
Chapter 3
Mixed-Integer Linear Optimization

In this chapter, we study mixed-integer linear optimization problems. Also known as
mixed-integer linear programming problems (MILPPs), these are problems with an
objective function and constraints that are all linear in the decision variables. What
sets MILPPs apart from linear programming problems (LPPs) is that at least some of
the variables in MILPPs are constrained to take on integer values. LPPs, conversely,
have no such constraints and all of the variables can take on any continuous value.

This chapter begins by providing a number of illustrative examples to show the
practical significance of MILPPs. Then, a general formulation of the MILPP is pro-
vided. Next, we demonstrate the use of a special type of integer variable known as
a binary variable. We show that binary variables can be used to model a number of
types of nonlinearities and discontinuities whilemaintaining a linearmodel structure.
This use of binary variables is, in some sense, the true power of mixed-integer linear
optimization models. Two solution techniques for MILPPs are then introduced. We
first discuss the use of a branch-and-bound method to solve general MILPPs. We
next introduce a cutting-plane algorithm for MILPPs in which all of the variables
are constrained to take on integer values. Problems with this structure are commonly
referred to as pure-integer linear optimization problems or pure-integer linear pro-
gramming problems (PILPPs). This chapter closes with some final remarks, GAMS
codes for the illustrative examples, and a number of end-of-chapter exercises.

3.1 Motivating Examples

This introductory section provides and explains a number of illustrative examples
to show the practical value of MILPPs. These examples pertain to the energy sector
and cover most of the standard ‘classes’ of MILPPs.

© Springer International Publishing AG 2017
R. Sioshansi and A.J. Conejo, Optimization in Engineering,
Springer Optimization and Its Applications 120, DOI 10.1007/978-3-319-56769-3_3

123

124 3 Mixed-Integer Linear Optimization

3.1.1 Photovoltaic Panel-Repair Problem

A spacecraft has a series of photovoltaic (PV) solar panels installed that must be
repaired. There are two types of repair units, type A and B, that can be used to
repair the PV panels. One type-A unit has a mass of 17 kg and occupies 32 m3 of
space while one type-B unit has a mass of 32 kg and occupies 15 m3. The shuttle
that is available to transport repair units to the spacecraft can only accommodate
up to 136 kg and up to 120 m3. How many units of each type (A and B) should be
transported to maximize the total number of repair units sent to the spacecraft?

There are two decision variables in this problem. We let x1 denote the number
of type-A units transported to the spacecraft and x2 the number of type-B units
transported.

The objective of this problem is to maximize the total number of repair units
transported:

max
x1,x2

x1 + x2.

There are four sets of constraints in this problem. First, we must impose the mass
constraint, which is:

17x1 + 32x2 ≤ 136.

Second, we have the volume constraint:

32x1 + 15x2 ≤ 120.

Third, we must constrain each of x1 and x2 to be non-negative, because transporting
a negative number of repair units is physically meaningless:

x1, x2 ≥ 0.

Finally, we impose a constraint that each of the variables, x1 and x2, must take on
integer values. The most compact way to express this is:

x1, x2 ∈ Z,

as Z is the standard notation for the set of integers.
Whenwe impose this fourth constraint, the twovariables x1 and x2 become integer

variables. This should be contrasted with all of the variables used in formulating
LPPs inChapter 2.Wehaveno restriction in anyof themodels formulated inChapter 2
that the variables take on integer values. Indeed, the Simplexmethod, which is used to
solve LPPs, has no general guarantee that any of the optimal decision variable values
obtained have integer values. It is straightforward to verify that one can formulate a
multitude of LPPs that do not yield integer-valued decision variables.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2

3.1 Motivating Examples 125

Taking all of these elements together, the problem can be formulated as:

max
x1,x2

z = x1 + x2 (3.1)

s.t. 17x1 + 32x2 ≤ 136 (3.2)

32x1 + 15x2 ≤ 120 (3.3)

x1, x2 ≥ 0 (3.4)

x1, x2 ∈ Z. (3.5)

Because problem (3.1)–(3.5) includes integer variables, we refer to it as amixed-
integer linear optimization problem. Indeed, because all of the variables in this
particular problem are restricted to take on integer values, we can refer to it more
specifically as a pure-integer linearoptimizationproblem. Thedistinctionbetween
a mixed- and pure-integer optimization problem is that the former can include a mix
of variables that are and are not restricted to take on integer values. The latter only
includes variables restricted to take on integer values.

Before proceeding, we finally note that we can express this optimization problem
in the even more compact form:

max
x1,x2

z = x1 + x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ∈ Z
+,

where Z+ is the standard notation for the set of non-negative integers.
The feasible region of problem (3.1)–(3.5) is shown in Figure 3.1. All of the

feasible (integer) solutions are indicated in this figure by small circles and we see

Fig. 3.1 Geometrical
representation of the feasible
region of the Photovoltaic
Panel-Repair Problem

126 3 Mixed-Integer Linear Optimization

Fig. 3.2 Geometrical
representation of the feasible
region of the Photovoltaic
Panel-Repair Problem with
objective-function contour
plot overlaid

that there are a total of 15 feasible points: (x1, x2) can feasibly equal any of (0, 0),
(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3),
(3, 0), or (3, 1).

Figure 3.2 overlays the contour plot of the objective function on the feasible region.
Visual inspection of this figure shows that of the 15 feasible solutions, (x1, x2) =
(2, 3) is optimal because it allows the most (five) repair units to be sent to the
spacecraft.

Wefinally note that the Photovoltaic Panel-Repair Problem is a simplified instance
of what is known as a knapsack problem.

3.1.2 Natural Gas-Storage Problem

A natural gas supplier needs to build gas-storage facilities with which to supply
customers in two cities. The company has three possible sites where storage facilities
can be built. Table 3.1 indicates how much revenue is earned (in $ billion) by the
company per GJ of natural gas supplied from each of the three prospective facilities
to each of the two cities.

Table 3.2 summarizes the building cost (in $ billion) of each of the three prospec-
tive gas-storage facilities. It also lists the capacity of each of the facilities, in GJ,
if that facility is built. Note that each of the costs is incurred if the corresponding
gas-storage facility is built, irrespective of how much gas is ultimately stored there.

3.1 Motivating Examples 127

Table 3.1 Revenue earned
from each potential
gas-storage facility
[$ billion/GJ] in the Natural
Gas-Storage Problem

City 1 City 2

Storage Facility 1 1 6

Storage Facility 2 2 5

Storage Facility 3 3 4

Table 3.2 Building cost and
capacity of gas-storage
facilities in the Natural
Gas-Storage Problem

Storage Facility Cost [$ billion] Capacity [GJ]

1 8 7

2 9 8

3 7 9

Finally, Table 3.3 summarizes the demand for natural gas (in GJ) in each city,
which must be exactly met. The company would like to determine which (if any)
of the three gas-storage facilities to build and how much gas to supply from each
facility built to each city to maximize its profit.

Table 3.3 Demand for
natural gas in each city in the
Natural Gas-Storage Problem

City Demand [GJ]

1 10

2 6

To formulate this problem, we introduce two sets of variables. The first, which we
denote x1, x2, and x3, represent the company’s decision of whether to build each of
the three storage facilities. We model these using a specific type of integer variable,
called a binary variable. As the name suggests, a binary variable is restricted to take
on two values, which are almost always 0 and 1. Binary variables are almost always
used to model logical conditions or decisions. In this example, we define each of
the three x variables to represent the logical decision of whether to build each of the
three storage facilities. Thus, we define each of these variables as:

x1 =
{
1, if gas-storage facility 1 is built,
0, if gas-storage facility 1 is not built,

x2 =
{
1, if gas-storage facility 2 is built,
0, if gas-storage facility 2 is not built,

and:

x3 =
{
1, if gas-storage facility 3 is built,
0, if gas-storage facility 3 is not built.

128 3 Mixed-Integer Linear Optimization

We next define an additional set of six variables, which we denote yi, j where
i = 1, 2, 3 and j = 1, 2. The variable yi, j is defined as the amount of natural gas (in
GJ) supplied by storage facility i to city j .

The company’s objective is to maximize its profit, which is defined as revenue
less cost. Using the data reported in Table 3.1, the company’s revenue is defined as:

1y1,1 + 2y2,1 + 3y3,1 + 6y1,2 + 5y2,2 + 4y3,2.

The company incurs costs for building gas-storage facilities, which are summarized
in Table 3.2. Indeed, we can compute the company’s cost by multiplying the cost
data reported in Table 3.2 by each of the corresponding x variables. This gives:

8x1 + 9x2 + 7x3,

as the company’s cost. To understand this expression, note that if gas-storage facility i
is not built, then xi = 0. In that case, the product of xi and the corresponding cost
will be zero, meaning that the company incurs no cost for building storage facility i .
If, on the other hand, facility i is built, then xi = 1 and the product of xi and the
corresponding cost gives the correct cost. Taking the revenue and cost expressions
together, the company’s objective function is:

max
x,y

y1,1 + 2y2,1 + 3y3,1 + 6y1,2 + 5y2,2 + 4y3,2 − (8x1 + 9x2 + 7x3).

This problem has four types of constraints. The first imposes the requirement that
the demand in each city is met:

y1,1 + y2,1 + y3,1 = 10,

and:
y1,2 + y2,2 + y3,2 = 6.

We next need constraints that ensure that none of the three gas-storage facilities
operate above maximum capacities. One may be tempted to write these constraints
as:

y1,1 + y1,2 ≤ 7,

y2,1 + y2,2 ≤ 8,

and:
y3,1 + y3,2 ≤ 9.

However, it is actually preferable to write these constraints as:

y1,1 + y1,2 ≤ 7x1,

3.1 Motivating Examples 129

y2,1 + y2,2 ≤ 8x2,

and:
y3,1 + y3,2 ≤ 9x3.

The reason for this is that the second set of constraints, with the x’s on the right-
hand sides, impose an additional restriction that a gas-storage facility cannot operate
(meaning that its maximum capacity is zero) if the facility is not built. To understand
this, let us examine the first of the three constraints:

y1,1 + y1,2 ≤ 7x1.

If gas-storage facility 1 is built, then x1 = 1 and this constraint simplifies to:

y1,1 + y1,2 ≤ 7,

which is what we want (the gas-storage facility can hold at most 7 GJ of gas).
Otherwise, if the facility 1 is not built, then x1 = 0 and the constraint simplifies to:

y1,1 + y1,2 ≤ 0.

This is, again, what we want in this case because if facility 1 is not built, then it can
hold 0 GJ of gas. These three constraints are an example of logical constraints. This
is because they encode a logical condition. In this case, a gas-storage facility only
has capacity available if it is built. Otherwise, it has zero capacity available. We next
require the y variables to be non-negative:

y1,1, y1,2, y2,1, y2,2, y3,1, y3,2 ≥ 0.

We finally require the x variables to be binary:

x1, x2, x3 ∈ {0, 1}.

Taking all of these elements together, the MILPP for this problem is:

max
x,y

z = y1,1 + 2y2,1 + 3y3,1 + 6y1,2 + 5y2,2 + 4y3,2 − 8x1 − 9x2 − 7x3

s.t. y1,1 + y2,1 + y3,1 = 10

y1,2 + y2,2 + y3,2 = 6

y1,1 + y1,2 ≤ 7x1 (3.6)

y2,1 + y2,2 ≤ 8x2 (3.7)

y3,1 + y3,2 ≤ 9x3 (3.8)

yi, j ≥ 0,∀ i = 1, 2, 3; j = 1, 2

xi ∈ {0, 1},∀ i = 1, 2, 3.

130 3 Mixed-Integer Linear Optimization

The Natural Gas-Storage Problem is a simplified version of a facility-location
problem.

3.1.3 Electricity-Scheduling Problem

An electricity producer needs to supply 50 kW of power to a remote village over the
next hour. To do so, it has three generating units available. The producer must decide
whether to switch each of the three generating units on or not.

If it does switch a generating unit on, the producer must pay a fixed cost to operate
the unit, which is independent of how much energy the unit produces. In addition
to this fixed cost, there is a variable cost that the producer must pay for each kWh
produced by each unit.

If a unit is switched on, it must produce any amount of energy between aminimum
and maximum production level. Otherwise, its production level must equal zero.
Table 3.4 summarizes the operating costs and production limits of the electricity-
production units. The electricity producer would like to schedule the three production
units to minimize the cost of exactly serving the 50 kW demand of the village.

Table 3.4 Operating costs and production limits of electricity-production units in the Electricity-
Scheduling Problem

Production Unit
Cost Production Limits [kW]

Variable [$/kWh] Fixed [$/hour] Minimum Maximum

1 2 40 5 20

2 5 50 6 40

3 1 35 4 35

To formulate this problem, we introduce two sets of variables. We first have
variables p1, p2 and p3, where we define pi as the kW produced by unit i . We next
define three binary variables, x1, x2, and x3, where we define xi as:

xi =
{
1, if unit i is switched on,
0, if unit i is not switched on.

The producer’s objective function, which is to minimize cost, can be written as:

min
p,x

2p1 + 5p2 + 1p3 + 40x1 + 50x2 + 35x3.

The problem requires three types of constraints. We first need a constraint that
ensures that the 50 kW of demand is exactly met:

3.1 Motivating Examples 131

p1 + p2 + p3 = 50.

We next must impose the production limits of the units, which can be written as:

5x1 ≤ p1 ≤ 20x1,

6x2 ≤ p2 ≤ 40x2,

and:
4x3 ≤ p3 ≤ 35x3.

Note that these three production-limit constraints have the logical constraint involv-
ing the decision to switch each unit on or not embedded within them. To see this, let
us look more closely at the first of these three constraints:

5x1 ≤ p1 ≤ 20x1.

If unit 1 is switched on, then x1 = 1 and this constraint simplifies to:

5 ≤ p1 ≤ 20.

This is the constraint that we want in this case, because if unit 1 is switched on, then
it must produce between its minimum (5 kW) and maximum (20 kW) production
levels. Otherwise, if unit 1 is not switched on then x1 = 0 and the production-limit
constraint becomes:

0 ≤ p1 ≤ 0,

or simply:
p1 = 0.

This is, again, correct because if unit 1 is not switched on, its production must be
equal to zero. We finally have a constraint that the x variables be binary:

x1, x2, x3 ∈ {0, 1}.

Thus, the MILPP for this problem is:

min
p,x

z = 2p1 + 5p2 + p3 + 40x1 + 50x2 + 35x3

s.t. p1 + p2 + p3 = 50

5x1 ≤ p1 ≤ 20x1 (3.9)

6x2 ≤ p2 ≤ 40x2 (3.10)

4x3 ≤ p3 ≤ 35x3 (3.11)

xi ∈ {0, 1},∀ i = 1, 2, 3.

132 3 Mixed-Integer Linear Optimization

Although it is physically meaningless for any of the p1, p2, or p3 to take on a
negative values,we do not need to include explicit non-negativity constraints for these
variables. This is because the left-hand sides of double-sided inequalities (3.9)–(3.11)
ensure that each of the p variables take on non-negative values. We could include
non-negativity constraints for the p variables, however, they would be redundant in
this problem.

We finally note that this example is a simplified instance of a unit-scheduling
problem.

3.1.4 Oil-Transmission Problem

An oil company owns two oil wells that are connected via three pipelines to one
another and to a refinery, as shown in Figure 3.3. The refinery has a fixed demand for
30 t of oil. The company is considering expanding the capacity of the two pipelines
that directly connect the wells with the refinery, as depicted in the figure.

