
Extending the Functionality of Score-P Through
Plugins: Interfaces and Use Cases

Robert Schöne, Ronny Tschüter, Thomas Ilsche, Joseph Schuchart,
Daniel Hackenberg, and Wolfgang E. Nagel

Abstract Performance measurement and runtime tuning tools are both vital in
the HPC software ecosystem and use similar techniques: the analyzed application
is interrupted at specific events and information on the current system state is
gathered to be either recorded or used for tuning. One of the established performance
measurement tools is Score-P. It supports numerous HPC platforms and parallel
programming paradigms. To extend Score-P with support for different back-ends,
create a common framework for measurement and tuning of HPC applications,
and to enable the re-use of common software components such as implemented
instrumentation techniques, this paper makes the following contributions: (1)
We describe the Score-P metric plugin interface, which enables programmers to
augment the event stream with metric data from supplementary data sources that
are otherwise not accessible for Score-P. (2) We introduce the flexible Score-P
substrate plugin interface that can be used for custom processing of the event stream
according to the specific requirements of either measurement, analysis, or runtime
tuning tasks. (3) We provide examples for both interfaces that extend Score-P’s
functionality for monitoring and tuning purposes.

1 Introduction and Related Work

There are numerous tools for monitoring and tuning High Performance Computing
(HPC) applications. All of them use similar techniques to gather information
about the executed hardware and software environment. Ilsche et al. classify
performance analysis tools by three different layers: data acquisition, recording,

R. Schöne (�) • R. Tschüter • T. Ilsche • D. Hackenberg • W.E. Nagel
Center for Information Services and High Performance Computing (ZIH), Technische Universität
Dresden, 01062 Dresden, Germany
e-mail: robert.schoene@tu-dresden.de; ronny.tschueter@tu-dresden.de;
thomas.ilsche@tu-dresden.de; daniel.hackenberg@tu-dresden.de; wolfgang.nagel@tu-dresden.de

J. Schuchart
High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, 70569 Stuttgart,
Germany
e-mail: schuchart@hlrs.de

© Springer International Publishing AG 2017
C. Niethammer et al. (eds.), Tools for High Performance Computing 2016,
DOI 10.1007/978-3-319-56702-0_4

59

mailto:robert.schoene@tu-dresden.de
mailto:ronny.tschueter@tu-dresden.de
mailto:thomas.ilsche@tu-dresden.de
mailto:daniel.hackenberg@tu-dresden.de
mailto:wolfgang.nagel@tu-dresden.de
mailto:schuchart@hlrs.de

60 R. Schöne et al.

and presentation [10]. In this paper we focus on the monitoring of applications,
which includes the first two layers. The two proposed data acquisition techniques
are sampling and instrumentation, which Ilsche et al. define in more detail in [10,
Sect. 2.1]. Monitoring tools for HPC applications like Score-P, VampirTrace [14],
Scalasca 1.x [7], Extrae [3], Open|Speedshop [22], and TAU [23] use different
instrumentation frameworks for parallelization paradigms, for example MPI (via
PMPI [6, Sect. 14.2]), OpenMP (via Opari [13] or OMPT [5]), CUDA (via
CUPTI [15]), as well as automatic and manual user instrumentation.

These frameworks are also used to tune parallel applications, for example for
energy efficiency. The Periscope Tuning Framework (PTF) [8], for example, can
apply concurrency throttling and frequency scaling to a user instrumented function.
Bhalachandra et al. instrument MPI parallel programs [4] to perform load balancing
via clock modulation. Rountree et al. use dynamic voltage and frequency scaling
(DVFS) instead, but also use MPI instrumentation viaMPI’s profiling interface [18].
Wang et al. also apply DVFS, but balance OpenMP parallel applications via an
Opari instrumentation [27]. On a different scale, the Linux operating system has
its own tuning mechanisms, that rely on instrumentation or even sampling which
influence the performance and efficiency of parallel programs. The cpuidle kernel
infrastructure [17] instruments the Linux scheduler and applies specific power states
to idling hardware threads based on the presumed future behavior. The Linux
ondemand governor [16] interrupts the workload of a CPU periodically to re-
evaluate frequency decisions. Table 1 summarizes the different methods and tools.

Table 1 Examples of existing monitoring and tuning tools, their data acquisition techniques and
the supported recording or tuning options

Tool Data acquisition Recording/tuning

Monitoring

Score-P [12] Instrumentation, sampling Summarization, logging

VampirTrace [14] Instrumentation Summarization, logging

Scalasca 1.x [7] Instrumentation Summarization

Extrae [3] Instrumentation Logging

HPCToolkit [1] Sampling Summarization, logging

Open|Speedshop [22] Instrumentation, sampling Summarization, loggings

TAU [23] Instrumentation, sampling Summarization, logging

Tuning

Renci/UNC [4] Instrumentation Clock modulation

Adagio [18] Instrumentation DVFS

ENAW [27] Instrumentation DVFS

PTF [8] Instrumentation Various plugins

ondemand gov. [16] Sampling DVFS

cpuidle menu gov. [17] Instrumentation Idle states

Green Governors [24] Sampling DVFS

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 61

Data acquisition techniques are not the only aspect that such tools have in
common. Both, monitoring and tuning tools collect metrics like performance
counters to enrich the information about the executed application with additional
data that can be used to optimize its execution. Since essential components of these
tools are shared, a common infrastructure that can be used for monitoring and tuning
is desirable. This is for example done by Score-P, which supports tuning (via PTF)
and recording (profiling and tracing).

With open interfaces, the existing infrastructure can be used to implement new
functionalities with little effort. In Sect. 3, we describe an interface of Score-P that
can be used to capture additional information. We show how the additional data
can help to interpret performance results with three examples. Another extension
of Score-P that enables programmers to write additional back-ends for Score-P is
presented in Sect. 4. This can exploit the capabilities of the existing infrastructure to
optimize the execution of the workload or write alternative performance information
which is shown in three examples. Section 5 summarizes our paper and outlines
future work.

