Debugging Latent Synchronization Errors
in MPI-3 One-Sided Communication

Roger Kowalewski and Karl Fiirlinger

Abstract The Message Passing Interface (MPI-3) provides a one-sided commu-
nication interface, also known as MPI Remote Memory Access (RMA), which
enables one process to specify all required communication parameters for both the
sending and receiving side. While this communication interface enables superior
performance potential developers have to deal with a complex memory consistency
model. Proper synchronization of asynchronous remote memory accesses to shared
data structures is a challenging task. More importantly, it is difficult to pinpoint
such synchronization bugs as they do not necessarily manifest in an error or occur
for example only after porting the application to a different HPC environment.

We introduce a debugging tool to support the detection of latent synchronization
bugs. Based on the semantic flexibility of the MPI-3 specification we dynamically
modify executions of improperly synchronized MPI remote memory accesses to
force a manifestation of an error. An experimental evaluation with small applications
and the usage in a library which heavily relies on MPI RMA reveal that this approach
can uncover synchronization bugs which would otherwise likely go unnoticed.

1 Introduction

MPI, as the de-facto standard for programming scientific applications, specifies
RMA as an alternative communication approach where processes communicate
shared data by one-sided put and ger primitives. In contrast to traditional message-
passing the target process (receiver) does not necessarily need to synchronize with
the origin (sender) to complete the communication. This significantly reduces the
required synchronization overhead and enables new programming models such
as Partitioned Global Address Space (PGAS). PGAS provides shared memory
abstractions on distributed machines to boost programmer productivity. An example
is DASH [4] which is a C++ template library to specify distributed generic data
structures (e.g. arrays, lists) and algorithms. It supports among other options MPI-3
RMA as the low-level communication backend.

R. Kowalewski (P<) » K. Fiirlinger
Ludwig-Maximilians-Universitidt Miinchen, Munich, Germany
e-mail: kowalewski @nm.ifi.Imu.de

© Springer International Publishing AG 2017 83
C. Niethammer et al. (eds.), Tools for High Performance Computing 2016,
DOI 10.1007/978-3-319-56702-0_5


mailto:kowalewski@nm.ifi.lmu.de

84 R. Kowalewski and K. Fiirlinger

(a) (b) (©)
int buf = 0; ints=10,r=0; int buf[100];
MPI_Win_lock(target); MPI_Win_lock(target); /* init buf */
MPI_Get(&buf, ..., target); MPI_Put(&s, ..., X, target);
buf=1; MPI_Get(&r, ..., target); MPI_Win_lock(target);
MPI_Win_unlock(target); MPI_Win_unlock(target); MPI_Put(&buf, 100 ..., target);
assert(buf == 1) assert(r == 10); MPI_Win_unlock(target);

Fig. 1 Application samples with synchronization bugs. (a) Data race condition between native
load and MPI_Get. (b) Unsynchronized Put-Get sequence. (¢) Non-atomic Put

(a) (b) ()
int buf = 0; ints=10,r=0; /* init buf[100] */
MPI_Win_lock(target); MPI_Win_lock(target); MPI_Win_lock(target);
buf=1 MPI_Get(&r, ..., target); /* Splitting */
/* Defer Get*/ MPI_Win_flush(target); MPI_Put,(&buf, ..., target);
MPI_Get(&buf, ..., target); MPI_Put(&s, ..., target); MPI_Put,(&(buf +1), ..., target);

MPI_Win_unlock(target);

MPI_Win_unlock(target); MPI_Put,(&(buf +99), ..., target);
/* Assertion fails */ /* Assertion fails */
assert(buf == 1); assert(r == 10); MPI_Win_unlock(target);

Fig. 2 Exemplified modifications by Nasty-MPI. (a) Deferred MPI_Get. (b) Reordered Put-Get
sequence. (¢) Split non-atomic Put

However, MPI RMA comes with a complex memory model which is often
poorly understood and makes it difficult to precisely reason about the semantics
of RMA applications, especially when changing the underlying network fabrics or
MPI library. To illustrate the semantic challenges, consider the code in Fig. la. If
we reason about the outcome based on a sequentially consistent execution the value
in the local variable buf is 1. However, MPI RMA provides only weak ordering
guarantees meaning that the final value of buf may be 0, 1 or even undefined
because the get action may happen concurrently with the local write (buf = 1).
Figure 2a illustrates a semantically equal execution if we reason in terms of the
MPI-3 specification. In order to avoid such data race conditions program developers
have to properly synchronize RMA and native memory accesses. Debugging these
synchronization bugs can be very time-consuming as the execution depends on the
underlying hardware and scheduling interleavings at runtime.

