
Springer Optimization and Its Applications 120

Optimization in 
Engineering 

Ramteen Sioshansi
Antonio J. Conejo

Models and Algorithms



Springer Optimization and Its Applications

VOLUME 120

Managing Editor
Panos M. Pardalos (University of Florida)

Editor–Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
S. Butenko (Texas A&M University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (Lehigh University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques
have been developed, the diffusion into other disciplines has proceeded at a
rapid pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics and other sciences.

The series Springer Optimization and Its Applications publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory works that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics covered
include nonlinear optimization (convex and nonconvex), network flow
problems, stochastic optimization, optimal control, discrete optimization,
multi-objective programming, description of software packages, approxima-
tion techniques and heuristic approaches.

More information about this series at http://www.springer.com/series/7393



Ramteen Sioshansi • Antonio J. Conejo

Optimization in Engineering
Models and Algorithms

123



Ramteen Sioshansi
Department of Integrated Systems
Engineering

The Ohio State University
Columbus, OH
USA

Antonio J. Conejo
Department of Integrated Systems
Engineering and Department of Electrical
and Computer Engineering

The Ohio State University
Columbus, OH
USA

ISSN 1931-6828 ISSN 1931-6836 (electronic)
Springer Optimization and Its Applications
ISBN 978-3-319-56767-9 ISBN 978-3-319-56769-3 (eBook)
DOI 10.1007/978-3-319-56769-3

Library of Congress Control Number: 2017937140

Mathematics Subject Classification (2010): 90-01, 90C05, 90C10, 90C11, 90C30, 90C39, 90C46,
90C90

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



To my parents and Pedrom
To Núria



Preface

Optimization in Engineering: Models and Algorithms covers the fundamentals
of optimization, including linear, mixed-integer linear, nonlinear, and dynamic
optimization techniques, with a clear engineering focus.

This book carefully describes classical optimization models and algorithms
using an engineering problem-solving perspective. Modeling issues are emphasized
using many real-world examples, related to a variety of application areas.

This textbook is intended for advanced undergraduate and graduate-level
teaching in industrial engineering and other engineering specialties. It is also of use
to industry practitioners, due to the inclusion of real-world applications.

This book consists of five chapters and two appendices.
Chapter 1 introduces the book, providing an overview of the major classes of

optimization problems that are relevant to the engineering profession.
Chapter 2 considers linear optimization problems. The practical significance

of these problems is first shown through a number of examples. Precise formula-
tions of these example problems are provided. The geometric and algebraic features
of generic linear optimization problems are then analyzed. A well-known solution
algorithm is next described, which is based on the algebraic features of linear
optimization problems. Sensitivity analysis and the duality properties of linear
optimization problems are then described.

Chapter 3 considers mixed-integer linear optimization problems. That is, prob-
lems that are linear in the decision variables but include variables that are restricted
to take on integer values. The chapter provides a number of illustrative examples,
showing the practical significance of mixed-integer linear optimization. Then,
a general formulation of the mixed-integer linear optimization problem is provided.
Next, the use of binary variables to model various types of nonlinearities and
discontinuities, while maintaining a linear model structure, is described. This use of
binary variables shows the true power of mixed-integer linear optimization models.
Two solution techniques for mixed-integer linear optimization problems are then
explained: branch-and-bound and cutting planes. The former is developed for
general mixed-integer linear optimization problems, the latter for pure-integer linear
optimization problems.
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Chapters 4 and 5 consider nonlinear optimization problems. Chapter 4 begins
with numerous application examples demonstrating the use of nonlinear opti-
mization. This chapter then introduces the use of optimality conditions, which is an
analytical approach to solving nonlinear optimization problems. Optimality con-
ditions are properties that an optimal solution exhibits and can be used to find
candidate optimal solutions to general nonlinear optimization problems.

Chapter 5 considers a generic iterative algorithm for solving unconstrained
nonlinear optimization problems. Details on the two principal steps of this generic
algorithm are then provided. Next, this chapter explains two ways in which the
generic algorithm can be extended to solve constrained nonlinear optimization
problems. One implicitly accounts for the constraints by incorporating them into the
objective function through ‘penalties’, while the other explicitly accounts for
problem constraints.

Chapter 6 covers dynamic optimization techniques. This chapter begins by first
introducing a simple problem that can be formulated and solved using dynamic
optimization techniques. The common elements that must be identified when for-
mulating a dynamic optimization problem are then described. These elements
‘encode’ the structure and dynamics of the system being optimized. A standard
algorithm used to solve dynamic optimization problems is then described.

Appendix A reviews Taylor approximations and definite matrices while
Appendix B reviews convex sets and functions. The concepts covered in these
appendices are vital for Chapters 4 and 5. The appendices are provided for readers
needing to refresh these topics.

The material in this book can be arranged to address the needs of undergraduate
teaching in two one-semester courses. Chapters 1–3 include the material for a linear
and mixed-integer linear optimization course. On the other hand, Chapters 1, 4–6
and Appendices A and B include the material for a nonlinear and dynamic opti-
mization course. Alternatively, Chapter 1 and Sections 2.1, 3.1, 3.3, and 4.1 of
Chapters 2–4 could be used in a course that introduces optimization modeling only,
without covering solution methods or theory.

The book provides an appropriate blend of practical applications and opti-
mization theory. This feature makes the book useful to practitioners and to students
in engineering, operations research, and business. It also provides the reader with a
good sense of the power of optimization and the potential difficulties in applying
optimization to modeling real-world systems. The algorithms and solution methods
are developed intuitively and examples are used to illustrate their use. This text is
written to avoid mathematical formality while still maintaining sufficient rigor for
the reader to understand the subtleties of optimization. GAMS codes for many
of the examples introduced in the text are also provided. These can be readily used
and expanded upon by the reader. The aim is for the reader to be able to confidently
apply the modeling and solution methodologies to problem domains that go beyond
the examples used in the text. Overall, the reader benefits by understanding opti-
mization, learning how to formulate problems, solve them, and interpret solution
outputs. This is done using a problem-solving engineering approach.
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This book opens the door to advanced courses on both modeling and algorithm
development within the industrial engineering and operations research fields.

To conclude, we thank our colleagues and students at The Ohio State University
for insightful observations, pertinent corrections, and helpful comments.

Columbus, Ohio, USA Ramteen Sioshansi
February 2017 Antonio J. Conejo
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Chapter 1
Optimization is Ubiquitous

This chapter introduces the relevance of optimal thinking and optimization
modeling and describes the structure of the most common types of optimization
problems that can be found in real-world practice. Importantly, optimization is ubiq-
uitous in industry and life.Optimization problems formalize optimal decisionmaking
using mathematical models that describe how a system behaves based on decisions
made by the decision maker. After this introduction to the concept of optimiza-
tion, the chapter concludes by listing the types of optimization problems commonly
encountered in the real world and outlines the types of problems discussed in the
subsequent chapters of this text.

1.1 Industry (and Life!) is Optimization

Optimization is key to any industrial process. This is because optimization pursues
the best way to achieve a particular objective (or multiple objectives) related to that
process under a number of resource or other constraints. Optimization is key to life
as well, as people (typically) strive to achieve the best for their lives under a number
of personal and environmental constraints.

The field of optimization formalizes this concept of optimal thinking by mak-
ing the process quantitative. This allows a decision maker to make well-informed
decisions based on an objective numerical metric. This formalization uses what are
known as mathematical optimization problems (which are also, for historical rea-
sons, referred to as mathematical programming problems). As seen throughout
this textbook, optimization problems can vary considerably in their complexity. Our
use of the term ‘complexity’ here can refer to how complicated the structure of an
optimization model is or the difficulty involved in solving a model to determine an
optimal set of decisions.
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2 1 Optimization is Ubiquitous

In this chapter we briefly introduce the different classes of optimization problems.
Subsequent chapters describe the structure of these problems and methods to solve
them in more detail.

Most optimization problems involve three main elements, which are listed below.

1. The decision variables represent the decisions being optimized in the model. All
optimization problems require at least one decision variable. Without decision
variables there is nothing for the decision maker to decide, and thus no problem
to solve.
An important nuance in determining the decision variables of an optimization

problem is that they should not be confused with problem data or parameters.
Problem data represent exogenous information that the decision maker cannot
choose or control. For instance, if a person is given $D to spend on either apples
or oranges, we could denote xA and xO as two decision variables representing
the amount spent on apples and oranges, respectively. Note, however, that D is
not a decision variable. Rather, this is fixed problem data (otherwise the decision
maker may choose to make D arbitrarily large to consume apples and oranges to
his or her heart’s desire).

2. The objective function is the numerical measure of how ‘good’ the decisions
chosen are. Depending on the problem in question, the goal of the decision maker
will be to eithermaximize orminimize this objective. For instance, onemaymodel
a problem in which a firm is making production decisions to maximize profit. As
another example, one may model a problem in which a public health agency is
allocating resources tominimize childhoodmortality.Oftentimes, an optimization
problem may be referred to as a ‘maximization problem’ or a ‘minimization
problem,’ depending on the ‘direction’ in which the objective function is being
optimized.

3. The constraints impose the physical, financial, or other limits on the decisions
that can be made. Although some problems may not have any constraints, most
problems often have implicit or explicit constraints. Going back to the example of
the person having $D to spend on either apples or oranges, one explicit constraint
is that no more than $D can be spent, or that:

xA + xO ≤ D. (1.1)

Another pair of implicit constraints is that a non-negative amount of money must
be spent on each:

xA ≥ 0,

and:
xO ≥ 0.

For most optimization problems, constraints can take one of three forms.We have
just seen two of these forms—less-than-or-equal-to and greater-than-or-equal-
to constraints—in the ‘Apples and Oranges’ example. Note that in almost all
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cases, these so-called inequality constraints must always been weak inequalities.
Strict inequalities (i.e., strictly less-than or strictly greater-than constraints) can
introduce significant technical difficulties in solving an optimization problem.We
discuss this point further in Section 2.1.1.

The third type of constraint is an equality constraint. As an example of this,
suppose that the decision maker in the Apples and Oranges example must spend
the entire $D on either apples or oranges. If so, then constraint (1.1) would be
changed to:

xA + xO = D.

The set of constraints in an optimization problem define the set of decision
variables that can be feasibly chosen by the decision maker. The set of deci-
sion variables that are feasible define what is known as the feasible region of the
problem. Section 2.1.1 discusses this point further and gives a graphical repre-
sentation of the feasible region of a simple two-variable optimization problem.

Taking the three elements together, most optimization problems can be written in
the very generic form:

min
x1,...,xn

f (x1, . . . , xn) (1.2)

s.t.(x1, . . . , xn) ∈ Ω. (1.3)

This generic problem has n decision variables, which are denoted x1, . . . , xn . The
objective function is f (x1, . . . , xn). Objective functions are always scalar-valued,
meaning that they map the values of the n decision variables into a single scalar
value that measures how good the outcome is in terms of the objective that the
decision maker cares about (i.e., we have that f : Rn → R). This generic problem
assumes that the objective function is being minimized. This is because of the min
operator in objective function (1.2). If the problem was instead aiming to maximize
the objective function, this would be denoted by replacing (1.2) with:

max
x1,...,xn

f (x1, . . . , xn).

It is customary to list the decision variables underneath the min or max operator.
This way, there is no ambiguity regarding what are decision variables in the problem
and what are not (i.e., so as not to confuse decision variables with problem data or
parameters).

The constraints are represented in the generic problem by (1.3). The abbreviation
‘s.t.’ in (1.3) stands for ‘subject to,’ and means that the values of x1, . . . , xn chosen
must satisfy the set of constraints listed. Here we let Ω denote the feasible region.
Unless it is otherwise explicitly stated in a problem, we assume that the decision
variables are continuous and can take on any real value that satisfies the constraints.
We discuss classes of problems in which this assumption is relaxed and at least some

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2


4 1 Optimization is Ubiquitous

of the decision variable must take on integer values in Section 1.3.We further discuss
formulating and solving such problems in Chapters 3 and 6.

A vector of decision variables (x1, . . . , xn) that is in the feasible region, i.e.:

(x1, . . . , xn) ∈ Ω,

is said to be a feasible solution, whereas a vector that is not, i.e.:

(x1, . . . , xn) /∈ Ω,

is said to be an infeasible solution.
Among the feasible solutions, the one (or ones) that optimize (i.e., minimize or

maximize) the objective function is said to be an optimal solution. We typically
denote a set of optimal decisions by using asterisks, i.e.:

(x∗
1 , . . . , x

∗
n ).

We can finally note that it is customary to represent the generic optimization
problem given by (1.2)–(1.3) in the more compact form:

min
x

f (x)

s.t. x ∈ Ω,

where we define x = (x1, . . . , xn).
To give a simple starting example of an optimization problem, we can return to

the Apples and Oranges example given above.

Example 1.1 A person has up to $D to spend on apples and oranges. Every dollar
spent on apples brings her two units of happiness whereas each dollar spent on
oranges brings her three units of happiness. Her goal is to maximize her happiness.

To write this optimization problem, we define two decision variables, xA and xO ,
which denote the amount of money spent on each of apples and oranges, respectively.
The problem is then written as:

max
xA,xO

f (xA, xO) = 2xA + 3xO

s.t. xA + xO ≤ D

xA ≥ 0

xO ≥ 0.

Because this is a problem in which the objective is being maximized, the max
operator appears next to the objective function.Note that only xA and xO appear below
themax operator, whereas D does not. This is because the $D that the decisionmaker
has to spend is not a decision within her control. Instead, D is problem data.

http://dx.doi.org/10.1007/978-3-319-56769-3_3
http://dx.doi.org/10.1007/978-3-319-56769-3_6
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The problem has three constraints. The first one is explicitly stated in the problem
description (i.e., that she only has at most $D to spend). The other two constraints
are implicit, because we know that it is physically meaningless to spend a negative
amount of money on apples or oranges. Furthermore, we work under the assump-
tion that xA and xO can take on any continuous values (so long as they satisfy the
constraints). Thus, for instance, if D = 10, then:

(xA, xO) = (1.00354, 5.23),

would be a feasible solution.
The constraints of the problem are explicitly written out, as opposed to being

written implicitly via the feasible region. However, we could formulate the problem
using the feasible region instead. To do this, we would first define the feasible region
as:

Ω = {(xA, xO)|xA + xO ≤ D, xA ≥ 0, xO ≥ 0}.

The problem would then be formulated as:

max
xA,xO

f (xA, xO) = 2xA + 3xO

s.t. (xA, xO) ∈ Ω.

�

This chapter introduces the following classes of optimization problems, which
are studied in subsequent chapters:

1. linear optimization problems,
2. mixed-integer linear optimization problems,
3. nonlinear optimization problems, and
4. dynamic optimization problems.

1.2 Linear Optimization Problems

A linear optimization problem or linear programming problem (LPP) has the
following three important defining characteristics.

1. The decision variables are continuous (i.e., they are not constrained to take on
integer values) and thus we have:

(x1, . . . , xn) ∈ R
n.

2. The objective function is linear in the decision variables, and can thus be written
as:
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f (x1, . . . , xn) = c0 + c1x1 + · · · + cnxn = c0 +
n∑

i=1

ci xi ,

where c0, . . . , cn are constants.
3. The constraints are all equal-to, greater-than-or-equal-to, or less-than-or-equal-to

constraints that are linear in the decision variables. Thus, the constraints can all
be written as:

n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑

i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑

i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml ,

where me, mg , and ml are the numbers of equal-to, greater-than-or-equal-to, and
less-than-or-equal-to constraints, respectively. Thus, m = me + mg + ml is the
total number of constraints. The coefficients, Ae

j,i ,∀i = 1, . . . , n, j = 1, . . . ,me,
Ag

j,i ,∀i = 1, . . . , n, j = 1, . . . ,mg , and Al
j,i ,∀i = 1, . . . , n, j = 1, . . . ,ml , and

the terms on the right-hand sides of the constraints, bej ,∀ j = 1, . . . ,me, b
g
j ,∀ j =

1, . . . ,mg , and blj ,∀ j = 1, . . . ,ml , are all constants.

An LPP, thus, has the generic form:

min
x1,...,xn

c0 +
n∑

i=1

ci xi

s.t.
n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑

i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑

i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml .

An LPP does not need to include all of the different types of constraints (i.e.,
equal-to, greater-than-or-equal-to, or less-than-or-equal-to) and may include only
one or two types. For instance, the Apples and Oranges Example (cf. Example 1.1)
has no equal-to constraints but does have the other two types.

TheApples andOrangesExample is one example of a linear optimizationproblem.
Another example is:
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min
x1,x2

x1 + x2

s.t.
2

3
x1 + x2 ≤ 18

2x1 + x2 ≥ 8

x1 ≤ 12

x2 ≤ 16

x1, x2 ≥ 0.

The decision variables are x1 and x2, the linear objective function is x1 + x2, and the
linear constraints are (2/3)x1 + x2 ≤ 18, 2x1 + x2 ≥ 8, x1 ≤ 12, x2 ≤ 16, x1 ≥ 0
and x2 ≥ 0. As is common practice, the two non-negativity constraints are written
together as:

x1, x2 ≥ 0,

for sake of brevity. It is very important to stress that this constraint is not the same
as:

x1 + x2 ≥ 0.

The constraint, x1 + x2 ≥ 0, would allow x1 = −1 and x2 = 3 as a feasible solution.
However, these values for x1 and x2 do not satisfy the constraint, x1 ≥ 0.

Chapter 2 is devoted to the formulation and solution of linear optimization prob-
lems. A number of classic textbooks [5, 19, 24] also provide a more technically
rigorous treatment of linear optimization.

1.3 Linear Optimization Problems with Integer Decisions

There is a special case of linear optimization problems in which some or all of the
decision variables are restricted to take on integer values. Such problems in which
some (but not necessarily all) of the variables are restricted to taking on integer values
are called mixed-integer linear optimization problems or mixed-integer linear
programming problems (MILPPs). A linear optimization problem in which all of
the decision variables are restricted to take on integer values is sometimes called a
pure-integer linear optimization problem. On occasion, some will also distinguish
problems in which the integer decision variables can take on the values of 0 or 1 only.
Such problems are referred to as mixed-binary or pure-binary linear optimization
problems. We use the term MILPP throughout this text, however, because it is all-
encompassing.

An MILPP is defined by the following three important characteristics.

1. Some set of the decision variables are restricted to take on integer values while
others can take on real values. Thus we have:

http://dx.doi.org/10.1007/978-3-319-56769-3_2
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xi ∈ Z, for some i = 1, . . . , n,

and:
xi ∈ R, for the remaining i = 1, . . . , n,

where Z denotes the set of integers.
2. The objective function is linear in the decision variables. Thus, we have that:

f (x1, . . . , xn) = c0 +
n∑

i=1

ci xi ,

where c0, . . . , cn are constants.
3. The constraints are all equal-to, greater-than-or-equal-to, or less-than-or-equal-to

constraints that are linear in the decision variables and can be written as:

n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑

i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑

i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml ,

whereme,mg ,ml , Ae
j,i , A

g
j,i , and Al

j,i , b
e
j , b

g
j , and b

l
j have the same interpretations

as in a linear optimization problem.

An MILPP, thus, has the generic form:

min
x1,...,xn

c0 +
n∑

i=1
ci xi

s.t.
n∑

i=1
Ae

j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n.

We normally do not explicitly write the last constraint:

xi ∈ R, for the remaining i = 1, . . . , n,



1.3 Linear Optimization Problems with Integer Decisions 9

because of the implicit assumption that all of the decision variables can take on any
real value (unless there is an explicit integrality constraint).

As mentioned above, in some cases we model problems in which variables are
restricted to take on binary values (i.e., 0 or 1 only). There are two ways that this can
be done. To show these, let us suppose that xi is the binary variable in question. One
way to impose the binary restriction is to explicitly do so by replacing the integrality
constraint:

xi ∈ Z,

with the binary constraint:
xi ∈ {0, 1}.

The other is to retain the integrality constraint:

xi ∈ Z,

and to impose the two bound constraints:

xi ≥ 0,

and:
xi ≤ 1.

An example of mixed-integer linear optimization problem is:

min
p1,p2,p3,x1,x2,x3

(2p1 + 5p2 + 1p3) + (40x1 + 50x2 + 35x3)

s.t. p1 + p2 + p3 = 50

5x1 ≤ p1 ≤ 20x1
6x2 ≤ p2 ≤ 40x2
4x3 ≤ p3 ≤ 35x3
p1, p2, p3 ≥ 0

x1, x2, x3 ≥ 0

x1, x2, x3 ≤ 1

x1, x2, x3 ∈ Z.

This problem has three decision variables that are real-valued—p1, p2, and p3—and
three integer-valued variables—x1, x2, and x3. Indeed, because x1, x2, and x3 are
restricted to be between 0 and 1, these are binary variables. This problem also has
examples of double-sided inequalities, such as:

5x1 ≤ p1 ≤ 20x1.
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This inequality represents the two constraints:

5x1 ≤ p1,

and:
p1 ≤ 20x1,

in a more compact form.
Chapter 3 is devoted to the formulation and solution of mixed-integer linear opti-

mization problems. Although we discuss some two algorithms to solve linear opti-
mization problems with integer variables, there are other more advanced techniques
that must occasionally be employed to solve particularly complex problems. Inter-
ested readers are referred to more advances texts [6, 25] that discuss these solution
techniques.

1.4 Nonlinear Optimization Problems

A nonlinear optimization problem or nonlinear programming problem (NLPP) has
the following three defining characteristics.

1. The decision variables are continuous and we thus have that:

(x1, . . . , xn) ∈ R
n.

2. The objective function is a nonlinear real-valued function. Thus, we have that:

f : Rn → R.

3. The constraints are nonlinear equality or less-than-or-equal-to constraints of the
form:

hi (x1, . . . , xn) = 0,∀i = 1, . . . ,m

gj (x1, . . . , xn) ≤ 0,∀ j = 1, . . . , r,

where m is the number of equality constraints and r the number of inequality
constraints, hi : Rn → R,∀i = 1, . . . ,m, and g j : Rn → R,∀ j = 1, . . . , r .

Therefore, an NLPP has the generic form:

min
x1,...,xn

f (x)

s.t. hi (x) = 0, ∀i = 1, . . . ,m

gj (x) ≤ 0, ∀ j = 1, . . . , r.

http://dx.doi.org/10.1007/978-3-319-56769-3_3
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We assume that each of the constraints has a zero on its right-hand side and that
all of the inequalities are less-than-or-equal-to constraints. It is straightforward to
convert any generic NLPP to this form, as we show with the example problem:

min
x1,x2

√
x21 + x22

s.t. x2 − x2
x1
w ≥ h

x1, x2 ≥ 0.

We can convert the inequalities into less-than-or-equal-to constraints with zeroes on
their right-hand sides by subtracting terms on the greater-than-or-equal-to side of the
inequalities to obtain:

min
x1,x2

√
x21 + x22

s.t. h − x2 + x2
x1
w ≤ 0

− x1,−x2 ≤ 0.

Note that neither all of the constraints nor the objective function of an NLPPmust
be nonlinear. For instance, the constraints:

−x1,−x2 ≤ 0,

in the example above are linear in the decision variables.
Chapters 4 and 5 are devoted to the formulation and solution of nonlinear opti-

mization problems. Although we discuss a number of approaches to solving NLPPs,
there are other textbooks [1, 4, 8, 19, 21] that introduce more advanced solution
techniques. We should also note that we only study nonlinear optimization problems
in which the variables take on real values. Although it is a straightforward extension
of MILPPs and NLPPs to formulate mixed-integer nonlinear optimization problems,
solving such problems can be extremely demanding. Indeed, very few textbooks
on this topic exist and we must instead refer readers to research papers and mono-
graphs on the topic, as mixed-integer nonlinear optimization is still a burgeoning
research topic. Nevertheless, Floudas [14] provides an excellent introduction to the
formulation and solution of mixed-integer nonlinear programming problems.

1.5 Dynamic Optimization Problems

Dynamic optimization problems represent a vastly different way of modeling and
solving optimization problems. The power of dynamic optimization is that it can be
used to efficiently solve large problems by decomposing the problems into a sequence

http://dx.doi.org/10.1007/978-3-319-56769-3_4
http://dx.doi.org/10.1007/978-3-319-56769-3_5
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of stages. The solution technique works through the problem stages and determines
what decision is optimal in each stage.

Dynamic optimization problems can be written using the same type of generic
forms used to express LPPs, MILPPs, and NLPPs. However, this is not a particularly
useful way of studying the structure and power of dynamic optimization. For this rea-
son, we defer any further treatment of dynamic optimization problems to Chapter 6,
where dynamic optimization is discussed in detail.

1.6 Technical Considerations

The four classes of problems introduced in the preceding sections cover many of the
mainstream topicswithin the field of optimization.However, there are other classes of
problems that go beyond those introduced here. Moreover, there are many technical
issues related to optimization that go beyond the scope of an introductory textbook,
such as this one. We introduce two technical considerations that may come up as
one attempts to use optimization in the real world. Although these considerations
are beyond the scope of this text, we provide references that can provide helpful
methodologies for tackling such issues.

1.6.1 Large-Scale Optimization Problems

The optimization techniques introduced in this text can be fruitfully applied to rela-
tively large problems. For instance, the algorithm introduced in Section 2.5 to solve
linear optimization problems can efficiently handle problems with hundreds of thou-
sands or even millions of variables. Nevertheless, one may encounter large-scale
optimization problems with variables or constraints numbering in the tens of mil-
lions (or more). Moreover, some classes of problems (e.g., MILPPs) may be much
more difficult to solve than an LPP, even with only tens of thousands of variables.

Unfortunately, such problems are often unavoidable in practice and solving them
‘directly’ using the techniques introduced in this text may not yield a solution within
a reasonable amount of time (or ever). Decomposition techniques (also sometimes
called partitioning techniques) often help in solving such large-scale optimization
problems. At a high level, these techniques work by breaking the large-scale prob-
lem into smaller subproblems, that can usually be solved directly. The important
consideration in decomposing a large-scale problem is that one must ensure that
the solutions given by the subproblems yield solutions that are optimal (or close to
optimal) for the entire undecomposed problem.

While decomposition techniques are important, they are beyond the scope of
this text. Interested readers are referred to other works, which provide introduc-
tions to decomposition techniques for different classes of optimization problems
[2, 3, 12, 22].

http://dx.doi.org/10.1007/978-3-319-56769-3_6
http://dx.doi.org/10.1007/978-3-319-56769-3_2
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1.6.2 Stochastic Optimization Problems

All of the models introduced in this section (and covered in this text) implicitly
assume that the system being modeled is fully deterministic. This means that there
is no uncertainty about the parameters of the problem. This assumption is clearly an
abstraction of reality, as it is rare to have a system that is completely deterministic.
Nevertheless, there are many settings in which the assumption of a deterministic
system is suitable and the results given by a deterministic model are adequate.

There can, however, be settings in which there is sufficient uncertainty in a system
(or in which the small amount of uncertainty is sufficiently important to have major
impacts on making an optimal decision) that it is inappropriate to use a deterministic
model. We introduce here a conceptual example of one way in which uncertainty
can be introduced into an optimization problem. We assume that there are a set of
uncertain parameters, which we denote ξ1, . . . ξm . We can then reformulate generic
optimization problem (1.2)–(1.3) as the stochastic optimization problem:

min
x1,...,xn

Eξ1,...,ξm [ f (x1, . . . , xn; ξ1, . . . , xn)]
s.t. (x1, . . . , xn) ∈ Ω.

Here, we write the objective function as depending not only on the decisions chosen
by the decision maker (i.e., the x’s) but also on the uncertain parameters (i.e., the
ξ ’s). The Eξ1,...,ξm operator in the objective function is computing the expected value,
with respect to the uncertain parameters, of the objective function. The expectation
(or a similar) operator is needed here because the uncertain parameters make the
objective function uncertain. In essence, the expectation operator is needed for the
stochastic optimization problem to ‘make sense.’

Stochastic optimization problems can very easily become large-scale because
many scenarios (alternate values of the uncertain parameters) need to be considered.
It should be noted that this formulation only captures uncertainty in the objective-
function value. There could be cases in which the constraints are uncertain. Decom-
position techniques [12] are generally helpful in solving stochastic optimization
problems. Stochastic optimization problems are beyond the scope of this text. Inter-
ested readers are referred to the classical monograph on the topic [7] and to a more
application-oriented text [11].

1.7 Optimization Environments and Solvers

Solving most classes of optimization problems requires two pieces of software. The
first is amathematical programming language, which allows the user to formulate
the problem (i.e., specify problem data, decision variables, the objective function,
and constraints) in a human-readable format.
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Most mathematical programming languages also include facilities for reading
and writing data from and to standard formats (e.g., Microsoft Excel workbooks,
csv files, or databases) and have scripting features. These scripting features can be
especially useful if modeling a system requires multiple interrelated optimization
problems to be run in succession, as such a process can be automated.

Some mathematical programming languages also include built-in presolving fea-
tures, which can reduce the complexity of a problem through simple arithmetic
substitutions and operations before having the problem solved. The pioneeringmath-
ematical programming language is GAMS [9] and for this reason all of the sample
codes given in this book use GAMS. Other mathematical programming languages
include AMPL [15], AIMMS [23], and JuliaOpt [18].

The mathematical programming language translates or compiles the human-
readable problem into a machine-readable format that is used by a solver. The solver
does the actual work of solving the optimization problem (beyond the presolving
feature available in many mathematical programming languages). Most solvers are
tailored to solve a specific class of optimization problems. For instance, CPLEX [17]
and GUROBI [16] are two state-of-the-art solvers for LPPs and MILPPs. State-of-
the-art NLPP solvers include KNITRO [10], MINOS [20], and CONOPT [13].

Dynamic optimization problems typically require problem-specific codes. This
is because solving a dynamic optimization problem requires exploiting the structure
of the problem. For this reason, general solvers for dynamic optimization problems
are not available.

1.8 Scope of the Book

This book considers the following classes of optimization problems in further detail
in the following chapters:

1. linear optimization problems (Chapter 2),
2. mixed-integer linear optimization problems (Chapter 3),
3. nonlinear optimization problems (Chapters 4 and 5), and
4. dynamic optimization problems (Chapter 6).

1.9 Final Remarks

We conclude this chapter by noting that our approach in writing this book is reader
friendly. This approach relies largely on illustrative and insightful examples, avoiding
formal mathematical proof except when absolutely needed or relatively simple. The
aim is for the text to (hopefully) provide the student with a pain-free introduction to
optimization.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_3
http://dx.doi.org/10.1007/978-3-319-56769-3_4
http://dx.doi.org/10.1007/978-3-319-56769-3_5
http://dx.doi.org/10.1007/978-3-319-56769-3_6
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Students and readers desiring a more rigorous treatment of optimization theory or
solution algorithms are referred to a number of more advanced textbooks [1–5, 19,
21, 22, 24, 25]. These texts provide technical details and mathematical formalism
that we exclude.

This textbook provides GAMS codes for many of the illustrative examples used in
the subsequent chapters. However, we do not formally introduce the use of GAMS
or other mathematical programming software. Interested readers are referred to a
number of texts that introduce the use of mathematical programming languages.
For instance, Brook et al. [9] provide an encyclopedic tome on the use of GAMS.
However, Chapter 2 of this user guide provides an introduction to the major features
of the software package. Fourer et al. [15] similarly provide an introduction to the
use of the AMPL programming language. Similar resources exist for AIMMS [23],
JuliaOpt [18], and other mathematical programming languages.
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Chapter 2
Linear Optimization

In this chapter we consider linear programming problems (LPPs). We show the prac-
tical significance of LPPs through a number of energy-related examples, providing a
precise formulation for such problems. We then analyze the geometric and algebraic
features of generic LPPs, using some of the energy-related examples as specific cases.
We then describe a well known solution algorithm, which is based on the algebraic
features of LPPs, show how to perform a sensitivity analysis, and provide and discuss
the dual form of an LPP.We finally conclude with a number of practical observations
and end-of-chapter exercises.

2.1 Motivating Examples

This introductory section provides a number of energy-related motivating examples
for the use of linear optimization. It illustrates that optimization is an everyday
endeavor.

2.1.1 Electricity-Production Problem

An electricity producer operates two production facilities that have capacities of 12
and 16 units per hour, respectively. This producer sells the electricity produced at
$1 per unit per hour. The two production facilities share a cooling system that restricts
their operation, from above and below. More specifically, the sum of the hourly
output from facility 2 and twice the hourly output of facility 1 must be at least
8 units. Moreover, the sum of the hourly output from facility 2 and two-thirds of the
hourly output from facility 1 must be no more than 18 units. The producer wishes to

© Springer International Publishing AG 2017
R. Sioshansi and A.J. Conejo, Optimization in Engineering,
Springer Optimization and Its Applications 120, DOI 10.1007/978-3-319-56769-3_2
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determine hourly production from the two facilities to maximize total revenues from
energy sales.

To formulate this and any optimization problem, there are three basic problem
elements that must be identified. The first is the decision variables, which represent
the decisions being made in the problem. In essence, the decision variables represent
the elements of the system beingmodeled that are under the decisionmaker’s control,
in the sense that their values can be changed. This should be contrasted with problem
data or parameters, which are fixed and cannot be changed by the decision maker.
In the context of our electricity-production problem, the decisions being made are
how many units to produce from each production facility in each hour. We denote
these decisions by the two variables, x1 and x2, being cognizant of what units these
production decisions are being measured in.

The second element of an optimization problem is the objective function. The
objective function is the metric upon which the decision variables are chosen.
Depending on the problem context, the objective is either being minimized or max-
imized. An optimization problem will often be referred to as either a minimization
or maximization problem, depending on what ‘direction’ the objective function is
being optimized in. An important property of an LPP is that the objective function
must be linear in the decision variables. In the electric-production problem, we are
told that the objective is to maximize total revenues. Because the two production
facilities sell their outputs, which are represented by x1 and x2, at a unit price of
$1 per unit per hour, the objective function can be written as:

max
x1,x2

1x1 + 1x2.

We typically write the decision variables underneath the ‘min’ or ‘max’ operator in
the objective function, tomake it easy for anyone to knowwhat the problem variables
are.

The final problem element is any constraint. The constraints indicate what, if
any, restrictions there are on the decision variables. Most constraints are given in a
problem’s description. For instance,we are told that the two facilities have production
limits of 12 and 16 units per hour. We can express these restrictions as the two
constraints:

x1 ≤ 12,

and:
x2 ≤ 16.

We are also told that there are upper and lower limits imposed by the shared cooling
system. These restrictions can be expressed mathematically as:

2

3
x1 + x2 ≤ 18,

and:



2.1 Motivating Examples 19

2x1 + x2 ≥ 8.

In addition to these four explicit constraints, we know that it is physically impossi-
ble for either facility to produce a negative amount of electricity. Although this is
not given as an explicit restriction in the problem description, we must include the
following two non-negativity constraints:

x1, x2 ≥ 0,

to complete the problem formulation.
Taking all of these together, the problem formulation can be written compactly

as:

max
x1,x2

z = x1 + x2 (2.1)

s.t.
2

3
x1 + x2 ≤ 18 (2.2)

2x1 + x2 ≥ 8 (2.3)

x1 ≤ 12 (2.4)

x2 ≤ 16 (2.5)

x1, x2 ≥ 0. (2.6)

The z in (2.1) represents the objective function value. The abbreviation ‘s.t.’ stands
for ‘subject to,’ and denotes that the following lines have problem constraints. The
total set of constraints (2.2)–(2.6) define the problem’s feasible region or feasible set.
The feasible region is the set of values that the decision variables can take and satisfy
the problem constraints. Importantly, it should be clear that an optimal solution of the
problem must satisfy the constraints, meaning it must belong to the feasible region.

All of the constraints in an LPP must be one of three types: (i) less-than-or-equal-
to inequalities, (ii) greater-than-or-equal-to inequalities, or (iii) equalities. Moreover,
all of the constraints of an LPP must be linear in the decision variables. No other
constraint types can be used in anLPP. Constraints (2.2), (2.4), and (2.5) are examples
of less-than-or-equal-to inequalities while constraints (2.3) and (2.6) are examples
of greater-than-or-equal-to constraints. This problem does not include any equality
constraints, however, the Natural Gas-Transportation Problem, which is introduced
in Section 2.1.2, does.

It is also important to stress that LPPs cannot include any strict inequality con-
straints. That is to say, each inequality constraint must either have a ‘≤’ or ‘≥’ in it
and cannot have a ‘<’ or ‘>.’ The reason for this is that a strict inequality can give
us an LPP that does not have a well defined optimal solution. To see a very simple
example of this, consider the following optimization problem with a single variable,
which we denote as x :
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min
x

z = x

s.t. x > 0.

Examining this problem should reveal that it is impossible to find an optimal value
for x . This is because for any strictly positive value of x , regardless of how close to
0 it is, x/2 will also be feasible and give a slightly smaller objective-function value.
This simple example illustrates why we do not allow strict inequality constraints in
LPPs.

If a problem does require a strict inequality, we can usually approximate it using a
weak inequality based onphysical realities of the systembeingmodeled. For instance,
suppose that in the Electricity-Production Problem we are told that facility 1 must
produce a strictly positive amount of electricity. This constraint would take the form:

x > 0, (2.7)

which cannot be included in an LPP. Suppose that the control system on the facility
cannot realistically allow a production level less than 0.0001 units. Then, we can
instead substitute strict inequality (2.7) with:

x ≥ 0.0001,

which is a weak inequality that can be included in an LPP.
Figure 2.1 shows a geometrical representation of the Electricity-Production Prob-

lem. The two axes represent different values for the two decision variables. The
boundary defined by each constraint is given by a blue line and the two small
arrows at the end of each line indicate which side of the line satisfies the con-
straint. For instance, the blue line that goes through the points (x1, x2) = (0, 8) and
(x1, x2) = (4, 0) defines the boundary of constraint (2.3) and the arrows indicate that
points above and to the right of this line satisfy constraint (2.3).

For a problem that has more than two dimensions (meaning that it has more than
two decision variables) the boundary of each constraint defines a hyperplane. A
hyperplane is simply a higher-dimensional analogue to a line. The set of points that
satisfies an inequality constraint in more than two dimensions is called a halfspace.

The feasible region of the Electricity-Production Problem is the interior of a poly-
gon. For problems that have more than two dimensions the feasible region becomes
a polytope. A polytope is simply a higher-dimensional analogue to a polygon. An
important property of LPPs is that because the problem constraints are all linear in the
decision variables, the feasible region is always a polytope. It is important to stress,
however, that the polytope is not necessarily bounded, as the one for the Electricity-
Production Problem is. That is to say, for some problems there may be a direction
in which the decision variables can keep increasing or decreasing without any limit.
The implications of having a feasible region that is not bounded are discussed later
in Section 2.3.1. The feasible region of the Electricity-Production Problem has six
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Fig. 2.1 Geometrical
representation of the
Electricity-Production
Problem

corners, which are (4, 0), (12, 0), (12, 10), (3, 16), (0, 16), and (0, 8). The corners
of a polytope are often called vertices or extreme points.

The objective function is represented by its contour plot. The contour plot rep-
resents sets of values for the decision variables that give the same objective function
value. The contour plot for the Electricity-Production Problem is represented by the
parallel red lines in Figure 2.1. The red arrow that runs perpendicular to the red lines
indicates the direction in which the objective function is increasing. An important
property of LPPs is that because the objective function is linear in the decision vari-
ables, the contour plot is always parallel lines (for problems that have more than
two dimensions, the contour plot is parallel hyperplanes) and the objective is always
increasing/decreasing in the same direction that runs perpendicular to the contour
plot.

The solution of this problem is easily obtained by inspecting Figure 2.1: the point
in the feasible region that corresponds with the contour line with the highest value
is vertex (12, 10). Thus, vertex (12, 10) is the optimal solution with an objective-
function value of 22. We typically identify an optimal solution using stars, meaning
that we write (x∗

1 , x
∗
2 ) = (12, 10) and z∗ = 22.

It is finally worth noting that the Electricity-Production Problem is a simplified
example of what is known as a production-scheduling problem.

2.1.2 Natural Gas-Transportation Problem

A natural gas producer owns two gas fields and serves two markets. Table 2.1 sum-
marizes the capacity of each field and Table 2.2 gives the demand of each market,
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which must be satisfied exactly. Finally, Table 2.3 summarizes the per-unit cost of
transporting gas from each field to each market. The company would like to deter-
mine how to transport natural gas from the two fields to the two markets to minimize
its total transportation cost.

There are four decision variables in this problem, which are:

• x1,1: units of natural gas transported from field 1 to market 1;
• x1,2: units of natural gas transported from field 1 to market 2;
• x2,1: units of natural gas transported from field 2 to market 1; and
• x2,2: units of natural gas transported from field 2 to market 2.

Table 2.1 Capacity of each
gas field in the Natural
Gas-Transportation Problem

Field Capacity [units]

1 7

2 12

Table 2.2 Demand of each
market in the Natural
Gas-Transportation Problem

Market Demand [units]

1 10

2 8

Table 2.3 Transportation
cost between each gas field
and market [$/unit] in the
Natural Gas-Transportation
Problem

Market 1 Market 2

Field 1 5 4

Field 2 3 6

For many problems, it can be cumbersome to list all of the problem variables explic-
itly. To shorten the variable definition, we can introduce index sets, over which the
variables are defined. In this problem, the variables are indexed by two sets. The first
is the field from which the gas is being transported and the second index set is the
market to which it is being shipped. If we let i denote the index for the field and j
the index for the market, we can more compactly define our decision variables as
xi, j , which represents the units of natural gas transported from field i to market j . Of
course when defining the decision variables this way we know that i = 1, 2 (because
there are two fields) and j = 1, 2 (because there are two markets). However, typi-
cally the two (or more) index sets over which a variable is defined do not necessarily
have the same number of elements, as we have in this example.

The objective of this problem is to minimize total transportation cost, which is
given by:

min
x

5x1,1 + 4x1,2 + 3x2,1 + 6x2,2,
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where we have listed the decision variables compactly as x , and have that x =
(x1,1, x1,2, x2,1, x2,2).

This problem has three types of constraints. The first are capacity limits on how
much can be produced by each field:

x1,1 + x1,2 ≤ 7,

and:
x2,1 + x2,2 ≤ 12.

The second are constraints that ensure that the demand in each market is exactly
satisfied:

x1,1 + x2,1 = 10,

and:
x1,2 + x2,2 = 8.

Note that these demand conditions are equality constraints. We finally need non-
negativity constraints:

x1,1, x1,2, x2,1, x2,2 ≥ 0.

The non-negativity constraints can be written more compactly either as:

xi, j ≥ 0,∀ i = 1, 2; j = 1, 2;

or as:
x ≥ 0.

Taking all of these elements together, the entire LPP can be written as:

min
x

z = 5x1,1 + 4x1,2 + 3x2,1 + 6x2,2

s.t. x1,1 + x1,2 ≤ 7

x2,1 + x2,2 ≤ 12

x1,1 + x2,1 = 10 (2.8)

x1,2 + x2,2 = 8 (2.9)

xi, j ≥ 0,∀ i = 1, 2; j = 1, 2.

The Natural Gas-Transportation Problem is a simplified instance of a transporta-
tion problem.
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2.1.3 Gasoline-Mixture Problem

Agasoline refiner needs to produce a cost-minimizing blend of ethanol and traditional
gasoline. The blend needs to have at least 65% burning efficiency and a pollution
level no greater than 85%. The burning efficiency, pollution level, and per-ton cost
of ethanol and traditional gasoline are given in Table 2.4.

Table 2.4 Burning efficiency, pollution level, and per-ton cost of ethanol and traditional gasoline
in the Gasoline-Mixture Problem

Product Efficiency [%] Pollution [%] Cost [$/ton]

Gasoline 70 90 200

Ethanol 60 80 220

To formulate this problem, we model the refiner as determining a least-cost mix-
ture of gasoline and ethanol to produce one ton of blend. The resulting optimal
mixture can then be scaled up or down by the refiner depending on how much blend
it actuallywants to produce. There are two decision variables in this problem—x1 and
x2 denote how many tons of gasoline and ethanol are used in the blend, respectively.

The objective is to minimize the cost of the blend:

min
x

200x1 + 220x2.

There are three sets of problem constraints. The first ensures that the blend meets
the minimum burning efficiency level:

0.7x1 + 0.6x2 ≥ 0.65,

and the maximum pollution level:

0.9x1 + 0.8x2 ≤ 0.85.

Next we must ensure that we produce one ton of the blend:

x1 + x2 = 1.

Finally, the decision variables must be non-negative, because it is physically impos-
sible to have negative tons of ethanol or gasoline in the blend:

x1, x2 ≥ 0.

Putting all of the problem elements together, the LPP can be written as:
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min
x

z = 200x1 + 220x2

s.t. 0.7x1 + 0.6x2 ≥ 0.65

0.9x1 + 0.8x2 ≤ 0.85

x1 + x2 = 1

x1, x2 ≥ 0.

The Gasoline-Mixture Problem is a simplified example of a commodity-mixing
problem.

2.1.4 Electricity-Dispatch Problem

The electric power network in Figure 2.2 includes two production plants, at nodes 1
and 2, and demand at node 3. The production plants at nodes 1 and 2 have production
capacities of 6 and 8 units, respectively, and their per-unit production costs are $1
and $2, respectively. There is demand for 10 units of energy at node 3.

Fig. 2.2 Electric power
network in the
Electricity-Dispatch Problem

Demand

Cheap unit Expensive unit

1 2

3

θ1 θ2

Θ3=0

The operation of the network is governed by differences in the electrical heights
of the three nodes. More specifically, the flow of electricity through any line is
proportional to the difference of electrical heights of the initial and final nodes of
the line. This means that the amount of energy produced at node 1 is equal to the
difference between the electrical heights of nodes 1 and 2 plus the difference between
the electrical heights of nodes 1 and 3. Electricity produced at node 2 is similarly
equal to the difference between the electrical heights of nodes 2 and 1 plus the
difference between the electrical heights of nodes 2 and 3. Finally, the electricity
consumed at node 3 is defined as the difference between the electrical-heights of
nodes 1 and 3 plus the difference between the electrical heights of nodes 2 and 3 (the
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electrical-height differences are opposite to those for nodes 1 and 2 because energy
is consumed at node 3 as opposed to being produced).

The network operator seeks to produce electricity at the plants and operate the
network in such a way to serve the demand at node 3 at minimum cost.

This problem has five decision variables. We let x1 and x2 denote the units of
electricity produced at nodes 1 and 2, respectively. We also let θ1, θ2, and θ3 denote
the electrical heights of the three nodes.

The objective is to minimize total production cost:

min
x,θ

1x1 + 2x2.

There are three sets of problem constraints. The first defines the amount produced
and consumed at each node in terms of the electrical-height differences. The node 1
constraint is:

x1 = (θ1 − θ2) + (θ1 − θ3),

the node 2 constraint is:

x2 = (θ2 − θ1) + (θ2 − θ3),

and the node 3 constraint is:

10 = (θ1 − θ3) + (θ2 − θ3).

As noted above, the electrical-height differences defining consumption at node 3 is
opposite to the height differences defining production at nodes 1 and 2. The second
set of constraints imposes the production limits at the two nodes:

x1 ≤ 6,

and:
x2 ≤ 8.

We finally need non-negativity for the production variables only:

x1, x2 ≥ 0.

The θ ’s can take negative values, because they are used to define the relative electrical
heights of the three nodes.

This LPP can be slightly simplified. This is because the production and consump-
tion levels at the three nodes are defined in terms of electrical height differences.
As such, we can arbitrarily fix one of the three θ ’s and only keep the other two as
variables. If we fix θ3 = 0, the LPP is further simplified to:
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min
x,θ

z = x1 + 2x2

s.t. x1 = 2θ1 − θ2

x2 = 2θ2 − θ1

10 = θ1 + θ2

x1 ≤ 6

x2 ≤ 8

x1, x2 ≥ 0.

The Electricity-Dispatch Problem is a simplified instance of a scheduling problem
with network constraints.

2.2 Forms of Linear Optimization Problems

As noted before, linear optimization problems vary in terms of a number of attributes.
The objective can either be aminimization ormaximization.Moreover, it can include
a mixture of less-than-or-equal-to, greater-than-or-equal-to, or equality constraints.
In this section we first give the general form of a linear optimization problem. We
then discuss two important special forms that any linear optimization problem can
be converted to: standard and canonical forms. These forms are used later to solve
and study algebraic features of linear optimization problems. In addition to introduc-
ing these special forms, we discuss how to convert any generic linear optimization
problem into these two forms.

2.2.1 General Form of Linear Optimization Problems

As noted in Section 2.1.1, linear optimization problems have a very important defin-
ing feature. This feature is that the objective function and all of the constraints are
linear in all of the decision variables. Because LPPs have this special feature, we can
write them generically as:

min
x1,...,xn

n∑

i=1

ci xi (2.10)

s.t.
n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me (2.11)

n∑

i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg (2.12)
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n∑

i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml . (2.13)

This generic problem has n decision variables: x1, . . . , xn . The ci ’s in the objec-
tive function and the Ae

j,i ’s, A
g
j,i ’s, A

l
j,i ’s, b

e
j ’s, b

g
j ’s, and blj ’s in the constraints are

constants. Thus the objective function and the constraints are linear in the decision
variables, because each decision variable is multiplied by a constant coefficient in the
objective function and in each constraint and those products are summed together.

Although this genericLPP iswritten as aminimizationproblem,wecouldhave just
as easily written it as a maximization problem. This generic problem hasme equality,
mg greater-than-or-equal-to, and ml less-than-or-equal-to constraints. This means
that there are m = me + mg + ml constraints in total. An LPP does not have to
include all of the three types of constraints. For instance, the Electricity-Production
Problem,which is introduced in Section 2.1.1, does not have any equality constraints,
meaning that me = 0 for that particular problem.

As noted in Section 2.1.1, LPPs can only includeweak inequalities. Strict inequal-
ities cannot be used, because they typically raise technical issues. If a problem calls
for the use of a strict inequality, for instance of the form:

n∑

i=1

A j,i yi > b j ,

this can be approximated by introducing a sufficiently small positive constant, ε j ,
and replacing the strict inequality with a weak inequality of the form:

n∑

i=1

A j,i yi ≥ b j + ε j .

Oftentimes, the physical properties of the system being modeled may allow for such
a value of ε j to be chosen (we discuss one example of such a physical property in
Section 2.1.1). If not, then onemust simply choose a very small value for ε j to ensure
that the final problem solution is not drastically affected by it. A strictly less-than
inequality of the form:

n∑

i=1

A j,i yi < b j ,

can be similarly approximated by replacing it with a weak inequality of the form:

n∑

i=1

A j,i yi ≤ b j − ε j ,

where ε j is again a sufficiently small positive constant.
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2.2.2 Standard and Canonical Forms of Linear Optimization
Problems

Although any LPP can be written in the generic form just introduced, we occasion-
ally want to write a problem in one of two more tailored forms. These forms—the
so-called standard and canonical forms—are used because they make solving or
analyzing a linear optimization problem more straightforward. We introduce each of
these forms in turn and then discuss how to convert any generic LPP into them.

2.2.2.1 Standard Form of Linear Optimization Problems

The standard form of a linear optimization problemhas three defining features. First,
the objective function is aminimization. The other two properties are that the problem
has two types of constraints. The first types are non-negativity constraints, which
require all of the decision variables to be non-negative. The other types are structural
constraints, which are any constraints other than non-negativity constraints. All of
the structural constraints of a linear optimization problem in standard form must be
equality constraints.

Converting a generic linear optimization problem to standard form requires several
steps. We begin with the decision variables. Any decision variables that are non-
negative in the original generic problem are already in the correct form for the
standard form of the problem. If a decision variable has a non-positivity restriction
of the form:

y ≤ 0,

it can be replaced throughout the LPP with a new variable, ỹ, which is defined as:

ỹ = −y.

Clearly, the newvariablewould have a non-negativity restriction, because the original
non-positivity constraint:

y ≤ 0,

could be rewritten as:
−y ≥ 0,

by multiplying the constraint through by −1. We would then substitute ỹ for −y in
the left-hand side of this constraint, which gives:

ỹ ≥ 0.

If a variable is unrestricted in sign, a similar type of substitution can be done.
More specifically, suppose a variable, y, in a generic LPP is unrestricted in sign. We
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can then introduce two new non-negative variables, y− and y+, and define them as:

y+ − y− = y.

We then substitute y with y+ − y− throughout the LPP and also add two non-
negativity constraints:

y−, y+ ≥ 0.

Note that because y is defined as the difference between two non-negative variables,
y can be made positive or negative depending on which of y− or y+ is bigger (or, if
we want y = 0, we would have y− = y+).

After all of the variables have been made non-negative, we next turn our attention
to the structural constraints. If a structural constraint in a generic LPP is an equality,
then it is already in the correct format for the standard form LPP and no further work
is needed. If, however, we have a less-than-or-equal-to constraint of the form:

n∑

i=1

Al
j,i xi ≤ blj ,

we can convert this to an equality constraint by introducing a non-negative slack
variable, which we will denote as s j . With this slack variable, we can replace the
less-than-or-equal-to constraint with the equivalent equality constraint:

n∑

i=1

Al
j,i xi + s j = blj ,

and also add the non-negativity constraint:

s j ≥ 0.

A greater-than-or-equal-to constraint of the form:

n∑

i=1

Ag
j,i xi ≥ bgj ,

can be similarly converted to an equality constraint by introducing a non-negative
surplus variable, which we denote r j . With this surplus variable, we can replace the
greater-than-or-equal-to constraint with the equivalent equality constraint:

n∑

i=1

Ag
j,i xi − r j = bgj .

We must also add the non-negativity constraint:
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r j ≥ 0.

The slack and surplus variables introduced to convert inequalities into equalities can
be interpreted as measuring the difference between the left- and right-hand sides of
the original inequality constraints.

The final step to convert a generic LPP to standard form is to ensure that the
objective function is a minimization. If the objective of the generic problem is a
minimization, then no further work is needed. Otherwise, if the objective is maxi-
mization, it can be converted by multiplying the objective through by −1.

We demonstrate the use of these steps to convert a generic LPP into standard form
with the following example.

Example 2.1 Consider the following LPP:

max
x

3x1 + 5x2 − 3x3 + 1.3x4 − x5

s.t. x1 + x2 − 4x4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5

x1, x2 ≥ 0

x4 ≤ 0.

To convert this generic LPP into standard form, we begin by first noting that both
x1 and x2 are non-negative, thus no substitutions have to be made for these variables.
The variable x4 is non-positive, thuswe define a newvariable, x̃4 = −x4. Substituting
x̃4 for x4 in the LPP gives:

max
x

3x1 + 5x2 − 3x3 − 1.3x̃4 − x5

s.t. x1 + x2 + 4x̃4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5

x1, x2, x̃4 ≥ 0.

The signs of the coefficients in the objective function and first constraint on x̃4 have
been changed, because we have defined x̃4 as being equal to −x4. Next, we note that
because x3 and x5 are unrestricted in sign, we must introduce four new non-negative
variables, x−

3 , x
+
3 , x

−
5 , and x+

3 , and define them as:

x+
3 − x−

3 = x3,

and:
x+
5 − x−

5 = x5.
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We make these substitutions for x3 and x5 and add the non-negativity constraints,
which gives:

max
x

3x1 + 5x2 − 3(x+
3 − x−

3 ) − 1.3x̃4 − (x+
5 − x−

5 )

s.t. x1 + x2 + 4x̃4 ≤ 10

x2 − 0.5(x+
3 − x−

3 ) + (x+
5 − x−

5 ) = −1

(x+
3 − x−

3 ) ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0.

Next, we must add a non-negative slack and subtract a non-negative surplus vari-
able, which we call s1 and r1, to and from structural constraints 1 and 3, respectively.
This gives:

max
x,s,r

3x1 + 5x2 − 3x+
3 + 3x−

3 − 1.3x̃4 − x+
5 + x−

5

s.t. x1 + x2 + 4x̃4 + s1 = 10

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 = −1

x+
3 − x−

3 − r1 = 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 , s1, r1 ≥ 0.

Finally, we convert the objective function to a minimization, by multiplying it
through by −1, giving:

min
x,s,r

− 3x1 − 5x2 + 3x+
3 − 3x−

3 + 1.3x̃4 + x+
5 − x−

5

s.t. x1 + x2 + 4x̃4 + s1 = 10

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 = −1

x+
3 − x−

3 − r1 = 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 , s1, r1 ≥ 0,

which is the standard form of our starting LPP. ��
Example 2.2 Consider the Gasoline-Mixture Problem, which is introduced in
Section 2.1.3. This problem is formulated generically as:

min
x

200x1 + 220x2

s.t. 0.7x1 + 0.6x2 ≥ 0.65

0.9x1 + 0.8x2 ≤ 0.85

x1 + x2 = 1

x1, x2 ≥ 0.
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To convert this to standard form, we simply need to introduce one non-negative
surplus variable, r1, and a non-negative slack variable, s1. The standard form of the
LPP would then be:

min
x,r,s

200x1 + 220x2

s.t. 0.7x1 + 0.6x2 − r1 = 0.65

0.9x1 + 0.8x2 + s1 = 0.85

x1 + x2 = 1

x1, x2, r1, s1 ≥ 0. ��
An LPP in standard form can be generically written as:

min
x1,...,xn

n∑

i=1

ci xi

s.t.
n∑

i=1

A j,i xi = b j , ∀ j = 1, . . . ,m

xi ≥ 0, ∀ i = 1, . . . , n.

We can write the generic standard form even more compactly. This is done by first
defining a vector of objective-function coefficients:

c =

⎛

⎜⎜⎜⎝

c1
c2
...

cn

⎞

⎟⎟⎟⎠ ,

a vector of decision variables:

x =

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠ ,

a matrix of constraint coefficients:

A =

⎡

⎢⎢⎢⎣

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

⎤

⎥⎥⎥⎦ ,

and a vector of constraint right-hand-side constants:



34 2 Linear Optimization

b =

⎛

⎜⎜⎜⎝

b1
b2
...

bm

⎞

⎟⎟⎟⎠ .

The standard-form LPP is then compactly written as:

min
x

c�x (2.14)

s.t. Ax = b (2.15)

x ≥ 0. (2.16)

2.2.2.2 Canonical Form of Linear Optimization Problems

The canonical form of a linear optimization problem has: (i) an objective function
that is a minimization, (ii) greater-than-or-equal-to structural constraints, and (iii)
non-negative decision variables. Converting a generic linear optimization problem
to standard form requires several steps. Ensuring that the decision variables are non-
negative and that the objective is a minimization are handled in the same manner as
they are in converting an LPP to standard form.

As for the structural constraints, any constraints that are greater-than-or-equal-to
require no further work. A less-than-or-equal-to constraint of the form:

n∑

i=1

Al
j,i xi ≤ blj ,

can be converted to a greater-than-or-equal-to constraint by multiplying both sides
by −1. This converts the constraint to:

−
n∑

i=1

Al
j,i xi ≥ −blj .

Finally, an equality constraint of the form:

n∑

i=1

Ae
j,i xi = bej ,

can be replaced by two inequalities of the form:

n∑

i=1

Ae
j,i xi ≤ bej ,



2.2 Forms of Linear Optimization Problems 35

and:
n∑

i=1

Ae
j,i xi ≥ bej .

We can then convert the first inequality constraint into a greater-than-or-equal-to
constraint by multiplying both sides by −1. Thus, the equality constraint is replaced
with:

−
n∑

i=1

Ae
j,i xi ≥ −bej ,

and:
n∑

i=1

Ae
j,i xi ≥ bej .

It should be noted that this transformation of an equality constraint when con-
verting to canonical form can create numerical issues when solving the LPP. The
reason for this is that the two inequalities ‘fight’ one another to bring the solution
to its corresponding ‘side’ of bej . Because a feasible solution is right in the middle,
not in either of these two sides, this ‘fight’ may result in a sluggish back-and-forth
progression to the middle, where a feasible solution lies.

Example 2.3 Recall the generic LPP, which is introduced in Example 2.1:

max
x

3x1 + 5x2 − 3x3 + 1.3x4 − x5

s.t. x1 + x2 − 4x4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5

x1, x2 ≥ 0

x4 ≤ 0.

To convert this LPP to canonical form, we first undertake the same steps to have
all of the decision variables non-negative, which gives:

max
x

3x1 + 5x2 − 3x+
3 + 3x−

3 − 1.3x̃4 − x+
5 + x−

5

s.t. x1 + x2 + 4x̃4 ≤ 10

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 = −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0.

We next convert the first structural inequality into a greater-than-or-equal-to by mul-
tiplying both sides by −1, which gives:
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max
x

3x1 + 5x2 − 3x+
3 + 3x−

3 − 1.3x̃4 − x+
5 + x−

5

s.t. − x1 − x2 − 4x̃4 ≥ −10

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 = −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0.

We then replace the second structural constraint, which is an equality, with two
inequalities, giving:

max
x

3x1 + 5x2 − 3x+
3 + 3x−

3 − 1.3x̃4 − x+
5 + x−

5

s.t. − x1 − x2 − 4x̃4 ≥ −10

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 ≤ −1

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 ≥ −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0.

We convert the first of these two into a greater-than-or-equal-to by multiplying it
through by −1, giving:

max
x

3x1 + 5x2 − 3x+
3 + 3x−

3 − 1.3x̃4 − x+
5 + x−

5

s.t. − x1 − x2 − 4x̃4 ≥ −10

− x2 + 0.5x+
3 − 0.5x−

3 − x+
5 + x−

5 ≥ 1

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 ≥ −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0.

We finally convert the objective function into a minimization by multiplying through
by −1, which gives:

min
x

− 3x1 − 5x2 + 3x+
3 − 3x−

3 + 1.3x̃4 + x+
5 − x−

5

s.t. − x1 − x2 − 4x̃4 ≥ −10

− x2 + 0.5x+
3 − 0.5x−

3 − x+
5 + x−

5 ≥ 1

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 ≥ −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0,

which is the canonical form of the starting LPP. ��
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Example 2.4 Consider the Electricity-Production Problem, which is introduced in
Section 2.1.1. The generic formulation of this problem is:

max
x1,x2

x1 + x2

s.t.
2

3
x1 + x2 ≤ 18

2x1 + x2 ≥ 8

x1 ≤ 12

x2 ≤ 16

x1, x2 ≥ 0.

To convert this problem to canonical form, we must multiply the objective function
and the first, third, and fourth structural constraints through by −1. This gives:

min
x1,x2

− x1 − x2

s.t. − 2

3
x1 − x2 ≥ −18

2x1 + x2 ≥ 8

− x1 ≥ −12

− x2 ≥ −16

x1, x2 ≥ 0,

as the canonical form. ��
Example 2.5 Consider theNaturalGas-Transportation Problem,which is introduced
in Section 2.1.2. This problem is generically formulated as:

min
x

z = 5x1,1 + 4x1,2 + 3x2,1 + 6x2,2

s.t. x1,1 + x1,2 ≤ 7

x2,1 + x2,2 ≤ 12

x1,1 + x2,1 = 10

x1,2 + x2,2 = 8

xi, j ≥ 0,∀ i = 1, 2; j = 1, 2.

To convert this to canonical form, both sides of the first two inequalities must be
multiplied by −1. Moreover, the two equality constraints must be replaced with two
inequalities, one of each of which is multiplied by −1 to convert all of the structural
constraints into greater-than-or-equal-to constraints. This gives:
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min
x

z = 5x1,1 + 4x1,2 + 3x2,1 + 6x2,2

s.t. − x1,1 − x1,2 ≥ −7

− x2,1 − x2,2 ≥ −12

− x1,1 − x2,1 ≥ −10

x1,1 + x2,1 ≥ 10

− x1,2 − x2,2 ≥ −8

x1,2 + x2,2 ≥ 8

xi, j ≥ 0,∀ i = 1, 2; j = 1, 2,

as the canonical form of this LPP. ��
The canonical form of an LPP can be written generically as:

min
x1,...,xn

n∑

i=1

ci xi

s.t.
n∑

i=1

A j,i xi ≥ b j , ∀ j = 1, . . . ,m

xi ≥ 0, ∀ i = 1, . . . , n.

This can also be written more compactly as:

min
x

c�x (2.17)

s.t. Ax ≥ b (2.18)

x ≥ 0, (2.19)

where c, x , A, and b maintain the same definitions as in the compact standard-form
LPP, given by (2.14)–(2.16).

2.3 Basic Feasible Solutions and Optimality

This section provides both geometric and algebraic analyses of the feasible region and
objective function of linear optimization problems. Based on the geometric analy-
sis, we draw some conclusions regarding the geometrical properties of an optimal
solution of a linear optimization problem. We then use an algebraic analysis of the
constraints of a linear optimization problem to determine away to characterize points
that may be optimal solutions of an LPP. This algebraic analysis is the backbone of
the algorithm used to solve LPPs, which is later introduced in Section 2.5.
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2.3.1 Geometric View of Linear Optimization Problems

Recall the Electricity-Production Problem, which is introduced in Section 2.1.1. This
problem is formulated as:

max
x1,x2

z = x1 + x2

s.t.
2

3
x1 + x2 ≤ 18

2x1 + x2 ≥ 8

x1 ≤ 12

x2 ≤ 16

x1, x2 ≥ 0.

Figure 2.1 shows the feasible region of this problem and the contour plot of its
objective function.

From the discussion in Section 2.1.1, we know that linear optimization prob-
lems have two important geometric properties, which are due to the linearity of their
constraints and objective function. The first is that the feasible region of a linear
optimization problem is always a polytope, which is the multidimensional analogue
of a polygon. We also see from Figure 2.1 that the contour plot of the objective
function of an LPP is always a set of parallel hyperplanes, which are the multidi-
mensional analogue of lines. Moreover, the objective function is always increasing
or decreasing in the same direction, which is perpendicular to the contours.

This latter geometric property of LPPs, that the contours are parallel and always
increasingor decreasing in the samedirection, implies thatwefindanoptimal solution
by moving as far as possible within the feasible region until hitting a boundary. Put
another way, we always find an optimal solution to a linear optimization problem
on the boundary of its feasible region. The first geometric property of LPPs, that the
feasible region is a polytope, allows us tomake an even stronger statement about their
optimal solutions. Because the feasible set of an LPP is a polytope, we can always
find a vertex or extreme point of the feasible region that is optimal. This is, indeed,
one way of stating the fundamental theorem of linear optimization. Figure 2.3 shows
the feasible region of the Electricity-Production Problem and identifies its extreme
points. We know from the discussion in Section 2.1.1 that (x∗

1 , x
∗
2 ) = (12, 10) is the

optimal extreme point of this problem.
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Fig. 2.3 Feasible region of
Electricity-Production
Problem and its extreme
points

There are also some ‘pathological’ cases that may arise with an LPP. The first is
that all of the points along a line or hyperplane defining a boundary of the feasible are
optimal solutions. This occurs if the contour lines of the objective function are parallel
to that side of the polytope. We call this a case of multiple optimal solutions. To see
how this happens, suppose that the objective function of the Electricity-Production
Problem is changed to:

max
x1,x2

z = 2

3
x1 + x2.

Figure 2.4 shows the contour plot of the objective function in this case. Note that all
of the points highlighted in purple are now optimal solutions of the LPP.

Fig. 2.4 Geometrical
representation of the
Electricity-Production
Problem with 2

3 x1 + x2 as its
objective function
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Another issue arises if the feasible region is not bounded. Recall from the discus-
sion in Section 2.1.1 that the feasible region of an optimization problem does not
necessarily have to be bounded. The feasible region of the Electricity-Production
Problem is bounded, as illustrated in Figure 2.1. A linear optimization problem with
a bounded feasible region is guaranteed to have an optimal solution. Otherwise, if
the feasible region is unbounded, the problem may have an optimal solution or it
may be possible to have the objective increase or decrease without limit.

To understand howanLPPwith an unbounded feasible regionmayhave an optimal
solution, suppose that we remove constraints (2.3) and (2.6) from the Electricity-
Production Problem. The LPP would then be:

max
x1,x2

z = x1 + x2

s.t.
2

3
x1 + x2 ≤ 18

x1 ≤ 12

x2 ≤ 16.

Figure 2.5 shows the feasible region of the new LPP, which is indeed unbounded (we
can make both x1 and x2 go to −∞ without violating any of the constraints). Note,
however, that the same point, (x∗

1 , x
∗
2 ) = (12, 10), that is optimal in the original LPP

is optimal in the new problem as well. This is because the side of the polytope that
is unbounded is not the side in which the objective improves.

Fig. 2.5 Geometrical
representation of the
Electricity-Production
Problem with
constraints (2.3) and (2.6)
removed
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Consider, as an opposite example, if constraints (2.2) and (2.4) are removed from
the Electricity-Production Problem. Our LPP would then be:

max
x1,x2

z = x1 + x2

s.t. 2x1 + x2 ≥ 8

x2 ≤ 16

x1, x2 ≥ 0.

Figure 2.6 shows the feasible region of this LPP, which is also unbounded. Note that
there is an important distinction between this LPP and that shown in Figure 2.5. The
new LPP no longer has an optimal solution, because the objective function can be
made arbitrarily large without violating any of the constraints (we can make x1 go
to +∞ without violating any constraints, and doing so makes the objective function
go to +∞). This LPP is said to be unbounded.

An unbounded optimization problem is said to have an optimal objective function
value of either −∞ or +∞ (depending on whether the problem is a minimization
or maximization). Unbounded optimization problems are uncommon in practice,
because the physical and economic worlds are bounded. Thus, we do not study
unbounded problems in much detail, although we do discuss in Section 2.5.6 how to
determine analytically (as opposed to graphically) if an LPP is unbounded.

Fig. 2.6 Geometrical
representation of the
Electricity-Production
Problem with
constraints (2.2) and (2.4)
removed

Finally, we should stress that there are two notions of boundedness and unbound-
edness in the context of optimization. One is whether the feasible region of an LPP is
bounded or unbounded. This is a property of the constraints. The second is whether
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the problem is bounded or unbounded. An LPP must have an unbounded feasible
region for it to be unbounded. Moreover, the objective function must improve (either
increase or decrease, depending on whether we are considering a maximization or
minimization problem) in the direction that the feasible region is unbounded.

The final pathological case is one in which the feasible region is empty. In such a
case there are no feasible solutions that satisfy all of the constraints and we say that
such a problem is infeasible. To illustrate how a problem can be infeasible, suppose
that the Electricity-Production Problem is changed to:

max
x1,x2

z = x1 + x2

s.t.
2

3
x1 + x2 ≥ 18

2x1 + x2 ≤ 8

x1 ≤ 12

x2 ≤ 16

x1, x2 ≥ 0.

Figure 2.7 shows the feasible region of this LPP, which is indeed empty. It is empty
because there are no points that simultaneously satisfy the 2

3 x1 + x2 ≥ 18, 2x1 +
x2 ≤ 8, and x1 ≥ 0 constraints. These three constraints conflict with one another.

Fig. 2.7 Geometrical
representation of the
infeasible variant of the
Electricity-Production
Problem

In practice, an infeasible LPP may indicate that there are problem constraints
that are not properly specified. This is because the physical world is (normally)
feasible. For this reason, we do not pay particular attention to infeasible problems.
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An exception to this is if a hypothetical system is being modeled. For instance,
suppose that a system is being designed to meet certain criteria. If the resulting
model is infeasible, this may be an indication that the system cannot feasibly meet
the design criteria specified in the model constraints.

It should, finally, be noted that infeasibility is not caused by a single constraint.
Rather, it is caused by two or more constraints that conflict with each other. Thus,
when diagnosing the cause of infeasibility of a model, one must identify two or more
conflicting constraints.

2.3.2 Algebraic View of Linear Optimization Problems

We now focus our attention on bounded and feasible linear optimization problems.
Based on our discussion in Section 2.3.1, we note that every bounded and feasible
linear optimization problem has an extreme point that is an optimal solution. Thus,
we now work on determining if we can characterize extreme points algebraically, by
analyzing the constraints of the LPP.

To gain this insight, we transform the Electricity-Production Problem, which is
introduced in Section 2.1.1, into standard form, which is:

min
x

z = −x1 − x2

s.t.
2

3
x1 + x2 + x3 = 18

2x1 + x2 − x4 = 8

x1 + x5 = 12

x2 + x6 = 16

x1, x2, x3, x4, x5, x6 ≥ 0.

The standard form-version of this problem can be written more compactly in matrix
form as:

min
x

z = (−1 −1 0 0 0 0
)

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
(2.20)
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s.t.

⎡

⎢⎢⎣

2/3 1 1 0 0 0
2 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤

⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ (2.21)

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
≥

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (2.22)

Oneway to generate candidate points that may be feasible optimal solutions of the
LPP is to focus on the algebraic properties of structural equality constraints (2.21).
More specifically, we see that this is a system of four equations with six variables
that we are solving for. This means that if we fix the values of 6 − 4 = 2 vari-
ables, we can solve for the remaining variables using the structural equality con-
straints. Once we have solved the structural equality constraints, we then verify
whether the resulting values for x are all non-negative, which is the other constraint
in the standard-form LPP.

To make the algebra (i.e., the solution of the structural equalities) easier, we fix
the 6 − 4 = 2 variables equal to zero. Solutions that have this structure (i.e., setting
a subset of variables equal to zero and solving for the remaining variables using the
equality constraints) are called basic solutions. A solution that has this structure and
also satisfies the non-negativity constraint is called a basic feasible solution.

To illustrate how we find basic solutions, let us take the case in which we set
x1 and x2 equal to zero and solve for the remaining variables using the structural
equality constraints. In this case, constraint (2.21) becomes:

⎡

⎢⎢⎣

2/3 1 1 0 0 0
2 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤

⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ . (2.23)

Note, however, that because x1 and x2 are set equal to zero in equation (2.23), we
can actually ignore the first two columns of the matrix on the left-hand-side of the
equality. This is because all of the entries in those columns are multiplied by zero.
Thus, equation (2.23) can be further simplified to:
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⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

⎛

⎜⎜⎝

x3
x4
x5
x6

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ ,

which has the solution:

(x3, x4, x5, x6) = (18,−8, 12, 16).

This means that we have found a solution to the structural equality constraints, which
is:

(x1, x2, x3, x4, x5, x6) = (0, 0, 18,−8, 12, 16).

Because we found the values for x by first setting a subset of them equal to zero and
solving for the remainder in the equality constraints, this is a basic solution. Note
that because x4 = −8 is not non-negative, this is not a basic feasible solution but
rather a basic infeasible solution.

It is worth noting that whenever we find a basic solution, we solve a square
system of equations given by the structural equality constraints. This is because we
can neglect the columns of the coefficientmatrix that correspond to the variables fixed
equal to zero. For instance, if we fix x5 and x6 equal to zero in the standard-form
version of the Electricity-Production Problem, structural equality constraint (2.21)
becomes: ⎡

⎢⎢⎣

2/3 1 1 0
2 1 0 −1
1 0 0 0
0 1 0 0

⎤

⎥⎥⎦

⎛

⎜⎜⎝

x1
x2
x3
x4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ .

As a matter of terminology, the variables that are fixed equal to zero when solving
for a basic solution are called non-basic variables. The other variables, which are
solved for using the structural equality constraints, are called basic variables.

The number of basic variables that an LPP has is determined by the number of
structural equality constraints and the variables that its standard form has. This is
because some subset of the variables is set equal to zero to find a basic solution. The
standard formof theElectricity-ProductionProblemhas six variables and twoof them
must be chosen to be set equal to zero. This means that the Electricity-Production
Problem has: (

6
2

)
= 6!

2!(6 − 2)! = 15,

basic solutions.
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Table 2.5 lists the 15 basic solutions of the Electricity-Production Problem. Each
solution is characterized (in the second column of the table) by which variables are
basic. The third column of the table gives the values for the basic variables, which
are found by setting the non-basic variables equal to zero and solving the structural
equality constraints. Two of the basic solutions, numbers 7 and 12, are listed as
singular. What this means is that when the non-basic variables are fixed equal to
zero, the structural equality constraints do not have a solution. Put another way, when
we select the subset of columns of the coefficient matrix that defines the structural
constraints, that submatix is singular.We discuss the geometric interpretation of these
types of basic solutions later.

Table 2.5 Basic solutions of the Electricity-Production Problem

Solution # Basic Variables Basic-Variable Values Objective-Function Value x1 x2

1 1, 2, 3, 4 12, 16,−6, 32 basic infeasible solution

2 1, 2, 3, 5 −4, 16, 14/3, 16 basic infeasible solution

3 1, 2, 3, 6 12,−16, 26, 32 basic infeasible solution

4 1, 2, 4, 5 3, 16, 14, 9 −19 3 16

5 1, 2, 4, 6 12, 10, 26, 6 −22 12 10

6 1, 2, 5, 6 −15/2, 23, 39/2, −7 basic infeasible solution

7 1, 3, 4, 5 singular

8 1, 3, 4, 6 12, 10, 16, 16 −12 12 0

9 1, 3, 5, 6 4, 46/3, 8, 16 −4 4 0

10 1, 4, 5, 6 27, 46,−15, 16 basic infeasible solution

11 2, 3, 4, 5 16, 2, 8, 12 −16 0 16

12 2, 3, 4, 6 singular

13 2, 3, 5, 6 8, 10, 12, 8 −8 0 8

14 2, 4, 5, 6 18, 10, 12,−2 basic infeasible solution

15 3, 4, 5, 6 18,−8, 12, 16 basic infeasible solution

Table 2.5 also shows that some of the basic solutions, specifically solutions 1
through 3, 6, 10, 14, and 15, are basic infeasible solutions. This is because at least
one of the basic variables turns out to have a negative value when the structural
equality constraints are solved. For the remaining six basic feasible solutions (i.e.,
those that are neither singular nor a basic infeasible solution), the last three columns
of the table provides the objective-function value and the values of the two variables
in the original generic formulation of the problem, x1 and x2.

Note that because the standard-form LPP is a minimization problem, basic fea-
sible solution number 5 is the best one from among the six basic feasible solutions
found. Moreover, this solution corresponds to the optimal solution that is found
graphically in Section 2.1.1. It gives the same objective-function value (when we
take into account the fact that the objective function is multiplied by −1 to convert it
into a minimization) and the values for the decision variables are the same as well.
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Inspecting the six basic feasible solutions in Table 2.5 reveals that they correspond
to the extreme points of the feasible region in Figure 2.1. Figure 2.8 shows the feasible
region of the Electricity-Production Problem only (i.e., without the contour plot of
the objective function) and the six basic feasible solutions that are listed in Table 2.5.

Fig. 2.8 Basic feasible solutions of Electricity-Production Problem

This is a fundamental property of linear optimization: each extreme point of the
polytope is a basic feasible solution and each basic feasible solution is an extreme
point of the polytope. Proving this property is beyond the scope of this book, and
more advanced texts [1] provide the formal proof. The important takeaway from
this observation is that if an LPP has an optimal solution, there must be a basic
feasible solution that is optimal. This is because the shape of the feasible region
and contour plot of the objective imply that there must be an optimal extreme point.
Thus, a possible approach to solving an LPP is to enumerate all of the basic feasible
solutions and select the one that provides the best objective-function value. This can
be quite cumbersome, however, because the number of basic feasible solutions grows
exponentially in the problem size (i.e., number of constraints and variables). A more
efficient way to solve an LPP is to find a starting basic feasible solution. From this
starting point, we then look to see if there is a basic feasible solution next to it that
improves the objective function. If not, the basic feasible solution we are currently
at is optimal. If so, we move to that basic feasible solution and repeat the process
(i.e., determine if there is another basic feasible solution next to the new one that
improves the objective). This process is done iteratively until we arrive at a basic
feasible solution where the objective cannot be improved. This algorithm, known as
the Simplex method, is a standard technique for solving LPPs and is fully detailed
in Section 2.5.
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Table 2.5 also lists seven basic infeasible solutions, which are shown in Figure 2.9.
Basic infeasible solutions are found in the same way as basic feasible solutions—
they are ‘corners’ of the feasible region that are defined by the intersection of the
boundaries of two of the linear constraints. However, the intersection point found is
infeasible, because it violates at least one other constraint. For instance, the point
(x1, x2) = (0, 0) is found by intersecting the boundaries of x1 ≥ 0 and x2 ≥ 0 con-
straints. However, this point violates the 2x1 + x2 ≥ 8 constraint and is, thus, infea-
sible.

Fig. 2.9 Basic infeasible
solutions of
Electricity-Production
Problem

We can also ‘visualize’ the two basic solutions in Table 2.5 that are labeled as
‘singular.’ These basic solutions are defined by trying to intersect constraint bound-
aries that do not actually intersect. For instance, solution number 7 corresponds to
the intersection between the boundaries of the x2 ≥ 0 and x2 ≤ 16 constraints. How-
ever, the boundaries of these two constraints are parallel to one another, meaning
that there is no basic solution at their intersection. The other singular basic solution
corresponds to intersecting the boundaries of the x1 ≥ 0 and x1 ≤ 12 constraints.

2.4 A Clever Partition

This section establishes three important foundations of the Simplex method. First,
we derive expressions that allow us to find the objective-function and basic-variable
values of an LPP in terms of the values of the non-basic variables. These expressions
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are useful when we want to determine in the Simplex method whether a given basic
solution is optimal or not. If it is not, these expressions are useful for finding a new
basic solution. We then introduce a tabular format to efficiently organize all of the
calculations associated with a given basic solution. Finally, we discuss the algebraic
steps used to move from one basic solution to another in the Simplex method.

2.4.1 The Partition

Recall that a basic solution is found by setting one set of variables (the non-
basic variables) equal to zero and solving for the others (the basic variables) using
the structural equality constraints. For this reason, it is often useful to partition the
variables, the coefficients from the left-hand side of the equality constraints, and the
objective-function coefficients between the basic and non-basic variables. Moreover,
it is useful for developing the Simplex method to derive expressions that give us the
values of the objective function and the basic variables in terms of the values of the
non-basic variables.

We begin by first examining the structural equality constraints of a standard-form
LPP, which can be written as:

Ax = b,

where A is anm × n coefficientmatrix and b is anm-dimensional vector of constraint
right-hand-side constants (cf. Equation (2.15) in Section 2.2.2.1). The order that the
variables are listed in the x vector is arbitrary. Thus, we can write the x vector as:

x =
(
xB
xN

)
,

where xB are the basic variables and xN the non-basic variables. If we reorder the
x’s in this way, then the columns of the A matrix must also be reordered. We do this
by writing A as:

A = [
B N

]
,

where B is a submatrix with the constraint coefficients on the basic variables and N is
a submatrix with the constraint coefficients on the non-basic variables. We know that
xN is an (n − m)-dimensional vector (if there are m structural equality constraints
and n variables in the standard-form LPP, we must set (n − m) non-basic variables
equal to zero). Thus, B is an m × m matrix and N is an m × (n − m) matrix.

