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Abstract We show that all self-motions of pentapods with linear platform of Type 1
and Type 2 can be generated by line-symmetric motions. Thus this paper closes a gap
between the more than 100 year old works of Duporcq and Borel and the extensive
study of line-symmetric motions done by Krames in the 1930s. As a consequence
we also get a new solution set for the Borel Bricard problem. Moreover we discuss
the reality of self-motions and give a sufficient condition for the design of linear
pentapods of Type 1 and Type 2, which have a self-motion free workspace.

1 Introduction

The geometry of a linear pentapod is given by the five base anchor points Mi in the
fixed system Σ0 and by the five collinear platform anchor points mi in the moving
system Σ (for i = 1, . . . , 5). Each pair (Mi ,mi ) of corresponding anchor points is
connected by a SPS-leg, where only the prismatic joint is active.

If the geometry of the linear pentapod is given as well as the lengths Ri of the
five pairwise distinct legs, it has generically mobility 1. This degree of freedom
corresponds to the rotational motion about the carrier line p of the five platform
anchor points. As this rotation is irrelevant for applications with axial symmetry
(e.g. 5-axis milling, laser or water-jet engraving/cutting, spot-welding, spray-based
painting, etc.), these manipulators are of great practical interest. Nevertheless con-
figurations should be avoided where the linear pentapod gains an additional uncon-
trollable mobility, which is referred as self-motion.
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1.1 Review on Self-motions of Linear Pentapods

The self-motions of linear pentapods represent interesting solutions to a problem
posed 1904 by the French Academy of Science for the Prix Vaillant, which is also
known as Borel-Bricard problem (cf. [2, 3]). This still unsolved kinematic challenge
reads as follows: “Determine and study all displacements of a rigid body in which
distinct points of the body move on spherical paths.”

For the special case of five collinear points the Borel-Bricard problemwas studied
by Darboux [5, p. 222], Mannheim [6, p. 180ff] and Duporcq [7] (see also Bricard [3,
Chap. III]). A contemporary and accurate reexamination of these old results, which
also takes the coincidence of platform anchor points into account, was done in [1]
yielding a full classification of linear pentapods with self-motions.

Beside the architecturally singular linear pentapods [1, Corollary 1] and some
trivial caseswith pure rotational self-motions [1,Designsα,β,γ ] or pure translational
ones [1, Theorem 1] there only remain the following three designs:

Under a self-motion each point of the line p has a spherical (or planar) trajectory.
The locus of the corresponding sphere centers is a cubic space curve P, where the
mapping from p to P is named σ . P intersects the ideal plane in one real point W
and two conjugate complex ideal points, where the latter ones are the cyclic points I
and J of a plane orthogonal to the direction ofW. P is therefore a so-called straight
cubic circle. The following subcases can be distinguished:

• P is irreducible:

– σ maps the ideal point U of p toW (Type 5 according to [1]).
– σ maps U to a finite point of P (Type 1 according to [1]).

• P splits up into a circle and a line, which is orthogonal to the carrier plane of the
circle and intersects the circle in a point Q. Moreover σ maps U to a point on the
circle different from Q (Type 2 according to [1]).

1.2 Basics on Line-Symmetric Motions

Krames (e.g. [4, 10]) studied special one-parametric motions (Symmetrische Schro-
tung in German), which are obtained by reflecting the moving system Σ in the
generators of a ruled surface of the fixed system Σ0, which is the so called basic
surface. These so-called line-symmetric motions were also studied by Bottema and
Roth [8, Sect. 7 of Chap.9], who gave an intuitive algebraic characterization in terms
of Study parameters (e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3), which are shortly repeated
next.

