
Trace-Based Detection of Lock Contention
in MPI One-Sided Communication

Marc-André Hermanns, Markus Geimer, Bernd Mohr, and Felix Wolf

Abstract Performance analysis is an essential part of the development process
of HPC applications. Thus, developers need adequate tools to evaluate design
and implementation decisions to effectively develop efficient parallel applications.
Therefore, it is crucial that tools provide an as complete support as possible for
the available language and library features to ensure that design decisions are not
negatively influenced by the level of available tool support. The message passing
interface (MPI) supports three basic communication paradigms: point-to-point,
collective, and one-sided. Each of these targets and excels at a specific application
scenario. While current performance tools support the first two quite well, one-sided
communication is often neglected. In our earlier work, we were able to reduce
this gap by showing how wait states in MPI one-sided communication using
active-target synchronization can be detected at large scale using our trace-based
message replay technique. Further extending our work on the detection of progress-
related wait states in ARMCI, this paper presents an improved infrastructure that
is capable of not only detecting progress-related wait states, but also wait states
due to lock contention in MPI passive-target synchronization. We present an event-
based definition of lock contention, the trace-based algorithm to detect it, as well
as initial results with a micro-benchmark and an application kernel scaling up to
65,536 processes.

M.-A. Hermanns (�) • B. Mohr
JARA-HPC, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
e-mail: m.a.hermanns@fz-juelich.de; b.mohr@fz-juelich.de

M. Geimer
Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
e-mail: m.geimer@fz-juelich.de

F. Wolf
Parallel Programming, TU Darmstadt, Darmstadt, Germany
e-mail: wolf@cs.tu-darmstadt.de

© Springer International Publishing AG 2017
C. Niethammer et al. (eds.), Tools for High Performance Computing 2016,
DOI 10.1007/978-3-319-56702-0_6

97

mailto:m.a.hermanns@fz-juelich.de
mailto:b.mohr@fz-juelich.de
mailto:m.geimer@fz-juelich.de
mailto:wolf@cs.tu-darmstadt.de

98 M.-A. Hermanns et al.

1 Introduction

The Message Passing Interface (MPI) standard [11] supports three communication
paradigms: point-to-point, collective, and one-sided communication. Together, they
span the space of possible message-passing scenarios using MPI, each supporting
distinct communication patterns. Although the functionality of either paradigmmay
be implemented using one of the others, the separate interfaces enable internal
optimizations for a specific communication scenario. While point-to-point and
collective communication are well supported by current performance analysis tools,
one-sided communication is in comparison still lacking equal support. We believe
that the level of available tool support for a language feature or library has a direct
influence on the level of adoption by users. Considering that MPI 3.0 expanded its
support for MPI one-sided communication, especially in the area of passive-target
synchronization, it is therefore important to close this support gap, and open these
new features to new users.

The Scalasca performance analysis toolset [5] provides a trace-based parallel
performance analyzer, which automatically identifies wait states in communication
and synchronization scenarios. Such wait states are situations in the parallel applica-
tion execution where one process or thread waits for an activity on another process
or thread to begin or end, before it can continue its own activities. A classic example
of such a wait state is the Late Sender pattern, where a receiving process is waiting
in a blocking receive operation for the sender to start the data transfer. To enable
an efficient handling of large event traces, Scalasca uses a post-mortem parallel
message replay technique, where performance relevant information is passed along
the recorded communication paths of the measured application. We have shown in
our earlier work how this replay technique can also be used to detect wait states
in one-sided communication in the case of MPI active-target synchronization [6].
Passive-target synchronization, however, poses significant challenges to the replay
technique. Information on communication and synchronization paths are largely
implicit, thus the original replay does not have sufficient information to identify such
wait states. For Wait for Progress wait states, we have shown—using the example
of the one-sided communication interface ARMCI [7]—how the limitations of the
original replay can be overcome by extending the communication infrastructure
with an active-message-like communication interface, capable of sending asyn-
chronous messages between arbitrary processes.

Progress-relatedwait states, however, are not the only wait states in passive-target
synchronization. MPI provides passive-target synchronization using the concept
of locks. As with all synchronization functions, using locks to ensure mutual
exclusion during updates to remote memory bears the potential for wait states on
processes with conflicting accesses. The detection of such wait states in MPI

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 99

passive-target synchronization, however, required a significant redesign of our initial
implementation. The contributions of this work include

1. the extension and generalization of the communication infrastructure introduced
in our earlier work [7], and

2. the detection of the Lock Contention wait state in lock-based synchronization.

The remainder of this paper is organized as follows. Section 2 discusses related
work regarding the detection of lock contention in message-passing systems.
Sections 3 and 4 first define the Lock Contention wait state and then discuss our
implementation to detect it in MPI passive-target synchronization. Section 5 shows
early results of measurements with two benchmark applications to demonstrate
scalability and applicability in two common scenarios. Finally, Sect. 6 summarizes
the contributions of this paper and provides an outlook on further optimizations of
the detection as well as future integration of detected information in other parts of
Scalasca’s automatic analysis.

