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Abstract The use of event graphs is a common approach to debug and analyze
message passing parallel programs. Although event graphs are very useful for
program understanding and debugging, they get confusing and hard to read for
programs with complex communication behavior, long runtimes and a large num-
bers of processes. An approach to ease this problem is to simplify the event graph
by marking occurrences of predefined well known communication structures. This
allows to quickly identify different regions of activity in the event graph without
further inspection. It also helps to identify parts, where certain communication
patterns are expected but do not occur due to a bug in the parallel application,
in this case the pattern might only match to a certain degree. In this paper we
present a language for the description of such communication patterns, which allows
to describe the patterns in a way that also covers variations in process numbers
and process mappings. Furthermore it demonstrates a pattern matching plugin for
the Trace Viewer of g-Eclipse which uses an specialized algorithm for detecting
patterns in prerecorded event traces of parallel programs. Based on the presented
approach a variety of improvements for the processing and presentation of event
graphs are imaginable. The extracted pattern information could be used to optimize
the analyzed program or to reduce the contents of the graph to areas of interest, by
substituting non interesting parts by placeholders.

1 Introduction

Developing and debugging parallel applications running on HPC machines adds
complexity in comparison to sequential programs that needs to be coped with by
the application developers. Two additional potential problems that can occur in a
parallel program are race conditions [4] and deadlocks [1].
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Race conditions can occur if the result of a program execution is dependant on
the timing of the involved (parallel) processes. In message passing systems this can
mainly be caused by wrong message orderings. Deadlocks occur if two or more
operations depend on each other before they can be finished.

Beside these potential problems the introduced communication between the
nodes of the machine can cause, it also requires the application developer to pay
attention on the performance impact it causes.

Debugging [7] and profiling [11] tools for message passing parallel programs
provide an insight into the inner workings of the programs and aid the developer
finding problems or bottlenecks. This is often done by intercepting communication
calls of the programs and creating measurements during program runtime using
tracing tools that store this information for further analysis and visualization. Using
trace analysis tools that analyze the recorded communication steps and the timing
of the program it is possible to provide a graphical representation of the recorded
data. Event graphs are a common approach to visualize this data.

Event graphs are directed graphs that show the different processes on one axis
and occurring events as well as the relations between them on a time scale on the
other axis. Processes are represented using lines along the time axis, symbols on
those lines mark the events that occur on the processes as vertices in the graph. If
those events are related arcs are used to connect the involved events, showing the
flow of data and possibly control.

Although these graphical representations make the dataflow and communication
easier to understand, they suffer from getting overloaded and confusing with
an increasing number of processes, increasing program runtime, and increasing
complexity of the communication structure.

Information about patterns occurring in traces can be useful for program
understanding, since the pattern information can ease the interpretation of trace
data. Knowing if expected patterns occur during program execution can aid in the
debugging process. Searching for known bad performing communication patterns
can help to improve the program performance by giving hints where to optimize.

2 Pattern Definition

To search for patterns, we first have to define what a pattern is. In the context of this
work, we define a set of constraints that a search pattern has to fulfill:

• Constraint 1: Patterns consist of send and receive events, that can blocking as
well as non-blocking (the pattern match algorithm does not distinguish between
these cases), that are forming a correct MPI communication structure.
This ensures that there are no communication events between two processes that
can be received in a different order than the one they were sent with. This is a hard
requirement in the MPI standard (in which it is described as “non-overtaking”
messages).
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However, MPI has the possibility to create such communication structures by
using different tags or communicators for the two messages. Tags and commu-
nicators are not covered in this work, but would be a possible extension of the
proposed approach. Additional effort to track the used tags and communicators
and to handle them separately would be needed in the search algorithm.

• Constraint 2: A pattern covers all processes of the trace, and it is necessary
that there is no group of processes that is independent of the other processes.
Independent means that the events on one process do not have any happened-
before relationship to the events of another process and vice versa.

• Constraint 3: A group of event sequences can only be an occurrence of a pattern
if they do not contain any additional events that are not part of the pattern.

