
Chapter 1
Optimization is Ubiquitous

This chapter introduces the relevance of optimal thinking and optimization
modeling and describes the structure of the most common types of optimization
problems that can be found in real-world practice. Importantly, optimization is ubiq-
uitous in industry and life.Optimization problems formalize optimal decisionmaking
using mathematical models that describe how a system behaves based on decisions
made by the decision maker. After this introduction to the concept of optimiza-
tion, the chapter concludes by listing the types of optimization problems commonly
encountered in the real world and outlines the types of problems discussed in the
subsequent chapters of this text.

1.1 Industry (and Life!) is Optimization

Optimization is key to any industrial process. This is because optimization pursues
the best way to achieve a particular objective (or multiple objectives) related to that
process under a number of resource or other constraints. Optimization is key to life
as well, as people (typically) strive to achieve the best for their lives under a number
of personal and environmental constraints.

The field of optimization formalizes this concept of optimal thinking by mak-
ing the process quantitative. This allows a decision maker to make well-informed
decisions based on an objective numerical metric. This formalization uses what are
known as mathematical optimization problems (which are also, for historical rea-
sons, referred to as mathematical programming problems). As seen throughout
this textbook, optimization problems can vary considerably in their complexity. Our
use of the term ‘complexity’ here can refer to how complicated the structure of an
optimization model is or the difficulty involved in solving a model to determine an
optimal set of decisions.

© Springer International Publishing AG 2017
R. Sioshansi and A.J. Conejo, Optimization in Engineering,
Springer Optimization and Its Applications 120, DOI 10.1007/978-3-319-56769-3_1

1

2 1 Optimization is Ubiquitous

In this chapter we briefly introduce the different classes of optimization problems.
Subsequent chapters describe the structure of these problems and methods to solve
them in more detail.

Most optimization problems involve three main elements, which are listed below.

1. The decision variables represent the decisions being optimized in the model. All
optimization problems require at least one decision variable. Without decision
variables there is nothing for the decision maker to decide, and thus no problem
to solve.
An important nuance in determining the decision variables of an optimization

problem is that they should not be confused with problem data or parameters.
Problem data represent exogenous information that the decision maker cannot
choose or control. For instance, if a person is given $D to spend on either apples
or oranges, we could denote xA and xO as two decision variables representing
the amount spent on apples and oranges, respectively. Note, however, that D is
not a decision variable. Rather, this is fixed problem data (otherwise the decision
maker may choose to make D arbitrarily large to consume apples and oranges to
his or her heart’s desire).

2. The objective function is the numerical measure of how ‘good’ the decisions
chosen are. Depending on the problem in question, the goal of the decision maker
will be to eithermaximize orminimize this objective. For instance, onemaymodel
a problem in which a firm is making production decisions to maximize profit. As
another example, one may model a problem in which a public health agency is
allocating resources tominimize childhoodmortality.Oftentimes, an optimization
problem may be referred to as a ‘maximization problem’ or a ‘minimization
problem,’ depending on the ‘direction’ in which the objective function is being
optimized.

3. The constraints impose the physical, financial, or other limits on the decisions
that can be made. Although some problems may not have any constraints, most
problems often have implicit or explicit constraints. Going back to the example of
the person having $D to spend on either apples or oranges, one explicit constraint
is that no more than $D can be spent, or that:

xA + xO ≤ D. (1.1)

Another pair of implicit constraints is that a non-negative amount of money must
be spent on each:

xA ≥ 0,

and:
xO ≥ 0.

For most optimization problems, constraints can take one of three forms.We have
just seen two of these forms—less-than-or-equal-to and greater-than-or-equal-
to constraints—in the ‘Apples and Oranges’ example. Note that in almost all

1.1 Industry (and Life!) is Optimization 3

cases, these so-called inequality constraints must always been weak inequalities.
Strict inequalities (i.e., strictly less-than or strictly greater-than constraints) can
introduce significant technical difficulties in solving an optimization problem.We
discuss this point further in Section 2.1.1.