2 Related Work

Available performance analysis tools investigating lock contention, such as Intel
VTune [8] or HPCToolkit [1], commonly focus on multi-threading scenarios. Locks
in multi-threaded systems are similar in concept to locks in one-sided commu-
nication, however, their analysis can draw from different sources of information,
such as accessing information already shared on the process-level. In this context,
Tallent et al. even investigate root causes of shared-memory lock contention using
blame shifting [13].

Tallent et al. also investigated the root causes of network contention in one-sided
communication [14]. They focus on the message delivery and compare the actual
time with the expected time, estimated through a model based on network and mes-
sage parameters, and specifically exclude the investigation of synchronization time.
Furthermore, they accurately estimate the total delay through network contention,
yet, do not identify other processes or threads that are involved in the contention
instance.

Zounmevo et al. describe the inefficiency pattern Late Unlock [15], which is
a sub-pattern to the Lock Contention pattern described in this work, where lock
contention occurs due to processes holding on to a lock longer than necessary. It is
similar in nature to the Late Complete wait state defined in our earlier work on
one-sided communication wait-state patterns [10]. The existence of such wait states
in the use of MPI one-sided communication forms the motivation for the actual
focus of their paper, the introduction of non-blocking epochs to prevent this kind
of wait state. However, how to detect or quantify lock contention wait states is not
discussed. With the infrastructure presented in this paper, the detection of their Late
Unlock wait state pattern is a straight-forward part of our future work.

100 M.-A. Hermanns et al.

In our earlier work [7], we have introduced a scalable framework to identify wait
states in passive-target synchronization in the Aggregate Remote Memory Copy
Interface (ARMCI) [12]. The presented prototype used ARMCI one-sided commu-
nication with a collectively allocated fixed-size buffer per process to exchange data.
While being suited for the fixed-size message data needed to identify progress-
related wait states, the analysis of lock contention in MPI-based applications
cannot guarantee a fixed upper bound to the buffer size, as it needs the full epoch
information (including a dynamic number of RMA operations) to identify the point
of lock acquisition within the lock epoch.

3 Lock Contention

Remote memory accesses need to use synchronization mechanisms to ensure
consistency in the case of concurrent accesses. MPI defines two classes of syn-
chronization schemes based on the explicit involvement of the target process:
active-target and passive-target. Synchronization using the active-target class has
both processes, the target and the origin of the one-sided communication operation,
perform synchronization calls. In our earlier work [6], we have shown how
wait states occurring in this synchronization class can be detected efficiently.
Such synchronization can be employed effectively when the target process knows
that its memory is being accessed during a specific period of time. In contrast,
synchronization using the passive-target class has only the origin process actively
involved in the synchronization, leaving the target process passive. Synchronization
of this kind uses the concept of shared and exclusive locks to ensure mutual
exclusion where necessary when accessing an MPI memory window. In lock-based
synchronization schemes, critical code sections need to be guarded by calls to
acquire and release a lock at the beginning and end of the code section, respectively.
However, only the process performing the memory access (origin) has to call the
synchronization explicitly. Target-side synchronization is performed implicitly by
the runtime system. With exclusive locks, only a single process can hold a lock at
any single moment; with shared locks, multiple origin processes can hold a lock
concurrently. As shared locks only block other exclusive locks until their release
but allow concurrent shared locks to be acquired, they present less chance of wait
states and should be preferred in scenarios where the target memory is not modified.

The acquisition of any type of lock may naturally lead to a wait state, depending
on the current state of the lock. To allow implementations to minimize such wait
states, the MPI standard does not mandate the call to MPI_Win_lock to block
until the lock is acquired for a window on a remote process, as long as the
implementation also ensures that any accesses to the correspondingwindow are also
postponed until the lock is finally acquired. Only the call to MPI_Win_unlock
ensures that all pending accesses are completed once the call returns. The acquisi-
tion of the lock in MPI passive-target synchronization can therefore occur at any
point in time between entering the MPI_Win_lock call and leaving the call to

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 101

MPI_Win_unlock. Local accesses to a given window also have to be guarded by
the same synchronization calls. Unlike remote accesses, local stores to the window
cannot be postponed by the runtime, as those updates are not performed through
MPI functions. Therefore, the call to MPI_Win_lock has to block until the lock
can actually be acquired by the process.

A lock is an access token and can be seen as a shared resource itself, with multiple
processes competing for its ownership. The state when a process experiences wait
states or delays due to other processes accessing the same shared resource is called
contention.Wait states in the lock-basedmutual exclusionmechanisms are therefore
a special case of the general resource contention that can also be experienced with
other shared resources, such as file systems or network devices. For their detection,
information about all concurrent accesses needs to be gathered and analyzed.

In general, the Lock Contention wait state occurs when a process requests a lock
of conflicting type to the one that is currently held by another process on the same
resource. It then has to wait for the release of the lock by that process. If a process
holds an exclusive lock for a given resource, no other process can acquire a lock—
shared or exclusive—before the lock is released. If a process holds a shared lock,
other shared locks can be obtained by other processes, while an exclusive lock can
only be obtained again after all shared locks are released. This means that a specific
process (if waiting) is only waiting for a specific process to release a lock, while
multiple processes may be waiting for the same process to release it.