2 Score-P Overview

Score-P is a highly scalable performance measurement tool that supports various
HPC architectures and parallel programming paradigms to enable users to interpret
the performance of their parallel applications. To do so, Score-P provides different
adapters. Adapters interrupt the monitored application to capture and record its
current status. Available adapters include the instrumentation of parallel program-
ming paradigms, user instrumentation, and sampling. However, some information
about the hardware and software environment is independent of the chosen data
acquisition method. Hence, Score-P includes different services that collect such
independent data. These services include for example system trees, which describe
the hardware layout, and metrics like performance monitoring counters (PMCs),
which can be used to monitor the utilization of processor resources. The data that
is collected by adapters and services is then passed to substrates, which represent
the recording layer in the classification given by Ilsche et al. Existing substrates
implement tracing and profiling.

One major target of Score-P is to provide high code quality and a robust
infrastructure. Thus, designing and merging new functionality is a protected process
that requires multiple steps. Additionally, some functionality targets only specific
architectures or projects and is abandoned once the funding has expired. To increase
the flexibility of the sophisticated Score-P infrastructure, we implemented two
interfaces that enable users to easily provide additional metrics and implement new
substrates. The basic structure of Score-P including our extensions is depicted in
Fig. 1.

62 R. Schöne et al.

Score-P

CUDA
Instrumenta�on

OPARI
Instrumenta�on

MPI
Instrumenta�on Sampling

Profiling Plugin Interface

Adapters

Substrates

Services
Stack-

Informa�on

PAPI

...

Profiling
Plugin

Interface

Substrate Plugins

Recording Op�miza�onEvent Flow
Graphs

Load Balancing
Op�miza�on

Metric Plugins

RAPL

dataheap

uncore

watchpoint

Fig. 1 Score-P overview. Described interfaces and possible extensions are marked orange

3 The Metric Plugin Interface

In this section, we describe the Score-P metric plugin interface. We illustrate
different design criteria for metric plugins and how Score-P supports them in
Sect. 3.1. Section 3.2 lists the calls from Score-P to a plugin in detail. In Sect. 3.3,
we measure the overhead for the interface on a contemporary system. Two examples
for metric plugins are given in Sects. 3.4 and 3.5.

Historically, Score-P metric plugins succeed the VampirTrace plugin counters
that we introduced in [20]. The previous interface has been used in several
publications to incorporate new metrics into application performance traces, e.g.,
power and energy measurements. We translated this interface to Score-P 1.2 and
further refined it in Score-P 2.0 in a backward compatible way.

3.1 Metric Design Criteria

Metrics can have different spatial scopes, value ranges, information types, and
temporal scopes. The spatial scope of a metric can be any software instance or
hardware device. Score-P focuses on applications and does not provide detailed
hardware topology descriptions like core or NUMA mappings. Therefore, the
interface supports four scopes: per thread, per process, per computing node, and
global. Hardware metrics should be assigned to one of the latter: either to a node
or the total monitored system. Examples for the different scopes are per-thread
stack size, per-process allocated memory, per-node inlet temperature, and total
system power consumption. Additional scopes have to be used informally, e.g., if
the performance analyst knows that the thread has been pinned to a specific core

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 63

and simultaneous multithreading is not used, he can relate all hardware events of a
core to the thread that is pinned to it.

Score-P supports different value ranges for metrics: uint64_t, int64_t,
and double. The attributes base, exponent, and unit describe the numerical
semantics of a metric in more detail: base can be either 2 (binary) or 10 (decimal)
and exponent specifies the prefix, e.g., �3 with a base of 10 represents milli.
This allows us to cover a wide range of values with 64-bit integers. In addition,
the plugin description contains a human-readable unit string. Taken all together
a measurement of a metric can be interpreted as: value � baseexponent unit. For
example, to define a memory bandwidth metric in GiB/s base has to be set to
binary, exponent to 30, and unit to “B/s”.

The temporal scope of metrics can be defined with a next, last, start, or point
semantic. The values of next metrics are valid from the associated timestamp to the
next measurement point. Writing the current amount of allocated memory directly
after (de)allocation operations would result in a next metric. Generally, next metrics
represent state changes that are captured directly. By contrast, last metrics contain
values that are valid from the previous timestamp to the timestamp associated with
the current value. This can be the count of operations since the last measurement
point. The special case of operations since the start of the measurement, is
described with the start semantic. Measurements with instantaneous characteristics
are described as point metrics. For instance taking a instantaneous samples of the
current processor voltage without any averaging would be recorded as a point
metric. It is important to distinguish the temporal scope when correlating metrics
with applications measurements, both for visualization and statistical analyses.

Metric plugins can provide their measurement data either synchronously or
asynchronously. Synchronous data is gathered when an adapter of the measurement
system interrupts the analyzed application. If the plugin defines the metric to be
strictly_sync, it has to supply a new measurement value on each of these events.
Other sync plugins can specify a minimum time delta between queries e.g., to
account for the underlying measurement resolution. Synchronous plugins should
be able to provide data very quickly, otherwise the perturbation can spoil the
measurement. Since the reported value will be associated with the current time,
it should not be outdated.

For asynchronous (async) plugins, measurements are acquired at arbitrary points
in time. All values are collected once at the end of the execution. As a result,
the plugin is responsible for buffering the measurement data at runtime. Either
a background thread, a different process, or even a separate system collects the
measurement values and timestamps during execution. Measurements that occur
independently from the running application, especially those with a fixed update
rate (e.g. average power over 10ms) should be recorded with an async plugin. In
the special case async_event, a plugin is queried for series of timestamp/value data
more frequently during execution. Due to the mismatch between the timestamps
from metrics and application events, asynchronously collected data cannot easily
be mapped to the application events. One possibility would be trace-replay which
sorts the different events and metric values according to the spatial scope of the used

64 R. Schöne et al.

locations and location groups.1 However, this would rely on trace records as profiles
do not store timing information. Thus, asynchronousmetrics are not supportedwhen
profiling is enabled.

3.2 Calls to Plugins

The interface has been designed to account for the many degrees of freedom that
metrics can have. A plugin has to implement five functions for basic functionality.
The entry point is the only function that has to be exported by the plugin. It passes
the necessary function pointers to the Score-P runtime system.

