On the Line-Symmetry of Self-motions of Linear Pentapods

Georg Nawratil

Abstract We show that all self-motions of pentapods with linear platform of Type 1 and Type 2 can be generated by line-symmetric motions. Thus this paper closes a gap between the more than 100 year old works of Duporcq and Borel and the extensive study of line-symmetric motions done by Krames in the 1930s. As a consequence we also get a new solution set for the Borel Bricard problem. Moreover we discuss the reality of self-motions and give a sufficient condition for the design of linear pentapods of Type 1 and Type 2, which have a self-motion free workspace.

1 Introduction

The geometry of a linear pentapod is given by the five base anchor points M_i in the fixed system Σ_0 and by the five collinear platform anchor points m_i in the moving system Σ (for i = 1, ..., 5). Each pair (M_i, m_i) of corresponding anchor points is connected by a SPS-leg, where only the prismatic joint is active.

If the geometry of the linear pentapod is given as well as the lengths R_i of the five pairwise distinct legs, it has generically mobility 1. This degree of freedom corresponds to the rotational motion about the carrier line p of the five platform anchor points. As this rotation is irrelevant for applications with axial symmetry (e.g. 5-axis milling, laser or water-jet engraving/cutting, spot-welding, spray-based painting, etc.), these manipulators are of great practical interest. Nevertheless configurations should be avoided where the linear pentapod gains an additional uncontrollable mobility, which is referred as self-motion.

G. Nawratil (🖂)

Springer Proceedings in Advanced Robotics 4, DOI 10.1007/978-3-319-56802-7_16

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, Austria

e-mail: nawratil@geometrie.tuwien.ac.at

[©] Springer International Publishing AG 2018

J. Lenarčič and J.-P. Merlet (eds.), Advances in Robot Kinematics 2016,

1.1 Review on Self-motions of Linear Pentapods

The self-motions of linear pentapods represent interesting solutions to a problem posed 1904 by the French Academy of Science for the *Prix Vaillant*, which is also known as Borel-Bricard problem (cf. [2, 3]). This still unsolved kinematic challenge reads as follows: "*Determine and study all displacements of a rigid body in which distinct points of the body move on spherical paths.*"

For the special case of five collinear points the Borel-Bricard problem was studied by Darboux [5, p. 222], Mannheim [6, p. 180ff] and Duporcq [7] (see also Bricard [3, Chap. III]). A contemporary and accurate reexamination of these old results, which also takes the coincidence of platform anchor points into account, was done in [1] yielding a full classification of linear pentapods with self-motions.

Beside the architecturally singular linear pentapods [1, Corollary 1] and some trivial cases with pure rotational self-motions [1, Designs α , β , γ] or pure translational ones [1, Theorem 1] there only remain the following three designs:

Under a self-motion each point of the line p has a spherical (or planar) trajectory. The locus of the corresponding sphere centers is a cubic space curve P, where the mapping from p to P is named σ . P intersects the ideal plane in one real point W and two conjugate complex ideal points, where the latter ones are the cyclic points I and J of a plane orthogonal to the direction of W. P is therefore a so-called straight cubic circle. The following subcases can be distinguished:

- P is irreducible:
 - $-\sigma$ maps the ideal point U of p to W (Type 5 according to [1]).
 - $-\sigma$ maps U to a finite point of P (Type 1 according to [1]).
- P splits up into a circle and a line, which is orthogonal to the carrier plane of the circle and intersects the circle in a point Q. Moreover σ maps U to a point on the circle different from Q (Type 2 according to [1]).

1.2 Basics on Line-Symmetric Motions

Krames (e.g. [4, 10]) studied special one-parametric motions (*Symmetrische Schrotung* in German), which are obtained by reflecting the moving system Σ in the generators of a ruled surface of the fixed system Σ_0 , which is the so called *basic surface*. These so-called *line-symmetric motions* were also studied by Bottema and Roth [8, Sect. 7 of Chap. 9], who gave an intuitive algebraic characterization in terms of Study parameters ($e_0 : e_1 : e_2 : e_3 : f_0 : f_1 : f_2 : f_3$), which are shortly repeated next.

