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Abstract We present a program transformation approach to convert procedural
code into functionally equivalent code adapted to a given platform. Our framework
is based on the application of guarded transformation rules that capture semantic
conditions to ensure the soundness of their application. Our goal is to determine
a sequence of rule applications which transform some initial code into final code
which optimizes some non-functional properties. The code to be transformed is
adorned with semantic annotations, either provided by the user or by external
analysis tools. These annotations give information to decide whether applying a
transformation rule is or is not sound. In general, there are several rules applicable at
several program points and, besides, transformation sequences do not monotonically
change the optimization function. Therefore, we face a search problem that grows
exponentially with the length of the transformation sequence. In our experience
with even small examples, that becomes impractical very quickly. In order to
effectively deal with this issue, we have adopted a machine-learning approach using
classification trees and reinforcement learning. It learns from successful transforma-
tion sequences and produces encodings of strategies which can provide long-term
rewards for a given characteristic, avoiding local minima. We have evaluated the
proposed technique in a series of benchmarks, adapting standard C code to GPU
execution via OpenCL. We have found the automatically produced code to be as
efficient as hand-written code generated by an expert human programmer.
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1 Introduction

There is a strong trend in high-performance computing towards the integration
of heterogeneous computing elements (vector processors, GPUs, FPGAs, etc.)
specially suited for some class of computations. Such platforms are becoming a
cost-effective alternative to more traditional supercomputing architectures [4, 12]
in terms of performance and energy consumption. This specialization comes at the
price of additional hardware and, notably, software complexity. Thus, programming
these systems is restricted to a few experts, which hinders its widespread adoption,
increases the likelihood of bugs, and limits portability. For these reasons, defining
programming models that ease the task of efficiently programming heterogeneous
systems has become a topic of great relevance and is the objective of many ongoing
efforts.

Many relevant research and industrial projects use scientific code for simulations
or numerical solving of differential equations. They often rely on existing algorithms
and code that need to be ported to new architectures to exploit their computational
strengths to the limit, while at the same time preserving the functional properties
of the original code. Unfortunately, and although scientific code commonly follows
patterns rooted in its mathematical origin, (legacy) code often does not clearly spell
its meaning. In this case, successfully adapting it needs a very careful (and error-
prone) transformation process that is hard for humans to do.

Our aim is to obtain a framework for the semantics-preserving transformation of
(scientific) C code that improves performance-relatedmetrics on a given destination
platform. Despite the broad range of compilation and refactoring tools available, no
existing tool fits our goals by being adaptable enough to recognize specific source
patterns and generate code better adapted to different architectures. Therefore, we
decided to design and implement our own transformation framework. A couple of
examples will clarify our motivations and objective.

Figure 1 shows a sequence of program transformation steps to optimize code
working on arrays of floats. Some transformation steps can be done by existing
optimizing compilers.1 However, they are usually internally performed at the
intermediate representation (IR) level, and with few, if any, opportunities for user
intervention or tailoring. This falls short to cater for many relevant situations that
we want to address:

• In many cases programmers know properties that static analyzers cannot dis-
cover. In Fig. 1 a compiler would rely on knowledge of the properties of
arithmetic operations (with the caveat in Footnote 1). But if we had calls to func-
tions implementing operations with comparable properties, such as operations

1 Note, however, that some can not. The standard for floating point arithmetic does not guarantee
the preservation of numerical results under the transformation in Step 4 of Fig. 1, and it is therefore
not enabled by default in C compilers. However, if this transformation is interesting for some
particular domain or application, it can be enabled in our framework by adding the corresponding
rule to the ruleset.
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0 - ORIGINAL 1 - FOR-LOOP FUSION 2 - AUG. ADDITION

float c[N],v[N],a,b;
for(int i=0;i<N;i++)
c[i] = a*v[i];

for(int i=0;i<N;i++)
c[i] += b*v[i];

for(int i=0;i<N;i++) {
c[i] = a*v[i];
c[i] += b*v[i];

}

for(int i=0;i<N;i++) {
c[i] = a*v[i];
c[i] = c[i] + b*v[i];

}

3 - JOIN ASSIGNMENTS 4 - UNDO DISTRIBUTE 5 -INV. CODE MOTION

for(int i=0;i<N;i++)
c[i] = a*v[i]+b*v[i];

for(int i=0;i<N;i++)
c[i] = (a+b) * v[i];

float k = a + b;
for(int i=0;i<N;i++)
c[i] = k * v[i];

Fig. 1 A sequence of transformations of a piece of C code to compute c D avCbv. This style
marks code to be modified and this style marks code generated from the previous stage

INITIAL CODE FINAL CODE

Complex c[N], v[N], a, b, aux;

for (int i = 0; i < N; i++)
cmp_mult(v[i], a, c[i]);

for (int i = 0; i < N;i++) {
cmp_mult(b, v[i], aux);
cmp_add(aux, c[i], c[i]);
}

Complex c[N], v[N], a, b, k;

cmp_add(a, b, k);
for (int i = 0; i < N;i++)
cmp_mult(k, v[i], c[i]);

Fig. 2 Transformation enabled by properties similar to those used in Fig. 1

on complex numbers (Fig. 2), the presented transformations would unlikely be
performed by a standard compiler.

• Most compilers implement a set of transformations useful for one particular
architecture—usually von Neumann-style CPUs. Compiling for a particular
architecture needs a specific, ad-hoc compiler that often requires source code to
follow some specific guidelines. Our tool can help generate code that complies
with these patterns.

• The transformations that generate code amenable to be compiled for spe-
cific architectures are often complex, architecture-specific, and domain-specific.
Therefore, they are better expressed at a higher level, rather than inside a
compiler’s architecture, and implemented as extensible plugins.