In the initialization function of a plugin, all processes can check for the availabil-
ity of required resources and initialize appropriate data structures. Afterwards, the
function get_event_info should provide a mapping between the user-supplied
metric specification strings and actual metric names, e.g., to resolve wildcards in
the specification. Thus, multiple metric names can be returned for each metric
specification. Based on the specification of the spatial scope of the plugin, the
function add_counter is called once per thread, process, host, or once globally.
It is used to set up the measurement of the requested metric and should return an
identifier that is later used to reference this metric. The last mandatory callback
function is the finalization call.

Additional functions may be implemented by a plugin depending on the
characteristics of its metrics. For (strictly) synchronous plugins, the functions
get_current_value and get_optional_value, respectively, should
return the current value of the metric. For asynchronous plugins, the function
get_all_values is called to provide all collected values at the end of the
application run. The values should be timestamped according to Score-P’s internal
clock. A reference to this clock can be acquired through the set_clock callback.
Timestamps from external sources need to be converted by the plugin, e.g. using
linear interpolation. The optional synchronize callback is called for all threads
and processes, both at the beginning and at the end of the application run.

A C++ interface is available2 in addition to the native C interface. The C++
wrapper enables the development of plugins in a more high-level and object-oriented
manner. The synchronicity and spatial scope are defined as policies. The plugin class
inherits from a base class with policies as template parameters. Facilities for id
management, message logging as well as type-safe timestamps (ticks) are provided.
All abstractions are done with runtime-efficient in mind (Fig. 2).

1In the Score-P syntax locations define scopes that are monitored. Typically a single location is a
thread that is executed on a CPU (CPU location) or an external device. Multiple locations can be
grouped to location groups, e.g., all OpenMP threads within a process or all processes within a
compute node.
2https://github.com/score-p/scorep_plugin_cxx_wrapper.

https://github.com/score-p/scorep_plugin_cxx_wrapper

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 65

Entry
Point ini�alize

set_clock

get_event_info add_counter finalize

synchronize synchronizeget_op�onal_value
/get_current_value

get_all_values

On event

Fig. 2 Order of functions triggered in metric plugins by the Score-P measurement infrastructure.
Blue elements depict mandatory functions, optional functions are colored orange

3.3 Introduced Overhead

This section compares the overhead introduced by plugins by testing minimal
strictly synchronous and asynchronous metric plugins. Listing 1 shows the source
code of the test program. The workload of this test case is reduced to a main loop
generating a predefined number of function calls. The source was compiled with the
Score-P instrumenter and automatic compiler instrumentation enabled. With this
setup, two events will be recorded for each function call—one event for entering
and another event for leaving the function. All experiments were executed on a
dual-socket system equipped with Intel Xeon E5-2690 v3 processors running at
2:5GHz. We run each of the experiments ten times and use the median runtime for
further calculations.

In the first experiment, the runtime overhead for minimal strictly synchronous
metric plugins is investigated. The plugin is implemented to not take any mea-
surements but to return 0 as current value. The program was executed with the
Score-P infrastructure attached in profiling mode. Figure 3 depicts the experiment
results. The points in this figure representmeasured values, the lines indicate best fits
generated by linear regression. The baseline for this experiment is an application run
without a registered plugin. In additional runs, a plugin provides varying numbers
of metrics ranging from 0 to 4. The runtimes were determined by querying the
inclusive time of the main function with the cube_stat tool. The results show the
same runtimes for runs without a plugin registered and runs with a registered plugin
that produces no metric. Hence, there is no runtime penalty for just registering a
plugin. Nevertheless, there is an initial overhead when the first metric is activated.
We denote this initial overhead activation factor ˛. Based on the experiment result ˛
can be determined to 6.67 ns. This initial overhead is more costly than the overhead
of adding further metrics. With a linear regression over the slopes of the lines for n
metrics (n�1) the cost for adding a strictly synchronous metric can be determined.
In our experiments the additional cost ˇ for a single metric is 4.97 ns (�20 cycles).

Generally, the overall costs can be calculated by the term ˛ C ˇ � n.
In addition, we repeated the measurements and repeat the experiments with one

active internal Score-P metric recording the CPU cycles via Linux perf. Since there
is always at least one strictly synchronous metric active, ˛ cannot be measured
anymore. In these measurements a higher runtime and more variation is noticeable.
Both can be related to the perf metric. ˇ increases to 6 ns (24 cycles).

66 R. Schöne et al.

Listing 1 Minimal program to determine overhead

void foo ()
{
}
int main ()
{

unsigned long long i =0;
for (i =0; i <NUM_CALLS; i ++)

foo () ;
}

Fig. 3 Measured overhead
for minimal strictly
synchronous metric

In the second experiment, a minimal asynchronous metric plugin was used.
The minimal program was compiled to produce 5,000,000 function calls. The
asynchronous metric plugin writes 1, 2, 3, 4, or 5 million elements at the end of
the application run. As the profiling mode of Score-P currently does not support
asynchronous metrics, we used the time command line tool to compare the
experiment runtimes. Regardless of the number of supplied elements, no change
in the runtimes could be detected. As expected for asynchronous metric plugins, the
runtimes are always similar to the ones without plugins.

3.4 Use Case: Uncore Counter

The first example of a metric plugin provides information from Intel uncore
performance counters (UPMCs). UPMCs are used to monitor events in uncore
devices that are shared by the processor cores, like the integrated memory controller,
the last level cache slices, or the power control unit (PCU). The available uncore
devices and their respective performance events are described in vendor manuals,
e.g. [11]. Linux provides the perf_events interface [28] to access them from user
space. This interface is also used by PAPI [25] which relies on libpfm to assign

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 67

events to names. However, the support for uncore components depends on the Linux
kernel version, e.g., uncore events for Intel Haswell processors are available since
kernel 3.18. Older kernels that are often used in HPC do not support such events.
Another interface that allows users to poll UPMCs is likwid [26]. However, it relies
on accesses that are usually only available for privileged users. To circumvent these
restrictions, likwid provides a daemon that can be run as root and polled from
userspace applications. While this solves the issue of the restricted access, it also
increases the latency for reading values.

