On the Line-Symmetry of Self-motions
of Linear Pentapods

Georg Nawratil

Abstract We show that all self-motions of pentapods with linear platform of Type 1
and Type 2 can be generated by line-symmetric motions. Thus this paper closes a gap
between the more than 100 year old works of Duporcq and Borel and the extensive
study of line-symmetric motions done by Krames in the 1930s. As a consequence
we also get a new solution set for the Borel Bricard problem. Moreover we discuss
the reality of self-motions and give a sufficient condition for the design of linear
pentapods of Type 1 and Type 2, which have a self-motion free workspace.

1 Introduction

The geometry of a linear pentapod is given by the five base anchor points M; in the
fixed system X, and by the five collinear platform anchor points m; in the moving
system X (fori =1, ...,5). Each pair (M;, m;) of corresponding anchor points is
connected by a SPS-leg, where only the prismatic joint is active.

If the geometry of the linear pentapod is given as well as the lengths R; of the
five pairwise distinct legs, it has generically mobility 1. This degree of freedom
corresponds to the rotational motion about the carrier line p of the five platform
anchor points. As this rotation is irrelevant for applications with axial symmetry
(e.g. 5-axis milling, laser or water-jet engraving/cutting, spot-welding, spray-based
painting, etc.), these manipulators are of great practical interest. Nevertheless con-
figurations should be avoided where the linear pentapod gains an additional uncon-
trollable mobility, which is referred as self-motion.
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1.1 Review on Self-motions of Linear Pentapods

The self-motions of linear pentapods represent interesting solutions to a problem
posed 1904 by the French Academy of Science for the Prix Vaillant, which is also
known as Borel-Bricard problem (cf. [2, 3]). This still unsolved kinematic challenge
reads as follows: “Determine and study all displacements of a rigid body in which
distinct points of the body move on spherical paths.”

For the special case of five collinear points the Borel-Bricard problem was studied
by Darboux [5, p. 222], Mannheim [6, p. 180ff] and Duporcq [7] (see also Bricard [3,
Chap. III]). A contemporary and accurate reexamination of these old results, which
also takes the coincidence of platform anchor points into account, was done in [1]
yielding a full classification of linear pentapods with self-motions.

Beside the architecturally singular linear pentapods [1, Corollary 1] and some
trivial cases with pure rotational self-motions [1, Designs «, 8, y ] or pure translational
ones [1, Theorem 1] there only remain the following three designs:

Under a self-motion each point of the line p has a spherical (or planar) trajectory.
The locus of the corresponding sphere centers is a cubic space curve P, where the
mapping from p to P is named o. P intersects the ideal plane in one real point W
and two conjugate complex ideal points, where the latter ones are the cyclic points |
and J of a plane orthogonal to the direction of W. P is therefore a so-called straight
cubic circle. The following subcases can be distinguished:

e P is irreducible:

— o maps the ideal point U of p to W (Type 5 according to [1]).
— o maps U to a finite point of P (Type 1 according to [1]).

e P splits up into a circle and a line, which is orthogonal to the carrier plane of the
circle and intersects the circle in a point Q. Moreover o maps U to a point on the
circle different from Q (Type 2 according to [1]).

1.2 Basics on Line-Symmetric Motions

Krames (e.g. [4, 10]) studied special one-parametric motions (Symmetrische Schro-
tung in German), which are obtained by reflecting the moving system X in the
generators of a ruled surface of the fixed system X, which is the so called basic
surface. These so-called line-symmetric motions were also studied by Bottema and
Roth [8, Sect. 7 of Chap. 9], who gave an intuitive algebraic characterization in terms
of Study parameters (eg : e : ez :e3: fo: fi: f2: f3), which are shortly repeated
next.

All real points of the Study parameter space P’ (7-dimensional projective space),
which are located on the so-called Study quadric W : Z?:o e; f; = 0, correspond to
an Euclidean displacement with exception of the 3-dimensional subspace ¢y = ¢; =
e, = e3 = 0, as its points cannot fulfill the condition N # 0 with N := eS + e% +
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e% + e%. The translation vector s := (s, 52, 53)7 and the rotation matrix R of the
corresponding Euclidean displacement m; — Rm; 4 s are given for N = 1 by:

s1 =2 ft —e1foterfs—e3fs), s2=—2eofr—erfo+esfi —e1f3),
s3=—2(eo f3 —e3fo+efo—erf1),

2, 2 2 2
ri1 2 F13 ey +ei —ey; —e5 2(eier —epez)  2(erez +eger)
2 a2 o
R=|rirprs| = 2eer+ees) ej—ey+e;—e5 2eres —eper)
2 5 2o
31 '3 133 2(erez —egex)  2(eze; +epey) ey —ef —e; +e3

There always exists amoving frame (in dependence of a given fixed frame) in a way
that eg = f = 0 holds for a line-symmetric motion. Then (e; : e :e3: f1: fo: f3)
are the Pliicker coordinates (according to the convention used in [8]) of the generators
of the basic surface with respect to the fixed frame.

