawbacks. First, it is not a good idea to have as
many as six inputs converging on one gate. Second, if the number of ports
increases linearly, the number of gates will increase quadratically.

© Springer International Publishing AG 2018 171
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Figure 10.2 shows a much better design, even though it also uses seven
gates.

/N

N
N
N
N

N
N
N

Figure 10.2

If two or more gates require the runway and they include the pair (A,C),
(A,D), (B,C) or (B,D), a 1 will be fed into the final OR gate from the upper
branch. If they include (A,B), (A,D), (C,B) and (C,D), a 1 will be fed into
the final OR gate from the lower branch.

Note that the cases (A,D) and (B,C) are checked twice. Using this fact,
it is possible to reduce the number of gates used to six. However, to reduce it
further requires a new idea. This time, we feed the triples (A,B,C), (A,B,D),
(A,C,D) and (B,C,D) to a different OR gate, and send all four outputs into
a final AND gate.

We can avoid having as many as four inputs converging on one gate by
modifying this circuit into the one shown in Figure 10.3. If only A or only B
requires the runway, a 0 will be fed into the final AND gate from the upper
branch. If only C or only D requires the runway, a 0 will be fed into the final
AND gate from the lower branch. If two or more gates require the runway,
a 1 will be fed into the final AND gate from the upper branch as well as
from the lower branch.
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> <

Figure 10.3

We now turn to a more difficult problem. A medium-sized airport has
nine ports A, B, C, D, E, F, G, H and I, and two runways. Most of the time,
at most two ports will require the runways for either taking off or landing,
so that no intervention from the control tower is necessary. It is desired to
construct a circuit which would sound an alarm if and only if three or more
ports want to use the runway at the same time.

This problem turns out to be isomorphic to a beautiful problem proposed
by Hungary for the 1988 International Mathematical Olympiad in Australia.
It was put on the short-list (see [2]) by the Problem Committee, but did not
make it to the contest paper.

In a multiple-choice test there were 4 questions and 3 possible answers
for each question. A group of students was tested and it turned out that
for any 3 of them, there was a question which the three students answered
differently. What is the maximal possible number of students tested?

If three students answer a question differently, we say that they are dis-
tinguishable by that question. Denote by f(n) the maximal possible number
of students in such a test with n questions. We have f(1) = 3 since the three
students can give different answers. If we have four or more students, two of
them must give the same answer by the Pigeonhole Principle. Adding any
third student will form a trio not distinguishable by the lone question.
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For n > 1, we have f(n+1) < 3f(n). Suppose f(n+ 1) = m. Con-
sider the (n + 1)-st question. At least 2},}” of the students did not give the
less popular answer for that question. Then these students must be dis-
tinguishable by at least one of the first n questions. Hence f(n) > 2;” or

fln+1) <35 f(n).

Now f(2) < 3f(1) <4, f(3) < 3f(2) <6and f(r) < 3f(3) <9. In the
chart below, we show the responses to the four questions #1, #2, #3 and
#4 by nine students A, B, C, D, E, F, G, H and 1.

Students #1 #2 #3 H#4

A 0 0 0 0
B 0 1 1 1
C 0 2 2 2
D 1 0 2 1
E 1 1 0 2
F 1 2 1 0
G 2 0 1 2
H 2 1 2 0
I 2 2 0 1

We claim that every three students are distinguishable by at least one
question. Arrange their seats in a 3 x 3 array as follows.

Qg
=siies live)

C
F
I

If three students sit in different rows, they are distinguishable by #1. If
they sit in different columns, they are distinguishable by #2. If they sit in
diffenent down diagonals (A-E-I, B-F-G and C-D-H), they are distinguish-
able by #3. Finally, if they sit in different up-diagonals (A-F-H, B-D-I and
C-E-G), they are distinguishable by #4. Since there are only three pairs of
students among a trio, they will be distinguishable by at least one of the
four questions.

So f(4) = 9. It follows that the earlier upper bounds for f(2) and f(3)
are also exact. In other words, we have f(2) =4 and f(3) = 6. It can be
proved that f(5) = 10, a surprisingly low value which indicates that the
general problem of determining f(n) is very difficult.

We now return to the circuit problem. We will feed the nine inputs into
three OR gates, with three going into each. Then we feed the three outputs
into an AND gate. This we do into four different ways, and feed the four
outputs from the AND gates into a final OR gate. This circuit is shown in
Figure 10.4 which uses 17 gates, an amazingly low number.



Circuits Checking Circuits

ABC

D,EF

) 3

G.H,I

AD,G

B,E.H

) )

CF.1I

AEI

B,F,G

C,D.H

AFH

B,D,I

C.E,G

O O O

O OOOOOOOOOO0
O

Figure 10.4

<

175

This is based on the work of Circle member Graham Denham. See [3]

and [4].
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Section 2. The Coach’s Dilemma.

A tennis coach has eight players, all of different strengths. The coach
wishes to rank them from the strongest to the weakest. It takes exactly one
hour of playing against each other to determine which of two players is the
stronger. As many as four pairs can be playing during the same hour. The
task must be completed within 6 hours.

A standard approach for solving this type of problem is divide and con-
quer. We first divide the eight players into two groups of four, and then
subdivide each group into two pairs.

The players in a pair go against each other, resulting in four sorted pairs
in 1 hour. Next, we perform simultaneously two mergers of two sorted pairs
(a1, az2) and (b1, be) into a sorted quartet (¢, co, ¢3, ¢4). This can be done in
at most 2 hours. We present two different methods.

The first method, due to Batcher [2], is called the odd-even merge-sort.
In the first hour, a; plays b; and as plays bs. The winner of the first
match is ¢1, and the loser of the second match is ¢4. If the loser of the first
match has already played the winner of the second, the ranking is completed.
Otherwise, these two will play in the second hour to determine ¢y and c3.

The second method may be called the upside-down merge-sort. In the
first hour, a1 plays bs and by plays ao. If either as or by wins, the ranking is
completed. If not, then a; plays b; in the second hour to determine ¢; and
co, while asy plays by to determine c3 and c¢y.

We now merge two sorted quartets (¢, ¢z, ¢3, c4) and (dy, dg, ds, dg) into
a sorted octet
(e1, ez, €3, €4, €5, €6, €7, €38).
This can be done in at most 3 hours, so that the overall task can be accom-
plished in at most 6 hours.

Using Batcher’s method, it takes at most 2 hours to merge (c1, ¢3) with
(d1,ds) into (f1, f, fs, fa) as well as (¢, cq) and (di, d3) into (g1, g2, g3, 94)-
Clearly, we have f; = e; and g4 = es. We claim that {f2, 1} = {es, es},
{fs, 92} = {eq,e5} and {f4, g3} = {es, er}, so that at most 1 more hour is
needed for completing the ranking.

By symmetry, we may assume that f; = ¢;. Then fo = dy or c3 while
g1 = dg or ca. Now only ¢; and possibly ¢y can be ahead of fa. Similarly,
only ¢; and possibly d; can be ahead of g;. Hence {f2, g1} = {e2,e3}. By
symmetry again, {f1, g3} = {es, e7}, so that we have {f3, ga} = {e4,e5} as
desired.

Using our method, we have c; play dy4, cs play ds, c3 play do and ¢4 play
dy in the first hour. If ¢4 or d4 wins, the ranking is completed. So we may
as well assume that ¢; and d; win.
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If c5 and ds also win, we can complete the ranking by merging (cq, ¢2)
with (di,d2) to yield (eq, ez, e3,€4), as well as (c3, ¢q) with (ds, d4) to yield
(es, €6, €7, €g). This takes at most 2 more hours. Suppose c3 beats dz. Then
{c1,¢9,c3,d1} = {e1, e, €e3,e4} and {cy,ds,ds,ds} = {es, e, e7,e5}. In the
second hour, d; plays co while ¢4 plays d3. In the third hour, d; plays c¢;
following a victory or cg following a defeat, while ¢4 plays ds following a
victory or dy following a defeat.

