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Abstract Cable-driven parallel robot (CDPR) have a kinematics that is usually
complex as soon as there are possible deformation of the cable due to elasticity or
cable mass. The classical approach to solve the kinematics in that case is to inject a
cable model in the kinematics equations, that are then solved. According to the cable
model this solving may be extremely complex and a change in the model requires
to customize the solving algorithm. In this paper we consider the inverse kinematics
problem of CDPRwith 6 cables and exhibit a generic solving approach that will work
for any cable model, provided that it satisfies a minimal assumption.We demonstrate
it’s use on a CDPR with catenary cables.

1 Introduction

Cable-driven parallel robot (CDPR) have themechanical structure of the Gough plat-
form with rigid legs except that the legs are cables whose length may be controlled.
Numerous applications of CDPRs have been mentioned e.g. large scale maintenance
studied in the European project Cablebot [7], rescue robot [6, 9] and transfer robot
for elderly people [4] to name a few. We will assume that the output of the coiling
system for cable i is a single point Ai , while the cable is connected at point Bi on the
platform. A cable may be assumed to be mass-less and non-deformable i.e. the cable
shape is the linear segment going from A to B and its length does not changewhatever
is the tension in the cable or may be deformable i.e. the previous assumptions on the
cable shape and/or its lengths do not hold. For example Fig. 1 presents a robot with
sagging cables. In this paper we will consider the inverse kinematics problem (IK)
for CDPR having 6 cables. If we assume that the cables are non-deformable, then
being given the pose of the platform the lengths of the cables are obtained directly as
the 2-norm of the vector AiBi that is obtained directly from the platform pose. But
as the cable may exert only a positive tension we have to consider the static equation
obtained as
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Fig. 1 Cable driven parallel
robots with sagging cables
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F = J−Tτ (1)

whereF is the external wrench applied on the platform, τ is the vector of the cable
tensions and J−T is the transpose of the inverse kinematic jacobian of the robot, that
is fully determined as soon as the pose of the platform is known. Equation (1) is a 6
dimensional linear system that may easily be solved to provide the cable tensions. If
all these tensions are positive, thenwe have got a solution for the IK, otherwise the IK
has no solution. If the cable are deformable there has been very fewworks addressing
the IK solving: Riehl [8] and Hui [1] assume both Irvine sagging model [2] for the
cable but their numerical solver provides only a single solution, if any. Using the
same cable model we have exhibited a solving algorithm that allows one to calculate
all the solutions [5] (and exhibit a case for which a CDPR has 3 solutions) but the
solving algorithm is computer intensive. Simple linear elasticitymodel has been used
to study the kinematics of a special configuration of CDPR [3]. But to the best of the
author knowledge no upper bound on the number of solutions of the IK has even been
provided and no other cable model has been studied. The purpose of this paper is to
provide a generic solving approach that can be used whatever is the cable model and
possibly allow to provide a (probably largely overestimated) bound on the number
of solutions. An essential issue is the concept of cable model that is addressed in the
next section.

2 Cable Model

We denote by L0 the length of a cable before it is submitted to any deformation and
by P a set of parameters that allows one to describe the physical properties of the
cable with respect to deformation under tension. A cable model is a set of relations
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T(A, B, L0, τ,P) = 0 that allows one to determine the cable force action τ at point
B according to the values of A, B, L0.

For using our IK solving approach the following assumptions on the cable model
will be required:

1. the set T is constituted of continuous and differentiable functions,
2. the writing of T may involve new unknowns but the number of equations in T

is such that for given A, B, L0,P the system has only a discrete number of
solutions

3. for each parameter in P there is a limit value such that the cable model will be
asymptotically identical to the non-deformable cable model

As example of cable model we may mention the Irvine sagging cable model that
is valid for elastic cable with mass. In this model we consider the vertical plane that
includes the cable and assume that the cable is attached at point A with coordinates
(0, 0) while the other extremity is attached at point B with coordinates (xb ≥ 0, zb).
The vertical and horizontal forces Fz, Fx are exerted on the cable at point B and the
cable length at rest is L0. With this notation the coordinates of B are related to the
forces Fx , Fz [2] by the Cn functions:

xb = Fx

(
L0

E A0
+ sinh−1(Fz) − sinh−1((Fz − μgL0

Fx
)