We aim at generating code that improves some measure of a non-functional
characteristic. That needs to select the right rule at every step in the transformation.
As part of its modular design, the transformation engine does not have any hard-
wired strategy to select which rules have to be applied in each case; instead, it is
designed to communicate with external oracles that help in selecting which rules
have to be applied. This selection is, however, not without problems. First of all,
we require that all the applications are sound—i.e., the (functional) semantics of
the code are respected. That needs rules to be applied only when certain conditions
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are met. Rules, in our proposal, have guards that express semantic conditions to
enable their applications. The code to be transformed is checked to ensure that these
conditions are met. As a unifying mechanism, we require that the input code is
adorned with pragmas expressing properties that cannot be readily derived from the
syntactic shape of the code. These pragmas can be inserted by automatic analysis
tools or, when they fall short, by the programmer.

Second, when a rule that is part of a sequence that eventually improves some
metric is selected and applied, this application may or may not improve that metric.
Additionally, at every transformation step several rules can be applied at several
points. Therefore, an optimization process may need an exhaustive search in a
state space that grows exponentially with the number of steps in the transformation
sequence. In our experience, and for relatively small examples, it is typical to have
in the order of ten possibilities or more per step and around 50–100 steps in a
transformation sequence. That makes exploring the search space unfeasible. In order
to deal with that problem we have developed a machine learning-based tool that
learns termination conditions and long-range transformation strategies. It is used as
an external oracle to select the most promising rule that is part of a transformation
chain able to finally improve the code for the target platform. When code deemed
good enough for the target architecture is reached, it is handed out to a translator
that adapts it to the programming model of the target platform.

In the rest of the paper, Sect. 2 reviews previous work in program transformation
systems and related approaches using machine learning. Section 3 describes the
transformation rule language and properties and the transformation engine. Sec-
tion 4 discusses the rule selection problem, and Sect. 5 describes a solution based
onmachine learning. Section 6 presents some preliminary results and, finally, Sect. 7
summarizes the conclusions and proposes future work.

2 Related Work

Stratego-XT [22] is a language-independent transformation tool similar to our
proposal, but oriented towards strategies rather than rewriting rules. Rule firing does
not depend on semantic conditions that express when applying a rule is sound. This
is enough for a language with referential transparency, but not for a procedural one.

CodeBoost [2], built on top of Stratego-XT, performs domain-specific optimiza-
tions to C++ code following an approach conceptually similar to ours. User-defined
rules express domain-specific optimizations; code annotations are used as precon-
ditions and inserted as postconditions during the rewriting process. However, it is a
mostly abandoned project that, additionally, mixes C++, the Stratego-XT language,
and their rule language. All of this together makes it to have a steep learning curve.
Concept-based frameworks such as Simplicissimus [19] transform C++ based on
user-provided algebraic properties. Its rule application strategy can be guided by the
cost of the resulting operation, that is defined at the expression level rather than at
the statement level and has only a local view of the transformation process. These
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issues make its applicability limited and prone to become trapped in local minima
(see Sect. 5).

Machine learning techniques have been used for compilation and program
transformation [1, 13, 17]. Previous approaches target specific architectures, thereby
limiting their applicability and making them unsuitable for heterogeneous plat-
forms. All of them use an abstraction of the input programs, as we do. However,
none of the previous works have explored the use of reinforcement learning (RL)
methods [9] in the field of program transformation and compilation.

3 Source-to-Source Transformations

The core of the transformation process is a language for defining semantically sound
code transformation rules (Sect. 3.1). These rules are fired when some syntactic
pattern is found and a given semantic property holds. These properties can be either
inferred (with the help of an analysis tool) or provided as source code annotations
(Sects. 3.2 and 3.3).

3.1 STML Rules

Figure 3 shows a template of a transformation rule. Transformation rules contain
a syntactical pattern that matches input code and describes the skeleton of the
code to generate, which will replace the matched code. STML rules (from Seman-
tic Transformation Meta-Language) may also specify semantic conditions to
ensure that their application is sound.2 As we will see later, these conditions are
checked against a combination of static analysis and user-provided annotations in
the source code.

Figure 4 shows an example: a rule that applies distributivity “backwards”. Pattern
components are matched using tagged meta-variables: e1, e2, and e3 in the pattern
are tagged to specify which kind of component is matched: cexpr(e1) states
that e1 must be an expression. These meta-variables are replaced by the matched
expression in the generated code. Additional conditions and primitives (Table 1) are
used to write sound and expressive rules. In Fig. 4, pure(cexpr(e1)) means
that e1 is pure, e.g., it does not write to any variable or, in general, it does not
perform any state change, including IO. The rule in Fig. 5 performs expression
substitution across statements, removing duplicated assignments to variables when
possible. In it, cstmts(si) requires si to be a sequence of statements. A
cstmt(s) tag would instead make s refer to a single statement.

2Properties of the generated code can also be included, but we are not showing them for simplicity.
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rule_name {
pattern: {...}
condition: {...}
generate: {...}

}

Fig. 3 STML rule template

undo_distributive {
pattern: {
(cexpr(e1) * cexpr(e2)) + (cexpr(e1) * cexpr(e3));

}
condition: {
pure(cexpr(e1));
pure(cexpr(e2));
pure(cexpr(e3));

}
generate: {
cexpr(e1) * (cexpr(e2) + cexpr(e3));

}
}

Syntactical pattern

Semantic conditions
(uses predefined properties)

Resulting code

Fig. 4 STML rule: distributive property backwards (steps 3–4 of Fig. 1)

Table 1 presents most of the currently available constructs to write STML rules. In
that table, E represents an expression, S represents a statement and [S] represents
a sequence of statements. The function bin_oper(Eop,El,Er) matches or
generates a binary operation (El Eop Er) and can be used in the pattern and
generate sections.

The decision of whether to apply or not a given rule depends on two factors: the
transformation must preserve the semantics of the transformed code (ensured using
the conditions section) and it should eventually improve some efficiency metric.
Ensuring the latter is far from trivial, and Sect. 5 will be entirely devoted to our
approach to do it effectively. In the next sections we will focus on how to verify that
semantic conditions hold before applying a rule.