Fig. 3.3 Network in the
Oil-Transmission Problem

flow3

flow2flow1

well 1 well 2

refinery

expansionexpansion

The company earns a profit of $2000 per ton of oil sold from well 1 to the refinery
and a profit of $3000/t for oil sold from well 2 to the refinery.

The pipeline that directly connects well 1 with the refinery can carry 12 t of oil. If
it is expanded, which costs $50000, then this capacity increases by 11 t to 23 t total.
Similarly, the pipeline directly connecting well 2 with the refinery can carry 11 t of
oil. This capacity increases by 12 t if the pipeline is expanded, which costs $55000
to do. The pipeline directly connecting wells 1 and 2 can carry at most 10 t and this
pipeline cannot be expanded.

The company would like to determine which (if any) of the pipelines to expand
and how to ship oil from its wells to the refinery to maximize its profit.

3.1 Motivating Examples 133

To formulate this problem, we introduce three sets of variables. First, we let p1
and p2 denote the amount of oil extracted from each of wells 1 and 2, respectively.
We next define f1, f2, and f3 as the flows along the three pipelines, as shown in
Figure 3.3. We use the convention that if fi is positive, that means there is a net
flow in the direction of the arrow depicted in the figure. We finally define two binary
variables, x1 and x2, representing the pipeline-expansion decisions.More specifically,
we define xi as:

xi =
{
1, if pipeline i is expanded,
0, if pipeline i is not expanded.

The company’s objective function, which maximizes profit, is:

max
p, f,x

2000p1 + 3000p2 − 50000x1 − 55000x2.

This problem has five types of constraints. First, we must ensure that we deliver
exactly 30 t of oil to the refinery:

p1 + p2 = 30.

This constraint ensures that a total of exactly 30 t of oil is extracted from the two
wells. Next, we must ensure that the oil extracted at the two wells is not left at the
two wells but is instead delivered to the refinery through the pipeline network. We
write these constraints as:

p1 = f1 + f3,

and:
p2 = f2 − f3.

These two constraints require that the total amount of oil extracted at each well
(which is on the left-hand sides of the constraints) exactly equals the amount of oil
that leaves each well through the pipelines (which is on the right-hand sides of the
constraints). We next impose the flow constraints on the three pipelines:

−12 − 11x1 ≤ f1 ≤ 12 + 11x1,

−11 − 12x2 ≤ f2 ≤ 11 + 12x2,

and:
−10 ≤ f3 ≤ 10.

We next require that the amount produced by each well be non-negative:

p1, p2 ≥ 0,

and that the x variables be binary:

134 3 Mixed-Integer Linear Optimization

x1, x2 ∈ {0, 1}.

Putting these elements together, this problem is formulated as:

max
p, f,x

z = 2000p1 + 3000p2 − 50000x1 − 55000x2

s.t. p1 + p2 = 30

p1 = f1 + f3
p2 = f2 − f3
− 12 − 11x1 ≤ f1 ≤ 12 + 11x1
− 11 − 12x2 ≤ f2 ≤ 11 + 12x2
− 10 ≤ f3 ≤ 10

pi ≥ 0,∀ i = 1, 2

xi ∈ {0, 1},∀ i = 1, 2.

This problem is a simple version of a transmission-expansion problem.

3.1.5 Charging-Station Problem

To serve electric vehicle (EV) owners in four neighborhoods, a city needs to identify
which (if any) of three potential EV charging stations to build. The city’s goal is
to minimize the total cost of building the stations, while properly serving the EV-
charging needs of the four neighborhoods.

Table 3.5 summarizes which of the four neighborhoods can be served by each of
the three potential EV-charging-station locations. An entry of 1 in the table means
that the neighborhood can be served by a station at the location while an entry of 0
means that it cannot be. Table 3.6 summarizes the cost incurred for building each of
the three potential EV charging stations.

Table 3.5 Neighborhoods that can use each potential EV-charging-station location in the Charging-
Station Problem

Location 1 Location 2 Location 3

Neighborhood 1 1 0 1

Neighborhood 2 0 1 0

Neighborhood 3 1 1 0

Neighborhood 4 0 0 1

3.1 Motivating Examples 135

Table 3.6 Cost of building
EV-charging stations in the
Charging-Station Problem

Cost [$ million]

Location 1 10

Location 2 12

Location 3 13

To formulate this problem, we define three binary variables, x1, x2 and x3, where
we define xi as:

xi =
{
1, if EV-charging station i is built,
0, if EV-charging station i is not built.

The city’s objective function is to minimize cost, which is given by:

min
x

10x1 + 12x2 + 13x3,

where the objective is measured in millions of dollars.
There are two types of constraints in this problem. First, we must ensure that

the EV charging stations built are capable of serving EV owners in each of the four
neighborhoods. These constraints take the form:

1x1 + 0x2 + 1x3 ≥ 1,

0x1 + 1x2 + 0x3 ≥ 1,

1x1 + 1x2 + 0x3 ≥ 1,

and:
0x1 + 0x2 + 1x3 ≥ 1.

To understand the logic behind each of these constraints, let us examine the first one:

1x1 + 0x2 + 1x3 ≥ 1,

more closely. We know, from Table 3.5 that EV owners in neighborhood 1 can only
be served by stations 1 or 3. Thus, at least one of those two stations must be built.
The constraint imposes this requirement by multiplying each of x1 and x3 by 1. The
sum:

1x1 + 0x2 + 1x3 = x1 + x3,

measures how many of the stations that can serve EV owners in neighborhood 1
are built. The constraint requires that at least one such station be built. An analysis
of the other three constraints have the same interpretation. We must also impose a
constraint that the x variables be binary:

136 3 Mixed-Integer Linear Optimization

x1, x2, x3 ∈ {0, 1}.

Taking these together, the problem is formulated as:

min
x

z = 10x1 + 12x2 + 13x3

s.t. x1 + x3 ≥ 1

x2 ≥ 1

x1 + x2 ≥ 1

x3 ≥ 1

xi ∈ {0, 1},∀ i = 1, 2, 3.

The Charging-Station Problem is an example of an area-covering or set-covering
problem.

3.1.6 Wind Farm-Maintenance Problem

A wind-generation company must perform annual maintenance on its three wind
farms. The company has three maintenance teams to carry out this work. Each main-
tenance team must be assigned to exactly one wind farm and each wind farm must
have exactly one maintenance team assigned to it. Table 3.7 lists the costs of assign-
ing the three maintenance teams to each wind farm. The company would like to
determine the assignments to minimize its total maintenance costs.

Table 3.7 Cost of assigning maintenance crews to wind farms in the Wind Farm-Maintenance
Problem

Wind Farm 1 Wind Farm 2 Wind Farm 3

Maintenance Team 1 10 12 14

Maintenance Team 2 9 8 15

Maintenance Team 3 10 5 15

To formulate this problem, we define one set of variables, which we denote xi, j
with i = 1, 2, 3 and j = 1, 2, 3, where we define xi, j as:

xi, j =
{
1, if maintenance crew i is assigned to wind farm j,
0, otherwise.

The company’s objective function is to minimize cost, which is given by:

min
x

10x1,1 + 12x1,2 + 14x1,3 + 9x2,1 + 8x2,2 + 15x2,3 + 10x3,1 + 5x3,2 + 15x3,3.

3.1 Motivating Examples 137

This problem has three sets of constraints. First, we must ensure that each main-
tenance crew is assigned to exactly one wind farm, giving the following constraints:

x1,1 + x1,2 + x1,3 = 1,

x2,1 + x2,2 + x2,3 = 1,

and:
x3,1 + x3,2 + x3,3 = 1.

Wemust next ensure that each wind farm has exactly one maintenance crew assigned
to it:

x1,1 + x2,1 + x3,1 = 1,

x1,2 + x2,2 + x3,2 = 1,

and:
x1,3 + x2,3 + x3,3 = 1.

We must finally ensure that all of the variables are binary:

xi, j ∈ {0, 1},∀ i = 1, 2, 3; j = 1, 2, 3.

Taking these elements together, the company’s problem is:

max
x

z = 10x1,1 + 12x1,2 + 14x1,3 + 9x2,1 + 8x2,2 + 15x2,3

+ 10x3,1 + 5x3,2 + 15x3,3 (3.12)

s.t. x1,1 + x1,2 + x1,3 = 1 (3.13)

x2,1 + x2,2 + x2,3 = 1 (3.14)

x3,1 + x3,2 + x3,3 = 1 (3.15)

x1,1 + x2,1 + x3,1 = 1 (3.16)

x1,2 + x2,2 + x3,2 = 1 (3.17)

x1,3 + x2,3 + x3,3 = 1 (3.18)

xi, j ∈ {0, 1},∀ i = 1, 2, 3; j = 1, 2, 3. (3.19)

This problem is an example of an assignment problem.

138 3 Mixed-Integer Linear Optimization

3.2 Types of Mixed-Integer Linear Optimization Problems

Mixed-integer linear optimization problems can take a number of different more
specific forms. We have discussed some examples of these, such as pure-integer
linear optimization problems. We describe some of these forms in more detail here.

3.2.1 General Mixed-Integer Linear Optimization Problems

A general mixed-integer linear optimization problem or MILPP has the form:

min
x1,...,xn

c0 +
n∑

i=1
ci xi

s.t.
n∑

i=1
Ae

j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n,

where me, mg , and ml are the numbers of equal-to, greater-than-or-equal-to, and
less-than-or-equal to constraints. Thus, m = me + mg + ml is the total number
of constraints. The coefficients, Ae

j,i ,∀i = 1, . . . , n, j = 1, . . . ,me, A
g
j,i ,∀i =

1, . . . , n, j = 1, . . . ,mg , and Al
j,i ,∀i = 1, . . . , n, j = 1, . . . ,ml , the terms on the

right-hand sides of the constraints, bej ,∀ j = 1, . . . ,me, b
g
j ,∀ j = 1, . . . ,mg , and

blj ,∀ j = 1, . . . ,ml , and the coefficients, c0, . . . , cn , in the objective function are all
constants.

Some subset of the variables are restricted to take on integer values:

xi ∈ Z, for some i = 1, . . . , n,

where:
Z = {. . . ,−2,−1, 0, 1, 2, . . . },

is standard notation for the set of integers. These are called the integer variables. The
remaining variables have no such restriction and can take on any non-integer values
that satisfy the remaining constraints.

3.2 Types of Mixed-Integer Linear Optimization Problems 139

Of the examples given in Section 3.1, the Natural Gas-Storage, Electricity-
Scheduling and Oil-Transmission Problems, which are introduced in Sections 3.1.2,
3.1.3 and 3.1.4, respectively, are general MILPPs.

3.2.2 Pure-Integer Linear Optimization Problems

A pure-integer linear optimization problem or PILPP is a special case of a general
MILPP in which all of the variables are restricted to take on integer values. A PILPP
has the generic form:

min
x1,...,xn

c0 +
n∑

i=1

ci xi

s.t.
n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, ∀ i = 1, . . . , n,

where me, mg , ml , Ae
j,i , A

g
j,i , A

l
j,i , b

e
j , b

g
j , b

l
j , c0, . . . , cn , and Z have the same

interpretations as in the generic MILPP, which is given in Section 3.2.1. Thus, the
only distinction between the formulation of a general MILPP and a PILPP is that
all of the variables in a PILPP are restricted to take on integer values. Conversely,
a general MILPP can include a combination of variables with and without such a
restriction.

Among the examples introduced in Section 3.1, the Photovoltaic Panel-Repair
Problem, which is introduced in Section 3.1.1, is a PILPP.

3.2.3 Mixed-Binary Linear Optimization Problems

Amixed-binary linear optimization problem is a special case of a general MILPP
in which the variables that are restricted to take on integer values are actually further
restricted to take on binary values. With rare exceptions, these binary variables are
restricted to take on the values of 0 and 1 and are often used tomodel logical decisions
or constraints.

140 3 Mixed-Integer Linear Optimization

A mixed-binary linear optimization problem has the generic form:

min
x1,...,xn

c0 +
n∑

i=1
ci xi

s.t.
n∑

i=1
Ae

j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ {0, 1}, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n,

where me, mg , ml , Ae
j,i , A

g
j,i , A

l
j,i , b

e
j , b

g
j , b

l
j , and c0, . . . , cn have the same interpre-

tations as in the generic MILPP, which is given in Section 3.2.1.
Of the examples given in Section 3.1, the Natural Gas-Storage, Electricity-

Scheduling, and Oil-Transmission Problems, which are introduced in Sections 3.1.2,
3.1.3 and 3.1.4, respectively, are mixed-binary linear optimization problems.

3.2.4 Pure-Binary Linear Optimization Problems

We finally have the case of a pure-binary linear optimization problem, which
is a special case of a mixed-binary linear optimization problem in which all of the
variables are restricted to being binary variables. Such a problem has the form:

min
x1,...,xn

c0 +
n∑

i=1

ci xi

s.t.
n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ {0, 1}, ∀ i = 1, . . . , n,

where me, mg , ml , Ae
j,i , A

g
j,i , A

l
j,i , b

e
j , b

g
j , b

l
j , c0, . . . , cn , and Z have the same

interpretations as in the generic MILPP, which is given in Section 3.2.1.

3.2 Types of Mixed-Integer Linear Optimization Problems 141

Of the examples introduced in Section 3.1, the Charging-Station andWind Farm-
Maintenance Problems, which are discussed in Sections 3.1.5 and 3.1.6, respectively,
are examples pure-binary linear optimization problems.

3.3 Linearizing Nonlinearities Using Binary Variables

This section introduces one of the most powerful uses of integer optimization tech-
niques. This is the use of integer, and in particular binary, variables to linearize
complex nonlinearities and discontinuities and to formulate logical constraints in
optimization problems. This is particularly useful, because it is considerably easier
to solve optimization problems in which the objective function and constraints are
linear in the decision variables.

Some of these linearizations are employed in formulating the examples that are
discussed in Section 3.1.

3.3.1 Variable Discontinuity

On occasion a variable may have a discontinuity in the sense that we would like it
to be within one of two intervals. To more concretely explain this, suppose that we
have a variable, x , and we would like x to either be between l1 and u1 or between l2
and u2. We could write this restriction on x as the following logical condition:

l1 ≤ x ≤ u1 or l2 ≤ x ≤ u2.

This is not a valid linear constraint, however, because constraints in optimization
problems cannot have logical statements (i.e., the ‘or’) in them.

We can model this type of a restriction as a valid linear constraint by introducing
a new binary variable, which we denote y. The restriction on x is then written as:

l1y + l2 · (1 − y) ≤ x ≤ u1y + u2 · (1 − y). (3.20)

Note that if y = 0, then (3.20) simplifies to:

l2 ≤ x ≤ u2,

and that if y = 1, then it becomes:

l1 ≤ x ≤ u1.

