
Chapter 2
Linear Optimization

In this chapter we consider linear programming problems (LPPs). We show the prac-
tical significance of LPPs through a number of energy-related examples, providing a
precise formulation for such problems. We then analyze the geometric and algebraic
features of generic LPPs, using some of the energy-related examples as specific cases.
We then describe a well known solution algorithm, which is based on the algebraic
features of LPPs, show how to perform a sensitivity analysis, and provide and discuss
the dual form of an LPP.We finally conclude with a number of practical observations
and end-of-chapter exercises.

2.1 Motivating Examples

This introductory section provides a number of energy-related motivating examples
for the use of linear optimization. It illustrates that optimization is an everyday
endeavor.

2.1.1 Electricity-Production Problem

An electricity producer operates two production facilities that have capacities of 12
and 16 units per hour, respectively. This producer sells the electricity produced at
$1 per unit per hour. The two production facilities share a cooling system that restricts
their operation, from above and below. More specifically, the sum of the hourly
output from facility 2 and twice the hourly output of facility 1 must be at least
8 units. Moreover, the sum of the hourly output from facility 2 and two-thirds of the
hourly output from facility 1 must be no more than 18 units. The producer wishes to
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18 2 Linear Optimization

determine hourly production from the two facilities to maximize total revenues from
energy sales.

To formulate this and any optimization problem, there are three basic problem
elements that must be identified. The first is the decision variables, which represent
the decisions being made in the problem. In essence, the decision variables represent
the elements of the system beingmodeled that are under the decisionmaker’s control,
in the sense that their values can be changed. This should be contrasted with problem
data or parameters, which are fixed and cannot be changed by the decision maker.
In the context of our electricity-production problem, the decisions being made are
how many units to produce from each production facility in each hour. We denote
these decisions by the two variables, x1 and x2, being cognizant of what units these
production decisions are being measured in.

The second element of an optimization problem is the objective function. The
objective function is the metric upon which the decision variables are chosen.
Depending on the problem context, the objective is either being minimized or max-
imized. An optimization problem will often be referred to as either a minimization
or maximization problem, depending on what ‘direction’ the objective function is
being optimized in. An important property of an LPP is that the objective function
must be linear in the decision variables. In the electric-production problem, we are
told that the objective is to maximize total revenues. Because the two production
facilities sell their outputs, which are represented by x1 and x2, at a unit price of
$1 per unit per hour, the objective function can be written as:

max
x1,x2

1x1 + 1x2.

We typically write the decision variables underneath the ‘min’ or ‘max’ operator in
the objective function, tomake it easy for anyone to knowwhat the problem variables
are.

The final problem element is any constraint. The constraints indicate what, if
any, restrictions there are on the decision variables. Most constraints are given in a
problem’s description. For instance,we are told that the two facilities have production
limits of 12 and 16 units per hour. We can express these restrictions as the two
constraints:

x1 ≤ 12,

and:
x2 ≤ 16.

We are also told that there are upper and lower limits imposed by the shared cooling
system. These restrictions can be expressed mathematically as:

2

3
x1 + x2 ≤ 18,

and:
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2x1 + x2 ≥ 8.

In addition to these four explicit constraints, we know that it is physically impossi-
ble for either facility to produce a negative amount of electricity. Although this is
not given as an explicit restriction in the problem description, we must include the
following two non-negativity constraints:

x1, x2 ≥ 0,

to complete the problem formulation.
Taking all of these together, the problem formulation can be written compactly

as:

max
x1,x2

z = x1 + x2 (2.1)

s.t.
2

3
x1 + x2 ≤ 18 (2.2)

2x1 + x2 ≥ 8 (2.3)

x1 ≤ 12 (2.4)

x2 ≤ 16 (2.5)

x1, x2 ≥ 0. (2.6)

The z in (2.1) represents the objective function value. The abbreviation ‘s.t.’ stands
for ‘subject to,’ and denotes that the following lines have problem constraints. The
total set of constraints (2.2)–(2.6) define the problem’s feasible region or feasible set.
The feasible region is the set of values that the decision variables can take and satisfy
the problem constraints. Importantly, it should be clear that an optimal solution of the
problem must satisfy the constraints, meaning it must belong to the feasible region.

All of the constraints in an LPP must be one of three types: (i) less-than-or-equal-
to inequalities, (ii) greater-than-or-equal-to inequalities, or (iii) equalities. Moreover,
all of the constraints of an LPP must be linear in the decision variables. No other
constraint types can be used in anLPP. Constraints (2.2), (2.4), and (2.5) are examples
of less-than-or-equal-to inequalities while constraints (2.3) and (2.6) are examples
of greater-than-or-equal-to constraints. This problem does not include any equality
constraints, however, the Natural Gas-Transportation Problem, which is introduced
in Section 2.1.2, does.

It is also important to stress that LPPs cannot include any strict inequality con-
straints. That is to say, each inequality constraint must either have a ‘≤’ or ‘≥’ in it
and cannot have a ‘<’ or ‘>.’ The reason for this is that a strict inequality can give
us an LPP that does not have a well defined optimal solution. To see a very simple
example of this, consider the following optimization problem with a single variable,
which we denote as x :
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min
x

z = x

s.t. x > 0.

Examining this problem should reveal that it is impossible to find an optimal value
for x . This is because for any strictly positive value of x , regardless of how close to
0 it is, x/2 will also be feasible and give a slightly smaller objective-function value.
This simple example illustrates why we do not allow strict inequality constraints in
LPPs.

If a problem does require a strict inequality, we can usually approximate it using a
weak inequality based onphysical realities of the systembeingmodeled. For instance,
suppose that in the Electricity-Production Problem we are told that facility 1 must
produce a strictly positive amount of electricity. This constraint would take the form:

x > 0, (2.7)

which cannot be included in an LPP. Suppose that the control system on the facility
cannot realistically allow a production level less than 0.0001 units. Then, we can
instead substitute strict inequality (2.7) with:

x ≥ 0.0001,

which is a weak inequality that can be included in an LPP.
Figure 2.1 shows a geometrical representation of the Electricity-Production Prob-

lem. The two axes represent different values for the two decision variables. The
boundary defined by each constraint is given by a blue line and the two small
arrows at the end of each line indicate which side of the line satisfies the con-
straint. For instance, the blue line that goes through the points (x1, x2) = (0, 8) and
(x1, x2) = (4, 0) defines the boundary of constraint (2.3) and the arrows indicate that
points above and to the right of this line satisfy constraint (2.3).

For a problem that has more than two dimensions (meaning that it has more than
two decision variables) the boundary of each constraint defines a hyperplane. A
hyperplane is simply a higher-dimensional analogue to a line. The set of points that
satisfies an inequality constraint in more than two dimensions is called a halfspace.

The feasible region of the Electricity-Production Problem is the interior of a poly-
gon. For problems that have more than two dimensions the feasible region becomes
a polytope. A polytope is simply a higher-dimensional analogue to a polygon. An
important property of LPPs is that because the problem constraints are all linear in the
decision variables, the feasible region is always a polytope. It is important to stress,
however, that the polytope is not necessarily bounded, as the one for the Electricity-
Production Problem is. That is to say, for some problems there may be a direction
in which the decision variables can keep increasing or decreasing without any limit.
The implications of having a feasible region that is not bounded are discussed later
in Section 2.3.1. The feasible region of the Electricity-Production Problem has six
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Fig. 2.1 Geometrical
representation of the
Electricity-Production
Problem

corners, which are (4, 0), (12, 0), (12, 10), (3, 16), (0, 16), and (0, 8). The corners
of a polytope are often called vertices or extreme points.

The objective function is represented by its contour plot. The contour plot rep-
resents sets of values for the decision variables that give the same objective function
value. The contour plot for the Electricity-Production Problem is represented by the
parallel red lines in Figure 2.1. The red arrow that runs perpendicular to the red lines
indicates the direction in which the objective function is increasing. An important
property of LPPs is that because the objective function is linear in the decision vari-
ables, the contour plot is always parallel lines (for problems that have more than
two dimensions, the contour plot is parallel hyperplanes) and the objective is always
increasing/decreasing in the same direction that runs perpendicular to the contour
plot.

The solution of this problem is easily obtained by inspecting Figure 2.1: the point
in the feasible region that corresponds with the contour line with the highest value
is vertex (12, 10). Thus, vertex (12, 10) is the optimal solution with an objective-
function value of 22. We typically identify an optimal solution using stars, meaning
that we write (x∗

1 , x
∗
2 ) = (12, 10) and z∗ = 22.

It is finally worth noting that the Electricity-Production Problem is a simplified
example of what is known as a production-scheduling problem.

2.1.2 Natural Gas-Transportation Problem

A natural gas producer owns two gas fields and serves two markets. Table 2.1 sum-
marizes the capacity of each field and Table 2.2 gives the demand of each market,
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which must be satisfied exactly. Finally, Table 2.3 summarizes the per-unit cost of
transporting gas from each field to each market. The company would like to deter-
mine how to transport natural gas from the two fields to the two markets to minimize
its total transportation cost.

There are four decision variables in this problem, which are:

• x1,1: units of natural gas transported from field 1 to market 1;
• x1,2: units of natural gas transported from field 1 to market 2;
• x2,1: units of natural gas transported from field 2 to market 1; and
• x2,2: units of natural gas transported from field 2 to market 2.

Table 2.1 Capacity of each
gas field in the Natural
Gas-Transportation Problem

Field Capacity [units]

1 7

2 12

Table 2.2 Demand of each
market in the Natural
Gas-Transportation Problem

Market Demand [units]

1 10

2 8

Table 2.3 Transportation
cost between each gas field
and market [$/unit] in the
Natural Gas-Transportation
Problem

Market 1 Market 2

Field 1 5 4

Field 2 3 6

For many problems, it can be cumbersome to list all of the problem variables explic-
itly. To shorten the variable definition, we can introduce index sets, over which the
variables are defined. In this problem, the variables are indexed by two sets. The first
is the field from which the gas is being transported and the second index set is the
market to which it is being shipped. If we let i denote the index for the field and j
the index for the market, we can more compactly define our decision variables as
xi, j , which represents the units of natural gas transported from field i to market j . Of
course when defining the decision variables this way we know that i = 1, 2 (because
there are two fields) and j = 1, 2 (because there are two markets). However, typi-
cally the two (or more) index sets over which a variable is defined do not necessarily
have the same number of elements, as we have in this example.

The objective of this problem is to minimize total transportation cost, which is
given by:

min
x

5x1,1 + 4x1,2 + 3x2,1 + 6x2,2,
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where we have listed the decision variables compactly as x , and have that x =
(x1,1, x1,2, x2,1, x2,2).

This problem has three types of constraints. The first are capacity limits on how
much can be produced by each field:

x1,1 + x1,2 ≤ 7,

and:
x2,1 + x2,2 ≤ 12.

The second are constraints that ensure that the demand in each market is exactly
satisfied:

x1,1 + x2,1 = 10,

and:
x1,2 + x2,2 = 8.

Note that these demand conditions are equality constraints. We finally need non-
negativity constraints:

x1,1, x1,2, x2,1, x2,2 ≥ 0.

The non-negativity constraints can be written more compactly either as:

xi, j ≥ 0,∀ i = 1, 2; j = 1, 2;

or as:
x ≥ 0.

Taking all of these elements together, the entire LPP can be written as:

min
x

z = 5x1,1 + 4x1,2 + 3x2,1 + 6x2,2

s.t. x1,1 + x1,2 ≤ 7

x2,1 + x2,2 ≤ 12

x1,1 + x2,1 = 10 (2.8)

x1,2 + x2,2 = 8 (2.9)

xi, j ≥ 0,∀ i = 1, 2; j = 1, 2.

The Natural Gas-Transportation Problem is a simplified instance of a transporta-
tion problem.
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2.1.3 Gasoline-Mixture Problem

Agasoline refiner needs to produce a cost-minimizing blend of ethanol and traditional
gasoline. The blend needs to have at least 65% burning efficiency and a pollution
level no greater than 85%. The burning efficiency, pollution level, and per-ton cost
of ethanol and traditional gasoline are given in Table 2.4.

Table 2.4 Burning efficiency, pollution level, and per-ton cost of ethanol and traditional gasoline
in the Gasoline-Mixture Problem

Product Efficiency [%] Pollution [%] Cost [$/ton]

Gasoline 70 90 200

Ethanol 60 80 220

To formulate this problem, we model the refiner as determining a least-cost mix-
ture of gasoline and ethanol to produce one ton of blend. The resulting optimal
mixture can then be scaled up or down by the refiner depending on how much blend
it actuallywants to produce. There are two decision variables in this problem—x1 and
x2 denote how many tons of gasoline and ethanol are used in the blend, respectively.

The objective is to minimize the cost of the blend:

min
x

200x1 + 220x2.

There are three sets of problem constraints. The first ensures that the blend meets
the minimum burning efficiency level:

0.7x1 + 0.6x2 ≥ 0.65,

and the maximum pollution level:

0.9x1 + 0.8x2 ≤ 0.85.

Next we must ensure that we produce one ton of the blend:

x1 + x2 = 1.

Finally, the decision variables must be non-negative, because it is physically impos-
sible to have negative tons of ethanol or gasoline in the blend:

x1, x2 ≥ 0.

Putting all of the problem elements together, the LPP can be written as:
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min
x

z = 200x1 + 220x2

s.t. 0.7x1 + 0.6x2 ≥ 0.65

0.9x1 + 0.8x2 ≤ 0.85

x1 + x2 = 1

x1, x2 ≥ 0.

The Gasoline-Mixture Problem is a simplified example of a commodity-mixing
problem.

2.1.4 Electricity-Dispatch Problem

The electric power network in Figure 2.2 includes two production plants, at nodes 1
and 2, and demand at node 3. The production plants at nodes 1 and 2 have production
capacities of 6 and 8 units, respectively, and their per-unit production costs are $1
and $2, respectively. There is demand for 10 units of energy at node 3.

Fig. 2.2 Electric power
network in the
Electricity-Dispatch Problem

Demand

Cheap unit Expensive unit

1 2

3

θ1 θ2

Θ3=0

The operation of the network is governed by differences in the electrical heights
of the three nodes. More specifically, the flow of electricity through any line is
proportional to the difference of electrical heights of the initial and final nodes of
the line. This means that the amount of energy produced at node 1 is equal to the
difference between the electrical heights of nodes 1 and 2 plus the difference between
the electrical heights of nodes 1 and 3. Electricity produced at node 2 is similarly
equal to the difference between the electrical heights of nodes 2 and 1 plus the
difference between the electrical heights of nodes 2 and 3. Finally, the electricity
consumed at node 3 is defined as the difference between the electrical-heights of
nodes 1 and 3 plus the difference between the electrical heights of nodes 2 and 3 (the
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electrical-height differences are opposite to those for nodes 1 and 2 because energy
is consumed at node 3 as opposed to being produced).

The network operator seeks to produce electricity at the plants and operate the
network in such a way to serve the demand at node 3 at minimum cost.

This problem has five decision variables. We let x1 and x2 denote the units of
electricity produced at nodes 1 and 2, respectively. We also let θ1, θ2, and θ3 denote
the electrical heights of the three nodes.

The objective is to minimize total production cost:

min
x,θ

1x1 + 2x2.

There are three sets of problem constraints. The first defines the amount produced
and consumed at each node in terms of the electrical-height differences. The node 1
constraint is:

x1 = (θ1 − θ2) + (θ1 − θ3),

the node 2 constraint is:

x2 = (θ2 − θ1) + (θ2 − θ3),

and the node 3 constraint is:

10 = (θ1 − θ3) + (θ2 − θ3).

As noted above, the electrical-height differences defining consumption at node 3 is
opposite to the height differences defining production at nodes 1 and 2. The second
set of constraints imposes the production limits at the two nodes:

x1 ≤ 6,

and:
x2 ≤ 8.

We finally need non-negativity for the production variables only:

x1, x2 ≥ 0.

The θ ’s can take negative values, because they are used to define the relative electrical
heights of the three nodes.

This LPP can be slightly simplified. This is because the production and consump-
tion levels at the three nodes are defined in terms of electrical height differences.
As such, we can arbitrarily fix one of the three θ ’s and only keep the other two as
variables. If we fix θ3 = 0, the LPP is further simplified to:
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min
x,θ

z = x1 + 2x2

s.t. x1 = 2θ1 − θ2

x2 = 2θ2 − θ1

10 = θ1 + θ2

x1 ≤ 6

x2 ≤ 8

x1, x2 ≥ 0.

The Electricity-Dispatch Problem is a simplified instance of a scheduling problem
with network constraints.

2.2 Forms of Linear Optimization Problems

As noted before, linear optimization problems vary in terms of a number of attributes.
The objective can either be aminimization ormaximization.Moreover, it can include
a mixture of less-than-or-equal-to, greater-than-or-equal-to, or equality constraints.
In this section we first give the general form of a linear optimization problem. We
then discuss two important special forms that any linear optimization problem can
be converted to: standard and canonical forms. These forms are used later to solve
and study algebraic features of linear optimization problems. In addition to introduc-
ing these special forms, we discuss how to convert any generic linear optimization
problem into these two forms.

2.2.1 General Form of Linear Optimization Problems

As noted in Section 2.1.1, linear optimization problems have a very important defin-
ing feature. This feature is that the objective function and all of the constraints are
linear in all of the decision variables. Because LPPs have this special feature, we can
write them generically as:

min
x1,...,xn

n∑

i=1

ci xi (2.10)

s.t.
n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me (2.11)

n∑

i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg (2.12)
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n∑

i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml . (2.13)

This generic problem has n decision variables: x1, . . . , xn . The ci ’s in the objec-
tive function and the Ae

j,i ’s, A
g
j,i ’s, A

l
j,i ’s, b

e
j ’s, b

g
j ’s, and blj ’s in the constraints are

constants. Thus the objective function and the constraints are linear in the decision
variables, because each decision variable is multiplied by a constant coefficient in the
objective function and in each constraint and those products are summed together.

Although this genericLPP iswritten as aminimizationproblem,wecouldhave just
as easily written it as a maximization problem. This generic problem hasme equality,
mg greater-than-or-equal-to, and ml less-than-or-equal-to constraints. This means
that there are m = me + mg + ml constraints in total. An LPP does not have to
include all of the three types of constraints. For instance, the Electricity-Production
Problem,which is introduced in Section 2.1.1, does not have any equality constraints,
meaning that me = 0 for that particular problem.

As noted in Section 2.1.1, LPPs can only includeweak inequalities. Strict inequal-
ities cannot be used, because they typically raise technical issues. If a problem calls
for the use of a strict inequality, for instance of the form:

n∑

i=1

A j,i yi > b j ,

this can be approximated by introducing a sufficiently small positive constant, ε j ,
and replacing the strict inequality with a weak inequality of the form:

n∑

i=1

A j,i yi ≥ b j + ε j .

Oftentimes, the physical properties of the system being modeled may allow for such
a value of ε j to be chosen (we discuss one example of such a physical property in
Section 2.1.1). If not, then onemust simply choose a very small value for ε j to ensure
that the final problem solution is not drastically affected by it. A strictly less-than
inequality of the form:

n∑

i=1

A j,i yi < b j ,

can be similarly approximated by replacing it with a weak inequality of the form:

n∑

i=1

A j,i yi ≤ b j − ε j ,

where ε j is again a sufficiently small positive constant.
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2.2.2 Standard and Canonical Forms of Linear Optimization
Problems

Although any LPP can be written in the generic form just introduced, we occasion-
ally want to write a problem in one of two more tailored forms. These forms—the
so-called standard and canonical forms—are used because they make solving or
analyzing a linear optimization problem more straightforward. We introduce each of
these forms in turn and then discuss how to convert any generic LPP into them.

2.2.2.1 Standard Form of Linear Optimization Problems

The standard form of a linear optimization problemhas three defining features. First,
the objective function is aminimization. The other two properties are that the problem
has two types of constraints. The first types are non-negativity constraints, which
require all of the decision variables to be non-negative. The other types are structural
constraints, which are any constraints other than non-negativity constraints. All of
the structural constraints of a linear optimization problem in standard form must be
equality constraints.

Converting a generic linear optimization problem to standard form requires several
steps. We begin with the decision variables. Any decision variables that are non-
negative in the original generic problem are already in the correct form for the
standard form of the problem. If a decision variable has a non-positivity restriction
of the form:

y ≤ 0,

it can be replaced throughout the LPP with a new variable, ỹ, which is defined as:

ỹ = −y.