Instead, we use a direct access to the perf_event interface or, alternatively, the
x86_adapt kernel module [19]. This kernel module exposes save register regions
that can be read or written from user space. To provide meaningful names for the
events, we use libpfm.

These metrics are registered per-host. Thus, the master thread of one process on
each host will set-up the UPMCs and collect their data. Each registered event is
measured on all sockets. Thus, on a dual-socket system, one registered event will
result in two metrics being included in the trace. To distinguish events from different
sockets, the plugin includes the socket ID in the metric name. This information can
be used later to match the captured software information if the scheduling of threads
and processes is known.

One use case for this plugin is to visualize the number of cores that reside in
certain idle states. Such an information can be used to check whether intentionally
idling processor cores are placed into a hardware idle state by the operating system.
To be able to map the metrics to a group of OpenMP threads, we pin the first
twelve threads of the monitored application to the cores on the first socket and the
remaining threads on the second socket. In Fig. 4, we show that the operating system
correctly uses idle states in OpenMP synchronizing routines. As the threads on the

Fig. 4 Execution of OpenMP parallel NAS benchmark BT (24 threads, Class
C). The top display depicts the executed regions, the bottom displays show
the percentage of active cores, based on PCU counter hswep_unc_pcu::
UNC_P_POWER_STATE_OCCUPANCY:CORES_C0:e=0:i=0:t=0. Within the depicted
time frame, the probability that a core in package 0 is not in an idle state is 97.2% and 88.7%
for package 1 cores, respectively. This corresponds with the time spent in synchronization regions
(cyan)

68 R. Schöne et al.

second package spend more time in synchronization, the average number of active
cores is lower.

3.5 Use Case: Watchpoints

Sometimes it is unfeasible or too time-consuming to instrument variables and
functions for program analysis. This could be the case if an analyst uses a build
system he is not familiar with or if the code is too complex. For these cases, we
developed two plugins that enable users to trace local and global variables and the
usage of uninstrumented functions.

The first plugin provides information on the number of accesses to a specific
memory address, i.e., reading or writing a variable or calling function. Each mon-
itored access to such a variable or function is associated with a specific overhead.
The remaining measurement perturbation for Score-P’s basic functionality is not
influenced. For each registered function or variable, the plugin checks whether
it is defined globally, using libbfd. If it found the associated address, it enables
performancemonitoring via the perf_event interface and watches for accesses to this
address. Mapping symbols to addresses is done per process, i.e., in the initialization
phase. Thus, in an MPI parallel application each rank can watch a different address.
Eachmonitored variable or function provides a backward-looking per-thread strictly
synchronous metric with an uint64_t data type. The metrics name does not
include address information, which makes it easy to compare values of different
processes.

In Fig. 5, we show a resulting trace for the OpenMP parallel NAS benchmark BT
in class W. We defined two functions that the plugin should survey for execution:
matmul_sub_ and matvec_sub_. The trace indicates that these are executed
from all OpenMP threads, but the number of calls to these subroutines is unevenly

Fig. 5 OpenMP parallel NPB BT (class W, 4 threads), number of calls to sub-functions
matmul_sub_ and matvec_sub_. While the first two threads call these functions 3036 times
per parallel region (=6*506), the latter threads only call it 2530 times (=5*506), which leads to an
imbalance

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 69

Listing 2 OpenMP example, which accesses a global variable d_var

static double d_va r =0;
void func (int i) {
#pragma omp c r i t i c a l

{
d_va r =0.5� i ;

}
}

int main (int argc ,
char �� a rgv){

int i =0;
#pragma omp p a r a l l e l for s ch edu l e (r un t ime)

for (i =0; i <100000; i ++){
func (i) ;

}
return 0 ;

}

spread, which creates an imbalance that is depicted by the cyan synchronization
phases of the trace. While thread 0 and 1 execute 3036 iterations of the subroutines,
thread 2 and 3 only execute 2530 iterations per parallel region. One can assume
that the parallel loop assigns n chunks of 506 iterations to each thread. A total of
22 chunks are scheduled, where the first and latter two threads execute 6 and 5
respectively, which correlates with the imbalance at the end of the parallel region.
This knowledge can be used to assign an optimized number of parallel threads to
the workload and predict the scalability of the parallel loops.

The second version of a watchpoint plugin extends the functionality and provides
the content of the variable as an asynchronous metric. This means that transitions
within the content of the memory region that hold a variable are recorded. To do
so we use libbfd and libdwarf to gather the address of a variable whose name is
registered by the user. We then set up a hardware breakpoint for this variable using
the Linux perf_events interface. In the following, the thread that changes the variable
interrupts its execution, gathers the current value and stores it in an array. When
multiple threads write the same variable concurrently, the content of the variable
cannot necessarily be recorded since another thread can change it before the content
has been read by the interrupt handler that is defined by the plugin. Still, the number
of recorded transitions matches the number of writes to the variable, even though
the recorded values might be flawed.

We show the functionality for a global variable with a short example program
(Listing 2). In this example, a number of OpenMP threads access a shared global
variable d_var. Based on the selected scheduling routine for OpenMP parallel
loops, the content of the variable over time changes. The resulting value of d_var
is depicted in Fig. 6. While for static scheduling, the number of iterations are
split in a way that one thread executes the first 50,000 iterations and the other thread
the remaining 50,000. Thus, while one thread always writes numbers between 0

70 R. Schöne et al.

Fig. 6 Value of d_var over time for different settings of OMP_SCHEDULE and two threads. The
minimal value for a time range depicted in one pixel is marked blue, the maximal red, the average
black. (a) OMP_SCHEDULE=static. (b) OMP_SCHEDULE=dynamic,4096

and 24,999.5, the other thread writes numbers between 25,000 and 49,999.5. For
dynamic scheduling with a chunk size of 4096 iterations, the written values are
much closer as the current chunks of the threads are likely to be close.

In future work, one could implement a monitor for local variables that would be
reported per thread. To do so, the plugin would watch for the function that defines
the local variable. As soon as the function is entered, the plugin gathers the address
of the current stack base, calculates the offset of the local variable via libdwarf and
sets up temporary watchpoints for the local variable and the return address. When
the return address is executed, the plugin clears the temporary watchpoints.