In the general case using Batcher’s method, let there be 2™ as and 2" bs.
Let the two sequences be sorted separately. Let the odd-indexed terms be
sorted into cs and the even-indexed terms be sorted into ds. We claim that
in the final sorting into es, {eax, €apr1} = {ckr1, di} for 1 < k <27+ — 1.
This is proved in many standard textbooks on parallel algorithms. See for
example [1]. Here we give our own proof via two auxiliary results.

Lemma 1.

For 1 <k < 2", ¢ is ahead of dj.

Proof:

By symmetry, we may assume that d = ao,, for some m. Among the ds,
there are m — 1 other as ahead of dj, namely, as,aq4,...,as,_2. Hence
there are k — m bs ahead of dj, namely, b, by, ..., bog_2,. Among the cs,
ai,as,...,a9m—1,b1,b3,...,bok_om_1 are ahead of di. These consist of m as

and k —m bs, so that m + (k—m) = k cs are ahead of di. Since ¢, is in the
kth place among the cs, ¢ is ahead of d.

Lemma 2.
For 2 < k < 2™ —1, dg_1 is ahead of cgy1.

Proof:

By symmetry, we may assume that cxi1 = agm—1 for some m. Among the
cs, there are m — 1 other as ahead of ci41, namely, a1, as, . . ., azm—3. Hence
there are k — m + 1 bs ahead of ci41, namely, by, b3, . .., bog—2m+1. Among
the ds, ao,ay, ..., asm—2,b9,by, ..., bok_on are ahead of cgy1. These consist
of m—1 as and k —m bs, so that (m —1) + (k—m) = k — 1 ds are ahead of
Ck+1. Since dj_1 is in the (k—1)st place among the ds, di_; is ahead of cp41.

We give an illustration using £ = 5. Lemma 1 states that c5 is ahead of
ds. Note that d5 is either an a or a b. By symmetry, we may assume d5 is
an a, and let us say d5 = ag. Then it is the third a in the even group, so
that it is behind by and by4. It follows that ds is behind a1, a3, as, b1 and
b3 in the odd group, and one of these is cs.

Lemma 2 states that d4 is ahead of ¢g. Note that cg is either an a or a
b. By symmetry, we may assume cg is an a, and let us say cg = az. Then
it is the second a in the odd group, so that it is behind by, b3, b5 and by.
It follows that cg is behind ag, by, by and bg in the even group, and one of
these is dg4.
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The two lemmas together show that after the cs and ds have been sorted,
only 1 extra hour is needed to complete the ranking.

We now prove that our upside-down merge-sort also works in general.

Theorem.
If k+t=2"(ay,as,...,a;) can be merged with (by,bs, ..., in at most n
hours.

Proof:

We use induction on n. The case n =1 is trivial. Suppose the result holds
for some n > 1. Consider the next case where k+t = 2"*t1. We may assume
that 1 < k <t. For 1 <i <k, let a; play byp—i+1 in the first hour, where
m = 2. We consider three cases.

Case 1. All the as win.

In particular, a; beats b,,—41. In order to complete the ranking, we only
need to merge (ay, ag, ..., ax) with (b1, ba, . .., by—x). Since k+(m—k) = 2",
at most n more hours are needed by the induction hypothesis.

Case 2. All the as lose.

In particular, b, beats a;. In order to complete the ranking, we only need
to merge (ay,as, ..., ar) with (bym41, bmta, ..., b). Since k + (£ —m) = 27,
at most n more hours are needed by the induction hypothesis.

Case 3. Not all as win and not all as lose.

Let ¢ < k be the largest index such that a; wins. In order to complete the
ranking, we only need to merge (a1, as,...,a;) with (b1, b, ..., b;ym_s), and
at the same time (a;11, @42, ..., ar) with (by—it1,bm—it+2,-..,0:). Since
i+(m—1i)=2"=(t—(m—1))+ (k—1), at most n more hours are needed
by the induction hypothesis.

In all cases, n+ 1 hours are sufficient, completing the inductive proof of our
Theorem.

This problem also appeared in the International Mathematics Tourna-
ment of Towns [13] with more players. Circle member Calvin Li [6] discov-
ered the upside-down merge-sort while writing the contest.
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Section 3. The Campers’ Problem

Suppose that you are a camp counselor. You and your eight campers
are lost in the woods unable to find a path. Finally, you come to a four-way
intersection of paths: N, E; W or S. You know your campsite is only 20
minutes away from there, but you don’t know which path to take. You have
an hour more of daylight, after which traveling is very dangerous. So you
cannot travel with all eight campers down one route at a time. It would
take too long.

Indeed, you must send small groups 20 minutes down each path and
have them rendezvous at the intersection in 40 minutes. You will then
decide which route to take. You may also participate in the search in the
first 40 minutes.

The problem is that two of the campers in your group sometimes lie.
You do not know which ones they are. How do you divide up your group
into search parties? At rendezvous time, how do you decide which way to
go? You must be right no matter how the occasional liars—whoever they
may be—are distributed among the groups and no matter whether they lie
or not.

Certainly, you can check out one path, say N. Perhaps you send four
campers down each of E and W. The trouble is that one group may agree
unanimously that the camp is not there, while the other group returns a
split decision of two against two. You know for sure that the liars are one
pair in that group, but you do not know which pair.

The key observation is that a unanimous decision among three campers
can be accepted as truth, so that sending a fourth person down a path is
wasteful. So we modify our strategy and send three campers down each of
E and W, and the remaining two down S.

There seem to be a lot of cases which we have to consider, according to
who says “Yes” and who says “No”. However, the nature of the answer is
immaterial. The important thing is whether we have a unanimous decision
or a split decision. You can make the call based on the chart below.

E Group W Group S Group Believe
3:0 3:0 2:0 or 1:1 E and W Groups
3:0 2:1 1:1 E and W Groups
3:0 2:1 2:0 E and S Groups
2:1 2:1 2:0 E and W Groups.

When a split group is believed, it is understood that the majority is believed.

So far, this sounds more like an exercise in logic than a problem in
mathematics. We will address this issue in three ways.
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First, we want to determine the minimum value of the total number of
campers needed if two of them are liars. Can the original problem be solved
if the total number of campers is seven?

We assume as before that you go down N and do not find the camp. With
seven campers distributed among the remaining three paths, the Pigeonhole
Principle tells us that at least three campers must go down one of them.
This means that two of them, say E and W, must be visited by only four
campers.

Suppose the camp is not found down S either. If the distribution is four
for E and zero for W, then the group of four can come back split, two saying
yes and two saying no. You will not know whether E ss right or W ss right.
If the distribution is three for E and one for W, then any disagreement in E
also leaves open both possibilities. If the distribution is two and two, then
if both come back with the same answer, you again have no way to decide.

We can give a simpler argument, using symmetry, because both liars
may be among the four campers visiting F. and W, and here the truth-teller
do not have a majority. Whatever the two truth-tellers can convince you,
the two liars can convince you the opposite. Thus you cannot tell between
them.

The second way to highlight the mathematical flavor of the problem is
to see that it fits into a pattern. If there are no liars, clearly two campers
would be necessary and sufficient.

Suppose there is one liar. The argument above involving the Pigeonhole
Principle and symmetry tells us that four campers in all will not suffice.
With five campers, we can send two down each of E and W, and the re-
maining one down S. If both groups of two are unanimous, believe them.
If one of them is split, believe the other two groups. They cannot both be
split since there is only one liar.

In general, suppose we have n liars. We know that we need 3n + 2
campers in all. We plan to send n + 1 of them down each of E and W, and
the remaining n down S. We know what is a unanimous decision, but there
are way too many possible split decisions. How we can handle them?

When the group has been reassembled, let M be the number of campers
in the majority and mgs be the number of campers in the minority among
those down S. Note that we may have My = mg. Let M., me, M,, and my,
be defined in an analogous manner.