3.2 Inferring and Annotating Properties

Some properties used in the condition section can be verified with a local, syn-
tactical check, performed by the transformation engine. However, most interesting
conditions need inferring semantic information that requires non-local analysis and
we rely on external sources to derive this information. In particular, we are currently
using Cetus [5] to this end. Cetus is a compiler framework, written in Java, to
implement source-to-source transformations, which we have modified to extract
analysis information.
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Table 1 Constructs for STML rules

Construct Description

All sections

bin_op(Eop,E1,E2) Eop is a binary operation with operands E1 and E2

una_op(Eop,E) Eop is a unary operation with operand E

Condition section

no_write((S|[S]|E)1,
(S|[S]|E)2)

(S|[S]|E)1 does not write in any location read by
(S|[S]|E)2 .

no_write_except_arrays
((S|[S]|E)1,(S|[S]|E)2,E)

As the previous condition, but not taking arrays accessed
using E into account.

no_write_prev_arrays
((S|[S]|E)1 , (S|[S]|E)2,

E)

No array writes indexed using E in (S|[S]|E)1 access
previous locations to array reads indexed using E in
(S|[S]|E)2 .

no_read((S|[S]|E)1,
(S|[S]|E)2)

(S|[S]|E)1 does not read from any location written to
by (S|[S]|E)2 .

pure((S|[S]|E)) (S|[S]|E) does not write in any location.

writes((S|[S]|E)) Locations written by (S|[S]|E).

distributes_over(E1,E2) Operation E1 distributes over operation E2.

occurs_in(E,(S|[S]|E)) Expression E occurs in (S|[S]|E).

fresh_var(E) E should be a new variable.

is_identity(E) E is the identity.

is_assignment(E) E is an assignment.

is_subseteq(E1,E2) E1 � E2

Generate section

subs((S|[S]|E),Ef,Et) Replace each occurrence of Ef in (S|[S]|E) for Et.

if_then:{Econd; (S|[S]|E);} If Econd is true, then generate (S|[S]|E).

if_then_else:{Econd; If Econd is true, then generate (S|[S]|E)t

(S|[S]|E)t;(S|[S]|E)e;} else generate (S|[S]|E)e .

gen_list: {[(S|[S]|E)];} Each element in [(S|[S]|E)] produces a different
rule consequent.

Instead of devising an internal API to communicate results, all analysis infor-
mation is passed on to the rewriting engine by annotating the source code with
#pragmas. A pragma captures properties belonging to the code block immediately
following it and the properties range from expression pureness to read/write depen-
dencies in arrays. Figure 6 shows four pieces of code that read and write on arrays
with an offset w.r.t. the loop index as expressed by the annotations. For example,
Fig. 6b writes in c[] in positions i+0 and i-1, with i being the loop index. This
is expressed with the set {-1, 0}. The core syntax of STML annotations is shown
for reference in Listing 1, and Table 2 gives a summary overview of higher-level
annotations. A more thorough explanation of their semantics is to be found in [20].

It is often the case that automatic analyzers cannot infer all the information
necessary to decide the soundness of the application of some rules. In that case,
we rely on the programmer to annotate the code by hand using pragmas. That is
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join_assignments {
pattern: {

cstmts(s1);
cexpr(v) = cexpr(e1);
cstmts(s2);
cexpr(v) = cexpr(e2);
cstmts(s3);

}
condition: {

no_write(cstmts(s2), {cexpr(v), cexpr(e1)});
no_read(cstmts(s2), {cexpr(v)});
pure(cexpr(e1));
pure(cexpr(v));

}
generate: {

cstmts(s1);
cstmts(s2);
cexpr(v) = subs(cexpr(e2), cexpr(v), cexpr(e1));
cstmts(s3);

}
}

Fig. 5 STML rule: assignment propagation (steps 2–3 of Fig. 1)

#pragma stml writes c in {0}
for (i = 0; i < N; i++)

c[i] = i*2;

(a)

#pragma stml writes c in {-1,0}
for (i = 1; i < N; i++){

c[i-1] = i;
c[i] = c[i-1] * 2;}

(b)

#pragma stml reads c in {0}
for (i = 0; i < N; i++)

a += c[i];

(c)

#pragma stml reads c in {-1,0,+1}
for (i = 1; i < N - 1; i++)

a += c[i-1]+c[i+1]-2*c[i];

(d)

Fig. 6 Code with STML annotations

one reason to use them as interface to communicate information to the rewriting
engine: information becomes available in a uniform format regardless of its origin.
If the annotations automatically inferred by external tools contradict those provided
by the user, the properties provided by the user are preferred to those deduced from
external tools, but a warning is issued.

3.3 High-Level Annotations

STML annotations can capture very detailed information regarding code properties
and programmers can fill in the gaps when automatic analysis is not enough. How-
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Listing 1 BNF grammar core for STML

<code_prop_list> ::= "#pragma stml" <code_prop> |
"#pragma stml" <code_prop> <code_prop_list>

<code_prop> ::= <loop_prop> | <exp_prop> <exp> |
[<op>] <op_prop> <op> |
"write("<exp>") =" <location_list> |
"same_length" <exp> <exp> | "output("<exp>")" |
<mem_access> <exp> ["in" <offset_list>]

<loop_prop> ::= "iteration_independent" |
"iteration_space" <parameter> <parameter>

<exp_prop> ::= "appears" | "pure" | "is_identity"
<op_prop> ::= "commutative" | "associative" |

"distributes_over"
<mem_access> ::= "writes" | "reads" | "rw"