All real points of the Study parameter space P7 (7-dimensional projective space),
which are located on the so-called Study quadric � : ∑3

i=0 ei fi = 0, correspond to
an Euclidean displacement with exception of the 3-dimensional subspace e0 = e1 =
e2 = e3 = 0, as its points cannot fulfill the condition N �= 0 with N := e20 + e21 +
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e22 + e23. The translation vector s := (s1, s2, s3)T and the rotation matrix R of the
corresponding Euclidean displacement mi �→ Rmi + s are given for N = 1 by:

s1 = −2(e0 f1 − e1 f0 + e2 f3 − e3 f2), s2 = −2(e0 f2 − e2 f0 + e3 f1 − e1 f3),

s3 = −2(e0 f3 − e3 f0 + e1 f2 − e2 f1),

R =
⎛

⎝
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞

⎠ =
⎛

⎝
e20 + e21 − e22 − e23 2(e1e2 − e0e3) 2(e1e3 + e0e2)
2(e1e2 + e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)
2(e1e3 − e0e2) 2(e2e3 + e0e1) e20 − e21 − e22 + e23

⎞

⎠ .

There always exists amoving frame (in dependenceof a givenfixed frame) in away
that e0 = f0 = 0 holds for a line-symmetric motion. Then (e1 : e2 : e3 : f1 : f2 : f3)
are the Plücker coordinates (according to the convention used in [8]) of the generators
of the basic surface with respect to the fixed frame.

1.3 Line-Symmetric Self-motions of Linear Pentapods

It is well known (cf. [7, Sect. 15], [3, Sect. 12]) that the self-motions of Type 5 are
obtained by restricting the Borel-Bricard motions1 (also known as BB-I motions) to
a line. Note that Krames gave a detailed discussion of this special case in [4, Sect. 5],
where he also pointed out the line-symmetry of BB-I motions.

Beside these BB-I motions, there also exist line-symmetric motions (so-called
BB-II motions), where every point of a hyperboloid carrying two reguli of lines has
a spherical path. It is known (cf. [9, p. 24] and [10, p. 188]) that the corresponding
sphere centers of lines, belonging to one regulus,2 constitute irreducible straight
cubic circles, which imply examples of Type 1 self-motions. It should be noted that
there also exist degenerated cases where the hyperboloid splits up into the union two
orthogonal planes, which contain examples of Type 2 self-motions.

A simple count of free parameters shows that not all self-motions of Type 1 (5-
parametric set3 of motions where all points of a line have spherical paths) can be
generated by BB-II motions (which produce only a 4-parametric set4). The same
argumentation holds for Type 2 self-motions and the mentioned degenerated case.

As a consequence the question arise whether all self-motions of linear pentapods
of Type 1 and Type 2 can be generated by line-symmetric motions. If this is the case

1These are the only non-trivial motions where every point of the moving space has a spherical
trajectory (cf. [3, Chap.VI]).
2The corresponding sphere centers of lines belonging to the other regulus are again located on lines
(cf. [9, p. 24]), which imply linear pentapods with an architecturally singular design.
3With respect to the notation introduced in Sect. 2 these five parameters are C, ar , ac, a4 and p5 or
R1 (cf. Eq. (7)) by canceling the factor of similarity by setting A = 1.
4These are the parameters a, c, g, k used in [9, Sect. 2.3].
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we can apply a construction proposed by Krames [4, p. 416], which is discussed in
Sect. 4, yielding new solutions to the Borel-Bricard problem.

Finally it should be noted that a detailed review on line-symmetric motions with
spherical trajectories is given in [11, Sect. 1].

2 On the Line-Symmetry of Type 1 and Type 2 Self-motions

For our calculations we do not select arbitrary pairs (mi ,Mi ) of p andP, which are in
correspondence with respect to σ (⇔ σ(mi ) = Mi ), but choose the following special
ones:

M4 equals W, M2 coincides with I and M3 with J. The corresponding platform
anchor points are denoted by m4, m2 and m3, respectively. As Mi are ideal points
the corresponding points mi are not running on spheres but in planes orthogonal to
the direction ofMi . Therefore these three point pairs imply three so-called Darboux
conditions Ωi for i = 2, 3, 4. Moreover we denote U as m5 and its corresponding
finite point under σ byM5. This point pair describes a so-calledMannheim condition
Π5 (which is the inverse of a Darboux condition). The pentapod is completed by a
sphere condition Λ1 of any pair of corresponding finite points m1 and M1.

In [1] we have chosen the fixed frame F0 in a way that M1 equals its origin and
M4 coincides with the ideal point of the z-axis. Moreover we located the moving
frameF in a way that p coincides with the x-axis, where m1 equals its origin.