We propose Nasty-MPI, a debugging tool to support the detection of latent
synchronization errors in any MPI-3 RMA application at runtime. We apply a
heuristic approach which takes the semantic flexibility given by the MPI-3 standard
into account and forces pessimistic executions to manifest synchronization bugs.
Because each application may have numerous of such pessimistic executions
we provide external configuration parameters to refine the Nasty-MPI heuristic.
Utilizing the PMPI interface enables easy integration into any MPI application.
Since we have no semantic model of the target application we rely on supplied



Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 85

program invariants (e.g. assert statements) raising an error if the application’s
semantics are not satisfied.

The remainder is organized as follows. We first explain the MPI-3 RMA
synchronization semantics and present a formalism to model memory consistency
in Sect.2 to set the stage of this contribution. Section 3 elaborates the concept
and strategies of Nasty-MPI to uncover synchronization errors. An experimental
evaluation in Sect.4 with small test cases compares the behavior of applications
with latent synchronization bugs on different HPC platforms. We further show
that applying Nasty-MPI to the extensive DASH unit test suite uncovered a latent
synchronization error in the underlying MPI-3 RMA communication. Finally,
Sect. 5 summarizes related work and Sect. 6 concludes.

2 MPI-3 One-Sided Communication Semantics

RMA communication can be applied only on a point-to-point basis. All com-
munication actions (puts, gets, accumulates) operate in the context of a window
abstracting the distributed memory between MPI processes and are grouped into
synchronization phases, called access epochs. No RMA operation may be issued
before opening an access epoch and no consistency guarantees, neither local nor
remote, are available before closing an access epoch.

MPI RMA offers two synchronization modes which are called the active target
and passive target mode. In contrast to passive target, the active target mode
requires target processes to actively synchronize with the origin to complete the
communication. For this reason we focus only on passive target which closely
matches the semantic requirements of PGAS models. The origin issues lock/unlock
operations to open and close an access epoch on the target window, respectively. We
can, however, adopt the concept to active target synchronization as well.

2.1 Modeling Memory Consistency

To model and analyze the RMA operations issued by an application, we use a
formalism based on a paper written by the MPI RMA Working Group [8].
Two memory accesses a and b conflict if they target overlapping memory and

are not synchronized by both a happens-before (ﬁ)) [11] and a consistency edge

(2)) [8]. The happens-before order may either be the program order, if both
operations occur in a single process, or the synchronization order between two MPI
processes, such as blocking send-receive pairs. A consistency edge between two
operations (i.e. a = b) implies that the memory effects of a may be observed by

b. Consistency edges are established by the RMA synchronization primitives, as
described earlier.



86 R. Kowalewski and K. Fiirlinger

---+ Execution 1

— Execution 2

Parallel
Region

Put(buf) |, Get(buf)

Fig. 3 Unsynchronized (two executions)

Fig. 4 Synchronized execution

Utilizing this notation, we derive an execution model of all issued RMA
communications in an MPI program P. All executions E over the set of RMA
calls in P may be modeled as a partially ordered happens-before graph, formed

by the transitive closure of ﬂ and > edges. Two executions e; and e, in E are
semantically equivalent if they result in the same happens-before graph. If a and b
are not synchronized, they are contained in a parallel region. For example, Fig.3
represents a happens-before graph, derived from the program in Fig. 1b. Since both
RMA operations operate on overlapping memory and are within a parallel region,
the program includes a synchronization error. If we want to guarantee that both
operations remotely complete in program order, one valid solution is to synchronize

by an additional flush which establishes the required okt edge, as depicted in Fig. 4.