If >, = Mg+ me + my > n, you can believe the Mg campers. This is
because the E group contains at least m, liars and the W group contains at
least m,, liars. If you cannot believe the M, campers, then they must all be
liars. However, there are only n liars, and we cannot have ), > n.
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Similarly, if >°, = M, + my, + ms > n, you can believe the M, campers.
Ity , = My+ ms+me > n, you can believe the M, campers. If you have
doubts about at most one of My, M, and M,,, you can deduce where the
campsite is. Suppose you have doubts about M, and M,,. This means that
n>> . andn >3 . Addition yields

2n > (Me + me) + (My 4+ my) + 2ms = 2n + 2 + 2my,

which is a contradiction. Doubting M, and M., or doubting M, and M,,,
leads to a similar contradiction.

Let us interpret the above argument with the original case n = 2.

M, me My my Mg ms Do D Do Believe

3 0 3 0 2 0 3 3 2 M, and M,
3 0 3 0 1 4 4 1 M, and M,
3 0 2 1 1 1 5 3 2 M, and M,
3 0 2 1 2 0 4 2 3 M, and M,
2 1 2 1 2 0 3 3 4 all three

Finally, we show that this problem is closely related to Error-Correcting
Codes, the topic of the first chapter of this book.

Suppose we have a transmitter which sends out 8 binary digits at a time,
with at most two digit-reversal per transmission. We use the first and fourth
digits as the message, which must be one of 00, 01, 10 or 11. We copy the
first digit two more times as the second and third digits and copy the second
digit two more times as the fifth and sixth digits. The last two digits are Os
if the first two digits are the same, and are 1s if the first two digits are not
the same. The chart below shows the encoded messages.

0O 00 0 0 O0 0O
0 001 1 1 00
111 0 0 0 1 1
11 1 1 1 1 11

If up to two errors occur, we may correct them following the same rea-
soning in the problem with the eight campers.
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Exercises

. Modify the circuit in Figure 10.2 into a circuit using only six gates.

Rank the eight players in 17 hours if only one pair can play in the
same hour.

Solve the problem using four campers, two of whom sometimes lie.

You have time for two exploratory trips and one final walk to the site.
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Problems

10.

1
. Prove that . =

. In the convex quadrilateral ABC'D, AC meets BD at E. If AB =CD

and AE = CFE, is ABC'D necessarily a parallelogram?

. X is a point inside a square ABCD such that /XCD = /X DC = 15°.

Give a direct proof that triangle ABX is equilateral.
1 1
2w + 37

T . .
S 7 S 7 sin [

Let ABC be a triangle. L, M and N are collinear points lying on
the lines BC, C'A and AB respectively. Construct the point P such
that the lines AP, BP and CP intersect the lines BC, C'A and AB at
D, E and F, respectively, and that the lines FF, F'D and DFE pass
through L, M and N, respectively.

. Find the angles of all triangles which can be dissected into two isosceles

triangles.

Dissect a square of suitable size into 6 similar rectangles so that there
are 1 large rectangle, 3 medium rectangles and 2 small rectangles, each
with integral dimensions.

There is a 3 x 10 hole of depth % on a wall. In how many ways can it
be filled by 15 rectangular bricks each of thickness ; and cross-section
1x2o0r2x17

A V-tromino is a 2 X 2 square with one of the 4 1 x 1 square missing.
Prove that if any of the 49 1 x 1 square is removed from a 7 x 7 board,
the remaining part can be covered by 16 copies of the V-tromino.

An L-tetromino is a 2 x 3 rectangle missing one corner square and
an adjacent non-corner square. Determine the minimum number n of
colors for which there exists an n-color infinite infinite chessboard such
that wherever an L-tetromino is placed, the four squares it covers all
have different colors.

Consider a block of three stamps A, B and C in a row. It has six
connected subblocks, namely, A, B, C, AB, BC and ABC. If the values
of A, B and C are 1, 3 and 2 respectively, then the values of the six
blocks are six consecutive integers, starting with 1. Such a block of
stamps is said to be perfect. Find a perfect blocks consisting of five
stamps, not necessarily in a row. Two adjacent stamps must meet
along an entire edge.

© Springer International Publishing AG 2018 183
A. Liu, S.M.A.R.T. Circle Projects, Springer Texts
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11. A G4G7 number is defined to be a positive integer with at least 4
digits such that each digit is at least 7, that is, each is 7, 8 or 9. Find
infinitely many pairs of G4G7 numbers whose products are also G4G7
numbers.

12. A and B are 20 kilometers apart, and are moving towards each other,
both at 10 kilometers per hour. At the same time, a bee starts off
from A and flies towards B. When it reaches B, it immediately turns
around and flies back towards A. It goes back and forth between A
and B until they meet. When flying from A towards B, the bee’s speed
is 18 kilometers per hour. When flying from B to A, it is 12 kilometer
per hour. How far has the bee flown when A and B meet?

13. A girls’ school had 18 students in the graduating class. They invited
a number of students from a boys’ school nearby to their graduation
dance. Each of the 18 girls danced with at most 3 boys. Each boy
danced with at least 3 girls. What was the minimum number of girls
such that each boy had danced with at least one of them?

14. Seated in a circle are 8 wizards. A positive integer not exceeding
100 is pasted onto the forehead of each. The numbers need not be
distinct. A wizard can see the numbers of the other 7, but not his
own. After ten minutes, a bell rings. Simultaneously, each wizard
puts up either his left hand or his right hand. After another ten
minutes, the bell rings again. Simultaneously, each wizard declares
the number on his forehead. Find a strategy on which the wizards can
agree beforehand, which can guarantee that each of them will make
the correct declaration?

15. A tournament is a complete directed graph, meaning that between any
two vertices, there is exactly one arc pointing from one of them to the
other. Three vertices X, Y and Z are said to form a 3-cycle if the arcs
go from X to Y to Z and back to X, or X to Z to Y and back to X. In
a tournament with n players, let the number of arcs going out of the
i-th vertex be w; for 1 < i < n. Prove that the number of 3-cycles is
given by

nn—1)2n-1) 1~ o
12 —2;%.

16. How many convex polyhedra are there with five vertices?

Remark:

The problems in the Appendix are based on the work of Circle members,
whose names are in boldface, and members of Chiu Chang Mathematical
Circle, whose names are in italic.
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10.

11.

12.

13.

14.

15.

16.
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Solution to Problems

1. In the convex quadrilateral ABCD, AC meets BD at E. If AB=CD
and AE = CFE, is ABCD necessarily a parallelogram?

Solution:
The answer is “No”. We construct a counter-example as follows. Take
any triangle with two equal sides and any point on its third side but
not its midpoint. Join this point to the opposite vertex and cut along
this line segment to make two triangles, labeled as shown in Figure
A.1. Note that /CFD = /AEB.

cC A

F D B E
Figure A.1

Identify the point F' with £ and make it the point of intersection of
AC and BD as shown in Figure A.2. Then we have AB = CD and
AFE = CFE, but ABCD is not a parallelogram.

C

A
Figure A.2

2. X is a point inside a square ABCD such that / XCD = /X DC = 15°.
Give a direct proof that triangle ABX is equilateral.
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Solution:

Let Y be the point inside triangle DAX such that DXY is equilateral,
as shown in Figure A.3. Then /X DY = 60°. It follows that we have
/ADY = 15° = /CDX. Since DY = DX and DA = DC, triangles
DAY and DCX are congruent, so that

/AYD =/CXD =180°—- /XCD — /XDC = 150°.
It follows that
/AY X =360° — /AY X — /DY X = 150°.

Moreover, AY = CX = DX = XY, so that
1
/AXY =/ XAY = 2(180O —/AY X) =15°

Hence /ADX = /AX D, so that AX = AD. By symmetry, we have
AX = BX. Hence ABX is indeed an equilateral triangle.

D C
X
Y
A B
Figure A.3
1 1 1
3. Prove that . _ = or T 3

sin 7 sin
Solution:

Figure A.4 shows a convex quadrilateral whose vertices are four of the
seven vertices of a regular heptagon inscribed in a circle of radius R.

