
Chapter 4
Nonlinear Optimization

Chapters 2 and 3 are devoted to problems with a linear structure. More specifically,
the problems studied there all have an objective function and constraints that are linear
in the decision variables. Although linear optimization problems are very common
and can model a variety of real-world problems, we are sometimes faced with mod-
eling a system that includes important nonlinearities. When either the constraints
or objective function of an optimization problem are nonlinear in the decision vari-
ables, we say that we are faced with a nonlinear optimization problem or nonlinear
programming problem (NLPP).

In this chapter, we begin by first introducing some nonlinear optimization prob-
lems, then discuss methods to solve NLPPs. The example nonlinear optimization
problems that we introduce draw on a wide swath of problem domains span-
ning finance, design, planning, and energy systems. We then discuss an analytical
approach to solving NLPPs. This method uses what are called optimality condi-
tions—properties that an optimal set of decision variables has to exhibit. Optimality
conditions can be likened to the technique to solve an LPP that draws on the Strong-
Duality Property, which is discussed in Section 2.7.4. In Chapter 5 we introduce
another approach to solving NLPPs, iterative solution algorithms, which are tech-
niques used by software packages to solve NLPPs. These iterative algorithms can
be likened to using the Simplex method to solve linear optimization problems or the
branch-and-bound or cutting-plane methods to solve mixed-integer linear problems.

4.1 Motivating Examples

In this section, we present a variety of nonlinear optimization problems, which are
motivated by a mixture of geometric, mechanical, and electrical systems.
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4.1.1 Geometric Examples

4.1.1.1 Packing-Box Problem

A company must determine the dimensions of a cardboard box to maximize its vol-
ume. The box can use at most 60cm2 of cardboard. For structural reasons, the bottom
and top faces of the box must be of triple weight (i.e., three pieces of cardboard).

There are three decision variables in this problem, h, w, and d, which are the
height, width, and depth of the box in cm, respectively (see Figure 4.1).

Fig. 4.1 Illustration of the
Packing-Box Problem

The objective is to maximize the volume of the box:

max
h,w,d

hwd.

There are two types of constraints. First, we must ensure that the box uses no
more than 60cm2 of cardboard, noting that the top and bottom of the box are of
triple weight:

2wh + 2dh + 6wd ≤ 60.

The second type of constraint ensures that the dimensions of the box are non-negative,
as negative dimensions are physically impossible:

w, h, d ≥ 0.
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Putting all of this together, the NLPP can be written as:

max
h,w,d

hwd

s.t. 2wh + 2dh + 6wd ≤ 60

w, h, d ≥ 0.

4.1.1.2 Awning Problem

A box, which is h m high and w m wide, is placed against the side of a building
(see Figure 4.2). The building owner would like to construct an awning of minimum
length that completely covers the box.

Fig. 4.2 Illustration of the
Awning Problem

There are twodecision variables in this problem.Thefirst, x ,measures the distance
between the buildingwall and the point atwhich the awning is anchored to the ground,
in meters. The second, y, measures the height of the anchor point of the awning to
the building wall, also in meters.

The objective is to minimize the length of the awning. From the Pythagorean
theorem this is:

min
x,y

√
x2 + y2.
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We have two types of constraints in this problem. The first ensures that the upper-
right corner of the box is below the awning (which ensures that the box is wholly
contained by the awning). To derive this constraint, we compute the height of the
awning w m away from the wall as:

y − y

x
w.

To ensure that the upper-right corner of the box is below the awning, this point must
be at least h m high, giving our first constraint:

y − y

x
w ≥ h.

We must also ensure that the distances between the anchor points of the awning and
the building and ground are non-negative:

x, y ≥ 0.

Thus, our NLPP is:

min
x,y

√
x2 + y2

s.t. y − y

x
w ≥ h

x, y ≥ 0.

4.1.1.3 Facility-Location Problem

A retailer must decide where to place a single distribution center to service N retail
locations in a region (see Figure 4.3). Retail location n is at coordinates (xn, yn). Each
week Vn trucks leave the distribution center carrying goods to retail location n, and
then return to the distribution center. These trucks can all travel on straight paths from
the distribution center to the retail location. The company would like to determine
where to place the distribution center to minimize the total distance that all of the
trucks must travel each week.

There are two variables in this problem, a and b, which denote the coordinates of
the distribution center.

The objective is to minimize the total distance traveled by all of the trucks. As
illustrated in Figure 4.3, each truck that serves retail location n must travel a dis-
tance of:

√
(xn − a)2 + (yn − b)2,
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Fig. 4.3 Illustration of the
Facility-Location Problem

to get there from the distribution center. Because Vn trucks must travel to retail
location n and they make a roundtrip, the total distance covered by all of the trucks
to retail location n is:

2Vn

√
(xn − a)2 + (yn − b)2.

The objective is to minimize this total distance, or:

min
a,b

N∑

n=1

2Vn

√
(xn − a)2 + (yn − b)2.

Because the distribution center can be placed anywhere, this problem has no
constraints.

Thus, our NLPP is simply:

min
a,b

N∑

n=1

2Vn

√
(xn − a)2 + (yn − b)2.

4.1.1.4 Cylinder Problem

A brewery would like to design a cylindrical vat (see Figure 4.4), in which to brew
beer. The material used to construct the top of the vat costs $c1 per m2. The material
cost of the side and bottom of the vat is proportional to the volume of the vat. This
is because the side and bottom must be reinforced to hold the volume of liquid that
is brewed in the vat. This material cost is $c2V per m2, where V is the volume of
the vat. The value of the beer that is produced in the vat during its usable life is
proportional to the volume of the vat, and is given by $N per m3. The brewery would
like to design the vat to maximize the net profit earned over its usable life.
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This NLPP has two decision variables, h and r , which measure the height and
radius, respectively, of the vat in meters.

The objective is to maximize the value of the beer brewed less the cost of building
the vat. The value of the beer produced by the vat is given by:

Nπr2h.

The cost of top of the vat is:
c1πr

2.

Fig. 4.4 Illustration of the
Cylinder Problem

The per-unit material cost (in $/m3) of the side and bottom of the vat is given by:

c2πr
2h.

Thus the bottom of the vat costs:

c2πr
2hπr2,

and the side costs:

c2πr
2h2πrh.
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Thus, the objective, which is to maximize the value of the beer produced by the vat
less its material costs, is:

max
h,r

Nπr2h − c1πr
2 − c2πr

2h · (πr2 + 2πrh).

There is one type of constraint, which ensures that the vat has non-negative dimen-
sions:

r, h ≥ 0.

Putting all of this together, the NLPP can be written as:

max
h,r

Nπr2h − c1πr
2 − c2πr

2h · (πr2 + 2πrh)

s.t. r, h ≥ 0.

4.1.2 Mechanical Examples

4.1.2.1 Machining-Speed Problem

A company produces widgets that need to be machined. Each widget needs to spend
tp minutes being prepared before being machined. The time that each widget spends
being machined depends on the machine speed. This machining time is given by:

λ

v
,

where λ is a constant and v is the machine speed. The tool used to machine the
widgets needs to be replaced periodically, due to wear. Each time the tool is replaced
the machine is out of service (and widgets cannot be produced) for tc minutes. The
amount of time it takes for the tool to be worn down depends on the machine speed,
and is given by: (

C

v

)1/n

,

where C and n are constants. The cost of replacement tools is negligible. Each
widget sells for a price of $p and uses $m worth of raw materials. Moreover, every
minute of production time incurs $h of overhead costs. The company would like to
determine the optimal machine speed that maximizes the average per-minute profit
of the widget-machining process.

This problem has a single decision variable, v, which is the machine speed.
To derive the objective, we first note that each widget produced earns $(p − m)

of revenue less material costs. Dividing this by the number of widgets produced per
minute gives an expression for net revenue per minute. Producing each widget takes
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three steps. The first is preparation, which takes tp minutes. Each widget must also
be machined, which takes:

λ

v
,

minutes. Finally, each widget produced reduces the usable life of the machine tool
by the fraction:

λ/v

(C/v)1/n
.

Thus, each widget contributes:

tc
λ/v

(C/v)1/n
,

minutes toward tool-replacement time. Therefore, each widget takes a total of:

tp + λ

v
+ tc

λ/v

(C/v)1/n
,

minutes of time to produce. The objective, which is to maximize average per-minute
profits of the widget-machining process, is, thus, given by:

max
v

p − m

tp + λ
v + tc

λ/v
(C/v)1/n

− h,

where we also subtract the overhead costs.
The only constraint on this problem is that the machine speed needs to be non-

negative:
v ≥ 0.

Thus, our NLPP is:

max
v

p − m

tp + λ
v + tc

λ/v
(C/v)1/n

− h

s.t. v ≥ 0.

4.1.2.2 Hanging-Chain Problem

A chain consisting of N links, each of which is 10cm in length and 50g in mass,
hangs between two points a distance L cm apart, as shown in Figure 4.5. The chain
will naturally hang in a configuration that minimizes its potential energy. Formulate
a nonlinear optimization problem to determine the configuration of the chain links
when it is hanging.
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Fig. 4.5 Illustration of the Hanging-Chain Problem

To formulate this problem, we define variables, y1, y2, . . . , yN . We let yn measure
the vertical displacement of the right end of the nth chain link from the right end of
the (n − 1)th link in cm (see Figure 4.5).

The objective of the NLPP is to minimize the potential energy of the chain. This
is, in turn, the sum of the potential energies of each chain link. The potential energy
of chain link n is given by the product of its mass, the gravitational constant, and
the vertical displacement of its midpoint from the ground. The displacement of the
midpoint nth link is given by:

y1 + y2 + · · · + yn−1 + 1

2
yn.

This is illustrated for the third link in Figure 4.5. Thus, the objective of the NLPP is:

min
y1,...,yN

50g

[
1

2
y1 +

(
y1 + 1

2
y2

)
+ · · · +

(
y1 + · · · + yN−1 + 1

2
yN

)]

where g is the gravitational constant. This objective can be further simplified to:

min
y

50g
N∑

n=1

(
N − n + 1

2

)
yn,

by adding and simplifying terms.
This problem has two constraints. The first is to ensure that the vertical displace-

ments of the chain links all sum to zero, meaning that its two anchor points are at
the same height:

N∑

n=1

yn = 0.
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The other constraint ensures that the horizontal displacements of the chain links sum
to L , which ensures that the two anchor points of the chain are L cm apart. Because
we know that chain link n has a length of 10cm and a vertical displacement (relative
to the (n − 1)th link) of yn , we can use the Pythagorean theorem to compute its
horizontal displacement (relative to the (n − 1)th link) as:

√
10 − y2n .

Because this constraint requires that these horizontal displacements sum to L it can
be written as:

N∑

n=1

√
10 − y2n = L .

Putting all of this together, the NLPP can be written as:

min
y

50g
N∑

n=1

(
N − n + 1

2

)
yn

s.t.
N∑

n=1

yn = 0

N∑

n=1

√
10 − y2n = L .

4.1.3 Planning Examples

4.1.3.1 Return-Maximization Problem

An investor has a sum of money to invest in N different assets. Asset n generates a
rate of return, which is given by rn . Define:

r̄n = E[rn],

as the expected rate of return of asset n. The risk of the portfolio is measured by the
covariance between the returns of the different assets. Let:

σn,m =
N∑

n=1

N∑

m=1

E[(rn − E[rn])(rm − E[rm])],
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be the covariance between the returns of assets n andm. By convention the covariance
between the return of asset n and itself, σn,n , is equal to σ 2

n , which is the variance of
the return of asset n. The investor would like to determine how to allocate the sum
of money to maximize the expected return on investment while limiting the variance
of the portfolio to be no more than s̄.

To formulate this problem,we define N decision variables,w1,w2, . . . ,wN , where
wn represents the fraction of the money available that is invested in asset n.

The objective function is to maximize the expected return on investment:

max
w1,...,wN

N∑

n=1

E[rnwn] =
N∑

n=1

E[rn]wn =
N∑

n=1

r̄nwn.

There are three types of constraints. First, we must ensure that the portfolio vari-
ance is no greater than s̄. We can compute the variance of the portfolio as:

N∑

n=1

N∑

m=1

E[(rnwn − E[rnwn])(rmwm − E[rmwm])].

Factoring the w’s out of the expectations gives:

N∑

n=1

N∑

m=1

E[(rn − E[rn])(rm − E[rm])]wnwm =
N∑

n=1

N∑

m=1

σn,mwnwm,

where the term on the right-hand side of the equality follows from the definition of
the σ ’s. Thus, our portfolio-variance constraint is:

N∑

n=1

N∑

m=1

σn,mwnwm ≤ s̄.

Next, we must ensure that all of the money is invested, meaning that the w’s sum to
one:

N∑

n=1

wn = 1.

We, finally, must ensure that the amounts invested are non-negative:

wn ≥ 0,∀ n = 1, . . . , N .
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Taking these together, our NLPP is:

max
w

N∑

n=1

r̄nwn

s.t.
N∑

n=1

N∑

m=1

σn,mwnwm ≤ s̄

N∑

n=1

wn = 1

wn ≥ 0,∀ n = 1, . . . , N .

4.1.3.2 Variance-Minimization Problem

Consider the basic setup in the Return-Maximization Problem, which is introduced
in Section 4.1.3.1. The investor now wishes to select a portfolio that has minimal
variance while achieving at least R̄ as the expected rate of return.

We retain the same decision variables in this problem that we define in the Return-
Maximization Problem, which is introduced in Section 4.1.3.1. Specifically, define
N decision variables,w1,w2, . . . ,wN , wherewn represents the fraction of the money
available that is invested in asset n.

The objective is to minimize portfolio variance. Using the expression for portfolio
variance that is derived in Section 4.1.3.1, the objective function is:

min
w1,...,wN

N∑

n=1

N∑

m=1

σn,mwnwm .

We again have three types of constraints. The first ensures that the portfolio
achieves the desired minimum expected return. We can, again, use the expression in
Section 4.1.3.1 for expected portfolio return to write this constraint as:

N∑

n=1

r̄nwn ≥ R̄.

We must also ensure that the full sum of money is invested:

N∑

n=1

wn = 1,
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and that the amounts invested are non-negative:

wn ≥ 0,∀ n = 1, . . . , N .

Taking these together, our NLPP is:

min
w

N∑

n=1

N∑

m=1

σn,mwnwm

s.t.
N∑

n=1

r̄nwn ≥ R̄

N∑

n=1

wn = 1

wn ≥ 0,∀ n = 1, . . . , N .

4.1.3.3 Inventory-Planning Problem

Astore needs to plan its inventory of three different sizes of T-shirts—small, medium,
and large—for the next season. Small T-shirts cost $1 each, medium ones $2 each,
and large ones $4 each. Small T-shirts sell for $10 each, medium ones for $12, and
large ones for $13. Although the store does not know the demand for the three T-
shirt sizes, it forecasts that the demands during the next season for the three are
independent and uniformly distributed between 0 and 3000. T-shirts that are unsold
at the end of the seasonmust be discarded, which is costless. The store wants to make
its ordering decision to maximize its expected profits from T-shirt sales.

We define three decision variables for this problem, xs , xm , and xl , which denote
the number of small, medium, and large T-shirts ordered, respectively.

The objective is to maximize expected profits. To compute revenues from small T-
shirt sales, we let as and Ds denote the number of small T-shirts sold and demanded,
respectively. We can then express the expected revenues from small T-shirt sales, as
a function of xs as:

10E[as] = 10(E[as |Ds > xs]Prob{Ds > xs} + E[as |Ds ≤ xs]Prob{Ds ≤ xs}).

We know that if Ds > xs , then the number of shirts sold is as = xs . Furthermore,
because Ds is uniformly distributed, we know that this occurs with probability:

1 − xs
3000

.
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Otherwise, if Ds ≤ xs , then the number of shirts sold is as = Ds . We compute the
expected sales quantity in this case as:

∫ xs

0

1

3000
DdD = 1

2
· 1

3000
x2s ,

becausewe know the uniformly distributed demand has a density function of 1/3000.
Combining these observations, we can compute the expected revenues from small
T-shirt sales as:

10E[as] = 10(E[as |Ds > xs]Prob{Ds > xs} + E[as |Ds ≤ xs]Prob{Ds ≤ xs})
= 10

[
xs ·

(
1 − xs

3000

)
+ 1

6000
x2s

]

= 10

(
xs − x2s

6000

)
.