1.3 Line-Symmetric Self-motions of Linear Pentapods

It is well known (cf. [7, Sect. 15], [3, Sect. 12]) that the self-motions of Type 5 are
obtained by restricting the Borel-Bricard motions' (also known as BB-I motions) to
aline. Note that Krames gave a detailed discussion of this special case in [4, Sect. 5],
where he also pointed out the line-symmetry of BB-I motions.

Beside these BB-I motions, there also exist line-symmetric motions (so-called
BB-II motions), where every point of a hyperboloid carrying two reguli of lines has
a spherical path. It is known (cf. [9, p. 24] and [10, p. 188]) that the corresponding
sphere centers of lines, belonging to one regulus,” constitute irreducible straight
cubic circles, which imply examples of Type 1 self-motions. It should be noted that
there also exist degenerated cases where the hyperboloid splits up into the union two
orthogonal planes, which contain examples of Type 2 self-motions.

A simple count of free parameters shows that not all self-motions of Type 1 (5-
parametric set® of motions where all points of a line have spherical paths) can be
generated by BB-II motions (which produce only a 4-parametric set*). The same
argumentation holds for Type 2 self-motions and the mentioned degenerated case.

As a consequence the question arise whether all self-motions of linear pentapods
of Type 1 and Type 2 can be generated by line-symmetric motions. If this is the case

I'These are the only non-trivial motions where every point of the moving space has a spherical
trajectory (cf. [3, Chap. VI]).

2The corresponding sphere centers of lines belonging to the other regulus are again located on lines
(cf. [9, p. 24]), which imply linear pentapods with an architecturally singular design.

3With respect to the notation introduced in Sect. 2 these five parameters are C, a,, a., as and ps or
R; (cf. Eq. (7)) by canceling the factor of similarity by setting A = 1.

4These are the parameters a, ¢, g, k used in [9, Sect. 2.3].
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we can apply a construction proposed by Krames [4, p. 416], which is discussed in
Sect. 4, yielding new solutions to the Borel-Bricard problem.

Finally it should be noted that a detailed review on line-symmetric motions with
spherical trajectories is given in [11, Sect. 1].

2 On the Line-Symmetry of Type 1 and Type 2 Self-motions

For our calculations we do not select arbitrary pairs (m;, M;) of p and P, which are in
correspondence with respect to o (< o (m;) = M;), but choose the following special
ones:

M, equals W, M, coincides with | and M3 with J. The corresponding platform
anchor points are denoted by my, m, and ms, respectively. As M; are ideal points
the corresponding points m; are not running on spheres but in planes orthogonal to
the direction of M;. Therefore these three point pairs imply three so-called Darboux
conditions §2; for i = 2, 3, 4. Moreover we denote U as ms and its corresponding
finite point under o by Ms. This point pair describes a so-called Mannheim condition
ITs (which is the inverse of a Darboux condition). The pentapod is completed by a
sphere condition A of any pair of corresponding finite points m; and M.

In [1] we have chosen the fixed frame .%; in a way that M; equals its origin and
M, coincides with the ideal point of the z-axis. Moreover we located the moving
frame .# in a way that p coincides with the x-axis, where m; equals its origin.

For the study at hand it is advantageous to select a different set of fixed and moving
frames % and %', respectively:

e As M, and Mj coincides with the cyclic points, we can assume without loss of
generality (w.l.o.g.) that Ms is located in the xz-plane (as a rotation about the z-axis
does not change the coordinates of My, ..., My). Moreover we want to apply a
translation in a way that Ms is in the origin of the new fixed frame .%#;. Summed
up the coordinates with respect to % read as:

Ms =(0,0,0), M;=(A,0,C) with A#0 (1)

as A = 0 implies a contradiction to the properties of P for Type 1 and Type 2
pentapods given in Sect. 1.1. Moreover, M, M3 and My are the ideal points in
direction (1,i,0)7, (1, —i, 0)" and (0, 0, 1)7, respectively.