3 Pattern Search

In order to search for a pattern it is necessary to provide some sort of reference data
that describes the structure of the pattern. This can either be a reference instance
of the pattern or some kind of description that captures the properties and structure
of the pattern. Since many interesting patterns can have more than one possible
manifestation, the use of a single reference pattern might not allow to search all
instances of a pattern, whereas a description of the pattern might allow the use of
parameters to cover different possible variations. Such variations could for example
be a different dimension count, or a different distribution of processes along the
dimensions.

In the proposed approach, pattern descriptions are used to generate a set of
reference patterns that cover the range of parameters used in the descriptions.

The pattern search process consists of the following steps:

1. Parsing one or more pattern description files which creates an Abstract Syntax
Tree (AST) of the description.

2. Executing the ASTs to create reference pattern instances, each containing a
reference event sequence per process.

3. Searching of matching event sequences on the individual processes which finds
the locations of the sequence matches per process.

4. Calculating a sequence dependency graph which describes the relationship of the
sequences in the pattern.

5. Merging of found sequences using the dependency graph to a pattern which spans
over all processes.
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3.1 Pattern Description

The patterns are described using a new specialized language that allows to formulate
the communication structure programmatically in a similar way as done with
MPI. The language contains basic control (for, if, else, do, while) and
arithmetic/logic statements that allow to model the communication of a program,
statements that allow to describe the topology of the patterns (description,
pattern, sum, product, sweep, range, permutate, instanceid), as
well as some built-in functions (send, recv, size, log2, pow, factorize,
sqrt, cbrt). The following example is used to illustrate the basic structure of the
pattern description language.

Example: Description of a Torus pattern with a Von Neumann neighborhood

pattern "Torus (Von Neumann)"
sweep(range(dimension, 1, size(factorize(numProcs)));

product(dimLen[dimension]) == numProcs)
instanceid("Topology: " dimLen) {

dist = 1;
nextDist = 1;
for(j=0; j<size(dimLen); j=j+1) {

nextDist = nextDist * dimLen[j];
dimLowerBound = (myId / nextDist) * nextDist;
upper = dimLowerBound + ((myId + dist) % nextDist);
lower = dimLowerBound + ((myId - dist) % nextDist);
send(upper);
send(lower);
recv(upper);
recv(lower);
dist = nextDist;

}
}

The pattern description consists of two areas, the pattern instance properties and the
pattern structure.
Pattern instance properties (lines 2–4)
Lines 2–3 of the example contain a sweep statement and arguments for it. It is
used to describe the possible manifestations of the pattern. The numProcs variable
used in the statement is set to the number of processes in the trace by the interpreter.
The sweep statement specifies that the following description code (lines 5–17)
is executed several times with different parameters which are depending on the
arguments of the sweep statement:

• The first argument of the sweep statement in this example is a range
statement. It specifies that the following arguments of the sweep statement are
evaluated with the dimension variable set to the values 1 up to the result of
size(factorize(numProcs)) which is the amount of prime factors the
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number of processes consists of. This value equals the maximum number of the
dimensions along which the nodes in the Torus pattern can be distributed.

• The second argument is the product statement. The statement sets the output
parameter dimLen, which is an array of the length dimension. It specifies that
all following arguments of the sweep statement are evaluated for all products of
the array dimLen that result in the value of numProcs. This means that the
following statements are evaluated for all possible distributions of the processes
along the specified amount of dimensions.

Line number 4 specifies an instance ID name which can be used to identify the
instance generated using the previous statements.
Pattern structure (lines 5–17)
The rest of the pattern description consists of statements to calculate communication
partner process IDs (lines 8–11) and send and receive statements (lines 12–
15), that are executed procedurally, similar to an MPI program, but without any
computational parts. A detail that is different to an implementation in C is that the
% operator calculates the modulo instead of the remainder here, so an additional +
dimLen[j] is not needed for calculating the value of lower.

3.2 Execution of the Description

To search the pattern in a trace file the pattern description is executed in an
interpreter to generate a reference trace (Step 2 in Fig. 1). The reference trace data
of the individual processes is then used to find the occurrences in the trace data to
analyze.