For the study at hand it is advantageous to select a different set of fixed andmoving
frames F ′

0 and F ′, respectively:

• As M2 and M3 coincides with the cyclic points, we can assume without loss of
generality (w.l.o.g.) thatM5 is located in the xz-plane (as a rotation about the z-axis
does not change the coordinates of M1, . . . ,M4). Moreover we want to apply a
translation in a way that M5 is in the origin of the new fixed frame F ′

0. Summed
up the coordinates with respect toF ′

0 read as:

M5 = (0, 0, 0), M1 = (A, 0,C) with A �= 0 (1)

as A = 0 implies a contradiction to the properties of P for Type 1 and Type 2
pentapods given in Sect. 1.1. Moreover, M2, M3 and M4 are the ideal points in
direction (1, i, 0)T , (1,−i, 0)T and (0, 0, 1)T , respectively.

• With respect to F ′
0 the location of p is undefined, but the coordinates mi of mi

can be parametrized as follows for i = 1, . . . , 4:

mi = n + (ai − ar )d with a1 = 0, a2 = ar + iac, a3 = ar − iac (2)

where ar , ac ∈ R and ac �= 0 holds. m5 is the ideal point in direction of the unit-
vector d = (d1, d2, d3)T , which obtains the rational homogeneous parametrization
of the unit-sphere, i.e.
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d1 = 2h0h1
h20+h21+h22

, d2 = 2h0h2
h20+h21+h22

, d3 = h21+h22−h20
h20+h21+h22

. (3)

Now we are looking for the point n = (n1, n2, n3)T and the direction (h0 : h1 : h2)
in a way that for the self-motion of the pentapod e0 = f0 = 0 holds. We can discuss
Type 1 and Type 2 at the same time, just having in mind that a4 �= 0 �= C has to hold
for Type 1 and a4 = 0 = C for Type 2 (according to [1]).

By setting ri := (ri1, ri2, ri3)T for i = 1, 2, 3 the Darboux and Mannheim con-
straints with respect toF ′

0 and F ′ can be written as:

Ω2 : (s1 + r1m2) − i(s2 + r2m2) − p2N = 0, Ω4 : (s3 + r3m4) − p4N = 0, (4)

Ω3 : (s1 + r1m3) + i(s2 + r2m3) − p3N = 0, Π5 : (Rd)(s + Rp5)N
−1 = 0, (5)

with p5 = n + (p5 − ar )d, which is the coordinate vector of the intersection point
of the Mannheim plane and p with respect toF ′. Moreover (p j , 0, 0)T for j = 2, 3
(resp. (0, 0, p4)T ) are the coordinates of the intersection point of the Darboux plane
and the x-axis (resp. z-axis) of F ′

0.

Remark 1 As from the Mannheim constraint Π5 of Eq. (5) the factor N cancels
out, all four constraints Ω2,Ω3,Ω4,Π5 are homogeneous quadratic in the Study
parameters and especially linear in f0, . . . , f3. �

According to [1, Theorems 13 and 14] the leg-parameters p2, . . . , p5, R1 have to
fulfill the following necessary and sufficient conditions for the self-mobility (over
C) of a linear pentapod of Type 1 and Type 2, respectively:

p2 = Aa3v
(a3−a4)2

, p3 = Aa2v
(a2−a4)2

, p4 = − Ca4v
(a2−a4)(a3−a4)

, (6)

(a2 − a4)
2(a3 − a4)

2
[
2wp5 − vR2

1 − (2w − va4)a4
] + vw2(A2 + C2) = 0, (7)

with v := a2 + a3 − 2a4 andw := a2a3 − a24 . Therefore if we set p2, p3, p4 as given
in Eq. (6) then only one condition in p5 and R1 remains in Eq. (7). Therefore these
pentapods have a 1-dimensional set of self-motions.

Theorem 1 Each self-motion of a linear pentapod of Type 1 and Type 2 can be
generated by a 1-dimensional set of line-symmetric motions. For the special case
p5 = a4 = ar this set is even 2-dimensional.