4 The Substrate Plugin Interface

In addition to the interface for additional metrics, we introduce an interface
for substrates. These can use the existing infrastructure in Score-P like adapters
and services to implement a new functionality. In previous publications, we
described the idea of integrating performance and energy efficiency measurement
and tuning [19, 21]. We used VampirTrace where the individual components are
tightly coupled. Since the profiling and tracing can not be disabled completely, a
significant runtime overhead reduces the applicability of VampirTrace for such an
infrastructure.

Score-P already uses an internal substrate interface, which makes it much
easier to decouple and integrate additional functionality. However, implementing
an internal substrate requires recompilation of the measurement environment and
an integration in the Score-P source code tree. This is impractical for experimental
and system specific extensions. Thus, we provide a plugin interface to dynamically
access the internal substrate functionality. In this Section we describe the interface
itself and three plugin implementations, which make use of the new interface to
increase Score-P’s functionality with new tuning and recording options.

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 71

4.1 Substrates Design Criteria

Different substrates put diverging demands on the information that is provided by
the monitoring infrastructure. Thus, Score-P must not only pass the incoming events
to the registered plugins, but must also provide information about the supplied
data. With the proposed interface, substrate plugins can register for specific types
of events. These cover general events like the entering and exiting of a function,
but also specialized events that are related to specific adapters. With each of these
events, plugins receive a minimal set of information, which is an identifier for the
thread whose monitoring issued the event and the timestamp associated with it.
Further data depends on the type of the event that is monitored and can for example
include information about the communication partner (e.g., for MPI events) or a set
of strictly synchronous metrics (e.g., for enter and exit events). Substrate plugins
may chose to register only for those events that are relevant to them. Additionally,
they can query the Score-P runtime for meta-data about the supplied information,
e.g. the type and name of the thread where the current event occurred.

If the monitoring is distributed among different processes, plugins should also be
able to communicate to enable a global view of the current state. Score-P enables
plugins to use an internal interface for multi processing paradigm (MPP) communi-
cation. With this interface, processes can synchronize their state independent of the
MPP used in the analyzed program.

Substrate plugins receive an event when the monitored application finishes,
allowing them to write out the collected information. Likewise, when the monitoring
is initialized, an appropriate call enables them to read existing configuration
variables.

4.2 Calls to Plugins

We designed the interface in a way that enables programmers to access all
relevant data to get a most comprehensive status for their monitoring or tuning
implementations. The interface currently consists of three major parts:

1. The plugin definition, which provides callbacks to the substrate plugin for 15
management events,

2. A list of 62 application events that a substrate plugin can register for, and
3. A list of 46 callbacks to Score-P internals, that enable plugins to interpret events

and synchronize the distributed state.

To register one or multiple substrate plugins, users set the environment
variable SCOREP_SUBSTRATE_PLUGINS. When monitoring is initialized,
Score-P reads this variable and attempts to load the respective libraries. If
for example, the plugin foo is registered, Score-P loads the shared object
libscorep_substrate_foo.so. Afterwards, it retrieves the plugin

72 R. Schöne et al.

definition. Management events that are supplied with the plugin definition are
stored for future reference. Afterwards, Score-P initializes the substrate by calling
its initialize function. If the initialization failed, a warning is prompted and
Score-P de-registers the plugin. If the initialization succeeds, plugins are supplied
with callbacks to internal functions (set_callbacks). These can be used to
retrieve internal information (e.g., the scope of a metric or the name of a location)
and to access internal functionality like a synchronization mechanism, which
transparently maps the calls to the used MPP. The usage of MPP functions should
be delayed until the MPP is available, i.e., initialize_mpp is called. After
Score-P callbacks are provided to the plugin, a list of functions for application
events is gathered via the function get_event_functions. From this moment
on, internal definitions (e.g., metrics or code regions) can be defined. Substrates
receive such information via the new_definition_handle function. Later in
the initialization phase, an identifier is assigned to each substrate plugin via a call
to assign_id. This identifier can later be used to store and retrieve thread-local
data. Afterwards, the measurement is started and the plugin is able to retrieve the
same management and application events as the existing substrates, profiling and
tracing. When the monitoring ends, substrate can receive calls when Score-P is
about to unify the collected monitoring data (pre_unify), when it flushes data

Fig. 7 Order of calls to substrate plugin management functions. All functions except for the
plugin definition (entry point) are optional. Management events issued by Score-P are colored
blue (mandatory implementation) or orange (optional implementation). Application events that
are issued by the monitored application are colored green. (a) Per process substrate plugin calls.
(b) Per location substrate plugin calls

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 73

to the file system (write_data) and when the measurement system is shut down
(finalize).

In the measurement phase, plugins are called whenever a new location (e.g., a
thread) is created (create_location). Locations are distinguished into CPU
locations and other locations, e.g., threads that are executed on a GPGPU. CPU
locations are activated after they are created (activate_cpu_location) and
de-activated (deactivate_cpu_location) before they are closed. In the
meantime, they can also be activated and deactivated, e.g., when a thread is
suspended from providing monitoring data. If the CPU locations use task model
programming (e.g., OpenMP 3 tasks), these tasks are also published to the plugin.
Whenever a location is not de-activated, it can create application events. When
a location is closed, the delete_location function of plugins is called. An
overview of per-process and per-location calls is depicted in Fig. 7.

4.3 Introduced Overhead

Score-P loads the plugins in each process using the dynamic linker library functions
dlopen and dlsym. This initialization is performed only once before the actual
measurement and therefore introduces no perturbation and limited overhead. The
retrieved function pointers for event and management functions are stored in Null-
terminated lists. If plugins do not implement specific functions, the effective length
of these lists is reduced. When an event or management function is called within
Score-P and at least one plugin registered for this function, the measurement
environment traverses the respective list and calls the registered functions. If no
plugin registered for an event, the plugin infrastructure does not cause any overhead.