μg

)
(2)
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√
F2
x + F2

z − √
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0
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where E is the Young modulus of the cable material, μ its linear density, A0 the
surface of the cable cross-section and Fx > 0. For the IK problem the coordinates
xb, zb are known, the L0 have to be determined and two new unknowns are intro-
duced, Fx , Fz , while this cablemodel provide two relations. Consequently thismodel
satisfies assumption 1 and 2. Assume now that E goes to infinity and μ to 0. The
limit values xlb, z

l
b of xb, zb are then

xlb = L0Fx√
F2
x + F2

z

zlb = L0Fz√
F2
x + F2

z

(3)

which corresponds to a cable directed along the line A, B and exerting a force of
amplitude

√
F2
x + F2

z . Therefore this cable model also satisfies assumption 3.

3 The Continuity Model

Let us consider a CDPR with n cables and a cable model that involves p unknowns:
consequently the IK has n (the cable lengths) plus np unknowns. As for the equations
we have 6 equations coming from (1) and np equations coming from the cable model
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for a total of 6 + np equations. The system of IK equations is therefore square if
n = 6 which is the case we are considering in this paper.

3.1 The Inverse Model

Assume that a cable model has been decided and a solving algorithm has allowed
us to determine the IK solution(s) for a given pose and for given values of the cable
model parameters Pd . The cable model and IK equations being C1 we know that
for a “small” perturbation onP we will get IK solutions that are close to the initial
one. Furthermore for a given IK solution S (i.e. a set of length for the 6 cables) with
the initial P we also know that the Newton-Raphson algorithm with S as initial
guess may converge toward the solution of the IK with the new values of P , the
convergence being ensured as soon as the perturbation is small enough provided
that the system is not singular at S. The Kantorovitch theorem [10] allows one to
determine the meaning of a small perturbation: provided that the jacobian of the
new system has an inverse at S and that some conditions are satisfied for the norm
of the equations at S, for the norm of the jacobian inverse and for the norm of the
Hessian matrix of the system, then the theorem ensures that there is a single solution
of the new system in a ball centered at S and guarantees that the Newton-Raphson
scheme will converge toward this solution. Let Ps be the cable model parameters
limit values and a linear iterative interpolation scheme defined by

Pk+1 = Pk + α(Ps − Pk)

initialized with P0 = Pd . For the values Pd we assume that we know a set of n
solutions S0 = {S1, S2, . . . , Sn}. We will choose the positive α in such a way that
the IK system obtained with the parameters Pk+1 satisfies the conditions of the
Kantorovitch theorem for the solutions obtained for the system whose parameter
values are Pk). If the conditions does not hold we divide α by 2. For example
starting from P0 we set α to an arbitrary small value and test the condition of the
Kantorovitch theorem for P1 and decrease α until they hold. At this stage we will
use Newton to calculate the set S1 of the n solutions for the parameter set P1. We
will stop this scheme when α is close to 1. To determine how α should be close to 1
to stop the process we look at the cable tensions and lengths for all solutions in Sk

to determine what will be the non-deformable case to which will lead the parameters
going to their limit values. Namely we compare all cable lengths Li

0 to the distance
di between the Ai , Bi points and if Li

0 > di , then the i-th cable is slack otherwise
it is under tension. This provide us a system of equations for each solution of Sk

which should have as approximate solution the corresponding element inSk . If the
Kantorovitch conditions hold for the system, then we will be able to determine the
non-deformable configuration to which the deformable solution will lead, otherwise
we increase α.
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3.2 The Direct Model

As we have shown in the inverse model the manipulator ends up close to a configu-
ration with non-deformable cables for which the platform is at the desired pose with
some cables that are possibly slack. We may now revert the process to obtain the
IK solutions for the deformable cables. We will consider all combinations of cables
under tension in the set of 6 cables, assuming that they are non-deformable. We then
solve their IK, retaining only the solutions for which the non slack cable have a
positive tension.