The third type of constraint is an equality constraint. As an example of this,
suppose that the decision maker in the Apples and Oranges example must spend
the entire $D on either apples or oranges. If so, then constraint (1.1) would be
changed to:

xA + xO = D.

The set of constraints in an optimization problem define the set of decision
variables that can be feasibly chosen by the decision maker. The set of deci-
sion variables that are feasible define what is known as the feasible region of the
problem. Section 2.1.1 discusses this point further and gives a graphical repre-
sentation of the feasible region of a simple two-variable optimization problem.

Taking the three elements together, most optimization problems can be written in
the very generic form:

min
x1,...,xn

f (x1, . . . , xn) (1.2)

s.t.(x1, . . . , xn) ∈ Ω. (1.3)

This generic problem has n decision variables, which are denoted x1, . . . , xn . The
objective function is f (x1, . . . , xn). Objective functions are always scalar-valued,
meaning that they map the values of the n decision variables into a single scalar
value that measures how good the outcome is in terms of the objective that the
decision maker cares about (i.e., we have that f : Rn → R). This generic problem
assumes that the objective function is being minimized. This is because of the min
operator in objective function (1.2). If the problem was instead aiming to maximize
the objective function, this would be denoted by replacing (1.2) with:

max
x1,...,xn

f (x1, . . . , xn).

It is customary to list the decision variables underneath the min or max operator.
This way, there is no ambiguity regarding what are decision variables in the problem
and what are not (i.e., so as not to confuse decision variables with problem data or
parameters).

The constraints are represented in the generic problem by (1.3). The abbreviation
‘s.t.’ in (1.3) stands for ‘subject to,’ and means that the values of x1, . . . , xn chosen
must satisfy the set of constraints listed. Here we let Ω denote the feasible region.
Unless it is otherwise explicitly stated in a problem, we assume that the decision
variables are continuous and can take on any real value that satisfies the constraints.
We discuss classes of problems in which this assumption is relaxed and at least some

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2

4 1 Optimization is Ubiquitous

of the decision variable must take on integer values in Section 1.3.We further discuss
formulating and solving such problems in Chapters 3 and 6.

A vector of decision variables (x1, . . . , xn) that is in the feasible region, i.e.:

(x1, . . . , xn) ∈ Ω,

is said to be a feasible solution, whereas a vector that is not, i.e.:

(x1, . . . , xn) /∈ Ω,

is said to be an infeasible solution.
Among the feasible solutions, the one (or ones) that optimize (i.e., minimize or

maximize) the objective function is said to be an optimal solution. We typically
denote a set of optimal decisions by using asterisks, i.e.:

(x∗
1 , . . . , x

∗
n).

We can finally note that it is customary to represent the generic optimization
problem given by (1.2)–(1.3) in the more compact form:

min
x

f (x)

s.t. x ∈ Ω,

where we define x = (x1, . . . , xn).
To give a simple starting example of an optimization problem, we can return to

the Apples and Oranges example given above.

Example 1.1 A person has up to $D to spend on apples and oranges. Every dollar
spent on apples brings her two units of happiness whereas each dollar spent on
oranges brings her three units of happiness. Her goal is to maximize her happiness.

To write this optimization problem, we define two decision variables, xA and xO ,
which denote the amount of money spent on each of apples and oranges, respectively.
The problem is then written as:

max
xA,xO

f (xA, xO) = 2xA + 3xO

s.t. xA + xO ≤ D

xA ≥ 0

xO ≥ 0.