Table 2 Intuitive meaning of STML annotations

write(exp) = loc expression exp writes in location loc

writes exp the block below write in a location identified
by exp

writes exp in offsets the block below write in the set of locations
identified by array exp with offsets w.r.t. a
loop index

iteration_space exp1 ex2 the index of the annotated loop ranges from
exp1 to exp2

iteration_independent loop iterations are independent from each other

same_length a1 a2 arrays a1 and a2 have the same length

input exp exp is to be seen as an input of the
following code block

output exp exp is to be seen as an output of the
following code block

appears exp exp appears in the block below

pure exp exp does not update any variable

is_identity exp exp is an identity element

commutative op op is commutative

associative op op is associative

op1 distributes_over op2 self-explanatory

ever, the type of information necessary is not what a programmer has naturally in
mind, and the amount of annotations necessary may exceed what can be considered
as an acceptable effort. Therefore, we also accept a second level of annotations
that were devised as part of the POLCA project.3 They have, intuitively, a more

3http://www.polca-project.eu/.

http://www.polca-project.eu/
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float c[N], v[N], a, b;

#pragma polca map BODY1 v c
for(int i=0;i<N;i++)
#pragma polca def BODY1
#pragma polca input v[i]
#pragma polca output c[i]

c[i] = a*v[i];

#pragma polca zipWith BODY2 v c c
for(int i=0;i<N;i++)
#pragma polca def BODY2
#pragma polca input v[i]
#pragma polca input c[i]
#pragma polca output c[i]

c[i] += b*v[i];

Fig. 7 Annotations for the code in Fig. 1

float c[N], v[N], a, b;

#pragma polca map BODY1 v c
#pragma stml reads v in {0}
#pragma stml writes c in {0}
#pragma stml same_length v c
#pragma stml pure BODY1
#pragma stml iteration_space 0 length(v)
#pragma stml iteration_independent
for(int i = 0; i < N; i++)
#pragma polca def BODY1
#pragma polca input v[i]
#pragma polca output c[i]

c[i] = a*v[i];

#pragma polca zipWith BODY2 v c c
#pragma stml reads v in {0}
#pragma stml reads c in {0}
#pragma stml writes c in {0}
#pragma stml same_length v c
#pragma stml pure BODY2
#pragma stml iteration_space 0 length(v)
#pragma stml iteration_independent
for(int i = 0; i < N; i++)
#pragma polca def BODY2
#pragma polca input v[i]
#pragma polca input c[i]
#pragma polca output c[i]

c[i] += b*v[i];

Fig. 8 Translation of high-level annotations in Fig. 7 into STML

algorithmic appearance (they are actually inspired by functional programming [10])
and capture simultaneously algorithm skeletons and low-level properties.

For instance, for loops performing a mapping between an input and an output
array can be annotated with a map pragma (see one example in Fig. 7, left). The
scheme for a map annotation is

#pragma polca map Func Input Output

where Func stands for the name of a block of code and Input and Output
are names of array variables. The map annotation in Fig. 7 indicates that the loop
traverses the input array v and applies the function computed by BODY1 element-
wise to v giving as result the (output) array c. Besides this algorithmic view, the
annotation also implies several properties of the code: (a) BODY1 behaves as if it
were side effect-free (it may read and write from/to other variables not declared
as parameters, but it should behave as if these variables did not implement a state
for BODY1), (b) v and c are arrays of the same size, (c) every element c[i] is
computed by applying BODY1 to v[i], (d) the applications of BODY1 do not
assume any particular order: they can go from v[0] upwards to v[N-1], in the
opposite direction, or in any other order.

These properties have a counterpart in STML and are the kind of conditions that
the transformation engine checks: it reads the high-level pragmas and transforms
them into STML for internal use. As an example, Fig. 8 shows the translation of
the code in Fig. 7 into STML. The difference between them supports our claim that
high-level annotations make annotating the program easier and can convey a large
amount of relevant information.
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3.4 Implementation Notes

The transformation engine is subdivided into two subcomponents, illustrated in
Fig. 9. The rule-driven code transformation stage proper changes the structure
of the code until it has the patterns appropriate for the destination architecture
and produces what we call ready code. Note that this transformation stage can
additionally be used to other purposes, such as sophisticated code refactoring.
A second code translation stage converts this code into the input language for a
compiler for the destination architecture. This last translation stage is in many cases
straightforward as it only introduces the “idioms” necessary for the architecture
(e.g., for OpenMP), performs a syntactical translation (e.g., for OpenCL) or mixes
both (e.g. for ROCCC [8]), but some targets (e.g., MaxJ [15]) are admittedly more
involved. The particular target architecture is specified with an annotation, which is
also used to decide what transformations should be applied.

The transformation phase is a key part of the tool. In order to be able to
experiment and prototype as easily as possible, (including the STML definition,
code generation, and the search/rule selection procedures), we needed a flexible
and expressive implementation platform. We considered using the infrastructure
provided by existing open source C compilers. Among these, the CLang / LLVM

GPGPU (OpenCL)
Translated code

OpenMP

MPI

FPGA (MaxJ, POROTO)

DSP (FlexaWare)

Ready code

Initial
code

Transformation Translation

Engine written in Haskell

Rule
library
(STML)

.hs

Rule library (Haskell)

Rule execution(s)

Fig. 9 Architecture of the transformation tool
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libraries/APIs have probably the best design. However, since their goal is compi-
lation rather than source-to-source transformation, we found the available interface
neither easy to use nor effective in many situations. Moreover, existing documen-
tation warns about its instability. Additionally, code transformation routines had to
be coded in C++, which made them verbose and full of low-level details, contrary
to the flexibility we needed. Compiling rules to C++ was an option, but the gap
between the rules and the API was quite large, pointing to a cumbersome translation
stage that would require considerable maintenance as the rule language evolved.
Moreover, the whole CLang project needed recompilation after every rule update.
That would have made project development and testing very slow, and adding user-
defined rules complicated.