e With respect to .%# the location of p is undefined, but the coordinates m; of m;
can be parametrized as follows fori =1, ...,4:

m; =n+ (a; —a,)d with a; =0, a» =a, +ia., a3 =a, —ia, (2)
where a,, a. € R and a, # 0 holds. ms is the ideal point in direction of the unit-

vectord = (d;, da, d3)”, which obtains the rational homogeneous parametrization
of the unit-sphere, i.e.
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_ _ 2hohy _ _ 2hohy _ hithi—hg
dy = RIAhi+hE dy = REAh2+h” dy = B2 hi 3)

Now we are looking for the point n = (ny, ny, n3)T and the direction (kg : hy : 1)
in a way that for the self-motion of the pentapod ey = f = 0 holds. We can discuss
Type 1 and Type 2 at the same time, just having in mind that a4 # 0 % C has to hold
for Type 1 and a4 = 0 = C for Type 2 (according to [1]).

By setting r; := (r;, ri2, r;3)T fori = 1,2, 3 the Darboux and Mannheim con-
straints with respect to .%; and .#’ can be written as:

27 1 (s +rymy) —i(sp +romp) — ppN =0, 24 :(s3 +r3my) — paN =0, (4)
23 :(s1 +rim3) +i(sy +1om3) — p3N =0, s :(RA)(s+Rps)N "' =0, (5)

with ps = n + (ps — a,)d, which is the coordinate vector of the intersection point
of the Mannheim plane and p with respect to .%#’. Moreover (p;, 0, 0) for j =2,3
(resp. (0, 0, p4)T) are the coordinates of the intersection point of the Darboux plane
and the x-axis (resp. z-axis) of .%.

Remark 1 As from the Mannheim constraint I7s of Eq. (5) the factor N cancels
out, all four constraints £2,, §23, §24, I1s are homogeneous quadratic in the Study
parameters and especially linear in fy, ..., f3. 3

According to [1, Theorems 13 and 14] the leg-parameters p, ..., ps, Rj have to
fulfill the following necessary and sufficient conditions for the self-mobility (over
C) of a linear pentapod of Type 1 and Type 2, respectively:

Aaszv _ Aay Cayv

= Grar PE Gear P4 T Graaa ©)
(a2 — as)* (a3 — as)* [2wps — VR — @w — vag)as] + vw?(A* + C*) =0, (7)

withv :=a, + a3 — 2as and w := ara; — aﬁ. Therefore if we set py, p3, p4 as given
in Eq. (6) then only one condition in ps and R; remains in Eq. (7). Therefore these
pentapods have a 1-dimensional set of self-motions.

Theorem 1 Each self-motion of a linear pentapod of Type 1 and Type 2 can be
generated by a I-dimensional set of line-symmetric motions. For the special case
Ps = a4 = a, this set is even 2-dimensional.

Proof W..0.g. we can set ¢y = 0 as any two directions d of p can be transformed
into each other by a half-turn about their enclosed bisecting line. Note that this line
is not uniquely determined if and only if the two directions are antipodal.

W.l.o.g. we can solve W, §2,, 23, £24 for fy, f1, f2, f3 and plug the obtained
expressions into I7s, which yields in the numerator a homogeneous quartic poly-
nomial G[1563] in ey, e;, e3, where the number in the brackets gives the number
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of terms. Moreover the numerator of the obtained expression for f; is denoted by
F[600], which is a homogeneous cubic polynomial in e, e, e3.

General Case (v # 0): The condition G = 0 already expresses the self-motion as G
equals A; if we solve Eq. (7) for R;. Moreover F = 0 has to hold if the self-motion
of the line p can be generated by a line-symmetric motion. As for any solution (e; :
ey @ e3) of F =0also G = 0 has to hold, G has to split into F and a homogeneous
linear factor L in ey, e;, e3.

Now L = 0 cannot correspond to a self-motion of the linear pentapod, but has to
arise from the ambiguity in representing a direction of p mentioned at the beginning
of the proof. This can be argued indirectly as follows:

Assumed L = 0 implies a self-motion, then it has to be a Schonflies motion (with
a certain direction Vv of the rotation axis) due to ¢y = 0. As under such a motion the
angle enclosed by v and p remains constant’ the ideal point U of p has to be mapped
by o to the ideal point V of v. This implies that V has to coincide with W, which can
only be the case for pentapods of Type 5; a contradiction.

Therefore there has to exist a pose of p during the self-motion, where it is
oppositely oriented with respect to the fixed frame and moving frame, respectively.
As a consequence we can set L = dje; + drey + djes which yields the ansatz A :
ALF — G = 0. The resulting set of four equations arising from the coefficients of
ejes, ejes, ere3 and eze3 of A has the unique solution:

ny =acdy, ny=-—acd;, n3=(a —asd;, A= 2(hé +h2+h3). (8)

Now A splits up into (e} + €3 + e3)*(h3 + h} + h3) H[177], where H is homoge-
neous of degree 4 in hy, hy, hy. For more details on H = 0 please see Remark 3,
which is given right after this proof.