All real points of the Study parameter space P^7 (7-dimensional projective space), which are located on the so-called Study quadric Ψ : $\sum_{i=0}^{3} e_i f_i = 0$, correspond to an Euclidean displacement with exception of the 3-dimensional subspace $e_0 = e_1 =$ $e_2 = e_3 = 0$, as its points cannot fulfill the condition $N \neq 0$ with $N := e_0^2 + e_1^2 +$ $e_2^2 + e_3^2$. The translation vector $\mathbf{s} := (s_1, s_2, s_3)^T$ and the rotation matrix \mathbf{R} of the corresponding Euclidean displacement $\mathbf{m}_i \mapsto \mathbf{Rm}_i + \mathbf{s}$ are given for N = 1 by:

$$s_{1} = -2(e_{0}f_{1} - e_{1}f_{0} + e_{2}f_{3} - e_{3}f_{2}), \quad s_{2} = -2(e_{0}f_{2} - e_{2}f_{0} + e_{3}f_{1} - e_{1}f_{3}),$$

$$s_{3} = -2(e_{0}f_{3} - e_{3}f_{0} + e_{1}f_{2} - e_{2}f_{1}),$$

$$\mathbf{R} = \begin{pmatrix} r_{11}r_{12}r_{13} \\ r_{21}r_{22}r_{23} \\ r_{31}r_{32}r_{33} \end{pmatrix} = \begin{pmatrix} e_{0}^{2} + e_{1}^{2} - e_{2}^{2} - e_{3}^{2} & 2(e_{1}e_{2} - e_{0}e_{3}) & 2(e_{1}e_{3} + e_{0}e_{2}) \\ 2(e_{1}e_{2} + e_{0}e_{3}) & e_{0}^{2} - e_{1}^{2} + e_{2}^{2} - e_{3}^{2} & 2(e_{2}e_{3} - e_{0}e_{1}) \\ 2(e_{1}e_{3} - e_{0}e_{2}) & 2(e_{2}e_{3} + e_{0}e_{1}) & e_{0}^{2} - e_{1}^{2} - e_{2}^{2} + e_{3}^{2} \end{pmatrix}$$

There always exists a moving frame (in dependence of a given fixed frame) in a way that $e_0 = f_0 = 0$ holds for a line-symmetric motion. Then $(e_1 : e_2 : e_3 : f_1 : f_2 : f_3)$ are the Plücker coordinates (according to the convention used in [8]) of the generators of the basic surface with respect to the fixed frame.

1.3 Line-Symmetric Self-motions of Linear Pentapods

It is well known (cf. [7, Sect. 15], [3, Sect. 12]) that the self-motions of Type 5 are obtained by restricting the Borel-Bricard motions¹ (also known as BB-I motions) to a line. Note that Krames gave a detailed discussion of this special case in [4, Sect. 5], where he also pointed out the line-symmetry of BB-I motions.

Beside these BB-I motions, there also exist line-symmetric motions (so-called BB-II motions), where every point of a hyperboloid carrying two reguli of lines has a spherical path. It is known (cf. [9, p. 24] and [10, p. 188]) that the corresponding sphere centers of lines, belonging to one regulus,² constitute irreducible straight cubic circles, which imply examples of Type 1 self-motions. It should be noted that there also exist degenerated cases where the hyperboloid splits up into the union two orthogonal planes, which contain examples of Type 2 self-motions.

A simple count of free parameters shows that not all self-motions of Type 1 (5parametric set³ of motions where all points of a line have spherical paths) can be generated by BB-II motions (which produce only a 4-parametric set⁴). The same argumentation holds for Type 2 self-motions and the mentioned degenerated case.

As a consequence the question arise whether all self-motions of linear pentapods of Type 1 and Type 2 can be generated by line-symmetric motions. If this is the case

¹These are the only non-trivial motions where every point of the moving space has a spherical trajectory (cf. [3, Chap. VI]).

²The corresponding sphere centers of lines belonging to the other regulus are again located on lines (cf. [9, p. 24]), which imply linear pentapods with an architecturally singular design.