Clearly, the newvariablewould have a non-negativity restriction, because the original
non-positivity constraint:

y ≤ 0,

could be rewritten as:
−y ≥ 0,

by multiplying the constraint through by −1. We would then substitute ỹ for −y in
the left-hand side of this constraint, which gives:

ỹ ≥ 0.

If a variable is unrestricted in sign, a similar type of substitution can be done.
More specifically, suppose a variable, y, in a generic LPP is unrestricted in sign. We
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can then introduce two new non-negative variables, y− and y+, and define them as:

y+ − y− = y.

We then substitute y with y+ − y− throughout the LPP and also add two non-
negativity constraints:

y−, y+ ≥ 0.

Note that because y is defined as the difference between two non-negative variables,
y can be made positive or negative depending on which of y− or y+ is bigger (or, if
we want y = 0, we would have y− = y+).

After all of the variables have been made non-negative, we next turn our attention
to the structural constraints. If a structural constraint in a generic LPP is an equality,
then it is already in the correct format for the standard form LPP and no further work
is needed. If, however, we have a less-than-or-equal-to constraint of the form:

n∑

i=1

Al
j,i xi ≤ blj ,

we can convert this to an equality constraint by introducing a non-negative slack
variable, which we will denote as s j . With this slack variable, we can replace the
less-than-or-equal-to constraint with the equivalent equality constraint:

n∑

i=1

Al
j,i xi + s j = blj ,

and also add the non-negativity constraint:

s j ≥ 0.

A greater-than-or-equal-to constraint of the form:

n∑

i=1

Ag
j,i xi ≥ bgj ,

can be similarly converted to an equality constraint by introducing a non-negative
surplus variable, which we denote r j . With this surplus variable, we can replace the
greater-than-or-equal-to constraint with the equivalent equality constraint:

n∑

i=1

Ag
j,i xi − r j = bgj .

We must also add the non-negativity constraint:



2.2 Forms of Linear Optimization Problems 31

r j ≥ 0.

The slack and surplus variables introduced to convert inequalities into equalities can
be interpreted as measuring the difference between the left- and right-hand sides of
the original inequality constraints.

The final step to convert a generic LPP to standard form is to ensure that the
objective function is a minimization. If the objective of the generic problem is a
minimization, then no further work is needed. Otherwise, if the objective is maxi-
mization, it can be converted by multiplying the objective through by −1.

We demonstrate the use of these steps to convert a generic LPP into standard form
with the following example.

Example 2.1 Consider the following LPP:

max
x

3x1 + 5x2 − 3x3 + 1.3x4 − x5

s.t. x1 + x2 − 4x4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5

x1, x2 ≥ 0

x4 ≤ 0.

To convert this generic LPP into standard form, we begin by first noting that both
x1 and x2 are non-negative, thus no substitutions have to be made for these variables.
The variable x4 is non-positive, thuswe define a newvariable, x̃4 = −x4. Substituting
x̃4 for x4 in the LPP gives:

max
x

3x1 + 5x2 − 3x3 − 1.3x̃4 − x5

s.t. x1 + x2 + 4x̃4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5

x1, x2, x̃4 ≥ 0.

The signs of the coefficients in the objective function and first constraint on x̃4 have
been changed, because we have defined x̃4 as being equal to −x4. Next, we note that
because x3 and x5 are unrestricted in sign, we must introduce four new non-negative
variables, x−

3 , x
+
3 , x

−
5 , and x+

3 , and define them as:

x+
3 − x−

3 = x3,

and:
x+
5 − x−

5 = x5.
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We make these substitutions for x3 and x5 and add the non-negativity constraints,
which gives:

max
x

3x1 + 5x2 − 3(x+
3 − x−

3 ) − 1.3x̃4 − (x+
5 − x−

5 )

s.t. x1 + x2 + 4x̃4 ≤ 10

x2 − 0.5(x+
3 − x−

3 ) + (x+
5 − x−

5 ) = −1

(x+
3 − x−

3 ) ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0.

Next, we must add a non-negative slack and subtract a non-negative surplus vari-
able, which we call s1 and r1, to and from structural constraints 1 and 3, respectively.
This gives:

max
x,s,r

3x1 + 5x2 − 3x+
3 + 3x−

3 − 1.3x̃4 − x+
5 + x−

5

s.t. x1 + x2 + 4x̃4 + s1 = 10

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 = −1

x+
3 − x−

3 − r1 = 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 , s1, r1 ≥ 0.

Finally, we convert the objective function to a minimization, by multiplying it
through by −1, giving:

min
x,s,r

− 3x1 − 5x2 + 3x+
3 − 3x−

3 + 1.3x̃4 + x+
5 − x−

5

s.t. x1 + x2 + 4x̃4 + s1 = 10

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 = −1

x+
3 − x−

3 − r1 = 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 , s1, r1 ≥ 0,

which is the standard form of our starting LPP. ��
Example 2.2 Consider the Gasoline-Mixture Problem, which is introduced in
Section 2.1.3. This problem is formulated generically as:

min
x

200x1 + 220x2

s.t. 0.7x1 + 0.6x2 ≥ 0.65

0.9x1 + 0.8x2 ≤ 0.85

x1 + x2 = 1

x1, x2 ≥ 0.
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To convert this to standard form, we simply need to introduce one non-negative
surplus variable, r1, and a non-negative slack variable, s1. The standard form of the
LPP would then be:

min
x,r,s

200x1 + 220x2

s.t. 0.7x1 + 0.6x2 − r1 = 0.65

0.9x1 + 0.8x2 + s1 = 0.85

x1 + x2 = 1

x1, x2, r1, s1 ≥ 0. ��
An LPP in standard form can be generically written as:

min
x1,...,xn

n∑

i=1

ci xi

s.t.
n∑

i=1

A j,i xi = b j , ∀ j = 1, . . . ,m

xi ≥ 0, ∀ i = 1, . . . , n.

We can write the generic standard form even more compactly. This is done by first
defining a vector of objective-function coefficients:

c =

⎛

⎜⎜⎜⎝

c1
c2
...

cn

⎞

⎟⎟⎟⎠ ,

a vector of decision variables:

x =

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠ ,

a matrix of constraint coefficients:

A =

⎡

⎢⎢⎢⎣

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

⎤

⎥⎥⎥⎦ ,

and a vector of constraint right-hand-side constants:
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b =

⎛

⎜⎜⎜⎝

b1
b2
...

bm

⎞

⎟⎟⎟⎠ .

The standard-form LPP is then compactly written as:

min
x

c�x (2.14)

s.t. Ax = b (2.15)

x ≥ 0. (2.16)

2.2.2.2 Canonical Form of Linear Optimization Problems

The canonical form of a linear optimization problem has: (i) an objective function
that is a minimization, (ii) greater-than-or-equal-to structural constraints, and (iii)
non-negative decision variables. Converting a generic linear optimization problem
to standard form requires several steps. Ensuring that the decision variables are non-
negative and that the objective is a minimization are handled in the same manner as
they are in converting an LPP to standard form.

As for the structural constraints, any constraints that are greater-than-or-equal-to
require no further work. A less-than-or-equal-to constraint of the form:

n∑

i=1

Al
j,i xi ≤ blj ,

can be converted to a greater-than-or-equal-to constraint by multiplying both sides
by −1. This converts the constraint to:

−
n∑

i=1

Al
j,i xi ≥ −blj .

Finally, an equality constraint of the form:

n∑

i=1

Ae
j,i xi = bej ,

can be replaced by two inequalities of the form:

n∑

i=1

Ae
j,i xi ≤ bej ,
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and:
n∑

i=1

Ae
j,i xi ≥ bej .

We can then convert the first inequality constraint into a greater-than-or-equal-to
constraint by multiplying both sides by −1. Thus, the equality constraint is replaced
with:

−
n∑

i=1

Ae
j,i xi ≥ −bej ,

and:
n∑

i=1

Ae
j,i xi ≥ bej .

It should be noted that this transformation of an equality constraint when con-
verting to canonical form can create numerical issues when solving the LPP. The
reason for this is that the two inequalities ‘fight’ one another to bring the solution
to its corresponding ‘side’ of bej . Because a feasible solution is right in the middle,
not in either of these two sides, this ‘fight’ may result in a sluggish back-and-forth
progression to the middle, where a feasible solution lies.

Example 2.3 Recall the generic LPP, which is introduced in Example 2.1:

max
x

3x1 + 5x2 − 3x3 + 1.3x4 − x5

s.t. x1 + x2 − 4x4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5

x1, x2 ≥ 0

x4 ≤ 0.

To convert this LPP to canonical form, we first undertake the same steps to have
all of the decision variables non-negative, which gives:

max
x

3x1 + 5x2 − 3x+
3 + 3x−

3 − 1.3x̃4 − x+
5 + x−

5

s.t. x1 + x2 + 4x̃4 ≤ 10

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 = −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0.

We next convert the first structural inequality into a greater-than-or-equal-to by mul-
tiplying both sides by −1, which gives:
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max
x

3x1 + 5x2 − 3x+
3 + 3x−

3 − 1.3x̃4 − x+
5 + x−

5

s.t. − x1 − x2 − 4x̃4 ≥ −10

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 = −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0.

We then replace the second structural constraint, which is an equality, with two
inequalities, giving:

max
x

3x1 + 5x2 − 3x+
3 + 3x−

3 − 1.3x̃4 − x+
5 + x−

5

s.t. − x1 − x2 − 4x̃4 ≥ −10

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 ≤ −1

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 ≥ −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0.

We convert the first of these two into a greater-than-or-equal-to by multiplying it
through by −1, giving:

max
x

3x1 + 5x2 − 3x+
3 + 3x−

3 − 1.3x̃4 − x+
5 + x−

5

s.t. − x1 − x2 − 4x̃4 ≥ −10

− x2 + 0.5x+
3 − 0.5x−

3 − x+
5 + x−

5 ≥ 1

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 ≥ −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0.

We finally convert the objective function into a minimization by multiplying through
by −1, which gives:

min
x

− 3x1 − 5x2 + 3x+
3 − 3x−

3 + 1.3x̃4 + x+
5 − x−

5

s.t. − x1 − x2 − 4x̃4 ≥ −10

− x2 + 0.5x+
3 − 0.5x−

3 − x+
5 + x−

5 ≥ 1

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 ≥ −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0,

which is the canonical form of the starting LPP. ��
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Example 2.4 Consider the Electricity-Production Problem, which is introduced in
Section 2.1.1. The generic formulation of this problem is:

max
x1,x2

x1 + x2

s.t.
2

3
x1 + x2 ≤ 18

2x1 + x2 ≥ 8

x1 ≤ 12

x2 ≤ 16

x1, x2 ≥ 0.

To convert this problem to canonical form, we must multiply the objective function
and the first, third, and fourth structural constraints through by −1. This gives:

min
x1,x2

− x1 − x2

s.t. − 2

3
x1 − x2 ≥ −18

2x1 + x2 ≥ 8

− x1 ≥ −12

− x2 ≥ −16

x1, x2 ≥ 0,

as the canonical form. ��
Example 2.5 Consider theNaturalGas-Transportation Problem,which is introduced
in Section 2.1.2. This problem is generically formulated as:

min
x

z = 5x1,1 + 4x1,2 + 3x2,1 + 6x2,2

s.t. x1,1 + x1,2 ≤ 7

x2,1 + x2,2 ≤ 12

x1,1 + x2,1 = 10

x1,2 + x2,2 = 8

xi, j ≥ 0,∀ i = 1, 2; j = 1, 2.

To convert this to canonical form, both sides of the first two inequalities must be
multiplied by −1. Moreover, the two equality constraints must be replaced with two
inequalities, one of each of which is multiplied by −1 to convert all of the structural
constraints into greater-than-or-equal-to constraints. This gives:
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min
x

z = 5x1,1 + 4x1,2 + 3x2,1 + 6x2,2

s.t. − x1,1 − x1,2 ≥ −7

− x2,1 − x2,2 ≥ −12

− x1,1 − x2,1 ≥ −10

x1,1 + x2,1 ≥ 10

− x1,2 − x2,2 ≥ −8

x1,2 + x2,2 ≥ 8

xi, j ≥ 0,∀ i = 1, 2; j = 1, 2,

as the canonical form of this LPP. ��
The canonical form of an LPP can be written generically as:

min
x1,...,xn

n∑

i=1

ci xi

s.t.
n∑

i=1

A j,i xi ≥ b j , ∀ j = 1, . . . ,m

xi ≥ 0, ∀ i = 1, . . . , n.

This can also be written more compactly as:

min
x

c�x (2.17)

s.t. Ax ≥ b (2.18)

x ≥ 0, (2.19)

where c, x , A, and b maintain the same definitions as in the compact standard-form
LPP, given by (2.14)–(2.16).

2.3 Basic Feasible Solutions and Optimality

This section provides both geometric and algebraic analyses of the feasible region and
objective function of linear optimization problems. Based on the geometric analy-
sis, we draw some conclusions regarding the geometrical properties of an optimal
solution of a linear optimization problem. We then use an algebraic analysis of the
constraints of a linear optimization problem to determine away to characterize points
that may be optimal solutions of an LPP. This algebraic analysis is the backbone of
the algorithm used to solve LPPs, which is later introduced in Section 2.5.
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2.3.1 Geometric View of Linear Optimization Problems

Recall the Electricity-Production Problem, which is introduced in Section 2.1.1. This
problem is formulated as:

max
x1,x2

z = x1 + x2

s.t.
2

3
x1 + x2 ≤ 18

2x1 + x2 ≥ 8

x1 ≤ 12

x2 ≤ 16

x1, x2 ≥ 0.

Figure 2.1 shows the feasible region of this problem and the contour plot of its
objective function.

From the discussion in Section 2.1.1, we know that linear optimization prob-
lems have two important geometric properties, which are due to the linearity of their
constraints and objective function. The first is that the feasible region of a linear
optimization problem is always a polytope, which is the multidimensional analogue
of a polygon. We also see from Figure 2.1 that the contour plot of the objective
function of an LPP is always a set of parallel hyperplanes, which are the multidi-
mensional analogue of lines. Moreover, the objective function is always increasing
or decreasing in the same direction, which is perpendicular to the contours.

This latter geometric property of LPPs, that the contours are parallel and always
increasingor decreasing in the samedirection, implies thatwefindanoptimal solution
by moving as far as possible within the feasible region until hitting a boundary. Put
another way, we always find an optimal solution to a linear optimization problem
on the boundary of its feasible region. The first geometric property of LPPs, that the
feasible region is a polytope, allows us tomake an even stronger statement about their
optimal solutions. Because the feasible set of an LPP is a polytope, we can always
find a vertex or extreme point of the feasible region that is optimal. This is, indeed,
one way of stating the fundamental theorem of linear optimization. Figure 2.3 shows
the feasible region of the Electricity-Production Problem and identifies its extreme
points. We know from the discussion in Section 2.1.1 that (x∗

1 , x
∗
2 ) = (12, 10) is the

optimal extreme point of this problem.
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Fig. 2.3 Feasible region of
Electricity-Production
Problem and its extreme
points

There are also some ‘pathological’ cases that may arise with an LPP. The first is
that all of the points along a line or hyperplane defining a boundary of the feasible are
optimal solutions. This occurs if the contour lines of the objective function are parallel
to that side of the polytope. We call this a case of multiple optimal solutions. To see
how this happens, suppose that the objective function of the Electricity-Production
Problem is changed to:

max
x1,x2

z = 2

3
x1 + x2.

Figure 2.4 shows the contour plot of the objective function in this case. Note that all
of the points highlighted in purple are now optimal solutions of the LPP.

Fig. 2.4 Geometrical
representation of the
Electricity-Production
Problem with 2

3 x1 + x2 as its
objective function
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Another issue arises if the feasible region is not bounded. Recall from the discus-
sion in Section 2.1.1 that the feasible region of an optimization problem does not
necessarily have to be bounded. The feasible region of the Electricity-Production
Problem is bounded, as illustrated in Figure 2.1. A linear optimization problem with
a bounded feasible region is guaranteed to have an optimal solution. Otherwise, if
the feasible region is unbounded, the problem may have an optimal solution or it
may be possible to have the objective increase or decrease without limit.

To understand howanLPPwith an unbounded feasible regionmayhave an optimal
solution, suppose that we remove constraints (2.3) and (2.6) from the Electricity-
Production Problem. The LPP would then be:

max
x1,x2

z = x1 + x2

s.t.
2

3
x1 + x2 ≤ 18

x1 ≤ 12

x2 ≤ 16.

Figure 2.5 shows the feasible region of the new LPP, which is indeed unbounded (we
can make both x1 and x2 go to −∞ without violating any of the constraints). Note,
however, that the same point, (x∗

1 , x
∗
2 ) = (12, 10), that is optimal in the original LPP

is optimal in the new problem as well. This is because the side of the polytope that
is unbounded is not the side in which the objective improves.

Fig. 2.5 Geometrical
representation of the
Electricity-Production
Problem with
constraints (2.3) and (2.6)
removed
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Consider, as an opposite example, if constraints (2.2) and (2.4) are removed from
the Electricity-Production Problem. Our LPP would then be:

max
x1,x2

z = x1 + x2

s.t. 2x1 + x2 ≥ 8

x2 ≤ 16

x1, x2 ≥ 0.

Figure 2.6 shows the feasible region of this LPP, which is also unbounded. Note that
there is an important distinction between this LPP and that shown in Figure 2.5. The
new LPP no longer has an optimal solution, because the objective function can be
made arbitrarily large without violating any of the constraints (we can make x1 go
to +∞ without violating any constraints, and doing so makes the objective function
go to +∞). This LPP is said to be unbounded.

An unbounded optimization problem is said to have an optimal objective function
value of either −∞ or +∞ (depending on whether the problem is a minimization
or maximization). Unbounded optimization problems are uncommon in practice,
because the physical and economic worlds are bounded. Thus, we do not study
unbounded problems in much detail, although we do discuss in Section 2.5.6 how to
determine analytically (as opposed to graphically) if an LPP is unbounded.

Fig. 2.6 Geometrical
representation of the
Electricity-Production
Problem with
constraints (2.2) and (2.4)
removed

Finally, we should stress that there are two notions of boundedness and unbound-
edness in the context of optimization. One is whether the feasible region of an LPP is
bounded or unbounded. This is a property of the constraints. The second is whether
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the problem is bounded or unbounded. An LPP must have an unbounded feasible
region for it to be unbounded. Moreover, the objective function must improve (either
increase or decrease, depending on whether we are considering a maximization or
minimization problem) in the direction that the feasible region is unbounded.

The final pathological case is one in which the feasible region is empty. In such a
case there are no feasible solutions that satisfy all of the constraints and we say that
such a problem is infeasible. To illustrate how a problem can be infeasible, suppose
that the Electricity-Production Problem is changed to:

max
x1,x2

z = x1 + x2

s.t.
2

3
x1 + x2 ≥ 18

2x1 + x2 ≤ 8

x1 ≤ 12

x2 ≤ 16

x1, x2 ≥ 0.

Figure 2.7 shows the feasible region of this LPP, which is indeed empty. It is empty
because there are no points that simultaneously satisfy the 2

3 x1 + x2 ≥ 18, 2x1 +
x2 ≤ 8, and x1 ≥ 0 constraints. These three constraints conflict with one another.

Fig. 2.7 Geometrical
representation of the
infeasible variant of the
Electricity-Production
Problem

In practice, an infeasible LPP may indicate that there are problem constraints
that are not properly specified. This is because the physical world is (normally)
feasible. For this reason, we do not pay particular attention to infeasible problems.
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An exception to this is if a hypothetical system is being modeled. For instance,
suppose that a system is being designed to meet certain criteria. If the resulting
model is infeasible, this may be an indication that the system cannot feasibly meet
the design criteria specified in the model constraints.

It should, finally, be noted that infeasibility is not caused by a single constraint.
Rather, it is caused by two or more constraints that conflict with each other. Thus,
when diagnosing the cause of infeasibility of a model, one must identify two or more
conflicting constraints.

2.3.2 Algebraic View of Linear Optimization Problems

We now focus our attention on bounded and feasible linear optimization problems.
Based on our discussion in Section 2.3.1, we note that every bounded and feasible
linear optimization problem has an extreme point that is an optimal solution. Thus,
we now work on determining if we can characterize extreme points algebraically, by
analyzing the constraints of the LPP.

