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Abstract In this paper we propose a pipeline for highly automatic building

reconstruction based on 3D point clouds. 3D building models are of great inter-

est for many applications including city planning, navigation, emergency response

and tourism and their reconstruction has been intensively studied. It is, however,

still a challenge to minimize manual intervention and to achieve highly automated

processing in practical applications. The main reason lies in the variability and com-

plexity of urban scenes. We believe that one possible key to tackle this is a reliable

primitive-based decomposition of urban scenes as well as their constituent buildings.

It links scene interpretation with model reconstruction and, thus, naturally completes

an automatic reconstruction pipeline. We propose an effective scheme for the decom-

position of the whole scene straight into individual building components, i.e., primi-

tives. The primitives are reconstructed via statistical generative modeling and assem-

bled into individual watertight building models. An experiment has been performed

on a dataset of a complete central European village demonstrating the potential of

the proposed approach.

Keywords 3D reconstruction ⋅ Point cloud ⋅ Building ⋅ Statistical modeling

1 Introduction

The automatic generation of 3D building models from remote sensing data is of

great interest for many applications including city planning, navigation, emergency

response and tourism. Many approaches have been reported in the past decades.

Overviews are given in Brenner (2005), Schnabel et al. (2008), Vosselman (2009).

Current work includes (Sampath and Shan 2010), which segments and reconstructs
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complicated buildings from airborne LIDAR point clouds based on polyhedral mod-

els. Starting from planar roof segments, Zhou and Neumann (2012) try to organize

them using “global regularities” in the form of orientation and placement constraints.

Lafarge et al. (2010) present building reconstruction from a Digital Surface Model

(DSM) combining generic and parametric methods. For more sophisticated build-

ings, basic geometric primitives, e.g., planes, cylinders and cones, are combined with

mesh-patches to present irregular roof forms (Lafarge and Mallet 2012). Huang et

al. (2013a) propose a statistical approach for building model reconstruction from

LIDAR data via generative models. Partovi et al. (2015) present an extension of a

hybrid framework for data from stereo satellite imagery with ridge-line-based build-

ing mask decomposition.

Approaches for building footprint decomposition can be divided into two cate-

gories: With or without primitive overlap. Brenner and Haala (2000) propose a flex-

ible decomposition scheme resulting in overlapping rectangular primitives. Lafarge

et al. (2010) present a decomposition of given building footprints as adjacent prim-

itives, which are not limited to rectangular shapes. Current work includes (Wang et

al. 2015), which presents building decomposition based on the adjacency graph of

detected planar roof patches and a primitive-based reconstruction.

In recent years, quality and availability of 3D point clouds from LIDAR and image

matching have been significantly improved and some approaches reach a high level of

automation (Lafarge and Mallet 2012; Huang et al. 2013a) and cover large suburban

areas. There are, however, still several challenges towards fully automatic city model

reconstruction. One of them is the parsing of complex scenes as well as buildings.

This limits the reconstruction of larger urban areas and, thus, renders a pipeline to

build a whole city model unreliable. We believe, that the key to tackle this deficit is

a reasonable decomposition subdividing the whole scene as well as heterogeneous

buildings into regular components.

As shown in Fig. 1, this paper extends and links our approaches to scene clas-

sification (Huang and Mayer 2015) and primitive-based reconstruction (Huang et

al. 2011, 2013a) with a pre-processing—decomposition and a post-processing—

assembly of primitives to complete a practical reconstruction pipeline. A reasonable

and reliable decomposition of the whole scene as well as of complicated buildings

into regular primitives precedes model reconstruction. The assembly of the primi-

tives performs a true model merging in CAD (Computer Aided Design) style. The

decomposition works as an intermediate step linking the preceding scene interpre-

tation with the following model reconstruction and is, therefore, a crucial part to

complete an automatic reconstruction pipeline. The building mask from scene clas-

sification is used as input along with the 3D point cloud derived from dense image

matching. Scene decomposition splits individual buildings from the building mask

while building decomposition further disassembles building complexes into simple

building components. The latter are represented by predefined 3D primitives and

reconstructed via statistical generative modeling. The primitives are subsequently

assembled into individual watertight building models via CSG (Constructive Solid

Geometry) modeling.
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Fig. 1 Pipeline for automatic building reconstruction

This paper is organized as follows: Sects. 2 and 3 present scene and building

decomposition, respectively. The statistical generative modeling of building primi-

tives is given in Sect. 4. Section 5 describes the assembly of primitives into complete

building models. Experimental results are given in Sect. 6. The paper ends up with

the conclusion in Sect. 7.