Remark 2 Note that all self-motions of the general case can be parametrized as
the resultant of G and the normalizing condition N — 1 with respect to e¢; yields a
polynomial, which is only quadratic in e; for pairwise distinct i, j € {1, 2}. o

Special Case (v = 0): If v = 0 holds, we cannot solve Eq. (7) for R,. The con-
ditions v = 0 and Eq. (7) imply ps = a4 = a,. Now G is fulfilled identically and
the self-motion is given by A; = 0, which is of degree 4 in e}, e,, e3. Moreover for
this special case F' = 0 already holds for n given in Eq. (8). Therefore any direction
(ho : hy : hy) for p can be chosen in order to fix the line-symmetric motion. O

Remark 3 H = 0 represents a planar quartic curve, which can be verified to be
entirely circular. Moreover H = 0 can be solved linearly for ps. The corresponding
graph is illustrated in Fig. 1.

If we reparametrize the hohihy-plane in terms of homogenized polar coordi-
nates by:

5This angle condition can be seen as the limit of the sphere condition (cf. [12, Sect.4.1]).
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-2 -1 0 1 2

Fig. 1 For a type 1 pentapod with self-motion given by the parameters ay =2, A = —1,C = -5,
a, =7 and a. = 4, the graph of ps in dependency of /| and hy with hg = 1 is displayed in the
axonometric view on the left and in the front resp. fop view on the right side. The highlighted
point at height 6 corresponds to the values 7| = —ggzggg + %«/675091 and hy = gggggg +

446
36595 v 0675091

ho = (t} +1Dpo,  hi =@ —pi,  hy = 2511, )

where (79, 71) # (0, 0) # (po, p1) and 19, 71, Po, p1 € R hold, then H factors into
(1 + 123 (Hat} + Hitot) + Hot?) with

Hy, = 8pop1Alas — a,)(pi + p)(a; — a; + al)ae,
Ho — Hy = 8pop1Alas — a,) (o7 + pp)lar(a, — as)’ + al(a, — 2a4)],
Hy + Hy = 2[(a, — as)* + a7 [2a4(p} — pg)(as — a,)C
+ ((ar — as)* +a2) (0§ + P (as — ps) + 205 pi a, — as — p5>()11(.))

Therefore this equation can be solved quadratically for the homogeneous parameter
7o : 71. Note that the value ps is fixed during a self-motion. S
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3 On the Reality of Type 1 and Type 2 Self-motions

A similar computation to [1, Example 1] shows that for any real point p, € p with
t € Rand coordinate vectorp, = n + (¢ — a,)d withrespectto .#’ the corresponding
real point P, € P has the following coordinate vector P, with respect to .%:

2, .2 T
A e an
As L = 0 corresponds with one configuration of the self-motion we can compute the
locus &; of p; with respect to .%# under the 1-parametric set of self-motions by the
variation of (hg : h; : hy) within L = 0. Moreover due to the mentioned ambiguity
we can select an arbitrary solution (eg : e : e;) for L = 0 fulfilling the normalization
condition N = 1; e.g.:

h2 —_ hl

e = ) = ————
V= S 2 N

Now the computation of Rp, + s yields a rational quadratic parametrization of &; in
dependency of (hg : hy : h»).

Note that this approach also includes the special case (v = 0) as there always
exists a value for R12 (in dependency of (hg : hy : hy)) in a way that A; = 0 holds.

For t # a4 all & are ellipsoids of rotation (see Fig. 2a), which have the same
center point C and axis of rotation €. In detail, C is the point of the straight cubic
circle (11) for the value t = ¢ with ¢ := Wia; (for ay = a, we get ¢ = 0o thus
Poo = U = ms holds, which implies C = Ms) and ¢ is parallel to the z-axis of .%.
Moreover the vertices on ¢ have distance a4 — t| from C and the squared radius of
the equator circle equals (a, — £)? + a2. Note that for a4 # a, the only sphere within
the described set of ellipsoids is &;. For a4 = a, no such sphere exists.