Fig. 1 Pattern description and search steps
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3.3 Event Sequence Search

Since the processes of the trace to search in might have another order than in the
reference pattern instances (for example due to another communication topology)
it is necessary to compare all reference processes with each process in the trace.
This prevents us from being able to do a simple comparison of the event types
and partner IDs in the reference processes to those in the traced processes, since a
possible permutation of the partner IDs has to be taken into account. In addition it
is possible that events on reference processes are permuted (for example if there are
wildcard receives). This means that it is necessary to make a comparison between
the reference process and the trace process which fulfills following requirements:

• The partner numbers may be permuted, since it is possible that pattern instances
in the trace have a different process numbering as in the reference pattern. This
might for example be due to a different implementation or topology.

• The events of certain ranges in the reference pattern may be permuted. This might
be the case since the order of some events might not influence the nature of a
pattern. An example for this is the All-to-One pattern where the master process
might have a series of wildcard receives. To specify the allowed sequences more
precisely additional constraints on the event order are thinkable).

The check used does not compare the reference and the trace directly, instead it
compares the amount of occurrences of send and receive events to and from the
partners.

These counts can be stored in a triangular matrix A that contains “sequence length
+ 1” (k C 1) rows and columns which represent the send and receive count of the
different partner processes in the reference trace or sliding window.

For an example reference trace process as in Eq. (1) the matrix A would look like
in Eq. (2).

P1 D �
S1 S3 S4 S4 R3 R1 R4 R4

�
(1)

A D

2

66
6
6
6
66
6
6
6
6
66
4
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0 0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0
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0
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77
7
7
7
77
7
7
7
7
77
5

(2)

S D �
1 0 1 2 0 0 0 0

�
(3)

R D �
1 0 1 2 0 0 0 0

�
(4)
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The vectors S and R [Eqs. (3) and (4)] contain the amount of send or receive events
per partner process ID, i.e. 1 process ID with 2 sends and 2 receives (process 3), 2
process IDs with 1 send and 1 receive (processes 0 and 2), and 5 process IDs with
0 sends and 0 receives (processes 1, 4, 5, 6 and 7). Matrix A contains the process
counts—the row and column indices represent the corresponding send and receive
counts.

These event counts in matrix A can be calculated using a sliding window over
the trace. The changes in the event counts caused by shifting the window are used
to update a hash.

A substring search with a hash that is updated using a sliding window can be done
with the Karp-Rabin algorithm. Since the hash calculation for different permutations
of characters in a window in the Karp-Rabin-Algorithm produces different values
another hash calculation was used, which results in the same values for those
permutations.

The values added and removed in the used hash calculation are triples which
contain the amount of sends, the amount of receives and the count of how often this
combination of send and receive amounts occurs in the window.

The following paragraphs describe the modifications made to the Karp-Rabin
hash calculation.

Modified Karp-Rabin Algorithm

For finding the occurrences of the pattern in a trace we use a modified version of
the Karp-Rabin algorithm [6]. The original Karp-Rabin algorithm uses a “rolling
hash” to calculate a hash of a moving window in texts. It is mainly used for string-
matching, where the reference string and the occurrence have to be identical.

The hash introduced for searching in event graph traces has different require-
ments:

• Since permutations of event ranges should be allowed the hash value has to be
independent from the order of the characters (e.g. “S1S2S3“ should produce the
same hash value as “S3S2S1”).

• Since the processes might be permuted it is not mandatory that the characters
in the reference string are identical to those in an occurrence of the pattern. (i.e.
“S1S2S3R1“ and “S3S2S1R3” can be two different permutations of processes
for the same pattern and therefore should result in the same hash value).

These requirements are fulfilled by introducing the following changes to the
algorithm:

• Instead of encoding the character values c directly into the hash the number of
sends to and receives from a partner process are encoded into a single value per
partner process. These values and their number of occurrences in the window is
used to update the hash.
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• Since the values which are encoded into the hash do not represent positions in
the sliding window anymore the factor a is not multiplied to the values anymore.