2.2 Consistency Properties

After formalizing the memory consistency model of MPI-3 RMA we discuss
essential semantic properties of one-sided communication actions. These properties
are fundamental to satisfy correctness in even simple concurrent programs:

Atomicity Fast put and get communications are non-atomic. Only accumulates
guarantee element-wise atomic reads and writes to a single target if they use the
same basic data type. Figure 1c shows an example where an origin copies an



Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 87

array, consisting of 100 integers, to a target memory. This MPI_Put is non-
atomic and can result in a race condition with any memory accesses operating
concurrently on the target memory location.

Ordering MPI-3 provides no ordering guarantees for RMA calls in a single
epoch. An exception is made for a sequence of accumulates directed to the
same target. In addition, both the reduction operator and basic data type have
to be identical among subsequent accumulates. In Fig. 1b, two RMA calls read
(MPI_Put)and write (MPI_Get)alocal memory buffer, respectively. Since the
operations may complete in any order they conflict with each other.

Completion RMA communication operations are not guaranteed to complete
before the surrounding access epoch is explicitly synchronized. For example in
Fig. 1a, the receive buffer (buf) for the MPI_Get is subsequently accessed by a
native store. Both memory accesses conflict, resulting in a data race condition.

In order to prevent memory consistency issues as illustrated in Fig. 1, MPI specifies
dedicated primitives to synchronize pending RMA communications [15]. One
approach is to synchronize by distinct access epochs. This concept fits well into
the structure of many scientific applications which consist of communication and
computation phases. For more fined-grained control in irregular communication
patterns, such as graph problems, MPI additionally provides flush_local and flush
primitives to locally or remotely complete pending RMA operation during an access
epoch. While local completion guarantees consistent memory buffers only on the
origin process, remote completion guarantees memory consistency of the target
memory as well.

3 Uncovering Latent Synchronization Errors

After elaborating the semantic challenges of MPI RMA we describe an effective
approach to support programmers in debugging MPI programs with improperly
synchronized RMA communications. Suppose an MPI program P contains a latent
synchronization error. Assume further that P has a predefined correctness model in
the form of included program invariants, as illustrated by the assert statements
in Fig. 1. Based on the presented memory consistency model we are able to explore
different execution paths in the happens-before graph of P with the objective of
finding at least one execution which forces a manifestation of this error.

3.1 Conceptual Overview

By exploiting the PMPI interface we intercept all RMA communication actions
at runtime and initially buffer them, instead of handing them over to the MPI
library. This enables us to dynamically construct a happens-before graph and, in



88 R. Kowalewski and K. Fiirlinger

particular, track all its parallel regions. The approach relies on the RMA completion
semantics, allowing to defer the execution of communication actions to a matching
synchronization call. When the application issues a synchronization action, it
triggers a three-stage rescheduling process.

1. Completion Stage: We consider only those communication actions which are
necessarily required to complete, as specified by the synchronization action.

2. Atomicity Stage: We break non-atomic communication actions into a set of
smaller requests in such a way that the memory semantics are identical.

3. Reordering Stage: We reorder communication actions which do not conceptu-
ally give any ordering guarantees within the synchronized access epoch.

Figure 2 illustrates the rescheduling techniques when applying Nasty-MPI to the
programs in Fig. 1 in the form of source code modifications that are equivalent to
the effects achieved by the dynamic interception and rescheduling process.

In Fig. 2a, Nasty-MPI exploits the completion semantics and defers communica-
tion actions to a matching synchronization. Thus, the MPT_Get will be issued to
the MPI library after the native store.

Figure 2b demonstrates the reordering technique. Suppose both RMA calls in
Fig. 1b are required to complete as encountered. Since there is no synchronization
to guarantee program order, we may reverse the order. Note the additional flush,
issued by Nasty-MPI to force the reverse order.

The last example depicts how we utilize the atomicity semantics. In Fig. 2c, we
split one single MPI_Put into 100 separate MPI_Put calls. While both variants
have identical semantics, splitting RMA operations can effectively force errors
which result from non-atomic memory access on overlapping locations.