2 Scene Decomposition

The goal of scene decomposition is to extract individual buildings from a (binary)

building mask of the whole scene. The building mask (Fig. 2, left) is derived by pre-

vious scene classification, which may contain labeling errors often affecting the sep-

aration of buildings (middle). A mathematical morphological “opening” operation

is conducted, as shown in Fig. 2 (right), to remove trivial areas and to better isolate

the buildings. The radius of the disk-shaped structuring element is determined based

on data quality as well as resolution. For the presented dataset with 0.2 m resolution,

a radius of 1 m is employed for the structuring element.

Individual buildings are found via “blob” detection. As shown in Fig. 3, the input

data are then correspondingly segmented into rectangular tiles. The segmentation is

conducted with a buffer, so that certain classification errors can be tolerated. Over-

lapping between tiles is allowed to make sure buildings are completely included in
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Fig. 2 Scene decomposition and individual building detection: comparison of building detection

(as colorful “blobs”) without (middle) and with (right) morphological opening on the input building

mask (left)

Fig. 3 Scene decomposition into tiles, which may contain individual or multiple buildings
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the tiles. Global coordinates including the height (for undulating areas, cf. Sect. 6)

are attributed to each tile for the final model assembly of the whole scene.

It, however, cannot be guaranteed that each “blob” contains exactly one individual

building. This is due to the complexity of the scene and the imperfection of the clas-

sification i.e., after the decomposition, a data tile may contain a single building, but

also a combined building (a building consisting of multiple building components), or

multiple buildings which are closely adjacent to each other (cf. Fig. 3). The last case

can often be found in densely inhabited areas. In this paper we call both, combined

buildings and adjacent building groups, “building complexes”. Further parsing of

building complexes is described in the following section.

3 Building Decomposition

Generally, the goal of building decomposition is to divide building complexes into

simple standard building components making the following model reconstruction

easier and more efficient. This is especially true for primitive-based reconstruc-

tion methods, where the building components are directly represented by predefined

building primitives.

Please note that building decomposition actually does not work on building mod-

els but directly on the input data, because the former does not exist yet. Conven-

tionally, the decomposition is conducted bottom-up based on 2D footprints that are

either already available (Lafarge et al. 2010; Kada and McKinley 2009) or extracted

from the data (Partovi et al. 2015). This becomes, as shown in Fig. 4c, infeasible

when 3D information has to be taken into account. Adjacent building components

with different 3D geometry cannot be separated if they have similar width. This error

will affect the following model reconstruction.

We propose a combined bottom-up and top-down scheme for the decomposition

of building complexes. It works based on 3D geometry parsing with the support of

Fig. 4 Footprint- and ridge-based building decomposition: Side-view (a) and top-view (b) of a

building complex and the decomposition based on footprint (c) and 3D geometry (d) using ridge

(red) parsing and height differences
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a predefined primitive library. As shown in Fig. 4d, the decomposition is improved

by using 3D information including height differences and roof shapes.

We are aware that the strategies of the decomposition and the following model

reconstruction have to match i.e., they should share the same construction concept

for buildings and be adapted to each other, so that the pipeline works smoothly and

the degree of automation is improved. There are two basic strategies for building

(footprint) decomposition. The key difference is if the final building components are

allowed to overlap (Brenner and Haala 2000; Huang et al. 2011) or not (Lafarge et al.

2010; Kada and McKinley 2009). Different primitive definitions are correspondingly

employed. The concept allowing for overlaps fits better to the generative modeling

process described in Huang et al (2013a). It is more flexible and has the potential to

keep the model complete and regular with a reasonable size for the primitive library.