³With respect to the notation introduced in Sect. 2 these five parameters are *C*, a_r , a_c , a_4 and p_5 or R_1 (cf. Eq. (7)) by canceling the factor of similarity by setting A = 1.

⁴These are the parameters a, c, g, k used in [9, Sect. 2.3].

we can apply a construction proposed by Krames [4, p. 416], which is discussed in Sect. 4, yielding new solutions to the Borel-Bricard problem.

Finally it should be noted that a detailed review on line-symmetric motions with spherical trajectories is given in [11, Sect. 1].

2 On the Line-Symmetry of Type 1 and Type 2 Self-motions

For our calculations we do not select arbitrary pairs $(\mathbf{m}_i, \mathbf{M}_i)$ of **p** and **P**, which are in correspondence with respect to σ ($\Leftrightarrow \sigma(\mathbf{m}_i) = \mathbf{M}_i$), but choose the following special ones:

 M_4 equals W, M_2 coincides with I and M_3 with J. The corresponding platform anchor points are denoted by m_4 , m_2 and m_3 , respectively. As M_i are ideal points the corresponding points m_i are not running on spheres but in planes orthogonal to the direction of M_i . Therefore these three point pairs imply three so-called Darboux conditions Ω_i for i = 2, 3, 4. Moreover we denote U as m_5 and its corresponding finite point under σ by M_5 . This point pair describes a so-called Mannheim condition Π_5 (which is the inverse of a Darboux condition). The pentapod is completed by a sphere condition Λ_1 of any pair of corresponding finite points m_1 and M_1 .

In [1] we have chosen the fixed frame \mathscr{F}_0 in a way that M_1 equals its origin and M_4 coincides with the ideal point of the *z*-axis. Moreover we located the moving frame \mathscr{F} in a way that p coincides with the *x*-axis, where m_1 equals its origin.

For the study at hand it is advantageous to select a different set of fixed and moving frames \mathscr{F}'_0 and \mathscr{F}' , respectively:

• As M_2 and M_3 coincides with the cyclic points, we can assume without loss of generality (w.l.o.g.) that M_5 is located in the *xz*-plane (as a rotation about the *z*-axis does not change the coordinates of M_1, \ldots, M_4). Moreover we want to apply a translation in a way that M_5 is in the origin of the new fixed frame \mathscr{F}'_0 . Summed up the coordinates with respect to \mathscr{F}'_0 read as:

$$\mathbf{M}_5 = (0, 0, 0), \quad \mathbf{M}_1 = (A, 0, C) \text{ with } A \neq 0$$
 (1)

as A = 0 implies a contradiction to the properties of P for Type 1 and Type 2 pentapods given in Sect. 1.1. Moreover, M₂, M₃ and M₄ are the ideal points in direction $(1, i, 0)^T$, $(1, -i, 0)^T$ and $(0, 0, 1)^T$, respectively.

With respect to \$\mathcal{F}_0\$ the location of p is undefined, but the coordinates m_i of m_i can be parametrized as follows for i = 1, ..., 4:

$$\mathbf{m}_i = \mathbf{n} + (a_i - a_r)\mathbf{d}$$
 with $a_1 = 0$, $a_2 = a_r + ia_c$, $a_3 = a_r - ia_c$ (2)

where $a_r, a_c \in \mathbb{R}$ and $a_c \neq 0$ holds. m_5 is the ideal point in direction of the unitvector $\mathbf{d} = (d_1, d_2, d_3)^T$, which obtains the rational homogeneous parametrization of the unit-sphere, i.e. On the Line-Symmetry of Self-motions of Linear Pentapods

$$d_1 = \frac{2h_0h_1}{h_0^2 + h_1^2 + h_2^2}, \quad d_2 = \frac{2h_0h_2}{h_0^2 + h_1^2 + h_2^2}, \quad d_3 = \frac{h_1^2 + h_2^2 - h_0^2}{h_0^2 + h_1^2 + h_2^2}.$$
 (3)

Now we are looking for the point $\mathbf{n} = (n_1, n_2, n_3)^T$ and the direction $(h_0 : h_1 : h_2)$ in a way that for the self-motion of the pentapod $e_0 = f_0 = 0$ holds. We can discuss Type 1 and Type 2 at the same time, just having in mind that $a_4 \neq 0 \neq C$ has to hold for Type 1 and $a_4 = 0 = C$ for Type 2 (according to [1]).