By the Law of Sines, its sides and diagonals have lengths a = 2R sin 7;,

2 3
b= 2Rsin 77r and ¢ = 2Rsin ;T By Ptolemy’s Theorem, bc = ca+cb,

and this is equivalent to (11 = i + i Multiplying by 2R yields the
desired result.
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S

Figure A.4

4. Let ABC be a triangle. L, M and N are collinear points lying on
the lines BC, CA and AB respectively. Construct the point P such
that the lines AP, BP and CP intersect the lines BC, CA and AB at
D, E and F, respectively, and that the lines FF, F'D and DFE pass
through L, M and N, respectively.

Solution:
Through L, draw any line intersecting CA at H and AB at K. Let Q
be the point of intersection of BH and CK and D be that of AQ and
BC, as shown in Figure A.5.

Figure A.5

Applying Ceva’s Theorem to triangle ABC with respect to the point

Q, we have cD BK AH

DB KA HC b (10)



Appendix A: Additional Problems

189

Applying Menelaus’ Theorem to triangle ABC with respect to the

lines LM N and HK L, we have

CL BN AM

LB NA Mc — b (11)
BL CH AK _ | 12)
LC HA KB

Let F be the point of intersection of DM and AB, P be that of CF
and AD, and E be the point of intersection of DN and AM, as shown
in Figure A.6. We claim that E lies on F'L and P lies on BE.

Figure A.6

Applying Menelaus’ Theorem to triangle ABC with respect to the
lines DFM and DEN, we have

BD CM

AF

DC MA FB -5 (13)
BD CE AN
DC EA NB —L (14)

Applying Menelaus’ Theorem to triangle BAD with respect to the line
PCF, we have

DC BF AP

CB FA'PD ~ " (15)
Multiplying (1), (1), (2), (3), (3), (4) and (5), we have

BL CE AF

LC EA FB

Applying the converse of Menelaus’ Theorem to triangle ABC, E lies
on LF. Multiplying (1), (2), (3), (4), (5) and (6), we have
CB DP AE
BD PA EC
Applying the converse of Menelaus’ Theorem to triangle CAD, P lies
on BFE.

—1.
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5. Find the angles of all triangles which can be dissected into two isosceles

triangles.

Solution:
Clearly, such a triangle can only be cut into two triangles by drawing
a line from a vertex to the opposite side, as illustrated in Figure A.7.

A

0 26
B D C

Figure A.7

Note that at least one of /ADB and /ADC' is non-acute. We may
assume that /ADB > 90°. In order for BAD to be an isosceles
triangle, we must have / BAD = / ABD. Denote their common value
by 6. By the Exterior Angle Theorem, /ADC = 26. There are three
ways in which CAD may become an isosceles triangle.

Case 1. /ACD = /ADC = 26.

Then /CAD = 180° — 40 > 0°. This class consists of all triangles in
which two of the angles are in the ratio 1:2, where the smaller angle
satisfies 0° < 0 < 45°.

Case 2. /CAD = /ADC = 26.

Then /CAB = 360 and /ACD = 180° — 40 > (0°. This class consists
of all triangles in which two of the angles are in the ratio 1:3, where
the smaller angle 6 satisfies 0° < 6 < 45°.

Case 3. /ACD = /CAD.

Then their common value is 90° — 6 so that /CAB = 90°. This class
consists of all right triangles.

. Dissect a square of suitable size into 6 similar rectangles so that there

are 1 large rectangle, 3 medium rectangles and 2 small rectangles, each
with integral dimensions.

Solution:

We start with a rectangle R and divide it into 3 rectangles. R; is the
right half of R, Ry is the bottom half of R— Ry and Rsis R— R; — R».
The dimensions of these rectangles will be adjusted later. Divide Rj
into 3 congruent rectangles using horizontal lines and R3 into two con-
gruent rectangles using vertical lines. Let the horizontal and vertical
dimensions of each rectangle in R; be z; and y; respectively, as shown
in Figure A.8.
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Y3
T3 Y1
Y2
T2 X
Figure A.8

Next, we make all the pieces similar to one another. This is done by
setting y; = x;t for all ¢, where ¢ is some positive number. We choose
xg3 = 1, so that y3 = t. Now z9 = 223 = 2 and yo = 2t. Similarly,
y1 = 3y2 +y3 = 7t and x; = 7. Finally, we want to choose t so that
R is a square. From 7t = 2+ 7, we have t = 2. To obtain integral
dimensions, we magnify the diagram by a factor of 7. Figure A.9 shows

the desired dissection of a 63 x 63 square.

9

63

18

14 49
Figure A.9

7. There is a 3 x 10 hole of depth % on a wall. In how many ways can it
be filled by 15 rectangular bricks each of thickness % and cross-section
1x2o0r2x1?
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Solution:

Let a,, be the number of different ways of filling in a 3 x 2n hole. Then
go = 1l and g; = 3. Some of the fillings of the 3 x 2n hole can be divided
by a vertical line into two parts without splitting any dominoes. Such
a line is called a fault line. Those fillings without fault lines are said
to be fault-free. Let b, be the number of fault-free fillings of the 3 x 2n
hole. We have b; = 3. For all n > 2, a fault-free filling cannot start
with three 1 x 2 bricks. It must start off as shown in Figure A.10, and
continue by adding horizontal dominoes except for a final vertical one.
It follows that b,, = 2 for all n > 2

Figure A.10

The a,, fillings can be classified according to where the first fault line
is. This is taken to be the right end of the hole if the filling is fault-
free. Then the hole is divided into a 3 x 2k part on the left and a
3 x 2(n — k) part on the right where 1 < k < n. Since the first part
is filled without any fault lines, it can be done in by ways. The second
part can be filled in a,,_; ways as we do not care whether there are
any more fault lines. Hence a,, = byjan—1 + boan—2 + - -+ + bpag. We
have

ap = 3ap-1 +2an-2 +2ap-3 -+ +2ap,
ap—-1 = 3an—2 +2ap,-3 +--- +2ap;
ap —ap-1 = 3ap-1 —Qp 2.

This simplifies to a,, = 4a,,—1 —a,_o. Iteration yields ag = 11, ag = 41,
as = 153 and a5 = 571.

A V-tromino is a 2 X 2 square with one of the 4 1 x 1 square missing.
Prove that if any of the 49 1 x 1 square is removed from a 7 x 7 board,
the remaining part can be covered by 16 copies of the V-tromino.



Appendix A: Additional Problems 193

Solution:

By symmetry, the square removed must come from the shaded 2 x 2
subboard of one of the three boards shown in Figures A.12, A.13 and
A.14. They also show that the remaining part of the board may be
covered by V-trominoes. Whichever square is removed from the 2 x 2
subboard, the remaining three squares form a copy of the V-tromino
and can be covered.

Figure A.11

Figure A.12



194

Appendix A: Additional Problems

Figure A.13

9. An L-tetromino is a 2 x 3 rectangle missing one corner square and

an adjacent non-corner square. Determine the minimum number n of
colors for which there exists an n-color infinite infinite chessboard such
that wherever an L-tetromino is placed, the four squares it covers all
have different colors.

Solution:

Consider the region in Figure A.14, with 12 unit squares. Every two
of the 4 central squares may be covered by a suitable placement of the
L-Tetromino. Thus 4 colors, 1, 2, 3 and 4, are needed there. Moreover,
any of these squares and any of the peripheral squares may be covered
by a suitable placement of the L-Tetromio. Thus these 4 colors may
not be used again for the 8 peripheral squares. If only 7 colors are
available, then one of the 3 additional colors, say 5, must be used on
at least 3 peripheral squares. Paint any peripheral square in color 5.
We may assume by symmetry that it is the one shown in Figure A.14.
Then the 4 squares marked with crosses cannot be painted in color 5.
Now 2 of the 3 blank squares must be in color 5, but any 2 of them may
be covered by a suitable placement of the L-Tetromino. This shows
that n > 8.

W = o
=N

Figure A.14
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10.

11.

Figure A.15 shows an 8-color infinite grid which establishes that n = 8
for the L-Tetromino.