There is clearly at most one solution when considering that all 6 cables are under
tension. This can be checked by solving equation (1) that is a six-dimensional linear
system in the 6 cable tensions. For the combinations with less than 6 cables under
tensionwewill assume that the slack cable have 0 tension or aminimal one depending
on the cable model. Hence if the CDPR has m cables under tension the system (1) is
still a linear system, possible overconstrained, that may have a positive solution in
terms of the tensions in the m cables.

After this processing we get feasible configurations for the non-deformable case.
For each of them we have a set of valid lengths L0 for the cables.P is set to a value
Pi close toPs and then we change the parameter using the iterative scheme:

Pk+1 = Pk + β(Pd − Pk) (4)

with P0 = Pi . As in the inverse scheme we choose β small enough so that the
Kantorovitch conditions are fulfilled forP = Pk+1. We then stop the process when
Pk+1 = Pd and at this stage we have obtained the IK solution(s) for the CDPRwith
deformable cables.

Note that this scheme startswith a non-deformable cables statewith possibly some
slack cables. However during the iterations it may perfectly happen that an initially
slack cable, which therefore does not support the platform, becomes supportive and
vice-versa.

3.3 Maximum Number of Solutions

The inverse scheme shows that the IK solutions originates from an IK solution with
non-deformable cables. Being given a distribution of slack and under tension cables
there is always at most a single solution to the IK problem and hence the total number
of solutions of the IK with deformable cables cannot exceed the total number of
slack/under tension combinations. This number may be established as 1 (6 cables
under tension) +6 (5 cables under tension) +15 (4 cables under tension) +20 (3
cables under tension)+15 (2 cables under tension)+6 (1 cable under tension) which
amounts to a maximum of 63 solutions. However this number will be the real bound
under some assumptions on singularities.
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3.4 The Singularity Case and Workspace Calculation

Both the inverse and direct scheme assume that the jacobian of the system does not
become singular. Such a case may occur if the cable model equations are singular
or a singularity will occur if (1) become singular. If the unit vector ni denotes the
direction of action of cable i at point Bi (ni may differ from the unit vector of the
line going through Ai , Bi because of the cable deformation) and τi the tension in the
cable at Bi then we define the interaction matrix G whose i-th row Gi is defined by
Gi = (ni CBi × ni)T so that the static of the CDPR may be written as

F = Gτ (5)

A singularity will occur if the Plücker vectors Gi are dependent, a well known
problem for the analysis of parallel robots. Such a singularitymaybe detected through
an increase in the tension of some cables. Open issues regarding this aspect are:

• can we avoid a singularity by modifying the iterative scheme (4)?
• in the inverse scheme can we encounter a singularity that will prohibit us to con-
verge toward a solution with non-deformable cables? If this is the case, then the
approach may miss IK solutions. Should we consider complex values for the
unknowns in order to avoid singularities?

• is possible to have IK solutions with deformable cables for which the inverse
continuation problem does not lead to a non deformable cable IK configuration?

All these issues are quite complex and will be the subject of another paper(s). Our
conjecture is that in general we will have only isolated singular points so that by
using bifurcation theory at the singular point so that all IK solutions will originate
from (possibly multiple) non-deformable configuration. If this conjecture is true it
has an important practical consequence: the reachable workspace of a CDPR with
deformable cables, whatever the cablemodel, is identical to the reachable workspace
of the same CDPR that has non-deformable cable.

4 Example

We consider as example our large scale robot MARIONET-CRANE [6], probably
the largest CDPR ever deployed, for which we will assume Irvine sagging cables.
The IK problem has already been studied in [5] but we will correct some mistakes of
this paper. We assume here that the external wrench applied on the platform is only
the gravity. This robot is a suspended CDPR (i.e. there is no cable having a B point
under the platform) with 6 cables, whose Ai , Bi coordinates are given in Table1.