Recall from the discussion in Section 2.3.2 and the derivation of the basic solutions
for the Electricity-Production Problem in particular, that basic solutions are found
by setting by non-basic variables equal to zero. When we do this, we can ignore the
columns of the Amatrix that are associated with the non-basic variables and solve for
the basic variables. This means that we find the basic variables by solving BxB = b,
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which gives xB = B−1b. Thus, whenever we find a basic solution, the B matrix must
be full-rank.

Based on these observations, we now know that the structural equality con-
straints (2.15) can be written as:

[
B N

] (
xB
xN

)
= b,

or as:
BxB + NxN = b.

Because B is full-rank, we can solve for the basic variables in terms of the non-basic
variables, giving:

xB = B−1b − B−1NxN
= b̃ + Ñ xN , (2.24)

where b̃ = B−1b and Ñ = −B−1N . As a matter of terminology, when solving for a
basic solution in this manner the submatrix B is called the basis. It is also common
to say that basic variables are in the basis, while non-basic variables are said to not
be in the basis.

We can also express the objective function in terms of the non-basic variables. To
do this, we first note that the standard-form objective function:

z = c�x,

can be written as:

z = [
cB cN

] (
xB
xN

)
,

where cB and cN are vectors with the objective-function coefficients in c reordered
in the same way that the x vector is reordered into xB and xN . Using Equation (2.24)
we can write this as:

z = [
cB cN

] (
xB
xN

)

= c�
B xB + c�

N xN

= c�
B · (b̃ + Ñ xN ) + c�

N xN

= c�
B b̃ + (c�

B Ñ + c�
N )xN

= c̃0 + c̃�xN , (2.25)

where c̃0 = c�
B b̃ and c̃� = c�

B Ñ + c�
N .
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Finally, we can arrange the objective function and structural equality constraints
of a standard-form LPP in matrix form, which gives:

(
z
xB

)
=

[
c̃0 c̃�

b̃ Ñ

](
1
xN

)
.

This can be written more explicitly as:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

z
xB,1
...

xB,r
...

xB,m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̃0 c̃1 · · · c̃s · · · c̃n−m

b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m
...

...
. . .

...
. . .

...

b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m
...

...
. . .

...
. . .

...

b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
xN ,1

...

xN ,s
...

xN ,n−m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.26)

These matrix expressions, which give the objective-function and basic-variable val-
ues in terms of the non-basic-variable values, form the algebraic backbone of the
Simplex method, which is developed in Section 2.5.

Example 2.6 Consider the Electricity-Production Problem, which is introduced in
Section 2.1.1. When converted to standard form, we can write the objective-function
coefficients as:

c� = (−1 −1 0 0 0 0
)
,

the constraint coefficients as:

A =

⎡

⎢⎢⎣

2/3 1 1 0 0 0
2 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤

⎥⎥⎦ ,

and the constraint right-hand-side constants as:

b� = (
18 8 12 16

)
.

If we let xB = (x1, x2, x4, x5) and xN = (x3, x6), then we would have:

c�
B = (−1 −1 0 0

)
,

c�
N = (

0 0
)
,
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B =

⎡

⎢⎢⎣

2/3 1 0 0
2 1 −1 0
1 0 0 1
0 1 0 0

⎤

⎥⎥⎦ ,

and:

N =

⎡

⎢⎢⎣

1 0
0 0
0 0
0 1

⎤

⎥⎥⎦ .

Using the definitions above, and Equations (2.24) and (2.25) in particular, we
have:

b̃ = B−1b =

⎡

⎢⎢⎣

2/3 1 0 0
2 1 −1 0
1 0 0 1
0 1 0 0

⎤

⎥⎥⎦

−1 ⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

3
16
14
9

⎞

⎟⎟⎠ ,

Ñ = −B−1N =

⎡

⎢⎢⎣

2/3 1 0 0
2 1 −1 0
1 0 0 1
0 1 0 0

⎤

⎥⎥⎦

−1 ⎡

⎢⎢⎣

1 0
0 0
0 0
0 1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−3/2 3/2
0 −1

−3 2
3/2 −3/2

⎤

⎥⎥⎦ ,

c̃0 = c�
B b̃ = (−1 −1 0 0

)

⎛

⎜⎜⎝

3
16
14
9

⎞

⎟⎟⎠ = −19,

and:

c̃� = c�
B Ñ + c�

N = (−1 −1 0 0
)

⎡

⎢⎢⎣

−3/2 3/2
0 −1

−3 2
3/2 −3/2

⎤

⎥⎥⎦ + (
0 0

) = (
3/2 −1/2

)
.

These simple matrix operations can be effortlessly carried out using the public-
domain Octave software package [6] or the MATLAB commercial software pack-
age [10]. ��
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2.4.2 The Tableau

Matrix expression (2.26) forms the backbone of the Simplexmethod. This expression
can be even more compactly arranged in what is called a tableau, which takes the
general form shown in Table 2.6.

Table 2.6 General form of tableau

1 xN ,1 · · · xN ,s · · · xN ,n−m ⇐= non-basic-variable block

z c̃0 c̃1 · · · c̃s · · · c̃n−m ⇐= objective-function block

xB,1 b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,r b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m ⇐= basic-variable block
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

xB,m b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m

Table 2.6 identifies three blocks of rows in the tableau. Comparing these three
blocks to Equation (2.26) provides some insight into the structure of the tableau.
First, the bottom ‘basic-variable block’ of the tableau is associated with all but the
first row of Equation (2.26). These rows of Equation (2.26) each have one basic
variable on their left-hand sides, which are in the first column of the basic-variable
block of the tableau. Moreover, the right-hand sides of these rows of Equation (2.26)
have b̃ and Ñ terms, all of which are in the second and remaining columns of the
basic-variable block of the tableau.

Next, the ‘objective-function block’ of the tableau corresponds to the first row
of Equation (2.26). It contains z, which is on the left-hand side of the first row of
Equation (2.26), in its first column and the c̃ terms in the remaining columns. Finally,
inspecting the ‘non-basic-variable block’ of the tableau reveals that each column in
the tableau is associated with a non-basic variable. These non-basic variables appear
in the vector on the right-hand side of Equation (2.26).

It is important to stress that each basic solution has a tableau associated with it.
That is because once the variables are partitioned into basic and non-basic variables,
that partition determines the entries that label each row and column of the tableau.
Moreover, the values of b̃, c̃, and Ñ that go in the tableau are also determined by
which columns of the A matrix are put into the B and N submatrices.

The tableau also allows us to easily find a basic variable by setting all of the
non-basic variables equal to zero (as noted in Sections 2.3.2 and 2.4.1). If we do this,
we obtain basic-variable values:

xB = b̃,

and the objective-function value:
z = c̃0.
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These values for the basic variables and objective function follow immediately from
the discussions and algebraic manipulations of the LPP carried out in Sections 2.3.2
and 2.4.1.

Example 2.7 Recall Example 2.6. If we let xB = (x1, x2, x4, x5) and xN = (x3, x6),
then we would have:

b̃ = B−1b =

⎛

⎜⎜⎝

3
16
14
9

⎞

⎟⎟⎠ ,

Ñ = −B−1N =

⎡

⎢⎢⎣

−3/2 3/2
0 −1

−3 2
3/2 −3/2

⎤

⎥⎥⎦ ,

c̃0 = c�
B b̃ = −19,

and:
c̃� = c�

B Ñ + c�
N = (

3/2 −1/2
)
.

The tableau associated with this basic solution is shown in Table 2.7. The ‘B’
and ‘N ’ subscripts on the basic and non-basic variables have been omitted, because
it is clear from the way that the tableau is arranged that x1, x2, x4, and x5 are basic
variables while x3 and x6 are non-basic variables.

Table 2.7 Tableau for
Example 2.7

1 x3 x6
z −19 3/2 −1/2

x1 3 −3/2 3/2

x2 16 0 −1

x4 14 −3 2

x5 9 3/2 −3/2

We can also determine the basic-variable and objective-function values when the
non-basic variables are fixed equal to zero. The basic variables take on the values
given in the second column of the tableau that are next to each basic variable (i.e.,
(x1, x2, x4, x5) = (3, 16, 14, 9) when the non-basic variables are set equal to zero)
and the objective function takes on the value next to it in the second column of the
tableau (i.e., z = −19). ��
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2.4.3 Pivoting

One way of characterizing a basic solution is by which variables are basic variables
(we also say that such variables are in the basis) and which variables are non-basic
variables (we say that such variables are not in the basis). One of the features of
the Simplex method is that the basic solutions found in each successive iteration
differ by one variable. That is to say, if we compare the basic solutions found in two
successive iterations, one of the basic variables in the first basic solution will be a
non-basic variable in the second solution and one of the non-basic variables in the
first solution will be a basic variable in the second solution.

Section 2.4.1 shows how the basic-variable and objective-function values can be
expressed in terms of the values of the non-basic variables. Section 2.4.2 further
shows how this information can be compactly written in tableau form. As successive
iterations of the Simplexmethod are carried out, the tableaumust be updated to reflect
the fact that wemove from one basic solution to another. Of course, the tableau could
be updated in each iteration simply by redefining B, N , cB , and cN and applying
Equations (2.24) and (2.25) to compute b̃, Ñ , and c̃. This can be very computationally
expensive, however, especially if the Simplex method is being applied by hand.

There is, however, a shortcut to update the tableau, which is called pivoting.
Pivoting relies on the property of successive basic solutions found in the Simplex
method that they differ only in that one basic variable leaves that basis and one non-
basic variable enters the basis. To demonstrate the pivoting operation, suppose that
we are currently at a basic solution and would like to move to a new basic solution.
In the new basic solution there is a basic variable, xB,r , that leaves the basis and
a non-basic variable, xN ,s , that enters the basis. Table 2.8 shows the initial tableau
before the pivoting operation. For notational convenience, we omit the ‘B,’ and ‘N ’
subscripts on the variables exiting and entering the basis. Thus, these two variables
are labeled xr and xs in the tableau.

Table 2.8 Initial tableau
before pivoting

1 xN ,1 · · · xs · · · xN ,n−m

z c̃0 c̃1 · · · c̃s · · · c̃n−m

xB,1 b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xr b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,m b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m

To derive the pivoting operation, we first write the row associated with xr in
Table 2.8 explicitly as:

xr = b̃r + Ñr,1xN ,1 + · · · + Ñr,sxs + · · · + Ñr,n−mxN ,n−m . (2.27)
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We then manipulate Equation (2.24) to express xs as a function of xr and the remain-
ing non-basic variables:

xs = − b̃r

Ñr,s

− Ñr,1

Ñr,s

xN1 − · · · + 1

Ñr,s

xr − · · · − Ñr,n−m

Ñr,s

xN ,n−m . (2.28)

Next, we write the objective-function row of the tableau in Table 2.8 explicitly
as:

z = c̃0 + c̃1xN ,1 + · · · + c̃sxs + · · · + c̃n−mxN ,n−m . (2.29)

We then use Equation (2.28) to substitute for xs in Equation (2.29), which gives:

z =
(
c̃0 − c̃s

Ñr,s

b̃r

)
+

(
c̃1 − c̃s

Ñr,1

Ñr,s

)
xN ,1 + · · · + c̃s

Ñr,s

xr (2.30)

+ · · · +
(
c̃n−m − c̃s

Ñr,n−m

Ñr,s

)
xN ,n−m .

Next we write the row associated with xB,1 in Table 2.8 as:

xB,1 = b̃1 + Ñ1,1xN ,1 + · · · + Ñ1,sxs + · · · + Ñ1,n−mxN ,n−m .

If we use Equation (2.28) to substitute for xs in this expression we have:

xB,1 =
(
b̃1 − Ñ1,s

Ñr,s

b̃r

)
+

(
Ñ1,1 − Ñ1,s

Ñr,1

Ñr,s

)
xN ,1 + · · · + Ñ1,s

Ñr,s

xr (2.31)

+ · · · +
(
Ñ1,n−m − Ñ1,s

Ñr,n−m

Ñr,s

)
xN ,n−m .

A similar manipulation of the row associated with xB,m in Table 2.8 yields:

xBm =
(
b̃m − Ñm,s

Ñr,s

b̃r

)
+

(
Ñm,1 − Ñm,s

Ñr,1

Ñr,s

)
xN ,1 + · · · + Ñm,s

Ñr,s

xr (2.32)

+ · · · +
(
Ñm,n−m − Ñm,s

Ñr,n−m

Ñr,s

)
xN ,n−m . (2.33)

Using Equations (2.28), (2.30), (2.31), and (2.32), which express xs, z, xB,1, and
xB,m in terms of xr , we can update the tableau to that given in Table 2.9.
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Table 2.9 Updated tableau after pivoting

1 xN ,1 · · · xr · · · xN ,n−m

z c̃0 − c̃s
Ñr,s

b̃r c̃1 − c̃s
Ñr,1

Ñr,s
· · · c̃s

Ñr,s
· · · c̃n−m − c̃s

Ñr,n−m

Ñr,s

xB,1 b̃1 − Ñ1,s

Ñr,s
b̃r Ñ1,1 − Ñ1,s

Ñr,1

Ñr,s
· · · Ñ1,s

Ñr,s
· · · Ñ1,n−m − Ñ1,s

Ñr,n−m

Ñr,s

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xs − b̃r
Ñr,s

− Ñr,1

Ñr,s
· · · 1

Ñr,s
· · · − Ñr,n−m

Ñr,s

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,m b̃m − Ñm,s

Ñr,s
b̃r Ñm,1 − Ñm,s

Ñr,1

Ñr,s
· · · Ñm,s

Ñr,s
· · · Ñm,n−m − Ñm,s

Ñr,n−m

Ñr,s

Example 2.8 Recall Example 2.7 and that if we let xB = (x1, x2, x4, x5) and xN =
(x3, x6) then the tableau is given by Table 2.7. Let us conduct one pivot operation in
which x5 leaves the basis and x6 enters it. From the x5 row of Table 2.7 we have:

x5 = 9 + 3

2
x3 − 3

2
x6.

This can be rewritten as:

x6 = 6 + x3 − 1

2
x5. (2.34)

Substituting Equation (2.34) into the objective-function row of Table 2.7:

z = −19 + 3

2
x3 − 1

2
x6,

gives:

z = −22 + x3 + 1

3
x5. (2.35)

We next consider the rows of Table 2.7, which are:

x1 = 3 − 3

2
x3 + 3

2
x6,

x2 = 16 − x6,

and:
x4 = 14 − 3x3 + 2x6.

Substituting Equation (2.34) into these three equations gives:

x1 = 12 − x5, (2.36)
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x2 = 10 − x3 + 2

3
x5, (2.37)

and:

x4 = 26 − x3 − 4

3
x5. (2.38)

Substituting Equations (2.34) through (2.38) into Table 2.7 gives an updated
tableau after the pivot operation, which is given in Table 2.10.

Table 2.10 Updated tableau
after conducting pivot
operation in Example 2.8

1 x3 x5
z −22 1 1/3

x1 12 0 −1

x2 10 −1 2/3

x4 26 −1 −4/3

x6 6 1 −1/2

It is finally worth noting that we have performed a step-by-step pivot operation
using the expressions derived above. One could also obtain the new tableau directly
by using the expressions in Table 2.9. Doing so yields the same tableau. ��

2.5 The Simplex Method

The Simplex method is the most commonly used approach to solving LPPs. At its
heart, the Simplex method relies on two important properties of linear optimization
problems. First, as noted in Sections 2.1.1 and 2.3.1, if an LPP has an optimal
solution, then there must be at least one extreme point of the feasible set that is
optimal. Secondly, as discussed in Section 2.3.2, there is a one-to-one correspondence
between extreme points of the feasible set and basic feasible solutions. That is to say,
each basic feasible solution corresponds to an extreme point of the feasible set and
each extreme point of the feasible set corresponds to a basic feasible solution.

Building off of these two properties, the Simplex method solves an LPP by fol-
lowing two major steps. First, it works to find a starting basic feasible solution. Once
it has found a basic feasible solution, the Simplex method iteratively determines if
there is another corner of the feasible region next to the corner that the current basic
feasible solution corresponds to that gives a better objective-function value. If there
is, the Simplex method moves to this new basic feasible solution. Otherwise, the
algorithm terminates because the basic feasible solution it is currently at is optimal.

In the following sections we describe each of these steps of the Simplex method
in turn. We then provide an overview of the entire algorithm. We finally discuss
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some technical issues, such as guaranteeing that the Simplex method terminates and
detecting if an LPP is unbounded, infeasible, or has multiple optimal solutions.

2.5.1 Finding an Initial Basic Feasible Solution

Weknow from the discussions in Sections 2.3.2 and 2.4.1 that finding a basic solution
is relatively straightforward. All we must do is partition the variables into basic and
non-basic variables, xB and xN , respectively. Once we have done this we determine
B, N , cB , and cN and then compute:

b̃ = B−1b,

Ñ = −B−1N ,

c̃0 = c�
B b̃,

and:
c̃� = c�

B Ñ + c�
N .

To the extent possible, one can choose xB in a way such that the B matrix is relatively
easy to invert.

After these calculations are done, we can put them into a tableau, such as the one
given in Table 2.11.We know from the discussion in Section 2.4.2 that for the chosen
basic solution, the values of the basic variables can be easily read from the tableau
as the value of b̃. We further know that if b̃ ≥ 0, then the basic solution that we have
found is a basic feasible solution and no further work must be done (i.e., we can
proceed to the next step of the Simplex method, which is discussed in Section 2.5.2).
Otherwise, we must conduct what is called a regularization step.

Table 2.11 The tableau for a
starting basic solution

1 xN ,1 · · · xN ,s · · · xN ,n−m

z c̃0 c̃1 · · · c̃s · · · c̃n−m

xB,1 b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,r b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,m b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m

In the regularization step we add one new column to the tableau, which is high-
lighted in boldface in Table 2.12. This added column has a new non-basic variable,
which we call xN,n−m+1, all ones in the basic-variable rows, and a value of K in the
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objective-function row. The value of K is chosen to be larger than any of the other
existing values in the objective-function row of the tableau. We next conduct one
pivot operation in which the added variable, xN,n−m+1, becomes a basic variable.
The basic variable that exits the basis is the one that has the smallest or most negative
b̃ value. That is, the variable that exits the basis corresponds to:

min
{
b̃1, . . . , b̃r , . . . , b̃m

}
.

Table 2.12 The tableau after
the regularization step

1 xN ,1 · · · xN ,s · · · xN ,n−m xN,n−m+1

z c̃0 c̃1 · · · c̃s · · · c̃n−m K

xB,1 b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m 1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.

xB,r b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m 1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.

xB,m b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m 1

After this pivoting operation is conducted, we can guarantee that we have a basic
feasible solution (i.e., all of the b̃’s are non-negative after the tableau is updated). We
now show this formally.

Regularization Property:After conducting the regularization step and a pivot
operation, the updated b̃ will be non-negative.

To show this, suppose that we denote the basic variable that will be exiting
the basis as xB,r . The basic-variable rows of the tableau in Table 2.12 can be
written as:

xB,1 = b̃1 + Ñ1,1xN ,1 + · · · + Ñ1,s xN ,s + · · · Ñ1,n−mxN ,n−m + xN ,n−m+1,

...

xB,r = b̃r + Ñr,1xN ,1 + · · · + Ñr,s xN ,s + · · · Ñr,n−mxN ,n−m + xN ,n−m+1,

...

xB,m = b̃m + Ñm,1xN ,1 + · · · + Ñm,s xN ,s + · · · Ñm,n−mxN ,n−m + xN ,n−m+1.
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After the pivot operation xN ,1, . . . , xN ,n−m will remain non-basic variables that
are fixed equal to zero, thus these equations can be simplified to:

xB,1 = b̃1 + xN ,n−m+1, (2.39)

...

xB,r = b̃r + xN ,n−m+1, (2.40)

...

xB,m = b̃m + xN ,n−m+1. (2.41)

From Equation (2.40) we have the value that xN ,n−m+1 takes when it becomes
a basic variable as:

xN ,n−m+1 = xB,r − b̃r = −b̃r ,

where the second equality follows because we know xB,r is becoming a non-
basic variable after the pivot operation is completed. Because r is chosen such
that b̃r < 0,we know that xN ,n−m+1 > 0 after this pivot operation is completed.

Moreover, if we substitute this value of xN ,n−m+1 into the remainder of
Equations (2.39) through (2.41) then we have:

xB,1 = b̃1 − b̃r ,

...

xB,m = b̃m − b̃r .

Note, however, that because r is chosen such that it gives the most negative
value of b̃, the right-hand sides of all of these equations are non-negative. Thus,
our new basic solution is guaranteed to be feasible.

This Regularization Property implies that for any LPP we must do at most one
regularization step to find a starting basic feasible solution. The idea of the regular-
ization step is that we add a new artificial variable to the LPP and set its value in a
way that all of the variables take on non-negative values. Of course, adding this new
variable is ‘cheating’ in the sense that it is not a variable of the original LPP. Thus,
adding the artificial variable changes the problem’s feasible region.

The value of K in the new tableau is intended to take care of this. As we see
in Section 2.5.2, the Simplex method determines whether the current basic feasible
solution is optimal by examining the values in objective-function row of the tableau.
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The high value of K works to add a penalty to the objective function for allowing the
artificial variable to take on a value greater than zero (it should be easy to convince
yourself that if the artificial variable is equal to zero in a basic feasible solution, then
that solution is feasible in the original LPP without the artificial variable added). The
high value for K will have the Simplex method try to reduce the value of the artificial
variable to zero. Once the simplex method drives the value of the artificial variable
to zero, then we have found a basic feasible solution that is feasible in the original
LPP without the artificial variable added. Once the value of the artificial variable has
been driven to zero, it can be removed from the tableau and the Simplex method can
be further applied without that variable in the problem.

It should be further noted that in some circumstances, an artificial variable may
not need to be added to conduct the regularization step. This would be the case if
the starting tableau already has a non-basic variable with a column of ones in the
basic-variable rows. If so, one can conduct a pivot operation in which this non-basic
variable enters the basis and the basic variable with the most negative b̃ value exits
to obtain a starting basic feasible solution.

2.5.2 Moving Between Basic Feasible Solutions

The main optimization step of the Simplex method checks to see whether the current
basic feasible solution is optimal or not. If it is optimal, then the method terminates.
Otherwise, the Simplex method moves to a new basic feasible solution. To determine
whether the current basic feasible solution is optimal or not,we examine theobjective-
function row of the tableau.

Recall from Equation (2.25) that the objective-function row of the tableau can be
written as:

z = c̃0 + c̃�xN ,

which expresses the objective function value of the LPP in terms of the values of
the non-basic variables. If any of the elements of c̃ are negative, this implies that
increasing the value of the corresponding non-basic variable from zero to some
positive value improves (decreases) the objective function. Thus, the Simplexmethod
determines whether the current basic feasible solution is optimal or not by checking
the signs of the c̃ values in the tableau. If they are all non-negative, then the current
solution is optimal and the algorithm terminates. Otherwise, if at least one of the
values is negative, then the current solution is not optimal.

In this latter case that one or more of the c̃’s is negative, one of the non-basic
variables with a negative c̃ is chosen to enter the basis. Any non-basic variable with
a negative c̃ can be chosen to enter the basis. However, in practice it is common
to choose the non-basic variable with the most negative c̃. This is because each
unit increase in the value of the non-basic variable with the most negative c̃ gives
the greatest objective-function decrease. We let s denote the index of the non-basic
variable that enters the basis.
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The next step of the Simplex method is to determine which basic variable exits
the basis when xN ,s enters it. To determine this, we note that after we swap xN ,s for
whatever basic variable exits the basis, we want to ensure that we are still at a basic
feasible solution. This means that we want to ensure that the basic variables all have
non-negative values after the variables are swapped. To ensure this, we examine the
problem tableau, which is shown in Table 2.13.

Table 2.13 The tableau for
the current basic feasible
solution

1 xN ,1 · · · xN ,s · · · xN ,n−m

z c̃0 c̃1 · · · c̃s · · · c̃n−m

xB,1 b̃1 Ñ1,1 · · · Ñ1,s · · · Ñ1,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,r b̃r Ñr,1 · · · Ñr,s · · · Ñr,n−m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
. . .

.

.

.

xB,m b̃m Ñm,1 · · · Ñm,s · · · Ñm,n−m

The basic-variable rows of the tableau can be expanded as:

xB,1 = b̃1 + Ñ1,1xN ,1 + · · · + Ñ1,s xN ,s + · · · Ñ1,n−mxN ,n−m,

...

xB,r = b̃r + Ñr,1xN ,1 + · · · + Ñr,s xN ,s + · · · Ñr,n−mxN ,n−m,

...

xB,m = b̃m + Ñm,1xN ,1 + · · · + Ñm,s xN ,s + · · · Ñm,n−mxN ,n−m .

These equations define the value of the basic variables in terms of the values of the
non-basic variables. These equations simplify to:

xB,1 = b̃1 + Ñ1,s xN ,s, (2.42)

...

xB,r = b̃r + Ñr,s xN ,s, (2.43)

...

xB,m = b̃m + Ñm,s xN ,s, (2.44)
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because after xN ,s enters the basis the other variables that are non-basic at the current
basic feasible solution remain non-basic. Inspecting Equations (2.42)–(2.44), we see
that increasing the value of xN ,s has two possible effects. A basic variable that has
a negative Ñ coefficient on xN ,s in the equation defining its value decreases as xN ,s

increases. On the other hand, a basic variable that has a zero or positive Ñ coefficient
on xN ,s remains the same or increases as xN ,s increases. Thus, to ensure that our new
basic solution is feasible, we only need to concern ourselves with basic variables
that have a negative Ñ coefficient in the tableau (because we do not want any of the
basic variables to become negative at our new basic solution).

This means that we can restrict attention to the subset of Equations (2.42)–(2.44)
that have a negative Ñ coefficient on xN ,s . We write these equations as:

xB,1 = b̃1 + Ñ1,s xN ,s,

...

xB,r = b̃r + Ñr,s xN ,s,

...

xB,m ′ = b̃m ′ + Ñm ′,s xN ,s,

where we let xB,1, . . . , xB,m ′ be the subset of basic variables that have negative Ñ
coefficients on xN ,s . We want all of our basic variables to be non-negative when we
increase the value of xN ,s , which we can write as:

xB,1 = b̃1 + Ñ1,s xN ,s ≥ 0,

...

xB,r = b̃r + Ñt,s xN ,s ≥ 0,

...

xB,m ′ = b̃m ′ + Ñm ′,s xN ,s ≥ 0.

Subtracting b̃ from both sides of each inequality and dividing both sides of each by
Ñ gives:

xN ,s ≤ − b̃1

Ñ1,s

,



66 2 Linear Optimization

...

xN ,s ≤ − b̃r

Ñr,s

,

...

xN ,s ≤ − b̃m ′

Ñm ′,s
,

where the directions of the inequalities change because we are focusing on basic
variables that have a negative Ñ coefficient on xN ,s . Also note that because we are
only examining basic variables that have a negative Ñ coefficient on xN ,s , all of the
ratios, −b̃1/Ñ1,s, . . . ,−b̃m ′/Ñm ′,s , are positive.

Taken together, these inequalities imply that the largest xN ,s can be made without
causing any of the basic variables to become negative is:

xN ,s = min

{
− b̃1

Ñ1,s

, . . . ,− b̃r

Ñr,s

, . . . ,− b̃m ′

Ñm ′,s

}
.

Because we restricted our attention to basic variables that have a negative Ñ coeffi-
cient on xN ,s in the tableau, we can also write this maximum value that xN ,s can take
as:

xN ,s = min
i=1,...,m:Ñi,s<0

{
− b̃i

Ñi,s

}
. (2.45)

If we define r as the index of the basic variable that satisfies condition (2.45) then
we know that when we increase xN ,s to:

xN ,s = − b̃r

Ñr,s

,

xB,r becomes equal to zero. This means that xB,r becomes the new non-basic variable
when xN ,s becomes a basic variable.

Once the basic variable that enters the basis, xN ,s , and the non-basic variable that
exits the basis, xB,r , are identified, a pivot operation (cf. Section 2.4.3) is conducted
and the tableau is updated. The process outlined in the current section to determine
if the new basic feasible solution found after the pivoting operation is optimal or
not is then applied to the updated tableau. If the updated tableau (specifically, the
values in the objective-function row) indicates that the new basic feasible solution
is optimal, then the Simplex method terminates. Otherwise, a non-basic variable is
chosen to enter the basis and the ratio test shown in Equation (2.45) is conducted to
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determine which basic variable exits the basis. This process is repeated iteratively
until the Simplex method terminates.

2.5.3 Simplex Method Algorithm

We now provide a more general outline of how to apply the Simplex method to solve
any linear optimization problem. We assume that the problem has been converted to
standard form and that we have chosen a starting set of basic and non-basic variables.
Note, however, that the basic and non-basic variables chosen do not necessarily have
to give us a basic feasible solution. If they do not,we conduct the regularization step to
make the basic-variable values all non-negative.Otherwise,we skip the regularization
step and proceed to conducting Simplex iterations to move between basic feasible
solutions while improving the objective function.

The following algorithm outlines the major steps of the Simplex method. We
begin in Step 2 by computing the starting tableau, based on the chosen partition
of the variables into basic and non-basic variables. In Step 3 we determine if the
regularization step is needed. Recall that if b̃ ≥ 0, then our starting basic solution is
also a basic feasible solution and regularization is not needed. Otherwise, if at least
one component of b̃ is negative, regularization must be conducted. Regularization
consists of first adding an artificial variable to the tableau in Step 4. We then select
which basic variable exits the basis in Step 5 and conduct a pivot operation in Step 6.
Recall from the discussion in Section 2.5.1 that after this one regularization step, the
new b̃ vector is guaranteed to be non-negative and no further regularization steps are
needed.

Simplex Method Algorithm

1: procedure Simplex Method
2: Compute b̃ ← B−1b, Ñ ← −B−1N , c̃0 ← c�

B b̃, c̃
� ← c�

B Ñ + c�
N

3: if b̃ � 0 then
4: Add non-basic variable, xN ,n−m+1, with ones in basic-variable rows and K larger

than all other c̃’s in objective-function row of tableau
5: r ← argmini {b̃i }
6: Conduct a pivot in which xN ,n−m+1 enters the basis and xB,r exits
7: end if
8: while c̃ � 0 do
9: Select a non-basic variable, N ,s , with c̃s < 0 to enter the basis
10: Select a basic variable, xB,r , with r = argmini :Ñi,s<0 −b̃i/Ñi,s to exit the basis
11: Conduct a pivot in which xN ,s enters the basis and xB,r exits
12: end while
13: end procedure
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Themain Simplex iteration takes place in Steps 8 through 12.Wefirst determine in
Step 8 whether we are currently at an optimal basic feasible solution. If the c̃ vector is
non-negative, this means that we cannot improve the objective function by increasing
the values of any of the non-basic variables. Thus, the current basic feasible solution
is optimal. This means that Step 8 constitutes the termination criterion of the Simplex
method—we conduct iterations until c̃ ≥ 0.

If at least one component of c̃ is negative, then the objective-function value can
be improved by increasing the value of the corresponding non-basic variable. This
means that the current basic feasible solution is not optimal. In this case, one of the
non-basic variables with a negative c̃ coefficient is chosen to enter the basis (Step 9).
In Step 10 the ratio test outlined in Equation (2.45) is conducted to determine which
basic variable exits the basis. A pivot operation is then conducted to update the
tableau in Step 11. After the tableau is updated we return to Step 8 to determine if the
new basic feasible solution is optimal. If it is, the algorithm terminates, otherwise,
the algorithm continues.

Example 2.9 Consider the standard form-version of the Electricity-Production Prob-
lem, which is introduced in Section 2.1.1 in matrix form. This matrix form is given
by (2.20)–(2.22). Taking xB = (x3, x4, x5, x6) and xN = (x1, x2), we use the Simplex
method to solve this LPP.

Using this starting partition of the variables into basic and non-basic variables,
we can define:

cB =

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ ,

cN =
(−1

−1

)
,

B =

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ ,

and:

N =

⎡

⎢⎢⎣

2/3 1
2 1
1 0
0 1

⎤

⎥⎥⎦ .
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Using Equations (2.24) and (2.25) we have:

b̃ = B−1b =

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

−1 ⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

18
−8
12
16

⎞

⎟⎟⎠ ,

Ñ = −B−1N = −

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

−1 ⎡

⎢⎢⎣

2/3 1
2 1
1 0
0 1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−2/3 −1
2 1

−1 0
0 −1

⎤

⎥⎥⎦ ,

c̃0 = c�
B b̃ = (

0 0 0 0
)

⎛

⎜⎜⎝

18
−8
12
16

⎞

⎟⎟⎠ = 0,

and:

c̃� = c�
B Ñ + c�

N = (
0 0 0 0

)

⎡

⎢⎢⎣

2/3 1
2 1
1 0
0 1

⎤

⎥⎥⎦ + (−1 −1
) = (−1 −1

)
.

The starting tableau corresponding to this basic solution is shown in Table 2.14,
where the ‘B’ and ‘N ’ subscripts on the basic and non-basic variables are omitted.
The starting basic solution has x1 and x2 (the variables in the original formulation
given in Section 2.1.1) equal to zero and an objective-function value of zero. This
starting basic solution is infeasible, however, because b̃4 = −8 is negative, meaning
that x4 = −8. Figure 2.10 shows the feasible region of the LPP and the starting
solution, further illustrating that the starting basic solution is infeasible.

Table 2.14 Starting tableau
for Example 2.9

1 x1 x2
z 0 −1 −1

x3 18 −2/3 −1

x4 −8 2 1

x5 12 −1 0

x6 16 0 −1
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Fig. 2.10 Feasible region of
the Electricity-Production
Problem in Example 2.9 and
starting basic solution

Because b̃ is not non-negative, a regularization step is needed at this point. To
do this, we add a non-basic variable, which we denote x7, and assign a value of
K = 2, which is greater than all of the other values in the objective-function row.
This selection of K = 2 is arbitrary. The regularization step can be conducted with
any K > −1. At this point, the tableau is updated to that shown in Table 2.15. We
next conduct a pivot operation, in which x7 enters the basis. The basic variable that
exits the basis is the one with index corresponding to:

min {b̃3, b̃4, b̃5, b̃6} = min {18,−8, 12, 16},

which is x4.

Table 2.15 Tableau for
Example 2.9 after the
artificial variable, x7, is added

1 x1 x2 x7
z 0 −1 −1 2

x3 18 −2/3 −1 1

x4 −8 2 1 1

x5 12 −1 0 1

x6 16 0 −1 1

Swapping x7 and x4 through a pivot operation gives the tableau shown in
Table 2.16. Note that after conducting this regularization step, our new basic solution
gives (x1, x2) = (0, 0), which is infeasible in the original problem. This is consistent
with our intuition in Section 2.5.1. Adding an artificial variable to an LPP is ‘cheat-
ing’ in the sense that we have added a new variable to find a starting basic solution in
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which all of the basic variables are non-negative. It is only after conducting Simplex
iterations and (hopefully) driving the artificial variable, x7, down to zero that we find
a basic solution that is feasible in the original LPP. We will see this happen as we
proceed with solving the problem.

Table 2.16 Tableau for
Example 2.9 after
regularization step is
complete

1 x1 x2 x4
z 16 −5 −3 2

x3 26 −8/3 −2 1

x7 8 −2 −1 1

x5 20 −3 −1 1

x6 24 −2 −2 1

Now that we have a starting basic solution with non-negative values for the basic
variables, we determine if the solution is optimal. This is done by examining the
objective-function row of the tableau in Table 2.16. Seeing that both c̃1 and c̃2 are
negative, we know that increasing either from zero will improve (decrease) the objec-
tive function.Because x1 has amore negative objective-function coefficient,we chose
x1 to enter the basis. Note, however, that we could choose x2 to enter the basis at the
current iteration instead. The final solution that we find after finishing the Simplex
method will be optimal regardless of the variable chosen to enter the basis. To deter-
mine the basic variable that exits the basis, we compute the ratios between b̃ and the
column of negative Ñ ’s below x1 in the tableau in Table 2.16. The basic variable to
exit the basis is the one with index corresponding to:

min
Ñ1,3,Ñ1,7,Ñ1,5,Ñ1,6<0

{
− b̃3

Ñ1,3

,− b̃7

Ñ1,7

,− b̃5

Ñ1,5

,− b̃6

Ñ1,6

}
= min

{
39

4
, 4,

20

3
, 12

}
,

which is x7.
Thus, we conduct a pivot operation to swap x1 and x7, which gives the tableau

shown in Table 2.17. This tableau gives the basic solution (x1, x2) = (4, 0), which is
feasible in the original problem. This can be verified by substituting these values of
x1 and x2 into the original formulation given in Section 2.1.1. It can also be verified
by observing that at this basic feasible solution we have the artificial variable x7
equal to zero and b̃ ≥ 0. This means that the variable values satisfy the constraints
of the original problem without needing the artificial variable any longer. Indeed,
now that the artificial variable is equal to zero, we could drop it and its column from
the tableau, as it will never again enter the basis. This is because we chose K in a
way to ensure that the objective-function coefficient on the artificial variable never
becomes negative again. The tableau also tells us that this basic feasible solution
gives an objective function value of −4. Figure 2.11 shows the feasible region of the
problem and our new basic solution after the first Simplex iteration, also illustrating
that this solution is feasible.



72 2 Linear Optimization

Table 2.17 Tableau for
Example 2.9 after completing
one Simplex iteration

1 x7 x2 x4
z −4 5/2 −1/2 −1/2

x3 46/3 4/3 −2/3 −1/3

x1 4 −1/2 −1/2 1/2

x5 8 3/2 1/2 −1/2

x6 16 1 −1 0

We now proceed by conducting another Simplex iteration using the tableau in
Table 2.17. We first note that because the objective-function row of the tableau has
negative values in it, the current basic feasible solution is not optimal. Increasing
the values of either of x2 or x4 from zero improves the objective-function value.
Moreover, both x2 and x4 have the same value in the objective-function row, thus we
can arbitrarily choose either to enter the basis. We choose x4 here. We next conduct
the ratio test to determinewhich basic variable exits the basis. Thiswill be the variable
with index corresponding to:

min
Ñ4,3,Ñ4,1,Ñ4,5,Ñ4,6<0

{
− b̃3

Ñ4,3

,− b̃1

Ñ4,1

,− b̃5

Ñ4,5

,− b̃6

Ñ4,6

}
= min {46, /, 18, /} ,

where the slashes on the right-hand side of the equality indicate values of Ñ that are
non-negative, and are, thus, excluded from consideration. Based on this test, x5 is
the variable to exit the basis. We then conduct a pivot operation to update the tableau
to that shown in Table 2.18. Our new basic feasible solution has (x1, x2) = (12, 0)

Fig. 2.11 Feasible region of
the Electricity-Production
Problem in Example 2.9 and
basic feasible solution after
completing one Simplex
iteration
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and gives an objective-function value of −12. Figure 2.12 shows the feasible region
of the problem and the new basic feasible solution.

Table 2.18 Tableau for
Example 2.9 after completing
two Simplex iterations

1 x7 x2 x5
z −12 1 −1 1

x3 10 1/3 −1 2/3

x1 12 1 0 −1

x4 16 3 1 −2

x6 16 1 −1 0

We again conduct another Simplex iteration using the tableau in Table 2.18. We
note that the objective-function row is not non-negative and that increasing the value
of x2 from zero would improve the objective function. We next conduct the ratio test
to determine which basic variable leaves the basis when x2 enters it. The variable to
exit the basis has index that corresponds to:

min
Ñ2,3,Ñ2,1,Ñ2,4,Ñ2,6<0

{
− b̃3

Ñ2,3

,− b̃1

Ñ2,1

,− b̃4

Ñ2,3

,− b̃6

Ñ2,6

}
= min {10, /, /, 16} ,

which is x3. We conduct a pivot operation to swap x2 and x3, which gives the updated
tableau in Table 2.19. Our new basic feasible solution has (x1, x2) = (12, 10) and an
objective-function value of −22. Figure 2.13 shows the feasible region of the LPP
and the new basic feasible solution found.

Fig. 2.12 Feasible region of
the Electricity-Production
Problem in Example 2.9 and
basic feasible solution after
completing two Simplex
iterations
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Table 2.19 Tableau for
Example 2.9 after completing
three Simplex iterations

1 x7 x3 x5
z −22 2/3 1 1/3

x2 10 1/3 −1 2/3

x1 12 1 0 −1

x4 26 10/3 −1 −4/3

x6 6 2/3 1 −2/3

If we proceed to conduct an additional Simplex iteration using the tableau in
Table 2.19, we find that the Simplex method terminates. This is because we now
have c̃ ≥ 0 in the objective-function row, meaning that we cannot improve on the
current solution. The point (x1, x2) = (12, 10) is the same optimal solution to this
problem found in Sections 2.1.1, 2.3.1, and 2.3.2. The tableau gives an optimal
objective-function value of −22. However, recall that the problem was converted
from a maximization to a minimization to put it into standard form. When the
objective is converted back to a maximization, the objective-function value becomes
22, which is consistent with the discussion in Sections 2.1.1, 2.3.1, and 2.3.2.

Figure 2.14 shows the sequence of points that the Simplex method goes through
to get from the starting basic solution, (x1, x2) = (0, 0), to the final optimal basic
feasible solution, (x1, x2) = (12, 10). ��

Fig. 2.13 Feasible region of
the Electricity-Production
Problem in Example 2.9 and
basic feasible solution after
completing three Simplex
iterations
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Fig. 2.14 Feasible region of
the Electricity-Production
Problem in Example 2.9 and
the sequence of points that
the Simplex method goes
through

2.5.4 Convergence of the Simplex Method

The Simplex method is an iterative algorithm. As such, an important question is
whether it is guaranteed to converge. That is to say, are we guaranteed to eventually
find a basic feasible solution at which c̃ ≥ 0, which allows the Simplex method to
terminate? If not, it is possible that we can get stuck in Steps 8 through 12 of the
Simplex algorithm outlined in Section 2.5.3 without ever terminating.

To answer this question, we note that the Simplex method solves a linear opti-
mization problem by going through extreme points of the feasible region. Because
a linear optimization problem has a finite number of extreme points, this implies
that the algorithm should eventually terminate. There is one added wrinkle to this,
however. Certain problems can have multiple basic feasible solutions corresponding
to a single extreme point. These occur because of what is called degeneracy. A
degenerate basic solution is one in which one or more basic variables take on a value
of zero when we solve for them using the structural equality constraints. Degenerate
basic solutions normally arise because there are extra redundant constraints at an
extreme point of the feasible region.

The difficulty that degeneracy raises is that the Simplex method may get ‘stuck’
at an extreme point by cycling through the same set of basic feasible solutions
corresponding to that extreme point without ever moving. There is, however, a very
easyway to ensure that the Simplexmethod does not get stuck at a degenerate extreme
point. This is done by choosing the variable that enters the basis at each Simplex
iterations based on their index number. That is to say, if both c̃i and c̃ j are negative
at a given Simplex iteration, then choose whichever has the smaller index (i.e., the
smaller of i or j) to be the variable entering the basis. One can show that using this
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rule to select the entering variable guarantees that the Simplex method leaves every
degenerate extreme point after a finite number of Simplex iterations [9].

In practice, the Simplex method is not applied this way. Rather, the entering
variable is chosen on the basis of which one has the most negative c̃. If the Simplex
method spendsmultiple iterations at the same extremepoint (suggesting a degeneracy
problem), then the selection rule based on the index number is used instead until the
Simplex method moves to a different extreme point.

2.5.5 Detecting Infeasible Linear Optimization Problems

The Simplex method detects that a linear optimization problem is infeasible based
on the final value, after the Simplex algorithm terminates, of the artificial variable
added in the regularization step. If the Simplex method terminates (i.e., if c̃ ≥ 0)
and the artificial variable has a non-zero value, this means that the starting linear
optimization problem is infeasible.

To understand why, first note that if a linear optimization problem is infeasible,
then the regularization stepmust be done at the beginningof theSimplexmethod.This
is because for any starting partition of the variables into basic and non-basic variables,
the resulting basic solution must be infeasible. Otherwise, if we can find a basic
solution that is feasible then the linear optimization problem cannot be infeasible.

Next, recall that when the artificial variable is added in the regularization step, a
comparatively high value of K is put in the objective-function row of the tableau.
The purpose of K , as discussed in Section 2.5.1, is to make the objective function
(which we seek to minimize) larger if the artificial variable takes on a positive value.
Indeed, by making K larger than all of the other values in the objective-function row
of the tableau, the cost on the artificial variable is higher than all of the other variables
and the Simplex method seeks to make the artificial variable as small as possible. If
the Simplex method terminates but the artificial variable is still positive, that means
it is impossible to satisfy the constraints of the original problem without having the
artificial variable allow for constraint violations. Thus, the original problem must be
infeasible. Otherwise, if the Simplex method terminates and the artificial variable is
equal to zero, the original problem is feasible.

2.5.6 Detecting Unbounded Linear Optimization Problems

The Simplexmethod detects that a linear optimization problem is unbounded through
the ratio test conducted in Step 10 of the Simplex Method Algorithm, which is
outlined in Section 2.5.3. Recall that the purpose of the ratio test is to determine how
large the non-basic variable entering the basis can be made before causing one of the
basic variables to become negative. If there is no such restriction, then the Simplex
method would make the entering variable infinitely large because the negative c̃
value in the objective-function row of the tableau means that doing so would make
the objective function go to −∞.
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We know that if at least one of the Ñ values in the column underneath the entering
variable in the tableau is negative, then the ratio test gives a limit on how much the
entering variable can increase. Otherwise, if all of the Ñ values are non-negative,
then the ratio test allows the entering variable to become as large as possible. Thus, if
at any point in the Simplex method there is an entering variable without any negative
Ñ values in the tableau, the problem is known to be unbounded.

2.5.7 Detecting Multiple Optima

The Simplex method detects multiple optimal solutions based on the objective-
function row of the final tableau. If all of the values in the objective-function row of
the final tableau are strictly positive, this means that the optimal solution found is
a unique optimal solution. Otherwise, if there are any zero values in the objective-
function row of the final tableau, this means that there are multiple optimal solutions.
The reason for this is that a zero in the objective-function row of the final tableau
means that a non-basic variable can enter the basis without changing the objective-
function value at all. Thus, there are additional optimal solutions in which non-basic
variables with a zero in the objective-function row take on positive values (keeping
in mind that the basic-variable values would have to be recomputed).

2.6 Sensitivity Analysis

The subject of sensitivity analysis answers the question of what effect changing
a linear optimization problem has on the resulting optimal solution. Of course, one
way to answer this question is to change a given problem, solve the new problem, and
examine any resulting changes in the solution. This can be quite cumbersome and
time-consuming, however. A large-scale linear optimization problem with millions
of variables could take several hours to solve. Having to re-solve multiple versions
of the same basic problem with different data can be impractical. Sensitivity analysis
answers this question by using information from the optimal solution and the final
tableau after applying the Simplex method.

Throughout this discussion we assume that we have a linear optimization problem
that is already in standard form, which can be generically written as:

min
x

c�x (2.46)

s.t. Ax = b (2.47)

x ≥ 0. (2.48)

We also assume that we have solved the problem using the Simplex method and have
an optimal set of decision-variable values, x∗. More specifically, we assume that we
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have an optimal basic feasible solution, meaning that x∗ is partitioned into basic
variables, x∗

B , and non-basic variables, x∗
N = 0. We, thus, also have the objective-

function-coefficient vector partitioned into cB and cN and the A matrix partitioned
into submatrices, B and N .

Weuse sensitivity analysis to examine the effect of three different types of changes:
(i) changing the constants on the right-hand sides of the constraints (i.e., the b vector
in the structural equality constraints), (ii) changing the objective-function coefficients
(i.e., the c vector), and (iii) changing the coefficients on the left-hand sides of the
constraints (i.e., the A matrix).

2.6.1 Changing the Right-Hand Sides of the Constraints

We begin by considering the case in which the b vector is changed. To do this, recall
that once we solve the original LPP, given by (2.46)–(2.48), the basic variable values
are given by:

x∗
B = b̃ = B−1b.

Let us next examine the effect of changing the structural equality constraints
from (2.47) to:

Ax = b + Δb,

on the basic feasible solution, x∗, that is optimal in the original problem. From (2.24)
and (2.25) we have:

b̂ = B−1(b + Δb),

N̂ = −B−1N ,

ĉ0 = c�
B b̂,

and:
ĉ� = c�

B N̂ + c�
N ,

where b̂, N̂ , ĉ0, and ĉ denote the new values of the terms in the final tableau after the
right-hand sides of the structural equality constraints are changed. Note that changing
the right-hand sides of the structural equality constraints only changes the values of
b̂ and ĉ0 in the final tableau. We have that N̂ = Ñ and ĉ = c̃.

From this observation we can draw the following important insight. If b̂ ≥ 0,
then the partition of x∗ into basic and non-basic variables is still feasible when the
equality constraints are changed. Moreover, the values in the objective-function row
of the final tableau, ĉ = c̃, are not affected by the change in the right-hand side of
the equality constraints. This means that if b̂ ≥ 0 the partition of x∗ into basic and



2.6 Sensitivity Analysis 79

non-basic variables is not only feasible but also optimal after the equality constraints
are changed.

We can use this insight to first determine how much the right-hand side of the
equality constraints can be changed before the partition of x∗ into basic and non-
basic variables becomes infeasible. We determine this bound from the requirement
that b̂ ≥ 0 as follows:

b̂ ≥ 0

B−1 · (b + Δb) ≥ 0

B−1b ≥ −B−1Δb

b̃ ≥ −B−1Δb. (2.49)

If Δb satisfies (2.49), then the optimal basis remains unchanged by the changes in
the right-hand side of the equality constraints. Although the basis remains the same
if (2.49) is satisfied, the values of the basic variables change. Specifically, we can
compute the new values of the basic variables, x̂B , as:

x̂B = b̂ = B−1 · (b + Δb) = B−1b + B−1Δb = b̃ + B−1Δb. (2.50)

Equation (2.50) gives us an exact expression for how much the values of the basic
variables change as a result of changing the right-hand sides of the equalities. Specif-
ically, this change is B−1Δb.

The next question is how much of an effect these changes in the values of the
basic variables have on the objective-function value. From (2.25) we can write the
objective-function value as:

z = c�
B x̂B + c�

N x̂N .

where x̂N are the newnon-basic variable values.Weknow, however, that the non-basic
variables will still equal zero after the right-hand sides of the equality constraints are
changed. Thus, using (2.50) we can write the objective-function value as:

z = c�
B · (b̃ + B−1Δb)

= c�
B b̃ + c�

B B
−1Δb

= z∗ + λ�Δb, (2.51)

where we define λ� = c�
B B

−1. The vector λ, which is called the sensitivity vector,
gives the change in the optimal objective-function value of an LPP resulting from a
sufficiently small change in the right-hand side of a structural equality constraint.

IfΔb does not satisfy (2.49), then the basis that is optimal for the original LPP is no
longer feasible after the constraints are changed. In such a case, one cannot directly
compute the effect of changing the constraints on the solution. Rather, additional
Simplex iterations must be conducted to find a new basis that is feasible and optimal.
Note that when conducting the additional Simplex iterations, one can start with the
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final basis from solving the original LPP and conduct a regularization step to begin
the additional Simplex iterations. Doing so can often decrease the number of Simplex
iterations that must be conducted.

Example 2.10 Consider the standard form-version of the Electricity-Production
Problem, which is introduced in Section 2.1.1. In Example 2.9 we find that the
optimal solution has basis xB = (x2, x1, x4, x6) and xN = (x3, x5). We are exclud-
ing x7 from the vector of non-basic variables, because this is an artificial variable
added in the regularization step. However, one can list x7 as a non-basic variable
without affecting any of the results in this example. The optimal solution also has:

B =

⎡

⎢⎢⎣

1 2/3 0 0
1 2 −1 0
0 1 0 0
1 0 0 1

⎤

⎥⎥⎦ ,

b̃ =

⎛

⎜⎜⎝

10
12
26
6

⎞

⎟⎟⎠ ,

and:
cB = (−1 −1 0 0

)
.

We can compute the sensitivity vector as:

λ� = c�
B B

−1 = (−1 0 −1/3 0
)
.

Suppose that the structural equality constraints of the problem are changed from:

⎡

⎢⎢⎣

2/3 1 1 0 0 0
2 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤

⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ ,

to:
⎡

⎢⎢⎣

2/3 1 1 0 0 0
2 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤

⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎝

18
8
12
16

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

2
−1
0
0

⎞

⎟⎟⎠ .
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We first determine whether the basis that is optimal in the original problem is still
feasible after the constraints are changed. From (2.49) we know that the basis is still
feasible if:

b̃ ≥ −B−1Δb,

or if: ⎛

⎜⎜⎝

10
12
26
6

⎞

⎟⎟⎠ ≥ −

⎡

⎢⎢⎣

1 2/3 0 0
1 2 −1 0
0 1 0 0
1 0 0 1

⎤

⎥⎥⎦

−1 ⎛

⎜⎜⎝

2
−1
0
0

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−2
0

−3
2

⎞

⎟⎟⎠ .

Seeing that it is, we can next determine the effect of the change in the constraints
on the optimal objective-function value using the sensitivity vector as:

λ�Δb = −2.
��

2.6.2 Changing the Objective-Function Coefficients

We next consider the case in which the c vector is changed. More specifically, let us
suppose that the objective function changes from (2.46) to:

(c + Δc)�x .

We analyze the effect of this change following the same line of reasoning used to
analyze changes in the b vector in Section 2.6.1. That is to say,we examinewhat effect
it has on x∗, the optimal basic feasible solution of the original problem. From (2.24)
and (2.25) we have that:

b̂ = B−1b,

N̂ = −B−1N ,

ĉ0 = (cB + ΔcB)�b̂,

and:
ĉ� = (cB + ΔcB)� N̂ + (cN + ΔcN )�,

where b̂, N̂ , ĉ0, and ĉ denote the new values of the terms in the final tableau after
the c vector is changed and ΔcB and ΔcN partition the Δc vector according to the
final partition of basic and non-basic variables. Note that changing the c vector only
changes the values of ĉ0 and ĉ and that we have b̂ = b̃ and N̂ = Ñ .

From this observation we can conclude that when the c vector is changed, the
optimal basic feasible solution of the original problem, x∗, is still feasible in the new
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problem. The only question is whether this basic feasible solution remains optimal
after the objective function is changed. We know that x∗ remains optimal if ĉ ≥ 0.
From this, we can derive the following bound:

ĉ ≥ 0

(cB + ΔcB)� N̂ + (cN + ΔcN )� ≥ 0

(cB + ΔcB)� Ñ + (cN + ΔcN )� ≥ 0

c�
B Ñ + c�

N + Δc�
B Ñ + Δc�

N ≥ 0

c̃� + Δc�
B Ñ + Δc�

N ≥ 0

Δc�
B Ñ + Δc�

N ≥ −c̃�, (2.52)

on how much c can change and have x∗ remain an optimal basic feasible solution.
If (2.52) is satisfied, then x∗ remains an optimal basic feasible solution. Of course,
the objective-function value changes as a result of the c vector changing. However,
it is straightforward to compute the new objective-function value as:

z = (cB + ΔcB)�x∗
B + (cN + ΔcN )�x∗

N

= (cB + ΔcB)�x∗
B,

because x∗
N = 0. This then simplifies to:

z = z∗ + Δc�
B x

∗
B . (2.53)

Thus, if Δc satisfies (2.52), the impact on the optimal objective-function value of
changing the objective-function coefficient of a basic variable is equal to the basic
variable’s optimal value itself. Changing the objective-function value of a non-basic
variable has no impact on the optimal objective-function value.

On the other hand, if (2.52) is not satisfied, then x∗ is a basic feasible solution of
the changed LPP but is not optimal in the new problem. As such, additional Simplex
iterations would have to be conducted to find a new optimal basic feasible solution.

Example 2.11 Consider the standard form-version of the Electricity-Production
Problem, which is introduced in Section 2.1.1. In Example 2.9 we find that:

c̃ =
(

1
5/3

)
,

and:

Ñ =

⎡

⎢⎢⎣

−1 −2/3
0 −1

−1 −8/3
1 2/3

⎤

⎥⎥⎦ .
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Suppose we wish to change c1 from −1 to −0.9. From (2.52) we know that x∗
will remain an optimal solution so long as:

Δc�
B Ñ + Δc�

N ≥ −c̃�,

or so long as:

(
0 0.1 0 0

)

⎡

⎢⎢⎣

−1 −2/3
0 −1

−1 −8/3
1 2/3

⎤

⎥⎥⎦ ≥ − (
1 5/3

)
,

or so long as: (
0 −0.1

) ≥ (−1 −5/3
)
,

which holds true. Thus, based on (2.53) we know that the new objective-function
value after this change is given by:

Δc�
B x

∗
B = (

0 0.1 0 0
)

⎛

⎜⎜⎝

10
12
26
6

⎞

⎟⎟⎠ = 1.2.

��

2.6.3 Changing the Left-Hand-Side Coefficients
of the Constraints

We finally examine the effect of changing the coefficients multiplying the variables
on the left-hand side of the structural equality constraints. More specifically, we
examine the effect of changing (2.47) to:

(A + ΔA)x = b.

We begin by partitioning ΔA into:

ΔA = [
ΔB ΔN

]
.

Using this and (2.24) and (2.25) we have that:

b̂ = (B + ΔB)−1b,

N̂ = −(B + ΔB)−1(N + ΔN ),

ĉ0 = c�
B b̂,
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and:
ĉ� = c�

B N̂ + c�
N ,

where b̂, N̂ , ĉ0, and ĉ denote the new values of the terms in the final tableau after the
A matrix is changed.

We can draw two conclusions from these expressions. The first is that if ΔA
changes values in the B matrix, then all of b̂, N̂ , ĉ0, and ĉ are changed in the final
tableau. Moreover, it is not straightforward to derive a bound on how large or small
ΔB can be before x∗ is no longer a feasible or optimal basic solution. This is because
ΔB appears in matrix inversions in the expressions giving b̂ and ĉ. Thus, we do not
provide any such bounds onΔB (because they are difficult to derive and work with).

We can, however, derive such bounds in the case in which ΔA changes values in
the N matrix only. To do so, we note that if ΔB = 0, then from (2.24) and (2.25) we
have:

b̂ = B−1b,

N̂ = −B−1 · (N + ΔN ),

ĉ0 = c�
B b̂,

and:
ĉ� = c�

B N̂ + c�
N .

Thus, we see that if the N matrix is changed, this only changes the values of N̂ and ĉ
and that we have b̂ = b̃ and ĉ0 = c̃0. Thus, we know that x∗ remains a basic feasible
solution after the N matrix is changed. The only question is whether x∗ remains an
optimal basic feasible solution. We can derive the bound:

ĉ ≥ 0

−c�
B B

−1 · (N + ΔN ) + c�
N ≥ 0

−c�
B B

−1N − c�
B B

−1ΔN + c�
N ≥ 0

c�
B Ñ + c�

N − c�
B B

−1ΔN ≥ 0

c̃� − c�
B B

−1ΔN ≥ 0

c̃� ≥ c�
B B

−1ΔN , (2.54)

onΔN , which ensures that x∗ remains optimal. If (2.54) is satisfied, then x∗ remains
an optimal basic feasible solution. If so, we can determine the new objective-function
value from (2.25) as:

z = ĉ0 + ĉ�x∗
N

= c̃0, (2.55)
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because we have that ĉ0 = c̃0 and x∗
N = 0. Thus, if (2.54) is satisfied, there is no

change in the optimal objective-function value. Otherwise, if ΔN does not sat-
isfy (2.54), then x∗ is no longer an optimal basic feasible solution and additional
Simplex iterations must be conducted to find a new optimal basic solution.

We finally conclude this discussion by noting that although we cannot derive a
bound on the allowable change in the B matrix, we can approximate changes in
the optimal objective-function value from changing the B matrix. We do this by
supposing that one element of the A matrix, Ai, j , is changed to Ai, j + ΔAi, j . When
this change is made, the i th structural equality constraint changes from:

Ai,1x
∗
1 + · · · + Ai, j−1x

∗
j−1 + Ai, j x

∗
j + Ai, j+1x

∗
j+1 + · · · + Ai,nx

∗
n = bi ,

to:

Ai,1x
∗
1 + · · · + Ai, j−1x

∗
j−1 + (Ai, j + ΔAi, j )x

∗
j + Ai, j+1x

∗
j+1 + · · · + Ai,nx

∗
n = bi .

The changed i th constraint can be rewritten as:

Ai,1x
∗
1 + · · · + Ai, j−1x

∗
j−1 + Ai, j x

∗
j + Ai, j+1x

∗
j+1 + · · · + Ai,nx

∗
n = bi − ΔAi, j x

∗
j .

Thus, one can view changing the A matrix as changing the right-hand side of the i th
constraint by −ΔAi, j x∗

j . One can then use the results of Section 2.6.1 to estimate
the change in the optimal objective-function value as:

Δz∗ ≈ −λiΔAi, j x
∗
j , (2.56)

whereλi is the i th component of the sensitivity vector derived in (2.51).Note that if x j

is a non-basic variable, thenwe have that the change in the optimal objective-function
value is:

−λiΔAi, j x
∗
j = 0,

which is what is found in analyzing the case of changes in the N matrix in (2.55).
However, Equation (2.56) can also be applied to approximate the change in the opti-
mal objective-function value when changes are made to the B matrix. It is important
to note, however, that (2.56) only approximates such changes (whereas all of the
other sensitivity expressions are exact).

Example 2.12 Consider the standard form-version of the Electricity-Production
Problem, which is introduced in Section 2.1.1, and suppose that A1,2 changes from 1
to 1.01. Because this is making a change to a coefficient in the B matrix, we cannot
exactly estimate the effect of this change on the objective function. We can, however,
approximate this using (2.56) as:

−λ1ΔA1,2x
∗
2 = −1 · (−0.01) · 10 = 0.1.



86 2 Linear Optimization

To see that this is only an approximation, we can solve the problem with A1,2 =
1.01, which gives an optimal objective-function value of −21.900990. The exact
change in the objective-function value is thus:

−21.900990 − (−22) = 0.099010 ≈ 0.1.
��

2.7 Duality Theory

Every linear optimization problem has an associated optimization problem called its
dual problem. We show in this section that the starting linear optimization problem,
which in the context of duality theory is called the primal problem, and its associated
dual problem have some very important relationships. These relationships include
the underlying structure of the primal and dual problems (i.e., the objective function,
constraints, and variables of the two problems) and properties of solutions of the two
problems.

2.7.1 Symmetric Duals

We begin by looking at the simple case of a primal problem that is in canonical form.
Recall from Section 2.2.2.2 that a generic primal problem in canonical form can be
written compactly as:

min
x

zP = c�x (2.57)

s.t. Ax ≥ b (2.58)

x ≥ 0. (2.59)

The dual problem associated with this primal problem is:

max
y

zD = b�y (2.60)

s.t. A�y ≤ c (2.61)

y ≥ 0. (2.62)

As indicated above, we can note some relationships in the structures of the pri-
mal and dual problems. The vector of objective-function coefficients in the primal
problem, c, is the vector of the right-hand side constants in the structural constraints
in the dual problem. The vector of the right-hand side constants in the structural
constraints in the primal problem, b, is the vector of objective-function coefficients
in the dual problem. We also see that the coefficients multiplying the variables in the
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left-hand sides of the constraints (which are in the Amatrix) are the same in the dual
problem as in the primal, except that the coefficient matrix is transposed in the dual.
We finally note that whereas the primal problem is a minimization, the dual problem
is a maximization.

We can also observe a one-to-one relationship between the variables and con-
straints in the primal and dual problems. Recall that for a generic primal problem
in canonical form, A is an m × n matrix. This means that the primal problem has
m structural constraints and n variables (i.e., x ∈ R

n). Because A� is an n × m
matrix, this means that the dual problem has n structural constraints and m variables
(i.e., y ∈ R

m). Thus, we can say that each primal constraint has an associated dual
variable and each primal variable has an associated dual constraint.

We can show a further symmetry between the primal and dual problems. By this
we mean that each dual constraint has an associated primal variable and each dual
variable has an associated primal constraint. This is because if we start with a primal
problem in canonical form and find the dual of its dual problem, we get back the
original primal problem. To see this, we note from the discussion above that if we
have the primal problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

its dual problem is:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

If we want to find the dual of the dual problem, we must first convert it to canonical
form, which is:

min
y

− b�y

s.t. − A�y ≥ −c

y ≥ 0.

The dual of this problem is:

max
w

− c�w

s.t. (−A�)�w ≤ −b

w ≥ 0,
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where we let w be a vector of variables. This problem can be rewritten as:

min
w

c�w

s.t. Aw ≥ b

w ≥ 0,

which is identical to the starting problem, except that the variables are now called w
instead of x .

Example 2.13 Consider the Electricity-Production Problem, which is introduced in
Section 2.1.1. In Example 2.4 we show the canonical form of this problem to be:

min
x

zP = 5x1,1 + 4x1,2 + 3x2,1 + 6x2,2

s.t. − x1,1 − x1,2 ≥ −7

− x2,1 − x2,2 ≥ −12

− x1,1 − x2,1 ≥ −10

x1,1 + x2,1 ≥ 10

− x1,2 − x2,2 ≥ −8

x1,2 + x2,2 ≥ 8

xi, j ≥ 0,∀ i = 1, 2; j = 1, 2.

This can be written as:

min
x

zP = c�x

s.t. Ax ≥ b

x ≥ 0,

where:

x =

⎛

⎜⎜⎝

x1,1
x1,2
x2,1
x2,2

⎞

⎟⎟⎠ ,

c =

⎛

⎜⎜⎝

5
4
3
6

⎞

⎟⎟⎠ ,
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A =

⎡

⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 0
0 0 −1 −1

−1 0 −1 0
1 0 1 0
0 −1 0 −1
0 1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

and:

b =

⎛

⎜⎜⎜⎜⎜⎜⎝

−7
−12
−10
10
−8
8

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The dual problem is:

max
y

zD = b�y

s.t. A�y ≤ c

y ≥ 0,

which can be expanded out to:

max
y

zD = (−7 −12 −10 10 −8 8
)

⎛

⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3
y4
y5
y6

⎞

⎟⎟⎟⎟⎟⎟⎠

s.t.

⎡

⎢⎢⎣

−1 0 −1 1 0 0
−1 0 0 0 −1 1
0 −1 −1 1 0 0
0 −1 0 0 −1 0

⎤

⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3
y4
y5
y6

⎞

⎟⎟⎟⎟⎟⎟⎠
≤

⎛

⎜⎜⎝

5
4
3
6

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3
y4
y5
y6

⎞

⎟⎟⎟⎟⎟⎟⎠
≥

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

or, by simplifying, to:
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max
y

zD = −7y1 − 12y2 − 10y3 + 10y4 − 8y5 + 8y6

s.t. − y1 − y3 + y4 ≤ 5

− y1 − y5 + y6 ≤ 4

− y2 − y3 + y4 ≤ 3

− y2 − y5 ≤ 6

y1, y2, y3, y4, y5, y6 ≥ 0.
��

2.7.2 Asymmetrical Duals

Now consider a generic LPP in standard form:

min
x

zP = c�x

s.t. Ax = b

x ≥ 0.

To find the dual of this problem, we can convert it to canonical form, by replacing
the structural equality constraints with the pair of inequalities:

min
x

zP = c�x

s.t. Ax ≥ b

Ax ≤ b

x ≥ 0,

and then converting the less-than-or-equal-to constraint into a greater-than-or-equal-
to constraint:

min
x

zP = c�x

s.t. Ax ≥ b

− Ax ≥ −b

x ≥ 0.

If we let u and v denote the dual variables associated with the two structural
inequality constraints, the dual of this problem is then:
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max
u,v

zD = b�u − b�v

s.t. A�u − A�v ≤ c

u, v ≥ 0.

If we define y as the difference between the dual-variable vectors:

y = u − v,

then the dual can be written as:

max
y

zD = b�y

s.t. A�y ≤ c,

where there is no sign restriction on y because it is the difference of two non-negative
vectors. This analysis of a primal problemwith equality constraints gives an important
conclusion, which is that the dual variable associated with an equality constraint has
no sign restriction.

2.7.3 Duality Conversion Rules

Example 2.13 demonstrates a straightforward, but often tedious way of finding the
dual of any linear optimization problem. This method is to first convert the problem
into canonical form, using the rules outlined in Section 2.2.2.2. Then, one can use
the symmetric dual described in Section 2.7.1 to find the dual of the starting primal
problem. While straightforward, this is cumbersome, as it requires the added step of
first converting the primal problem to canonical form. Here we outline a standard
set of rules that allow us to directly find a dual problem without first converting the
primal problem to canonical form. We demonstrate these rules using the problem
introduced in Example 2.1, which is:

max
x

3x1 + 5x2 − 3x3 + 1.3x4 − x5

s.t. x1 + x2 − 4x4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5

x1 ≥ 0

x2 ≥ 0

x4 ≤ 0.
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We then demonstrate that the dual we find using the rules outlined is equivalent to
the dual we would obtain if we first convert the primal problem to canonical form
and use the symmetric dual introduced in Section 2.7.1.

2.7.3.1 Step 1: Determine Number of Dual Variables

The first step is to determine the number of dual variables, which is based on the
number of structural constraints in the primal problem. Our example problem has
three structural constraints, which are:

x1 + x2 − 4x4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5.

The three other constraints:
x1 ≥ 0

x2 ≥ 0

x4 ≤ 0,

are not structural constraints but are rather non-negativity and non-positivity restric-
tions. These are handled differently than structural constraints when writing the dual
problem. Because there are three structural constraints, there will be three dual vari-
ables, which we refer to as y1, y2, and y3. To help in the subsequent steps of writing
the dual problem, we write each dual variable next to its associated primal constraint
as follows:

max
x

3x1 + 5x2 − 3x3 + 1.3x4 − x5

s.t. x1 + x2 − 4x4 ≤ 10 (y1)

x2 − 0.5x3 + x5 = −1 (y2)

x3 ≥ 5 (y3)

x1 ≥ 0

x2 ≥ 0

x4 ≤ 0.
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2.7.3.2 Step 2: Determine Objective of the Dual Problem

The next step is to determine the objective function of the dual problem. First, the
direction of the optimization of the dual problem is always opposite to that of the
primal problem. Because the primal problem in our example is a maximization, the
dual will be a minimization. Next, to determine the objective function itself, we
multiply each dual variable with the constant on the right-hand side of its associated
primal constraint and sum the products. Thus, in our example we multiply y1 by 10,
y2 by −1 and y3 by 5 giving:

min
y

10y1 − y2 + 5y3.

2.7.3.3 Step 3: Determine Number of Structural Constraints
in the Dual Problem

There is one structural constraint in the dual problem for each primal variable. More-
over, there is a one-to-one correspondence between dual constraints and primal vari-
ables. Thus, just as we associate dual variables with primal constraints in Step 1, we
associate primal variables with dual constraints here. Our example problem has five
primal variables. Thus, the dual problem will have five structural constraints, and we
can associate the constraints and variables as follows:

min
y

10y1 − y2 + 5y3

s.t. (x1)

(x2)

(x3)

(x4)

(x5)

2.7.3.4 Step 4: Determine Right-Hand Sides of Structural Constraints
in the Dual Problem

We next determine the right-hand side of each structural constraint in the dual prob-
lem. These are given by the coefficient multiplying the associated primal variable in
the objective function of the primal problem. In our example, the five structural con-
straints in the dual problem correspond to x1, x2, x3, x4, and x5, respectively, which
have objective-function coefficients in the primal problem of 3, 5, −3, 1.3, and −1,
respectively. Thus, these will be the right-hand sides of the associated structural
constraints in the dual:
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min
y

10y1 − y2 + 5y3

s.t. 3 (x1)

5 (x2)

− 3 (x3)

1.3 (x4)

− 1. (x5)

2.7.3.5 Step 5: Determine Left-Hand Sides of Structural Constraints
in the Dual Problem

The left-hand sides of the structural constraints in the dual problem have the dual
variables multiplied by the transpose of the coefficient matrix defining the structural
constraints in the primal problem. The result of this is that the coefficient multiplying
the primal variable associated with each structural dual constraint is multiplied by
the dual variable associated with the structural primal constraint.

To illustrate this rule, take the first structural dual constraint, which is associated
with x1. If we examine the structural constraints in the primal problem, we see that
x1 has coefficients of 1, 0, and 0 in each of the structural constraints in the primal
problem. Moreover, these three primal constraints are associated with dual variables
y1, y2, and y3. Multiplying these coefficients with the associated dual variables and
summing the products gives:

1y1 + 0y2 + 0y3,

as the left-hand side of the first structural constraint in the dual problem.Next, take the
second structural dual constraint, which is associated with x2. The primal variable x2
has coefficients 1, 1, and 0 in the three structural constraints of the primal, which are
associated with dual variables y1, y2, and y3. Thus, the left-hand side of the second
structural constraint of the dual problem is:

1y1 + 1y2 + 0y3.

Repeating this process three more times gives the following left-hand sides of the
structural constraints in the dual problem:

min
y

10y1 − y2 + 5y3

s.t. y1 3 (x1)

y1 + y2 5 (x2)

− 0.5y2 + y3 − 3 (x3)

− 4y1 1.3 (x4)

y2 − 1. (x5)
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2.7.3.6 Step 6: Determine the Types of Structural Constraints
in the Dual Problem

The types of structural constraints in the dual problem (i.e., greater-than-or-equal-to,
less-than-or-equal-to, or equality constraints) is determined by the sign restrictions
on the associated primal variables. To determine the type of each constraint, we refer
to the symmetric duals introduced in Section 2.7.1.

Recall that the canonical primal:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

has:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0,

as its dual. Recall, also, that there is a further symmetry between these two problems,
in that the dual of the dual problem is the original primal problem. Because of this,
we begin by first determining which of these two canonical problems matches the
type of problem that our primal is. In our example, the primal is a maximization
problem. Thus, we examine the problem:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

Specifically, we notice that each variable in this problem is non-negative and that the
associated structural constraints in the problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

are greater-than-or-equal-to inequalities. Thus, in our example, each structural con-
straint in the dual that is associated with a primal variable that is non-negative in
the primal problem will be a greater-than-or-equal-to constraint. Specifically, in our
example, x1 and x2 are non-negative, and so their associated dual constraints will be
greater-than-or-equal-to inequalities, as follows:
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min
y

10y1 − y2 + 5y3

s.t. y1 ≥ 3 (x1)

y1 + y2 ≥ 5 (x2)

− 0.5y2 + y3 − 3 (x3)

− 4y1 1.3 (x4)

y2 − 1. (x5)

Next, we examine the variable x4 in our primal problem. Notice that the sign
restriction on this variable is opposite sign restriction (2.62) in the canonical
maximization problem. Thus, its associated dual structural constraint will have the
opposite direction of the canonicalminimization problem (i.e., opposite greater-than-
or-equal-to constraint (2.58) in the canonicalminimization problem). Thismeans that
the dual constraint associated with x4 will be a less-than-or-equal-to constraint, as
follows:

min
y

10y1 − y2 + 5y3

s.t. y1 ≥ 3 (x1)

y1 + y2 ≥ 5 (x2)

− 0.5y2 + y3 − 3 (x3)

− 4y1 ≤ 1.3 (x4)

y2 − 1. (x5)

Finally, for the variables x3 and x5, which are unrestricted in sign in the primal
problem, their associated structural constraints in the dual problem are equalities, as
follows:

min
y

10y1 − y2 + 5y3

s.t. y1 ≥ 3 (x1)

y1 + y2 ≥ 5 (x2)

− 0.5y2 + y3 = −3 (x3)

− 4y1 ≤ 1.3 (x4)

y2 = −1. (x5)

When finding the dual of a minimization problem, one would reverse the roles of the
two canonical problems (i.e., the roles of problems (2.60)–(2.62) and (2.57)–(2.59)).
Specifically, onewould have less-than-or-equal-to structural inequality constraints in
the dual for primal variables that are non-negative, greater-than-or-equal-to inequal-
ities for primal variables that are non-positive, and equality constraints for primal
variables that are unrestricted in sign.
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2.7.3.7 Step 7: Determine Sign Restrictions on the Dual Variables

The final step is to determine sign restrictions on the dual variables. The sign restric-
tions depend on the type of structural constraints in the primal problem. The method
of determining the sign restrictions is analogous to determining the types of structural
constraints in the dual problem in Step 6. We again rely on the two symmetric dual
problems introduced in Section 2.7.1.

Because the primal problem in our example is a maximization, we focus on the
canonical problem:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0,

and its dual:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0.

Specifically, we begin by noting that the first primal constraint:

x1 + x2 − 4x4 ≤ 10,

is consistent with constraint (2.61) in the canonical maximization problem. Thus,
the dual variable associated with this constraint, which is y1, is non-negative, which
is consistent with sign restriction (2.59) in the canonical minimization problem. We
next examine the third primal structural constraint:

x3 ≥ 5.

This is the opposite type of constraint compared to constraint (2.61) in the canonical
maximization problem. Thus, its associated dual variable, which is y3, will have a
sign restriction that is opposite to non-negativity constraint (2.59) in the canonical
minimization problem. Finally, we note that the second structural constraint in the
primal problem is an equality. As such, its associated dual variable, which is y2, is
unrestricted in sign. Taking these sign restrictions together, the dual problem is:



98 2 Linear Optimization

min
y

10y1 − y2 + 5y3

s.t. y1 ≥ 3 (x1)

y1 + y2 ≥ 5 (x2)

− 0.5y2 + y3 = −3 (x3)

− 4y1 ≤ 1.3 (x4)

y2 = −1 (x5)

y1 ≥ 0

y3 ≤ 0.

One can verify these rules by taking different starting primal problems, converting
them to canonical form, and examining the resulting dual. We now show, in the
following example, that the dual problem found by applying these rules is identical
to what would be obtained if the primal problem is first converted to canonical form.

Example 2.14 Consider the linear optimization problem:

max
x

3x1 + 5x2 − 3x3 + 1.3x4 − x5

s.t. x1 + x2 − 4x4 ≤ 10

x2 − 0.5x3 + x5 = −1

x3 ≥ 5

x1, x2 ≥ 0

x4 ≤ 0,

which is introduced in Example 2.1. In Example 2.3 we find that the canonical form
of this problem is:

min
x

− 3x1 − 5x2 + 3x+
3 − 3x−

3 + 1.3x̃4 + x+
5 − x−

5

s.t. − x1 − x2 − 4x̃4 ≥ −10

− x2 + 0.5x+
3 − 0.5x−

3 − x+
5 + x−

5 ≥ 1

x2 − 0.5x+
3 + 0.5x−

3 + x+
5 − x−

5 ≥ −1

x+
3 − x−

3 ≥ 5

x1, x2, x
−
3 , x+

3 , x̃4, x
−
5 , x+

5 ≥ 0,

which can be written as:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,
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where we have:

x =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x+
3
x−
3
x̃4
x+
5
x−
5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

c =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
−5
3

−3
1.3
1

−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A =

⎡

⎢⎢⎣

−1 −1 0 0 −4 0 0
0 −1 0.5 −0.5 0 −1 1
0 1 −0.5 0.5 0 1 −1
0 0 1 −1 0 0 0

⎤

⎥⎥⎦ ,

and:

b =

⎛

⎜⎜⎝

−10
1

−1
5

⎞

⎟⎟⎠ .

Thus, the dual problem is:

max
w

(−10 1 −1 5
)

⎛

⎜⎜⎝

w1

w2

w3

w4

⎞

⎟⎟⎠

s.t.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0
−1 −1 1 0
0 0.5 −0.5 1
0 −0.5 0.5 −1

−4 0 0 0
0 −1 1 0
0 1 −1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎝

w1

w2

w3

w4

⎞

⎟⎟⎠ ≤

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
−5
3

−3
1.3
1

−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛

⎜⎜⎝

w1

w2

w3

w4

⎞

⎟⎟⎠ ≥

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ ,

which simplifies to:

max
w

− 10w1 + w2 − w3 + 5w4

s.t. − w1 ≤ −3

− w1 − w2 + w3 ≤ −5

0.5w2 − 0.5w3 + w4 ≤ 3

− 0.5w2 + 0.5w3 − w4 ≤ −3

− 4w1 ≤ 1.3

− w2 + w3 ≤ 1

w2 − w3 ≤ −1

w1,w2,w3,w4 ≥ 0.

Note that if we change the direction of optimization, this problem becomes:

min
w

10w1 − w2 + w3 − 5w4

s.t. − w1 ≤ −3

− w1 − w2 + w3 ≤ −5

0.5w2 − 0.5w3 + w4 ≤ 3

− 0.5w2 + 0.5w3 − w4 ≤ −3

− 4w1 ≤ 1.3

− w2 + w3 ≤ 1

w2 − w3 ≤ −1

w1,w2,w3,w4 ≥ 0.

Next, note that if we define the variables y1 = w1, y2 = w2 − w3, and y3 = −w4,
this problem can be written as:

min
y

10y1 − y2 + 5y3

s.t. − y1 ≤ −3

− y1 − y2 ≤ −5

0.5y2 − y3 ≤ 3 (2.63)

− 0.5y2 + y3 ≤ −3 (2.64)

− 4y1 ≤ 1.3
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− y2 ≤ 1 (2.65)

y2 ≤ −1 (2.66)

y1 ≥ 0

y3 ≤ 0.

Note that because y1 = w1 and w1 ≥ 0 we have y1 ≥ 0. Similarly, y3 = −w4 and
w4 ≥ 0, implying that y3 ≤ 0. Because y2 is defined as the difference between two
non-negative variables, it can be either positive or negative in sign.

We next note that (2.63) and (2.64) can be rewritten as:

−0.5w2 + 0.5w3 + w4 ≥ −3,

and:
−0.5w2 + 0.5w3 + w4 ≤ −3,

which together imply:
−0.5w2 + 0.5w3 + w4 = −3.

Similarly, (2.65) and (2.66) imply:

y2 = −1.