Because this is a problem in which the objective is being maximized, the max
operator appears next to the objective function.Note that only xA and xO appear below
themax operator, whereas D does not. This is because the $D that the decisionmaker
has to spend is not a decision within her control. Instead, D is problem data.

http://dx.doi.org/10.1007/978-3-319-56769-3_3
http://dx.doi.org/10.1007/978-3-319-56769-3_6

1.1 Industry (and Life!) is Optimization 5

The problem has three constraints. The first one is explicitly stated in the problem
description (i.e., that she only has at most $D to spend). The other two constraints
are implicit, because we know that it is physically meaningless to spend a negative
amount of money on apples or oranges. Furthermore, we work under the assump-
tion that xA and xO can take on any continuous values (so long as they satisfy the
constraints). Thus, for instance, if D = 10, then:

(xA, xO) = (1.00354, 5.23),

would be a feasible solution.
The constraints of the problem are explicitly written out, as opposed to being

written implicitly via the feasible region. However, we could formulate the problem
using the feasible region instead. To do this, we would first define the feasible region
as:

Ω = {(xA, xO)|xA + xO ≤ D, xA ≥ 0, xO ≥ 0}.

The problem would then be formulated as:

max
xA,xO

f (xA, xO) = 2xA + 3xO

s.t. (xA, xO) ∈ Ω.

�

This chapter introduces the following classes of optimization problems, which
are studied in subsequent chapters:

1. linear optimization problems,
2. mixed-integer linear optimization problems,
3. nonlinear optimization problems, and
4. dynamic optimization problems.

1.2 Linear Optimization Problems

A linear optimization problem or linear programming problem (LPP) has the
following three important defining characteristics.

1. The decision variables are continuous (i.e., they are not constrained to take on
integer values) and thus we have:

(x1, . . . , xn) ∈ R
n.

2. The objective function is linear in the decision variables, and can thus be written
as:

6 1 Optimization is Ubiquitous

f (x1, . . . , xn) = c0 + c1x1 + · · · + cnxn = c0 +
n∑

i=1

ci xi ,

where c0, . . . , cn are constants.
3. The constraints are all equal-to, greater-than-or-equal-to, or less-than-or-equal-to

constraints that are linear in the decision variables. Thus, the constraints can all
be written as:

n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑

i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑

i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml ,

where me, mg , and ml are the numbers of equal-to, greater-than-or-equal-to, and
less-than-or-equal-to constraints, respectively. Thus, m = me + mg + ml is the
total number of constraints. The coefficients, Ae

j,i ,∀i = 1, . . . , n, j = 1, . . . ,me,
Ag

j,i ,∀i = 1, . . . , n, j = 1, . . . ,mg , and Al
j,i ,∀i = 1, . . . , n, j = 1, . . . ,ml , and

the terms on the right-hand sides of the constraints, bej ,∀ j = 1, . . . ,me, b
g
j ,∀ j =

1, . . . ,mg , and blj ,∀ j = 1, . . . ,ml , are all constants.

An LPP, thus, has the generic form:

min
x1,...,xn

c0 +
n∑

i=1

ci xi

s.t.
n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑

i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑

i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml .

An LPP does not need to include all of the different types of constraints (i.e.,
equal-to, greater-than-or-equal-to, or less-than-or-equal-to) and may include only
one or two types. For instance, the Apples and Oranges Example (cf. Example 1.1)
has no equal-to constraints but does have the other two types.

TheApples andOrangesExample is one example of a linear optimizationproblem.
Another example is:

1.2 Linear Optimization Problems 7

min
x1,x2

x1 + x2

s.t.
2

3
x1 + x2 ≤ 18

2x1 + x2 ≥ 8

x1 ≤ 12

x2 ≤ 16

x1, x2 ≥ 0.

The decision variables are x1 and x2, the linear objective function is x1 + x2, and the
linear constraints are (2/3)x1 + x2 ≤ 18, 2x1 + x2 ≥ 8, x1 ≤ 12, x2 ≤ 16, x1 ≥ 0
and x2 ≥ 0. As is common practice, the two non-negativity constraints are written
together as:

x1, x2 ≥ 0,

for sake of brevity. It is very important to stress that this constraint is not the same
as:

x1 + x2 ≥ 0.