We decided therefore to use a declarative language and we implemented the
transformation engine in Haskell. Parsing the input code and the rules is done by
means of the Language.C library [6] that returns the AST as a data structure
that is easy to manipulate. In particular, we used the Haskell facilities to deal with
generic data structures through the Scrap Your Boilerplate (SYB) library [11]. This
allows us to easily extract information from the AST or modify it with a generic
traversal of the whole structure.

The rules are written in a subset of C and are parsed using Language.C. They
are compiled into Haskell code (contained in the file Rules.hs—see Fig. 9) that
performs the traversal and (when applicable) the transformation of the AST. This
module is loaded with the rest of the tool, therefore avoiding the extra overhead of
interpreting the rules.

Rule compilation divides rules into two classes: those that operate on expressions
and those that can, in addition, manipulate sequences of statements. In the latter
case, sequences of statements of unknown length need to be considered: for
example, s1, s2, and s3 in Fig. 5. In general, the rule has to try several possibilities
to determine if there is a match that meets the rule conditions. Haskell code that
explicitly performs an AST traversal has to be generated. Expressions, on the other
hand, are syntactically bound and the translation of the rule is much easier.

4 Rule Selection

In most cases, several (often many) rules can be safely applied at multiple code
points in every step of the rewriting process. Deciding which rule has to be fired
should be ultimately decided based on whether it eventually increases performance.
We currently provide two rule selection mechanisms: a human interface and a API
to communicate with external tools.

The human interface allows making interactive transformations possible. The
user is presented with the rules that can be applied at some point and, after selecting
a rule, the code before and after applying it. Auxiliary programs, such asMeld,4 can

4http://meldmerge.org/.

http://meldmerge.org/
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Fig. 10 Functions provided by the transformation tool

Fig. 11 Functions provided by the oracle

Fig. 12 Interaction between the transformation and the oracle interface

be used to highlight the differences. This is useful to refine/debug rules or to perform
general-purpose refactoring. However, in our experience, manual rule selection is
not scalable when working in adapting code to a given platforms, and using it is not
feasible even for medium-sized programs. Therefore, mechanizing this process as
much as possible is a must and we designed a general interface to connect external
components. Regardless of how such an external component works, from the point
of view of the transformation engine it is an oracle that, given some code and a set
of applicable rules, returns which rule should be applied.

The interface of the transformation tool (Fig. 10) is composed by functions
AppRules and Trans. The former determines the possible transformations applicable
to a given input code Code and returns a set of tuples containing each a rule name
and the position (e.g., the identifier of an AST node) where the rule can be applied.
Function Trans applies rule Rule to code CodeI at position Pos and returns the
transformed code CodeO.

The API from the external tool (Fig. 11) includes operations to decide which rule
has to be applied and whether the search should stop. Function SelectRule receives
a set of safe possibilities, each of them composed of a code fragment and a set of
rules that can be applied to it, and returns one of the input code fragments and the
rule that should be applied to it. Function IsFinal decides whether a given code can
be considered ready for translation or not.

In Fig. 12, function NewCode sketches how the interaction between the transfor-
mation engine and the external oracle takes place. In a nutshell,NewCode is invoked
with code to be transformed and generates transformed code which is, in turn,
iteratively passed to NewCode until a termination condition is fulfilled (i.e., IsFinal
evaluates to true), and the generated code is then final. In more detail, NewCode
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receives input code in the parameter CodeI and a set of (candidate) transformation
rules fRuleig and returns: (a) one piece of transformed code (CodeO) and (b) one
rule (RuleO). When the transformation is not finished,NewCode is called again with
the transformed code CodeO and with the singleton set of rules fRuleOg. Therefore,
when NewCode applies a transformation, the oracle decides which rule should be
applied next to the just-generated transformed code.

This approach makes it unnecessary for the external oracle to consider code
positions where a transformation can be applied, since that choice is implicit in
the selection of a candidate code between all possible code versions obtained using
a single input rule. Furthermore, by selecting the next rule to be applied, it takes
the control of the next step of the transformation. The key here is the function
SelectRule: given inputs Codei and fRulejg, SelectRule selects a resulting code
between all the codes that can be generated from Codei using Rulej. The size of
the set received by function SelectRule corresponds to the total number of positions
where Rulej can be applied. In this way, SelectRule is implicitly selecting a position.

5 Controlling the Transformation Process with Machine
Learning

Several outstanding problems are faced by the rewriting engine. On the one hand,
the space of transformation sequences leading to different code versions is very
large (actually infinite) and the only guide is a non-monotonic fitness function (e.g.,
performance) very costly and cumbersome to evaluate. On the other hand, deciding
when a sequence finishes is difficult to check: the final state is reached when the
most efficient possible code has been generated.

Selecting at each step a rule that improves more some metric is not sound: code
performance along good transformation sequences evolves non-monotonically.5

This non-monotonicity can make the search be trapped in local minima. In addition,
and as another face of non-monotonicity, the performance of ready code is not
correlated with that of the code translated for the final architecture, so ready code
cannot be used to make reliable predictions of final performance. Exploring a
bounded neighborhood is not a satisfactory solution, either, since a large boundary
would have efficiency problems and a small boundary would not avoid the local
minima problem.

Therefore, we need a mechanism that can make local decisions taking into
account global strategies—i.e., a procedure able to select a rule under the knowledge
that it is part of a larger sequence that will eventually improve code performance for
a given platform. Our approach uses classification trees to decide when to finish a

5Not only in theory: in our experience, it is often necessary to apply transformations that
temporarily reduce performance because they enable further transformations.
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transformation sequence and reinforcement learning to select which transformation
rule has to be applied at every moment. We will describe our approaches in the next
sections.