Figure 1 shows the different acquisition scenarios possible in MPI passive-target
synchronization. The MPI prefixes to the respective calls have been omitted for
clarity. The duration of each MPI call is modeled by an enter event (E) and a
leave event (L) with corresponding time stamps. Remote memory access (RMA)
operations as well as locking and unlocking events are modeled by corresponding
event types in the respective function calls, but have been omitted in the figure

time

pr
oc

es
se

s

A

B

C

D

E

Lock Put Unlock

Lock Get Unlock

Lock Get Unlock

Lock Put Unlock

Lock Put Unlock

E L E L E L

E L E L E L

E L E L E L

E L E L E L

E L E L E L

Lock Contention

Lock Contention

Lock Contention

Lock Contention

Fig. 1 Potential locations of wait states due to Lock Contention. When multiple processes access
the same window on the same location, lock access chains build up. In this example, write accesses
are protected by exclusive locks, whereas read accesses are protected by shared locks. In MPI
passive-target synchronization, the moment of lock acquisition may not be known explicitly, but
can only be inferred by checking the time of release of previous lock owners

102 M.-A. Hermanns et al.

for clarity as well. The locking behavior of a specific MPI implementation may
depend on the available networking hardware or runtime parameters and thus may
or may not be the same throughout the execution of the application. As already
noted, similar to the relaxed blocking semantics of MPI general active-target
synchronization, MPI passive-target synchronization only requires the unlock to
guarantee completion of all pending RMA operations to the corresponding memory
window, as long as the mutual exclusion requirements of the requested locking types
are met. In the figure, we assume that all put operations are guarded by exclusive
locks, while the get operations are guarded by shared locks. The target process
is not shown, as it is not explicitly involved in the ordering of the concurrent
accesses.

Process A requests an exclusive lock to the target window. As no other process
is currently holding a lock, it can acquire it without waiting time. For this example,
it is of no further interest which of the calls on process A actually acquired the lock.
Processes B and C request shared locks to the target window, while process A still
holds its exclusive lock. On either process, the lock acquisition and RMA operations
are postponed until the unlock function call, where both processes wait for process
A to release its lock. Process D requests an exclusive lock, while processes B and
C still hold their shared locks. While the lock acquisition is postponed until after
the return of the lock function call, the RMA operation call is blocked until the
lock can be acquired after the last of the two processes (process C) releases its
lock. Finally, process E requests the lock while process D is still holding on to its
lock, and directly waits in the lock acquisition call until the lock is released by
process D. The different scenarios shown in this figure depict all locations in the
passive-target synchronization scenarios where a Lock Contention wait state can
occur.

Generalizing from its potential locations in passive-target synchronization, the
waiting time due to a Lock Contention wait state can formally be defined as the
dependency between two activities on two distinct origin processes.

Definition 1 (Lock Contention) Let ap and aq be the activities of a passive-target
synchronization or remote-memory access operation on origin processes p and q.
Assume that ap cannot complete before the acquisition of the corresponding lock
held by process q. Assume further that q releases the lock at the end of activity aq.

Then, the waiting time ! on process p is defined as the overlapping time of the
two activities between the start of ap and the end of aq:

! D
(
Leave.aq/ � Enter.ap/ ; if Enter.ap/ < Leave.aq/ � Leave.ap/

0 ; otherwise

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 103

4 Wait-State Detection

The detection and quantification of Lock Contention wait states described in
this paper is embedded into the message-replay algorithm of the Scalasca trace-
based performance analysis toolset [5]. Scalasca assumes that wait states occur at
points in the application execution where the execution of a thread or a process
needs to communicate or synchronize with another thread or process, respectively.
The detection of waiting time on either process needs information from all threads
and processes involved. Using the communication and synchronization information
encoded in the event trace, created during a measurement run, Scalasca transfers
the information from one thread or process to another, for the latter to detect and
quantify any waiting time. This approach has been employed successfully in the
past for point-to-point and collective [5] as well as MPI one-sided communication
using active-target synchronization [6]. For passive-target synchronization, two
main challenges exist: (1) communication and synchronization information are only
available in the event trace of the origin process and (2) only partial synchronization
information is available during measurement. To address these challenges, the
original replay infrastructure needed to be extended to allow communication along
implicit communication paths.

4.1 The Active-Message Infrastructure

In our earlier work [7], we have introduced a framework that overcomes the original
shortcoming of Scalasca’s replay method for the case of detecting wait states due
to insufficient target-side progress. While the overall concept as an active-message
framework is also applicable to the detection of Lock Contention wait states, the
information needed to detect which operation actually acquired the lock in MPI
passive-target synchronization added the requirement of arbitrary-sized messages.
This led to a complete re-design of the implementation. The overall requirements
on the messaging infrastructure for the detection of lock contention in MPI passive-
target synchronization are: the support of (1) inter-process communication not
relying on specific target-side event records, (2) communication on paths not
explicitly recorded, (3) asynchronous information exchange to enable runtime
optimizations during event processing, (4) target-side execution of arbitrary tasks
based on the communicated message, and (5) the exchange of messages of arbitrary
size.