By setting $\mathbf{r}_i := (r_{i1}, r_{i2}, r_{i3})^T$ for i = 1, 2, 3 the Darboux and Mannheim constraints with respect to \mathscr{F}'_0 and \mathscr{F}' can be written as:

$$\Omega_2 : (s_1 + \mathbf{r}_1 \mathbf{m}_2) - i(s_2 + \mathbf{r}_2 \mathbf{m}_2) - p_2 N = 0, \qquad \Omega_4 : (s_3 + \mathbf{r}_3 \mathbf{m}_4) - p_4 N = 0, \quad (4)$$

$$\Omega_3 : (s_1 + \mathbf{r}_1 \mathbf{m}_3) + i(s_2 + \mathbf{r}_2 \mathbf{m}_3) - p_3 N = 0, \qquad \Pi_5 : (\mathbf{Rd})(\mathbf{s} + \mathbf{Rp}_5)N^{-1} = 0, \quad (5)$$

with $\mathbf{p}_5 = \mathbf{n} + (p_5 - a_r)\mathbf{d}$, which is the coordinate vector of the intersection point of the Mannheim plane and \mathbf{p} with respect to \mathscr{F}' . Moreover $(p_j, 0, 0)^T$ for j = 2, 3(resp. $(0, 0, p_4)^T$) are the coordinates of the intersection point of the Darboux plane and the *x*-axis (resp. *z*-axis) of \mathscr{F}'_0 .

Remark 1 As from the Mannheim constraint Π_5 of Eq. (5) the factor N cancels out, all four constraints Ω_2 , Ω_3 , Ω_4 , Π_5 are homogeneous quadratic in the Study parameters and especially linear in f_0, \ldots, f_3 .

According to [1, Theorems 13 and 14] the leg-parameters p_2, \ldots, p_5, R_1 have to fulfill the following necessary and sufficient conditions for the self-mobility (over \mathbb{C}) of a linear pentapod of Type 1 and Type 2, respectively:

$$p_{2} = \frac{Aa_{3}v}{(a_{3}-a_{4})^{2}}, \qquad p_{3} = \frac{Aa_{2}v}{(a_{2}-a_{4})^{2}}, \qquad p_{4} = -\frac{Ca_{4}v}{(a_{2}-a_{4})(a_{3}-a_{4})}, \tag{6}$$

$$(a_{2}-a_{4})^{2}(a_{3}-a_{4})^{2}\left[2wp_{5}-vR_{1}^{2}-(2w-va_{4})a_{4}\right]+vw^{2}(A^{2}+C^{2})=0, \tag{7}$$

with $v := a_2 + a_3 - 2a_4$ and $w := a_2a_3 - a_4^2$. Therefore if we set p_2 , p_3 , p_4 as given in Eq. (6) then only one condition in p_5 and R_1 remains in Eq. (7). Therefore these pentapods have a 1-dimensional set of self-motions.

Theorem 1 Each self-motion of a linear pentapod of Type 1 and Type 2 can be generated by a 1-dimensional set of line-symmetric motions. For the special case $p_5 = a_4 = a_r$ this set is even 2-dimensional.

Proof W.l.o.g. we can set $e_0 = 0$ as any two directions **d** of **p** can be transformed into each other by a half-turn about their enclosed bisecting line. Note that this line is not uniquely determined if and only if the two directions are antipodal.

W.l.o.g. we can solve Ψ , Ω_2 , Ω_3 , Ω_4 for f_0 , f_1 , f_2 , f_3 and plug the obtained expressions into Π_5 , which yields in the numerator a homogeneous quartic polynomial G[1563] in e_1 , e_2 , e_3 , where the number in the brackets gives the number

of terms. Moreover the numerator of the obtained expression for f_0 is denoted by F[600], which is a homogeneous cubic polynomial in e_1 , e_2 , e_3 .