The constraint, x1 + x2 ≥ 0, would allow x1 = −1 and x2 = 3 as a feasible solution.
However, these values for x1 and x2 do not satisfy the constraint, x1 ≥ 0.

Chapter 2 is devoted to the formulation and solution of linear optimization prob-
lems. A number of classic textbooks [5, 19, 24] also provide a more technically
rigorous treatment of linear optimization.

1.3 Linear Optimization Problems with Integer Decisions

There is a special case of linear optimization problems in which some or all of the
decision variables are restricted to take on integer values. Such problems in which
some (but not necessarily all) of the variables are restricted to taking on integer values
are called mixed-integer linear optimization problems or mixed-integer linear
programming problems (MILPPs). A linear optimization problem in which all of
the decision variables are restricted to take on integer values is sometimes called a
pure-integer linear optimization problem. On occasion, some will also distinguish
problems in which the integer decision variables can take on the values of 0 or 1 only.
Such problems are referred to as mixed-binary or pure-binary linear optimization
problems. We use the term MILPP throughout this text, however, because it is all-
encompassing.

An MILPP is defined by the following three important characteristics.

1. Some set of the decision variables are restricted to take on integer values while
others can take on real values. Thus we have:

http://dx.doi.org/10.1007/978-3-319-56769-3_2

8 1 Optimization is Ubiquitous

xi ∈ Z, for some i = 1, . . . , n,

and:
xi ∈ R, for the remaining i = 1, . . . , n,

where Z denotes the set of integers.
2. The objective function is linear in the decision variables. Thus, we have that:

f (x1, . . . , xn) = c0 +
n∑

i=1

ci xi ,

where c0, . . . , cn are constants.
3. The constraints are all equal-to, greater-than-or-equal-to, or less-than-or-equal-to

constraints that are linear in the decision variables and can be written as:

n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑

i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑

i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml ,

whereme,mg ,ml , Ae
j,i , A

g
j,i , and Al

j,i , b
e
j , b

g
j , and b

l
j have the same interpretations

as in a linear optimization problem.

An MILPP, thus, has the generic form:

min
x1,...,xn

c0 +
n∑

i=1
ci xi

s.t.
n∑

i=1
Ae

j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n.

We normally do not explicitly write the last constraint:

xi ∈ R, for the remaining i = 1, . . . , n,

1.3 Linear Optimization Problems with Integer Decisions 9

because of the implicit assumption that all of the decision variables can take on any
real value (unless there is an explicit integrality constraint).

As mentioned above, in some cases we model problems in which variables are
restricted to take on binary values (i.e., 0 or 1 only). There are two ways that this can
be done. To show these, let us suppose that xi is the binary variable in question. One
way to impose the binary restriction is to explicitly do so by replacing the integrality
constraint:

xi ∈ Z,

with the binary constraint:
xi ∈ {0, 1}.

The other is to retain the integrality constraint:

xi ∈ Z,

and to impose the two bound constraints:

xi ≥ 0,

and:
xi ≤ 1.

An example of mixed-integer linear optimization problem is:

min
p1,p2,p3,x1,x2,x3

(2p1 + 5p2 + 1p3) + (40x1 + 50x2 + 35x3)

s.t. p1 + p2 + p3 = 50

5x1 ≤ p1 ≤ 20x1
6x2 ≤ p2 ≤ 40x2
4x3 ≤ p3 ≤ 35x3
p1, p2, p3 ≥ 0

x1, x2, x3 ≥ 0

x1, x2, x3 ≤ 1

x1, x2, x3 ∈ Z.

This problem has three decision variables that are real-valued—p1, p2, and p3—and
three integer-valued variables—x1, x2, and x3. Indeed, because x1, x2, and x3 are
restricted to be between 0 and 1, these are binary variables. This problem also has
examples of double-sided inequalities, such as:

5x1 ≤ p1 ≤ 20x1.