The hash value of a window can be calculated using Eqs. (5) and (6).

f .i; j; b/ D b.m C 1/.iCj.kC1/� j. j�1/
2 / (5)

h D
kX

iD0

k�iX

jD0

f .i; j;Ai;j/ (6)

The hash of the window (h) consists of the sum of hashes for the counts (b) of the
different send (i) and receive (j) event combinations. The hash for the example in
Eq. (2), which has a process count (m) of 8, and a window length (k) of 8, would be:

h D f .0; 0; 5/ C f .1; 1; 2/ C f .2; 2; 1/ (7)

If the window is moved it is not necessary to recalculate the whole hash using
Eq. (6) to get an updated value. Instead, it is possible to subtract the value that was
added for the partner process of the new event in the window [see Eq. (9)] and to
add an updated value [see Eq. (8)]. The same has to be done for the event that leaves
the window.

For every triple .t1; t2; t3/ that gets added:

hnew D hold C f .t1; t2; t3/ (8)

For every triple .t1; t2; t3/ that gets removed:

hnew D hold � f .t1; t2; t3/ (9)

3.4 Sequence Dependency Graph

The Sequence Dependency Graph is needed to merge the sequences found in the
Event Sequence Search in the final step of the pattern search. The graph is built
from the reference traces that were created using the pattern descriptions (Fig. 2).

The graph contains nodes that represent the event sequences of the individual
processes of the reference traces. The edges represent the relations to the other
processes of the reference patterns. The information in the nodes describes the
properties of the sequences they represent. The format of the information in the
nodes is as follows:

• The first line contains the amount of send and receive events to partner processes
and the amount of partner processes that have those individual combinations of
send and receive events.
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Fig. 2 Example of a sequence dependency graph

Format: <amount of partner processes>x(<amount of send events>, <amount of
receive events>)
Example: The line “2x(1,1),1x(2,2)” means that there are two partner processes
that this sequence is connected to with one send and one receive event each, and
that there is one partner process that this sequence is connected with two sends
and two receives.

• The second line lists the pattern instance IDs of the reference patterns that
contain the sequence and also the count of occurrences in the individual reference
patterns.
Format: <pattern instance ID>(<number of processes in the pattern instance that
have this sequence>)
Example: The line “IDs: 7(8)” means that this event sequence is only part of
reference pattern instance 7, which is a bidirectional communication with a Von
Neumann neighborhood on a two-dimensional Torus topology. The sequence is
contained in 8 processes, i.e. in all processes, of this pattern instance.

• The third line contains the length of the sequence. The sum of the events in the
first line equals the length specified here. This information is redundant, but is
included for better readability, and also for easier evaluation of the constraints.
Example: The line “len: 8” means that this sequence has a length of 8 events,
which are the 4 send and the 4 receive events described in the first line.

The labels on the edges of the graph contain information about the relationship of
the sequences the nodes represent to the sequences on neighboring processes. Their
format is as follows:

• The labels at the ends of an edge specify for which combination of amounts of
send and receive events this edge connects to a sequence of a partner process.
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The number of the send and receive events on one side of the edge are always the
swapped numbers of the other side of the edge.
Example: “(2,2)” means that this edge describes a connection of a sequence to
another sequence via two send and two receive events.

• The label at the middle of the edge specifies which reference patterns contain
communication between the two connected reference sequences and the number
of occurrences of this connection in the individual reference patterns.
Format: <pattern instance ID>(<number of connections between the two
sequences in the pattern instance>)
Example: “7(4)” means that only reference pattern instance 7 contains con-
nections of the sequences the edge connects with the send and receive counts
specified at the ends of the edge, and that this pattern contains 4 of those
connections.

3.5 Merge of Potential Matches to Pattern Instances

The event sequences found by the modified Karp-Rabin algorithm can potentially
be part of pattern instances. Merging the sequences found on the different processes
to instances of patterns is a Constraint Satisfaction Problem (CSP). In this instance
for searching patterns the CSP P D hX;D;Ci is defined as follows:
X. . . set of variables, one variable per process of the trace
D. . . domain of values, where every value is a tuple of a foundmatching sequence

containing its sequence ID (every node in the sequence dependency graph gets
an unique ID) and index

C. . . set of constraints defining the patterns via the relationships between the
sequences

3.5.1 Constraints for Searching Patterns in Event Graphs

We already defined the set of variables X, which contains one variable per process,
and the domain of values D, which contains the results of the sequence search on
process level. This subsection contains the set of constraintsC needed to find pattern
instances on an event graph using a CSP.