Proof W.l.o.g. we can set e0 = 0 as any two directions d of p can be transformed
into each other by a half-turn about their enclosed bisecting line. Note that this line
is not uniquely determined if and only if the two directions are antipodal.

W.l.o.g. we can solve �,Ω2,Ω3,Ω4 for f0, f1, f2, f3 and plug the obtained
expressions into Π5, which yields in the numerator a homogeneous quartic poly-
nomial G[1563] in e1, e2, e3, where the number in the brackets gives the number
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of terms. Moreover the numerator of the obtained expression for f0 is denoted by
F[600], which is a homogeneous cubic polynomial in e1, e2, e3.

General Case (v �= 0): The condition G = 0 already expresses the self-motion as G
equals Λ1 if we solve Eq. (7) for R1. Moreover F = 0 has to hold if the self-motion
of the line p can be generated by a line-symmetric motion. As for any solution (e1 :
e2 : e3) of F = 0 also G = 0 has to hold, G has to split into F and a homogeneous
linear factor L in e1, e2, e3.

Now L = 0 cannot correspond to a self-motion of the linear pentapod, but has to
arise from the ambiguity in representing a direction of pmentioned at the beginning
of the proof. This can be argued indirectly as follows:

Assumed L = 0 implies a self-motion, then it has to be a Schönflies motion (with
a certain direction v of the rotation axis) due to e0 = 0. As under such a motion the
angle enclosed by v and p remains constant5 the ideal pointU of p has to be mapped
by σ to the ideal point V of v. This implies that V has to coincide withW, which can
only be the case for pentapods of Type 5; a contradiction.

Therefore there has to exist a pose of p during the self-motion, where it is
oppositely oriented with respect to the fixed frame and moving frame, respectively.
As a consequence we can set L = d1e1 + d2e2 + d3e3 which yields the ansatz Δ :
λLF − G = 0. The resulting set of four equations arising from the coefficients of
e31e2, e

3
1e3, e1e

3
3 and e2e33 of Δ has the unique solution:

n1 = acd2, n2 = −acd1, n3 = (ar − a4)d3, λ = 2(h20 + h21 + h22). (8)

Now Δ splits up into (e21 + e22 + e23)
2(h20 + h21 + h22)H [177], where H is homoge-

neous of degree 4 in h0, h1, h2. For more details on H = 0 please see Remark 3,
which is given right after this proof.

Remark 2 Note that all self-motions of the general case can be parametrized as
the resultant of G and the normalizing condition N − 1 with respect to ei yields a
polynomial, which is only quadratic in e j for pairwise distinct i, j ∈ {1, 2}. �

Special Case (v = 0): If v = 0 holds, we cannot solve Eq. (7) for R1. The con-
ditions v = 0 and Eq. (7) imply p5 = a4 = ar . Now G is fulfilled identically and
the self-motion is given by Λ1 = 0, which is of degree 4 in e1, e2, e3. Moreover for
this special case F = 0 already holds for n given in Eq. (8). Therefore any direction
(h0 : h1 : h2) for p can be chosen in order to fix the line-symmetric motion. �

Remark 3 H = 0 represents a planar quartic curve, which can be verified to be
entirely circular. Moreover H = 0 can be solved linearly for p5. The corresponding
graph is illustrated in Fig. 1.

If we reparametrize the h0h1h2-plane in terms of homogenized polar coordi-
nates by:

5This angle condition can be seen as the limit of the sphere condition (cf. [12, Sect. 4.1]).
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Fig. 1 For a type 1 pentapod with self-motion given by the parameters a4 = 2, A = −1, C = −5,
ar = 7 and ac = 4, the graph of p5 in dependency of h1 and h2 with h0 = 1 is displayed in the
axonometric view on the left and in the front resp. top view on the right side. The highlighted
point at height 6 corresponds to the values h1 = − 489262

226525 + 488
226525

√
675091 and h2 = 535336

226525 +
446

226525

√
675091

h0 = (τ 2
1 + τ 2

0 )ρ0, h1 = (τ 2
1 − τ 2

0 )ρ1, h2 = 2τ0τ1ρ1, (9)

where (τ0, τ1) �= (0, 0) �= (ρ0, ρ1) and τ0, τ1, ρ0, ρ1 ∈ R hold, then H factors into
(τ 2