No special primitives such as additional joint parts (Lafarge et al. 2010; Kada and

McKinley 2009) are required. Besides, allowing primitive overlaps can tolerate a

certain extent of uncertainty as result of the stochastic search during model recon-

struction (cf. Sect. 4).

3.1 Ridge Lines

The ridge line is one of the key geometric features of many buildings. In approaches

for roof interpretation ridge lines often play an important role, especially for those

that use adjacency graph models (Elberink and Vosselman 2009; Huang and Brenner

2011). It has been demonstrated that the ridge line is not only the most significant,

but also the most stable feature for 3D building roof model reconstruction.

Ridge lines are also used to improve the bottom-up decomposition performance

(Arefi et al. 2010; Partovi 2015). The ridges are mostly treated as a building’s central

line and extracted from 2D contours or simple height information (line fitting to the

points with a given height limit for ridges). Alternatively, “skeletons” derived from

2D footprints are often employed for building structure analysis (Haunert and Sester

2008, 2013b). Decomposition, however, becomes more difficult when the complex-

ity of buildings increases.

We propose a top-down primitive-based decomposition scheme with emphasis

on complicated building structures. The ridge lines are extracted and divided into

straight line segments, which can be seen as ridges of individual primitives and,

thus, guide the decomposition. In comparison with related work, the ridge lines are

much more precisely extracted fully 3D by plane detection and intersection instead

of an approximation by means of fitting lines to candidate ridge points (Arefi et

al. 2010) or a morphological operation (Partovi et al. 2015). With the focus on the

degree of automation, we concentrate on buildings with regularly structured compo-

nents, which make up the majority of urban areas, instead of atypical or landmark

buildings. The latter are rare and manual intervention in the reconstruction is mostly

unavoidable anyway.
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Fig. 5 Ridges and building skeleton—Horizontal ridge (red), diagonal ridges (green), eaves (blue),

and skeletons (gray dashed) derived from 2D footprint (gray)

We define, as shown in Fig. 5, the following types of edges on the roof: (1) Hori-

zontal ridge line (red), which connects two apexes of the roof, (2) diagonal ridge line

(green) connecting one apex and one eave corner, and (3) eave line (blue), which

links two eave corners. The roof contour consisting of eave lines can be used to

approximate the building footprint when the overhang of the eave is ignored.

The ridge lines proposed in this paper have the following advantages as basis of

building decomposition:

1. No additional footprint data is required. Ridge lines are derived directly from the

input point cloud by means of plane intersection, which is much more accurate

than conventional approximation methods.

2. With full 3D parsing more specific and accurate (e.g., asymmetric roofs, different

roof heights and types) geometrical information is available.

For flat roofs, which do not have ridges, central lines are used instead. In compar-

ison with building skeletons, central lines of roofs are still 3D i.e., as shown in Fig. 5,

they have a height value and in the case of adjacent flat roofs they can differentiate

multiple building components by means of their heights.

For non-flat roofs, ridge lines are found in the form of the intersection lines of

the individual planes of the roofs. Planes of a building complex are detected by

RANSAC. By this means, all intersection lines are actually determined via a consen-

sus of all data points of both planes i.e., the intersection lines are much more reliable

and precise.

To separate ridges from other kind of intersection lines, we employ the “rela-

tion matrix” (Huang and Brenner 2011) shown in Fig. 6. After the planes have been

detected, the points that lie in the intersection area are counted and the numbers are

entered in the relation matrix. The intersection area is defined based on the intersec-

tion line along with a buffer range, which is empirically determined proportionally

to the point resolution.