A common situation in which this type of variable discontinuity arises is when
we are modeling the production of a facility that must be switched on or off. If it is

142 3 Mixed-Integer Linear Optimization

switched off, its production level must equal 0. Otherwise, if it is switched on, its
production level must be between some lower and upper limits, which we denote
xmin and xmax. This type of a production discontinuity is illustrated in Figure 3.4. We
can model this type of a restriction using (3.20) by letting l2 = u2 = 0, l1 = xmin,
and u1 = xmax. In this case, Constraint (3.20) becomes:

xminy ≤ x ≤ xmaxy. (3.21)

Fig. 3.4 Production
discontinuity

This technique is used in both the Natural Gas-Storage and Electricity-Scheduling
Problems,which are introduced inSections 3.1.2 and3.1.3, respectively.More specif-
ically, Constraints (3.6)–(3.8) in the Natural Gas-Storage Problem impose the capac-
ities of the storage facilities and only allow each facility to store gas if it is built.
Constraints (3.9)–(3.11) in the Electricity-Scheduling Problem impose the minimum
andmaximum production levels of the units. These constraints also restrict each pro-
duction unit to produce power only if it is switched on.

It is important to stress that these types of variable discontinuities can be applied
to other settings besides the modeling of production processes and facilities.

3.3.2 Fixed Activity Cost

Some systems have a cost or other term in the objective function that is incurred
when an activity occurs. As an example of this, consider themodeling of a production
facility that must be switched on or off, as discussed in Section 3.3.1. Suppose that
if the production facility is switched on, there is a fixed cost, c0, that is incurred that
does not depend on how many units the facility produces. In addition to this fixed
cost, the facility incurs a cost ofm per unit produced. Thus, the total cost of operating
the facility can be written as:

cost =
{
c0 + mx, if facility is switched on,
0, otherwise,

(3.22)

where x represents the facility’s production level. Figure 3.5 illustrates such a cost
function where we further impose minimum and maximum production levels on the
facility, in line with the example that is given in Section 3.3.1.

3.3 Linearizing Nonlinearities Using Binary Variables 143

Fig. 3.5 Fixed activity cost

Expression (3.22) is not a valid term to include in the objective function of an
optimization problem, because it includes logical ‘if’ statements. To model this type
of cost function, we introduce a binary variable, y, which is defined as:

y =
{
1, if facility is switched on,
0, otherwise.

The facility’s cost is then modeled as:

cost = c0y + mx .

In nearly all cases, we include a discontinuity constraint similar to (3.21), which
‘links’ the decision to switch the production facility on or off (i.e., the y variable) to
the production decision (i.e., the x variable). This is because if a constraint similar
to (3.21) is not included, the model will allow the facility to produce units while
being switched off. If there is no explicit upper bound on how many units the facility
can produce, one can set xmax to an arbitrarily high number in (3.21). In practice,
however, a real-world production facility almost invariably has an upper limit on its
output.

Both the Natural Gas-Storage and Electricity-Scheduling Problems, which are
introduced in Sections 3.1.2 and 3.1.3, respectively, employ this technique to model
a fixed activity cost. In the Natural Gas-Storage Problem, there are binary variables
representing the decision to build a storage facility. There is a fixed cost associated
with building each facility that does not depend on howmuch gas is ultimately stored
in it. Similarly, there are binary variables in the Electricity-Scheduling Problem
representing the decision to switch each of the three production units on or not.
Switching the production units on imposes a fixed cost that is independent of how
much power is produced.

144 3 Mixed-Integer Linear Optimization

3.3.3 Non-convex Piecewise-Linear Cost

Another type of cost structure that can arise are so-called piecewise-linear costs.
Figure 3.6 illustrates an example piecewise-linear cost function. The figure shows
that the first b1 units produced cost $m1 per unit to produce. After the first b1 units,
the next (b2 − b1) units cost $m2 per unit. Finally, any remaining units after the first
b2 units cost $m3 per unit.

Fig. 3.6 Non-convex
piecewise-linear cost

x2

c

x3x1

m1

m2

m3

x

b1 b2 b3

The idea of a piecewise-linear function is that the function is linear between two
breakpoints. For instance, the costs shown in Figure 3.6 are linear between 0 and b1,
between b1 and b2, and between b2 and b3. However, the entire function is not linear
because of the ‘kinks’ at the breakpoints. One can write the cost function shown in
Figure 3.6 as:

cost =
⎧⎨
⎩
m1x, if 0 ≤ x ≤ b1,
m1b1 + m2 · (x − b1), if b1 < x ≤ b2,
m1b1 + m2b2 + m3 · (x − b2), otherwise,

(3.23)

where we let x denote the production level of the facility. This is not a valid term
to include in the objective function of an optimization problem, however, because it
employs logical ‘if’ statements.

We can linearize (3.23) by introducing three new continuous variables, x1, x2, and
x3. As shown in Figure 3.6, x1 is defined as the number of units produced at a cost of
m1. The variables, x2 and x3, are similarly defined as the number of units produced
at costs of m2 and m3, respectively. We next define two binary variables, y1 and y2,
as:

yi =
{
1, if the maximum units that can be produced at a cost ofmi are produced,
0, otherwise.

3.3 Linearizing Nonlinearities Using Binary Variables 145

We then model the production cost as:

cost = m1x1 + m2x2 + m3x3,

and include the constraints:
x = x1 + x2 + x3 (3.24)

b1y1 ≤ x1 ≤ b1 (3.25)

(b2 − b1)y2 ≤ x2 ≤ (b2 − b1)y1 (3.26)

0 ≤ x3 ≤ (b3 − b2)y2 (3.27)

y1 ≤ y2

y1, y2 ∈ {0, 1},

in the optimization model.
To understand the logic behind this set of constraints, first note that because of the

constraint y1 ≤ y2 we only have three possible cases for the values of the y variables.
In the first, in which y1 = y2 = 0, (3.24)–(3.27) reduce to:

x = x1 + x2 + x3

0 ≤ x1 ≤ b1

0 ≤ x2 ≤ 0

0 ≤ x3 ≤ 0,

meaning that we have x2 = x3 = 0 and x = x1 can take on any value between 0 and
b1.

Next, if y1 = 1 and y2 = 0, then (3.24)–(3.27) become:

x = x1 + x2 + x3

b1 ≤ x1 ≤ b1

0 ≤ x2 ≤ b2 − b1

0 ≤ x3 ≤ 0,

meaning that we have x1 = b1, x3 = 0, and x2 can take on any value between 0 and
(b2 − b1).

Finally, in the case in which y1 = y2 = 1, Constraints (3.24)–(3.27) become:

146 3 Mixed-Integer Linear Optimization

x = x1 + x2 + x3

b1 ≤ x1 ≤ b1

b2 − b1 ≤ x2 ≤ b2 − b1

0 ≤ x3 ≤ b3 − b2,

meaning that we have x1 = b1, x2 = b2, and that x3 can take on any value between
0 and (b3 − b2).

Note that we can further generalize this technique to model a piecewise-linear
function with any arbitrary number of pieces (unlike the three pieces assumed in
Figure 3.6). To see this, suppose that x measures the total production level being
modeled and that per-unit production costs m1,m2, . . . ,mN apply to different pro-
duction levels with breakpoints at b1, b2, . . . , bN . We would model the production
cost by introducing N variables, denoted x1, x2, . . . , xN , and (N − 1) binary vari-
ables, denoted y1, y2, . . . , yN−1. We would model the production cost as:

cost =
N∑
i=1

mi xi ,

and add the constraints:

x =
N∑
i=1

xi

b1y1 ≤ x1 ≤ b1

(b2 − b1)y2 ≤ x2 ≤ (b2 − b1)y1

(b3 − b2)y3 ≤ x3 ≤ (b3 − b2)y2

...

(bN−1 − bN−1)yN−1 ≤ xN−1 ≤ (bN−1 − bN−1)yN−2

0 ≤ xN ≤ (bN − bN−1)yN−1

y1 ≤ y2 ≤ y3 ≤ · · · ≤ yN−1

yi ∈ {0, 1},∀i = 1, . . . , N1,

to the model.

3.3 Linearizing Nonlinearities Using Binary Variables 147

We finally note that this use of binary variables is generally needed if one is
modeling a piecewise-linear function that is not convex (cf. Appendix B for further
discussion of convex functions). The piecewise-linear function depicted in Figure 3.6
is non-convex because the per-unit costs, m1, m2, and m3, are not non-decreasing
(i.e., we do not have m1 ≤ m2 ≤ m3). Otherwise, if the per-unit costs are non-
decreasing, the piecewise-linear cost function is convex. In that case, if the convex
piecewise-linear cost function is being minimized, binary variables are not needed.

To see this, return to the general case in which x measures the total production
level being modeled and that per-unit production costs m1,m2, . . . ,mN apply to
different production levels with breakpoints at b1, b2, . . . , bN .Moreover, assume that
we havem1 ≤ m2 ≤ · · · ≤ mN . We would model the production cost by introducing
N variables, denoted x1, x2, . . . , xN . The production cost is then computed as:

cost =
N∑
i=1

mi xi ,

and we would add the constraints:

x =
N∑
i=1

xi

0 ≤ x1 ≤ b1

0 ≤ x2 ≤ b2 − b1

...

0 ≤ xN ≤ bN − bN−1,

to the model.
We do not need to use binary variables in this case because it is optimal to fully

exhaust production in level i before using any production in level (i +1). The reason
for this is that production in level (i + 1) (and all subsequent levels) is more costly
than production in level i . The example that is given in Figure 3.6, with the non-
convex cost, does not exhibit this property. Without the binary variables included,
the model would choose to use production level 2 (at a per-unit cost of m2) before
production level 2 (with a higher per-unit cost of m1) is used.

3.3.4 Alternative Constraints

In some situations, we may be interested in enforcing either one constraint:

148 3 Mixed-Integer Linear Optimization

n∑
i=1

a1,i xi ≤ b1, (3.28)

or an alternative one:
n∑

i=1

a2,i xi ≤ b2, (3.29)

but not both. As discussed in Section 3.3.1, the constraint:

n∑
i=1

a1,i xi ≤ b1 or
n∑

i=1

a2,i xi ≤ b2, (3.30)

is not valid in an optimization problem, because it includes a logical ‘or’ statement.
We can, however, linearize the ‘or’ statement through the use of a binary variable.

To do this, we define the binary variable, y, as:

y =
{
1, if the constraint

∑n
i=1 a1,i xi ≤ b1 is enforced,

0, otherwise.

We then replace (3.30) with:

n∑
i=1

a1,i xi ≤ b1 + M1 · (1 − y) (3.31)

n∑
i=1

a2,i xi ≤ b2 + M2y, (3.32)

where M1 and M2 are sufficiently large constants.
To see how this formulation works, let us suppose that we have y = 1. If so,

then (3.31) becomes:
n∑

i=1

a1,i xi ≤ b1,

meaning that Constraint (3.28) is being enforced on the optimization problem. On
the other hand, Constraint (3.32) becomes:

n∑
i=1

a2,i xi ≤ b2 + M2.

Note that if M2 is sufficiently large, then any values for x will satisfy this constraint,
meaning that Constraint (3.29) is not being imposed on the problem. In the case in
which y = 0, Constraint (3.31) becomes:

3.3 Linearizing Nonlinearities Using Binary Variables 149

n∑
i=1

a1,i xi ≤ b1 + M1,

meaning that Constraint (3.28) is not being imposed, so long as M1 is sufficiently
large. On the other hand, (3.32) becomes:

n∑
i=1

a2,i xi ≤ b2,

meaning that Constraint (3.29) is being enforced.

3.3.5 Product of Two Variables

A very powerful use of binary variables is to linearize the product of two variables in
an optimization problem. We discuss here how to linearize the product of variables
in three different cases. We first discuss linearizing the product of a real and binary
variable and then the product of two binary variables, both of which can be linearized
exactly.We then discuss the use of a technique, known as binary expansion, to linearly
approximate the product of two real variables.

3.3.5.1 Product of a Real and Binary Variable

Here we demonstrate how to linearize the product of a real and binary variable.
Suppose that x ∈ R is a real variable while y ∈ {0, 1} is a binary variable. If we
define p = xy as the product of these two variables, then we know that p can take
on only the following two values:

p =
{
0, if y = 0,
x, otherwise.

(3.33)

To come up with a linear expression for p, we must further assume that x is
bounded:

−l ≤ x ≤ u.

If there are no explicit bounds on x , one can impose bounds on x in an optimization
problem by making l and u sufficiently small and large, respectively. We must also
add a new real variable, which we denote as z. We can then define p through the
following constraints:

p = x − z (3.34)

150 3 Mixed-Integer Linear Optimization

− ly ≤ p ≤ uy (3.35)

− l · (1 − y) ≤ z ≤ u · (1 − y). (3.36)

To see how this linearization works, first consider the case in which y = 0. If so,
Constraints (3.34)–(3.36) simplify to:

p = x − z

0 ≤ p ≤ 0

−l ≤ z ≤ u,

meaning that p = 0, which is consistent with (3.33), and that z = x . The variable
z is essentially playing the role of a slack variable in this formulation. Otherwise, if
y = 1, then (3.34)–(3.36) become:

p = x − z

−l ≤ p ≤ u

0 ≤ z ≤ 0,

in which case z = 0 and p = x , as required by (3.33).

3.3.5.2 Product of Two Binary Variables

We now consider the case in which two binary variables are being multiplied. Let
us suppose that x, y ∈ {0, 1} are two binary variables and define p = xy as their
product. We know that p can take on one of two values:

p =
{
1, if x = 1 and y = 1,
0, otherwise.

We can express p linearly through the following set of constraints:

p ≤ x (3.37)

p ≤ y (3.38)

p ≥ 0 (3.39)

p ≥ x + y − 1. (3.40)

3.3 Linearizing Nonlinearities Using Binary Variables 151

To see how this linearization works, first consider the case in which both x = 1
and y = 1. If so, then (3.37)–(3.40) become:

p ≤ 1

p ≤ 1

p ≥ 0

p ≥ 1,

which forces p = 1. Otherwise, if at least one of x or y is equal to zero, then (3.37)–
(3.40) force p = 0.

3.3.5.3 Product of Two Real Variables

The product of two real variables cannot be linearized exactly. However, there is a
technique, known as binary expansion, that can be used to linearly approximate the
product of two real variables. To demonstrate the concept of binary expansion, let us
define x, y ∈ R as two real variables, and p = xy as their product.

To linearize the product, we must approximate one of the two variables as taking
on one of a finite number of values. Let us suppose that we approximate y as taking
on one of the N values y1, y2, . . . , yN , where y1, y2, . . . , yN are fixed constants. To
conduct the binary expansion, we introduce N binary variables, which we denote
z1, z2, . . . , zN . We then approximate y using the following:

y ≈
N∑
i=1

yi zi

N∑
i=1

zi = 1.

Note that because exactly one of the zi ’s must equal 1, y is approximated as taking
on the corresponding value of yi .

Using this approximation of y, we can then approximate the product of x and y
by adding the following constraints to the optimization problem:

p =
N∑
i=1

yi zi x (3.41)

152 3 Mixed-Integer Linear Optimization

N∑
i=1

zi = 1

zi ∈ {0, 1},∀i = 1, . . . , N .

Because the yi ’s are constants, the right-hand side of (3.41) involves the product of
a binary and real variable. This must then be linearized using the technique that is
outlined in Section 3.3.5.1.

It is important to stress once again that binary expansion does not exactly represent
the product of two real variables. Rather, it approximates the product. Nevertheless,
it can be a very useful technique. How good of an approximation binary expansion
provides depends on whether the ‘true’ value of y is close to one of the yi ’s. If so,
the approximation will be better. Because we do not typically know a prioriwhat the
‘true’ value of y is, we deal with this issue by using a large number of yi ’s. Doing
so increases the size of the problem, however, because more binary variables (i.e.,
zi ’s) must be introduced into the model. Increasing the size of the problem invariably
makes it more difficult to solve.