Because the expected revenues from medium and large T-shirt sales have a similar
form, the total expected revenue is given by:

10

(
xs − x2s

6000

)
+ 12

(
xm − x2m

6000

)
+ 13

(
xl − x2l

6000

)
.

Thus, the objective, which is to maximize expected profits, is given by:

max
xs ,xm ,xl

10

(
xs − x2s

6000

)
+ 12

(
xm − x2m

6000

)
+ 13

(
xl − x2l

6000

)
− xs − 2xm − 4xl .

The only constraints are to ensure that the number of shirts ordered are non-
negative and less than 3000 (because there is a maximum possible demand of
3000 units for each type of shirt):

0 ≤ xs, xl , xm ≤ 3000.

Thus, our NLPP is:

max
x

10

(
xs − x2s

6000

)
+ 12

(
xm − x2m

6000

)
+ 13

(
xl − x2l

6000

)
− xs − 2xm − 4xl

s.t. 0 ≤ xs, xl , xm ≤ 3000.
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4.1.4 Energy-Related Examples

4.1.4.1 Economic-Dispatch Problem

An electricity transmission network consists of N nodes. There is a generator, which
can produce energy, attached to each node. The cost of producing qn MW from
node n over the next hour is given by:

cn(qn) = an,0 + an,1qn + an,2q
2
n ,

and the generator at node n must produce at least Q−
n but no more than Q+

n MW.
Each node also has demand for energy, with Dn MW of demand over the next hour
at node n. The nodes in the network are connected to each other by transmission
lines and we let Ωn denote the set of nodes that are directly connected to node n by a
transmission line. For any node n and m ∈ Ωn , the power flow over the line directly
connecting nodes n and m is equal to:

fn,m = Yn,m sin(θn − θm),

where Yn,m is the (constant) electrical admittance of the line connecting nodes n
and m, and θn and θm are the phase angles of nodes n and m, respectively. We have
that Yn,m = Ym,n and we use the sign convention that fn,m = − fm,n is positive if
there is a net power flow from node n to m. There is a limit on how much power can
flow along each transmission line. Let Ln,m = Lm,n > 0 denote the flow limit on the
line directly connecting node n to node m.

The demand at node n can either be satisfied by the generator at node n or by
power imported from other nodes. We assume that the network is ’lossless,’ meaning
that the total power produced at the N nodes must equal the total demand among
the N nodes. The goal of the power system operator is to determine how much to
produce from each generator and how to set the power flows and phase angles to
serve customers’ demands at minimum total cost.

There are three types of variables in this problem. The first are the production
levels at each node, which we denote by q1, . . . , qN , letting qn be the MWh of
energy produced at node n. The second are the phase angles at each of the nodes,
which we denote by θ1, . . . , θN , with θn representing the phase angle of node n. The
third is the flow on the lines, which we denote by fn,m for all n = 1, . . . , N and all
m ∈ Ωn . We let fn,m denote the flow, inMWh, on the line connecting nodes n andm.
As noted before, we use the sign convention that if fn,m > 0 this means that there is
a net flow from node n to node m and fn,m < 0 implies a net flow from node m to
node n.

The objective is to minimize the total cost of producing energy to serve the sys-
tem’s demand:

min
q,θ, f

N∑

n=1

cn(q) =
N∑

n=1

[
an,0 + an,1qn + an,2q

2
n

]
.
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There are five set of constraints in the problem. The first set ensures that the local
demand at each node is satisfied by either local supply or energy imported from other
nodes:

Dn = qn +
∑

m∈Ωn

fm,n,∀ n = 1, . . . , N .

Next, we need to ensure that the total amount generated equals the amount demanded.
This constraint arises because the network is assumed to be lossless. Otherwise,
without this constraint, energy could either be generated and not consumed anywhere
in the network or it could be consumed without having been produced anywhere in
the network. This constraint is written as:

N∑

n=1

Dn =
N∑

n=1

qn.

We also have equalities that define the flow on each line in terms of the phase angles
at the end of the line:

fn,m = Yn,m sin(θn − θm),∀ n = 1, . . . , N ,m ∈ Ωn.

We must also ensure that the flows do not violate their limits:

fn,m ≤ Ln,m,∀ n = 1, . . . , N ,m ∈ Ωn,

and that the power generated at each node is between its bounds:

Q−
n ≤ qn ≤ Q+

n ,∀ n = 1, . . . , N .

Thus, our NLPP is:

min
q,θ, f

N∑

n=1

[
an,0 + an,1qn + an,2q

2
n

]

s.t. Dn = qn +
∑

m∈Ωn

fm,n,∀ n = 1, . . . , N

N∑

n=1

Dn =
N∑

n=1

qn

fn,m = Yn,m sin(θn − θm),∀ n = 1, . . . , N ,m ∈ Ωn

fn,m ≤ Ln,m,∀ n = 1, . . . , N ,m ∈ Ωn

Q−
n ≤ qn ≤ Q+

n ,∀ n = 1, . . . , N .
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One interesting property of this optimization problem, which is worth noting, is that
there are decision variables that do not appear in the objective function (specifically,
the θ ’s and f ’s). Despite this, θ and f must be listed as decision variables. If they
are not, that would imply that their values are fixed, meaning (in the context of this
problem) that the system operator does not have the ability to decide the flows on
the transmission lines or the phase angles at the nodes. This would be an overly
restrictive problem formulation, given the problem description.

4.2 Types of Nonlinear Optimization Problems

In the following sections of this chapter, we concern ourselves with three broad
classes of successively more difficult nonlinear optimization problems. Moreover,
when analyzing these problems it is always helpful to put them into a standard form.
By doing so, we are able to apply the same generic tools to solve these classes of
NLPPs. These standard forms are akin to the standard and canonical forms of LPPs,
which are introduced in Section 2.2.

We now introduce these three types of optimization problems and refer back to
the motivating problems in Section 4.1 to give examples of each. We also use these
examples to demonstrate how problems can be converted to these three standard
forms.

4.2.1 Unconstrained Nonlinear Optimization Problems

An unconstrained nonlinear optimization problem has an objective function that
is being minimized, but does not have any constraints on what values the decision
variables can take. An unconstrained nonlinear optimization problem can be gener-
ically written as:

min
x∈Rn

f (x),

where f (x) : Rn → R is the objective function.
Among the motivating examples given in Section 4.1, the Facility-Location Prob-

lem in Section 4.1.1.3 is an example of an unconstrained problem. The objective
function of the Facility-Location Problem that is given in Section 4.1.1.3 is already
a minimization. Thus, no further work is needed to convert this problem into a
standard-form unconstrained problem. As discussed in Section 2.2.2.1, a maximiza-
tion problem can be converted to minimization problem by multiplying the objective
function through by −1.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2
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4.2.2 Equality-Constrained Nonlinear Optimization
Problems

An equality-constrained nonlinear optimization problem has an objective func-
tion that is being minimized and a set of m equality constraints that have zeros on
their right-hand sides. An equality-constrained nonlinear optimization problem can
be generically written as:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0,

where f (x) is the objective function and h1(x), h2(x), . . . , hm(x) are them equality-
constraint functions. The objective and constraint functions map the n-dimensional
vector, x , to scalar values.

Among the examples that are given in Section 4.1, the Hanging-Chain Problem
in Section 4.1.2.2 is an example of an equality-constrained problem. The objective
function that is given in Section 4.1.2.2 is already a minimization, thus it does not
have to be manipulated to put it into the standard form for an equality-constrained
problem. We can convert the constraints into standard form by subtracting all of the
terms from one side of the equality. This gives the following standard-form NLPP
for the Hanging-Chain Problem:

min
y∈RN

f (y) = 50g
N∑

n=1

(
N − n + 1

2

)
yn

s.t. h1(y) =
N∑

n=1

yn = 0

h2(y) =
N∑

n=1

√
1 − y2n − L = 0.

4.2.3 Equality- and Inequality-Constrained Nonlinear
Optimization Problems

An equality- and inequality-constrained nonlinear optimization problem has
an objective function that is being minimized, a set of m equality constraints that
have zeros on their right-hand sides, and a set of r less-than-or-equal-to constraints
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that have zeros on their right-hand sides. An equality- and inequality-constrained
problem can be generically written as:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0,

where f (x) is the objective function, h1(x), h2(x), . . . , hm(x) are the m equality-
constraint functions, and g1(x), g2(x), . . . , gr (x) are the r inequality-constraint func-
tions. The objective and constraint functions all map the n-dimensional vector, x , to
scalar values. Note that one could have a problem with only inequality constraints,
i.e., m = 0, meaning that there are no equality constraints.

All of the other motivating examples given in Section 4.1, that are not catego-
rized as being unconstrained or equality constrained, are examples of equality- and
inequality-constrained problems. To demonstrate how a problem can converted to the
generic form, take as an example the Return-Maximization Problem, which is given
in Section 4.1.3.1. We convert the maximization to a minimization by multiplying
the objective function through by −1. The constraints are similarly manipulated to
yield the standard form, giving the following standard-form NLPP for the Return-
Maximization Problem:

min
w∈RN

f (w) = −
N∑

n=1

r̄nwi

s.t. h1(w) =
N∑

n=1

wn − 1 = 0

g1(w) =
N∑

n=1

N∑

m=1

σn,mwnwm − s̄ ≤ 0

g2(w) = −w1 ≤ 0

...

gN+1(w) = −wN ≤ 0.
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4.3 Global and Local Minima

When we solve an optimization problem, we want to find a feasible solution that
makes the objective as small as possible among all feasible solutions. In other words,
we are searching for what is known as a global minimum. The difficulty that we
encounter is that for most problems, we can only find what are known as local
minima. These concepts are both defined in the following subsections. Aswe discuss
below, one can find a global minimum by exhaustively searching for all local minima
and picking the one that gives the best objective-function value. This is the approach
we must take to solve most nonlinear optimization problems.

4.3.1 Global Minima

Given a nonlinear optimization problem, a feasible solution, x∗, is a global
minimum if f (x∗) ≤ f (x) for all other feasible values of x .

Figure 4.6 illustrates the global minimum of a parabolic objective function. Because
there are no restriction onwhat values of x maybe chosen, the example inFigure 4.6 is
an unconstrained problem. Clearly, x∗ gives the smallest objective value and satisfies
the definition of a global minimum.

Fig. 4.6 The global
minimum of a parabolic
objective function
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Figure 4.7 demonstrates the effect of adding the inequality constraint, x ≥ x̂ , to
the optimization problem that is illustrated in Figure 4.6. Although x∗ still gives the
smallest objective-function value, it is no longer feasible. Thus, it does not satisfy
the definition of a global minimum. One can tell from visual inspection that x̂ is in
fact the global minimum of the parabolic objective function when the constraint is
added.

Fig. 4.7 The global
minimum of a parabolic
objective function with an
inequality constraint

It is also important to note that aswith a linear ormixed-integer linear optimization
problem, a nonlinear problem can have multiple global minima. This is illustrated in
Figure 4.8, where we see that all values of x between x1 and x2 are global minima.

Fig. 4.8 An objective
function that has multiple
(indeed, an infinite number
of) global minima
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4.3.2 Local Minima

Although we are typically looking for a global minimum when solving an NLPP, for
most problems the best we can do is find local minima. This is because the methods
used to find minima use local information (i.e., derivatives). As discussed below,
we find a global minimum of most NLPPs by exhaustively searching for all local
minima and choosing the one that gives the smallest objective-function value.

We now define a local minimum and then illustrate the concept with some exam-
ples.

Given a nonlinear optimization problem, a feasible solution, x∗, is a local
minimum if f (x∗) ≤ f (x) for all other feasible values of x that are close
to x∗.

Figure 4.9 shows an objective function with four local minima, labeled x1, x2, x3,
and x4. Each of these points satisfies the definition of a local minimum, because other
feasible points that are close to them give the same or higher objective-function
values. Among the four local minima, one of them, x4 is also a global minimum.
This illustrates the way that we normally go about finding a global minimum. We
exhaustively search for all local minima and then choose the one that gives the
smallest objective-function value. We must also pay attention to ensure that the
problem is not unbounded—if it is then the problem does not have a global minimum
(even though it may have local minima).

Fig. 4.9 Local and global minima of an objective function
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Figure 4.10 demonstrates how adding a constraint affects the definition of a local
minimum. Here we have the same objective function as in Figure 4.9, but have added
the constraint x ≥ x̂ . As in Figure 4.9, x3 and x4 are still local minima and x4 is
the global minimum. However, x1 and x2 are not local minima, because they are no
longer feasible. Moreover, x̂ is a local minimum. To see why, we first note that values
of x that are close to x̂ but to its left give smaller objective-function values than x̂
does. However, these points to the left of x̂ are not considered in the definition of a
local minimum, because we only consider feasible points that are close to x̂ . If we
restrict attention to feasible points that are close to x̂ (i.e., points to the right of x̂)
then we see that x̂ does indeed satisfy the definition of a local minimum.

Fig. 4.10 Local and global minima of an objective function with an inequality constraint

The objective function that is shown in Figure 4.8 also demonstrates why the
weak inequality in the definition of a local minimum is important. All of the points
between x1 and x2 in this figure (which we argue in Section 4.3.1 are global minima)
are also local minima.

4.4 Convex Nonlinear Optimization Problems

We note in Section 4.3 that for most optimization problems, the best we can do is
find local minima. Thus, in practice, finding global minima can be tedious because
it requires us to search for all local minima and pick the one that gives the smallest
objective-function value. There is one special class of optimization problems, which
are called convex optimization problems, for which it is easier to find a global
minimum. A convex optimization problem has the property that any local minimum



220 4 Nonlinear Optimization

is guaranteed to be a global minimum. Thus, finding a global minimum of a convex
optimization problem is relatively easy, because we are done as soon as we find a
local minimum.

In this section, we first define what a convex optimization problem is and then
discuss ways to test whether a problem has the needed convexity property. We finally
show the result that any local minimum of a convex optimization problem is guar-
anteed to be a global minimum.

4.4.1 Convex Optimization Problems

To define a convex optimization problem, we consider a more generic form of an
optimization problem than those given in Section 4.2. Here we write a generic opti-
mization problem as:

min
x

f (x)

s.t. x ∈ X.

As before, f (x) is the objective function that we seek to minimize. The set X ⊆ R
n

represents the feasible region of the problem. In the case of an unconstrained non-
linear optimization problem we would have X = R

n . If we have a problem with a
mixture of equality and inequality constraints, we define X as:

X = {x ∈ R
n : h1(x) = 0, . . . , hm(x) = 0, g1(x) ≤ 0, . . . , gr (x) ≤ 0},

the set of decision-variable vectors, x , that simultaneously satisfy all of the con-
straints. Using this more generic form of an optimization problem, we now define a
convex optimization problem.

An optimization problem of the form:

min
x

f (x)

s.t. x ∈ X ⊆ R
n,

is a convex optimization problem if the set X is convex and f (x) is a convex
function on the set X .

Determining if a problem is convex boils down to determining two things: (i) is
the feasible region convex and (ii) is the objective function convex on the feasible
region? We discuss methods that can be used to answer these two questions in the
following sections.
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4.4.2 Determining if a Feasible Region is Convex

Recall the following definition of a convex set from Section B.1.

A set X ⊆ R
n is said to be a convex set if for any two points x1 and x2 ∈ X

and for any value of α ∈ [0, 1] we have that:

αx1 + (1 − α)x2 ∈ X.

One way to test whether a set is convex is to use the definition directly, as demon-
strated in the following example.

Example 4.1 Consider the feasible region of the Packing-Box Problem that is intro-
duced in Section 4.1.1.1. The feasible region of this problem is:

X = {(w h d) : 2wh + 2dh + 6wd ≤ 60,w ≥ 0, h ≥ 0, d ≥ 0}.

Note that the points:
(w h d) = (1 1 29/4),

and:
(ŵ ĥ d̂) = (29/4 1 1),

are both in the feasible region, X . However, if we take the midpoint of these two
feasible points:

(w̃ h̃ d̃) = 1

2
(w h d) + 1

2
(ŵ ĥ d̂) = (33/8 1 33/8),

we see that this point is infeasible because:

2w̃h̃ + 2d̃ h̃ + 6w̃d̃ ≈ 118.59.