The overhead is analyzed in experiments designed similar to the tests presented
in Sect. 3.3 using the same system and test program (Listing 1). Runtime events
are recorded by Score-P’s profiling substrate and the inclusive runtime of the main
function is determined in combination with the cube_stat tool. We do not
use any metrics, but a minimal substrate plugin that registers for enter and exit
events as defined in Listing 3. Again, we change the number of loops that call
the instrumented function foo, repeat the measurement of each problem size ten
times and use the median result. The resulting runtimes are depicted in Fig. 8, where
measured values are points and the lines represent the linear regression of these
points. The difference of the slopes of the two linear fits represents the costs for a
single call to the substrate, which happens to be 3 ns (12 cycles).

4.4 Use Case: Region-Based Energy Efficiency Tuning

As a first example for back-ends, we use libadapt, which has previously been
used to enable energy efficiency optimizations with VampirTrace, e.g. for OpenMP

74 R. Schöne et al.

Listing 3 Minimal substrate event

static void e n t e r _ r e g i o n (. . .) {
}
static void e x i t _ r e g i o n (. . .) {
}

/* Register event functions */
static u i n t 3 2 _ t
g e t _ e v e n t _ f u n c t i o n s (
SCOREP_Substrates_Mode mode ,
SCOREP_Subs t ra t e s_Ca l lback�� r e t u r n e d)
{
f u n c t i o n s = c a l l o c (. . .) ;
f u n c t i o n s [SCOREP_EVENT_ENTER_REGION] = e n t e r _ r e g i o n ;
f u n c t i o n s [SCOREP_EVENT_EXIT_REGION] = e x i t _ r e g i o n ;
� r e t u r n e d = f u n c t i o n s ;
return SCOREP_SUBSTRATES_NUM_EVENTS;

}

Fig. 8 Measured overhead for a minimal substrate plugin that registers for enter and exit events

parallel [19] andMPI parallel [21] programs. It provides various back-ends that sup-
port tuning of processor frequencies, idle states, and various low level optimizations
at the level of code-regions.

In order to use libadapt, the plugin registers four management events (initialize,
set_callbacks, get_event_functions, and new_definition_handle) and four applica-
tion events (enter region, exit region, fork, and join). To be able to cope with

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 75

Fig. 9 MPI parallel NPB BT (576 ranks). Left side (from top to bottom): executed functions
(function names on right panel), average frequency of involved processor cores, average power
consumption of nodes

incoming region handles at enter and exit events, the plugin stores the handles when
they are defined. Afterwards, the plugin calls libadapt with every enter and exit event
of registered functions and adjusts the hardware/software environment according to
the user’s specification. Since, Score-P interrupts threads and processes, the user has
to enforce the pinning of threads to cores or hardware threads. Neither the plugin
nor libadapt check whether the applied tuning parameters result in an optimized
execution. However, such an analysis can be done with Vampir and Scalasca. An
example is depicted in Fig. 9 where we used Score-P and libadapt to change the
processor core frequency of an MPI parallel benchmark depending on the executed
region. The power monitoring is provided via a plugin metric for the HDEEM
measurement infrastructure [9].

4.5 Use Case: Balancing-Based Energy Efficiency Tuning

Some parallel programs struggle with load imbalances that lead to a significant
portion of time spent in synchronization. The overall energy efficiency of such
programs can be improved by reducing the clock frequency and voltage for those
threads that would enter the synchronization early at nominal speed. Examples that
target different parallelization paradigms are given in Sect. 1.

The load balancing substrate plugin intercepts the start and end of a list of
blockingMPI and OpenMP calls. It then optimizes the execution of a “synchronized
region” r. This region consists of a computing part (which might include non-
blocking communication) and a blocking communication part. The plugin assumes
that the blocking communication part is fast and slows down the whole synchronized
region to an extent that the computing arrives just in time for synchronization.
Different synchronized regions are distinguished by using a strictly synchronous
metric that provides a unique identifier based on the current call stack. The target
frequencies ft.r/ are adjusted in the following way: if the compute time represents

76 R. Schöne et al.

Fig. 10 Execution of weather prediction workload (COSMO SPECS FD4) on 96 MPI ranks
with load balancing substrate. Displayed information from top to bottom: executed MPI functions
(colored red); average frequency of involved cores; average power consumption

at least 95% of the synchronized regions, ft.r/ is set to the reference frequency.
If it constitutes at least 85%, ft.r/ is set to the frequency that has been used
recently fm.r/. If it is less than 85%, ft is computed by multiplying fm.r/, with the
fraction of the computation time and adding a delta frequency to still arrive too
early for synchronization in future executions: ft.r/ D tcompute

ttotal
� fm.r/ C ı. To avoid

flickering frequencies, the maximal predicted optimal frequency of the previous four
repetitions of the synchronized region is applied (Fig. 10).

4.6 Use Case: Event Flow Graphs

As a third example, we present event flow graphs comparable to [2]. Event flow
graphs represent a function call sequence of a program where each node represents
an instrumented region, and each edge the transition rules between the regions. In
our version, each node represents a specific call stack and is labeled with the name
of the lowest function of the respective stack, i.e., the instrumented functions. To
distinguish call stacks, we use the same metric that is also used in the previous
section. We use three different notations for edge labels. The first one is represented
by a single number n, which describes that this transition is taken the nth time
the previous node is traversed. The second notation comprises three numbers i; j; k.
Here, i and j describe the first and last time the previous node is traversed and this
transition has been taken. k describes the stride: the transition is taken when the
previous node is executed the ith, .iCk/th, .iC2k/th . . . , jth time. The third notation
i; j; k; l;m extends this scheme with additional information on nested loops. The
outer loop has stride l and is executed m times. This enables us to further reduce the
number of edges when a loop that can be represented with three values is interrupted
at a regular interval.