“False” intersection lines are often found (cf. Fig. 6, dashed gray lines, planes 2–

5 and 3–4), because the planes are actually infinite with no boundaries defined. An

intersection line is verified by checking the normal directions of the planes on its both

sides. Similar normal directions imply that the intersection line lies inside one slope

of the roof and is,therefore, “false”. The corresponding cell in the relation matrix is

then set to null. The relation matrix is symmetric. For the purpose of illustration we,

as shown in Fig. 6 (right), use the lower triangle (gray) to show the original numbers

of intersection points while the upper triangle (colored) presents the verification of

horizontal (red) and diagonal (green) ridges.
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Fig. 6 Ridge line determination with relation matrix: Horizontal ridges (red) and diagonal ridges

(green)

3.2 Primitive-Based Decomposition

A top-down building decomposition is proposed based on a predefined primitive

library given in Huang et al. (2013b). Figure 7 presents the process of building

decomposition guided by the ridges. The detected horizontal ridge lines (Fig. 7b,

red) are decomposed into straight line segments (Fig. 7c, bold). The primitives have

a rectangular contour as well as a single straight horizontal ridge line (except flat

Fig. 7 Building decomposition: a Underlying model, b detected ridge lines (red), c decomposition

based on ridge segments (solid lines) with completion using edges of the primitives (dashed lines),
and d the decomposed primitives



Towards Automatic Large-Scale 3D Building Reconstruction: Primitive . . . 213

roof and shed roof ). The end points of the segments are determined by intersection

with diagonal ridges or the boundary of the building mask.

Using the horizontal ridges as bases (cf. Fig. 7c), the most appropriate primitives

are statistically selected from the library. The goal is a fit (1) to the already extracted

diagonal ridges and (2) to the rest of the edges, without conflicts with the known

planes and the boundary of the building mask. Again, this step decomposes no actual

building model but underlying models, because the former does not yet exist. The

goal is to define primitives that compose the building instead of modeling them i.e.,

the decomposition determines the number and types of primitives and the way of

their combination (Fig. 7d). The concrete parameters of the primitives are calculated

in the following primitive reconstruction (Sect. 4).

The primitives are, however, not the only information that can be derived from the

building decomposition. The ridge line is a key component and plays an important

role for the roof geometry. Initial values of the following primitive parameters can

be derived solely from known horizontal ridges:

∙ Centroid coordinates (x and y) are defined by the center of the ridge line.

∙ Orientation (azimuth) is that of the ridge line.

∙ Ridge height (z2) of the roof.

∙ Length is approximated proportionally to that of the ridge line.

Furthermore, the following initial values are obtained in combination with the

known building mask. In the case that the building mask is not available, e.g., for

building decomposition without previous scene decomposition, the diagonal ridges

can be used instead:

∙ Area is approximately proportional to the mask area or the number of data points

(for raster data).

∙ Width is derived from the area and length.

∙ Depth of hips (hipl1, hipl2, hipd2, and hipd2) are the longitudinal and radial dis-

tances from the end points of the horizontal ridge to the boundary of the building

mask.

Since the ridge lines are precisely determined (cf. Sect. 3.1), the derived initial

values are, to a certain extent, reliable and specific. They can, therefore, significantly

improve the performance of the statistical search (cf. Sect. 4).

4 Primitive Reconstruction

We propose a generative primitive-based reconstruction, which extends the approach

described in Huang et al. (2013a). The primitive parameters 𝜃 are defined as:

𝜃 ∈ 𝛩;𝛩 = { ,,}, (1)
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where the parameter space 𝛩 consists of position parameters  = {x, y, azimuth},

contour parameters = {length,width} (rectangle footprint), and containing shape

parameters, i.e., ridge/eave height and the depths of hips.

The goal of statistical reconstruction is to optimize the parameters fitting the prim-

itive to the data. The Maximum A Posteriori (MAP) estimate of 𝛩 can be expressed

as

𝛩MAP = argmax
𝛩

{
L(|𝛩)p(𝛩)

P()

}
= argmax

𝛩

{
L(|𝛩)p(𝛩)

}
, (2)

where L(|𝛩) is the likelihood function presenting the goodness of fit of the model

to the data  and p(𝛩) presents the prior for 𝛩, which is derived from empirical

knowledge and incrementally improved during the reconstruction i.e., the parameter

values of the already found building components or of adjacent buildings are used to

update the priors. P() is the marginal probability, which is regarded as a constant

in the optimization as it does not depend on 𝛩.