Thus, the set X is not convex and the Packing-Box Problem is not a convex opti-
mization problem. �

In practice, the definition of a convex set can be cumbersome to work with. For
this reason, we use the following three properties, which can make it easier to show
that a feasible set is convex.
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4.4.2.1 Linear Constraints

The first property involves equality and inequality constraints that are linear in the
decision variables. We can show graphically and through a simple proof that linear
constraints always define convex feasible regions.

Linear-Constraint Property: Any equality or inequality constraint that is
linear in the decision variables defines a convex feasible set.

Before proving this result, Figure 4.11 graphically demonstrates this result. As
the figure shows, a linear equality constraint defines a straight line in two dimensions,
which is a convex set. We also know from the discussion in Section 2.1.1 that a linear
equality constraint defines a hyperplane in three or more dimensions. All of these
sets are convex. The figure also demonstrates the convexity of feasible sets defined
by linear inequalities. In two dimensions, a linear inequality defines the space on
one side of a line (also known as a halfspace). In higher dimensions, halfspaces
generalize to the space on one side of a plane or hyperplane. These are also convex
sets, as seen in Figure 4.11.

Fig. 4.11 Illustration of the
feasible region defined by
linear equality and inequality
constraints in two
dimensions

We now prove the Linear-Constraint Property.

Consider a linear equality constraint of the form:

(
a1 a2 · · · an

)

⎛

⎜
⎜
⎜
⎝

x1
x2
...

xn

⎞

⎟
⎟
⎟
⎠

= a
x = b,

http://dx.doi.org/10.1007/978-3-319-56769-3_2
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where b is a scalar. Suppose that there are two points, x1 and x2, which are
feasible. This means that:

a
x1 = b, (4.1)

and:
a
x2 = b. (4.2)

Take any value of α ∈ [0, 1] and consider the convex combination of x1 and x2:

αx1 + (1 − α)x2.

If we multiply this point by a we have:

a
[αx1+(1−α)x2] = a
αx1+a
(1−α)x2 = αa
x1+(1−α)a
x2. (4.3)

Substituting (4.1) and (4.2) into (4.3) gives:

a
[αx1 + (1 − α)x2] = αb + (1 − α)b = b,

or:

a
[αx1 + (1 − α)x2] = b.

Thus, αx1 + (1 − α)x2 is feasible and the feasible set defined by the linear
equality constraint is convex.

To show the same result for the case of a linear inequality constraint, consider
a linear inequality constraint of the form:

a
x ≥ b.

Suppose that there are twopoints, x1 and x2,which are feasible in this inequality
constraint. This means that:

a
x1 ≥ b, (4.4)

and:

a
x2 ≥ b. (4.5)

Again, take any value of α ∈ [0, 1] and consider the convex combination of
x1 and x2, αx1 + (1 − α)x2. If we multiply this point by a we have:

a
[αx1 + (1 − α)x2] = αa
x1 + (1 − α)a
x2. (4.6)
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Substituting (4.4) and (4.5) into (4.6) and noting that α ≥ 0 and 1 − α ≥ 0
gives:

a
[αx1 + (1 − α)x2] ≥ αb + (1 − α)b = b,

or:
a
[αx1 + (1 − α)x2] ≥ b.

Thus, αx1 + (1 − α)x2 is feasible and the feasible set defined by the linear
inequality constraint is convex.

The following example demonstrates how this convexity result involving linear
constraints can be used.

Example 4.2 Consider the constraints of the Variance-Minimization Problem that is
introduced in Section 4.1.3.2, which are:

N∑

n=1

r̄nwn ≥ R̄,

N∑

n=1

wn = 1,

and:
wn ≥ 0,∀ n = 1, . . . , N .

Recall, also, that the decision-variable vector in this problem isw. Each of these con-
straints is linear in the decision variables, meaning that each constraint individually
defines a convex feasible region.

Wedo not, yet, know if thewhole feasible region of the problem is convex.Weonly
know that each constraint on its own gives a convex set of points that satisfies it. We
discuss the Intersection-of-Convex-Sets Property in Section 4.4.2.3, which allows us
to draw the stronger conclusion that this problem does indeed have a convex feasible
region. �

4.4.2.2 Convex-Inequality Constraints

The second property thatwe use to test whether an optimization problemhas a convex
feasible region is that less-than-or-equal-to constraints that have a convex function on
the left-hand side define convex feasible regions. This property is stated as follows.
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Convex-Inequality Property: Any inequality constraint of the form:

g(x) ≤ 0,

which has a convex function, g(x), on the left-hand side defines a convex
feasible set.

To show this property, recall the following definition of a convex function from
Section B.2.

Given a convex set, X ⊆ R
n , a function defined on X is said to be a convex

function on X if for any two points, x1 and x2 ∈ X , and for any value of
α ∈ [0, 1] we have that:

α f (x1) + (1 − α) f (x2) ≥ f (αx1 + (1 − α)x2).

Figures 4.12 and 4.13 illustrate the Convex-Inequality Property graphically.
Figure 4.12 shows the feasible set, g(x) ≤ 0, where g(x) is a convex parabolic
function while Figure 4.13 shows the case of a convex absolute value function. It
is important to note that the Convex-Inequality Property only yields a one-sided
implication—the feasible set defined by a constraint of the form g(x) ≤ 0 where
g(x) is a convex function gives a convex feasible set. However, it may be the case that
a constraint of the form g(x) ≤ 0 where g(x) is non-convex gives a convex feasible

Fig. 4.12 A convex
parabola, which defines a
convex feasible region when
on the left-hand side of a
less-than-or-equal-to
constraint
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Fig. 4.13 A convex absolute
value function, which defines
a convex feasible region
when on the left-hand side of
a less-than-or-equal-to
constraint

Fig. 4.14 A non-convex
function, which defines a
convex feasible region when
on the left-hand side of a
less-than-or-equal to
constraint

set. Figure 4.14 demonstrates this by showing a non-convex function, g(x), which
gives a convex feasible region when on the left-hand side of a less-than-or-equal-to
zero constraint, because the feasible region is all x ∈ R.

We now give a proof of the Convex-Inequality Property.

Consider an inequality constraint of the form:

g(x) ≤ 0,

where g(x) is a convex function. Suppose that there are two feasible points,
x1 and x2. This means that:

g(x1) ≤ 0, (4.7)

and:
g(x2) ≤ 0. (4.8)
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Take α ∈ [0, 1] and consider the convex combination of x1 and x2, αx1 +
(1 − α)x2. If we plug this point into the constraint we know that:

g(αx1 + (1 − α)x2) ≤ αg(x1) + (1 − α)g(x2), (4.9)

because g(x) is a convex function. Substituting (4.7) and (4.8) into (4.9) and
noting that α ≥ 0 and 1 − α ≥ 0 gives:

g(αx1 + (1 − α)x2) ≤ α0 + (1 − α)0 = 0,

or:
g(αx1 + (1 − α)x2) ≤ 0,

meaning that the point αx1+(1−α)x2 is feasible and the constraint, g(x) ≤ 0,
defines a convex feasible set.

Figure 4.15 illustrates the intuition behind the Convex-Inequality Property. If two
points, x1 and x2, are feasible, this means that g(x1) ≤ 0 and g(x2) ≤ 0. Because
g(x) is convex, we know that at any point between x1 and x2 the function g(x) is
below the secant line connecting g(x1) and g(x2) (cf. Section B.2 for further details).
However, because both g(x1) and g(x2) are less than or equal to zero, the secant line
is also less than or equal to zero. Hence, the function is also less than or equal to zero
at any point between x1 and x2.

Fig. 4.15 Illustration of the
Convex-Inequality Property

4.4.2.3 Intersection of Convex Sets

The third property that is useful to show that an optimization problem has a con-
vex feasible region is that the intersection of any number of convex sets is convex.
This is useful because the feasible region of an optimization problem is defined as



228 4 Nonlinear Optimization

the intersection of the feasible sets defined by each constraint. If each constraint
individually defines a convex set, then the feasible region of the overall problem is
convex as well. To more clearly illustrate this, consider the standard-form equality-
and inequality-constrained NLPP:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0.

The overall feasible region of this problem is:

X = {x ∈ R
n : h1(x) = 0, . . . , hm(x) = 0, g1(x) ≤ 0, . . . , gr (x) ≤ 0}.

Another way to view this feasible region is to define the feasible region defined by
each constraint individually as:

X1 = {x ∈ R
n : h1(x) = 0},
...

Xm = {x ∈ R
n : hm(x) = 0},

Xm+1 = {x ∈ R
n : g1(x) ≤ 0},

...

and:
Xm+r = {x ∈ R

n : gr (x) ≤ 0}.

We can then define X as the intersection of all of these individual sets:

X = X1 ∩ · · · ∩ Xm ∩ Xm+1 ∩ · · · ∩ Xm+r .
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If each of the sets, X1, · · · , Xm+r , is convex, then their intersection, X , is convex as
well, meaning that the problem has a convex feasible region.

We now state and prove the result regarding the intersection of convex sets.

Intersection-of-Convex-Sets Property: Let X1, . . . , Xk ⊆ R
n be a collection

of convex sets. Their intersection:

X = X1 ∩ · · · ∩ Xk,

is convex.

We show this by contradiction. Suppose that the statement is not true, meaning
that the set X is not convex. This means that there exist points, x1, x2 ∈ X
and a value of α ∈ [0, 1] for which αx1 + (1 − α)x2 /∈ X . If x1 ∈ X , then
x1 must be in each of X1, . . . , Xk , because X is defined as the intersection
of these sets. Likewise, if x2 ∈ X it must be in each of X1, . . . , Xk . Because
each of X1, X2, . . . , Xk is convex, then αx1 + (1 − α)x2 must be in each of
X1, . . . , Xk . However, if αx1+ (1−α)x2 is in each of X1, . . . , Xk then it must
be in X , because X is defined as the intersection of X1, . . . , Xk . This gives a
contradiction, showing that X must be a convex set.

Figure 4.16 illustrates the idea underlying the proof of the Intersection-of-Convex-
Sets Property graphically for the case of the intersection of two convex sets, X1 and
X2, inR2. The points x1 and x2 are both contained in the sets X1 and X2, thus they are
both contained in X , which is the intersection of X1 and X2. Moreover, if we draw a
line segment connecting x1 and x2 we know that this line segment must be contained
in the set X1, because X1 is convex. The line segment must also be contained in the

Fig. 4.16 Illustration of the
Intersection-of-Convex-Sets
Property
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set X2 for the same reason. Because X is defined as the collection of points that is
common to both X1 and X2, this line segment must also be contained in X , showing
that X is a convex set.

The following example demonstrates the use of the Intersection-of-Convex-Sets
Property to show that an optimization problem has a convex feasible region.

Example 4.3 Consider the following optimization problem:

min
x

f (x)

s.t. g1(x) = x21 + x22 − 4 ≤ 0

g2(x) = −x1 + x2 + 1 ≤ 0,

where the objective, f (x), is an arbitrary function. To show that the feasible region
of this problem is convex, consider the first constraint. Note that we have:

∇2g1(x) =
[
2 0
0 2

]
,

which is a positive-definite matrix (cf. Section A.2 for the definition of positive-
definite matrices), meaning that g1(x) is a convex function (cf. Section B.2 for the
use of theHessianmatrix as ameans of testingwhether a function is convex). Because
g1(x) is on the left-hand side of a less-than-or-equal-to constraint, it defines a convex
set. The second constraint is linear in x1 and x2, thus we know that it defines a convex
set. The overall feasible region of the problem is defined by the intersection of the
feasible regions defined by each constraint, each of which is convex. Thus, the overall
feasible region of the problem is convex. Figure 4.17 illustrates the feasible region
defined by each constraint and the overall feasible region of the problem. �

Fig. 4.17 Feasible region of
optimization problem in
Example 4.3
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As another example of using the intersection property, recall that in Example 4.2
we note that each constraint of the Variance-Minimization Problem, which is intro-
duced in Section 4.1.3.2, is linear. Thus, each constraint individually defines a convex
set. Because the feasible region of the overall problem is defined as the intersection
of these sets, the problem’s overall feasible region is convex.

4.4.3 Determining if an Objective Function is Convex

The definition of a convex function is given in Section B.2. Although it is possible
to show that an objective function is convex using this basic definition, it is typically
easier to test whether a function is convex by determining whether its Hessian matrix
is positive semidefinite. If it is the function is convex, otherwise the function is not
(cf. Section B.2 for further details). We demonstrate this with the following example.

Example 4.4 Recall the Packing-Box Problem that is introduced in Section 4.1.1.1.
This problem is formulated as:

max
h,w,d

hwd

s.t. 2wh + 2dh + 6wd ≤ 60

w ≥ 0

h ≥ 0

d ≥ 0.

Converting this problem to standard form it becomes:

min
h,w,d

f (h,w, d) = −hwd

s.t. 2wh + 2dh + 6wd − 60 ≤ 0

− w ≤ 0

− h ≤ 0

− d ≤ 0.

The Hessian of the objective function is:

∇2 f (h,w, d) =
⎡

⎣
0 −d −w

−d 0 −h
−w −h 0

⎤

⎦ ,

which is not positive semidefinite. Thus, the objective function of this problem is not
convex and as such this is not a convex optimization problem. �
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It is important to note that the definition of a convex optimization problem only
requires the objective function to be convex on the feasible region. The following
example demonstrates why this is important.

Example 4.5 Consider the unconstrained single-variable optimization problem:

min
x

f (x) = sin(x).

We have:
∇2 f (x) = − sin(x),

which we know varies in sign for different values of x . Thus, this unconstrained
optimization problem is not convex.

Suppose we add bound constraints and the problem becomes:

min
x

f (x) = sin(x)

s.t. π ≤ x ≤ 2π.

The Hessian of the objective function remains the same. In this case, however, we
only require the Hessian to be positive semidefinite over the feasible region (i.e., for
values of x ∈ [π, 2π ]). Substituting these values of x into the Hessian gives us non-
negative values. Thus, we have a convex optimization problem when the constraints
are added. �

4.4.4 Global Minima of Convex Optimization Problems

Having defined a convex optimization problem and discussed how to determine if
an optimization problem is convex, we now turn to proving the following important
Global-Minimum-of-Convex-Problem Property.

Global-Minimum-of-Convex-Problem Property: Consider an optimization
problem of the form:

min
x

f (x)

s.t. x ∈ X ⊆ R
n,

where X is a convex set and f (x) is a convex function on the set X . Any local
minimum of this problem is also a global minimum.
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We prove this by contradiction. To do so, suppose that this is not true. That
means that there is a point, x∗, which is a local minimum but not a global
minimum. Thus, there is another point, x̂ ∈ X , which is a global minimum
and we have that f (x̂) < f (x∗).

Now, consider convex combinations of x∗ and x̂ , αx∗ + (1 − α)x̂ , where
α ∈ [0, 1]. Because X is convex, we know such points are feasible in the
problem (as this is what it means for the set, X , to be convex). We also know,
because f (x) is convex, that:

f (αx∗ + (1 − α)x̂) ≤ α f (x∗) + (1 − α) f (x̂).

Because x̂ is a global minimum but x∗ is not, we also know that:

α f (x∗) + (1 − α) f (x̂) < α f (x∗) + (1 − α) f (x∗) = f (x∗).

Combining these two inequalities gives:

f (αx∗ + (1 − α)x̂) < f (x∗).

If we let α get close to 1, then αx∗ + (1 − α)x̂ gets close to x∗. The last
inequality says that these points (obtained for different values of α close to
1), which are feasible and close to x∗, give objective-function values that are
better than that of x∗. This contradicts x∗ being a local minimum. Thus, it is
not possible for a convex optimization problem to have a local minimum that
is not also a global minimum.

4.5 Optimality Conditions for Nonlinear Optimization
Problems

Onemethod of finding localminima of nonlinear optimization problems is by analyz-
ing what are known as optimality conditions. There are two varieties of optimality
conditions that we use—necessary and sufficient conditions. Necessary conditions
are conditions that a solution must satisfy to be a local minimum. A solution that sat-
isfies a necessary condition could possibly be a local minimum. Conversely, a vector
of decision-variable values that does not satisfy a necessary condition cannot be a
local minimum. Sufficient conditions are conditions that guarantee that a solution
is a local minimum. However, a solution that does not satisfy a sufficient condition
cannot be ruled out as a possible local minimum.
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With the exception of convex optimization problems, we do not typically have
conditions that are both necessary and sufficient. This means that the best we can
typically do is to use necessary conditions to find solution thatmight be local minima.
Any of those solutions that also satisfy sufficient conditions are guaranteed to be local
minima. However, if there are solutions that only satisfy the necessary but not the
sufficient conditions, they may or may not be local minima. There is no way to
definitively guarantee one way or another.