3.4 Relaxations

This section introduces a very important concept in solving mixed-integer linear
optimization problems. This is the idea of a relaxation. A relaxation of an optimiza-
tion problem is a problem in which one or more of the constraints are loosened,
relaxed, or entirely removed. When the constraint is relaxed, the feasible region of
the problem grows in size. As a result of this, there are some important properties
linking a problem and a relaxation that are useful when we solve MILPPs.

All of this discussion assumes that we have a genericMILPP, which can bewritten
as:

min
x1,...,xn

c0 +
n∑

i=1

ci xi (3.42)

s.t.
n∑

i=1
Ae

j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n.

(3.43)

This generic form captures all of the special cases of MILPPs that are introduced in
Section 3.2. Moreover, we know from the discussion in Section 2.2.2.1 that a MILPP

http://dx.doi.org/10.1007/978-3-319-56769-3_2

3.4 Relaxations 153

that is a maximization can be converted to a minimization simply by multiplying the
objective function by −1.

We now introduce what is known as the linear relaxation of this MILPP, which is:

min
x1,...,xn

c0 +
n∑

i=1

ci xi

s.t.
n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ R, ∀ i = 1, . . . , n.

The only difference between the original MILPP and its linear relaxation is that
Constraint (3.43) is relaxed, because we allow all of the variables to be real-valued
in the relaxed problem. This can be contrasted with the original MILPP, in which
some of the variables are restricted to take on only integer values.

It is important to stress that there aremanyways inwhich an optimization problem
can be relaxed. When writing the linear relaxation, we remove the constraints that
the variables be integer-valued. However, one could, for example, relax the MILPP
by removing the equality and greater-than-or-equal-to constraints, which would give
the following relaxed problem:

min
x1,...,xn

c0 +
n∑

i=1
ci xi

s.t.
n∑

i=1
Al

j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n.

Moreover, one can relax constraints in any type of optimization problem (including
linear optimization problems).

We can now show three useful relationships between the original problem and
its relaxation. Note that these relationships apply to any problem and a relaxation.
However, to make the results more clear, we will focus on the generic MILPP and
its linear relaxation.

154 3 Mixed-Integer Linear Optimization

Relaxation-Optimality Property: The optimal objective-function value of
the linear relaxation is less than or equal to the optimal objective-function
value of the original MILPP.

Suppose that x∗ is an optimal solution to the original MILPP. By definition,
x∗ is feasible in the MILPP. x∗ is also feasible in the linear relaxation. This is
because the linear relaxation has the same equality and inequality constraints as
the original MILPP, but does not have the integrality constraints. There may,
however, be a solution, x̃ , that is feasible in the linear relaxation that gives
a smaller objective-function value than x∗. x̃ is not feasible in the original
MILPP (if it is, then x∗ would not be an optimal solution to the MILPP). Thus,
the linear relaxation may have an optimal solution that is not feasible in the
original MILPP and gives a smaller objective-function value than x∗.

Relaxation-Optimality Corollary: If the optimal solution of the linear relax-
ation satisfies the constraints of the original MILPP, then this solution is also
optimal in the original MILPP.

This result comes immediately from the Relaxation-Optimality Property. Sup-
pose that x∗ is optimal in the linear relaxation and that it is feasible in the
original MILPP. We know from the Relaxation-Optimality Property that the
optimal objective-function value of the original MILPP can be no lower than
the objective-function value given by x∗. Combining this observation with the
fact that x∗ is feasible in the original MILPP tells us that x∗ is also optimal in
the original MILPP.

Relaxation-Feasibility Property: If the linear relaxation of the original
MILPP is infeasible, then the original MILPP is also infeasible.

3.4 Relaxations 155

We show this by contradiction. To do so, we suppose that the property is not
true. This would mean that the linear relaxation is infeasible but the original
MILPP is feasible. If so, then there is a solution, x̂ , that is feasible in the
original MILPP. x̂ must also be feasible in the linear relaxation, however. This
is because the linear relaxation has the same equality and inequality constraints
as the original MILPP but does not have the integrality constraints. Thus, it is
impossible for the Relaxation-Feasibility Property to not hold.

We use these three properties in Section 3.5 to outline an effective algorithm for
solving general MILPPs.

3.5 Solving Mixed-Integer Linear Optimization Problems
Using Branch and Bound

Wedescribe in this section theBranch-and-BoundAlgorithm, which can be used to
efficiently solveMILPPs. We begin by first providing a high-level motivation behind
the algorithm. We next outline the steps of the algorithm and then illustrate its use
with a simple example. We finally provide a more formal outline of the algorithm.

All of this discussion assumes that we have a generic MILPP that is in the form:

min
x1,...,xn

c0 +
n∑

i=1
ci xi

s.t.
n∑

i=1
Ae

j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n.

3.5.1 Motivation

At a high level, the Branch-and-Bound Algorithm works through the following four
steps.

156 3 Mixed-Integer Linear Optimization

1. The algorithm starts by solving the linear relaxation of the original MILPP.
2. Based on the solution of the linear relaxation, the algorithm generates a sequence

of additional optimization problems in which constraints are added to the linear
relaxation.

3. As this sequence of additional optimization problems is solved, the algorithm
establishes upper and lower bounds on the optimal objective-function value of
the original MILPP. The upper bound progressively decreases while the lower
bound increases.

4. Ideally, this process continues until the full sequence of additional optimization
problems are solved, which gives an optimal solution. In practice, we may stop
once we have found a solution that is feasible in the original MILPP and that has
upper and lower bounds that are close enough to one another (indicating that the
feasible solution is very close to optimal).

The lower bound on the optimal objective-function value is found by appealing to
theRelaxation-Optimality Property, which is discussed in Section 3.4.We know from
the Relaxation-Optimality Property that the solution to the linear relaxation provides
a lower bound on the optimal objective-function value of the original MILPP.

We obtain upper bounds whenever solving one of the additional optimization
problems gives a solution that is feasible in the MILPP. We can reason that such
a solution gives an upper bound on the optimal objective-function value. This is
because of the definition of an optimal solution as being a feasible solution that gives
the best objective-function value. If we find a solution that is feasible, it may be
optimal. However, it may not be, in which case the objective-function value of the
feasible solution is greater than the optimal objective-function value.

3.5.2 Outline of Branch-and-Bound Algorithm

Building off of the high-level motivation given in Section 3.5.1, we now outline the
major steps of the Branch-and-Bound Algorithm in further detail.

3.5.2.1 Step 0: Initialization

We begin the Branch-and-Bound Algorithm by initializing it. Throughout the algo-
rithm, we let zl denote the current lower bound and zu the current upper bound on the
optimal objective-function value. We also keep track of a set, which we denote asΞ ,
of linear optimization problems that remain to be solved. As we solve the sequence
of linear optimization problems in Ξ , we also keep track of the best solution (in the
sense of giving the smallest objective-function value) that has been found so far that
satisfies all of the integrality constraints of the original MILPP.We denote this by xb.

We initialize the bounds by letting zl ← −∞ and zu ← +∞. The reasoning
behind this is that we have, as of yet, not done any work to solve the original MILPP.
Thus, all we know is that its optimal objective-function value is between −∞ and

3.5 Solving Mixed-Integer Linear Optimization Problems Using Branch and Bound 157

+∞. We also set Ξ ← ∅, because we have not generated any linear optimization
problems to solve yet. We do not initialize xb because we have not yet found a
solution that satisfies the integrality constraints of the original MILPP.

We next solve the linear relaxation of the MILPP. When we solve the linear
relaxation, one of following four outcomes are possible.

1. The linear relaxation may be infeasible. If so, then based on the Relaxation-
Feasibility Property, the original MILPP is infeasible as well. As such, we ter-
minate the Branch-and-Bound Algorithm and report that the original MILPP is
infeasible.

2. Solving the linear relaxation may give a solution that satisfies all of the integrality
constraints of the original MILPP. If so, then based on the Relaxation-Optimality
Corollary, the optimal solution of the linear relaxation is also optimal in the
original MILPP. Thus, we terminate the Branch-and-Bound Algorithm and report
the solution found as being optimal.

3. Solving the linear relaxation may give a solution that does not satisfy all of the
integrality constraints of the original MILPP. If so, we know from the Relaxation-
Optimality Property that the optimal objective-function value of the linear relax-
ation is a lower bound on the optimal objective-function value of the original
MILPP. Thus, we update the current lower bound as zl ← z0, where z0 denotes
the optimal objective-function value of the linear relaxation. We then continue
with Step 1 of the algorithm.

4. The linear relaxation may be unbounded. If so, we cannot necessarily conclude
whether the original MILPP is unbounded or not. We can only conclude that the
original MILPP is unbounded if we can find a solution that is feasible in the orig-
inal MILPP and that makes the objective function go to −∞. If so, we terminate
the algorithm and report that the original MILPP is unbounded. Otherwise, we
continue with Step 1 of the algorithm.

3.5.2.2 Step 1: Initial Branching

Let x0 denote the optimal solution to the linear relaxation, found in Step 0. Pick one
of the variables that is supposed to be integer-valued in the original MILPP but has
a non-integer value in x0. We hereafter call this chosen variable xi .

We generate two new linear optimization problems in which we add a new con-
straint to the linear relaxation. The first one, which we denote LPP1, consists of the
linear relaxation with the added constraint:

xi ≤ ⌊x0i ⌋.
The notation

⌊
x0i
⌋
denotes the floor of x0i , which means that we round x0i down to

the nearest integer less than x0i , which is the value for xi in the optimal solution to the
linear relaxation. The second linear optimization problem, which we denote LPP2,
consists of the linear relaxation with the added constraint:

158 3 Mixed-Integer Linear Optimization

xi ≥ ⌈x0i ⌉.
The notation

⌈
x0i
⌉
denotes the ceiling of x0i , meaning that we round x0i up to the

nearest integer greater than x0i .
After generating these two new linear optimization problems, we update the set

of linear optimization problems that remain to be solved as:

Ξ ← Ξ ∪ LPP1 ∪ LPP2.

These two new problems, LPP1 and LPP2, cover the entire feasible region of the
original MILPP. The reason for this is that all we have done in generating LPP1 and
LPP2 is created two new problems, with xi being constrained to take on values less
than

⌊
x0i
⌋
in one and values greater than

⌈
x0i
⌉
in the other. Thus, the only points that

are no longer feasible in these two LPPs are those in which xi takes on a value strictly
between

⌊
x0i
⌋
and

⌈
x0i
⌉
. However, such points are infeasible in the original MILPP,

because there are no integer values between
⌊
x0i
⌋
and

⌈
x0i
⌉
and xi is restricted to

taking on integer values in the original MILPP.

3.5.2.3 Step 2: Solving

Select a linear optimization problem in Ξ , solve it, and remove it from Ξ . Let x̂
denote the optimal solution to this problem and let ẑ denote its optimal objective-
function value.

3.5.2.4 Step 3: Bound Updating and Branching

When we solve the linear optimization problem from Ξ chosen in Step 2, one of the
four following outcomes are possible. In this step, we can update the bounds andmay
need to add more linear optimization problems to Ξ , based on the different possible
outcomes.

1. x̂ may satisfy all of the integrality constraints of the original MILPP. This means
that x̂ is feasible in the original MILPP. We further know, from the discussion in
Section 3.5.1, that ẑ provides an upper bound on the optimal objective-function
value of the original MILPP.
If ẑ < zu , then this means that x̂ is the best solution that is feasible in the

original MILPP that we have found thus far. In this case, we update the upper
bound zu ← ẑ and the best feasible solution found thus far xb ← x̂ .
Otherwise, if ẑ ≥ zu , the upper bound cannot be updated and we proceed to
Step 4.

2. The problem solved in Step 2 may be infeasible. In this case, the bounds cannot
be updated and we proceed to Step 4.

3.5 Solving Mixed-Integer Linear Optimization Problems Using Branch and Bound 159

3. x̂ may not satisfy all of the integrality constraints of the original MILPP. If so, ẑ
may provide an updated lower bound on the optimal objective-function value of
the original MILPP. We may also need to generate two new linear optimization
problems to add to Ξ .
The lower bound on the optimal objective-function value of the originalMILPP

can be updated if zl < ẑ ≤ zu and zu < +∞. If both of these conditions are met,
then we can update the lower bound as zl ← ẑ. Otherwise, we cannot update the
lower bound. We cannot update the bound in this case because the upper bound
is still +∞, which is not a valid bounding reference.
Moreover, if ẑ < zu , then we must also generate two new linear optimization

problems. This is done in a manner similar to the Initial Branching in Step 1. To
do this, we select one of the variables that is supposed to be integer-valued in the
original MILPP but has a non-integer value in x̂ . We hereafter call this chosen
variable, xi . We generate two new linear optimization problems, in which we add
a new constraint to the linear optimization problemmost recently solved in Step 2
(i.e., the problem that has x̂ as an optimal solution). The first problem has the
constraint:

xi ≤ ⌊x̂i⌋,
while the second has the constraint:

xi ≥ ⌈x̂i⌉,
added. These two problems are added to Ξ . We then proceed to Step 4. Note that
for the same reason as with the Initial Branching step, these two new problems
that are added to Ξ cover the entire feasible region of the linear optimization
problem most recently solved in Step 2.
If ẑ ≥ zu , then we do not need to add any problems to Ξ and we proceed to

Step 4. The reason we do not add any problems toΞ is that no better solution than
the current best one (i.e., xb) can be found from the problems generated from the
linear optimization problem most recently solved in Step 2.

4. The problem solved in Step 2 may be unbounded. If so, we cannot necessarily
conclude that the original MILPP is unbounded. We can only conclude that the
original MILPP is unbounded if we can find a solution that is feasible in the orig-
inal MILPP and that makes the objective function go to −∞. If so, we terminate
the algorithm and report that the original MILPP is unbounded. Otherwise, we
generate two new linear optimization problems, following the process outlined
in Case 3 and then proceed to Step 4.

3.5.2.5 Step 4: Optimality Check

We finally, in this step, determine if the Branch-and-Bound Algorithm has more
problems to solve or if the algorithm can terminate. If Ξ �= ∅, that means that there

160 3 Mixed-Integer Linear Optimization

are more linear optimization problems to be solved. In this case, we return to Step 2,
select a new problem from Ξ to solve, and continue with the algorithm.

If Ξ = ∅ and a value has been assigned to xb, this means that we have found
a feasible solution in the original MILPP and that there are no remaining feasible
solutions in the original MILPP that give a better objective-function value than xb.
In this case, we terminate the algorithm and report that xb is an optimal solution to
the original MILPP.

The final case is that Ξ = ∅ and no value has been assigned to xb. This means
that we are not able to find a feasible solution to the MILPP and that the MILPP is
infeasible. Thus, we terminate the algorithm and report this.

We now demonstrate the use of the Branch-and-BoundAlgorithm in the following
example.

Example 3.1 Consider the Photovoltaic Panel-Repair Problem, which is introduced
in Section 3.1.1. This problem can be formulated as:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1, x2 ∈ Z,

where the objective function has been changed to a minimization by multiplying
through by −1.

To solve this problem using the Branch-and-Bound Algorithm, we first initialize:

zl ← −∞,

zu ← +∞,

and:

Ξ = ∅.

We next solve the linear relaxation of the original MILPP, which is:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0.