One example for event flow graphs is given in Fig. 11, which depicts the
main loop of the first MPI rank of the NAS Parallel Benchmark LU. The MPI
communication within this loop starts with an MPI_Send (top node) and ends with

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 77

Fig. 11 Event flow graph of
the MPI communication for
the inner computation loop of
MPI parallel NAS Parallel
Benchmark LU (Class A, 4
ranks), rank 0

78 R. Schöne et al.

Listing 4 Communication in inner compute loop for first rank of MPI parallel NPB LU - Class A,
4 ranks total

for (i =1; i <=250; i ++) {
for (j =1; j <=61; j ++) {

MPI_Send () ;
MPI_Send () ;

}
for (j =1; j <=61; j ++) {

MPI_Recv () ;
MPI_Recv () ;

}
if (i == 250) {

MPI_Al l reduce () ;
}
MPI_Send () ;
MPI_Irecv () ;
MPI_Wait () ;
MPI_Send () ;
MPI_Irecv () ;
MPI_Wait () ;

}

an MPI_Wait (bottom node). This loop is executed 250 times. The event flow graph
can be used to reproduce the communication pattern for testing purposes. Listing 4
depicts such a reproduced code.

The same plugin can also be used for OpenMP parallel programs. In another
example, we execute a thread parallel NPB LU with size C on 24 threads and extend
the performance measurement with PAPI metrics that are provided by Score-P. To
illustrate the effectiveness of the program execution, we color the nodes and edges
depending on their relative stall cycles.3 A green edge or node has no or only some
stall cycles, a red node or edge indicates that most cycles are spent stalled. A general
overview of the program is depicted in Fig. 12a. However, such a representation
cannot depict nested calls. In the next step, we attribute a node to every enter and
exit event. Now, the nodes represent single monitoring events and the edges the
regions between the instrumentation points. Since monitoring events do not provide
performance metrics, only the compute regions (edges) are colored. To limit the
amount of events, we filter omp flush directives. A fragment of the resulting plot
is depicted in Fig. 12b.

3Relative stall cycles D CYCLE_ACTIVITYWCYCLES_NO_EXECUTE
PAPI_TOT_CYC .

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 79

Fig. 12 Event flow graphs of parallel regions for NAS Parallel Benchmark LU (OpenMP, Size C)
with colored nodes and edges. A green color indicates no stall cycles, red indicates a high amount
of stall cycles. (a) Master Thread, Event flow graph of parallel regions. (b) Event flow graph of
OpenMP instrumentation, zoom into parallel region @l2norm.f:43

80 R. Schöne et al.

5 Conclusion and Further Work

In this paper we described two interfaces that can be used to extend the functionality
of Score-P. We summarized the general idea behind the interface and the calls
that possible plugins do receive. Additionally, we demonstrated that the expected
runtime overhead of the interfaces is adequate, compared to the overhead that is
introduced by the remaining Score-P infrastructure. Furthermore, we have shown
several examples for the described interfaces. We demonstrated that watchpoints
can be used to monitor accesses to functions and variables. This enables analysts
to investigate them without an explicit instrumentation. We also, described how
performance counters can be used that can not be associated to single threads.
For substrates, we demonstrated that it is possible to tune the hardware/software
environment at the level of code-regions. We also demonstrated how a balancing-
based energy-efficiency optimization could be implemented. Our last use case
recorded event flow graphs. Such a plugin can be used to provide performance
analysts with a high-level abstraction of the recorded events, since it reduces the
number of displayed events significantly in comparison to traces. It can also be used
to accompany profiles that do not store the order of executed regions.

Future work includes supplemental spatial scopes for metrics. For example,
uncore metrics, as described in Sect. 3.4, would benefit if they could declare that
they are recorded per socket. To implement such scopes, the system tree, which is
gathered by Score-P must collect and store architectural information from within
a compute node. Another challenge is the mapping of hardware thread events to
software threads, which relies on such an extended system tree. Here, Score-P could
parse the affinity of monitored software threads and store it for a post-mortem
analysis. Finally, the analysis tool Vampir should be extended so that metrics of
different scopes can be tallied up. For example, if the instructions are counted per
thread and the last level cache accesses are counted per socket, the instructions per
cache access can be calculated per node.

Acknowledgements This work has been funded by the Bundesministerium für Bildung und
Forschung via the research project Score-E (BMBF 01IH13001), the German Research Foundation
(DFG) in the Collaborative Research Center “Highly Adaptive Energy-Efficient Computing”
(HAEC, SFB 912), and by the European Union’s Horizon 2020 Programme in the READEX
project under grant agreement number 671657.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent,
N.R.: HPCTOOLKIT: Tools for performance analysis of optimized parallel programs. Concurr.
Comput. Pract. Exper. (2010). doi:10.1002/cpe.1553

2. Aguilar, X., Fürlinger, K., Laure, E.: MPI trace compression using event flow graphs. In:
Proceedings of the International European Conference on Parallel and Distributed Computing
(Euro-Par) (2014). doi:10.1007/978-3-319-09873-9_1

10.1002/cpe.1553
10.1007/978-3-319-09873-9_1

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 81

3. Barcelona Supercomputing Center: Extra user guide manual for version 3.1.0. https://www.
bsc.es/sites/default/files/public/computer_science/performance_tools/extrae-3.1.0-user-guide.
pdf. Online at bsc.es; Accessed 20 Dec 2016

4. Bhalachandra, S., Porterfield, A., Prins, J.F.: Using dynamic duty cycle modulation to improve
energy efficiency in high performance computing. In: IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW) (2015). doi:10.1109/IPDPSW.
2015.144

5. Eichenberger, A.E., Mellor-Crummey, J., Schulz, M., Wong, M., Copty, N., Dietrich, R.,
Liu, X., Loh, E., Lorenz, D.: Ompt: an openmp tools application programming interface for
performance analysis. Lect. Notes Comput. Sci (2013). doi:10.1007/978-3-642-40698-0_13

6. Forum, M.: MPI: a message-passing interface standard. version 3.1 (2015). http://mpi-forum.
org/docs/mpi-3.1/mpi31-report.pdf. Online at mpi-forum.org; Accessed 20 Dec 2016

7. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. Concurr. Comput. Pract. Exper. (2010). doi:10.1002/cpe.
1556

8. Gerndt, M., César, E., Benkner, S. (eds.): Automatic Tuning of HPC Applications - The
Periscope Tuning Framework (PTF). Shaker Verlag, Herzogenrath (2015)