To gain this insight, we transform the Electricity-Production Problem, which is
introduced in Section 2.1.1, into standard form, which is:

min
x

z = −x1 − x2

s.t.
2

3
x1 + x2 + x3 = 18

2x1 + x2 − x4 = 8

x1 + x5 = 12

x2 + x6 = 16

x1, x2, x3, x4, x5, x6 ≥ 0.

The standard form-version of this problem can be written more compactly in matrix
form as:

min
x

z = (−1 −1 0 0 0 0
)

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
(2.20)
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s.t.

⎡

⎢⎢⎣

2/3 1 1 0 0 0
2 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤

⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ (2.21)

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
≥

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (2.22)

Oneway to generate candidate points that may be feasible optimal solutions of the
LPP is to focus on the algebraic properties of structural equality constraints (2.21).
More specifically, we see that this is a system of four equations with six variables
that we are solving for. This means that if we fix the values of 6 − 4 = 2 vari-
ables, we can solve for the remaining variables using the structural equality con-
straints. Once we have solved the structural equality constraints, we then verify
whether the resulting values for x are all non-negative, which is the other constraint
in the standard-form LPP.

To make the algebra (i.e., the solution of the structural equalities) easier, we fix
the 6 − 4 = 2 variables equal to zero. Solutions that have this structure (i.e., setting
a subset of variables equal to zero and solving for the remaining variables using the
equality constraints) are called basic solutions. A solution that has this structure and
also satisfies the non-negativity constraint is called a basic feasible solution.

To illustrate how we find basic solutions, let us take the case in which we set
x1 and x2 equal to zero and solve for the remaining variables using the structural
equality constraints. In this case, constraint (2.21) becomes:

⎡

⎢⎢⎣

2/3 1 1 0 0 0
2 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤

⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ . (2.23)

Note, however, that because x1 and x2 are set equal to zero in equation (2.23), we
can actually ignore the first two columns of the matrix on the left-hand-side of the
equality. This is because all of the entries in those columns are multiplied by zero.
Thus, equation (2.23) can be further simplified to:
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⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

⎛

⎜⎜⎝

x3
x4
x5
x6

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ ,

which has the solution:

(x3, x4, x5, x6) = (18,−8, 12, 16).

This means that we have found a solution to the structural equality constraints, which
is:

(x1, x2, x3, x4, x5, x6) = (0, 0, 18,−8, 12, 16).

Because we found the values for x by first setting a subset of them equal to zero and
solving for the remainder in the equality constraints, this is a basic solution. Note
that because x4 = −8 is not non-negative, this is not a basic feasible solution but
rather a basic infeasible solution.

It is worth noting that whenever we find a basic solution, we solve a square
system of equations given by the structural equality constraints. This is because we
can neglect the columns of the coefficientmatrix that correspond to the variables fixed
equal to zero. For instance, if we fix x5 and x6 equal to zero in the standard-form
version of the Electricity-Production Problem, structural equality constraint (2.21)
becomes: ⎡

⎢⎢⎣

2/3 1 1 0
2 1 0 −1
1 0 0 0
0 1 0 0

⎤

⎥⎥⎦

⎛

⎜⎜⎝

x1
x2
x3
x4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ .

As a matter of terminology, the variables that are fixed equal to zero when solving
for a basic solution are called non-basic variables. The other variables, which are
solved for using the structural equality constraints, are called basic variables.

The number of basic variables that an LPP has is determined by the number of
structural equality constraints and the variables that its standard form has. This is
because some subset of the variables is set equal to zero to find a basic solution. The
standard formof theElectricity-ProductionProblemhas six variables and twoof them
must be chosen to be set equal to zero. This means that the Electricity-Production
Problem has: (

6
2

)
= 6!

2!(6 − 2)! = 15,

basic solutions.
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Table 2.5 lists the 15 basic solutions of the Electricity-Production Problem. Each
solution is characterized (in the second column of the table) by which variables are
basic. The third column of the table gives the values for the basic variables, which
are found by setting the non-basic variables equal to zero and solving the structural
equality constraints. Two of the basic solutions, numbers 7 and 12, are listed as
singular. What this means is that when the non-basic variables are fixed equal to
zero, the structural equality constraints do not have a solution. Put another way, when
we select the subset of columns of the coefficient matrix that defines the structural
constraints, that submatix is singular.We discuss the geometric interpretation of these
types of basic solutions later.

Table 2.5 Basic solutions of the Electricity-Production Problem

Solution # Basic Variables Basic-Variable Values Objective-Function Value x1 x2

1 1, 2, 3, 4 12, 16,−6, 32 basic infeasible solution

2 1, 2, 3, 5 −4, 16, 14/3, 16 basic infeasible solution

3 1, 2, 3, 6 12,−16, 26, 32 basic infeasible solution

4 1, 2, 4, 5 3, 16, 14, 9 −19 3 16

5 1, 2, 4, 6 12, 10, 26, 6 −22 12 10

6 1, 2, 5, 6 −15/2, 23, 39/2, −7 basic infeasible solution

7 1, 3, 4, 5 singular

8 1, 3, 4, 6 12, 10, 16, 16 −12 12 0

9 1, 3, 5, 6 4, 46/3, 8, 16 −4 4 0

10 1, 4, 5, 6 27, 46,−15, 16 basic infeasible solution

11 2, 3, 4, 5 16, 2, 8, 12 −16 0 16

12 2, 3, 4, 6 singular

13 2, 3, 5, 6 8, 10, 12, 8 −8 0 8

14 2, 4, 5, 6 18, 10, 12,−2 basic infeasible solution

15 3, 4, 5, 6 18,−8, 12, 16 basic infeasible solution

Table 2.5 also shows that some of the basic solutions, specifically solutions 1
through 3, 6, 10, 14, and 15, are basic infeasible solutions. This is because at least
one of the basic variables turns out to have a negative value when the structural
equality constraints are solved. For the remaining six basic feasible solutions (i.e.,
those that are neither singular nor a basic infeasible solution), the last three columns
of the table provides the objective-function value and the values of the two variables
in the original generic formulation of the problem, x1 and x2.

Note that because the standard-form LPP is a minimization problem, basic fea-
sible solution number 5 is the best one from among the six basic feasible solutions
found. Moreover, this solution corresponds to the optimal solution that is found
graphically in Section 2.1.1. It gives the same objective-function value (when we
take into account the fact that the objective function is multiplied by −1 to convert it
into a minimization) and the values for the decision variables are the same as well.
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Inspecting the six basic feasible solutions in Table 2.5 reveals that they correspond
to the extreme points of the feasible region in Figure 2.1. Figure 2.8 shows the feasible
region of the Electricity-Production Problem only (i.e., without the contour plot of
the objective function) and the six basic feasible solutions that are listed in Table 2.5.

Fig. 2.8 Basic feasible solutions of Electricity-Production Problem

This is a fundamental property of linear optimization: each extreme point of the
polytope is a basic feasible solution and each basic feasible solution is an extreme
point of the polytope. Proving this property is beyond the scope of this book, and
more advanced texts [1] provide the formal proof. The important takeaway from
this observation is that if an LPP has an optimal solution, there must be a basic
feasible solution that is optimal. This is because the shape of the feasible region
and contour plot of the objective imply that there must be an optimal extreme point.
Thus, a possible approach to solving an LPP is to enumerate all of the basic feasible
solutions and select the one that provides the best objective-function value. This can
be quite cumbersome, however, because the number of basic feasible solutions grows
exponentially in the problem size (i.e., number of constraints and variables). A more
efficient way to solve an LPP is to find a starting basic feasible solution. From this
starting point, we then look to see if there is a basic feasible solution next to it that
improves the objective function. If not, the basic feasible solution we are currently
at is optimal. If so, we move to that basic feasible solution and repeat the process
(i.e., determine if there is another basic feasible solution next to the new one that
improves the objective). This process is done iteratively until we arrive at a basic
feasible solution where the objective cannot be improved. This algorithm, known as
the Simplex method, is a standard technique for solving LPPs and is fully detailed
in Section 2.5.
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Table 2.5 also lists seven basic infeasible solutions, which are shown in Figure 2.9.
Basic infeasible solutions are found in the same way as basic feasible solutions—
they are ‘corners’ of the feasible region that are defined by the intersection of the
boundaries of two of the linear constraints. However, the intersection point found is
infeasible, because it violates at least one other constraint. For instance, the point
(x1, x2) = (0, 0) is found by intersecting the boundaries of x1 ≥ 0 and x2 ≥ 0 con-
straints. However, this point violates the 2x1 + x2 ≥ 8 constraint and is, thus, infea-
sible.

Fig. 2.9 Basic infeasible
solutions of
Electricity-Production
Problem

We can also ‘visualize’ the two basic solutions in Table 2.5 that are labeled as
‘singular.’ These basic solutions are defined by trying to intersect constraint bound-
aries that do not actually intersect. For instance, solution number 7 corresponds to
the intersection between the boundaries of the x2 ≥ 0 and x2 ≤ 16 constraints. How-
ever, the boundaries of these two constraints are parallel to one another, meaning
that there is no basic solution at their intersection. The other singular basic solution
corresponds to intersecting the boundaries of the x1 ≥ 0 and x1 ≤ 12 constraints.

2.4 A Clever Partition

This section establishes three important foundations of the Simplex method. First,
we derive expressions that allow us to find the objective-function and basic-variable
values of an LPP in terms of the values of the non-basic variables. These expressions
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are useful when we want to determine in the Simplex method whether a given basic
solution is optimal or not. If it is not, these expressions are useful for finding a new
basic solution. We then introduce a tabular format to efficiently organize all of the
calculations associated with a given basic solution. Finally, we discuss the algebraic
steps used to move from one basic solution to another in the Simplex method.

2.4.1 The Partition

Recall that a basic solution is found by setting one set of variables (the non-
basic variables) equal to zero and solving for the others (the basic variables) using
the structural equality constraints. For this reason, it is often useful to partition the
variables, the coefficients from the left-hand side of the equality constraints, and the
objective-function coefficients between the basic and non-basic variables. Moreover,
it is useful for developing the Simplex method to derive expressions that give us the
values of the objective function and the basic variables in terms of the values of the
non-basic variables.

We begin by first examining the structural equality constraints of a standard-form
LPP, which can be written as:

Ax = b,

where A is anm × n coefficientmatrix and b is anm-dimensional vector of constraint
right-hand-side constants (cf. Equation (2.15) in Section 2.2.2.1). The order that the
variables are listed in the x vector is arbitrary. Thus, we can write the x vector as:

x =
(
xB
xN

)
,

where xB are the basic variables and xN the non-basic variables. If we reorder the
x’s in this way, then the columns of the A matrix must also be reordered. We do this
by writing A as:

A = [
B N

]
,

where B is a submatrix with the constraint coefficients on the basic variables and N is
a submatrix with the constraint coefficients on the non-basic variables. We know that
xN is an (n − m)-dimensional vector (if there are m structural equality constraints
and n variables in the standard-form LPP, we must set (n − m) non-basic variables
equal to zero). Thus, B is an m × m matrix and N is an m × (n − m) matrix.

Recall from the discussion in Section 2.3.2 and the derivation of the basic solutions
for the Electricity-Production Problem in particular, that basic solutions are found
by setting by non-basic variables equal to zero. When we do this, we can ignore the
columns of the Amatrix that are associated with the non-basic variables and solve for
the basic variables. This means that we find the basic variables by solving BxB = b,
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which gives xB = B−1b. Thus, whenever we find a basic solution, the B matrix must
be full-rank.

Based on these observations, we now know that the structural equality con-
straints (2.15) can be written as:

[
B N

] (
xB
xN

)
= b,

or as:
BxB + NxN = b.

Because B is full-rank, we can solve for the basic variables in terms of the non-basic
variables, giving:

xB = B−1b − B−1NxN
= b̃ + Ñ xN , (2.24)

where b̃ = B−1b and Ñ = −B−1N . As a matter of terminology, when solving for a
basic solution in this manner the submatrix B is called the basis. It is also common
to say that basic variables are in the basis, while non-basic variables are said to not
be in the basis.

We can also express the objective function in terms of the non-basic variables. To
do this, we first note that the standard-form objective function:

z = c�x,

can be written as:

z = [
cB cN

] (
xB
xN

)
,

where cB and cN are vectors with the objective-function coefficients in c reordered
in the same way that the x vector is reordered into xB and xN . Using Equation (2.24)
we can write this as:

z = [
cB cN

] (
xB
xN

)

= c�
B xB + c�

N xN

= c�
B · (b̃ + Ñ xN ) + c�

N xN

= c�
B b̃ + (c�

B Ñ + c�
N )xN

= c̃0 + c̃�xN , (2.25)

where c̃0 = c�
B b̃ and c̃� = c�

B Ñ + c�
N .
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Finally, we can arrange the objective function and structural equality constraints
of a standard-form LPP in matrix form, which gives:

(
z
xB

)
=

[
c̃0 c̃�

b̃ Ñ

](
1
xN

)
.

This can be written more explicitly as:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

z
xB,1
...

xB,r
...

xB,m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̃0 c̃1 · · · c̃s · · · c̃n−m

b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m
...

...
. . .

...
. . .

...

b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m
...

...
. . .

...
. . .

...

b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
xN ,1

...

xN ,s
...

xN ,n−m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.26)

These matrix expressions, which give the objective-function and basic-variable val-
ues in terms of the non-basic-variable values, form the algebraic backbone of the
Simplex method, which is developed in Section 2.5.

Example 2.6 Consider the Electricity-Production Problem, which is introduced in
Section 2.1.1. When converted to standard form, we can write the objective-function
coefficients as:

c� = (−1 −1 0 0 0 0
)
,

the constraint coefficients as:

A =

⎡

⎢⎢⎣

2/3 1 1 0 0 0
2 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤

⎥⎥⎦ ,

and the constraint right-hand-side constants as:

b� = (
18 8 12 16

)
.

If we let xB = (x1, x2, x4, x5) and xN = (x3, x6), then we would have:

c�
B = (−1 −1 0 0

)
,

c�
N = (

0 0
)
,
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B =

⎡

⎢⎢⎣

2/3 1 0 0
2 1 −1 0
1 0 0 1
0 1 0 0

⎤

⎥⎥⎦ ,

and:

N =

⎡

⎢⎢⎣

1 0
0 0
0 0
0 1

⎤

⎥⎥⎦ .

Using the definitions above, and Equations (2.24) and (2.25) in particular, we
have:

b̃ = B−1b =

⎡

⎢⎢⎣

2/3 1 0 0
2 1 −1 0
1 0 0 1
0 1 0 0

⎤

⎥⎥⎦

−1 ⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

3
16
14
9

⎞

⎟⎟⎠ ,

Ñ = −B−1N =

⎡

⎢⎢⎣

2/3 1 0 0
2 1 −1 0
1 0 0 1
0 1 0 0

⎤

⎥⎥⎦

−1 ⎡

⎢⎢⎣

1 0
0 0
0 0
0 1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−3/2 3/2
0 −1

−3 2
3/2 −3/2

⎤

⎥⎥⎦ ,

c̃0 = c�
B b̃ = (−1 −1 0 0

)

⎛

⎜⎜⎝

3
16
14
9

⎞

⎟⎟⎠ = −19,

and:

c̃� = c�
B Ñ + c�

N = (−1 −1 0 0
)

⎡

⎢⎢⎣

−3/2 3/2
0 −1

−3 2
3/2 −3/2

⎤

⎥⎥⎦ + (
0 0

) = (
3/2 −1/2

)
.

These simple matrix operations can be effortlessly carried out using the public-
domain Octave software package [6] or the MATLAB commercial software pack-
age [10]. ��
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2.4.2 The Tableau

Matrix expression (2.26) forms the backbone of the Simplexmethod. This expression
can be even more compactly arranged in what is called a tableau, which takes the
general form shown in Table 2.6.

Table 2.6 General form of tableau

1 xN ,1 · · · xN ,s · · · xN ,n−m ⇐= non-basic-variable block

z c̃0 c̃1 · · · c̃s · · · c̃n−m ⇐= objective-function block

xB,1 b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,r b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m ⇐= basic-variable block
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

xB,m b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m

Table 2.6 identifies three blocks of rows in the tableau. Comparing these three
blocks to Equation (2.26) provides some insight into the structure of the tableau.
First, the bottom ‘basic-variable block’ of the tableau is associated with all but the
first row of Equation (2.26). These rows of Equation (2.26) each have one basic
variable on their left-hand sides, which are in the first column of the basic-variable
block of the tableau. Moreover, the right-hand sides of these rows of Equation (2.26)
have b̃ and Ñ terms, all of which are in the second and remaining columns of the
basic-variable block of the tableau.

Next, the ‘objective-function block’ of the tableau corresponds to the first row
of Equation (2.26). It contains z, which is on the left-hand side of the first row of
Equation (2.26), in its first column and the c̃ terms in the remaining columns. Finally,
inspecting the ‘non-basic-variable block’ of the tableau reveals that each column in
the tableau is associated with a non-basic variable. These non-basic variables appear
in the vector on the right-hand side of Equation (2.26).

It is important to stress that each basic solution has a tableau associated with it.
That is because once the variables are partitioned into basic and non-basic variables,
that partition determines the entries that label each row and column of the tableau.
Moreover, the values of b̃, c̃, and Ñ that go in the tableau are also determined by
which columns of the A matrix are put into the B and N submatrices.

The tableau also allows us to easily find a basic variable by setting all of the
non-basic variables equal to zero (as noted in Sections 2.3.2 and 2.4.1). If we do this,
we obtain basic-variable values:

xB = b̃,

and the objective-function value:
z = c̃0.
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These values for the basic variables and objective function follow immediately from
the discussions and algebraic manipulations of the LPP carried out in Sections 2.3.2
and 2.4.1.

Example 2.7 Recall Example 2.6. If we let xB = (x1, x2, x4, x5) and xN = (x3, x6),
then we would have:

b̃ = B−1b =

⎛

⎜⎜⎝

3
16
14
9

⎞

⎟⎟⎠ ,

Ñ = −B−1N =

⎡

⎢⎢⎣

−3/2 3/2
0 −1

−3 2
3/2 −3/2

⎤

⎥⎥⎦ ,

c̃0 = c�
B b̃ = −19,

and:
c̃� = c�

B Ñ + c�
N = (

3/2 −1/2
)
.

The tableau associated with this basic solution is shown in Table 2.7. The ‘B’
and ‘N ’ subscripts on the basic and non-basic variables have been omitted, because
it is clear from the way that the tableau is arranged that x1, x2, x4, and x5 are basic
variables while x3 and x6 are non-basic variables.

Table 2.7 Tableau for
Example 2.7

1 x3 x6
z −19 3/2 −1/2

x1 3 −3/2 3/2

x2 16 0 −1

x4 14 −3 2

x5 9 3/2 −3/2

We can also determine the basic-variable and objective-function values when the
non-basic variables are fixed equal to zero. The basic variables take on the values
given in the second column of the tableau that are next to each basic variable (i.e.,
(x1, x2, x4, x5) = (3, 16, 14, 9) when the non-basic variables are set equal to zero)
and the objective function takes on the value next to it in the second column of the
tableau (i.e., z = −19). ��
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2.4.3 Pivoting

One way of characterizing a basic solution is by which variables are basic variables
(we also say that such variables are in the basis) and which variables are non-basic
variables (we say that such variables are not in the basis). One of the features of
the Simplex method is that the basic solutions found in each successive iteration
differ by one variable. That is to say, if we compare the basic solutions found in two
successive iterations, one of the basic variables in the first basic solution will be a
non-basic variable in the second solution and one of the non-basic variables in the
first solution will be a basic variable in the second solution.

Section 2.4.1 shows how the basic-variable and objective-function values can be
expressed in terms of the values of the non-basic variables. Section 2.4.2 further
shows how this information can be compactly written in tableau form. As successive
iterations of the Simplexmethod are carried out, the tableaumust be updated to reflect
the fact that wemove from one basic solution to another. Of course, the tableau could
be updated in each iteration simply by redefining B, N , cB , and cN and applying
Equations (2.24) and (2.25) to compute b̃, Ñ , and c̃. This can be very computationally
expensive, however, especially if the Simplex method is being applied by hand.