In the next section, we explain the rescheduling process in more detail and
discuss how the tool uses the full semantic flexibility, given by the MPI standard, to
schedule pessimistic executions.

3.2 Nasty-MPI Rescheduling Process

When Nasty-MPI receives a synchronization operation it triggers the rescheduling
process on buffered communication actions. The three stages of this rescheduling
process are described in the following.

3.2.1 Completion Stage

Nasty-MPI first distinguishes between local and remote completion. If the issued
synchronization action has remote completion semantics (i.e. unlock or flush),
we filter all buffered RMA calls which are necessarily required to complete. A
synchronization action can complete either all pending RMA calls within a window
or to a specific target rank [15].



Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 89

Table 1 Nasty-MPI configuration parameters

Parameter Value type Default
1 NASTY SKIP COMPLETION STAGE bool false
2 NASTY LOCAL_ COMPLETION_ ENABLED bool true
3 NASTY SKIP ATOMICITY STAGE bool false
4 NASTY SUBMIT ORDER string (see Table 2) random
5 NASTY ADD_FLUSH ENABLED bool true
6 NASTY ADD LATENCY unit32_t 0

In the case of local completion (i.e. flush_local) all MPT_Put calls remain in
the buffer and are not issued to the MPI library. This approach is allowed, because
local completion only guarantees memory consistency of local buffers. However,
because local completion creates a consistency edge between two consecutive

memory access (i.e. a = b), we have to copy the source buffer of a to keep it
internally until remote completion is forced. This approach is applicable to RMA
accumulates as well. However, because accumulates are conceptually ordered under
certain conditions [15], we have to make sure that there are no subsequent correlated
accumulates which atomically fetch data from remote memory. In this case, we are
not allowed to further postpone the first accumulate operation. Several experiments
revealed that some MPI libraries do not necessarily distinguish between local and
remote completion, i.e. they always apply remote completion. Table 1 lists two
parameters for the completion stage to control, whether Nasty-MPI should apply
local completion semantics (Table 1, line 2) or even bypass the completion stage
(Table 1, line 1).

3.2.2 Atomicity Stage

While fast RMA data transfers (i.e. put, get) are non-atomic, accumulates guarantee
this only on a per element granularity. We apply a splitting technique to break
a single RMA call into a set of many smaller RMA calls which have identical
memory semantics. We first analyze the count and datatype parameters which
are contained in the signature of each RMA call. If the count parameter is specified
with at least two elements, we further determine the extent of a single datatype
element. Based on these two parameters we split a single RMA call into many
single-element operations. For example, in Fig. 1c, count is 100 and the extent
of MPI_INT is 4 bytes. This results in 100 MPI_Put calls, each having a source
buffer which starts at increasing 4 bytes offsets relative to the original buffer address
(see Fig. 2c).

RMA put and get calls can be even split into 1-byte RMA operations. However,
we are restricted by the displacement unit in MPI windows which defines the
minimum size of a single element. This approach applies only if the displacement
unit is specified with a size of MPI_BYTE at window creation. Dynamic MPI



90 R. Kowalewski and K. Fiirlinger

Table 2 Options for

Option Description
NASTY SUBMIT ORDER 5
- - random Random (default)
reverse po Reverse program order

put_before get Schedule put before get calls
get_before put Schedule get before put calls

windows always satisfy this condition. The atomicity stage may skipped by setting
the corresponding parameter (Table 1, line 3) to true.