General Case ($v \neq 0$): The condition G = 0 already expresses the self-motion as G equals Λ_1 if we solve Eq. (7) for R_1 . Moreover F = 0 has to hold if the self-motion of the line p can be generated by a line-symmetric motion. As for any solution ($e_1 : e_2 : e_3$) of F = 0 also G = 0 has to hold, G has to split into F and a homogeneous linear factor L in e_1, e_2, e_3 .

Now L = 0 cannot correspond to a self-motion of the linear pentapod, but has to arise from the ambiguity in representing a direction of p mentioned at the beginning of the proof. This can be argued indirectly as follows:

Assumed L = 0 implies a self-motion, then it has to be a Schönflies motion (with a certain direction v of the rotation axis) due to $e_0 = 0$. As under such a motion the angle enclosed by v and p remains constant⁵ the ideal point U of p has to be mapped by σ to the ideal point V of v. This implies that V has to coincide with W, which can only be the case for pentapods of Type 5; a contradiction.

Therefore there has to exist a pose of **p** during the self-motion, where it is oppositely oriented with respect to the fixed frame and moving frame, respectively. As a consequence we can set $L = d_1e_1 + d_2e_2 + d_3e_3$ which yields the ansatz Δ : $\lambda LF - G = 0$. The resulting set of four equations arising from the coefficients of $e_1^3e_2$, $e_1^3e_3$, $e_1e_3^3$ and $e_2e_3^3$ of Δ has the unique solution:

$$n_1 = a_c d_2, \quad n_2 = -a_c d_1, \quad n_3 = (a_r - a_4) d_3, \quad \lambda = 2(h_0^2 + h_1^2 + h_2^2).$$
 (8)

Now Δ splits up into $(e_1^2 + e_2^2 + e_3^2)^2(h_0^2 + h_1^2 + h_2^2)H[177]$, where *H* is homogeneous of degree 4 in h_0 , h_1 , h_2 . For more details on H = 0 please see Remark 3, which is given right after this proof.

Remark 2 Note that all self-motions of the general case can be parametrized as the resultant of *G* and the normalizing condition N - 1 with respect to e_i yields a polynomial, which is only quadratic in e_j for pairwise distinct $i, j \in \{1, 2\}$.

Special Case (v = 0): If v = 0 holds, we cannot solve Eq. (7) for R_1 . The conditions v = 0 and Eq. (7) imply $p_5 = a_4 = a_r$. Now *G* is fulfilled identically and the self-motion is given by $A_1 = 0$, which is of degree 4 in e_1, e_2, e_3 . Moreover for this special case F = 0 already holds for **n** given in Eq. (8). Therefore any direction $(h_0 : h_1 : h_2)$ for **p** can be chosen in order to fix the line-symmetric motion.

Remark 3 H = 0 represents a planar quartic curve, which can be verified to be entirely circular. Moreover H = 0 can be solved linearly for p_5 . The corresponding graph is illustrated in Fig. 1.

If we reparametrize the $h_0h_1h_2$ -plane in terms of homogenized polar coordinates by:

⁵This angle condition can be seen as the limit of the sphere condition (cf. [12, Sect. 4.1]).

Fig. 1 For a type 1 pentapod with self-motion given by the parameters $a_4 = 2$, A = -1, C = -5, $a_r = 7$ and $a_c = 4$, the graph of p_5 in dependency of h_1 and h_2 with $h_0 = 1$ is displayed in the axonometric view on the *left* and in the front resp. *top* view on the *right* side. The highlighted point at height 6 corresponds to the values $h_1 = -\frac{489262}{226525} + \frac{488}{226525}\sqrt{675091}$ and $h_2 = \frac{535336}{226525} + \frac{446}{226525}\sqrt{675091}$

$$h_0 = (\tau_1^2 + \tau_0^2)\rho_0, \quad h_1 = (\tau_1^2 - \tau_0^2)\rho_1, \quad h_2 = 2\tau_0\tau_1\rho_1,$$
 (9)