Making these substitutions and multiplying some of the other structural inequalities
through by −1 gives the following dual problem:

min
y

10y1 − y2 + 5y3

s.t. y1 ≥ 3

y1 + y2 ≥ 5

− 0.5y2 + y3 = −3

− 4y1 ≤ 1.3

y2 = −1

y1 ≥ 0

y3 ≤ 0,

which is identical to the dual problem found directly by applying the conversion
rules. ��
Example 2.15 Consider the Gasoline-Mixture Problem, which is introduced in
Section 2.1.3. The primal problem is formulated as:
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min
x

200x1 + 220x2

s.t. 0.7x1 + 0.6x2 ≥ 0.65

0.9x1 + 0.8x2 ≤ 0.85

x1 + x2 = 1

x1, x2 ≥ 0.

To find the dual of this problem directly, we first observe that this problem has
three structural constraints, thus the dual will have three variables, which we call y1,
y2, and y3. We associate these dual variables with the primal constraints as follows:

min
x

200x1 + 220x2

s.t. 0.7x1 + 0.6x2 ≥ 0.65 (y1)

0.9x1 + 0.8x2 ≤ 0.85 (y2)

x1 + x2 = 1 (y3)

x1, x2 ≥ 0.

We next determine the objective function of the dual problem, which is:

max
y

0.65y1 + 0.85y2 + y3,

based on the direction of optimization of the primal problem and the right-hand side
constants of the structural constraints.We also know that because the primal problem
has two variables the dual problem has two structural constraints, each of which we
associate with a primal variable as follows:

max
y

0.65y1 + 0.85y2 + y3

s.t. (x1)

(x2)

We next determine the right-hand sides of the structural constraints in the dual prob-
lem based on the objective-function coefficients in the primal problem, which gives:

max
y

0.65y1 + 0.85y2 + y3

s.t. 200 (x1)

220. (x2)

Nextwe determine the left-hand sides of the structural constraints in the dual problem
using the coefficients on the left-hand sides of the structural constraints of the primal
problem, giving:
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max
y

0.65y1 + 0.85y2 + y3

s.t. 0.7y1 + 0.9y2 + y3 200 (x1)

0.6y1 + 0.8y2 + y3 220. (x2)

Next, to determine the types of structural constraints in the dual problem, we note
that the primal problem is a minimization problem and each of x1 and x2 are non-
negative. Based on the canonical minimization problem given by (2.57)–(2.59) and
its dual, we observe that a minimization problem with non-negative constraints has
a dual problem with less-than-or-equal-to structural constraints. Thus, both of the
structural constraints will be less-than-or-equal-to constraints, which gives:

max
y

0.65y1 + 0.85y2 + y3

s.t. 0.7y1 + 0.9y2 + y3 ≤ 200 (x1)

0.6y1 + 0.8y2 + y3 ≤ 220. (x2)

Finally, we must determine the sign restrictions on the dual variables. Again, we
examine the canonical minimization problem given by (2.57)–(2.59) and its dual.
Note that the first primal constraint in the Gasoline-Mixture Problem is a greater-
than-or-equal-to constraint, which is consistent with (2.58). Thus, the associated dual
variable, y1, is non-negative. Because the second primal constraint is inconsistent
with (2.58), the associated variable, y2, is non-positive. The third primal constraint
is an equality, meaning that the associated variable, y3, is unrestricted in sign. Thus,
the dual problem is:

max
y

0.65y1 + 0.85y2 + y3

s.t. 0.7y1 + 0.9y2 + y3 ≤ 200 (x1)

0.6y1 + 0.8y2 + y3 ≤ 220 (x2)

y1 ≥ 0

y2 ≤ 0.
��

2.7.3.8 Summary of Duality Conversion Rules

From the discussion in this section, we can summarize the following duality con-
version rules. We use the terms ‘primal’ and ‘dual’ in these rules, however the two
words can be interchanged. This is because there is a symmetry between primal and
dual problems (i.e., the primal problem is the dual of the dual).
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For a primal problem that is a minimization we have that:

• the dual problem is a maximization;
• dual variables associated with equality constraints in the primal problem are unre-
stricted in sign;

• dual variables associated with greater-than-or-equal-to constraints in the primal
problem are non-negative;

• dual variables associated with less-than-or-equal-to constraints in the primal
problem are non-positive;

• dual constraints associated with non-negative primal variables are less-than-or-
equal-to inequalities;

• dual constraints associated with non-positive primal variables are greater-than-
or-equal-to inequalities; and

• dual constraints associated with primal variables that are unrestricted in sign are
equalities.

For a dual problem that is a maximization we have that:

• the primal problem is a minimization;
• primal variables associated with equality constraints in the dual problem are unre-
stricted in sign;

• primal variables associated with less-than-or-equal-to constraints in the dual prob-
lem are non-negative;

• primal variables associated with greater-than-or-equal-to constraints in the dual
problem are non-positive;

• primal constraints associated with non-negative dual variables are greater-than-
or-equal-to inequalities;

• primal constraints associated with non-positive dual variables are less-than-or-
equal-to inequalities; and

• primal constraints associated with dual variables that are unrestricted in sign are
equalities.

2.7.4 Weak- and Strong-Duality Properties

We saw in Section 2.7.1 that any linear optimization problem and its dual have
structural relationships. We now show some further relationships between a primal
problem and its dual, focusing specifically on the objective-function values of points
that are feasible in a primal problem and its dual. We show these relationships for
the special case of the symmetric duals introduced in Section 2.7.1. However, these
results extend to any primal problem (even if it is not in canonical form) [9]. This
is because any primal problem can be converted to canonical form and then its
symmetric dual can be found.
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Weak-Duality Property: Consider the primal problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

If x is feasible in the primal problem and y is feasible in the dual problem,
then we have that:

c�x ≥ b�y.

To show this we first note that if x is feasible in the primal problem then we
must have:

b ≤ Ax . (2.67)

Next, we know that if y is feasible in the dual problem, we must have y ≥ 0.
Thus, multiplying both sides of (2.67) by y gives:

y�b ≤ y�Ax . (2.68)

We also know that if y is feasible in the dual problem, then:

A�y ≤ c,

which can be rewritten as:
y�A ≤ c�,

by transposing the expressions on both sides of the inequality. Combining this
inequality with (2.68) gives:

y�b ≤ y�Ax ≤ c�x,

or simply:
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y�b ≤ c�x,

which is the weak-duality inequality.

The weak-duality property says that the objective-function value of any point that
is feasible in the dual problem provides a bound on the objective-function value of
any point that is feasible in the primal problem and vice versa. One can take this
weak-duality relationship further. That is because any point that is feasible in the
dual problem provides a bound on the objective-function of the optimal objective-
function value of the primal problem. For a given pair of feasible solutions to the
primal and dual problems, the difference:

c�x − y�b,

is called the duality gap. One way that the weak-duality property can be used is to
determine how close to optimal a feasible solution to the primal problem is. One can
estimate this by finding a solution that is feasible in the dual problem and computing
the duality gap.

As noted above, the weak-duality property applies to any primal problem and
its dual (not only to a primal problem in canonical form). However, the direction
of the inequality between the objective functions of the two problems may change,
dependingon the directions of the inequalities, signs of the variables, and the direction
of optimization in the primal and dual problems. Thus, for the purposes of applying
the weak-duality property, it is often beneficial to convert the primal problem into
canonical form.

Primal and dual problems have a further related property, known as the strong-
duality equality.

Strong-Duality Property: Consider the primal problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.
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If x∗ is optimal in the primal problem and y∗ is optimal in the dual problem,
then we have that:

c�x∗ = b�y∗.

The strong-duality equality says that the objective-function value of the dual
problem evaluated at an optimal solution is equal to the optimal primal objective-
function value. Luenberger andYe [9] provide a formal proof of this so-called strong-
duality theorem. In some sense, the primal problem pushes its objective-function
value down (because it is a minimization problem) while the dual problem pushes
its objective-function value up (as it is a maximization problem). The two problems
‘meet’ at an optimal solution where they have the same objective-function value.
Figure 2.15 illustrates this concept by showing the duality gap for a given pair of
solutions that are feasible in the primal and dual problems (in the left-hand side of the
figure) and the gap being reduced to zero as the two problems are solved to optimality
(in the right-hand side of the figure).

Duality gap

Primal LP
pushing down

Dual LP
pushing up

cTx - yTb No duality gap

Primal LP
pushing down

Dual LP
pushing up

Optimal solution

Fig. 2.15 Illustration of the duality gap being reduced as the primal and dual problems are solved
to optimality

The strong-duality equality also gives us anotherway to solve a linear optimization
problem. As an illustrative example, consider a primal problem in canonical form:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.
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Instead of solving the primal problem directly, one can solve the following system
of equalities and inequalities:

Ax ≥ b

A�y ≤ c

c�x = b�y

x ≥ 0

y ≥ 0,

for x and y. This system of equalities and inequalities consist of the constraints of
the primal problem (i.e., Ax ≥ b and x ≥ 0), the constraints of the dual problem
(i.e., A�y ≤ c and y ≥ 0), and the strong-duality equality (i.e., c�x = b�y). If we
find a pair of vectors, x∗ and y∗, that satisfy all of these conditions, then from the
strong-duality property we know that x∗ is optimal in the primal problem and y∗ is
optimal is the dual problem.

These strong-duality properties (including the alternate method of solving a lin-
ear optimization problem) apply to any primal problem and its dual (regardless of
whether the primal problem is in canonical form). This is because the strong-duality
property is an equality, meaning that the result is the same regardless of the form of
the primal problem. This is demonstrated in the following example.

Example 2.16 Consider the Electricity-Production Problem, which is introduced in
Section 2.1.1. This problem is formulated as:

max
x

x1 + x2 (2.69)

s.t.
2

3
x1 + x2 ≤ 18 (2.70)

2x1 + x2 ≥ 8 (2.71)

x1 ≤ 12 (2.72)

x2 ≤ 16 (2.73)

x1, x2 ≥ 0. (2.74)

Taking this is as the primal problem, its dual is:

min
y

18y1 + 8y2 + 12y3 + 16y4 (2.75)

s.t.
2

3
y1 + 2y2 + y3 ≥ 1 (2.76)

y1 + y2 + y4 ≥ 1 (2.77)

y1, y3, y4 ≥ 0 (2.78)

y2 ≤ 0. (2.79)
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We can also find the dual of this problem by first converting it to canonical form,
which is:

min
x

− x1 − x2 (2.80)

s.t. − 2

3
x1 − x2 ≥ −18 (2.81)

2x1 + x2 ≥ 8 (2.82)

− x1 ≥ −12 (2.83)

− x2 ≥ −16 (2.84)

x1, x2 ≥ 0, (2.85)

and has the dual problem:

max
y

− 18y1 + 8y2 − 12y3 − 16y4 (2.86)

s.t. − 2

3
y1 + 2y2 − y3 ≤ −1 (2.87)

− y1 + y2 − y4 ≤ −1 (2.88)

y1, y2, y3, y4 ≥ 0. (2.89)

Consider the solution (x1, x2) = (4, 0), which is feasible but not optimal in the
canonical-form primal problem, which is given by (2.80)–(2.85). Substituting this
solution into objective function (2.80) gives a value of−4.Next, consider the solution
(y1, y2, y3, y4) = (1.5, 0, 0, 0), which is feasible but not optimal in the symmetric
dual problem, which is given by (2.86)–(2.89). Substituting this solution into objec-
tive function (2.86) gives a value of−27.We see that the dual objective-function value
is less than the primal value, verifying that the weak-duality inequality is satisfied.

These solutions are also feasible in the original primal problem, given by (2.69)–
(2.74), and its dual, given by (2.75)–(2.79). However, substituting these solutions
gives a primal objective-function value of 4 and a dual value of 27. We see that in
this case the weak-duality inequality is reversed, because the original primal problem
is not in canonical form.

Next, consider the primal solution (x∗
1 , x

∗
2 ) = (12, 10) and the dual solution

(y∗
1 , y

∗
2 , y

∗
3 , y

∗
4 ) = (1, 0, 1/3, 0). It is straightforward to verify that these solutions

are feasible in both forms of the primal and dual problems. Moreover, note that if we
substitute x∗ into primal objective function (2.69) we obtain a value of 22. Similarly,
substituting y∗ into (2.75) yields a dual objective-function value of 22. Thus, by
the strong-duality property, we know that x∗ and y∗ are optimal in their respective
problems.

We also obtain the same results from examining the objective functions of
the canonical-form primal and its dual, except that the signs are reversed. More
specifically, substituting x∗ into (2.80) yields a value of −22 and substituting y∗
into (2.86) also gives −22. ��
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2.7.5 Duality and Sensitivity

In this section we show yet another important relationship between a primal problem
and its dual, specifically focusing on the relationship between dual variables and
the sensitivity vector of the primal problem. We assume that we are given a linear
optimization problem in standard form:

min
x

c�x

s.t. Ax = b

x ≥ 0.

Moreover, we assume that we have an optimal basic feasible solution x∗, which is
partitioned into basic and nonbasic variables, x∗ = (x∗

B, x∗
N ). Thus, we also have

the objective-function and constraint coefficients partitioned as c = (cB, cN ) and
A = [B, N ]. Because the nonbasic variables are equal to zero, the objective function
can be written as:

c�x∗ = c�
B x

∗
B .

We also know that the basic-variable vector can be written as:

x∗
B = B−1b,

thus we can write the optimal objective-function value as:

c�x∗ = c�
B x

∗
B = c�

B B
−1b. (2.90)

At the same time, the strong-duality equality gives us:

c�x∗ = b�y∗, (2.91)

where y∗ is a dual-optimal solution. Combining (2.90) and (2.91) gives:

y∗�b = c�
B B

−1b,

or:
y∗� = c�

B B
−1,

which provides a convenient way of computing dual-variable values from the final
tableau after solving the primal problem using the Simplex method. We next recall
sensitivity result (2.51):

c�
B B

−1Δb = λ�Δb,

which implies:



2.7 Duality Theory 111

y∗� = c�
B B

−1 = λ�,

or that the sensitivity vector is equal to the dual variables.

2.7.6 Complementary Slackness

In this sectionwe show a final relationship between a primal problem and its dual.We
do not prove this relationship formally, but rather rely on the interpretation of dual
variables as providing sensitivity information derived in Section 2.7.5. We, again,
consider the case of a primal problem in canonical form:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its symmetric dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

The discussion in Section 2.7.5 leads to the conclusion that the dual variables, y,
provide sensitivity information for the structural constraints in the primal problem.
Moreover, we know from Section 2.7.1 that the primal problem is the dual of the
dual. Thus, we can also conclude that the primal variables, x , provide sensitivity
information for the structural constraints in the dual problem.

Before proceeding, we first define what it means for an inequality constraint in
a linear optimization to be binding as opposed to non-binding. For this discussion,
let us consider the j th structural constraint in the primal problem, which can be
written as:

A j,·x ≥ b j ,

where A j,· is the j th row of the A matrix and b j the j th element of the b vector.
Note, however, that these definitions can be applied to any inequality constraint (of
any direction) in any problem. This constraint is said to be non-binding at the point
x̂ if:

A j,· x̂ > b j .

That is to say, the inequality constraint is non-binding if there is a difference or slack
between the left- and right-hand sides of the constraint when we substitute the values
of x̂ into the constraint. Conversely, we say that this constraint is binding at the point
x̂ if:
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A j,· x̂ = b j .

The constraint is binding if there is no difference or slack between its two sides at x̂ .
Now that we have these two definitions, let us consider the effect of changing the

right-hand side of the j th structural constraint in the primal problem, which is:

A j,·x ≥ b j ,

to:
A j,·x ≥ b j + Δb j ,

where Δb j is sufficiently close to zero to satisfy condition (2.49). We know from
Sections 2.6 and 2.7.5 that the change in the primal objective-function value can be
computed as:

Δb j y
∗
j ,

where y∗
j is the optimal dual-variable value associated with the j th primal structural

constraint.
Let us next intuitively determine what the effect of changing this constraint is.

First, consider the case in which the original constraint:

A j,·x ≥ b j ,

is not binding. In this case, we can conclude that changing the constraint to:

A j,·x ≥ b j + Δb j ,

will have no effect on the optimal solution, because the constraint is already slack
at the point x∗. If changing the constraint causes the feasible region to decrease in
size, x∗ will still be feasible so long as |Δb j | is not too large. Similarly, if changing
the constraint causes the feasible region to increase in size, x∗ will still remain
optimal because loosening the j th constraint should not result in the optimal solution
changing.Based on this intuition,we conclude that if the j th constraint is non-binding
then Δb j y∗

j = 0 (because the optimal solution does not change) and, thus, y∗
j = 0.

We can also draw the converse conclusion for the case of a binding constraint. If
the j th constraint is binding, then changing the constraint to:

A j,·x ≥ b j + Δb j ,

may have an effect on the optimal solution. This is because if changing the constraint
causes the feasible region to decrease in size, x∗ may change causing the primal
objective-function value to increase (get worse). If changing the constraint causes
the feasible region to increase in size, x∗ may change causing the primal objective-
function value to get better. Thus, we conclude that if the j th constraint is binding
then Δb j y∗

j can be non-zero, meaning that y∗
j may be non-zero.



2.7 Duality Theory 113

These conclusions give what is known as the complementary-slackness condi-
tion between the primal constraints and their associated dual variables. The Primal
Complementary-Slackness Property is written explicitly in the following.

Primal Complementary-Slackness Property: Consider the primal problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

If x∗ is optimal in the primal problem and y∗ is optimal in the dual problem,
then for each primal constraint, j = 1, . . . ,m, we have that either:

1. A j,·x∗ = b j ,
2. y∗

j = 0, or
3. both.

The third case in the Primal Complementary-Slackness Property implies some
level of redundancy in the constraints. This is because in Case 3 there is at least one
inequality constraint that is binding, but which has a sensitivity value of zero.

This complementary-slackness property can also be written more compactly as:

(A j,·x∗ − b j )y
∗
j = 0,∀ j = 1, . . . ,m.

This is because for the product, (A j,·x∗ − b j )y∗
j , to equal zero for a given j we must

either have (A j,·x∗ − b j ) = 0, which is the first complementary slackness condition,
or y∗

j = 0, which is the second. Indeed, instead of writing:

(A j,·x∗ − b j )y
∗
j = 0,

for each j , one can also write the complementary slackness condition even more
compactly as:

(Ax∗ − b)�y = 0,

which enforces complementary slackness between all of the primal constraints and
dual variables in a single equation.
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We can carry out a similar analysis of changing the right-hand sides of the dual
constraints, which gives rise to the following Dual Complementary-Slackness Prop-
erty.

Dual Complementary-Slackness Property: Consider the primal problem:

min
x

c�x

s.t. Ax ≥ b

x ≥ 0,

and its dual:

max
y

b�y

s.t. A�y ≤ c

y ≥ 0.

If x∗ is optimal in the primal problem and y∗ is optimal in the dual problem,
then for each dual constraint, i = 1, . . . , n, we have that either:

1. A�
·,i y∗ = ci ,

2. x∗
i = 0, or

3. both;

where A·,i is the i th column of the A matrix.

As with the Primal Complementary-Slackness Property, the third case in the Dual
Complementary-Slackness Property also implies some level of redundancy in the
constraints. This is because in Case 3 there is at least one inequality constraint that
is binding, but which has a sensitivity value of zero.

Aswith thePrimalComplementary-SlacknessProperty, theDualComplementary-
Slackness Property can be written more compactly as:

(A�
·,i y

∗ − ci )x
∗
i = 0,∀i = 1, . . . , n;

or as:
(A�y∗ − c)�x∗ = 0.

The Primal and Dual Complementary-Slackness Properties can be extended to
structural constraints that are different from the canonical form. The same result
is obtained, if there is an inequality in one of the primal or dual problem either
it must be binding or the associated variable in the other problem must equal zero.
One can also write complementary slackness involving equality constraints, however
these conditions do not provide any useful information. This is because an equality
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constraint must always be binding. Thus, the variable associated with an equality
constraint can take on any value (i.e., it is never restricted to equal zero).

One of the benefits of the complementary-condition properties is that it provides
another means to recover an optimal solution to either of the primal or dual problem
from an optimal solution to the other. This is demonstrated in the following example.

Example 2.17 Consider the Electricity-Production Problem, which is introduced in
Section 2.1.1. This problem is formulated as:

max
x

x1 + x2

s.t.
2

3
x1 + x2 ≤ 18 (y1)

2x1 + x2 ≥ 8 (y2)

x1 ≤ 12 (y3)

x2 ≤ 16 (y4)

x1, x2 ≥ 0,

and its dual is:

min
y

18y1 + 8y2 + 12y3 + 16y4

s.t.
2

3
y1 + 2y2 + y3 ≥ 1 (x1)

y1 + y2 + y4 ≥ 1 (x2)

y1, y3, y4 ≥ 0

y2 ≤ 0,

where the variable associations are denoted in the parentheses. We know that
(x∗

1 , x
∗
2 ) = (12, 10) is optimal in the primal problem.

Substituting these values into the primal constraints, we see that the second and
fourth one are non-binding. Thus, the Primal Complementary-Slackness Property
tells us that y∗

2 = 0 and y∗
4 = 0. Furthermore, because both x∗

1 and x∗
2 are non-zero,

we know that their associated dual constraints must be binding (i.e., we can write
them as equalities). Doing so and substituting in the values found for y∗

2 = 0 and
y∗
4 = 0 gives:

2

3
y1 + y3 = 1

y1 = 1,

which have: y∗
1 = 1 and y∗

3 = 1/3 as solutions. This dual solution, (y∗
1 , y

∗
2 , y

∗
3 , y

∗
4 ) =

(1, 0, 1/3, 0) coincides with the dual-optimal solution found in Example 2.16. ��
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2.8 Final Remarks

This chapter introduces the Simplexmethod,whichwas initially proposed byDantzig
[5], as an algorithm to solve linear optimization problems. The Simplex method
works by navigating around the boundary of the polytope that describes the feasible
region of the problem, jumping from one extreme point (or basic feasible solution)
to another until reaching an optimal corner. An obvious question that this raises
is whether it would be beneficial to navigate through the interior of the polytope
instead of around its exterior. For extremely large problems, this may be the case.
Interested readers are referred to more advanced textbooks, which introduce such
interior-point algorithms [11]. Additional information on LPPs, their formulation,
properties, and solutions algorithms, can be found in a number of other advanced
textbooks [1, 2, 9, 12]. Modeling issues are treated extensively by Castillo et al. [4].

2.9 GAMS Codes

This final section provides GAMS [3] codes for the main problems considered in
this chapter. GAMS can use a variety of different software packages, among them
CPLEX [8] and GUROBI [7], to actually solve an LPP.

2.9.1 Electricity-Production Problem

The Electricity-Production Problem, which is introduced in Section 2.1.1, has the
following GAMS formulation:

1 variable z;
2 positive variables x1 , x2;
3 equations of , eq1 , eq2 , eq3 , eq4;
4 of .. z =e= x1+x2;
5 eq1 .. (2/3)*x1+x2 =l= 18;
6 eq2 .. 2*x1+x2 =g= 8;
7 eq3 .. x1 =l= 12;
8 eq4 .. x2 =l= 16;
9 model ep /all/;

10 solve ep using lp maximizing z;

Lines 1 and 2 are variable declarations, Line 3 gives names to the equations
(i.e., the objective function, equalities, and inequalities) of the model, and Lines 5–8
define these equations (i.e., the objective function and constraints). The double-dot
separates the name of an equation from its definition. “=e=” indicates an equal-
ity, “=l=” a less-than-or-equal-to inequality, and “=g=” a greater-than-or-equal-to
inequality. Line 9 gives a name to themodel and indicates that all equations should be
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considered. Finally, Line 10 directs GAMS to solve the problem using an LP solver
while minimizing z. All lines end with a semicolon.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 22.000 +INF .
4 ---- VAR x1 . 12.000 +INF .
5 ---- VAR x2 . 10.000 +INF .

2.9.2 Natural Gas-Transportation Problem

The Natural Gas-Transportation Problem, which is introduced in Section 2.1.2, has
the following GAMS formulation:

1 variable z;
2 positive variables x11 , x12 , x21 , x22;
3 equations of , s1 , s2 , d1 , d2;
4 of .. z =e= 5*x11+4*x12+3*x21+6*x22;
5 s1 .. x11+x12 =l= 7;
6 s2 .. x21+x22 =l= 12;
7 d1 .. x11+x21 =e= 10;
8 d2 .. x12+x22 =e= 8;
9 model ng /all/;

10 solve ng using lp minimizing z;

Lines 1 and 2 declare variables, Line 3 gives names to the model equations, Line 4
defines the objective function, Lines 5–8 specify the constraints, Line 9 defines the
model, and Line 10 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 64.000 +INF .
4 ---- VAR x11 . . +INF 4.000
5 ---- VAR x12 . 7.000 +INF .
6 ---- VAR x21 . 10.000 +INF .
7 ---- VAR x22 . 1.000 +INF .

2.9.3 Gasoline-Mixture Problem

The Gasoline-Mixture Problem, which is introduced in Section 2.1.3, has the fol-
lowing GAMS formulation:
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1 variable z;
2 positive variables x1 , x2;
3 equations of , eq1 , eq2 , eq3;
4 of .. z =e= 200*x1 +220*x2;
5 eq1 .. 0.7*x1 +0.6*x2 =g= 0.65;
6 eq2 .. 0.9*x1 +0.8*x2 =l= 0.85;
7 eq3 .. x1+x2=e=1;
8 model mg /all/;
9 solve mg using lp minimizing z;

Lines 1 and 2 declare variables, Line 3 gives names to the model equations, Line 4
defines the objective function, Lines 5–7 specify the constraints, Line 8 defines the
model, and Line 9 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 210.000 +INF .
4 ---- VAR x1 . 0.500 +INF .
5 ---- VAR x2 . 0.500 +INF .

2.9.4 Electricity-Dispatch Problem

The Electricity-Dispatch Problem, which is introduced in Section 2.1.4, has the
following GAMS formulation:

1 variable z, theta1 , theta2;
2 positive variables x1 , x2;
3 equations of , ba1 , ba2 , ba3 , bo1 , bo2;
4 of .. z =e= x1+2*x2;
5 ba1 .. x1 =e= (theta1 -theta2)+(theta1 -0);
6 ba2 .. x2 =e= (theta2 -theta1)+(theta2 -0);
7 ba3 .. 10 =e= (theta1 -0) +(theta2 -0);
8 bo1 .. x1 =l= 6;
9 bo2 .. x2 =l= 8;

10 model ed /all/;
11 solve ed using lp minimizing z;

Lines 1 and 2 declare variables, Line 3 gives names to the equations of the model,
Line 4 defines the objective function, Lines 5–9 specify the constraints, Line 10
defines the model, and Line 11 directs GAMS to solve it.
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The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 14.000 +INF .
4 ---- VAR theta1 -INF 5.333 +INF .
5 ---- VAR theta2 -INF 4.667 +INF .
6 ---- VAR x1 . 6.000 +INF .
7 ---- VAR x2 . 4.000 +INF .

2.10 Exercises

2.1 Jose builds electrical cable using two types ofmetallic alloys.Alloy 1 is 55%alu-
minum and 45% copper, while alloy 2 is 75% aluminum and 25% copper. Market
prices for alloys 1 and 2 are $5 and $4 per ton, respectively. Formulate a linear opti-
mization problem to determine the cost-minimizing quantities of the two alloys that
Jose should use to produce 1 ton of cable that is at least 30% copper.

2.2 Transform the linear optimization problem:

max
x1,x2

z = x1 + 2x2

s.t. 2x1 + x2 ≤ 12

x1 − x2 ≥ 2

x1, x2 ≥ 0,

to standard and canonical forms.

2.3 Consider the tableau shown in Table 2.20. Conduct a regularization step and
pivot operation to make the b̃ vector non-negative.

Table 2.20 Tableau for
Exercise 2.3

1 x1 x2
z 0 −1 −1

x3 12 −2 −1

x4 −3 1 0

2.4 Consider the tableau shown in Table 2.21. Conduct Simplex iterations to solve
the associated linear optimization problem. What are the optimal solution found and
sensitivity vector?
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Table 2.21 Tableau for
Exercise 2.4

1 x5 x2 x4
z −3 21 −1 −1/2

x3 6 3 −1 −2

x1 3 −1 0 1

2.5 Find the dual of the primal problem:

min
x1,x2

zP = 3x1 + 4x2

s.t. 2x1 + 3x2 ≥ 4

3x1 + 4x2 ≤ 10

x1 + x2 = 5

x1 ≥ 0

x2 ≤ 0.

2.6 The optimal solution to the primal problem in Exercise 2.5 is (x∗
1 , x

∗
2 ) =

(14/3, 8/3). The optimal solution to the dual problem has 1 as the value of the dual
variable associated with the first primal constraint and −1 as the value of the dual
variable associated with the second. Using this information, answer the following
three questions.

1. What is the change in the primal objective-function value if the right-hand side
of the first primal constraint changes to 12.1?

2. What is the change in the primal objective-function value if the right-hand side
of the second primal constraint changes to 1.9?

3. What is the change in the primal objective-function value if the right-hand side
of the first primal constraint changes to 12.1 and the right-hand side of the
second primal constraint changes to 1.9?

2.7 Write a GAMS code for the model formulated in Exercise 2.1.
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Chapter 3
Mixed-Integer Linear Optimization

In this chapter, we study mixed-integer linear optimization problems. Also known as
mixed-integer linear programming problems (MILPPs), these are problems with an
objective function and constraints that are all linear in the decision variables. What
sets MILPPs apart from linear programming problems (LPPs) is that at least some of
the variables in MILPPs are constrained to take on integer values. LPPs, conversely,
have no such constraints and all of the variables can take on any continuous value.

This chapter begins by providing a number of illustrative examples to show the
practical significance of MILPPs. Then, a general formulation of the MILPP is pro-
vided. Next, we demonstrate the use of a special type of integer variable known as
a binary variable. We show that binary variables can be used to model a number of
types of nonlinearities and discontinuities whilemaintaining a linearmodel structure.
This use of binary variables is, in some sense, the true power of mixed-integer linear
optimization models. Two solution techniques for MILPPs are then introduced. We
first discuss the use of a branch-and-bound method to solve general MILPPs. We
next introduce a cutting-plane algorithm for MILPPs in which all of the variables
are constrained to take on integer values. Problems with this structure are commonly
referred to as pure-integer linear optimization problems or pure-integer linear pro-
gramming problems (PILPPs). This chapter closes with some final remarks, GAMS
codes for the illustrative examples, and a number of end-of-chapter exercises.

3.1 Motivating Examples

This introductory section provides and explains a number of illustrative examples
to show the practical value of MILPPs. These examples pertain to the energy sector
and cover most of the standard ‘classes’ of MILPPs.

© Springer International Publishing AG 2017
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3.1.1 Photovoltaic Panel-Repair Problem

A spacecraft has a series of photovoltaic (PV) solar panels installed that must be
repaired. There are two types of repair units, type A and B, that can be used to
repair the PV panels. One type-A unit has a mass of 17 kg and occupies 32 m3 of
space while one type-B unit has a mass of 32 kg and occupies 15 m3. The shuttle
that is available to transport repair units to the spacecraft can only accommodate
up to 136 kg and up to 120 m3. How many units of each type (A and B) should be
transported to maximize the total number of repair units sent to the spacecraft?

There are two decision variables in this problem. We let x1 denote the number
of type-A units transported to the spacecraft and x2 the number of type-B units
transported.

The objective of this problem is to maximize the total number of repair units
transported:

max
x1,x2

x1 + x2.

There are four sets of constraints in this problem. First, we must impose the mass
constraint, which is:

17x1 + 32x2 ≤ 136.

Second, we have the volume constraint:

32x1 + 15x2 ≤ 120.

Third, we must constrain each of x1 and x2 to be non-negative, because transporting
a negative number of repair units is physically meaningless:

x1, x2 ≥ 0.

Finally, we impose a constraint that each of the variables, x1 and x2, must take on
integer values. The most compact way to express this is:

x1, x2 ∈ Z,

as Z is the standard notation for the set of integers.
Whenwe impose this fourth constraint, the twovariables x1 and x2 become integer

variables. This should be contrasted with all of the variables used in formulating
LPPs inChapter 2.Wehaveno restriction in anyof themodels formulated inChapter 2
that the variables take on integer values. Indeed, the Simplexmethod, which is used to
solve LPPs, has no general guarantee that any of the optimal decision variable values
obtained have integer values. It is straightforward to verify that one can formulate a
multitude of LPPs that do not yield integer-valued decision variables.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2
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Taking all of these elements together, the problem can be formulated as:

max
x1,x2

z = x1 + x2 (3.1)

s.t. 17x1 + 32x2 ≤ 136 (3.2)

32x1 + 15x2 ≤ 120 (3.3)

x1, x2 ≥ 0 (3.4)

x1, x2 ∈ Z. (3.5)

Because problem (3.1)–(3.5) includes integer variables, we refer to it as amixed-
integer linear optimization problem. Indeed, because all of the variables in this
particular problem are restricted to take on integer values, we can refer to it more
specifically as a pure-integer linearoptimizationproblem. Thedistinctionbetween
a mixed- and pure-integer optimization problem is that the former can include a mix
of variables that are and are not restricted to take on integer values. The latter only
includes variables restricted to take on integer values.

Before proceeding, we finally note that we can express this optimization problem
in the even more compact form:

max
x1,x2

z = x1 + x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ∈ Z
+,

where Z+ is the standard notation for the set of non-negative integers.
The feasible region of problem (3.1)–(3.5) is shown in Figure 3.1. All of the

feasible (integer) solutions are indicated in this figure by small circles and we see

Fig. 3.1 Geometrical
representation of the feasible
region of the Photovoltaic
Panel-Repair Problem
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Fig. 3.2 Geometrical
representation of the feasible
region of the Photovoltaic
Panel-Repair Problem with
objective-function contour
plot overlaid

that there are a total of 15 feasible points: (x1, x2) can feasibly equal any of (0, 0),
(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3),
(3, 0), or (3, 1).

Figure 3.2 overlays the contour plot of the objective function on the feasible region.
Visual inspection of this figure shows that of the 15 feasible solutions, (x1, x2) =
(2, 3) is optimal because it allows the most (five) repair units to be sent to the
spacecraft.

Wefinally note that the Photovoltaic Panel-Repair Problem is a simplified instance
of what is known as a knapsack problem.

3.1.2 Natural Gas-Storage Problem

A natural gas supplier needs to build gas-storage facilities with which to supply
customers in two cities. The company has three possible sites where storage facilities
can be built. Table 3.1 indicates how much revenue is earned (in $ billion) by the
company per GJ of natural gas supplied from each of the three prospective facilities
to each of the two cities.

Table 3.2 summarizes the building cost (in $ billion) of each of the three prospec-
tive gas-storage facilities. It also lists the capacity of each of the facilities, in GJ,
if that facility is built. Note that each of the costs is incurred if the corresponding
gas-storage facility is built, irrespective of how much gas is ultimately stored there.
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Table 3.1 Revenue earned
from each potential
gas-storage facility
[$ billion/GJ] in the Natural
Gas-Storage Problem

City 1 City 2

Storage Facility 1 1 6

Storage Facility 2 2 5

Storage Facility 3 3 4

Table 3.2 Building cost and
capacity of gas-storage
facilities in the Natural
Gas-Storage Problem

Storage Facility Cost [$ billion] Capacity [GJ]

1 8 7

2 9 8

3 7 9

Finally, Table 3.3 summarizes the demand for natural gas (in GJ) in each city,
which must be exactly met. The company would like to determine which (if any)
of the three gas-storage facilities to build and how much gas to supply from each
facility built to each city to maximize its profit.

Table 3.3 Demand for
natural gas in each city in the
Natural Gas-Storage Problem

City Demand [GJ]

1 10

2 6

To formulate this problem, we introduce two sets of variables. The first, which we
denote x1, x2, and x3, represent the company’s decision of whether to build each of
the three storage facilities. We model these using a specific type of integer variable,
called a binary variable. As the name suggests, a binary variable is restricted to take
on two values, which are almost always 0 and 1. Binary variables are almost always
used to model logical conditions or decisions. In this example, we define each of
the three x variables to represent the logical decision of whether to build each of the
three storage facilities. Thus, we define each of these variables as:

x1 =
{
1, if gas-storage facility 1 is built,
0, if gas-storage facility 1 is not built,

x2 =
{
1, if gas-storage facility 2 is built,
0, if gas-storage facility 2 is not built,

and:

x3 =
{
1, if gas-storage facility 3 is built,
0, if gas-storage facility 3 is not built.
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We next define an additional set of six variables, which we denote yi, j where
i = 1, 2, 3 and j = 1, 2. The variable yi, j is defined as the amount of natural gas (in
GJ) supplied by storage facility i to city j .

The company’s objective is to maximize its profit, which is defined as revenue
less cost. Using the data reported in Table 3.1, the company’s revenue is defined as:

1y1,1 + 2y2,1 + 3y3,1 + 6y1,2 + 5y2,2 + 4y3,2.

The company incurs costs for building gas-storage facilities, which are summarized
in Table 3.2. Indeed, we can compute the company’s cost by multiplying the cost
data reported in Table 3.2 by each of the corresponding x variables. This gives:

8x1 + 9x2 + 7x3,

as the company’s cost. To understand this expression, note that if gas-storage facility i
is not built, then xi = 0. In that case, the product of xi and the corresponding cost
will be zero, meaning that the company incurs no cost for building storage facility i .
If, on the other hand, facility i is built, then xi = 1 and the product of xi and the
corresponding cost gives the correct cost. Taking the revenue and cost expressions
together, the company’s objective function is:

max
x,y

y1,1 + 2y2,1 + 3y3,1 + 6y1,2 + 5y2,2 + 4y3,2 − (8x1 + 9x2 + 7x3).

This problem has four types of constraints. The first imposes the requirement that
the demand in each city is met:

y1,1 + y2,1 + y3,1 = 10,

and:
y1,2 + y2,2 + y3,2 = 6.

We next need constraints that ensure that none of the three gas-storage facilities
operate above maximum capacities. One may be tempted to write these constraints
as:

y1,1 + y1,2 ≤ 7,

y2,1 + y2,2 ≤ 8,

and:
y3,1 + y3,2 ≤ 9.

However, it is actually preferable to write these constraints as:

y1,1 + y1,2 ≤ 7x1,
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y2,1 + y2,2 ≤ 8x2,

and:
y3,1 + y3,2 ≤ 9x3.

The reason for this is that the second set of constraints, with the x’s on the right-
hand sides, impose an additional restriction that a gas-storage facility cannot operate
(meaning that its maximum capacity is zero) if the facility is not built. To understand
this, let us examine the first of the three constraints:

y1,1 + y1,2 ≤ 7x1.

If gas-storage facility 1 is built, then x1 = 1 and this constraint simplifies to:

y1,1 + y1,2 ≤ 7,

which is what we want (the gas-storage facility can hold at most 7 GJ of gas).
Otherwise, if the facility 1 is not built, then x1 = 0 and the constraint simplifies to:

y1,1 + y1,2 ≤ 0.

This is, again, what we want in this case because if facility 1 is not built, then it can
hold 0 GJ of gas. These three constraints are an example of logical constraints. This
is because they encode a logical condition. In this case, a gas-storage facility only
has capacity available if it is built. Otherwise, it has zero capacity available. We next
require the y variables to be non-negative:

y1,1, y1,2, y2,1, y2,2, y3,1, y3,2 ≥ 0.

We finally require the x variables to be binary:

x1, x2, x3 ∈ {0, 1}.

Taking all of these elements together, the MILPP for this problem is:

max
x,y

z = y1,1 + 2y2,1 + 3y3,1 + 6y1,2 + 5y2,2 + 4y3,2 − 8x1 − 9x2 − 7x3

s.t. y1,1 + y2,1 + y3,1 = 10

y1,2 + y2,2 + y3,2 = 6

y1,1 + y1,2 ≤ 7x1 (3.6)

y2,1 + y2,2 ≤ 8x2 (3.7)

y3,1 + y3,2 ≤ 9x3 (3.8)

yi, j ≥ 0,∀ i = 1, 2, 3; j = 1, 2

xi ∈ {0, 1},∀ i = 1, 2, 3.
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The Natural Gas-Storage Problem is a simplified version of a facility-location
problem.

3.1.3 Electricity-Scheduling Problem

An electricity producer needs to supply 50 kW of power to a remote village over the
next hour. To do so, it has three generating units available. The producer must decide
whether to switch each of the three generating units on or not.

If it does switch a generating unit on, the producer must pay a fixed cost to operate
the unit, which is independent of how much energy the unit produces. In addition
to this fixed cost, there is a variable cost that the producer must pay for each kWh
produced by each unit.

If a unit is switched on, it must produce any amount of energy between aminimum
and maximum production level. Otherwise, its production level must equal zero.
Table 3.4 summarizes the operating costs and production limits of the electricity-
production units. The electricity producer would like to schedule the three production
units to minimize the cost of exactly serving the 50 kW demand of the village.

Table 3.4 Operating costs and production limits of electricity-production units in the Electricity-
Scheduling Problem

Production Unit
Cost Production Limits [kW]

Variable [$/kWh] Fixed [$/hour] Minimum Maximum

1 2 40 5 20

2 5 50 6 40

3 1 35 4 35

To formulate this problem, we introduce two sets of variables. We first have
variables p1, p2 and p3, where we define pi as the kW produced by unit i . We next
define three binary variables, x1, x2, and x3, where we define xi as:

xi =
{
1, if unit i is switched on,
0, if unit i is not switched on.

The producer’s objective function, which is to minimize cost, can be written as:

min
p,x

2p1 + 5p2 + 1p3 + 40x1 + 50x2 + 35x3.

The problem requires three types of constraints. We first need a constraint that
ensures that the 50 kW of demand is exactly met:



3.1 Motivating Examples 131

p1 + p2 + p3 = 50.

We next must impose the production limits of the units, which can be written as:

5x1 ≤ p1 ≤ 20x1,

6x2 ≤ p2 ≤ 40x2,

and:
4x3 ≤ p3 ≤ 35x3.

Note that these three production-limit constraints have the logical constraint involv-
ing the decision to switch each unit on or not embedded within them. To see this, let
us look more closely at the first of these three constraints:

5x1 ≤ p1 ≤ 20x1.

If unit 1 is switched on, then x1 = 1 and this constraint simplifies to:

5 ≤ p1 ≤ 20.

This is the constraint that we want in this case, because if unit 1 is switched on, then
it must produce between its minimum (5 kW) and maximum (20 kW) production
levels. Otherwise, if unit 1 is not switched on then x1 = 0 and the production-limit
constraint becomes:

0 ≤ p1 ≤ 0,

or simply:
p1 = 0.

This is, again, correct because if unit 1 is not switched on, its production must be
equal to zero. We finally have a constraint that the x variables be binary:

x1, x2, x3 ∈ {0, 1}.

Thus, the MILPP for this problem is:

min
p,x

z = 2p1 + 5p2 + p3 + 40x1 + 50x2 + 35x3

s.t. p1 + p2 + p3 = 50

5x1 ≤ p1 ≤ 20x1 (3.9)

6x2 ≤ p2 ≤ 40x2 (3.10)

4x3 ≤ p3 ≤ 35x3 (3.11)

xi ∈ {0, 1},∀ i = 1, 2, 3.
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Although it is physically meaningless for any of the p1, p2, or p3 to take on a
negative values,we do not need to include explicit non-negativity constraints for these
variables. This is because the left-hand sides of double-sided inequalities (3.9)–(3.11)
ensure that each of the p variables take on non-negative values. We could include
non-negativity constraints for the p variables, however, they would be redundant in
this problem.

We finally note that this example is a simplified instance of a unit-scheduling
problem.

3.1.4 Oil-Transmission Problem

An oil company owns two oil wells that are connected via three pipelines to one
another and to a refinery, as shown in Figure 3.3. The refinery has a fixed demand for
30 t of oil. The company is considering expanding the capacity of the two pipelines
that directly connect the wells with the refinery, as depicted in the figure.

Fig. 3.3 Network in the
Oil-Transmission Problem

flow3

flow2flow1

well 1 well 2

refinery

expansionexpansion

The company earns a profit of $2000 per ton of oil sold from well 1 to the refinery
and a profit of $3000/t for oil sold from well 2 to the refinery.

The pipeline that directly connects well 1 with the refinery can carry 12 t of oil. If
it is expanded, which costs $50000, then this capacity increases by 11 t to 23 t total.
Similarly, the pipeline directly connecting well 2 with the refinery can carry 11 t of
oil. This capacity increases by 12 t if the pipeline is expanded, which costs $55000
to do. The pipeline directly connecting wells 1 and 2 can carry at most 10 t and this
pipeline cannot be expanded.

The company would like to determine which (if any) of the pipelines to expand
and how to ship oil from its wells to the refinery to maximize its profit.
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To formulate this problem, we introduce three sets of variables. First, we let p1
and p2 denote the amount of oil extracted from each of wells 1 and 2, respectively.
We next define f1, f2, and f3 as the flows along the three pipelines, as shown in
Figure 3.3. We use the convention that if fi is positive, that means there is a net
flow in the direction of the arrow depicted in the figure. We finally define two binary
variables, x1 and x2, representing the pipeline-expansion decisions.More specifically,
we define xi as:

xi =
{
1, if pipeline i is expanded,
0, if pipeline i is not expanded.

The company’s objective function, which maximizes profit, is:

max
p, f,x

2000p1 + 3000p2 − 50000x1 − 55000x2.

This problem has five types of constraints. First, we must ensure that we deliver
exactly 30 t of oil to the refinery:

p1 + p2 = 30.

This constraint ensures that a total of exactly 30 t of oil is extracted from the two
wells. Next, we must ensure that the oil extracted at the two wells is not left at the
two wells but is instead delivered to the refinery through the pipeline network. We
write these constraints as:

p1 = f1 + f3,

and:
p2 = f2 − f3.

These two constraints require that the total amount of oil extracted at each well
(which is on the left-hand sides of the constraints) exactly equals the amount of oil
that leaves each well through the pipelines (which is on the right-hand sides of the
constraints). We next impose the flow constraints on the three pipelines:

−12 − 11x1 ≤ f1 ≤ 12 + 11x1,

−11 − 12x2 ≤ f2 ≤ 11 + 12x2,

and:
−10 ≤ f3 ≤ 10.

We next require that the amount produced by each well be non-negative:

p1, p2 ≥ 0,

and that the x variables be binary:
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x1, x2 ∈ {0, 1}.

Putting these elements together, this problem is formulated as:

max
p, f,x

z = 2000p1 + 3000p2 − 50000x1 − 55000x2

s.t. p1 + p2 = 30

p1 = f1 + f3
p2 = f2 − f3
− 12 − 11x1 ≤ f1 ≤ 12 + 11x1
− 11 − 12x2 ≤ f2 ≤ 11 + 12x2
− 10 ≤ f3 ≤ 10

pi ≥ 0,∀ i = 1, 2

xi ∈ {0, 1},∀ i = 1, 2.

This problem is a simple version of a transmission-expansion problem.

3.1.5 Charging-Station Problem

To serve electric vehicle (EV) owners in four neighborhoods, a city needs to identify
which (if any) of three potential EV charging stations to build. The city’s goal is
to minimize the total cost of building the stations, while properly serving the EV-
charging needs of the four neighborhoods.

Table 3.5 summarizes which of the four neighborhoods can be served by each of
the three potential EV-charging-station locations. An entry of 1 in the table means
that the neighborhood can be served by a station at the location while an entry of 0
means that it cannot be. Table 3.6 summarizes the cost incurred for building each of
the three potential EV charging stations.

Table 3.5 Neighborhoods that can use each potential EV-charging-station location in the Charging-
Station Problem

Location 1 Location 2 Location 3

Neighborhood 1 1 0 1

Neighborhood 2 0 1 0

Neighborhood 3 1 1 0

Neighborhood 4 0 0 1
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Table 3.6 Cost of building
EV-charging stations in the
Charging-Station Problem

Cost [$ million]

Location 1 10

Location 2 12

Location 3 13

To formulate this problem, we define three binary variables, x1, x2 and x3, where
we define xi as:

xi =
{
1, if EV-charging station i is built,
0, if EV-charging station i is not built.

The city’s objective function is to minimize cost, which is given by:

min
x

10x1 + 12x2 + 13x3,

where the objective is measured in millions of dollars.
There are two types of constraints in this problem. First, we must ensure that

the EV charging stations built are capable of serving EV owners in each of the four
neighborhoods. These constraints take the form:

1x1 + 0x2 + 1x3 ≥ 1,

0x1 + 1x2 + 0x3 ≥ 1,

1x1 + 1x2 + 0x3 ≥ 1,

and:
0x1 + 0x2 + 1x3 ≥ 1.

To understand the logic behind each of these constraints, let us examine the first one:

1x1 + 0x2 + 1x3 ≥ 1,

more closely. We know, from Table 3.5 that EV owners in neighborhood 1 can only
be served by stations 1 or 3. Thus, at least one of those two stations must be built.
The constraint imposes this requirement by multiplying each of x1 and x3 by 1. The
sum:

1x1 + 0x2 + 1x3 = x1 + x3,

measures how many of the stations that can serve EV owners in neighborhood 1
are built. The constraint requires that at least one such station be built. An analysis
of the other three constraints have the same interpretation. We must also impose a
constraint that the x variables be binary:
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x1, x2, x3 ∈ {0, 1}.

Taking these together, the problem is formulated as:

min
x

z = 10x1 + 12x2 + 13x3

s.t. x1 + x3 ≥ 1

x2 ≥ 1

x1 + x2 ≥ 1

x3 ≥ 1

xi ∈ {0, 1},∀ i = 1, 2, 3.

The Charging-Station Problem is an example of an area-covering or set-covering
problem.

3.1.6 Wind Farm-Maintenance Problem

A wind-generation company must perform annual maintenance on its three wind
farms. The company has three maintenance teams to carry out this work. Each main-
tenance team must be assigned to exactly one wind farm and each wind farm must
have exactly one maintenance team assigned to it. Table 3.7 lists the costs of assign-
ing the three maintenance teams to each wind farm. The company would like to
determine the assignments to minimize its total maintenance costs.

Table 3.7 Cost of assigning maintenance crews to wind farms in the Wind Farm-Maintenance
Problem

Wind Farm 1 Wind Farm 2 Wind Farm 3

Maintenance Team 1 10 12 14

Maintenance Team 2 9 8 15

Maintenance Team 3 10 5 15

To formulate this problem, we define one set of variables, which we denote xi, j
with i = 1, 2, 3 and j = 1, 2, 3, where we define xi, j as:

xi, j =
{
1, if maintenance crew i is assigned to wind farm j,
0, otherwise.

The company’s objective function is to minimize cost, which is given by:

min
x

10x1,1 + 12x1,2 + 14x1,3 + 9x2,1 + 8x2,2 + 15x2,3 + 10x3,1 + 5x3,2 + 15x3,3.
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This problem has three sets of constraints. First, we must ensure that each main-
tenance crew is assigned to exactly one wind farm, giving the following constraints:

x1,1 + x1,2 + x1,3 = 1,

x2,1 + x2,2 + x2,3 = 1,

and:
x3,1 + x3,2 + x3,3 = 1.

Wemust next ensure that each wind farm has exactly one maintenance crew assigned
to it:

x1,1 + x2,1 + x3,1 = 1,

x1,2 + x2,2 + x3,2 = 1,

and:
x1,3 + x2,3 + x3,3 = 1.

We must finally ensure that all of the variables are binary:

xi, j ∈ {0, 1},∀ i = 1, 2, 3; j = 1, 2, 3.

Taking these elements together, the company’s problem is:

max
x

z = 10x1,1 + 12x1,2 + 14x1,3 + 9x2,1 + 8x2,2 + 15x2,3

+ 10x3,1 + 5x3,2 + 15x3,3 (3.12)

s.t. x1,1 + x1,2 + x1,3 = 1 (3.13)

x2,1 + x2,2 + x2,3 = 1 (3.14)

x3,1 + x3,2 + x3,3 = 1 (3.15)

x1,1 + x2,1 + x3,1 = 1 (3.16)

x1,2 + x2,2 + x3,2 = 1 (3.17)

x1,3 + x2,3 + x3,3 = 1 (3.18)

xi, j ∈ {0, 1},∀ i = 1, 2, 3; j = 1, 2, 3. (3.19)

This problem is an example of an assignment problem.
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3.2 Types of Mixed-Integer Linear Optimization Problems

Mixed-integer linear optimization problems can take a number of different more
specific forms. We have discussed some examples of these, such as pure-integer
linear optimization problems. We describe some of these forms in more detail here.

3.2.1 General Mixed-Integer Linear Optimization Problems

A general mixed-integer linear optimization problem or MILPP has the form:

min
x1,...,xn

c0 +
n∑

i=1
ci xi

s.t.
n∑

i=1
Ae

j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n,

where me, mg , and ml are the numbers of equal-to, greater-than-or-equal-to, and
less-than-or-equal to constraints. Thus, m = me + mg + ml is the total number
of constraints. The coefficients, Ae

j,i ,∀i = 1, . . . , n, j = 1, . . . ,me, A
g
j,i ,∀i =

1, . . . , n, j = 1, . . . ,mg , and Al
j,i ,∀i = 1, . . . , n, j = 1, . . . ,ml , the terms on the

right-hand sides of the constraints, bej ,∀ j = 1, . . . ,me, b
g
j ,∀ j = 1, . . . ,mg , and

blj ,∀ j = 1, . . . ,ml , and the coefficients, c0, . . . , cn , in the objective function are all
constants.

Some subset of the variables are restricted to take on integer values:

xi ∈ Z, for some i = 1, . . . , n,

where:
Z = {. . . ,−2,−1, 0, 1, 2, . . . },

is standard notation for the set of integers. These are called the integer variables. The
remaining variables have no such restriction and can take on any non-integer values
that satisfy the remaining constraints.
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Of the examples given in Section 3.1, the Natural Gas-Storage, Electricity-
Scheduling and Oil-Transmission Problems, which are introduced in Sections 3.1.2,
3.1.3 and 3.1.4, respectively, are general MILPPs.

3.2.2 Pure-Integer Linear Optimization Problems

A pure-integer linear optimization problem or PILPP is a special case of a general
MILPP in which all of the variables are restricted to take on integer values. A PILPP
has the generic form:

min
x1,...,xn

c0 +
n∑

i=1

ci xi

s.t.
n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, ∀ i = 1, . . . , n,

where me, mg , ml , Ae
j,i , A

g
j,i , A

l
j,i , b

e
j , b

g
j , b

l
j , c0, . . . , cn , and Z have the same

interpretations as in the generic MILPP, which is given in Section 3.2.1. Thus, the
only distinction between the formulation of a general MILPP and a PILPP is that
all of the variables in a PILPP are restricted to take on integer values. Conversely,
a general MILPP can include a combination of variables with and without such a
restriction.

Among the examples introduced in Section 3.1, the Photovoltaic Panel-Repair
Problem, which is introduced in Section 3.1.1, is a PILPP.

3.2.3 Mixed-Binary Linear Optimization Problems

Amixed-binary linear optimization problem is a special case of a general MILPP
in which the variables that are restricted to take on integer values are actually further
restricted to take on binary values. With rare exceptions, these binary variables are
restricted to take on the values of 0 and 1 and are often used tomodel logical decisions
or constraints.
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A mixed-binary linear optimization problem has the generic form:

min
x1,...,xn

c0 +
n∑

i=1
ci xi

s.t.
n∑

i=1
Ae

j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ {0, 1}, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n,

where me, mg , ml , Ae
j,i , A

g
j,i , A

l
j,i , b

e
j , b

g
j , b

l
j , and c0, . . . , cn have the same interpre-

tations as in the generic MILPP, which is given in Section 3.2.1.
Of the examples given in Section 3.1, the Natural Gas-Storage, Electricity-

Scheduling, and Oil-Transmission Problems, which are introduced in Sections 3.1.2,
3.1.3 and 3.1.4, respectively, are mixed-binary linear optimization problems.

3.2.4 Pure-Binary Linear Optimization Problems

We finally have the case of a pure-binary linear optimization problem, which
is a special case of a mixed-binary linear optimization problem in which all of the
variables are restricted to being binary variables. Such a problem has the form:

min
x1,...,xn

c0 +
n∑

i=1

ci xi

s.t.
n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ {0, 1}, ∀ i = 1, . . . , n,

where me, mg , ml , Ae
j,i , A

g
j,i , A

l
j,i , b

e
j , b

g
j , b

l
j , c0, . . . , cn , and Z have the same

interpretations as in the generic MILPP, which is given in Section 3.2.1.
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Of the examples introduced in Section 3.1, the Charging-Station andWind Farm-
Maintenance Problems, which are discussed in Sections 3.1.5 and 3.1.6, respectively,
are examples pure-binary linear optimization problems.

3.3 Linearizing Nonlinearities Using Binary Variables

This section introduces one of the most powerful uses of integer optimization tech-
niques. This is the use of integer, and in particular binary, variables to linearize
complex nonlinearities and discontinuities and to formulate logical constraints in
optimization problems. This is particularly useful, because it is considerably easier
to solve optimization problems in which the objective function and constraints are
linear in the decision variables.

Some of these linearizations are employed in formulating the examples that are
discussed in Section 3.1.

3.3.1 Variable Discontinuity

On occasion a variable may have a discontinuity in the sense that we would like it
to be within one of two intervals. To more concretely explain this, suppose that we
have a variable, x , and we would like x to either be between l1 and u1 or between l2
and u2. We could write this restriction on x as the following logical condition:

l1 ≤ x ≤ u1 or l2 ≤ x ≤ u2.

This is not a valid linear constraint, however, because constraints in optimization
problems cannot have logical statements (i.e., the ‘or’) in them.

We can model this type of a restriction as a valid linear constraint by introducing
a new binary variable, which we denote y. The restriction on x is then written as:

l1y + l2 · (1 − y) ≤ x ≤ u1y + u2 · (1 − y). (3.20)

Note that if y = 0, then (3.20) simplifies to:

l2 ≤ x ≤ u2,

and that if y = 1, then it becomes:

l1 ≤ x ≤ u1.

A common situation in which this type of variable discontinuity arises is when
we are modeling the production of a facility that must be switched on or off. If it is
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switched off, its production level must equal 0. Otherwise, if it is switched on, its
production level must be between some lower and upper limits, which we denote
xmin and xmax. This type of a production discontinuity is illustrated in Figure 3.4. We
can model this type of a restriction using (3.20) by letting l2 = u2 = 0, l1 = xmin,
and u1 = xmax. In this case, Constraint (3.20) becomes:

xminy ≤ x ≤ xmaxy. (3.21)

Fig. 3.4 Production
discontinuity

This technique is used in both the Natural Gas-Storage and Electricity-Scheduling
Problems,which are introduced inSections 3.1.2 and3.1.3, respectively.More specif-
ically, Constraints (3.6)–(3.8) in the Natural Gas-Storage Problem impose the capac-
ities of the storage facilities and only allow each facility to store gas if it is built.
Constraints (3.9)–(3.11) in the Electricity-Scheduling Problem impose the minimum
andmaximum production levels of the units. These constraints also restrict each pro-
duction unit to produce power only if it is switched on.

It is important to stress that these types of variable discontinuities can be applied
to other settings besides the modeling of production processes and facilities.

3.3.2 Fixed Activity Cost

Some systems have a cost or other term in the objective function that is incurred
when an activity occurs. As an example of this, consider themodeling of a production
facility that must be switched on or off, as discussed in Section 3.3.1. Suppose that
if the production facility is switched on, there is a fixed cost, c0, that is incurred that
does not depend on how many units the facility produces. In addition to this fixed
cost, the facility incurs a cost ofm per unit produced. Thus, the total cost of operating
the facility can be written as:

cost =
{
c0 + mx, if facility is switched on,
0, otherwise,

(3.22)

where x represents the facility’s production level. Figure 3.5 illustrates such a cost
function where we further impose minimum and maximum production levels on the
facility, in line with the example that is given in Section 3.3.1.
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Fig. 3.5 Fixed activity cost

Expression (3.22) is not a valid term to include in the objective function of an
optimization problem, because it includes logical ‘if’ statements. To model this type
of cost function, we introduce a binary variable, y, which is defined as:

y =
{
1, if facility is switched on,
0, otherwise.

The facility’s cost is then modeled as:

cost = c0y + mx .

In nearly all cases, we include a discontinuity constraint similar to (3.21), which
‘links’ the decision to switch the production facility on or off (i.e., the y variable) to
the production decision (i.e., the x variable). This is because if a constraint similar
to (3.21) is not included, the model will allow the facility to produce units while
being switched off. If there is no explicit upper bound on how many units the facility
can produce, one can set xmax to an arbitrarily high number in (3.21). In practice,
however, a real-world production facility almost invariably has an upper limit on its
output.

Both the Natural Gas-Storage and Electricity-Scheduling Problems, which are
introduced in Sections 3.1.2 and 3.1.3, respectively, employ this technique to model
a fixed activity cost. In the Natural Gas-Storage Problem, there are binary variables
representing the decision to build a storage facility. There is a fixed cost associated
with building each facility that does not depend on howmuch gas is ultimately stored
in it. Similarly, there are binary variables in the Electricity-Scheduling Problem
representing the decision to switch each of the three production units on or not.
Switching the production units on imposes a fixed cost that is independent of how
much power is produced.
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3.3.3 Non-convex Piecewise-Linear Cost

Another type of cost structure that can arise are so-called piecewise-linear costs.
Figure 3.6 illustrates an example piecewise-linear cost function. The figure shows
that the first b1 units produced cost $m1 per unit to produce. After the first b1 units,
the next (b2 − b1) units cost $m2 per unit. Finally, any remaining units after the first
b2 units cost $m3 per unit.

Fig. 3.6 Non-convex
piecewise-linear cost

x2

c

x3x1
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m2

m3

x

b1 b2 b3

The idea of a piecewise-linear function is that the function is linear between two
breakpoints. For instance, the costs shown in Figure 3.6 are linear between 0 and b1,
between b1 and b2, and between b2 and b3. However, the entire function is not linear
because of the ‘kinks’ at the breakpoints. One can write the cost function shown in
Figure 3.6 as:

cost =
⎧⎨
⎩
m1x, if 0 ≤ x ≤ b1,
m1b1 + m2 · (x − b1), if b1 < x ≤ b2,
m1b1 + m2b2 + m3 · (x − b2), otherwise,

(3.23)

where we let x denote the production level of the facility. This is not a valid term
to include in the objective function of an optimization problem, however, because it
employs logical ‘if’ statements.

We can linearize (3.23) by introducing three new continuous variables, x1, x2, and
x3. As shown in Figure 3.6, x1 is defined as the number of units produced at a cost of
m1. The variables, x2 and x3, are similarly defined as the number of units produced
at costs of m2 and m3, respectively. We next define two binary variables, y1 and y2,
as:

yi =
{
1, if the maximum units that can be produced at a cost ofmi are produced,
0, otherwise.
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We then model the production cost as:

cost = m1x1 + m2x2 + m3x3,

and include the constraints:
x = x1 + x2 + x3 (3.24)

b1y1 ≤ x1 ≤ b1 (3.25)

(b2 − b1)y2 ≤ x2 ≤ (b2 − b1)y1 (3.26)

0 ≤ x3 ≤ (b3 − b2)y2 (3.27)

y1 ≤ y2

y1, y2 ∈ {0, 1},

in the optimization model.
To understand the logic behind this set of constraints, first note that because of the

constraint y1 ≤ y2 we only have three possible cases for the values of the y variables.
In the first, in which y1 = y2 = 0, (3.24)–(3.27) reduce to:

x = x1 + x2 + x3

0 ≤ x1 ≤ b1

0 ≤ x2 ≤ 0

0 ≤ x3 ≤ 0,

meaning that we have x2 = x3 = 0 and x = x1 can take on any value between 0 and
b1.

Next, if y1 = 1 and y2 = 0, then (3.24)–(3.27) become:

x = x1 + x2 + x3

b1 ≤ x1 ≤ b1

0 ≤ x2 ≤ b2 − b1

0 ≤ x3 ≤ 0,

meaning that we have x1 = b1, x3 = 0, and x2 can take on any value between 0 and
(b2 − b1).

Finally, in the case in which y1 = y2 = 1, Constraints (3.24)–(3.27) become:
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x = x1 + x2 + x3

b1 ≤ x1 ≤ b1

b2 − b1 ≤ x2 ≤ b2 − b1

0 ≤ x3 ≤ b3 − b2,

meaning that we have x1 = b1, x2 = b2, and that x3 can take on any value between
0 and (b3 − b2).

Note that we can further generalize this technique to model a piecewise-linear
function with any arbitrary number of pieces (unlike the three pieces assumed in
Figure 3.6). To see this, suppose that x measures the total production level being
modeled and that per-unit production costs m1,m2, . . . ,mN apply to different pro-
duction levels with breakpoints at b1, b2, . . . , bN . We would model the production
cost by introducing N variables, denoted x1, x2, . . . , xN , and (N − 1) binary vari-
ables, denoted y1, y2, . . . , yN−1. We would model the production cost as:

cost =
N∑
i=1

mi xi ,

and add the constraints:

x =
N∑
i=1

xi

b1y1 ≤ x1 ≤ b1

(b2 − b1)y2 ≤ x2 ≤ (b2 − b1)y1

(b3 − b2)y3 ≤ x3 ≤ (b3 − b2)y2

...

(bN−1 − bN−1)yN−1 ≤ xN−1 ≤ (bN−1 − bN−1)yN−2

0 ≤ xN ≤ (bN − bN−1)yN−1

y1 ≤ y2 ≤ y3 ≤ · · · ≤ yN−1

yi ∈ {0, 1},∀i = 1, . . . , N1,

to the model.
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We finally note that this use of binary variables is generally needed if one is
modeling a piecewise-linear function that is not convex (cf. Appendix B for further
discussion of convex functions). The piecewise-linear function depicted in Figure 3.6
is non-convex because the per-unit costs, m1, m2, and m3, are not non-decreasing
(i.e., we do not have m1 ≤ m2 ≤ m3). Otherwise, if the per-unit costs are non-
decreasing, the piecewise-linear cost function is convex. In that case, if the convex
piecewise-linear cost function is being minimized, binary variables are not needed.

To see this, return to the general case in which x measures the total production
level being modeled and that per-unit production costs m1,m2, . . . ,mN apply to
different production levels with breakpoints at b1, b2, . . . , bN .Moreover, assume that
we havem1 ≤ m2 ≤ · · · ≤ mN . We would model the production cost by introducing
N variables, denoted x1, x2, . . . , xN . The production cost is then computed as:

cost =
N∑
i=1

mi xi ,

and we would add the constraints:

x =
N∑
i=1

xi

0 ≤ x1 ≤ b1

0 ≤ x2 ≤ b2 − b1

...

0 ≤ xN ≤ bN − bN−1,

to the model.
We do not need to use binary variables in this case because it is optimal to fully

exhaust production in level i before using any production in level (i +1). The reason
for this is that production in level (i + 1) (and all subsequent levels) is more costly
than production in level i . The example that is given in Figure 3.6, with the non-
convex cost, does not exhibit this property. Without the binary variables included,
the model would choose to use production level 2 (at a per-unit cost of m2) before
production level 2 (with a higher per-unit cost of m1) is used.

3.3.4 Alternative Constraints

In some situations, we may be interested in enforcing either one constraint:
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n∑
i=1

a1,i xi ≤ b1, (3.28)

or an alternative one:
n∑

i=1

a2,i xi ≤ b2, (3.29)

but not both. As discussed in Section 3.3.1, the constraint:

n∑
i=1

a1,i xi ≤ b1 or
n∑

i=1

a2,i xi ≤ b2, (3.30)

is not valid in an optimization problem, because it includes a logical ‘or’ statement.
We can, however, linearize the ‘or’ statement through the use of a binary variable.

To do this, we define the binary variable, y, as:

y =
{
1, if the constraint

∑n
i=1 a1,i xi ≤ b1 is enforced,

0, otherwise.

We then replace (3.30) with:

n∑
i=1

a1,i xi ≤ b1 + M1 · (1 − y) (3.31)

n∑
i=1

a2,i xi ≤ b2 + M2y, (3.32)

where M1 and M2 are sufficiently large constants.
To see how this formulation works, let us suppose that we have y = 1. If so,

then (3.31) becomes:
n∑

i=1

a1,i xi ≤ b1,

meaning that Constraint (3.28) is being enforced on the optimization problem. On
the other hand, Constraint (3.32) becomes:

n∑
i=1

a2,i xi ≤ b2 + M2.

Note that if M2 is sufficiently large, then any values for x will satisfy this constraint,
meaning that Constraint (3.29) is not being imposed on the problem. In the case in
which y = 0, Constraint (3.31) becomes:
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n∑
i=1

a1,i xi ≤ b1 + M1,

meaning that Constraint (3.28) is not being imposed, so long as M1 is sufficiently
large. On the other hand, (3.32) becomes:

n∑
i=1

a2,i xi ≤ b2,

meaning that Constraint (3.29) is being enforced.

3.3.5 Product of Two Variables

A very powerful use of binary variables is to linearize the product of two variables in
an optimization problem. We discuss here how to linearize the product of variables
in three different cases. We first discuss linearizing the product of a real and binary
variable and then the product of two binary variables, both of which can be linearized
exactly.We then discuss the use of a technique, known as binary expansion, to linearly
approximate the product of two real variables.

3.3.5.1 Product of a Real and Binary Variable

Here we demonstrate how to linearize the product of a real and binary variable.
Suppose that x ∈ R is a real variable while y ∈ {0, 1} is a binary variable. If we
define p = xy as the product of these two variables, then we know that p can take
on only the following two values:

p =
{
0, if y = 0,
x, otherwise.

(3.33)

To come up with a linear expression for p, we must further assume that x is
bounded:

−l ≤ x ≤ u.

If there are no explicit bounds on x , one can impose bounds on x in an optimization
problem by making l and u sufficiently small and large, respectively. We must also
add a new real variable, which we denote as z. We can then define p through the
following constraints:

p = x − z (3.34)
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− ly ≤ p ≤ uy (3.35)

− l · (1 − y) ≤ z ≤ u · (1 − y). (3.36)

To see how this linearization works, first consider the case in which y = 0. If so,
Constraints (3.34)–(3.36) simplify to:

p = x − z

0 ≤ p ≤ 0

−l ≤ z ≤ u,

meaning that p = 0, which is consistent with (3.33), and that z = x . The variable
z is essentially playing the role of a slack variable in this formulation. Otherwise, if
y = 1, then (3.34)–(3.36) become:

p = x − z

−l ≤ p ≤ u

0 ≤ z ≤ 0,

in which case z = 0 and p = x , as required by (3.33).

3.3.5.2 Product of Two Binary Variables

We now consider the case in which two binary variables are being multiplied. Let
us suppose that x, y ∈ {0, 1} are two binary variables and define p = xy as their
product. We know that p can take on one of two values:

p =
{
1, if x = 1 and y = 1,
0, otherwise.

We can express p linearly through the following set of constraints:

p ≤ x (3.37)

p ≤ y (3.38)

p ≥ 0 (3.39)

p ≥ x + y − 1. (3.40)
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To see how this linearization works, first consider the case in which both x = 1
and y = 1. If so, then (3.37)–(3.40) become:

p ≤ 1

p ≤ 1

p ≥ 0

p ≥ 1,

which forces p = 1. Otherwise, if at least one of x or y is equal to zero, then (3.37)–
(3.40) force p = 0.

3.3.5.3 Product of Two Real Variables

The product of two real variables cannot be linearized exactly. However, there is a
technique, known as binary expansion, that can be used to linearly approximate the
product of two real variables. To demonstrate the concept of binary expansion, let us
define x, y ∈ R as two real variables, and p = xy as their product.

To linearize the product, we must approximate one of the two variables as taking
on one of a finite number of values. Let us suppose that we approximate y as taking
on one of the N values y1, y2, . . . , yN , where y1, y2, . . . , yN are fixed constants. To
conduct the binary expansion, we introduce N binary variables, which we denote
z1, z2, . . . , zN . We then approximate y using the following:

y ≈
N∑
i=1

yi zi

N∑
i=1

zi = 1.

Note that because exactly one of the zi ’s must equal 1, y is approximated as taking
on the corresponding value of yi .

Using this approximation of y, we can then approximate the product of x and y
by adding the following constraints to the optimization problem:

p =
N∑
i=1

yi zi x (3.41)
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N∑
i=1

zi = 1

zi ∈ {0, 1},∀i = 1, . . . , N .

Because the yi ’s are constants, the right-hand side of (3.41) involves the product of
a binary and real variable. This must then be linearized using the technique that is
outlined in Section 3.3.5.1.

It is important to stress once again that binary expansion does not exactly represent
the product of two real variables. Rather, it approximates the product. Nevertheless,
it can be a very useful technique. How good of an approximation binary expansion
provides depends on whether the ‘true’ value of y is close to one of the yi ’s. If so,
the approximation will be better. Because we do not typically know a prioriwhat the
‘true’ value of y is, we deal with this issue by using a large number of yi ’s. Doing
so increases the size of the problem, however, because more binary variables (i.e.,
zi ’s) must be introduced into the model. Increasing the size of the problem invariably
makes it more difficult to solve.

3.4 Relaxations

This section introduces a very important concept in solving mixed-integer linear
optimization problems. This is the idea of a relaxation. A relaxation of an optimiza-
tion problem is a problem in which one or more of the constraints are loosened,
relaxed, or entirely removed. When the constraint is relaxed, the feasible region of
the problem grows in size. As a result of this, there are some important properties
linking a problem and a relaxation that are useful when we solve MILPPs.

All of this discussion assumes that we have a genericMILPP, which can bewritten
as:

min
x1,...,xn

c0 +
n∑

i=1

ci xi (3.42)

s.t.
n∑

i=1
Ae

j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n.

(3.43)

This generic form captures all of the special cases of MILPPs that are introduced in
Section 3.2. Moreover, we know from the discussion in Section 2.2.2.1 that a MILPP

http://dx.doi.org/10.1007/978-3-319-56769-3_2
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that is a maximization can be converted to a minimization simply by multiplying the
objective function by −1.

We now introduce what is known as the linear relaxation of this MILPP, which is:

min
x1,...,xn

c0 +
n∑

i=1

ci xi

s.t.
n∑

i=1

Ae
j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ R, ∀ i = 1, . . . , n.

The only difference between the original MILPP and its linear relaxation is that
Constraint (3.43) is relaxed, because we allow all of the variables to be real-valued
in the relaxed problem. This can be contrasted with the original MILPP, in which
some of the variables are restricted to take on only integer values.

It is important to stress that there aremanyways inwhich an optimization problem
can be relaxed. When writing the linear relaxation, we remove the constraints that
the variables be integer-valued. However, one could, for example, relax the MILPP
by removing the equality and greater-than-or-equal-to constraints, which would give
the following relaxed problem:

min
x1,...,xn

c0 +
n∑

i=1
ci xi

s.t.
n∑

i=1
Al

j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n.

Moreover, one can relax constraints in any type of optimization problem (including
linear optimization problems).

We can now show three useful relationships between the original problem and
its relaxation. Note that these relationships apply to any problem and a relaxation.
However, to make the results more clear, we will focus on the generic MILPP and
its linear relaxation.
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Relaxation-Optimality Property: The optimal objective-function value of
the linear relaxation is less than or equal to the optimal objective-function
value of the original MILPP.

Suppose that x∗ is an optimal solution to the original MILPP. By definition,
x∗ is feasible in the MILPP. x∗ is also feasible in the linear relaxation. This is
because the linear relaxation has the same equality and inequality constraints as
the original MILPP, but does not have the integrality constraints. There may,
however, be a solution, x̃ , that is feasible in the linear relaxation that gives
a smaller objective-function value than x∗. x̃ is not feasible in the original
MILPP (if it is, then x∗ would not be an optimal solution to the MILPP). Thus,
the linear relaxation may have an optimal solution that is not feasible in the
original MILPP and gives a smaller objective-function value than x∗.

Relaxation-Optimality Corollary: If the optimal solution of the linear relax-
ation satisfies the constraints of the original MILPP, then this solution is also
optimal in the original MILPP.

This result comes immediately from the Relaxation-Optimality Property. Sup-
pose that x∗ is optimal in the linear relaxation and that it is feasible in the
original MILPP. We know from the Relaxation-Optimality Property that the
optimal objective-function value of the original MILPP can be no lower than
the objective-function value given by x∗. Combining this observation with the
fact that x∗ is feasible in the original MILPP tells us that x∗ is also optimal in
the original MILPP.

Relaxation-Feasibility Property: If the linear relaxation of the original
MILPP is infeasible, then the original MILPP is also infeasible.
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We show this by contradiction. To do so, we suppose that the property is not
true. This would mean that the linear relaxation is infeasible but the original
MILPP is feasible. If so, then there is a solution, x̂ , that is feasible in the
original MILPP. x̂ must also be feasible in the linear relaxation, however. This
is because the linear relaxation has the same equality and inequality constraints
as the original MILPP but does not have the integrality constraints. Thus, it is
impossible for the Relaxation-Feasibility Property to not hold.

We use these three properties in Section 3.5 to outline an effective algorithm for
solving general MILPPs.

3.5 Solving Mixed-Integer Linear Optimization Problems
Using Branch and Bound

Wedescribe in this section theBranch-and-BoundAlgorithm, which can be used to
efficiently solveMILPPs. We begin by first providing a high-level motivation behind
the algorithm. We next outline the steps of the algorithm and then illustrate its use
with a simple example. We finally provide a more formal outline of the algorithm.

All of this discussion assumes that we have a generic MILPP that is in the form:

min
x1,...,xn

c0 +
n∑

i=1
ci xi

s.t.
n∑

i=1
Ae

j,i xi = bej , ∀ j = 1, . . . ,me

n∑
i=1

Ag
j,i xi ≥ bgj , ∀ j = 1, . . . ,mg

n∑
i=1

Al
j,i xi ≤ blj , ∀ j = 1, . . . ,ml

xi ∈ Z, for some i = 1, . . . , n
xi ∈ R, for the remaining i = 1, . . . , n.

3.5.1 Motivation

At a high level, the Branch-and-Bound Algorithm works through the following four
steps.
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1. The algorithm starts by solving the linear relaxation of the original MILPP.
2. Based on the solution of the linear relaxation, the algorithm generates a sequence

of additional optimization problems in which constraints are added to the linear
relaxation.

3. As this sequence of additional optimization problems is solved, the algorithm
establishes upper and lower bounds on the optimal objective-function value of
the original MILPP. The upper bound progressively decreases while the lower
bound increases.

4. Ideally, this process continues until the full sequence of additional optimization
problems are solved, which gives an optimal solution. In practice, we may stop
once we have found a solution that is feasible in the original MILPP and that has
upper and lower bounds that are close enough to one another (indicating that the
feasible solution is very close to optimal).

The lower bound on the optimal objective-function value is found by appealing to
theRelaxation-Optimality Property, which is discussed in Section 3.4.We know from
the Relaxation-Optimality Property that the solution to the linear relaxation provides
a lower bound on the optimal objective-function value of the original MILPP.

We obtain upper bounds whenever solving one of the additional optimization
problems gives a solution that is feasible in the MILPP. We can reason that such
a solution gives an upper bound on the optimal objective-function value. This is
because of the definition of an optimal solution as being a feasible solution that gives
the best objective-function value. If we find a solution that is feasible, it may be
optimal. However, it may not be, in which case the objective-function value of the
feasible solution is greater than the optimal objective-function value.

3.5.2 Outline of Branch-and-Bound Algorithm

Building off of the high-level motivation given in Section 3.5.1, we now outline the
major steps of the Branch-and-Bound Algorithm in further detail.

3.5.2.1 Step 0: Initialization

We begin the Branch-and-Bound Algorithm by initializing it. Throughout the algo-
rithm, we let zl denote the current lower bound and zu the current upper bound on the
optimal objective-function value. We also keep track of a set, which we denote asΞ ,
of linear optimization problems that remain to be solved. As we solve the sequence
of linear optimization problems in Ξ , we also keep track of the best solution (in the
sense of giving the smallest objective-function value) that has been found so far that
satisfies all of the integrality constraints of the original MILPP.We denote this by xb.

We initialize the bounds by letting zl ← −∞ and zu ← +∞. The reasoning
behind this is that we have, as of yet, not done any work to solve the original MILPP.
Thus, all we know is that its optimal objective-function value is between −∞ and
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+∞. We also set Ξ ← ∅, because we have not generated any linear optimization
problems to solve yet. We do not initialize xb because we have not yet found a
solution that satisfies the integrality constraints of the original MILPP.

We next solve the linear relaxation of the MILPP. When we solve the linear
relaxation, one of following four outcomes are possible.

1. The linear relaxation may be infeasible. If so, then based on the Relaxation-
Feasibility Property, the original MILPP is infeasible as well. As such, we ter-
minate the Branch-and-Bound Algorithm and report that the original MILPP is
infeasible.

2. Solving the linear relaxation may give a solution that satisfies all of the integrality
constraints of the original MILPP. If so, then based on the Relaxation-Optimality
Corollary, the optimal solution of the linear relaxation is also optimal in the
original MILPP. Thus, we terminate the Branch-and-Bound Algorithm and report
the solution found as being optimal.

3. Solving the linear relaxation may give a solution that does not satisfy all of the
integrality constraints of the original MILPP. If so, we know from the Relaxation-
Optimality Property that the optimal objective-function value of the linear relax-
ation is a lower bound on the optimal objective-function value of the original
MILPP. Thus, we update the current lower bound as zl ← z0, where z0 denotes
the optimal objective-function value of the linear relaxation. We then continue
with Step 1 of the algorithm.

4. The linear relaxation may be unbounded. If so, we cannot necessarily conclude
whether the original MILPP is unbounded or not. We can only conclude that the
original MILPP is unbounded if we can find a solution that is feasible in the orig-
inal MILPP and that makes the objective function go to −∞. If so, we terminate
the algorithm and report that the original MILPP is unbounded. Otherwise, we
continue with Step 1 of the algorithm.

3.5.2.2 Step 1: Initial Branching

Let x0 denote the optimal solution to the linear relaxation, found in Step 0. Pick one
of the variables that is supposed to be integer-valued in the original MILPP but has
a non-integer value in x0. We hereafter call this chosen variable xi .

We generate two new linear optimization problems in which we add a new con-
straint to the linear relaxation. The first one, which we denote LPP1, consists of the
linear relaxation with the added constraint:

xi ≤ ⌊x0i ⌋.
The notation

⌊
x0i
⌋
denotes the floor of x0i , which means that we round x0i down to

the nearest integer less than x0i , which is the value for xi in the optimal solution to the
linear relaxation. The second linear optimization problem, which we denote LPP2,
consists of the linear relaxation with the added constraint:
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xi ≥ ⌈x0i ⌉.
The notation

⌈
x0i
⌉
denotes the ceiling of x0i , meaning that we round x0i up to the

nearest integer greater than x0i .
After generating these two new linear optimization problems, we update the set

of linear optimization problems that remain to be solved as:

Ξ ← Ξ ∪ LPP1 ∪ LPP2.