3.5 Solving Mixed-Integer Linear Optimization Problems Using Branch and Bound 161

The optimal solution to this problem is x0 = (2.341, 3.007)
 with z0 = −5.347.
This solution to the linear relaxation falls under Case 3 of the initialization step of
the algorithm (we have a bounded feasible solution to the linear relaxation that does
not satisfy the integrality constraints of the original MILPP). Thus, we update the
lower bound:

zl ← z0 = −5.347.

This initialization step and the relaxation of the original MILPP into its linear relax-
ation are illustrated in Figure 3.7, where we denote the linear relaxation as ‘LPP0’.

Fig. 3.7 Initialization of the Branch-and-Bound Algorithm

We next go to the Initial Branching step. To do this, we pick one of the variables
that has a non-integer value in x0 but must be integer-valued in the original MILPP.
In this case, we can choose either of x1 or x2 to branch on, and arbitrarily pick x1
for this example. We form two new linear optimization problems from the linear
relaxation. The first one will have the constraint:

x1 ≤ ⌊x01⌋ = 2,

added. Thus, this problem, which we call LPP1, is:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≤ 2.

The second problem will have the constraint:

x1 ≥ ⌈x01⌉ = 3,

added. Thus, this problem, which we call LPP2, is:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≥ 3.

162 3 Mixed-Integer Linear Optimization

We then update the set of problems to be solved as:

Ξ ← Ξ ∪ LPP1 ∪ LPP2 = {LPP1,LPP2}.

Figure 3.8 shows the two new linear optimization problems being added to the setΞ .
It also illustrates why we refer to the process of adding new optimization problems as
‘branching.’ What we are essentially doing in creating these new problems is adding
some restrictions (the newconstraint added) to themost recently solvedproblem.This
results in the problems forming something of a tree, as more and more constraints
are added to problems that are solved (this tree-like structure is further shown in
Figures 3.9–3.16). LPP0 is shaded in Figure 3.8 to illustrate that this problem is
processed and no longer needs to be solved at this point. We use this convention
throughout Figures 3.9–3.16 to indicate problems that have been processed.

Fig. 3.8 Initial Branching in
the Branch-and-Bound
Algorithm

We next proceed to the Solving step and select one of the problems from Ξ to
solve. In theory,we can select any of the problems inΞ . As discussed in Section 3.5.5,
there are different ‘strategies’ that can be employed to determine which problem in
Ξ to solve. We choose to solve LPP2 at this point, which has the optimal solution
x̂ = (3, 1.67)
 and objective-function value ẑ = −4.6. We also update the set of
problems remaining to be solved by removing LPP2, which gives:

Ξ ← {LPP1,���LPP2} = {LPP1}.

We now proceed to the Bound Updating and Branching step. The solution to LPP2
falls into Case 3 of Step 3, thus we first check to see if we can update the lower bound,
zl . We find that zl ≤ ẑ ≤ zu , however because zu = +∞, we cannot update the
lower bound. Next, because we have that ẑ ≤ zu , we know that we must add two new
optimization problems to Ξ . To do this, we pick one of the variables that must be
integer-valued in the original MILPP, but which has a non-integer value in x̂ . There
is only one option for this, which is x2. Thus, we create two new problems in which
we add the constraints:

x2 ≤ ⌊x̂2⌋ = 1,

and:

x2 ≥ ⌈x̂2⌉ = 2,

to LPP2. These two new problems, which we denote LPP3 and LPP4, are:

3.5 Solving Mixed-Integer Linear Optimization Problems Using Branch and Bound 163

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≥ 3

x2 ≤ 1,

and:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≥ 3

x2 ≥ 2,

respectively. The set of problems remaining to be solved is then updated:

Ξ ← Ξ ∪ LPP3 ∪ LPP4 = {LPP1,LPP3,LPP4}.

Figure 3.9 shows the resulting tree structure of the problems when the two new LPPs
are added to Ξ .

Fig. 3.9 First Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

We next proceed to the Optimality Checking step. Because Ξ �= ∅, the Branch-
and-Bound Algorithm does not terminate and we instead return to Step 2.

In Step 2 we select a problem in Ξ to solve. We arbitrarily select LPP3, which
has optimal solution x̂ = (3.281, 1)
 and objective-function value ẑ = −4.281. We
then remove LPP3 from Ξ , giving:

Ξ ← {LPP1,���LPP3,LPP4} = {LPP1,LPP4},

and proceed to the Bound Updating and Branching step.

164 3 Mixed-Integer Linear Optimization

The solution to LPP3 again falls into Case 3.We next find that because zl ≤ ẑ ≤ zu

but zu = +∞ we still cannot update the lower bound. Moreover, because ẑ ≤ zu

we must add two new optimization problems to Ξ . We choose x1 as the variable
on which to add constraints in these new problems. More specifically, the two new
problems will consist of LPP3 with the constraints:

x1 ≤ ⌊x̂1⌋ = 3,

and:

x1 ≥ ⌈x̂1⌉ = 4,

added. This gives the two new optimization problems:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≥ 3

x2 ≤ 1

x1 ≤ 3,

and:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≥ 3

x2 ≤ 1

x1 ≥ 4,

which we denote LPP5 and LPP6, respectively. We add these problems to Ξ , giving:

Ξ ← Ξ ∪ LPP5 ∪ LPP6 = {LPP1,LPP4,LPP5,LPP6}.

Figure 3.10 shows the tree-like structure of the problems inΞ at the end of the second
Bound Updating and Branching step.

3.5 Solving Mixed-Integer Linear Optimization Problems Using Branch and Bound 165

Fig. 3.10 Second Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

MILPP LPP0

LPP2 LPP1

LPP4LPP3

LPP6LPP5

We then go to the Optimality Check step. Finding thatΞ �= ∅, we return to Step 2
and pick a new problem in Ξ to solve.

In Step 2 we arbitrarily select LPP5 to solve and find that it has as an optimal
solution, x̂ = (3, 1)
, and corresponding objective-function value, ẑ = −4. We
remove LPP5 from Ξ , giving:

Ξ ← {LPP1,LPP4,���LPP5,LPP6} = {LPP1,LPP4,LPP6}.

Moving to the Bound Updating and Branching step, we find that x̂ falls into
Case 1, because it satisfies all of the integrality constraints of the original MILPP.
We further have that ẑ < zu . Thus, we can update the upper bound as:

zu ← ẑ = −4,

and the best solution found thus far as:

xb ← x̂ = (3, 1)
.

We also know that we do not have to add any other problems to Ξ and can proceed
to the next step.

We go to the Optimality Check step and find that Ξ �= ∅. Thus, we must return
to Step 2 and select another problem in Ξ to solve. Figure 3.11 shows the new tree
after Ξ is updated by removing LPP5.

Fig. 3.11 Third Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

166 3 Mixed-Integer Linear Optimization

In Step 2 we next select LPP6 to solve, but find that it is infeasible.We then update
Ξ to:

Ξ ← {LPP1,LPP4,���LPP6} = {LPP1,LPP4}.

When we proceed to the Bound Updating and Branching step there is nothing to be
done, because LPP6 is infeasible. Thus, we proceed to the Optimality Check step
and because Ξ �= ∅ we return to Step 2. Figure 3.12 shows the updated tree after
LPP6 is removed.

Fig. 3.12 Fourth Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

In Step 2 we next select LPP4 to solve and find that this problem is also infeasible.
We update Ξ to:

Ξ ← {LPP1,���LPP4} = {LPP1}.

As in the previous iteration, there is nothing to be done in the Bound Updating and
Branching step, because LPP4 is infeasible but the Optimality Check step tells us to
return to Step 2 because Ξ �= ∅. Figure 3.13 shows the updated tree after LPP6 is
removed.

Fig. 3.13 Fifth Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

We now solve LPP1, which has x̂ = (2, 3.187)
 as an optimal solution and
ẑ = −5.187 as its corresponding optimal objective-function value. We update Ξ to:

Ξ ← {���LPP1} = {}.

3.5 Solving Mixed-Integer Linear Optimization Problems Using Branch and Bound 167

We next proceed to the Bound Updating and Branching step and find that x̂ falls into
Case 3. We next find that zl ≤ ẑ ≤ zu and zu < +∞, thus we can update the lower
bound to:

zl ← ẑ = −5.187.

Furthermore, because we have that ẑ < zu , we must add two new problems to Ξ . x2
is the only variable with a non-integer value in x̂ that must be integer-valued in the
original MILPP. Thus, these problems are formed by adding the constraints:

x2 ≤ ⌊x̂2⌋ = 3,

and:
x2 ≥ ⌈x̂2⌉ = 4,

to LPP1, giving:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≤ 2

x2 ≤ 3,

and:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≤ 2

x2 ≥ 4,

as our two new problems, which we denote as LPP7 and LPP8, respectively. Adding
these to Ξ gives:

Ξ ← Ξ ∪ LPP7 ∪ LPP8 = {LPP7,LPP8},

and Figure 3.14 shows the updated tree. We next proceed to the Optimality Check.
Because Ξ �= ∅ we must return to Step 2.

In Step 2 we choose LPP7 as the next problem to solve and find x̂ = (2, 3)
 to
be its optimal solution and ẑ = −5 the corresponding objective-function value. We

168 3 Mixed-Integer Linear Optimization

Fig. 3.14 Sixth Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

MILPP LPP0

LPP2 LPP1

LPP4LPP3 LPP8LPP7

LPP6LPP5

update Ξ , giving:
Ξ ← {���LPP7,LPP8} = {LPP8}.

In the Bound Updating and Branching step we find that x̂ falls into Case 1, because
x̂ satisfies all of the integrality constraints of the original MILPP. We further have
that ẑ < zu . Thus, we update the upper bound:

zu ← ẑ = −5,

and the best feasible solution found thus far:

xb ← x̂ = (2, 3)
.

We do not have to add any problems to Ξ and thus proceed to the Optimality Check
step. Because we still have Ξ �= ∅ we return to Step 2. Figure 3.15 shows the new
tree with LPP7 removed.

Fig. 3.15 Seventh Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

Returning to Step 2, we solve LPP8 (as it is the only problem remaining in Ξ)
and find that it has x̂ = (0.471, 4)
 as an optimal solution with objective-function
value ẑ = −4.471. Removing LPP8 from Ξ gives:

3.5 Solving Mixed-Integer Linear Optimization Problems Using Branch and Bound 169

Ξ ← {���LPP8} = {}.

In the Bound Updating and Branching step we find that x̂ falls into Case 3. However,
because ẑ > zu we do not update the upper bound nor do we add any more problems
to Ξ . Instead, we proceed to the Optimality Check and because we have Ξ = ∅,
we terminate the Branch-and-Bound Algorithm. Moreover, because we have found
a solution that is feasible in the original MILPP, xb = (2, 3)
, we report this as the
optimal solution of the original MILPP. Figure 3.16 shows the final tree of problems
after the Branch-and-Bound Algorithm terminates. �

Fig. 3.16 Final
branch-and-bound tree

3.5.3 Rationale Behind Branch-and-Bound Algorithm

The idea behind theBranch-and-BoundAlgorithm is relatively straightforward.What
the algorithm does is enumerates all of the different possible values that the integer
variables can take in an MILPP. However, it does this in an intelligent fashion.

The heart of this enumeration is the Bound Updating and Branching step of the
algorithm.Whenever a problem inΞ gives a solution in which an integer variable has
a non-integer value, the algorithm creates two new problems in which that variable
is fixed to be on the ‘two sides’ of that non-integer value. That is the logic behind
adding constraints of the form:

xi ≤ ⌊x̂i⌋,
and:

xi ≥ ⌈x̂i⌉,
in Step 3. Aswe note in the discussion of Steps 1 and 3 in Sections 3.5.2.2 and 3.5.2.4,
the constraints that are used to generate the new problems do not discard any feasible
solutions to the original MILPP. They only work to generate LPPs that eventually
generate solutions that are feasible in the original MILPP.

170 3 Mixed-Integer Linear Optimization

The ‘intelligence’ comes into play because we do not always add new problems
after solving a problem in Step 2. For instance, we do not add new problems in
Cases 1 and 2 of the Bound Updating and Branching step. The reason we do not in
Case 1 is that themost recently solvedLPP has already given a solution that is feasible
in the original MILPP. It is true that solving a new problem in which an additional
constraint is added to this LPP may give another feasible solution. However, any
such feasible solutions will give worse objective-function values than the solution
already found (this is a consequence of the Relaxation-Optimality Property because
the most recently solved LPP is a relaxation of any LPP that we generate by adding
constraints).

We do not add any new problems after Case 2 because if the most recently solved
LPP is infeasible, then any LPP we generate by adding more constraints is also
guaranteed to be infeasible.

Finally, in Case 3 of the Bound Updating and Branching step we do not add new
problems if the most recently solved LPP gives an objective-function value, ẑ, that
is greater than the current upper bound, zu . The reason behind this is that if we do
add new problems, their optimal solutions (whether they be feasible in the original
MILPP or not) will have objective-function values that are worse (higher) than ẑ.
This is because the most recently solved LPP is a relaxation of these problems that
would have added constraints. If zu < ẑ that means we already have a solution that
is feasible in the original MILPP and which gives a better objective-function value
than any feasible solutions from these problems could give.

The intelligent enumeration of the Branch-and-Bound Algorithm can be seen
in the amount of work involved in solving the Photovoltaic Panel-Repair Problem
in Example 3.1. The Branch-and-Bound Algorithm requires us to solve nine LPPs
(when we count the first linear relaxation). As a result, we are implicitly examining
nine possible solutions to theMILPP. Figure 3.1 shows that this problem has 15 feasi-
ble solutions. Because of its intelligence, we typically only have to examine a subset
of solutions when solving a MILPP using the Branch-and-Bound Algorithm.

3.5.4 Branch-and-Bound Algorithm

We now give a more detailed outline of the Branch-and-Bound Algorithm. Lines 2–
16 combine the Initialization and Initial Branching steps, which are discussed in
Sections 3.5.2.1 and 3.5.2.2. First, Lines 2–4 initialize zl , zu , and Ξ . Next the linear
relaxation is solved in Line 5. Lines 6–9 terminate the algorithm if the linear relax-
ation shows the original MILPP to be infeasible or gives an optimal solution to the
MILPP.