1 2 5 6 1 2
3 4 7 8 3 4
5 6 1 2 5 6
7T 8 3 4 7 8
1 2 5 6 1 2
3 4 7 8 3 4
Figure A.15

Consider a block of three stamps A, B and C in a row. It has six
connected subblocks, namely, A, B, C, AB, BC and ABC. If the values
of A, B and C are 1, 3 and 2 respectively, then the values of the six
blocks are six consecutive integers, starting with 1. Such a block of
stamps is said to be perfect. Find a perfect blocks consisting of five
stamps, not necessarily in a row. Two adjacent stamps must meet
along an entire edge.

Solution:
Figure A.16 shows a perfect block of five stamps. It is unique apart
from the trivial interchange of 1 and 2.

Figure A.16

A G4G7 number is defined to be a positive integer with at least 4
digits such that each digit is at least 7, that is, each is 7, 8 or 9. Find
infinitely many pairs of G4G7 numbers whose products are also G4G7
numbers.

Solution:

We claim that 8---88887 x 9---98877 = 8- --878887---79899 for all
non-negative integer n, where n is the number of digits under each
bar. For n = 0, we can verify directly that 8887 x 8877 = 78889899.



196

12.

13.

Appendix A: Additional Problems

Suppose the result holds for some n > 0. In the next case, we have

88 .. -88887 x 99 .- -98887

= 80---00000 x 90 - --00000 + 80 - --00000 x 9 - - - 98877
+90---00000 x 8- --88887 + 8---88887 x 9---98877

= 720---000000 - --00000+ 79---910160 - - -00000
+70---999830 - - -00000 + 8 - - - 878887 - - - 79899

= 88.--8788877---79899.

This completes the induction argument.

A and B are 20 kilometers apart, and are moving towards each other,
both at 10 kilometers per hour. At the same time, a bee starts off
from A and flies towards B. When it reaches B, it immediately turns
around and flies back towards A. It goes back and forth between A
and B until they meet. When flying from A towards B, the bee’s speed
is 18 kilometers per hour. When flying from B to A, it is 12 kilometer
per hour. How far has the bee flown when A and B meet?

Solution:

Since A and B will meet after 1 hour, the bee has flown a total of
1 hour. Denote the direction from A to B as positive, so that the
direction from B to A is negative. Let ¢t be the total amount of time
the bees flies in the positive direction, so that the total amount of
time it flies in the negative direction is 1 —¢. So the total net distance
(positive minus negative) flown by the bee is 18¢—12(1—t). In between
two consecutive times the bee is with A, the net distance it has flown
is exactly the distance advanced by A, regardless of where it meets B.
Since the total distance advanced by A in 1 hour is 10 kilometers, we
have 18¢ — 12(1 — t) = 10 so that t = ;.

A girls’ school had 18 students in the graduating class. They invited
a number of students from a boys’ school nearby to their graduation
dance. Fach of the 18 girls danced with at most 3 boys. Each boy
danced with at least 3 girls. What was the minimum number of girls
such that each boy had danced with at least one of them?

Solution:

We first construct an example to show that 9 girls are necessary. In
this graduation dance, there are 18 boys and 18 girls. Each girl dances
with exactly 3 boys and each boy dances with exactly 3 girls. The
girls are numbered from 1 to 18, and a boy is identified by the trio of
girls with whom he dances.
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(1,2,3)  (7,8,9) (13,14,15)
(1,2,4)  (7,8,10) (13,14,16)
(1,5,6) (7,11,12) (13,17,18)
(2,5,6) (8,11,12) (14,17,18)
(34,5) (9,10,11) (15,16,17)
(3,4,6) (9,10,12) (15,16,18)

Note that the second column is obtained from the first column by
adding 6, and the third column from the second column also by adding
6. Among the girls 1 to 6, at least 3 of them must be chosen. This
is because every two of these girls have at least one common dance
partner, so that between them, they can dance with at most 5 of the
6 boys in the first column. Similarly, at least 3 of the girls 7 to 12 and
at least 3 of the girls 13 to 18 must be chosen, yielding a total of 9.

Next, we prove that we never need to choose more than 9 girls. We
apply the following protocol. Initially, we have 18 girls and = boys.
In the first stage, we choose a girl who has danced with exactly 3
boys, and take her aside along with her dance partners. Then we
choose an girl who has danced with exactly 3 of the remaining boys,
and continue until no such girl exists any more. Let the number of
girls chosen at this stage be a, and the let the number of boys left
be y. We have x — y = 3a. In the second stage, we choose a girl
who has danced with exactly 2 of the remaining boys, and take her
aside along with her dance partners. We continue until no such girl
exists any more. Let the number of girls chosen at this stage be b,
and the let the number of boys left be z. We have y — z = 2b. In
the third stage, we choose a girl who has danced with exactly 1 of the
remaining boys, and take her aside along with her dance partner. We
continue until no such girl exists any more. Let the number of girls
chosen at this stage be c. We have z = ¢. We now count the total
number of dances overall. Since each of the x boys dances with at
least 3 girls, it is at least 3z. Since each of the 18 girls dances with
at most 3 boys, it is at most 3 x 18 = 54. It follows that = < 18. We
next count the total number of dances not involving the girls chosen
in the first stage. Since each of the y boys dance with at least 3 girls,
it is at least 3y. Since each of the 18 — a girls dances with at most 2
boys, it is at most 2(18 — a) = 36 — 2a. It follows that 2a + 3y < 36.
Finally, we count the total number of dances not involving the girls
chosen in the first two stages. Since each of the z boys dance with
at least 3 girls, it is at least 3z. Since each of the 18 — a — b girls
dances with at most 1 boy, it is at most 18 — a — b. It follows that
a+b+32<18. Now3a+2b+c=(zx—y)+(y—2)+2z=x <18 and
2a+ 6b+3c=2a+3(y — z) + 32 = 2a + 3y < 36.
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Hence
8 ( 3¢ + 2b + ¢ ) < 8 x 18
2 (22 4+ 6b 4+ 3¢ ) < 2 x 36
7T (e + b 4+ 3 ) < 7T x 18
3 (a + b + ¢ ) < 19 x 18

This yields a+b+c¢ < 33452 < 10. Since a, b and c are positive integers,
a+b+c<9.

Seated in a circle are 8 wizards. A positive integer not exceeding
100 is pasted onto the forehead of each. The numbers need not be
distinct. A wizard can see the numbers of the other 7, but not his
own. After ten minutes, a bell rings. Simultaneously, each wizard
puts up either his left hand or his right hand. After another ten
minutes, the bell rings again. Simultaneously, each wizard declares
the number on his forehead. Find a strategy on which the wizards can
agree beforehand, which can guarantee that each of them will make
the correct declaration?

Solution:

A positive integer not exceeding 100 has 7 binary digits, if we include
leading Os, and there are 7 numbers visible to each wizard. Thus he
has enough information to construct a 7 x 7 table, the rows being
the binary representations of those 7 numbers in clockwise order after
himself. Let the wizards be numbered from 1 to 8 in clockwise order.
As an illustration, suppose wizard #1 sees the numbers 6, 53, 53, 34,
37, 46 and 73 on the foreheads of the others in clockwise order after
himself. In the first ten minutes, he obtains the following table.

_— o oo o o0
O = = = O
OO OO MO
_ =000 o0
O R O~ R =
OO OO+
- o = Ok~ O

The wizards agree beforehand the following rule. If the sum of the 7
binary digits in a wizard’s diagonal is odd, that wizard puts up his left
hand. If the sum is even, he puts up his right hand. In our example, the
sum of the 7 digits on the diagonal of wizard #1 is 0+1+14+0+141+1,
which is odd. Hence he will put up his left hand. In the second ten
minutes, wizard #1 can figure out the binary representation of his own
number. Suppose it is ABCDEFG. Consider for instance wizard #6.
His table is the following.
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15.