There is, however, a shortcut to update the tableau, which is called pivoting.
Pivoting relies on the property of successive basic solutions found in the Simplex
method that they differ only in that one basic variable leaves that basis and one non-
basic variable enters the basis. To demonstrate the pivoting operation, suppose that
we are currently at a basic solution and would like to move to a new basic solution.
In the new basic solution there is a basic variable, xB,r , that leaves the basis and
a non-basic variable, xN ,s , that enters the basis. Table 2.8 shows the initial tableau
before the pivoting operation. For notational convenience, we omit the ‘B,’ and ‘N ’
subscripts on the variables exiting and entering the basis. Thus, these two variables
are labeled xr and xs in the tableau.

Table 2.8 Initial tableau
before pivoting

1 xN ,1 · · · xs · · · xN ,n−m

z c̃0 c̃1 · · · c̃s · · · c̃n−m

xB,1 b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xr b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,m b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m

To derive the pivoting operation, we first write the row associated with xr in
Table 2.8 explicitly as:

xr = b̃r + Ñr,1xN ,1 + · · · + Ñr,sxs + · · · + Ñr,n−mxN ,n−m . (2.27)
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We then manipulate Equation (2.24) to express xs as a function of xr and the remain-
ing non-basic variables:

xs = − b̃r

Ñr,s

− Ñr,1

Ñr,s

xN1 − · · · + 1

Ñr,s

xr − · · · − Ñr,n−m

Ñr,s

xN ,n−m . (2.28)

Next, we write the objective-function row of the tableau in Table 2.8 explicitly
as:

z = c̃0 + c̃1xN ,1 + · · · + c̃sxs + · · · + c̃n−mxN ,n−m . (2.29)

We then use Equation (2.28) to substitute for xs in Equation (2.29), which gives:

z =
(
c̃0 − c̃s

Ñr,s

b̃r

)
+

(
c̃1 − c̃s

Ñr,1

Ñr,s

)
xN ,1 + · · · + c̃s

Ñr,s

xr (2.30)

+ · · · +
(
c̃n−m − c̃s

Ñr,n−m

Ñr,s

)
xN ,n−m .

Next we write the row associated with xB,1 in Table 2.8 as:

xB,1 = b̃1 + Ñ1,1xN ,1 + · · · + Ñ1,sxs + · · · + Ñ1,n−mxN ,n−m .

If we use Equation (2.28) to substitute for xs in this expression we have:

xB,1 =
(
b̃1 − Ñ1,s

Ñr,s

b̃r

)
+

(
Ñ1,1 − Ñ1,s

Ñr,1

Ñr,s

)
xN ,1 + · · · + Ñ1,s

Ñr,s

xr (2.31)

+ · · · +
(
Ñ1,n−m − Ñ1,s

Ñr,n−m

Ñr,s

)
xN ,n−m .

A similar manipulation of the row associated with xB,m in Table 2.8 yields:

xBm =
(
b̃m − Ñm,s

Ñr,s

b̃r

)
+

(
Ñm,1 − Ñm,s

Ñr,1

Ñr,s

)
xN ,1 + · · · + Ñm,s

Ñr,s

xr (2.32)

+ · · · +
(
Ñm,n−m − Ñm,s

Ñr,n−m

Ñr,s

)
xN ,n−m . (2.33)

Using Equations (2.28), (2.30), (2.31), and (2.32), which express xs, z, xB,1, and
xB,m in terms of xr , we can update the tableau to that given in Table 2.9.
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Table 2.9 Updated tableau after pivoting

1 xN ,1 · · · xr · · · xN ,n−m

z c̃0 − c̃s
Ñr,s

b̃r c̃1 − c̃s
Ñr,1

Ñr,s
· · · c̃s

Ñr,s
· · · c̃n−m − c̃s

Ñr,n−m

Ñr,s

xB,1 b̃1 − Ñ1,s

Ñr,s
b̃r Ñ1,1 − Ñ1,s

Ñr,1

Ñr,s
· · · Ñ1,s

Ñr,s
· · · Ñ1,n−m − Ñ1,s

Ñr,n−m

Ñr,s

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xs − b̃r
Ñr,s

− Ñr,1

Ñr,s
· · · 1

Ñr,s
· · · − Ñr,n−m

Ñr,s

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,m b̃m − Ñm,s

Ñr,s
b̃r Ñm,1 − Ñm,s

Ñr,1

Ñr,s
· · · Ñm,s

Ñr,s
· · · Ñm,n−m − Ñm,s

Ñr,n−m

Ñr,s

Example 2.8 Recall Example 2.7 and that if we let xB = (x1, x2, x4, x5) and xN =
(x3, x6) then the tableau is given by Table 2.7. Let us conduct one pivot operation in
which x5 leaves the basis and x6 enters it. From the x5 row of Table 2.7 we have:

x5 = 9 + 3

2
x3 − 3

2
x6.

This can be rewritten as:

x6 = 6 + x3 − 1

2
x5. (2.34)

Substituting Equation (2.34) into the objective-function row of Table 2.7:

z = −19 + 3

2
x3 − 1

2
x6,

gives:

z = −22 + x3 + 1

3
x5. (2.35)

We next consider the rows of Table 2.7, which are:

x1 = 3 − 3

2
x3 + 3

2
x6,

x2 = 16 − x6,

and:
x4 = 14 − 3x3 + 2x6.

Substituting Equation (2.34) into these three equations gives:

x1 = 12 − x5, (2.36)
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x2 = 10 − x3 + 2

3
x5, (2.37)

and:

x4 = 26 − x3 − 4

3
x5. (2.38)

Substituting Equations (2.34) through (2.38) into Table 2.7 gives an updated
tableau after the pivot operation, which is given in Table 2.10.

Table 2.10 Updated tableau
after conducting pivot
operation in Example 2.8

1 x3 x5
z −22 1 1/3

x1 12 0 −1

x2 10 −1 2/3

x4 26 −1 −4/3

x6 6 1 −1/2

It is finally worth noting that we have performed a step-by-step pivot operation
using the expressions derived above. One could also obtain the new tableau directly
by using the expressions in Table 2.9. Doing so yields the same tableau. ��

2.5 The Simplex Method

The Simplex method is the most commonly used approach to solving LPPs. At its
heart, the Simplex method relies on two important properties of linear optimization
problems. First, as noted in Sections 2.1.1 and 2.3.1, if an LPP has an optimal
solution, then there must be at least one extreme point of the feasible set that is
optimal. Secondly, as discussed in Section 2.3.2, there is a one-to-one correspondence
between extreme points of the feasible set and basic feasible solutions. That is to say,
each basic feasible solution corresponds to an extreme point of the feasible set and
each extreme point of the feasible set corresponds to a basic feasible solution.

Building off of these two properties, the Simplex method solves an LPP by fol-
lowing two major steps. First, it works to find a starting basic feasible solution. Once
it has found a basic feasible solution, the Simplex method iteratively determines if
there is another corner of the feasible region next to the corner that the current basic
feasible solution corresponds to that gives a better objective-function value. If there
is, the Simplex method moves to this new basic feasible solution. Otherwise, the
algorithm terminates because the basic feasible solution it is currently at is optimal.

In the following sections we describe each of these steps of the Simplex method
in turn. We then provide an overview of the entire algorithm. We finally discuss
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some technical issues, such as guaranteeing that the Simplex method terminates and
detecting if an LPP is unbounded, infeasible, or has multiple optimal solutions.

2.5.1 Finding an Initial Basic Feasible Solution

Weknow from the discussions in Sections 2.3.2 and 2.4.1 that finding a basic solution
is relatively straightforward. All we must do is partition the variables into basic and
non-basic variables, xB and xN , respectively. Once we have done this we determine
B, N , cB , and cN and then compute:

b̃ = B−1b,

Ñ = −B−1N ,

c̃0 = c�
B b̃,

and:
c̃� = c�

B Ñ + c�
N .

To the extent possible, one can choose xB in a way such that the B matrix is relatively
easy to invert.

After these calculations are done, we can put them into a tableau, such as the one
given in Table 2.11.We know from the discussion in Section 2.4.2 that for the chosen
basic solution, the values of the basic variables can be easily read from the tableau
as the value of b̃. We further know that if b̃ ≥ 0, then the basic solution that we have
found is a basic feasible solution and no further work must be done (i.e., we can
proceed to the next step of the Simplex method, which is discussed in Section 2.5.2).
Otherwise, we must conduct what is called a regularization step.

Table 2.11 The tableau for a
starting basic solution

1 xN ,1 · · · xN ,s · · · xN ,n−m

z c̃0 c̃1 · · · c̃s · · · c̃n−m

xB,1 b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,r b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,m b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m

In the regularization step we add one new column to the tableau, which is high-
lighted in boldface in Table 2.12. This added column has a new non-basic variable,
which we call xN,n−m+1, all ones in the basic-variable rows, and a value of K in the
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objective-function row. The value of K is chosen to be larger than any of the other
existing values in the objective-function row of the tableau. We next conduct one
pivot operation in which the added variable, xN,n−m+1, becomes a basic variable.
The basic variable that exits the basis is the one that has the smallest or most negative
b̃ value. That is, the variable that exits the basis corresponds to:

min
{
b̃1, . . . , b̃r , . . . , b̃m

}
.

Table 2.12 The tableau after
the regularization step

1 xN ,1 · · · xN ,s · · · xN ,n−m xN,n−m+1

z c̃0 c̃1 · · · c̃s · · · c̃n−m K

xB,1 b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m 1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.

xB,r b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m 1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.

xB,m b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m 1

After this pivoting operation is conducted, we can guarantee that we have a basic
feasible solution (i.e., all of the b̃’s are non-negative after the tableau is updated). We
now show this formally.

Regularization Property:After conducting the regularization step and a pivot
operation, the updated b̃ will be non-negative.

To show this, suppose that we denote the basic variable that will be exiting
the basis as xB,r . The basic-variable rows of the tableau in Table 2.12 can be
written as:

xB,1 = b̃1 + Ñ1,1xN ,1 + · · · + Ñ1,s xN ,s + · · · Ñ1,n−mxN ,n−m + xN ,n−m+1,

...

xB,r = b̃r + Ñr,1xN ,1 + · · · + Ñr,s xN ,s + · · · Ñr,n−mxN ,n−m + xN ,n−m+1,

...

xB,m = b̃m + Ñm,1xN ,1 + · · · + Ñm,s xN ,s + · · · Ñm,n−mxN ,n−m + xN ,n−m+1.
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After the pivot operation xN ,1, . . . , xN ,n−m will remain non-basic variables that
are fixed equal to zero, thus these equations can be simplified to:

xB,1 = b̃1 + xN ,n−m+1, (2.39)

...

xB,r = b̃r + xN ,n−m+1, (2.40)

...

xB,m = b̃m + xN ,n−m+1. (2.41)

From Equation (2.40) we have the value that xN ,n−m+1 takes when it becomes
a basic variable as:

xN ,n−m+1 = xB,r − b̃r = −b̃r ,

where the second equality follows because we know xB,r is becoming a non-
basic variable after the pivot operation is completed. Because r is chosen such
that b̃r < 0,we know that xN ,n−m+1 > 0 after this pivot operation is completed.

Moreover, if we substitute this value of xN ,n−m+1 into the remainder of
Equations (2.39) through (2.41) then we have:

xB,1 = b̃1 − b̃r ,

...

xB,m = b̃m − b̃r .

Note, however, that because r is chosen such that it gives the most negative
value of b̃, the right-hand sides of all of these equations are non-negative. Thus,
our new basic solution is guaranteed to be feasible.

This Regularization Property implies that for any LPP we must do at most one
regularization step to find a starting basic feasible solution. The idea of the regular-
ization step is that we add a new artificial variable to the LPP and set its value in a
way that all of the variables take on non-negative values. Of course, adding this new
variable is ‘cheating’ in the sense that it is not a variable of the original LPP. Thus,
adding the artificial variable changes the problem’s feasible region.

The value of K in the new tableau is intended to take care of this. As we see
in Section 2.5.2, the Simplex method determines whether the current basic feasible
solution is optimal by examining the values in objective-function row of the tableau.
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The high value of K works to add a penalty to the objective function for allowing the
artificial variable to take on a value greater than zero (it should be easy to convince
yourself that if the artificial variable is equal to zero in a basic feasible solution, then
that solution is feasible in the original LPP without the artificial variable added). The
high value for K will have the Simplex method try to reduce the value of the artificial
variable to zero. Once the simplex method drives the value of the artificial variable
to zero, then we have found a basic feasible solution that is feasible in the original
LPP without the artificial variable added. Once the value of the artificial variable has
been driven to zero, it can be removed from the tableau and the Simplex method can
be further applied without that variable in the problem.

It should be further noted that in some circumstances, an artificial variable may
not need to be added to conduct the regularization step. This would be the case if
the starting tableau already has a non-basic variable with a column of ones in the
basic-variable rows. If so, one can conduct a pivot operation in which this non-basic
variable enters the basis and the basic variable with the most negative b̃ value exits
to obtain a starting basic feasible solution.

2.5.2 Moving Between Basic Feasible Solutions

The main optimization step of the Simplex method checks to see whether the current
basic feasible solution is optimal or not. If it is optimal, then the method terminates.
Otherwise, the Simplex method moves to a new basic feasible solution. To determine
whether the current basic feasible solution is optimal or not,we examine theobjective-
function row of the tableau.

Recall from Equation (2.25) that the objective-function row of the tableau can be
written as:

z = c̃0 + c̃�xN ,

which expresses the objective function value of the LPP in terms of the values of
the non-basic variables. If any of the elements of c̃ are negative, this implies that
increasing the value of the corresponding non-basic variable from zero to some
positive value improves (decreases) the objective function. Thus, the Simplexmethod
determines whether the current basic feasible solution is optimal or not by checking
the signs of the c̃ values in the tableau. If they are all non-negative, then the current
solution is optimal and the algorithm terminates. Otherwise, if at least one of the
values is negative, then the current solution is not optimal.

In this latter case that one or more of the c̃’s is negative, one of the non-basic
variables with a negative c̃ is chosen to enter the basis. Any non-basic variable with
a negative c̃ can be chosen to enter the basis. However, in practice it is common
to choose the non-basic variable with the most negative c̃. This is because each
unit increase in the value of the non-basic variable with the most negative c̃ gives
the greatest objective-function decrease. We let s denote the index of the non-basic
variable that enters the basis.
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The next step of the Simplex method is to determine which basic variable exits
the basis when xN ,s enters it. To determine this, we note that after we swap xN ,s for
whatever basic variable exits the basis, we want to ensure that we are still at a basic
feasible solution. This means that we want to ensure that the basic variables all have
non-negative values after the variables are swapped. To ensure this, we examine the
problem tableau, which is shown in Table 2.13.

Table 2.13 The tableau for
the current basic feasible
solution

1 xN ,1 · · · xN ,s · · · xN ,n−m

z c̃0 c̃1 · · · c̃s · · · c̃n−m

xB,1 b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,r b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,m b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m

The basic-variable rows of the tableau can be expanded as:

xB,1 = b̃1 + Ñ1,1xN ,1 + · · · + Ñ1,s xN ,s + · · · Ñ1,n−mxN ,n−m,

...

xB,r = b̃r + Ñr,1xN ,1 + · · · + Ñr,s xN ,s + · · · Ñr,n−mxN ,n−m,

...

xB,m = b̃m + Ñm,1xN ,1 + · · · + Ñm,s xN ,s + · · · Ñm,n−mxN ,n−m .

These equations define the value of the basic variables in terms of the values of the
non-basic variables. These equations simplify to:

xB,1 = b̃1 + Ñ1,s xN ,s, (2.42)

...

xB,r = b̃r + Ñr,s xN ,s, (2.43)

...

xB,m = b̃m + Ñm,s xN ,s, (2.44)
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because after xN ,s enters the basis the other variables that are non-basic at the current
basic feasible solution remain non-basic. Inspecting Equations (2.42)–(2.44), we see
that increasing the value of xN ,s has two possible effects. A basic variable that has
a negative Ñ coefficient on xN ,s in the equation defining its value decreases as xN ,s

increases. On the other hand, a basic variable that has a zero or positive Ñ coefficient
on xN ,s remains the same or increases as xN ,s increases. Thus, to ensure that our new
basic solution is feasible, we only need to concern ourselves with basic variables
that have a negative Ñ coefficient in the tableau (because we do not want any of the
basic variables to become negative at our new basic solution).

This means that we can restrict attention to the subset of Equations (2.42)–(2.44)
that have a negative Ñ coefficient on xN ,s . We write these equations as:

xB,1 = b̃1 + Ñ1,s xN ,s,

...

xB,r = b̃r + Ñr,s xN ,s,

...

xB,m ′ = b̃m ′ + Ñm ′,s xN ,s,

where we let xB,1, . . . , xB,m ′ be the subset of basic variables that have negative Ñ
coefficients on xN ,s . We want all of our basic variables to be non-negative when we
increase the value of xN ,s , which we can write as:

xB,1 = b̃1 + Ñ1,s xN ,s ≥ 0,

...

xB,r = b̃r + Ñt,s xN ,s ≥ 0,

...

xB,m ′ = b̃m ′ + Ñm ′,s xN ,s ≥ 0.

Subtracting b̃ from both sides of each inequality and dividing both sides of each by
Ñ gives:

xN ,s ≤ − b̃1

Ñ1,s

,
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...

xN ,s ≤ − b̃r

Ñr,s

,

...

xN ,s ≤ − b̃m ′

Ñm ′,s
,

where the directions of the inequalities change because we are focusing on basic
variables that have a negative Ñ coefficient on xN ,s . Also note that because we are
only examining basic variables that have a negative Ñ coefficient on xN ,s , all of the
ratios, −b̃1/Ñ1,s, . . . ,−b̃m ′/Ñm ′,s , are positive.

Taken together, these inequalities imply that the largest xN ,s can be made without
causing any of the basic variables to become negative is:

xN ,s = min

{
− b̃1

Ñ1,s

, . . . ,− b̃r

Ñr,s

, . . . ,− b̃m ′

Ñm ′,s

}
.

Because we restricted our attention to basic variables that have a negative Ñ coeffi-
cient on xN ,s in the tableau, we can also write this maximum value that xN ,s can take
as:

xN ,s = min
i=1,...,m:Ñi,s<0

{
− b̃i

Ñi,s

}
. (2.45)

If we define r as the index of the basic variable that satisfies condition (2.45) then
we know that when we increase xN ,s to:

xN ,s = − b̃r

Ñr,s

,

xB,r becomes equal to zero. This means that xB,r becomes the new non-basic variable
when xN ,s becomes a basic variable.

Once the basic variable that enters the basis, xN ,s , and the non-basic variable that
exits the basis, xB,r , are identified, a pivot operation (cf. Section 2.4.3) is conducted
and the tableau is updated. The process outlined in the current section to determine
if the new basic feasible solution found after the pivoting operation is optimal or
not is then applied to the updated tableau. If the updated tableau (specifically, the
values in the objective-function row) indicates that the new basic feasible solution
is optimal, then the Simplex method terminates. Otherwise, a non-basic variable is
chosen to enter the basis and the ratio test shown in Equation (2.45) is conducted to
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determine which basic variable exits the basis. This process is repeated iteratively
until the Simplex method terminates.

2.5.3 Simplex Method Algorithm

We now provide a more general outline of how to apply the Simplex method to solve
any linear optimization problem. We assume that the problem has been converted to
standard form and that we have chosen a starting set of basic and non-basic variables.
Note, however, that the basic and non-basic variables chosen do not necessarily have
to give us a basic feasible solution. If they do not,we conduct the regularization step to
make the basic-variable values all non-negative.Otherwise,we skip the regularization
step and proceed to conducting Simplex iterations to move between basic feasible
solutions while improving the objective function.

The following algorithm outlines the major steps of the Simplex method. We
begin in Step 2 by computing the starting tableau, based on the chosen partition
of the variables into basic and non-basic variables. In Step 3 we determine if the
regularization step is needed. Recall that if b̃ ≥ 0, then our starting basic solution is
also a basic feasible solution and regularization is not needed. Otherwise, if at least
one component of b̃ is negative, regularization must be conducted. Regularization
consists of first adding an artificial variable to the tableau in Step 4. We then select
which basic variable exits the basis in Step 5 and conduct a pivot operation in Step 6.
Recall from the discussion in Section 2.5.1 that after this one regularization step, the
new b̃ vector is guaranteed to be non-negative and no further regularization steps are
needed.