3.5 Solving Mixed-Integer Linear Optimization Problems Using Branch and Bound 171

Branch-and-Bound Algorithm
1: procedure Branch and Bound
2: zl ← −∞
3: zu ← +∞
4: Ξ ← ∅
5: solve LPP0 � x0, z0 denote optimal solution and objective-function value
6: if LPP0 is infeasible then
7: stop, original MILPP is infeasible
8: else if x0 satisfies integrality constraints of original MILPP then
9: stop, x0 is optimal in original MILPP
10: else
11: zl ← z0

12: select a variable, xi , to branch on
13: generate LPP−, which is LPP0 with constraint xi ≤ ⌊x0i ⌋ added
14: generate LPP+, which is LPP0 with constraint xi ≥ ⌈x0i ⌉ added
15: Ξ ← Ξ ∪ LPP− ∪ LPP+
16: end if
17: repeat
18: select a problem in Ξ � denote the selected problem ‘LPP’
19: remove LPP from Ξ

20: solve LPP � x̂, ẑ denote optimal solution and objective-function value
21: if x̂ satisfies integrality constraints of original MILPP then
22: if ẑ < zu then
23: zu ← ẑ
24: xb ← x̂
25: end if
26: else if LPP is feasible then
27: if zl < ẑ ≤ zu and zu < +∞ then
28: zl ← ẑ
29: end if
30: if ẑ < zu then
31: select a variable, xi , to branch on
32: generate LPP−, which is LPP with constraint xi ≤ ⌊x0i ⌋ added
33: generate LPP+, which is LPP with constraint xi ≥ ⌈x0i ⌉ added
34: Ξ ← Ξ ∪ LPP− ∪ LPP+
35: end if
36: end if
37: until Ξ = ∅
38: end procedure

Otherwise, the lower bound is updated in Line 11. Note that if the linear relaxation
is unbounded the value of zl does not actually change, because z0 = −∞. In Line 12
we select one variable, which we denote xi , to branch on. The variable to branch on
can be any variable that has a non-integer value in x0 but which is constrained to
take on an integer value in the original MILPP. We then generate the two new LPPs,
which have the same objective function and constraints as the linear relaxation, but
each have one new constraint, which are:

172 3 Mixed-Integer Linear Optimization

xi ≤ ⌊x0i ⌋,
and:

xi ≥ ⌈x0i ⌉.
Lines 17–37 are the main iterative loop of the algorithm. We begin by selecting a

problem, which we denote LPP, in Ξ , removing LPP from Ξ , and then solving LPP
in Lines 18–20. We let x̂ and ẑ denote the optimal solution and objective-function
value of LPP. Lines 21–36 are the Bound Updating and Branching process, which
is outlined in Section 3.5.2.4. Lines 21–25 handle Case 1 of this process, where x̂
satisfies the integrality constraints of the original MILPP. If so, we update the upper
bound and the best solution found in Lines 23 and 24, so long as ẑ < zu . We do not
have to branch (i.e., add new problems to Ξ) in this case.

Lines 26–36 handleCase 3 in Section 3.5.2.4. If LPP is feasible but x̂ is not feasible
in the original MILPP, we then update the lower bound in Line 28 if zl < ẑ ≤ zu and
zu < +∞. Also, if ẑ < zu we select another variable to branch on and generate the
two LPPs that are added to Ξ in Lines 31–34.

Note that Lines 17–37 do not explicitly discuss cases in which LPP is infeasible
or unbounded. If LPP is infeasible, there is no bound updating to be done and no new
LPPs to be generated and added toΞ . Thus, we do not do anything after solving LPP
in that iteration. If LPP is unbounded, then we generate new optimization problems
that are added to Ξ in Lines 31–34.

Line 37 is the Optimality Check. This is because we continue the iterative loop
until Ξ = ∅, which is the test conducted in Section 3.5.2.5.

3.5.5 Practical Considerations

There are three important practical issues to consider when applying the Branch-
and-Bound Algorithm. The first involves which variable to branch on (i.e., which
variable to use when adding constraints to the new problems being added to Ξ) in
the Initial Branching and the Bound Updating and Branching steps of the algorithm.
One may be tempted to wonder which is the ‘best’ variable to branch on, in the
sense of obtaining the optimal solution to the original MILPP as quickly as possible.
Unfortunately, the answer to this question is usually highly problem-dependent and
complex relationships between different variables can make it difficult to ascertain
this a priori. Thus, no general rules are available. Most MILPP solvers employ
heuristic rules, and the cost of a solver package is often tied to how much research
and sophistication is involved in the rules implemented.

A second question is what order to process the problems in Ξ in Step 2 of the
algorithm. There is, again, no general rule that applies to all problems because the
efficiency of solving a MILPP is highly dependent on the structure of the objective
function and constraints. Two heuristic rules that are commonly employed are known
as depth-first and breadth-first strategies. A depth-first strategy, which we employ

3.5 Solving Mixed-Integer Linear Optimization Problems Using Branch and Bound 173

in Example 3.1, goes deep down the branches of the tree as quickly as possible. This
is seen in the strategy that we employ because we solve LPP2, followed by LPP3 and
LPP5. A breadth-first strategy would, instead, stay at the top levels of the tree first
before going deeper. Applying such a strategy to Example 3.1 would see us solve
LPP2 and LPP1 before moving on the LPP3, LPP4, LPP7, and LPP8 and only then
going on to LPP5 and LPP6.

The primary benefit of a depth-first strategy is that it quickly produces problems
with many constraints that are either infeasible or give feasible solutions to the orig-
inal MILPP. This allows us to tighten the upper and lower bounds and find feasible
solutions relatively quickly. On the other hand, a breadth-first strategy allows us to
solve LPPs that are very similar to each other (they only have a small number of
constraints that differ from one another). This often allows us to solve the LPPs
more quickly. That being said, there is no general rule as to which of the two strate-
gies works most efficiently. Indeed, many solvers employ a combination of the two
approaches.

A third issue, which is raised in Section 3.5.1, is that we often do not solve an
MILPP to complete optimality. Thatmeans,wemay terminate theBranch-and-Bound
Algorithm before every problem in Ξ is solved. This process is normally governed
by the upper and lower bounds. If these bounds are sufficiently close to one another,
we may terminate the algorithm because we have a solution that is ‘close enough’
to optimal. For instance, in Example 3.1 we find the solution x = (3, 1)
, which is
not optimal after, solving LPP5. We also know, after solving LPP5, that zl = −5.347
and zu = −4. Thus, we know that the solution we have is at most:

∣∣∣∣ z
u − zl

zl

∣∣∣∣ = 0.25,

or 25% away from the optimal solution. In many cases, we may not be sufficiently
comfortable to use the feasible solution that we have at hand. However, if we find
a solution and know that it is at most 0.01% away from optimal, we may be happy
with that. Indeed, by default most MILPP solvers do not solve MILPPs to complete
optimality but stop once this so-called optimality gap is sufficiently small.

3.6 Solving Pure-Integer Linear Optimization Problems
Using Cutting Planes

This section outlines a fundamentally different way of solving a mixed-integer linear
optimization problem. Although the technique that we outline here can be applied
to generic MILPPs, we focus our attention on pure-integer linear optimization prob-
lems. Interested readers may consult other more advanced texts [13] that discuss the
generalization of this technique to generic MILPPs.

174 3 Mixed-Integer Linear Optimization

The idea of this algorithm is relatively straightforward and relies on some simple
properties of MILPPs and LPPs. We first know that if the integrality constraints
of a MILPP are relaxed, the resulting linear relaxation is an LPP. Thus, we know
that an optimal solution to the linear relaxation will have the properties discussed in
Section 2.3. More specifically, we argue in Section 2.3.1 that the feasible region of
every LPP has at least one extreme point or corner that is optimal.

To see why this observation is important, examine the feasible region of the linear
relaxation of the Photovoltaic Panel-Repair Problem, which is shown in Figure 3.17.
We know from the properties of linear optimization problems that when we solve this
linear relaxation, one of the four extreme points of the linear relaxation, which are
highlighted as red squares in Figure 3.17, will be the solution given by the Simplex
method. Unfortunately, only one of these extreme points:

(x1, x2) = (0, 0)
,

is a solution that is feasible in the original MILPP, and it is not an optimal solution
to the MILPP.

Fig. 3.17 Geometrical
representation of the feasible
region of the linear relaxation
of the Photovoltaic
Panel-Repair Problem

The idea that we explore in this section is to solve the MILPP by adding what
are known as cutting planes [8]. A cutting plane is simply a constraint that cuts off
solutions that are feasible in the linear relaxation but are not feasible in the original
MILPP. Figure 3.18 shows the feasible region of the linear relaxation of the original
MILPP when these cutting planes are added. Note that the additional constraints
make the five extreme points of the feasible region (which are highlighted with red
squares) coincide with points where x is integer-valued (and, thus, feasible in the

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2

3.6 Solving Pure-Integer Linear Optimization Problems Using Cutting Planes 175

original MILPP). The benefit of these cutting planes is that once we solve the linear
relaxation, the Simplex method gives us one of the extreme points, which will have
integer values for x , as an optimal solution. The important observation about cutting
planes is that they change (and reduce) the feasible region of the linear relaxation.
However, they do not change the feasible region of the original MILPP.

In practice, we do not have all of the cutting planes needed to solve a MILPP a
priori. Instead, we generate the cutting planes in an iterative algorithm by solving
the linear relaxation and finding constraints that cut off non-integer solutions. After
a sufficient number of iterations, and adding a sufficient number of these constraints,
we have a linear relaxation that gives an integer-valued solution that is feasible in
the original MILPP.

We proceed in this section by first outlining how to generate cuts from a non-
integer solution obtained from solving the linear relaxation of a pure-integer linear
optimization problem. We then outline the iterative algorithm to generate cutting
planes and demonstrate its use with an example.

Fig. 3.18 Geometrical
representation of the feasible
region of the linear relaxation
of the Photovoltaic
Panel-Repair Problem with
cutting planes added

3.6.1 Generating Cutting Planes

To derive a cutting plane, let us suppose that we solve the linear relaxation of a PILPP
and obtain a solution, x̂ , which does not satisfy all of the integrality restrictions of the
original PILPP. We further assume that the linear relaxation is converted to standard
form (2.14)–(2.16):

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2

176 3 Mixed-Integer Linear Optimization

min
x

c
x

s.t. Ax = b

x ≥ 0,

which is introduced in Section 2.2.2.1. This form allows us to analyze the struc-
tural equality constraints by partitioning x into basic and non-basic variables (cf.
Section 2.4.1 for further details). This partition allows us to write the equality con-
straints as: [

B N
] (xB

xN

)
= b, (3.44)

where we partition A into:
A = [B N

]
,

and the B submatrix is full-rank and we partition x into:

x =
(
xB
xN

)
.

Equation (3.44) can be rewritten as:

BxB + NxN = b,

or, because B is full-rank, as:

xB + B−1NxN = B−1b.

This can further be simplified as:

xB + Ñ xN = b̃, (3.45)

where:
Ñ = B−1N , (3.46)

and:
b̃ = B−1b. (3.47)

We next divide the values of Ñ and b̃ into their integer and non-integer compo-
nents. More specifically, define:

Ñ I =
⌊
Ñ
⌋
,

Ñ F = Ñ − Ñ I ,

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2

3.6 Solving Pure-Integer Linear Optimization Problems Using Cutting Planes 177

b̃I =
⌊
b̃
⌋
,

and:
b̃F = b̃ − b̃I .

We can note a few properties of Ñ , b̃, Ñ I , Ñ F , b̃I , and b̃F . First, we clearly have
that:

Ñ = Ñ I + Ñ F ,

and:
b̃ = b̃I + b̃F ,

from the definitions of Ñ I , Ñ F , b̃I , and b̃F . Next, we know that Ñ I and b̃I are integer-
valued, because they are defined as the floors of Ñ and b̃, respectively. Finally, we
have that Ñ F and b̃F are non-integer-valued, non-negative, and less than 1, because
they are defined as the difference between each of Ñ and b̃ and their floors.

Thus, we can rewrite (3.45) as:

xB + (Ñ I + Ñ F)xN = b̃I + b̃F ,

or, by rearranging terms, as:

xB + Ñ I xN − b̃I = b̃F − Ñ F xN . (3.48)

We next consider a basic variable, which we denote xB,i , which has a non-integer
value in x̂ . Note that because the original PILPP requires all of the variables to be
integer-valued, the value of x̂B,i is not feasible in the PILPP. We can define the value
of xB,i from (3.48) as:

xB,i +
m∑
j=1

Ñ I
i, j xN , j − b̃I

i = b̃F
i −

m∑
j=1

Ñ F
i, j xN , j , (3.49)

where m is the number of structural equality constraints when the linear relaxation
is written in standard form.

Note that the left-hand side of (3.49) is, by definition, integer-valued in the original
PILPP. To see why, note that all of the x’s are restricted to be integer-valued in the
original PILPP. Moreover, the coefficients Ñ I

i, j and the constant b̃
I
i are defined to be

integer-valued as well. Thus, for (3.49) to hold, the right-hand side must be integer-
valued as well.

Let us next examine the right-hand side of (3.49). We can first argue that b̃F
i > 0.

The reason for this is that we are focusing our attention on a basic variable that is
not integer-valued in x̂ . Moreover, we know from the discussion in Section 2.4.2
that the values of basic variables are equal to b̃, because the non-basic variables are
fixed equal to zero in the Simplex method. Thus, because xB,i = b̃i , if x̂B,i is not

http://dx.doi.org/10.1007/978-3-319-56769-3_2

178 3 Mixed-Integer Linear Optimization

integer-valued, then b̃i must have a strictly positive non-integer component, b̃F
i . We

further know that the second term on the right-hand side of (3.49):

m∑
j=1

Ñ F
i, j xN , j ,

is non-negative, because the coefficients, Ñ F
i, j , and the variables, xN , j , are all non-

negative. Because b̃F is defined as the non-integer component of b̃, it is by definition
strictly less than 1. Thus, we can conclude that the right-hand side of (3.49) is an
integer that is less than or equal to zero, or that:

b̃F
i −

m∑
j=1

Ñ F
i, j xN , j ≤ 0,

which can also be written as:

m∑
j=1

Ñ F
i, j xN , j − b̃F

i ≥ 0. (3.50)

Inequality (3.50) is the cutting plane that is generated by the solution, x̂ . This type of
cutting plane is often referred to as a Gomory cut, as Gomory introduced this method
of solving MILPPs [8]. Cuts of this form are used in the iterative algorithm that is
outlined in the next section.

3.6.2 Outline of Cutting-Plane Algorithm

Building off of the derivation of the Gomory cut given in Section 3.6.1, we now
outline the major steps of the Cutting-Plane Algorithm.

3.6.2.1 Step 0: Initialization

We begin the Cutting-Plane Algorithm by first solving the linear relaxation of the
original PILPP. When we solve the linear relaxation, one of the following three
outcomes is possible.

1. The linear relaxation may be infeasible. If so, then based on the Relaxation-
FeasibilityProperty, the original PILPP is infeasible aswell.As such,we terminate
the Cutting-Plane Algorithm and report that the original PILPP is infeasible.

2. Solving the linear relaxation may give a solution that satisfies all of the integrality
constraints of the original PILPP. If so, then based on the Relaxation-Optimality

3.6 Solving Pure-Integer Linear Optimization Problems Using Cutting Planes 179

Corollary, the optimal solution of the linear relaxation is also optimal in the
original PILPP. Thus, we terminate the algorithm and report the solution found
as being optimal.

3. If the solution to the linear relaxation does not fit into the first two cases (i.e., we
obtain a solution with non-integer values for some of the variables or the linear
relaxation is unbounded), then we proceed with the Cutting-Plane Algorithm. Let
x̂ denote the optimal solution found from solving the linear relaxation.

3.6.2.2 Step 1: Cut Generation

Select a variable, which we denote xi , that has a non-integer value in x̂ . In theory, any
non-integer-valued variable can be used. In practice, it is often beneficial to select
the one that has the largest non-integer component when b̃ is decomposed into b̃I

and b̃F . Generate cut (3.50) for the chosen variable.

3.6.2.3 Step 2: Solving

Add the cut generated in Step 1 to themost recently solvedLPP and solve the resulting
LPP.

3.6.2.4 Step 3: Optimality Check

When we solve the LPP in Step 2 there are three possible outcomes.

1. The LPP may be infeasible. If so, then the original PILPP is infeasible as well.
As such, we terminate the Cutting-Plane Algorithm and report that the original
PILPP is infeasible.