Our initial ARMCI prototype already fulfilled the first four requirements,
however, the efficient exchange of arbitrary-sized messages through one-sided com-
munication on collectively allocated fixed-sized memory windows posed a serious
challenge. Furthermore, the initial implementation also used ARMCI constructs to
perform the analysis of the ARMCI events in the trace. Although unproblematic for
the general use case of Scalasca, where the measurement and analysis are performed

104 M.-A. Hermanns et al.

on the same machine, it does add complexity to use cases where the measurement
and analysis are performed on different systems. The Scalasca analyzer, however, is
a parallel application in its own right, independent of the measured application and
is not required to re-use the same communication infrastructure. With the ubiquity
of MPI on HPC platforms, a single implementation to serve the analysis of any one-
sided communication interface, supporting both use cases, would benefit the user.
With this in mind, the re-design of the active-message infrastructure was driven by
the requirement for dynamic message sizes.

Two-sided and collective communication are often used as the data exchange
layer in cooperative algorithms where the receiver receives a specific message.
The receiver decides where the message data is stored and how to process it.
The knowledge of how the data needs to be processed emerges from the context
containing the explicit reception of the data. However, for unexpected messages
on the application layer, the receiver cannot place the messages in the correct
context and therefore does not know how to process them in the application. Any
target-side processing of the data therefore needs to be part of the message. Active
messages encode the context with the message or the message envelope, enabling
target-side execution of specific code after the one-sided transfer succeeded. For
specific message types, a message handler can be registered that will process a
message ad hoc at the receiver. The sender, knowing for which context it provides
data in the message, also sends the appropriate handler selection with the message.
This effectively decouples the message from its receiving context, as the receiver
can provide the appropriate message context by calling the handler selected by the
sender.

To enable this, all processes need to agree on a specific set of message handlers
to be used for communication and how they are encoded. The complexity of
actions that can be encoded into a message largely depends on the communication
interface and framework used. Some interfaces have a rather restricted set of
message handlers that focus on the notification of the data arrival and sending
an acknowledgment of transfer completion back to the sender. Others allow more
complex message handlers, such as remote procedure calls.

Three classes form the cornerstones of Scalasca’s active-message framework:
(1) A runtime class, which defines the interface to message progress; (2) request
classes, which define how data is transferred between processes; and (3) handler
classes, which define packaging of data by the sender, and its processing by the
receiver.

The runtime class is designed as a singleton object for each analysis process.
It is agnostic to the concrete actions that need to be taken to transfer or process
messages and delegates all these actions to other classes. Its interface enables
users to enqueue requests that are then transferred to and executed on the target
process asynchronously. To enable such asynchronous transfer and execution, the
runtime class provides a call to advance communication independently of the
current execution context. This enables the use of a variety of polling-based
progress engines at the target. Scalasca explicitly calls into the runtime as part

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 105

of the event replay mechanism at least once per event. Additionally, it provides
capabilities to continuously advance the communication while waiting at collective
synchronization points.

Request classes define all concrete actions needed to transfer data between pro-
cesses. For each communication interface used by the active-message framework, a
distinct request class needs to be implemented. The current implementation provides
an MPI-based request class, yet, support for further communication interfaces can
easily be achieved by implementing further request classes. Note that theMPI-based
requests can also be used to analyze applications that do not use MPI themselves,
such as ARMCI-only and SHMEM-only applications, as the analysis is performed
post mortem and the analyzer is a parallel application separate from the user
application, potentially executed on a different HPC system. Additional request
classes are therefore only necessary in cases whereMPI is not available or a different
implementation is desirable.

Handler classes define which data is packed at the origin and how it is unpacked
and processed at the receiver. An application using the active-message framework,
such as Scalasca’s parallel analyzer, needs to derive specific handlers for each
distinct task on the receiver side. Each handler provides an interface to pack all
necessary data on the origin and execute data processing on the target.

Figure 2 shows an example of an active-message interaction between an origin
and a target process. The origin initially creates a request that is passed to specific
handler classes adding data to the request buffer. A single request may contain
data from more than one handler (indicated by the opt keyword), enabling request
aggregation. The origin enqueues the requests for sending and continues execution,
while the runtime sends the message to the target as part of the advance()
call. The target uses the same call to check for incoming requests. Upon incoming
requests, the runtime automatically receives and decodes the message, and creates
corresponding handler objects on-the-fly. The handler objects are immediately
executed in packaging order. After all pending requests are processed, the progress
call returns to the user. Using this flexible active-message framework, Scalasca’s
parallel analysis now supports the detection of two distinct wait-state patterns: (1)
the Wait for Progress as presented in [7] and (2) the Lock Contention as described
in more detail in the following section.