These two new problems, LPP1 and LPP2, cover the entire feasible region of the
original MILPP. The reason for this is that all we have done in generating LPP1 and
LPP2 is created two new problems, with xi being constrained to take on values less
than

⌊
x0i
⌋
in one and values greater than

⌈
x0i
⌉
in the other. Thus, the only points that

are no longer feasible in these two LPPs are those in which xi takes on a value strictly
between

⌊
x0i
⌋
and

⌈
x0i
⌉
. However, such points are infeasible in the original MILPP,

because there are no integer values between
⌊
x0i
⌋
and

⌈
x0i
⌉
and xi is restricted to

taking on integer values in the original MILPP.

3.5.2.3 Step 2: Solving

Select a linear optimization problem in Ξ , solve it, and remove it from Ξ . Let x̂
denote the optimal solution to this problem and let ẑ denote its optimal objective-
function value.

3.5.2.4 Step 3: Bound Updating and Branching

When we solve the linear optimization problem from Ξ chosen in Step 2, one of the
four following outcomes are possible. In this step, we can update the bounds andmay
need to add more linear optimization problems to Ξ , based on the different possible
outcomes.

1. x̂ may satisfy all of the integrality constraints of the original MILPP. This means
that x̂ is feasible in the original MILPP. We further know, from the discussion in
Section 3.5.1, that ẑ provides an upper bound on the optimal objective-function
value of the original MILPP.
If ẑ < zu , then this means that x̂ is the best solution that is feasible in the

original MILPP that we have found thus far. In this case, we update the upper
bound zu ← ẑ and the best feasible solution found thus far xb ← x̂ .
Otherwise, if ẑ ≥ zu , the upper bound cannot be updated and we proceed to
Step 4.

2. The problem solved in Step 2 may be infeasible. In this case, the bounds cannot
be updated and we proceed to Step 4.
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3. x̂ may not satisfy all of the integrality constraints of the original MILPP. If so, ẑ
may provide an updated lower bound on the optimal objective-function value of
the original MILPP. We may also need to generate two new linear optimization
problems to add to Ξ .
The lower bound on the optimal objective-function value of the originalMILPP

can be updated if zl < ẑ ≤ zu and zu < +∞. If both of these conditions are met,
then we can update the lower bound as zl ← ẑ. Otherwise, we cannot update the
lower bound. We cannot update the bound in this case because the upper bound
is still +∞, which is not a valid bounding reference.
Moreover, if ẑ < zu , then we must also generate two new linear optimization

problems. This is done in a manner similar to the Initial Branching in Step 1. To
do this, we select one of the variables that is supposed to be integer-valued in the
original MILPP but has a non-integer value in x̂ . We hereafter call this chosen
variable, xi . We generate two new linear optimization problems, in which we add
a new constraint to the linear optimization problemmost recently solved in Step 2
(i.e., the problem that has x̂ as an optimal solution). The first problem has the
constraint:

xi ≤ ⌊x̂i⌋,
while the second has the constraint:

xi ≥ ⌈x̂i⌉,
added. These two problems are added to Ξ . We then proceed to Step 4. Note that
for the same reason as with the Initial Branching step, these two new problems
that are added to Ξ cover the entire feasible region of the linear optimization
problem most recently solved in Step 2.
If ẑ ≥ zu , then we do not need to add any problems to Ξ and we proceed to

Step 4. The reason we do not add any problems toΞ is that no better solution than
the current best one (i.e., xb) can be found from the problems generated from the
linear optimization problem most recently solved in Step 2.

4. The problem solved in Step 2 may be unbounded. If so, we cannot necessarily
conclude that the original MILPP is unbounded. We can only conclude that the
original MILPP is unbounded if we can find a solution that is feasible in the orig-
inal MILPP and that makes the objective function go to −∞. If so, we terminate
the algorithm and report that the original MILPP is unbounded. Otherwise, we
generate two new linear optimization problems, following the process outlined
in Case 3 and then proceed to Step 4.

3.5.2.5 Step 4: Optimality Check

We finally, in this step, determine if the Branch-and-Bound Algorithm has more
problems to solve or if the algorithm can terminate. If Ξ �= ∅, that means that there
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are more linear optimization problems to be solved. In this case, we return to Step 2,
select a new problem from Ξ to solve, and continue with the algorithm.

If Ξ = ∅ and a value has been assigned to xb, this means that we have found
a feasible solution in the original MILPP and that there are no remaining feasible
solutions in the original MILPP that give a better objective-function value than xb.
In this case, we terminate the algorithm and report that xb is an optimal solution to
the original MILPP.

The final case is that Ξ = ∅ and no value has been assigned to xb. This means
that we are not able to find a feasible solution to the MILPP and that the MILPP is
infeasible. Thus, we terminate the algorithm and report this.

We now demonstrate the use of the Branch-and-BoundAlgorithm in the following
example.

Example 3.1 Consider the Photovoltaic Panel-Repair Problem, which is introduced
in Section 3.1.1. This problem can be formulated as:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1, x2 ∈ Z,

where the objective function has been changed to a minimization by multiplying
through by −1.

To solve this problem using the Branch-and-Bound Algorithm, we first initialize:

zl ← −∞,

zu ← +∞,

and:

Ξ = ∅.

We next solve the linear relaxation of the original MILPP, which is:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0.
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The optimal solution to this problem is x0 = (2.341, 3.007) with z0 = −5.347.
This solution to the linear relaxation falls under Case 3 of the initialization step of
the algorithm (we have a bounded feasible solution to the linear relaxation that does
not satisfy the integrality constraints of the original MILPP). Thus, we update the
lower bound:

zl ← z0 = −5.347.

This initialization step and the relaxation of the original MILPP into its linear relax-
ation are illustrated in Figure 3.7, where we denote the linear relaxation as ‘LPP0’.

Fig. 3.7 Initialization of the Branch-and-Bound Algorithm

We next go to the Initial Branching step. To do this, we pick one of the variables
that has a non-integer value in x0 but must be integer-valued in the original MILPP.
In this case, we can choose either of x1 or x2 to branch on, and arbitrarily pick x1
for this example. We form two new linear optimization problems from the linear
relaxation. The first one will have the constraint:

x1 ≤ ⌊x01⌋ = 2,

added. Thus, this problem, which we call LPP1, is:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≤ 2.

The second problem will have the constraint:

x1 ≥ ⌈x01⌉ = 3,

added. Thus, this problem, which we call LPP2, is:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≥ 3.
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We then update the set of problems to be solved as:

Ξ ← Ξ ∪ LPP1 ∪ LPP2 = {LPP1,LPP2}.

Figure 3.8 shows the two new linear optimization problems being added to the setΞ .
It also illustrates why we refer to the process of adding new optimization problems as
‘branching.’ What we are essentially doing in creating these new problems is adding
some restrictions (the newconstraint added) to themost recently solvedproblem.This
results in the problems forming something of a tree, as more and more constraints
are added to problems that are solved (this tree-like structure is further shown in
Figures 3.9–3.16). LPP0 is shaded in Figure 3.8 to illustrate that this problem is
processed and no longer needs to be solved at this point. We use this convention
throughout Figures 3.9–3.16 to indicate problems that have been processed.

Fig. 3.8 Initial Branching in
the Branch-and-Bound
Algorithm

We next proceed to the Solving step and select one of the problems from Ξ to
solve. In theory,we can select any of the problems inΞ . As discussed in Section 3.5.5,
there are different ‘strategies’ that can be employed to determine which problem in
Ξ to solve. We choose to solve LPP2 at this point, which has the optimal solution
x̂ = (3, 1.67) and objective-function value ẑ = −4.6. We also update the set of
problems remaining to be solved by removing LPP2, which gives:

Ξ ← {LPP1,���LPP2} = {LPP1}.

We now proceed to the Bound Updating and Branching step. The solution to LPP2
falls into Case 3 of Step 3, thus we first check to see if we can update the lower bound,
zl . We find that zl ≤ ẑ ≤ zu , however because zu = +∞, we cannot update the
lower bound. Next, because we have that ẑ ≤ zu , we know that we must add two new
optimization problems to Ξ . To do this, we pick one of the variables that must be
integer-valued in the original MILPP, but which has a non-integer value in x̂ . There
is only one option for this, which is x2. Thus, we create two new problems in which
we add the constraints:

x2 ≤ ⌊x̂2⌋ = 1,

and:

x2 ≥ ⌈x̂2⌉ = 2,

to LPP2. These two new problems, which we denote LPP3 and LPP4, are:
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min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≥ 3

x2 ≤ 1,

and:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≥ 3

x2 ≥ 2,

respectively. The set of problems remaining to be solved is then updated:

Ξ ← Ξ ∪ LPP3 ∪ LPP4 = {LPP1,LPP3,LPP4}.

Figure 3.9 shows the resulting tree structure of the problems when the two new LPPs
are added to Ξ .

Fig. 3.9 First Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

We next proceed to the Optimality Checking step. Because Ξ �= ∅, the Branch-
and-Bound Algorithm does not terminate and we instead return to Step 2.

In Step 2 we select a problem in Ξ to solve. We arbitrarily select LPP3, which
has optimal solution x̂ = (3.281, 1) and objective-function value ẑ = −4.281. We
then remove LPP3 from Ξ , giving:

Ξ ← {LPP1,���LPP3,LPP4} = {LPP1,LPP4},

and proceed to the Bound Updating and Branching step.
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The solution to LPP3 again falls into Case 3.We next find that because zl ≤ ẑ ≤ zu

but zu = +∞ we still cannot update the lower bound. Moreover, because ẑ ≤ zu

we must add two new optimization problems to Ξ . We choose x1 as the variable
on which to add constraints in these new problems. More specifically, the two new
problems will consist of LPP3 with the constraints:

x1 ≤ ⌊x̂1⌋ = 3,

and:

x1 ≥ ⌈x̂1⌉ = 4,

added. This gives the two new optimization problems:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≥ 3

x2 ≤ 1

x1 ≤ 3,

and:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≥ 3

x2 ≤ 1

x1 ≥ 4,

which we denote LPP5 and LPP6, respectively. We add these problems to Ξ , giving:

Ξ ← Ξ ∪ LPP5 ∪ LPP6 = {LPP1,LPP4,LPP5,LPP6}.

Figure 3.10 shows the tree-like structure of the problems inΞ at the end of the second
Bound Updating and Branching step.
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Fig. 3.10 Second Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

MILPP LPP0

LPP2 LPP1

LPP4LPP3

LPP6LPP5

We then go to the Optimality Check step. Finding thatΞ �= ∅, we return to Step 2
and pick a new problem in Ξ to solve.

In Step 2 we arbitrarily select LPP5 to solve and find that it has as an optimal
solution, x̂ = (3, 1), and corresponding objective-function value, ẑ = −4. We
remove LPP5 from Ξ , giving:

Ξ ← {LPP1,LPP4,���LPP5,LPP6} = {LPP1,LPP4,LPP6}.

Moving to the Bound Updating and Branching step, we find that x̂ falls into
Case 1, because it satisfies all of the integrality constraints of the original MILPP.
We further have that ẑ < zu . Thus, we can update the upper bound as:

zu ← ẑ = −4,

and the best solution found thus far as:

xb ← x̂ = (3, 1).

We also know that we do not have to add any other problems to Ξ and can proceed
to the next step.

We go to the Optimality Check step and find that Ξ �= ∅. Thus, we must return
to Step 2 and select another problem in Ξ to solve. Figure 3.11 shows the new tree
after Ξ is updated by removing LPP5.

Fig. 3.11 Third Bound
Updating and Branching in
the Branch-and-Bound
Algorithm
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In Step 2 we next select LPP6 to solve, but find that it is infeasible.We then update
Ξ to:

Ξ ← {LPP1,LPP4,���LPP6} = {LPP1,LPP4}.

When we proceed to the Bound Updating and Branching step there is nothing to be
done, because LPP6 is infeasible. Thus, we proceed to the Optimality Check step
and because Ξ �= ∅ we return to Step 2. Figure 3.12 shows the updated tree after
LPP6 is removed.

Fig. 3.12 Fourth Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

In Step 2 we next select LPP4 to solve and find that this problem is also infeasible.
We update Ξ to:

Ξ ← {LPP1,���LPP4} = {LPP1}.

As in the previous iteration, there is nothing to be done in the Bound Updating and
Branching step, because LPP4 is infeasible but the Optimality Check step tells us to
return to Step 2 because Ξ �= ∅. Figure 3.13 shows the updated tree after LPP6 is
removed.

Fig. 3.13 Fifth Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

We now solve LPP1, which has x̂ = (2, 3.187) as an optimal solution and
ẑ = −5.187 as its corresponding optimal objective-function value. We update Ξ to:

Ξ ← {���LPP1} = {}.
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We next proceed to the Bound Updating and Branching step and find that x̂ falls into
Case 3. We next find that zl ≤ ẑ ≤ zu and zu < +∞, thus we can update the lower
bound to:

zl ← ẑ = −5.187.

Furthermore, because we have that ẑ < zu , we must add two new problems to Ξ . x2
is the only variable with a non-integer value in x̂ that must be integer-valued in the
original MILPP. Thus, these problems are formed by adding the constraints:

x2 ≤ ⌊x̂2⌋ = 3,

and:
x2 ≥ ⌈x̂2⌉ = 4,

to LPP1, giving:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≤ 2

x2 ≤ 3,

and:

min
x1,x2

z = −x1 − x2

s.t. 17x1 + 32x2 ≤ 136

32x1 + 15x2 ≤ 120

x1, x2 ≥ 0

x1 ≤ 2

x2 ≥ 4,

as our two new problems, which we denote as LPP7 and LPP8, respectively. Adding
these to Ξ gives:

Ξ ← Ξ ∪ LPP7 ∪ LPP8 = {LPP7,LPP8},

and Figure 3.14 shows the updated tree. We next proceed to the Optimality Check.
Because Ξ �= ∅ we must return to Step 2.

In Step 2 we choose LPP7 as the next problem to solve and find x̂ = (2, 3) to
be its optimal solution and ẑ = −5 the corresponding objective-function value. We
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Fig. 3.14 Sixth Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

MILPP LPP0

LPP2 LPP1

LPP4LPP3 LPP8LPP7

LPP6LPP5

update Ξ , giving:
Ξ ← {���LPP7,LPP8} = {LPP8}.

In the Bound Updating and Branching step we find that x̂ falls into Case 1, because
x̂ satisfies all of the integrality constraints of the original MILPP. We further have
that ẑ < zu . Thus, we update the upper bound:

zu ← ẑ = −5,

and the best feasible solution found thus far:

xb ← x̂ = (2, 3).

We do not have to add any problems to Ξ and thus proceed to the Optimality Check
step. Because we still have Ξ �= ∅ we return to Step 2. Figure 3.15 shows the new
tree with LPP7 removed.

Fig. 3.15 Seventh Bound
Updating and Branching in
the Branch-and-Bound
Algorithm

Returning to Step 2, we solve LPP8 (as it is the only problem remaining in Ξ )
and find that it has x̂ = (0.471, 4) as an optimal solution with objective-function
value ẑ = −4.471. Removing LPP8 from Ξ gives:
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Ξ ← {���LPP8} = {}.

In the Bound Updating and Branching step we find that x̂ falls into Case 3. However,
because ẑ > zu we do not update the upper bound nor do we add any more problems
to Ξ . Instead, we proceed to the Optimality Check and because we have Ξ = ∅,
we terminate the Branch-and-Bound Algorithm. Moreover, because we have found
a solution that is feasible in the original MILPP, xb = (2, 3), we report this as the
optimal solution of the original MILPP. Figure 3.16 shows the final tree of problems
after the Branch-and-Bound Algorithm terminates. �

Fig. 3.16 Final
branch-and-bound tree

3.5.3 Rationale Behind Branch-and-Bound Algorithm

The idea behind theBranch-and-BoundAlgorithm is relatively straightforward.What
the algorithm does is enumerates all of the different possible values that the integer
variables can take in an MILPP. However, it does this in an intelligent fashion.

The heart of this enumeration is the Bound Updating and Branching step of the
algorithm.Whenever a problem inΞ gives a solution in which an integer variable has
a non-integer value, the algorithm creates two new problems in which that variable
is fixed to be on the ‘two sides’ of that non-integer value. That is the logic behind
adding constraints of the form:

xi ≤ ⌊x̂i⌋,
and:

xi ≥ ⌈x̂i⌉,
in Step 3. Aswe note in the discussion of Steps 1 and 3 in Sections 3.5.2.2 and 3.5.2.4,
the constraints that are used to generate the new problems do not discard any feasible
solutions to the original MILPP. They only work to generate LPPs that eventually
generate solutions that are feasible in the original MILPP.
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The ‘intelligence’ comes into play because we do not always add new problems
after solving a problem in Step 2. For instance, we do not add new problems in
Cases 1 and 2 of the Bound Updating and Branching step. The reason we do not in
Case 1 is that themost recently solvedLPP has already given a solution that is feasible
in the original MILPP. It is true that solving a new problem in which an additional
constraint is added to this LPP may give another feasible solution. However, any
such feasible solutions will give worse objective-function values than the solution
already found (this is a consequence of the Relaxation-Optimality Property because
the most recently solved LPP is a relaxation of any LPP that we generate by adding
constraints).

We do not add any new problems after Case 2 because if the most recently solved
LPP is infeasible, then any LPP we generate by adding more constraints is also
guaranteed to be infeasible.

Finally, in Case 3 of the Bound Updating and Branching step we do not add new
problems if the most recently solved LPP gives an objective-function value, ẑ, that
is greater than the current upper bound, zu . The reason behind this is that if we do
add new problems, their optimal solutions (whether they be feasible in the original
MILPP or not) will have objective-function values that are worse (higher) than ẑ.
This is because the most recently solved LPP is a relaxation of these problems that
would have added constraints. If zu < ẑ that means we already have a solution that
is feasible in the original MILPP and which gives a better objective-function value
than any feasible solutions from these problems could give.

The intelligent enumeration of the Branch-and-Bound Algorithm can be seen
in the amount of work involved in solving the Photovoltaic Panel-Repair Problem
in Example 3.1. The Branch-and-Bound Algorithm requires us to solve nine LPPs
(when we count the first linear relaxation). As a result, we are implicitly examining
nine possible solutions to theMILPP. Figure 3.1 shows that this problem has 15 feasi-
ble solutions. Because of its intelligence, we typically only have to examine a subset
of solutions when solving a MILPP using the Branch-and-Bound Algorithm.

3.5.4 Branch-and-Bound Algorithm

We now give a more detailed outline of the Branch-and-Bound Algorithm. Lines 2–
16 combine the Initialization and Initial Branching steps, which are discussed in
Sections 3.5.2.1 and 3.5.2.2. First, Lines 2–4 initialize zl , zu , and Ξ . Next the linear
relaxation is solved in Line 5. Lines 6–9 terminate the algorithm if the linear relax-
ation shows the original MILPP to be infeasible or gives an optimal solution to the
MILPP.
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Branch-and-Bound Algorithm
1: procedure Branch and Bound
2: zl ← −∞
3: zu ← +∞
4: Ξ ← ∅
5: solve LPP0 � x0, z0 denote optimal solution and objective-function value
6: if LPP0 is infeasible then
7: stop, original MILPP is infeasible
8: else if x0 satisfies integrality constraints of original MILPP then
9: stop, x0 is optimal in original MILPP
10: else
11: zl ← z0

12: select a variable, xi , to branch on
13: generate LPP−, which is LPP0 with constraint xi ≤ ⌊x0i ⌋ added
14: generate LPP+, which is LPP0 with constraint xi ≥ ⌈x0i ⌉ added
15: Ξ ← Ξ ∪ LPP− ∪ LPP+
16: end if
17: repeat
18: select a problem in Ξ � denote the selected problem ‘LPP’
19: remove LPP from Ξ

20: solve LPP � x̂, ẑ denote optimal solution and objective-function value
21: if x̂ satisfies integrality constraints of original MILPP then
22: if ẑ < zu then
23: zu ← ẑ
24: xb ← x̂
25: end if
26: else if LPP is feasible then
27: if zl < ẑ ≤ zu and zu < +∞ then
28: zl ← ẑ
29: end if
30: if ẑ < zu then
31: select a variable, xi , to branch on
32: generate LPP−, which is LPP with constraint xi ≤ ⌊x0i ⌋ added
33: generate LPP+, which is LPP with constraint xi ≥ ⌈x0i ⌉ added
34: Ξ ← Ξ ∪ LPP− ∪ LPP+
35: end if
36: end if
37: until Ξ = ∅
38: end procedure

Otherwise, the lower bound is updated in Line 11. Note that if the linear relaxation
is unbounded the value of zl does not actually change, because z0 = −∞. In Line 12
we select one variable, which we denote xi , to branch on. The variable to branch on
can be any variable that has a non-integer value in x0 but which is constrained to
take on an integer value in the original MILPP. We then generate the two new LPPs,
which have the same objective function and constraints as the linear relaxation, but
each have one new constraint, which are:
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xi ≤ ⌊x0i ⌋,
and:

xi ≥ ⌈x0i ⌉.
Lines 17–37 are the main iterative loop of the algorithm. We begin by selecting a

problem, which we denote LPP, in Ξ , removing LPP from Ξ , and then solving LPP
in Lines 18–20. We let x̂ and ẑ denote the optimal solution and objective-function
value of LPP. Lines 21–36 are the Bound Updating and Branching process, which
is outlined in Section 3.5.2.4. Lines 21–25 handle Case 1 of this process, where x̂
satisfies the integrality constraints of the original MILPP. If so, we update the upper
bound and the best solution found in Lines 23 and 24, so long as ẑ < zu . We do not
have to branch (i.e., add new problems to Ξ ) in this case.

Lines 26–36 handleCase 3 in Section 3.5.2.4. If LPP is feasible but x̂ is not feasible
in the original MILPP, we then update the lower bound in Line 28 if zl < ẑ ≤ zu and
zu < +∞. Also, if ẑ < zu we select another variable to branch on and generate the
two LPPs that are added to Ξ in Lines 31–34.

Note that Lines 17–37 do not explicitly discuss cases in which LPP is infeasible
or unbounded. If LPP is infeasible, there is no bound updating to be done and no new
LPPs to be generated and added toΞ . Thus, we do not do anything after solving LPP
in that iteration. If LPP is unbounded, then we generate new optimization problems
that are added to Ξ in Lines 31–34.

Line 37 is the Optimality Check. This is because we continue the iterative loop
until Ξ = ∅, which is the test conducted in Section 3.5.2.5.

3.5.5 Practical Considerations

There are three important practical issues to consider when applying the Branch-
and-Bound Algorithm. The first involves which variable to branch on (i.e., which
variable to use when adding constraints to the new problems being added to Ξ ) in
the Initial Branching and the Bound Updating and Branching steps of the algorithm.
One may be tempted to wonder which is the ‘best’ variable to branch on, in the
sense of obtaining the optimal solution to the original MILPP as quickly as possible.
Unfortunately, the answer to this question is usually highly problem-dependent and
complex relationships between different variables can make it difficult to ascertain
this a priori. Thus, no general rules are available. Most MILPP solvers employ
heuristic rules, and the cost of a solver package is often tied to how much research
and sophistication is involved in the rules implemented.

A second question is what order to process the problems in Ξ in Step 2 of the
algorithm. There is, again, no general rule that applies to all problems because the
efficiency of solving a MILPP is highly dependent on the structure of the objective
function and constraints. Two heuristic rules that are commonly employed are known
as depth-first and breadth-first strategies. A depth-first strategy, which we employ
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in Example 3.1, goes deep down the branches of the tree as quickly as possible. This
is seen in the strategy that we employ because we solve LPP2, followed by LPP3 and
LPP5. A breadth-first strategy would, instead, stay at the top levels of the tree first
before going deeper. Applying such a strategy to Example 3.1 would see us solve
LPP2 and LPP1 before moving on the LPP3, LPP4, LPP7, and LPP8 and only then
going on to LPP5 and LPP6.

The primary benefit of a depth-first strategy is that it quickly produces problems
with many constraints that are either infeasible or give feasible solutions to the orig-
inal MILPP. This allows us to tighten the upper and lower bounds and find feasible
solutions relatively quickly. On the other hand, a breadth-first strategy allows us to
solve LPPs that are very similar to each other (they only have a small number of
constraints that differ from one another). This often allows us to solve the LPPs
more quickly. That being said, there is no general rule as to which of the two strate-
gies works most efficiently. Indeed, many solvers employ a combination of the two
approaches.

A third issue, which is raised in Section 3.5.1, is that we often do not solve an
MILPP to complete optimality. Thatmeans,wemay terminate theBranch-and-Bound
Algorithm before every problem in Ξ is solved. This process is normally governed
by the upper and lower bounds. If these bounds are sufficiently close to one another,
we may terminate the algorithm because we have a solution that is ‘close enough’
to optimal. For instance, in Example 3.1 we find the solution x = (3, 1), which is
not optimal after, solving LPP5. We also know, after solving LPP5, that zl = −5.347
and zu = −4. Thus, we know that the solution we have is at most:

∣∣∣∣ z
u − zl

zl

∣∣∣∣ = 0.25,

or 25% away from the optimal solution. In many cases, we may not be sufficiently
comfortable to use the feasible solution that we have at hand. However, if we find
a solution and know that it is at most 0.01% away from optimal, we may be happy
with that. Indeed, by default most MILPP solvers do not solve MILPPs to complete
optimality but stop once this so-called optimality gap is sufficiently small.

3.6 Solving Pure-Integer Linear Optimization Problems
Using Cutting Planes

This section outlines a fundamentally different way of solving a mixed-integer linear
optimization problem. Although the technique that we outline here can be applied
to generic MILPPs, we focus our attention on pure-integer linear optimization prob-
lems. Interested readers may consult other more advanced texts [13] that discuss the
generalization of this technique to generic MILPPs.
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The idea of this algorithm is relatively straightforward and relies on some simple
properties of MILPPs and LPPs. We first know that if the integrality constraints
of a MILPP are relaxed, the resulting linear relaxation is an LPP. Thus, we know
that an optimal solution to the linear relaxation will have the properties discussed in
Section 2.3. More specifically, we argue in Section 2.3.1 that the feasible region of
every LPP has at least one extreme point or corner that is optimal.

To see why this observation is important, examine the feasible region of the linear
relaxation of the Photovoltaic Panel-Repair Problem, which is shown in Figure 3.17.
We know from the properties of linear optimization problems that when we solve this
linear relaxation, one of the four extreme points of the linear relaxation, which are
highlighted as red squares in Figure 3.17, will be the solution given by the Simplex
method. Unfortunately, only one of these extreme points:

(x1, x2) = (0, 0),

is a solution that is feasible in the original MILPP, and it is not an optimal solution
to the MILPP.

Fig. 3.17 Geometrical
representation of the feasible
region of the linear relaxation
of the Photovoltaic
Panel-Repair Problem

The idea that we explore in this section is to solve the MILPP by adding what
are known as cutting planes [8]. A cutting plane is simply a constraint that cuts off
solutions that are feasible in the linear relaxation but are not feasible in the original
MILPP. Figure 3.18 shows the feasible region of the linear relaxation of the original
MILPP when these cutting planes are added. Note that the additional constraints
make the five extreme points of the feasible region (which are highlighted with red
squares) coincide with points where x is integer-valued (and, thus, feasible in the

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2
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original MILPP). The benefit of these cutting planes is that once we solve the linear
relaxation, the Simplex method gives us one of the extreme points, which will have
integer values for x , as an optimal solution. The important observation about cutting
planes is that they change (and reduce) the feasible region of the linear relaxation.
However, they do not change the feasible region of the original MILPP.

In practice, we do not have all of the cutting planes needed to solve a MILPP a
priori. Instead, we generate the cutting planes in an iterative algorithm by solving
the linear relaxation and finding constraints that cut off non-integer solutions. After
a sufficient number of iterations, and adding a sufficient number of these constraints,
we have a linear relaxation that gives an integer-valued solution that is feasible in
the original MILPP.

We proceed in this section by first outlining how to generate cuts from a non-
integer solution obtained from solving the linear relaxation of a pure-integer linear
optimization problem. We then outline the iterative algorithm to generate cutting
planes and demonstrate its use with an example.

Fig. 3.18 Geometrical
representation of the feasible
region of the linear relaxation
of the Photovoltaic
Panel-Repair Problem with
cutting planes added

3.6.1 Generating Cutting Planes

To derive a cutting plane, let us suppose that we solve the linear relaxation of a PILPP
and obtain a solution, x̂ , which does not satisfy all of the integrality restrictions of the
original PILPP. We further assume that the linear relaxation is converted to standard
form (2.14)–(2.16):

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2
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min
x

cx

s.t. Ax = b

x ≥ 0,

which is introduced in Section 2.2.2.1. This form allows us to analyze the struc-
tural equality constraints by partitioning x into basic and non-basic variables (cf.
Section 2.4.1 for further details). This partition allows us to write the equality con-
straints as: [

B N
] ( xB

xN

)
= b, (3.44)

where we partition A into:
A = [ B N

]
,

and the B submatrix is full-rank and we partition x into:

x =
(
xB
xN

)
.

Equation (3.44) can be rewritten as:

BxB + NxN = b,

or, because B is full-rank, as:

xB + B−1NxN = B−1b.

This can further be simplified as:

xB + Ñ xN = b̃, (3.45)

where:
Ñ = B−1N , (3.46)

and:
b̃ = B−1b. (3.47)

We next divide the values of Ñ and b̃ into their integer and non-integer compo-
nents. More specifically, define:

Ñ I =
⌊
Ñ
⌋
,

Ñ F = Ñ − Ñ I ,

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2
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b̃I =
⌊
b̃
⌋
,

and:
b̃F = b̃ − b̃I .

We can note a few properties of Ñ , b̃, Ñ I , Ñ F , b̃I , and b̃F . First, we clearly have
that:

Ñ = Ñ I + Ñ F ,

and:
b̃ = b̃I + b̃F ,

from the definitions of Ñ I , Ñ F , b̃I , and b̃F . Next, we know that Ñ I and b̃I are integer-
valued, because they are defined as the floors of Ñ and b̃, respectively. Finally, we
have that Ñ F and b̃F are non-integer-valued, non-negative, and less than 1, because
they are defined as the difference between each of Ñ and b̃ and their floors.

Thus, we can rewrite (3.45) as:

xB + (Ñ I + Ñ F )xN = b̃I + b̃F ,

or, by rearranging terms, as:

xB + Ñ I xN − b̃I = b̃F − Ñ F xN . (3.48)

We next consider a basic variable, which we denote xB,i , which has a non-integer
value in x̂ . Note that because the original PILPP requires all of the variables to be
integer-valued, the value of x̂B,i is not feasible in the PILPP. We can define the value
of xB,i from (3.48) as:

xB,i +
m∑
j=1

Ñ I
i, j xN , j − b̃I

i = b̃F
i −

m∑
j=1

Ñ F
i, j xN , j , (3.49)

where m is the number of structural equality constraints when the linear relaxation
is written in standard form.

Note that the left-hand side of (3.49) is, by definition, integer-valued in the original
PILPP. To see why, note that all of the x’s are restricted to be integer-valued in the
original PILPP. Moreover, the coefficients Ñ I

i, j and the constant b̃
I
i are defined to be

integer-valued as well. Thus, for (3.49) to hold, the right-hand side must be integer-
valued as well.

Let us next examine the right-hand side of (3.49). We can first argue that b̃F
i > 0.

The reason for this is that we are focusing our attention on a basic variable that is
not integer-valued in x̂ . Moreover, we know from the discussion in Section 2.4.2
that the values of basic variables are equal to b̃, because the non-basic variables are
fixed equal to zero in the Simplex method. Thus, because xB,i = b̃i , if x̂B,i is not

http://dx.doi.org/10.1007/978-3-319-56769-3_2
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integer-valued, then b̃i must have a strictly positive non-integer component, b̃F
i . We

further know that the second term on the right-hand side of (3.49):

m∑
j=1

Ñ F
i, j xN , j ,

is non-negative, because the coefficients, Ñ F
i, j , and the variables, xN , j , are all non-

negative. Because b̃F is defined as the non-integer component of b̃, it is by definition
strictly less than 1. Thus, we can conclude that the right-hand side of (3.49) is an
integer that is less than or equal to zero, or that:

b̃F
i −

m∑
j=1

Ñ F
i, j xN , j ≤ 0,

which can also be written as:

m∑
j=1

Ñ F
i, j xN , j − b̃F

i ≥ 0. (3.50)

Inequality (3.50) is the cutting plane that is generated by the solution, x̂ . This type of
cutting plane is often referred to as a Gomory cut, as Gomory introduced this method
of solving MILPPs [8]. Cuts of this form are used in the iterative algorithm that is
outlined in the next section.

3.6.2 Outline of Cutting-Plane Algorithm

Building off of the derivation of the Gomory cut given in Section 3.6.1, we now
outline the major steps of the Cutting-Plane Algorithm.

3.6.2.1 Step 0: Initialization

We begin the Cutting-Plane Algorithm by first solving the linear relaxation of the
original PILPP. When we solve the linear relaxation, one of the following three
outcomes is possible.

1. The linear relaxation may be infeasible. If so, then based on the Relaxation-
FeasibilityProperty, the original PILPP is infeasible aswell.As such,we terminate
the Cutting-Plane Algorithm and report that the original PILPP is infeasible.

2. Solving the linear relaxation may give a solution that satisfies all of the integrality
constraints of the original PILPP. If so, then based on the Relaxation-Optimality
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Corollary, the optimal solution of the linear relaxation is also optimal in the
original PILPP. Thus, we terminate the algorithm and report the solution found
as being optimal.

3. If the solution to the linear relaxation does not fit into the first two cases (i.e., we
obtain a solution with non-integer values for some of the variables or the linear
relaxation is unbounded), then we proceed with the Cutting-Plane Algorithm. Let
x̂ denote the optimal solution found from solving the linear relaxation.

3.6.2.2 Step 1: Cut Generation

Select a variable, which we denote xi , that has a non-integer value in x̂ . In theory, any
non-integer-valued variable can be used. In practice, it is often beneficial to select
the one that has the largest non-integer component when b̃ is decomposed into b̃I

and b̃F . Generate cut (3.50) for the chosen variable.

3.6.2.3 Step 2: Solving

Add the cut generated in Step 1 to themost recently solvedLPP and solve the resulting
LPP.

3.6.2.4 Step 3: Optimality Check

When we solve the LPP in Step 2 there are three possible outcomes.

1. The LPP may be infeasible. If so, then the original PILPP is infeasible as well.
As such, we terminate the Cutting-Plane Algorithm and report that the original
PILPP is infeasible.

2. Solving the LPP may give a solution that satisfies all of the integrality constraints
of the original PILPP. If so, then the optimal solution of the LPP is also optimal
in the original PILPP. Thus, we terminate the algorithm and report the solution
found as being optimal.

3. If the solution to the LPP does not fit into these two cases (i.e., we obtain a solution
with non-integer values for some of the variables or the LPP is unbounded) then
we continue the algorithmby returning to Step 1. Let x̂ denote the optimal solution
found from solving the LPP.

Example 3.2 Consider the following variant of the Photovoltaic Panel-Repair Prob-
lem fromSection 3.1.1. A type-A repair unit is now 10%more effective than a type-B
unit. Moreover, each type-A unit has a mass of 2 kg and occupies 7 m3 of space while
a type-B unit has a mass of 1 kg and occupies 8 m3. The shuttle can now carry at
most 6 kg of repair units and has at most 28 m3 of space available in its cargo bay.
The payload specialists must determine how many units of each type to carry aboard
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the spacecraft to maximize the effectiveness-weighted number of repair units sent to
the spacecraft.

To formulate this problem we let x1 and x2, respectively, denote the number of
type-A and -B repair units put into the spacecraft. The PILPP is then:

min
x1,x2

z = −11

10
x1 − x2

s.t. 2x1 + x2 ≤ 6

7x1 + 8x2 ≤ 28

x1, x2 ≥ 0

x1, x2 ∈ Z,

when the objective function is converted into a minimization.
To solve this problem using the Cutting-Planes Algorithm, we first convert the

linear relaxation:

min
x1,x2

z = −11

10
x1 − x2

s.t. 2x1 + x2 ≤ 6

7x1 + 8x2 ≤ 28

x1, x2 ≥ 0,

into standard form:

min
x1,x2,x3,x4

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

x1, x2, x3, x4 ≥ 0,

by adding two new slack variables, x3 and x4. Solving this problem gives x̂ =
(20/9, 14/9, 0, 0). Because this solution does not satisfy all of the integrality con-
straints of the original PILPP, we add a new cut.

To do so, we first recall that we have:

A =
[
2 1 1 0
7 8 0 1

]
,

and:

b =
(

6
28

)
.
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Because x1 and x2 are basic variables and x3 and x4 are non-basic variables, we know
that the basis matrix will have the first two columns of A:

B =
[
2 1
7 8

]
,

and the N matrix will have the remaining columns:

N =
[
1 0
0 1

]
.

Using (3.46) and (3.47) we have:

Ñ =
[

8/9 −1/9
−7/9 2/9

]
,

and:

b̃ =
(
20/9
14/9

)
.

We can decompose these two into their integer and non-integer parts:

Ñ I =
[

0 −1
−1 0

]
,

Ñ F =
[
8/9 8/9
2/9 2/9

]
,

b̃I =
(
2
1

)
.

and:

b̃F =
(
2/9
5/9

)
.

We now select either of x1 or x2 to generate a cutting plane with. Because the non-
integer components of x̂ are given by b̃F and b̃F

2 > b̃F
1 , we generate a cut using x2.

From (3.50) this cut is given by:

m∑
j=1

Ñ F
2, j xN , j − b̃F

2 ≥ 0,

or by:
2

9
x3 + 2

9
x4 − 5

9
≥ 0,
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when we substitute in the values of Ñ F and b̃F . We can further simplify this cut to:

2x3 + 2x4 − 5 ≥ 0.

Adding this cut to the standard form of the linear relaxation of the PILPP gives:

min
x1,x2,x3,x4

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − 5 ≥ 0

x1, x2, x3, x4 ≥ 0,

which we transform into the standard-form problem:

min
x1,x2,x3,x4,x5

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − x5 = 5

x1, x2, x3, x4, x5 ≥ 0,

by adding the surplus variable, x5, to the problem. Solving this problem gives x̂ =
(5/2, 1, 0, 5/2, 0). This solution does not satisfy the integrality constraints of the
original PILPP, because x̂1 = 5/2.

Thus, we must generate a new cutting plane. To do so, we first note that we now
have:

A =
⎡
⎣ 2 1 1 0 0
7 8 0 1 0
0 0 2 2 −1

⎤
⎦,

and:

b =
⎛
⎝ 6
28
5

⎞
⎠.

Because x1, x2, and x4 are basic variables we have:

B =
⎡
⎣2 1 0
7 8 1
0 0 2

⎤
⎦,

and:
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N =
⎡
⎣ 1 0
0 0
2 −1

⎤
⎦,

and from (3.46) and (3.47) we have:

Ñ =
⎡
⎣ 1 −1/18

−1 1/9
1 −1/2

⎤
⎦,

and:

b̃ =
⎛
⎝5/2

1
5/2

⎞
⎠.

Decomposing these into their integer and non-integer parts gives:

Ñ I =
⎡
⎣ 1 −1

−1 0
1 −1

⎤
⎦,

Ñ F =
⎡
⎣0 17/18
0 1/9
0 1/2

⎤
⎦,

b̃I =
⎛
⎝ 1
1
1

⎞
⎠.

and:

b̃F =
⎛
⎝1/2

0
1/2

⎞
⎠.

Note that the value of x̂4 = 5/2 does not affect the feasibility of this solution in
the original PILPP, because the original PILPP only constraints x1 and x2 to be
integer-valued. However, if we examine the structural constraint:

7x1 + 8x2 + x4 = 28,

it is clear that if x4 takes on a non-integer value, then at least one of x1 or x2 will
also take on a non-integer value. Thus, we have the option of generating a cut using
either of x1 or x4. If we select x4, the new cutting plane will be:

1

2
x5 − 1

2
≥ 0,
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or:
x5 − 1 ≥ 0,

when simplified. Adding this constraint to the current LPP gives:

min
x1,x2,x3,x4,x5

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − x5 = 5

x5 − 1 ≥ 0

x1, x2, x3, x4, x5 ≥ 0,

which is:

min
x1,x2,x3,x4,x5,x6

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − x5 = 5

x5 − x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0,

in standard form.
Solving the new LPP gives x = (23/9, 8/9, 0, 3, 1, 0). Thus, we must generate

a new cut. To do so, we note that we now have:

A =

⎡
⎢⎢⎣
2 1 1 0 0 0
7 8 0 1 0 0
0 0 2 2 −1 0
0 0 0 0 1 −1

⎤
⎥⎥⎦,

b =

⎛
⎜⎜⎝

6
28
5
1

⎞
⎟⎟⎠,

B =

⎡
⎢⎢⎣
2 1 0 0
7 8 1 0
0 0 2 −1
0 0 0 1

⎤
⎥⎥⎦,
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and:

N =

⎡
⎢⎢⎣
1 0
0 0
2 0
0 −1

⎤
⎥⎥⎦.

From (3.46) and (3.47) we also have:

Ñ =

⎡
⎢⎢⎣

1 −1/18
−1 1/9
1 −1/2
0 −1

⎤
⎥⎥⎦,

and:

b̃ =

⎛
⎜⎜⎝
25/9
4/9
5
5

⎞
⎟⎟⎠,

which are decomposed as:

Ñ I =

⎡
⎢⎢⎣

1 −1
−1 0
1 −1
0 −1

⎤
⎥⎥⎦,

Ñ F =

⎡
⎢⎢⎣
0 17/18
0 1/9
0 1/2
0 0

⎤
⎥⎥⎦,

b̃I =

⎛
⎜⎜⎝
2
0
5
5

⎞
⎟⎟⎠,

and:

b̃F =

⎛
⎜⎜⎝
7/9
4/9
0
0

⎞
⎟⎟⎠.

Generating a cut with x2 gives:
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1

9
x6 − 4

9
≥ 0,

or:

x6 − 4 ≥ 0.

Adding this to our current LPP gives:

min
x1,x2,x3,x4,x5,x6

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − x5 = 5

x5 − x6 = 1

x6 − 4 ≥ 0

x1, x2, x3, x4, x5, x6 ≥ 0,

which is:

min
x1,x2,x3,x4,x5,x6,x7

z = −11

10
x1 − x2

s.t. 2x1 + x2 + x3 = 6

7x1 + 8x2 + x4 = 28

2x3 + 2x4 − x5 = 5

x5 − x6 = 1

x6 − x7 = 4

x1, x2, x3, x4, x5, x6, x7 ≥ 0,

in standard form. The optimal solution to this LPP is x = (3, 0, 0, 7, 9, 4), which
satisfies all of the integrality constraints of the original PILPP. Thus, we terminate
the Cutting-Plane Algorithm and report (x1, x2) = (3, 0) as an optimal solution. �

3.6.3 Cutting-Plane Algorithm

We now give a more detailed outline of the Cutting-Plane Algorithm. Lines 2–5
initialize the algorithm. We have three flags that indicate if the algorithm should
terminate because the original PILPP is found to be infeasible or unbounded or if
we find an optimal solution to the original PILPP. These three flags are initially set
to zero in Lines 2–4. The algorithm also tracks a ‘current LPP,’ the constraints of
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which are updated as new cutting planes are generated. In Line 5, the current LPP is
set equal to the linear relaxation of the PILPP.

Cutting-Plane Algorithm
1: procedure Cutting Plane
2: τ I ← 0
3: τU ← 0
4: τ S ← 0
5: ‘current LPP’ ← ‘linear relaxation of PILPP’ � x̂ denotes optimal solution
6: repeat
7: solve current LPP
8: if most recently solved LPP is infeasible then
9: τ I ← 1
10: else if x̂ satisfies integrality constraints of original PILPP then
11: if objective function is unbounded then
12: τU ← 1
13: else
14: τ S ← 1
15: end if
16: else
17: determine B and N from final tableau of most recently solved LPP
18: Ñ ← B−1N
19: b̃ ← B−1b
20: Ñ I ←

⌊
Ñ
⌋

21: Ñ F ← Ñ − Ñ I

22: b̃I ←
⌊
b̃
⌋

23: b̃F ← b̃ − b̃I

24: select a variable, xi , to add a cut for
25: add constraint

∑m
j=1 Ñ

F
i, j xN , j − b̃Fi ≥ 0 to most recently solved LPP

26: end if
27: until τ I = 1 or τU = 1 or τ S = 1
28: if τ I = 1 then
29: original PILPP is infeasible
30: else if τU = 1 then
31: original PILPP is unbounded
32: else
33: x̂ is optimal in original PILPP
34: end if
35: end procedure

Lines 6–27 are the main iterative loop of the algorithm. The current LPP is solved
in Line 7 and one of four things happens depending on the solution found. If the
current LPP is infeasible, then the flag τ I is set equal to 1 in Lines 8 and 9 to indicate
that the original PILPP is found to be infeasible. Next, if the optimal solution to
the current LPP satisfies the integrality constraints of the original PILPP and the
objective function is bounded, then we have found an optimal solution to the original
PILPP and set the flag τ S equal to 1 in Lines 13 and 14. Otherwise, if the objective
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function is unbounded, then the original PILPP is unbounded as well and the flag
τU is set equal to 1 in Lines 11 and 12. Note that this case only applies if we have
an integer-valued solution that gives an unbounded objective function. If the LPP
solved in Line 7 is unbounded but we cannot guarantee that there is an integer-valued
solution that is unbounded, this falls into the final case in which a new cut is added
to the current problem. In the final case, in which the LPP is feasible but we do not
find a solution that satisfies the integrality constraints of the original PILPP (or the
LPP is unbounded but we cannot guarantee that there is an integer-valued solution
that is unbounded), we add a new cut to the current problem in Lines 17–25.

This iterative process repeats until we terminate the algorithm in Line 27 for
one of the three reasons (optimality, infeasibility, or unboundedness). Lines 28–34
determine what to report, based on which of τ I , τU , or τ S is equal to 1 when the
algorithm terminates.

3.7 Final Remarks

Current techniques to efficiently solve large-scale MILPPs (e.g., those implemented
in CPLEX [10] or GUROBI [9]) combine the branch-and-bound algorithm with
cutting-plane methods to reduce the feasible region of the LPPs that must be solved
while also exploring the branch-and-bound tree. These hybrid techniques pay partic-
ular attention to adding cutting planes to the original linear relaxation of the MILPP
before branching begins. The reason for this is that cutting planes added to the linear
relaxation are carried through in all of the subsequent LPPs that are solved and tend to
improve the quality of the solutions found. This, in turn, increases solution efficiency.
CommercialMILPP solvers also incorporate numerous heuristics to determinewhich
variable to branch on and which LPP in Ξ to solve in each iteration of the Branch-
and-Bound Algorithm. Bixby [2] provides an excellent overview of the evolution of
MILPP solvers up to 2002. Commercial MILPP solvers, such as CPLEX [10] and
GUROBI [9], can be easily accessed using mathematical programming languages
[3, 7, 11, 14].

The twomethods to solveMILPP that are outlined in this chapter are generic, in the
sense that they can be applied to any genericMILPP. For very difficult and large-scale
MILPPs, decomposition techniques are often employed. These techniques exploit the
structure of a problem to determine intelligent ways in which to break the MILPP
into smaller subproblems from which a good solution to the overall problem can be
found. Another extension of the solutionmethods discussed here are to develop other
types of cutting planes. These cutting planes often exploit the structure of the problem
at hand. While Gomory cuts are guaranteed to eventually find an optimal solution
to a MILPP, the number of cuts that may need to be added grows exponentially
with the problem size. Other types of cuts may yield a solution more quickly than
Gomory cuts alone can.Wolsey and Nemhauser [16], Bertsimas andWeismantel [1],
and Rao [13] discuss these more advanced solution techniques, including problem
decomposition, cutting planes, and hybrid methods. Castillo et al. [4] provide further
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discussion of modeling using mixed-integer linear optimization problems. We also
refer interested readers to other relevant works on the topic of MILPPs [5, 12, 15].

Our discussion in this chapter focuses exclusively on mixed-integer linear opti-
mization problems. It is a straightforward extension of the formulation techniques
discussed in this chapter and in Chapter 4 to formulate mixed-integer nonlinear opti-
mization problems. Indeed, such problems are gaining increased focused from the
operations research community. However, the solution of such problems is still typi-
cally quite taxing and demanding compared toMILPPs.We refer interested readers to
the work of Floudas [6], which provides an excellent introduction to the formulation
and solution of mixed-integer nonlinear optimization problems.

3.8 GAMS Codes

This final section provides GAMS [3] codes for the main problems considered in
this chapter. GAMS uses a variety of different solvers, among them CPLEX [10] and
GUROBI [9], to actually solve MILPPs.

3.8.1 Photovoltaic Panel-Repair Problem

The Photovoltaic Panel-Repair Problem, which is introduced in Section 3.1.1, has
the following GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 integer variables x1 , x2;
4 equations of , l1 , l2;
5 of .. z =e= x1+x2;
6 l1 .. 17*x1+32*x2 =l= 136;
7 l2 .. 32*x1+15*x2 =l= 120;
8 model pv /all/;
9 solve pv using mip maximizing z;

Line 1 indicates that the solution tolerance should be 0. Otherwise, the solver
may terminate once the optimality gap is sufficiently small but non-zero, giving a
near-optimal but not a fully optimal solution. Lines 2 and 3 are variable declarations,
Line 4 gives names to the equations of the model, Line 5 defines the objective
function, Lines 6 and 7 define the constraints, Line 8 defines the model, and Line 9
directs GAMS to solve it.

http://dx.doi.org/10.1007/978-3-319-56769-3_4
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The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 5.000 +INF .
4 ---- VAR x1 . 2.000 100.000 1.000
5 ---- VAR x2 . 3.000 100.000 1.000

3.8.2 Natural Gas-Storage Problem

The Natural Gas-Storage Problem, which is introduced in Section 3.1.2, has the
following GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 positive variables y11 , y12 , y21 , y22 , y31 , y32;
4 binary variables x1 , x2 , x3;
5 equations of , d1 , d2 , s1 , s2 , s3;
6 of .. z =e= y11+6*y12+2*y21+5*y22+3*y31+4*y32 -8*x1 -9*

x2 -7*x3;
7 d1 .. y11+y21+y31 =e= 10;
8 d2 .. y12+y22+y32 =e= 6;
9 s1 .. y11+y12 =l= 7*x1;

10 s2 .. y21+y22 =l= 8*x2;
11 s3 .. y31+y32 =l= 9*x3;
12 model gs /all/;
13 solve gs using mip maximizing z;

Line 1 indicates that the solution tolerance should be 0, Lines 2–4 are variable
declarations, Line 5 gives names to the equations of the model, Line 6 defines the
objective function, Lines 7–11 define the constraints, Line 12 defines the model, and
Line 13 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 49.000 +INF .
4 ---- VAR y11 . 1.000 +INF .
5 ---- VAR y12 . 6.000 +INF .
6 ---- VAR y21 . . +INF .
7 ---- VAR y22 . . +INF -2.000
8 ---- VAR y31 . 9.000 +INF .
9 ---- VAR y32 . . +INF -4.000

10 ---- VAR x1 . 1.000 1.000 -8.000
11 ---- VAR x2 . . 1.000 -1.000
12 ---- VAR x3 . 1.000 1.000 11.000
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3.8.3 Electricity-Scheduling Problem

The Electricity-Scheduling Problem, which is introduced in Section 3.1.3, has the
following GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 positive variables p1 , p2 , p3;
4 binary variables x1 , x2 , x3;
5 equations of , b, l1u , l1d , l2u , l2d , l3u , l3d;
6 of .. z =e= 2*p1+5*p2+1*p3 + 40*x1+50*x2+35*x3;
7 b .. p1+p2+p3 =e= 50;
8 l1u .. p1 =l= 20*x1;
9 l1d .. p1 =g= 5*x1;

10 l2u .. p2 =l= 40*x2;
11 l2d .. p2 =g= 6*x2;
12 l3u .. p3 =l= 35*x3;
13 l3d .. p3 =g= 4*x3;
14 model es /all/;
15 solve es using mip minimizing z;

Line 1 indicates that the solution tolerance should be 0, Lines 2–4 are variable
declarations, Line 5 gives names to the equations of the model, Line 6 defines the
objective function, Lines 7–13 define the constraints, Line 14 defines the model, and
Line 15 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 140.000 +INF .
4 ---- VAR p1 . 15.000 +INF .
5 ---- VAR p2 . . +INF 3.000
6 ---- VAR p3 . 35.000 +INF .
7 ---- VAR x1 . 1.000 1.000 40.000
8 ---- VAR x2 . . 1.000 50.000
9 ---- VAR x3 . 1.000 1.000 EPS

3.8.4 Oil-Transmission Problem

The Oil-Transmission Problem, which is introduced in Section 3.1.4, has the follow-
ing GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 positive variables p1 , p2;
4 variable f1 , f2 , f3;
5 binary variables x1 , x2;
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6 equations of , b1 , b2 , b3 , l12 , l21 , l13 , l31 , l23 , l32
;

7 of .. z =e= 2000*p1 +3000*p2 -50000*x1 -55000* x2;
8 b1 .. p1+p2 =e= 30;
9 b2 .. p1 -f1 -f3 =e= 0;

10 b3 .. p2 -f2+f3 =e= 0;
11 l12 .. f3 =l= 10;
12 l21 .. f3 =g= -10;
13 l13 .. f1 =l= 12 + 11*x1;
14 l31 .. f1 =g= -12 - 11*x1;
15 l23 .. f2 =l= 11 + 12*x2;
16 l32 .. f2 =g= -11 - 12*x2;
17 model ot /all/;
18 solve ot using MIP maximizing z;

Line 1 indicates that the solution tolerance should be 0, Lines 2–5 are variable
declarations, Line 6 gives names to the equations of the model, Line 7 defines the
objective function, Lines 8–16 define the constraints, Line 17 defines the model, and
Line 18 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 35000.000 +INF .
4 ---- VAR p1 . . +INF -1000.000
5 ---- VAR p2 . 30.000 +INF .
6 ---- VAR f1 -INF 10.000 +INF .
7 ---- VAR f2 -INF 20.000 +INF .
8 ---- VAR f3 -INF -10.000 +INF .
9 ---- VAR x1 . . 1.000 -5.000E+4

10 ---- VAR x2 . 1.000 1.000 -5.500E+4

3.8.5 Charging-Station Problem

The Charging-Station Problem, which is introduced in Section 3.1.5, has the follow-
ing GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 binary variables x1 , x2 , x3;
4 equations of , n1 , n2 , n3 , n4;
5 of .. z =e= 10*x1+12*x2+13*x3;
6 n1 .. 1*x1 + 0*x2 + 1*x3 =g= 1;
7 n2 .. 0*x1 + 1*x2 + 0*x3 =g= 1;
8 n3 .. 1*x1 + 1*x2 + 0*x3 =g= 1;
9 n4 .. 0*x1 + 0*x2 + 1*x3 =g= 1;

10 model cs /all/;
11 solve cs using mip minimizing z;
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Line 1 indicates that the solution tolerance should be 0, Lines 2 and 3 are variable
declarations, Line 4 gives names to the equations of the model, Line 5 defines the
objective function, Lines 6–9 define the constraints, Line 10 defines the model, and
Line 11 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 25.000 +INF .
4 ---- VAR x1 . . 1.000 10.000
5 ---- VAR x2 . 1.000 1.000 12.000
6 ---- VAR x3 . 1.000 1.000 13.000

3.8.6 Wind Farm-Maintenance Problem

TheWind Farm-Maintenance Problem, which is introduced in Section 3.1.6, has the
following GAMS formulation:

1 option OPTCR =0;
2 variable z;
3 binary variables x11 ,x12 ,x13 ,x21 ,x22 ,x23 ,x31 ,x32 ,x33;
4 equations of , f1 , f2 , f3 , t1 , t2 , t3;
5 of .. z =e= 10*x11 +12* x12 +14* x13+9*x21+8*x22 +15* x23

+10* x31+5*x32 +15* x33;
6 f1 .. x11 + x12 + x13 =e= 1;
7 f2 .. x21 + x22 + x23 =e= 1;
8 f3 .. x31 + x32 + x33 =e= 1;
9 t1 .. x11 + x21 + x31 =e= 1;

10 t2 .. x12 + x22 + x32 =e= 1;
11 t3 .. x13 + x23 + x33 =e= 1;
12 model wf /all/;
13 solve wf using mip minimizing z;

Line 1 indicates that the solution tolerance should be 0, Lines 2 and 3 are variable
declarations, Line 4 gives names to the equations of the model, Line 5 defines the
objective function, Lines 6–11 define the constraints, Line 12 defines the model, and
Line 13 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 28.000 +INF .
4 ---- VAR x11 . . 1.000 10.000
5 ---- VAR x12 . . 1.000 12.000
6 ---- VAR x13 . 1.000 1.000 14.000
7 ---- VAR x21 . 1.000 1.000 9.000
8 ---- VAR x22 . . 1.000 8.000
9 ---- VAR x23 . . 1.000 15.000

10 ---- VAR x31 . . 1.000 10.000



194 3 Mixed-Integer Linear Optimization

11 ---- VAR x32 . 1.000 1.000 5.000
12 ---- VAR x33 . . 1.000 15.000

3.9 Exercises

3.1 Steve owns twowarehouses containing 120 and 100 photovoltaic panels, respec-
tively. He uses these twowarehouses to serve customers in three markets, which have
demands for 40, 70, and 50 units, respectively, which must be met exactly. Per-unit
transportation costs between each warehouse and each market are given in Table 3.8.
Formulate an MILPP to determine how many panels Steve should ship from each
warehouse to each market to minimize total transportation cost.

Table 3.8 Per-unit
transportation costs [$] for
Exercise 3.1

Warehouse 1 Warehouse 2

Market 1 14 12

Market 2 13 10

Market 3 11 11

3.2 An electricity producer may use some combination of electricity-generating
units that are powered by either wind or natural gas. The capacity of each unit (either
wind- or natural gas-powered) is 10 kW. The cost of building a wind-powered unit is
$2500 and its operating cost is $6/kWh. The cost of building a natural gas-powered
unit is $2000 and its operating cost is $80/kWh.

If the demand to be supplied is 100 kW and the producer may not build more
than four wind-powered units, how many units of each type should the electricity
producer build to minimize the sum of building and generation costs?

3.3 Design, formulate, and solve an assignment problem similar to the Wind Farm-
Maintenance Problem, which is introduced in Section 3.1.6.

3.4 Design, formulate, and solve a knapsack problem similar to the Photovoltaic
Panel-Repair Problem, which is introduced in Section 3.1.1.

3.5 Design, formulate, and solve a set-covering problem similar to the Charging-
Station Problem, which is introduced in Section 3.1.5.

3.6 Linearize the cost function:

cost =
{
0, if x = 0,
5 + x, if 0 < x ≤ 10,

using integer variables.
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3.7 Linearize the piecewise-linear cost function:

cost =

⎧⎪⎨
⎪⎩

1
2 x, if 0 ≤ x ≤ 1,
1
2 + 2

3 (x − 1), if 1 < x ≤ 2,
7
6 + 1

3 (x − 2), if 2 < x ≤ 3,

using integer variables.

3.8 Design and formulate an instance of an Alternative Constraint, as outlined in
Section 3.3.4.

3.9 Consider the MILPP:

min
x1,x2

z = −x1 − x2

s.t. 2x1 + x2 ≤ 13

x1 + 2x2 ≤ 12

x1, x2 ≥ 0

x1, x2 ∈ Z.

The linear relaxation of this problemhas the optimal solution x0 = (14/3, 11/3).
If the Branch-and-Bound Algorithm is to be applied where x1 is the branching vari-
able, determine the new LPPs that would be added to Ξ .

3.10 Generate a cutting plane for the MILPP in Exercise 3.9.

3.11 Solve the Photovoltaic Panel-Repair Problem using the Cutting-Plane
Algorithm.

3.12 Solve the Natural Gas-Storage Problem using the Branch-and-Bound
Algorithm.
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Chapter 4
Nonlinear Optimization

Chapters 2 and 3 are devoted to problems with a linear structure. More specifically,
the problems studied there all have an objective function and constraints that are linear
in the decision variables. Although linear optimization problems are very common
and can model a variety of real-world problems, we are sometimes faced with mod-
eling a system that includes important nonlinearities. When either the constraints
or objective function of an optimization problem are nonlinear in the decision vari-
ables, we say that we are faced with a nonlinear optimization problem or nonlinear
programming problem (NLPP).

In this chapter, we begin by first introducing some nonlinear optimization prob-
lems, then discuss methods to solve NLPPs. The example nonlinear optimization
problems that we introduce draw on a wide swath of problem domains span-
ning finance, design, planning, and energy systems. We then discuss an analytical
approach to solving NLPPs. This method uses what are called optimality condi-
tions—properties that an optimal set of decision variables has to exhibit. Optimality
conditions can be likened to the technique to solve an LPP that draws on the Strong-
Duality Property, which is discussed in Section 2.7.4. In Chapter 5 we introduce
another approach to solving NLPPs, iterative solution algorithms, which are tech-
niques used by software packages to solve NLPPs. These iterative algorithms can
be likened to using the Simplex method to solve linear optimization problems or the
branch-and-bound or cutting-plane methods to solve mixed-integer linear problems.

4.1 Motivating Examples

In this section, we present a variety of nonlinear optimization problems, which are
motivated by a mixture of geometric, mechanical, and electrical systems.
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4.1.1 Geometric Examples

4.1.1.1 Packing-Box Problem

A company must determine the dimensions of a cardboard box to maximize its vol-
ume. The box can use at most 60cm2 of cardboard. For structural reasons, the bottom
and top faces of the box must be of triple weight (i.e., three pieces of cardboard).

There are three decision variables in this problem, h, w, and d, which are the
height, width, and depth of the box in cm, respectively (see Figure 4.1).

Fig. 4.1 Illustration of the
Packing-Box Problem

The objective is to maximize the volume of the box:

max
h,w,d

hwd.

There are two types of constraints. First, we must ensure that the box uses no
more than 60cm2 of cardboard, noting that the top and bottom of the box are of
triple weight:

2wh + 2dh + 6wd ≤ 60.

The second type of constraint ensures that the dimensions of the box are non-negative,
as negative dimensions are physically impossible:

w, h, d ≥ 0.
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Putting all of this together, the NLPP can be written as:

max
h,w,d

hwd

s.t. 2wh + 2dh + 6wd ≤ 60

w, h, d ≥ 0.

4.1.1.2 Awning Problem

A box, which is h m high and w m wide, is placed against the side of a building
(see Figure 4.2). The building owner would like to construct an awning of minimum
length that completely covers the box.

Fig. 4.2 Illustration of the
Awning Problem

There are twodecision variables in this problem.Thefirst, x ,measures the distance
between the buildingwall and the point atwhich the awning is anchored to the ground,
in meters. The second, y, measures the height of the anchor point of the awning to
the building wall, also in meters.

The objective is to minimize the length of the awning. From the Pythagorean
theorem this is:

min
x,y

√
x2 + y2.
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We have two types of constraints in this problem. The first ensures that the upper-
right corner of the box is below the awning (which ensures that the box is wholly
contained by the awning). To derive this constraint, we compute the height of the
awning w m away from the wall as:

y − y

x
w.

To ensure that the upper-right corner of the box is below the awning, this point must
be at least h m high, giving our first constraint:

y − y

x
w ≥ h.

We must also ensure that the distances between the anchor points of the awning and
the building and ground are non-negative:

x, y ≥ 0.

Thus, our NLPP is:

min
x,y

√
x2 + y2

s.t. y − y

x
w ≥ h

x, y ≥ 0.

4.1.1.3 Facility-Location Problem

A retailer must decide where to place a single distribution center to service N retail
locations in a region (see Figure 4.3). Retail location n is at coordinates (xn, yn). Each
week Vn trucks leave the distribution center carrying goods to retail location n, and
then return to the distribution center. These trucks can all travel on straight paths from
the distribution center to the retail location. The company would like to determine
where to place the distribution center to minimize the total distance that all of the
trucks must travel each week.

There are two variables in this problem, a and b, which denote the coordinates of
the distribution center.

The objective is to minimize the total distance traveled by all of the trucks. As
illustrated in Figure 4.3, each truck that serves retail location n must travel a dis-
tance of:

√
(xn − a)2 + (yn − b)2,
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Fig. 4.3 Illustration of the
Facility-Location Problem

to get there from the distribution center. Because Vn trucks must travel to retail
location n and they make a roundtrip, the total distance covered by all of the trucks
to retail location n is:

2Vn

√
(xn − a)2 + (yn − b)2.

The objective is to minimize this total distance, or:

min
a,b

N∑

n=1

2Vn

√
(xn − a)2 + (yn − b)2.

Because the distribution center can be placed anywhere, this problem has no
constraints.

Thus, our NLPP is simply:

min
a,b

N∑

n=1

2Vn

√
(xn − a)2 + (yn − b)2.

4.1.1.4 Cylinder Problem

A brewery would like to design a cylindrical vat (see Figure 4.4), in which to brew
beer. The material used to construct the top of the vat costs $c1 per m2. The material
cost of the side and bottom of the vat is proportional to the volume of the vat. This
is because the side and bottom must be reinforced to hold the volume of liquid that
is brewed in the vat. This material cost is $c2V per m2, where V is the volume of
the vat. The value of the beer that is produced in the vat during its usable life is
proportional to the volume of the vat, and is given by $N per m3. The brewery would
like to design the vat to maximize the net profit earned over its usable life.



202 4 Nonlinear Optimization

This NLPP has two decision variables, h and r , which measure the height and
radius, respectively, of the vat in meters.

The objective is to maximize the value of the beer brewed less the cost of building
the vat. The value of the beer produced by the vat is given by:

Nπr2h.

The cost of top of the vat is:
c1πr

2.

Fig. 4.4 Illustration of the
Cylinder Problem

The per-unit material cost (in $/m3) of the side and bottom of the vat is given by:

c2πr
2h.

Thus the bottom of the vat costs:

c2πr
2hπr2,

and the side costs:

c2πr
2h2πrh.



4.1 Motivating Examples 203

Thus, the objective, which is to maximize the value of the beer produced by the vat
less its material costs, is:

max
h,r

Nπr2h − c1πr
2 − c2πr

2h · (πr2 + 2πrh).

There is one type of constraint, which ensures that the vat has non-negative dimen-
sions:

r, h ≥ 0.

Putting all of this together, the NLPP can be written as:

max
h,r

Nπr2h − c1πr
2 − c2πr

2h · (πr2 + 2πrh)

s.t. r, h ≥ 0.

4.1.2 Mechanical Examples

4.1.2.1 Machining-Speed Problem

A company produces widgets that need to be machined. Each widget needs to spend
tp minutes being prepared before being machined. The time that each widget spends
being machined depends on the machine speed. This machining time is given by:

λ

v
,

where λ is a constant and v is the machine speed. The tool used to machine the
widgets needs to be replaced periodically, due to wear. Each time the tool is replaced
the machine is out of service (and widgets cannot be produced) for tc minutes. The
amount of time it takes for the tool to be worn down depends on the machine speed,
and is given by: (

C

v

)1/n

,

where C and n are constants. The cost of replacement tools is negligible. Each
widget sells for a price of $p and uses $m worth of raw materials. Moreover, every
minute of production time incurs $h of overhead costs. The company would like to
determine the optimal machine speed that maximizes the average per-minute profit
of the widget-machining process.

This problem has a single decision variable, v, which is the machine speed.
To derive the objective, we first note that each widget produced earns $(p − m)

of revenue less material costs. Dividing this by the number of widgets produced per
minute gives an expression for net revenue per minute. Producing each widget takes
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three steps. The first is preparation, which takes tp minutes. Each widget must also
be machined, which takes:

λ

v
,

minutes. Finally, each widget produced reduces the usable life of the machine tool
by the fraction:

λ/v

(C/v)1/n
.

Thus, each widget contributes:

tc
λ/v

(C/v)1/n
,

minutes toward tool-replacement time. Therefore, each widget takes a total of:

tp + λ

v
+ tc

λ/v

(C/v)1/n
,

minutes of time to produce. The objective, which is to maximize average per-minute
profits of the widget-machining process, is, thus, given by:

max
v

p − m

tp + λ
v + tc

λ/v
(C/v)1/n

− h,

where we also subtract the overhead costs.
The only constraint on this problem is that the machine speed needs to be non-

negative:
v ≥ 0.

Thus, our NLPP is:

max
v

p − m

tp + λ
v + tc

λ/v
(C/v)1/n

− h

s.t. v ≥ 0.

4.1.2.2 Hanging-Chain Problem

A chain consisting of N links, each of which is 10cm in length and 50g in mass,
hangs between two points a distance L cm apart, as shown in Figure 4.5. The chain
will naturally hang in a configuration that minimizes its potential energy. Formulate
a nonlinear optimization problem to determine the configuration of the chain links
when it is hanging.
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Fig. 4.5 Illustration of the Hanging-Chain Problem

To formulate this problem, we define variables, y1, y2, . . . , yN . We let yn measure
the vertical displacement of the right end of the nth chain link from the right end of
the (n − 1)th link in cm (see Figure 4.5).

The objective of the NLPP is to minimize the potential energy of the chain. This
is, in turn, the sum of the potential energies of each chain link. The potential energy
of chain link n is given by the product of its mass, the gravitational constant, and
the vertical displacement of its midpoint from the ground. The displacement of the
midpoint nth link is given by:

y1 + y2 + · · · + yn−1 + 1

2
yn.

This is illustrated for the third link in Figure 4.5. Thus, the objective of the NLPP is:

min
y1,...,yN

50g

[
1

2
y1 +

(
y1 + 1

2
y2

)
+ · · · +

(
y1 + · · · + yN−1 + 1

2
yN

)]

where g is the gravitational constant. This objective can be further simplified to:

min
y

50g
N∑

n=1

(
N − n + 1

2

)
yn,

by adding and simplifying terms.
This problem has two constraints. The first is to ensure that the vertical displace-

ments of the chain links all sum to zero, meaning that its two anchor points are at
the same height:

N∑

n=1

yn = 0.
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The other constraint ensures that the horizontal displacements of the chain links sum
to L , which ensures that the two anchor points of the chain are L cm apart. Because
we know that chain link n has a length of 10cm and a vertical displacement (relative
to the (n − 1)th link) of yn , we can use the Pythagorean theorem to compute its
horizontal displacement (relative to the (n − 1)th link) as:

√
10 − y2n .

Because this constraint requires that these horizontal displacements sum to L it can
be written as:

N∑

n=1

√
10 − y2n = L .

Putting all of this together, the NLPP can be written as:

min
y

50g
N∑

n=1

(
N − n + 1

2

)
yn

s.t.
N∑

n=1

yn = 0

N∑

n=1

√
10 − y2n = L .

4.1.3 Planning Examples

4.1.3.1 Return-Maximization Problem

An investor has a sum of money to invest in N different assets. Asset n generates a
rate of return, which is given by rn . Define:

r̄n = E[rn],

as the expected rate of return of asset n. The risk of the portfolio is measured by the
covariance between the returns of the different assets. Let:

σn,m =
N∑

n=1

N∑

m=1

E[(rn − E[rn])(rm − E[rm])],
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be the covariance between the returns of assets n andm. By convention the covariance
between the return of asset n and itself, σn,n , is equal to σ 2

n , which is the variance of
the return of asset n. The investor would like to determine how to allocate the sum
of money to maximize the expected return on investment while limiting the variance
of the portfolio to be no more than s̄.

To formulate this problem,we define N decision variables,w1,w2, . . . ,wN , where
wn represents the fraction of the money available that is invested in asset n.

The objective function is to maximize the expected return on investment:

max
w1,...,wN

N∑

n=1

E[rnwn] =
N∑

n=1

E[rn]wn =
N∑

n=1

r̄nwn.

There are three types of constraints. First, we must ensure that the portfolio vari-
ance is no greater than s̄. We can compute the variance of the portfolio as:

N∑

n=1

N∑

m=1

E[(rnwn − E[rnwn])(rmwm − E[rmwm])].

Factoring the w’s out of the expectations gives:

N∑

n=1

N∑

m=1

E[(rn − E[rn])(rm − E[rm])]wnwm =
N∑

n=1

N∑

m=1

σn,mwnwm,

where the term on the right-hand side of the equality follows from the definition of
the σ ’s. Thus, our portfolio-variance constraint is:

N∑

n=1

N∑

m=1

σn,mwnwm ≤ s̄.

Next, we must ensure that all of the money is invested, meaning that the w’s sum to
one:

N∑

n=1

wn = 1.

We, finally, must ensure that the amounts invested are non-negative:

wn ≥ 0,∀ n = 1, . . . , N .
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Taking these together, our NLPP is:

max
w

N∑

n=1

r̄nwn

s.t.
N∑

n=1

N∑

m=1

σn,mwnwm ≤ s̄

N∑

n=1

wn = 1

wn ≥ 0,∀ n = 1, . . . , N .

4.1.3.2 Variance-Minimization Problem

Consider the basic setup in the Return-Maximization Problem, which is introduced
in Section 4.1.3.1. The investor now wishes to select a portfolio that has minimal
variance while achieving at least R̄ as the expected rate of return.

We retain the same decision variables in this problem that we define in the Return-
Maximization Problem, which is introduced in Section 4.1.3.1. Specifically, define
N decision variables,w1,w2, . . . ,wN , wherewn represents the fraction of the money
available that is invested in asset n.

The objective is to minimize portfolio variance. Using the expression for portfolio
variance that is derived in Section 4.1.3.1, the objective function is:

min
w1,...,wN

N∑

n=1

N∑

m=1

σn,mwnwm .

We again have three types of constraints. The first ensures that the portfolio
achieves the desired minimum expected return. We can, again, use the expression in
Section 4.1.3.1 for expected portfolio return to write this constraint as:

N∑

n=1

r̄nwn ≥ R̄.

We must also ensure that the full sum of money is invested:

N∑

n=1

wn = 1,
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and that the amounts invested are non-negative:

wn ≥ 0,∀ n = 1, . . . , N .

Taking these together, our NLPP is:

min
w

N∑

n=1

N∑

m=1

σn,mwnwm

s.t.
N∑

n=1

r̄nwn ≥ R̄

N∑

n=1

wn = 1

wn ≥ 0,∀ n = 1, . . . , N .

4.1.3.3 Inventory-Planning Problem

Astore needs to plan its inventory of three different sizes of T-shirts—small, medium,
and large—for the next season. Small T-shirts cost $1 each, medium ones $2 each,
and large ones $4 each. Small T-shirts sell for $10 each, medium ones for $12, and
large ones for $13. Although the store does not know the demand for the three T-
shirt sizes, it forecasts that the demands during the next season for the three are
independent and uniformly distributed between 0 and 3000. T-shirts that are unsold
at the end of the seasonmust be discarded, which is costless. The store wants to make
its ordering decision to maximize its expected profits from T-shirt sales.

We define three decision variables for this problem, xs , xm , and xl , which denote
the number of small, medium, and large T-shirts ordered, respectively.

The objective is to maximize expected profits. To compute revenues from small T-
shirt sales, we let as and Ds denote the number of small T-shirts sold and demanded,
respectively. We can then express the expected revenues from small T-shirt sales, as
a function of xs as:

10E[as] = 10(E[as |Ds > xs]Prob{Ds > xs} + E[as |Ds ≤ xs]Prob{Ds ≤ xs}).

We know that if Ds > xs , then the number of shirts sold is as = xs . Furthermore,
because Ds is uniformly distributed, we know that this occurs with probability:

1 − xs
3000

.
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Otherwise, if Ds ≤ xs , then the number of shirts sold is as = Ds . We compute the
expected sales quantity in this case as:

∫ xs

0

1

3000
DdD = 1

2
· 1

3000
x2s ,

becausewe know the uniformly distributed demand has a density function of 1/3000.
Combining these observations, we can compute the expected revenues from small
T-shirt sales as:

10E[as] = 10(E[as |Ds > xs]Prob{Ds > xs} + E[as |Ds ≤ xs]Prob{Ds ≤ xs})
= 10

[
xs ·

(
1 − xs

3000

)
+ 1

6000
x2s

]

= 10

(
xs − x2s

6000

)
.

Because the expected revenues from medium and large T-shirt sales have a similar
form, the total expected revenue is given by:

10

(
xs − x2s

6000

)
+ 12

(
xm − x2m

6000

)
+ 13

(
xl − x2l

6000

)
.

Thus, the objective, which is to maximize expected profits, is given by:

max
xs ,xm ,xl

10

(
xs − x2s

6000

)
+ 12

(
xm − x2m

6000

)
+ 13

(
xl − x2l

6000

)
− xs − 2xm − 4xl .

The only constraints are to ensure that the number of shirts ordered are non-
negative and less than 3000 (because there is a maximum possible demand of
3000 units for each type of shirt):

0 ≤ xs, xl , xm ≤ 3000.

Thus, our NLPP is:

max
x

10

(
xs − x2s

6000

)
+ 12

(
xm − x2m

6000

)
+ 13

(
xl − x2l

6000

)
− xs − 2xm − 4xl

s.t. 0 ≤ xs, xl , xm ≤ 3000.
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4.1.4 Energy-Related Examples

4.1.4.1 Economic-Dispatch Problem

An electricity transmission network consists of N nodes. There is a generator, which
can produce energy, attached to each node. The cost of producing qn MW from
node n over the next hour is given by:

cn(qn) = an,0 + an,1qn + an,2q
2
n ,

and the generator at node n must produce at least Q−
n but no more than Q+

n MW.
Each node also has demand for energy, with Dn MW of demand over the next hour
at node n. The nodes in the network are connected to each other by transmission
lines and we let Ωn denote the set of nodes that are directly connected to node n by a
transmission line. For any node n and m ∈ Ωn , the power flow over the line directly
connecting nodes n and m is equal to:

fn,m = Yn,m sin(θn − θm),

where Yn,m is the (constant) electrical admittance of the line connecting nodes n
and m, and θn and θm are the phase angles of nodes n and m, respectively. We have
that Yn,m = Ym,n and we use the sign convention that fn,m = − fm,n is positive if
there is a net power flow from node n to m. There is a limit on how much power can
flow along each transmission line. Let Ln,m = Lm,n > 0 denote the flow limit on the
line directly connecting node n to node m.

The demand at node n can either be satisfied by the generator at node n or by
power imported from other nodes. We assume that the network is ’lossless,’ meaning
that the total power produced at the N nodes must equal the total demand among
the N nodes. The goal of the power system operator is to determine how much to
produce from each generator and how to set the power flows and phase angles to
serve customers’ demands at minimum total cost.

There are three types of variables in this problem. The first are the production
levels at each node, which we denote by q1, . . . , qN , letting qn be the MWh of
energy produced at node n. The second are the phase angles at each of the nodes,
which we denote by θ1, . . . , θN , with θn representing the phase angle of node n. The
third is the flow on the lines, which we denote by fn,m for all n = 1, . . . , N and all
m ∈ Ωn . We let fn,m denote the flow, inMWh, on the line connecting nodes n andm.
As noted before, we use the sign convention that if fn,m > 0 this means that there is
a net flow from node n to node m and fn,m < 0 implies a net flow from node m to
node n.

The objective is to minimize the total cost of producing energy to serve the sys-
tem’s demand:

min
q,θ, f

N∑

n=1

cn(q) =
N∑

n=1

[
an,0 + an,1qn + an,2q

2
n

]
.
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There are five set of constraints in the problem. The first set ensures that the local
demand at each node is satisfied by either local supply or energy imported from other
nodes:

Dn = qn +
∑

m∈Ωn

fm,n,∀ n = 1, . . . , N .

Next, we need to ensure that the total amount generated equals the amount demanded.
This constraint arises because the network is assumed to be lossless. Otherwise,
without this constraint, energy could either be generated and not consumed anywhere
in the network or it could be consumed without having been produced anywhere in
the network. This constraint is written as:

N∑

n=1

Dn =
N∑

n=1

qn.

We also have equalities that define the flow on each line in terms of the phase angles
at the end of the line:

fn,m = Yn,m sin(θn − θm),∀ n = 1, . . . , N ,m ∈ Ωn.

We must also ensure that the flows do not violate their limits:

fn,m ≤ Ln,m,∀ n = 1, . . . , N ,m ∈ Ωn,

and that the power generated at each node is between its bounds:

Q−
n ≤ qn ≤ Q+

n ,∀ n = 1, . . . , N .

Thus, our NLPP is:

min
q,θ, f

N∑

n=1

[
an,0 + an,1qn + an,2q

2
n

]

s.t. Dn = qn +
∑

m∈Ωn

fm,n,∀ n = 1, . . . , N

N∑

n=1

Dn =
N∑

n=1

qn

fn,m = Yn,m sin(θn − θm),∀ n = 1, . . . , N ,m ∈ Ωn

fn,m ≤ Ln,m,∀ n = 1, . . . , N ,m ∈ Ωn

Q−
n ≤ qn ≤ Q+

n ,∀ n = 1, . . . , N .
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One interesting property of this optimization problem, which is worth noting, is that
there are decision variables that do not appear in the objective function (specifically,
the θ ’s and f ’s). Despite this, θ and f must be listed as decision variables. If they
are not, that would imply that their values are fixed, meaning (in the context of this
problem) that the system operator does not have the ability to decide the flows on
the transmission lines or the phase angles at the nodes. This would be an overly
restrictive problem formulation, given the problem description.

4.2 Types of Nonlinear Optimization Problems

In the following sections of this chapter, we concern ourselves with three broad
classes of successively more difficult nonlinear optimization problems. Moreover,
when analyzing these problems it is always helpful to put them into a standard form.
By doing so, we are able to apply the same generic tools to solve these classes of
NLPPs. These standard forms are akin to the standard and canonical forms of LPPs,
which are introduced in Section 2.2.

We now introduce these three types of optimization problems and refer back to
the motivating problems in Section 4.1 to give examples of each. We also use these
examples to demonstrate how problems can be converted to these three standard
forms.