0 + τ 2
1 )3(H2τ

2
1 + H1τ0τ1 + H0τ

2
0 ) with

H1 = 8ρ0ρ1A(a4 − ar )(ρ
2
1 + ρ2

0 )(a
2
r − a24 + a2c )ac,

H0 − H2 = 8ρ0ρ1A(a4 − ar )(ρ
2
1 + ρ2

0 )[ar (ar − a4)
2 + a2c (ar − 2a4)],

H0 + H2 = 2
[
(ar − a4)

2 + a2c
] [2a4(ρ4

1 − ρ4
0)(a4 − ar )C

+ (
(ar − a4)

2 + a2c
) (

(ρ4
0 + ρ4

1)(a4 − p5) + 2ρ2
0ρ

2
1 (2ar − a4 − p5)

)].
(10)

Therefore this equation can be solved quadratically for the homogeneous parameter
τ0 : τ1. Note that the value p5 is fixed during a self-motion. �
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3 On the Reality of Type 1 and Type 2 Self-motions

A similar computation to [1, Example 1] shows that for any real point pt ∈ p with
t ∈ R and coordinate vectorpt = n + (t − ar )dwith respect toF ′ the corresponding
real point Pt ∈ P has the following coordinate vector Pt with respect toF ′

0:

Pt =
(

A(a2r +a2c−tar )
(t−ar )2+a2c

,− Aact
(t−ar )2+a2c

, Ca4
a4−t

)T
. (11)

As L = 0 corresponds with one configuration of the self-motion we can compute the
locus Et of pt with respect to F ′

0 under the 1-parametric set of self-motions by the
variation of (h0 : h1 : h2) within L = 0. Moreover due to the mentioned ambiguity
we can select an arbitrary solution (e0 : e1 : e2) for L = 0 fulfilling the normalization
condition N = 1; e.g.:

e1 = h2√
h21+h22

, e2 = − h1√
h21+h22

and e3 = 0. (12)

Now the computation of Rpt + s yields a rational quadratic parametrization of Et in
dependency of (h0 : h1 : h2).

Note that this approach also includes the special case (v = 0) as there always
exists a value for R2

1 (in dependency of (h0 : h1 : h2)) in a way that Λ1 = 0 holds.
For t �= a4 all Et are ellipsoids of rotation (see Fig. 2a), which have the same

center point C and axis of rotation c. In detail, C is the point of the straight cubic

circle (11) for the value t = c with c := a24−a2c−a2r
2(a4−ar )

(for a4 = ar we get c = ∞ thus
p∞ = U = m5 holds, which implies C = M5) and c is parallel to the z-axis of F ′

0.
Moreover the vertices on c have distance |a4 − t | from C and the squared radius of
the equator circle equals (ar − t)2 + a2c . Note that for a4 �= ar the only sphere within
the described set of ellipsoids is Ec. For a4 = ar no such sphere exists.

Ea4 is a circular disc in the Darboux plane z = p4 (w.r.t.F ′
0) centered in C.

Remark 4 The existence of these ellipsoids was already known to Duporcq [7,
Sect. 9], who used them to show that the spherical trajectories are algebraic curves
of degree 4 (intersection curve of Et and the sphere Φt centered in Pt illustrated in
Fig. 2b). �

Based on this geometric property, recovered by line-symmetric motions, we can
formulate the condition for the self-motion to be real as follows:

• w �= 0:Wecan reduce the problem to a planar one by intersecting the plane spanned
byP0 = M1 and cwith E0 and the sphere with radius R1 centered inP0. Now there
exists an interval I0 =]I−, I+[ such that for R1 ∈ I0 the two resulting conics have
at least two distinct real intersection points. It is well known (e.g. [14]) that the
computation of the limits I− and I+ of the reality interval I0 leads across an
algebraic problem of degree 4 (explicitly solvable). Thus for a real self-motion we
have to choose R1 ∈ I0 and solve Eq. (7) for p5.
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(a)
(b)