4.2 Detecting Lock Contention

To identify lock contention in one-sided communication, the analysis needs to
process the lock acquisition and release times of all locks on a given window. The
time between requesting or acquiring a lock and its release by a process is called a
lock epoch. For one-sided communication interfaces with blocking lock semantics,
such as ARMCI [12] and SHMEM [4], this is directly modeled by the events of the
respective activities. For these interfaces, the only activities of the lock epoch that
need to be evaluated during the analysis are the respective activities for acquiring

106 M.-A. Hermanns et al.

create

createcreate

create

getBuffer()
buffer

pack(req)

create

getBuffer()
buffer

pack(req)

send()
enqueue(req)

probe()

advance()

probe()

advance()

getBuffer()

buffer
create

execute()

create

execute()

probe()

advance()

origin target

ort:AmRuntime

trt:AmRuntimereq:AmRequest

oh1:AmHandlerOne

oh2:AmHandlerTwo
opt

th1:AmHandlerOne

th2:AmHandlerTwo
opt

Fig. 2 Interactions between AmRuntime, AmRequest, and AmHandler classes in Scalasca’s
active-message infrastructure. Calls with solid arrowheads are synchronous and block until task
completion. Calls with line arrowheads are asynchronous and return after initialization; the task
will complete as part of the runtime progress. Fragments marked with opt are optional. The origin
creates a request and passes it to one or more handlers, packing handler-specific data into its buffer.
Once, the origin enqueues the request, the runtime transfers it to the target (not shown). The target
has to probe regularly for incoming requests. Upon an incoming request, the handlers are created
and executed with information from the request message buffer

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 107

and releasing the lock. For one-sided communication interfaces with non-blocking
lock semantics, such as MPI, the lock acquisition time has to be computed during
the contention analysis, as the event data does not directly encode the time of lock
acquisition. For such interfaces, all remote-memory access activities of the lock
epoch need to be available to the analysis process to determine the true time of lock
acquisition. As a lock epoch can comprise an arbitrary number of RMA operations,
the full information needed is of dynamic size.

Lock contention leads to so-called contention chains, where multiple processes
wait for the successful acquisition of the lock, leading to partial access serialization.
Moreover, two or more origin processes may compete for the access to a specific
resource, but do not explicitly know of each other. To identify contention, however,
the individual local information on the processes have to be compared to each
other to (1) identify the order of accesses to the resource and (2) quantify potential
waiting time due to a blocked resource. To enable contention analysis for one-
sided communication interfaces, all origin processes need to gather the required
information at a well-known location. It is important to note that any deterministic
location will work, as long as all origin processes locking the same resource
choose the same location and allow the contention chain to be determined. For
our initial prototype, we chose the target process of a locked window. Further
note that the current heuristic to determine the order of accesses does not have
enough information to detect and correct skew in the timestamps of locking events.
To correct such skew, ordering information would need to be gathered during
measurement, where such information is currently not available. Therefore the
analysis assumes the accuracy of the timestamps to suffice for ordering.

The analysis follows two phases: (1) gather epoch information; and (2) compute
and distribute waiting time information. In the first phase, each origin process caches
the relevant lock epoch data until it processes the lock-release event. Then, it creates
an active-message request, packed with the lock epoch information, and sends it to
the target process. On the target side, the request unpacks the data and stores it for
later retrieval. As the active messages coming in from the individual origin processes
do not generally arrive in the same order the lock was acquired and released by the
application, the target needs to save incoming lock epochs until it reaches a point
where it can safely assume to possess the full information on all lock epochs relevant
for the contention analysis. Such points are reached at each collective or group-
based synchronization point of the window or at collective synchronization points
that synchronize at least all processes of the window’s communicator. At these
points the active-message runtime of Scalasca ensures that all requests are processed
before continuing with the analysis. Independent of the locking semantics, all
one-sided communication interfaces ensure completion of pending events with the
release of the lock. Therefore, the release time of the lock is an indicator for the
actual locking order during the applicationmeasurement. The target therefore stores

108 M.-A. Hermanns et al.

Input: Priority queue EpochQueue of lock epochs ordered by descending lock-release time
Output: Waiting time !p

if NumElements(EpochQueue) � 2 then
currentEpoch dequeue(EpochQueue);
while NotEmpty(EpochQueue) do

previousEpoch dequeue(EpochQueue);
aq GetReleaseActivity(previousEpoch);
ap FindBlockedActivity(currentEpoch, aq);
if Enter(ap) < aq � Leave(ap) then

!p Leave(aq) � Enter(ap);
SendContentionInfoTo(p);

end
currentEpoch previousEpoch;

end
end

Algorithm 1: Compute lock contention

the individual lock epochs provided by the origin processes in a data structure sorted
by the release time of the lock in the respective epoch.

Once the analysis system can assume that all distributed lock epochs have
been collected and inserted into the queue, it can start its contention analysis
as described by Algorithm 1. The pseudo-code given assumes a priority-queue
data structure that sorts by the unlock timestamp of the corresponding epochs.
Furthermore, process p denotes the waiting process, whereas process q denotes the
process that p is waiting for. As the epochs are ordered in reverse-chronological
lock-release order, the last lock epoch in the contention chain is processed first.
The epoch information (currentEpoch) is taken from the queue to initialize the
algorithm. Then, while more epoch information is available in the queue, another
epoch (previousEpoch) is dequeued to compute the waiting time. For the previous
epoch, we identify the activity aq that released the lock, and the waiting activity
ap within the current epoch. This is done by finding overlap with one of the
synchronization or remote-memory access operations within the current epoch
with the lock-release activity of the previous epoch. If an overlapping activity
is found, the waiting time is computed by the difference between the leave
event of aq and the enter event of ap, and the respective information is sent
to the waiting processes p. Then, the algorithm moves on to the next epoch
available in the queue. On process p, the active message handler retrieves the
message and adds the waiting time to the respective call path. The algorithm
finishes when no further epochs are in the queue, which means the head of the
contention chain is reached; the first epoch never suffers from lock contention
itself.