Simplex Method Algorithm

1: procedure Simplex Method
2: Compute b̃ ← B−1b, Ñ ← −B−1N , c̃0 ← c�

B b̃, c̃
� ← c�

B Ñ + c�
N

3: if b̃ � 0 then
4: Add non-basic variable, xN ,n−m+1, with ones in basic-variable rows and K larger

than all other c̃’s in objective-function row of tableau
5: r ← argmini {b̃i }
6: Conduct a pivot in which xN ,n−m+1 enters the basis and xB,r exits
7: end if
8: while c̃ � 0 do
9: Select a non-basic variable, N ,s , with c̃s < 0 to enter the basis
10: Select a basic variable, xB,r , with r = argmini :Ñi,s<0 −b̃i/Ñi,s to exit the basis
11: Conduct a pivot in which xN ,s enters the basis and xB,r exits
12: end while
13: end procedure
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Themain Simplex iteration takes place in Steps 8 through 12.Wefirst determine in
Step 8 whether we are currently at an optimal basic feasible solution. If the c̃ vector is
non-negative, this means that we cannot improve the objective function by increasing
the values of any of the non-basic variables. Thus, the current basic feasible solution
is optimal. This means that Step 8 constitutes the termination criterion of the Simplex
method—we conduct iterations until c̃ ≥ 0.

If at least one component of c̃ is negative, then the objective-function value can
be improved by increasing the value of the corresponding non-basic variable. This
means that the current basic feasible solution is not optimal. In this case, one of the
non-basic variables with a negative c̃ coefficient is chosen to enter the basis (Step 9).
In Step 10 the ratio test outlined in Equation (2.45) is conducted to determine which
basic variable exits the basis. A pivot operation is then conducted to update the
tableau in Step 11. After the tableau is updated we return to Step 8 to determine if the
new basic feasible solution is optimal. If it is, the algorithm terminates, otherwise,
the algorithm continues.

Example 2.9 Consider the standard form-version of the Electricity-Production Prob-
lem, which is introduced in Section 2.1.1 in matrix form. This matrix form is given
by (2.20)–(2.22). Taking xB = (x3, x4, x5, x6) and xN = (x1, x2), we use the Simplex
method to solve this LPP.

Using this starting partition of the variables into basic and non-basic variables,
we can define:

cB =

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ ,

cN =
(−1

−1

)
,

B =

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ ,

and:

N =

⎡

⎢⎢⎣

2/3 1
2 1
1 0
0 1

⎤

⎥⎥⎦ .
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Using Equations (2.24) and (2.25) we have:

b̃ = B−1b =

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

−1 ⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

18
−8
12
16

⎞

⎟⎟⎠ ,

Ñ = −B−1N = −

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

−1 ⎡

⎢⎢⎣

2/3 1
2 1
1 0
0 1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−2/3 −1
2 1

−1 0
0 −1

⎤

⎥⎥⎦ ,

c̃0 = c�
B b̃ = (

0 0 0 0
)

⎛

⎜⎜⎝

18
−8
12
16

⎞

⎟⎟⎠ = 0,

and:

c̃� = c�
B Ñ + c�

N = (
0 0 0 0

)

⎡

⎢⎢⎣

2/3 1
2 1
1 0
0 1

⎤

⎥⎥⎦ + (−1 −1
) = (−1 −1

)
.

The starting tableau corresponding to this basic solution is shown in Table 2.14,
where the ‘B’ and ‘N ’ subscripts on the basic and non-basic variables are omitted.
The starting basic solution has x1 and x2 (the variables in the original formulation
given in Section 2.1.1) equal to zero and an objective-function value of zero. This
starting basic solution is infeasible, however, because b̃4 = −8 is negative, meaning
that x4 = −8. Figure 2.10 shows the feasible region of the LPP and the starting
solution, further illustrating that the starting basic solution is infeasible.

Table 2.14 Starting tableau
for Example 2.9

1 x1 x2
z 0 −1 −1

x3 18 −2/3 −1

x4 −8 2 1

x5 12 −1 0

x6 16 0 −1
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Fig. 2.10 Feasible region of
the Electricity-Production
Problem in Example 2.9 and
starting basic solution

Because b̃ is not non-negative, a regularization step is needed at this point. To
do this, we add a non-basic variable, which we denote x7, and assign a value of
K = 2, which is greater than all of the other values in the objective-function row.
This selection of K = 2 is arbitrary. The regularization step can be conducted with
any K > −1. At this point, the tableau is updated to that shown in Table 2.15. We
next conduct a pivot operation, in which x7 enters the basis. The basic variable that
exits the basis is the one with index corresponding to:

min {b̃3, b̃4, b̃5, b̃6} = min {18,−8, 12, 16},

which is x4.

Table 2.15 Tableau for
Example 2.9 after the
artificial variable, x7, is added

1 x1 x2 x7
z 0 −1 −1 2

x3 18 −2/3 −1 1

x4 −8 2 1 1

x5 12 −1 0 1

x6 16 0 −1 1

Swapping x7 and x4 through a pivot operation gives the tableau shown in
Table 2.16. Note that after conducting this regularization step, our new basic solution
gives (x1, x2) = (0, 0), which is infeasible in the original problem. This is consistent
with our intuition in Section 2.5.1. Adding an artificial variable to an LPP is ‘cheat-
ing’ in the sense that we have added a new variable to find a starting basic solution in
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which all of the basic variables are non-negative. It is only after conducting Simplex
iterations and (hopefully) driving the artificial variable, x7, down to zero that we find
a basic solution that is feasible in the original LPP. We will see this happen as we
proceed with solving the problem.

Table 2.16 Tableau for
Example 2.9 after
regularization step is
complete

1 x1 x2 x4
z 16 −5 −3 2

x3 26 −8/3 −2 1

x7 8 −2 −1 1

x5 20 −3 −1 1

x6 24 −2 −2 1

Now that we have a starting basic solution with non-negative values for the basic
variables, we determine if the solution is optimal. This is done by examining the
objective-function row of the tableau in Table 2.16. Seeing that both c̃1 and c̃2 are
negative, we know that increasing either from zero will improve (decrease) the objec-
tive function.Because x1 has amore negative objective-function coefficient,we chose
x1 to enter the basis. Note, however, that we could choose x2 to enter the basis at the
current iteration instead. The final solution that we find after finishing the Simplex
method will be optimal regardless of the variable chosen to enter the basis. To deter-
mine the basic variable that exits the basis, we compute the ratios between b̃ and the
column of negative Ñ ’s below x1 in the tableau in Table 2.16. The basic variable to
exit the basis is the one with index corresponding to:

min
Ñ1,3,Ñ1,7,Ñ1,5,Ñ1,6<0

{
− b̃3

Ñ1,3

,− b̃7

Ñ1,7

,− b̃5

Ñ1,5

,− b̃6

Ñ1,6

}
= min

{
39

4
, 4,

20

3
, 12

}
,

which is x7.
Thus, we conduct a pivot operation to swap x1 and x7, which gives the tableau

shown in Table 2.17. This tableau gives the basic solution (x1, x2) = (4, 0), which is
feasible in the original problem. This can be verified by substituting these values of
x1 and x2 into the original formulation given in Section 2.1.1. It can also be verified
by observing that at this basic feasible solution we have the artificial variable x7
equal to zero and b̃ ≥ 0. This means that the variable values satisfy the constraints
of the original problem without needing the artificial variable any longer. Indeed,
now that the artificial variable is equal to zero, we could drop it and its column from
the tableau, as it will never again enter the basis. This is because we chose K in a
way to ensure that the objective-function coefficient on the artificial variable never
becomes negative again. The tableau also tells us that this basic feasible solution
gives an objective function value of −4. Figure 2.11 shows the feasible region of the
problem and our new basic solution after the first Simplex iteration, also illustrating
that this solution is feasible.
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Table 2.17 Tableau for
Example 2.9 after completing
one Simplex iteration

1 x7 x2 x4
z −4 5/2 −1/2 −1/2

x3 46/3 4/3 −2/3 −1/3

x1 4 −1/2 −1/2 1/2

x5 8 3/2 1/2 −1/2

x6 16 1 −1 0

We now proceed by conducting another Simplex iteration using the tableau in
Table 2.17. We first note that because the objective-function row of the tableau has
negative values in it, the current basic feasible solution is not optimal. Increasing
the values of either of x2 or x4 from zero improves the objective-function value.
Moreover, both x2 and x4 have the same value in the objective-function row, thus we
can arbitrarily choose either to enter the basis. We choose x4 here. We next conduct
the ratio test to determinewhich basic variable exits the basis. Thiswill be the variable
with index corresponding to:

min
Ñ4,3,Ñ4,1,Ñ4,5,Ñ4,6<0

{
− b̃3

Ñ4,3

,− b̃1

Ñ4,1

,− b̃5

Ñ4,5

,− b̃6

Ñ4,6

}
= min {46, /, 18, /} ,

where the slashes on the right-hand side of the equality indicate values of Ñ that are
non-negative, and are, thus, excluded from consideration. Based on this test, x5 is
the variable to exit the basis. We then conduct a pivot operation to update the tableau
to that shown in Table 2.18. Our new basic feasible solution has (x1, x2) = (12, 0)

Fig. 2.11 Feasible region of
the Electricity-Production
Problem in Example 2.9 and
basic feasible solution after
completing one Simplex
iteration
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and gives an objective-function value of −12. Figure 2.12 shows the feasible region
of the problem and the new basic feasible solution.

Table 2.18 Tableau for
Example 2.9 after completing
two Simplex iterations

1 x7 x2 x5
z −12 1 −1 1

x3 10 1/3 −1 2/3

x1 12 1 0 −1

x4 16 3 1 −2

x6 16 1 −1 0

We again conduct another Simplex iteration using the tableau in Table 2.18. We
note that the objective-function row is not non-negative and that increasing the value
of x2 from zero would improve the objective function. We next conduct the ratio test
to determine which basic variable leaves the basis when x2 enters it. The variable to
exit the basis has index that corresponds to:

min
Ñ2,3,Ñ2,1,Ñ2,4,Ñ2,6<0

{
− b̃3

Ñ2,3

,− b̃1

Ñ2,1

,− b̃4

Ñ2,3

,− b̃6

Ñ2,6

}
= min {10, /, /, 16} ,

which is x3. We conduct a pivot operation to swap x2 and x3, which gives the updated
tableau in Table 2.19. Our new basic feasible solution has (x1, x2) = (12, 10) and an
objective-function value of −22. Figure 2.13 shows the feasible region of the LPP
and the new basic feasible solution found.

Fig. 2.12 Feasible region of
the Electricity-Production
Problem in Example 2.9 and
basic feasible solution after
completing two Simplex
iterations
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Table 2.19 Tableau for
Example 2.9 after completing
three Simplex iterations

1 x7 x3 x5
z −22 2/3 1 1/3

x2 10 1/3 −1 2/3

x1 12 1 0 −1

x4 26 10/3 −1 −4/3

x6 6 2/3 1 −2/3

If we proceed to conduct an additional Simplex iteration using the tableau in
Table 2.19, we find that the Simplex method terminates. This is because we now
have c̃ ≥ 0 in the objective-function row, meaning that we cannot improve on the
current solution. The point (x1, x2) = (12, 10) is the same optimal solution to this
problem found in Sections 2.1.1, 2.3.1, and 2.3.2. The tableau gives an optimal
objective-function value of −22. However, recall that the problem was converted
from a maximization to a minimization to put it into standard form. When the
objective is converted back to a maximization, the objective-function value becomes
22, which is consistent with the discussion in Sections 2.1.1, 2.3.1, and 2.3.2.

Figure 2.14 shows the sequence of points that the Simplex method goes through
to get from the starting basic solution, (x1, x2) = (0, 0), to the final optimal basic
feasible solution, (x1, x2) = (12, 10). ��

Fig. 2.13 Feasible region of
the Electricity-Production
Problem in Example 2.9 and
basic feasible solution after
completing three Simplex
iterations
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Fig. 2.14 Feasible region of
the Electricity-Production
Problem in Example 2.9 and
the sequence of points that
the Simplex method goes
through

2.5.4 Convergence of the Simplex Method

The Simplex method is an iterative algorithm. As such, an important question is
whether it is guaranteed to converge. That is to say, are we guaranteed to eventually
find a basic feasible solution at which c̃ ≥ 0, which allows the Simplex method to
terminate? If not, it is possible that we can get stuck in Steps 8 through 12 of the
Simplex algorithm outlined in Section 2.5.3 without ever terminating.

To answer this question, we note that the Simplex method solves a linear opti-
mization problem by going through extreme points of the feasible region. Because
a linear optimization problem has a finite number of extreme points, this implies
that the algorithm should eventually terminate. There is one added wrinkle to this,
however. Certain problems can have multiple basic feasible solutions corresponding
to a single extreme point. These occur because of what is called degeneracy. A
degenerate basic solution is one in which one or more basic variables take on a value
of zero when we solve for them using the structural equality constraints. Degenerate
basic solutions normally arise because there are extra redundant constraints at an
extreme point of the feasible region.

The difficulty that degeneracy raises is that the Simplex method may get ‘stuck’
at an extreme point by cycling through the same set of basic feasible solutions
corresponding to that extreme point without ever moving. There is, however, a very
easyway to ensure that the Simplexmethod does not get stuck at a degenerate extreme
point. This is done by choosing the variable that enters the basis at each Simplex
iterations based on their index number. That is to say, if both c̃i and c̃ j are negative
at a given Simplex iteration, then choose whichever has the smaller index (i.e., the
smaller of i or j) to be the variable entering the basis. One can show that using this
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rule to select the entering variable guarantees that the Simplex method leaves every
degenerate extreme point after a finite number of Simplex iterations [9].

In practice, the Simplex method is not applied this way. Rather, the entering
variable is chosen on the basis of which one has the most negative c̃. If the Simplex
method spendsmultiple iterations at the same extremepoint (suggesting a degeneracy
problem), then the selection rule based on the index number is used instead until the
Simplex method moves to a different extreme point.

2.5.5 Detecting Infeasible Linear Optimization Problems

The Simplex method detects that a linear optimization problem is infeasible based
on the final value, after the Simplex algorithm terminates, of the artificial variable
added in the regularization step. If the Simplex method terminates (i.e., if c̃ ≥ 0)
and the artificial variable has a non-zero value, this means that the starting linear
optimization problem is infeasible.

To understand why, first note that if a linear optimization problem is infeasible,
then the regularization stepmust be done at the beginningof theSimplexmethod.This
is because for any starting partition of the variables into basic and non-basic variables,
the resulting basic solution must be infeasible. Otherwise, if we can find a basic
solution that is feasible then the linear optimization problem cannot be infeasible.

Next, recall that when the artificial variable is added in the regularization step, a
comparatively high value of K is put in the objective-function row of the tableau.
The purpose of K , as discussed in Section 2.5.1, is to make the objective function
(which we seek to minimize) larger if the artificial variable takes on a positive value.
Indeed, by making K larger than all of the other values in the objective-function row
of the tableau, the cost on the artificial variable is higher than all of the other variables
and the Simplex method seeks to make the artificial variable as small as possible. If
the Simplex method terminates but the artificial variable is still positive, that means
it is impossible to satisfy the constraints of the original problem without having the
artificial variable allow for constraint violations. Thus, the original problem must be
infeasible. Otherwise, if the Simplex method terminates and the artificial variable is
equal to zero, the original problem is feasible.

2.5.6 Detecting Unbounded Linear Optimization Problems

The Simplexmethod detects that a linear optimization problem is unbounded through
the ratio test conducted in Step 10 of the Simplex Method Algorithm, which is
outlined in Section 2.5.3. Recall that the purpose of the ratio test is to determine how
large the non-basic variable entering the basis can be made before causing one of the
basic variables to become negative. If there is no such restriction, then the Simplex
method would make the entering variable infinitely large because the negative c̃
value in the objective-function row of the tableau means that doing so would make
the objective function go to −∞.
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We know that if at least one of the Ñ values in the column underneath the entering
variable in the tableau is negative, then the ratio test gives a limit on how much the
entering variable can increase. Otherwise, if all of the Ñ values are non-negative,
then the ratio test allows the entering variable to become as large as possible. Thus, if
at any point in the Simplex method there is an entering variable without any negative
Ñ values in the tableau, the problem is known to be unbounded.

2.5.7 Detecting Multiple Optima

The Simplex method detects multiple optimal solutions based on the objective-
function row of the final tableau. If all of the values in the objective-function row of
the final tableau are strictly positive, this means that the optimal solution found is
a unique optimal solution. Otherwise, if there are any zero values in the objective-
function row of the final tableau, this means that there are multiple optimal solutions.
The reason for this is that a zero in the objective-function row of the final tableau
means that a non-basic variable can enter the basis without changing the objective-
function value at all. Thus, there are additional optimal solutions in which non-basic
variables with a zero in the objective-function row take on positive values (keeping
in mind that the basic-variable values would have to be recomputed).

2.6 Sensitivity Analysis

The subject of sensitivity analysis answers the question of what effect changing
a linear optimization problem has on the resulting optimal solution. Of course, one
way to answer this question is to change a given problem, solve the new problem, and
examine any resulting changes in the solution. This can be quite cumbersome and
time-consuming, however. A large-scale linear optimization problem with millions
of variables could take several hours to solve. Having to re-solve multiple versions
of the same basic problem with different data can be impractical. Sensitivity analysis
answers this question by using information from the optimal solution and the final
tableau after applying the Simplex method.

Throughout this discussion we assume that we have a linear optimization problem
that is already in standard form, which can be generically written as:

min
x

c�x (2.46)

s.t. Ax = b (2.47)

x ≥ 0. (2.48)

We also assume that we have solved the problem using the Simplex method and have
an optimal set of decision-variable values, x∗. More specifically, we assume that we
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have an optimal basic feasible solution, meaning that x∗ is partitioned into basic
variables, x∗

B , and non-basic variables, x∗
N = 0. We, thus, also have the objective-

function-coefficient vector partitioned into cB and cN and the A matrix partitioned
into submatrices, B and N .

Weuse sensitivity analysis to examine the effect of three different types of changes:
(i) changing the constants on the right-hand sides of the constraints (i.e., the b vector
in the structural equality constraints), (ii) changing the objective-function coefficients
(i.e., the c vector), and (iii) changing the coefficients on the left-hand sides of the
constraints (i.e., the A matrix).

2.6.1 Changing the Right-Hand Sides of the Constraints

We begin by considering the case in which the b vector is changed. To do this, recall
that once we solve the original LPP, given by (2.46)–(2.48), the basic variable values
are given by:

x∗
B = b̃ = B−1b.

Let us next examine the effect of changing the structural equality constraints
from (2.47) to:

Ax = b + Δb,

on the basic feasible solution, x∗, that is optimal in the original problem. From (2.24)
and (2.25) we have:

b̂ = B−1(b + Δb),

N̂ = −B−1N ,

ĉ0 = c�
B b̂,

and:
ĉ� = c�

B N̂ + c�
N ,

where b̂, N̂ , ĉ0, and ĉ denote the new values of the terms in the final tableau after the
right-hand sides of the structural equality constraints are changed. Note that changing
the right-hand sides of the structural equality constraints only changes the values of
b̂ and ĉ0 in the final tableau. We have that N̂ = Ñ and ĉ = c̃.

From this observation we can draw the following important insight. If b̂ ≥ 0,
then the partition of x∗ into basic and non-basic variables is still feasible when the
equality constraints are changed. Moreover, the values in the objective-function row
of the final tableau, ĉ = c̃, are not affected by the change in the right-hand side of
the equality constraints. This means that if b̂ ≥ 0 the partition of x∗ into basic and
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non-basic variables is not only feasible but also optimal after the equality constraints
are changed.

We can use this insight to first determine how much the right-hand side of the
equality constraints can be changed before the partition of x∗ into basic and non-
basic variables becomes infeasible. We determine this bound from the requirement
that b̂ ≥ 0 as follows:

b̂ ≥ 0

B−1 · (b + Δb) ≥ 0

B−1b ≥ −B−1Δb

b̃ ≥ −B−1Δb. (2.49)

If Δb satisfies (2.49), then the optimal basis remains unchanged by the changes in
the right-hand side of the equality constraints. Although the basis remains the same
if (2.49) is satisfied, the values of the basic variables change. Specifically, we can
compute the new values of the basic variables, x̂B , as:

x̂B = b̂ = B−1 · (b + Δb) = B−1b + B−1Δb = b̃ + B−1Δb. (2.50)

Equation (2.50) gives us an exact expression for how much the values of the basic
variables change as a result of changing the right-hand sides of the equalities. Specif-
ically, this change is B−1Δb.