The evaluation of the constraints has different runtime complexities. It might
not be necessary to evaluate all of them if one of them fails. The following list of
constraints is ordered so that checks with low complexity that might allow to skip
checking the remaining constraints happen before the more complex ones, which
improves runtime in non-worst case scenarios.

1. The variable to assign has to be in the same connected component of the sequence
dependency graph as the already assigned variables.
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2. The value of the variable to assign has to be within the upper and lower bounds
given by already assigned variables.

3. The values of already assigned variables have to be within the ranges for partner
processes required by the value to assign to the new variable.

4. The intersection of the pattern instance IDs of already assigned variables and the
variable to assign must not be empty. This is only necessary when searching for
more than one reference pattern instance in the same run to avoid a result that
consists of a mixture of sequences from different patterns, but does not form a
pattern instance itself.

5. The number of variables that already have the same value as the one that should
be assigned to the new variable must be lower than the maximum number of
occurrences for this value for at least one pattern instance ID that is member of
the intersection in the previous constraint.

6. The edge count between the value to assign in the new variable and the already
assigned values on other variables must be lower or equal the maximum number
of edge occurrences for at least one pattern instance ID that is member of the
intersection in constraint (4) and also fulfills the requirements of constraint (5).

3.5.2 Dynamic Backtracking

The approach to solve the CSP that was chosen in this work, and was also
implemented for the experimental evaluation, is dynamic backtracking [3]. This
algorithm was chosen due to several properties that can be beneficial when used
for finding patterns in event graphs.

• It identifies which other variables conflict with the assignment of the next variable
so that the amount of trashing is reduced, i.e. there is less exploration of search
space that can not lead to a solution because an early assignment avoids it.

• When a conflict is found in dynamic backtracking it tries to replace the “culprits”
that caused the conflict, trying to leave the potential subset of the solution that
already was found intact. Such a behavior can be beneficial for our use since
in typical patterns there can be groups of processes that are less connected to
other groups of processes, or might also appear in different but similar pattern
instances.

• The dynamic backtracking algorithm can be extended to allow the dynamic
expansion of the search space. It can start with a small search space, and
expand it whenever the assignment of a potential result value for a variable
creates dependencies on the values of the other variables that can not be
fulfilled with the current search space. This ensures that the search space of
the unassigned variables always contains enough possible values to cover all
potential assignments that may lead to a found pattern instance. The same applies
for shrinking the search space. For our case the algorithm can be extended to
shrink the search space to leave out parts that can not be reached anymore.
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Since related events in a trace are usually close together on the time scale this
can reduce the search space vastly.

Several modifications were made to the dynamic backtracking algorithm to
optimize it to the problem of finding pattern instances in an event graph. There
are two groups of modifications that were performed: Modifications that change
the behavior of the algorithm and modifications that influence the runtime of the
algorithm.

Among the changes, one change was made that modifies the behavior of the
algorithm substantially:

• Termination Criteria: The search does not terminate after a pattern instance was
found.

There are several changes to the dynamic backtracking algorithm that do not
influence its function, but can drastically influence its runtime, depending on the
structure of the patterns to search and the trace to search in.

• Immediate Backtracking if the already merged processes do not have any more
neighbors.

Since the pattern definition does only allow pattern descriptions in which all
processes are connected (see constraint 2 in Sect. 2) it is possible to backtrack
earlier than when one of the constraints of the CSP (see Sect. 3.5.1) is not fulfilled
in some cases. If the set of already assigned variables and the set of neighbors of
the already assigned variables is identical and does not contain all variables then
the sequences that are represented by the assignments of those variables form a
group that is not connected to any other process and therefore can not be part of
an allowed pattern.

• Dynamic sizing of search space: Expand if necessary, reduce if possible.
The original dynamic backtracking algorithm uses the whole search space

from start to end, containing all possible values—the complete domain of every
variable—in its checks for conflicts and possible assignments.