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 109

5 Results

We tested our implementation of the lock contention detection algorithm using
two benchmarks. The first is a verification benchmark that explicitly creates a lock
contention to ensure the analysis works correctly. The second is an SOR benchmark,
which we have used as a scalability test in earlier work, adapted to use MPI passive
target synchronization for the data exchange.

5.1 Micro Benchmark

The lock-contention micro benchmark is used to verify the detection algorithm.
It explicitly creates lock contention wait states in a controlled scenario. Processes
are partitioned into process 0 acting as the target for all RMA operations, and the
rest of the processes, scheduling RMA operations to update the window on the
target process. After an initial barrier synchronization of all processes, all processes
call the function foo() to simulate work with process-individual workloads. The
simulated workload is the lowest on target rank 0 and increases with rank, thus the
processes return from foo() in rank order. As the target has the lowest workload,
it is the first to return from the call to foo() and is guaranteed to lock its local
window before any of the other processes requested the lock. Locks on the local
window are never postponed but block until the lock is successfully acquired, as
a local lock epoch needs to ensure that local loads and stores to the window are
appropriately protected. While the target holds the lock, it executes the function
bar() for 2 s to simulate local updates to the window before releasing the lock
again. The skew in the workload simulated by foo() ensures that the workers
request the lock after it has been acquired by the target rank 0. They form a
contention chain waiting for rank 0 to release the lock. Each process calls foo()
again for a duration of 100�s after its release of the lock. Finally, all processes are
synchronized by another barrier operation.

The skew of the processes after completing the remote memory access leading
to a subsequentWait at Barrier wait state is independent of the initial skew induced
by the calls to foo on the different processes; it only depends on the time needed to
complete the RMA access and to pass the lock ownership to the next process.

The benchmark was executed on two nodes of a Linux Cluster with InfiniBand
network using Open-MPI 1.10.0. Figure 3 shows screenshots of Vampir timeline
views of selected regions of the measurement, as well as the corresponding Cube
report as generated by Scalasca’s trace analyzer. In the timeline views, user
functions are shown in grey and MPI functions are shown in blue. Figure 3a shows
the start of the lock contention, where each process initially calls function foo()
for a rank-dependent duration. The following call to MPI_Win_lock() is too
short for Vampir to place the name of the call in the respective timeline. The same
applies for the RMA operations following the locks on processes 1 and higher.

110 M.-A. Hermanns et al.

Fig. 3 Timeline views and Cube report of the execution of the lock-contention micro benchmark.
(a) Process 0 acquires the lock and executes bar(), while remaining processes request the lock.
(b) Process 0 releases the lock and process 1 completes access; process 2 cannot obtain the
lock due to insufficient target-side progress. (c) Process 0 provides progress in barrier, enabling
remaining processes to complete access. (d) Cube analysis report shows waiting time classified as
Lock contention on all processes but process 2; waiting time on the latter is classified as Wait for
Progress

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 111

Process 0, as the target, obtains an exclusive lock and executes the function bar()
for 2 s. The remaining processes each block in the call to MPI_Win_unlock(),
waiting for the target to release the lock. Figure 3b shows a detailed view of the time
interval in which the target releases its lock on the window and passes the lock to
process 1. Process 1 obtains the lock and performs its RMA operation, releasing the
lock again. Process 2, however, is unable to obtain the lock directly from process
1, as the target (process 0) is busy with the execution of foo() after its release of
the lock. Process 2 can obtain the lock only after process 0 provides progress within
the barrier operation (Fig. 3c). As the barrier spans all processes, process 0 has to
wait for the last process to join and continues to provide progress for all remaining
processes. The call to foo() before the barrier is rank independent and lasts for
100�s.

The Cube performance report shown in Fig. 3d reflects the observed behavior.
The time spent in the Lock Contention wait state is about 2 s for process 1, which
requested the lock right after process 0 and had to wait for the end of the 2 s
execution of bar(). The waiting time on process 2 is not classified as Lock
Contention but as Wait for Progress (not directly shown), as insufficient progress
was the last factor extending the overall waiting time. However, for the remaining
processes, progress was provided and the waiting time is classified as contention-
based. The waiting time on processes 2 and higher is increased by about 100�s
compared to process 1 as further progress was only provided again after the
execution of foo() on the target process.