The next question is how much of an effect these changes in the values of the
basic variables have on the objective-function value. From (2.25) we can write the
objective-function value as:

z = c�
B x̂B + c�

N x̂N .

where x̂N are the newnon-basic variable values.Weknow, however, that the non-basic
variables will still equal zero after the right-hand sides of the equality constraints are
changed. Thus, using (2.50) we can write the objective-function value as:

z = c�
B · (b̃ + B−1Δb)

= c�
B b̃ + c�

B B
−1Δb

= z∗ + λ�Δb, (2.51)

where we define λ� = c�
B B

−1. The vector λ, which is called the sensitivity vector,
gives the change in the optimal objective-function value of an LPP resulting from a
sufficiently small change in the right-hand side of a structural equality constraint.

IfΔb does not satisfy (2.49), then the basis that is optimal for the original LPP is no
longer feasible after the constraints are changed. In such a case, one cannot directly
compute the effect of changing the constraints on the solution. Rather, additional
Simplex iterations must be conducted to find a new basis that is feasible and optimal.
Note that when conducting the additional Simplex iterations, one can start with the
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final basis from solving the original LPP and conduct a regularization step to begin
the additional Simplex iterations. Doing so can often decrease the number of Simplex
iterations that must be conducted.

Example 2.10 Consider the standard form-version of the Electricity-Production
Problem, which is introduced in Section 2.1.1. In Example 2.9 we find that the
optimal solution has basis xB = (x2, x1, x4, x6) and xN = (x3, x5). We are exclud-
ing x7 from the vector of non-basic variables, because this is an artificial variable
added in the regularization step. However, one can list x7 as a non-basic variable
without affecting any of the results in this example. The optimal solution also has:

B =

⎡

⎢⎢⎣

1 2/3 0 0
1 2 −1 0
0 1 0 0
1 0 0 1

⎤

⎥⎥⎦ ,

b̃ =

⎛

⎜⎜⎝

10
12
26
6

⎞

⎟⎟⎠ ,

and:
cB = (−1 −1 0 0

)
.

We can compute the sensitivity vector as:

λ� = c�
B B

−1 = (−1 0 −1/3 0
)
.

Suppose that the structural equality constraints of the problem are changed from:

⎡

⎢⎢⎣

2/3 1 1 0 0 0
2 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤

⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ ,

to:
⎡

⎢⎢⎣

2/3 1 1 0 0 0
2 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤

⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

2
−1
0
0

⎞

⎟⎟⎠ .
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We first determine whether the basis that is optimal in the original problem is still
feasible after the constraints are changed. From (2.49) we know that the basis is still
feasible if:

b̃ ≥ −B−1Δb,

or if: ⎛

⎜⎜⎝

10
12
26
6

⎞

⎟⎟⎠ ≥ −

⎡

⎢⎢⎣

1 2/3 0 0
1 2 −1 0
0 1 0 0
1 0 0 1

⎤

⎥⎥⎦

−1 ⎛

⎜⎜⎝

2
−1
0
0

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−2
0

−3
2

⎞

⎟⎟⎠ .

Seeing that it is, we can next determine the effect of the change in the constraints
on the optimal objective-function value using the sensitivity vector as:

λ�Δb = −2.
��

2.6.2 Changing the Objective-Function Coefficients

We next consider the case in which the c vector is changed. More specifically, let us
suppose that the objective function changes from (2.46) to:

(c + Δc)�x .

We analyze the effect of this change following the same line of reasoning used to
analyze changes in the b vector in Section 2.6.1. That is to say,we examinewhat effect
it has on x∗, the optimal basic feasible solution of the original problem. From (2.24)
and (2.25) we have that:

b̂ = B−1b,

N̂ = −B−1N ,

ĉ0 = (cB + ΔcB)�b̂,

and:
ĉ� = (cB + ΔcB)� N̂ + (cN + ΔcN )�,

where b̂, N̂ , ĉ0, and ĉ denote the new values of the terms in the final tableau after
the c vector is changed and ΔcB and ΔcN partition the Δc vector according to the
final partition of basic and non-basic variables. Note that changing the c vector only
changes the values of ĉ0 and ĉ and that we have b̂ = b̃ and N̂ = Ñ .

From this observation we can conclude that when the c vector is changed, the
optimal basic feasible solution of the original problem, x∗, is still feasible in the new



82 2 Linear Optimization

problem. The only question is whether this basic feasible solution remains optimal
after the objective function is changed. We know that x∗ remains optimal if ĉ ≥ 0.
From this, we can derive the following bound:

ĉ ≥ 0

(cB + ΔcB)� N̂ + (cN + ΔcN )� ≥ 0

(cB + ΔcB)� Ñ + (cN + ΔcN )� ≥ 0

c�
B Ñ + c�

N + Δc�
B Ñ + Δc�

N ≥ 0

c̃� + Δc�
B Ñ + Δc�

N ≥ 0

Δc�
B Ñ + Δc�

N ≥ −c̃�, (2.52)

on how much c can change and have x∗ remain an optimal basic feasible solution.
If (2.52) is satisfied, then x∗ remains an optimal basic feasible solution. Of course,
the objective-function value changes as a result of the c vector changing. However,
it is straightforward to compute the new objective-function value as:

z = (cB + ΔcB)�x∗
B + (cN + ΔcN )�x∗

N

= (cB + ΔcB)�x∗
B,

because x∗
N = 0. This then simplifies to:

z = z∗ + Δc�
B x

∗
B . (2.53)

Thus, if Δc satisfies (2.52), the impact on the optimal objective-function value of
changing the objective-function coefficient of a basic variable is equal to the basic
variable’s optimal value itself. Changing the objective-function value of a non-basic
variable has no impact on the optimal objective-function value.

On the other hand, if (2.52) is not satisfied, then x∗ is a basic feasible solution of
the changed LPP but is not optimal in the new problem. As such, additional Simplex
iterations would have to be conducted to find a new optimal basic feasible solution.

Example 2.11 Consider the standard form-version of the Electricity-Production
Problem, which is introduced in Section 2.1.1. In Example 2.9 we find that:

c̃ =
(

1
5/3

)
,

and:

Ñ =

⎡

⎢⎢⎣

−1 −2/3
0 −1

−1 −8/3
1 2/3

⎤

⎥⎥⎦ .
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Suppose we wish to change c1 from −1 to −0.9. From (2.52) we know that x∗
will remain an optimal solution so long as:

Δc�
B Ñ + Δc�

N ≥ −c̃�,

or so long as:

(
0 0.1 0 0

)

⎡

⎢⎢⎣

−1 −2/3
0 −1

−1 −8/3
1 2/3

⎤

⎥⎥⎦ ≥ − (
1 5/3

)
,

or so long as: (
0 −0.1

) ≥ (−1 −5/3
)
,

which holds true. Thus, based on (2.53) we know that the new objective-function
value after this change is given by:

Δc�
B x

∗
B = (

0 0.1 0 0
)

⎛

⎜⎜⎝

10
12
26
6

⎞

⎟⎟⎠ = 1.2.

��

2.6.3 Changing the Left-Hand-Side Coefficients
of the Constraints

We finally examine the effect of changing the coefficients multiplying the variables
on the left-hand side of the structural equality constraints. More specifically, we
examine the effect of changing (2.47) to:

(A + ΔA)x = b.

We begin by partitioning ΔA into:

ΔA = [
ΔB ΔN

]
.

Using this and (2.24) and (2.25) we have that:

b̂ = (B + ΔB)−1b,

N̂ = −(B + ΔB)−1(N + ΔN ),

ĉ0 = c�
B b̂,
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and:
ĉ� = c�

B N̂ + c�
N ,

where b̂, N̂ , ĉ0, and ĉ denote the new values of the terms in the final tableau after the
A matrix is changed.

We can draw two conclusions from these expressions. The first is that if ΔA
changes values in the B matrix, then all of b̂, N̂ , ĉ0, and ĉ are changed in the final
tableau. Moreover, it is not straightforward to derive a bound on how large or small
ΔB can be before x∗ is no longer a feasible or optimal basic solution. This is because
ΔB appears in matrix inversions in the expressions giving b̂ and ĉ. Thus, we do not
provide any such bounds onΔB (because they are difficult to derive and work with).

We can, however, derive such bounds in the case in which ΔA changes values in
the N matrix only. To do so, we note that if ΔB = 0, then from (2.24) and (2.25) we
have:

b̂ = B−1b,

N̂ = −B−1 · (N + ΔN ),

ĉ0 = c�
B b̂,

and:
ĉ� = c�

B N̂ + c�
N .

Thus, we see that if the N matrix is changed, this only changes the values of N̂ and ĉ
and that we have b̂ = b̃ and ĉ0 = c̃0. Thus, we know that x∗ remains a basic feasible
solution after the N matrix is changed. The only question is whether x∗ remains an
optimal basic feasible solution. We can derive the bound:

ĉ ≥ 0

−c�
B B

−1 · (N + ΔN ) + c�
N ≥ 0

−c�
B B

−1N − c�
B B

−1ΔN + c�
N ≥ 0

c�
B Ñ + c�

N − c�
B B

−1ΔN ≥ 0

c̃� − c�
B B

−1ΔN ≥ 0

c̃� ≥ c�
B B

−1ΔN , (2.54)

onΔN , which ensures that x∗ remains optimal. If (2.54) is satisfied, then x∗ remains
an optimal basic feasible solution. If so, we can determine the new objective-function
value from (2.25) as:

z = ĉ0 + ĉ�x∗
N

= c̃0, (2.55)
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because we have that ĉ0 = c̃0 and x∗
N = 0. Thus, if (2.54) is satisfied, there is no

change in the optimal objective-function value. Otherwise, if ΔN does not sat-
isfy (2.54), then x∗ is no longer an optimal basic feasible solution and additional
Simplex iterations must be conducted to find a new optimal basic solution.

We finally conclude this discussion by noting that although we cannot derive a
bound on the allowable change in the B matrix, we can approximate changes in
the optimal objective-function value from changing the B matrix. We do this by
supposing that one element of the A matrix, Ai, j , is changed to Ai, j + ΔAi, j . When
this change is made, the i th structural equality constraint changes from:

Ai,1x
∗
1 + · · · + Ai, j−1x

∗
j−1 + Ai, j x

∗
j + Ai, j+1x

∗
j+1 + · · · + Ai,nx

∗
n = bi ,

to:

Ai,1x
∗
1 + · · · + Ai, j−1x

∗
j−1 + (Ai, j + ΔAi, j )x

∗
j + Ai, j+1x

∗
j+1 + · · · + Ai,nx

∗
n = bi .

The changed i th constraint can be rewritten as:

Ai,1x
∗
1 + · · · + Ai, j−1x

∗
j−1 + Ai, j x

∗
j + Ai, j+1x

∗
j+1 + · · · + Ai,nx

∗
n = bi − ΔAi, j x

∗
j .

Thus, one can view changing the A matrix as changing the right-hand side of the i th
constraint by −ΔAi, j x∗

j . One can then use the results of Section 2.6.1 to estimate
the change in the optimal objective-function value as:

Δz∗ ≈ −λiΔAi, j x
∗
j , (2.56)

whereλi is the i th component of the sensitivity vector derived in (2.51).Note that if x j

is a non-basic variable, thenwe have that the change in the optimal objective-function
value is:

−λiΔAi, j x
∗
j = 0,

which is what is found in analyzing the case of changes in the N matrix in (2.55).
However, Equation (2.56) can also be applied to approximate the change in the opti-
mal objective-function value when changes are made to the B matrix. It is important
to note, however, that (2.56) only approximates such changes (whereas all of the
other sensitivity expressions are exact).

Example 2.12 Consider the standard form-version of the Electricity-Production
Problem, which is introduced in Section 2.1.1, and suppose that A1,2 changes from 1
to 1.01. Because this is making a change to a coefficient in the B matrix, we cannot
exactly estimate the effect of this change on the objective function. We can, however,
approximate this using (2.56) as:

−λ1ΔA1,2x
∗
2 = −1 · (−0.01) · 10 = 0.1.
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To see that this is only an approximation, we can solve the problem with A1,2 =
1.01, which gives an optimal objective-function value of −21.900990. The exact
change in the objective-function value is thus:

−21.900990 − (−22) = 0.099010 ≈ 0.1.
��

2.7 Duality Theory

Every linear optimization problem has an associated optimization problem called its
dual problem. We show in this section that the starting linear optimization problem,
which in the context of duality theory is called the primal problem, and its associated
dual problem have some very important relationships. These relationships include
the underlying structure of the primal and dual problems (i.e., the objective function,
constraints, and variables of the two problems) and properties of solutions of the two
problems.

2.7.1 Symmetric Duals

We begin by looking at the simple case of a primal problem that is in canonical form.
Recall from Section 2.2.2.2 that a generic primal problem in canonical form can be
written compactly as:

min
x

zP = c�x (2.57)

s.t. Ax ≥ b (2.58)

x ≥ 0. (2.59)

The dual problem associated with this primal problem is:

max
y

zD = b�y (2.60)

s.t. A�y ≤ c (2.61)

y ≥ 0. (2.62)

As indicated above, we can note some relationships in the structures of the pri-
mal and dual problems. The vector of objective-function coefficients in the primal
problem, c, is the vector of the right-hand side constants in the structural constraints
in the dual problem. The vector of the right-hand side constants in the structural
constraints in the primal problem, b, is the vector of objective-function coefficients
in the dual problem. We also see that the coefficients multiplying the variables in the
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left-hand sides of the constraints (which are in the Amatrix) are the same in the dual
problem as in the primal, except that the coefficient matrix is transposed in the dual.
We finally note that whereas the primal problem is a minimization, the dual problem
is a maximization.

We can also observe a one-to-one relationship between the variables and con-
straints in the primal and dual problems. Recall that for a generic primal problem
in canonical form, A is an m × n matrix. This means that the primal problem has
m structural constraints and n variables (i.e., x ∈ R

n). Because A� is an n × m
matrix, this means that the dual problem has n structural constraints and m variables
(i.e., y ∈ R

m). Thus, we can say that each primal constraint has an associated dual
variable and each primal variable has an associated dual constraint.

We can show a further symmetry between the primal and dual problems. By this
we mean that each dual constraint has an associated primal variable and each dual
variable has an associated primal constraint. This is because if we start with a primal
problem in canonical form and find the dual of its dual problem, we get back the
original primal problem. To see this, we note from the discussion above that if we
have the primal problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

its dual problem is:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

If we want to find the dual of the dual problem, we must first convert it to canonical
form, which is:

min
y

− b�y

s.t. − A�y ≥ −c

y ≥ 0.

The dual of this problem is:

max
w

− c�w

s.t. (−A�)�w ≤ −b

w ≥ 0,
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where we let w be a vector of variables. This problem can be rewritten as:

min
w

c�w

s.t. Aw ≥ b

w ≥ 0,

which is identical to the starting problem, except that the variables are now called w
instead of x .

Example 2.13 Consider the Electricity-Production Problem, which is introduced in
Section 2.1.1. In Example 2.4 we show the canonical form of this problem to be:

min
x

zP = 5x1,1 + 4x1,2 + 3x2,1 + 6x2,2

s.t. − x1,1 − x1,2 ≥ −7

− x2,1 − x2,2 ≥ −12

− x1,1 − x2,1 ≥ −10

x1,1 + x2,1 ≥ 10

− x1,2 − x2,2 ≥ −8

x1,2 + x2,2 ≥ 8

xi, j ≥ 0,∀ i = 1, 2; j = 1, 2.

This can be written as:

min
x

zP = c�x

s.t. Ax ≥ b

x ≥ 0,

where:

x =

⎛

⎜⎜⎝

x1,1
x1,2
x2,1
x2,2

⎞

⎟⎟⎠ ,

c =

⎛

⎜⎜⎝

5
4
3
6

⎞

⎟⎟⎠ ,
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A =

⎡

⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 0
0 0 −1 −1

−1 0 −1 0
1 0 1 0
0 −1 0 −1
0 1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

and:

b =

⎛

⎜⎜⎜⎜⎜⎜⎝

−7
−12
−10
10
−8
8

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The dual problem is:

max
y

zD = b�y

s.t. A�y ≤ c

y ≥ 0,

which can be expanded out to:

max
y

zD = (−7 −12 −10 10 −8 8
)

⎛

⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3
y4
y5
y6

⎞

⎟⎟⎟⎟⎟⎟⎠

s.t.

⎡

⎢⎢⎣

−1 0 −1 1 0 0
−1 0 0 0 −1 1
0 −1 −1 1 0 0
0 −1 0 0 −1 0

⎤

⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3
y4
y5
y6

⎞

⎟⎟⎟⎟⎟⎟⎠
≤

⎛

⎜⎜⎝

5
4
3
6

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3
y4
y5
y6

⎞

⎟⎟⎟⎟⎟⎟⎠
≥

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

or, by simplifying, to:
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max
y

zD = −7y1 − 12y2 − 10y3 + 10y4 − 8y5 + 8y6

s.t. − y1 − y3 + y4 ≤ 5

− y1 − y5 + y6 ≤ 4

− y2 − y3 + y4 ≤ 3

− y2 − y5 ≤ 6

y1, y2, y3, y4, y5, y6 ≥ 0.
��

2.7.2 Asymmetrical Duals

Now consider a generic LPP in standard form:

min
x

zP = c�x

s.t. Ax = b

x ≥ 0.

To find the dual of this problem, we can convert it to canonical form, by replacing
the structural equality constraints with the pair of inequalities:

min
x

zP = c�x

s.t. Ax ≥ b

Ax ≤ b

x ≥ 0,

and then converting the less-than-or-equal-to constraint into a greater-than-or-equal-
to constraint:

min
x

zP = c�x

s.t. Ax ≥ b

− Ax ≥ −b

x ≥ 0.

If we let u and v denote the dual variables associated with the two structural
inequality constraints, the dual of this problem is then:
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max
u,v

zD = b�u − b�v

s.t. A�u − A�v ≤ c

u, v ≥ 0.

If we define y as the difference between the dual-variable vectors:

y = u − v,

then the dual can be written as:

max
y

zD = b�y

s.t. A�y ≤ c,

where there is no sign restriction on y because it is the difference of two non-negative
vectors. This analysis of a primal problemwith equality constraints gives an important
conclusion, which is that the dual variable associated with an equality constraint has
no sign restriction.

2.7.3 Duality Conversion Rules

Example 2.13 demonstrates a straightforward, but often tedious way of finding the
dual of any linear optimization problem. This method is to first convert the problem
into canonical form, using the rules outlined in Section 2.2.2.2. Then, one can use
the symmetric dual described in Section 2.7.1 to find the dual of the starting primal
problem. While straightforward, this is cumbersome, as it requires the added step of
first converting the primal problem to canonical form. Here we outline a standard
set of rules that allow us to directly find a dual problem without first converting the
primal problem to canonical form. We demonstrate these rules using the problem
introduced in Example 2.1, which is:

max
x

3x1 + 5x2 − 3x3 + 1.3x4 − x5

s.t. x1 + x2 − 4x4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5

x1 ≥ 0

x2 ≥ 0

x4 ≤ 0.
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We then demonstrate that the dual we find using the rules outlined is equivalent to
the dual we would obtain if we first convert the primal problem to canonical form
and use the symmetric dual introduced in Section 2.7.1.

2.7.3.1 Step 1: Determine Number of Dual Variables

The first step is to determine the number of dual variables, which is based on the
number of structural constraints in the primal problem. Our example problem has
three structural constraints, which are:

x1 + x2 − 4x4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5.

The three other constraints:
x1 ≥ 0

x2 ≥ 0

x4 ≤ 0,

are not structural constraints but are rather non-negativity and non-positivity restric-
tions. These are handled differently than structural constraints when writing the dual
problem. Because there are three structural constraints, there will be three dual vari-
ables, which we refer to as y1, y2, and y3. To help in the subsequent steps of writing
the dual problem, we write each dual variable next to its associated primal constraint
as follows:

max
x

3x1 + 5x2 − 3x3 + 1.3x4 − x5

s.t. x1 + x2 − 4x4 ≤ 10 (y1)

x2 − 0.5x3 + x5 = −1 (y2)

x3 ≥ 5 (y3)

x1 ≥ 0

x2 ≥ 0

x4 ≤ 0.
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2.7.3.2 Step 2: Determine Objective of the Dual Problem

The next step is to determine the objective function of the dual problem. First, the
direction of the optimization of the dual problem is always opposite to that of the
primal problem. Because the primal problem in our example is a maximization, the
dual will be a minimization. Next, to determine the objective function itself, we
multiply each dual variable with the constant on the right-hand side of its associated
primal constraint and sum the products. Thus, in our example we multiply y1 by 10,
y2 by −1 and y3 by 5 giving:

min
y

10y1 − y2 + 5y3.