We have different sets of optimality conditions for the three types of nonlinear
optimization problems that are introduced in Section 4.2—unconstrained, equality-
constrained, and equality- and inequality-constrained problems. We examine each
of these three problem types in turn.

4.5.1 Unconstrained Nonlinear Optimization Problems

An unconstrained nonlinear optimization problem has the general form:

min
x∈Rn

f (x),

where f (x) is the objective being minimized and there are no constraints on the
decision variables.

4.5.1.1 First-Order Necessary Condition for Unconstrained Nonlinear
Optimization Problems

We begin by stating and proving what is known as the first-order necessary condition
(FONC) for a local minimum. We also demonstrate its use and limitations through
some examples

First-Order Necessary Condition for Unconstrained Nonlinear Optimiza-
tion Problems: Consider an unconstrained nonlinear optimization problem of
the form:

min
x∈Rn

f (x).

If x∗ is a local minimum, then ∇ f (x∗) = 0.
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Suppose x∗ is a local minimum. This means that any point close to x∗ must
give an objective-function value that is no less than that given by x∗. Consider
points, x∗ + d, that are close to x∗ (meaning that ||d|| is close to zero). We
can use a first-order Taylor approximation (cf. Appendix A) to compute the
objective-function value at such a point as:

f (x∗ + d) ≈ f (x∗) + d
∇ f (x∗).

Because x∗ is a local minimum,wemust have f (x∗+d) ≥ f (x∗). Substituting
the Taylor approximation in for f (x∗ + d) this can be written as:

f (x∗) + d
∇ f (x∗) ≥ f (x∗).

Subtracting f (x∗) from both sides, this becomes:

d
∇ f (x∗) ≥ 0. (4.10)

This inequalitymust also apply for the point x∗−d. That is, f (x∗−d) ≥ f (x∗).
If we substitute the Taylor approximation for f (x∗ − d) into this inequality,
we have:

d
∇ f (x∗) ≤ 0. (4.11)

Combining (4.10) and (4.11) implies that we must have:

d
∇ f (x∗) = 0.

Finally, note that we must have d
∇ f (x∗) = 0 for any choice of d (so long
as ||d|| is close to zero). The only way that this holds is if ∇ f (x∗) = 0.

Figure 4.18 graphically illustrates the idea behind the FONC. If x∗ is a local
minimum, then there is a small neighborhood of points, which is represented by the
area within the dotted circle, on which x∗ provides the best objective-function value.
Ifwe examine theTaylor approximationof f (x∗+d) and f (x∗−d),whered is chosen
so x∗ + d and x∗ − d are within this dotted circle, this implies that d
∇ f (x∗) = 0.
Because this must hold for any choice of d within the dotted circle (i.e., moving in
any direction away from x∗) this implies that we must have ∇ f (x∗) = 0.
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Fig. 4.18 Illustration of the
FONC for an unconstrained
nonlinear optimization
problem

Points that satisfy the FONC (i.e., points that have a gradient equal to zero) are
also known as stationary points. We now demonstrate the use of the FONC with
the following examples.

Example 4.6 Consider the unconstrained problem:

min
x

f (x) = (x1 − 3)2 + (x2 + 4)2.

To find stationary points, we set the gradient of f (x) equal to zero, which gives:

∇ f (x) =
(
2(x1 − 3)
2(x2 + 4)

)
=

(
0
0

)
,

or:

x∗ =
(

3
−4

)
.

It is easy to confirm that this point is in fact a local and global minimum, because
the objective function is bounded below by zero. It we plug x∗ into f (x) we see that
this point gives an objective-function value of zero, thus we have a local and global
minimum. �

It is important to note from this example that the FONC always results in a sys-
tem of n equations, where n is the number of decision variables in the optimization
problem. This is because the gradient is computed with respect to the decision vari-
ables, giving one first-order partial derivative for each decision variable. The fact
that the number of equations is equal to the number of variables does not necessarily
mean that the FONC has a unique solution. There could be multiple solutions or no
solution, as demonstrated in the following examples.

Example 4.7 Consider the unconstrained problem:

min
x

f (x) = x1 − 2x2.
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The gradient of this objective function is:

∇ f (x) =
(

1
−2

)
,

which cannot be made to equal zero. Because this problem does not have any sta-
tionary points, it cannot have any local minima. In fact, this problem is unbounded.
To see this, note that:

lim
x1→−∞,x2→+∞ f (x) = −∞. �

Example 4.8 Consider the unconstrained problem:

min
x

f (x) = x3 − x2 − 4x − 6.

To find stationary points, we set the gradient of f (x) equal to zero, which gives:

∇ f (x) = 3x2 − 2x − 4 = 0,

or:

x∗ ∈
{
2 − √

52

6
,
2 + √

52

6

}

.

Both of these are stationary points and thus candidate local minima, based on the
FONC.

Figure 4.19 shows the objective function of this problem. Based on visual inspec-
tion, it is clear that only oneof these two stationarypoints, x∗ = (2+√

52)/6, is a local
minimum, whereas (2 − √

52)/6 is a local maximum. Moreover, visual inspection
shows us that this objective function is also unbounded. Although x∗ = (2+√

52)/6
is a local minimum, this particular problem does not have a global minimumbecause:

lim
x→−∞ f (x) = −∞. �

Example 4.8 illustrates an important limitation of the FONC. Although this con-
dition eliminates non-stationary points that cannot be local minima, it does not distin-
guish between local minima and local maxima. This is also apparent in Figure 4.9—
the local minima that are highlighted in this figure are all stationary points where the
gradient is zero. However, there are three local maxima, which are also stationary
points. The following example further demonstrates this limitation of the FONC.
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Fig. 4.19 Objective function
in Example 4.8

Example 4.9 Consider the unconstrained problem:

max
x

f (x),

where the objective is an arbitrary function. To solve this problem, we convert it to
a minimization of the form:

min
x

− f (x),

and search for stationary points:

∇(− f (x)) = −∇ f (x) = 0.

Multiplying through by −1, the FONC can be written as:

∇ f (x) = 0,

which also is the FONC for the following problem:

min
x

f (x).

This means that the FONCs for finding local minima and local maxima of f (x) are
the same and the FONC cannot distinguish between the two. �

4.5.1.2 Second-Order Necessary Condition for Unconstrained
Nonlinear Optimization Problems

This limitation of the FONC—that it cannot distinguish between local minima and
maxima—motivates the second-order necessary condition (SONC) for a local min-
imum, which we now introduce.
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Second-Order Necessary Condition for Unconstrained Nonlinear Opti-
mization Problems: Consider an unconstrained nonlinear optimization prob-
lem of the form:

min
x∈Rn

f (x).

If x∗ is a local minimum, then ∇2 f (x∗) is positive semidefinite.

Suppose x∗ is a local minimum. Consider points, x∗ + d, that are close to
x∗ (meaning that ||d|| is close to zero). We can use a second-order Taylor
approximation to compute the objective-function value at such a point as:

f (x∗ + d) ≈ f (x∗) + d
∇ f (x∗) + 1

2
d
∇2 f (x∗)d.

If x∗ is a local minimum and d is sufficiently small in magnitude wemust have:

f (x∗ + d) ≈ f (x∗) + d
∇ f (x∗) + 1

2
d
∇2 f (x∗)d ≥ f (x∗),

or:

d
∇ f (x∗) + 1

2
d
∇2 f (x∗)d ≥ 0. (4.12)

We further know from the FONC that if x∗ is a local minimum then we must
have ∇ f (x∗) = 0, thus (4.12) becomes:

d
∇2 f (x∗)d ≥ 0,

when we multiply it through by 2. Because this inequality must hold for any
choice of d (so long as ||d|| is close to zero), this implies that ∇2 f (x∗) is
positive semidefinite (cf.SectionA.2 for the definition of a positive semidefinite
matrix).

The SONC follows very naturally from the FONC, by analyzing the second-order
Taylor approximation of f (x) at points close to a local minimum. The benefit of
the SONC is that it can, in many instances, differentiate between local minima and
maxima, as demonstrated in the following examples.

Example 4.10 Consider the following unconstrained optimization problem, which
is introduced in Example 4.6:

min
x

f (x) = (x1 − 3)2 + (x2 + 4)2.
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We know from Example 4.6 that:

x∗ =
(

3
−4

)
,

is the only stationary point. We also conclude in Example 4.6 that this point is a local
and global minimum, by showing that the objective function attains its lower bound
at this point. We can further compute the Hessian of the objective, which is:

∇2 f (x) =
[
2 0
0 2

]
,

and is positive semidefinite, confirming that the stationary point found satisfies the
SONC. �

Example 4.11 Consider the following unconstrained optimization problem, which
is introduced in Example 4.8:

min
x

f (x) = x3 − x2 − 4x − 6.

We know from Example 4.8 that this problem has two stationary points:

x∗ ∈
{
2 − √

52

6
,
2 + √

52

6

}

.

The Hessian of this objective function is:

∇2 f (x) = 6x − 2.

If we substitute the two stationary points into this Hessian we see that:

∇2 f ((2 − √
52)/6) = −√

52 < 0,

and:
∇2 f ((2 + √

52)/6) = √
52 > 0.

The Hessian is not positive semidefinite at (2 − √
52)/6, thus this point cannot be

a local minimum, which is confirmed graphically in Figure 4.19. The Hessian is
positive semidefinite at (2+ √

52)/6, thus this point remains a candidate local min-
imum (because it satisfies both the FONC and SONC). We can graphically confirm
in Figure 4.19 that this point is indeed a local minimum. �
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Example 4.12 Consider the unconstrained optimization problem:

min
x

f (x) = sin(x1 + x2).

The FONC is:

∇ f (x) =
(
cos(x1 + x2)
cos(x1 + x2)

)
=

(
0
0

)
,

which gives stationary points of the form:

x∗ =
(
x1
x2

)
,

where:

x1 + x2 ∈
{
· · · ,−3π

2
,−π

2
,
π

2
,
3π

2
, · · ·

}
.

The Hessian of the objective function is:

∇2 f (x) =
[− sin(x1 + x2) − sin(x1 + x2)

− sin(x1 + x2) − sin(x1 + x2)

]
.

The determinants of the principal minors of this matrix are − sin(x1 + x2),
− sin(x1 + x2), and 0. Thus, values of x∗ for which − sin(x1 + x2) ≥ 0 satisfy
the SONC. Substituting the stationary points found above into − sin(x1 + x2) gives
points of the form:

x∗ =
(
x1
x2

)
,

where:

x1 + x2 ∈
{
· · · ,−5π

2
,−π

2
,
3π

2
,
7π

2
, · · ·

}
,

that satisfy both the FONC and SONC and are candidate local minima. We further
know that the sine function is bounded between −1 and 1. Because these values of
x that satisfy both the FONC and SONC make the objective function attain its lower
bound of −1, we know that these points are indeed global and local minima. �

Although the SONC can typically distinguish between local minima and max-
ima, points that satisfy the FONC and SONC are not necessarily local minima, as
demonstrated in the following example.
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Example 4.13 Consider the unconstrained optimization problem:

min
x

f (x) = x3.

The FONC is ∇ f (x) = 3x2 = 0, which gives x∗ = 0 as the unique stationary point.
We further have that ∇2 f (x) = 6x and substituting x∗ = 0 into the Hessian gives
a value of zero, meaning that it is positive semidefinite. Thus, this stationary point
also satisfies the SONC. However, visual inspection of the objective function, which
is shown in Figure 4.20, shows that this point is not a local minimum. Instead, it is
a point of inflection or a saddle point. �

Fig. 4.20 Objective function
in Example 4.13

0

The stationary point found in Example 4.13 is an example of a saddle point.
A saddle point is a stationary point that is neither a local minimum nor maximum.
Stationary points that have an indefinite Hessian matrix (i.e., the Hessian is neither
positive nor negative semidefinite) are guaranteed to be saddle points. However,
Example 4.13 demonstrates that stationary points where the Hessian is positive or
negative semidefinite can be saddle points as well.

This limitation of the FONC and the SONC—that they cannot eliminate saddle
points—motivates our study of second-order sufficient conditions (SOSCs). A point
that satisfies the SOSC is guaranteed to be a local minimum. The limitation of the
SOSC, however, is that it is not typically a necessary condition. This means that
there could be local minima that do not satisfy the SOSC. Thus, points that satisfy
the FONC and SONC but do not satisfy the SOSC are still candidates for being local
minima. The one exception to this is a convex optimization problem, in which case
we have conditions that are both necessary and sufficient. We begin with a general
SOSC that can be applied to any problem. We then consider the special case of
convex optimization problems.
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4.5.1.3 General Second-Order Sufficient Condition for Unconstrained
Nonlinear Optimization Problems

We now state and demonstrate the general SOSC that can be applied to any problem.

General Second-Order Sufficient Condition for Unconstrained Nonlinear
Optimization Problems: Consider an unconstrained nonlinear optimization
problem of the form:

min
x∈Rn

f (x).

If x∗ satisfies ∇ f (x∗) = 0 and ∇2 f (x∗) is positive definite, then x∗ is a local
minimum.

Let λ be the smallest eigenvalue of ∇2 f (x∗). If we consider a point x∗ + d
that is close to x∗ (i.e., by choosing a d with ||d|| that is close to zero), the
objective-function value at this point is approximately:

f (x∗ + d) ≈ f (x∗) + d
∇ f (x∗) + 1

2
d
∇2 f (x∗)d.

Because x∗ is assumed to be stationary, we can rewrite this as:

f (x∗ + d) − f (x∗) ≈ 1

2
d
∇2 f (x∗)d. (4.13)

Using the Quadratic-Form Bound that is discussed in Section A.1, we further
have that:

1

2
d
∇2 f (x∗)d ≥ 1

2
λ||d||2 > 0, (4.14)

where the last inequality follows from ∇2 f (x∗) being positive definite, mean-
ing that λ > 0. Combining (4.13) and (4.14) gives:

f (x∗ + d) − f (x∗) > 0,

meaning that x∗ gives an objective-function value that is strictly better than
any point that is close to it. Thus, x∗ is a local minimum.

TheSOSC follows a similar line of reasoning to theSONC.By analyzing a second-
order Taylor approximation of the objective function at points close to x∗, we can
show that x∗ being stationary and the Hessian being positive definite is sufficient for
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x∗ to be a local minimum. We demonstrate the use of the SOSC with the following
examples.

Example 4.14 Consider the following unconstrained optimization problem, which
is introduced in Example 4.6:

min
x

f (x) = (x1 − 3)2 + (x2 + 4)2.

This problem has a single stationary point:

x∗ =
(

3
−4

)
,

and the Hessian of the objective function is positive definite at this point. Because
this point satisfies the SOSC, it is guaranteed to be a local minimum. �

Example 4.15 Consider the following unconstrained optimization problem, which
is introduced in Example 4.8:

min
x

f (x) = x3 − x2 − 4x − 6.

This problem has two stationary points:

x∗ ∈
{
2 − √

52

6
,
2 + √

52

6

}

,

and the Hessian of the objective is positive definite at (2 + √
52)/6. Because this

point satisfies the SOSC, it is guaranteed to be a local minimum, as confirmed in
Figure 4.19. �

As discussed above, a limitation of the SOSC is that it is not a necessary condition
for a point to be a local minimum. This means that there can be points that are
local minima, yet do not satisfy the SOSC. We demonstrate this with the following
example.

Example 4.16 Consider the following unconstrained optimization problem, which
is introduced in Example 4.12:

min
x

f (x) = sin(x1 + x2).

Points of the form:

x∗ =
(
x1
x2

)
,
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where:

x1 + x2 ∈
{
· · · ,−5π

2
,−π

2
,
3π

2
,
7π

2
, · · ·

}
,

satisfy both the FONC and SONC. However, the determinant of the second leading
principal minor of the Hessian of the objective function is zero at these points. Thus,
the Hessian is only positive semidefinite (as opposed to positive definite) at these
points. As such, these points do not satisfy the SOSC and are not guaranteed to
be local minima on the basis of that optimality condition. However, we argue in
Example 4.12 that because the objective function attains its lower bound of −1 at
these points, they must be local and global minima. Thus, this problem has local
minima that do not satisfy the SOSC. �

4.5.1.4 Second-Order Sufficient Condition for Convex Unconstrained
Optimization Problems

In the case of a convex optimization problem, it is much easier to guarantee that a
point is a global minimum. This is because the FONC alone is also sufficient for a
point to be a global minimum. This means that once we find a stationary point of a
convex unconstrained optimization problem, we have a global minimum.