5.1 Mapping Code to Abstractions

Machine learning operates on descriptions of the problem domain (C code, in our
case). They have to be able to capture the changes performed by the transformation
rules at the AST level and represent code patterns that match the syntactic/semantic
restrictions of target compiler/programming models in order to decide when a
transformation sequence can finish. For these reasons, the abstraction includes
quantitative descriptions involving features like AST patterns, control flow, data
layout, data dependencies, etc. The current abstraction consists of a vector of
features shown in Table 3 and a short explanation of some of them follows:

• Number of auxiliary array variables: number of auxiliary variables used to
index an array. For Listing 2 its value would be “one”.

• All loops have static limits: it is false iff some for loop in the analyzed code
has a non-static iteration limit. It would be false for Listing 3, since clean or
update could change the data structure.

• Scheduled loop: two nested loops iterate over an array “split in fragments”. This
is deduced from the annotation in Listing 4.

• Shifted writes in array: number of loops where some (but not all) writes to
arrays have a positive offset w.r.t. the iteration variable. It would have a value of
“one” in Listing 5.

Table 3 Features currently used in the learning process

Description Type

Maximum depth among nested for loops N

Number of function calls present in the analyzed code N

Number of array accesses with positive offset in bodies of for loops N

Are there loops with non-structured flow? B

Is any global variable written on? B

Number of if statements N

Has any for loop a non-static iteration limit? B

Number of for loops without dependencies across iterations N

Whether two nested loops iterate over an array split in fragments B

Number of variables used inside a loop and unmodified inside it N

Number of variables modified within a loop N

Number of arrays with two or more dimensions N

How many auxiliary variables are used to index arrays N

Total number of for loops N

Number of for with iteration step different from 1 N
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Listing 2 Aux. variable array index

aux = 0;
for(j=0; j<N; j++) {

w[j] = v[aux];
aux++;

}

Listing 3 Static loop limits

for(j=0;j<N;j++) {
for(i=0;i<size(v);i++)

update(v,i);
clean(v);

}

Listing 4 Loop with schedule pattern

#pragma stml loop_schedule
for(j=0; j<M; j++) {

w[j] = 0;
for(i=0;i<N;i++)

w[j] += v[j*N+i];
}

Listing 5 Array writes shifted

for(i=1;i<N;i+=2) {
v[i] = v[i-1];
v[i+1] = v[i-1]*i;

}

The code abstraction is generated through an analysis tool that parses the AST to
extract the abstraction features, thereby implementing a function

A W Code ! Abstraction

that maps codes to abstractions. In order to simplify communication with the rest
of the machine learning component, that uses Python libraries, the code abstraction
extraction is also implemented in Python using the pycparser6 module. It extracts
features both by analyzing the code and by parsing code annotations. The current
set of features were enough to obtain the results for our current set of use cases
(Sect. 6).

5.2 Deciding Termination with Classification Trees

Classification is the problem of identifying the category to which a new observation
belongs among a set of pre-defined categories. Classification is done by training
using a set of observations for which it is known to which category they belong [14].
Among the existing approaches, we have evaluated classification trees since it can
perform feature selection without complex data preparation.

A classification tree organizes examples according to a set of input features
belonging to finite discrete domains. One of the features is the target variable and
the classification tree aims at inferring its value from the values of the rest of the
features. Each element of the domain of the target variable is called a class.

In a classification tree each non-leaf node is labeled with an input feature and
each leaf node is labeled with a class or a probability distribution over the classes.
A classification tree can be built by splitting the source data set into subsets based

6https://github.com/eliben/pycparser.

https://github.com/eliben/pycparser
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on values of input features and recursively repeating the process on each derived
subset. The recursion finishes when the subset of data in a node has the same value
for the target variable or when splitting no longer improves the predictions. The
source data typically comes in records of the form

.Œx1; x2; x3; : : : ; xk�;Y/

Y is the target variable that the classification tree generalizes in order to be
able to classify new observations. The elements xi are the input features used for
the classification, drawn from those in Table 3. The target variable determines to
what platform(s) the code can be translated. Since a given code (and its associated
abstraction) might be suited for more than one platform, for n platforms we have
2n � 1 classes in the target variable. In our current setup, since we currently support
FPGAs, GPUs, Shared-Memory CPUs, and Distributed-Memory CPUs, we have 15
elements in the domain of Y.

The classes obtained for the target variable define the final states for the reinforce-
ment learning algorithm described next. The classification-based learning described
in this section has been implemented using the Python library Scikit-learn [16]. This
library implements several machine learning algorithms, provides good support and
ample documentation, and is widely used in the scientific community.

5.3 Reinforcement Learning

Reinforcement learning [14] is an area of machine learning whose aim is to decide
how software agents ought to act to maximize some notion of cumulative reward. A
reinforcement learning agent interacts with its environment in discrete time steps.
At time t, the agent receives an observation ot that typically includes a reward rt. It
then chooses an action at that is sent to the environment which changes from state st
to state stC1 providing the reward rt associated with the transition .st; at; stC1/. The
goal of a reinforcement learning agent is to collect as much reward as possible.

RL seems well suited to represent the process of a programmer or a compiler:
iteratively improving an initial program in discrete steps. Actions correspond to code
changes (caused in our case by the application of transformation rules) and states
correspond to code versions. Code can in principle be evaluated after every change
according to properties such as execution time, memory consumption speedup
factor, etc. The result of these evaluations can be translated into rewards and
penalties that feed the learning procedure.

The final result of the learning process of the agent is a state-action table Q
(Fig. 15) that contains, for each combination .s; a/ of states and actions, the expected
profit to be obtained from applying action a to state s. This table is initially filled in
with a default value and is iteratively updated following a learning process that we
briefly describe below.
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Reinforcement learning uses a set of predetermined transformation sequences
that are assumed to be models to learn from. Each sequence S is composed of a set
of states S D s0; s1; : : : ; sl and the actions that transform one state into the next one.
The final state of each transformation sequence has a different reward related to the
performance of corresponding code. The training phase of reinforcement learning
consists of an iterative, stochastic process where a state s from the training sequences
is randomly selected and a learning episode is started by selecting the action a
with the highest value in Q for that s. The learning process moves to a new state
s0 according to the transition .s; a; s0/ and the process is repeated from state s0 until
a final state is reached or a given number of steps is performed. When the episode
terminates, the values in Q corresponding to the states and actions of the visited
sequence are updated according to the formula in Fig. 13, where Qinit.st; at/ is the
initial value of Q for state st and action at (resp. Q.st; at/). Note that st (resp. at) is
the t-th state in the temporal ordering of states in the sequence used to learn.