9. Hackenberg, D., Ilsche, T., Schuchart, J., Schöne, R., Nagel, W.E., Simon, M., Georgiou, Y.:
Hdeem: high definition energy efficiency monitoring. In: Energy Efficient Supercomputing
Workshop (E2SC) (2014). doi:10.1109/E2SC.2014.13

10. Ilsche, T., Schuchart, J., Schöne, R., Hackenberg, D.: Combining instrumentation and sampling
for trace-based application performance analysis. In: Tools for High Performance Computing
(2015). doi:http://dx.doi.org/10.1007/978-3-319-16012-2_6

11. Intel: Intel xeon processor E5 and E7 v3 family uncore performance monitoring reference
manual (2015). Reference number: 331051-002

12. Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer, M.,
Gerndt, M., Lorenz, D., Malony, A., et al.: Score-p: a joint performance measurement run-
time infrastructure for periscope, Scalasca, Tau, and Vampir. In: Tools for High Performance
Computing (2012). doi:10.1007/978-3-642-31476-6_7

13. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and prototype of a performance tool
interface for OpenMP. J. Supercomput. (2002). doi:10.1023/A:1015741304337

14. Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel, W.E.:
Developing scalable applications with Vampir, Vampirserver and Vampirtrace. In: Parallel
Computing Conference (PARCO) (2007)

15. NVIDIA: CUPTI user’s guide (2016). http://docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf.
Online at docs.nvidia.com; Accessed Dec 2016 20

16. Pallipadi, V., Starikovskiy, A.: The ondemand governor past, present, and future. In:
Proceedings of the Ottawa Linux Symposium (OLS) (2006). https://www.kernel.org/doc/ols/
2006/ols2006v2-pages-223-238.pdf. Online at kernel.org

17. Pallipadi, V., Li, S., Belay, A.: cpuidle: do nothing, efficiently. In: Proceedings of the Ottawa
Linux Symposium (OLS) (2007). https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-
126.pdf. Online at kernel.org

18. Rountree, B., Lownenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch, T.:
Adagio: Making dvs practical for complex hpc applications. In: Proceedings of the 23rd
International Conference on Supercomputing (ISC) (2009). doi:10.1145/1542275.1542340

19. Schöne, R., Molka, D.: Integrating performance analysis and energy efficiency optimizations
in a unified environment. Comput. Sci. Res. Dev. (2013). doi:10.1007/s00450-013-0243-7

20. Schöne, R., Tschüter, R., Hackenberg, D., Ilsche, T.: The vampirtrace plugin counter interface:
introduction and examples. In: Proceedings of the International European Conference on
Parallel and Distributed Computing (Euro-Par) Workshops (2011). doi:10.1007/978-3-642-
21878-1_62

21. Schöne, R., Treibig, J., Dolz, M.F., Guillen, C., Navarrete, C., Knobloch, M., Rountree, B.:
Tools and methods for measuring and tuning the energy efficiency of HPC systems. Sci.
Program. (2014). doi:10.3233/SPR-140393

https://www.bsc.es/sites/default/files/public/computer_science/performance_tools/extrae-3.1.0-user-guide.pdf
https://www.bsc.es/sites/default/files/public/computer_science/performance_tools/extrae-3.1.0-user-guide.pdf
https://www.bsc.es/sites/default/files/public/computer_science/performance_tools/extrae-3.1.0-user-guide.pdf
10.1109/IPDPSW.2015.144
10.1109/IPDPSW.2015.144
10.1007/978-3-642-40698-0_13
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
10.1002/cpe.1556
10.1002/cpe.1556
10.1109/E2SC.2014.13
http://dx.doi.org/10.1007/978-3-319-16012-2_6
10.1007/978-3-642-31476-6_7
10.1023/A:1015741304337
http://docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-126.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-126.pdf
10.1145/1542275.1542340
10.1007/s00450-013-0243-7
10.1007/978-3-642-21878-1_62
10.1007/978-3-642-21878-1_62
10.3233/SPR-140393

82 R. Schöne et al.

22. Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., Cranford, S.:
Open|speedshop: an open source infrastructure for parallel performance analysis. Sci.
Programm. (2008). doi:10.1155/2008/713705

23. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High Perform.
Comput. Appl. (2006). doi:10.1177/1094342006064482

24. Spiliopoulos, V., Kaxiras, S., Keramidas, G.: Green governors: a framework for continuously
adaptive DVFS. In: International Green Computing Conference and Workshops (IGCC)
(2011). doi:10.1109/IGCC.2011.6008552

25. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Tools for High Performance Computing. In:
Collecting Performance Data with PAPI-C (2010). doi:10.1007/978-3-642-11261-4_11

26. Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-oriented tool suite for
x86 multicore environments. In: Proceedings of the International Conference on Parallel
Processing Workshops (ICPPW) (2010). doi:10.1109/ICPPW.2010.38

27. Wang, B., Schmidl, D., Müller, M.S.: Evaluating the energy consumption of openmp applica-
tions on Haswell processors. Lect. Notes Comput. Sci. (2015). doi:10.1007/978-3-319-24595-
9_17

28. Weaver, V.M.: Linux perf_event features and overhead. In: The 2nd International Workshop
on Performance Analysis of Workload Optimized Systems, FastPath (2013)

10.1155/2008/713705
10.1177/1094342006064482
10.1109/IGCC.2011.6008552
10.1007/978-3-642-11261-4_11
10.1109/ICPPW.2010.38
10.1007/978-3-319-24595-9_17
10.1007/978-3-319-24595-9_17

	Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases
	1 Introduction and Related Work
	2 Score-P Overview
	3 The Metric Plugin Interface
	3.1 Metric Design Criteria
	3.2 Calls to Plugins
	3.3 Introduced Overhead
	3.4 Use Case: Uncore Counter
	3.5 Use Case: Watchpoints

	4 The Substrate Plugin Interface
	4.1 Substrates Design Criteria
	4.2 Calls to Plugins
	4.3 Introduced Overhead
	4.4 Use Case: Region-Based Energy Efficiency Tuning
	4.5 Use Case: Balancing-Based Energy Efficiency Tuning
	4.6 Use Case: Event Flow Graphs

	5 Conclusion and Further Work
	References