The statistical optimization of the parameters is driven by reversible jump Markov

Chain Monte Carlo with model selection in the transition kernel. Multiple hypothetic

models (“candidates”) are generated via statistical sampling of the primitive type as

well as the corresponding parameters and evaluated based on the given 3D point

cloud. The final model is the verified candidate model with the best goodness of

fit to the data. Markov Chain Monte Carlo is employed for an efficient exploration

of the high-dimensional (determined by the number of parameters) search space and

the reversible jump mechanism is used for switching between different search spaces,

i.e., different types of primitives. By these means, the statistical optimization includ-

ing the change of primitive types is fully automatic. In comparison to Huang et al.

(2013a), the search spaces are of the same size, but due to the more reliable initial

values (cf. Sect. 3) the search entropy is much lower i.e., the computational effort is

significantly reduced (cf. Sect. 6) by the proposed building decomposition before the

reconstruction.

3D point clouds from image matching may contain data flaws such as false color

and false positions of points. One important issue are gaps in the data, which often

occur on surfaces with homogeneous color/texture (i.e., no matching points) and in

case of occlusions. It leads to (cf. Fig. 8, left) missing points—holes on the roofs.

Please note that such data gaps also exist in LIDAR data in areas where reflections,

e.g., on glass surfaces and water bodies, occur. Conventional bottom-up methods

may encounter difficulties in this case resulting in irregular and/or incomplete build-

ing components. Complete and watertight building models can, therefore, not be

guaranteed. As shown in Fig. 8, the proposed method is robust despite such data

flaws and ensures plausible results.
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Fig. 8 Robust reconstruction despite data flaws: the input point clouds (left), detected primitives

shown as wireframes (middle), and final building models (right)

5 Assembly of Buildings

The reconstructed primitives of a building complex are assembled into a single

model. The modeling methods used for buildings can be categorized in two concepts

(Brenner 2004): Surface modeling, also known as boundary representation (B-Rep)

and solid body modeling, which is mainly based on CSG (Mäntylä 1987). In B-Rep

modeling buildings are described by their bounding surfaces and their relationship

of intersection. CSG is widely employed in CAD tools. Complicated models are

represented by multiple volumetric primitives combined using Boolean operators.

Both of them are employed in this paper for building assembly, which consists of

two consecutive parts: (1) Joint parametric adjustment and (2) geometrical model

merging.

Joint parametric adjustment helps to remove trivial conflicts between primi-

tives and compensates for small deviations (cf. Fig. 9a), which may happen during

the reconstruction driven by a stochastic process (cf. Sect. 4). The parameters of all

building components are jointly adjusted using two rules. In the joint adjustment the

change of each side of a primitive is proportional to its size, i.e., footprint area.
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Fig. 9 Primitive adjustment: Reconstructed primitives (a), joint parametric adjustment (b),

vertices-shifting adjustment (c), and rendered model (d)

Fig. 10 Primitive merging: from multiple primitives (top) to single watertight model (bottom)
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∙ Rule 1: The intersection angles of the primitives are jointly regularized to 0◦ or

90◦ if the deviation is less than a threshold of 5◦. An exception exists for merging

a flat roof with a roof with a ridge line (e.g., gable roof ): The flat roof is aligned

to the latter instead of adjusting both, as the orientation of a ridge is much more

reliable than that of a flat roof.

∙ Rule 2: Heights of flat roofs or ridge- and eave-heights of other roofs are harmo-

nized if the deviation is less than 0.2 m.

Figure 9b shows that the parameter adjustment cannot remove all mismatching

positions of the primitives. The mismatching is the result of deviations caused by

stochastic processes and data uncertainty, which in principle cannot be corrected in

this step. Therefore, further geometrical adjustment is required.

Geometrical model merging generates the final single model of the building

complex. Inspired by Huang et al. (2013a), we conduct a simple vertices-shifting

(Fig. 9c) to correct the geometrical mismatching and all the primitives are merged

into a watertight model. The primitives are originally generated as B-Rep models,

as shown in Fig. 10 (top) and simply placed together as two separate models which

overlap. Although in the rendered model (left) the intersected part is hidden and

does not affect the appearance, the model is ontologically not a single “subject” and

geometrically not watertight. Our model merging employs CSG modeling. As shown

in Fig. 10, the B-Rep primitives are first converted into CSG models and merged with

a “union” operation into a single solid body. The latter is then converted back to a

single and watertight B-Rep model, i.e., the final model.