2. Solving the LPP may give a solution that satisfies all of the integrality constraints
of the original PILPP. If so, then the optimal solution of the LPP is also optimal
in the original PILPP. Thus, we terminate the algorithm and report the solution
found as being optimal.

3. If the solution to the LPP does not fit into these two cases (i.e., we obtain a solution
with non-integer values for some of the variables or the LPP is unbounded) then
we continue the algorithmby returning to Step 1. Let x̂ denote the optimal solution
found from solving the LPP.

Example 3.2 Consider the following variant of the Photovoltaic Panel-Repair Prob-
lem fromSection 3.1.1. A type-A repair unit is now 10%more effective than a type-B
unit. Moreover, each type-A unit has a mass of 2 kg and occupies 7 m3 of space while
a type-B unit has a mass of 1 kg and occupies 8 m3. The shuttle can now carry at
most 6 kg of repair units and has at most 28 m3 of space available in its cargo bay.
The payload specialists must determine how many units of each type to carry aboard

180 3 Mixed-Integer Linear Optimization

the spacecraft to maximize the effectiveness-weighted number of repair units sent to
the spacecraft.

To formulate this problem we let x1 and x2, respectively, denote the number of
type-A and -B repair units put into the spacecraft. The PILPP is then:

min
x1,x2

z = −11

10
x1 − x2

s.t. 2x1 + x2 ≤ 6

7x1 + 8x2 ≤ 28

x1, x2 ≥ 0

x1, x2 ∈ Z,

when the objective function is converted into a minimization.
To solve this problem using the Cutting-Planes Algorithm, we first convert the

linear relaxation:

min
x1,x2

z = −11

10
x1 − x2

s.t. 2x1 + x2 ≤ 6

7x1 + 8x2 ≤ 28

x1, x2 ≥ 0,

into standard form:

min
x1,x2,x3,x4

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

x1, x2, x3, x4 ≥ 0,

by adding two new slack variables, x3 and x4. Solving this problem gives x̂ =
(20/9, 14/9, 0, 0)
. Because this solution does not satisfy all of the integrality con-
straints of the original PILPP, we add a new cut.

To do so, we first recall that we have:

A =
[
2 1 1 0
7 8 0 1

]
,

and:

b =
(

6
28

)
.

3.6 Solving Pure-Integer Linear Optimization Problems Using Cutting Planes 181

Because x1 and x2 are basic variables and x3 and x4 are non-basic variables, we know
that the basis matrix will have the first two columns of A:

B =
[
2 1
7 8

]
,

and the N matrix will have the remaining columns:

N =
[
1 0
0 1

]
.

Using (3.46) and (3.47) we have:

Ñ =
[

8/9 −1/9
−7/9 2/9

]
,

and:

b̃ =
(
20/9
14/9

)
.

We can decompose these two into their integer and non-integer parts:

Ñ I =
[

0 −1
−1 0

]
,

Ñ F =
[
8/9 8/9
2/9 2/9

]
,

b̃I =
(
2
1

)
.

and:

b̃F =
(
2/9
5/9

)
.

We now select either of x1 or x2 to generate a cutting plane with. Because the non-
integer components of x̂ are given by b̃F and b̃F

2 > b̃F
1 , we generate a cut using x2.

From (3.50) this cut is given by:

m∑
j=1

Ñ F
2, j xN , j − b̃F

2 ≥ 0,

or by:
2

9
x3 + 2

9
x4 − 5

9
≥ 0,

182 3 Mixed-Integer Linear Optimization

when we substitute in the values of Ñ F and b̃F . We can further simplify this cut to:

2x3 + 2x4 − 5 ≥ 0.

Adding this cut to the standard form of the linear relaxation of the PILPP gives:

min
x1,x2,x3,x4

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − 5 ≥ 0

x1, x2, x3, x4 ≥ 0,

which we transform into the standard-form problem:

min
x1,x2,x3,x4,x5

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − x5 = 5

x1, x2, x3, x4, x5 ≥ 0,

by adding the surplus variable, x5, to the problem. Solving this problem gives x̂ =
(5/2, 1, 0, 5/2, 0)
. This solution does not satisfy the integrality constraints of the
original PILPP, because x̂1 = 5/2.

Thus, we must generate a new cutting plane. To do so, we first note that we now
have:

A =
⎡
⎣ 2 1 1 0 0
7 8 0 1 0
0 0 2 2 −1

⎤
⎦,

and:

b =
⎛
⎝ 6
28
5

⎞
⎠.

Because x1, x2, and x4 are basic variables we have:

B =
⎡
⎣2 1 0
7 8 1
0 0 2

⎤
⎦,

and:

3.6 Solving Pure-Integer Linear Optimization Problems Using Cutting Planes 183

N =
⎡
⎣ 1 0
0 0
2 −1

⎤
⎦,

and from (3.46) and (3.47) we have:

Ñ =
⎡
⎣ 1 −1/18

−1 1/9
1 −1/2

⎤
⎦,

and:

b̃ =
⎛
⎝5/2

1
5/2

⎞
⎠.

Decomposing these into their integer and non-integer parts gives:

Ñ I =
⎡
⎣ 1 −1

−1 0
1 −1

⎤
⎦,

Ñ F =
⎡
⎣0 17/18
0 1/9
0 1/2

⎤
⎦,

b̃I =
⎛
⎝ 1
1
1

⎞
⎠.

and:

b̃F =
⎛
⎝1/2

0
1/2

⎞
⎠.

Note that the value of x̂4 = 5/2 does not affect the feasibility of this solution in
the original PILPP, because the original PILPP only constraints x1 and x2 to be
integer-valued. However, if we examine the structural constraint:

7x1 + 8x2 + x4 = 28,

it is clear that if x4 takes on a non-integer value, then at least one of x1 or x2 will
also take on a non-integer value. Thus, we have the option of generating a cut using
either of x1 or x4. If we select x4, the new cutting plane will be:

1

2
x5 − 1

2
≥ 0,

184 3 Mixed-Integer Linear Optimization

or:
x5 − 1 ≥ 0,

when simplified. Adding this constraint to the current LPP gives:

min
x1,x2,x3,x4,x5

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − x5 = 5

x5 − 1 ≥ 0

x1, x2, x3, x4, x5 ≥ 0,

which is:

min
x1,x2,x3,x4,x5,x6

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − x5 = 5

x5 − x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0,

in standard form.
Solving the new LPP gives x = (23/9, 8/9, 0, 3, 1, 0)
. Thus, we must generate

a new cut. To do so, we note that we now have:

A =

⎡
⎢⎢⎣
2 1 1 0 0 0
7 8 0 1 0 0
0 0 2 2 −1 0
0 0 0 0 1 −1

⎤
⎥⎥⎦,

b =

⎛
⎜⎜⎝

6
28
5
1

⎞
⎟⎟⎠,

B =

⎡
⎢⎢⎣
2 1 0 0
7 8 1 0
0 0 2 −1
0 0 0 1

⎤
⎥⎥⎦,

3.6 Solving Pure-Integer Linear Optimization Problems Using Cutting Planes 185

and:

N =

⎡
⎢⎢⎣
1 0
0 0
2 0
0 −1

⎤
⎥⎥⎦.

From (3.46) and (3.47) we also have:

Ñ =

⎡
⎢⎢⎣

1 −1/18
−1 1/9
1 −1/2
0 −1

⎤
⎥⎥⎦,

and:

b̃ =

⎛
⎜⎜⎝
25/9
4/9
5
5

⎞
⎟⎟⎠,

which are decomposed as:

Ñ I =

⎡
⎢⎢⎣

1 −1
−1 0
1 −1
0 −1

⎤
⎥⎥⎦,

Ñ F =

⎡
⎢⎢⎣
0 17/18
0 1/9
0 1/2
0 0

⎤
⎥⎥⎦,

b̃I =

⎛
⎜⎜⎝
2
0
5
5

⎞
⎟⎟⎠,

and:

b̃F =

⎛
⎜⎜⎝
7/9
4/9
0
0

⎞
⎟⎟⎠.

Generating a cut with x2 gives:

186 3 Mixed-Integer Linear Optimization

1

9
x6 − 4

9
≥ 0,

or:

x6 − 4 ≥ 0.

Adding this to our current LPP gives:

min
x1,x2,x3,x4,x5,x6

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − x5 = 5

x5 − x6 = 1

x6 − 4 ≥ 0

x1, x2, x3, x4, x5, x6 ≥ 0,

which is:

min
x1,x2,x3,x4,x5,x6,x7

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − x5 = 5

x5 − x6 = 1

x6 − x7 = 4

x1, x2, x3, x4, x5, x6, x7 ≥ 0,

in standard form. The optimal solution to this LPP is x = (3, 0, 0, 7, 9, 4)
, which
satisfies all of the integrality constraints of the original PILPP. Thus, we terminate
the Cutting-Plane Algorithm and report (x1, x2) = (3, 0) as an optimal solution. �

3.6.3 Cutting-Plane Algorithm

We now give a more detailed outline of the Cutting-Plane Algorithm. Lines 2–5
initialize the algorithm. We have three flags that indicate if the algorithm should
terminate because the original PILPP is found to be infeasible or unbounded or if
we find an optimal solution to the original PILPP. These three flags are initially set
to zero in Lines 2–4. The algorithm also tracks a ‘current LPP,’ the constraints of

3.6 Solving Pure-Integer Linear Optimization Problems Using Cutting Planes 187

which are updated as new cutting planes are generated. In Line 5, the current LPP is
set equal to the linear relaxation of the PILPP.

Cutting-Plane Algorithm
1: procedure Cutting Plane
2: τ I ← 0
3: τU ← 0
4: τ S ← 0
5: ‘current LPP’ ← ‘linear relaxation of PILPP’ � x̂ denotes optimal solution
6: repeat
7: solve current LPP
8: if most recently solved LPP is infeasible then
9: τ I ← 1
10: else if x̂ satisfies integrality constraints of original PILPP then
11: if objective function is unbounded then
12: τU ← 1
13: else
14: τ S ← 1
15: end if
16: else
17: determine B and N from final tableau of most recently solved LPP
18: Ñ ← B−1N
19: b̃ ← B−1b
20: Ñ I ←

⌊
Ñ
⌋

21: Ñ F ← Ñ − Ñ I

22: b̃I ←
⌊
b̃
⌋

23: b̃F ← b̃ − b̃I

24: select a variable, xi , to add a cut for
25: add constraint

∑m
j=1 Ñ

F
i, j xN , j − b̃Fi ≥ 0 to most recently solved LPP

26: end if
27: until τ I = 1 or τU = 1 or τ S = 1
28: if τ I = 1 then
29: original PILPP is infeasible
30: else if τU = 1 then
31: original PILPP is unbounded
32: else
33: x̂ is optimal in original PILPP
34: end if
35: end procedure

Lines 6–27 are the main iterative loop of the algorithm. The current LPP is solved
in Line 7 and one of four things happens depending on the solution found. If the
current LPP is infeasible, then the flag τ I is set equal to 1 in Lines 8 and 9 to indicate
that the original PILPP is found to be infeasible. Next, if the optimal solution to
the current LPP satisfies the integrality constraints of the original PILPP and the
objective function is bounded, then we have found an optimal solution to the original
PILPP and set the flag τ S equal to 1 in Lines 13 and 14. Otherwise, if the objective

188 3 Mixed-Integer Linear Optimization

function is unbounded, then the original PILPP is unbounded as well and the flag
τU is set equal to 1 in Lines 11 and 12. Note that this case only applies if we have
an integer-valued solution that gives an unbounded objective function. If the LPP
solved in Line 7 is unbounded but we cannot guarantee that there is an integer-valued
solution that is unbounded, this falls into the final case in which a new cut is added
to the current problem. In the final case, in which the LPP is feasible but we do not
find a solution that satisfies the integrality constraints of the original PILPP (or the
LPP is unbounded but we cannot guarantee that there is an integer-valued solution
that is unbounded), we add a new cut to the current problem in Lines 17–25.

This iterative process repeats until we terminate the algorithm in Line 27 for
one of the three reasons (optimality, infeasibility, or unboundedness). Lines 28–34
determine what to report, based on which of τ I , τU , or τ S is equal to 1 when the
algorithm terminates.

3.7 Final Remarks

Current techniques to efficiently solve large-scale MILPPs (e.g., those implemented
in CPLEX [10] or GUROBI [9]) combine the branch-and-bound algorithm with
cutting-plane methods to reduce the feasible region of the LPPs that must be solved
while also exploring the branch-and-bound tree. These hybrid techniques pay partic-
ular attention to adding cutting planes to the original linear relaxation of the MILPP
before branching begins. The reason for this is that cutting planes added to the linear
relaxation are carried through in all of the subsequent LPPs that are solved and tend to
improve the quality of the solutions found. This, in turn, increases solution efficiency.
CommercialMILPP solvers also incorporate numerous heuristics to determinewhich
variable to branch on and which LPP in Ξ to solve in each iteration of the Branch-
and-Bound Algorithm. Bixby [2] provides an excellent overview of the evolution of
MILPP solvers up to 2002. Commercial MILPP solvers, such as CPLEX [10] and
GUROBI [9], can be easily accessed using mathematical programming languages
[3, 7, 11, 14].

The twomethods to solveMILPP that are outlined in this chapter are generic, in the
sense that they can be applied to any genericMILPP. For very difficult and large-scale
MILPPs, decomposition techniques are often employed. These techniques exploit the
structure of a problem to determine intelligent ways in which to break the MILPP
into smaller subproblems from which a good solution to the overall problem can be
found. Another extension of the solutionmethods discussed here are to develop other
types of cutting planes. These cutting planes often exploit the structure of the problem
at hand. While Gomory cuts are guaranteed to eventually find an optimal solution
to a MILPP, the number of cuts that may need to be added grows exponentially
with the problem size. Other types of cuts may yield a solution more quickly than
Gomory cuts alone can.Wolsey and Nemhauser [16], Bertsimas andWeismantel [1],
and Rao [13] discuss these more advanced solution techniques, including problem
decomposition, cutting planes, and hybrid methods. Castillo et al. [4] provide further

3.7 Final Remarks 189

discussion of modeling using mixed-integer linear optimization problems. We also
refer interested readers to other relevant works on the topic of MILPPs [5, 12, 15].

Our discussion in this chapter focuses exclusively on mixed-integer linear opti-
mization problems. It is a straightforward extension of the formulation techniques
discussed in this chapter and in Chapter 4 to formulate mixed-integer nonlinear opti-
mization problems. Indeed, such problems are gaining increased focused from the
operations research community. However, the solution of such problems is still typi-
cally quite taxing and demanding compared toMILPPs.We refer interested readers to
the work of Floudas [6], which provides an excellent introduction to the formulation
and solution of mixed-integer nonlinear optimization problems.

3.8 GAMS Codes

This final section provides GAMS [3] codes for the main problems considered in
this chapter. GAMS uses a variety of different solvers, among them CPLEX [10] and
GUROBI [9], to actually solve MILPPs.