10 1 Optimization is Ubiquitous

This inequality represents the two constraints:

5x1 ≤ p1,

and:
p1 ≤ 20x1,

in a more compact form.
Chapter 3 is devoted to the formulation and solution of mixed-integer linear opti-

mization problems. Although we discuss some two algorithms to solve linear opti-
mization problems with integer variables, there are other more advanced techniques
that must occasionally be employed to solve particularly complex problems. Inter-
ested readers are referred to more advances texts [6, 25] that discuss these solution
techniques.

1.4 Nonlinear Optimization Problems

A nonlinear optimization problem or nonlinear programming problem (NLPP) has
the following three defining characteristics.

1. The decision variables are continuous and we thus have that:

(x1, . . . , xn) ∈ R
n.

2. The objective function is a nonlinear real-valued function. Thus, we have that:

f : Rn → R.

3. The constraints are nonlinear equality or less-than-or-equal-to constraints of the
form:

hi (x1, . . . , xn) = 0,∀i = 1, . . . ,m

gj (x1, . . . , xn) ≤ 0,∀ j = 1, . . . , r,

where m is the number of equality constraints and r the number of inequality
constraints, hi : Rn → R,∀i = 1, . . . ,m, and g j : Rn → R,∀ j = 1, . . . , r .

Therefore, an NLPP has the generic form:

min
x1,...,xn

f (x)

s.t. hi (x) = 0, ∀i = 1, . . . ,m

gj (x) ≤ 0, ∀ j = 1, . . . , r.

http://dx.doi.org/10.1007/978-3-319-56769-3_3

1.4 Nonlinear Optimization Problems 11

We assume that each of the constraints has a zero on its right-hand side and that
all of the inequalities are less-than-or-equal-to constraints. It is straightforward to
convert any generic NLPP to this form, as we show with the example problem:

min
x1,x2

√
x21 + x22

s.t. x2 − x2
x1
w ≥ h

x1, x2 ≥ 0.

We can convert the inequalities into less-than-or-equal-to constraints with zeroes on
their right-hand sides by subtracting terms on the greater-than-or-equal-to side of the
inequalities to obtain:

min
x1,x2

√
x21 + x22

s.t. h − x2 + x2
x1
w ≤ 0

− x1,−x2 ≤ 0.

Note that neither all of the constraints nor the objective function of an NLPPmust
be nonlinear. For instance, the constraints:

−x1,−x2 ≤ 0,

in the example above are linear in the decision variables.
Chapters 4 and 5 are devoted to the formulation and solution of nonlinear opti-

mization problems. Although we discuss a number of approaches to solving NLPPs,
there are other textbooks [1, 4, 8, 19, 21] that introduce more advanced solution
techniques. We should also note that we only study nonlinear optimization problems
in which the variables take on real values. Although it is a straightforward extension
of MILPPs and NLPPs to formulate mixed-integer nonlinear optimization problems,
solving such problems can be extremely demanding. Indeed, very few textbooks
on this topic exist and we must instead refer readers to research papers and mono-
graphs on the topic, as mixed-integer nonlinear optimization is still a burgeoning
research topic. Nevertheless, Floudas [14] provides an excellent introduction to the
formulation and solution of mixed-integer nonlinear programming problems.

1.5 Dynamic Optimization Problems

Dynamic optimization problems represent a vastly different way of modeling and
solving optimization problems. The power of dynamic optimization is that it can be
used to efficiently solve large problems by decomposing the problems into a sequence

http://dx.doi.org/10.1007/978-3-319-56769-3_4
http://dx.doi.org/10.1007/978-3-319-56769-3_5

12 1 Optimization is Ubiquitous

of stages. The solution technique works through the problem stages and determines
what decision is optimal in each stage.

Dynamic optimization problems can be written using the same type of generic
forms used to express LPPs, MILPPs, and NLPPs. However, this is not a particularly
useful way of studying the structure and power of dynamic optimization. For this rea-
son, we defer any further treatment of dynamic optimization problems to Chapter 6,
where dynamic optimization is discussed in detail.