Sufficient Condition for Convex Unconstrained Optimization Problems:
Consider an unconstrained nonlinear optimization problem of the form:

min
x∈Rn

f (x).

If the objective function, f (x), is convex then the FONC is sufficient for a
point to be a global minimum.

A differentiable convex function has the property that the tangent line to the
function at any point, x∗, lies below the function (cf. Section B.2 for further
details). Mathematically, this means that:

f (x) ≥ f (x∗) + ∇ f (x∗)
(x − x∗), ∀ x, x∗.

If we pick an x∗ that is a stationary point, then this inequality becomes:

f (x) ≥ f (x∗), ∀ x,

which is the definition of a global minimum.
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This proposition follows very simply from the properties of a convex function.
The basic definition of a convex function is that every secant line connecting two
points on the function be above the function. Another definition for a convex function
that is once continuously differentiable is that every tangent line to the function is
below the function. This gives the inequality in the proof above. If we examine the
tangent line at a stationary point, such as that shown in Figure 4.21, the tangent is a
horizontal line. Because the function must be above this horizontal line, that means it
cannot attain a value that is lower than the value given by the stationary point, which
is exactly the definition of a global minimum.

We demonstrate the use of this property with the following example.

Example 4.17 Consider the unconstrained nonlinear optimization problem:

min
x

f (x) = x21 + x22 + 2x1x2.

The FONC is:

∇ f (x) =
(
2x1 + 2x2
2x1 + 2x2

)
=

(
0
0

)
,

which gives stationary points of the form:

Fig. 4.21 Illustration of proof of sufficiency of FONC for a convex unconstrained optimization
problem

x∗ =
(

x
−x

)
.

We further have that:

∇2 f (x) =
[
2 2
2 2

]
,
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which is positive semidefinite for all x . This means that the objective function is
convex and this is a convex optimization problem. Thus, the stationary points we
have found are global minima, because the FONC is sufficient for finding global
minima of a convex optimization problem. �

Finally, it is worth noting that the stationary points that are found in Example 4.17
do not satisfy the general SOSC, because the Hessian of the objective is not positive
definite. Nevertheless, we can conclude that the stationary points found are global
minima, because the problem is convex. This, again, demonstrates the important
limitation of the SOSC,which is that it is generally only a sufficient and not necessary
condition for local minima.

4.5.2 Equality-Constrained Nonlinear Optimization
Problems

We now examine optimality conditions for equality-constrained nonlinear optimiza-
tion problems. As with the unconstrained case, we begin by first discussing and
demonstrating the use of an FONC for a local minimum. Although the SONC and
SOSC for unconstrained problems can be generalized to the constrained case, these
conditions are complicated. Thus, we restrict our attention to discussing sufficient
conditions for the special case of a convex equality-constrained problem. More
general cases of equality-constrained problems are analyzed by Bertsekas [2] and
Luenberger and Ye [7].

The FONC that we discuss also has an important technical requirement, known
as regularity. We omit this regularity requirement from the statement of the FONC
and instead defer discussing regularity to Section 4.5.2.2. This is because in many
cases the regularity condition is satisfied or does not affect the optimality conditions.
However, we provide an example in Section 4.5.2.2 that shows how a local minimum
can fail to satisfy the FONC if the regularity condition is not satisfied.

First-Order Necessary Condition for Equality-Constrained Nonlinear
Optimization Problems: Consider an equality-constrained nonlinear opti-
mization problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0.
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If x∗ is a local minimum of this problem, then there exist m Lagrange multi-
pliers, λ∗

1, λ
∗
2, . . . , λ

∗
m , such that:

∇ f (x∗) +
m∑

i=1

λ∗
i ∇hi (x

∗) = 0.

The FONC for an equality-constrained problem require us to solve not only for
values of the decisions variables in the original problem (i.e., for x) but also for an
additional set ofm Lagrange multipliers. Note that the number of Lagrange multipli-
ers is always equal to the number of equality constraints in the original problem. We
demonstrate the use of the FONC and Lagrange multipliers to find candidate local
minima in the following example.

Example 4.18 Consider the equality-constrained problem:

min
x

f (x) = 4x21 + 3x22 + 2x1x2 + 4x1 + 6x2 + 3

s.t. h1(x) = x1 − 2x2 − 1 = 0

h2(x) = x21 + x22 − 1 = 0.

To apply the FONC, we define two Lagrange multipliers, λ1 and λ2, which are
associated with the two constraints. The FONC is then:

∇ f (x∗) +
2∑

i=1

λ∗
i ∇hi (x

∗) = 0,

or: (
8x∗

1 + 2x∗
2 + 4

6x∗
2 + 2x∗

1 + 6

)
+ λ∗

1

(
1

−2

)
+ λ∗

2

(
2x∗

1
2x∗

2

)
=

(
0
0

)
.

Note that this is a system of two equations with four unknowns—the two original
decision variables (x1 and x2) and the two Lagrange multipliers (λ1 and λ2). We do
have two additional conditions that x must satisfy, which are the original constraints
of the problem. If we add these two constraints, we now have the following system
of four equations with four unknowns:

8x∗
1 + 2x∗

2 + 4 + λ∗
1 + 2λ∗

2x
∗
1 = 0

6x∗
2 + 2x∗

1 + 6 − 2λ∗
1 + 2λ∗

2x
∗
2 = 0

x∗
1 − 2x∗

2 − 1 = 0
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x∗
1
2 + x∗

2
2 − 1 = 0.

This system of equations has two solutions:

(x∗
1 , x

∗
2 , λ

∗
1, λ

∗
2) = (1, 0, 4,−8),

and:
(x∗

1 , x
∗
2 , λ

∗
1, λ

∗
2) = (−3/5,−4/5, 24/25,−6/5).

Because these are the only two values of x and λ that satisfy the constraints of
the problem and the FONC, the candidate values of x that can be local minima are:

(
x∗
1
x∗
2

)
=

(
1
0

)
,

and: (
x∗
1
x∗
2

)
=

(−3/5
−4/5

)
.

We know that this problem is bounded, because the feasible region is bounded and
the objective function does not asymptote. Thus, we know one of these two candidate
points must be a global minimum. If we substitute these values into the objective
function we have:

f

(
1
0

)
= 11,

and:

f

(−3/5
−4/5

)
= 3

25
.

Because it gives a smaller objective-function value, we know that:

(
x∗
1
x∗
2

)
=

(−3/5
−4/5

)
,

is the global minimum of this problem. �

This example illustrates an important property of the FONC. When we add the
original constraints of the problem, the number of equations we have is always
equal to the number of unknowns that we solve for. This is because we have
n + m unknowns—n decision variables from the original problem and an additional
m Lagrange multipliers (one for each constraint). We also have n + m equations.
There are n equations that come directly from the FONC, i.e., the:

∇ f (x∗) +
m∑

i=1

λ∗
i ∇hi (x

∗) = 0.
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This is because the gradient vectors have one partial derivative for each of the n orig-
inal problem variables. We also have an additional m equations that come from the
original constraints of the problem.

Note, however, that just as in the unconstrained case, having the same number
of equations as unknowns does not imply that there is necessarily a unique solution
to the FONC. We could have multiple solutions, as we have in Example 4.18, no
solution (which could occur if the problem is infeasible or unbounded), or a unique
solution.

Just as in the unconstrained case, the FONC give us candidate solutions that
could be local minima. Moreover, points that do not satisfy the FONC cannot be
local minima. Thus, the FONC typically eliminate many possible points from further
consideration. Nevertheless, the FONC cannot necessarily distinguish between local
minima, local maxima, and saddle points. The SONC and SOSC for unconstrained
problems can be generalized to the equality-constrained case. However the most
general second-order conditions are beyond the level of this book. Interested readers
are referred tomore advanced texts that cover these topics [2, 7].We, instead, focus on
a sufficient condition for the special case of a convex equality-constrained problem,
which we now state.

Sufficient Condition for Convex Equality-Constrained Nonlinear Opti-
mization Problems: Consider an equality-constrained nonlinear optimization
problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0.

If the constraint functions, h1(x), h2(x), . . . , hm(x), are all linear in x and the
objective, f (x), is convex on the feasible region then the FONC is sufficient
for a point to be a global minimum.

This result follows because an optimization with linear equality constraints and
a convex objective function is a convex optimization problem. Convex optimization
problems have the property that the FONC is sufficient for a point to be a local
minimum [2]. Moreover, we know that any local minimum of a convex problem
is a global minimum (cf. the Global-Minimum-of-Convex-Problem Property that
is discussed in Section 4.4.4). Taken together, these properties give the sufficiency
result. We now demonstrate the use of this property with the following example.
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Example 4.19 Consider the equality-constrained problem:

min
x,y,z

f (x) = (x − 3)2 − 10 + (2y − 4)2 − 14 + (z − 6)2 − 6

s.t. h1(x) = x + y + z − 10 = 0.

To solve this problem we introduce one Lagrange multiplier, λ1. The FONC and the
original constraint of the problem give us the following system of equations:

2(x − 3) + λ1 = 0

4(2y − 4) + λ1 = 0

2(z − 6) + λ1 = 0

x + y + z − 10 = 0.

The one solution to this system of equations is:

(x∗ y∗ z∗ λ∗
1) = (23/9 17/9 50/9 8/9).

The constraint of this problem is linear and the Hessian of the objective function is:

∇2 f (x, y, z) =
⎡

⎣
2 0 0
0 8 0
0 0 2

⎤

⎦ ,

which is positive definite, meaning that the objective function is convex. Thus, the
solution to the FONC is guaranteed to be a global minimum. �

It is important to stress that this is only a sufficient condition. The problem given
in Example 4.18 does not satisfy this condition, because the second constraint is not
linear. Nevertheless, we are able to find a global minimum of the problem in that
example by appealing to the fact that the problem is bounded and, thus, it must have
a well defined global minimum which is also a local minimum. Because the FONC
only gives us two candidate points that could be local minima, we know that the one
that gives the smallest objective-function value is a global minimum.

4.5.2.1 Geometric Interpretation of the First-Order Necessary
Condition for Equality-Constrained Nonlinear Optimization
Problems

A general mathematical proof of the FONC for equality-constrained problems is
beyond the level of this book (interested readers are referred to more advanced texts
[2] for such a proof). We can, however, provide a geometric interpretation of the
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FONC for equality-constrained problems. The FONC can be rewritten as:

∇ f (x∗) = −
m∑

i=1

λ∗
i ∇hi (x

∗),

which says that the gradient of the objective function at a local minimum must be a
linear combination of the gradients of the constraint functions.

To understandwhy this is so, take a simple case of a problemwith a single equality
constraint and suppose that x∗ is a local minimum of the problem. If so, we know that
h1(x∗) = 0 (i.e., x∗ is feasible in the equality constraint). Now, consider directions,
d, inwhich tomove away from x∗.We know that a point, x∗+d, is feasible if and only
if h1(x∗ + d) = 0. If we suppose that ||d|| is close to zero, we can estimate the value
of the constraint function at this point using a first-order Taylor approximation as:

h1(x
∗ + d) ≈ h1(x

∗) + d
∇h1(x
∗).

Because x∗ is feasible, we have that h1(x∗) = 0 and the Taylor approximation
simplifies to:

h1(x
∗ + d) ≈ d
∇h1(x

∗).

Thus, x∗ + d is feasible so long as d
∇h1(x∗) = 0. Put another way, the only
directions in which we can feasibly move away from x∗ are directions that are
perpendicular to the gradient of the constraint function.

Let us now consider what effect moving in a feasible direction, d, away from x∗
would have on the objective-function value. Again, assuming that ||d|| is close to
zero, we can estimate the objective-function value at this point using a first-order
Taylor approximation as:

f (x∗ + d) ≈ f (x∗) + d
∇ f (x∗).

Examining this Taylor approximation tells us that there are three possible things
that can happen to the objective function if we move away from x∗. One is that
d
∇ f (x∗) < 0, meaning that the objective gets better. Clearly, this cannot happen
if x∗ is a local minimum, because that contradicts the definition of a local minimum.
Along the same lines, if d
∇ f (x∗) > 0 then we could feasibly move in the direction
−d and improve the objective function. This is because −d
∇h1(x∗) = 0, meaning
that this is a feasible direction in which tomove away from x∗, and−d
∇ f (x∗) < 0,
meaning that the objective function improves. Clearly this cannot happen either. The
third possibility is that d
∇ f (x∗) = 0, meaning that the objective remains the same.
This is the only possibility that satisfies the requirement of x∗ being a local minimum.

In other words, if x∗ is a local minimum, then we want to ensure that the only
directions that we can feasibly move in are perpendicular to the gradient of the
objective function. The FONC ensures that this is true, because it forces the gradient
of the objective function to be a multiple of the gradient of the constraint. That way
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if we have a feasible direction, d, which has the property that d
∇h1(x∗) = 0 then
we also have that:

d
∇ f (x∗) = −λ1d

∇h1(x

∗) = 0,

where the first equality comes from the FONC. With more than one constraint, we
have to ensure that directions that are feasible to move in with respect to all of the
constraints do not give an objective function improvement, which the FONC does.

Figure 4.22 graphically illustrates the FONC for a two-variable single-constraint
problem. The figure shows the contour plot of the objective function and a local
minimum, x∗, which gives an objective-function value of 0. The gradient of the
constraint function points downward, thus the only directions that we can feasibly
move away from x∗ (based on the first-order Taylor approximation) is given by the
dashed horizontal line. However, looking at the objective function gradient at this
point, we see that these feasible directions we can move in give no change in the
objective-function value.

Fig. 4.22 Illustration of the FONC for an equality-constrained problem

Figure 4.23 demonstrates why a point that violates the FONC cannot be a local
minimum. In this case, ∇ f (x∗) is not a multiple of ∇h1(x∗). Thus, if we move away
from x∗ in the direction d, which is feasible based on the first-order Taylor approxi-
mation of the constraint function, the objective function decreases. This violates the
definition of a local minimum.
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Fig. 4.23 Illustration of a point for which the FONC for an equality-constrained problem fails

4.5.2.2 An Added Wrinkle—Regularity

The FONC for equality-constrained problems has one additional technical require-
ment, which is known as regularity. A point is said to be regular if the gradients
of the constraint functions at that point are all linearly independent. As the follow-
ing example demonstrates, problems can have local minima that do not satisfy the
regularity requirement, in which case they may not satisfy the FONC.

Example 4.20 Consider the equality-constrained problem:

min
x

f (x) = 2x1 + 2x2

s.t. h1(x) = (x1 − 1)2 + x22 − 1 = 0

h2(x) = (x1 + 1)2 + x22 − 1 = 0.

To apply the FONC to this problem, we define two Lagrange multipliers, λ1 and λ2,
associated with the two constraints. The FONC and constraints of the problem are:

2 + 2λ1(x1 − 1) + 2λ2(x1 + 1) = 0

2 + 2λ1x2 + 2λ2x2 = 0

(x1 − 1)2 + x22 − 1 = 0

(x1 + 1)2 + x22 − 1 = 0.

Simultaneously, solving the two constraints gives (x1, x2) = (0, 0). Substituting
these values into the FONC gives:
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2 − 2λ1 + 2λ2 = 0

2 = 0,

which clearly has no solution.
However, (x1, x2) = (0, 0) is the only feasible solution in the constraints, thus

it is by definition a global and local minimum. This means that this problem has a
local minimum that does not satisfy the FONC. �

Figure 4.24 illustrates why the FONC fails in Example 4.20. The figure shows
the feasible regions defined by each of the two constraints and x∗, which is the
unique feasible solution. Because x∗ is the only feasible solution, it is by definition a
local and global minimum. However, at this point the gradients of the constraints are
the two horizontal vectors shown in the figure, which are not linearly independent.
Because the gradient of the objective function is not horizontal, it is impossible to
write it as a linear combination of the constraint gradients. This is a consequence
of the problem in Example 4.20 having a local minimum that violates the regularity
assumption.