= e e e =)
==
orrrr oo o
cocooodm
O R k= mMbo =
— QO R MmHoO -
oOrRr R, OQFO

Now wizard #1 knows 6 of the 7 digits on the diagonal of the table of
wizard #6, the sum of which is 0+04+04+14040, an odd number. So
if wizard #6 puts up his left hand, wizard #1 will know that C=0. If
wizard #6 puts up his right hand, wizard #1 will know that C=1. In
the same way, wizard #1 can determine the other digits of the binary
representation of his own number, because each lies on the diagonal
of the table of a different wizard. Specifically, A lies on the diagonal
of the table of wizard #8, B on #7, D on #5, E on #4, F on #3 and
G on #2. Thus wizard #1 can confidently declare the correct value of
his number. What works for wizard #1 works for each of the others,
as the situation has cyclic symmetry. Therefore, the simple convention
of “odd-left even-right” does the trick.

A tournament is a complete directed graph, meaning that between any
two vertices, there is exactly one arc pointing from one of them to the
other. Three vertices X, Y and Z are said to form a 3-cycle if the arcs
go from X to Y to Z and back to X, or X to Z to Y and back to X. In
a tournament with n players, let the number of arcs going out of the
i-th vertex be w; for 1 < i < n. Prove that the number of 3-cycles is
given by
nn—1)02n-1) 1
12 T2 ; i

Solution:
A broken arrow in a directed graph is defined as the union of two arcs
with a common vertex, which is called the pivot, such that one arc
goes into the pivot and the other goes out of it. Now the i-th vertex
has w; outgoing arcs, so that it has n — 1 — w; incoming arcs. It is the
n
n
pivot of exactly w;(n — 1 — w;) broken arrows. Since Z w; = <2>,
i=1
the total number of broken arrows is

zn:wi(nf 1—w;)=(n— 1)(;) - iw?

i=1
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Of the (%) triples of vertices, let there be A 3-cycles. Each of them
contains 3 broken arrows while each of the other triples contains only
1. Tt follows that the total number of broken arrows is also given by

Appendix A: Additional Problems

3A+ (5) — A =2X+ (5). Hence

so that

(n—l)(Z) —iw?:w\—&- <§)

1 n n -
o) =) -2
nn—12 nn-1)n-2) 1
4 12 _2;“}"2
n(n—1) I 5

Bl = (=2, 3w

nn—1)2n-1) 1 &
12 g 2w

How many convex polyhedra are there with five vertices?

Solution:

If a polyhedron has exactly 5 vertices, the set of degrees of its vertices
may be {3,3,3,3,3}, {3,3,3,4,4}, {3,4,4,4,4}, {3,3,3,3,4}, {3,3,4,4,4} or
{4,4,4,4,4}. However, the first three sets are not feasible, since the
sum of all the degrees must be an even number, equal to twice the
number of edges. The fourth is a square pyramid, shown on the left
side of Figure A.17. The fifth is a double triangular pyramid, shown
on the right side of Figure A.17. The last set is not the skeleton of a

polyhedron because it is the non-planar graph K.

Figure A.17
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Chapter 1:

1. Figure 1.2 shows a five-pointed star consisting of five lines intersecting
one another in ten points. At each point, we place a message digit,
and then add a parity-check digit for each line. Thus the digits A to
K are used to convey the message. The digits L to @) are chosen so
that the number of 1s on each line is even.

As an illustration, suppose the received message is as shown in the
diagram. The parity-check fails only on the horizontal line. It follows
that a single transmission error occurs at the digit N. This code was
published in [8].

Figure 1.2

2. There are three possible inputs for each prisoner, seeing two white
hats, seeing two black hats and seeing one hat of each color. There are
also three possible actions for each prisoner, pass, guess white or guess
black. It is reasonable to expect a one-to-one correspondence between

© Springer International Publishing AG 2018 201
A. Liu, S.M.A.R.T. Circle Projects, Springer Texts
in Education, DOI 10.1007/978-3-319-56811-9
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inputs and actions. By symmetry, the prisoner should pass if he sees
one hat of each color.

Suppose he sees two hats of the same color. If he guesses the same
color, he will only be right if all three hats are of the same color, which
happens only 411 of the time. Hence he should guess the opposite color.
Using this scheme, if all three hats are of the same color, all three
prisoners will guess and all three will be wrong. However, if the three
hats are not all of the same color, only the prisoner wearing the hat
of a color different from the other two will guess, and he will be right.
Since the three hats are not all of the same color Z of the time, this is
their probability of going free. The astute reader may recognize this
as the Hamming code for a three-digit transmitter.

The total number of scenarios we have to distinguish is

()« () (5)+(5) =

Since 29 = 512 < 576, 9 check digits will not be sufficient.
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Chapter 2:

1. Suppose there is a polyhedron with E = 7. Cutting the edges at their
midpoints, each of the V' vertices is attached to at least 3 half-edges
Hence 3V < 2F = 14 so that V < 4. Cutting the edges along their
midlines, each of the F' face is bounded by at least 3 half-edges. Hence
3F < 2F =14, so that F' < 4. By Euler’s Formula, 2 =V + F — F <
444 —7 =1, which is a contradiction.

2.

(a)

First form a doubled triangle with both hands of one student
and one hand of the other student. Then the other student uses
the other hand to pull three segments of the string together, as
shown in Figure 2.30 on the left. Then we have the skeleton of
a tetrahedron. Actually, it is sufficient to pull only two of those
three segments.

> -«

Figure 2.30

First form a doubled quadrilateral with both hands of two stu-
dents. Then the third student uses each hand to pull two seg-
ments of the string together, as shown in Figure 2.30 on the right.
Then we have the skeleton of a standard octahedron.

First form a doubled quadrilateral with both hands of two stu-
dents,. Then the other two students use each hand to pull two
segments of the string together, as shown in Figure 2.31. Then
we have the skeleton of a cuboid.

Figure 2.31



ion of the snub cube.

2.32 shows one orientat

(a) Figure

of the snub dodecahedron.

S

“ N

N

=

i
e
/ S

2]

>t

2.33



Appendix B: Solution to Exercises 205

Chapter 3:

1. (a) Figure 3.22 shows that the L-tetromino has the desired property.

-

T
a
i

R

Figure 3.22

(b) The I- and O-tetraminoes may be dismissed immediately as each
copy can only touch one side of the hole. Figure 3.23 on the
left shows where the hole must be relative to the S- and T-
tetrominoes, each with five blank squares to be covered. The
S-tetrominoes can now be dismissed since each copy can cover
only two of those squares. Finally, Figure 3.23 on the right shows
the only two possible positions of the other two copies of the
T-tetromino which can cover the five squares. However, neither
figure can be covered by the V-Tromino. Hence the L-tetromino
is the only one with the desired property.

o

s
B
s
Figure 3.23

2. The domino cannot be used in the equation 2z = 2y, and we have seen
that there is a solution with z and ¢ being the two trominoes. The
domino cannot be used in the equation 2x = x + y either, but this
time, it is not hard to verify that there are no solutions. The equation
2w = x4y cannot have a solution regardless of whether the domino is
w, x or y. In the equation w+ z = w + y, the domino must be w, and
there are three solutions, as shown in Figure 3.24. Finally, we simply
do not have enough polyominoes for the equation  +y = u + v.
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Figure 3.24

3. (a) Figure 3.25 shows that the triamond is compatible with all three
tetriamonds.

[N\ L0 =
AVANVIIIANYDY

Figure 3.25

(b) Figure 3.26 shows that the triamond is compatible with all four

258G
A = o oS

Figure 3.26
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1. Figure 4.19(a) shows a closed tour for Timmy, where the squares are
numbered in the order in which they are visited. If we shift the second
column to the far right and the third column to the far left, we obtain
Figure 4.19(b). If we then shift the second row to the bottom and
the third row to the top, we obtain Figure 4.19(c), which is a desired
closed tour for the King’s Rook.

1 2 3 4 3 1 4 2 9 15 10 8

16 7 6 5 6 16 5 7 31 4 2

15 8 9 10 9 15 10 8 12 14 11 13

14 13 12 11 12 14 11 13 6 16 5 7
(a) (b) ()

Figure 4.19

2. White’s winning strategy is summarized in the following chart.

Moves (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
White 8 6 h6 h7 g6 g7 h7 g8 g6 h7

Red h7 g8 fr 8 €7 e6 f6 7 {8 €8
Notes (a) (b)

Notes:
(a) If (1) ... g6, then (2) h8 {7, and continue from (4).
(b) If (4) ... €6, continue as before. If (4) ... {6, continue from (8).