4.2.1 Unconstrained Nonlinear Optimization Problems

An unconstrained nonlinear optimization problem has an objective function that
is being minimized, but does not have any constraints on what values the decision
variables can take. An unconstrained nonlinear optimization problem can be gener-
ically written as:

min
x∈Rn

f (x),

where f (x) : Rn → R is the objective function.
Among the motivating examples given in Section 4.1, the Facility-Location Prob-

lem in Section 4.1.1.3 is an example of an unconstrained problem. The objective
function of the Facility-Location Problem that is given in Section 4.1.1.3 is already
a minimization. Thus, no further work is needed to convert this problem into a
standard-form unconstrained problem. As discussed in Section 2.2.2.1, a maximiza-
tion problem can be converted to minimization problem by multiplying the objective
function through by −1.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2
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4.2.2 Equality-Constrained Nonlinear Optimization
Problems

An equality-constrained nonlinear optimization problem has an objective func-
tion that is being minimized and a set of m equality constraints that have zeros on
their right-hand sides. An equality-constrained nonlinear optimization problem can
be generically written as:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0,

where f (x) is the objective function and h1(x), h2(x), . . . , hm(x) are them equality-
constraint functions. The objective and constraint functions map the n-dimensional
vector, x , to scalar values.

Among the examples that are given in Section 4.1, the Hanging-Chain Problem
in Section 4.1.2.2 is an example of an equality-constrained problem. The objective
function that is given in Section 4.1.2.2 is already a minimization, thus it does not
have to be manipulated to put it into the standard form for an equality-constrained
problem. We can convert the constraints into standard form by subtracting all of the
terms from one side of the equality. This gives the following standard-form NLPP
for the Hanging-Chain Problem:

min
y∈RN

f (y) = 50g
N∑

n=1

(
N − n + 1

2

)
yn

s.t. h1(y) =
N∑

n=1

yn = 0

h2(y) =
N∑

n=1

√
1 − y2n − L = 0.

4.2.3 Equality- and Inequality-Constrained Nonlinear
Optimization Problems

An equality- and inequality-constrained nonlinear optimization problem has
an objective function that is being minimized, a set of m equality constraints that
have zeros on their right-hand sides, and a set of r less-than-or-equal-to constraints
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that have zeros on their right-hand sides. An equality- and inequality-constrained
problem can be generically written as:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0,

where f (x) is the objective function, h1(x), h2(x), . . . , hm(x) are the m equality-
constraint functions, and g1(x), g2(x), . . . , gr (x) are the r inequality-constraint func-
tions. The objective and constraint functions all map the n-dimensional vector, x , to
scalar values. Note that one could have a problem with only inequality constraints,
i.e., m = 0, meaning that there are no equality constraints.

All of the other motivating examples given in Section 4.1, that are not catego-
rized as being unconstrained or equality constrained, are examples of equality- and
inequality-constrained problems. To demonstrate how a problem can converted to the
generic form, take as an example the Return-Maximization Problem, which is given
in Section 4.1.3.1. We convert the maximization to a minimization by multiplying
the objective function through by −1. The constraints are similarly manipulated to
yield the standard form, giving the following standard-form NLPP for the Return-
Maximization Problem:

min
w∈RN

f (w) = −
N∑

n=1

r̄nwi

s.t. h1(w) =
N∑

n=1

wn − 1 = 0

g1(w) =
N∑

n=1

N∑

m=1

σn,mwnwm − s̄ ≤ 0

g2(w) = −w1 ≤ 0

...

gN+1(w) = −wN ≤ 0.
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4.3 Global and Local Minima

When we solve an optimization problem, we want to find a feasible solution that
makes the objective as small as possible among all feasible solutions. In other words,
we are searching for what is known as a global minimum. The difficulty that we
encounter is that for most problems, we can only find what are known as local
minima. These concepts are both defined in the following subsections. Aswe discuss
below, one can find a global minimum by exhaustively searching for all local minima
and picking the one that gives the best objective-function value. This is the approach
we must take to solve most nonlinear optimization problems.

4.3.1 Global Minima

Given a nonlinear optimization problem, a feasible solution, x∗, is a global
minimum if f (x∗) ≤ f (x) for all other feasible values of x .

Figure 4.6 illustrates the global minimum of a parabolic objective function. Because
there are no restriction onwhat values of x maybe chosen, the example inFigure 4.6 is
an unconstrained problem. Clearly, x∗ gives the smallest objective value and satisfies
the definition of a global minimum.

Fig. 4.6 The global
minimum of a parabolic
objective function
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Figure 4.7 demonstrates the effect of adding the inequality constraint, x ≥ x̂ , to
the optimization problem that is illustrated in Figure 4.6. Although x∗ still gives the
smallest objective-function value, it is no longer feasible. Thus, it does not satisfy
the definition of a global minimum. One can tell from visual inspection that x̂ is in
fact the global minimum of the parabolic objective function when the constraint is
added.

Fig. 4.7 The global
minimum of a parabolic
objective function with an
inequality constraint

It is also important to note that aswith a linear ormixed-integer linear optimization
problem, a nonlinear problem can have multiple global minima. This is illustrated in
Figure 4.8, where we see that all values of x between x1 and x2 are global minima.

Fig. 4.8 An objective
function that has multiple
(indeed, an infinite number
of) global minima
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4.3.2 Local Minima

Although we are typically looking for a global minimum when solving an NLPP, for
most problems the best we can do is find local minima. This is because the methods
used to find minima use local information (i.e., derivatives). As discussed below,
we find a global minimum of most NLPPs by exhaustively searching for all local
minima and choosing the one that gives the smallest objective-function value.

We now define a local minimum and then illustrate the concept with some exam-
ples.

Given a nonlinear optimization problem, a feasible solution, x∗, is a local
minimum if f (x∗) ≤ f (x) for all other feasible values of x that are close
to x∗.

Figure 4.9 shows an objective function with four local minima, labeled x1, x2, x3,
and x4. Each of these points satisfies the definition of a local minimum, because other
feasible points that are close to them give the same or higher objective-function
values. Among the four local minima, one of them, x4 is also a global minimum.
This illustrates the way that we normally go about finding a global minimum. We
exhaustively search for all local minima and then choose the one that gives the
smallest objective-function value. We must also pay attention to ensure that the
problem is not unbounded—if it is then the problem does not have a global minimum
(even though it may have local minima).

Fig. 4.9 Local and global minima of an objective function
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Figure 4.10 demonstrates how adding a constraint affects the definition of a local
minimum. Here we have the same objective function as in Figure 4.9, but have added
the constraint x ≥ x̂ . As in Figure 4.9, x3 and x4 are still local minima and x4 is
the global minimum. However, x1 and x2 are not local minima, because they are no
longer feasible. Moreover, x̂ is a local minimum. To see why, we first note that values
of x that are close to x̂ but to its left give smaller objective-function values than x̂
does. However, these points to the left of x̂ are not considered in the definition of a
local minimum, because we only consider feasible points that are close to x̂ . If we
restrict attention to feasible points that are close to x̂ (i.e., points to the right of x̂)
then we see that x̂ does indeed satisfy the definition of a local minimum.

Fig. 4.10 Local and global minima of an objective function with an inequality constraint

The objective function that is shown in Figure 4.8 also demonstrates why the
weak inequality in the definition of a local minimum is important. All of the points
between x1 and x2 in this figure (which we argue in Section 4.3.1 are global minima)
are also local minima.

4.4 Convex Nonlinear Optimization Problems

We note in Section 4.3 that for most optimization problems, the best we can do is
find local minima. Thus, in practice, finding global minima can be tedious because
it requires us to search for all local minima and pick the one that gives the smallest
objective-function value. There is one special class of optimization problems, which
are called convex optimization problems, for which it is easier to find a global
minimum. A convex optimization problem has the property that any local minimum
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is guaranteed to be a global minimum. Thus, finding a global minimum of a convex
optimization problem is relatively easy, because we are done as soon as we find a
local minimum.

In this section, we first define what a convex optimization problem is and then
discuss ways to test whether a problem has the needed convexity property. We finally
show the result that any local minimum of a convex optimization problem is guar-
anteed to be a global minimum.

4.4.1 Convex Optimization Problems

To define a convex optimization problem, we consider a more generic form of an
optimization problem than those given in Section 4.2. Here we write a generic opti-
mization problem as:

min
x

f (x)

s.t. x ∈ X.

As before, f (x) is the objective function that we seek to minimize. The set X ⊆ R
n

represents the feasible region of the problem. In the case of an unconstrained non-
linear optimization problem we would have X = R

n . If we have a problem with a
mixture of equality and inequality constraints, we define X as:

X = {x ∈ R
n : h1(x) = 0, . . . , hm(x) = 0, g1(x) ≤ 0, . . . , gr (x) ≤ 0},

the set of decision-variable vectors, x , that simultaneously satisfy all of the con-
straints. Using this more generic form of an optimization problem, we now define a
convex optimization problem.

An optimization problem of the form:

min
x

f (x)

s.t. x ∈ X ⊆ R
n,

is a convex optimization problem if the set X is convex and f (x) is a convex
function on the set X .

Determining if a problem is convex boils down to determining two things: (i) is
the feasible region convex and (ii) is the objective function convex on the feasible
region? We discuss methods that can be used to answer these two questions in the
following sections.
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4.4.2 Determining if a Feasible Region is Convex

Recall the following definition of a convex set from Section B.1.

A set X ⊆ R
n is said to be a convex set if for any two points x1 and x2 ∈ X

and for any value of α ∈ [0, 1] we have that:

αx1 + (1 − α)x2 ∈ X.

One way to test whether a set is convex is to use the definition directly, as demon-
strated in the following example.

Example 4.1 Consider the feasible region of the Packing-Box Problem that is intro-
duced in Section 4.1.1.1. The feasible region of this problem is:

X = {(w h d) : 2wh + 2dh + 6wd ≤ 60,w ≥ 0, h ≥ 0, d ≥ 0}.

Note that the points:
(w h d) = (1 1 29/4),

and:
(ŵ ĥ d̂) = (29/4 1 1),

are both in the feasible region, X . However, if we take the midpoint of these two
feasible points:

(w̃ h̃ d̃) = 1

2
(w h d) + 1

2
(ŵ ĥ d̂) = (33/8 1 33/8),

we see that this point is infeasible because:

2w̃h̃ + 2d̃ h̃ + 6w̃d̃ ≈ 118.59.

Thus, the set X is not convex and the Packing-Box Problem is not a convex opti-
mization problem. �

In practice, the definition of a convex set can be cumbersome to work with. For
this reason, we use the following three properties, which can make it easier to show
that a feasible set is convex.
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4.4.2.1 Linear Constraints

The first property involves equality and inequality constraints that are linear in the
decision variables. We can show graphically and through a simple proof that linear
constraints always define convex feasible regions.

Linear-Constraint Property: Any equality or inequality constraint that is
linear in the decision variables defines a convex feasible set.

Before proving this result, Figure 4.11 graphically demonstrates this result. As
the figure shows, a linear equality constraint defines a straight line in two dimensions,
which is a convex set. We also know from the discussion in Section 2.1.1 that a linear
equality constraint defines a hyperplane in three or more dimensions. All of these
sets are convex. The figure also demonstrates the convexity of feasible sets defined
by linear inequalities. In two dimensions, a linear inequality defines the space on
one side of a line (also known as a halfspace). In higher dimensions, halfspaces
generalize to the space on one side of a plane or hyperplane. These are also convex
sets, as seen in Figure 4.11.

Fig. 4.11 Illustration of the
feasible region defined by
linear equality and inequality
constraints in two
dimensions

We now prove the Linear-Constraint Property.

Consider a linear equality constraint of the form:

(
a1 a2 · · · an

)

⎛

⎜
⎜
⎜
⎝

x1
x2
...

xn

⎞

⎟
⎟
⎟
⎠

= a
x = b,

http://dx.doi.org/10.1007/978-3-319-56769-3_2
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where b is a scalar. Suppose that there are two points, x1 and x2, which are
feasible. This means that:

a
x1 = b, (4.1)

and:
a
x2 = b. (4.2)

Take any value of α ∈ [0, 1] and consider the convex combination of x1 and x2:

αx1 + (1 − α)x2.

If we multiply this point by a we have:

a
[αx1+(1−α)x2] = a
αx1+a
(1−α)x2 = αa
x1+(1−α)a
x2. (4.3)

Substituting (4.1) and (4.2) into (4.3) gives:

a
[αx1 + (1 − α)x2] = αb + (1 − α)b = b,

or:

a
[αx1 + (1 − α)x2] = b.

Thus, αx1 + (1 − α)x2 is feasible and the feasible set defined by the linear
equality constraint is convex.

To show the same result for the case of a linear inequality constraint, consider
a linear inequality constraint of the form:

a
x ≥ b.

Suppose that there are twopoints, x1 and x2,which are feasible in this inequality
constraint. This means that:

a
x1 ≥ b, (4.4)

and:

a
x2 ≥ b. (4.5)

Again, take any value of α ∈ [0, 1] and consider the convex combination of
x1 and x2, αx1 + (1 − α)x2. If we multiply this point by a we have:

a
[αx1 + (1 − α)x2] = αa
x1 + (1 − α)a
x2. (4.6)
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Substituting (4.4) and (4.5) into (4.6) and noting that α ≥ 0 and 1 − α ≥ 0
gives:

a
[αx1 + (1 − α)x2] ≥ αb + (1 − α)b = b,

or:
a
[αx1 + (1 − α)x2] ≥ b.

Thus, αx1 + (1 − α)x2 is feasible and the feasible set defined by the linear
inequality constraint is convex.

The following example demonstrates how this convexity result involving linear
constraints can be used.

Example 4.2 Consider the constraints of the Variance-Minimization Problem that is
introduced in Section 4.1.3.2, which are:

N∑

n=1

r̄nwn ≥ R̄,

N∑

n=1

wn = 1,

and:
wn ≥ 0,∀ n = 1, . . . , N .

Recall, also, that the decision-variable vector in this problem isw. Each of these con-
straints is linear in the decision variables, meaning that each constraint individually
defines a convex feasible region.

Wedo not, yet, know if thewhole feasible region of the problem is convex.Weonly
know that each constraint on its own gives a convex set of points that satisfies it. We
discuss the Intersection-of-Convex-Sets Property in Section 4.4.2.3, which allows us
to draw the stronger conclusion that this problem does indeed have a convex feasible
region. �

4.4.2.2 Convex-Inequality Constraints

The second property thatwe use to test whether an optimization problemhas a convex
feasible region is that less-than-or-equal-to constraints that have a convex function on
the left-hand side define convex feasible regions. This property is stated as follows.
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Convex-Inequality Property: Any inequality constraint of the form:

g(x) ≤ 0,

which has a convex function, g(x), on the left-hand side defines a convex
feasible set.

To show this property, recall the following definition of a convex function from
Section B.2.

Given a convex set, X ⊆ R
n , a function defined on X is said to be a convex

function on X if for any two points, x1 and x2 ∈ X , and for any value of
α ∈ [0, 1] we have that:

α f (x1) + (1 − α) f (x2) ≥ f (αx1 + (1 − α)x2).

Figures 4.12 and 4.13 illustrate the Convex-Inequality Property graphically.
Figure 4.12 shows the feasible set, g(x) ≤ 0, where g(x) is a convex parabolic
function while Figure 4.13 shows the case of a convex absolute value function. It
is important to note that the Convex-Inequality Property only yields a one-sided
implication—the feasible set defined by a constraint of the form g(x) ≤ 0 where
g(x) is a convex function gives a convex feasible set. However, it may be the case that
a constraint of the form g(x) ≤ 0 where g(x) is non-convex gives a convex feasible

Fig. 4.12 A convex
parabola, which defines a
convex feasible region when
on the left-hand side of a
less-than-or-equal-to
constraint
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Fig. 4.13 A convex absolute
value function, which defines
a convex feasible region
when on the left-hand side of
a less-than-or-equal-to
constraint

Fig. 4.14 A non-convex
function, which defines a
convex feasible region when
on the left-hand side of a
less-than-or-equal to
constraint

set. Figure 4.14 demonstrates this by showing a non-convex function, g(x), which
gives a convex feasible region when on the left-hand side of a less-than-or-equal-to
zero constraint, because the feasible region is all x ∈ R.

We now give a proof of the Convex-Inequality Property.

Consider an inequality constraint of the form:

g(x) ≤ 0,

where g(x) is a convex function. Suppose that there are two feasible points,
x1 and x2. This means that:

g(x1) ≤ 0, (4.7)

and:
g(x2) ≤ 0. (4.8)
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Take α ∈ [0, 1] and consider the convex combination of x1 and x2, αx1 +
(1 − α)x2. If we plug this point into the constraint we know that:

g(αx1 + (1 − α)x2) ≤ αg(x1) + (1 − α)g(x2), (4.9)

because g(x) is a convex function. Substituting (4.7) and (4.8) into (4.9) and
noting that α ≥ 0 and 1 − α ≥ 0 gives:

g(αx1 + (1 − α)x2) ≤ α0 + (1 − α)0 = 0,

or:
g(αx1 + (1 − α)x2) ≤ 0,

meaning that the point αx1+(1−α)x2 is feasible and the constraint, g(x) ≤ 0,
defines a convex feasible set.

Figure 4.15 illustrates the intuition behind the Convex-Inequality Property. If two
points, x1 and x2, are feasible, this means that g(x1) ≤ 0 and g(x2) ≤ 0. Because
g(x) is convex, we know that at any point between x1 and x2 the function g(x) is
below the secant line connecting g(x1) and g(x2) (cf. Section B.2 for further details).
However, because both g(x1) and g(x2) are less than or equal to zero, the secant line
is also less than or equal to zero. Hence, the function is also less than or equal to zero
at any point between x1 and x2.

Fig. 4.15 Illustration of the
Convex-Inequality Property

4.4.2.3 Intersection of Convex Sets

The third property that is useful to show that an optimization problem has a con-
vex feasible region is that the intersection of any number of convex sets is convex.
This is useful because the feasible region of an optimization problem is defined as
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the intersection of the feasible sets defined by each constraint. If each constraint
individually defines a convex set, then the feasible region of the overall problem is
convex as well. To more clearly illustrate this, consider the standard-form equality-
and inequality-constrained NLPP:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0.

The overall feasible region of this problem is:

X = {x ∈ R
n : h1(x) = 0, . . . , hm(x) = 0, g1(x) ≤ 0, . . . , gr (x) ≤ 0}.

Another way to view this feasible region is to define the feasible region defined by
each constraint individually as:

X1 = {x ∈ R
n : h1(x) = 0},
...

Xm = {x ∈ R
n : hm(x) = 0},

Xm+1 = {x ∈ R
n : g1(x) ≤ 0},

...

and:
Xm+r = {x ∈ R

n : gr (x) ≤ 0}.

We can then define X as the intersection of all of these individual sets:

X = X1 ∩ · · · ∩ Xm ∩ Xm+1 ∩ · · · ∩ Xm+r .
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If each of the sets, X1, · · · , Xm+r , is convex, then their intersection, X , is convex as
well, meaning that the problem has a convex feasible region.

We now state and prove the result regarding the intersection of convex sets.

Intersection-of-Convex-Sets Property: Let X1, . . . , Xk ⊆ R
n be a collection

of convex sets. Their intersection:

X = X1 ∩ · · · ∩ Xk,

is convex.

We show this by contradiction. Suppose that the statement is not true, meaning
that the set X is not convex. This means that there exist points, x1, x2 ∈ X
and a value of α ∈ [0, 1] for which αx1 + (1 − α)x2 /∈ X . If x1 ∈ X , then
x1 must be in each of X1, . . . , Xk , because X is defined as the intersection
of these sets. Likewise, if x2 ∈ X it must be in each of X1, . . . , Xk . Because
each of X1, X2, . . . , Xk is convex, then αx1 + (1 − α)x2 must be in each of
X1, . . . , Xk . However, if αx1+ (1−α)x2 is in each of X1, . . . , Xk then it must
be in X , because X is defined as the intersection of X1, . . . , Xk . This gives a
contradiction, showing that X must be a convex set.

Figure 4.16 illustrates the idea underlying the proof of the Intersection-of-Convex-
Sets Property graphically for the case of the intersection of two convex sets, X1 and
X2, inR2. The points x1 and x2 are both contained in the sets X1 and X2, thus they are
both contained in X , which is the intersection of X1 and X2. Moreover, if we draw a
line segment connecting x1 and x2 we know that this line segment must be contained
in the set X1, because X1 is convex. The line segment must also be contained in the

Fig. 4.16 Illustration of the
Intersection-of-Convex-Sets
Property
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set X2 for the same reason. Because X is defined as the collection of points that is
common to both X1 and X2, this line segment must also be contained in X , showing
that X is a convex set.

The following example demonstrates the use of the Intersection-of-Convex-Sets
Property to show that an optimization problem has a convex feasible region.

Example 4.3 Consider the following optimization problem:

min
x

f (x)

s.t. g1(x) = x21 + x22 − 4 ≤ 0

g2(x) = −x1 + x2 + 1 ≤ 0,

where the objective, f (x), is an arbitrary function. To show that the feasible region
of this problem is convex, consider the first constraint. Note that we have:

∇2g1(x) =
[
2 0
0 2

]
,

which is a positive-definite matrix (cf. Section A.2 for the definition of positive-
definite matrices), meaning that g1(x) is a convex function (cf. Section B.2 for the
use of theHessianmatrix as ameans of testingwhether a function is convex). Because
g1(x) is on the left-hand side of a less-than-or-equal-to constraint, it defines a convex
set. The second constraint is linear in x1 and x2, thus we know that it defines a convex
set. The overall feasible region of the problem is defined by the intersection of the
feasible regions defined by each constraint, each of which is convex. Thus, the overall
feasible region of the problem is convex. Figure 4.17 illustrates the feasible region
defined by each constraint and the overall feasible region of the problem. �

Fig. 4.17 Feasible region of
optimization problem in
Example 4.3
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As another example of using the intersection property, recall that in Example 4.2
we note that each constraint of the Variance-Minimization Problem, which is intro-
duced in Section 4.1.3.2, is linear. Thus, each constraint individually defines a convex
set. Because the feasible region of the overall problem is defined as the intersection
of these sets, the problem’s overall feasible region is convex.

4.4.3 Determining if an Objective Function is Convex

The definition of a convex function is given in Section B.2. Although it is possible
to show that an objective function is convex using this basic definition, it is typically
easier to test whether a function is convex by determining whether its Hessian matrix
is positive semidefinite. If it is the function is convex, otherwise the function is not
(cf. Section B.2 for further details). We demonstrate this with the following example.

Example 4.4 Recall the Packing-Box Problem that is introduced in Section 4.1.1.1.
This problem is formulated as:

max
h,w,d

hwd

s.t. 2wh + 2dh + 6wd ≤ 60

w ≥ 0

h ≥ 0

d ≥ 0.

Converting this problem to standard form it becomes:

min
h,w,d

f (h,w, d) = −hwd

s.t. 2wh + 2dh + 6wd − 60 ≤ 0

− w ≤ 0

− h ≤ 0

− d ≤ 0.

The Hessian of the objective function is:

∇2 f (h,w, d) =
⎡

⎣
0 −d −w

−d 0 −h
−w −h 0

⎤

⎦ ,

which is not positive semidefinite. Thus, the objective function of this problem is not
convex and as such this is not a convex optimization problem. �
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It is important to note that the definition of a convex optimization problem only
requires the objective function to be convex on the feasible region. The following
example demonstrates why this is important.

Example 4.5 Consider the unconstrained single-variable optimization problem:

min
x

f (x) = sin(x).

We have:
∇2 f (x) = − sin(x),

which we know varies in sign for different values of x . Thus, this unconstrained
optimization problem is not convex.

Suppose we add bound constraints and the problem becomes:

min
x

f (x) = sin(x)

s.t. π ≤ x ≤ 2π.

The Hessian of the objective function remains the same. In this case, however, we
only require the Hessian to be positive semidefinite over the feasible region (i.e., for
values of x ∈ [π, 2π ]). Substituting these values of x into the Hessian gives us non-
negative values. Thus, we have a convex optimization problem when the constraints
are added. �

4.4.4 Global Minima of Convex Optimization Problems

Having defined a convex optimization problem and discussed how to determine if
an optimization problem is convex, we now turn to proving the following important
Global-Minimum-of-Convex-Problem Property.

Global-Minimum-of-Convex-Problem Property: Consider an optimization
problem of the form:

min
x

f (x)

s.t. x ∈ X ⊆ R
n,

where X is a convex set and f (x) is a convex function on the set X . Any local
minimum of this problem is also a global minimum.
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We prove this by contradiction. To do so, suppose that this is not true. That
means that there is a point, x∗, which is a local minimum but not a global
minimum. Thus, there is another point, x̂ ∈ X , which is a global minimum
and we have that f (x̂) < f (x∗).

Now, consider convex combinations of x∗ and x̂ , αx∗ + (1 − α)x̂ , where
α ∈ [0, 1]. Because X is convex, we know such points are feasible in the
problem (as this is what it means for the set, X , to be convex). We also know,
because f (x) is convex, that:

f (αx∗ + (1 − α)x̂) ≤ α f (x∗) + (1 − α) f (x̂).

Because x̂ is a global minimum but x∗ is not, we also know that:

α f (x∗) + (1 − α) f (x̂) < α f (x∗) + (1 − α) f (x∗) = f (x∗).

Combining these two inequalities gives:

f (αx∗ + (1 − α)x̂) < f (x∗).

If we let α get close to 1, then αx∗ + (1 − α)x̂ gets close to x∗. The last
inequality says that these points (obtained for different values of α close to
1), which are feasible and close to x∗, give objective-function values that are
better than that of x∗. This contradicts x∗ being a local minimum. Thus, it is
not possible for a convex optimization problem to have a local minimum that
is not also a global minimum.

4.5 Optimality Conditions for Nonlinear Optimization
Problems

Onemethod of finding localminima of nonlinear optimization problems is by analyz-
ing what are known as optimality conditions. There are two varieties of optimality
conditions that we use—necessary and sufficient conditions. Necessary conditions
are conditions that a solution must satisfy to be a local minimum. A solution that sat-
isfies a necessary condition could possibly be a local minimum. Conversely, a vector
of decision-variable values that does not satisfy a necessary condition cannot be a
local minimum. Sufficient conditions are conditions that guarantee that a solution
is a local minimum. However, a solution that does not satisfy a sufficient condition
cannot be ruled out as a possible local minimum.
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With the exception of convex optimization problems, we do not typically have
conditions that are both necessary and sufficient. This means that the best we can
typically do is to use necessary conditions to find solution thatmight be local minima.
Any of those solutions that also satisfy sufficient conditions are guaranteed to be local
minima. However, if there are solutions that only satisfy the necessary but not the
sufficient conditions, they may or may not be local minima. There is no way to
definitively guarantee one way or another.

We have different sets of optimality conditions for the three types of nonlinear
optimization problems that are introduced in Section 4.2—unconstrained, equality-
constrained, and equality- and inequality-constrained problems. We examine each
of these three problem types in turn.

4.5.1 Unconstrained Nonlinear Optimization Problems

An unconstrained nonlinear optimization problem has the general form:

min
x∈Rn

f (x),

where f (x) is the objective being minimized and there are no constraints on the
decision variables.

4.5.1.1 First-Order Necessary Condition for Unconstrained Nonlinear
Optimization Problems

We begin by stating and proving what is known as the first-order necessary condition
(FONC) for a local minimum. We also demonstrate its use and limitations through
some examples

First-Order Necessary Condition for Unconstrained Nonlinear Optimiza-
tion Problems: Consider an unconstrained nonlinear optimization problem of
the form:

min
x∈Rn

f (x).

If x∗ is a local minimum, then ∇ f (x∗) = 0.
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Suppose x∗ is a local minimum. This means that any point close to x∗ must
give an objective-function value that is no less than that given by x∗. Consider
points, x∗ + d, that are close to x∗ (meaning that ||d|| is close to zero). We
can use a first-order Taylor approximation (cf. Appendix A) to compute the
objective-function value at such a point as:

f (x∗ + d) ≈ f (x∗) + d
∇ f (x∗).

Because x∗ is a local minimum,wemust have f (x∗+d) ≥ f (x∗). Substituting
the Taylor approximation in for f (x∗ + d) this can be written as:

f (x∗) + d
∇ f (x∗) ≥ f (x∗).

Subtracting f (x∗) from both sides, this becomes:

d
∇ f (x∗) ≥ 0. (4.10)

This inequalitymust also apply for the point x∗−d. That is, f (x∗−d) ≥ f (x∗).
If we substitute the Taylor approximation for f (x∗ − d) into this inequality,
we have:

d
∇ f (x∗) ≤ 0. (4.11)

Combining (4.10) and (4.11) implies that we must have:

d
∇ f (x∗) = 0.

Finally, note that we must have d
∇ f (x∗) = 0 for any choice of d (so long
as ||d|| is close to zero). The only way that this holds is if ∇ f (x∗) = 0.

Figure 4.18 graphically illustrates the idea behind the FONC. If x∗ is a local
minimum, then there is a small neighborhood of points, which is represented by the
area within the dotted circle, on which x∗ provides the best objective-function value.
Ifwe examine theTaylor approximationof f (x∗+d) and f (x∗−d),whered is chosen
so x∗ + d and x∗ − d are within this dotted circle, this implies that d
∇ f (x∗) = 0.
Because this must hold for any choice of d within the dotted circle (i.e., moving in
any direction away from x∗) this implies that we must have ∇ f (x∗) = 0.
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Fig. 4.18 Illustration of the
FONC for an unconstrained
nonlinear optimization
problem

Points that satisfy the FONC (i.e., points that have a gradient equal to zero) are
also known as stationary points. We now demonstrate the use of the FONC with
the following examples.

Example 4.6 Consider the unconstrained problem:

min
x

f (x) = (x1 − 3)2 + (x2 + 4)2.

To find stationary points, we set the gradient of f (x) equal to zero, which gives:

∇ f (x) =
(
2(x1 − 3)
2(x2 + 4)

)
=

(
0
0

)
,

or:

x∗ =
(

3
−4

)
.

It is easy to confirm that this point is in fact a local and global minimum, because
the objective function is bounded below by zero. It we plug x∗ into f (x) we see that
this point gives an objective-function value of zero, thus we have a local and global
minimum. �

It is important to note from this example that the FONC always results in a sys-
tem of n equations, where n is the number of decision variables in the optimization
problem. This is because the gradient is computed with respect to the decision vari-
ables, giving one first-order partial derivative for each decision variable. The fact
that the number of equations is equal to the number of variables does not necessarily
mean that the FONC has a unique solution. There could be multiple solutions or no
solution, as demonstrated in the following examples.

Example 4.7 Consider the unconstrained problem:

min
x

f (x) = x1 − 2x2.
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The gradient of this objective function is:

∇ f (x) =
(

1
−2

)
,

which cannot be made to equal zero. Because this problem does not have any sta-
tionary points, it cannot have any local minima. In fact, this problem is unbounded.
To see this, note that:

lim
x1→−∞,x2→+∞ f (x) = −∞. �

Example 4.8 Consider the unconstrained problem:

min
x

f (x) = x3 − x2 − 4x − 6.

To find stationary points, we set the gradient of f (x) equal to zero, which gives:

∇ f (x) = 3x2 − 2x − 4 = 0,

or:

x∗ ∈
{
2 − √

52

6
,
2 + √

52

6

}

.

Both of these are stationary points and thus candidate local minima, based on the
FONC.

Figure 4.19 shows the objective function of this problem. Based on visual inspec-
tion, it is clear that only oneof these two stationarypoints, x∗ = (2+√

52)/6, is a local
minimum, whereas (2 − √

52)/6 is a local maximum. Moreover, visual inspection
shows us that this objective function is also unbounded. Although x∗ = (2+√

52)/6
is a local minimum, this particular problem does not have a global minimumbecause:

lim
x→−∞ f (x) = −∞. �

Example 4.8 illustrates an important limitation of the FONC. Although this con-
dition eliminates non-stationary points that cannot be local minima, it does not distin-
guish between local minima and local maxima. This is also apparent in Figure 4.9—
the local minima that are highlighted in this figure are all stationary points where the
gradient is zero. However, there are three local maxima, which are also stationary
points. The following example further demonstrates this limitation of the FONC.
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Fig. 4.19 Objective function
in Example 4.8

Example 4.9 Consider the unconstrained problem:

max
x

f (x),

where the objective is an arbitrary function. To solve this problem, we convert it to
a minimization of the form:

min
x

− f (x),

and search for stationary points:

∇(− f (x)) = −∇ f (x) = 0.

Multiplying through by −1, the FONC can be written as:

∇ f (x) = 0,

which also is the FONC for the following problem:

min
x

f (x).

This means that the FONCs for finding local minima and local maxima of f (x) are
the same and the FONC cannot distinguish between the two. �

4.5.1.2 Second-Order Necessary Condition for Unconstrained
Nonlinear Optimization Problems

This limitation of the FONC—that it cannot distinguish between local minima and
maxima—motivates the second-order necessary condition (SONC) for a local min-
imum, which we now introduce.
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Second-Order Necessary Condition for Unconstrained Nonlinear Opti-
mization Problems: Consider an unconstrained nonlinear optimization prob-
lem of the form:

min
x∈Rn

f (x).

If x∗ is a local minimum, then ∇2 f (x∗) is positive semidefinite.

Suppose x∗ is a local minimum. Consider points, x∗ + d, that are close to
x∗ (meaning that ||d|| is close to zero). We can use a second-order Taylor
approximation to compute the objective-function value at such a point as:

f (x∗ + d) ≈ f (x∗) + d
∇ f (x∗) + 1

2
d
∇2 f (x∗)d.

If x∗ is a local minimum and d is sufficiently small in magnitude wemust have:

f (x∗ + d) ≈ f (x∗) + d
∇ f (x∗) + 1

2
d
∇2 f (x∗)d ≥ f (x∗),

or:

d
∇ f (x∗) + 1

2
d
∇2 f (x∗)d ≥ 0. (4.12)

We further know from the FONC that if x∗ is a local minimum then we must
have ∇ f (x∗) = 0, thus (4.12) becomes:

d
∇2 f (x∗)d ≥ 0,

when we multiply it through by 2. Because this inequality must hold for any
choice of d (so long as ||d|| is close to zero), this implies that ∇2 f (x∗) is
positive semidefinite (cf.SectionA.2 for the definition of a positive semidefinite
matrix).

The SONC follows very naturally from the FONC, by analyzing the second-order
Taylor approximation of f (x) at points close to a local minimum. The benefit of
the SONC is that it can, in many instances, differentiate between local minima and
maxima, as demonstrated in the following examples.

Example 4.10 Consider the following unconstrained optimization problem, which
is introduced in Example 4.6:

min
x

f (x) = (x1 − 3)2 + (x2 + 4)2.
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We know from Example 4.6 that:

x∗ =
(

3
−4

)
,

is the only stationary point. We also conclude in Example 4.6 that this point is a local
and global minimum, by showing that the objective function attains its lower bound
at this point. We can further compute the Hessian of the objective, which is:

∇2 f (x) =
[
2 0
0 2

]
,

and is positive semidefinite, confirming that the stationary point found satisfies the
SONC. �

Example 4.11 Consider the following unconstrained optimization problem, which
is introduced in Example 4.8:

min
x

f (x) = x3 − x2 − 4x − 6.

We know from Example 4.8 that this problem has two stationary points:

x∗ ∈
{
2 − √

52

6
,
2 + √

52

6

}

.

The Hessian of this objective function is:

∇2 f (x) = 6x − 2.

If we substitute the two stationary points into this Hessian we see that:

∇2 f ((2 − √
52)/6) = −√

52 < 0,

and:
∇2 f ((2 + √

52)/6) = √
52 > 0.

The Hessian is not positive semidefinite at (2 − √
52)/6, thus this point cannot be

a local minimum, which is confirmed graphically in Figure 4.19. The Hessian is
positive semidefinite at (2+ √

52)/6, thus this point remains a candidate local min-
imum (because it satisfies both the FONC and SONC). We can graphically confirm
in Figure 4.19 that this point is indeed a local minimum. �
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Example 4.12 Consider the unconstrained optimization problem:

min
x

f (x) = sin(x1 + x2).

The FONC is:

∇ f (x) =
(
cos(x1 + x2)
cos(x1 + x2)

)
=

(
0
0

)
,

which gives stationary points of the form:

x∗ =
(
x1
x2

)
,

where:

x1 + x2 ∈
{
· · · ,−3π

2
,−π

2
,
π

2
,
3π

2
, · · ·

}
.

The Hessian of the objective function is:

∇2 f (x) =
[− sin(x1 + x2) − sin(x1 + x2)

− sin(x1 + x2) − sin(x1 + x2)

]
.

The determinants of the principal minors of this matrix are − sin(x1 + x2),
− sin(x1 + x2), and 0. Thus, values of x∗ for which − sin(x1 + x2) ≥ 0 satisfy
the SONC. Substituting the stationary points found above into − sin(x1 + x2) gives
points of the form:

x∗ =
(
x1
x2

)
,

where:

x1 + x2 ∈
{
· · · ,−5π

2
,−π

2
,
3π

2
,
7π

2
, · · ·

}
,

that satisfy both the FONC and SONC and are candidate local minima. We further
know that the sine function is bounded between −1 and 1. Because these values of
x that satisfy both the FONC and SONC make the objective function attain its lower
bound of −1, we know that these points are indeed global and local minima. �

Although the SONC can typically distinguish between local minima and max-
ima, points that satisfy the FONC and SONC are not necessarily local minima, as
demonstrated in the following example.
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Example 4.13 Consider the unconstrained optimization problem:

min
x

f (x) = x3.

The FONC is ∇ f (x) = 3x2 = 0, which gives x∗ = 0 as the unique stationary point.
We further have that ∇2 f (x) = 6x and substituting x∗ = 0 into the Hessian gives
a value of zero, meaning that it is positive semidefinite. Thus, this stationary point
also satisfies the SONC. However, visual inspection of the objective function, which
is shown in Figure 4.20, shows that this point is not a local minimum. Instead, it is
a point of inflection or a saddle point. �

Fig. 4.20 Objective function
in Example 4.13

0

The stationary point found in Example 4.13 is an example of a saddle point.
A saddle point is a stationary point that is neither a local minimum nor maximum.
Stationary points that have an indefinite Hessian matrix (i.e., the Hessian is neither
positive nor negative semidefinite) are guaranteed to be saddle points. However,
Example 4.13 demonstrates that stationary points where the Hessian is positive or
negative semidefinite can be saddle points as well.

This limitation of the FONC and the SONC—that they cannot eliminate saddle
points—motivates our study of second-order sufficient conditions (SOSCs). A point
that satisfies the SOSC is guaranteed to be a local minimum. The limitation of the
SOSC, however, is that it is not typically a necessary condition. This means that
there could be local minima that do not satisfy the SOSC. Thus, points that satisfy
the FONC and SONC but do not satisfy the SOSC are still candidates for being local
minima. The one exception to this is a convex optimization problem, in which case
we have conditions that are both necessary and sufficient. We begin with a general
SOSC that can be applied to any problem. We then consider the special case of
convex optimization problems.
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4.5.1.3 General Second-Order Sufficient Condition for Unconstrained
Nonlinear Optimization Problems

We now state and demonstrate the general SOSC that can be applied to any problem.

General Second-Order Sufficient Condition for Unconstrained Nonlinear
Optimization Problems: Consider an unconstrained nonlinear optimization
problem of the form:

min
x∈Rn

f (x).

If x∗ satisfies ∇ f (x∗) = 0 and ∇2 f (x∗) is positive definite, then x∗ is a local
minimum.

Let λ be the smallest eigenvalue of ∇2 f (x∗). If we consider a point x∗ + d
that is close to x∗ (i.e., by choosing a d with ||d|| that is close to zero), the
objective-function value at this point is approximately:

f (x∗ + d) ≈ f (x∗) + d
∇ f (x∗) + 1

2
d
∇2 f (x∗)d.

Because x∗ is assumed to be stationary, we can rewrite this as:

f (x∗ + d) − f (x∗) ≈ 1

2
d
∇2 f (x∗)d. (4.13)

Using the Quadratic-Form Bound that is discussed in Section A.1, we further
have that:

1

2
d
∇2 f (x∗)d ≥ 1

2
λ||d||2 > 0, (4.14)

where the last inequality follows from ∇2 f (x∗) being positive definite, mean-
ing that λ > 0. Combining (4.13) and (4.14) gives:

f (x∗ + d) − f (x∗) > 0,

meaning that x∗ gives an objective-function value that is strictly better than
any point that is close to it. Thus, x∗ is a local minimum.

TheSOSC follows a similar line of reasoning to theSONC.By analyzing a second-
order Taylor approximation of the objective function at points close to x∗, we can
show that x∗ being stationary and the Hessian being positive definite is sufficient for
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x∗ to be a local minimum. We demonstrate the use of the SOSC with the following
examples.

Example 4.14 Consider the following unconstrained optimization problem, which
is introduced in Example 4.6:

min
x

f (x) = (x1 − 3)2 + (x2 + 4)2.

This problem has a single stationary point:

x∗ =
(

3
−4

)
,

and the Hessian of the objective function is positive definite at this point. Because
this point satisfies the SOSC, it is guaranteed to be a local minimum. �

Example 4.15 Consider the following unconstrained optimization problem, which
is introduced in Example 4.8:

min
x

f (x) = x3 − x2 − 4x − 6.

This problem has two stationary points:

x∗ ∈
{
2 − √

52

6
,
2 + √

52

6

}

,

and the Hessian of the objective is positive definite at (2 + √
52)/6. Because this

point satisfies the SOSC, it is guaranteed to be a local minimum, as confirmed in
Figure 4.19. �

As discussed above, a limitation of the SOSC is that it is not a necessary condition
for a point to be a local minimum. This means that there can be points that are
local minima, yet do not satisfy the SOSC. We demonstrate this with the following
example.

Example 4.16 Consider the following unconstrained optimization problem, which
is introduced in Example 4.12:

min
x

f (x) = sin(x1 + x2).

Points of the form:

x∗ =
(
x1
x2

)
,
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where:

x1 + x2 ∈
{
· · · ,−5π

2
,−π

2
,
3π

2
,
7π

2
, · · ·

}
,

satisfy both the FONC and SONC. However, the determinant of the second leading
principal minor of the Hessian of the objective function is zero at these points. Thus,
the Hessian is only positive semidefinite (as opposed to positive definite) at these
points. As such, these points do not satisfy the SOSC and are not guaranteed to
be local minima on the basis of that optimality condition. However, we argue in
Example 4.12 that because the objective function attains its lower bound of −1 at
these points, they must be local and global minima. Thus, this problem has local
minima that do not satisfy the SOSC. �

4.5.1.4 Second-Order Sufficient Condition for Convex Unconstrained
Optimization Problems

In the case of a convex optimization problem, it is much easier to guarantee that a
point is a global minimum. This is because the FONC alone is also sufficient for a
point to be a global minimum. This means that once we find a stationary point of a
convex unconstrained optimization problem, we have a global minimum.

Sufficient Condition for Convex Unconstrained Optimization Problems:
Consider an unconstrained nonlinear optimization problem of the form:

min
x∈Rn

f (x).

If the objective function, f (x), is convex then the FONC is sufficient for a
point to be a global minimum.

A differentiable convex function has the property that the tangent line to the
function at any point, x∗, lies below the function (cf. Section B.2 for further
details). Mathematically, this means that:

f (x) ≥ f (x∗) + ∇ f (x∗)
(x − x∗), ∀ x, x∗.

If we pick an x∗ that is a stationary point, then this inequality becomes:

f (x) ≥ f (x∗), ∀ x,

which is the definition of a global minimum.
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This proposition follows very simply from the properties of a convex function.
The basic definition of a convex function is that every secant line connecting two
points on the function be above the function. Another definition for a convex function
that is once continuously differentiable is that every tangent line to the function is
below the function. This gives the inequality in the proof above. If we examine the
tangent line at a stationary point, such as that shown in Figure 4.21, the tangent is a
horizontal line. Because the function must be above this horizontal line, that means it
cannot attain a value that is lower than the value given by the stationary point, which
is exactly the definition of a global minimum.

We demonstrate the use of this property with the following example.

Example 4.17 Consider the unconstrained nonlinear optimization problem:

min
x

f (x) = x21 + x22 + 2x1x2.

The FONC is:

∇ f (x) =
(
2x1 + 2x2
2x1 + 2x2

)
=

(
0
0

)
,

which gives stationary points of the form:

Fig. 4.21 Illustration of proof of sufficiency of FONC for a convex unconstrained optimization
problem

x∗ =
(

x
−x

)
.

We further have that:

∇2 f (x) =
[
2 2
2 2

]
,
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which is positive semidefinite for all x . This means that the objective function is
convex and this is a convex optimization problem. Thus, the stationary points we
have found are global minima, because the FONC is sufficient for finding global
minima of a convex optimization problem. �

Finally, it is worth noting that the stationary points that are found in Example 4.17
do not satisfy the general SOSC, because the Hessian of the objective is not positive
definite. Nevertheless, we can conclude that the stationary points found are global
minima, because the problem is convex. This, again, demonstrates the important
limitation of the SOSC,which is that it is generally only a sufficient and not necessary
condition for local minima.

4.5.2 Equality-Constrained Nonlinear Optimization
Problems

We now examine optimality conditions for equality-constrained nonlinear optimiza-
tion problems. As with the unconstrained case, we begin by first discussing and
demonstrating the use of an FONC for a local minimum. Although the SONC and
SOSC for unconstrained problems can be generalized to the constrained case, these
conditions are complicated. Thus, we restrict our attention to discussing sufficient
conditions for the special case of a convex equality-constrained problem. More
general cases of equality-constrained problems are analyzed by Bertsekas [2] and
Luenberger and Ye [7].

The FONC that we discuss also has an important technical requirement, known
as regularity. We omit this regularity requirement from the statement of the FONC
and instead defer discussing regularity to Section 4.5.2.2. This is because in many
cases the regularity condition is satisfied or does not affect the optimality conditions.
However, we provide an example in Section 4.5.2.2 that shows how a local minimum
can fail to satisfy the FONC if the regularity condition is not satisfied.

First-Order Necessary Condition for Equality-Constrained Nonlinear
Optimization Problems: Consider an equality-constrained nonlinear opti-
mization problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0.
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If x∗ is a local minimum of this problem, then there exist m Lagrange multi-
pliers, λ∗

1, λ
∗
2, . . . , λ

∗
m , such that:

∇ f (x∗) +
m∑

i=1

λ∗
i ∇hi (x

∗) = 0.

The FONC for an equality-constrained problem require us to solve not only for
values of the decisions variables in the original problem (i.e., for x) but also for an
additional set ofm Lagrange multipliers. Note that the number of Lagrange multipli-
ers is always equal to the number of equality constraints in the original problem. We
demonstrate the use of the FONC and Lagrange multipliers to find candidate local
minima in the following example.

Example 4.18 Consider the equality-constrained problem:

min
x

f (x) = 4x21 + 3x22 + 2x1x2 + 4x1 + 6x2 + 3

s.t. h1(x) = x1 − 2x2 − 1 = 0

h2(x) = x21 + x22 − 1 = 0.

To apply the FONC, we define two Lagrange multipliers, λ1 and λ2, which are
associated with the two constraints. The FONC is then:

∇ f (x∗) +
2∑

i=1

λ∗
i ∇hi (x

∗) = 0,

or: (
8x∗

1 + 2x∗
2 + 4

6x∗
2 + 2x∗

1 + 6

)
+ λ∗

1

(
1

−2

)
+ λ∗

2

(
2x∗

1
2x∗

2

)
=

(
0
0

)
.

Note that this is a system of two equations with four unknowns—the two original
decision variables (x1 and x2) and the two Lagrange multipliers (λ1 and λ2). We do
have two additional conditions that x must satisfy, which are the original constraints
of the problem. If we add these two constraints, we now have the following system
of four equations with four unknowns:

8x∗
1 + 2x∗

2 + 4 + λ∗
1 + 2λ∗

2x
∗
1 = 0

6x∗
2 + 2x∗

1 + 6 − 2λ∗
1 + 2λ∗

2x
∗
2 = 0

x∗
1 − 2x∗

2 − 1 = 0
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x∗
1
2 + x∗

2
2 − 1 = 0.

This system of equations has two solutions:

(x∗
1 , x

∗
2 , λ

∗
1, λ

∗
2) = (1, 0, 4,−8),

and:
(x∗

1 , x
∗
2 , λ

∗
1, λ

∗
2) = (−3/5,−4/5, 24/25,−6/5).

Because these are the only two values of x and λ that satisfy the constraints of
the problem and the FONC, the candidate values of x that can be local minima are:

(
x∗
1
x∗
2

)
=

(
1
0

)
,

and: (
x∗
1
x∗
2

)
=

(−3/5
−4/5

)
.

We know that this problem is bounded, because the feasible region is bounded and
the objective function does not asymptote. Thus, we know one of these two candidate
points must be a global minimum. If we substitute these values into the objective
function we have:

f

(
1
0

)
= 11,

and:

f

(−3/5
−4/5

)
= 3

25
.

Because it gives a smaller objective-function value, we know that:

(
x∗
1
x∗
2

)
=

(−3/5
−4/5

)
,

is the global minimum of this problem. �

This example illustrates an important property of the FONC. When we add the
original constraints of the problem, the number of equations we have is always
equal to the number of unknowns that we solve for. This is because we have
n + m unknowns—n decision variables from the original problem and an additional
m Lagrange multipliers (one for each constraint). We also have n + m equations.
There are n equations that come directly from the FONC, i.e., the:

∇ f (x∗) +
m∑

i=1

λ∗
i ∇hi (x

∗) = 0.
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This is because the gradient vectors have one partial derivative for each of the n orig-
inal problem variables. We also have an additional m equations that come from the
original constraints of the problem.

Note, however, that just as in the unconstrained case, having the same number
of equations as unknowns does not imply that there is necessarily a unique solution
to the FONC. We could have multiple solutions, as we have in Example 4.18, no
solution (which could occur if the problem is infeasible or unbounded), or a unique
solution.

Just as in the unconstrained case, the FONC give us candidate solutions that
could be local minima. Moreover, points that do not satisfy the FONC cannot be
local minima. Thus, the FONC typically eliminate many possible points from further
consideration. Nevertheless, the FONC cannot necessarily distinguish between local
minima, local maxima, and saddle points. The SONC and SOSC for unconstrained
problems can be generalized to the equality-constrained case. However the most
general second-order conditions are beyond the level of this book. Interested readers
are referred tomore advanced texts that cover these topics [2, 7].We, instead, focus on
a sufficient condition for the special case of a convex equality-constrained problem,
which we now state.

Sufficient Condition for Convex Equality-Constrained Nonlinear Opti-
mization Problems: Consider an equality-constrained nonlinear optimization
problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0.

If the constraint functions, h1(x), h2(x), . . . , hm(x), are all linear in x and the
objective, f (x), is convex on the feasible region then the FONC is sufficient
for a point to be a global minimum.

This result follows because an optimization with linear equality constraints and
a convex objective function is a convex optimization problem. Convex optimization
problems have the property that the FONC is sufficient for a point to be a local
minimum [2]. Moreover, we know that any local minimum of a convex problem
is a global minimum (cf. the Global-Minimum-of-Convex-Problem Property that
is discussed in Section 4.4.4). Taken together, these properties give the sufficiency
result. We now demonstrate the use of this property with the following example.
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Example 4.19 Consider the equality-constrained problem:

min
x,y,z

f (x) = (x − 3)2 − 10 + (2y − 4)2 − 14 + (z − 6)2 − 6

s.t. h1(x) = x + y + z − 10 = 0.

To solve this problem we introduce one Lagrange multiplier, λ1. The FONC and the
original constraint of the problem give us the following system of equations:

2(x − 3) + λ1 = 0

4(2y − 4) + λ1 = 0

2(z − 6) + λ1 = 0

x + y + z − 10 = 0.

The one solution to this system of equations is:

(x∗ y∗ z∗ λ∗
1) = (23/9 17/9 50/9 8/9).

The constraint of this problem is linear and the Hessian of the objective function is:

∇2 f (x, y, z) =
⎡

⎣
2 0 0
0 8 0
0 0 2

⎤

⎦ ,

which is positive definite, meaning that the objective function is convex. Thus, the
solution to the FONC is guaranteed to be a global minimum. �

It is important to stress that this is only a sufficient condition. The problem given
in Example 4.18 does not satisfy this condition, because the second constraint is not
linear. Nevertheless, we are able to find a global minimum of the problem in that
example by appealing to the fact that the problem is bounded and, thus, it must have
a well defined global minimum which is also a local minimum. Because the FONC
only gives us two candidate points that could be local minima, we know that the one
that gives the smallest objective-function value is a global minimum.

4.5.2.1 Geometric Interpretation of the First-Order Necessary
Condition for Equality-Constrained Nonlinear Optimization
Problems

A general mathematical proof of the FONC for equality-constrained problems is
beyond the level of this book (interested readers are referred to more advanced texts
[2] for such a proof). We can, however, provide a geometric interpretation of the
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FONC for equality-constrained problems. The FONC can be rewritten as:

∇ f (x∗) = −
m∑

i=1

λ∗
i ∇hi (x

∗),

which says that the gradient of the objective function at a local minimum must be a
linear combination of the gradients of the constraint functions.

To understandwhy this is so, take a simple case of a problemwith a single equality
constraint and suppose that x∗ is a local minimum of the problem. If so, we know that
h1(x∗) = 0 (i.e., x∗ is feasible in the equality constraint). Now, consider directions,
d, inwhich tomove away from x∗.We know that a point, x∗+d, is feasible if and only
if h1(x∗ + d) = 0. If we suppose that ||d|| is close to zero, we can estimate the value
of the constraint function at this point using a first-order Taylor approximation as:

h1(x
∗ + d) ≈ h1(x

∗) + d
∇h1(x
∗).

Because x∗ is feasible, we have that h1(x∗) = 0 and the Taylor approximation
simplifies to:

h1(x
∗ + d) ≈ d
∇h1(x

∗).

Thus, x∗ + d is feasible so long as d
∇h1(x∗) = 0. Put another way, the only
directions in which we can feasibly move away from x∗ are directions that are
perpendicular to the gradient of the constraint function.

Let us now consider what effect moving in a feasible direction, d, away from x∗
would have on the objective-function value. Again, assuming that ||d|| is close to
zero, we can estimate the objective-function value at this point using a first-order
Taylor approximation as:

f (x∗ + d) ≈ f (x∗) + d
∇ f (x∗).

Examining this Taylor approximation tells us that there are three possible things
that can happen to the objective function if we move away from x∗. One is that
d
∇ f (x∗) < 0, meaning that the objective gets better. Clearly, this cannot happen
if x∗ is a local minimum, because that contradicts the definition of a local minimum.
Along the same lines, if d
∇ f (x∗) > 0 then we could feasibly move in the direction
−d and improve the objective function. This is because −d
∇h1(x∗) = 0, meaning
that this is a feasible direction in which tomove away from x∗, and−d
∇ f (x∗) < 0,
meaning that the objective function improves. Clearly this cannot happen either. The
third possibility is that d
∇ f (x∗) = 0, meaning that the objective remains the same.
This is the only possibility that satisfies the requirement of x∗ being a local minimum.

In other words, if x∗ is a local minimum, then we want to ensure that the only
directions that we can feasibly move in are perpendicular to the gradient of the
objective function. The FONC ensures that this is true, because it forces the gradient
of the objective function to be a multiple of the gradient of the constraint. That way
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if we have a feasible direction, d, which has the property that d
∇h1(x∗) = 0 then
we also have that:

d
∇ f (x∗) = −λ1d

∇h1(x

∗) = 0,

where the first equality comes from the FONC. With more than one constraint, we
have to ensure that directions that are feasible to move in with respect to all of the
constraints do not give an objective function improvement, which the FONC does.

Figure 4.22 graphically illustrates the FONC for a two-variable single-constraint
problem. The figure shows the contour plot of the objective function and a local
minimum, x∗, which gives an objective-function value of 0. The gradient of the
constraint function points downward, thus the only directions that we can feasibly
move away from x∗ (based on the first-order Taylor approximation) is given by the
dashed horizontal line. However, looking at the objective function gradient at this
point, we see that these feasible directions we can move in give no change in the
objective-function value.

Fig. 4.22 Illustration of the FONC for an equality-constrained problem

Figure 4.23 demonstrates why a point that violates the FONC cannot be a local
minimum. In this case, ∇ f (x∗) is not a multiple of ∇h1(x∗). Thus, if we move away
from x∗ in the direction d, which is feasible based on the first-order Taylor approxi-
mation of the constraint function, the objective function decreases. This violates the
definition of a local minimum.
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Fig. 4.23 Illustration of a point for which the FONC for an equality-constrained problem fails

4.5.2.2 An Added Wrinkle—Regularity

The FONC for equality-constrained problems has one additional technical require-
ment, which is known as regularity. A point is said to be regular if the gradients
of the constraint functions at that point are all linearly independent. As the follow-
ing example demonstrates, problems can have local minima that do not satisfy the
regularity requirement, in which case they may not satisfy the FONC.

Example 4.20 Consider the equality-constrained problem:

min
x

f (x) = 2x1 + 2x2

s.t. h1(x) = (x1 − 1)2 + x22 − 1 = 0

h2(x) = (x1 + 1)2 + x22 − 1 = 0.

To apply the FONC to this problem, we define two Lagrange multipliers, λ1 and λ2,
associated with the two constraints. The FONC and constraints of the problem are:

2 + 2λ1(x1 − 1) + 2λ2(x1 + 1) = 0

2 + 2λ1x2 + 2λ2x2 = 0

(x1 − 1)2 + x22 − 1 = 0

(x1 + 1)2 + x22 − 1 = 0.

Simultaneously, solving the two constraints gives (x1, x2) = (0, 0). Substituting
these values into the FONC gives:
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2 − 2λ1 + 2λ2 = 0

2 = 0,

which clearly has no solution.
However, (x1, x2) = (0, 0) is the only feasible solution in the constraints, thus

it is by definition a global and local minimum. This means that this problem has a
local minimum that does not satisfy the FONC. �

Figure 4.24 illustrates why the FONC fails in Example 4.20. The figure shows
the feasible regions defined by each of the two constraints and x∗, which is the
unique feasible solution. Because x∗ is the only feasible solution, it is by definition a
local and global minimum. However, at this point the gradients of the constraints are
the two horizontal vectors shown in the figure, which are not linearly independent.
Because the gradient of the objective function is not horizontal, it is impossible to
write it as a linear combination of the constraint gradients. This is a consequence
of the problem in Example 4.20 having a local minimum that violates the regularity
assumption.

Fig. 4.24 Illustration of why
the FONC fails for the
equality-constrained
problem in Example 4.20

It isworth noting that a point that violates the regularity assumption can still satisfy
the FONC. For instance, if the objective function of the problem in Example 4.20 is
changed to f (x) = 2x1, the gradient of the objective function becomes:

∇ f (x∗) =
(
2
0

)
.

This gradient is a horizontal vector and can be written as a linear combination of
the constraint function gradients. Interested readers are referred to more advanced
texts [2], which discuss two important aspects of this regularity issue. One is a
more general version of the FONC that does not require regularity. The other is
what is known as constraint-qualification conditions. A problem that satisfies these
constraint-qualification conditions are guaranteed to have local minima that satisfy
the FONC.
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4.5.3 Equality- and Inequality-Constrained Nonlinear
Optimization Problems

As in the equality-constrained case, we examine equality- and inequality-constrained
problems by using a FONC. We then discuss sufficient conditions for the special
case of a convex equality- and inequality-constrained problem. Interested readers
are referred to more advanced texts [2, 7] for the more general SONC and SOSC for
equality- and inequality-constrained problems. As in the equality-constrained case,
the FONC for inequality- and equality-constrained problems also have a regularity
requirement. We again omit the regularity requirement from the statement of the
FONC and instead defer discussion of this requirement to Section 4.5.3.2.

First-Order Necessary Condition for Equality- and Inequality-
Constrained Nonlinear Optimization Problems: Consider an equality-
and inequality-constrained nonlinear optimization problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0.

If x∗ is a local minimum of this problem, then there exist (m + r) Lagrange
multipliers, λ∗

1, λ
∗
2, . . . , λ

∗
m and μ∗

1, μ
∗
2, . . . , μ

∗
r , such that:

∇ f (x∗) +
m∑

i=1

λ∗
i ∇hi (x

∗) +
r∑

j=1

μ∗
j∇g j (x

∗) = 0

μ∗
1 ≥ 0

μ∗
2 ≥ 0

...

μ∗
r ≥ 0
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μ∗
1g1(x

∗) = 0

μ∗
2g2(x

∗) = 0

...

μ∗
r gr (x

∗) = 0.

The FONC for equality-constrained and equality- and inequality-constrained
problems are very similar, in that we retain a condition involving the sum of the
gradients of the objective and constraint functions and Lagrange multipliers. The
FONC for equality- and inequality-constrained problems differ, however, in that the
Lagrangemultipliers on the inequality constraintsmust be non-negative. The third set
of conditions for the equality- and inequality-constrained case is complementary-
slackness.

To understand the complementary-slackness conditions, we first define what it
means for an inequality constraint to be binding as opposed to non-binding at a solu-
tion. Note that these definitions follow immediately from analogous definitions given
for linear inequality constraints in Section 2.7.6. Consider the inequality constraint:

g j (x) ≤ 0.

We say that this constraint is non-binding at x∗ if:

g j (x
∗) < 0.

Thus, a non-binding constraint has the property that when we substitute x∗ into it,
there is a difference or slack between the two sides of the constraint. Conversely, this
constraint is said to be binding at x∗ if:

g j (x
∗) = 0.

Let us now examine the complementary-slackness condition, taking the case of
the j th inequality constraint in the following discussion. The condition requires that:

μ∗
j g j (x

∗) = 0.

In other words, we must have μ∗
j = 0 (i.e., the Lagrange multiplier associated with

the j th constraint is equal to zero), g j (x∗) = 0 (i.e., the j th inequality constraint
is binding), or both. This complementary-slackness condition is analogous to the
complementary-slackness conditions for linear optimization problems, which are
introduced in Section 2.7.6.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2


258 4 Nonlinear Optimization

The complementary-slackness condition is sometimes abbreviated as:

μ∗
j ≥ 0 ⊥ g j (x

∗
j ) ≤ 0.

What this condition says is that μ∗
j ≥ 0 and g j (x∗

j ) ≤ 0 (as before). Moreover, the ⊥
says that μ∗

j must be perpendicular to g j (x∗
j ), in the sense that their product is zero.

Thus, the FONC for equality- and inequality-constrained problems are often written
more compactly as:

∇ f (x∗) +
m∑

i=1

λ∗
i ∇hi (x

∗) +
r∑

j=1

μ∗
j∇g j (x

∗) = 0

h1(x
∗) = 0

h2(x
∗) = 0

...

hm(x∗) = 0

μ∗
1 ≥ 0 ⊥ g1(x

∗) ≤ 0

μ∗
2 ≥ 0 ⊥ g2(x

∗) ≤ 0

...

μ∗
r ≥ 0 ⊥ gr (x

∗) ≤ 0.

We finally note that the FONC for equality- and inequality-constrained problems
are often referred to as the Karush-Kuhn-Tucker (KKT) conditions. The KKT
conditions are named after the three people who discovered the result. Karush first
formulated the KKT conditions in his M.S. thesis. Quite a few years later Kuhn and
Tucker rediscovered them independently.

Example 4.21 Consider the equality- and inequality-constrained problem (that only
has inequality constraints):

min
x

f (x) = 2x21 + 2x1x2 + 2x22 + x1 + x2

s.t. g1(x) = x21 + x22 − 9 ≤ 0

g2(x) = −x1 + 2x2 + 1 ≤ 0.
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To write out the KKT conditions we define two Lagrange multipliers, μ1 and μ2,
associated with the two inequality constraints. The KKT conditions and the con-
straints of the original problem are then:

4x1 + 2x2 + 1 + 2μ1x1 − μ2 = 0

2x1 + 4x2 + 1 + 2μ1x2 + 2μ2 = 0

μ1 ≥ 0 ⊥ x21 + x22 − 9 ≤ 0

μ2 ≥ 0 ⊥ −x1 + 2x2 + 1 ≤ 0.

Note that these conditions are considerably more difficult to work with than the
FONC in the unconstrained and equality-constrained cases. This is because we now
have a system of equations and inequalities, the latter coming from the inequality
constraints and the non-negativity restrictions on the Lagrangemultipliers associated
with them.

As such,we approach equality- and inequality-constrained problems by conjectur-
ing which of the inequality constraints are binding and non-binding, and then solving
the resulting the KKT conditions. We must examine all combinations of binding and
non-binding constraints until we find all solutions to the KKT conditions.

With the problem at hand, let us first consider the case in which neither of the
inequality constraints are binding. The complementary-slackness conditions then
imply that μ1 = 0 and μ2 = 0. The gradient conditions are then simplified to:

4x1 + 2x2 + 1 = 0

2x1 + 4x2 + 1 = 0.

Solving the two equations gives:

(x1 x2) = (−1/6 − 1/6),

meaning we have found as a possible KKT point:

(x1 x2 μ1 μ2) = (−1/6 − 1/6 0 0).

However, we only found these values of x andμ by assumingwhich of the constraints
are binding and non-binding (to determine the value of μ) and then solving for x
in the gradient conditions. We must still check to ensure that these values satisfy all
of the other conditions. If we do so, we see that the second inequality constraint is
violated, meaning that this is not a solution to the KKT conditions.
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We next consider the case in which the first inequality constraint is binding and
the second is non-binding. The complementary-slackness conditions then imply that
μ2 = 0 whereas we cannot make any determination about μ1. Thus, the gradient
conditions become:

4x1 + 2x2 + 1 + 2μ1x1 = 0

2x1 + 4x2 + 1 + 2μ1x2 = 0.

This is a system of two equations with three unknowns. We, however, have one
additional equality that x must satisfy,which is the first inequality constraint. Because
we are assuming in this case that this constraint is binding, we impose it as a third
equation:

x21 + x22 − 9 = 0.

Solving this system of equations gives:

(x1 x2 μ1) ≈ (−2.12 − 2.12 − 2.76),

(x1 x2 μ1) ≈ (1.86 − 2.36 − 1.00),

and:
(x1 x2 μ1) ≈ (−2.36 1.86 − 1.00),

meaning that:
(x1 x2 μ1 μ2) ≈ (−2.12 − 2.12 − 2.76 0),

(x1 x2 μ1 μ2) ≈ (1.86 − 2.36 − 1.00 0),

and:
(x1 x2 μ1 μ2) ≈ (−2.36 1.86 − 1.00 0),

are candidate KKT points. However, because μ1 is negative in all three of these
vectors, these are not KKT points.

The third case that we examine is the one in which the first inequality constraint
is non-binding and the second inequality is binding. The complementary-slackness
conditions imply that μ1 = 0 whereas we cannot make any determination regarding
the value of μ2. Thus, the simplified gradient conditions and the second inequality
constraint (which we impose as an equality) are:

4x1 + 2x2 + 1 − μ2 = 0

2x1 + 4x2 + 1 + 2μ2 = 0

−x1 + 2x2 + 1 = 0.
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Solving these three equations gives:

(x1 x2 μ2) = (1/14 −13/28 5/14),

meaning that we have:

(x1 x2 μ1 μ2) = (1/14 −13/28 0 5/14),

as a possible solution KKT point. Moreover, when we check the remaining condi-
tions, we find that they are all satisfied, meaning that this is indeed a KKT point.

The last possible case that we examine is the one in which both of the inequality
constraints are binding. In this case, complementary slackness does not allow us to
fix any of the μ’s equal to zero. Thus, we solve the following system of equations:

4x1 + 2x2 + 1 + 2μ1x1 − μ2 = 0

2x1 + 4x2 + 1 + 2μ1x2 + 2μ2 = 0

x21 + x22 − 9 = 0

−x1 + 2x2 + 1 = 0,

which has the solutions:

(x1 x2 μ1 μ2) ≈ (−2.45 −1.73 −2.66 0.81),

and:
(x1 x2 μ1 μ2) ≈ (2.85 0.93 −2.94 −2.49).

Clearly neither of these are KKT points, because both of them have negative values
for μ1.

Thus, the only solution to the KKT conditions and the only candidate point that
could be a local minimum is (x∗

1 , x
∗
2 ) = (1/14,−13/28). �

Belowwe give an algorithm for findingKKT points.We first, in Step 2, conjecture
which inequalities are binding and non-binding. We next, in Step 3, fix the μ’s
associated with non-binding constraints equal to zero (due to the complementary-
slackness requirement). Next, in Step 4, we solve the system of equations given by
the gradient conditions, all of the equality constraints, and any inequality constraints
that are assumed to be binding. Inequalities that are assumed to be binding are written
as equal-to-zero constraints. We finally check in Step 5 that x satisfies the inequality
constraints that we assume to be non-binding in Step 2 (and which are, thus, ignored
when solving for x and μ). We also check that μ is non-negative. If both of these
conditions are true, then the values found for x and μ in Step 4 of the algorithm
give a KKT point. Otherwise, they do not and the point is discarded from further
consideration.
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Algorithm for Finding KKT Points
1: procedure KKT Find
2: Fix which inequalities are binding and non-binding
3: Fix μ’s associated with inequalities assumed to be non-binding to zero
4: Solve system of equations given by gradient conditions, equality constraints, and

binding inequalities (written as equalities)
5: Check that x satisfies constraints assumed to be non-binding and μ is non-negative
6: end procedure

Although the Algorithm for Finding KKT Points provides an efficient way to
handle the inequalities in the KKT conditions, it is still quite cumbersome. This is
because finding all KKT points typically requires the process be repeated for every
possible combination of binding andnon-binding inequality constraints. The problem
in Example 4.21 has two inequality constraints, which gives us four cases to check.
A problem with r inequality constraints would require checking 2r cases. Clearly,
even a small problem can require many cases to be tested to find all KKT points. For
instance, with r = 10 we must check 1024 cases whereas a 100-inequality problem
would require about 1.27 × 1030 cases to be examined.

There are two ways that we can reduce the search process. First, we use the fact
that for a convex equality- and inequality-constrained problem, the KKT conditions
are sufficient for a global minimum. This implies that as soon as a KKT point is
found, we need not search any further. This is because we know the point that we
have is a global minimum. The second is that we can use knowledge of a problem’s
structure to determine if a set of constraints would be binding or not in an optimum.
We begin by first discussing the convex case.

Sufficient Condition for Convex Equality- and Inequality-Constrained
Nonlinear Optimization Problems: Consider an equality- and inequality-
constrained nonlinear optimization problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0.
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If the equality constraint functions, h1(x), h2(x), . . . , hm(x), are all linear in x
and the inequality-constraint functions, g1(x), g2(x), . . . , gr (x), and the objec-
tive function, f (x), are all convexon the feasible region then theKKTcondition
is sufficient for a point to be a global minimum.

Example 4.22 Consider the following equality- and inequality-constrained problem,
which is given in Example 4.21:

min
x

f (x) = 2x21 + 2x1x2 + 2x22 + x1 + x2

s.t. g1(x) = x21 + x22 − 9 ≤ 0

g2(x) = −x1 + 2x2 + 1 ≤ 0.

Note that the Hessian of the objective function is:

∇2 f (x) =
[
4 2
2 4

]
,

which is positive definite, meaning that the objective function is a convex function.
Moreover, the second inequality constraint is linear, which we know defines a convex
feasible region. The Hessian of the first inequality-constraint function is:

∇2 f (x) =
[
2 0
0 2

]
,

which is also positive definite, meaning that this constraint function is also convex.
Thus, this problem is convex and any KKT point that we find is guaranteed to be a
global minimum. This means that once we find the KKT point (x1, x2, μ1, μ2) =
(1/14,−13/28, 0, 5/14), we can stop and ignore the fourth case, because we have
a global minimum.

It is also worth noting that when we have a convex equality- and inequality-
constrained problem, our goal is to find a KKT point as quickly as possible. Because
we first try the case in which neither constraint is binding and find that the second
constraint is violated, it could make sense to next examine the case in which the
second constraint is binding and the first constraint is non-binding (the third case
that we examine in Example 4.21). This shortcut—assuming that violated constraints
are binding in an optimal solution—will often yield a KKT point more quickly than
randomly examining different combinations of binding and non-binding inequality
constraints. �

Another approach to reducing the number of cases to examine in finding KKT
points is to use knowledge of a problem’s structure to determine if some constraints
are binding or non-binding in an optimum. We demonstrate this approach with the
following example.



264 4 Nonlinear Optimization

Example 4.23 Consider the Packing-Box Problem, which is formulated as:

max
h,w,d

hwd

s.t. 2wh + 2dh + 6wd ≤ 60

w, h, d ≥ 0,

in Section 4.1.1.1.
This problem has four inequality constraints, thus exhaustively checking all com-

binations of binding and non-binding inequalitieswould result in examining 16 cases.
As opposed to doing this, let us argue that some of the constraints must be binding
or non-binding in an optimal solution. We begin by arguing that each of the non-
negativity constraints must be non-binding. To see this, note that if any of h, w, or d
equals zero, then we have a box with a volume of 0cm3. Setting each of h, w, and d
equal to one gives a box with a larger volume and does not violate the restriction on
the amount of cardboard that can be used. Thus, a box with a volume of zero cannot
be optimal. Knowing that these three constraints must be non-binding in an optimum
has reduced the number of cases that we must examine from 16 to two.

We can, further, argue that the first constraint must be binding, which gives us
only a single case to examine. To see this, note that if the constraint is non-binding,
this means that there is unused cardboard. In such a case, we can increase the value
of any one of h, w, or d by a small amount so as not to violate the 60cm2 restriction,
and at the same time increase the volume of the box. Thus, a box that does not use
the full 60 cm2 of cardboard cannot be optimal. Knowing this, the number of cases
that we must examine is reduced to one.

To solve for an optimal solution, we convert the problem to standard form,
which is:

min
h,w,d

f (h,w, d) = −hwd

s.t. g1(h,w, d) = 2wh + 2dh + 6wd − 60 ≤ 0

g2(h,w, d) = −h ≤ 0

g3(h,w, d) = −w ≤ 0

g3(h,w, d) = −d ≤ 0.

If we assign four Lagrange multipliers, μ1, μ2, μ3, and μ4, to the inequality con-
straints, the KKT conditions are:

−wd + μ1 · (2w + 2d) − μ2 = 0

−hd + μ1 · (2h + 6d) − μ3 = 0

−hw + μ1 · (2h + 6w) − μ4 = 0
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μ1 ≥ 0

μ2 ≥ 0

μ3 ≥ 0

μ4 ≥ 0

μ1 · (2wh + 2dh + 6wd − 60) = 0

−μ2h = 0

−μ3w = 0

−μ4d = 0

2wh + 2dh + 6wd − 60 ≤ 0

−h ≤ 0

−w ≤ 0

−d ≤ 0.

Based on the argument just presented,wemust only consider one case inwhich the
first constraint is binding and the others non-binding. The complementary-slackness
and gradient conditions and binding constraint give us the following system of
equations:

−wd + μ1 · (2w + 2d) = 0

−hd + μ1 · (2h + 6d) = 0

−hw + μ1 · (2h + 6w) = 0

2wh + 2dh + 6wd − 60 = 0,

which has the solution:

(h w d μ1) ≈ (5.48 1.83 1.83 0.46).

Because this problem has a bounded feasible region and the objective does not
asymptote, the point:

(h w d) ≈ (5.48 1.83 1.83),
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which is the only candidate local minimum, must be a local and global minimum of
this problem. �

4.5.3.1 Geometric Interpretation of the Karush-Kuhn-Tucker
Condition for Equality- and Inequality-Constrained Problems

It is helpful to provide some intuition behind the KKT condition for equality-
and inequality-constrained problems. We specifically examine the gradient and
complementary-slackness conditions and the sign restriction on Lagrange multi-
pliers for inequality constraints. Thus, we examine the case of an equality- and
inequality-constrained problem that only has inequality constraints.

To understand how theKKT condition is derived, consider a two-variable problem
with two inequality constraints:

min
x

f (x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0,

and suppose that x∗ is a local minimum of this problem. Figure 4.25 shows the
constraints and feasible region of this problem and where x∗ lies in relation to them.
As shown in the figure, the first constraint is binding at x∗. This is because x∗ is
on the boundary defined by the first constraint, meaning that there is no slack in
the two sides of the constraints. Conversely, the second constraint is non-binding at
x∗. This is because x∗ is not on the boundary of the constraint. Thus, there is slack
between the two sides of the constraint. Because x∗ is a local minimum, we know
that there is a neighborhood of feasible points around x∗ with the property that x∗
has the smallest objective-function value on this neighborhood. This neighborhood
is denoted by the dotted circle centered around x∗ in Figure 4.25. All of the points
in the shaded region that are within the dotted circle give objective-function values
that are greater than or equal to f (x∗).

Now consider the problem

min
x

f (x)

s.t. g1(x) = 0.

Figure 4.26 shows the feasible region of this problem and x∗. This problem has
the same objective function as the problem shown in Figure 4.25, but the feasible
region differs. Specifically, the binding constraint from the original problem is now
an equality constraint and the non-binding constraint is removed. Figure 4.26 shows
the same neighborhood of points around x∗, denoted by the dotted circle. Note that if
x∗ gives the best objective-function value in the neighborhood shown in Figure 4.25
then it also gives the best objective-function value in the neighborhood shown in
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Fig. 4.25 A local minimum
of a two-variable problem
with two inequality
constraints

Figure 4.26. This is because the neighborhood in Figure 4.26 has fewer points (only
those on the boundary where g1(x) = 0, which is highlighted in red in Figure 4.26)
and the objective function of the two problems are identical.

Fig. 4.26 A local minimum
of a two-variable problem
with one equality constraint
that is equivalent to the
problem illustrated in
Figure 4.25

We, thus, conclude that if x∗ is a local minimum of the problem:

min
x

f (x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0,
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and that only the first constraint is binding at x∗, then it must also be a local minimum
of the problem:

min
x

f (x)

s.t. g1(x) = 0.

This second problem is an equality-constrained problem. Thus, we can apply the
FONC for equality-constrained problems, which is discussed in Section 4.5.2, to it.
Doing so gives:

∇ f (x∗) + μ∗
1g1(x

∗) = 0,

where we are letting μ∗
1 denote the Lagrange multiplier on the equality constraint. If

we define μ∗
2 = 0, we can write this gradient condition as:

∇ f (x∗) + μ∗
1g1(x

∗) + μ∗
2g2(x

∗) = ∇ f (x∗) +
r∑

j=1

μ∗
r gr (x

∗) = 0, (4.15)

which is the gradient condition we have if we apply the KKT condition to the original
equality- and inequality-constrained problem. We further have the complementary-
slackness condition that the KKT condition requires. This is because we fix μ∗

2 = 0
when deriving equation (4.15). Note, however, that μ∗

2 is the Lagrange multiplier on
the second inequality constraint. Moreover, the second inequality constraint is the
one that is non-binding at the point x∗, as shown in Figure 4.25.

Thus, the gradient and complementary-slackness requirements of the KKT con-
dition can be derived by applying FONC to the equivalent equality-constrained prob-
lem.

We can also provide some intuition around the sign restriction on Lagrange mul-
tipliers by conducting this type of analysis. Again, if we take the two-constraint
problem:

min
x

f (x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0,

then the gradient condition is:

∇ f (x∗) + μ∗
1g1(x

∗) + μ∗
2g2(x

∗) = ∇ f (x∗) + μ∗
1g1(x

∗) = 0,

because we are assuming that the second inequality constraint is non-binding and by
complementary slackness we have that μ∗

2 = 0. This condition can be rewritten as:

∇ f (x∗) = −μ∗
1g1(x

∗).
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This condition has the same interpretation that is discussed for equality-constrained
problems in Section 4.5.2.1.Namely, it says that the gradient of the objective function
must be linearly dependent with the gradient of the binding inequality constraint at a
local minimum. However, if we further restrict μ∗

1 ≥ 0, then the gradient condition
further says that the gradient of the objective functionmust be a non-positivemultiple
of the gradient of the binding inequality constraint at a local minimum. Figures 4.27
and 4.28 show why this sign restriction is important.

Fig. 4.27 ∇ f (x∗) and
∇g1(x∗) of a two-variable
problem with two inequality
constraints if μ∗

1 ≥ 0

Fig. 4.28 ∇ f (x∗) and
∇g1(x∗) of a two-variable
problem with two inequality
constraints if μ∗

1 ≤ 0

Figure 4.27 shows the gradient of the binding inequality constraint at the local
minimum. We know that this gradient points outward from the feasible region,
because that is the direction in which g1(x) increases. Recall that when we pro-
vide a geometric interpretation of the Lagrange multipliers for equality-constrained
problems in Section 4.5.2.1, we find that the only directions in which we can move
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away from a local minimum are perpendicular to the gradient of the constraint func-
tion. This is no longer true whenwe have inequality constraints. Indeed, we canmove
in any direction away from x∗ into the shaded region that is shown in Figure 4.27.
We know, however, that we cannot move away from x∗ in the direction of ∇g1(x∗).
This is because g1(x∗) = 0 (because the first constraint is binding at x∗) and because
∇g1(x∗) is a direction in which g1(x) increases. Thus, moving in the direction of
∇g1(x∗) would violate the constraint.

Figure 4.27 also shows that if μ∗
1 ≥ 0, then the gradient of f (x∗) is pointing

inward to the feasible region. This is desirable because we know that ∇ f (x∗) is
a direction in which the objective function increases, meaning that −∇ f (x∗) is a
direction in which the objective function decreases. To see this, note that if we move
in a direction, d = −∇ f (x∗), away from x∗, the first-order Taylor approximation of
the objective function at the new point is:

f (x∗ + d) = f (x∗ − ∇ f (x∗)) ≈ f (x∗) − ∇ f (x∗)
∇ f (x∗) < f (x∗).

However, because −∇ f (x∗) points in the same direction as ∇g1(x∗), this direction
that decreases the objective function is an infeasible direction to move in.

Figure 4.28 also shows the gradient of the binding inequality constraint at the
local minimum. It further shows that if μ∗

1 ≤ 0, then ∇ f (x∗) and ∇g1(x∗) point in
the same direction. However, x∗ cannot be a local minimum in this case. The reason
is that if we move in the direction of −∇ f (x∗) away from x∗ (which is a feasible
direction to move in, because∇ f (x∗) and∇g1(x∗) now point in the same direction),
the objective function decreases.