where $(\tau_0, \tau_1) \neq (0, 0) \neq (\rho_0, \rho_1)$ and $\tau_0, \tau_1, \rho_0, \rho_1 \in \mathbb{R}$ hold, then *H* factors into $(\tau_0^2 + \tau_1^2)^3 (H_2 \tau_1^2 + H_1 \tau_0 \tau_1 + H_0 \tau_0^2)$ with

$$H_{1} = 8\rho_{0}\rho_{1}A(a_{4} - a_{r})(\rho_{1}^{2} + \rho_{0}^{2})(a_{r}^{2} - a_{4}^{2} + a_{c}^{2})a_{c},$$

$$H_{0} - H_{2} = 8\rho_{0}\rho_{1}A(a_{4} - a_{r})(\rho_{1}^{2} + \rho_{0}^{2})[a_{r}(a_{r} - a_{4})^{2} + a_{c}^{2}(a_{r} - 2a_{4})],$$

$$H_{0} + H_{2} = 2\left[(a_{r} - a_{4})^{2} + a_{c}^{2}\right]\left[2a_{4}(\rho_{1}^{4} - \rho_{0}^{4})(a_{4} - a_{r})C + \left((a_{r} - a_{4})^{2} + a_{c}^{2}\right)\left((\rho_{0}^{4} + \rho_{1}^{4})(a_{4} - p_{5}) + 2\rho_{0}^{2}\rho_{1}^{2}(2a_{r} - a_{4} - p_{5})\right)\right].$$
(10)

Therefore this equation can be solved quadratically for the homogeneous parameter $\tau_0: \tau_1$. Note that the value p_5 is fixed during a self-motion.

3 On the Reality of Type 1 and Type 2 Self-motions

A similar computation to [1, Example 1] shows that for any real point $\mathbf{p}_t \in \mathbf{p}$ with $t \in \mathbb{R}$ and coordinate vector $\mathbf{p}_t = \mathbf{n} + (t - a_r)\mathbf{d}$ with respect to \mathscr{F}' the corresponding real point $\mathbf{P}_t \in \mathbf{P}$ has the following coordinate vector \mathbf{P}_t with respect to \mathscr{F}'_0 :

$$\mathbf{P}_{t} = \left(\frac{A(a_{r}^{2} + a_{c}^{2} - ta_{r})}{(t - a_{r})^{2} + a_{c}^{2}}, -\frac{Aa_{c}t}{(t - a_{r})^{2} + a_{c}^{2}}, \frac{Ca_{4}}{a_{4} - t}\right)^{T}.$$
(11)

As L = 0 corresponds with one configuration of the self-motion we can compute the locus \mathscr{E}_t of p_t with respect to \mathscr{F}'_0 under the 1-parametric set of self-motions by the variation of $(h_0 : h_1 : h_2)$ within L = 0. Moreover due to the mentioned ambiguity we can select an arbitrary solution $(e_0 : e_1 : e_2)$ for L = 0 fulfilling the normalization condition N = 1; e.g.:

$$e_1 = \frac{h_2}{\sqrt{h_1^2 + h_2^2}}, \quad e_2 = -\frac{h_1}{\sqrt{h_1^2 + h_2^2}} \quad \text{and} \quad e_3 = 0.$$
 (12)

Now the computation of $\mathbf{Rp}_t + \mathbf{s}$ yields a rational quadratic parametrization of \mathcal{E}_t in dependency of $(h_0 : h_1 : h_2)$.

Note that this approach also includes the special case (v = 0) as there always exists a value for R_1^2 (in dependency of $(h_0 : h_1 : h_2)$) in a way that $\Lambda_1 = 0$ holds.

For $t \neq a_4$ all \mathscr{E}_t are ellipsoids of rotation (see Fig. 2a), which have the same center point C and axis of rotation c. In detail, C is the point of the straight cubic circle (11) for the value t = c with $c := \frac{a_4^2 - a_c^2 - a_r^2}{2(a_4 - a_r)}$ (for $a_4 = a_r$ we get $c = \infty$ thus $p_{\infty} = U = m_5$ holds, which implies $C = M_5$) and c is parallel to the *z*-axis of \mathscr{F}'_0 . Moreover the vertices on c have distance $|a_4 - t|$ from C and the squared radius of the equator circle equals $(a_r - t)^2 + a_c^2$. Note that for $a_4 \neq a_r$ the only sphere within the described set of ellipsoids is \mathscr{E}_c . For $a_4 = a_r$ no such sphere exists.