3. We suppose that there is a re-entrant knight tour on the 4 x n board. If
we put 2n Knights on the board so that none of them attacks another,
they must occupy alternate positions along the re-entrant tour. There
are only two such sets of positions, so that there can only be two ways
of placing the non-attacking Knights. However, we can put the 2n
Knights all on white squares, all on black squares, or all on the top
and bottom rows. This means that there cannot be a re-entrant tour
on the 4 x n board.
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Chapter 5:

1. The result is trivially true for n = 0. Suppose it holds for some n > 0.
Consider a 21 x 2"+ chessboard. Divide it into four equal quadrants.
Without loss of generality, we may assume that the missing square is
in the north-east quadrant. By the induction hypothesis, the rest of
this quadrant may be covered by copies of the given shape. We now
place a copy of the given shape as shown in Figure 5.9. Then each

2.

3.

of these quadrant is missing one square. By the induction hypothsis
again, each of them may be covered by the copies of the given shape.
By mathematical induction, the result holds for all n > 1.

(a)

(b)

(a)

Figure 5.9

We have aj3+1 = 39 = 3(13) and dy3 = 13 is prime. The smallest
prime divisor of 2(13) — 1 = 25 is 5, and the next such value of n
occurs at 13 + 551 = 15.

We have aj741 = 51 = 3(17) and dy3 = 17 is prime. The smallest
prime divisor of 2(17) — 1 = 33 is 3, and the next such value of n
occurs at 17 + 351 = 18.

We have aj941 = 57 = 3(19) and dy3 = 19 is prime. The smallest
prime divisor of 2(19) — 1 = 37 is 37 itself, and the next such

value of n occurs at 19 + 3751 = 37.

We have asz 1 = 69 = 3(23) and dog = 23 is prime. The smallest
prime divisor of 2(23) — 1 = 45 is 3, and the next such value of n
occurs at 23 + ;! = 24. The sequences {a,} and {d,} coincide
with those generated by a; = 3 from this point on.

The chest may be opened in two steps.

e Touch a pair of drums. If both monkeys are right side up,
hit no drums. If one of them is right side up, hit the other
drum. If both are upside down, hit both drums. The end
result is that both monkeys are right side up.
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Suppose the chest is not open. Touch a pair of drums. The
monkeys cannot both be upside down. If both are right side
up, hit both drums. If one of them is right side up, hit the
other drum. The chest will open.

(b) The chest may be opened in five steps.

Touch a pair of opposite drums and make both monkeys right
side up.

Suppose the chest is not open. Touch a pair of adjacent
drums and make both monkeys right side up.

Suppose the chest is not open. Touch a pair of opposite
drums. The monkeys cannot both be upside down. If one of
them is upside down, hit that drum and the chest will open.
If both are right side up, hit either drum.

Touch a pair of adjacent drums. If both monkeys are of the
same posture, hit both drums and the chest will open. If
they are of opposite postures, hit both drums.

Touch a pair of opposite drums. The monkeys will have the
same posture. Hitting both drums will open the chest.
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Chapter 6:

1. We append terms of k + 1 if necessary so that all labels are of length
m — 1. Write down a number of Os equal to the number of 1s in the
label. Insert a 1 after this block. Then write down a number of Os
equal to the number of 2s, followed by another 1, and so on. Note that
each binary sequence consists of kK + 1 1s and m — 1 0s, starts with a
0 and ends with a 1. The k 1s in between the first and the last terms
can be placed in (kﬂzd) ways.

2. A simpler Diamond Formula is South = (West + FEast + 1) — North
We have .

(West + East + 1) — North
= ((mn+1)+ 1)+ ((m+1)n)+1)+1)— (mn+1)
mn+m+1+mn+n+1+1—mn—1
mn+m+n+2
(m+1)(n+1)+1
= South.

3. Suppose an order 6 TOAD exists. We partition its twenty-one numbers
into seven triples, identified by different letters, as shown in Figure
6.17. Each triple contains an even number of odd numbers. Hence the
TOAD contains an even number of odd numbers. However, there are
eleven odd numbers from 1 to 21, and we have a contradiction.

A A B B C C
A G B G C
D D E E
D G E
F F
F

Figure 6.17
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Chapter T7:

1.

3.

Express the first 128 non-negative integers in base 2 with leading 0Os
so that each has 7 binary digits. The condition of the problem is that
no two 1s are adjacent. Let the number of such integers be a,, where
n is the maximum number of binary digits. Then a; = 2, as = 3 and
a3 = 5. The integers with at most 3 digits are 000, 001, 010, 100 and
101. For n > 4, if the last digit is 0, the number of such integers is
ap—1. If the last digit is 1, then the second last digit must be 0, and
the number of such integers is a,_s. It follows that a, = ap_1 + an_2,
so that ag = 8, a5 = 13, ag = 21 and a; = 34. The largest 7-digit
number 10101015 = 85 is under 100. Taking away 0, we have 33 such
positive integers.

. Since 336 =7 x 48 and 7=3+4,336 +3+3+---+3+4+4+---+4,

where there are 48 copies of 3 and 48 copies of 4. Adding 0, 1, 2,

, 47 to the 4s respectively, the last term is 51. Subtracting 47, 46,
45, ..., 0 from the 3s, the first term is —44. After cancellation of the
negative terms, we have 336=454+46+474+48+49+50+51.

(a) Clearly, two beetles lined up directly in front of the target square
can serve as the escape team. A team of size one is insufficient,
because the maximum value of the lone beetle is x, and we have
r<z+ar?=1

Four beetles positioned as shown in Figure 7.8 can serve as the
escape team. After the first 2 moves, we are at the scenario in
(a). A team of size three is insufficient, because the maximum
total value of the beetles is 22 + 223 < 222 + 23 =2 + 2% = 1.

i i
%?%%% fﬁ&
)
O O O > ©)
(e}
Figure 7.8

Eight beetles positioned as shown in Figure 7.9 can serve as the
escape team. The first 3 moves are exactly as in (b). A team of
size seven is insufficient, because the maximum total value of the
beetles is

=222 2% = 1.

23 4 32t + 32 < 23 + 42t + 22° = 323 + 222
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i s
R oy ';
%&% &*3%%
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>
b
S
o}
>
o}

Figure 7.9

(d) Twenty beetles positioned as shown in Figure 7.10 can serve as
the escape team. The first 7 moves are exactly as in (c). We also
use the 3 moves in (b) three times.

i
o

B2
e
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Figure 7.10
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An escape team of size nineteen may just be sufficient, because
the maximum total value of the beetles is

at + 325 4 52 + 727 + 328
= z* 4+ 32° 4+ 82% + 427
zt 4+ 720 + 428
52t 4 32°
323 4+ 224
= 1.

However, this possibility may be eliminated by a brute force ex-
amination of cases.
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Chapter 8:

215

1.

(a)

(b)

(d)

By Postulate 1, there are at least two lions. Consider one of
them. By Postulate 2, this lion has bitten at least three ponies.
It follows clearly that there are at least two ponies.

Consider any pony P. We have proved that there is a lion that has
not bitten P. By Postulate 2, this lion has bitten three different
ponies Q, R and S. By Postulate 4, there is a lion that has bitten
both P and Q, a lion that has bitten both P and R and a lion
that has bitten both P and S. By Postulate 3, these are three
different lions, and they have all bitten P.

Consider any pair of ponies. By Postulate 4, there is at least
one lion has bitten both of them. Suppose there are two or more
such lions. Consider a pair of them. Then it is not true that
there is exactly one pony that both have bitten. This contradicts
Postulate 3. Hence there is exactly one lion that has bitten both
ponies.

Consider any pair of lions. By Postulate 3, there is exactly one
pony that both have bitten. Hence it is certainly true that there
is at least one pony that both have bitten.