The final states in Fig. 13 are defined based on the classification described in
Sect. 5.2. Two parameters appear in Fig. 13: the learning rate ˛; 0 < ˛ � 1, and the
discount factor �; 0 < � � 1. The learning rate determines to what extent the newly
acquired information will override the old information. A factor of 0 will make
the agent not to learn anything while a factor of 1 would make the agent consider
only the most recent information. The discount factor determines the importance of
future rewards, and so it implements delayed rewards. A factor of 0 will make the
agent opportunistic by considering only current rewards and a factor close to 1 will
make it strive for long-term rewards. If the discount factor reaches or exceeds 1, the
learning process may diverge [14].

Code abstractions and transformation rules are mapped to states and actions,
respectively, to index the state-action table, using functions SM and AM (Fig. 14).
Using the mapping of abstractions and rules to states and actions, the state-action
table can also be modeled as a function Q ranging over code and rules (Fig. 14).
The rule selection strategy of the transformation toolchain can then be modeled
with function RS that takes as input a code c and selects the transformation rule r
associated to action AM.r/ that maximizes the value provided by Q for the state
SM.A.c// associated to input code c.

Fig. 13 Update of reinforcement learning matrix

Fig. 14 RL function definitions
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Fig. 15 State-Action table for code, code abstraction, and rules

The operator argmax in function RS returns, by definition, a set that can be empty
or non-singleton. However, in our problem, parameters ˛ and � , as well as the
reward values rtC1, can be tuned to ensure that a single rule is returned, thus avoiding
a non-deterministic RS function. The workflow is then as follows (Fig. 15): for a
concrete code ck we find its abstraction Ci D A.ck/. Let us assume i D 0. From the
row i we obtain the column j with the highest value qi;j in matrix Q (in our example,
q0;1, in blue and boldface). Column j corresponds to rule rj, which is expected to give
the next step in the most promising sequence when applied to a code state whose
abstraction is Ci (in our case it would be r1). Rule rj would be applied to ck to give
cl. If cl corresponds to a final state, the procedure finishes. Otherwise, we repeat the
procedure taking cl as input and finding again a rule to transform cl.

We have implemented the reinforcement learning component using the Python
library PyBrain [18]. This library adopts a modular structure separating in classes
the different concepts present in reinforcement learning, such as the environment,
the observations and rewards, the actions, etc. This modularity allowed us to extend
the different classes and ease their adaptation to our problem. The PyBrain library
also provides flexibility to configure the different parameters of the reinforcement
learning algorithm.
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5.4 A Simple Example

We will use a 2D convolution kernel (Listing 6) to show the process of learning
a state-action table from a transformation sequence. This kernel can already be
executed in parallel by adding OpenMP pragmas. However, adapting it to target
platforms like GPUs or FPGAs requires a different set of transformations. For
example, by joining the two outer loops, to obtain a linear iteration space or
transforming the data layout of 2D arrays into 1D arrays, we obtain a sequential
code easier to map onto the two platforms mentioned before.

We will use five states (Listings 6–10) and two transformation rules to showcase
how these transformations can be executed. The first rule (R0) transforms a non-1D
array into a 1D array and the second rule (R1) collapses two nested for loops into
a single loop. Color codes are as in Fig. 1.

Listing 6 Initial code

//[3,0,0,0,0,0,1,0,0,1,1,3,2,4,0]
for (r = 0; r < N - K + 1; r++)
for (c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
sum += img_in[r+i][c+j] * kernel[i][j];

img_out[r+dead_rows][c+dead_cols] = (sum /
normal_factor);

}

Listing 7 Transformation step 1

// [3,0,0,0,0,0,1,0,0,1,1,2,2,4,0]
for (r = 0; r < N - K + 1; r++)
for (c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
sum +=
img_in[(r+i)*(N-K+1)+(c+j)]

* kernel[i][j];
img_out[r+dead_rows][c+dead_cols]

= (sum / normal_factor);
}

Listing 8 Transformation step 2

// [3,0,0,0,0,0,1,0,0,1,1,1,2,4,0]
for (r = 0; r < N - K + 1; r++)
for (c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
sum +=
img_in[(r+i)*(N-K+1)+(c+j)]

* kernel[i*K+j];
img_out[r+dead_rows][c+dead_cols]

= (sum / normal_factor);
}
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Listing 9 Transformation step 3

// [3,0,0,0,0,0,1,0,0,1,1,0,2,4,0]
for(r = 0; r < N - K + 1; r++)
for(c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
sum +=
img_in[(r+i)*(N-K+1)+(c+j)]

* kernel[i*K+j];
img_out[(r+dead_rows)*(N-K+1) +

(c+dead_cols)] =

(sum / normal_factor);
}

Listing 10 Transformation step 4

// [2,0,0,0,0,0,1,1,0,1,1,0,2,3,0]
for(z=0; z<(N-K+1)*(N-K+1); z++) {
int r = (z / (N - K + 1));
int c = (z % (N - K + 1));
sum = 0;
for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
sum +=
img_in[(r+i)*(N-K+1)+(c+j)]

* kernel[i*K+j];
img_out[(r+dead_rows)*(N-K+1) +

(c+dead_cols)] =
(sum / normal_factor);

}

AM(R0) AM(R1) RS(Ci)
SM(A(C0)) 17.03718317 16.21544456 R0
SM(A(C1)) 17.25327145 16.80486418 R0
SM(A(C2)) 17.51541052 16.7189079 R0
SM(A(C3)) 16.72942327 17.78007298 R1
SM(A(C4)) 1. 1. -

Fig. 16 Values learned for Q table

Every listing shows, at the beginning, the feature vector marking the feature
component that changed w.r.t. the previous state. In Listings 7 to 9, rule R0 is
applied to Listing 6 to transform 2-D arrays img_in, kernel, and img_out (in
this order) into 1-D arrays. Listing 10 shows the result of applying rule R1, which
collapses the two outermost loops into one for loop keeping an iteration space with
the same number of iterations.