 \mathscr{E}_{a_4} is a circular disc in the Darboux plane $z = p_4$ (w.r.t. \mathscr{F}'_0) centered in C.

Remark 4 The existence of these ellipsoids was already known to Duporcq [7, Sect. 9], who used them to show that the spherical trajectories are algebraic curves of degree 4 (intersection curve of \mathscr{E}_t and the sphere Φ_t centered in P_t illustrated in Fig. 2b).

Based on this geometric property, recovered by line-symmetric motions, we can formulate the condition for the self-motion to be real as follows:

• $w \neq 0$: We can reduce the problem to a planar one by intersecting the plane spanned by $P_0 = M_1$ and c with \mathcal{E}_0 and the sphere with radius R_1 centered in P_0 . Now there exists an interval $I_0 =]I_-, I_+[$ such that for $R_1 \in I_0$ the two resulting conics have at least two distinct real intersection points. It is well known (e.g. [14]) that the computation of the limits I_- and I_+ of the reality interval I_0 leads across an algebraic problem of degree 4 (explicitly solvable). Thus for a real self-motion we have to choose $R_1 \in I_0$ and solve Eq. (7) for p_5 .

Fig. 2 Type 1 pentapod with self-motion given by $a_4 = 2$, A = -1, C = -5, $a_r = 7$ and $a_c = 4$. **a** The loci \mathscr{E}_{a_4} , \mathscr{E}_c and \mathscr{E}_t with $t = \frac{69}{20}$ are sliced (along the not drawn axis of rotation c) in order to visualize their positioning with respect to the cubic P on which the points $P_{\infty} = \sigma(U)$, $P_c = C$ and P_t are highlighted. Note that $P_{a_4} = W$ is the real ideal point of P. **b** By setting $p_5 = 6$ a one-parametric self-motion μ is fixed. The trajectory of p_t under μ is illustrated as the intersection curve of \mathscr{E}_t and the sphere Φ_t centered in P_t . **c** A strip of the basic surface of μ is illustrated for the value highlighted in Fig. 1. In addition P and \overline{p} are visualized, where the latter denotes the pose of p such that its half-turns about the generators of the basic surface yield the self-motion μ . **d** Krames's construction is illustrated with respect to the generator g of the basic surface: As P_{a_4} (resp. \overline{P}_{∞}) is the real ideal point of P (resp. \overline{p}), the trajectory of p_{a_4} (resp. \overline{P}_{∞}) under μ is planar. The (Mannheim) plane $\in \Sigma$, which contains the point P_{∞} (resp. \overline{P}_{a_4}) and is orthogonal to the direction of the real ideal point P_{∞} (resp. \overline{P}_{a_4}) of p (resp. \overline{P}) in the displayed pose, slides through the point P_{∞} (resp. \overline{P}_{a_4}) during the complete motion μ

• w = 0: Now P₀ coincides with C and the interval collapses to the single value $R_1 = |a_4|$, which can be seen from Eq. (7). Moreover p_5 can be chosen arbitrarily.

These considerations also show that any pentapod of Type 1 and 2 has real selfmotions if the leg-parameters are chosen properly. Note that this is e.g. not the case for some designs of Type 5 pentapods described in [1, Sect. 6], where it was also proven that pentapods with self-motions have a quartically solvable direct kinematics. It is possible to use this advantage (closed form solution) of pentapods with self-motions without any risk,⁶ by designing linear pentapods of Type 1 and Type 2, which are guaranteed free of self-motions within their workspace.

A sufficient condition for that is that (at least) for one of the five legs $p_t P_t$ of the pentapod the corresponding reality interval I_t is disjoint with the interval of the maximal and minimal leg length implied by the mechanical realization. This condition for a self-motion free workspace gets especially simple if $p_c P_c$ is this leg.