1.6 Technical Considerations

The four classes of problems introduced in the preceding sections cover many of the
mainstream topicswithin the field of optimization.However, there are other classes of
problems that go beyond those introduced here. Moreover, there are many technical
issues related to optimization that go beyond the scope of an introductory textbook,
such as this one. We introduce two technical considerations that may come up as
one attempts to use optimization in the real world. Although these considerations
are beyond the scope of this text, we provide references that can provide helpful
methodologies for tackling such issues.

1.6.1 Large-Scale Optimization Problems

The optimization techniques introduced in this text can be fruitfully applied to rela-
tively large problems. For instance, the algorithm introduced in Section 2.5 to solve
linear optimization problems can efficiently handle problems with hundreds of thou-
sands or even millions of variables. Nevertheless, one may encounter large-scale
optimization problems with variables or constraints numbering in the tens of mil-
lions (or more). Moreover, some classes of problems (e.g., MILPPs) may be much
more difficult to solve than an LPP, even with only tens of thousands of variables.

Unfortunately, such problems are often unavoidable in practice and solving them
‘directly’ using the techniques introduced in this text may not yield a solution within
a reasonable amount of time (or ever). Decomposition techniques (also sometimes
called partitioning techniques) often help in solving such large-scale optimization
problems. At a high level, these techniques work by breaking the large-scale prob-
lem into smaller subproblems, that can usually be solved directly. The important
consideration in decomposing a large-scale problem is that one must ensure that
the solutions given by the subproblems yield solutions that are optimal (or close to
optimal) for the entire undecomposed problem.

While decomposition techniques are important, they are beyond the scope of
this text. Interested readers are referred to other works, which provide introduc-
tions to decomposition techniques for different classes of optimization problems
[2, 3, 12, 22].

http://dx.doi.org/10.1007/978-3-319-56769-3_6
http://dx.doi.org/10.1007/978-3-319-56769-3_2

1.6 Technical Considerations 13

1.6.2 Stochastic Optimization Problems

All of the models introduced in this section (and covered in this text) implicitly
assume that the system being modeled is fully deterministic. This means that there
is no uncertainty about the parameters of the problem. This assumption is clearly an
abstraction of reality, as it is rare to have a system that is completely deterministic.
Nevertheless, there are many settings in which the assumption of a deterministic
system is suitable and the results given by a deterministic model are adequate.

There can, however, be settings in which there is sufficient uncertainty in a system
(or in which the small amount of uncertainty is sufficiently important to have major
impacts on making an optimal decision) that it is inappropriate to use a deterministic
model. We introduce here a conceptual example of one way in which uncertainty
can be introduced into an optimization problem. We assume that there are a set of
uncertain parameters, which we denote ξ1, . . . ξm . We can then reformulate generic
optimization problem (1.2)–(1.3) as the stochastic optimization problem:

min
x1,...,xn

Eξ1,...,ξm [f (x1, . . . , xn; ξ1, . . . , xn)]
s.t. (x1, . . . , xn) ∈ Ω.

Here, we write the objective function as depending not only on the decisions chosen
by the decision maker (i.e., the x’s) but also on the uncertain parameters (i.e., the
ξ ’s). The Eξ1,...,ξm operator in the objective function is computing the expected value,
with respect to the uncertain parameters, of the objective function. The expectation
(or a similar) operator is needed here because the uncertain parameters make the
objective function uncertain. In essence, the expectation operator is needed for the
stochastic optimization problem to ‘make sense.’

Stochastic optimization problems can very easily become large-scale because
many scenarios (alternate values of the uncertain parameters) need to be considered.
It should be noted that this formulation only captures uncertainty in the objective-
function value. There could be cases in which the constraints are uncertain. Decom-
position techniques [12] are generally helpful in solving stochastic optimization
problems. Stochastic optimization problems are beyond the scope of this text. Inter-
ested readers are referred to the classical monograph on the topic [7] and to a more
application-oriented text [11].