6 Experiments

The experiment is performed for a complete and typical central European village

with a mixture of detached buildings and building complexes, a church, and a small

castle on a hill. The 3D point cloud has been reconstructed by dense matching of

UAS (unmanned aerial system) imagery taken in Bonnland, Germany (Kuhn et al.

2014). The data are generated from 822 images that cover about 0.12 km
2

of undu-

lating terrain. We use a reduced and rasterized version with a resolution of 0.2 m

(Fig. 11a, b). The building mask (Fig. 11c, red) is provided by a previous scene clas-

sification (Huang and Mayer 2015).

The building mask is decomposed into 62 data tiles (cf. Fig. 2), which are

processed in parallel and the reconstructed building models are assembled in the

global system. Bird’s-eye views of input point cloud (top) and the reconstructed

model (bottom) are given in Fig. 12. Along with the watertight building models a

mesh model is generated from the non-building points to model the ground.

The total runtime of the presented scene with 33 single buildings and 29 building

complexes, which is composed of 112 primitives, is about 14 min on a laptop with a 4

cores/8 threads CPU at 2.3 GHz. The overall reconstruction error (for each individual

building) is defined as average deviation from the data points to the model surface
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Fig. 11 Experiment on Bonnland data: a Input point cloud with color, b input point cloud with

height presented as gray values, c the result of scene classification with the building mask in red,

and d the final vector model of the whole scene

Fig. 12 Building reconstruction for Bonnland: input point cloud (top) and reconstructed models

(bottom)
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Table 1 Comparison of the runtimes (in seconds) with and without building decomposition

Methods Prim. 1 Prim. 2 Prim. 3 Merging Total In %

w/o Decomp. (global + local) 104 + 36 89 + 28 65 + 32 25 379 100

with Decomp. (local only) 22 20 25 25 92 24.2

in nadir direction (cf. also Huang et al. 2013a). Except for buildings with large data

flaws (cf. Fig. 8) or occlusion, where the average data deviation does not reflect the

reconstruction accuracy, the reconstruction errors of the majority of the buildings

are less than the half of the data resolution, i.e., 10 cm.

To demonstrate the performance improvement with building decomposition (cf.

Sect. 3) in comparison to a direct reconstruction of a building complex we list in

Table 1 the detailed runtime analysis for the example model presented in Fig. 10 with

three primitives. With the initial values provides by building decomposition compu-

tational effort has been saved not only for the time-consuming global searching, but

also for the local optimization of other parameters.

7 Conclusion

This paper presents an automatic pipeline for Level of Detail 2—LOD2 building

model reconstruction focusing on a reliable scene as well as building decomposition

into regular primitives and their subsequent assembly. We proposed:

1. Decomposition of the whole scene into data tiles containing individual buildings

or building complexes

2. Decomposition of building complexes into standard primitives with fully 3D geo-

metrical parsing

3. CSG primitive assembly into a single watertight model.

The primitive decomposition links the scene interpretation with the model recon-

struction and, thus, completes the automatic modeling pipeline. Additionally, it sig-

nificantly improves the reconstruction efficiency concerning the following aspects:

1. The time-consuming global search for buildings in a large scene is avoided.

2. The data tiles can be processed independently in parallel.

3. The initial values derived for building decomposition are more precise and reli-

able than that derived from a simple building mask making the parameter opti-

mization of the primitives much more efficient (cf. Sect. 6).

Concerning future work, we consider to extend the proposed reconstruction

pipeline to LOD3 building models. To this end, an approach to object detection on

the facades and roofs will be included. CSG modeling should be advantageous for

the consistent integration of windows, doors, balconies, chimneys, and dormers into
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the 3D model. Furthermore, the library of primitives will be improved with non-

rectangular bases, e.g., ellipses or general polygons. The texturing of the buildings is

of great interest for certain applications such as tourism. B-Rep models can be much

more easily derived from CSG models than the other way around. We assume that a

watertight B-Rep model with regular shapes, which we generate with our approach,

is a good basis for texturing.
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