Remark 5 Due to limitation of pages, we refer for detailed examples to the paper's corresponding arXiv version [13], which also show that for the general case ($v \neq 0$) the basic surface is of degree 5 (see Fig. 2c) and that a general point has a trajectory of degree 6 under the corresponding line-symmetric motion.⁷ Note that the latter also holds for a general point of the cubic \overline{P} explained in the next section. \diamond

4 Conclusion and Open Problem

Krames [4, p. 416] outlined the following construction (see Fig. 2d): Assume that p is in an arbitrary pose of the self-motion μ with respect to P, where g denotes the generator of the basic surface, which corresponds to this pose. Moreover \overline{p} and \overline{P} are obtained by the reflexion of p and P, respectively, with respect to g, where \overline{p} belongs to the fixed system Σ_0 and \overline{P} to the moving system Σ . Then under the self-motion μ also the points of \overline{P} are located on spheres with centers on the line \overline{p} .

We can apply this construction for each line-symmetric motion of Theorem 1, which yields new solutions for the Borel Bricard problem, with the exception of one special case where $W \in \overline{p}$ holds (i.e. $h_1 = h_2 = 0$ or $h_0 = 0$), which was already given by Borel in [2, Case Fa4]. Moreover for this case Borel noted that beside p and \overline{P} only two imaginary planar cubic curves (\in isotropic planes through p) run on spheres. The example of [13] shows that this also holds true for the general case.

Thus the problem remains to determine all line-symmetric motions of Theorem 1 where additional real points (beside those of p and \overline{P}) run on spheres. Until now the only known examples with this property are the BB-II motions (cf. Sect. 1.3).

Acknowledgements This research is funded by Grant No. P 24927-N25 of the Austrian Science Fund FWF within the project "Stewart Gough platforms with self-motions".

⁶A self-motion is dangerous as it is uncontrollable and thus a hazard to man and machine.

⁷Note that all basic surfaces and trajectories can be parametrized due to Remark 2.

References

- Nawratil, G., Schicho, J.: Self-motions of pentapods with linear platform. In: Robotica (in press). doi:10.1017/S0263574715000843. arXiv:1407.6126
- Borel, E.: Mémoire sur les déplacements à trajectoires sphériques. Mémoire présenteés par divers savants à l'Académie des Sciences de l'Institut National de France 33(1), 1–128 (1908)
- Bricard, R.: Mémoire sur les déplacements à trajectoires sphériques. Journal de École Polytechnique(2) 11, 1–96 (1906)
- Krames, J.: Zur Bricardschen Bewegung, deren sämtliche Bahnkurven auf Kugeln liegen. Monatsheft für Mathematik und Physik 45, 407–417 (1937)
- 5. Koenigs, G.: Leçons de Cinématique (avec notes par G. Darboux). Paris (1897)
- 6. Mannheim, A.: Principes et Développements de Géométrie Cinématique. Paris (1894)
- Duporcq, E.: Sur le déplacement le plus général d'une droite dont tous les points décrivent des trajectoires sphériques. Journal de mathématiques pures et appliquées 5(4), 121–136 (1898)
- Bottema, O., Roth, B.: Theoretical Kinematics. North-Holland Publishing Company, Amsterdam (1979)
- 9. Hartmann, D.: Singular stewart-gough platforms. Master Thesis, Department of Mechanical Engineering, McGill University, Montreal, Canada (1995)
- Krames, J.: Die Borel-Bricard-Bewegung mit punktweise gekoppelten orthogonalen Hyperboloiden. Monatsheft f
 ür Mathematik und Physik 46, 172–195 (1937)
- 11. Gallet, M., Nawratil, G., Schicho, J., Selig, J.M.: Mobile Icosapods. Advances in Applied Mathematics (in press). doi:10.1016/j.aam.2016.12.002. arXiv:1603.07304
- 12. Nawratil, G.: Correcting Duporcq's theorem. Mech. Mach. Theory 73, 282–295 (2014)
- 13. Nawratil, G.: On the Line-symmetry of Self-motions of Linear Pentapods. [arXiv:1510.03567]
- Chernova, N., Wijewickrema, S.: Algorithms for projecting points onto conics. J. Comput. Appl. Math. 251, 8–21 (2013)