3.2.3 Reordering Stage

Passing the first two stages gives a set of RMA calls which are (a) required to
remotely complete; and (b) split into many small RMA calls in order to explore
the minimal completion and atomicity semantics. Before we hand over these RMA
calls to the native MPI library, they are finally reordered. The only restriction applies
to accumulates. We can interleave them with any other communication action,
however, their syntactic order has to be preserved. The default reordering approach
is to randomly shuffle buffered communication actions. More fine-grained control
is provided by the configuration parameter NASTY SUBMIT ORDER which can be
set to any of the options in Table 2. However, simply reordering RMA operations
does not guarantee that the native MPI library obeys the scheduled order. MPI
libraries are free to reorder or even apply additional optimizations, such as merging
of RMA calls [5]. Thus, we must explicitly force the scheduled ordering. One option
is to simulate communication latency between consecutive communication actions,
giving the MPI library a chance to asynchronously process an RMA operation
before the next call is issued. However, if the MPI library does not facilitate
asynchronous progress mechanisms or applies lazy execution, this approach has
no effect. An effective solution is to issue additional flush operations which are
semantically valid, as we modify only parallel regions in the original happens-before
graph.

The reordering stage can be further controlled by two parameters in order to
configure the simulation of communication latency (Table 1, line 6) and whether
Nasty-MPI is allowed to inject additional flush synchronizations (Table 1, line 5).

4 Experimental Evaluation

The experiments were conducted on two HPC platforms: The NERSC Edison
Cray XC 30 supercomputer [16] and SuperMUC Petascale System [12] at the
Leibniz Supercomputing Centre. The Cray machine is interconnected by an Aries
network and provides its own MPI library and compiler, included in Cray’s Message
Passing Toolkit. SuperMUC facilitates a fully non-blocking Infiniband network and



Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 91

supports three MPI libraries: IBM (v9.1.4), Intel (v5.0) and Open MPI (v1.8). The
corresponding compiler is Intel icc (v15.0.4). A prototypical implementation of
Nasty-MPI is publicly available on Github.!

4.1 Methodology

All experiments include at least two MPI processes which communicate by improp-
erly synchronized RMA operations. The correctness model of these applications
is defined by included assert statements in the source code to uncover the
synchronization errors.

Each experiment is evaluated with all MPI libraries in four scenarios which are
based on two settings. First, we have to consider process locality, i.e. the origin and
target process reside either on a single node or on two distant nodes. Process locality
is an important property, because MPI libraries may hide communication latency in
MPI RMA calls by utilizing shared memory semantics. And second, we run each
test with and without linking Nasty-MPI. If Nasty-MPI is linked, all applications
are repeatedly executed with distinct combinations of the Nasty-MPI configuration
parameters, listed in Table 1.

Our assumption is that without linking Nasty-MPI some, if not all, MPI libraries
can successfully execute the test cases, i.e. the assert statements manifest no errors.
For these cases there has to be at least one configuration for Nasty-MPI which forces
a pessimistic execution to uncover the synchronization error.

4.2 Nasty-MPI Test Cases

The first test case is a binary tree broadcast algorithm which was described by
Luecke et al. [13]. The code relies on MPI_Get being a blocking MPI call because
there is no synchronization action which actually completes it. The relevant snippet
is shown in Fig. 5. Executing this program leads to different results, depending on
the test setup. If the communicating processes, involved in the MPI_Get, reside
on distant nodes no MPI library can successfully terminate this program due to
an infinite loop. But the situation changes, if both processes reside on the same
node. While IBM MPI and Open MPI again cannot exit from the polling loop, the
implementations of Intel (SuperMUC) and Cray (NERSC Edison) can complete the
RMA call. This demonstrates that process locality may impact the behavior of RMA
communications, depending on the underlying MPI library. If Nasty-MPI is linked
and the completion stage is not skipped, the MPI library does never receive the
MPI Get request, because no synchronization action completes the buffered RMA
call.

!https://github.com/dash-project/nasty-MPL


https://github.com/dash-project/nasty-MPI

92 R. Kowalewski and K. Fiirlinger

Fig. 5 Non-completed MPI_Win_lock(target);
MPI_Get double check = 0;

while (check ==0)

{
MPI_Get(&check, ..., target);
/* Missing Synchronization */

}

MPI_Win_unlock(target);

Fig. 6 Improperly MPI_Win_lock_all(win);
synchronized Acc
MPI_Accumulate(...,
predecessor, ..., win);
do {
MPI_Fetch_and_op(..., self, ...,win);

MPI_Win_flush(self);
} while (flag);

MPI_Win_unlock_all(win);