5.2 SOR

The SOR benchmark is a computational kernel that iteratively solves the Poisson
equation using a red-black successive over-relaxation method, distributing work
on a two-dimensional Cartesian grid. It performs a nearest-neighbor halo exchange
in each iteration. Originally implemented using point-to-point communication, we
adapted the halo exchange to use one-sided communication in different synchro-
nization schemes. After each iteration, a collective reduction is performed to test for
convergence. Problem size and number of processes can easily be configured for a
specific run. For the presented scaling measurements, the benchmarkwas configured
for weak scaling, keeping the load per process constant. To prevent convergence, it
was configured to perform a maximum of 500 iterations with a small error tolerance
of 1 � 10�7, to ensure the same number of iterations for each run. For the different
execution scales, the processes were doubled in alternating dimensions, starting with
a 32 � 16 process grid.

The Scalasca analyzer processes the event trace in different stages. The initial
stage identifies the majority of the wait states, while further stages concentrate on
the computation of higher-level metrics such as root causes and the critical path.

112 M.-A. Hermanns et al.

9 10 11 12 13 14 152 2 2 2 2 2 2 216

0

20

40

processes

an
al
y
si
s
ti
m
e
[s
]

point-to-point one-sided w/locks

Fig. 4 Scaling results for the analysis of the SOR benchmark configured to run with point-to-
point and one-sided communication using lock synchronization, respectively

As these extended analyses are outside the scope of this paper, Fig. 4 only shows
the execution time of the initial stage of the analysis. Measurements were taken
on the IBM Blue Gene/Q system JUQUEEN at the Jülich Supercomputing Centre
of Forschungszentrum Jülich [9]. The two data series are named after the SOR
implementation of the halo exchange measured. The analysis times shown for both
SOR implementations also include the detection and quantification of collective
communication wait states. While the analysis time for each scale is significantly
higher for the analysis of one-sided communication compared to the point-to-
point case, the study still demonstrates a similar scaling behavior in general. This
indicates scale-independent overheads in the replay mechanism. Initial performance
measurements indicate up to 10% of the runtime overhead due to the additional
execution of the progress engine. Most of the overhead is therefore part of the
message transfer itself (i.e., the active-message requests) and the execution of
the handlers. Improved buffer reuse for the active-message requests may lower
memory allocation overheads for the data transfer. For the handler execution, most
handlers need to search the target-side trace for the corresponding event, incurring
an O.log n/ additional execution overhead per handler execution where n is number
of events in the target-side trace, which may prove difficult to reduce. We plan
to further investigate optimization targets to reduce the overall runtime overhead
during the integration of the analysis prototype into the production version of the
Scalasca analyzer, however, the out-of-order nature of the data handling during the
analysis of passive-target synchronization constructs will likely remain more costly
than the in-order processing of point-to-point and active-target synchronization
constructs.

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 113

6 Conclusion and Outlook

In this paper we showcased our extended and generalized infrastructure for detecting
and quantifying waiting time in passive-target one-sided communication constructs,
at the example of lock contention. Using this infrastructure, we were able to
re-construct process synchronization schemes not directly evident from the mea-
surement data, and to demonstrate that waiting time is correctly detected and
classified. The current analysis heuristic evaluates contention and progress-related
wait states and classifies waiting time accordingly. While the implementation
still provides room for optimization, the software prototype showed good scaling
behavior up to 65,536 processes for the analysis of a common computational kernel
using a halo exchange on a two-dimensional Cartesian grid.

The presented analysis prototype is handling MPI-2 one-sided communication.
As part of our future work, we plan to extend the support to the additional
synchronization calls of MPI-3 and beyond. Further optimization of the messaging
infrastructure will be a high priority for the integration into the production version
of the Scalasca analyzer. To provide a better load balancing during the analysis, we
also plan to explore different epoch distribution schemes beyond the current target-
centric approach, such as timeslice-based round robin distribution.

For the identification of the critical path [3] and root causes of wait states [2]
it is critical to identify all wait states in the application. With contention-based
wait states for one-sided communication being detected by the analyzer, we further
plan to integrate their handling into our current critical-path and root-cause analysis.
Furthermore, such an integration can then be used to also cover thread-based locking
mechanisms as provided by POSIX threads or OpenMP.

Acknowledgements This work has been partly funded by the Excellence Initiative of the German
federal and state governments. The authors gratefully acknowledge the computing time granted by
the JARA-HPC Vergabegremium and VSR commission provided on the JARA-HPC Partition part
of the supercomputer JUQUEEN [9] at Forschungszentrum Jülich.

References

1. Adhianto, L., Banerjee, S., Fagan, M.W., Krentel, M., Marin, G., Mellor-Crummey, J.M.,
Tallent, N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel programs.
Concurr. Comput.: Pract. Exper. 22(6), 685–701 (2010). doi:10.1002/cpe.1553. http://doi.
wiley.com/10.1002/cpe.1553

2. Böhme, D., Geimer, M., Wolf, F., Arnold, L.: Identifying the root causes of wait states in large-
scale parallel applications. In: Proceedings of the 39th International Conference on Parallel
Processing (ICPP), San Diego, CA, pp. 90–100 (2010). doi:10.1109/ICPP.2010.18