2.7.3.3 Step 3: Determine Number of Structural Constraints
in the Dual Problem

There is one structural constraint in the dual problem for each primal variable. More-
over, there is a one-to-one correspondence between dual constraints and primal vari-
ables. Thus, just as we associate dual variables with primal constraints in Step 1, we
associate primal variables with dual constraints here. Our example problem has five
primal variables. Thus, the dual problem will have five structural constraints, and we
can associate the constraints and variables as follows:

min
y

10y1 − y2 + 5y3

s.t. (x1)

(x2)

(x3)

(x4)

(x5)

2.7.3.4 Step 4: Determine Right-Hand Sides of Structural Constraints
in the Dual Problem

We next determine the right-hand side of each structural constraint in the dual prob-
lem. These are given by the coefficient multiplying the associated primal variable in
the objective function of the primal problem. In our example, the five structural con-
straints in the dual problem correspond to x1, x2, x3, x4, and x5, respectively, which
have objective-function coefficients in the primal problem of 3, 5, −3, 1.3, and −1,
respectively. Thus, these will be the right-hand sides of the associated structural
constraints in the dual:
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min
y

10y1 − y2 + 5y3

s.t. 3 (x1)

5 (x2)

− 3 (x3)

1.3 (x4)

− 1. (x5)

2.7.3.5 Step 5: Determine Left-Hand Sides of Structural Constraints
in the Dual Problem

The left-hand sides of the structural constraints in the dual problem have the dual
variables multiplied by the transpose of the coefficient matrix defining the structural
constraints in the primal problem. The result of this is that the coefficient multiplying
the primal variable associated with each structural dual constraint is multiplied by
the dual variable associated with the structural primal constraint.

To illustrate this rule, take the first structural dual constraint, which is associated
with x1. If we examine the structural constraints in the primal problem, we see that
x1 has coefficients of 1, 0, and 0 in each of the structural constraints in the primal
problem. Moreover, these three primal constraints are associated with dual variables
y1, y2, and y3. Multiplying these coefficients with the associated dual variables and
summing the products gives:

1y1 + 0y2 + 0y3,

as the left-hand side of the first structural constraint in the dual problem.Next, take the
second structural dual constraint, which is associated with x2. The primal variable x2
has coefficients 1, 1, and 0 in the three structural constraints of the primal, which are
associated with dual variables y1, y2, and y3. Thus, the left-hand side of the second
structural constraint of the dual problem is:

1y1 + 1y2 + 0y3.

Repeating this process three more times gives the following left-hand sides of the
structural constraints in the dual problem:

min
y

10y1 − y2 + 5y3

s.t. y1 3 (x1)

y1 + y2 5 (x2)

− 0.5y2 + y3 − 3 (x3)

− 4y1 1.3 (x4)

y2 − 1. (x5)
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2.7.3.6 Step 6: Determine the Types of Structural Constraints
in the Dual Problem

The types of structural constraints in the dual problem (i.e., greater-than-or-equal-to,
less-than-or-equal-to, or equality constraints) is determined by the sign restrictions
on the associated primal variables. To determine the type of each constraint, we refer
to the symmetric duals introduced in Section 2.7.1.

Recall that the canonical primal:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

has:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0,

as its dual. Recall, also, that there is a further symmetry between these two problems,
in that the dual of the dual problem is the original primal problem. Because of this,
we begin by first determining which of these two canonical problems matches the
type of problem that our primal is. In our example, the primal is a maximization
problem. Thus, we examine the problem:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

Specifically, we notice that each variable in this problem is non-negative and that the
associated structural constraints in the problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

are greater-than-or-equal-to inequalities. Thus, in our example, each structural con-
straint in the dual that is associated with a primal variable that is non-negative in
the primal problem will be a greater-than-or-equal-to constraint. Specifically, in our
example, x1 and x2 are non-negative, and so their associated dual constraints will be
greater-than-or-equal-to inequalities, as follows:
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min
y

10y1 − y2 + 5y3

s.t. y1 ≥ 3 (x1)

y1 + y2 ≥ 5 (x2)

− 0.5y2 + y3 − 3 (x3)

− 4y1 1.3 (x4)

y2 − 1. (x5)

Next, we examine the variable x4 in our primal problem. Notice that the sign
restriction on this variable is opposite sign restriction (2.62) in the canonical
maximization problem. Thus, its associated dual structural constraint will have the
opposite direction of the canonicalminimization problem (i.e., opposite greater-than-
or-equal-to constraint (2.58) in the canonicalminimization problem). Thismeans that
the dual constraint associated with x4 will be a less-than-or-equal-to constraint, as
follows:

min
y

10y1 − y2 + 5y3

s.t. y1 ≥ 3 (x1)

y1 + y2 ≥ 5 (x2)

− 0.5y2 + y3 − 3 (x3)

− 4y1 ≤ 1.3 (x4)

y2 − 1. (x5)

Finally, for the variables x3 and x5, which are unrestricted in sign in the primal
problem, their associated structural constraints in the dual problem are equalities, as
follows:

min
y

10y1 − y2 + 5y3

s.t. y1 ≥ 3 (x1)

y1 + y2 ≥ 5 (x2)

− 0.5y2 + y3 = −3 (x3)

− 4y1 ≤ 1.3 (x4)

y2 = −1. (x5)

When finding the dual of a minimization problem, one would reverse the roles of the
two canonical problems (i.e., the roles of problems (2.60)–(2.62) and (2.57)–(2.59)).
Specifically, onewould have less-than-or-equal-to structural inequality constraints in
the dual for primal variables that are non-negative, greater-than-or-equal-to inequal-
ities for primal variables that are non-positive, and equality constraints for primal
variables that are unrestricted in sign.
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2.7.3.7 Step 7: Determine Sign Restrictions on the Dual Variables

The final step is to determine sign restrictions on the dual variables. The sign restric-
tions depend on the type of structural constraints in the primal problem. The method
of determining the sign restrictions is analogous to determining the types of structural
constraints in the dual problem in Step 6. We again rely on the two symmetric dual
problems introduced in Section 2.7.1.

Because the primal problem in our example is a maximization, we focus on the
canonical problem:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0,

and its dual:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0.

Specifically, we begin by noting that the first primal constraint:

x1 + x2 − 4x4 ≤ 10,

is consistent with constraint (2.61) in the canonical maximization problem. Thus,
the dual variable associated with this constraint, which is y1, is non-negative, which
is consistent with sign restriction (2.59) in the canonical minimization problem. We
next examine the third primal structural constraint:

x3 ≥ 5.

This is the opposite type of constraint compared to constraint (2.61) in the canonical
maximization problem. Thus, its associated dual variable, which is y3, will have a
sign restriction that is opposite to non-negativity constraint (2.59) in the canonical
minimization problem. Finally, we note that the second structural constraint in the
primal problem is an equality. As such, its associated dual variable, which is y2, is
unrestricted in sign. Taking these sign restrictions together, the dual problem is:
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min
y

10y1 − y2 + 5y3

s.t. y1 ≥ 3 (x1)

y1 + y2 ≥ 5 (x2)

− 0.5y2 + y3 = −3 (x3)

− 4y1 ≤ 1.3 (x4)

y2 = −1 (x5)

y1 ≥ 0

y3 ≤ 0.

One can verify these rules by taking different starting primal problems, converting
them to canonical form, and examining the resulting dual. We now show, in the
following example, that the dual problem found by applying these rules is identical
to what would be obtained if the primal problem is first converted to canonical form.

Example 2.14 Consider the linear optimization problem:

max
x

3x1 + 5x2 − 3x3 + 1.3x4 − x5

s.t. x1 + x2 − 4x4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5

x1, x2 ≥ 0

x4 ≤ 0,

which is introduced in Example 2.1. In Example 2.3 we find that the canonical form
of this problem is:

min
x

− 3x1 − 5x2 + 3x+
3 − 3x−

3 + 1.3x̃4 + x+
5 − x−

5

s.t. − x1 − x2 − 4x̃4 ≥ −10

− x2 + 0.5x+
3 − 0.5x−

3 − x+
5 + x−

5 ≥ 1

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 ≥ −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0,

which can be written as:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,
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where we have:

x =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x+
3
x−
3
x̃4
x+
5
x−
5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

c =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
−5
3

−3
1.3
1

−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A =

⎡

⎢⎢⎣

−1 −1 0 0 −4 0 0
0 −1 0.5 −0.5 0 −1 1
0 1 −0.5 0.5 0 1 −1
0 0 1 −1 0 0 0

⎤

⎥⎥⎦ ,

and:

b =

⎛

⎜⎜⎝

−10
1

−1
5

⎞

⎟⎟⎠ .

Thus, the dual problem is:

max
w

(−10 1 −1 5
)

⎛

⎜⎜⎝

w1

w2

w3

w4

⎞

⎟⎟⎠

s.t.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0
−1 −1 1 0
0 0.5 −0.5 1
0 −0.5 0.5 −1

−4 0 0 0
0 −1 1 0
0 1 −1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎝

w1

w2

w3

w4

⎞

⎟⎟⎠ ≤

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
−5
3

−3
1.3
1

−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛

⎜⎜⎝

w1

w2

w3

w4

⎞

⎟⎟⎠ ≥

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ ,

which simplifies to:

max
w

− 10w1 + w2 − w3 + 5w4

s.t. − w1 ≤ −3

− w1 − w2 + w3 ≤ −5

0.5w2 − 0.5w3 + w4 ≤ 3

− 0.5w2 + 0.5w3 − w4 ≤ −3

− 4w1 ≤ 1.3

− w2 + w3 ≤ 1

w2 − w3 ≤ −1

w1,w2,w3,w4 ≥ 0.

Note that if we change the direction of optimization, this problem becomes:

min
w

10w1 − w2 + w3 − 5w4

s.t. − w1 ≤ −3

− w1 − w2 + w3 ≤ −5

0.5w2 − 0.5w3 + w4 ≤ 3

− 0.5w2 + 0.5w3 − w4 ≤ −3

− 4w1 ≤ 1.3

− w2 + w3 ≤ 1

w2 − w3 ≤ −1

w1,w2,w3,w4 ≥ 0.

Next, note that if we define the variables y1 = w1, y2 = w2 − w3, and y3 = −w4,
this problem can be written as:

min
y

10y1 − y2 + 5y3

s.t. − y1 ≤ −3

− y1 − y2 ≤ −5

0.5y2 − y3 ≤ 3 (2.63)

− 0.5y2 + y3 ≤ −3 (2.64)

− 4y1 ≤ 1.3
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− y2 ≤ 1 (2.65)

y2 ≤ −1 (2.66)

y1 ≥ 0

y3 ≤ 0.

Note that because y1 = w1 and w1 ≥ 0 we have y1 ≥ 0. Similarly, y3 = −w4 and
w4 ≥ 0, implying that y3 ≤ 0. Because y2 is defined as the difference between two
non-negative variables, it can be either positive or negative in sign.

We next note that (2.63) and (2.64) can be rewritten as:

−0.5w2 + 0.5w3 + w4 ≥ −3,

and:
−0.5w2 + 0.5w3 + w4 ≤ −3,

which together imply:
−0.5w2 + 0.5w3 + w4 = −3.

Similarly, (2.65) and (2.66) imply:

y2 = −1.

Making these substitutions and multiplying some of the other structural inequalities
through by −1 gives the following dual problem:

min
y

10y1 − y2 + 5y3

s.t. y1 ≥ 3

y1 + y2 ≥ 5

− 0.5y2 + y3 = −3

− 4y1 ≤ 1.3

y2 = −1

y1 ≥ 0

y3 ≤ 0,

which is identical to the dual problem found directly by applying the conversion
rules. ��
Example 2.15 Consider the Gasoline-Mixture Problem, which is introduced in
Section 2.1.3. The primal problem is formulated as:
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min
x

200x1 + 220x2

s.t. 0.7x1 + 0.6x2 ≥ 0.65

0.9x1 + 0.8x2 ≤ 0.85

x1 + x2 = 1

x1, x2 ≥ 0.

To find the dual of this problem directly, we first observe that this problem has
three structural constraints, thus the dual will have three variables, which we call y1,
y2, and y3. We associate these dual variables with the primal constraints as follows:

min
x

200x1 + 220x2

s.t. 0.7x1 + 0.6x2 ≥ 0.65 (y1)

0.9x1 + 0.8x2 ≤ 0.85 (y2)

x1 + x2 = 1 (y3)

x1, x2 ≥ 0.

We next determine the objective function of the dual problem, which is:

max
y

0.65y1 + 0.85y2 + y3,

based on the direction of optimization of the primal problem and the right-hand side
constants of the structural constraints.We also know that because the primal problem
has two variables the dual problem has two structural constraints, each of which we
associate with a primal variable as follows:

max
y

0.65y1 + 0.85y2 + y3

s.t. (x1)

(x2)

We next determine the right-hand sides of the structural constraints in the dual prob-
lem based on the objective-function coefficients in the primal problem, which gives:

max
y

0.65y1 + 0.85y2 + y3

s.t. 200 (x1)

220. (x2)

Nextwe determine the left-hand sides of the structural constraints in the dual problem
using the coefficients on the left-hand sides of the structural constraints of the primal
problem, giving:
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max
y

0.65y1 + 0.85y2 + y3

s.t. 0.7y1 + 0.9y2 + y3 200 (x1)

0.6y1 + 0.8y2 + y3 220. (x2)

Next, to determine the types of structural constraints in the dual problem, we note
that the primal problem is a minimization problem and each of x1 and x2 are non-
negative. Based on the canonical minimization problem given by (2.57)–(2.59) and
its dual, we observe that a minimization problem with non-negative constraints has
a dual problem with less-than-or-equal-to structural constraints. Thus, both of the
structural constraints will be less-than-or-equal-to constraints, which gives:

max
y

0.65y1 + 0.85y2 + y3

s.t. 0.7y1 + 0.9y2 + y3 ≤ 200 (x1)

0.6y1 + 0.8y2 + y3 ≤ 220. (x2)

Finally, we must determine the sign restrictions on the dual variables. Again, we
examine the canonical minimization problem given by (2.57)–(2.59) and its dual.
Note that the first primal constraint in the Gasoline-Mixture Problem is a greater-
than-or-equal-to constraint, which is consistent with (2.58). Thus, the associated dual
variable, y1, is non-negative. Because the second primal constraint is inconsistent
with (2.58), the associated variable, y2, is non-positive. The third primal constraint
is an equality, meaning that the associated variable, y3, is unrestricted in sign. Thus,
the dual problem is:

max
y

0.65y1 + 0.85y2 + y3

s.t. 0.7y1 + 0.9y2 + y3 ≤ 200 (x1)

0.6y1 + 0.8y2 + y3 ≤ 220 (x2)

y1 ≥ 0

y2 ≤ 0.
��

2.7.3.8 Summary of Duality Conversion Rules

From the discussion in this section, we can summarize the following duality con-
version rules. We use the terms ‘primal’ and ‘dual’ in these rules, however the two
words can be interchanged. This is because there is a symmetry between primal and
dual problems (i.e., the primal problem is the dual of the dual).
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For a primal problem that is a minimization we have that:

• the dual problem is a maximization;
• dual variables associated with equality constraints in the primal problem are unre-
stricted in sign;

• dual variables associated with greater-than-or-equal-to constraints in the primal
problem are non-negative;

• dual variables associated with less-than-or-equal-to constraints in the primal
problem are non-positive;

• dual constraints associated with non-negative primal variables are less-than-or-
equal-to inequalities;

• dual constraints associated with non-positive primal variables are greater-than-
or-equal-to inequalities; and

• dual constraints associated with primal variables that are unrestricted in sign are
equalities.

For a dual problem that is a maximization we have that:

• the primal problem is a minimization;
• primal variables associated with equality constraints in the dual problem are unre-
stricted in sign;

• primal variables associated with less-than-or-equal-to constraints in the dual prob-
lem are non-negative;

• primal variables associated with greater-than-or-equal-to constraints in the dual
problem are non-positive;

• primal constraints associated with non-negative dual variables are greater-than-
or-equal-to inequalities;

• primal constraints associated with non-positive dual variables are less-than-or-
equal-to inequalities; and

• primal constraints associated with dual variables that are unrestricted in sign are
equalities.

2.7.4 Weak- and Strong-Duality Properties

We saw in Section 2.7.1 that any linear optimization problem and its dual have
structural relationships. We now show some further relationships between a primal
problem and its dual, focusing specifically on the objective-function values of points
that are feasible in a primal problem and its dual. We show these relationships for
the special case of the symmetric duals introduced in Section 2.7.1. However, these
results extend to any primal problem (even if it is not in canonical form) [9]. This
is because any primal problem can be converted to canonical form and then its
symmetric dual can be found.
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Weak-Duality Property: Consider the primal problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

If x is feasible in the primal problem and y is feasible in the dual problem,
then we have that:

c�x ≥ b�y.

To show this we first note that if x is feasible in the primal problem then we
must have:

b ≤ Ax . (2.67)

Next, we know that if y is feasible in the dual problem, we must have y ≥ 0.
Thus, multiplying both sides of (2.67) by y gives:

y�b ≤ y�Ax . (2.68)

We also know that if y is feasible in the dual problem, then:

A�y ≤ c,

which can be rewritten as:
y�A ≤ c�,

by transposing the expressions on both sides of the inequality. Combining this
inequality with (2.68) gives:

y�b ≤ y�Ax ≤ c�x,

or simply:
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y�b ≤ c�x,

which is the weak-duality inequality.

The weak-duality property says that the objective-function value of any point that
is feasible in the dual problem provides a bound on the objective-function value of
any point that is feasible in the primal problem and vice versa. One can take this
weak-duality relationship further. That is because any point that is feasible in the
dual problem provides a bound on the objective-function of the optimal objective-
function value of the primal problem. For a given pair of feasible solutions to the
primal and dual problems, the difference:

c�x − y�b,

is called the duality gap. One way that the weak-duality property can be used is to
determine how close to optimal a feasible solution to the primal problem is. One can
estimate this by finding a solution that is feasible in the dual problem and computing
the duality gap.

As noted above, the weak-duality property applies to any primal problem and
its dual (not only to a primal problem in canonical form). However, the direction
of the inequality between the objective functions of the two problems may change,
dependingon the directions of the inequalities, signs of the variables, and the direction
of optimization in the primal and dual problems. Thus, for the purposes of applying
the weak-duality property, it is often beneficial to convert the primal problem into
canonical form.

Primal and dual problems have a further related property, known as the strong-
duality equality.

Strong-Duality Property: Consider the primal problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.
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If x∗ is optimal in the primal problem and y∗ is optimal in the dual problem,
then we have that:

c�x∗ = b�y∗.

The strong-duality equality says that the objective-function value of the dual
problem evaluated at an optimal solution is equal to the optimal primal objective-
function value. Luenberger andYe [9] provide a formal proof of this so-called strong-
duality theorem. In some sense, the primal problem pushes its objective-function
value down (because it is a minimization problem) while the dual problem pushes
its objective-function value up (as it is a maximization problem). The two problems
‘meet’ at an optimal solution where they have the same objective-function value.
Figure 2.15 illustrates this concept by showing the duality gap for a given pair of
solutions that are feasible in the primal and dual problems (in the left-hand side of the
figure) and the gap being reduced to zero as the two problems are solved to optimality
(in the right-hand side of the figure).

Duality gap

Primal LP
pushing down

Dual LP
pushing up

cTx - yTb No duality gap

Primal LP
pushing down

Dual LP
pushing up

Optimal solution

Fig. 2.15 Illustration of the duality gap being reduced as the primal and dual problems are solved
to optimality

The strong-duality equality also gives us anotherway to solve a linear optimization
problem. As an illustrative example, consider a primal problem in canonical form:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.
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Instead of solving the primal problem directly, one can solve the following system
of equalities and inequalities:

Ax ≥ b

A�y ≤ c

c�x = b�y

x ≥ 0

y ≥ 0,

for x and y. This system of equalities and inequalities consist of the constraints of
the primal problem (i.e., Ax ≥ b and x ≥ 0), the constraints of the dual problem
(i.e., A�y ≤ c and y ≥ 0), and the strong-duality equality (i.e., c�x = b�y). If we
find a pair of vectors, x∗ and y∗, that satisfy all of these conditions, then from the
strong-duality property we know that x∗ is optimal in the primal problem and y∗ is
optimal is the dual problem.