Table 3 Results of the experiments without linking Nasty-MPI
NERSC Edison LRZ SuperMUC

Test program Cray IBM Intel Open MPI
1 Binary broadcast [13] X v X v
2 MCS lock [14] X X 4 X
3 Local completion X X X X
4 Put-Put sequence X X v X

¥ Synchronization error manifested
¥ Synchronization error not manifested

The second test case is an implementation of the MCS lock [14] which can
be implemented using MPI RMA primitives [8]. In the code for acquiring the
lock (Fig.6), a requesting process issues two RMA calls which are directed to
different targets, namely self and predecessor. For test purposes, we have injected
a synchronization error in such a way that only MPI calls to one target are
synchronized. As listed in Table 3, all MPI libraries, except Intel, can successfully
execute this program. This observation confirms that some MPI libraries always
complete all pending RMA calls, regardless of the specified target process. In
Nasty-MPI, however, only the second RMA call reaches the native MPI library,
while the first MPT Accumulate is rejected in the completion stage, causing a
manifestation of the synchronization error.

The third test case is a slight modification from the example in Fig. 1b. The
MPI Put modifies a remote memory location x and is only locally completed by
a flush_local. All MPI libraries pass the assert statement, i.e. the MPT_Get fetches
the modified value by the MPI Put. If Nasty-MPI is linked and the parameter



Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 93

NASTY LOCAL_ COMPLETION ENABLED s set to 1, it defers the MPI_Get to
the unlock call, leading to a manifestation of the synchronization error.

Program 4 tests the given ordering properties of MPI libraries. It requires
that two consecutive MPI_Put calls, as illustrated in Fig. la, are completed
in target memory as encountered by the program order. However, there is no
synchronization action to ensure this order. If the origin and target processes reside
on a single node, all MPI libraries, except Intel, complete both RMA calls in
program order. Nasty-MPI can easily manifest the synchronization error by setting
NASTY SUBMIT ORDERto reverse po.

Finally, Nasty-MPI helped to detect a synchronization error in the DASH
library, while it was applied to a large test suite. In dash: :copy async we
asynchronously copy a strided memory block from a distant node to a local memory
buffer. The aggressive splitting described in Sect. 3.2 forced a situation where the
initiator of the copy operation accessed an element in the local memory buffer before
the communication was completed. After fixing this issue the error is not present
anymore.

4.3 Discussion

The observations show that consistency properties differ among the examined MPI
libraries. Some of them provide even stronger consistency properties than required
by the MPI-3 specification. However, we cannot explain all results only by the
libraries themselves but have to consider the underlying network fabrics. Cray MPT
uses DMAPP as communication backend and provides strong in-order guarantees
based on the DMAPP ROUTING DETERMINISTIC attribute [3]. This attribute is
a default setting on the NERSC Edison and guarantees ordering of two subsequent
RMA calls if and only if both calls are directed to the same target process. Test
cases 3 and 4 satisfy this condition which confirms the results, however, it does not
explain the behavior in test cases 1 and 2.

On the other hand, Infiniband does not provide parametric in-order guarantees
but specifies implicit ordering between two subsequent RDMA reads or writes [9].
This may explain some observations with test case 4, however, does not apply to the
remaining applications on the SuperMUC system.

Summarizing the results we have shown that the concept of Nasty-MPI can
effectively force various kinds of synchronization errors. While the presented test
cases are no real world applications, it is a useful tool during development and can
be easily integrated into any test environment. We use Nasty-MPI on a daily basis
in the extensive unit test suite of the DASH library.

Regarding the additional overhead with Nasty-MPI we still have to evaluate
larger scientific applications. Depending on the configuration parameters it dras-
tically increases the number of communication and synchronization actions. In
particular, additional flush operations which specify very expensive semantics cause
significant runtime overhead. Linking the tool to the DASH unit test suite roughly



94 R. Kowalewski and K. Fiirlinger

increases the execution time by 20-30%. We expect that it may get worse with more
complex applications.

5 Related Work

We discuss related research focused on MPI RMA as well as other RMA program-
ming languages.