3. Böhme, D., de Supinski, B.R., Geimer, M., Schulz, M., Wolf, F.: Scalable critical-path based
performance analysis. In: Proceedings of the 26th IEEE International Parallel & Distributed
Processing Symposium (IPDPS), Shanghai (2012)

http://doi.wiley.com/10.1002/cpe.1553
http://doi.wiley.com/10.1002/cpe.1553

114 M.-A. Hermanns et al.

4. Chapman, B.M., Curtis, A., Pophale, S., Poole, S.W., Kuehn, J.A., Koelbel, C., Smith, L.,
Curtis, T., Pophale, S., Poole, S.W., Kuehn, J.A., Koelbel, C., Smith, L., Curtis, A., Pophale,
S., Poole, S.W., Kuehn, J.A., Koelbel, C., Smith, L.: Introducing OpenSHMEM: SHMEM
for the PGAS community. In: Proceedings of the Fourth Conference on Partitioned Global
Address Space Programming Model, no. c in PGAS ’10, pp. 2:1–2:3. ACM, New York, NY
(2010). doi:10.1145/2020373.2020375. http://doi.acm.org/10.1145/2020373.2020375

5. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: A scalable tool architecture for diagnosing
wait states in massively parallel applications. Parallel Comput. 35(7), 375–388 (2009).
doi:10.1016/j.parco.2009.02.003

6. Hermanns, M.A., Geimer, M., Mohr, B., Wolf, F.: Scalable detection of MPI-2 remote memory
access inefficiency patterns. Int. J. High Perform. Comput. Appl. 26(3), 227–236 (2012).
doi:10.1177/1094342011406758

7. Hermanns, M.A., Krishnamoorthy, S., Wolf, F.: A scalable infrastructure for the per-
formance analysis of passive target synchronization. Parallel Comput. 39(3), 132–
145 (2013). doi:10.1016/j.parco.2012.09.002. http://www.sciencedirect.com/science/article/
pii/S0167819112000762

8. Intel Corp.: Intel VTune Amplifier XE (2012). http://software.intel.com/en-us/intel-vtune-
amplifier-xe

9. Jülich Supercomputing Centre: JUQUEEN: IBM Blue Gene/Q Supercomputer System at the
Jülich Supercomputing Centre. J. Large-Scale Res. Facil. 1(A1) (2015). doi:10.17815/jlsrf-1-
18. http://dx.doi.org/10.17815/jlsrf-1-18

10. Kühnal, A., Hermanns, M.A., Mohr, B., Wolf, F.: Specification of inefficiency patterns for
MPI-2 one-sided communication. In: Proceedings of the 12th Euro-Par Conference, Dresden.
Lecture Notes in Computer Science, vol. 4128, pp. 47–62. Springer, Berlin (2006)

11. MPI Forum (ed.): MPI: A Message-Passing Interface Standard. Version 3.1. MPI Forum
(2015). http://www.mpi-forum.org/

12. Nieplocha, J., Carpenter, B.: ARMCI: a portable remote memory copy library for distributed
array libraries and compiler run-time systems. In: Proceedings of the 11 IPPS/SPDP’99
Workshops Held in Conjunction with the 13th International Parallel Processing Symposium
and 10th Symposium on Parallel and Distributed Processing, vol. 1586, pp. 533–546. Springer,
London (1999). doi:10.1007/BFb0097937. http://dl.acm.org/citation.cfm?id=645611.662053

13. Tallent, N.R., Mellor-Crummey, J.M., Porterfield, A.: Analyzing lock contention in multi-
threaded applications. SIGPLAN Not. 45(5), 269–280 (2010). doi:10.1145/1837853.1693489.
http://doi.acm.org/10.1145/1837853.1693489

14. Tallent, N.R., Vishnu, A., Van Dam, H., Daily, J., Kerbyson, D.J., Hoisie, A.: Diagnosing
the causes and severity of one-sided message contention. In: Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2015,
pp. 130–139. ACM, New York, NY (2015). doi:10.1145/2688500.2688516. http://doi.acm.org/
10.1145/2688500.2688516

15. Zounmevo, J.A., Zhao, X., Balaji, P., Gropp, W., Afsahi, A.: Nonblocking epochs in MPI one-
sided communication. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14, pp. 475–486. IEEE Press, Piscataway,
NJ (2014). doi:10.1109/SC.2014.44. http://dx.doi.org/10.1109/SC.2014.44

http://doi.acm.org/10.1145/2020373.2020375
http://www.sciencedirect.com/science/article/pii/S0167819112000762
http://www.sciencedirect.com/science/article/pii/S0167819112000762
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://dx.doi.org/10.17815/jlsrf-1-18
http://www.mpi-forum.org/
http://dl.acm.org/citation.cfm?id=645611.662053
http://doi.acm.org/10.1145/1837853.1693489
http://doi.acm.org/10.1145/2688500.2688516
http://doi.acm.org/10.1145/2688500.2688516
http://dx.doi.org/10.1109/SC.2014.44

	Trace-Based Detection of Lock Contentionin MPI One-Sided Communication
	1 Introduction
	2 Related Work
	3 Lock Contention
	4 Wait-State Detection
	4.1 The Active-Message Infrastructure
	4.2 Detecting Lock Contention

	5 Results
	5.1 Micro Benchmark
	5.2 SOR

	6 Conclusion and Outlook
	References