Finally, we can use this same kind of analysis to show the complementary-
slackness condition in another way. Figure 4.29 shows a problem with the same
feasible region as that shown in Figures 4.25–4.28, however the objective function
is now different and the local minimum, x∗, is interior to both inequality constraints.
The gradient condition for this problem would be:

∇ f (x∗) + μ∗
1g1(x

∗) + μ∗
2g2(x

∗) = ∇ f (x∗) = 0,

because we are assuming that both inequality constraints are non-binding and by
complementary slackness we have that μ∗

1 = 0 and μ∗
2 = 0. In some sense, the

complementary-slackness condition says that the gradient condition should ignore
the two non-binding inequality constraints and find a point at which the gradient of
the objective function is equal to zero. Figure 4.29 shows the logic of this condition
by supposing that ∇ f (x∗) �= 0. If the gradient of the objective function is as shown
in the figure, then x∗ cannot be a local minimum, because moving a small distance
in the direction d = −∇ f (x∗) away from x∗ (which is a feasible direction to move
in) reduces the objective function compared to x∗. This, however, contradicts the
definition of a local minimum.
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All of these derivations can be generalized to problems with any number of vari-
ables and equality and inequality constraints. However, we focus on problems with
two variables and only two inequality constraints to simplify this discussion.

Fig. 4.29 ∇ f (x∗) when
inequality constraints are
non-binding

4.5.3.2 Regularity and the Karush-Kuhn-Tucker Condition

When applied to equality- and inequality-constrained problems, the KKT condi-
tion has the same regularity requirement that we have with equality-constrained
problems. However, the definition of a regular point is slightly different when we
have inequality constraints. We say that a point, x∗, is regular in an equality- and
inequality-constrained problem if the gradients of the equality constraints and all of
the inequality constraints that are binding at x∗ are linearly independent.

As with equality-constrained problems, we can have equality- and inequality-
constrained problems, such as in Example 4.20, that have local minima that do not
satisfy this regularity condition. In such a case, the local minimum may not satisfy
the KKT condition. Interested readers are referred to more advanced texts [2] that
further discuss this regularity issue.

4.6 Sensitivity Analysis

The subject of sensitivity analysis is concerned with estimating how changes to
a nonlinear optimization problem affect the optimal objective-function value. Thus,
this analysis is akin to that carried out in Section2.6 for linear optimization problems.
The following Sensitivity Property explains how this sensitivity analysis is conducted
with nonlinear problems.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
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Sensitivity Property: Consider an equality- and inequality-constrained non-
linear optimization problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0.

Suppose x∗ is a local minimum and λ∗
1, λ

∗
2, . . . , λ

∗
m, μ∗

1, μ
∗
2, . . . , μ

∗
r are

Lagrange multipliers associated with the equality and inequality constraints.
Consider the alternate equality- and inequality-constrained nonlinear opti-

mization problem:

min
x∈Rn

f (x)

s.t. h1(x) = u1
h2(x) = u2

...

hm(x) = um
g1(x) ≤ v1
g2(x) ≤ v2

...

gr (x) ≤ vr ,

and let x̂ be a local minimum of this problem. So long as
|u1|, |u2|, . . . , |um |, |v1|, |v2|, . . . , |vr | are sufficiently small, we can estimate
the objective-function value of the new problem as:

f (x̂) ≈ f (x∗) −
m∑

i=1

λ∗
i ui −

r∑

j=1

μ∗
j v j .
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The Sensitivity Property says that the Lagrange multipliers found in the FONC
of constrained nonlinear optimization problems provide the same sensitivity infor-
mation that the sensitivity vector (which are equal to dual variables) give for linear
optimization problems. It is also important to stress that although the Sensitivity
Property is stated for problems with both equality and inequality constraints, it can
clearly be applied to problems with only one type of constraint. A problem with only
equality constraints would not have any μ’s, because those Lagrange multipliers are
associated with inequality constraints. It can similarly be applied to problems with
only inequality constraints.

The Sensitivity Property does require the changes to the right-hand sides of the
constraints to be small in magnitude, however it does not specify how large a value
of u and v can be used. This is an unfortunate limitation of the theorem and is a dif-
ference compared to sensitivity analysis for linear optimization problems. For linear
optimization problems, we can explicitly determine how much the right-hand side
of constraints can change before the optimal basis changes using condition (2.49).
We have no such result for nonlinear problems.

We now demonstrate the use of the Sensitivity Property with an example.

Example 4.24 Consider the Packing-Box Problem, which is examined in Exam-
ple 4.23:

max
h,w,d

hwd

s.t. 2wh + 2dh + 6wd ≤ 60

h ≥ 0

w ≥ 0

d ≥ 0.

In standard form this problem is:

min
h,w,d

f (h,w, d) = −hwd

s.t. g1(h,w, d) = 2wh + 2dh + 6wd − 60 ≤ 0 (μ1)

g2(h,w, d) = −h ≤ 0 (μ2)

g3(h,w, d) = −w ≤ 0 (μ3)

g3(h,w, d) = −d ≤ 0, (μ4)

where the Lagrange multiplier associated with each constraint is indicated in the
parentheses to right of it. We know from the analysis in Example 4.23 that:

(h w d μ1 μ2 μ3 μ4) ≈ (5.48 1.83 1.83 0.46 0 0 0),

is the unique solution to the KKT condition and is a local and global minimum of
the problem.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
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We wish to know the effect of increasing the amount of cardboard available to
62cm2 and requiring the box to be at least 0.4cm wide. In other words, we want to
estimate the optimal objective-function value of the following problem:

max
h,w,d

hwd

s.t. 2wh + 2dh + 6wd ≤ 62

h ≥ 0

w ≥ 0.4

d ≥ 0.

To apply the Sensitivity Property to answer this question, we must convert the con-
straints of this problem to have the same left-hand sides as the standard-form problem
that is solved in Example 4.23. This is because the Sensitivity Property only tells
us how to estimate the effect of changes to the right-hand side of constraints. The
objective functionmust also be changed to aminimization.We can write the problem
with additional cardboard and the minimum-width requirement as:

min
h,w,d

f (h,w, d) = −hwd

s.t. g1(h,w, d) = 2wh + 2dh + 6wd − 60 ≤ 2

g2(h,w, d) = −h ≤ 0

g3(h,w, d) = −w ≤ −0.4

g3(h,w, d) = −d ≤ 0.

Applying the Sensitivity Property, we can estimate the new optimal objective-
function value as:

f (x̂) ≈ f (x∗) − 2μ∗
1 − 0μ∗

2 + 0.4μ∗
3 − 0μ∗

4 = −18.26 − 0.92 = −19.18.

The Sensitivity Property shows the objective function decreasing when we
increase the amount of available cardboard.Recall, however, that the original problem
is a maximization. We change the objective function to a minimization by multiply-
ing the objective through by−1 to apply the KKT condition. Thus, when we take this
into account, we conclude that the volume of the box increases by approximately
0.92cm3 when we add the cardboard and impose the minimum-width requirement.
�

4.6.1 Further Interpretation of the Karush-Kuhn-Tucker
Condition

As a final note, we can use the Sensitivity Property to gain somemore insights into the
complementary-slackness and sign restrictions in the KKT condition for equality-
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and inequality-constrained problems. For this discussion, consider a simple problem
with one constraint:

min
x∈Rn

f (x)

s.t. g1(x) ≤ 0.

Suppose that we have a localminimum, x∗, and a Lagrangemultiplier,μ∗
1, that satisfy

the KKT condition. Suppose that we change the right-hand side of the constraint so
the problem becomes:

min
x∈Rn

f (x)

s.t. g1(x) ≤ v1,

where v1 < 0 but |v1| is small (i.e., we change the right-hand side to a negative
number that is small in magnitude). We can intuitively determine what happens to
the objective-function value when we make this change.

First consider the case in which the constraint is non-binding in the original
problem. If we change the constraint to g1(x) ≤ v1 where v1 is sufficiently small in
magnitude, then the same x∗ is still feasible and optimal in the new problem. Thus,
the objective-function value does not change at all. The Sensitivity Property tells us
that we can estimate the change in the objective-function value as:

f (x̂) ≈ f (x∗) − μ∗
1v1.

Because we reasoned that the objective-function value is the same, we must have
μ∗
1v1 = 0 or μ∗

1 = 0. This, however, is precisely what complementary slackness
requires. Because the constraint is non-binding, the Lagrange multiplier associated
with it must be zero. The Sensitivity Property further tells us that changing the right-
hand side of a constraint that is not binding by a small amount will not change the
optimal objective-function value.

Now, consider the case in which the constraint is binding in the original problem.
If we change the constraint to g1(x) ≤ v1 the objective-function valuemust get worse
(i.e., larger). This is because the feasible region is reduced in size when the right-
hand side of the constraint is changed. Before the constraint is changed, solutions
for which g1(x) = 0 are feasible. These solutions are no longer feasible when the
right-hand side of the constraint is changed. Thus, the objective function cannot be
better when we make this change. Again, the Sensitivity Property tells us that we
can estimate the change in the objective-function value as:

f (x̂) ≈ f (x∗) − μ∗
1v1.

Because we reasoned that the objective-function value gets worse when we make
the change, this means −μ∗

1v1 ≥ 0 or μ∗
1 ≥ 0, because we have that v1 < 0.

This, however, is the sign restriction that the KKT condition places on Lagrange
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multipliers associated with inequality constraints. Thus, the Sensitivity Property tells
us that whenwe change the right-hand sides of inequality constraints that are binding,
the objective function changes in a specific direction.

This interpretation of the complementary-slackness property required by theKKT
condition is analogous to the derivationof complementary slackness between aprimal
linear optimization problem and its dual in Section 2.7.6.

4.7 Final Remarks

This chapter introduces analyticmethods of solvingnonlinear optimizationproblems.
These rely on analyzing optimality conditions, which are a powerful tool for certain
types of problems. However, in some cases optimality conditions may yields systems
of equations or inequalities that are too difficult to solve. For this reason, iterative
solution algorithms, which is the topic of Chapter 5, are often used. These algorithms
are implemented in software packages and can be likened to using the Simplex
method to solve linear optimization problems.

Our discussion of optimality conditions does not include themore general second-
order conditions for constrained problems. Such conditions are beyond the level of
this book. Interested readers are referred to more advanced texts for a treatment of
such conditions [2, 7]. More advanced texts [1] also provide alternate optimality
conditions to the KKT condition that can handle problems that do not satisfy the
regularity requirement and specialized treatment of optimality conditions for convex
optimization problems [3].

4.8 GAMS Codes

This section provides GAMS [4] codes for the main problems considered in this
chapter.GAMScanuse a variety of different software packages, among themMINOS
[8], CONOPT [6], and KNITRO [5], to actually solve an NLPP.

4.8.1 Packing-Box Problem

The Packing-Box Problem, which is introduced in Section 4.1.1.1, has the following
GAMS formulation:

1 variable z;
2 positive variables h, w, d;
3 equations of , cardBoard;
4 of .. z =e= h*w*d;

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_5
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5 cardBoard .. 2*w*h+2*h*d+6*w*d =l= 60;
6 model box /all/;
7 solve box using nlp maximizing z;

Lines 1 and 2 declare variables, Line 3 gives names to the model equations,
Line 4 defines the objective function, Line 5 specifies the constraint, Line 6 defines
the model, and Line 7 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 18.257 +INF .
4 ---- VAR h . 5.477 +INF .
5 ---- VAR w . 1.826 +INF .
6 ---- VAR d . 1.826 +INF .

4.8.2 Awning Problem

An instance of the Awning Problem, which is introduced in Section 4.1.1.2, which
has h = 2 and w = 3 has the following GAMS formulation:

1 scalars h /2/, w /3/;
2 variable z;
3 positive variables x, y;
4 equations of , box;
5 of .. z =e= sqrt(x**2+y**2);
6 box .. y-w*y/x =g= h;
7 model awning /all/;
8 solve awning using nlp minimizing z;

Line 1 declares and sets the values of the scalar parameters, Lines 2 and 3 declare
variables, Line 4 gives names to the model equations, Line 5 defines the objective
function, Line 6 specifies the constraint, Line 7 defines the model, and Line 8 directs
GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 7.023 +INF .
4 ---- VAR x . 5.289 +INF .
5 ---- VAR y . 4.621 +INF .
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4.8.3 Facility-Location Problem

An instance of the Facility-Location Problem, which is introduced in Section 4.1.1.3,
that has three retail locations at coordinates (1, 1), (−1, 2), and (3, 0) that each
receive 10 trucks, has the following GAMS formulation:

1 set ret /1*3/;
2 parameters
3 V(ret)
4 /1 10
5 2 10
6 3 10/
7 x(ret)
8 /1 1
9 2 -1

10 3 3/
11 y(ret)
12 /1 1
13 2 2
14 3 0/;
15 variables z, a, b;
16 equations of;
17 of .. z =e= sum(ret ,2*V(ret)*sqrt(power((x(ret)-a) ,2)+

power((y(ret)-b) ,2)));
18 model facLoc /all/;
19 solve facLoc using nlp minimizing z;

Line 1 declares and defines the set of retail locations. Sets are a construct in
GAMS that allow us to create data, variables, or constraints that are assigned to
different entities being modeled. For instance, in the Facility-Location Problem each
retail location has a pair of coordinates and a fixed number of trucks that must make
deliveries to it as model data. The set allows these to be modeled without having
to individually write out each piece of data individually in the model. Lines 2–14
declare and set the values of the problem parameters, Line 15 declares variables,
Line 16 gives a name to the model equation, Line 17 defines the objective function,
Line 18 defines the model, and Line 19 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 89.443 +INF .
4 ---- VAR a -INF 1.000 +INF .
5 ---- VAR b -INF 1.000 +INF .
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4.8.4 Cylinder Problem

An instance of theCylinder Problem,which is introduced in Section 4.1.1.4, inwhich
N = 10, c1 = 2 and c2 = 0.5, has the following GAMS formulation:

1 scalars N /10/, c1 /2/, c2 /0.5/;
2 variable z;
3 positive variables r, h;
4 equations of;
5 of .. z =e= N*pi*h*r**2-c1*pi*r**2-c2*pi*h*(pi*r**2+2*

pi*r*h)*r**2;
6 model cyl /all/;
7 solve cyl using nlp maximizing z;

Line 1 declares and sets the values of scalar parameters, Lines 2 and 3 declare
variables, Line 4 gives a name to the model equation, Line 5 defines the objective
function, Line 6 defines the model, and Line 7 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 12.174 +INF .
4 ---- VAR r . 0.826 +INF .
5 ---- VAR h . 1.721 +INF .

4.8.5 Machining-Speed Problem

An instance of the Machining-Speed Problem, that is introduced in Section 4.1.2.1,
in which p = 10, m = 1, tp = 1, λ = 0.1, tc = 1.1, C = 1, n = 2, and h = 0.4, has
the following GAMS formulation:

1 scalars p /10/, m /1/, tp /1/, lambda /0.1/, tc /1.1/ , C /1/, n

/2/, h /0.4/;

2 variable z;

3 positive variable v;

4 equations of;

5 of .. z =e= (p-m)/(tp+lambda/v+tc*((C/v)**(1/n))/( lambda/v))-h;

6 model machine /all/;

7 solve machine using nlp maximizing z;

Line 1 declares and sets the values of scalar parameters, Lines 2 and 3 declare
variables, Line 4 gives a name to the model equation, Line 5 defines the objective
function, Line 6 defines the model, and Line 7 directs GAMS to solve it.
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The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 1.286 +INF .
4 ---- VAR v . 0.069 +INF .

4.8.6 Hanging-Chain Problem

An instance of the Hanging-Chain Problem, which is introduced in Section 4.1.2.2,
in which the chain has 10 links and L = 4, has the following GAMS formulation:

1 set links /1*10/;
2 scalars g /9.80665/ , L /4/;
3 variables z, y(links);
4 equations of , height , width;
5 of .. z =e= 50*g*sum(links ,(card(links)-ord(links)

+0.5)*y(links));
6 height .. sum(links ,y(links)) =e= 0;
7 width .. sum(links ,sqrt(10-power(y(links) ,2))) =e= L;
8 model chain /all/;
9 solve chain using nlp minimizing z;

Line 1 declares and defines the set of chain links, Line 2 declares and sets the
values of scalar parameters, Line 3 declares variables, Line 4 gives names to the
model equations, Line 5 defines the objective function, Lines 6 and 7 declare the
constraints, Line 8 defines the model, and Line 9 directs GAMS to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF -3.859E+4 +INF .

5 ---- VAR y

7 LOWER LEVEL UPPER MARGINAL

9 1 -INF -3.160 +INF .
10 2 -INF -3.158 +INF .
11 3 -INF -3.154 +INF .
12 4 -INF -3.139 +INF .
13 5 -INF -2.969 +INF .
14 6 -INF 2.969 +INF .
15 7 -INF 3.139 +INF .
16 8 -INF 3.154 +INF .
17 9 -INF 3.158 +INF .
18 10 -INF 3.160 +INF .
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4.8.7 Return-Maximization Problem

The Return-Maximization Problem, which is introduced in Section 4.1.3.1, has the
following GAMS formulation:

1 set asset;
2 alias(asset ,assetA);
3 parameters ret(asset), cov(asset ,asset);
4 scalar s;
5 variable z;
6 positive variable w(asset);
7 equations of , risk , alloc;
8 of .. z =e= sum(asset ,ret(asset)*w(asset));
9 risk .. sum((asset ,assetA),cov(asset ,assetA)*w(asset)*

w(assetA)) =l= s;
10 alloc .. sum(asset ,w(asset)) =e= 1;
11 model invest /all/;
12 solve invest using nlp maximizing z;

Line 1 declares the set of assets and Line 2 declares an alias of this set. Lines 3
and 4 declare the problem parameters, Lines 5 and 6 declare variables, Line 7 gives
names to the model equations, Line 8 defines the objective function, Lines 9 and 10
declare the constraints, Line 11 defines the model, and Line 12 directs GAMS to
solve it.

Note that this GAMS code will not compile without values being assigned to the
set asset and to the parameters ret(asset), cov(asset,asset), and s.

4.8.8 Variance-Minimization Problem

The Variance-Minimization Problem, which is introduced in Section 4.1.3.2, has the
following GAMS formulation:

1 set asset;
2 alias(asset ,assetA);
3 parameters ret(asset), cov(asset ,asset);
4 scalar R;
5 variable z;
6 positive variable w(asset);
7 equations of, earn , alloc;
8 of .. z =e= sum((asset ,assetA),cov(asset ,assetA)*w(asset)*

w(assetA));
9 earn .. sum(asset ,ret(asset)*w(asset)) =g= R;

10 alloc .. sum(asset ,w(asset)) =e= 1;
11 model invest /all/;
12 solve invest using nlp minimizing z;
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Line 1 declares the set of assets and Line 2 declares an alias of this set. Lines 3
and 4 declare the problem parameters, Lines 5 and 6 declare variables, Line 7 gives
names to the model equations, Line 8 defines the objective function, Lines 9 and 10
declare the constraints, Line 11 defines the model, and Line 12 directs GAMS to
solve it.

Note that this GAMS code will not compile without values being assigned to the
set asset and to the parameters ret(asset), cov(asset,asset), and R.

4.8.9 Inventory-Planning Problem

The Inventory-Planning Problem, which is introduced in Section 4.1.3.3, has the
following GAMS formulation:

1 variable z;
2 positive variables xs , xm , xl;
3 equations of;
4 of .. z =e= 10*(xs -(xs**2) /6000) +12*(xm -(xm**2) /6000)

+13*(xl -(xl**2) /6000) -xs -2*xm -4*xl;
5 model inventory /all/;
6 solve inventory using nlp maximizing z;

Lines 1 and 2 declare variables, Line 3 gives a name to the model equation, Line 4
defines the objective function, Line 5 defines the model, and Line 6 directs GAMS
to solve it.

The GAMS output that provides information about the optimal solution is:

1 LOWER LEVEL UPPER MARGINAL

3 ---- VAR z -INF 33996.154 +INF .
4 ---- VAR xs . 2700.000 +INF .
5 ---- VAR xm . 2500.000 +INF .
6 ---- VAR xl . 2076.923 +INF .

4.8.10 Economic-Dispatch Problem

The Economic-Dispatch Problem, which is introduced in Section 4.1.4.1, has the
following GAMS formulation:

1 set node;

2 alias(node ,nodeA);

3 parameters a0(node), a1(node), a2(node), D(node), Y(node ,node),

link(node ,node), L(node ,node), minQ(node), maxQ(node);

4 variables z, theta(node), f(node ,node), q(node);

5 positive variable q(node);

6 equations of , demand , balance , flow;
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7 of .. z =e= sum(node ,a0(node)+a1(node)*q(node)+a2(node)*q(node)

**2);

8 demand(node) .. D(node) =e= q(node) + sum(nodeA$(link(node ,

nodeA)),f(nodeA ,node));

9 balance .. sum(node ,D(node)) =e= sum(node ,q(node));

10 flow(node ,nodeA) .. f(node ,nodeA)$(link(node ,nodeA)) =e= Y(node

,nodeA)*sin(theta(node)-theta(nodeA));

11 f.up(node ,nodeA) = L(node ,nodeA);

12 q.lo(node) = minQ(node);

13 q.up(node) = maxQ(node);

14 model dispatch /all/;

15 solve dispatch using nlp minimizing z;

Line 1 declares the set of nodes and Line 2 declares an alias of this set. Line 3
declares the problem parameters, Lines 4 and 5 declare variables, Line 6 gives
names to the model equations, Line 7 defines the objective function, and Lines
8–10 declare the constraints. Note that the constraint in Line 8 only adds flow from
nodeA to node in determining the supply/demand balance constraint for node if
the two nodes are directly linked by a transmission line (which is what the parameter
link(node,nodeA) indicates. Similarly, the constraint in Line 10 only computes
the flow on lines that are directly linked. Line 11 imposes the upper bounds on the
flow variables and Lines 12 and 13 impose the lower and upper bounds on production
at each node. Line 14 defines the model and Line 15 directs GAMS to solve it.

Note that this GAMS code will not compile without values being assigned to the
set node and to the parameters a0(node), a1(node), a2(node), D(node),
Y(node,node), link(node,node), L(node,node), minQ(node), and
maxQ(node).

4.9 Exercises

4.1 Jose builds electrical cable using two types ofmetallic alloys.Alloy 1 is 55%alu-
minum and 45% copper, while alloy 2 is 75% aluminum and 25% copper. The prices
at which Jose can buy the two alloys depends on the amount he purchases. The total
cost of buying x1 tons of alloy 1 is given by:

5x1 + 0.01x21 ,

and the total cost of buying x2 tons of alloy 2 is given by:

4x2 + 0.02x22 .

Formulate a nonlinear optimization problem to determine the cost-minimizing quan-
tities of the two alloys that Jose should use to produce 10 tons of cable that is at least
30% copper.
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4.2 Emma is participating in an L km bicycle race. She is planning on carrying a
hydration bladder on her back to keep herself hydrated during the race. If we let v
denote her average speed during the race in km/h and w the volume of the hydration
bladder in liters, then she consumes water at an average rate of cv3 · (w + 1)2 liters
per hour. Formulate a nonlinear optimization problem to determine how much water
Emma should carry and the average speed at which she should bike to minimize her
race time.

4.3 Vishnu has $35 to spend on any combination of three different goods—apples,
oranges, and bananas. Apples cost $2 each, oranges $1.50 each, and bananas $5 each.
Vishnu measures his happiness from consuming apples, oranges, and bananas using
a utility function. If Vishnu consumes xa apples, xo oranges, and xb bananas, then
his utility is given by:

3 log(xa) + 0.4 log(xo + 2) + 2 log(xb + 3).

Formulate a nonlinear optimization problem to determine how Vishnu should spend
his $35.

4.4 Convert the models formulated for Exercises 4.1–4.3 into standard form for the
type of nonlinear optimization problems that they are.

4.5 Is the model formulated for the Facility-Location Problem that is introduced in
Section 4.1.1.3 a convex optimization problem?

4.6 Is a local minimum of Exercise 4.1 guaranteed to be a global minimum? Explic-
itly explain why or why not.

4.7 What difficulties could arise in applying FONC, SONC, and SOSC to the model
formulated for the Facility-Location Problem that is in Section 4.1.1.3?

4.8 Find all of the KKT points for the model formulated in Exercise 4.3. Are any
of these KKT points guaranteed to be global optima? Explicitly explain why or why
not.

4.9 Using the solution to Exercise 4.8, approximate how much Vishnu’s utility
increases if he has an additional $1.25 to spend and must purchase at least one
orange. Compare your approximation to the actual change in Vishnu’s utility.

4.10 Write a GAMS code for the model formulated in Exercise 4.1.
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Chapter 5
Iterative Solution Algorithms
for Nonlinear Optimization

Chapter 4 introduces optimality conditions to solve nonlinear optimization problems.
Optimality conditions have the benefit that they allow us to find all points that are can-
didate local minima. Working with optimality conditions can be quite cumbersome,
however. This is because they can require solving large systems of nonlinear equa-
tions. Moreover, in the case of equality- and inequality-constrained problems, the
Karush–Kuhn–Tucker (KKT) condition can require a massive combinatorial search,
in which all possible cases of which constraints are binding and non-binding are
examined. For these reasons, in many practical cases nonlinear programming prob-
lems (NLPPs) are solved using iterative algorithms that are implemented on a com-
puter. Many of these iterative solution algorithms rely on the properties that the
optimality conditions introduced in Chapter 4 tell us that an optimal solution should
exhibit.

In this chapter we begin by first introducing a generic iterative algorithm for
solving an unconstrained NLPP. We then provide details on the steps of this generic
algorithm. We next explain how the generic iterative algorithm can be applied to
solve a constrained NLPP. We introduce two approaches to solving a constrained
NLPP. The first implicitly accounts for the constraints. This is done by removing the
constraints from the problem and instead adding terms to the objective function that
‘penalize’ constraint violations. These penalties are intended to drive the algorithm
to a feasible solution. The second approach explicitly accounts for the constraints.
While this approach is guaranteed to find a feasible solution, it can only be applied
to problems with relatively simple constraints.

5.1 Iterative Solution Algorithm for Unconstrained
Nonlinear Optimization Problems

In this section we introduce a basic iterative solution algorithm for unconstrained
nonlinear optimization problems. Throughout this section we assume that our uncon-
strained problem has the form:
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min
x∈Rn

f (x),

where f (x) : Rn → R is the objective function being minimized.
Below we give a high-level overview of a Generic Algorithm for Unconstrained

Nonlinear Optimization Problems. This is an example of an iterative solution algo-
rithm. In Lines 2 and 3 we initialize the algorithm by setting k, the counter for the
number of iterations completed, to 0 and picking a starting point, x0. We use the
notational convention here that the superscript on x denotes the value of a variable
after that a number of iterations are completed. Thus, x0 is a vector of decision vari-
ables after zero iterations have been completed (i.e., it is an initial guess). Lines 4
through 9 are the iterative procedure. In Line 4 we check to see whether certain
termination criteria are met. If so, we stop and output the current point that we have,
xk . Otherwise, we proceed with an additional iteration. Each iteration consists of
two main procedures. In Line 5 we find a search direction in which to move away
from the current point, xk . In Line 6 we conduct what is known as a line search to
determine how far to move in the search direction that is found in Line 5. The value,
αk , that we find is called the step size. Finally, in Line 7 we update our point based
on the search direction and step size found in Lines 5 and 6, respectively, and we
update our iteration counter in Line 8.

Generic Algorithm for Unconstrained Nonlinear Optimization Problems
1: procedure Generic Unconstrained Algorithm
2: k ← 0 � Set iteration counter to 0
3: Fix x0 � Fix a starting point
4: while Termination criteria are not met do
5: Find direction, dk , to move in
6: Determine step size, αk

7: xk+1 ← xk + αkdk � Update point
8: k ← k + 1 � Update iteration counter
9: end while
10: end procedure

The major steps of this iterative algorithm are very similar to those in the Simplex
method, which is used to solve linear optimization problems. The Simplex method
consists of two major steps. First, we check whether any of the coefficients in the
objective-function row of the tableau are negative. If so, we increase the value of the
associated non-basic variable from zero. This is akin to finding a search direction in
Line 5 of the Generic Algorithm for Unconstrained Nonlinear Optimization Prob-
lems. This is because in both algorithms we are moving away from the point that we
are currently at to improve the objective-function value. The other major step of the
Simplex method is to conduct a ratio test, which determines how much to increase
the value of the non-basic variable that enters the basis. This is akin to the line search
that is conducted in Line 6 of the Generic Algorithm for Unconstrained Nonlinear
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Optimization Problems. This is because in both algorithms we are determining how
far to move away from the point that we are currently at.

To use the Generic Algorithm for Unconstrained Nonlinear Optimization Prob-
lems, there are three important details that must be addressed. The first is how to
determine the search direction. The second is what termination criteria should be
used. The third is how to conduct the line search. We now address each of these in
turn.

5.2 Search Direction

Although there are a multitude of search-direction methods available, we limit our
discussion to two classic methods: steepest descent and Newton’s method. These
are two of the easiest search-direction methods to grasp and implement with real-
world problems. Interested readers are referred to other texts [2, 7] that discuss more
advanced search-direction methods.

Because we focus on finding the search direction here, we ignore the step size
parameter (i.e., αk) in the following discussion. Thus, we assume in the following
discussion that the points we generate after each iteration are defined as:

xk+1 = xk + dk .

After concluding the discussion of the search-directionmethods here, we reintroduce
the step size parameter in Section 5.4, where we focus exclusively on line search
procedures.

5.2.1 Steepest Descent

The method of steepest descent determines the search direction by attempting to
make the objective function after each iteration as small as possible. Put another
way, the idea behind steepest descent is that we choose the search direction, dk , to
solve the following minimization problem:

min
dk∈Rn

f (xk + dk).

Note that solving this minimization problem is as difficult as solving the original
unconstrainedminimization. Ifwe could solve it easilywewould not need an iterative
solution algorithm in the first place! Thus, instead of minimizing f (xk + dk) we
instead minimize its first-order Taylor approximation, which is:

f (xk + dk) ≈ f (xk) + dk�∇ f (xk).
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Note, however, that this objective function is linear in dk . If we attempt to solve an
unconstrained minimization problem with a linear objective function, the problem
will necessarily be unbounded. To address this unboundedness, we add a constraint
that the direction vector, dk , must have squared length equal to one. It may seem
arbitrary to restrict the direction vector to have length one.We ‘get away’ with adding
this restriction because all we are concerned with at this point is finding a search
direction in which to move. After we find a search direction, we then conduct a line
search to determine the step size,which tells us how far tomove in the direction found.
Thus, the length of the dk vector doesn’t matter—the value of αk will be adjusted to
ensure that we move the ‘correct’ distance in whatever direction is identified.

With this constraint, our optimization problem becomes:

min
dk

f (xk) + dk�∇ f (xk)

s.t. dk�
dk = 1,

which can be expanded out to:

min
dk

f (xk) + dk
1

∂

∂x1
f (xk) + dk

2
∂

∂x2
f (xk) + · · · + dk

n

∂

∂xn
f (xk)

s.t. dk
1
2 + dk

2
2 + · · · + dk

n
2 − 1 = 0.

We can treat this as an equality-constrained nonlinear optimization problem, and if
we introduce a Lagrange multiplier, λ, the First-Order Necessary Condition (FONC)
for Equality-Constrained Nonlinear Optimization Problems is:

∂

∂x1
f (xk) + 2λdk

1 = 0

∂

∂x2
f (xk) + 2λdk

2 = 0

...

∂

∂xn
f (xk) + 2λdk

n = 0.

We can write the FONC more compactly as:

∇ f (xk) + 2λdk = 0.

Solving for dk gives:

dk = − 1

2λ
∇ f (xk). (5.1)
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Equation (5.1) has two possible solutions. One, in which λ > 0, has us move in a
direction that is opposite the gradient. The other, in which λ < 0, has us move in a
direction that is the same as the gradient. Note, however, that if λ > 0 then we have:

f (xk) + dk�∇ f (xk) = f (xk) − 1

2λ
∇ f (xk)�∇ f (xk) ≤ f (xk),

because:
∇ f (xk)�∇ f (xk) ≥ 0.

Conversely, if λ < 0 then we have:

f (xk) + dk�∇ f (xk) = f (xk) − 1

2λ
∇ f (xk)�∇ f (xk) ≥ f (xk).

From this, we conclude that the solution in which λ > 0 is the minimum and from
this observation we obtain the Steepest Descent Rule, which says to always move
in a direction that is opposite the gradient. This is stated in the following Steepest
Descent Rule.

Steepest Descent Rule: Given an unconstrained nonlinear optimization prob-
lem and a current point, xk , the steepest descent search direction is:

dk = −∇ f (xk).

The purpose of the 1/(2λ) term in Equation (5.1) is to scale the gradient so that
the direction vector has a squared length of one. We can ignore this scaling, however,
because the restriction that dk have a squared length of one is arbitrarily added
when we minimize the first-order Taylor approximation of f (xk +dk). As discussed
above, the length of the direction vector is ultimately unimportant because we always
conduct a line search to determine how far to move in the search direction found.

Example 5.1 Consider the unconstrained nonlinear optimization problem:

min
x

f (x) = (x1 − 3)2 + (x2 − 2)2.

Starting from the point, x0 = (1, 1)�, we wish to find the steepest descent direction.
To do so, we first compute the gradient of the objective function as:

∇ f (x) =
(
2(x1 − 3)
2(x2 − 2)

)
.
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Thus, the steepest descent direction at x0 = (1, 1)� is:

d0 = −∇ f (x0) =
(
4
2

)
.

�

5.2.2 Newton’s Method

Newton’s method takes a fundamentally different approach compared to steepest
descent in finding a search direction. Instead of looking for a direction that minimizes
the objective function, Newton’s method uses the knowledge that only stationary
points can be minima of unconstrained nonlinear optimization problems. Thus, the
underlying premise of Newton’s method is that we choose a search direction to make
∇ f (xk + dk) = 0. We note at the outset of this chapter that one of difficulties with
using optimality conditions, such as the FONC, is that theymay involve solving large
systems of nonlinear equations. Thus, finding dk to make ∇ f (xk + dk) equal zero
may be difficult. Instead of trying to make the gradient equal zero, Newton’s method
aims to make the first-order Taylor approximation of the gradient equal to zero.

To derive theNewton’smethod direction, we first use Taylor’s theorem to approxi-
mate the first-order partial derivative of f (x)with respect to the i th variable at xk+dk

as:

∂

∂xi
f (xk + dk) ≈ ∂

∂xi
f (xk) + dk�∇ ∂

∂xi
f (xk)

= ∂

∂xi
f (xk) + (dk

1 , d
k
2 , . . . , d

k
n )

⎛
⎜⎜⎜⎝

∂
∂x1

∂
∂xi

f (xk)
∂

∂x2
∂

∂xi
f (xk)

...
∂

∂xn
∂

∂xi
f (xk)

⎞
⎟⎟⎟⎠

= ∂

∂xi
f (xk) + (dk

1 , d
k
2 , . . . , d

k
n )

⎛
⎜⎜⎜⎜⎝

∂2

∂x1xi
f (xk)

∂2

∂x2xi
f (xk)
...

∂2

∂xn xi
f (xk)

⎞
⎟⎟⎟⎟⎠ .

Thus, we can approximate the gradient of f (x) at xk + dk as:
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∇ f (xk + dk) =

⎛
⎜⎜⎜⎝

∂
∂x1

f (xk + dk)
∂

∂x2
f (xk + dk)

...
∂

∂xn
f (xk + dk)

⎞
⎟⎟⎟⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂
∂x1

f (xk) + (dk
1 , d

k
2 , . . . , d

k
n )

⎛
⎜⎜⎜⎜⎝

∂2

∂x1x1
f (xk)

∂2

∂x2x1
f (xk)
...

∂2

∂xn x1
f (xk)

⎞
⎟⎟⎟⎟⎠

∂
∂x2

f (xk) + (dk
1 , d

k
2 , . . . , d

k
n )

⎛
⎜⎜⎜⎜⎝

∂2

∂x1x2
f (xk)

∂2

∂x2x2
f (xk)
...

∂2

∂xn x2
f (xk)

⎞
⎟⎟⎟⎟⎠

...

∂
∂xn

f (xk) + (dk
1 , d

k
2 , . . . , d

k
n )

⎛
⎜⎜⎜⎜⎝

∂2

∂x1xn
f (xk)

∂2

∂x2xn
f (xk)
...

∂2

∂xn xn
f (xk)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can break this Taylor approximation into two terms, which gives:

⎛
⎜⎜⎜⎝

∂
∂x1

f (xk)
∂

∂x2
f (xk)
...

∂
∂xn

f (xk)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(dk
1 , d

k
2 , . . . , d

k
n )

⎛
⎜⎜⎜⎜⎝

∂2

∂x1x1
f (xk)

∂2

∂x2x1
f (xk)
...

∂2

∂xn x1
f (xk)

⎞
⎟⎟⎟⎟⎠

(dk
1 , d

k
2 , . . . , d

k
n )

⎛
⎜⎜⎜⎜⎝

∂2

∂x1x2
f (xk)

∂2

∂x2x2
f (xk)
...

∂2

∂xn x2
f (xk)

⎞
⎟⎟⎟⎟⎠

...

(dk
1 , d

k
2 , . . . , d

k
n )

⎛
⎜⎜⎜⎜⎝

∂2

∂x1xn
f (xk)

∂2

∂x2xn
f (xk)
...

∂2

∂xn xn
f (xk)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.2)
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The first term in (5.2) is the gradient,∇ f (xk). Making this substitution and factoring
dk out of the second term gives:

∇ f (xk) +

⎡
⎢⎢⎢⎢⎣

∂2

∂x1x1
f (xk) ∂2

∂x2x1
f (xk) · · · ∂2

∂xn x1
f (xk)

∂2

∂x1x2
f (xk) ∂2

∂x2x2
f (xk) · · · ∂2

∂xn x2
f (xk)

...
...

. . .
...

∂2

∂x1xn
f (xk) ∂2

∂x2xn
f (xk) · · · ∂2

∂xn xn
f (xk)

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝
dk
1
dk
2
...

dk
n

⎞
⎟⎟⎟⎠ . (5.3)

The second term in (5.3) is the Hessian multiplied by dk . Thus, the Taylor approxi-
mation of the gradient is:

∇ f (xk + dk) ≈ ∇ f (xk) + ∇2 f (xk)dk .

If we set this approximation equal to zero, we have:

∇ f (xk) + ∇2 f (xk)d = 0,

which gives:
dk = − [∇2 f (xk)

]−1 ∇ f (xk),

so long as ∇2 f (xk) is invertible. This is stated in the following Newton’s Method
Rule.

Newton’sMethodRule:Given an unconstrained nonlinear optimization prob-
lem and a current point, xk , the Newton’s method search direction is:

dk = − [∇2 f (xk)
]−1 ∇ f (xk),

so long as∇2 f (xk) is invertible. Otherwise, theNewton’smethod search direc-
tion is not defined.

Unlike with steepest descent, Newton’s method may not yield a well-defined
search direction. This happens if we are at a point where the Hessian of the objective
function is not invertible. It is important to stress that depending on the objective
function that we are minimizing, the invertibility problem may only arise at certain
iterations in the overall algorithm. Thus, algorithms that implementNewton’smethod
typically include a check to ensure that the Hessian is invertible in each iteration. If
so, the Newton search direction is used. Otherwise, another search direction (such
as the steepest descent direction) is used in that iteration. In subsequent iterations,
we may move to points at which the Hessian is invertible and Newton’s method
directions are again used.
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Example 5.2 Consider the unconstrained nonlinear optimization problem:

min
x

f (x) = (x1 − 3)2 + (x2 − 2)2,

which is introduced in Example 5.1. Starting from the point, x0 = (1, 1)�, we wish
to find the Newton’s method direction. We already know that the gradient of the
objective function is:

∇ f (x) =
(
2(x1 − 3)
2(x2 − 2)

)
.

We can further compute the Hessian as:

∇2 f (x) =
[
2 0
0 2

]
.

Because the Hessian is invertible, we can compute the Newton’s method direction at
x0 = (1, 1)� as:

d0 = − [∇2 f (x0)
]−1 ∇ f (x0) =

(
2
1

)
.

�

5.3 Termination Criteria

Both steepest descent and Newton’s method use the same termination criteria, and
that is to stop once reaching a stationary point. If the current point is stationary, both
the steepest descent and Newton’s method search directions will be equal to zero.
That is, both search methods tell us not to move away from the current point that we
are at. This termination criterion makes intuitive sense. We know from the FONC for
Unconstrained Nonlinear Optimization Problems, which is given in Section 4.5.1,
that aminimummust be a stationary point. From this perspective, steepest descent and
Newton’s method terminating at stationary points is desirable. However, as discussed
throughout Section 4.5, with the exception of convex optimization problems, points
that satisfy the FONC are not guaranteed to be local or global minima. If we have
a convex optimization problem, then both steepest descent and Newton’s method
terminate at global minima. Otherwise, for more general problems, all we know is
that they provide us with stationary points that could be local minima or may not be.

In practice, software packages include other termination criteria. For instance,
most packages have an upper limit on the number of iterations to conduct. This is
because it may take more effort and time to try finding a stationary point than the user
would like the computer to expend. Indeed, theGeneric Algorithm for Unconstrained
Nonlinear Optimization Problems may never reach a stationary point if it is given an
unboundedoptimization problem.Typically, after themaximumnumber of iterations,

http://dx.doi.org/10.1007/978-3-319-56769-3_4
http://dx.doi.org/10.1007/978-3-319-56769-3_4
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k̄, is conducted, the software package will report the final solution, xk̄ , and indicate
to the user that the algorithm terminated because it reached the maximum number of
iterations (as opposed to finding a stationary point). The use could then choose to use
the final point that is reported, conduct more iterations starting from the final point
that is reported, or try solving the problem in another way (e.g., using a different
algorithm or starting point).

Another issue that comes up in practice is that software packages typically numer-
ically approximate partial derivatives when computing the gradient and Hessian. As
such, the solver may be at a stationary point, but the computed gradient is not equal
to zero due to approximation errors. Thus, most software packages include a para-
meter that allows some tolerance in looking for a stationary point. For instance, the
algorithm may terminate if ||∇ f (xk)|| < ε, where ε is a user-specified tolerance.

5.4 Line Search

Once we determine a direction in which to move, using steepest descent, Newton’s
method, or another technique, the next question is how far to move in the direction
that is identified. This is the purpose of a line search. We call this process a line
search because what we are doing is ‘looking’ along a line in the search direction.
Looking along this line, we determine how far to move in the direction, with the aim
of reducing the objective-function value.

Aswith search directions, there aremany line-searchmethods available.We intro-
duce three of them and refer interested readers to other texts [2, 7] that discuss other
more advanced methods.

5.4.1 Exact Line Search/Line Minimization

An exact line search or line minimization solves the minimization problem:

min
αk≥0

f (xk + αkdk),

to determine the optimal choice of step size. The advantage of an exact line search is
that it provides the best choice of step size. This comes at a cost, however, which is
thatwemust solve an optimization problem.This is always a single-variable problem,
however, and in some instances the exact-line-search problemcan be solved relatively
easily. Indeed, the exact-line-search problem typically simplifies to solving:

∂

∂αk
f (xk + αkdk) = 0,
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because we can often treat the exact line search as being an unconstrained opti-
mization problem. Nevertheless, an exact line search may be impractical for some
problems. We demonstrate its use with an example.

Example 5.3 Consider the unconstrained problem:

min
x

f (x) = (x1 − 3)2 + (x2 − 2)2,

which is introduced in Example 5.1. We know that if we start from the point x0 =
(1, 1)� the initial steepest descent direction is:

d0 = −∇ f (x0) =
(
4
2

)
.

To conduct an exact line search we solve the following minimization problem:

min
α0≥0

f
(
x0 + α0d0

) = f

((
1
1

)
+ α0

(
4
2

))

= f

((
1 + 4α0

1 + 2α0

))

= (4α0 − 2)2 + (2α0 − 1)2.

To solve this unconstrained minimization, we use the FONC for Unconstrained Non-
linear Optimization Problems, which is:

d

dα0

[
(4α0 − 2)2 + (2α0 − 1)2

] = 8(4α0 − 2) + 4(2α0 − 1) = 0,

and which gives α0 = 1/2. We further have that:

d2

dα02

[
(4α0 − 2)2 + (2α0 − 1)2

] = 40 > 0,

meaning that this value of α0 is a global minimum. Thus, our new point is:

x1 = x0 + α0d0 = (3, 2)�.

From this new point we now conduct another iteration. The steepest descent
direction is:

d1 = −∇ f (x1) =
(
0
0

)
,

meaning that we are at a stationary point. Thus, we terminate the algorithm at this
point. �
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5.4.2 Armijo Rule

The Armijo rule is a heuristic line search that is intended to give objective-function
improvementwithout the overhead of having to solve an optimization problem,which
is required in an exact line search. The Armijo rule works by specifying fixed scalars,
s, β, and σ , with s > 0, 0 < β < 1, and 0 < σ < 1. We then have:

αk = βmk
s,

where mk is the smallest non-negative integer for which:

f (xk) − f (xk + βmk
sdk) ≥ −σβmk

sdk�∇ f (xk).

The idea behind the Armijo rule is that we start with an initial guess, s, of what
a good step size is. If this step size gives us sufficient improvement in the objective
function, which is measured by f (xk)− f (xk +sdk), then we use this as our step size
(i.e., we have αk = s). Otherwise, we reduce the step size by a factor of β and try this
new reduced step size. That is, we check f (xk)− f (xk +βsdk). We continue doing
this (i.e., reducing the step size by a factor of β) until we get sufficient improvement
in the objective function. The term on the right-hand side of the inequality in the
Armijo rule, −σβmk

sdk�∇ f (xk), says that we want the objective to improve by
some fraction of the direction times the gradient. The direction times the gradient is
the first-order Taylor approximation of the change in the objective-function value.

Usually, σ is chosen close to zero. Values of σ ∈ [10−5, 10−1] are common. The
reduction factor, β, is usually chosen to be between 1/2 and 1/10. The initial step
size guess usually depends on what we know about the objective function. An initial
guess of s = 1 can be used if we have no knowledge of the behavior of the objective
function.

Example 5.4 Consider the unconstrained problem:

min
x

f (x) = (x1 − 3)2 + (x2 − 2)2,

which is introduced in Example 5.1. We know that if we start from the point, x0 =
(1, 1)�, the initial steepest descent direction is:

d0 = −∇ f (x0) =
(
4
2

)
.

We next conduct a line search using the Armijo rule with σ = 10−1, β = 1/4
and s = 1. To conduct the line search, we compute the objective-function value at
the current point as:

f (x0) = 5,
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and the objective-function value if α0 = s = 1 as:

f (x0 + sd0) = 5.

We also compute:
−σ sd0�∇ f (x0) = 2.

We then check to see if:

f (x0) − f (x0 + sd0) ≥ −σ sd0�∇ f (x0).

Finding that it is not, we reduce the step size by a factor of β = 1/4.We now compute
the objective function if α0 = βs = 1/4 as:

f (x0 + βsd0) = 5

4
.

We also compute:

−σβsd0�∇ f (x0) = 1

2
.

We then check to see if:

f (x0) − f (x0 + βsd0) ≥ −σβsd0�∇ f (x0).

Finding that it is we set α0 = βs = 1/4, meaning that our new point is x1 =
x0 + α0d0 = (2, 3/2)�.

At this new point the steepest descent direction is:

d1 = −∇ f (x1) =
(
2
1

)
,

meaning that we are not at a stationary point. Thus, we must continue conduct-
ing iterations of the Generic Algorithm for Unconstrained Nonlinear Optimization
Problems to solve this problem. �

5.4.3 Pure Step Size

If we are using the Newton search direction, there is a third step size available to
us, which is a pure step size. The pure step size rule is to simply fix αk = 1. It is
important to stress that the pure step size should only be used with Newton’s method.
If it is used with steepest descent (or another search direction) there is no guarantee
how the algorithm will perform. The pure step size seems completely arbitrary on
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the surface, but it can perform well in many practical applications. In fact, it can be
shown [2] that if we are currently at a point, xk , that is sufficiently close to a stationary
point, then αk = 1 is the step size that we would find from using the Armijo rule,
so long as s = 1 and σ < 1/2. As a result, some Newton’s method-based software
packages skip the line search and use the pure step size instead.

5.5 Performance of Search Directions

A common question that arises is which of steepest descent or Newton’s method is
a ‘better’ search direction to use. The answer to this question is somewhat ambigu-
ous, because they have advantages and disadvantages relative to one another. First
of all, it is clear that Newton’s method involves more work in each iteration of the
Generic Algorithm for Unconstrained Nonlinear Optimization Problems. Steepest
descent requires the gradient vector to be computed or approximated in each iter-
ation, whereas Newton’s method requires the gradient and the Hessian. Thus, we
must compute n partial derivatives per iteration with steepest descent as opposed to
n · (n + 1) with Newton’s method. Moreover, we must invert the n × n Hessian
matrix1 in each iteration of Newton’s method, which can be very computationally
expensive.

As the following examples demonstrate, however, in many instances Newton’s
method provides greater improvement in the objective function in each iteration.

Example 5.5 Consider the unconstrained nonlinear optimization problem:

min
x

f (x) = (x1 − 3)2 + (x2 − 2)2,

which is introduced in Example 5.1. If we start from the point x0 = (1, 1)� and
conduct one iteration of steepest descent with an exact line search, our new point
is x1 = (3, 2)�, which we show in Example 5.3 to be a stationary point at which
the algorithm terminates. We can further show that this point is a local and global
minimum of the problem.

If we instead conduct one iteration of Newton’s method with an exact line search
stating from the point x0 = (1, 1)�, our initial search direction is:

d0 = − [∇2 f (x0)
]−1 ∇ f (x0) =

(
2
1

)
.

Using this direction, we next conduct an exact line search by solving the following
minimization problem:

1In practice, software packages often factorize or decompose the Hessian matrix (as opposed to
inverting it) to find the Newton’s method direction.
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min
α0

f
(
x0 + α0d0

) = f

((
1 + 2α0

1 + 1α0

))
,

which gives α0 = 1 as a solution. We can also easily show that f (x0 + α0d0) is
convex in α0, thus we know that α0 = 1 is a global minimum. This means that our
new point, when we use Newton’s method, is also x1 = (3, 2)�. �

In this example, steepest descent and Newton’s method provide the same amount
of objective-function improvement in one iteration. This means that the added work
involved in computing the Newton’s method direction is wasted. However, the fol-
lowing example shows that this does not hold true for all problems.

Example 5.6 Consider the unconstrained nonlinear optimization problem:

min
x

f (x) = 10(x1 − 3)2 + 2(x2 − 2)2.

Starting from the point, x0 = (1, 1)� we first conduct one iteration of steepest
descent with an exact line search. To do so, we compute the gradient of the objective
function as:

∇ f (x) =
(
20(x1 − 3)
4(x2 − 2)

)
.

Thus, the steepest descent direction is:

d0 = −∇ f (x0) =
(
40
4

)
.

Solving the line minimization problem gives α0 = 101/2004, meaning that x1 ≈
(3.02, 1.20)�. Note that this is not a stationary point, because:

∇ f (x1) ≈
(

0.4
−3.2

)
.

Next, we conduct one iteration of Newton’s method with an exact line search,
starting from x0 = (1, 1)�. To do so, we compute the Hessian of the objective
function as:

∇2 f (x) =
[
20 0
0 4

]
.

Thus, the Newton’s method direction is:

d0 = − [∇2 f (x0)
]−1 ∇ f (x0) =

(
2
1

)
.
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Solving the line minimization problem gives α0 = 1. Thus, x1 = (3, 2)�. It is simple
to show that this point is stationary and a local and global minimum. �

In this example, Newton’s method performs much better than steepest descent,
finding a stationary point and terminating after a single iteration. It is worth noting
that in both Examples 5.5 and 5.6 the starting point is the exact same distance from
the stationary point of the objective function (we start at the same point in both
examples and the objective functions in both examples have the same stationary
points). Nevertheless, steepest descent is unable to find the stationary point in a
single iteration with the latter objective function whereas Newton’s method is.

To understand why this happens, Figures 5.1 and 5.2 show the contour plots of
the objective functions in Examples 5.5 and 5.6, respectively. The contour plot of the
objective function in Example 5.5 is a set of concentric circles centered around the
stationary point at x∗ = (3, 2)�. This means that starting from any point (not just
the choice of x0 = (1, 1)� that is given in the example), the gradient points directly
away from the stationary point and the steepest descent direction points directly at
the stationary point. Thus, conducting a single iteration of steepest descent with an
exact line search on the problem in Example 5.5, starting from any point, gives the
stationary point.

Fig. 5.1 Contour plot of the
objective function in
Example 5.5

x1

x∗

f (x0)

d0

x0

x2

Conversely, the contour plot of the objective function in Example 5.6 is a set of
concentric ellipses centered around the stationary point at x∗ = (3, 2)�. This means
that starting from almost any point (including the choice of x0 = (1, 1)� that is
given in Example 5.6), the gradient does not point directly away from the stationary
point. Thus, the steepest descent direction does not point directly at the stationary
point. This means that an exact line search is not able to find the stationary point in
one iteration. Of course, if we are fortunate and choose a starting point which is on
the major or minor axis of the concentric ellipses, then the steepest descent direction
will point directly toward the stationary point. However, such luck is typically rare.
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Fig. 5.2 Contour plot of the
objective function in
Example 5.6

x1

x∗

x2

x0

f (x0)

d0

The differences between the objective functions in the two examples, which result
in steepest descent performing poorly, are the scaling factors on the x1 and x2 terms.
Generally speaking, how well steepest descent performs in one iteration depends on
the ratio between the largest and smallest eigenvalues of the Hessian matrix. The
closer this ratio is to one, the better steepest descent performs. Indeed this ratio
is equal to one for the objective function in Example 5.5, which is why steepest
descent converges in a single iteration. As this ratio gets higher, steepest descent
tends to perform worse. For example, the ratio for the objective in Example 5.6 is
five. Newton’s method uses second derivative information, which is encoded in the
Hessian matrix, to mitigate these scaling issues.

Although Newton’s method handles poorly scaled problems better than steepest
descent, it has drawbacks (in addition to it requiring more work per iteration). This
is illustrated in the following example.

Example 5.7 Consider the unconstrained nonlinear optimization problem:

min
x

f (x) = −(x1 − 3)2 − 2(x2 − 2)2.

Starting from the point, x0 = (1, 1)� we use Newton’s method with a pure step size
to solve the problem. To find the Newton’s method direction we first compute the
gradient and Hessian of the objective function, which are:

∇ f (x) =
(−2(x1 − 3)

−4(x2 − 2)

)
,
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and:

∇2 f (x) =
[−2 0

0 −4

]
.

Thus, the Newton’s method direction is:

d0 = − [∇2 f (x0)
]−1 ∇ f (x0) =

(
2
1

)
.

Apure step sizemeans that α0 = 1, meaning that our new point is x1 = (3, 2)�. If we
attempt to conduct another iteration from this incumbent point we have ∇ f (x1) =
(0, 0)�, meaning that we are at a stationary point and the algorithm terminates.

Note, however, that after conducting this iteration the objective function has gotten
worse. We went from an objective-function value of f (x0) = −6 to f (x1) = 0.
Indeed, it is easy to show that the stationary point that we find after a single iteration
using the Newton’s method direction is a local and global maximum of f (x). �

Example 5.7 demonstrates a major caveat in blindly using Newton’s method.
Recall that the underlying premise of Newton’s method is that we are trying to find
a direction, dk , to move away from our current point, xk , to make the first-order
Taylor approximation of the gradient equal to zero. The rationale behind this is our
knowledge from the FONC for UnconstrainedNonlinear Optimization Problems that
any local minimum must be a stationary point. However, we also see in a number of
examples and the discussion in Section 4.5.1 that local maxima and saddle points are
also stationary points. Newton’s method attempts to find a stationary point, without
distinguishing between what type of stationary point it is.

A question that this raises is whether we can determine a prioriwhether Newton’s
method will move in a direction that gives an objective-function improvement or
not. To answer this question, we examine a first-order Taylor approximation of the
objective-function value after conducting a Newton iteration, which is:

f (xk + αkdk) ≈ f (xk) + αkdk
�∇ f (xk) = f (xk) − αk∇ f (xk)�

[
∇2 f (xk)

]−1 ∇ f (xk).

We can rewrite this as:

f (xk) − f (xk + αkdk) ≈ αk∇ f (xk)�
[∇2 f (xk)

]−1 ∇ f (xk).

To get an objective-function improvement we want f (xk) − f (xk + αkdk) ≥ 0 or,
using the Taylor approximation, we want:

∇ f (xk)�
[∇2 f (xk)

]−1 ∇ f (xk) ≥ 0,

after dividing through by αk and noting that αk > 0. This inequality is guaranteed
to hold if

[∇2 f (xk)
]−1

is positive definite. Moreover, because the eigenvalues of

http://dx.doi.org/10.1007/978-3-319-56769-3_4
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[∇2 f (xk)
]−1

are the reciprocals of the eigenvalues of∇2 f (xk), a sufficient condition
to guarantee that the objective function improves after conducting an iteration of
Newton’s method is to have ∇2 f (xk) be positive definite.

The Hessian of the objective function of the problem in Example 5.7 is negative
definite, which explains why the objective-function value does not improve after
conducting the iteration of Newton’s method. As a result of this property, most
software packages that useNewton’smethod testwhether theHessian of the objective
function is positive definite at each iteration. If the matrix is positive definite, the
algorithm uses the Newton’s method direction. Otherwise, another search direction
(such as steepest descent) is used. There are also other methods that build off of
the concept of Newton’s method, which is to use second derivative information
to deal with scaling issues and get better objective-function improvements in each
iteration. These so-called quasi-Newtonmethods reduce the amount ofwork involved
in computing the search direction and avoid cases of the objective function getting
worse when its Hessian is not positive definite. More advanced textbooks [2, 7]
provide details of these types of methods.

Unlike Newton’s method, steepest descent is guaranteed to give an objective-
function improvement in each iteration, so long as the step size is chosen appro-
priately. We can see this from the first-order Taylor approximation of the objective
function after conducting an iteration, which is:

f (xk + αkdk) ≈ f (xk) + αkdk�∇ f (xk) = f (xk) − αk∇ f (xk)�∇ f (xk).

This can be rewritten as:

f (xk) − f (xk + αkdk) ≈ αk∇ f (xk)�∇ f (xk),

meaning that we get an objective-function improvement so long as:

∇ f (xk)�∇ f (xk) ≥ 0,

which is guaranteed to be true. Indeed, the steepest descent direction starting from
x0 in Example 5.7 is d0 = (−4,−2)�. It is easy to show that the objective function
improves in this direction, as opposed to the Newton’s method direction.

Thus, steepest descent is an example of what is known as a descent algorithm—
the objective function is guaranteed to improve at each iteration of the Generic
Algorithm forUnconstrainedNonlinearOptimization Problems.We can further draw
some conclusions about what kinds of stationary points steepest descent converges
to. So long as we do not start at a point, x0, that is a local maximum, if steepest
descent converges to a stationary point that point will either be a saddle point or a
local minimum. On its own, Newton’s method has no such guarantee. If, however,
we use Newton’s method only at points where the Hessian is positive definite and use
steepest descent at other points, we will also have a descent algorithm. This hybrid



306 5 Iterative Solution Algorithms for Nonlinear Optimization

algorithm will also only stop at stationary points that are local minima or saddle
points (so long as it does not start at a local maximum).

5.6 Iterative Solution Algorithms for Constrained
Nonlinear Optimization Problems

Applying iterative solution algorithms to constrained nonlinear optimization prob-
lems is more difficult than doing so for unconstrained problems. This is because we
must be careful of the constraints to ensure that the final solution is feasible. We take
two approaches to addressing this difficulty.

The first is to relax the constraints from the problem and instead add terms to the
objective function that penalize us for violating them. When we remove or relax the
constraints, we can treat the problem as being unconstrained and apply any of the
methods discussed in Sections 5.1 through 5.4. The important detail that we must
pay attention to with these methods is to ensure that we add terms to the objective
function that properly penalize constraint violations. This method can be applied to
nonlinear optimization problems with any types of constraints.

The second approach explicitly accounts for the constraints. In this approach
we modify the search direction and line search to ensure that after we conduct each
iteration the point that wemove to is feasible. This method can only easily be applied
to problems with linear constraints.

5.6.1 Relaxation-Based Methods

The strength of relaxation-basedmethods is that they can be applied to problemswith
any types of constraints. There are two relaxation-basedmethods that we discuss.We
beginwith the penalty-based and then discuss themultiplier method, which builds off
of the penalty-based method. We use a generic equality- and inequality-constrained
nonlinear optimization problem, of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0
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...

gr (x) ≤ 0,

in explaining these methods.

5.6.1.1 Penalty-Based Method

We begin with a discussion of the penalty-based method. The first step to applying
the method is to convert the inequality constraints to equalities. We know from
Section 2.2.2.1 how to convert inequalities into equalities when applying the Simplex
method to linear optimization problems. This is done by adding or subtracting non-
negative slack or surplus variables from the left-hand side of the constraints. We
follow the same approach here. If we introduce slack variables, z1, z2, . . . , zr (i.e.,
one for each inequality constraint), our problem becomes:

min
x∈Rn ,z∈Rr ,z≥0

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) + z1 = 0

g2(x) + z2 = 0

...

gr (x) + zr = 0.

It is important to remember that the slack variables are now variables that must be
listed under the min operator in the problem formulation.

After converting our inequality constraints to equalities, we next add terms to the
objective function to penalize constraint violations. Because we have equal-to-zero
constraints, we want to penalize having the left-hand sides of any of the constraints
be negative or positive. One way to do this is to add terms to the objective function
with the absolute value of the left-hand side of each constraint. Absolute value is
not desirable, however, because it is not a differentiable function. The methods that
are discussed in Section 5.2 rely on derivatives to determine search directions. The
alternative, which we use, is to add terms to the objective with the left-hand side of
each constraint squared. When we do this, our penalized objective function is:

f (x) +
m∑
i=1

ρi · (hi (x))
2 +

r∑
j=1

φ j · (g j (x) + z j )
2,

http://dx.doi.org/10.1007/978-3-319-56769-3_2
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where ρ1, ρ2, . . . , ρm, φ1, φ2, . . . , φr > 0 are fixed coefficients that determine how
much weight is placed on violating a particular constraint. Instead of solving the
original constrained problem, we solve the problem:

min
x∈Rn ,z∈Rr ,z≥0

f (x) +
m∑
i=1

ρi · (hi (x))
2 +

r∑
j=1

φ j · (g j (x) + z j )
2, (5.4)

and relax the original equality and inequality constraints.
We solve this problem in two steps, by first minimizing with respect to z. This is

because we can write Problem (5.4) as:

min
x∈Rn

⎧⎨
⎩ min

z∈Rr ,z≥0

⎧⎨
⎩ f (x) +

m∑
i=1

ρi · (hi (x))
2 +

r∑
j=1

φ j · (g j (x) + z j )
2

⎫⎬
⎭

⎫⎬
⎭

= min
x∈Rn

⎧⎨
⎩ f (x) +

m∑
i=1

ρi · (hi (x))
2 + min

z∈Rr ,z≥0

⎧⎨
⎩

r∑
j=1

φ j · (g j (x) + z j )
2

⎫⎬
⎭

⎫⎬
⎭ .

(5.5)

We can write the problem in this way because the first two terms in (5.4) do not
depend on z. If we examine the third term in (5.5), which is:

min
z∈Rr ,z≥0

r∑
j=1

φ j · (g j (x) + z j )
2, (5.6)

we note that this is a quadratic function of z. We can minimize this function with
respect to z using the KKT condition, which is:

2φ1 · (g1(x) + z1) − μ1 = 0

...

2φr · (gr (x) + zr ) − μr = 0

0 ≤ z1 ⊥ μ1 ≥ 0

...

0 ≤ zr ⊥ μr ≥ 0,

where μ j is the Lagrange multiplier on the j th non-negativity constraint (i.e., the
constraint z j ≥ 0). Solving the KKT condition gives:
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z∗
j =

{−g j (x), if g j (x) < 0;
0, otherwise.

We can write this more compactly as z∗
j = max{0,−g j (x)}. We further know that

z ≥ 0 defines a convex feasible region for Problem (5.6) and that the Hessian of its
objective function is:

∇2
z

⎡
⎣ r∑

j=1

φ j · (g j (x) + z j )
2

⎤
⎦ =

⎡
⎢⎢⎢⎣
2φ1 0 · · · 0
0 2φ2 · · · 0
...

...
. . .

...

0 0 · · · 2φr

⎤
⎥⎥⎥⎦ ,

where ∇2
z denotes the Hessian with respect to z. This Hessian matrix is positive defi-

nite. Thus, Problem (5.6) is convex and z∗
j = max{0,−g j (x)} is its global minimum.

Because we have an explicit closed-form solution for z, we can substitute this
into (5.4) and instead solve the following unconstrained minimization problem:

min
x∈Rn

Fρ,φ(x) = f (x) +
m∑
i=1

ρi · (hi (x))
2 +

r∑
j=1

φ j · (max{0, g j (x)})2, (5.7)

using any of the methods that are discussed in Sections 5.1 through 5.4. The penal-
ized objective function, including the max term in it, is continuously differentiable.
However, the Hessian is discontinuous at any x where g j (x) = 0. Thus, the steepest
descent direction can be used to solve the penalized objective function without any
problem. Moreover, Newton’s method can be used, except at these points where the
Hessian is discontinuous.

A question at this point is what values to set the ρ’s and φ’s equal to. A naïve
answer is to set them to arbitrarily large values. By doing so, we ensure that we have
enough weight on constraint violations to find a feasible solution. The problem with
setting the ρ’s and φ’s to very high values is that doing so can introduce scaling
problems. We know from Example 5.6 that poorly scaled problems can be difficult
to solve using iterative algorithms.

Thus, in practice, we use the following Penalty-Based Algorithm for Constrained
Nonlinear Optimization Problems. Lines 2 through 4 initialize the algorithm by
setting the iteration counter to zero, picking starting penalty weights, and a starting
guess for a solution. Ifwehave information about the problem, that canhelp in picking
starting values for the penalty weights. Otherwise, values of one are reasonable
starting values.
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Penalty-Based Algorithm for Constrained Nonlinear Optimization Prob-
lems
1: procedure Penalty- Based Algorithm
2: k ← 0 � Set iteration counter to 0
3: Fix ρ1, ρ2, . . . , ρm , φ1, φ2, . . . , φr to positive values � Initialize penalty weights
4: Fix x0 � Fix a starting point
5: while Termination criteria are not met do
6: Find direction, dk , to move in
7: Determine step size, αk

8: xk+1 ← xk + αkdk � Update point
9: for i ← 1, . . . ,m do
10: if hi (xk+1) = 0 then
11: Increase ρi � Increase penalty weight if constraint is not satisfied
12: end if
13: end for
14: for j ← 1, . . . , r do
15: if g j (xk+1) > 0 then
16: Increase φ j � Increase penalty weight if constraint is not satisfied
17: end if
18: end for
19: k ← k + 1 � Update iteration counter
20: end while
21: end procedure

Lines 5 through 20 are the main iterative loop, much of which is the same as in
the Generic Algorithm for Unconstrained Nonlinear Optimization Problems. Lines 6
and 7 determine the search direction and conduct a line search, using any of the
methods that are outlined in Sections 5.2 and 5.4. It is important to stress that these
steps should be conducted using:

min
x∈Rn

Fρ,φ(x) = f (x) +
m∑
i=1

ρi · (hi (x))
2 +

r∑
j=1

φ j · (max{0, g j (x)})2,

as the objective function, as opposed to simply using f (x). If we use f (x) alone as
the objective function, then we are completely ignoring the constraints of the original
problem. After we update our point in Line 8 we next go through each constraint in
Lines 9 through 18. If we find that any constraint is still violated at our new point,
then we increase the penalty weight associated with that constraint. Otherwise, if the
constraint is satisfied the weight is kept the same. This process continues until we
satisfy our termination criteria in Line 5.

The typical termination criterion that we use is that we have a solution, xk , that
satisfies all of the constraints of the original problem and that is a stationary point
ofFρ,φ(x). However, as discussed in Section 5.3, we may include other termination
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criteria, such as a maximum number of iterations, or tolerances in the feasibility and
gradient conditions.

Example 5.8 Consider the problem:

min
x

f (x) = (x1 + 2)2 + (x2 − 3)2

s.t. h1(x) = x1 + 2x2 − 4 = 0

g1(x) = −x1 ≤ 0.

We derive the penalized objective function:

Fρ1,φ1(x) = (x1 + 2)2 + (x2 − 3)2 + ρ1 · (x1 + 2x2 − 4)2 + φ1 · (max{0,−x1})2,

which becomes:

F1,1(x) = (x1 + 2)2 + (x2 − 3)2 + (x1 + 2x2 − 4)2 + (max{0,−x1})2,

if we assume starting weights of one on both constraints. Starting from the point
x0 = (−1,−1)�, we conduct one iteration of steepest descent using the Armijo rule
with σ = 10−1, β = 1/10 and s = 1.

To conduct the iteration, we must compute the gradient of the objective function.
To do so, we note that at x0 = (−1,−1)� the objective function is equal to:

F1,1(x) = (x1 + 2)2 + (x2 − 3)2 + (x1 + 2x2 − 4)2 + (max{0,−x1})2
= (x1 + 2)2 + (x2 − 3)2 + (x1 + 2x2 − 4)2 + (−x1)

2.

This step of determining whether:

max{0,−x1},

is equal to 0 or −x1 is vitally important, as the gradient that we compute depends on
what we substitute for this term. The gradient is equal to:

∇F1,1(x) =
(
2(x1 + 2) + 2(x1 + 2x2 − 4) + 2x1

2(x2 − 3) + 4(x1 + 2x2 − 4)

)
,

and the search direction is:

d0 = −∇F1,1(x
0) =

(
14
36

)
.

To conduct the line search, we compute the objective-function value at the current
point as:

F1,1(x
0) = 67,
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and the objective-function value if α0 = s = 1 as:

F1,1(x
0 + sd0) = 7490.

We also compute:
−σ sd0�∇F1,1(x

0) = 149.2.

We then check to see if:

F1,1(x
0) − F1,1(x

0 + sd0) ≥ −σ sd0�∇F1,1(x
0).

Finding that it is not, we reduce the step size by a factor of β = 1/10. We now
compute the objective function if α0 = βs = 1/10 as:

F1,1(x
0 + βsd0) = 8.48.

We also compute:
−σβsd0�∇F1,1(x

0) = 14.92.

We then check to see if:

F1,1(x
0) − F1,1(x

0 + sβd0) ≥ −σβsd0�∇F1,1(x
0).

Finding that it is we set α0 = βs = 1/10, meaning that our new point is x1 =
(0.4, 2.6)�.

We already know that the value of the penalized objective function improves from
this one iteration. We further have that:

f (x0) = 17,

and:
f (x1) = 5.92,

meaning that the objective function of the original problem improves in this one
iteration. We also have that:

h1(x
0) = −7,

h1(x
1) = 1.6,

g1(x
0) = 1,

and:
g1(x

1) = −0.4,
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meaning that the extent to which the two constraints are violated is reduced in con-
ducting this one iteration. The h1(x) = 0 constraint is still violated, but by less than
before. The g1(x) ≤ 0 constraint is satisfied by the new point. Moreover, the point
x1 = (0.4, 2.6)� is not a stationary point of F1,1(x), because we have that:

∇F1,1(x
1) =

(
8
5.6

)
.

Thus, we must continue the Penalty-Based Algorithm for Constrained Nonlinear
Optimization Problems. We increase the value of ρ1 only (i.e., φ1 is kept at the same
value), because the equality constraint is violated while the inequality constraint is
satisfied at x1 �

Assuming that the original constrained problem is feasible, the Penalty-Based
Algorithm for Constrained Nonlinear Optimization Problems will typically find a
feasible solution, so long as the penalty weights are sufficiently large. We can come
to this conclusion by relying on the following Penalty-Function Property.

Penalty-Function Property: Suppose that the equality- and inequality-
constrained problem:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0,

is feasible. Then so long asρ1, ρ2, . . . , ρm, φ1, φ2, . . . , φr are sufficiently large,
a global minimum of:

min
x∈Rn

Fρ,φ(x) = f (x) +
m∑
i=1

ρi · (hi (x))
2 +

r∑
j=1

φ j · (max{0, g j (x)})2,

is optimal and feasible in the original equality- and inequality-constrained
problem.
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Because we can choose ρ1, ρ2, . . . , ρm, φ1, φ2, . . . , φr to be arbitrarily large,
we can examine the case in which the penalty weights go to +∞. Let x∗ be a
global minimum of:

lim
(ρ1,ρ2,...,ρm ,φ1,φ2,...,φr )→+∞

Fρ,φ(x).

If x∗ is infeasible in the original constrained problem, then that means at least
one of hi (x∗) = 0 or g j (x∗) > 0. However, in this case we have that:

lim
(ρ1,ρ2,...,ρm ,φ1,φ2,...,φr )→+∞

Fρ,φ(x∗) = +∞.

On the other hand, if we choose a feasible value for x , we would have:

lim
(ρ1,ρ2,...,ρm ,φ1,φ2,...,φr )→+∞

Fρ,φ(x) = f (x) < +∞.

This shows that x∗ must be feasible in the original problem.
Moreover, because we know that x∗ must be feasible in the original con-

strained problem, we know that Fρ,φ(x∗) = f (x∗). This is because all of the
penalty terms in Fρ,φ(x∗) equal zero. Now, suppose that x∗ is not optimal
in the original problem. That means there is a different solution, x̂ , that is
optimal in the original problem with the property that f (x̂) < f (x∗). We
also know that x̂ is feasible in the original problem. Thus, we have that
Fρ,φ(x̂) = f (x̂) < f (x∗) = Fρ,φ(x∗), which means that x∗ cannot be a
global minimum of:

lim
(ρ1,ρ2,...,ρm ,φ1,φ2,...,φr )→+∞

Fρ,φ(x).

What the Penalty-Function Property says is that so long as the penalty weights
are large enough, at some point minimizing Fρ,φ(x) will start giving solutions that
are feasible in the original problem. The Penalty-Based Algorithm for Constrained
Nonlinear Optimization Problems keeps increasing the penalty weights until xk is
feasible.Moreover, in each iteration of the algorithmwe choose a search direction and
conduct a line search to reduceFρ,φ(x). These two properties of the algorithm work
together to ensure that we eventually arrive at variable values that satisfy the con-
straints of the original problem. Moreover, if the algorithm finds a global minimum
of Fρ,φ(x), then that solution is also a global minimum of the original constrained
problem.
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5.6.1.2 Multiplier Method

The multiplier method builds off of the penalty-based method for solving a con-
strained nonlinear optimization problem. This is because it takes the same approach
of relaxing the constraints and adding the same types of terms to the objective func-
tion to penalize constraint violations. However, the multiplier method also makes
use of Lagrange multiplier theory to further penalize constraint violations beyond
what is done in the penalty-based method.

Although we can derive the multiplier method for a generic problem with a mix-
ture of equality and inequality constraints, the steps are more straightforward for a
problem with only equality constraints. As such, we begin by first showing another
way (which is different from that used in the penalty-based method) to convert any
generic equality- and inequality-constrained optimization problem of the form:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) ≤ 0

g2(x) ≤ 0

...

gr (x) ≤ 0,

into a problem with equality constraints only. We again do this using slack variables,
which we denote z1, . . . , zr . However, instead of constraining the slack variables to
be non-negative, we instead square them when adding them to the left-hand sides of
the inequality constraints. Doing so ensures that the added slacks are non-negative.
Adding these variables gives us the equality-constrained problem:

min
x∈Rn ,z∈Rr

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0

g1(x) + z21 = 0

g2(x) + z22 = 0
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...

gr (x) + z2r = 0,

which is equivalent to our starting problem.Becausewe can convert any equality- and
inequality-constrained problem to an equivalent problem with equality constraints
only, we hereafter in this discussion restrict our attention to the following generic
equality-constrained problem:

min
x∈Rn

f (x) (5.8)

s.t. h1(x) = 0 (5.9)

h2(x) = 0 (5.10)

...

hm(x) = 0. (5.11)

We next show an alternate way to derive the FONC for equality-constrained
problems (cf. Section 4.5.2). This alternative derivation of the FONC is used in
explaining the concept behind the multiplier method. The alternate derivation of
the FONC begins by defining what is known as the Lagrangian function for the
equality-constrained problem, which is:

L (x, λ) = f (x) +
m∑
i=1

λi hi (x).

We now show the very useful Lagrangian-Function Property relating this Lagrangian
function to the original equality-constrained problem.

Lagrangian-Function Property: Any solution to the FONC of the uncon-
strained optimization problem:

min
x,λ

L (x, λ) = f (x) +
m∑
i=1

λi hi (x), (5.12)

is a feasible solution to the FONC for equality-constrained problem (5.8)–
(5.11) and vice versa. Moreover, a global minimum of (5.12) is a feasible
solution to the FONC for equality-constrained problem (5.8)–(5.11).

http://dx.doi.org/10.1007/978-3-319-56769-3_4


5.6 Iterative Solution Algorithms for Constrained … 317

We show this by writing the FONC for (5.12). Because both x and λ are
variables in this minimization problem, the FONC is:

∇xL (x, λ) = ∇ f (x) +
m∑
i=1

λi∇hi (x) = 0, (5.13)

∇λ1L (x, λ) = h1(x) = 0, (5.14)

∇λ2L (x, λ) = h2(x) = 0, (5.15)

...

∇λmL (x, λ) = hm(x) = 0, (5.16)

where ∇x and ∇λ j indicate the gradient with respect to x and λ j , respectively.
Note that condition (5.13) is exactly the FONC (cf. Section 4.5.2) for

equality-constrained problem (5.8)–(5.11) and that conditions (5.14)–(5.16)
are equality constraints (5.9)–(5.11). Thus, the FONC of the Lagrangian func-
tion is equivalent to the FONC and constraints for the equality-constrained
problem. As a result, a solution to either set of conditions is a solution to the
other.

The second part of the property, regarding a global minimum of (5.12),
immediately follows. If x∗, λ∗

1, λ
∗
2, . . . , λ

∗
m are a global minimum of (5.12),

then they must satisfy the FONC of (5.12). Thus, they must also satisfy the
FONCof problem (5.8)–(5.11) and x∗ must be feasible in problem (5.8)–(5.11).

The Lagrangian-Function Property is useful because it provides a different way
of thinking about how we solve an equality-constrained problem. Namely, we can
solve an equality-constrained problem byminimizing its Lagrangian function, which
we do by solving the FONC of (5.12). Using this observation, the multiplier method
solves the equality-constrained problem by relaxing the problem constraints and
solving the unconstrained problem:

min
x∈Rn

Aλ,ρ(x) = f (x) +
m∑
i=1

λi hi (x) +
m∑
i=1

ρi · (hi (x))
2.

Aλ,ρ(x) is called the augmented Lagrangian function, because it adds the penalty
terms, which we use in the penalty-based method, to the Lagrangian function. The
idea behind the multiplier method is that we solve the original equality-constrained
problem by increasing the penalty weights, ρ1, ρ2, . . . , ρm . At the same time, we
also try and get the Lagrange multipliers, λ1, λ2, . . . , λm , to go to the values,

http://dx.doi.org/10.1007/978-3-319-56769-3_4
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λ∗
1, λ

∗
2, . . . , λ

∗
m , that would be obtained from solving problem (5.8)–(5.11) using

the FONC. By increasing the ρ’s and getting the λ’s to the values that solve the
FONC, the multiplier method typically solves a constrained problem much faster
than the penalty-based method does.

The only challenge in using the multiplier method is that we typically do not
know the values of λ∗

1, λ
∗
2, . . . , λ

∗
m a priori. We would normally only know their

values from solving the FONC directly. However, if the FONC is already solved,
there is no need to use an iterative solution algorithm! The multiplier method gets
around this problem by iteratively updating the Lagrange multipliers as new values
of x are found.

To understand how this updating is done, we must show another property relating
the Lagrangian function to the original constrained problem. We also stress that we
provide only an outline of the derivation of the multiplier-updating rule. Interested
readers are referred to more advanced textbooks [2] that provide all of the details of
the derivation.

Lagrangian-Optimality Property: Let x∗ be a global minimum of equality-
constrained problem (5.8)–(5.11). Then x∗ is also a global minimum of:

min
x∈Rn

L (x, λ̂) = f (x) +
m∑
i=1

λ̂i hi (x) (5.17)

s.t. h1(x) = 0 (5.18)

h2(x) = 0 (5.19)

... (5.20)

hm(x) = 0, (5.21)

where λ̂1, λ̂2, . . . , λ̂m are constants.

Before showing the Lagrangian-Optimality Property, let us briefly comment on
problem (5.17)–(5.21). This problemhas the sameconstraints as the original equality-
constrained problem, but has the Lagrangian function as its objective function. How-
ever, the values of the λ’s are fixed in this problem, and we are minimizing with
respect to x only. What this property tells us is that if we fix the values of the λ’s but
impose the same constraints as the original problem, thenminimizing the Lagrangian
function gives us the same global minimum that minimizing the original objective
function does. This result should not be too surprising in light of the Lagrangian-
Function Property.
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We show this result by contradiction. Suppose that the Lagrangian-Optimality
Property is not true. This means that there is a vector, which we call x̂ , with the
property that L (x̂, λ̂) < L (x∗, λ̂). Because problem (5.17)–(5.21) includes
the constraints of the original equality-constrained problem, we know that both
x̂ and x∗ are feasible in the original equality-constrained problem. Thus, we
have that:

L (x̂, λ̂) = f (x̂) +
m∑
i=1

λ̂i hi (x̂) = f (x̂),

and:

L (x∗, λ̂) = f (x∗) +
m∑
i=1

λ̂i hi (x
∗) = f (x∗).

Combining these relationships tells us that:

f (x̂) = L (x̂, λ̂) < L (x∗, λ̂) = f (x∗),

which means that x∗ cannot be a global minimum of problem (5.8)–(5.11),
because x̂ is feasible in this problem and gives a smaller objective-function
value than x∗ does.

We can now derive the rule to update the value of λ in the multiplier method.
In doing so, we assume that we currently have a value, which we denote as λk , for
the multipliers in the augmented Lagrangian after conducting k iterations. Thus, our
goal is to determine how to update λk to a new value, which we call λk+1, for the
next iteration.