The modified algorithm starts with a minimal search space. It only contains
the first value of the domain of the variable that was chosen to start with, and
expands the search space when necessary. This is possible due to the structure of
the event graphs. The events on a specific process at the begin of a trace are very
likely connected to events at the begin of other processes. Very likely there is a,
in comparison to the size of the whole trace, small window of the trace which
can contain potential candidates for partner events.

If it is not possible to assign a variable anymore in the current search space,
and usually a backtracking step would be performed, the modified algorithm
tries to expand the search space so that values that are potential candidates for
assignment, but were not in the search space before will be added to the search
space.

In a similar way the search space is shrinked again if parts of it are identified
as not being reachable anymore, or if pattern instances are found.

• Variable assignment order: Assign neighbors of already assigned variables.
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The assignment order of the variables in the original algorithm is not defined.
Defining this order to prefer variables for processes that are neighbors of
already assigned variables can improve the performance since it allows to check
constraints already after the first assignment.

• Sequence match order: The order in which the sequence matches are verified
vastly influences the amount of backtracks in some cases.

4 g-Eclipse Trace Viewer Pattern Search Plugin

This section shows the main features and the usage of the prototype implementation,
which was used as a proof-of-concept.

The prototype implementation of the pattern description editor, pattern search
and visualization is building on the trace viewer functionality [7] of the g-Eclipse [8]
project, and extends its functionality by providing a plugin to these tools.

The plugin for the g-Eclipse trace viewer consists of several components for the
different tasks in the process of finding the patterns. This section gives an overview
of the major components provided by the plugin, as well as the ones provided by
the g-Eclipse trace viewer that make up the core functionality.

• Trace viewer The g-Eclipse trace viewer plugin is the central component, the
pattern search plugin is building on. It provides the basic functionality for
accessing trace data and visualizing it. The trace viewer can be extended using the
Eclipse extension point mechanism [5] and among others provides the following
extension points that are used by the pattern search plugin:

– Actions on trace, process and event level It is possible to add actions that
can be triggered for the whole trace or selected events or processes to the trace
visualization. These actions are provided using the context menu of the trace
viewer. The pattern search can be triggered using such an action which starts
an Eclipse job performing the search.

– Markers The color and shape of the events displayed in the trace viewer can
be altered using marker plugins. The pattern marker is used to change the
background color of events that are inside the found pattern instances.

– Trace readers The pattern search uses the trace reader functionality provided
by the g-Eclipse trace viewer. The trace viewer offers a common interface
for accessing the supported trace file formats. Currently these are the NOPE
format and the OTF format.

• Pattern description interpreter The implementation of the pattern description
language consists of a scanner and a parser generated from an attributed
grammar using the COCO/R compiler generator for LL(k) grammars [10] and
an interpreter basing on those.

• Pattern description editor The pattern description editor is shown in Fig. 3.
The screenshot in the figure contains an occurrence of the error marker of the
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Fig. 3 Pattern editor showing a pattern description with a syntax error

Fig. 4 The autocompletion feature of the editor can complete keywords, function names and
variable names

editor, which in case of this example is for a missing semicolon in the pattern
description. The errors displayed by this marker are gathered from the parser that
is also used by the interpreter which evaluates the pattern descriptions.

The screenshot also shows the syntax highlighting feature of the editor. Syntax
highlighting is done using a simpler rule based scanner provided by Eclipse. This
scanner contains rules for detecting keywords, built-in function names, operators,
strings and comments.

The editor also features autocompletion of keywords, built-in functions and
variable names which are as well gathered using the COCO/R parser. The
autocompletion feature is shown in Fig. 4.

• Pattern selection view The pattern selection view, shown on the left of Fig. 5, is
an Eclipse view that allows to specify which patterns should be searched for by
allowing to select from the available pattern descriptions.

A pattern description can be used to generate and display the reference
patterns that it describes. By using the context menu on an entry in the pattern
selection view it is possible to generate reference patterns for the selected
description. After entering the number of processes for the reference pattern
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Fig. 5 Pattern selection view (left), dialog for selection of a reference pattern instance (middle),
and the corresponding reference pattern instance (right)

the instance selection dialog is shown. The screenshot in the middle of Fig. 5
shows the instance selection dialog for a mesh pattern with a “Von Neumann”
communication topology with 32 processes. This dialog allows to select a
reference pattern instance to display. On the right side of the figure a reference
pattern instance generated using this description is shown.