Fig. 4.24 Illustration of why
the FONC fails for the
equality-constrained
problem in Example 4.20

It isworth noting that a point that violates the regularity assumption can still satisfy
the FONC. For instance, if the objective function of the problem in Example 4.20 is
changed to f (x) = 2x1, the gradient of the objective function becomes:

∇ f (x∗) =
(
2
0

)
.

This gradient is a horizontal vector and can be written as a linear combination of
the constraint function gradients. Interested readers are referred to more advanced
texts [2], which discuss two important aspects of this regularity issue. One is a
more general version of the FONC that does not require regularity. The other is
what is known as constraint-qualification conditions. A problem that satisfies these
constraint-qualification conditions are guaranteed to have local minima that satisfy
the FONC.
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4.5.3 Equality- and Inequality-Constrained Nonlinear
Optimization Problems

As in the equality-constrained case, we examine equality- and inequality-constrained
problems by using a FONC. We then discuss sufficient conditions for the special
case of a convex equality- and inequality-constrained problem. Interested readers
are referred to more advanced texts [2, 7] for the more general SONC and SOSC for
equality- and inequality-constrained problems. As in the equality-constrained case,
the FONC for inequality- and equality-constrained problems also have a regularity
requirement. We again omit the regularity requirement from the statement of the
FONC and instead defer discussion of this requirement to Section 4.5.3.2.

First-Order Necessary Condition for Equality- and Inequality-
Constrained Nonlinear Optimization Problems: Consider an equality-
and inequality-constrained nonlinear optimization problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0.

If x∗ is a local minimum of this problem, then there exist (m + r) Lagrange
multipliers, λ∗

1, λ
∗
2, . . . , λ

∗
m and μ∗

1, μ
∗
2, . . . , μ

∗
r , such that:

∇ f (x∗) +
m∑

i=1

λ∗
i ∇hi (x

∗) +
r∑

j=1

μ∗
j∇g j (x

∗) = 0

μ∗
1 ≥ 0

μ∗
2 ≥ 0

...

μ∗
r ≥ 0
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μ∗
1g1(x

∗) = 0

μ∗
2g2(x

∗) = 0

...

μ∗
r gr (x

∗) = 0.

The FONC for equality-constrained and equality- and inequality-constrained
problems are very similar, in that we retain a condition involving the sum of the
gradients of the objective and constraint functions and Lagrange multipliers. The
FONC for equality- and inequality-constrained problems differ, however, in that the
Lagrangemultipliers on the inequality constraintsmust be non-negative. The third set
of conditions for the equality- and inequality-constrained case is complementary-
slackness.

To understand the complementary-slackness conditions, we first define what it
means for an inequality constraint to be binding as opposed to non-binding at a solu-
tion. Note that these definitions follow immediately from analogous definitions given
for linear inequality constraints in Section 2.7.6. Consider the inequality constraint:

g j (x) ≤ 0.

We say that this constraint is non-binding at x∗ if:

g j (x
∗) < 0.

Thus, a non-binding constraint has the property that when we substitute x∗ into it,
there is a difference or slack between the two sides of the constraint. Conversely, this
constraint is said to be binding at x∗ if:

g j (x
∗) = 0.

Let us now examine the complementary-slackness condition, taking the case of
the j th inequality constraint in the following discussion. The condition requires that:

μ∗
j g j (x

∗) = 0.

In other words, we must have μ∗
j = 0 (i.e., the Lagrange multiplier associated with

the j th constraint is equal to zero), g j (x∗) = 0 (i.e., the j th inequality constraint
is binding), or both. This complementary-slackness condition is analogous to the
complementary-slackness conditions for linear optimization problems, which are
introduced in Section 2.7.6.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2
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The complementary-slackness condition is sometimes abbreviated as:

μ∗
j ≥ 0 ⊥ g j (x

∗
j ) ≤ 0.

What this condition says is that μ∗
j ≥ 0 and g j (x∗

j ) ≤ 0 (as before). Moreover, the ⊥
says that μ∗

j must be perpendicular to g j (x∗
j ), in the sense that their product is zero.

Thus, the FONC for equality- and inequality-constrained problems are often written
more compactly as:

∇ f (x∗) +
m∑

i=1

λ∗
i ∇hi (x

∗) +
r∑

j=1

μ∗
j∇g j (x

∗) = 0

h1(x
∗) = 0

h2(x
∗) = 0

...

hm(x∗) = 0

μ∗
1 ≥ 0 ⊥ g1(x

∗) ≤ 0

μ∗
2 ≥ 0 ⊥ g2(x

∗) ≤ 0

...

μ∗
r ≥ 0 ⊥ gr (x

∗) ≤ 0.

We finally note that the FONC for equality- and inequality-constrained problems
are often referred to as the Karush-Kuhn-Tucker (KKT) conditions. The KKT
conditions are named after the three people who discovered the result. Karush first
formulated the KKT conditions in his M.S. thesis. Quite a few years later Kuhn and
Tucker rediscovered them independently.

Example 4.21 Consider the equality- and inequality-constrained problem (that only
has inequality constraints):

min
x

f (x) = 2x21 + 2x1x2 + 2x22 + x1 + x2

s.t. g1(x) = x21 + x22 − 9 ≤ 0

g2(x) = −x1 + 2x2 + 1 ≤ 0.



4.5 Optimality Conditions for Nonlinear Optimization Problems 259

To write out the KKT conditions we define two Lagrange multipliers, μ1 and μ2,
associated with the two inequality constraints. The KKT conditions and the con-
straints of the original problem are then:

4x1 + 2x2 + 1 + 2μ1x1 − μ2 = 0

2x1 + 4x2 + 1 + 2μ1x2 + 2μ2 = 0

μ1 ≥ 0 ⊥ x21 + x22 − 9 ≤ 0

μ2 ≥ 0 ⊥ −x1 + 2x2 + 1 ≤ 0.

Note that these conditions are considerably more difficult to work with than the
FONC in the unconstrained and equality-constrained cases. This is because we now
have a system of equations and inequalities, the latter coming from the inequality
constraints and the non-negativity restrictions on the Lagrangemultipliers associated
with them.

As such,we approach equality- and inequality-constrained problems by conjectur-
ing which of the inequality constraints are binding and non-binding, and then solving
the resulting the KKT conditions. We must examine all combinations of binding and
non-binding constraints until we find all solutions to the KKT conditions.

With the problem at hand, let us first consider the case in which neither of the
inequality constraints are binding. The complementary-slackness conditions then
imply that μ1 = 0 and μ2 = 0. The gradient conditions are then simplified to:

4x1 + 2x2 + 1 = 0

2x1 + 4x2 + 1 = 0.

Solving the two equations gives:

(x1 x2) = (−1/6 − 1/6),

meaning we have found as a possible KKT point:

(x1 x2 μ1 μ2) = (−1/6 − 1/6 0 0).

However, we only found these values of x andμ by assumingwhich of the constraints
are binding and non-binding (to determine the value of μ) and then solving for x
in the gradient conditions. We must still check to ensure that these values satisfy all
of the other conditions. If we do so, we see that the second inequality constraint is
violated, meaning that this is not a solution to the KKT conditions.
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We next consider the case in which the first inequality constraint is binding and
the second is non-binding. The complementary-slackness conditions then imply that
μ2 = 0 whereas we cannot make any determination about μ1. Thus, the gradient
conditions become:

4x1 + 2x2 + 1 + 2μ1x1 = 0

2x1 + 4x2 + 1 + 2μ1x2 = 0.

This is a system of two equations with three unknowns. We, however, have one
additional equality that x must satisfy,which is the first inequality constraint. Because
we are assuming in this case that this constraint is binding, we impose it as a third
equation:

x21 + x22 − 9 = 0.

Solving this system of equations gives:

(x1 x2 μ1) ≈ (−2.12 − 2.12 − 2.76),

(x1 x2 μ1) ≈ (1.86 − 2.36 − 1.00),

and:
(x1 x2 μ1) ≈ (−2.36 1.86 − 1.00),

meaning that:
(x1 x2 μ1 μ2) ≈ (−2.12 − 2.12 − 2.76 0),

(x1 x2 μ1 μ2) ≈ (1.86 − 2.36 − 1.00 0),

and:
(x1 x2 μ1 μ2) ≈ (−2.36 1.86 − 1.00 0),

are candidate KKT points. However, because μ1 is negative in all three of these
vectors, these are not KKT points.

The third case that we examine is the one in which the first inequality constraint
is non-binding and the second inequality is binding. The complementary-slackness
conditions imply that μ1 = 0 whereas we cannot make any determination regarding
the value of μ2. Thus, the simplified gradient conditions and the second inequality
constraint (which we impose as an equality) are:

4x1 + 2x2 + 1 − μ2 = 0

2x1 + 4x2 + 1 + 2μ2 = 0

−x1 + 2x2 + 1 = 0.
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Solving these three equations gives:

(x1 x2 μ2) = (1/14 −13/28 5/14),

meaning that we have:

(x1 x2 μ1 μ2) = (1/14 −13/28 0 5/14),

as a possible solution KKT point. Moreover, when we check the remaining condi-
tions, we find that they are all satisfied, meaning that this is indeed a KKT point.

The last possible case that we examine is the one in which both of the inequality
constraints are binding. In this case, complementary slackness does not allow us to
fix any of the μ’s equal to zero. Thus, we solve the following system of equations:

4x1 + 2x2 + 1 + 2μ1x1 − μ2 = 0

2x1 + 4x2 + 1 + 2μ1x2 + 2μ2 = 0

x21 + x22 − 9 = 0

−x1 + 2x2 + 1 = 0,

which has the solutions:

(x1 x2 μ1 μ2) ≈ (−2.45 −1.73 −2.66 0.81),

and:
(x1 x2 μ1 μ2) ≈ (2.85 0.93 −2.94 −2.49).

Clearly neither of these are KKT points, because both of them have negative values
for μ1.

Thus, the only solution to the KKT conditions and the only candidate point that
could be a local minimum is (x∗

1 , x
∗
2 ) = (1/14,−13/28). �

Belowwe give an algorithm for findingKKT points.We first, in Step 2, conjecture
which inequalities are binding and non-binding. We next, in Step 3, fix the μ’s
associated with non-binding constraints equal to zero (due to the complementary-
slackness requirement). Next, in Step 4, we solve the system of equations given by
the gradient conditions, all of the equality constraints, and any inequality constraints
that are assumed to be binding. Inequalities that are assumed to be binding are written
as equal-to-zero constraints. We finally check in Step 5 that x satisfies the inequality
constraints that we assume to be non-binding in Step 2 (and which are, thus, ignored
when solving for x and μ). We also check that μ is non-negative. If both of these
conditions are true, then the values found for x and μ in Step 4 of the algorithm
give a KKT point. Otherwise, they do not and the point is discarded from further
consideration.
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Algorithm for Finding KKT Points
1: procedure KKT Find
2: Fix which inequalities are binding and non-binding
3: Fix μ’s associated with inequalities assumed to be non-binding to zero
4: Solve system of equations given by gradient conditions, equality constraints, and

binding inequalities (written as equalities)
5: Check that x satisfies constraints assumed to be non-binding and μ is non-negative
6: end procedure

Although the Algorithm for Finding KKT Points provides an efficient way to
handle the inequalities in the KKT conditions, it is still quite cumbersome. This is
because finding all KKT points typically requires the process be repeated for every
possible combination of binding andnon-binding inequality constraints. The problem
in Example 4.21 has two inequality constraints, which gives us four cases to check.
A problem with r inequality constraints would require checking 2r cases. Clearly,
even a small problem can require many cases to be tested to find all KKT points. For
instance, with r = 10 we must check 1024 cases whereas a 100-inequality problem
would require about 1.27 × 1030 cases to be examined.

There are two ways that we can reduce the search process. First, we use the fact
that for a convex equality- and inequality-constrained problem, the KKT conditions
are sufficient for a global minimum. This implies that as soon as a KKT point is
found, we need not search any further. This is because we know the point that we
have is a global minimum. The second is that we can use knowledge of a problem’s
structure to determine if a set of constraints would be binding or not in an optimum.
We begin by first discussing the convex case.

Sufficient Condition for Convex Equality- and Inequality-Constrained
Nonlinear Optimization Problems: Consider an equality- and inequality-
constrained nonlinear optimization problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0.
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If the equality constraint functions, h1(x), h2(x), . . . , hm(x), are all linear in x
and the inequality-constraint functions, g1(x), g2(x), . . . , gr (x), and the objec-
tive function, f (x), are all convexon the feasible region then theKKTcondition
is sufficient for a point to be a global minimum.

Example 4.22 Consider the following equality- and inequality-constrained problem,
which is given in Example 4.21:

min
x

f (x) = 2x21 + 2x1x2 + 2x22 + x1 + x2

s.t. g1(x) = x21 + x22 − 9 ≤ 0

g2(x) = −x1 + 2x2 + 1 ≤ 0.

Note that the Hessian of the objective function is:

∇2 f (x) =
[
4 2
2 4

]
,

which is positive definite, meaning that the objective function is a convex function.
Moreover, the second inequality constraint is linear, which we know defines a convex
feasible region. The Hessian of the first inequality-constraint function is:

∇2 f (x) =
[
2 0
0 2

]
,

which is also positive definite, meaning that this constraint function is also convex.
Thus, this problem is convex and any KKT point that we find is guaranteed to be a
global minimum. This means that once we find the KKT point (x1, x2, μ1, μ2) =
(1/14,−13/28, 0, 5/14), we can stop and ignore the fourth case, because we have
a global minimum.

It is also worth noting that when we have a convex equality- and inequality-
constrained problem, our goal is to find a KKT point as quickly as possible. Because
we first try the case in which neither constraint is binding and find that the second
constraint is violated, it could make sense to next examine the case in which the
second constraint is binding and the first constraint is non-binding (the third case
that we examine in Example 4.21). This shortcut—assuming that violated constraints
are binding in an optimal solution—will often yield a KKT point more quickly than
randomly examining different combinations of binding and non-binding inequality
constraints. �

Another approach to reducing the number of cases to examine in finding KKT
points is to use knowledge of a problem’s structure to determine if some constraints
are binding or non-binding in an optimum. We demonstrate this approach with the
following example.
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Example 4.23 Consider the Packing-Box Problem, which is formulated as:

max
h,w,d

hwd

s.t. 2wh + 2dh + 6wd ≤ 60

w, h, d ≥ 0,

in Section 4.1.1.1.
This problem has four inequality constraints, thus exhaustively checking all com-

binations of binding and non-binding inequalitieswould result in examining 16 cases.
As opposed to doing this, let us argue that some of the constraints must be binding
or non-binding in an optimal solution. We begin by arguing that each of the non-
negativity constraints must be non-binding. To see this, note that if any of h, w, or d
equals zero, then we have a box with a volume of 0cm3. Setting each of h, w, and d
equal to one gives a box with a larger volume and does not violate the restriction on
the amount of cardboard that can be used. Thus, a box with a volume of zero cannot
be optimal. Knowing that these three constraints must be non-binding in an optimum
has reduced the number of cases that we must examine from 16 to two.

We can, further, argue that the first constraint must be binding, which gives us
only a single case to examine. To see this, note that if the constraint is non-binding,
this means that there is unused cardboard. In such a case, we can increase the value
of any one of h, w, or d by a small amount so as not to violate the 60cm2 restriction,
and at the same time increase the volume of the box. Thus, a box that does not use
the full 60 cm2 of cardboard cannot be optimal. Knowing this, the number of cases
that we must examine is reduced to one.

To solve for an optimal solution, we convert the problem to standard form,
which is:

min
h,w,d

f (h,w, d) = −hwd

s.t. g1(h,w, d) = 2wh + 2dh + 6wd − 60 ≤ 0

g2(h,w, d) = −h ≤ 0

g3(h,w, d) = −w ≤ 0

g3(h,w, d) = −d ≤ 0.

If we assign four Lagrange multipliers, μ1, μ2, μ3, and μ4, to the inequality con-
straints, the KKT conditions are:

−wd + μ1 · (2w + 2d) − μ2 = 0

−hd + μ1 · (2h + 6d) − μ3 = 0

−hw + μ1 · (2h + 6w) − μ4 = 0
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μ1 ≥ 0

μ2 ≥ 0

μ3 ≥ 0

μ4 ≥ 0

μ1 · (2wh + 2dh + 6wd − 60) = 0

−μ2h = 0

−μ3w = 0

−μ4d = 0

2wh + 2dh + 6wd − 60 ≤ 0

−h ≤ 0

−w ≤ 0

−d ≤ 0.