We begin by examining the original equality-constrained problem:

min
x∈Rn

f (x)

s.t. h1(x) = 0

h2(x) = 0

...

hm(x) = 0.

We know that x∗ is a global minimum of this problem. Furthermore, the FONC tells
us that there are Lagrange multipliers, λ∗

1, λ
∗
2, . . . , λ

∗
m , such that:

∇ f (x∗) +
m∑
i=1

λ∗
i ∇hi (x

∗) = 0. (5.22)
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We next examine the following problem that keeps the same equality constraints, but
minimizes the Lagrangian function:

min
x∈Rn

L (x, λk) = f (x) +
m∑
i=1

λk
i hi (x) (5.23)

s.t. h1(x) = 0 (5.24)

h2(x) = 0 (5.25)

... (5.26)

hm(x) = 0, (5.27)

where λ is fixed equal to λk . From the Lagrangian-Optimality Property, we know
that x∗ is a global minimum of this problem. Thus, the FONC tells us that there exist
Lagrange multipliers, λ̂1, λ̂2, . . . , λ̂m , such that:

∇ f (x∗) +
m∑
i=1

λk
i ∇hi (x

∗) +
m∑
i=1

λ̂i∇hi (x
∗) = 0. (5.28)

Subtracting (5.28) from (5.22) gives us:

m∑
i=1

(λ∗
i − λk

i − λ̂i )∇hi (x
∗) = 0.

The regularity requirement of the FONC states that the gradients of the equality
constraints must be linearly independent at x∗. Thus, the only way to make a linear
combination of the hi (x∗)’s equal to zero is to set all of the scalar coefficients equal
to zero, meaning that:

λ∗
i − λk

i − λ̂i = 0,∀i = 1, . . . ,m,

or:
λ̂i = λ∗

i − λk
i ,∀i = 1, . . . ,m. (5.29)

We now examine the following unconstrained optimization problem:

min
x∈Rn

Aλk ,ρ(x) = f (x) +
m∑
i=1

λk
i hi (x) +

m∑
i=1

ρi · (hi (x))
2, (5.30)

in which the augmented Lagrangian function is minimized and where λ is fixed equal
to λk . Let xk+1 denote the global minimum ofAλk ,ρ(x), which is the value for x that
is obtained after conducting (k + 1) iterations of the solution algorithm. Applying
the FONC to unconstrained problem (5.30) gives:
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∇ f (xk+1) +
m∑
i=1

λk
i ∇hi (x

k+1) +
m∑
i=1

2ρi hi (x
k+1)∇hi (x

k+1) = 0. (5.31)

We finally substitute xk+1 in place of x∗ in (5.28), which gives:

∇ f (xk+1) +
m∑
i=1

λk
i ∇hi (x

k+1) +
m∑
i=1

λ̂i∇hi (x
k+1) = 0. (5.32)

Subtracting equation (5.31) from (5.32) gives:

m∑
i=1

(λ̂i − 2ρi hi (x
k+1))∇hi (x

k+1) = 0.

We can, again, rely on the regularity requirement to simplify this to:

λ̂i − 2ρi hi (x
k+1) = 0,∀i = 1, . . . ,m,

or:
λ̂i = 2ρi hi (x

k+1),∀i = 1, . . . ,m. (5.33)

Combining equations (5.29) and (5.33) gives:

λ∗
i − λk

i = 2ρi hi (x
k+1),∀i = 1, . . . ,m,

which we can rewrite as:

λ∗
i = λk

i + 2ρi hi (x
k+1),∀i = 1, . . . ,m.

This equation gives our multiplier-updating rule, which is:

λk+1
i ← λk

i + 2ρi hi (x
k+1),∀i = 1, . . . ,m,

which says that the Lagrange multiplier is updated based on the size of the constraint
violation in each iteration.

We now summarize the steps of the Multiplier-Based Algorithm for Constrained
Nonlinear Optimization Problems. Lines 2 through 5 initialize the algorithm by first
setting the iteration counter to zero, fixing starting values for the penalty weights and
Lagrange multipliers, and fixing an initial guess for x . Lines 6 through 17 are the
main iterative loop. Lines 7 and 8 find a search direction and conduct a line search and
Line 9 updates x based on the direction and step size. Note that the search direction
and line search should be conducted using the augmented Lagrangian function:
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Aλk ,ρ(x) = f (x) +
m∑
i=1

λk
i hi (x) +

m∑
i=1

ρi · (hi (x))
2,

as the objective function, as opposed to f (x) alone. If the search direction and line
search are conducted using f (x) alone, this would result in completely ignoring the
original constraints.

Multiplier-Based Algorithm for Constrained Nonlinear Optimization
Problems
1: procedure Multiplier- Based Algorithm
2: k ← 0 � Set iteration counter to 0
3: Fix ρ1, ρ2, . . . , ρm to positive values � Initialize penalty weights
4: Fix λ0 � Initialize Lagrange multipliers
5: Fix x0 � Fix a starting point
6: while Termination criteria are not met do
7: Find direction, dk , to move in
8: Determine step size, αk

9: xk+1 ← xk + αkdk � Update point
10: for i ← 1, . . . ,m do
11: λk+1

i ← λki + 2ρi hi (xk+1) � Update multiplier
12: if hi (xk+1) = 0 then
13: Increase ρi � Increase penalty weight if constraint is not satisfied
14: end if
15: end for
16: k ← k + 1 � Update iteration counter
17: end while
18: end procedure

Lines 10 through 15 go through each problem constraint and first update the
associated Lagrange multiplier in Line 11. Next, in Lines 12 through 14 the penalty
weight of any constraint that is not satisfied by xk+1 is increased. This iterative
process repeats until we satisfy a termination criterion in Line 6. We typically use
the same termination criterion as in the Penalty-Based Algorithm for Constrained
Nonlinear Optimization Problems. Namely, we stop once we find a solution, xk , that
satisfies all of the original problem constraints and is a stationary point of Aλk ,ρ(x).

Before demonstrating the multiplier method, we note that we can argue that this
method will also give us a feasible solution to the original problem, so long as the
penalty weights are sufficiently large. This comes from the following Augmented-
Lagrangian Property.
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Augmented-Lagrangian Property: Suppose that equality-constrained prob-
lem (5.23)–(5.27) is feasible. Then so long as ρ1, ρ2, . . . , ρm are sufficiently
large, a global minimum of:

min
x∈Rn

Aλ̂,ρ(x) = f (x) +
m∑
i=1

λ̂i hi (x) +
m∑
i=1

ρi · (hi (x))
2,

is optimal and feasible in the original equality-constrained problem, where
λ̂1, λ̂2, . . . , λ̂m are constants.

We essentially follow the same logic that is used to show the Penalty-Function
Property. Because we can choose ρ1, ρ2, . . . , ρm to be arbitrarily large, we can
examine the case in which the penalty weights go to +∞. Let x∗ be a global
minimum of:

lim
(ρ1,ρ2,...,ρm )→+∞

Aλ̂,ρ(x).

If x∗ is infeasible in the original constrained problem, then that means at least
one of hi (x∗) = 0. However, in this case we have that:

lim
(ρ1,ρ2,...,ρm )→+∞

Aλ̂,ρ(x
∗) = +∞.

On the other hand, if we choose any feasible value for x , we would have:

lim
(ρ1,ρ2,...,ρm )→+∞

Aλ̂,ρ(x) = f (x) < +∞.

This shows that x∗ must be feasible in the original problem.
Moreover, because we know that x∗ must be feasible in the original con-

strained problem, we know that Aλ̂,ρ(x
∗) = f (x∗). Now, suppose that x∗ is

not optimal in the original problem. That means there is a different solution,
which we call x̂ , such that f (x̂) < f (x∗). We also know that x̂ is feasible in the
original problem. Thus, we have that Aλ̂,ρ(x̂) = f (x̂) < f (x∗) = Aλ̂,ρ(x

∗),
which means that x∗ cannot be a global minimum of:

lim
(ρ1,ρ2,...,ρm )→+∞

Aλ̂,ρ(x).
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Example 5.9 Consider the problem:

min
x

f (x) = (x1 + 2)2 + (x2 − 3)2

s.t. h1(x) = x1 + 2x2 − 4 = 0

g1(x) = −x1 ≤ 0,

which is introduced in Example 5.8. To solve this problem using the multiplier
method, we first convert it to the equality-constrained problem:

min
x

f (x) = (x1 + 2)2 + (x2 − 3)2

s.t. h1(x) = x1 + 2x2 − 4 = 0

h2(x) = −x1 + x23 = 0.

We next derive the augmented Lagrangian function:

Aλ,ρ(x) = (x1 + 2)2 + (x2 − 3)2 + λ1 · (x1 + 2x2 − 4)

+ λ2 · (x23 − x1) + ρ1 · (x1 + 2x2 − 4)2 + ρ2 · (x23 − x1)
2,

which becomes:

A(1,1)�,(1,1)�(x) = (x1 + 2)2 + (x2 − 3)2 + (x1 + 2x2 − 4)

+ (x23 − x1) + (x1 + 2x2 − 4)2 + (x23 − x1)
2,

if we assume starting Lagrange multiplier and penalty-weight values of one.
Starting from the point x0 = (−1,−1,−1)�, we conduct one iteration of steepest

descent using the Armijo rule with σ = 10−1, β = 1/10 and s = 1. The gradient of
the augmented Lagrangian function is:

∇A(1,1)�,(1,1)�(x) =
⎛
⎝ 2(x1 + 2) + 2(x1 + 2x2 − 4) − 2(x23 − x1)

2(x2 − 3) + 2 + 4(x1 + 2x2 − 4)
2x3 + 4x3 · (x23 − x1)

⎞
⎠ ,

which gives us a search direction of:

d0 = −∇A(1,1)�,(1,1)�(x0) =
⎛
⎝ 16
34
10

⎞
⎠ .

Applying the Armijo rule, which we exclude for sake of brevity, results in our setting
α0 = βs = 1/10, meaning that our new point is x1 = (0.6, 2.4, 0)�.

We can now examine the changes in the objective- and constraint-function values
of our original problem. We have that:



5.6 Iterative Solution Algorithms for Constrained … 325

f (x0) = 17,

h1(x
0) = −7,

g1(x
0) = 1,

and:
f (x1) = 7.12,

h1(x
1) = 1.4,

g1(x
1) = −2.4.

Thuswe see that in this one iteration the objective-function value of the original prob-
lem improves and that the second constraint is no longer violated. Although the first
constraint is violated, the amount by which it is violated has come down. That being
said, we cannot terminate theMultiplier-Based Algorithm for Constrained Nonlinear
Optimization Problems, because both termination requirements are violated (x1 is
not feasible in the original problem and it is not a stationary point of the augmented
Lagrangian function). We increase the penalty weight on the first constraint only to
conduct the next iteration (i.e., ρ2 remains the same, because the second constraint
is satisfied by x1). We also update the Lagrange multipliers to:

λ1
1 ← λ0

1 + 2ρ1h1(x
1) = 3.8,

and:
λ1
2 ← λ0

2 + 2ρ2h2(x
1) = −0.2.

�

5.6.2 Feasible-Directions Method

The feasible-directions method differs from relaxation-based methods in that the
problem constraints are explicitly accounted for throughout the algorithm. In the
relaxation-basedmethods we relax the constraints and account for them implicitly by
adding penalty terms to the objective function. The terms that we add to the objective
function penalize constraint violations. The benefit of the feasible-directions method
is that it ensures that each point found is feasible in the original problem constraints.
Thus, there is no need to adjust penalty weights to ensure feasibility. The feasible-
directions method is limited, however, as it can only easily be applied to problems
with relatively simple constraints.

In this discussion, we take the case of problems with linear constraints. Thus,
without loss of generality, we assume that we have a linearly constrained nonlinear
optimization problem of the form:
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min
x∈Rn

f (x)

s.t. Ax − b ≤ 0,

where A is an m × n matrix of constraint coefficients and b is an m × 1 vector of
constants. This problem structure only has inequality constraints. Note, however,
that an equality constraint of the form:

h(x) = 0,

can be written as two inequalities:

h(x) ≤ 0,

and:
h(x) ≥ 0.

Note, however, that converting equality constraints into inequalities in this way can
create numerical difficulties in practice. However, the problem structure that we
assume is generic in that the feasible-directions method can be applied to a problem
with any combination of linear equality and inequality constraints.

The feasible-directions method follows the same approach as the Generic Algo-
rithm forUnconstrainedNonlinearOptimizationProblems that is outlined inSection5.1,
with four major differences. First, the starting point x0 must be feasible in the con-
straints. Second, the updating formula used in each iteration has the form:

xk+1 ← xk + αk · (dk − xk).

As seen in the following discussion, this updating formula is used because it allows
us to easily ensure that the point that we find after each iteration is feasible. Third,
we must also change our direction and line searches conducted in each iteration to
ensure that the new point found after each iteration is feasible. Fourth, we must also
modify our termination criteria. This is because when constraints are included in a
problem, a point being stationary is no longer necessary for it to be a local minimum.

We now provide details on how to find a feasible starting point and how the search
direction and line search are modified in the feasible-directions method.

5.6.2.1 Finding a Feasible Starting Point

Finding a feasible starting pointmeans finding a point, x0, that satisfies the constraints
of the problem. In other words, we want to find a vector, x0, such that Ax0 − b ≤ 0.
We can do this by solving the linear optimization problem:
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min
x∈Rn

0�x (5.34)

s.t. Ax − b ≤ 0, (5.35)

using the Simplexmethod.We arbitrarily set objective function (5.34) of this problem
to 0�x = 0. This is because the sole purpose of employing the Simplex method is to
find a feasible starting point for the feasible-directions method.We are not concerned
with what feasible point we begin the feasible-directions method from. Indeed, we
do not even need to solve Problem (5.34)–(5.35) to optimality. As soon as we have
a tableau with a non-negative b̃, we can terminate the Simplex method because we
have a feasible solution at that point (cf. Section 2.5 for further details on the Simplex
method). Note that the Simplex method requires a problem to be written in standard
form (i.e., with structural equality constraints and non-negative variables). The steps
that are outlined in Section 2.2.2.1 can be employed to convert Problem (5.34)–(5.35)
to this standard form.

5.6.2.2 Finding a Feasible Search Direction

We find a feasible search direction by following the same underlying logic as in
the steepest descent method. Namely, we want to find a direction that gives the
greatest improvement in the objective function. As in the derivation of the search
directions for unconstrained nonlinear problems, we ignore the step size parameter
when conducting the direction search. Thus, in the following discussion we assume
that αk = 1 and that our updated point has the form:

xk+1 = xk + (dk − xk).

Later, when we conduct the line search, we reintroduce the step size parameter.
Thus, we can write a first-order Taylor approximation of the objective-function

value at the new point as:

f (xk+1) = f (xk + (dk − xk)) ≈ f (xk) + (dk − xk)�∇ f (xk).

Our goal is to choose dk to minimize this Taylor approximation. Because we have the
linear constraints in our problem, however, we want to also choose dk in such a way
that guarantees that the new point is feasible. We do this by imposing the constraints:

Axk+1 − b = A · (xk + (dk − xk)) − b = Adk − b ≤ 0.

Thus, in the feasible-directions method we always find our search direction by solv-
ing the following linear optimization problem, which is outlined in the Feasible-
Directions-Search-Direction Rule.

http://dx.doi.org/10.1007/978-3-319-56769-3_2
http://dx.doi.org/10.1007/978-3-319-56769-3_2
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Feasible-Directions-Search-Direction Rule: Given a linearly constrained
nonlinear optimization problem and a current point, xk , the feasible-directions
search direction is found by solving the linear optimization problem:

min
dk∈Rn

f (xk) + (dk − xk)�∇ f (xk) (5.36)

s.t. Adk − b ≤ 0. (5.37)

It is important to stress that the search direction in the feasible-directions method
is found in a very different way than the steepest descent and Newton’s method
directions for unconstrained problems. The steepest descent and Newton’s method
directions are found by applying simple rules. That is, those directions are found by
simply using derivative information. The feasible-directions method requires a linear
optimization problem to be solved at each iteration to find the search direction. This
is typically easy to do, however, as the Simplex method can efficiently solve very
large linear optimization problems.

5.6.2.3 Termination Criteria

The termination criteria with the feasible-directions are typically not the same as
for an unconstrained problem. This is because with an unconstrained problem local
minima are stationary points. Thus, iterative algorithms applied to unconstrained
problems terminate at stationary points. Local minima of constrained problems are
not typically stationary points. Rather, they are points that satisfy the KKT condition,
which involve the gradients of the objective and constraint functions.

The termination criteria in the feasible-directions method depend on the value of
the objective function from the search-direction problem. Specifically, we examine
the sign of the (dk−xk)�∇ f (xk) term in objective function (5.36). Note that dk = xk

is feasible in constraints (5.37). Substituting dk = xk into (5.36) gives:

f (xk) + (dk − xk)�∇ f (xk) = f (xk) + (xk − xk)�∇ f (xk) = f (xk).

We can conclude from this that when the search-direction problem is solved, the
optimal value of f (xk) + (dk − xk)�∇ f (xk) must be no greater than f (xk).

If:
f (xk) + (dk − xk)�∇ f (xk) = f (xk),

which means that:
(dk − xk)�∇ f (xk) = 0,
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then the search-direction problem is not able to find a feasible direction to move
in that improves the objective function. Thus, we terminate the feasible-directions
method. Otherwise, if:

f (xk) + (dk − xk)�∇ f (xk) < f (xk),

which means that:
(dk − xk)�∇ f (xk) < 0,

then the search-direction problem has found a feasible direction that improves the
objective function and we continue the algorithm.

5.6.2.4 Conducting a Feasible Line Search

With the feasible-directions method, we can use either of the exact line search or
Armijo rule methods that are discussed in Section 5.4, so long as we restrict the step
size to be less than or equal to one. If αk is between zero and one, we can show that
the new point is guaranteed to be feasible. To see this, note that for the new point to
be feasible we must have:

A · (xk + αk · (dk − xk)) − b ≤ 0.

By distributing the product and collecting terms, we can rewrite the left-hand side
of this inequality as:

A · (xk + αk · (dk − xk)) − b = Axk + αk Adk − αk Axk − b

= (1 − αk)Axk − (1 − αk)b + αk Adk − αkb

= (1 − αk)(Axk − b) + αk · (Adk − b).

Wenext note that because our current point, xk , is feasible, Axk−b ≤ 0.Moreover,
constraint (5.37), whichwe use in finding the search direction, ensures that Adk−b ≤
0. Combining these observations with the fact that αk ≥ 0 and 1 − αk ≥ 0, tells us
that:

A · (xk + αk(dk − xk)) − b = (1 − αk)(Axk − b) + αk · (Adk − b) ≤ 0,

meaning that xk+1 is feasible, so long as we have 0 ≤ αk ≤ 1.
We now illustrate the use of the feasible-directions with the following example.
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Example 5.10 Consider the linearly constrained nonlinear optimization problem:

min
x

f (x) = (x1 + 1/2)2 + (x2 − 2)2

s.t. x1 ≤ 0

x2 ≤ 0

− x1 − 10 ≤ 0

− x2 − 10 ≤ 0.

Starting from the point x0 = (−1,−1)�, we use the feasible-directions method with
an exact line search to solve the problem.

To find a feasible direction to move away from x0 in, we compute the gradient of
the objective function, which is:

∇ f (x) =
(
2(x1 + 1/2)
2(x2 − 2)

)
.

Thus, we find the search direction at x0 = (−1,−1)� by solving the linear opti-
mization problem:

min
d0

f (x0) + (d0 − x0)�∇ f (x0) = 37

4
− (d0

1 + 1) − 6(d0
2 + 1)

s.t. d0
1 ≤ 0

d0
2 ≤ 0

− d0
1 − 10 ≤ 0

− d0
2 − 10 ≤ 0.

We have d0 = (0, 0)� as an optimal solution to this problem. We further have that
(d0 − x0)�∇ f (x0) = −7. Thus, we indeed have a feasible direction that improves
the objective function. This means that we should proceed with an iteration and not
yet terminate the algorithm.

We conduct the exact line search by solving the problem:

min
α0

f (x0 + α0 · (d0 − x0)) = f

((
α0 − 1
α0 − 1

))
=

(
α0 − 1

2

)2

+ (α0 − 3)2

s.t. 0 ≤ α0 ≤ 1.

If we solve:
∂

∂α0
f (x0 + α0 · (d0 − x0)) = 0,
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this gives α0 = 7/4. However, we know that α0 must be no greater than 1. If we
substitute α0 = 1 into f (x0 +α0 · (d0 − x0)), we find that this gives the optimal step
size. Thus, we have α0 = 1 and our new point after one iteration is x1 = (0, 0)�.

To conduct another iteration of the feasible-directionsmethod from our new point,
x1, we find the search direction by solving the following linear optimization problem:

min
d1

f (x1) + (d1 − x1)�∇ f (x1) = 17

4
+ d1

1 − 4d1
2

s.t. d1
1 ≤ 0

d1
2 ≤ 0

− d1
1 − 10 ≤ 0

− d1
2 − 10 ≤ 0.

Wehaved1 = (−10, 0)� as anoptimal solution and (d1−x1)�∇ f (x1) = −10.Thus,
we must continue conducting another iteration of the feasible-directions method, by
solving the exact-line-search problem:

min
α1

f (x1 + α1 · (d1 − x1)) = f

((−10α1

0

))
=

(
−10α1 + 1

2

)2

+ (−2)2

s.t. 0 ≤ α1 ≤ 1.

Solving:
∂

∂α1
f (x1 + α1 · (d1 − x1)) = 0,

gives α1 = 1/20. We can further verify that:

∂2

∂α12
f (x1 + α1 · (d1 − x1)) = 200,

which is positive definite, meaning that α1 = 1/20 is a global minimum. Thus, our
new point is x2 = (−1/2, 0)�.

To conduct a third iteration of the feasible-directions method starting from x2, we
find the search direction by solving the following linear optimization problem:

min
d2

f (x2) + (d2 − x2)�∇ f (x2) = 4 − 4d2
2

s.t. d2
1 ≤ 0

d2
2 ≤ 0

− d2
1 − 10 ≤ 0

− d2
2 − 10 ≤ 0.
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We have d2 = (d2
1 , 0)

�, where d2
1 can be any value between−10 and 0 as an optimal

solution. Moreover, we find that (d2 − x2)�∇ f (x2) = 0 (regardless of the value
of d2

1 chosen), meaning that we are not able to find a feasible direction to move in
that improves the objective function. Thus, we should terminate the algorithm with
x2 = (−1/2, 0)� as our final solution. �

5.6.2.5 Unbounded Search-Direction Problem

One issue that can come up when applying the feasible-directions method is that the
linear optimization problem used to find a search direction can be unbounded. This
can obviously happen if the nonlinear optimization problem that we begin with is
unbounded. However, this can also happen on occasion even if the original problem
is bounded.

If the linear optimization problem used to find a search direction is unbounded,
then we proceed by picking any direction in which the linear optimization problem
is unbounded. This is because the ultimate purpose of the search-direction prob-
lem is to find any feasible direction in which the objective function of the original
nonlinear optimization problem improves. If the search-direction problem is
unbounded, that tells us that there are directions in which the Taylor approxima-
tion of the original objective function improves without any limit. Any such feasible
direction of unboundedness will suffice for the feasible-directions method. We then
proceed to conduct a line search, but remove the restriction that αk ≤ 1 (for that
iteration only). We illustrate this with the following example.

Example 5.11 Consider the linearly constrained nonlinear optimization problem:

min
x

f (x) = (x1 − 3)2 + (x2 − 2)2

s.t. − x1 ≤ 0

− x2 ≤ 0.

We can easily confirm, using the KKT condition, that x∗ = (3, 2)� is a global
optimum of this problem. Thus, this problem is not unbounded.

Let us now start from the point x0 = (0, 0)� and attempt to conduct one iteration
of the feasible-directions method. To do so, we first compute the gradient of the
objective function, which is:

∇ f (x) =
(
2(x1 − 3)
2(x2 − 2)

)
.
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Thus, we find the search direction by solving the linear optimization problem:

min
d0

f (x0) + (d0 − x0)�∇ f (x0) = 13 − 6d0
1 − 4d0

2

s.t. − d0
1 ≤ 0

− d0
2 ≤ 0.

This problem is unbounded, becausewe canmake either of d0
1 → +∞ or d0

2 → +∞,
which is feasible and makes the objective function, 13−6d0

1 −4d0
2 , arbitrarily small.

In this case, we pick any direction in which the objective function is unbounded, and
for simplicity, we take d0 = (1, 1)�. We next proceed to conducting an exact line
search, which we do by solving the problem:

min
α0

f (x0 + α0 · (d0 − x0)) = (α0 − 3)2 + (α0 − 2)2

s.t. 0 ≤ α0.

Note that, as discussed before, we remove the restriction that α ≤ 1. Solving this
problem gives α0 = 5/2, meaning that x1 = (5/2, 5/2)�. We can confirm that this
point is feasible in the constraints. Moreover, we have:

f (x0) = 13,

while:
f (x1) = 1/2,

confirming that the objective-function value improves in going from x0 to x1. Note
that because x1 = (3, 2)�, the feasible-directions algorithm does not terminate at
this point. Indeed, it is easy to confirm that there is a new search direction that can
be found by solving the new search-direction problem starting from the point x1. �

We conclude this discussion by outlining the steps of the Feasible-Directions
Algorithm forLinearlyConstrainedNonlinearOptimizationProblems below.Lines 2
through 4 initialize the algorithm by setting the iteration counter and the logical
indicator, τ , of whether to terminate the algorithm to zero and fixing the initial point.
In Lines 5 through 7 we determine if the starting point is feasible. If not, we solve a
linear optimization problem to find a feasible starting point.
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Feasible-Directions Algorithm for Linearly Constrained Nonlinear Opti-
mization Problems
1: procedure Feasible- Directions Algorithm
2: k ← 0 � Set iteration counter to 0
3: τ ← 0
4: Fix x0 � Fix a starting point
5: if Ax0 − b � 0 then � If starting point is infeasible
6: x0 ← argminx {0�x |Ax − b ≤ 0} � Find feasible starting point
7: end if
8: repeat
9: dk ← argminx { f (xk) + (dk − xk)�∇ f (xk)|Adk − b ≤ 0} � Find search

direction
10: if (dk − xk)�∇ f (xk) = 0 then
11: τ ← 1
12: else
13: if minx { f (xk) + (dk − xk)�∇ f (xk)|Adk − b ≤ 0} is bounded then
14: Determine step size, αk ≤ 1
15: else
16: Determine step size, αk

17: end if
18: xk+1 ← xk + αk · (dk − xk) � Update point
19: k ← k + 1 � Update iteration counter
20: end if
21: until τ = 1 or other termination criteria met
22: end procedure

Lines 8 through 21 are themain iterative loop. Line 9 solves the linear optimization
problem that is used to determine the new search direction. Lines 10 and 11 test the
standard termination criterion. If (dk − xk)�∇ f (xk) = 0 then we set τ ← 1,
which terminates the algorithm in Line 21. Otherwise, we continue with the line
search in Lines 13 through 17. If the most recently solved search-direction problem
is bounded, the step size is limited to be no greater than 1 (cf. Line 14). Otherwise,
the step size has no upper bound (cf. Line 16). Note that any line search method
from Section 5.4 can be employed here, so long as the appropriate bounds on αk are
imposed. Lines 18 and 19 update the point and iteration counter. As with the other
iterative algorithms that are discussed in this chapter, other termination criteria can
be employed in Line 21.

5.7 Final Remarks

This chapter introduces several generic iterative algorithm to solve unconstrained and
constrained nonlinear optimization problems. The true power of these algorithms lies
in the methods used to generate search directions and step sizes. We only introduce a
small subset of search direction and line-search methods. More advanced texts [2, 7]
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discuss other techniques that are more complicated but can offer better performance
than those discussed here. At their heart, these more advanced search direction and
line-search methods are built around the same underlying premises of the methods
introduced here. The performance of the generic algorithms introduced in this chapter
depends on the performance of both the search direction and line search. This is
important to stress, as it may be tempting to overlook the line searchwhen developing
a solution algorithm.

We introduce only twomethods to solve constrained optimization problems.Other
more advanced techniques, which are beyond the scope of this textbook, are covered
elsewhere [1–4, 6–8]. We also focus exclusively on nonlinear optimization problems
with continuous variables only. It is a straightforward extension of mixed-integer
linear and nonlinear optimization to formulate mixed-integer nonlinear optimization
problems. However, such problems can be quite difficult to solve.We refer interested
readers to the work of Floudas [5], who provides an excellent introduction to the
formulation and solution of mixed-integer nonlinear optimization problems.

5.8 Exercises

5.1 Consider the Facility-Location Problem, which is introduced in Section 4.1.1.3
and suppose that you are given the data summarized in Table 5.1 for a three-location
instance of this problem. Starting from the point x0 = (0, 0)� conduct iterations of
the Generic Algorithm for Unconstrained Nonlinear Optimization Problems using
the steepest descent search direction and an exact line search to solve this problem.
Is the point at which the algorithm terminates guaranteed to be a local or global
optimum? Explicitly justify your answer.

Table 5.1 Data for
Exercise 5.1

n xn yn Vn

1 7 2 7

2 5 −3 10

3 −6 4 15

5.2 Starting from the point x0 = (0, 0)� solve the instance of the Facility-Location
Problem, which is given in Exercise 5.1, using the Generic Algorithm for Uncon-
strained Nonlinear Optimization Problems using the Newton’s method search direc-
tion and the Armijo rule with σ = 10−1, β = 1/2 and s = 1. Is the point at which the
algorithm terminates guaranteed to be a local or global optimum? Explicitly justify
your answer.

5.3 What difficulties could arise in applying the Generic Algorithm for Uncon-
strained Nonlinear Optimization Problems with the steepest descent search direction
to the model formulated for the Facility-Location Problem in Section 4.1.1.3?

http://dx.doi.org/10.1007/978-3-319-56769-3_4
http://dx.doi.org/10.1007/978-3-319-56769-3_4
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5.4 Write the penalized objective function and augmented Lagrangian function for
the Packing-Box Problem that is introduced in Section 4.1.1.1 with generic penalty
weights, ρ and φ, and generic Lagrange multipliers, λ.

5.5 Solve thePacking-BoxProblem,which is introduced inSection 4.1.1.1, using the
Penalty-Based Algorithm for Constrained Nonlinear Optimization Problems using
the following algorithm rules.

• Use the penalized objective function that is found in Exercise 5.4.
• Start at the point (h,w, d) = (0, 0, 0) and with penalty weights of 1 on all of the
constraints.

• Use the steepest descent search direction with an exact line search.
• If after conducting an iteration a constraint is violated, increase the penalty weight
on that constraint by 1. Otherwise, keep the penalty weight on that constraint the
same for the next iteration.

Can you explain the behavior of the algorithm? Solve the problem using the
algorithm starting at a different point.

5.6 Solve the Packing-Box Problem, which is introduced in Section 4.1.1.1, using
the Multiplier-Based Algorithm for Constrained Nonlinear Optimization Problems
using the following algorithm rules.

• Use the augmented Lagrangian function that is found in Exercise 5.4.
• Start at the two points used in Exercise 5.5 and with penalty weights and Lagrange
multipliers of 1 on all of the constraints.

• Use the steepest descent search direction with an exact line search.
• If after conducting an iteration a constraint is violated, increase the penalty weight
on that constraint by 1. Otherwise, keep the penalty weight on that constraint the
same for the next iteration.

5.7 Solve the model formulated in Exercise 4.1 using the feasible-directions method
with an exact line search.
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Chapter 6
Dynamic Optimization

In this chapter we introduce a markedly different way to formulate and solve opti-
mization problems, compared to the techniques that are introduced in Chapters 2
through5. The dynamic optimizationmethods thatwe introduce herework bydecom-
posing anoptimization problem into a successive set of stages, atwhich the state of the
system being optimized is observed and decisions are made. Dynamic optimization
techniques require that an optimization problem have certain important characteris-
tics that allow for this decomposition. However, dynamic optimization is incredibly
flexible in that it allows problems with linear and nonlinear terms and logical con-
ditions (e.g., ‘if then’-type statements) in the objective function and constraints and
discrete decisions (e.g., integer variables).

In this chapter we begin by first introducing a simple problem that can be for-
mulated and solved as a dynamic optimization problem, also known as a dynamic
programming problem (DPP). We then discuss the common elements that must be
identified when formulating a DPP and the important characteristics that such a
problem must have. We finally discuss the standard algorithm used to solve dynamic
optimization problems.

6.1 Motivating Example: Production-Planning Problem

In this section, we introduce and then solve a motivating example that illustrates the
use of dynamic optimization.

6.1.1 Problem Description

A company must plan its production process for a product. Figure 6.1 illustrates the
possible production paths that can be used to convert raw material into the finished
product. The nodes in the figure represent different states of the product. Node 1
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represents raw material and node 12 represents the finished product. The other num-
bered nodes represent intermediate states of the product between the raw-material
and finished-product states.

I (5)

K (6)H (5) F (1)

F (3)

G (4)
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H (4)
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Fig. 6.1 Possible production paths in the Production-Planning Problem

The lettered arcs in Figure 6.1 represent different processes that can be employed.
The number in parentheses next to each arc label indicate how many hours of time is
required to finish each of the processes. The arcs in the figure are directed because the
processes are unidirectional. For instance, process ‘F’ can be employed to convert
the material from state 4 to 7. However, the material cannot be converted ‘back’ from
state 7 to state 4.

The company must only employ a single set of production processes to transform
the raw material into the finished product. It wishes to find a set of production
processes that do so in the least amount of time possible.

6.1.2 Problem Solution

Before employing dynamic optimization techniques to solve this problem, notice
that someone without any knowledge of optimization could solve the problem by
conducting an exhaustive search. That is, the processing time of every set of feasible
production processes could be computed and the one that takes the least amount of
time could be chosen. For this particular problem, such an exhaustive search could
be conducted as there are only 22 possible combinations of production processes
that could be employed. Let us see, however, how we can reduce the number of
computations that must be conducted to solve this problem.
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Let us begin by noting that if, by some combination of production decisions, the
material is in state 10, it would take 6 more hours to finish production and this would
be achieved by choosing process ‘K.’ Similarly, if the material is in state 11, we
can determine that it would take 7 more hours to finish production, which is also
achieved by choosing process ‘K.’ Table 6.1 summarizes the results of these findings
for states 10 and 11.

Table 6.1 First set of computations from solving the Production-Planning Problem

State Optimal Action Total Hours Remaining

10 K 6

11 K 7

Let us next consider how long it would take to complete production if the material
is in each of states 7 through 9. If it is in state 7 the only feasible option is to use
process ‘I,’ which transforms thematerial into state 10 after 5 hours.We further know,
from the calculations that are summarized in Table 6.1, that once the material is in
state 10 it will take an additional 6 hours to transform the material into the finished
product. This means that from state 7 it will take a total of 11 hours to transform the
material into the finished part.

The computations for states 8 and 9 are slightly more involved than the three that
are conducted thus far. This is because we have multiple options available to us at
these states. Let us first consider state 8. The two options available are processes
‘I’ and ‘J,’ which take 2 and 7 hours of time, respectively. After these processes
are complete, the material transitions to states 10 and 11, respectively. We know,
from the computations that are summarized in Table 6.1, that once the material is in
states 10 and 11, there is an additional 6 and 7 hours of processing time, respectively,
to transform the material into the finished product. Thus, the decision that we make
at state 8 can be summarized as follows:

[total time from state 8] = min{[time if ‘I’ chosen], [time if ‘J’ chosen]} (6.1)

= min{[time for ‘I’] + [time from state 10], [time for ‘J’] + [time from state 11]}
= min{2 + 6, 7 + 7}
= 8,

meaning that from state 8 we would optimally choose process ‘I,’ because it results
in 8 hours of total processing time as opposed to 14 hours with process ‘J.’

Before proceeding with the remaining computations, it is important to stress one
feature of how we obtain these total processing times. There are two terms that
contribute to the total processing time associated with each of the two options that
are available at state 8. The first is the amount of time that the immediate process
chosen, ‘I’ or ‘J,’ entails. This time comes from the numbers on the corresponding
arcs in Figure 6.1. The other is the amount of time that remains after the material is
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transformed into its new state (i.e., into one of states 10 or 11). Althoughwe can easily
read these times off of the associated arcs in Figure 6.1, we actually obtain these
values from Table 6.1, which summarizes the computations already conducted for
states 10 and 11. We see why this is important as we continue solving this problem.

We can now examine the alternatives that are available if the material is in state 9,
which results in the following calculations:

[total time from state 9] = min{[time if ‘I’ chosen], [time if ‘J’ chosen]} (6.2)

= min{[time for ‘I’] + [time from state 10], [time for ‘J’] + [time from state 11]}
= min{3 + 6, 4 + 7}
= 9.

These calculations tell us that if we are in state 9, we would optimally choose
process ‘I,’ and the material would require a further 9 hours of processing to yield the
final product. Table 6.2 summarizes the results of the calculations that are conducted
for states 7 through 9.

Table 6.2 Second set of computations from solving the Production-Planning Problem

State Optimal Action Total Hours Remaining

7 I 11

8 I 8

9 I 9

We can now repeat this process for states 4 through 6. Beginning with state 4,
we see that there are three options available—processes ‘F’ through ‘H.’ These each
entail 2, 4, and 5 hours of time, respectively, after which the material transitions to
states 7, 8, and 9, respectively. We also know, from Table 6.2, that once the material
is in these three states, that there would be, respectively, an additional 11, 8, and
9 hours remaining until we have the finished product. Thus, the decision we make at
state 4 is:

[total time from state 4] = min{[time from choosing ‘F’], [time from choosing ‘G’],
[time from choosing ‘H’]}

= min{2 + 11, 4 + 8, 5 + 9}
= 12,

meaning that we choose process ‘G,’ which requires a total of 12 hours to deliver the
final product.

Before proceeding, it is important to stress that we again break the time associ-
ated with each of the three options into two terms. The first is the time associated
with the immediate process chosen (i.e., the time to complete each of processes ‘F’
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through ‘H’). These times come from the numbers next to the corresponding arcs in
Figure 6.1. The second term is the amount of time that is required after the material
transitions into its new state (i.e., into one of states 7, 8, or 9). As before, we could
compute these times directly using Figure 6.1. We do not, however, because they are
already computed when we examine what to do in states 7, 8, and 9. Thus, we can
determine how much time remains from each of these three states using the values
that are recorded in Table 6.2. Indeed, as is discussed later, one of the strengths and
efficiencies in decomposing and solving a problem as a DPP is that previous compu-
tations can be reused. This reduces the amount of computation that must be done to
solve the problem. It should also be stressed that the additional times that it takes to
complete the product once the material is one of states 7, 8, or 9 come entirely from
Table 6.2. We do not need to refer to Table 6.1 at this point. This is because when we
compute the total hours remaining in Table 6.2, we account for what happens after
process ‘I’ is conducted (which is the information that is recorded in Table 6.1).

We do not explicitly run through the calculations for states 5 and 6. Instead, we
leave it to the reader to repeat the steps that are taken to analyze state 4 to confirm
that the values in Table 6.3 are correct.

Table 6.3 Third set of computations from solving the Production-Planning Problem

State Optimal Action Total Hours Remaining

4 G 12

5 G 10

6 F 11

The next two sets of calculations are first for states 2 and 3 and then finally for
state 1. We do not go through these explicitly. Instead, we leave it to the reader to
verify that the values that are reported inTables 6.4 and6.5 are correct.Note thatwhen
conducting calculations for states 2 and 3, we use the time-remaining calculations
that are summarized in Table 6.3 only. Similarly, when conducting calculations for
state 1, we only use the time-remaining information that is recorded in Table 6.4.

Table 6.4 Fourth set of computations from solving the Production-Planning Problem

State Optimal Action Total Hours Remaining

2 D 12

3 D 12

Having completed the computations in Tables 6.1 through 6.5, the next question
is how to determine an optimal solution and the associated objective-function value.
First, note that the third column of Table 6.5 gives us the optimal objective-function
value. The third column of this table tells us how many hours are remaining to
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Table 6.5 Fifth set of computations from solving the Production-Planning Problem

State Optimal Action Total Hours Remaining

1 B 16

reach the finished product if we are at state 1. Note, however, that state 1 is the raw
material that we start with. Thus, we know that it takes 16 hours to produce the
finished product.

Next, note that the second column of Table 6.5 tells us what optimal action to
follow if we are in state 1 (i.e., when we have raw material). This optimal action
is process ‘B.’ Knowing this, the next equation is how to determine the subsequent
optimal action? This information is recorded in the second column of Table 6.4,
which tells us what to do in each of states 2 and 3. Note that if we start by using
process ‘B,’ the raw material is converted from state 1 to state 3 (we determine this
from Figure 6.1). The associated row of Table 6.4 tells us that the optimal process to
choose after process ‘B’ is process ‘D.’ We know from Figure 6.1 that if the material
is in state 3 and we use process ‘D,’ the material is next converted to state 5. We next
examine Table 6.3, which tells us what process to choose if the material is in any
of states 4, 5, or 6. The second column of the associated row of Table 6.3 tells us
that if the material is in state 5, we should choose process ‘G.’ Continuing this logic
through the remaining tables, we find that our optimal process sequence is:

B =⇒ D =⇒ G =⇒ I =⇒ K.

6.1.3 Computational Benefits of Dynamic Optimization

Before we generalize the method that is employed in this section to decompose and
solve the Production-Planning Problem, we can briefly examine the computational
complexity of the solution method just used. One of the benefits of using dynamic
optimization techniques is that computations can be reused. For instance,when decid-
ing which of processes ‘C,’ ‘D,’ or ‘E’ to use if the material is in state 3, we do not
need to do an ‘on-the-fly’ computation of what sequence of processes would be used
after that. Rather, we use the values that are recorded in Table 6.3, which are already
computed at the point that we are examining state 3, to determine what the total time
associated with each of processes ‘C,’ ‘D,’ and ‘E’ are.

The second computational savings of dynamic optimization is that it allows us to
eliminate combinations of decisions that are suboptimal. To understand this, recall
that the brute-force technique that is first outlined in Section 6.1.2 requires us to
examine 22 different combinations of processes and compare their total processing
times. Note that after we examine state 9 in the dynamic optimization technique,
we determine that ‘I’ is the optimal process to follow. In making this observation,
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we eliminate from further consideration all of the process combinations that employ
process ‘J’ at state 9 (of which there are three). Indeed, we further eliminate more
process combinations after examining each of states 1 through 6 and 8. Examining
state 7 does not eliminate any process combinations, because there are no decisions
to be made at this point.

6.2 Formulating Dynamic Optimization Problems

As the solution method that is applied in Section 6.1 to the Production-Planning
Problem suggests, dynamic optimization problems are approached in a substantively
different manner than linear, mixed-integer linear, and nonlinear optimization prob-
lems are. For this reason, they are formulated in a vastly different manner as well.
When formulating a dynamic optimization problem there are six problem elements
that must be identified: the (i) stages, (ii) state variables, (iii) decision variables,
(iv) state-transition functions, (v) constraints, and (vi) objective-contribution func-
tions. These six problem elements ‘encode’ the structure of the systembeingmodeled
and allow us to solve it using the efficient recursive method that is applied to the
Production-Planning Problem in Section 6.1. Bellman [1] outlines this genericmeans
of structuring and solving dynamic optimization problems.

We proceed by first defining these six elements of a dynamic optimization problem
abstractly and then identifying these elements for the problem that is introduced in
Section 6.1. We then give some further formulation examples in Section 6.3.

6.2.1 Stages, State Variables, and Decision Variables

We begin by defining the stages, state variables, and decision variables in a dynamic
optimization problem, because these three often go hand-in-hand when formulating
the problem. The stages of the problem represent points at which decisions are
made, which are represented by the decision variables. Decision variables are also
sometimes referred to as action variables. The state variables summarize all of the
information needed at each stage to determine an optimal action and how the problem
progresses from one stage to the next.

The Production-Planning Problem, which is discussed in Section 6.1 has five
stages, which are shown in Figure 6.2. These stages correspond to the fact that the
production process requires a sequence of five processes to convert the raw material
into the finished product. Each stage corresponds to the point at which a production
process is chosen. There is a single set of state variables, which is the state that the
material is in at the beginning of each stage. The nodes in Figure 6.2 (which are
the same as those in Figure 6.1) represent the different possible values that the state
variables can take on. There is a single set of decision variables in the Production-
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Planning Problem, which represents the process chosen in each stage. The arcs in
Figures 6.2 (and 6.1) represent the different possible decisions that can be chosen.
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Fig. 6.2 Stages in the Production-Planning Problem

Table 6.6 summarizes the possible states and decisions in each stage of the prob-
lem. There is one possible state in stage 1, which is state 1 (i.e., raw material).
Figures 6.2 (and 6.1) show that there are two alternatives that can be chosen in
stage 1, which are ‘A’ and ‘B.’ Thus, the stage-1 decision variable can only take on
a value of ‘A’ or ‘B.’ This restriction on the value that the stage-1 decision can take
is an example of a constraint. Constraints are discussed in Section 6.2.3. Stage 2 has
two possible states—2 and 3—and the stage-2 decision variable can take on three
values—‘C,’ ‘D,’ and ‘E.’ Note, however, that process ‘E’ is only available in state 3.
This is yet another example of a constraint.

Table 6.6 Possible states and
decisions in each stage of the
Production-Planning Problem

Stage States Decisions

1 1 A, B

2 2, 3 C, D, E

3 4, 5, 6 F, G, H

4 7, 8, 9 I, J

5 10, 11 K

There is not a sixth stage, consisting of state 12. The reason for this is that once
the material is in state 12, we have the finished product and there are no decisions
remaining to be made. Recall that stages are points in the problem at which decisions
are made, and there are no decisions to be made once the product is finished.
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The rationale behind the stages of the problem stems from the fact that producing
the finished product requires five successive process. The points at which we decide
which process to use correspond to the five stages that are identified. Moreover, to
make a decision at each stage regarding what process to next use, we must know
which specific node the material is at. For instance, in stage 2, which of nodes 2 or 3
the material is in is vitally important information. Knowing which of these two states
the material is in determines what decisions are available—if the material is at node 2
process ‘E’ is unavailable. Moreover, the amount of time that the stage-2 processes
take depend upon the node that thematerial is at. For instance, process ‘C’ takes three
hours if the material is at node 2 as opposed to five hours if it is at node 3. Because
the nodes encode this important information, they correspond to the problem states.

Determining the stages and state variables of a DPP can often be the most chal-
lenging part of formulating a problem. Many dynamic optimization problems have
a natural (usually temporal) sequence of decisions being made. In such cases, the
stages typically correspond to this sequence. There are cases of problems that do not
have such a natural sequence, which can make determining the stages more difficult.
Section 6.3.4 provides one such example. Oftentimes if the state variables are not
defined properly, it is difficult to formulate the other elements of the DPP. If this
occurs, it may indicate that there are important state variables that are not identified
or that the state variables identified are not defined properly. Examples in which this
occurs are provided in Sections 6.3.2 and 6.3.3.

6.2.2 State-Transition Functions

The state-transition functions define how the state variables transition or change
from one stage to the next. More specifically, the stage-t state-transition function
takes the stage-t state and decision variables as inputs and defines the values of the
stage-(t + 1) state variables as outputs.

The terminal node of each arc in Figures 6.2 (and 6.1) defines the state transi-
tions for the Production-Planning Problem that is introduced in Section 6.1. That is
because the arcs tell us what state the material is transformed into after a particu-
lar production process is chosen. We can also write the state-transition functions as
analytical expressions. To do so, let st denote the material’s state at the beginning
of stage t and let dt denote the stage-t decision variable (i.e., the production process
chosen in stage t). We can write the stage-1 state-transition function as:

s2 = f1(s1, d1) =
{
2, if d1 = A,
3, if d1 = B.

(6.3)

This function tells uswhat state, s2, thematerial will be in after the stage-1 production
process is chosen.

Note that the function, f1(s1, d1), in (6.3) is written as depending on both s1 and
d1. This is despite the fact that s2 is determined solely by d1 (i.e., s2 does not depend
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directly on s1, as seen in the conditional expressions to the right of the second equality
in (6.3)). This is the standard way of writing a state-transition function, to make it
clear that generically speaking, the stage-(t + 1) state variable can depend on the
stage-t state and decision variables. Although it is less generic, we could also write
this state-transition function as:

s2 = f1(d1) =
{
2, if d1 = A,
3, if d1 = B.

We can similarly define the stage-2 state-transition function (in the more generic
form) as:

s3 = f2(s2, d2) =
⎧⎨
⎩
4, if d2 = C,
5, if d2 = D,
6, if d2 = E.

(6.4)

We leave it to the reader to derive analytical expressions for the state transitions of
the remaining stages.

Before proceeding, there are several important details regarding state-transition
functions that should be noted. First, state-transition functions should always be
written as transitions from the current stage to the next. That is to say, the state variable
in the next stage, st+1, should be dependent solely on the state and decision variables
in the current stage, st and dt , respectively. There should not be any dependence
on state or decision variables from previous stages. Similarly, there should not be
any dependence on state or decision variables in subsequent stages. If the state-
transition functions cannot be written in a way to have a single-stage transition, this
may indicate that additional state variables must be included in the formulation.
Examples of problems in which this occurs are given in Sections 6.3.2 and 6.3.3.

Second, we may use conditional statements, such as those in Equations (6.3)
and (6.4), when defining state-transition functions. That is to say, we do not have to
employ binary variables and the related techniques that are introduced in Section 3.3
to define state-transition functions for dynamic optimization problems.

Third, the stage-2 state-transition function given by Equation (6.4) defines s3 to
be 6 if d2 = E. However, the decision ‘E’ is only available in stage 2 if the material
is in state 3 (i.e., only if s2 = 3). Thus, one could alternately define the stage-2
state-transition function as:

s3 = f2(s2, d2) =
⎧⎨
⎩
4, if d2 = C,
5, if d2 = D,
6, if d2 = E and s2 = 3.

We do not typically do this, however, because the restriction on the stage-2 decision
variable is an example of a constraint, which is formulated separately from the state-
transition function. Constraints are discussed in more detail in Section 6.2.3.

Finally, the Production-Planning Problem is an example of a problem inwhich the
state-transition functions are state-independent or state-invariant. That is to say, at

http://dx.doi.org/10.1007/978-3-319-56769-3_3
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each stage of the problem the material’s state in the next stage depends solely on the
decision made in the current stage, and not on the current state of the material. We
see examples of dynamic optimization problems that have state-dependent state-
transition functions in Section 6.3. In these problems the state-variable value in each
stage depends on the state-variable value in the previous stage.

6.2.3 Constraints

As in linear, mixed-integer linear, and nonlinear optimization problems, the con-
straints indicate what decisions can be feasibly made. More specifically, the con-
straints of a DPP indicate what decision-variable values are feasible at each stage of
the problem. Depending on the particulars of a DPP, the constraints can be stage-
and state-dependent. This means that the feasible decisions vary depending on what
stage of the problem we are in and what values the state variables take on. In the
Production-Planning Problem the constraints are given by which arcs originate from
each node in Figures 6.2 (and 6.1). For instance, in stage 1 we know that processes
‘A’ and ‘B’ are available. Thus, the stage-1 constraints can be written as:

d1 ∈ {A,B}.

The feasible stage-2 decisions depend upon the state that the material is in. Thus, we
can write the stage-2 constraints as:

d2 ∈
{ {C,D}, if s2 = 2,

{C,D,E}, if s2 = 3.

We see that in the Production-Planning Problem the constraints are both stage- and
state-dependent. The stage-dependence is exemplified by ‘A’ and ‘B’ only being
feasible in stage 1 and ‘C,’ ‘D,’ and ‘E’ only being feasible in stage 2. The state-
dependence in exemplified by ‘E’ only being available in stage 2 if s2 = 3. We also
see that as with state-transition functions, the constraints of a dynamic optimization
problem can have conditional statements, such as in the stage-2 constraint that is
given above.

It is important to stress that the constraints should always be defined on decision
variables and not on state variables. This is because the constraints are intended to
tell us what decisions are feasible at each stage. In some problems, it may be more
natural to write a restriction on a state variable. In such instances, we can use the
state-transition function to transform state-variable restrictions into decision-variable
constraints.

It should also be noted that the problem constraints should always depend on the
current state variables only. That is to say, the constraints on the stage-t decision
variables should depend solely on the stage-t state variables. If a constraint involves
decision or state variables from previous stages, this may indicate that the state
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variable definitions need to be refined or that additional state variables are needed to
properly formulate aDPP. The examples that are discussed in Sections 6.3.1 and 6.3.2
illustrate some of these issues in defining problem constraints.

6.2.4 Objective-Contribution Functions

The objective-contribution functions indicate how much is contributed toward the
problem’s overall objective in each stage of the problem. The objective-contribution
function can generally depend on the decision and state variables in each stage. As
with the state-transition functions and constraints, the stage-t objective-contribution
function should depend solely on the stage-t state and decision variables. If state or
decisionvariables fromprevious stagesmust be included in theobjective-contribution
function, this may indicate that additional state variables are needed to properly
formulate the DPP. The example that is given in Section 6.3.3 illustrates this.

The overall objective of the Production-Planning Problem is the total processing
time (which we seek to minimize). Thus, the amount contributed toward this overall
objective is the amount of processing time that the process chosen in each stage
involves. These processing times are defined by the numbers next to each arc in
Figures 6.2 (and 6.1).

We can also write analytical expressions for the objective-contribution functions.
For instance, the stage-1 objective-contribution function is:

c1(s1, d1) =
{
6, if d1 = A,
4, if d1 = B.

(6.5)

Note that we write the objective-contribution function, c1(s1, d1), as depending on
both s1 and d1. As with writing state-transition functions, this is the most general
manner in which to express an objective-contribution function. However, because the
amount contributed toward the overall objective function in stage 1 does not depend
directly on s1, we could write this function less generically as:

c1(d1) =
{
6, if d1 = A,
4, if d1 = B.

We opt to write objective-contribution functions in the former more generic manner,
in line with (6.5), however.

The stage-2 objective-contribution function is:

c2(s2, d2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3, if s2 = 2 and d2 = C,
2, if s2 = 2 and d2 = D,
5, if s2 = 3 and d2 = C,
2, if s2 = 3 and d2 = D,
4, if s2 = 3 and d2 = E.

(6.6)
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Aswith state-transition functions and constraints, the objective-contribution function
can include conditional statements, such as those used in Equations (6.5) and (6.6).

6.3 Formulation Examples

With the six fundamental elements of a dynamic optimization problem defined, we
now turn to a series of additional formulation examples. For each we identify the
six elements that must be formulated and, as appropriate, comment on some of the
details regarding the definition of the six elements that are introduced in Section 6.2.

6.3.1 Energy-Storage Problem

A company owns a pumped hydroelectric storage plant. This plant consists of two
reservoirs, one of which is above the other. The two reservoirs are connected by
a turbine and pump. In each hour, the company can choose to do exactly one of
either: (i) operate the turbine, (ii) operate the pump, or (iii) nothing. If it chooses
to operate the turbine, the plant releases one unit of water from the upper reservoir
into the lower reservoir and produces 80 MWh of electricity, which can be sold
on the wholesale electricity market. If it chooses to operate the pump, it consumes
100 MWh of electricity, which is purchased from the wholesale market and pumps
one unit of water from the lower reservoir into the upper reservoir. If it chooses to do
nothing, the water levels in the two reservoirs remain the same and it does not earn
money in or pay money to the wholesale market.

The upper reservoir can hold at most four units of water and has one unit of water
in it at the beginning of hour 1. There are effectively no limits on the water level of
the lower reservoir, as it is too big for the pumped hydroelectric storage plant to have
any effect on its water level. Table 6.7 lists the wholesale prices over the following
24 hours of the day. The company would like to determine an operating schedule for
the pumped hydroelectric storage plant to maximize the total profit that it earns over
the following 24 hours.

The stages of this problem are easy to determine, because there is a natural time
sequence. The company must determine what to do with the pumped hydroelectric
storage plant in each of the next 24 hours. Thus, the problem has 24 stages and each
of the next 24 hours represents one of those stages.

The decisions that are beingmade in each stage of the problem are easy to identify
as well—the company must determine whether to operate the turbine, operate the
pump, or do nothing. There are at least two ways that the decision variables can be
defined, and we formulate the problem using both. The first is to define three separate
decision variables, rt , ut , nt ,∀t = 1, . . . , 24, for each of the three options available
in each stage. These variables are defined as:



350 6 Dynamic Optimization

rt =
{
1, if the turbine is operated in stage t,
0, otherwise,

ut =
{
1, if the pump is operated in stage t,
0, otherwise,

Table 6.7 Wholesale
electricity prices over the next
24 hours in the
Energy-Storage Problem

Hour Price [$/MWh]

1 21.78

2 19.81

3 17.10

4 16.20

5 16.28

6 16.82

7 17.77

8 21.07

9 24.13

10 25.86

11 26.17

12 25.97

13 25.91

14 24.64

15 23.68

16 23.81

17 27.82

18 36.15

19 37.26

20 34.64

21 32.16

22 30.01

23 25.26

24 21.63

and:

nt =
{
1, if the company does nothing in stage t,
0, otherwise.

The second uses one variable in each stage, at ,∀t = 1, . . . , 24, which compactly
gives the three options. This variable is defined as:
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dt =
⎧⎨
⎩

−1, if the turbine is operated in stage t,
1, if the pump is operated in stage t;
0, otherwise.

These are not the only ways to define the decision variables. Moreover, the choice of
interpreting the values−1 and 1 in defining dt is arbitrary and their interpretations can
be interchanged (so long as the rest of themodel formulation is changed accordingly).

To define the state variables, we first note that wemust know howmuchwater is in
the upper reservoir at the beginning of each stage. Thus, we define a set of state vari-
ables, st ,∀t = 1, . . . , 24, where st represents the units of water in the upper reservoir
at the beginning of stage t . It is also useful, when writing the objective-contribution
functions, to have a second set of state variables representing the wholesale electric-
ity prices. We can define the variables, pt ,∀t = 1, . . . , 24, where pt represents the
stage-t wholesale electricity price in $/MWh.

Before proceeding, let us draw an important distinction between st and pt . The
former, st , is an example of an endogenous state variable. An endogenous state
variable is one that evolves based on decisions that are made in the problem (i.e.,
based on the decision variables). For instance, if the company chooses to operate
the pump in stage t , the water level of the upper reservoir will be one unit higher
at the beginning of stage (t + 1). Endogenous state variables must be included as
state variables when formulating a dynamic optimization problem. This is because
solving a dynamic optimization properly requires that we capture how endogenous
state variables evolve from one stage to the next based on the decisions made. If
an endogenous state variable is excluded from the formulation, this dynamic is not
captured and the problem cannot be solved properly.

The second state variable, pt , is an example of an exogenous state variable.
Exogenous state variables are not affected by decisions made in the problem. Rather,
they are fixed data or parameters that are given in the problem description. Exoge-
nous state variables do not have to be explicitly included as state variables when
formulating a dynamic optimization problem. It is sometimes convenient for nota-
tional purposes to give exogenous data a variable name. This is what we are doing
by calling the stage-t price pt . Doing so makes the objective-contribution functions
easy to write in a compact form.

Almost all dynamic optimization problems have fixed data that can be listed as
exogenous state variables. For instance, in the Production-Planning Problem that is
introduced in Section 6.1 we could define state variables representing the amount of
time that different production processes take. These variables would represent the
values that are next to the arcs in Figure 6.1.

We define two versions of the state-transition functions for the endogenous state
variables, st . These correspond to the two different definitions of the decision vari-
ables. If we define three decisions variables, rt , ut , and nt , in each stage, the state-
transitions are given by:

st+1 = f st (st , rt , ut , nt ) = st − rt + ut ,∀t = 1, . . . , 24. (6.7)
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This function defines the amount of water in the upper reservoir at the beginning of
stage (t + 1) as the amount in the reservoir at the beginning of stage t , minus the
amount (one unit) removed if the turbine is operated, plus the amount (one unit) if
the pump is operated. We place the superscript ‘s’ on the state-transition function
in (6.7) to make it explicitly clear that this is the state-transition function for the st
state variables. If we have a single decision variable in each stage, the state-transition
functions are given by:

st+1 = f st (st , dt ) = st + dt ,∀t = 1, . . . , 24.

This has the exact same interpretation as (6.7). Note that the state-transition func-
tions for this problem are state-dependent, unlike the state-transition functions in the
Production-Planning Problem that is introduced in Section 6.1. That is to say the
endogenous state variable in stage (t + 1) is a function of the stage-t state-variable
value. The Production-Planning Problem does not have this property.

If we define the prices as exogenous state variables, then we must define state-
transition functions for these variables as well. These state-transition functions are
somewhat trivial, however, as they simply specify that the prices in the different
stages are equal to the values that are given in Table 6.7. Thus, the state-transition
functions for the prices are:

p1 = 21.78,

p2 = 19.81,

...

p24 = 21.63.

Because the pt state variables represent exogenously given problem data, it is com-
mon to not explicitly write such state-transition functions for sake of brevity.

This problem has either two or three sets of constraints, depending on which of
the two definitions of the decision variables is used. The first set requires that the
decision variables take on the discrete values that are given in their definitions. If the
problem is formulated using three decision variables in each stage, these constraints
take the form:

rt , ut , nt ∈ {0, 1},∀t = 1, . . . , 24.

Otherwise, with a single decision variable in each stage, the constraints take the form:

dt ∈ {−1, 0, 1},∀t = 1, . . . , 24.

The second set of constraints ensure that the water level of the upper reservoir
does not go below 0 or above 4 after each decision is made. We require the for-
mer restriction because it is physically impossible for the upper reservoir to have a
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negative amount of water. The latter restriction is imposed to ensure that the upper
reservoir is not flooded. These restrictions have the form:

0 ≤ st+1 ≤ 4,∀t = 1, . . . , 24. (6.8)

Note that (6.8) defines a restriction on a state variable. As discussed in Section 6.2.3,
constraints should always be written as restrictions on decision variables. We con-
vert (6.8) into constraints on the decision variables by using the state-transition
functions. Recall that the state-transition functions are:

st+1 = st − rt + ut ,∀t = 1, . . . , 24;

in the three-decision-variable formulation and:

st+1 = st + dt ,∀t = 1, . . . , 24;

in the single-decision-variable formulation. If we substitute the state-transition func-
tions into (6.8) we have:

0 ≤ st − rt + ut ≤ 4,∀t = 1, . . . , 24;

in the three-decision-variable formulation and:

0 ≤ st + dt ≤ 4,∀t = 1, . . . , 24;

in the single-decision-variable formulation. We can further manipulate these two
expressions (by subtracting st from both sides of the double-sided inequalities) to
arrive at the constraints:

− st ≤ −rt + ut ≤ 4 − st ,∀t = 1, . . . , 24; (6.9)

in the three-decision-variable formulation and:

− st ≤ dt ≤ 4 − st ,∀t = 1, . . . , 24; (6.10)

in the single-decision-variable formulation. The restrictions in (6.9) and (6.10) are of
the form that constraints in dynamic optimization problems must be. First, the con-
straints are on the decision variables (rt and ut in (6.9) and dt in (6.10)). Secondly,
the stage-t constraints only depend on stage-t information. That is to say, the restric-
tions on what values the stage-t decision variables can take depends on the stage-t
state variable, st . This is because st appears on the two sides of the double-sided
inequalities.

We have one final set of constraints, which ensures that exactly one of the three
options available is chosen in each stage. In the three-decision-variable formulation
these constraints are written as:
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rt + ut + nt = 1,∀t = 1, . . . , 24.

No such constraint is needed in the single-decision-variable formulation of the prob-
lem. This is because the way that the decision variable, dt , is defined ensures that
the plant does exactly one of operating the pump, operating the turbine, or nothing
in each stage.

Putting these constraint sets together, we can write the constraints of the three-
decision-variable formulation as:

rt , ut , nt ∈ {0, 1},∀t = 1, . . . , 24;

−st ≤ −rt + ut ≤ 4 − st ,∀t = 1, . . . , 24;

and:

rt + ut + nt = 1,∀t = 1, . . . , 24.

The constraints of the single-decision-variable formulation are:

dt ∈ {−1, 0, 1},∀t = 1, . . . , 24;

and:
−st ≤ dt ≤ 4 − st ,∀t = 1, . . . , 24.

The objective-contribution functions can be written in two ways, depending on
whether we formulate the problem with one or three sets of decision variables. With
three decision variables the objective-contribution functions are:

ct (st , pt , rt , ut , nt ) =
⎧⎨
⎩

−100pt , if ut = 1,
80pt , if rt = 1,
0, otherwise,

(6.11)

for each t = 1, . . . , 24. This function says that the company pays 100pt if the pump
operates (as it purchases 100 MWh at a price of $pt /MWh) and earns 80pt if the
turbine operates in stage t . Otherwise, the company does not pay or earn anything
if it chooses to do nothing in stage t . Note that defining pt as an exogenous state
variable makes the objective-contribution functions more compact, as they can all
be written in the same generic form in terms of pt .

If the problem if formulated with a single decision variable in each stage, the
objective-contribution functions are defined as:

ct (st , pt , dt ) =
⎧⎨
⎩

−100pt , if dt = 1,
80pt , if dt = −1,
0, otherwise,

for each t = 1, . . . , 24. These functions have the same interpretation that (6.11)
does.



6.3 Formulation Examples 355

6.3.2 Energy-Production Problem

A company owns an electricity-generating plant. In each hour the company can
choose to either operate the plant or not. If the plant is operated in a given hour, it
can produce either 100 MW or 350 MW in that hour (i.e., these are the only output
levels possible). If the plant is not operated in a given hour, then it cannot produce
any power in that hour.

If the plant is operated in a given hour, the company incurs a fixed cost of $400,
regardless of how much power the plant produces. The plant also incurs a variable
cost of $45/MWh produced. Finally, if the plant is switched on in a given hour (i.e.,
it is operated in hour t but was not operated in hour (t − 1)), the company incurs
a startup cost of $600 (which is in addition to the $400 fixed cost of operating the
plant and its variable operation cost). The plant has a further ramping constraint on
its operation. If the plant is operating in hour t it has to be producing 100MW for the
company to be able to switch the plant off in hour (t + 1). Otherwise, if the plant is
producing 350MW in hour t , the company cannot switch the plant off in hour (t+1).

Energy produced by the generating plant can be sold in the wholesale electricity
market. Table 6.8 summarizes wholesale electricity prices over the next 24 hours.
The plant was online and producing 100 MW in the previous hour. The company
would like to determine how to operate its plant over the next 24 hours to maximize
profits earned from energy sales.

This is another example of a problem in which the stages are easy to determine.
This is because of the natural time sequence of the decisions being made. The com-
panymust determine what to do with its generating plant in each of the next 24 hours.
As such, the problem has 24 stages and each of the next 24 hours represents one of
those stages.

The problem has two sets of decisions, both of which are relatively easy to deter-
mine. The first is whether to operate the plant in each stage or not. We represent this
using binary decision variables, ut ,∀t = 1, . . . , 24, with ut defined as:

ut =
{
1, if the plant is operated in stage t,
0, otherwise.

The other set of decisions is how much power to produce in each stage. We define
an additional set of decision variables, qt ,∀t = 1, . . . , 24, with qt representing the
MW produced by the plant in stage t .

Defining the endogenous state variables (and, as such, the state-transition func-
tions) of this problem is more difficult than in the other examples seen thus far. It
is easier to determine what state variables are needed when we attempt to write the
constraints and objective-contribution functions. Thus, we tackle these first. We can,
however, define a set of exogenous state variables, pt ,∀t = 1, . . . , 24, with pt rep-
resenting the stage-t wholesale electricity price. As in the Energy-Storage Problem,
which is discussed in Section 6.3.1, this set of exogenous state variables makes it
easier to write the objective-contribution functions compactly. We can also define
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Table 6.8 Wholesale
electricity prices over the next
24 hours in the
Energy-Production Problem

Hour Price [$/MWh]

1 65

2 61

3 42

4 35

5 30

6 32

7 38

8 42

9 53

10 57

11 59

12 64

13 72

14 77

15 64

16 62

17 40

18 64

19 55

20 43

21 40

22 55

23 30

24 21

the state-transition functions for the prices as:

p1 = 65,

p2 = 61,

...

p24 = 21.

These state-transition functions can be excluded, for sake of brevity, as they simply
repeat the fixed price data that are in Table 6.8 (as in the case of the Energy-Storage
Problem).

There are three sets of constraints in this problem. The first requires that the
operation variables take on the discrete values given in their definition:

ut ∈ {0, 1},∀t = 1, . . . , 24.
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The second set of constraints restricts the values that the production variables take
on. There are two types of restrictions on the production variables. The first is that the
plant can only produce 0, 100, or 350 MW. The other is that the stage-t production
of the plant must be positive if the plant is operated in stage t . Otherwise, if the plant
is not operated in stage t , its stage-t production must be zero. The simplest way to
express these two types of restrictions is through the conditional constraints:

qt ∈
{ {0}, if ut = 0,

{100, 350}, if ut = 1,

for all t = 1, . . . , 24. Recall that such conditional constraints can be used when for-
mulating a dynamic optimization model. A less compact way to write the constraints
on the production variables is to first restrict the production variable to take on one
of the three possible values:

qt ∈ {0, 100, 350},∀t = 1, . . . , 24;

and to then relate the qt and ut variables as:

100ut ≤ qt ≤ 350ut ,∀t = 1, . . . , 24. (6.12)

Constraint set (6.12) is an example of a variable-discontinuity constraint (cf.
Section 3.3.1 for further details and examples). Either of these two approaches to
modeling the constraints is equally valid.

The third set of constraints impose the ramping restriction on shutting the plant
down. One way of writing these constraints is:

ut = 1 if qt−1 = 350,∀t = 1, . . . , 24. (6.13)

In words, this constraint says that if the plant’s stage-(t − 1) production level is
350 MW, then it must be operating in stage t . This is not a valid constraint, however,
as the restriction on a stage-t decision variable is written in terms of a stage (t − 1)
decision variable.

As suggested in Section 6.2.3, we address this issue by defining a set of endoge-
nous state variables, xt ,∀t = 1, . . . , 24, where xt represents how much power is
produced by the plant in stage (t − 1). Having defined this new set of state variables,
we write constraints (6.13) as:

ut = 1 if xt = 350,∀t = 1, . . . , 24;

which are of the form needed when formulating a dynamic optimization problem.
Wenext turn towriting the objective-contribution functions.We canwrite these as:

{
(pt − 45)qt − 400ut − 600, if ut = 1 and ut−1 = 0,
(pt − 45)qt − 400ut , otherwise,

(6.14)

http://dx.doi.org/10.1007/978-3-319-56769-3_3
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for all t = 1, . . . , 24. Each of these functions consists of three terms. The first, (pt −
45)qt , represents revenues earned from selling energy less the variable production
cost. The second, −400ut , represents the fixed cost of operating the plant in stage t ,
which is only incurred if the plant is operating (i.e., only if ut = 1). The last term,
−600, represents the fixed cost of starting up the plant. This cost is only incurred if
the plant is operating in stage t (i.e., if ut = 1) but is not operating in the previous
stage (i.e., if ut−1 = 0).

This is an invalid objective-contribution function, however, because the stage-
t objective depends on a decision from the previous stage. As with the ramping
constraint, we address this problem by introducing a new set of endogenous state
variables, yt ,∀t = 1, . . . , 24, where we define yt as:

yt =
{
1, if the plant is operated in stage (t − 1),
0, otherwise.

With this new set of state variables we can define the objective-contribution functions
as:

ct (xt , yt , pt , ut , qt ) =
{
(pt − 45)qt − 400ut − 600, if ut = 1 and yt = 0,
(pt − 45)qt − 400ut , otherwise,

for all t = 1, . . . , 24.
We must finally define state-transition functions for the two sets of endogenous

state variables that we define to properly formulate the constraints and objective-
contribution functions. The state-transition functions for the xt state variables are:

xt+1 = f xt (xt , yt , pt , ut , qt ) = qt ,∀t = 1, . . . , 24.

The state-transition function for the yt state variables are:

yt+1 = f yt (xt , yt , pt , ut , qt ) = ut ,∀t = 1, . . . , 24.

We summarize the problem formulation as follows. The problem has 24 stages,
each of which corresponds to one of the following 24 hours. There are two decision
variables in each stage: ut , qt ,∀t = 1, . . . , 24. We define ut as:

ut =
{
1, if the plant is operated in stage t,
0, otherwise,

and qt as MW produced by the plant in stage t . There are three sets of state variables,
pt , xt , yt ,∀t = 1, . . . , 24. pt is an exogenous state variable, which represents the
stage-t wholesale electricity price (measured in $/MWh). xt is an endogenous state
variable that represents how many MW are produced by the plant in stage (t − 1).
yt is an endogenous state variable, which is defined as:
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yt =
{
1, if the plant is operated in stage (t − 1),
0, otherwise.

The state-transition functions for the two endogenous state variables are:

xt+1 = f xt (xt , yt , pt , ut , qt ) = qt ,∀t = 1, . . . , 24;

and:
yt+1 = f yt (xt , yt , pt , ut , qt ) = ut ,∀t = 1, . . . , 24.

There are three sets of constraints. The first restricts ut to the discrete values given
in its definition:

ut ∈ {0, 1},∀t = 1, . . . , 24.

The second restricts qt to the discrete values that it can take and relates it to ut :

qt ∈
{ {0}, if ut = 0,

{100, 350}, if ut = 1,

for all t = 1, . . . , 24. The third:

ut = 1 if xt = 350,∀t = 1, . . . , 24;

imposes the ramping constraint on shutting down the plant. Finally, the objective-
contribution functions are:

ct (xt , yt , pt , ut , qt ) =
{
(pt − 45)qt − 400ut − 600, if ut = 1 and yt = 0,
(pt − 45)qt − 400ut , otherwise,

for all t = 1, . . . , 24.

6.3.3 Staffing Problem

A company needs to schedule its pool of maintenance staff over the next 10 work
shifts. It wishes to do so to minimize its total staffing costs. The company needs
to have a minimum number of staffers working during each of the next 10 shifts.
Table 6.9 lists these minimum staffing levels. Moreover, the company can never have
more than 20 people working during any shift.

At the beginning of each work shift, the company decides how many staffers to
schedule to beginworking in that shift.When doing so, it has the option to schedule an
employee for one shift or for two consecutive shifts and can schedule any combination
of single- and double-shift employees at any time. The only exception is in shift 10,
when it can only hire single-shift employees. An employee that is scheduled for a
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Table 6.9 Minimum number
of employees that must be
working in the maintenance
center over the next 10 shift
periods in the Staffing
Problem

Shift Period Minimum Number of Employees

1 10

2 15

3 9

4 16

5 16

6 10

7 15

8 13

9 14

10 8

single shift costs $100,which is paid immediately.Anemployee that is scheduled for a
double shift costs $80/shift, which is paid in each of the two shifts. The companymust
hire an integer number of employees. The company has three employees available
to work a single shift at the beginning of shift period 1, who are carried over from
the previous shift period.

This problem has a natural sequence of decisions being made. Specifically, at the
beginning of each of the 10 shifts the company must decide how many employees to
schedule. Thus, there are 10 stages and each stage corresponds to one of the 10 shifts.

There are two decisions being made in each stage—the number of employees to
schedule to work a single shift and the number of employees to schedule to work a
double shift. Thus, we define two sets of decision variables at , bt ,∀t = 1, . . . , 10.
We define at as the number of employees scheduled to begin a single shift in stage t
and bt as the number of employees scheduled to begin a double shift in stage t .

The state variables for this problem may not be immediately apparent. However,
if we attempt to find the objective-contribution functions, it becomesmore clear what
our endogenous state variables are. The amount that is contributed toward our overall
objective in stage t is:

100at + 80bt + 80bt−1. (6.15)

Equation (6.15) says that we pay $100 and $80, respectively, for the single- and
double-shift employees scheduled to begin work in stage t . We also pay $80 for the
double-shift employees that are scheduled to begin work in stage (t − 1). This is
not, however, a proper objective-contribution function. This is because the stage-t
objective-contribution may only depend on the stage-t state and decision variables.
As in the Electricity-Production Problem, which is introduced in Section 6.3.2, we
rectify this problem by adding a set of endogenous state variables, st ,∀t = 1, . . . , 10.
We define st as the number of double-shift employeeswho are scheduled to start work
in stage (t − 1) (and are scheduled to still be working in stage t).
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We can also define a set of exogenous state variables, mt ,∀t = 1, . . . , 10,
where mt represents the minimum number of employees that must be staffing the
maintenance center in stage t . These state variables store the values that are summa-
rized in Table 6.9 and allow us to write the problem constraints more compactly.

Given these state variable definitions, we can write the state-transition functions
for the st state variables as:

st+1 = f st (st , at , bt ) = bt ,∀t = 1, . . . , 10.

This function says that st+1 = bt , meaning that the number of double-shift employees
carried into stage (t + 1) is equal to the number of double-shift employees that are
scheduled to start working in stage t . The state-transition functions for the mt state
variables are:

m1 = 10,

m2 = 15,

...

m10 = 8.

The problem constraints include non-negativity and integrality of the decision
variables:

at , bt ∈ Z
+,∀t = 1, . . . , 10;

and the minimum and maximum number of employees that must be staffing the
maintenance center in each stage. This second set of constraints can be written as:

mt ≤ st + at + bt ≤ 20,∀t = 1, . . . , 10. (6.16)

The term in the middle of (6.16) gives the total number of employees working in
stage t—st employees are carried over from stage (t − 1) and (at + bt ) employees
are scheduled to begin a single or double shift in stage t . We also have a constraint
that double-shift employees cannot start work in shift 10:

b10 = 0.

Finally, we can write the objective-contribution functions as:

ct (st , at , bt ) = 100at + 80(st + bt ),∀t = 1, . . . , 10.

This expression is analogous to (6.15). Unlike (6.15) it is a properly structured
objective-contribution function because the stage-t objective-contribution function
depends solely on the stage-t state and decision variables.
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6.3.4 Investment Problem

A dapper youngster has $7000 to invest in any combination of three assets. If she
chooses to invest in an asset, she must invest an integer multiple of $1000. If she
chooses to invest in the first asset she earns a $1000 fixed return on her investment
plus the amount invested is doubled. If she chooses to invest in the second asset, she
earns a $5000 fixed return on her investment plus the amount invested is quadrupled.
If she chooses to invest in the third asset, she earns a $2000 fixed return on her
investment plus the amount invested is tripled. These returns on her investments are
earned after five years. The investor would like to determine how to invest the $7000
that she has on-hand today to maximize the total return on her investment after five
years.

This is an example of a problem in which determining the problem stages can
be difficult, because there is not a natural time sequence. Instead, the easiest way
to determine the stages is to first identify the decisions that are being made. In this
problem, the decisions are how much to invest in each of the three assets, which
we denote d1, d2, and d3, respectively. Knowing that these are the three decisions
being made, we can next identify the problem as having three stages. The stages
correspond to when the investor decides how much to invest in each of assets 1
through 3. Note that the problem description implies that these investment decisions
are made simultaneously. However, we represent this as a sequential decision to
decompose the problem as a DPP.

We next need to determine the problem states. The information that is critically
important when making each of the three investment decisions in how much cash is
on hand for investing at the beginning of each stage (i.e., how much of the $7000 is
uninvested when making each of the decisions in the three stages). We let s1, s2, and
s3 denote these three state variables. We could also define exogenous state variables
that represent the fixed return on investment that each asset provides or the factor by
which the amount invested in each asset grows.We do not do so, however, because the
objective-contribution functions of this problem are easy to write without defining
these exogenous state variables.

Next, we write the state-transition functions as:

st+1 = ft (st , dt ) = st − dt ,∀t = 1, 2, 3. (6.17)

These state-transition functions say that the amount of cash that is on hand at the
beginning of stage (t+1) (i.e., when determining howmuch to invest in asset (t+1))
equals the amount of cash that is on hand at the beginning of stage t less the amount
that is invested in stage t (i.e., the amount that is invested in asset t).

Before proceeding, note that one may be tempted to write a state-transition func-
tion of the form:

s3 = s1 − d1 − d2. (6.18)
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This equation says that the amount of cash on hand at the beginning of stage 3 equals
the amount of cash that is on hand at the beginning of stage 1, less the amounts
invested in stages 1 and 2. This is an invalid state-transition function, however. The
reason that this is invalid is because the change in the state variable between stages 2
and 3 should only depend on the stage-2 state and decision variables. Equation (6.18)
gives the stage-3 state variable in terms of the stage-1 decision variable, which is
invalid. As discussed in Section 6.2.2, state-transition functions should always define
single-state transitions. Equation (6.17) does this, whereas (6.18) does not.

To determine the problem constraints, we first note that the amount invested in
each asset must be non-negative and an integer multiple of $1000. These constraints
can be written as:

dt ∈ {0, 1000, 2000, . . . },∀t = 1, 2, 3. (6.19)

We must also ensure that we not invest more money than we have available in any
stage. These constraints can be written as:

dt ≤ st ,∀t = 1, 2, 3. (6.20)

We finally need to define the objective-contribution functions, which are the
returns on investment earned in each of the three stages. Based on the problem
information, these are given by:

c1(s1, d1) =
{
2d1 + 1000, if d1 > 0,
0, otherwise,

c2(s2, d2) =
{
4d2 + 5000, if d2 > 0,
0, otherwise,

and:

c3(s3, d3) =
{
3d3 + 2000, if d3 > 0,
0, otherwise.

(6.21)

6.4 Iterative Solution Algorithm for Dynamic Optimization
Problems

We now turn to solving dynamic optimization problems. More specifically, we dis-
cuss how to generalize the solution technique that we apply to the Production-
Planning Problem in Section 6.1.2 to solve any dynamic optimization problem. This
solution technique is known as the Dynamic Programming Algorithm. Although
it can be tedious, the Dynamic Programming Algorithm is trivially easy to apply to
any problem, so long as the six elements that are required to formally formulate the
problem are properly identified.
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Let us begin by recalling how the Production-Planning Problem is decomposed
and explain the steps that we go through to solve it in Section 6.1.2. We explain
these steps in terms of the elements of a generic dynamic optimization problem
(i.e., in terms of the stages, state and decision variables, state-transition functions,
constraints, and objective-contribution functions). Explaining the steps that are used
to solve the Production-Planning Problem in terms of these six elements allows us
to apply the same methodology to any DPP.

In the Production-Planning Problem, we first start by examining states 10 and 11.
For each of these states we determine the optimal action to choose and record this
and the associated amount of time that it takes to finish the product in Table 6.1.