1.7 Optimization Environments and Solvers

Solving most classes of optimization problems requires two pieces of software. The
first is amathematical programming language, which allows the user to formulate
the problem (i.e., specify problem data, decision variables, the objective function,
and constraints) in a human-readable format.

14 1 Optimization is Ubiquitous

Most mathematical programming languages also include facilities for reading
and writing data from and to standard formats (e.g., Microsoft Excel workbooks,
csv files, or databases) and have scripting features. These scripting features can be
especially useful if modeling a system requires multiple interrelated optimization
problems to be run in succession, as such a process can be automated.

Some mathematical programming languages also include built-in presolving fea-
tures, which can reduce the complexity of a problem through simple arithmetic
substitutions and operations before having the problem solved. The pioneeringmath-
ematical programming language is GAMS [9] and for this reason all of the sample
codes given in this book use GAMS. Other mathematical programming languages
include AMPL [15], AIMMS [23], and JuliaOpt [18].

The mathematical programming language translates or compiles the human-
readable problem into a machine-readable format that is used by a solver. The solver
does the actual work of solving the optimization problem (beyond the presolving
feature available in many mathematical programming languages). Most solvers are
tailored to solve a specific class of optimization problems. For instance, CPLEX [17]
and GUROBI [16] are two state-of-the-art solvers for LPPs and MILPPs. State-of-
the-art NLPP solvers include KNITRO [10], MINOS [20], and CONOPT [13].

Dynamic optimization problems typically require problem-specific codes. This
is because solving a dynamic optimization problem requires exploiting the structure
of the problem. For this reason, general solvers for dynamic optimization problems
are not available.

1.8 Scope of the Book

This book considers the following classes of optimization problems in further detail
in the following chapters:

1. linear optimization problems (Chapter 2),
2. mixed-integer linear optimization problems (Chapter 3),
3. nonlinear optimization problems (Chapters 4 and 5), and
4. dynamic optimization problems (Chapter 6).

1.9 Final Remarks

We conclude this chapter by noting that our approach in writing this book is reader
friendly. This approach relies largely on illustrative and insightful examples, avoiding
formal mathematical proof except when absolutely needed or relatively simple. The
aim is for the text to (hopefully) provide the student with a pain-free introduction to
optimization.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_3
http://dx.doi.org/10.1007/978-3-319-56769-3_4
http://dx.doi.org/10.1007/978-3-319-56769-3_5
http://dx.doi.org/10.1007/978-3-319-56769-3_6

1.9 Final Remarks 15

Students and readers desiring a more rigorous treatment of optimization theory or
solution algorithms are referred to a number of more advanced textbooks [1–5, 19,
21, 22, 24, 25]. These texts provide technical details and mathematical formalism
that we exclude.

This textbook provides GAMS codes for many of the illustrative examples used in
the subsequent chapters. However, we do not formally introduce the use of GAMS
or other mathematical programming software. Interested readers are referred to a
number of texts that introduce the use of mathematical programming languages.
For instance, Brook et al. [9] provide an encyclopedic tome on the use of GAMS.
However, Chapter 2 of this user guide provides an introduction to the major features
of the software package. Fourer et al. [15] similarly provide an introduction to the
use of the AMPL programming language. Similar resources exist for AIMMS [23],
JuliaOpt [18], and other mathematical programming languages.