Figure 16 shows a table with the final state-action table Q for the transformation
sequence described before, obtained as the result of the learning process described
before. The table has a column for each applied rule and a row for each state
corresponding to the code versions in the learning sequence. The values in bluemark
the learned sequence (the highest value in each row), composed of three applications
of rule R0 and one application of rule R1. These values decrease from the state
SM.A.C3// down to the initial state SM.A.C0//. This decay behavior is caused by
the discount factor � . The values in Q for the final states are not updated by the
recursive expression in Fig. 13 and therefore the state SM.A.C4// keeps its initial
value.

We have seen the transformations applied to C code. However, since machine
learning methods work on program abstractions, the approach is very generic and
suitable for other imperative languages (e.g., FORTRAN). Applying our approach
to other languages would require changes to accommodate for language-specific
syntactic patterns. Nevertheless, the abstraction features described in Sect. 5.1
capture common aspects like control flow, data layout, data dependencies, etc. and
can therefore be applied to other imperative languages with little effort.
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6 Results

We will evaluate our proposal on a set of image processing-related benchmarks.
We will first show the non-monotonic behavior of non-functional properties for
good transformation sequences and, second, we will evaluate the effectiveness of
reinforcement learning to learn from these non-monotonic sequences and apply the
learned knowledge.

We will illustrate the non-monotonic behavior of performance characteristics
with four transformation sequences applied to code for the discrete cosine transform.
These four sequences finish by producing C code than can be straightforwardly
translated into OpenCL. We have measured the average execution time of 30 runs
for each intermediate state of each sequence and represented them in Fig. 17, where
the non-monotonic behavior is clear.

Next, we translated into OpenCL the code corresponding to the final states in
Fig. 17 and we compared its performance against the original C code (Fig. 18).
The fastest OpenCL version corresponds to sequence 4; however, Fig. 17 reveals
that the ready code for sequence 4 was actually the second slowest one on a
CPU. In fact, comparing Figs. 17 and 18, there does not seem to be any clear
correlation between the execution time of the ready code and the performance of
the corresponding OpenCL version. We hypothesize that the same would happen to
other non-functional properties. Based on these results we conclude that an effective
method to automatically generate high-performance code must discover (and learn)
uncorrelated relations between code behavior on CPUs and on target platforms. That
is one of the reasons to base our approach on reinforcement learning, since it is
driven by final performance measurements rather than on intermediate values.

Fig. 17 Execution times for transformation sequences (on a CPU)
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Fig. 18 Execution times for OpenCL versions (on a GPU)

To evaluate reinforcement learning as a technique to learn and guide our program
transformation component, we have selected a training set of four benchmarks
targeting OpenCL. The training set contains the image compression program
(compress), an image filter that separates an RGB image into different images for
each color channel (rgbFilter), an image edge detection routine using a Sobel filter
(edgeDetect), and code for image segmentation given a threshold value (threshold).

Once the training set is defined, the reinforcement learning process requires
tuning the learning rate (˛) and the discount factor (� ). We experimentally adjusted
them to values leading to transformation sequences providing the fastest OpenCL
versions (with ˛ D 0:5 and � D 0:6). The reward values were chosen to reinforce
sequences leading to code with better performance. In our case we gave them a
reward 100 times bigger than that of the other sequences.

After training, three different applications were used as prediction set; these
were mechanically transformed according to the previously learned sequences and
finally translated into OpenCL. The prediction set shares code patterns with the
training set; this is aligned with the idea that transformation rules can be tailored
to the application domain. Independently, OpenCL versions of the prediction set
were manually written to compare automatically- and manually-generated code.
Figure 19 shows the results: the automatically generated code provides speedup
factors comparable to the manually coded versions. Although this preliminary
evaluation is based on a small sample, it shows that our approach is promising.
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Fig. 19 Speedups for training and prediction sets

7 Conclusions and Future Work

We have presented a transformation toolchain that uses guarded rewriting rules
and semantic information contained in annotations (which, together, make STML)
in the source code to adapt initial code to different platforms. An engine that
interprets and executes these rules plus a machine learning-based module that
decides which rules have to be executed have been implemented. A preliminary
evaluation with representative small to mid-sized examples suggests that this is a
promising technique that can generate code with good performance results—at least
on a par with what a seasoned human programmer can write.

As part of the plans for the future, we seek to improve STML and enhance and
adapt Cetus to obtain more advanced / specific properties. At the same time, we are
evaluating other analysis tools that can hopefully infer more precise information and
for a wider range of code. On the one hand, we are exploring tools like PLuTo [3],
PET [21], and the Clang / LLVM analyzers to dependency information in array-
based loops. On the other hand, we are studying tools such as VeriFast [7] that can
reason on dynamically-allocated mutable structures.

We plan to use additional benchmarks to train and evaluate the machine learning
tool; that will likely need to enrich the feature vector used to generate program
abstractions. We also plan to study the use of multi-objective rewards combining
different properties. This would make it possible to define transformation strategies
that, for example, could generate the code that consumes the least amount of energy
among those with the shortest execution time. Finally, we want to explore the use
of different learning rates for different states/transformation sequences in order to
converge faster towards transformed codes.
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