&, 1s a circular disc in the Darboux plane z = p4 (w.r.t. .%) centered in C.

and e; =0. (12)

2
ay—a

Remark 4 The existence of these ellipsoids was already known to Duporcq [7,
Sect. 9], who used them to show that the spherical trajectories are algebraic curves
of degree 4 (intersection curve of &, and the sphere @, centered in P, illustrated in
Fig. 2b). o

Based on this geometric property, recovered by line-symmetric motions, we can
formulate the condition for the self-motion to be real as follows:

e w # 0: We canreduce the problem to a planar one by intersecting the plane spanned
by Py = M; and ¢ with & and the sphere with radius R, centered in Py. Now there
exists an interval Iy =]/_, I[ such that for R| € I, the two resulting conics have
at least two distinct real intersection points. It is well known (e.g. [14]) that the
computation of the limits /_ and I, of the reality interval I, leads across an
algebraic problem of degree 4 (explicitly solvable). Thus for a real self-motion we
have to choose R; € Iy and solve Eq. (7) for ps.
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(@)

Pa,

P PeEX)

Fig. 2 Type 1 pentapod with self-motion given by a4y =2, A = —1,C = —5,a, =7 and a, = 4.
a The loci &, & and & witht = % are sliced (along the not drawn axis of rotation C) in order
to visualize their positioning with respect to the cubic P on which the points Po = o(U), P, =C
and P, are highlighted. Note that P,, = W is the real ideal point of P. b By setting p5s =6 a
one-parametric self-motion p is fixed. The trajectory of p; under p is illustrated as the intersection
curve of & and the sphere @, centered in P;. ¢ A strip of the basic surface of p is illustrated for the
value highlighted in Fig. 1. In addition P and p are visualized, where the latter denotes the pose of p
such that its half-turns about the generators of the basic surface yield the self-motion . d Krames’s
construction is illustrated with respect to the generator g of the basic surface: As P, (resp. Py,) is
the real ideal point of P (resp. p), the trajectory of p,, (resp. Poo) under p is planar. The (Mannheim)
plane € ¥, which contains the point Po (resp. p,,) and is orthogonal to the direction of the real
ideal point P (resp. 5,14) of p (resp. P) in the displayed pose, slides through the point Py, (resp.
Pg,) during the complete motion
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e w = 0: Now Py coincides with C and the interval collapses to the single value
R = |ay4|, which can be seen from Eq. (7). Moreover ps can be chosen arbitrarily.

These considerations also show that any pentapod of Type 1 and 2 has real self-
motions if the leg-parameters are chosen properly. Note that this is e.g. not the case for
some designs of Type 5 pentapods described in [1, Sect. 6], where it was also proven
that pentapods with self-motions have a quartically solvable direct kinematics. It is
possible to use this advantage (closed form solution) of pentapods with self-motions
without any risk,® by designing linear pentapods of Type 1 and Type 2, which are
guaranteed free of self-motions within their workspace.

A sufficient condition for that is that (at least) for one of the five legs p,P, of
the pentapod the corresponding reality interval /; is disjoint with the interval of
the maximal and minimal leg length implied by the mechanical realization. This
condition for a self-motion free workspace gets especially simple if p.P. is this leg.

Remark 5 Due to limitation of pages, we refer for detailed examples to the paper’s
corresponding arXiv version [13], which also show that for the general case (v # 0)
the basic surface is of degree 5 (see Fig. 2¢) and that a general point has a trajectory
of degree 6 under the corresponding line-symmetric motion.” Note that the latter also
holds for a general point of the cubic P explained in the next section. 3

4 Conclusion and Open Problem

Krames [4, p. 416] outlined the following construction (see Fig. 2d): Assume that p
is in an arbitrary pose of the self-motion w with respect to P, where g denotes the
generator of the basic surface, which corresponds to this pose. Moreover p and P are
obtained by the reflexion of p and P, respectively, with respect to g, where p belongs
to the fixed system X and P to the moving system X. Then under the self-motion
w also the points of P are located on spheres with centers on the line p.

We can apply this construction for each line-symmetric motion of Theorem 1,
which yields new solutions for the Borel Bricard problem, with the exception of one
special case where W € p holds (i.e. h; = hy = 0 or hy = 0), which was already
given by Borel in [2, Case Fa4]. Moreover for this case Borel noted that beside p
and P only two imaginary planar cubic curves (€ isotropic planes through p) run on
spheres. The example of [13] shows that this also holds true for the general case.

Thus the problem remains to determine all line-symmetric motions of Theorem 1
where additional real points (beside those of p and P) run on spheres. Until now the
only known examples with this property are the BB-II motions (cf. Sect. 1.3).

Acknowledgements This research is funded by Grant No. P 24927-N25 of the Austrian Science
Fund FWF within the project “Stewart Gough platforms with self-motions”.

6 A self-motion is dangerous as it is uncontrollable and thus a hazard to man and machine.
"Note that all basic surfaces and trajectories can be parametrized due to Remark 2.
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