(c) (d)

Fig. 2 Type 1 pentapod with self-motion given by a4 = 2, A = −1, C = −5, ar = 7 and ac = 4.
a The loci Ea4 , Ec and Et with t = 69

20 are sliced (along the not drawn axis of rotation c) in order
to visualize their positioning with respect to the cubic P on which the points P∞ = σ(U), Pc = C
and Pt are highlighted. Note that Pa4 = W is the real ideal point of P. b By setting p5 = 6 a
one-parametric self-motion μ is fixed. The trajectory of pt under μ is illustrated as the intersection
curve of Et and the sphere Φt centered in Pt . c A strip of the basic surface of μ is illustrated for the
value highlighted in Fig. 1. In addition P and p are visualized, where the latter denotes the pose of p
such that its half-turns about the generators of the basic surface yield the self-motion μ. dKrames’s
construction is illustrated with respect to the generator g of the basic surface: As Pa4 (resp. p∞) is
the real ideal point ofP (resp. p), the trajectory of pa4 (resp.P∞) underμ is planar. The (Mannheim)
plane ∈ Σ , which contains the point P∞ (resp. pa4 ) and is orthogonal to the direction of the real

ideal point p∞ (resp. Pa4 ) of p (resp. P) in the displayed pose, slides through the point P∞ (resp.
pa4 ) during the complete motion μ
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• w = 0: Now P0 coincides with C and the interval collapses to the single value
R1 = |a4|, which can be seen from Eq. (7). Moreover p5 can be chosen arbitrarily.

These considerations also show that any pentapod of Type 1 and 2 has real self-
motions if the leg-parameters are chosen properly.Note that this is e.g. not the case for
some designs of Type 5 pentapods described in [1, Sect. 6], where it was also proven
that pentapods with self-motions have a quartically solvable direct kinematics. It is
possible to use this advantage (closed form solution) of pentapods with self-motions
without any risk,6 by designing linear pentapods of Type 1 and Type 2, which are
guaranteed free of self-motions within their workspace.

A sufficient condition for that is that (at least) for one of the five legs ptPt of
the pentapod the corresponding reality interval It is disjoint with the interval of
the maximal and minimal leg length implied by the mechanical realization. This
condition for a self-motion free workspace gets especially simple if pcPc is this leg.

Remark 5 Due to limitation of pages, we refer for detailed examples to the paper’s
corresponding arXiv version [13], which also show that for the general case (v �= 0)
the basic surface is of degree 5 (see Fig. 2c) and that a general point has a trajectory
of degree 6 under the corresponding line-symmetric motion.7 Note that the latter also
holds for a general point of the cubic P explained in the next section. �

4 Conclusion and Open Problem

Krames [4, p. 416] outlined the following construction (see Fig. 2d): Assume that p
is in an arbitrary pose of the self-motion μ with respect to P, where g denotes the
generator of the basic surface, which corresponds to this pose. Moreover p and P are
obtained by the reflexion of p and P, respectively, with respect to g, where p belongs
to the fixed system Σ0 and P to the moving system Σ . Then under the self-motion
μ also the points of P are located on spheres with centers on the line p.

We can apply this construction for each line-symmetric motion of Theorem 1,
which yields new solutions for the Borel Bricard problem, with the exception of one
special case where W ∈ p holds (i.e. h1 = h2 = 0 or h0 = 0), which was already
given by Borel in [2, Case Fa4]. Moreover for this case Borel noted that beside p
and P only two imaginary planar cubic curves (∈ isotropic planes through p) run on
spheres. The example of [13] shows that this also holds true for the general case.

Thus the problem remains to determine all line-symmetric motions of Theorem 1
where additional real points (beside those of p and P) run on spheres. Until now the
only known examples with this property are the BB-II motions (cf. Sect. 1.3).

Acknowledgements This research is funded by Grant No. P 24927-N25 of the Austrian Science
Fund FWF within the project “Stewart Gough platforms with self-motions”.

6A self-motion is dangerous as it is uncontrollable and thus a hazard to man and machine.
7Note that all basic surfaces and trajectories can be parametrized due to Remark 2.
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