These strong-duality properties (including the alternate method of solving a lin-
ear optimization problem) apply to any primal problem and its dual (regardless of
whether the primal problem is in canonical form). This is because the strong-duality
property is an equality, meaning that the result is the same regardless of the form of
the primal problem. This is demonstrated in the following example.

Example 2.16 Consider the Electricity-Production Problem, which is introduced in
Section 2.1.1. This problem is formulated as:

max
x

x1 + x2 (2.69)

s.t.
2

3
x1 + x2 ≤ 18 (2.70)

2x1 + x2 ≥ 8 (2.71)

x1 ≤ 12 (2.72)

x2 ≤ 16 (2.73)

x1, x2 ≥ 0. (2.74)

Taking this is as the primal problem, its dual is:

min
y

18y1 + 8y2 + 12y3 + 16y4 (2.75)

s.t.
2

3
y1 + 2y2 + y3 ≥ 1 (2.76)

y1 + y2 + y4 ≥ 1 (2.77)

y1, y3, y4 ≥ 0 (2.78)

y2 ≤ 0. (2.79)
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We can also find the dual of this problem by first converting it to canonical form,
which is:

min
x

− x1 − x2 (2.80)

s.t. − 2

3
x1 − x2 ≥ −18 (2.81)

2x1 + x2 ≥ 8 (2.82)

− x1 ≥ −12 (2.83)

− x2 ≥ −16 (2.84)

x1, x2 ≥ 0, (2.85)

and has the dual problem:

max
y

− 18y1 + 8y2 − 12y3 − 16y4 (2.86)

s.t. − 2

3
y1 + 2y2 − y3 ≤ −1 (2.87)

− y1 + y2 − y4 ≤ −1 (2.88)

y1, y2, y3, y4 ≥ 0. (2.89)

Consider the solution (x1, x2) = (4, 0), which is feasible but not optimal in the
canonical-form primal problem, which is given by (2.80)–(2.85). Substituting this
solution into objective function (2.80) gives a value of−4.Next, consider the solution
(y1, y2, y3, y4) = (1.5, 0, 0, 0), which is feasible but not optimal in the symmetric
dual problem, which is given by (2.86)–(2.89). Substituting this solution into objec-
tive function (2.86) gives a value of−27.We see that the dual objective-function value
is less than the primal value, verifying that the weak-duality inequality is satisfied.

These solutions are also feasible in the original primal problem, given by (2.69)–
(2.74), and its dual, given by (2.75)–(2.79). However, substituting these solutions
gives a primal objective-function value of 4 and a dual value of 27. We see that in
this case the weak-duality inequality is reversed, because the original primal problem
is not in canonical form.

Next, consider the primal solution (x∗
1 , x

∗
2 ) = (12, 10) and the dual solution

(y∗
1 , y

∗
2 , y

∗
3 , y

∗
4 ) = (1, 0, 1/3, 0). It is straightforward to verify that these solutions

are feasible in both forms of the primal and dual problems. Moreover, note that if we
substitute x∗ into primal objective function (2.69) we obtain a value of 22. Similarly,
substituting y∗ into (2.75) yields a dual objective-function value of 22. Thus, by
the strong-duality property, we know that x∗ and y∗ are optimal in their respective
problems.

We also obtain the same results from examining the objective functions of
the canonical-form primal and its dual, except that the signs are reversed. More
specifically, substituting x∗ into (2.80) yields a value of −22 and substituting y∗
into (2.86) also gives −22. ��
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2.7.5 Duality and Sensitivity

In this section we show yet another important relationship between a primal problem
and its dual, specifically focusing on the relationship between dual variables and
the sensitivity vector of the primal problem. We assume that we are given a linear
optimization problem in standard form:

min
x

c�x

s.t. Ax = b

x ≥ 0.

Moreover, we assume that we have an optimal basic feasible solution x∗, which is
partitioned into basic and nonbasic variables, x∗ = (x∗

B, x∗
N ). Thus, we also have

the objective-function and constraint coefficients partitioned as c = (cB, cN ) and
A = [B, N ]. Because the nonbasic variables are equal to zero, the objective function
can be written as:

c�x∗ = c�
B x

∗
B .

We also know that the basic-variable vector can be written as:

x∗
B = B−1b,

thus we can write the optimal objective-function value as:

c�x∗ = c�
B x

∗
B = c�

B B
−1b. (2.90)

At the same time, the strong-duality equality gives us:

c�x∗ = b�y∗, (2.91)

where y∗ is a dual-optimal solution. Combining (2.90) and (2.91) gives:

y∗�b = c�
B B

−1b,

or:
y∗� = c�

B B
−1,

which provides a convenient way of computing dual-variable values from the final
tableau after solving the primal problem using the Simplex method. We next recall
sensitivity result (2.51):

c�
B B

−1Δb = λ�Δb,

which implies:
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y∗� = c�
B B

−1 = λ�,

or that the sensitivity vector is equal to the dual variables.

2.7.6 Complementary Slackness

In this sectionwe show a final relationship between a primal problem and its dual.We
do not prove this relationship formally, but rather rely on the interpretation of dual
variables as providing sensitivity information derived in Section 2.7.5. We, again,
consider the case of a primal problem in canonical form:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its symmetric dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

The discussion in Section 2.7.5 leads to the conclusion that the dual variables, y,
provide sensitivity information for the structural constraints in the primal problem.
Moreover, we know from Section 2.7.1 that the primal problem is the dual of the
dual. Thus, we can also conclude that the primal variables, x , provide sensitivity
information for the structural constraints in the dual problem.

Before proceeding, we first define what it means for an inequality constraint in
a linear optimization to be binding as opposed to non-binding. For this discussion,
let us consider the j th structural constraint in the primal problem, which can be
written as:

A j,·x ≥ b j ,

where A j,· is the j th row of the A matrix and b j the j th element of the b vector.
Note, however, that these definitions can be applied to any inequality constraint (of
any direction) in any problem. This constraint is said to be non-binding at the point
x̂ if:

A j,· x̂ > b j .

That is to say, the inequality constraint is non-binding if there is a difference or slack
between the left- and right-hand sides of the constraint when we substitute the values
of x̂ into the constraint. Conversely, we say that this constraint is binding at the point
x̂ if:
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A j,· x̂ = b j .

The constraint is binding if there is no difference or slack between its two sides at x̂ .
Now that we have these two definitions, let us consider the effect of changing the

right-hand side of the j th structural constraint in the primal problem, which is:

A j,·x ≥ b j ,

to:
A j,·x ≥ b j + Δb j ,

where Δb j is sufficiently close to zero to satisfy condition (2.49). We know from
Sections 2.6 and 2.7.5 that the change in the primal objective-function value can be
computed as:

Δb j y
∗
j ,

where y∗
j is the optimal dual-variable value associated with the j th primal structural

constraint.
Let us next intuitively determine what the effect of changing this constraint is.

First, consider the case in which the original constraint:

A j,·x ≥ b j ,

is not binding. In this case, we can conclude that changing the constraint to:

A j,·x ≥ b j + Δb j ,

will have no effect on the optimal solution, because the constraint is already slack
at the point x∗. If changing the constraint causes the feasible region to decrease in
size, x∗ will still be feasible so long as |Δb j | is not too large. Similarly, if changing
the constraint causes the feasible region to increase in size, x∗ will still remain
optimal because loosening the j th constraint should not result in the optimal solution
changing.Based on this intuition,we conclude that if the j th constraint is non-binding
then Δb j y∗

j = 0 (because the optimal solution does not change) and, thus, y∗
j = 0.

We can also draw the converse conclusion for the case of a binding constraint. If
the j th constraint is binding, then changing the constraint to:

A j,·x ≥ b j + Δb j ,

may have an effect on the optimal solution. This is because if changing the constraint
causes the feasible region to decrease in size, x∗ may change causing the primal
objective-function value to increase (get worse). If changing the constraint causes
the feasible region to increase in size, x∗ may change causing the primal objective-
function value to get better. Thus, we conclude that if the j th constraint is binding
then Δb j y∗

j can be non-zero, meaning that y∗
j may be non-zero.
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These conclusions give what is known as the complementary-slackness condi-
tion between the primal constraints and their associated dual variables. The Primal
Complementary-Slackness Property is written explicitly in the following.

Primal Complementary-Slackness Property: Consider the primal problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

If x∗ is optimal in the primal problem and y∗ is optimal in the dual problem,
then for each primal constraint, j = 1, . . . ,m, we have that either:

1. A j,·x∗ = b j ,
2. y∗

j = 0, or
3. both.

The third case in the Primal Complementary-Slackness Property implies some
level of redundancy in the constraints. This is because in Case 3 there is at least one
inequality constraint that is binding, but which has a sensitivity value of zero.

This complementary-slackness property can also be written more compactly as:

(A j,·x∗ − b j )y
∗
j = 0,∀ j = 1, . . . ,m.

This is because for the product, (A j,·x∗ − b j )y∗
j , to equal zero for a given j we must

either have (A j,·x∗ − b j ) = 0, which is the first complementary slackness condition,
or y∗

j = 0, which is the second. Indeed, instead of writing:

(A j,·x∗ − b j )y
∗
j = 0,

for each j , one can also write the complementary slackness condition even more
compactly as:

(Ax∗ − b)�y = 0,

which enforces complementary slackness between all of the primal constraints and
dual variables in a single equation.
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We can carry out a similar analysis of changing the right-hand sides of the dual
constraints, which gives rise to the following Dual Complementary-Slackness Prop-
erty.

Dual Complementary-Slackness Property: Consider the primal problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

If x∗ is optimal in the primal problem and y∗ is optimal in the dual problem,
then for each dual constraint, i = 1, . . . , n, we have that either:

1. A�
·,i y∗ = ci ,

2. x∗
i = 0, or

3. both;

where A·,i is the i th column of the A matrix.

As with the Primal Complementary-Slackness Property, the third case in the Dual
Complementary-Slackness Property also implies some level of redundancy in the
constraints. This is because in Case 3 there is at least one inequality constraint that
is binding, but which has a sensitivity value of zero.

Aswith thePrimalComplementary-SlacknessProperty, theDualComplementary-
Slackness Property can be written more compactly as:

(A�
·,i y

∗ − ci )x
∗
i = 0,∀i = 1, . . . , n;

or as:
(A�y∗ − c)�x∗ = 0.

The Primal and Dual Complementary-Slackness Properties can be extended to
structural constraints that are different from the canonical form. The same result
is obtained, if there is an inequality in one of the primal or dual problem either
it must be binding or the associated variable in the other problem must equal zero.
One can also write complementary slackness involving equality constraints, however
these conditions do not provide any useful information. This is because an equality
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constraint must always be binding. Thus, the variable associated with an equality
constraint can take on any value (i.e., it is never restricted to equal zero).

One of the benefits of the complementary-condition properties is that it provides
another means to recover an optimal solution to either of the primal or dual problem
from an optimal solution to the other. This is demonstrated in the following example.

Example 2.17 Consider the Electricity-Production Problem, which is introduced in
Section 2.1.1. This problem is formulated as:

max
x

x1 + x2

s.t.
2

3
x1 + x2 ≤ 18 (y1)

2x1 + x2 ≥ 8 (y2)

x1 ≤ 12 (y3)

x2 ≤ 16 (y4)

x1, x2 ≥ 0,

and its dual is:

min
y

18y1 + 8y2 + 12y3 + 16y4

s.t.
2

3
y1 + 2y2 + y3 ≥ 1 (x1)

y1 + y2 + y4 ≥ 1 (x2)

y1, y3, y4 ≥ 0

y2 ≤ 0,

where the variable associations are denoted in the parentheses. We know that
(x∗

1 , x
∗
2 ) = (12, 10) is optimal in the primal problem.

Substituting these values into the primal constraints, we see that the second and
fourth one are non-binding. Thus, the Primal Complementary-Slackness Property
tells us that y∗

2 = 0 and y∗
4 = 0. Furthermore, because both x∗

1 and x∗
2 are non-zero,

we know that their associated dual constraints must be binding (i.e., we can write
them as equalities). Doing so and substituting in the values found for y∗

2 = 0 and
y∗
4 = 0 gives:

2

3
y1 + y3 = 1

y1 = 1,

which have: y∗
1 = 1 and y∗

3 = 1/3 as solutions. This dual solution, (y∗
1 , y

∗
2 , y

∗
3 , y

∗
4 ) =

(1, 0, 1/3, 0) coincides with the dual-optimal solution found in Example 2.16. ��
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2.8 Final Remarks

This chapter introduces the Simplexmethod,whichwas initially proposed byDantzig
[5], as an algorithm to solve linear optimization problems. The Simplex method
works by navigating around the boundary of the polytope that describes the feasible
region of the problem, jumping from one extreme point (or basic feasible solution)
to another until reaching an optimal corner. An obvious question that this raises
is whether it would be beneficial to navigate through the interior of the polytope
instead of around its exterior. For extremely large problems, this may be the case.
Interested readers are referred to more advanced textbooks, which introduce such
interior-point algorithms [11]. Additional information on LPPs, their formulation,
properties, and solutions algorithms, can be found in a number of other advanced
textbooks [1, 2, 9, 12]. Modeling issues are treated extensively by Castillo et al. [4].

2.9 GAMS Codes

This final section provides GAMS [3] codes for the main problems considered in
this chapter. GAMS can use a variety of different software packages, among them
CPLEX [8] and GUROBI [7], to actually solve an LPP.

2.9.1 Electricity-Production Problem

The Electricity-Production Problem, which is introduced in Section 2.1.1, has the
following GAMS formulation:

1 variable z;
2 positive variables x1 , x2;
3 equations of , eq1 , eq2 , eq3 , eq4;
4 of .. z =e= x1+x2;
5 eq1 .. (2/3)*x1+x2 =l= 18;
6 eq2 .. 2*x1+x2 =g= 8;
7 eq3 .. x1 =l= 12;
8 eq4 .. x2 =l= 16;
9 model ep /all/;

10 solve ep using lp maximizing z;

Lines 1 and 2 are variable declarations, Line 3 gives names to the equations
(i.e., the objective function, equalities, and inequalities) of the model, and Lines 5–8
define these equations (i.e., the objective function and constraints). The double-dot
separates the name of an equation from its definition. “=e=” indicates an equal-
ity, “=l=” a less-than-or-equal-to inequality, and “=g=” a greater-than-or-equal-to
inequality. Line 9 gives a name to themodel and indicates that all equations should be
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considered. Finally, Line 10 directs GAMS to solve the problem using an LP solver
while minimizing z. All lines end with a semicolon.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 22.000 +INF .
4 ---- VAR x1 . 12.000 +INF .
5 ---- VAR x2 . 10.000 +INF .

2.9.2 Natural Gas-Transportation Problem

The Natural Gas-Transportation Problem, which is introduced in Section 2.1.2, has
the following GAMS formulation:

1 variable z;
2 positive variables x11 , x12 , x21 , x22;
3 equations of , s1 , s2 , d1 , d2;
4 of .. z =e= 5*x11+4*x12+3*x21+6*x22;
5 s1 .. x11+x12 =l= 7;
6 s2 .. x21+x22 =l= 12;
7 d1 .. x11+x21 =e= 10;
8 d2 .. x12+x22 =e= 8;
9 model ng /all/;

10 solve ng using lp minimizing z;

Lines 1 and 2 declare variables, Line 3 gives names to the model equations, Line 4
defines the objective function, Lines 5–8 specify the constraints, Line 9 defines the
model, and Line 10 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 64.000 +INF .
4 ---- VAR x11 . . +INF 4.000
5 ---- VAR x12 . 7.000 +INF .
6 ---- VAR x21 . 10.000 +INF .
7 ---- VAR x22 . 1.000 +INF .

2.9.3 Gasoline-Mixture Problem

The Gasoline-Mixture Problem, which is introduced in Section 2.1.3, has the fol-
lowing GAMS formulation:
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1 variable z;
2 positive variables x1 , x2;
3 equations of , eq1 , eq2 , eq3;
4 of .. z =e= 200*x1 +220*x2;
5 eq1 .. 0.7*x1 +0.6*x2 =g= 0.65;
6 eq2 .. 0.9*x1 +0.8*x2 =l= 0.85;
7 eq3 .. x1+x2=e=1;
8 model mg /all/;
9 solve mg using lp minimizing z;

Lines 1 and 2 declare variables, Line 3 gives names to the model equations, Line 4
defines the objective function, Lines 5–7 specify the constraints, Line 8 defines the
model, and Line 9 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 210.000 +INF .
4 ---- VAR x1 . 0.500 +INF .
5 ---- VAR x2 . 0.500 +INF .

2.9.4 Electricity-Dispatch Problem

The Electricity-Dispatch Problem, which is introduced in Section 2.1.4, has the
following GAMS formulation:

1 variable z, theta1 , theta2;
2 positive variables x1 , x2;
3 equations of , ba1 , ba2 , ba3 , bo1 , bo2;
4 of .. z =e= x1+2*x2;
5 ba1 .. x1 =e= (theta1 -theta2)+(theta1 -0);
6 ba2 .. x2 =e= (theta2 -theta1)+(theta2 -0);
7 ba3 .. 10 =e= (theta1 -0) +(theta2 -0);
8 bo1 .. x1 =l= 6;
9 bo2 .. x2 =l= 8;

10 model ed /all/;
11 solve ed using lp minimizing z;

Lines 1 and 2 declare variables, Line 3 gives names to the equations of the model,
Line 4 defines the objective function, Lines 5–9 specify the constraints, Line 10
defines the model, and Line 11 directs GAMS to solve it.
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The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 14.000 +INF .
4 ---- VAR theta1 -INF 5.333 +INF .
5 ---- VAR theta2 -INF 4.667 +INF .
6 ---- VAR x1 . 6.000 +INF .
7 ---- VAR x2 . 4.000 +INF .

2.10 Exercises

2.1 Jose builds electrical cable using two types ofmetallic alloys.Alloy 1 is 55%alu-
minum and 45% copper, while alloy 2 is 75% aluminum and 25% copper. Market
prices for alloys 1 and 2 are $5 and $4 per ton, respectively. Formulate a linear opti-
mization problem to determine the cost-minimizing quantities of the two alloys that
Jose should use to produce 1 ton of cable that is at least 30% copper.

2.2 Transform the linear optimization problem:

max
x1,x2

z = x1 + 2x2

s.t. 2x1 + x2 ≤ 12

x1 − x2 ≥ 2

x1, x2 ≥ 0,

to standard and canonical forms.

2.3 Consider the tableau shown in Table 2.20. Conduct a regularization step and
pivot operation to make the b̃ vector non-negative.

Table 2.20 Tableau for
Exercise 2.3

1 x1 x2
z 0 −1 −1

x3 12 −2 −1

x4 −3 1 0

2.4 Consider the tableau shown in Table 2.21. Conduct Simplex iterations to solve
the associated linear optimization problem. What are the optimal solution found and
sensitivity vector?
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Table 2.21 Tableau for
Exercise 2.4

1 x5 x2 x4
z −3 21 −1 −1/2

x3 6 3 −1 −2

x1 3 −1 0 1

2.5 Find the dual of the primal problem:

min
x1,x2

zP = 3x1 + 4x2

s.t. 2x1 + 3x2 ≥ 4

3x1 + 4x2 ≤ 10

x1 + x2 = 5

x1 ≥ 0

x2 ≤ 0.

2.6 The optimal solution to the primal problem in Exercise 2.5 is (x∗
1 , x

∗
2 ) =

(14/3, 8/3). The optimal solution to the dual problem has 1 as the value of the dual
variable associated with the first primal constraint and −1 as the value of the dual
variable associated with the second. Using this information, answer the following
three questions.

1. What is the change in the primal objective-function value if the right-hand side
of the first primal constraint changes to 12.1?

2. What is the change in the primal objective-function value if the right-hand side
of the second primal constraint changes to 1.9?

3. What is the change in the primal objective-function value if the right-hand side
of the first primal constraint changes to 12.1 and the right-hand side of the
second primal constraint changes to 1.9?

2.7 Write a GAMS code for the model formulated in Exercise 2.1.
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