2. Take a copy of the Fano plane and labeled the points A, B, C, D, E,
F and G as shown in Figure 8.2, and define the lines as before. Each
line represents a Space Pod carrying all the parts whose labels do not
appear on that line. Let the other five parts be H, I, J, K and L, with
each of Space Pods 8 and 9 carrying all of them. In addition, Some
of them are carried by the first seven Space Pods, as shown in the list

below.

Space Pod 1: D, E, F, G, H and I
Space Pod 2: A, B, F, G, Hand J
Space Pod 3: A, B, C, D, I and J
Space Pod 4: B, C, E, F and K
Space Pod 5: A, B, D, E and K
Space Pod 6: A, C, D, F and L
Space Pod 7: A, C, E, G and L
Space Pod 8: H, I, J, K and L
Space Pod 9: H, I, J, K and L

In order for the Space Dodecapus to get all of A, B, C, D, E, F and
G, it must capture three of Space Pods 1 to 7. Then, in order for the
Dodecapus to get all of H, I and J, it must capture two of Space Pods
1 to 3. In order for the Space Dodecapus to get both K and L, it must
capture one of Space Pods 4 and 5, and one of Space Pods 6 and 7.
However, it can only capture three Space Pods.



216 Appendix B: Solution to Exercises

3. To prove that f(7,3k + 1) < 7k + 2, observe that the total number
of stops is 21k + 7. If each floor is served by at least 3 elevators,
then the number of floors is at most 7k + 2. If some floor is served
by at most 2 elevators, it can be linked to at most 6k other floors.
Counting this floor, the building can have at most 6k + 1 floors. That
f(7,3k+ 1) > Tk + 1 follows from Observation 2 and f(7,3k) = 7k.
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Chapter 9:

1. Label the jewels as shown in Figure 9.14. The only way the crew can
beat Captain Crook is by getting the 5 and either the 3 or the 4. So
either Wy or C must be 5. Suppose W» is 5. Captain takes N or E,
whichever has higher value. If the other one is at most 2, the crew can
get at most 54+2=7. The only way the crew can win is if {N,E}={3,4},
in which case there is nothing Captain Crook can do about it. Suppose
Cis 5. If Wy is 1 or 2, Captain Crook takes N or E, whichever has
higher value. The crew must take Wy or loses C. Either way, Captain
Crook wins. Finally, if Wy is 3 or 4, the crew wins. If Captain Crook
does not take Wy, the crew will. If he does, the crew takes W1, N or
E, whichever has highest value. The overall winning probability for

Captain Crookis 2 +} x L+ 1 x5 =23
N
.C
Wi, W, E
o000
Figure 9.14

2. Let m = gn+1 where 0 < i < q. Let the amount of gold in the ¢-th box
be a; kilograms and the amount of silver in the ¢-th box be b; kilograms.
We may assume that a = a; > as > - -+ > a,,. Proceed as in the Proof
of Lemma 2. Note that the difference between the amount of gold in
the boxes in any two groups can never exceed a kilograms if we only
redistribute the (¢ —1)m + 1)-st, (£ —1)m+ 2)-nd, ..., m-th boxes
among the groups in any way for any integer £ where 1 < ¢ < \. Let the
r-th group have the highest total amount of silver in the boxes in any
group, and the s-th group the lowest. Let these total amounts be B,
and B kilograms respectively. Suppose that B, — Bs > b. Then there
must be some index ¢ such that beyyr > bgmts. Switch the (6m + 7)-
th and the (¢m + s)-th boxes. As observed earlier, this does not mess
up the gold situation, but the value of B, — B, while still positive,
has been reduced. Since this process can only be performed a finite
number of time, we will eventually arrive at a distribution in which
the difference between the maximum and minimum total amounts is
as small as possible. Since further reduction will be possible if this
difference is greater than b kilograms, we have the desired conclusion.

3. Captain Crook can get at least g of the rum. He first subdivides 1
into g and g There are two cases.
Case A. The crew subdivides g into z and g —x, where 0 <z < é
Captain Crook will subdivide g’ into x and g —z. Now the four barrels
are of sizes z = x < g —x<§—x.
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No matter what the crew does, the size of the second largest barrel is
at most g — x and the size of the fourth largest barrel is at most x.
Hence the crew gets at most (g —z)+z= g

Case B. The crew subdivides g into z and g —x, where 0 < x < 130.
fo<z< é, Captain Crook will subdivide g into x and ?) —x, and
the situation is exactly the same as in Case A. Hence we may assume

that é <z < 130. Captain Crook will subdivide g—x into é and ? —.
Now the four barrels are of sizes g —x < é <z< g There are four

subcases.

Subcase B1. The crew subdivides g into y and g—y, where 0 <y < é
Since y+ (2 —y) = 2 = x+(2 —x), the crew will get two barrels which
add up to g

Subcase B2. The crew subdivides z.

If é remains the third largest barrel , Captain Crook get at least
g + é = g If it becomes the second largest barrel , the crew gets at
most é + % = g

Subcase B3. The crew subdivides é into y and é—y, where 0 <y < 110.
Since g —x >y, the second smallest barrel is at most g — x. Hence
the crew gets at most (2 — )+ z = 2.

Subcase B4. The crew subdivides 2 — z.

Captain Crook get at least ?) + é = g

We now prove that the crew can get at least g of the rum. Captain
Crook will first subdivide 1 into  and 1 — z, where 0 < x < % There
are three cases.

Case A. g <z< é

The crew will subdivide 1 —z into  and 1 —2z. Now the three barrels
are of sizes 1 — 2x < x = x. If Captain Crook does not subdivide
either x, neither will the crew. Then the crew will be sure of getting
z plus another barrel, and = > g If Captain Crook subdivides one of
x, the crew will subdivide the other x in the same proportions. Then
the crew will get two barrels which add up to x > g

Case B. é <x< g

The crew will subdivide x into x— é and é Now the three barrels are of
sizes x — é < }) < 1—xz. If Captain Crook does not subdivide 1—x, the
crew will subdivides this in halves. The second smallest barrel cannot
be less than } (z — é), so the crew will get at least '3 + (2 — )= g
Suppose Captain Crook subdivides 1 — x into y and 1 — x — y, where
0<y< 1?‘. Then the crew will subdivide 1 — 2 — y into g —y and
g’ —x. Now y + (g —y) = g = (x— é)—i— (g —x). Thus the crew will
get two barrels which add up to g

Case C.0<z < é

The crew will subdivide 1—x into é and ‘51 —x. The situation is exactly

the same as in Case B.
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Chapter 10:

1. The modified circuit is shown in Figure 10.5.

A N

B

\_/
B N /\

> <

/
£

P _/
Figure 10.5

2. Divide the eight players into four pairs. Have each player play the
other in the pair. That requires four hours. Now rank four of the
players. Take two groups of two; call them X and Y. Have the better
player of X play the better player of Y. The winner is the best of
those two groups. The loser then plays the worse player of the other
group. The winner of the second game is second best. At this point,
if the loser of the first game loses the second, then you have enough
information to rank all four players in X and Y. Otherwise, the worse
players of both groups must play to determine who is third best. So,
ranking four players consisting of two pairs of ranked players takes at
most three hours. To get two ordered groups of four players takes at
most six hours starting with ranked pairs.

Now we have two ordered groups of four: ABCD and EFGH ordered
from best to worst. To complete the ranking, We match the top player
from each group. The winner takes the highest available place while
the loser plays the next player in the other group. This continues
until one group runs out of players. The longest this can take is if the
bottom players of the two groups meet. This means that three players
from each group have won matches, so that this match is the seventh
one in this round. It follows that the total 44-6+7=17 hours.
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3. In the first round, you go down N. All four campers go down E. When
all reunite, if you have found the campsite, then everyone goes to N. If
three or four campers agree on E, then it is E. If three or four campers
agree that it isn’t E, then you check W in the second round, and all
campers rest. Suppose in the first round, two say it is down E and two
say it isn’t. Then you explore E again while sending one of those who
said it isn’t E down W. Now if you find it, then it is E. If not, then
the camper who went down W must be telling the truth, because the
liars were those who said it is down E.
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