Based on the argument just presented,wemust only consider one case inwhich the
first constraint is binding and the others non-binding. The complementary-slackness
and gradient conditions and binding constraint give us the following system of
equations:

−wd + μ1 · (2w + 2d) = 0

−hd + μ1 · (2h + 6d) = 0

−hw + μ1 · (2h + 6w) = 0

2wh + 2dh + 6wd − 60 = 0,

which has the solution:

(h w d μ1) ≈ (5.48 1.83 1.83 0.46).

Because this problem has a bounded feasible region and the objective does not
asymptote, the point:

(h w d) ≈ (5.48 1.83 1.83),
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which is the only candidate local minimum, must be a local and global minimum of
this problem. �

4.5.3.1 Geometric Interpretation of the Karush-Kuhn-Tucker
Condition for Equality- and Inequality-Constrained Problems

It is helpful to provide some intuition behind the KKT condition for equality-
and inequality-constrained problems. We specifically examine the gradient and
complementary-slackness conditions and the sign restriction on Lagrange multi-
pliers for inequality constraints. Thus, we examine the case of an equality- and
inequality-constrained problem that only has inequality constraints.

To understand how theKKT condition is derived, consider a two-variable problem
with two inequality constraints:

min
x

f (x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0,

and suppose that x∗ is a local minimum of this problem. Figure 4.25 shows the
constraints and feasible region of this problem and where x∗ lies in relation to them.
As shown in the figure, the first constraint is binding at x∗. This is because x∗ is
on the boundary defined by the first constraint, meaning that there is no slack in
the two sides of the constraints. Conversely, the second constraint is non-binding at
x∗. This is because x∗ is not on the boundary of the constraint. Thus, there is slack
between the two sides of the constraint. Because x∗ is a local minimum, we know
that there is a neighborhood of feasible points around x∗ with the property that x∗
has the smallest objective-function value on this neighborhood. This neighborhood
is denoted by the dotted circle centered around x∗ in Figure 4.25. All of the points
in the shaded region that are within the dotted circle give objective-function values
that are greater than or equal to f (x∗).

Now consider the problem

min
x

f (x)

s.t. g1(x) = 0.

Figure 4.26 shows the feasible region of this problem and x∗. This problem has
the same objective function as the problem shown in Figure 4.25, but the feasible
region differs. Specifically, the binding constraint from the original problem is now
an equality constraint and the non-binding constraint is removed. Figure 4.26 shows
the same neighborhood of points around x∗, denoted by the dotted circle. Note that if
x∗ gives the best objective-function value in the neighborhood shown in Figure 4.25
then it also gives the best objective-function value in the neighborhood shown in
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Fig. 4.25 A local minimum
of a two-variable problem
with two inequality
constraints

Figure 4.26. This is because the neighborhood in Figure 4.26 has fewer points (only
those on the boundary where g1(x) = 0, which is highlighted in red in Figure 4.26)
and the objective function of the two problems are identical.

Fig. 4.26 A local minimum
of a two-variable problem
with one equality constraint
that is equivalent to the
problem illustrated in
Figure 4.25

We, thus, conclude that if x∗ is a local minimum of the problem:

min
x

f (x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0,
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and that only the first constraint is binding at x∗, then it must also be a local minimum
of the problem:

min
x

f (x)

s.t. g1(x) = 0.

This second problem is an equality-constrained problem. Thus, we can apply the
FONC for equality-constrained problems, which is discussed in Section 4.5.2, to it.
Doing so gives:

∇ f (x∗) + μ∗
1g1(x

∗) = 0,

where we are letting μ∗
1 denote the Lagrange multiplier on the equality constraint. If

we define μ∗
2 = 0, we can write this gradient condition as:

∇ f (x∗) + μ∗
1g1(x

∗) + μ∗
2g2(x

∗) = ∇ f (x∗) +
r∑

j=1

μ∗
r gr (x

∗) = 0, (4.15)

which is the gradient condition we have if we apply the KKT condition to the original
equality- and inequality-constrained problem. We further have the complementary-
slackness condition that the KKT condition requires. This is because we fix μ∗

2 = 0
when deriving equation (4.15). Note, however, that μ∗

2 is the Lagrange multiplier on
the second inequality constraint. Moreover, the second inequality constraint is the
one that is non-binding at the point x∗, as shown in Figure 4.25.

Thus, the gradient and complementary-slackness requirements of the KKT con-
dition can be derived by applying FONC to the equivalent equality-constrained prob-
lem.

We can also provide some intuition around the sign restriction on Lagrange mul-
tipliers by conducting this type of analysis. Again, if we take the two-constraint
problem:

min
x

f (x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0,

then the gradient condition is:

∇ f (x∗) + μ∗
1g1(x

∗) + μ∗
2g2(x

∗) = ∇ f (x∗) + μ∗
1g1(x

∗) = 0,

because we are assuming that the second inequality constraint is non-binding and by
complementary slackness we have that μ∗

2 = 0. This condition can be rewritten as:

∇ f (x∗) = −μ∗
1g1(x

∗).
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This condition has the same interpretation that is discussed for equality-constrained
problems in Section 4.5.2.1.Namely, it says that the gradient of the objective function
must be linearly dependent with the gradient of the binding inequality constraint at a
local minimum. However, if we further restrict μ∗

1 ≥ 0, then the gradient condition
further says that the gradient of the objective functionmust be a non-positivemultiple
of the gradient of the binding inequality constraint at a local minimum. Figures 4.27
and 4.28 show why this sign restriction is important.

Fig. 4.27 ∇ f (x∗) and
∇g1(x∗) of a two-variable
problem with two inequality
constraints if μ∗

1 ≥ 0

Fig. 4.28 ∇ f (x∗) and
∇g1(x∗) of a two-variable
problem with two inequality
constraints if μ∗

1 ≤ 0

Figure 4.27 shows the gradient of the binding inequality constraint at the local
minimum. We know that this gradient points outward from the feasible region,
because that is the direction in which g1(x) increases. Recall that when we pro-
vide a geometric interpretation of the Lagrange multipliers for equality-constrained
problems in Section 4.5.2.1, we find that the only directions in which we can move
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away from a local minimum are perpendicular to the gradient of the constraint func-
tion. This is no longer true whenwe have inequality constraints. Indeed, we canmove
in any direction away from x∗ into the shaded region that is shown in Figure 4.27.
We know, however, that we cannot move away from x∗ in the direction of ∇g1(x∗).
This is because g1(x∗) = 0 (because the first constraint is binding at x∗) and because
∇g1(x∗) is a direction in which g1(x) increases. Thus, moving in the direction of
∇g1(x∗) would violate the constraint.

Figure 4.27 also shows that if μ∗
1 ≥ 0, then the gradient of f (x∗) is pointing

inward to the feasible region. This is desirable because we know that ∇ f (x∗) is
a direction in which the objective function increases, meaning that −∇ f (x∗) is a
direction in which the objective function decreases. To see this, note that if we move
in a direction, d = −∇ f (x∗), away from x∗, the first-order Taylor approximation of
the objective function at the new point is:

f (x∗ + d) = f (x∗ − ∇ f (x∗)) ≈ f (x∗) − ∇ f (x∗)
∇ f (x∗) < f (x∗).

However, because −∇ f (x∗) points in the same direction as ∇g1(x∗), this direction
that decreases the objective function is an infeasible direction to move in.

Figure 4.28 also shows the gradient of the binding inequality constraint at the
local minimum. It further shows that if μ∗

1 ≤ 0, then ∇ f (x∗) and ∇g1(x∗) point in
the same direction. However, x∗ cannot be a local minimum in this case. The reason
is that if we move in the direction of −∇ f (x∗) away from x∗ (which is a feasible
direction to move in, because∇ f (x∗) and∇g1(x∗) now point in the same direction),
the objective function decreases.

Finally, we can use this same kind of analysis to show the complementary-
slackness condition in another way. Figure 4.29 shows a problem with the same
feasible region as that shown in Figures 4.25–4.28, however the objective function
is now different and the local minimum, x∗, is interior to both inequality constraints.
The gradient condition for this problem would be:

∇ f (x∗) + μ∗
1g1(x

∗) + μ∗
2g2(x

∗) = ∇ f (x∗) = 0,

because we are assuming that both inequality constraints are non-binding and by
complementary slackness we have that μ∗

1 = 0 and μ∗
2 = 0. In some sense, the

complementary-slackness condition says that the gradient condition should ignore
the two non-binding inequality constraints and find a point at which the gradient of
the objective function is equal to zero. Figure 4.29 shows the logic of this condition
by supposing that ∇ f (x∗) �= 0. If the gradient of the objective function is as shown
in the figure, then x∗ cannot be a local minimum, because moving a small distance
in the direction d = −∇ f (x∗) away from x∗ (which is a feasible direction to move
in) reduces the objective function compared to x∗. This, however, contradicts the
definition of a local minimum.
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All of these derivations can be generalized to problems with any number of vari-
ables and equality and inequality constraints. However, we focus on problems with
two variables and only two inequality constraints to simplify this discussion.

Fig. 4.29 ∇ f (x∗) when
inequality constraints are
non-binding

4.5.3.2 Regularity and the Karush-Kuhn-Tucker Condition

When applied to equality- and inequality-constrained problems, the KKT condi-
tion has the same regularity requirement that we have with equality-constrained
problems. However, the definition of a regular point is slightly different when we
have inequality constraints. We say that a point, x∗, is regular in an equality- and
inequality-constrained problem if the gradients of the equality constraints and all of
the inequality constraints that are binding at x∗ are linearly independent.

As with equality-constrained problems, we can have equality- and inequality-
constrained problems, such as in Example 4.20, that have local minima that do not
satisfy this regularity condition. In such a case, the local minimum may not satisfy
the KKT condition. Interested readers are referred to more advanced texts [2] that
further discuss this regularity issue.

4.6 Sensitivity Analysis

The subject of sensitivity analysis is concerned with estimating how changes to
a nonlinear optimization problem affect the optimal objective-function value. Thus,
this analysis is akin to that carried out in Section2.6 for linear optimization problems.
The following Sensitivity Property explains how this sensitivity analysis is conducted
with nonlinear problems.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
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Sensitivity Property: Consider an equality- and inequality-constrained non-
linear optimization problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0.

Suppose x∗ is a local minimum and λ∗
1, λ

∗
2, . . . , λ

∗
m, μ∗

1, μ
∗
2, . . . , μ

∗
r are

Lagrange multipliers associated with the equality and inequality constraints.
Consider the alternate equality- and inequality-constrained nonlinear opti-

mization problem:

min
x∈Rn

f (x)

s.t. h1(x) = u1
h2(x) = u2

...

hm(x) = um
g1(x) ≤ v1
g2(x) ≤ v2

...

gr (x) ≤ vr ,

and let x̂ be a local minimum of this problem. So long as
|u1|, |u2|, . . . , |um |, |v1|, |v2|, . . . , |vr | are sufficiently small, we can estimate
the objective-function value of the new problem as:

f (x̂) ≈ f (x∗) −
m∑

i=1

λ∗
i ui −

r∑

j=1

μ∗
j v j .



4.6 Sensitivity Analysis 273

The Sensitivity Property says that the Lagrange multipliers found in the FONC
of constrained nonlinear optimization problems provide the same sensitivity infor-
mation that the sensitivity vector (which are equal to dual variables) give for linear
optimization problems. It is also important to stress that although the Sensitivity
Property is stated for problems with both equality and inequality constraints, it can
clearly be applied to problems with only one type of constraint. A problem with only
equality constraints would not have any μ’s, because those Lagrange multipliers are
associated with inequality constraints. It can similarly be applied to problems with
only inequality constraints.

The Sensitivity Property does require the changes to the right-hand sides of the
constraints to be small in magnitude, however it does not specify how large a value
of u and v can be used. This is an unfortunate limitation of the theorem and is a dif-
ference compared to sensitivity analysis for linear optimization problems. For linear
optimization problems, we can explicitly determine how much the right-hand side
of constraints can change before the optimal basis changes using condition (2.49).
We have no such result for nonlinear problems.

We now demonstrate the use of the Sensitivity Property with an example.

Example 4.24 Consider the Packing-Box Problem, which is examined in Exam-
ple 4.23:

max
h,w,d

hwd

s.t. 2wh + 2dh + 6wd ≤ 60

h ≥ 0

w ≥ 0

d ≥ 0.

In standard form this problem is:

min
h,w,d

f (h,w, d) = −hwd

s.t. g1(h,w, d) = 2wh + 2dh + 6wd − 60 ≤ 0 (μ1)

g2(h,w, d) = −h ≤ 0 (μ2)

g3(h,w, d) = −w ≤ 0 (μ3)

g3(h,w, d) = −d ≤ 0, (μ4)

where the Lagrange multiplier associated with each constraint is indicated in the
parentheses to right of it. We know from the analysis in Example 4.23 that:

(h w d μ1 μ2 μ3 μ4) ≈ (5.48 1.83 1.83 0.46 0 0 0),

is the unique solution to the KKT condition and is a local and global minimum of
the problem.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
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We wish to know the effect of increasing the amount of cardboard available to
62cm2 and requiring the box to be at least 0.4cm wide. In other words, we want to
estimate the optimal objective-function value of the following problem:

max
h,w,d

hwd

s.t. 2wh + 2dh + 6wd ≤ 62

h ≥ 0

w ≥ 0.4

d ≥ 0.

To apply the Sensitivity Property to answer this question, we must convert the con-
straints of this problem to have the same left-hand sides as the standard-form problem
that is solved in Example 4.23. This is because the Sensitivity Property only tells
us how to estimate the effect of changes to the right-hand side of constraints. The
objective functionmust also be changed to aminimization.We can write the problem
with additional cardboard and the minimum-width requirement as:

min
h,w,d

f (h,w, d) = −hwd

s.t. g1(h,w, d) = 2wh + 2dh + 6wd − 60 ≤ 2

g2(h,w, d) = −h ≤ 0

g3(h,w, d) = −w ≤ −0.4

g3(h,w, d) = −d ≤ 0.

Applying the Sensitivity Property, we can estimate the new optimal objective-
function value as:

f (x̂) ≈ f (x∗) − 2μ∗
1 − 0μ∗

2 + 0.4μ∗
3 − 0μ∗

4 = −18.26 − 0.92 = −19.18.

The Sensitivity Property shows the objective function decreasing when we
increase the amount of available cardboard.Recall, however, that the original problem
is a maximization. We change the objective function to a minimization by multiply-
ing the objective through by−1 to apply the KKT condition. Thus, when we take this
into account, we conclude that the volume of the box increases by approximately
0.92cm3 when we add the cardboard and impose the minimum-width requirement.
�

4.6.1 Further Interpretation of the Karush-Kuhn-Tucker
Condition

As a final note, we can use the Sensitivity Property to gain somemore insights into the
complementary-slackness and sign restrictions in the KKT condition for equality-
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and inequality-constrained problems. For this discussion, consider a simple problem
with one constraint:

min
x∈Rn

f (x)

s.t. g1(x) ≤ 0.

Suppose that we have a localminimum, x∗, and a Lagrangemultiplier,μ∗
1, that satisfy

the KKT condition. Suppose that we change the right-hand side of the constraint so
the problem becomes:

min
x∈Rn

f (x)

s.t. g1(x) ≤ v1,

where v1 < 0 but |v1| is small (i.e., we change the right-hand side to a negative
number that is small in magnitude). We can intuitively determine what happens to
the objective-function value when we make this change.

First consider the case in which the constraint is non-binding in the original
problem. If we change the constraint to g1(x) ≤ v1 where v1 is sufficiently small in
magnitude, then the same x∗ is still feasible and optimal in the new problem. Thus,
the objective-function value does not change at all. The Sensitivity Property tells us
that we can estimate the change in the objective-function value as:

f (x̂) ≈ f (x∗) − μ∗
1v1.

Because we reasoned that the objective-function value is the same, we must have
μ∗
1v1 = 0 or μ∗

1 = 0. This, however, is precisely what complementary slackness
requires. Because the constraint is non-binding, the Lagrange multiplier associated
with it must be zero. The Sensitivity Property further tells us that changing the right-
hand side of a constraint that is not binding by a small amount will not change the
optimal objective-function value.