• Pattern search The plugin also implements the search algorithm described in
Sect. 3 for finding patterns in the trace data provided by the trace viewer plugin
of g-Eclipse.

5 Examples

An experimental evaluation using well known parallel benchmark programs was
performed. In this section some observations in traces of well known benchmark
codes are shown.

The wavefront propagation performed by the Sweep3D benchmark can easily
be recognized in the trace visualization as seen in Fig. 6. There are two alternating
directions in which the propagation takes place. The screenshot shows a change in
direction of the wavefront propagation, which consists of several instances of an
unidirectional mesh pattern with Von Neumann neighborhood. In this screenshot
eight alternating colors were used in the pattern marker so that the displacement of
the individual pattern instances can be seen better.

An interesting observation in the SMG2000 traces is that there are pattern
instances, as described above for lower process counts, that are interrupted by
communication that only takes place on a subset of the processes as shown in Fig. 7.
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Fig. 6 Sweep 3D trace with wavefront propagation in two different directions

Fig. 7 Part of an SMG2000 trace which has mesh patterns interrupted by other communication

6 Future Work

To further improve the performance and applicability of the algorithm, several
potential refinements can be investigated:

• Additional constraints on event sequences—The addition of constraints within
the event sequences on the individual processes could further reduce the amount
of detectable event sequences that are not part of a pattern, and therefore further
reduce the search space that needs to be covered by the backtracking algorithm. A
simple example for such an additional constraint for a bidirectional mesh pattern
could be specified as follows: Every sequence that can be part a pattern instance
needs to start with a send event.

• Parallelization of the pattern search algorithm—Another possibility to reduce
the search duration could be the parallelization of the search process. While the
parallelization of the pre-filtering step on process level is easy to implement, the
parallelization of the dynamic backtracking algorithm is non-trivial. There has
already been research on this topic [2, 12], but still the feasibility of applying
these approaches onto this adaptation of the algorithm needs to be verified.

• Improved visualization of the search result—In the prototype implementation
the results of the pattern search are visualized using a pattern marker that
modifies the background color of the sections in the traces that belong to pattern
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instances. More sophisticated ways to visualize this information are thinkable.
As a simple improvement the pattern instances could be replaced by placeholders
that make the trace visualization more compact similar to the approach presented
in [9]. Since identical pattern instances are often recurring several times, they
could be replaced by the display of an instance count only. This way the main
part of the visualization is dedicated to non-repeating information and sections
that do not match any pattern description.

• Support for additional MPI features—The approach as it is described in this
work has some constraints on the use of MPI communicators and tags. This
limitation is, however, not a mandatory restriction imposed by the basic principle
of the approach itself. Adding support for these features could be archived by
extending the search algorithm without changing its basic properties.

In conclusion, the problem of scalability still continues to increase with more
and more supercomputers of more than a million CPU cores and corresponding
applications. The solution presented in the work represents a possible solution,
which needs to be improved further by additional abstraction and automatization.

7 Conclusion

After providing a definition of patterns in the context of this work and discussing
the motivation for it the basic steps of the pattern description and search process are
introduced.

A pattern description language that combines procedural description of the
patterns with language constructs that allow to describe the topology of the patterns
is proposed and discussed.

Different approaches on filtering the event sequences on a process level for
reducing the search space, which is part of the proposed search process, are
discussed with consideration of the requirements for this use case. A modified
version of the Karp-Rabin algorithm is proposed for this task, which can efficiently
detect candidates for being part of pattern instances.

Merging the found event sequences into pattern instances, which is also part
of the search process, is modeled as a constraint satisfaction problem (CSP). A
set of constraints for this CSP is defined and a “sequence dependency graph” that
aids the evaluation of those constraints is introduced. Modifications to the dynamic
backtracking algorithm are proposed to take advantage of properties of the event
graph.
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