We then examine states 7 through 9, repeating the same process. Recall that when
determining the amount of time that it takes to finish the product from each of states 7
through 9, we add two separate terms together. The first accounts for the amount of
time associated with the immediately chosen process (i.e., process ‘I’ or ‘J’). The
second accounts for what happens after this immediate process is completed and
the remaining amount of time to complete the product thereafter. Equations (6.1)
and (6.2) show these two terms being added together. Recall, also, that the second
term, which is the amount of time that it takes to complete the final product from one
of states 10 or 11, is taken from Table 6.1. Finally, note that when examining states 8
and 9, there are two feasible alternatives available (states 7, 10, and 11 have only one
feasible decision available). For states 8 and 9 we compute the total time associated
with each of the two alternatives available and select the optimal (minimal-time) one.

From there, we move further back through the problem, examining states 4, 5,
and 6, followed by states 2 and 3, and then finally state 1, at which point we have
worked backward through the entire problem.

To generalize this process, first note that we decompose the Production-Planning
Problem by considering sets of states together. More specifically, what we are doing
is working backward through the stages of the problem. In each stage we consider
each possible state that the system can be in (i.e., different possible values that the
state variables can take on). For each possible state, what we do is enumerate all
of the feasible decision-variable values that are available to us. We then determine
what the total objective-function value over the current and subsequent stages of the
problem is if that decision is chosen. We must stress that when computing this total
objective-function value, we do not directly sum the objective-contribution functions
for all of the subsequent stages of the problem. Rather, we consider the sum of how
much is contributed toward the overall objective in the current stage (this is given
by the current-stage objective-contribution function) and what is contributed in the
remaining stages of the problem (this comes from information that is recorded in the
third column of Tables 6.1 through 6.5 in the Production-Planning Problem). The fact
that we do not compute the objective-contribution function for each subsequent stage
when computing the total objective-function value is an important and time-saving
benefit of the Dynamic Programming Algorithm.
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6.4.1 Dynamic Programming Algorithm Example

To further illustrate the Dynamic Programming Algorithm, we apply it to solve the
Investment Problem, which is introduced in Section 6.3.4. Following the process
used to solve the Production-Planning Problem in Section 6.1.2, we begin by first
examining the final stage. The Investment Problem has three stages, thus we begin
by examining stage 3. To examine stage 3 we first determine what possible values
the state variables can take in stage 3. The endogenous state variable, s3, represents
the amount of cash that is on hand to invest at the beginning of stage 3. We know that
the investor starts with $7000 and can only invest integer multiples of $1000 in the
assets. Thus, there are only eight possible values that s3 can take on: 0, 1000, 2000,
3000, 4000, 5000, 6000, and 7000.

For each of these possible state-variable values, we next determine what decisions
are feasible. This is done using the constraints. Let us begin by considering the first
possible state-variable value, s3 = 0. Constraints (6.19) and (6.20) for stage 3 are:

d3 ∈ {0, 1000, 2000, . . . },

and:
d3 ≤ s3.

If we substitute s3 = 0 (because 0 is the state-variable value that we are currently
examining) into these constraints they become:

d3 ∈ {0, 1000, 2000, . . . },

and:

d3 ≤ 0.

Taken together, these constraints simplify to:

d3 = 0.

Thus, there is no decision to be optimized in the case that s3 = 0, because there is
only one feasible decision. Nevertheless, we do need to determine what the over-
all objective-function value from stage 3 through all of the subsequent stages is.
Remember from the Production-Planning Problem that this information is used later
when examining other stages of the problem. We compute the objective-function
value using the stage-3 objective-contribution function. Because stage 3 is the final
stage of the problem, we do not have a second term to include in computing the
overall objective-function value. This is because we are at the final stage of the prob-
lem and there are no further decisions to be made that add to the total objective
after the stage-3 decision is made. We compute the objective-function value using
objective-contribution function (6.21), which is:
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c3(s3, d3) =
{
3d3 + 2000, if d3 > 0,
0, otherwise.

Substituting s3 = 0 (because 0 is the case that we are examining) and d3 = 0 (because
0 is the feasible decision that we are considering) into this function gives:

c3(0, 0) = 0.

We summarize the results of examining the case in which s3 = 0 in the first row
of Table 6.10. The first column of Table 6.10, which is labeled s3, lists the different
possible stage-3 state-variable values. The second column, which is labeled d∗

3 (s3),
indicates the optimal decision to choose, as a function of the stage-3 state variable.
The second column of the table is commonly referred to as the decision policy. This
is because the second column gives the optimal decision to make in stage 3 for each
possible stage-3 state. We enter a value of 0 in the first row of this column, because
we have that d3 = 0 is the optimal (because it is the only feasible) decision if s3 = 0.

Table 6.10 Stage-3
calculations for applying the
Dynamic Programming
Algorithm to the Investment
Problem

s3 d∗
3 (s3) J3(s3)

0 0 0

1000 1000 5000

2000 2000 8000

3000 3000 11000

4000 4000 14000

5000 5000 17000

6000 6000 20000

7000 7000 23000

The final column of the table, which is labeled J3(s3), holdswhat is called the cost-
to-go function or value function for stage 3. The value function gives the overall
objective-function value from the current stage (in the case of Table 6.10, stage 3)
to the end of the problem (i.e., including all subsequent stages of the problem). The
stage-3 value function is given as a function of the stage-3 state.We enter a value of 0
in the first rowof this column, becausewe have that if s3 = 0 andwe optimally choose
d3 = 0, the resulting objective-function value from stage 3 and all subsequent stages
is 0. Note, finally, that the three columns of Table 6.10 have the same interpretations
as the columns of Tables 6.1 through 6.5, which we use to organize our calculations
when solving the Production-Planning Problem in Section 6.1.2.

We repeat the same steps that are used for s3 = 0 for each of the remaining
seven possible stage-3 state-variable values. We begin with s3 = 1000. We must first
examine constraints (6.19) and (6.20) for stage 3 to determine what decisions are
feasible if the investor has $1000 available at the beginning of stage 3. Substituting
s3 = 1000 (because 1000 is the state that we are now examining) into the constraints,
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gives:
d3 ∈ {0, 1000}. (6.22)

Because there are now two feasible decisions, there is a decision to be optimized.
We select among the two alternatives by first determining what the overall objective-
function values from stage 3 and all subsequent stages is if each alternative is chosen.
We then select the alternative that gives the highest objective-function value (because
our objective in this problem is to maximize overall return on investment). Remem-
ber, however, that because we are examining stage 3, which is the final stage of
the problem, we only use the stage-3 objective-contribution function to make this
determination. Using (6.21) we have:

c3(1000, 0) = 0, (6.23)

and:

c3(1000, 1000) = 5000. (6.24)

Thus, we choose d3 = 1000 as the optimal stage-3 action. The results of these
calculations are recorded in the second row of Table 6.10—our optimal choice of
d3 = 1000 is in the second column and the associated value-function value of 5000
is recorded in the third.

We do not explicitly run through the remaining six cases for stage 3. Rather, we
leave it to the reader to repeat the exact steps used to analyze s3 = 0 and s3 = 1000
to verify the values in the remaining rows of Table 6.10.

After the remaining stage-3 calculations are conducted and recorded in Table 6.10,
we next move back one stage in the problem to stage 2.We repeat the same process to
analyze stage 2 by first determining what are possible stage-2 state-variable values.
The endogenous state variable, s2, represents the amount of cash on hand to invest
at the beginning of stage 2. Moreover, we know that the investor starts with $7000
and can only invest integer multiples of $1000 in the assets. Thus, there are the same
eight possible stage-2 states as in stage 3—s2 can equal any of 0, 1000, 2000, 3000,
4000, 5000, 6000, or 7000.

Starting with the first case of s2 = 0, we substitute this into constraints (6.19)
and (6.20) for stage 2 to determine what decision-variable values are feasible. These
constraints reduce to:

d2 = 0.

Thus, just as in the case of s3 = 0 when analyzing stage 3, there is only one feasible
decision available. By definition, this one feasible decision is optimal. Before pro-
ceeding to the next state, we must determine what the total objective-function value
from stage 2 through the remaining stages of the problem is. Substituting s2 = 0 and
d2 = 0 (because those are the state and decision, respectively, that we are examining)
into the stage-2 objective contribution function gives us:
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c2(0, 0) = 0,

meaning that we earn a $0 return on investment in stage 2 if s2 = 0 and d2 = 0.
This only tells uswhatwe earn in stage 2, however.We need to add to c2(0, 0)what

is earned over the remaining stages until the end of the problem. Recall from solving
the Production-Planning Problem that when examining stage 4 in Equations (6.1)
and (6.2) we use the stage-5 value-function information that is recorded in Table 6.1
(i.e., the value function from the next stage). We do the same here, using the stage-3
value-function information, which is recorded in Table 6.10. The only question that
remains is which row of Table 6.10 to take the value-function information from. In
the Production-Planning Problem this is determined by which state the material is
converted into after the stage-4 production process is completed. This information
is given by the terminal node of the arc in Figure 6.1 that is associated with the
production process that is chosen in stage 4. For instance, if process ‘I’ is chosen in
stage 4, the material transitions to state 10 in stage 5. Thus, the value-function value
from the first row of Table 6.1, corresponding to state 10, is used. The terminal nodes
of the arcs in Figure 6.1 represent the state-transition functions. Thus, we likewise
use the state-transition function to determine which row of Table 6.10 to take the
value-function information from in solving the Investment Problem.

The stage-2 state-transition function is:

s3 = f2(s2, d2) = s2 − d2.

Substituting s2 = 0 and d2 = 0 into the state-transition function gives:

s3 = f2(0, 0) = 0,

meaning that if s2 = 0 and the investor chooses d2 = 0 as the stage-2 decision, the
stage-3 state variable equals s3 = 0. Thus, we use J3(s3) = J3(0) to represent the
objective-function value from stage 3 through the remainder of the problem. Thus,
if s2 = 0 and d2 = 0 the total return on investment from stage 2 through the end of
the problem is:

c2(s2, d2) + J3(s3) = c2(0, 0) + J3(0) = 0.

The results of analyzing the case with s2 = 0 are summarized in the first row of
Table 6.11.

We next examine the case of s2 = 1000. Substituting this into stage-2 con-
straints (6.19) and (6.20) gives us:

d2 ∈ {0, 1000},

as feasible decision-variable values. Thus, we have a decision to optimize in this case.
For each of the two feasible decisions, we need to compute how much is contributed
toward the overall objective in stage 2 plus the amount earned over the subsequent
stages of the problem. As in the case of s2 = 0, the first term is given by the stage-
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Table 6.11 Stage-2
calculations for applying the
Dynamic Programming
Algorithm to the Investment
Problem

s2 d∗
2 (s2) J2(s2)

0 0 0

1000 1000 9000

2000 1000 14000

3000 2000 18000

4000 3000 22000

5000 4000 26000

6000 5000 30000

7000 6000 34000

2 objective-contribution function. The second term is given by the value-function
information that is recorded in Table 6.10. As in the case of s2 = 0, we use the
stage-2 state-transition function to determine which row of Table 6.10 to take the
value-function information from.

For the decision-variable value of d2 = 0 we compute the total objective-function
value from stage 2 forward as:

[
immediate stage-2 return on
investment from d2 = 0

]
+

[
return on investment
in subsequent stages

]

= c2(s2, d2) + J3(s3) (6.25)

= c2(1000, 0) + J3( f2(s2, d2)) (6.26)

= 0 + J3( f2(1000, 0)) (6.27)

= J3(1000) (6.28)

= 5000. (6.29)

Equation (6.25) defines the first of these two terms as the stage-2 objective-
contribution function and the second as the stage-3 value function, which is evalu-
ated at the stage-3 state, s3. We substitute s2 = 1000 and d2 = 0 into the first-term
of (6.26), because we are examining the case in which the state is 1000 and the
decision is 0. Furthermore, we know that the stage-3 state, s3, is determined by the
stage-2 state-transition function as:

s3 = f2(s2, d2),

and make this substitution into the second term in (6.26). Next, we know that
c2(1000, 0) = 0, and substitute this for the first term in (6.27). We also substi-
tute s2 = 1000 and d2 = 0 into the second term in (6.27). We next know that
f2(1000, 0) = 1000, and substitute this into (6.28). Using the information that is
recorded in Table 6.10, we know that J3(1000) = 5000, which gives us (6.29).
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A similar calculation for d2 = 1000 gives:

c2(s2, d2) + J3(s3)

= c2(1000, 1000) + J3( f2(s2, d2))

= 9000 + J3( f2(1000, 1000))

= 9000 + J3(0)

= 9000 + 0

= 9000.

These two calculations tell us that if the investor enters stage 2 with $1000 on
hand, there are two options available, which are to either invest $0 or $1000 in stage 2.
Investing $0 in stage 2 earns the investor $5000 from stage 2 through the subsequent
stages of the problem, whereas investing $1000 in stage 2 earns $9000. Because the
investor is looking to maximize return on investment, the optimal stage-2 decision if
the investor has $1000 on hand in stage 2 is to invest $1000 in stage 2, which earns
$9000 from stage 2 to the end of the problem. These findings are recorded in the
second row of Table 6.11.

We do one further set of stage-2 calculations for the case of s2 = 2000. Repeating
the same steps as before, we first substitute the state-variable value into stage-2
constraints (6.19) and (6.20) and find that:

d2 ∈ {0, 1000, 2000},

are the feasible decision-variable values available. For d2 = 0we compute the overall
objective-function value for stage 2 and all subsequent stages as:

c2(2000, 0) + J3( f2(2000, 0)) = 0 + J3(2000) = 0 + 8000 = 8000,

for d2 = 1000 we have:

c2(2000, 1000)+ J3( f2(2000, 1000)) = 9000+ J3(1000) = 9000+5000 = 14000,

and for d2 = 2000 we have:

c2(2000, 2000) + J3( f2(2000, 2000)) = 13000 + J3(0) = 13000 + 0 = 13000.

Thus, if the investor’s stage-2 state is s2 = 2000 the optimal stage-2 decision is
d2 = 1000 with an overall objective-function value from stage-2 forward to the end
of the problem of $14000. These findings are recorded in the third row of Table 6.11.

We leave it to the reader to confirm that the remaining entries in Table 6.11 are
correct. After doing so, we move back yet another stage to stage 1 of the problem.
Because it is the first stage of the problem, stage 1 differs slightly from the others in
terms of what state-variable values are possible. We are told that the investor starts
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with $7000 to invest. Thus, we know that the stage-1 state variable is s1 = 7000.
Substituting this into the stage-1 constraints tells us that:

d1 ∈ {0, 1000, 2000, . . . , 7000},

are the feasible decision-variable values available. As before, we must first compute
the overall objective-function value from stage 1 through all of the subsequent stages
for each of these eight alternatives. We then choose an alternative, which is the one
that maximizes this overall objective-function value. The overall objective-function
value again consists of two terms, the stage-1 objective contribution and the stage-2
value function. Note that we do not explicitly include the stage-3 value function
(or value functions from any subsequent stages, if the problem has more than three
stages) in this calculation. This is because the stage-2 value function captures the
total amount earned from stage-2 to the end of the problem. We can see this by
recalling that the stage-2 objective-function calculation conducted in (6.25) (and the
other calculations for other values of s2) includes stage-3 value-function information.
Thus, the stage-2 value-function information in Table 6.11 implicitly includes all of
the value-function information from subsequent stages.

For d1 = 0 the overall objective-function value is:

c1(7000, 0) + J2( f1(7000, 0)) = 0 + J2(7000) = 0 + 34000 = 34000,

for d1 = 1000 we have:

c1(7000, 1000)+J2( f1(7000, 1000)) = 3000+J2(6000) = 3000+30000 = 33000,

for d1 = 2000 we have:

c1(7000, 2000)+J2( f1(7000, 2000)) = 5000+J2(5000) = 5000+26000 = 31000,

for d1 = 3000 we have:

c1(7000, 3000)+J2( f1(7000, 3000)) = 7000+J2(4000) = 7000+22000 = 29000,

for d1 = 4000 we have:

c1(7000, 4000)+J2( f1(7000, 4000)) = 9000+J2(3000) = 9000+18000 = 27000,

for d1 = 5000 we have:

c1(7000, 5000)+ J2( f1(7000, 5000)) = 11000+ J2(2000) = 11000+14000 = 25000,
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for d1 = 6000 we have:

c1(7000, 6000)+ J2( f1(7000, 6000)) = 13000+ J2(1000) = 13000+ 9000 = 24000,

and for d1 = 7000 we have:

c1(7000, 7000) + J2( f1(7000, 7000)) = 15000 + J2(0) = 15000 + 0 = 15000.

Thus, the optimal stage-1 decision is d1 = 0, which gives an objective-function
value over stage 1 and all subsequent stages of 34000. These findings are recorded
in Table 6.12.

Table 6.12 Stage-1 calculations for applying the Dynamic Programming Algorithm to the Invest-
ment Problem

s1 d∗
1 (s1) J1(s1)

7000 0 34000

Having worked through all of the problem stages, we finally want to recover
optimal-solution information. There are typically two important pieces of informa-
tion that we want. The first is the optimal objective-function value. The second is
an optimal sequence of decisions. Just as with the Production-Planning Problem,
the stage-1 value-function information, which is in Table 6.12, tells us the overall
objective-function value, which is $34000. This is because J1(7000) tells us what
the objective-function value is from stage 1 to the end of the problem if the investor
enters stage 1 in the state s1 = 7000. The objective-function value from stage 1 to the
end of the problem is exactly equal to the optimal overall objective-function value.

We can also reconstruct an optimal sequence of decisions to make by follow-
ing the same approach that is used in the Production-Planning Problem. This is
done using the decision-policy information that is recorded in the second column
of Tables 6.10 through 6.12 and the state-transition functions. Specifically, we work
backward through Tables 6.10 through 6.12 (meaning that we work forward through
the stages of the problem). First, Table 6.12 tells us that the optimal stage-1 decision
if s1 = 7000 is d1 = 0. We next use the stage-1 state-transition function to determine
that if this decision is chosen in stage 1, the stage-2 state variable is:

s2 = f1(s1, d1) = f1(7000, 0) = 7000. (6.30)

We then use the last row of Table 6.11, which corresponds to s2 = 7000, to determine
that if the stage-2 state is s2 = 7000 the optimal stage-2 decision is d2 = 6000. We
then use the stage-2 state-transition function to determine the resulting stage-3 state,
which is:
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s3 = f2(s2, d2) = f2(7000, 6000) = 1000. (6.31)

The second row of Table 6.10, which corresponds to s3 = 1000, then tells us that
the optimal stage-3 decision is d3 = 1000. Thus, our optimal sequence of decisions
is to invest $0 in stage 1 (asset 1), $6000 in stage 2 (asset 2), and $1000 in stage 3
(asset 3).

6.4.2 Dynamic Programming Algorithm

We now provide a more general outline of how to apply the Dynamic Programming
Algorithm to solve any dynamic optimization problem. In doing so, we use the same
notational conventions that are developed in the previous sections. Specifically, we let
T denote the number of problem stages and t = 1, . . . , T denote a particular stage.
Any variable or function subscripted by t refers to the stage-t value of that variable
or function. More specifically, we let st and dt denote the stage-t state and decision
variables, respectively. Depending on whether the problem that we are solving has
one or multiple state or decision variables in each stage, st and dt can be scalars
or vectors. We also define ft (st , dt ) to be the stage-t state-transition function and
ct (st , dt ) the stage-t objective-contribution function.

We next defineSt to be the set of different possible stage-t state-variable values.
For instance, when solving the Investment Problem in Section 6.4.1 we conclude
that the investor could have any of $0, $1000, $2000, $3000, $4000, $5000, $6000,
or $7000 available to invest in stage 3. Because these are the eight possible values
that s3 can take on, we would say that:

S3 = {0, 1000, 2000, 3000, 4000, 5000, 6000, 7000}.

We would similarly define:

S2 = {0, 1000, 2000, 3000, 4000, 5000, 6000, 7000},

and:

S1 = {7000},

based on what we conclude about possible state-variable values in each of stages 2
and 1, respectively.

We defineDt (st ) to be the set of stage-t decisions that are feasible as a function of
the stage-t state variable. In essence,Dt (st ) represents what decisions the constraints
tell us are feasible when we substitute particular state-variable values into them. For
instance, when conducting the stage-3 calculations to solve the Investment Problem
in Section 6.4.1, we find that if s3 = 0 the constraints reduce to:
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d3 ∈ {0}.

We could express this constraint, using our newly defined notation, as:

D3(0) = {0}.

The other cases that are explicitly examined in Section 6.4.1 give us that:

D3(1000) = {0, 1000},

D2(0) = {0},

D2(1000) = {0, 1000},

D2(2000) = {0, 1000, 2000},

and:

D1(7000) = {0, 1000, 2000, 3000, 4000, 5000, 6000, 7000}.

We finally let Jt (st ) denote the stage-t value function and d∗
t (st ) the stage-t deci-

sion policy. The values of these functions are unknown when we begin solving the
problem and are found as we conduct our calculations. For instance, as we solve
the Production-Planning Problem in Section 6.1.2, we record value-function and
decision-policy information in Tables 6.1 through 6.5. We could summarize the
value-function information for the Production-Planning Problem as:

J5(11) = 7,

J5(10) = 6,

...

J1(1) = 16,

and the corresponding decision-policy information as:

d∗
5 (11) = ‘K’,

d∗
5 (10) = ‘K’,

...



6.4 Iterative Solution Algorithm for Dynamic Optimization Problems 375

d∗
1 (1) = ‘B’.

Likewise, when solving the Investment Problem in Section 6.4.1, value-function
and decision-policy information are recorded in Tables 6.10 through 6.12. We could
summarize the value-function information for the Investment Problem as:

J3(7000) = 23000,

J3(6000) = 20000,

...

J1(7000) = 34000,

and the corresponding decision-policy information as:

d∗
3 (7000) = 7000,

d∗
3 (6000) = 6000,

...

d∗
1 (7000) = 0.

The value function is used when solving the dynamic optimization problem whereas
the decision policy is used to determine an optimal sequence of decision-variable
values.

Below we give a high-level outline of the first part of the Dynamic Programming
Algorithm, which we term the Backward Recursion. This part of the algorithmworks
backwards through the problem stages to determine optimal decisions at each stage
for each possible state. The Backward Recursion is really three nested for loops. The
outermost loop, on Line 2, works backwards through the problem stages. The next
innermost loop, on Line 3, works through each possible value that the state variable
can take in each stage. The third loop, onLine 4,works through eachdecision-variable
value that is feasible for each possible state.
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Dynamic Programming Algorithm: Backward Recursion
1: procedure Backward Recursion
2: for t ← T, . . . , 1 do � Step backward through problem stages
3: for st ∈ St do � Step through each possible stage-t state
4: for dt ∈ Dt (st ) do � Step through each feasible stage-t decision for state st
5: if t = T then
6: b(dt ) ← ct (st , dt ) � Compute objective value
7: else
8: b(dt ) ← ct (st , dt ) + Jt+1( ft (st , dt )) � Compute objective value
9: end if
10: end for
11: Jt (st ) ← mindt∈Dt (st ) b(dt )
12: d∗

t (st ) ← argmindt∈Dt (st ) b(dt )
13: end for
14: end for
15: end procedure

To further illustrate these loops, recall how the Investment Problem is analyzed
in Section 6.4.1. Moreover, take the particular case of t = 3 (i.e., the final problem
stage). We analyze stage 3 by first enumerating all of the possible stage-3 states. The
second for loop on Line 3 exactly does this by looping through all of the possible
stage-t states (in the case of t = 3 in the Investment Problem, Line 3 loops through the
possible stage-3 states of s3 = 0, 1000, 2000, 3000, 4000, 5000, 6000, and 7000).

Next, take as an example s3 set equal to the particular value of 1000 in Line 3
(this is one of the eight values that s3 can potentially take). The third loop, on Line 4,
works through all of the feasible stage-3 decisions that are available if the stage-3
state variable is s3 = 1000. In the case of the Investment Problem, this amounts to
looping through the feasible decisions of d3 = 0 and d3 = 1000. These are exactly
the two feasible decisions that are identified in (6.22) in the case that s3 = 1000.

Next, Lines 5 through 9 do the actual computations of the objective-function
values. These calculations differ depending on whether we are examining the final
problem stage or not (i.e., depending on whether t = T or t < T ). If we are
examining the final stage, then the objective function is computed as shown on
Line 6, using the objective-contribution function only. Recall that this is how the
objective function is computed when examining stage 5 in the Production-Planning
Problem and when examining stage 3 in the Investment Problem. Otherwise, if we
are examining any other problem stage, we include both the objective-contribution
and value functions, as shown on Line 8. The value function is evaluated at whatever
the new state-variable value will be in the subsequent problem stage. This new state-
variable value in the subsequent stage is determined by the state-transition function,
as noted in Line 8. Again, the objective-function calculations on Lines 6 and 8 are
simply generalizations of how the Production-Planning and Investment Problems are
solved in Sections 6.1.2 and 6.4.1. The term, b(dt ), is a placeholder, used in Lines 6
and 8, to which the objective-function value associated with choosing the decision,
dt , is assigned.
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After the objective-function values for each feasible decision (associated with a
particular possible state) are computed, Lines 11 and 12 determine an optimal deci-
sion to make and the associated value-function value for that state. More specifically,
Line 11 determines the value-function value, by setting Jt (st ) (i.e., the value of the
value function associated with the state-variable value being considered) equal to
the minimum objective-function value among all feasible decisions. This is done by
choosing the feasible decision that minimizes b(dt ), which is the placeholder that
holds the objective-function values that are computed in Lines 6 or 8. Note that if we
are solving a dynamic optimization problem that is a maximization, then the ‘min’
operator that is in Line 11 is changed to a ‘max.’ Line 12 determines the associated
optimal decision, by using an ‘argmin’ operator. The ‘arg’ operator returns the value
of dt that minimizes the function (i.e., the optimal choice of dt ). Again, if solving a
problem that is a maximization, the ‘argmin’ operator that is in Line 12 is replaced
with an ‘argmax.’ The computations that are on Lines 11 and 12 are analogous to
the comparisons between the objective values of choosing d3 = 0 or d3 = 1000 if
the stage-3 state variable is s3 = 1000 that are in (6.23) and (6.24).

It is also possible that there are multiple feasible decisions that give the same
minimum (or in the case of a maximization problem, maximum) objective value in
Lines 11 and 12. If so, such ties can be broken arbitrarily and the decision policy,
i.e., d∗

t (st ), can be set equal to any of the optimal decisions that give the lowest
objective-function value.

We now outline the second part of the Dynamic Programming Algorithm, which
we term the Forward Recursion. After the Backward Recursion is used to determine
the decision policies in each stage, the Forward Recursion works forward through
the problem stages to reconstruct an optimal sequence of decisions to make at each
stage. In the first stage (i.e., t = 1) we are given the starting state-variable value. This
is fixed in Line 4. Otherwise, in the other problem stages, we determine the state-
variable value using the state-transition function and the state- and decision-variable
values from the previous stage, as shown inLine 6. The optimal decision in the current
stage is then determined in Line 8 using the decision policy (which is determined
in the Backward Recursion part of the Dynamic Programming Algorithm) and the
current stage’s state-variable value (which is determined in either Line 4 or 6).

Dynamic Programming Algorithm: Forward Recursion
1: procedure Forward Recursion
2: for t ← 1, . . . , T do � Step forward through problem stages
3: if t = 1 then
4: Fix s1 � Fix state variable value
5: else
6: st ← ft−1(st−1, dt−1) � Fix state variable value
7: end if
8: dt ← d∗

t (st ) � Determine optimal decision
9: end for
10: end procedure
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To understand how the Forward Recursion works, recall how we determine an
optimal sequence of decisions after solving the Investment Problem in Section 6.4.1.
We begin in stage 1 and determine that s1 = 7000, based on the information that is
given in the problem description. This is akin to fixing s1 = 7000 in Line 4 of the
Forward Recursion. We next use the decision-policy information that is recorded in
Table 6.12 to determine that if s1 = 7000, then d1 = d∗

1 (7000) = 0 is an optimal
stage-1 decision. This is Line 8 of the Forward Recursion.

We next move forward to stage 2. The first step in stage 2 is to determine what
the stage-2 state-variable value will be. We use the state-transition function in (6.30)
to determine that if s1 = 7000 and d1 = 0 then s2 = 7000. This calculation is Line 6
of the Forward Recursion. Knowing that s2 = 7000, we next use the decision-policy
information that is recorded in Table 6.11 to determine that if s2 = 7000 the optimal
stage-2 decision is d2 = d∗

2 (7000) = 6000. This determination of the optimal stage-2
decision is Line 8 of the Forward Recursion.

We finally move to stage 3 and use the state-transition function, which is in (6.31),
to determine that if s2 = 7000 and d2 = 6000 then s3 = 1000. We then use the
decision-policy information that is in Table 6.10 to determine that if s3 = 1000 then
d3 = d∗

3 (1000) = 1000 is an optimal decision. These two determinations are Lines 6
and 8 of the Forward Recursion.

6.4.3 Optimality of the Dynamic Programming Algorithm

The Dynamic Programming Algorithm provides an efficient way to decompose and
solve an optimization problem. An important question, however, is whether the algo-
rithm provides an optimal solution to the overall problem. Here we provide an intu-
itive explanation of why the Dynamic ProgrammingAlgorithm is guaranteed to yield
an optimal solution [1, 2]. We demonstrate this result for any generic dynamic opti-
mization problem, but show how the derivations involving a generic problem can be
applied to the Investment Problem that is introduced in Section 6.3.4. We then use
the example of the Production-Planning Problem from Section 6.1 to provide a more
intuitive explanation of the optimality of the Dynamic Programming Algorithm.

We begin by noting that a generic dynamic optimization problem that is a mini-
mization can be written as:

min
d1,...,dT ,s2,...,sT

T∑
t=1

ct (st , dt ) (6.32)

s.t. dt ∈ Dt (st ), ∀ t = 1, . . . , T ; (6.33)

st+1 = ft (st , dt ), ∀ t = 1, . . . , T − 1. (6.34)
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Objective function (6.32) minimizes the sum of the objective-contribution functions
from the T stages. In a dynamic optimization problem the overall objective con-
cerns the total objective-function value, which is obtained by adding the objective-
contribution functions from each individual stage. The explicit constraints in each
stage, which restrict what decisions are feasible in each stage, are given by (6.33).
Equation (6.34) represents the dynamic of the problem, by specifying how the state
variables evolve from one stage to the next.

The Investment Problem can be written in this form as:

max
d1,d2,d3,s2,s3

3∑
t=1

ct (st , dt )

s.t. d1 ∈ {0, 1000, . . . }
d1 ≤ s1
d2 ∈ {0, 1000, . . . }
d2 ≤ s2
d3 ∈ {0, 1000, . . . }
d3 ≤ s3
s2 = s1 − d1
s3 = s2 − d2,

where the objective function is written as a maximization, because the investor is
concerned with maximizing return on investment.

By reorganizing the terms in objective function (6.32) and the constraints, we can
rewrite generic optimization problem (6.32)–(6.34) as:

min
d,s

c1(s1, d1) + c2(s2, d2) + · · · + cT (sT , dT )

s.t. d1 ∈ D1(s1)
s2 = f1(s1, d1)

d2 ∈ D2(s2)
s3 = f2(s2, d2)

. . .

dT ∈ DT (sT ).

All that is done here is breaking objective function (6.32) into the T components that
are summed together. Moreover, the stage-t constraint and state-transition functions
are stacked underneath the stage-t objective-contribution function. The Investment
Problem can be written in this form as:
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max
d,s

c1(s1, d1) + c2(s2, d2) + c3(s3, d3)

s.t. d1 ∈ {0, 1000, . . . }
d1 ≤ s1
s2 = s1 − d1

d2 ∈ {0, 1000, . . . }
d2 ≤ s2
s3 = s2 − d2

d3 ∈ {0, 1000, . . . }
d3 ≤ s3.

The key insight behind the Dynamic Programming Algorithm is that if the total
sum of the T objective-contribution functions is minimized:

min [c1(s1, d1) + c2(s2, d2) + · · · + cT (sT , dT )] ,

this is equivalent to minimizing from each stage forward:

min [c1(s1, d1) + min [c2(s2, d2) + min [· · · + min [cT (sT , dT )]]]] .

Substituting this observation into the generic dynamicoptimizationproblemgives:

min
d1,s2

c1(s1, d1) + · · · +

⎡
⎢⎢⎢⎣

min
dT−1,sT

cT−1(sT−1, dT−1) +
[
min
dT

cT (sT , dT )

s.t. dT ∈ DT (sT )

]

s.t. dT−1 ∈ DT−1(sT−1)

sT = fT−1(sT−1, dT−1)

⎤
⎥⎥⎥⎦

s.t. d1 ∈ D1(s1)
s2 = f1(s1, d1),

(6.35)

Note that the first ‘min’ operator has d1 and s2 (as opposed to s1) listed underneath it.
The reason for this is that in making our stage-1 decision, d1, we are also implicitly
determining our stage-2 state, s2. This is because s2 is impacted by d1 through the
stage-1 state-transition function. This same logic explains why dT−1 and sT are listed
underneath the second-to-last ‘min’ operator. No state variable is listed underneath
the last ‘min’ operator, because after the final decision is made in stage T , there are
no subsequent stages or state variables that are affected by dT .

Substituting this same observation into the Investment Problem (and noting that
the same result applies to maximizing the sum of the T objective-contribution func-
tions) gives:



6.4 Iterative Solution Algorithm for Dynamic Optimization Problems 381

max
d1,s2

c1(s1, d1) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

max
d2,s3

c2(s2, d2) +
⎡
⎢⎣
max
d3

c3(s3, d3)

s.t. d3 ∈ {0, 1000, . . . }
d3 ≤ s3

⎤
⎥⎦

s.t. d2 ∈ {0, 1000, . . . }
d2 ≤ s2
s3 = s2 − d2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

s.t. d1 ∈ {0, 1000, . . . }
d1 ≤ s1
s2 = s1 − d1.

(6.36)

Now, examine the term in the brackets in the upper right-hand corner of (6.35),
which is:

min
dT

cT (sT , dT ) (6.37)

s.t. dT ∈ DT (sT ). (6.38)

The optimized objective-function value of this term is simply JT (sT ). That is because
JT (sT ) is defined as the optimal objective-function value from stage-T forward, as a
function of sT . That is, it tells us what our total minimized objective-function value
from stage T forward is if we enter stage T in stage sT .

We can also see that JT (sT ) is the same as optimization problem (6.37)–(6.38) by
examining Lines 4, 6, and 11 of the Dynamic Programming Algorithm: Backward
Recursion, which is given in Section 6.4.2. In the Backward Recursion we compute
JT (sT ) by first enumerating, in Line 4, all of the feasible decisions if the stage-T state
is sT . This enumeration corresponds to the dT ∈ DT (sT ) in constraint (6.38). We
then compute the objective-contribution-function value for each feasible decision in
Line 6 (which corresponds to the cT (sT , dT ) in objective function (6.37)) and pick
the best one in Line 11 (which corresponds to the ‘min’ operator in (6.37)).

Based on this observation, we can simplify (6.35) to:

min
d1,s2

c1(s1, d1) + · · · +
⎡
⎢⎣

min
dT−1,sT

cT−1(sT−1, dT−1) + JT (sT )

s.t. dT−1 ∈ DT−1(sT−1)

sT = fT−1(sT−1, dT−1)

⎤
⎥⎦

s.t. d1 ∈ D1(s1)
s2 = f1(s1, d1).

(6.39)

The optimization problem in (6.39) is the same as that in (6.35), except that the:

min
dT

cT (sT , dT )

s.t. dT ∈ DT (sT ),

in the upper right-hand corner is replaced with JT (sT ).
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We can apply this same sequence of arguments to the Investment Problem, by first
examining the term in the brackets in the upper right-hand corner of (6.36), which is:

max
d3

c3(s3, d3) (6.40)

s.t. d3 ∈ {0, 1000, . . . } (6.41)

d3 ≤ s3. (6.42)

What we are doing in (6.40)–(6.42) is examining each possible value that the stage-3
state variable can take. For each one we select the feasible decision that maximizes
the stage-3 objective-contribution function. This is exactly how we examine stage 3
when solving the Investment Problem in Section 6.4.1 and how we find the decision-
policy and value-function information that are recorded in Table 6.10. From this
observation regarding (6.40)–(6.42) we know that the optimized value of objective
function (6.40) is exactly equal to J3(s3). Making this substitution into (6.36) yields:

max
d1,s1

c1(s1, d1) +

⎡
⎢⎢⎢⎣
max
d2,s3

c2(s2, d2) + J3(s3)

s.t. d2 ∈ {0, 1000, . . . }
d2 ≤ s2
s3 = s2 − d2

⎤
⎥⎥⎥⎦

s.t. d1 ∈ {0, 1000, . . . }
d1 ≤ s1
s2 = s1 − d1.

(6.43)

Now, examine the term in the brackets in the upper right-hand corner of (6.39),
which is:

min
dT−1,sT

cT−1(sT−1, dT−1) + JT (sT )

s.t. dT−1 ∈ DT−1(sT−1)

sT = fT−1(sT−1, dT−1).

Substituting the equality constraint, sT = fT−1(sT−1, dT−1), into the objective func-
tion, this becomes:

min
dT−1

cT−1(sT−1, dT−1) + JT ( fT−1(sT−1, dT−1)) (6.44)

s.t. dT−1 ∈ DT−1(sT−1). (6.45)

We can show that the optimized objective-function value of (6.44) is JT−1(sT−1),
by following the same analysis that is used above to show that the optimized
objective-function value of (6.37) is JT (sT ). Moreover, problem (6.44)–(6.45)
exactly corresponds to the step in Line 11 of the Backward Recursion when exam-
ining stage (T − 1). Substituting this observation into (6.39) gives:
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min
d1,s2

c1(s1, d1) + · · · +
⎡
⎢⎣

min
dT−2,sT−1

cT−2(sT−2, dT−2) + JT−1(sT−1)

s.t. dT−2 ∈ DT−2(sT−2)

sT−1 = fT−2(sT−2, dT−2)

⎤
⎥⎦

s.t. d1 ∈ D1(s1)
s2 = f1(s1, d1).

(6.46)

We can also apply these same logical steps to examine (6.43) and conclude that the
term in the brackets in the upper right-hand corner is equal to J2(s2).

At this point, we can recursively apply the same set of arguments over and over
again. Doing so shows that applying the steps of the Backward Recursion solves the
generic dynamic optimization problem that is given by (6.32)–(6.34). However, the
Dynamic Programming Algorithm solves the problem by looking at it one stage at a
time.

The crux of the dynamic programming algorithm is as follows: suppose that the
sequence of decisions, d∗

1 , d
∗
2 , . . . , d

∗
T , is an optimal solution of a dynamic optimiza-

tion problem. Suppose also that we follow this sequence of decisions up to some
intermediate stage, t , where 1 < t < T . We now, in stage t , ask the question, ‘do
we want to continue following the sequence of decisions, d∗

t , d
∗
t+1, . . . , d

∗
T for the

remainder of the problem?’ If we are looking from stage t forward, we do not care
about anything that happens in stages 1 through (t − 1), only about the remaining
stages of the problem. This is because once we are in stage t , the decisions that are
made in the previous stages are fixed and they are no longer under our control [1, 2].

Suppose that there is a preferable set of decisions starting from stage t , which we
denote d̂t , d̂t+1, . . . , d̂T . Then, the original sequence of decisions, d∗

1 , d
∗
2 , . . . , d

∗
T ,

cannot be optimal. That is because if we follow the decisions, d∗
1 , d

∗
2 , . . . , d

∗
t−1,

through stage (t −1) and then, d̂t , d̂t+1, . . . , d̂T , for the remaining stages, the overall
objective-function value must be improved. The Dynamic Programming Algorithm
finds a sequence of decisions in exactly this way. It works backwards through the
stages of the problem and at each intermediate stage asks the question, ‘what is the
best sequence of decisions from this point forward?’ By doing this, the resulting set
of decisions is optimal over the full set of problem stages. This observation regard-
ing the Dynamic Programming Algorithm is exactly Bellman’s optimality principle
[1, 2], which is the key concept underlying dynamic optimization.

To provide amore intuitive explanation of the optimality of the dynamic program-
ming algorithm, consider the Production-Planning Problem, which is introduced in
Section 6.1. Suppose that a sequence of production processes, d∗

1 , d
∗
2 , . . . , d

∗
5 , is opti-

mal. Now suppose that we are in the third stage of the problem. If there is a better
alternative than d∗

3 , d
∗
4 , and d∗

5 from stage 3 forward, then it cannot be the case that
the sequence, d∗

1 , d
∗
2 , . . . , d

∗
5 , is optimal over the entire problem horizon.

This is, however, the exact way in which d∗
3 , d

∗
4 , and d∗

5 are found when apply-
ing the Dynamic Programming Algorithm to the Production-Planning Problem in
Section 6.1.2. We first examine stage 5 and determine the best decision in stage 5 for
each possible state-variable value. We next examine stage 4 and determine the best
decision in stage 4 for each possible state-variable value, taking into account what
subsequently occurs in stage 5. We do the same when we next examine stage 3.
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6.4.4 Computational Complexity of the Dynamic
Programming Algorithm

The computational benefits of using the Dynamic Programming Algorithm as
opposed to brute force in the particular case of the Production-Planning Problem
are discussed in Section 6.1. We close this section by generalizing this result to any
dynamic optimization problem. More specifically, we estimate the number of cal-
culations that it would take to solve a generic dynamic optimization problem using
brute force and theDynamicProgrammingAlgorithm.For ease of analysis, consider a
generic dynamic optimization problemwith T stages.Moreover, suppose that at each
stage there are |S| possible state-variable values and |D| feasible decision-variable
values. Note, however, that for many problems, the number of states differs between
stages. Similarly, the number of feasible decisions typically varies as a function of the
state-variable value. These features can result in the specific number of calculations
involved in solving a particular problem differing from the numbers that we present
here. Nevertheless, we can draw insights into how much of a computational-cost
savings the Dynamic Programming Algorithm provides.

We begin by determining how much computational effort must be expended to
solve this generic problem by brute force. The brute-force approach explicitly enu-
merates all of the sequences of decisions and computes the total objective-function
value for each. Because there are |D| possible decisions at each stage, there are
|D|T possible sequences of decisions. Moreover, to examine each one, the objective-
contribution function must be evaluated T times (once for each stage). Thus, the
total number of times that the objective-contribution function must be evaluated
when using brute force is:

T · |D|T .

Now consider the Dynamic Programming Algorithm. In each stage there are
|S| possible state-variable values and |D| feasible decision-variable values for each
possible state. We must evaluate the objective-contribution function for each state-
variable/decision-variable pair. Thus, we conduct |S| · |D| objective-contribution-
function evaluations in each stage. Because there are T stages, we have a total of:

T · |S| · |D|,

objective-contribution-function evaluations.
To see the implications of this, consider the Energy-Storage Problem that is intro-

duced in Section 6.3.1. There are 24 stages in this problem and at most 3 feasible
decisions in each stage (depending onwhat the starting water level of the upper reser-
voir is in each stage, there may only be 2 feasible decisions in some stages after some
sequence of actions). Thus, the brute-force method takes on the order of between:

24 · 224 ≈ 4.03 × 108,
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and:
24 · 324 ≈ 6.77 × 1012,

objective-contribution-function evaluations. If the Dynamic Programming Algo-
rithm is applied, there are five possible states (i.e., the upper reservoir can have a
starting water level in each stage between 0 and 4). Thus, the Dynamic Programming
Algorithm takes on the order of:

24 · 5 · 3 = 360,

objective-contribution-function evaluations. It could take up to about 215 years to
solve this problem by brute force if we could do 1000 objective-contribution-function
evaluations per second. Conversely, the Dynamic Programming Algorithm would
take less than one second to solve the problem if the objective-contribution function
can be evaluated 1000 times per second.

Despite its efficiency compared to brute force, the Dynamic Programming Algo-
rithm does run into tractability challenges once the problem size gets sufficiently
large. In such cases, approximation techniques, which are beyond the scope of this
book, must be implemented [3, 4, 7].

6.5 Final Remarks

Our analysis of dynamic optimization problems requires us to make a number
of assumptions regarding the underlying problem structure. Some of the assump-
tions are required to apply the Dynamic Programming Algorithm, while others can
be relaxed (with an associated increase in the complexity of the problem and in
solving it).

The two assumptions that an optimization problem must satisfy to use dynamic
optimization techniques are overlapping subproblems and optimal substructure.
We do not formally define these properties. Rather, these assumptions are satisfied so
long aswe can formulate a problem to have the structure that is detailed in Section 6.2.
Specifically, the assumption that the overall objective-function of the problem can be
written as objective-contribution functions corresponding to each stage that are added
to one another is crucial for application of the Dynamic Programming Algorithm.
The other critically important feature is that the state-transition functions be written
as single-stage transitions.

The other assumption underlying the Dynamic Programming Algorithm is that
the problem can be decomposed into a finite number of stages, each of which has a
finite number of possible state-variable values and feasible decision-variable values.
If these assumptions are not satisfied, we cannot solve the problem using the enu-
meration technique that is used in the for loops in the Backward Recursion. These
assumptions can be relaxed, but the analysis becomes considerably more difficult.
Relaxing the assumption that the problem has a finite number of discrete decision
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stages requires the use of optimal control theory [6]. Such problems are considerably
more difficult, because the state-transition function becomes a differential equation.
Bertsekas [3, 4] discusses such techniques in detail.

Relaxing the assumption that there are a finite number of states or decisions also
complicates the analysis. When doing so, approximation techniques must almost
always be used. Solving a problem with continuous state or decision variables
requires finding an explicit decision-policy and value function. This is difficult to
do in all but the simplest problems. Otherwise, one can usually find an approximate
solution to a problem with continuous state or decision variables by using a discrete
approximation. For instance, suppose that a problem allows the state variable to take
any value between 0 and 20. One may approximate the problem by restricting the
state variable to take values of 0, 0.5, 1, . . . , 20 and apply theDynamic Programming
Algorithm to the approximated problem. The quality of the solution that is found
is sensitive to how the finite state variable values are chosen. Interested readers are
referred to more advanced texts that discuss these types of problems in further detail
[2–5, 7, 8].

This chapter introduces one particular way to solve dynamic optimization prob-
lems. There are alternative techniques, for instance working forward through the
problem stages, which can be more efficient for certain classes of problems. Inter-
ested readers are referred to other texts [3, 4, 7] for discussions of these methods.

6.6 Exercises

6.1 A company needs to staff a maintenance center over the next 10 days. On each
day, the company can assign employees to work for either a single day, for two
consecutive days, or for three consecutive days. Employees that are assigned to work
for a single day are paid $100 for the day, while employees assigned to work for two
consecutive days are paid $80 per day. Employees that are hired to work for three
consecutive days are paid $70 per day. The company can assign all three types of
employees on each day, except on the last two days. No one can be hired for three
consecutive days on day nine. Only employees hired to work for one day can be
hired on day 10. The company needs to have a minimum number of employees on
hand on each day, which are given in Table 6.13. It can also have at most a total of
15 employees working at any given time. The company begins the first day with no
employees carried over from the previous days. Formulate a dynamic optimization
problem to determine the least-cost sequence of staffing decisions.

6.2 Claire needs to plan maintenance on her car over the next 12 months. At the
beginning of each month, Claire must decide to either conduct maintenance or not.
If she does, she incurs an immediate cost, which depends on how recently she has
had the car maintained. After making her maintenance decision, Claire next incurs
a monthly cost of operating her car. This operating cost depends on how recently
the car has been maintained. Table 6.14 lists the monthly maintenance and operating
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costs, as a function of how recently the car has been maintained. If at any point the
it has been four months since the most recent maintenance, Claire must have the car
maintained immediately. As of today, Claire’s car has most recently been maintained
three months ago. Formulate a dynamic optimization problem to determine the least-
cost sequence of maintenance decisions.

Table 6.13 Minimum
number of employees that
must be hired on each day in
Exercise 6.1

Day Minimum Employees

1 5

2 4

3 9

4 6

5 7

6 2

7 5

8 3

9 6

10 6

Table 6.14 Maintenance and
operating costs in
Exercise 6.2

Time Since Most Recent
Maintenance as of the
Beginning of the Month

Maintenance
Cost

Operating
Cost

0 Month n/a 490

1 Month 40 500

2 Month 50 515

3 Month 55 535

4 Month 80 n/a

6.3 Use the Dynamic Programming Algorithm to solve the dynamic optimization
problem that is formulated in Exercise 6.1.

6.4 Use the Dynamic Programming Algorithm to solve the dynamic optimization
problem that is formulated in Exercise 6.2.

6.5 Consider the staffing problem, which is introduced in Exercise 6.1. Suppose
that the company has the option of paying $95 to carry an employee over from the
previous day to the first day. Would the company be willing to do this? Can you
answer this question without re-solving the dynamic optimization problem that is
formulated in Exercise 6.1 from scratch?
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Appendix A
Taylor Approximations and Definite Matrices

Taylor approximations provide an easy way to approximate a function as a
polynomial, using the derivatives of the function. We know, from elementary calcu-
lus [1], that a single-variable function, f (x), can be represented exactly by an infinite
series. More specifically, suppose that the function f (·) is infinitely differentiable
and that we know the value of the function and its derivatives at some point, x . We
can represent the value of the function at (x + a) as:

f (x + a) =
+∞∑

n=0

1

n! f
(n)(x)an, (A.1)

where f (n)(x) denotes the nth derivative of f (·) at x and, by convention, f (0)(x) =
f (x) (i.e., the zeroth derivative of the function is simply the function itself).
We also have that if we know the value of the function and its derivatives for

some x , we can approximate the value of the function at (x +a) using a finite series.
These finite series are known asTaylor approximations. For instance, the first-order
Taylor approximation of f (x + a) is:

f (x + a) ≈ f (x) + a f ′(x),

and the second-order Taylor approximation is:

f (x + a) ≈ f (x) + a f ′(x) + 1

2
a2 f ′′(x).

These Taylor approximations simply cutoff the infinite series in (A.1) after some
finite number of terms. Of course including more terms in the Taylor approximation
provides a better approximation. For instance, a second-order Taylor approximation
tends to have a smaller error in approximating f (x + a) than a first-order Taylor
approximation does.

There is an exact analogue of the infinite series in (A.1) and the associated
Taylor approximations for multivariable functions. For our purposes, we only require

© Springer International Publishing AG 2017
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first- and second-order Taylor approximations. Thus, we only introduce those two
concepts here.

Suppose:
f (x) = f (x1, x2, . . . , xn),

is a multivariable function that depends on n variables. Suppose also that the
function is once continuously differentiable and that we know the value of the
function and its gradient at some point, x . The first-order Taylor approxi-
mation of f (x + d) around the point, x , is:

f (x + d) ≈ f (x) + d�∇ f (x).

Suppose:
f (x) = f (x1, x2, . . . , xn),

is a multivariable function that depends on n variables. Suppose also that the
function is twice continuously differentiable and that we know the value of
the function, its gradient, and its Hessian at some point, x . The second-order
Taylor approximation of f (x + d) around the point, x , is:

f (x + d) ≈ f (x) + d�∇ f (x) + 1

2
d�∇2 f (x)d,

Example A.1 Consider the function:

f (x) = ex1+x2 + x33 .

Using the point:

x =
⎛

⎝
1
0
1

⎞

⎠ ,

we compute the first- and second-order Taylor approximations of f (x + d) by first
finding the gradient of f (x), which is:

∇ f (x) =
⎛

⎝
ex1+x2

ex1+x2

3x23

⎞

⎠ ,
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and the Hessian of f (x), which is:

∇2 f (x) =
⎡

⎣
ex1+x2 ex1+x2 0
ex1+x2 ex1+x2 0
0 0 6x3

⎤

⎦ .

Substituting in the given value of x gives:

f (x) = e + 1,

∇ f (x) =
⎛

⎝
e
e
3

⎞

⎠ ,

and:

∇2 f (x) =
⎡

⎣
e e 0
e e 0
0 0 6

⎤

⎦ .

The first-order Taylor approximation is:

f (x + d) ≈ f (x) + d�∇ f (x)

= e + 1 + (
d1 d2 d3

)
⎛

⎝
e
e
3

⎞

⎠

= e + 1 + d1e + d2e + 3d3
= e · (1 + d1 + d2) + 3d3 + 1,

and the second-order Taylor approximation is:

f (x + d) ≈ f (x) + d�∇ f (x) + 1

2
d�∇2 f (x)d

= e · (1 + d1 + d2) + 3d3 + 1 + 1

2

(
d1 d2 d3

)
⎡

⎣
e e 0
e e 0
0 0 6

⎤

⎦

⎛

⎝
d1
d2
d3

⎞

⎠

= e · (1 + d1 + d2) + 3d3 + 1 + 1

2
[e · (d1 + d2)

2 + 6d2
3 ]. (A.2)

We can substitute different values for the vector, d, and obtain an approximation of
f (x+d) from these two expressions. The first-order Taylor approximation is a linear
function of d while the second-order Taylor approximation is quadratic. �
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A.1 Bounds on Quadratic Forms

The second-order Taylor approximation:

f (x + d) ≈ f (x) + d�∇ f (x) + 1

2
d�∇2 f (x)d,

has what is referred to as a quadratic form as its third term. This is because when the
third term is multiplied out, we obtain a quadratic terms involving d. This is seen, for
instance, in the second-order Taylor approximation that is obtained in Example A.1
(specifically, the [e · (d1 + d2)2 + 6d2

3 ] term in (A.2)).
We are often concernedwith placing bounds on such quadratic formswhen analyz-

ing nonlinear optimization problems. Before doing so, we first argue that whenever
examining quadratic forms, we can assume that thematrix in the center of the product
is symmetric. To understand why, suppose that we have the quadratic form:

d�Ad,

where A is not a symmetric matrix. If we define:

Ã = 1

2

(
A + A�)

,

we can first show that Ã is symmetric. This is because the transpose operator dis-
tributes over a sum. Thus, we can write the transpose of Ã as:

Ã� = 1

2

(
A + A�)� = 1

2

(
A� + A

) = 1

2

(
A + A�) = Ã,

meaning that Ã is symmetric. Next, we can show that for any vector d the quadratic
forms, d�Ad and d� Ãd, are equal. To see this, we explicitly write out and simplify
the second quadratic form as:

d� Ãd = d� 1

2

(
A + A�)

d

= 1

2

(
d�Ad + d�A�d

)
. (A.3)

Note, however, that d�A�d is a scalar, and as such is symmetric. Thus, we have that:

d�A�d = (
d�A�d

)� = d�Ad,

where the second equality comes from distributing the transpose across the product,
d�A�d. Substituting d�A�d = d�Ad into (A.3) gives:
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d� Ãd = 1

2

(
d�Ad + d�A�d

) = 1

2

(
d�Ad + d�Ad

) = d�Ad,

which shows that the quadratic forms involving A and Ã are equal.
As a result of these two properties of quadratic forms, we know that if we are

given a quadratic form:
d�Ad,

where the A-matrix is not symmetric, we can replace this with the equivalent
quadratic form:

1

2
d� (

A + A�)
d,

which has a symmetric matrix in the middle. Thus, we henceforth always assume
that we have quadratic forms with symmetric matrices in the middle.

The following result provides a bound on the magnitude of a quadratic form in
terms of the eigenvalues of the matrix in the product.

Quadratic-Form Bound: Let A be an n×n square matrix. Let λ1, λ2, . . . , λn

be the eigenvalues of A and suppose that they are labeled such that:

λ1 ≤ λ2 ≤ · · · ≤ λn.

For any vector, d, we have that:

λ1||d|| ≤ d�Ad ≤ λn||d||.

Example A.2 Consider the function:

f (x) = ex1+x2 + x33 ,

which is introduced in Example A.1. We know from Example A.1 that if:

x =
⎛

⎝
1
0
1

⎞

⎠ ,

then:

∇2 f (x) =
⎡

⎣
e e 0
e e 0
0 0 6

⎤

⎦ .
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The eigenvalues of this Hessian matrix are λ1 = 0, λ2 = 2e, and λ3 = 6. This means
that for any vector, d, we have:

0||d|| ≤ d�∇2 f (x)d ≤ 6||d||,

which simplifies to:

0 ≤ d�∇2 f (x)d ≤ 6(d2
1 + d2

2 + d2
3 ).

�

A.2 Definite Matrices

The Quadratic-Form Bound, which is introduced in Section A.1, provides a way to
bound a quadratic form in terms of the eigenvalues of the matrix in the product. This
result motivates our discussion here of a special class of matrices, known as definite
matrices. A definite matrix is one for which we can guarantee that any quadratic
form involving the matrix has a certain sign. We focus on our attention on two spe-
cial types of definite matrices—positive-definite and positive-semidefinite matrices.
There are two analogous forms of definite matrices—negative-definite and negative-
semidefinitematrices, whichwe do not discuss here. This is because negative-definite
and negative-semidefinite matrices are not used in this text.

Let A be an n × n square matrix. The matrix, A, is said to be positive definite
if for any nonzero vector, d, we have that:

d�Ad > 0.

Let A be an n × n square matrix. The matrix, A, is said to be positive semi-
definite if for any vector, d, we have that:

d�Ad ≥ 0.

One can determine whether a matrix is positive definite or positive semidefinite
by using the definition directly. This is demonstrated in the following example.
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Example A.3 Consider the matrix:

A =
⎡

⎣
e e 0
e e 0
0 0 6

⎤

⎦ .

For any vector, d, we have that:

d�Ad = e · (d1 + d2)
2 + 6d2

3 .

Clearly, if we let d be any nonzero vector the quantity above is non-negative, because
it is the sum of two squared terms that are multiplied by positive coefficients. Thus,
we can conclude that A is positive semidefinite. However, A is not positive definite.
To see why not, take the case of:

d =
⎛

⎝
1

−1
0

⎞

⎠ .

This vector is nonzero. However, we have that d�Ad = 0 for this particular value
of d. Because d�Ad is not strictly positive for all nonzero choices of d, A is not
positive definite. �

While one can determine whether a matrix is definite using the definition directly,
this is often cumbersome to do. For this reason, we typically rely on one of the
following two tests, which can be used to determine if a matrix is definite.

A.2.1 Eigenvalue Test for Definite Matrices

The Eigenvalue Test for definite matrices follows directly from the Quadratic-Form
Bound.

Eigenvalue Test for Positive-Definite Matrices: Let A be an n × n square
matrix. The matrix, A, is positive definite if and only if all of its eigenvalues
are strictly positive.

Eigenvalue Test for Positive-SemidefiniteMatrices:Let A be an n×n square
matrix. Thematrix, A, is positive semidefinite if and only if all of its eigenvalues
are non-negative.



396 Appendix A: Taylor Approximations and Definite Matrices

We demonstrate the use of the Eigenvalue Test with the following example.

Example A.4 Consider the matrix:

A =
⎡

⎣
e e 0
e e 0
0 0 6

⎤

⎦ .

The eigenvalues of this matrix are 0, 2e, and 6. Because these eigenvalues are all
non-negative, we know that A is positive semidefinite. However, because one of the
eigenvalues is equal to zero (and is, thus, not strictly positive) thematrix is not positive
definite. This is consistent with the analysis that is conducted in Example A.3, in
which the definitions of definite matrices are directly used to show that A is positive
semidefinite but not positive definite. �

A.2.2 Principal-Minor Test for Definite Matrices

The Principal-Minor Test is an alternative way to determine is a matrix is definite
or not. The Principal-Minor Test can be more tedious than the Eigenvalue Test,
because it requires more calculations. However, the Principal-Minor Test often has
lower computational cost because calculating the eigenvalues of a matrix can require
solving for the roots of a polynomial. The Principal-Minor Test can only be applied
to symmetric matrices, whereas the Eigenvalue Test applies to non-symmetric square
matrices. However, when examining quadratic forms, we always restrict our attention
to symmetric matrices. Thus, this distinction in the applicability of the two tests is
unimportant to us.

Before introducing the Principal-Minor Test, we first define what the principal
minors of a matrix are. We also define a related concept, the leading principal minors
of a matrix.

Let:

A =

⎡

⎢⎢⎢⎣

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

⎤

⎥⎥⎥⎦ ,

be an n × n square matrix. For any k = 1, 2, . . . , n, the kth-order principal
minors of A are k × k submatrices of A obtained by deleting (n − k) rows of
A and the corresponding (n − k) columns.
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Let:

A =

⎡

⎢⎢⎢⎣

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

⎤

⎥⎥⎥⎦ ,

be an n × n square matrix. For any k = 1, 2, . . . , n, the kth-order leading
principal minor of A is a k × k submatrix of A obtained by deleting the last
(n − k) rows and columns of A.

Example A.5 Consider the matrix:

A =
⎡

⎣
e e 0
e e 0
0 0 6

⎤

⎦ .

This matrix has three first-order principal minors. The first is obtained by deleting
the first and second columns and rows of A, giving:

A1
1 = [

6
]
,

the second:
A2
1 = [

e
]
,

is obtained by deleting the first and third columns and rows of A, and the third:

A3
1 = [

e
]
,

is obtained by deleting the second and third columns and rows of A. A also has three
second-order principal minors. The first:

A1
2 =

[
e 0
0 6

]
,

is obtained by deleting the first row and column of A, the second:

A2
2 =

[
e 0
0 6

]
,

is obtained by deleting the second row and column of A, and the third:

A3
2 =

[
e e
e e

]
,
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is obtained by deleting the third column and row of A. A has a single third-order
principal minor, which is the matrix A itself.

The first-order leading principal minor of A is:

A1 = [
e
]
,

which is obtained by deleting the second and third columns and rows of A. The
second-order leading principal minor of A is:

A2 =
[
e e
e e

]
,

which is obtained by deleting the third column and rowof A. The third-order principal
minor of A is A itself. �

Having the definition of principal minors and leading principal minors, we now
state the Principal-Minor Test for determining if a matrix is definite.

Principal-Minor Test for Positive-Definite Matrices: Let A be an n ×
n square symmetric matrix. The matrix, A, is positive definite if and only
if the determinants of all of its leading principal minors are strictly positive.

Principal-Minor Test for Positive-Semidefinite Matrices: Let A be an n ×
n square symmetric matrix. The matrix, A, is positive semidefinite if and only
if the determinants of all of its principal minors are non-negative.

We demonstrate the use of Principal-Minor Test in the following example.

Example A.6 Consider the matrix:

A =
⎡

⎣
e e 0
e e 0
0 0 6

⎤

⎦ .

The leading principal minors of this matrix are:

A1 = [
e
]
,

A2 =
[
e e
e e

]
,
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and:

A3 =
⎡

⎣
e e 0
e e 0
0 0 6

⎤

⎦ ,

which have determinants:
det(A1) = e,

det(A2) = 0,

and:
det(A3) = 0.

Because the determinants of the second- and third-order leading principal minors
are zero, we can conclude by the Principal-Minor Test for Positive-Definite Matrices
that A is not positive definite. To determine if A is positive semidefinite, we must
check the determinants of all of its principal minors, which are:

det(A1
1) = 6,

det(A2
1) = e,

det(A3
1) = e,

det(A1
2) = 6e,

det(A2
2) = 6e,

det(A3
2) = 0,

and:
det(A1

3) = 0.

Because these determinants are all non-negative, we can conclude by the Principal-
Minor Test for Positive-Semidefinite Matrices that A is positive semidefinite. This
is consistent with our findings from directly applying the definition of a positive-
semidefinite matrix in Example A.3 and from applying the Eigenvalue Test in
Example A.4. �

Reference
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Appendix B
Convexity

Convexity is one of the most important topics in the study of optimization. This is
because solving optimization problems that exhibit certain convexity properties is
considerably easier than solving problems without such properties.

One of the difficulties in studying convexity is that there are two different (but
slightly related) concepts of convexity. These are convex sets and convex functions.
Indeed, a third concept of a convex optimization problem is introduced in Section 4.4.
Thus, it is easy for the novice to get lost in these three distinct concepts of convexity.
To avoid confusion, it is best to always be explicit and precise in referencing a convex
set, a convex function, or a convex optimization problem.

We introduce the concepts of convex sets and convex functions and give some
intuition behind their formal definitions. We then discuss some tests that can be
used to determine if a function is convex. The definition of a convex optimization
problem and tests to determine if an optimization problem is convex are discussed
in Section 4.4.

B.1 Convex Sets

Before delving into the definition of a convex set, it is useful to explain what a set is.
The most basic definition of a set is simply a collection of things (e.g., a collection
of functions, points, or intervals of points). In this text, however, we restrict our
attention to sets of points. More specifically, we focus on the set of points that are
feasible in the constraints of a given optimization problem, which is also known as
the problem’s feasible region or feasible set. Thus, when we speak about a set being
convex, what we are ultimately interested in is whether the collection of points that
is feasible in a given optimization problem is a convex set.

We now give the definition of a convex set and then provide some further intuition
on this definition.
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A set X ⊆ R
n is said to be a convex set if for any two points x1 and x2 ∈ X

and for any value of α ∈ [0, 1] we have that:

αx1 + (1 − α)x2 ∈ X.

Figure B.1 illustrates this definition of a convex set showing a set, X , (consisting
of the shaded region and its boundary) and two arbitrary points, which are labeled x1

and x2, that are in the set. Next, we pick different values of α ∈ [0, 1] and determine
what point:

αx1 + (1 − α)x2,

is. First, for α = 1 we have that:

αx1 + (1 − α)x2 = x1,

and for α = 0 we have:
αx1 + (1 − α)x2 = x2.

These two points are labeled in Figure B.1 as α = 1 and α = 0, respectively.
Next, for α = 1/2, we have:

αx1 + (1 − α)x2 = 1

2
(x1 + x2),

Fig. B.1 Illustration of
definition of a convex set

x2

x1
α = 1

α = 3
4

α = 1
2

α = 1
4

α = 0
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which is the midpoint between x1 and x2, and is labeled in the figure. Finally, we
examine the cases of α = 1/4 and α = 3/4, which give:

αx1 + (1 − α)x2 = 1

4
x1 + 3

4
x2,

and:

αx1 + (1 − α)x2 = 3

4
x1 + 1

4
x2,

respectively. These points are, respectively, themidpoint between x2 and theα = 1/2
point and the midpoint between x1 and the α = 1/2 point.

At this point, we observe a pattern. As we substitute different values of α ∈ [0, 1]
into:

αx1 + (1 − α)x2,

we obtain different points on the line segment connecting x1 and x2. The definition
says that a convex set must contain all of the points on this line segment. Indeed,
the definition says that if we take any pair of points in X , then the line segment
connecting those points must be contained in the set. Although the pair of points
that is shown in Figure B.1 satisfies this definition, the set shown in the figure is not
convex. Figure B.2 demonstrates this by showing the line segment connecting two
other points, x̂1 and x̂2, that are in X . We see that some of points on the line segment
connecting x̂1 and x̂2 are not in the set, meaning that X is not a convex set.

Fig. B.2 X is not a convex
set

x̂1

x̂2
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B.2 Convex Functions

With the definition of a convex set in hand, we can now define a convex function.

Given a convex set, X ⊆ R
n , a function defined on X is said to be a convex

function on X if for any two points, x1 and x2 ∈ X , and for any value of
α ∈ [0, 1] we have that:

α f (x1) + (1 − α) f (x2) ≥ f (αx1 + (1 − α)x2). (B.1)

Figure B.3 illustrates the definition of a convex function. We do this by first
examining the right-hand side of inequality (B.1), which is:

f (αx1 + (1 − α)x2),

for different values of α ∈ [0, 1]. If we fix α = 1, α = 3/4, α = 1/2, α = 1/4 and
α = 0 we have:

f (αx1 + (1 − α)x2) = f (x1),

f (αx1 + (1 − α)x2) = f

(
3

4
x1 + 1

4
x2

)
,

f (αx1 + (1 − α)x2) = f

(
1

2
(x1 + x2)

)
,

f (αx1 + (1 − α)x2) = f

(
1

4
x1 + 3

4
x2

)
,

and:
f (αx1 + (1 − α)x2) = f (x2).

Thus, the right-hand side of inequality (B.1) simply computes the value of the func-
tion, f , at different points between x1 and x2. The five points found for the values
of α = 1, α = 3/4, α = 1/2, α = 1/4 and α = 0 are labeled on the horizontal axis
of Figure B.3.

Next, we examine the left-hand side of inequality (B.1), which is:

α f (x1) + (1 − α) f (x2),

for different values of α ∈ [0, 1]. If we fix α = 1 and α = 0 we have:

α f (x1) + (1 − α) f (x2) = f (x1),
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Fig. B.3 Illustration of
definition of a convex
function

x1

α = 3
4

α = 1
2

α = 1
4

α = 1

α = 0

f (x1)

1
4 f (x

1)+ 3
4 f (x

2)
f (x2)

1
2 ( f (x

1)+ f (x2))

3
4 f (x

1)+ 1
4 f (x

2)

3 4
x1

+
1 4
x2

1 2
( x

1
+
x2
) x2

1 4
x1

+
3 4
x2

and:
α f (x1) + (1 − α) f (x2) = f (x2),

respectively. These are the highest and lowest values labeled on the vertical axis of
Figure B.3. Next, for α = 1/2, we have:

α f (x1) + (1 − α) f (x2) = 1

2
( f (x1) + f (x2)),

which is midway between f (x1) and f (x2) and is the middle point labeled on the
vertical axis of the figure. Finally, values of α = 3/4 and α = 1/4 give:

α f (x1) + (1 − α) f (x2) = 3

4
f (x1) + 1

4
f (x2),

and:

α f (x1) + (1 − α) f (x2) = 1

4
f (x1) + 3

4
f (x2),

respectively. These points are labeled as the midpoints between the α = 1 and
α = 1/2 and α = 0 and α = 1/2 values, respectively, on the vertical axis of the
figure. Again, we see a pattern that emerges here. As different values of α ∈ [0, 1] are
substituted into the left-hand side of inequality (B.1), we get different values between
f (x1) and f (x2). If we put the values obtained from the left-hand side of (B.1) above
the corresponding points on the horizontal axis of the figure, we obtain the dashed
line segment connecting f (x1) and f (x2). This line segment is known as the secant
line of the function.

The definition of a convex function says that the secant line connecting x1 and
x2 needs to be above the function, f. In fact, the definition is more stringent than
that because any secant line that is connecting any two points needs to lie above the
function. Although the secant line that is shown in Figure B.3 is above the function,
the function that is shown in Figure B.3 is not convex. This is because we can find
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Fig. B.4 f is not a convex
function

x1 x2

other points that give a secant line the goes below the function. Figure B.4 shows one
example of a pair of points, for which the secant line connecting them goes below f.

We can oftentimes determine if a function is convex by directly using the defini-
tion. The following example shows how this can be done.

Example B.1 Consider the function:

f (x) = x21 + x22 .

To show that this function is convex over all of R2, we begin by noting that if we
pick two arbitrary points x̂ and x̃ and fix a value of α ∈ [0, 1] we have that:

f (α x̂ + (1 − α)x̃) = (α x̂1 + (1 − α)x̃1)
2 + (α x̂2 + (1 − α)x̃2)

2

≤ (α x̂1)
2 + ((1 − α)x̃1)

2 + (α x̂2)
2 + ((1 − α)x̃2)

2

≤ α x̂21 + (1 − α)x̃21 + α x̂22 + (1 − α)x̃22 ,

where the first inequality follows from the triangle inequality and the second inequal-
ity is because we have that α, 1−α ∈ [0, 1] and as such α2 ≤ α and (1−α)2 ≤ 1−α.
Reorganizing terms, we have:

α x̂21 + (1 − α)x̃21 + α x̂22 + (1 − α)x̃22 = α x̂21 + α x̂22 + (1 − α)x̃21 + (1 − α)x̃22
= α · (x̂21 + x̂22 ) + (1 − α)(x̃21 + x̃22 )

= α f (x̂) + (1 − α) f (x̃).

Thus, we have that:

f (α x̂ + (1 − α)x̃) ≤ α f (x̂) + (1 − α) f (x̃),

for any choice of x̂ and x̃ , meaning that this function satisfies the definition of
convexity. �



Appendix B: Convexity 407

In addition to directly using the definition of a convex function, there are two tests
that can be used to determine if a differentiable function is convex. In many cases,
these tests can be easier to work with than the definition of a convex function.

Gradient Test for Convex Functions: Suppose that X is a convex set and that
the function, f (x), is once continuously differentiable on X . f (x) is convex
on X if and only if for any x̂ ∈ X we have that:

f (x) ≥ f (x̂) + (x − x̂)�∇ f (x̂), (B.2)

for all x ∈ X .

To understand the gradient test, consider the case inwhich f (x) is a single-variable
function. In that case, inequality (B.2) becomes:

f (x) ≥ f (x̂) + (x − x̂) f ′(x̂).

The right-hand side of this inequality is the equation of the tangent line to f (·) at x̂
(i.e., it is a line that has a value of f (x̂) at the point x̂ and a slope equal to f ′(x̂)).
Thus, what inequality (B.2) says is that this tangent line must be below the function.
In fact, the requirement is that any tangent line to f (x) (i.e., tangents at different
points) be below the function.

This is illustrated in Figure B.5. The figure shows a convex function, which has
all of its secants (the dashed lines) above it. The tangents (the dotted lines) are all
below the function. The function shown in Figures B.3 and B.4 can be shown to be
non-convex using this gradient property. This is because, for instance, the tangent to
the function shown in those figures at x1 is not below the function.

Fig. B.5 Illustration of
Gradient Test for Convex
Functions
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Example B.2 Consider the function:

f (x) = x21 + x22 ,

from Example B.1. We have that:

∇ f (x̂) =
(
2x̂1
2x̂2

)
.

Thus, the tangent to f (x) at x̂ is:

f (x̂) + (x − x̂)�∇ f (x̂) = x̂21 + x̂22 + (
x1 − x̂1 x2 − x̂2

) (
2x̂1
2x̂2

)

= x̂21 + x̂22 + 2x̂1 · (x1 − x̂1) + 2x̂2 · (x2 − x̂2)

= 2x1 x̂1 − x̂21 + 2x2 x̂2 − x̂22 .

Thus, we have that:

f (x) − [ f (x̂) + (x − x̂)�∇ f (x̂)] = x21 − 2x1 x̂1 + x̂21 + x22 − 2x2 x̂2 + x̂22
= (x1 − x̂1)

2 + (x2 − x̂2)
2

≥ 0,

meaning that inequality (B.2) is satisfied for all x and x̂ . Thus, we conclude from
the Gradient Test for Convex Functions that this function is convex, as shown in
Example B.1. �

We additionally have another condition that can be used to determine if a twice-
differentiable function is convex.

Hessian Test for Convex Functions: Suppose that X is a convex set and that
the function, f (x), is twice continuously differentiable on X . f (x) is convex
on X if and only if ∇2 f (x) is positive semidefinite for any x ∈ X .

Example B.3 Consider the function:

f (x) = x21 + x22 ,

from Example B.1. We have that:

∇2 f (x) =
[
2 0
0 2

]
,

which is positive definite (and, thus, positive semidefinite) for any choice of x . Thus,
we conclude from the Hessian Test for Convex Functions that this function is convex,
as also shown in Examples B.1 and B.2. �



Index

C
Constraint, 1–3, 18, 129, 141, 347, 401

binding, 111, 257
logical, 129, 141
non-binding, 111, 257
relax, 152, 174, 306, 317, 325

Convex
function, 225, 231, 404
objective function, 231
optimization problem, 219, 220, 232, 401

optimality condition, 245, 250, 262
set, 221, 402

D
Decision variable, 2, 3, 18, 343

basic variable, 46, 50, 176
binary, 123, 127, 139, 141
feasible solution, 4
index set, 22
infeasible solution, 4
integer, 123–125, 127, 138, 141
non-basic variable, 46, 50, 176

Definite matrix, 394
leading principal minor, 397
positive definite, 394
positive semidefinite, 394, 408
principal minor, 396

Dynamic optimization problem, 11
constraint, 347
cost-to-go function, 366, 372
decision policy, 366, 372
decision variable, 343
dynamic programming algorithm, 363
objective-contribution function, 348
stage, 343
state variable, 343

endogenous, 351, 355, 357, 358
exogenous, 351, 352, 355

state-transition function, 345, 368, 372
state-dependent, 347
state-independent, 346
state-invariant, 346

value function, 366, 372

F
Feasible region, 3, 19, 39, 125, 221, 401

basic solution, 45
artificial variable, 62, 67, 76
basic feasible solution, 45
basic infeasible solution, 46
basic variable, 46, 50, 176
basis, 51
degenerate, 75
non-basic variable, 46, 50, 176
pivoting, 56
tableau, 54

bounded, 20, 41
convex, 221
extreme point, 21, 39, 174
feasible solution, 4
halfspace, 20
hyperplane, 20, 21, 39, 222
infeasible solution, 4
polygon, 20
polytope, 20, 39
unbounded, 41
vertex, 21, 39

H
Halfspace, 222
Hyperplane, 20, 21, 39, 222

© Springer International Publishing AG 2017
R. Sioshansi and A.J. Conejo, Optimization in Engineering,
Springer Optimization and Its Applications 120, DOI 10.1007/978-3-319-56769-3

409



410 Index

L
Linear optimization problem, 5

basic solution, 45
artificial variable, 62, 67, 76
basic feasible solution, 45
basic infeasible solution, 46
basic variable, 46, 50, 176
basis, 51
degenerate, 75
non-basic variable, 46, 50, 176
pivoting, 56
tableau, 54

canonical form, 34, 86
constraint, 18

binding, 111
non-binding, 111
structural constraint, 29, 30, 34, 176

decision variable, 18
duality theory

complementary slackness, 113
duality gap, 106
dual problem, 86
primal problem, 86
strong-duality property, 106
weak-duality property, 105

infeasible, 43, 76
multiple optimal solutions, 40, 77
objective function, 18
pivoting, 56
sensitivity analysis, 77
sensitivity vector, 79, 85, 110
simplex method, 48, 49, 59, 174, 288,
327

slack variable, 30
standard form, 29

slack variable, 30
structural constraint, 29, 30, 34, 176
surplus variable, 30

tableau, 54
pivoting, 56

unbounded, 42, 76

M
Minimum

global, 216
local, 216, 218
multiple optimal solutions, 40, 77

Mixed-binary linear optimization problem,
139

Mixed-integer linear optimization problem,
7, 125, 138

constraint, 129, 141

decision variable, 123–125, 127, 138,
139, 141

linearizing nonlinearities, 141
alternative constraints, 147
binary expansion, 151
discontinuity, 141
fixed activity cost, 142
non-convex piecewise-linear cost,

144
product of two variables, 149

mixed-binary linear optimization prob-
lem, 139

pure-binary linear optimization problem,
140

pure-integer linear optimization prob-
lem, 123, 125, 138, 139

solution algorithm, 123
branch-and-bound, 123
cutting-plane, 123

Mixed-integer optimization problem
branch and bound, 155

breadth first, 172
depth first, 172
optimality gap, 173, 189

constraint
relax, 152, 174

cutting plane, 174
relaxation, 152

N
Nonlinear optimization problem, 10

augmented Lagrangian function, 317
constraint

binding, 257
non-binding, 257
relax, 306, 317, 325

convex, 219, 220, 232, 401
descent algorithm, 305
equality- and inequality-constrained,
214, 256, 258, 262, 271, 272

equality-constrained, 214, 247, 250, 254,
256, 272

Lagrange multiplier, 248, 256, 272, 315
Lagrangian function, 316
line search, 288, 329

Armijo rule, 298
exact, 296
line minimization, 296
pure step size, 299

optimality condition, 197, 233
augmented Lagrangian function, 317
complementary slackness, 257, 274



Index 411

Karush-Kuhn-Tucker, 258
Lagrange multiplier, 248, 256, 272,

315
Lagrangian function, 316
necessary, 233, 234, 238, 239, 247,

256
regularity, 247, 254, 256, 271
stationary point, 236
sufficient, 233, 242, 243, 245, 250,

262
relaxation, 306, 317, 325
saddle point, 242
search direction, 288, 327, 328

feasible-directions, 327, 328
Newton’s method, 294
steepest descent, 291

sensitivity analysis, 271, 272
slack variable, 307, 315
solution algorithm, 197, 288, 309

augmented Lagrangian function, 317
step size, 288
unbounded, 218
unconstrained, 213, 234, 238, 239, 242,
243, 245

O
Objective function, 1–3, 18, 231

contour plot, 21, 39, 126, 253, 302
convex, 231

Optimal solution, 4
Optimization problem, 1, 401

basic solution, 45
artificial variable, 62, 67, 76
basic feasible solution, 45
basic infeasible solution, 46
basic variable, 46, 50, 176
basis, 51
degenerate, 75
non-basic variable, 46, 50, 176
pivoting, 56
tableau, 54

constraint, 1, 2, 18, 129, 141, 347, 401
binding, 111, 257
non-binding, 111, 257
relax, 152, 174, 306, 317, 325

convex, 219, 220, 232, 401
decision variable, 2, 18, 343

binary, 123, 127, 139, 141
feasible solution, 4
infeasible solution, 4
integer, 123–125, 127, 138, 141

deterministic, 13

feasible region, 3, 19, 39, 125, 174, 221,
401
bounded, 20, 41
feasible solution, 4
infeasible solution, 4
unbounded, 41

infeasible, 43, 76
large scale, 12
multiple optimal solutions, 40, 77
objective function, 1, 2, 18, 231

contour plot, 21, 39, 126, 253, 302
optimal solution, 4
optimality condition, 197, 233

augmented Lagrangian function, 317
Karush-Kuhn-Tucker, 258
Lagrange multiplier, 248, 256, 272,

315
Lagrangian function, 316
necessary, 233, 234, 238, 239, 247,

256
regularity, 247, 254, 256, 271
stationary point, 236
sufficient, 233, 242, 243, 245, 250,

262
relaxation, 152, 306, 317, 325
saddle point, 242
sensitivity analysis, 77, 272
software

mathematical programming lan-
guage, 13, 15
solver, 14

stochastic, 13
unbounded, 42, 76, 218

P
Principal minor, 396

leading principal minor, 397
Pure-binary linear optimization problem,

140
Pure-integer linear optimization problem,

123, 125, 138, 139

Q
Quadratic form, 392

R
Relaxation, 152, 174, 306, 317, 325

S
Sensitivity analysis, 77, 272
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Set, 401
Slack variable, 30, 307

T
Taylor approximation, 389

first-order, 390
quadratic form, 392
second-order, 390
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