The cables characteristics are E = 1009 N/m2,μ =0.079kg/mand their diameter
is 4mm. For finding the IK solutions for the non deformable case we assume that
the slack cables act along the vertical with a tension equal to μgL0/2, where μ has
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Table 1 Coordinates of the Ai and Bi points on the base and on the platform (in cm, by rows)

x y z x y z x y z x y z

–325.9 –47.5 882.6 942.1 –348.2 1155.5 –10 –93 –3 10 –93 –3

953.8 379.7 1153.3 557.0 2041.4 870.4 27 50 –7 27 50 –7

–250.5 1681.0 864.9 –334.2 942.1 878.8 –27 50 –7 –27 50 –7

a very low value. With that assumption equation (1) is 6 dimensional linear system
in the tensions of the cables that are supposed to be under tension and in the L0 for
the slack cables. We keep as potential IK solution the one for which the tensions and
the L0 are positive.

We are basically finding the same IK solution as in [5] except that for the pose
x = 400, y = 700, z = 200 and a platform mass of 69kg our new IK algorithm
provides a solution although we have claimed that there was none. This can be
explained as the IK solution leads to FX values that are not included in the intervals
we have provided in our previous algorithm.Howeverwe confirm that for x = y = 0,
z = 200 there is no IK solution. It must also be noted that we have found cases
with a singular configuration for the direct scheme but it appears when the Fx of
cable(s) are close to 0 (corresponding to a singularity of the cable model). In that
case we use a simplified model: we rewrite the equations with Fx = 0, Fz = μgL0/2
(corresponding to a cable that acts vertically on the platform) and we remove the
Irvine equations for the corresponding cable(s) so that this system is still square.
Then we use the Newton scheme to solve the simplified system and go on decreasing
E and increasing μ. After eachg successfull solving step of the simplified model we
use Kantorovitch and Newton to get a solution of the full system, using the solution
obtained for the simplified system and setting a small positive value for the Fx of the
singular cables. If we succeed, then we switch to the full model.

The previous paper have shown an example with up to 3 solutions but our new
algorithm has allowed to find examples with 5 solution, for example for x = 96.733,
y = 1138.33, z = 165, μ = 0.004kg/m and a mass of 10kg,the platform being hor-
izontal. We get 5 IK solutions for non-deformable cables with the following cables
that are not under tension: none, [3], [6], [3, 5], [4, 6] but 4 of them have an unreason-
able cable lengths (for all of them one cable has a length over 105m and may reach
4103m). Note that if we increase μ to 0.079, then the branches none and [3] meet
the same point for μ = 0.0042 and apparently no solution can be found for larger
values of μ so that we end up with only 3 solutions. This shows that apparently there
may be a limit on the value of μ that may lead two branches to collapse and not
generating an IN solution.

However a more rigourous singularity analysis has to be performed in order to
guarantee that will not miss one of the IK solution. An extensive search on the x, y, z
using a grid and a fixed orientation has provided at most 5 potential IK solutions for
the non-deformable case. During this search the only singularity we have found were
cable model singularity with one Fx going to 0. For a grid of over 150 000 points we
get 1, 2, 3, 4, 5 potential solutions respectively in 76, 19, 5, 0.01 and 0.05% of the
cases.
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5 Conclusion

Finding all IK solutions of CDPRwith deformable cables may be complex according
to the used cable model. We propose in this paper a generic approach that allow to
manage all cable models that satisfy minimal assumptions, while providing for the
first time an upper bound for the maximal number of solutions, provided that our
conjecture on singularity hold. Although it has be proven to be efficient even for a
complex cablemodel, the issue of the crossing of singularity remains to be addressed.
If the CDPR has more than 6 cables the IK equations have more unknowns than
equations but we may still apply the method after having chosen specific tensions
for the non-deformable case. At each step we may choose a close but different set
of tensions that satisfy some optimality criterion and then solve the IK equations
for the current values of the parameters. If the CDPR has less than 6 cables the
procedure may also be used provided that we choose which dof of the platform has
to be controlled.
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