MC-Checker [1] can dynamically detect memory consistency errors by profiling
both MPI RMA and native memory accesses, i.e. loads and stores. Based on the
MPI semantics, it effectively finds potential data races even between different MPI
processes which concurrently access overlapping target memory. However, MC-
Checker only covers the MPI-2 standard which follows different synchronization
semantics compared to MPI-3. Moreover, the approach is different from this
work because we do not actually detect synchronization errors but rather force
a manifestation based on given program invariants. UPC-Thrill [17] has similar
functionality to detect data races in UPC programs. Significant semantic differences
between UPC and MPI RMA distinguish the work presented here.

Another approach applies model checking [18] for deadlock and synchronization
bug detection in MPI RMA programs. While it can effectively uncover latent
synchronization bugs it requires to model the target application with a dedicated
language.

MUST [7] is another runtime debugging tool focusing on semantic parameter
checking. It detects errors which are caused by an erroneous sequence of MPI
RMA calls, for example mismatched lock/unlock calls. However, it cannot uncover
memory consistency errors caused by improperly synchronization RMA calls
at runtime. MUST may complement with Nasty-MPI to debug both memory
consistency and semantic parameter errors.

Scalasca [6] which is a well-known tool for performance optimization in two-
sided MPI can detect inefficient wait states to pinpoint performance bottlenecks in
MPI RMA applications.

Finally, we have related research which focuses on RMA programming models
in general. Dan et al. provide a formal abstraction to model RMA languages
and analyze semantic corner cases based on the specification of the hardware
vendors [2]. It confirms the observations of this work that semantic guarantees
heavily depend on the capabilities and configuration of the network fabrics.

6 Conclusion and Future Work

This work points out the major challenges of MPI-3 RMA communication which
specifies only weak consistency guarantees. An experimental evaluation reveals
that MPI libraries exploit implicit guarantees of underlying network fabrics which



Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 95

may result in stronger consistency than specified by the MPI standard. This makes
it challenging to write well-defined applications since a latent synchronization
bug does not necessarily manifest in an error. It is even more crucial for library
developers which have to provide correct semantics on any HPC platform.

For this purpose Nasty-MPI effectively supports programmers as it exploits
the weak MPI RMA semantics to force pessimistic corner case executions. The
observations in Sect.4 show that this approach uncovers synchronization bugs
which would otherwise only occur either after porting to an HPC platform with
a different network interconnect or in large-scale scenarios. Examples include
both small applications and the DASH library which supports MPI RMA as its
communication backend.

Future work addresses the question whether we can guarantee to detect synchro-
nization bugs based on formally proven scenarios. We will refine the semantic model
of Nasty-MPI and verify the strategies with more productive use cases.

Acknowledgements We gratefully acknowledge funding by the German Research Founda-
tion (DFG) through the German Priority Programme 1648 Software for Exascale Computing
(SPPEXA). We further want to inform that this work is an extended revision from an originally
published paper [10].

References

1. Chen, Z., Dinan, J., Tang, Z., Balaji, P, Zhong, H., Wei, J., Huang, T., Qin, F: MC-
Checker: detecting memory consistency errors in MPI one-sided applications. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 499-510. IEEE Press, Piscataway (2014)

2. Dan, A.M., Lam, P., Hoefler, T., Vechev, M.: Modeling and analysis of remote memory access
programming. In: Proceedings of the ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, Amsterdam, pp. 129-144
(2016)

3. Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., Johnson, T., Kopnick,
J., Higgins, M., Reinhard, J.: Cray cascade: a scalable HPC system based on a dragonfly
network. In: 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 1-9. IEEE, Washington, DC (2012)

4. Fiirlinger, K., Fuchs, T., Kowalewski, R.: DASH: a C++ PGAS library for distributed data
structures and parallel algorithms. In: Proceedings of the 18th IEEE International Conference
on High Performance Computing and Communications HPCC (2016)

5. Gropp, W., Thakur, R.: An evaluation of implementation options for MPI one-sided commu-
nication. In: Recent Advances in Parallel Virtual Machine and Message Passing Interface,
pp. 415-424. Springer, Berlin (2005)