Now, consider the case in which the constraint is binding in the original problem.
If we change the constraint to g1(x) ≤ v1 the objective-function valuemust get worse
(i.e., larger). This is because the feasible region is reduced in size when the right-
hand side of the constraint is changed. Before the constraint is changed, solutions
for which g1(x) = 0 are feasible. These solutions are no longer feasible when the
right-hand side of the constraint is changed. Thus, the objective function cannot be
better when we make this change. Again, the Sensitivity Property tells us that we
can estimate the change in the objective-function value as:

f (x̂) ≈ f (x∗) − μ∗
1v1.

Because we reasoned that the objective-function value gets worse when we make
the change, this means −μ∗

1v1 ≥ 0 or μ∗
1 ≥ 0, because we have that v1 < 0.

This, however, is the sign restriction that the KKT condition places on Lagrange
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multipliers associated with inequality constraints. Thus, the Sensitivity Property tells
us that whenwe change the right-hand sides of inequality constraints that are binding,
the objective function changes in a specific direction.

This interpretation of the complementary-slackness property required by theKKT
condition is analogous to the derivationof complementary slackness between aprimal
linear optimization problem and its dual in Section 2.7.6.

4.7 Final Remarks

This chapter introduces analyticmethods of solvingnonlinear optimizationproblems.
These rely on analyzing optimality conditions, which are a powerful tool for certain
types of problems. However, in some cases optimality conditions may yields systems
of equations or inequalities that are too difficult to solve. For this reason, iterative
solution algorithms, which is the topic of Chapter 5, are often used. These algorithms
are implemented in software packages and can be likened to using the Simplex
method to solve linear optimization problems.

Our discussion of optimality conditions does not include themore general second-
order conditions for constrained problems. Such conditions are beyond the level of
this book. Interested readers are referred to more advanced texts for a treatment of
such conditions [2, 7]. More advanced texts [1] also provide alternate optimality
conditions to the KKT condition that can handle problems that do not satisfy the
regularity requirement and specialized treatment of optimality conditions for convex
optimization problems [3].

4.8 GAMS Codes

This section provides GAMS [4] codes for the main problems considered in this
chapter.GAMScanuse a variety of different software packages, among themMINOS
[8], CONOPT [6], and KNITRO [5], to actually solve an NLPP.

4.8.1 Packing-Box Problem

The Packing-Box Problem, which is introduced in Section 4.1.1.1, has the following
GAMS formulation:

1 variable z;
2 positive variables h, w, d;
3 equations of , cardBoard;
4 of .. z =e= h*w*d;

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_5
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5 cardBoard .. 2*w*h+2*h*d+6*w*d =l= 60;
6 model box /all/;
7 solve box using nlp maximizing z;

Lines 1 and 2 declare variables, Line 3 gives names to the model equations,
Line 4 defines the objective function, Line 5 specifies the constraint, Line 6 defines
the model, and Line 7 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 18.257 +INF .
4 ---- VAR h . 5.477 +INF .
5 ---- VAR w . 1.826 +INF .
6 ---- VAR d . 1.826 +INF .

4.8.2 Awning Problem

An instance of the Awning Problem, which is introduced in Section 4.1.1.2, which
has h = 2 and w = 3 has the following GAMS formulation:

1 scalars h /2/, w /3/;
2 variable z;
3 positive variables x, y;
4 equations of , box;
5 of .. z =e= sqrt(x**2+y**2);
6 box .. y-w*y/x =g= h;
7 model awning /all/;
8 solve awning using nlp minimizing z;

Line 1 declares and sets the values of the scalar parameters, Lines 2 and 3 declare
variables, Line 4 gives names to the model equations, Line 5 defines the objective
function, Line 6 specifies the constraint, Line 7 defines the model, and Line 8 directs
GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 7.023 +INF .
4 ---- VAR x . 5.289 +INF .
5 ---- VAR y . 4.621 +INF .
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4.8.3 Facility-Location Problem

An instance of the Facility-Location Problem, which is introduced in Section 4.1.1.3,
that has three retail locations at coordinates (1, 1), (−1, 2), and (3, 0) that each
receive 10 trucks, has the following GAMS formulation:

1 set ret /1*3/;
2 parameters
3 V(ret)
4 /1 10
5 2 10
6 3 10/
7 x(ret)
8 /1 1
9 2 -1

10 3 3/
11 y(ret)
12 /1 1
13 2 2
14 3 0/;
15 variables z, a, b;
16 equations of;
17 of .. z =e= sum(ret ,2*V(ret)*sqrt(power((x(ret)-a) ,2)+

power((y(ret)-b) ,2)));
18 model facLoc /all/;
19 solve facLoc using nlp minimizing z;

Line 1 declares and defines the set of retail locations. Sets are a construct in
GAMS that allow us to create data, variables, or constraints that are assigned to
different entities being modeled. For instance, in the Facility-Location Problem each
retail location has a pair of coordinates and a fixed number of trucks that must make
deliveries to it as model data. The set allows these to be modeled without having
to individually write out each piece of data individually in the model. Lines 2–14
declare and set the values of the problem parameters, Line 15 declares variables,
Line 16 gives a name to the model equation, Line 17 defines the objective function,
Line 18 defines the model, and Line 19 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 89.443 +INF .
4 ---- VAR a -INF 1.000 +INF .
5 ---- VAR b -INF 1.000 +INF .
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4.8.4 Cylinder Problem

An instance of theCylinder Problem,which is introduced in Section 4.1.1.4, inwhich
N = 10, c1 = 2 and c2 = 0.5, has the following GAMS formulation:

1 scalars N /10/, c1 /2/, c2 /0.5/;
2 variable z;
3 positive variables r, h;
4 equations of;
5 of .. z =e= N*pi*h*r**2-c1*pi*r**2-c2*pi*h*(pi*r**2+2*

pi*r*h)*r**2;
6 model cyl /all/;
7 solve cyl using nlp maximizing z;

Line 1 declares and sets the values of scalar parameters, Lines 2 and 3 declare
variables, Line 4 gives a name to the model equation, Line 5 defines the objective
function, Line 6 defines the model, and Line 7 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 12.174 +INF .
4 ---- VAR r . 0.826 +INF .
5 ---- VAR h . 1.721 +INF .

4.8.5 Machining-Speed Problem

An instance of the Machining-Speed Problem, that is introduced in Section 4.1.2.1,
in which p = 10, m = 1, tp = 1, λ = 0.1, tc = 1.1, C = 1, n = 2, and h = 0.4, has
the following GAMS formulation:

1 scalars p /10/, m /1/, tp /1/, lambda /0.1/, tc /1.1/ , C /1/, n

/2/, h /0.4/;

2 variable z;

3 positive variable v;

4 equations of;

5 of .. z =e= (p-m)/(tp+lambda/v+tc*((C/v)**(1/n))/( lambda/v))-h;

6 model machine /all/;

7 solve machine using nlp maximizing z;

Line 1 declares and sets the values of scalar parameters, Lines 2 and 3 declare
variables, Line 4 gives a name to the model equation, Line 5 defines the objective
function, Line 6 defines the model, and Line 7 directs GAMS to solve it.
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The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 1.286 +INF .
4 ---- VAR v . 0.069 +INF .

4.8.6 Hanging-Chain Problem

An instance of the Hanging-Chain Problem, which is introduced in Section 4.1.2.2,
in which the chain has 10 links and L = 4, has the following GAMS formulation:

1 set links /1*10/;
2 scalars g /9.80665/ , L /4/;
3 variables z, y(links);
4 equations of , height , width;
5 of .. z =e= 50*g*sum(links ,(card(links)-ord(links)

+0.5)*y(links));
6 height .. sum(links ,y(links)) =e= 0;
7 width .. sum(links ,sqrt(10-power(y(links) ,2))) =e= L;
8 model chain /all/;
9 solve chain using nlp minimizing z;

Line 1 declares and defines the set of chain links, Line 2 declares and sets the
values of scalar parameters, Line 3 declares variables, Line 4 gives names to the
model equations, Line 5 defines the objective function, Lines 6 and 7 declare the
constraints, Line 8 defines the model, and Line 9 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF -3.859E+4 +INF .

5 ---- VAR y

7 LOWER LEVEL UPPER MARGINAL

9 1 -INF -3.160 +INF .
10 2 -INF -3.158 +INF .
11 3 -INF -3.154 +INF .
12 4 -INF -3.139 +INF .
13 5 -INF -2.969 +INF .
14 6 -INF 2.969 +INF .
15 7 -INF 3.139 +INF .
16 8 -INF 3.154 +INF .
17 9 -INF 3.158 +INF .
18 10 -INF 3.160 +INF .
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4.8.7 Return-Maximization Problem

The Return-Maximization Problem, which is introduced in Section 4.1.3.1, has the
following GAMS formulation:

1 set asset;
2 alias(asset ,assetA);
3 parameters ret(asset), cov(asset ,asset);
4 scalar s;
5 variable z;
6 positive variable w(asset);
7 equations of , risk , alloc;
8 of .. z =e= sum(asset ,ret(asset)*w(asset));
9 risk .. sum((asset ,assetA),cov(asset ,assetA)*w(asset)*

w(assetA)) =l= s;
10 alloc .. sum(asset ,w(asset)) =e= 1;
11 model invest /all/;
12 solve invest using nlp maximizing z;

Line 1 declares the set of assets and Line 2 declares an alias of this set. Lines 3
and 4 declare the problem parameters, Lines 5 and 6 declare variables, Line 7 gives
names to the model equations, Line 8 defines the objective function, Lines 9 and 10
declare the constraints, Line 11 defines the model, and Line 12 directs GAMS to
solve it.

Note that this GAMS code will not compile without values being assigned to the
set asset and to the parameters ret(asset), cov(asset,asset), and s.

4.8.8 Variance-Minimization Problem

The Variance-Minimization Problem, which is introduced in Section 4.1.3.2, has the
following GAMS formulation:

1 set asset;
2 alias(asset ,assetA);
3 parameters ret(asset), cov(asset ,asset);
4 scalar R;
5 variable z;
6 positive variable w(asset);
7 equations of, earn , alloc;
8 of .. z =e= sum((asset ,assetA),cov(asset ,assetA)*w(asset)*

w(assetA));
9 earn .. sum(asset ,ret(asset)*w(asset)) =g= R;

10 alloc .. sum(asset ,w(asset)) =e= 1;
11 model invest /all/;
12 solve invest using nlp minimizing z;
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Line 1 declares the set of assets and Line 2 declares an alias of this set. Lines 3
and 4 declare the problem parameters, Lines 5 and 6 declare variables, Line 7 gives
names to the model equations, Line 8 defines the objective function, Lines 9 and 10
declare the constraints, Line 11 defines the model, and Line 12 directs GAMS to
solve it.

Note that this GAMS code will not compile without values being assigned to the
set asset and to the parameters ret(asset), cov(asset,asset), and R.

4.8.9 Inventory-Planning Problem

The Inventory-Planning Problem, which is introduced in Section 4.1.3.3, has the
following GAMS formulation:

1 variable z;
2 positive variables xs , xm , xl;
3 equations of;
4 of .. z =e= 10*(xs -(xs**2) /6000) +12*(xm -(xm**2) /6000)

+13*(xl -(xl**2) /6000) -xs -2*xm -4*xl;
5 model inventory /all/;
6 solve inventory using nlp maximizing z;

Lines 1 and 2 declare variables, Line 3 gives a name to the model equation, Line 4
defines the objective function, Line 5 defines the model, and Line 6 directs GAMS
to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 33996.154 +INF .
4 ---- VAR xs . 2700.000 +INF .
5 ---- VAR xm . 2500.000 +INF .
6 ---- VAR xl . 2076.923 +INF .

4.8.10 Economic-Dispatch Problem

The Economic-Dispatch Problem, which is introduced in Section 4.1.4.1, has the
following GAMS formulation:

1 set node;

2 alias(node ,nodeA);

3 parameters a0(node), a1(node), a2(node), D(node), Y(node ,node),

link(node ,node), L(node ,node), minQ(node), maxQ(node);

4 variables z, theta(node), f(node ,node), q(node);

5 positive variable q(node);

6 equations of , demand , balance , flow;
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7 of .. z =e= sum(node ,a0(node)+a1(node)*q(node)+a2(node)*q(node)

**2);

8 demand(node) .. D(node) =e= q(node) + sum(nodeA$(link(node ,

nodeA)),f(nodeA ,node));

9 balance .. sum(node ,D(node)) =e= sum(node ,q(node));

10 flow(node ,nodeA) .. f(node ,nodeA)$(link(node ,nodeA)) =e= Y(node

,nodeA)*sin(theta(node)-theta(nodeA));

11 f.up(node ,nodeA) = L(node ,nodeA);

12 q.lo(node) = minQ(node);

13 q.up(node) = maxQ(node);

14 model dispatch /all/;

15 solve dispatch using nlp minimizing z;

Line 1 declares the set of nodes and Line 2 declares an alias of this set. Line 3
declares the problem parameters, Lines 4 and 5 declare variables, Line 6 gives
names to the model equations, Line 7 defines the objective function, and Lines
8–10 declare the constraints. Note that the constraint in Line 8 only adds flow from
nodeA to node in determining the supply/demand balance constraint for node if
the two nodes are directly linked by a transmission line (which is what the parameter
link(node,nodeA) indicates. Similarly, the constraint in Line 10 only computes
the flow on lines that are directly linked. Line 11 imposes the upper bounds on the
flow variables and Lines 12 and 13 impose the lower and upper bounds on production
at each node. Line 14 defines the model and Line 15 directs GAMS to solve it.

Note that this GAMS code will not compile without values being assigned to the
set node and to the parameters a0(node), a1(node), a2(node), D(node),
Y(node,node), link(node,node), L(node,node), minQ(node), and
maxQ(node).

4.9 Exercises

4.1 Jose builds electrical cable using two types ofmetallic alloys.Alloy 1 is 55%alu-
minum and 45% copper, while alloy 2 is 75% aluminum and 25% copper. The prices
at which Jose can buy the two alloys depends on the amount he purchases. The total
cost of buying x1 tons of alloy 1 is given by:

5x1 + 0.01x21 ,

and the total cost of buying x2 tons of alloy 2 is given by:

4x2 + 0.02x22 .

Formulate a nonlinear optimization problem to determine the cost-minimizing quan-
tities of the two alloys that Jose should use to produce 10 tons of cable that is at least
30% copper.
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4.2 Emma is participating in an L km bicycle race. She is planning on carrying a
hydration bladder on her back to keep herself hydrated during the race. If we let v
denote her average speed during the race in km/h and w the volume of the hydration
bladder in liters, then she consumes water at an average rate of cv3 · (w + 1)2 liters
per hour. Formulate a nonlinear optimization problem to determine how much water
Emma should carry and the average speed at which she should bike to minimize her
race time.

4.3 Vishnu has $35 to spend on any combination of three different goods—apples,
oranges, and bananas. Apples cost $2 each, oranges $1.50 each, and bananas $5 each.
Vishnu measures his happiness from consuming apples, oranges, and bananas using
a utility function. If Vishnu consumes xa apples, xo oranges, and xb bananas, then
his utility is given by:

3 log(xa) + 0.4 log(xo + 2) + 2 log(xb + 3).

Formulate a nonlinear optimization problem to determine how Vishnu should spend
his $35.

4.4 Convert the models formulated for Exercises 4.1–4.3 into standard form for the
type of nonlinear optimization problems that they are.

4.5 Is the model formulated for the Facility-Location Problem that is introduced in
Section 4.1.1.3 a convex optimization problem?

4.6 Is a local minimum of Exercise 4.1 guaranteed to be a global minimum? Explic-
itly explain why or why not.

4.7 What difficulties could arise in applying FONC, SONC, and SOSC to the model
formulated for the Facility-Location Problem that is in Section 4.1.1.3?

4.8 Find all of the KKT points for the model formulated in Exercise 4.3. Are any
of these KKT points guaranteed to be global optima? Explicitly explain why or why
not.

4.9 Using the solution to Exercise 4.8, approximate how much Vishnu’s utility
increases if he has an additional $1.25 to spend and must purchase at least one
orange. Compare your approximation to the actual change in Vishnu’s utility.

4.10 Write a GAMS code for the model formulated in Exercise 4.1.
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