References

1. Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms,
3rd edn. Wiley-Interscience, Hoboken

2. Bertsekas DP (2012) Dynamic programming and optimal control, vol 1, 4th edn. Athena Sci-
entific, Belmont

3. Bertsekas DP (2012) Dynamic programming and optimal control, vol 2, 4th edn. Athena Sci-
entific, Belmont

4. Bertsekas D (2016) Nonlinear programming, 3rd edn. Athena Scientific, Belmont
5. Bertsimas D, Tsitsiklis J (1997) Introduction to linear optimization. Athena Scientific, Belmont
6. Bertsimas D, Weismantel R (2005) Optimization over integers. Dynamic Ideas, Belmont
7. Birge JR, Louveaux F (1997) Introduction to stochastic programming, corrected edn. Springer,

New York
8. Boyd S,Vandenberghe L (2004)Convex optimization. CambridgeUniversity Press, Cambridge
9. Brook A, Kendrick D, Meeraus, A (1988) GAMS – a user’s guide. ACM, New York. www.

gams.com
10. Byrd RH, Nocedal J, Waltz RA (2006) KNITRO: an integrated package for nonlinear opti-

mization. In: di Pillo G, Roma M (eds) Large-scale nonlinear optimization, pp 35–59. www.
artelys.com/en/optimization-tools/knitro

11. Conejo AJ, Carrión M, Morales JM (2010) Decision making under uncertainty in electricity
markets. International series in operations research andmanagement science, vol 153. Springer,
Berlin

12. Conejo AJ, Castillo E, Minguez R, Garcia-Bertrand R (2006) Decomposition techniques in
mathematical programming: engineering and science applications. Springer, Berlin

13. Drud AS (1994) CONOPT – a large-scale GRG code. ORSA J Comput 6(2):207–216. www.
conopt.com

14. Floudas CA (1995) Nonlinear and mixed-integer optimization: fundamentals and applications.
Oxford University Press, Oxford

15. Fourer R, Gay DM, Kernighan BW (2002) AMPL: a modeling language for mathematical
programming, 2nd edn. Cengage Learning, Boston. www.ampl.com

16. Gurobi Optimization, Inc. (2010) Gurobi optimizer reference manual, version 3.0. Houston,
Texas. www.gurobi.com

17. IBM ILOG CPLEX Optimization Studio (2016) CPLEX user’s manual, version 12 release 7.
IBM Corp. www.cplex.com

http://dx.doi.org/10.1007/978-3-319-56769-3_2
www.gams.com
www.gams.com
www.artelys.com/en/optimization-tools/knitro
www.artelys.com/en/optimization-tools/knitro
www.conopt.com
www.conopt.com
www.ampl.com
www.gurobi.com
www.cplex.com

16 1 Optimization is Ubiquitous

18. LubinM,Dunning I (2015) Computing in operations research using Julia. INFORMS JComput
27(2):238–248. www.juliaopt.org

19. Luenberger DG, Ye Y (2016) Linear and nonlinear programming, 4th edn. Springer, New York
20. Murtagh BA, Saunders MA (1995) MINOS 5.4 user’s guide. Technical report SOL 83-20R,

Systems Optimization Laboratory, Department of Operations Research, Stanford University,
Stanford, California. www.sbsi-sol-optimize.com/asp/sol_product_minos.htm

21. Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York
22. Powell WB (2007) Approximate dynamic programming: solving the curses of dimensionality.

Wiley-Interscience, Hoboken
23. Roelofs M, Bisschop J (2016) AIMMS the language reference, AIMMS B.V., Haarlem, The

Netherlands. www.aimms.com
24. Vanderbei RJ (2014) Linear programming: foundations and extensions, 4th edn. Springer, New

York
25. WolseyLA,NemhauserGL (1999) Integer and combinatorial optimization.Wiley-Interscience,

New York

www.juliaopt.org
www.sbsi-sol-optimize.com/asp/sol_product_minos.htm
www.aimms.com

	1 Optimization is Ubiquitous
	1.1 Industry (and Life!) is Optimization
	1.2 Linear Optimization Problems
	1.3 Linear Optimization Problems with Integer Decisions
	1.4 Nonlinear Optimization Problems
	1.5 Dynamic Optimization Problems
	1.6 Technical Considerations
	1.6.1 Large-Scale Optimization Problems
	1.6.2 Stochastic Optimization Problems

	1.7 Optimization Environments and Solvers
	1.8 Scope of the Book
	1.9 Final Remarks
	References