6. Hermanns, M.A., Miklosch, M., Béhme, D., Wolf, F.: Understanding the formation of wait
states in applications with one-sided communication. In: Proceedings of the 20th European
MPI Users” Group Meeting, pp. 73-78. ACM, New York (2013)

7. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Miiller, M.S.: MPI runtime error
detection with MUST: advances in deadlock detection. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC 12,
pp- 30:1-30:11. IEEE Computer Society Press, Los Alamitos, CA (2012)



96

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. Kowalewski and K. Fiirlinger

. Hoefler, T., Dinan, J., Thakur, R., Barrett, B., Balaji, P., Gropp, W., Underwood, K.: Remote

memory access programming in MPI-3. ACM Trans. Parallel Comput. 2(2), 9:1-9:26 (2015).
doi:10.1145/2780584

. Infiniband Trade Association: InfiniBand Architecture Specification Volume 2. https://cw.

infinibandta.org/document/d1l/7155 (2006)

Kowalewski, R., Fiirlinger, K.: Nasty-MPI: Debugging Synchronization Errors in MPI-3 One-
Sided Applications. Lecture Notes in Computer Science, pp. 51-62. Springer, Cham (2016).
doi:10.1007/978-3-319-43659-3_4. http://dx.doi.org/10.1007/978-3-319-43659-3_4
Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21(7), 558-565 (1978). doi:10.1145/359545.359563

Leibniz Supercomputing Centre, Munich, Germany: SuperMUC Petascale System. https://
www.lIrz.de/services/compute/supermuc/systemdescription/. Last accessed 2016

Luecke, G.R., Spanoyannis, S., Kraeva, M.: The performance and scalability of SHMEM and
MPI-2 one-sided routines on a SGI origin 2000 and a Cray T3E-600: performances. Concurr.
Comput. Pract. Exper. 16(10), 1037-1060 (2004). doi:10.1002/cpe.v16:10

Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21-65 (1991).
doi:10.1145/103727.103729

MPI Forum: MPI: A Message-Passing Interface Standard. Version 3.0 (2012). Available at:
http://www.mpi-forum.org

National Energy Research Center, United States: Edison System Configuration. https://www.
nersc.gov/users/computational-systems/edison/configuration/. Last accessed 2016

Park, C.S., Sen, K., Hargrove, P, Iancu, C.: Efficient data race detection for distributed memory
parallel programs. In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC "11, pp. 51:1-51:12. ACM, New York
(2011). doi:10.1145/2063384.2063452

Pervez, S., Gopalakrishnan, G., Kirby, R., Thakur, R., Gropp, W.: Formal verification of
programs that use MPI one-sided communication. In: Mohr, B., Triff, J., Worringen, J.,
Dongarra, J. (eds.) Recent Advances in Parallel Virtual Machine and Message Passing
Interface. Lecture Notes in Computer Science, vol. 4192, pp. 30-39. Springer, Berlin/
Heidelberg (2006). doi:10.1007/11846802_13


https://cw.infinibandta.org/document/dl/7155
https://cw.infinibandta.org/document/dl/7155
http://dx.doi.org/10.1007/978-3-319-43659-3_4
https://www.lrz.de/services/compute/supermuc/systemdescription/
https://www.lrz.de/services/compute/supermuc/systemdescription/
http://www.mpi-forum.org
https://www.nersc.gov/users/computational-systems/edison/configuration/
https://www.nersc.gov/users/computational-systems/edison/configuration/

	Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication
	1 Introduction
	2 MPI-3 One-Sided Communication Semantics
	2.1 Modeling Memory Consistency
	2.2 Consistency Properties

	3 Uncovering Latent Synchronization Errors
	3.1 Conceptual Overview
	3.2 Nasty-MPI Rescheduling Process
	3.2.1 Completion Stage
	3.2.2 Atomicity Stage
	3.2.3 Reordering Stage


	4 Experimental Evaluation
	4.1 Methodology
	4.2 Nasty-MPI Test Cases
	4.3 Discussion

	5 Related Work
	6 Conclusion and Future Work
	References