3.8.1 Photovoltaic Panel-Repair Problem

The Photovoltaic Panel-Repair Problem, which is introduced in Section 3.1.1, has
the following GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 integer variables x1 , x2;
4 equations of , l1 , l2;
5 of .. z =e= x1+x2;
6 l1 .. 17*x1+32*x2 =l= 136;
7 l2 .. 32*x1+15*x2 =l= 120;
8 model pv /all/;
9 solve pv using mip maximizing z;

Line 1 indicates that the solution tolerance should be 0. Otherwise, the solver
may terminate once the optimality gap is sufficiently small but non-zero, giving a
near-optimal but not a fully optimal solution. Lines 2 and 3 are variable declarations,
Line 4 gives names to the equations of the model, Line 5 defines the objective
function, Lines 6 and 7 define the constraints, Line 8 defines the model, and Line 9
directs GAMS to solve it.

http://dx.doi.org/10.1007/978-3-319-56769-3_4

190 3 Mixed-Integer Linear Optimization

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 5.000 +INF .
4 ---- VAR x1 . 2.000 100.000 1.000
5 ---- VAR x2 . 3.000 100.000 1.000

3.8.2 Natural Gas-Storage Problem

The Natural Gas-Storage Problem, which is introduced in Section 3.1.2, has the
following GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 positive variables y11 , y12 , y21 , y22 , y31 , y32;
4 binary variables x1 , x2 , x3;
5 equations of , d1 , d2 , s1 , s2 , s3;
6 of .. z =e= y11+6*y12+2*y21+5*y22+3*y31+4*y32 -8*x1 -9*

x2 -7*x3;
7 d1 .. y11+y21+y31 =e= 10;
8 d2 .. y12+y22+y32 =e= 6;
9 s1 .. y11+y12 =l= 7*x1;

10 s2 .. y21+y22 =l= 8*x2;
11 s3 .. y31+y32 =l= 9*x3;
12 model gs /all/;
13 solve gs using mip maximizing z;

Line 1 indicates that the solution tolerance should be 0, Lines 2–4 are variable
declarations, Line 5 gives names to the equations of the model, Line 6 defines the
objective function, Lines 7–11 define the constraints, Line 12 defines the model, and
Line 13 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 49.000 +INF .
4 ---- VAR y11 . 1.000 +INF .
5 ---- VAR y12 . 6.000 +INF .
6 ---- VAR y21 . . +INF .
7 ---- VAR y22 . . +INF -2.000
8 ---- VAR y31 . 9.000 +INF .
9 ---- VAR y32 . . +INF -4.000

10 ---- VAR x1 . 1.000 1.000 -8.000
11 ---- VAR x2 . . 1.000 -1.000
12 ---- VAR x3 . 1.000 1.000 11.000

3.8 GAMS Codes 191

3.8.3 Electricity-Scheduling Problem

The Electricity-Scheduling Problem, which is introduced in Section 3.1.3, has the
following GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 positive variables p1 , p2 , p3;
4 binary variables x1 , x2 , x3;
5 equations of , b, l1u , l1d , l2u , l2d , l3u , l3d;
6 of .. z =e= 2*p1+5*p2+1*p3 + 40*x1+50*x2+35*x3;
7 b .. p1+p2+p3 =e= 50;
8 l1u .. p1 =l= 20*x1;
9 l1d .. p1 =g= 5*x1;

10 l2u .. p2 =l= 40*x2;
11 l2d .. p2 =g= 6*x2;
12 l3u .. p3 =l= 35*x3;
13 l3d .. p3 =g= 4*x3;
14 model es /all/;
15 solve es using mip minimizing z;

Line 1 indicates that the solution tolerance should be 0, Lines 2–4 are variable
declarations, Line 5 gives names to the equations of the model, Line 6 defines the
objective function, Lines 7–13 define the constraints, Line 14 defines the model, and
Line 15 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 140.000 +INF .
4 ---- VAR p1 . 15.000 +INF .
5 ---- VAR p2 . . +INF 3.000
6 ---- VAR p3 . 35.000 +INF .
7 ---- VAR x1 . 1.000 1.000 40.000
8 ---- VAR x2 . . 1.000 50.000
9 ---- VAR x3 . 1.000 1.000 EPS

3.8.4 Oil-Transmission Problem

The Oil-Transmission Problem, which is introduced in Section 3.1.4, has the follow-
ing GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 positive variables p1 , p2;
4 variable f1 , f2 , f3;
5 binary variables x1 , x2;

192 3 Mixed-Integer Linear Optimization

6 equations of , b1 , b2 , b3 , l12 , l21 , l13 , l31 , l23 , l32
;

7 of .. z =e= 2000*p1 +3000*p2 -50000*x1 -55000* x2;
8 b1 .. p1+p2 =e= 30;
9 b2 .. p1 -f1 -f3 =e= 0;

10 b3 .. p2 -f2+f3 =e= 0;
11 l12 .. f3 =l= 10;
12 l21 .. f3 =g= -10;
13 l13 .. f1 =l= 12 + 11*x1;
14 l31 .. f1 =g= -12 - 11*x1;
15 l23 .. f2 =l= 11 + 12*x2;
16 l32 .. f2 =g= -11 - 12*x2;
17 model ot /all/;
18 solve ot using MIP maximizing z;

Line 1 indicates that the solution tolerance should be 0, Lines 2–5 are variable
declarations, Line 6 gives names to the equations of the model, Line 7 defines the
objective function, Lines 8–16 define the constraints, Line 17 defines the model, and
Line 18 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 35000.000 +INF .
4 ---- VAR p1 . . +INF -1000.000
5 ---- VAR p2 . 30.000 +INF .
6 ---- VAR f1 -INF 10.000 +INF .
7 ---- VAR f2 -INF 20.000 +INF .
8 ---- VAR f3 -INF -10.000 +INF .
9 ---- VAR x1 . . 1.000 -5.000E+4

10 ---- VAR x2 . 1.000 1.000 -5.500E+4

3.8.5 Charging-Station Problem

The Charging-Station Problem, which is introduced in Section 3.1.5, has the follow-
ing GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 binary variables x1 , x2 , x3;
4 equations of , n1 , n2 , n3 , n4;
5 of .. z =e= 10*x1+12*x2+13*x3;
6 n1 .. 1*x1 + 0*x2 + 1*x3 =g= 1;
7 n2 .. 0*x1 + 1*x2 + 0*x3 =g= 1;
8 n3 .. 1*x1 + 1*x2 + 0*x3 =g= 1;
9 n4 .. 0*x1 + 0*x2 + 1*x3 =g= 1;

10 model cs /all/;
11 solve cs using mip minimizing z;

3.8 GAMS Codes 193

Line 1 indicates that the solution tolerance should be 0, Lines 2 and 3 are variable
declarations, Line 4 gives names to the equations of the model, Line 5 defines the
objective function, Lines 6–9 define the constraints, Line 10 defines the model, and
Line 11 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 25.000 +INF .
4 ---- VAR x1 . . 1.000 10.000
5 ---- VAR x2 . 1.000 1.000 12.000
6 ---- VAR x3 . 1.000 1.000 13.000

3.8.6 Wind Farm-Maintenance Problem

TheWind Farm-Maintenance Problem, which is introduced in Section 3.1.6, has the
following GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 binary variables x11 ,x12 ,x13 ,x21 ,x22 ,x23 ,x31 ,x32 ,x33;
4 equations of , f1 , f2 , f3 , t1 , t2 , t3;
5 of .. z =e= 10*x11 +12* x12 +14* x13+9*x21+8*x22 +15* x23

+10* x31+5*x32 +15* x33;
6 f1 .. x11 + x12 + x13 =e= 1;
7 f2 .. x21 + x22 + x23 =e= 1;
8 f3 .. x31 + x32 + x33 =e= 1;
9 t1 .. x11 + x21 + x31 =e= 1;

10 t2 .. x12 + x22 + x32 =e= 1;
11 t3 .. x13 + x23 + x33 =e= 1;
12 model wf /all/;
13 solve wf using mip minimizing z;

Line 1 indicates that the solution tolerance should be 0, Lines 2 and 3 are variable
declarations, Line 4 gives names to the equations of the model, Line 5 defines the
objective function, Lines 6–11 define the constraints, Line 12 defines the model, and
Line 13 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 28.000 +INF .
4 ---- VAR x11 . . 1.000 10.000
5 ---- VAR x12 . . 1.000 12.000
6 ---- VAR x13 . 1.000 1.000 14.000
7 ---- VAR x21 . 1.000 1.000 9.000
8 ---- VAR x22 . . 1.000 8.000
9 ---- VAR x23 . . 1.000 15.000

10 ---- VAR x31 . . 1.000 10.000

194 3 Mixed-Integer Linear Optimization

11 ---- VAR x32 . 1.000 1.000 5.000
12 ---- VAR x33 . . 1.000 15.000

3.9 Exercises

3.1 Steve owns twowarehouses containing 120 and 100 photovoltaic panels, respec-
tively. He uses these twowarehouses to serve customers in three markets, which have
demands for 40, 70, and 50 units, respectively, which must be met exactly. Per-unit
transportation costs between each warehouse and each market are given in Table 3.8.
Formulate an MILPP to determine how many panels Steve should ship from each
warehouse to each market to minimize total transportation cost.

Table 3.8 Per-unit
transportation costs [$] for
Exercise 3.1

Warehouse 1 Warehouse 2

Market 1 14 12

Market 2 13 10

Market 3 11 11

3.2 An electricity producer may use some combination of electricity-generating
units that are powered by either wind or natural gas. The capacity of each unit (either
wind- or natural gas-powered) is 10 kW. The cost of building a wind-powered unit is
$2500 and its operating cost is $6/kWh. The cost of building a natural gas-powered
unit is $2000 and its operating cost is $80/kWh.

If the demand to be supplied is 100 kW and the producer may not build more
than four wind-powered units, how many units of each type should the electricity
producer build to minimize the sum of building and generation costs?

3.3 Design, formulate, and solve an assignment problem similar to the Wind Farm-
Maintenance Problem, which is introduced in Section 3.1.6.

3.4 Design, formulate, and solve a knapsack problem similar to the Photovoltaic
Panel-Repair Problem, which is introduced in Section 3.1.1.

3.5 Design, formulate, and solve a set-covering problem similar to the Charging-
Station Problem, which is introduced in Section 3.1.5.

3.6 Linearize the cost function:

cost =
{
0, if x = 0,
5 + x, if 0 < x ≤ 10,

using integer variables.

3.9 Exercises 195

3.7 Linearize the piecewise-linear cost function:

cost =

⎧⎪⎨
⎪⎩

1
2 x, if 0 ≤ x ≤ 1,
1
2 + 2

3 (x − 1), if 1 < x ≤ 2,
7
6 + 1

3 (x − 2), if 2 < x ≤ 3,

using integer variables.

3.8 Design and formulate an instance of an Alternative Constraint, as outlined in
Section 3.3.4.

3.9 Consider the MILPP:

min
x1,x2

z = −x1 − x2

s.t. 2x1 + x2 ≤ 13

x1 + 2x2 ≤ 12

x1, x2 ≥ 0

x1, x2 ∈ Z.

The linear relaxation of this problemhas the optimal solution x0 = (14/3, 11/3)
.
If the Branch-and-Bound Algorithm is to be applied where x1 is the branching vari-
able, determine the new LPPs that would be added to Ξ .

3.10 Generate a cutting plane for the MILPP in Exercise 3.9.

3.11 Solve the Photovoltaic Panel-Repair Problem using the Cutting-Plane
Algorithm.

3.12 Solve the Natural Gas-Storage Problem using the Branch-and-Bound
Algorithm.

References

1. Bertsimas D, Weismantel R (2005) Optimization over integers. Dynamic Ideas, Belmont
2. Bixby RE (2002) Solving real-world linear programs: a decade and more of progress. Oper

Res 50:3–15
3. Brook A, Kendrick D, Meeraus A (1988) GAMS – a user’s guide. ACM, New York. www.

gams.com
4. Castillo E, Conejo AJ, Pedregal P, García R, Alguacil N (2002) Building and solving mathe-

matical programming models in engineering and science. Pure and applied mathematics series,
Wiley, New York

5. Conforti M, Cornuejols G, Zambelli G (2016) Integer programming. Springer, New York
6. Floudas CA (1995) Nonlinear and mixed-integer optimization: fundamentals and applications.

Oxford University Press, Oxford

www.gams.com
www.gams.com

196 3 Mixed-Integer Linear Optimization

7. Fourer R, Gay DM, Kernighan BW (2002) AMPL: a modeling language for mathematical
programming, 2nd edn. Cengage Learning, Boston. www.ampl.com

8. Gomory RE (1960) An algorithm for the mixed integer problem. RAND Corporation, Santa
Monica

9. Gurobi Optimization, Inc. (2010) Gurobi optimizer reference manual, Version 3.0. Houston,
Texas. www.gurobi.com

10. IBM ILOG CPLEX Optimization Studio (2016) CPLEX user’s manual, Version 12 Release 7.
IBM Corp. www.cplex.com

11. LubinM,Dunning I (2015) Computing in operations research using Julia. INFORMS JComput
27(2):238–248. www.juliaopt.org

12. Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: algorithms and complexity.
Dover Publications, Mineola

13. Rao SS (2009) Engineering optimization: theory and practice, 4th edn. Wiley, Hoboken
14. Roelofs M, Bisschop J (2016) AIMMS the language reference, AIMMS B.V., Haarlem, The

Netherlands. www.aimms.com
15. Wolsey LA (1998) Integer programming.Wiley interscience series in discrete mathematics and

optimization, Wiley, New York
16. Wolsey LA, Nemhauser GL (1999) Integer and combinatorial optimization.Wiley interscience

series in discrete mathematics and optimization, Wiley, New York

www.ampl.com
www.gurobi.com
www.cplex.com
www.juliaopt.org
www.aimms.com

	3 Mixed-Integer Linear Optimization
	3.1 Motivating Examples
	3.1.1 Photovoltaic Panel-Repair Problem
	3.1.2 Natural Gas-Storage Problem
	3.1.3 Electricity-Scheduling Problem
	3.1.4 Oil-Transmission Problem
	3.1.5 Charging-Station Problem
	3.1.6 Wind Farm-Maintenance Problem

	3.2 Types of Mixed-Integer Linear Optimization Problems
	3.2.1 General Mixed-Integer Linear Optimization Problems
	3.2.2 Pure-Integer Linear Optimization Problems
	3.2.3 Mixed-Binary Linear Optimization Problems
	3.2.4 Pure-Binary Linear Optimization Problems

	3.3 Linearizing Nonlinearities Using Binary Variables
	3.3.1 Variable Discontinuity
	3.3.2 Fixed Activity Cost
	3.3.3 Non-convex Piecewise-Linear Cost
	3.3.4 Alternative Constraints
	3.3.5 Product of Two Variables

	3.4 Relaxations
	3.5 Solving Mixed-Integer Linear Optimization Problems Using Branch and Bound
	3.5.1 Motivation
	3.5.2 Outline of Branch-and-Bound Algorithm
	3.5.3 Rationale Behind Branch-and-Bound Algorithm
	3.5.4 Branch-and-Bound Algorithm
	3.5.5 Practical Considerations

	3.6 Solving Pure-Integer Linear Optimization Problems Using Cutting Planes
	3.6.1 Generating Cutting Planes
	3.6.2 Outline of Cutting-Plane Algorithm
	3.6.3 Cutting-Plane Algorithm

	3.7 Final Remarks
	3.8 GAMS Codes
	3.8.1 Photovoltaic Panel-Repair Problem
	3.8.2 Natural Gas-Storage Problem
	3.8.3 Electricity-Scheduling Problem
	3.8.4 Oil-Transmission Problem
	3.8.5 Charging-Station Problem
	3.8.6 Wind Farm-Maintenance Problem

	3.9 Exercises
	References

