
Tools for

123

Christoph Niethammer · José Gracia
Tobias Hilbrich · Andreas Knüpfer
Michael M. Resch · Wolfgang E. Nagel
Editors

Tools ools ools ools Tools T foooofof r
High Performance
 Computing
 2016

123

Tools for High Performance Computing 2016

Christoph Niethammer • José Gracia •
Tobias Hilbrich • Andreas KnRupfer •
Michael M. Resch • Wolfgang E. Nagel
Editors

Tools for High Performance
Computing 2016
Proceedings of the 10th International
Workshop on Parallel Tools for High
Performance Computing, October 2016,
Stuttgart, Germany

123

Editors
Christoph Niethammer
HRochstleistungsrechenzentrum Stuttgart

(HLRS)
UniversitRat Stuttgart
Stuttgart, Germany

José Gracia
HRochstleistungsrechenzentrum Stuttgart

(HLRS)
UniversitRat Stuttgart
Stuttgart, Germany

Tobias Hilbrich
Zentrum fRur Informationsdienste und

Hochleistungsrechnen (ZIH)
Technische UniversitRat Dresden
Dresden, Germany

Andreas KnRupfer
Zentrum fRur Informationsdienste und

Hochleistungsrechnen (ZIH)
Technische UniversitRat Dresden
Dresden, Germany

Michael M. Resch
HRochstleistungsrechenzentrum Stuttgart

(HLRS)
UniversitRat Stuttgart
Stuttgart, Germany

Wolfgang E. Nagel
Zentrum fRur Informationsdienste und

Hochleistungsrechnen (ZIH)
Technische UniversitRat Dresden
Dresden, Germany

Cover front figure: Simulation of airflow around wing and engine of a seaplane in high wing
configuration. Data and Illustration by Thomas Obst. HLRS, Stuttgart Germany

ISBN 978-3-319-56701-3 ISBN 978-3-319-56702-0 (eBook)
DOI 10.1007/978-3-319-56702-0

Library of Congress Control Number: 2017940638

Mathematics Subject Classification (2010): 68M14, 68M20, 68Q85, 65Y05, 65Y20

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The first International Parallel Tools Workshop (IPTW) was held on July 9–10,
2007 at HLRS in Stuttgart. The idea was to bring industrial and academic High-
Performance Computing (HPC) user communities together with developers of tools
to discuss state-of-the-art parallel programming tools and supporting technologies.
The mission of the event was twofold: on the one hand increasing users’ awareness
and understanding of parallel programming tools, and on the other hand providing
tool developers with feedback on users’ needs and input from other tool developers.
The vision behind all of it: tools for parallel programming in High-Performance
Computing is the enabler for an important step forward towards application
correctness, performance, and efficiency of use of resources.

This book comprises the continuation of a successful series of publications that
started with the second International Parallel Tools Workshop in 2007. It contains
contributed papers presented at the International Parallel Tools Workshop 2016,1

held October 4–5, 2016, in Stuttgart, Germany. The workshop was jointly organised
by the High-Performance Computing Center Stuttgart (HLRS)2 and the Center for
Information Services and High Performance Computing of the Technical University
of Dresden (ZIH-TUD).3

With the IPTW 2016 held in Stuttgart, we celebrate the tenth anniversary
of this workshop series. The motto of this year’s event was the transition of
initially academic prototype-like helpers to stable production tools and further
on to commercial products. Indeed, in the last decade the HPC tools landscape
has changed dramatically: simple command-line scripts have developed into fully-
flagged automatic or automated analysis suites, have been provided with rich
graphical user interfaces where appropriate, and enriched with a broad set of docu-
mentation and training material. Close collaboration within the tools community has
led to wide-spread acceptance of terminology, and standardisation of techniques and

1http://toolsworkshop.hlrs.de/2016/.
2http://www.hlrs.de.
3http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/.

v

http://toolsworkshop.hlrs.de/2016/
http://www.hlrs.de
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/

vi Preface

data-formats. This allows for a tight integration and interoperability of commercial
and open-source tools alike, which increases the user’s productivity by shedding
light on the issue from different perspectives.

Although there are many open source tools from the researcher community today,
there are surprisingly only a few commercial products. Here, the keynote held by
Allen D. Malony with the title “The Value Proposition for Parallel Tools”, posed
the question what the value of these tools is, how they are funded and whether
monetizing tools is the right measure of success—and even whether parallel tools
have, in and of themselves, any value at all.

As has always been the case, HPC users are faced with ever increasing com-
plexity of hardware and software aspects. One of these aspects is the deep memory
hierarchy in today’s computing systems ranging from the introduction of a forth
cache level in the POWER8 processors to the introduction of new technologies such
as NVRAM at the opposite end of the hierarchy. Thus, all but the simplest “fit to
cache models” are difficult to handle by the programmer at the moment of writing
code. So tools are required to assist at this point to reach the best performance and
energy efficiency. Such issues are addressed by the tool Kernkraft as presented in
the first chapter of this book. Kernkraft combines memory models and simulators
with instruction analysis to transform loops automatically for best performance on
a given target architecture.

Another aspect introducing complexities is system size. While MPI programs
running on tens or hundredth of single core CPUs could be understood relatively
easy, today’s applications running on multi- or many-cores need to use hybrid
MPI+OpenMP models. Thus communication does not only include more processes
but also shows more complex patterns as more sophisticated algorithms use, e.g.
overlapping techniques, and may even require to take data-locality into account.
Detection and reasoning on communication pattern becomes increasingly important
to understand the application behaviour. The topic of the second chapter is the
detection of these communication patterns independently of the number of resources
used and relative to their process placement.

The shared-memory parallel programming model OpenMP has recently been
extended significantly to support data-dependencies between computation tasks
and off-loading of tasks onto heterogenous accelerators of various types. OpenMP
programmes thus become much more complex than the traditional fork-join model.
This has led to an effort of tool developers to define a standard OpenMP Tools
interface (OMPT), which is scheduled to be included in the next major version of
OpenMP. In the third chapter, the tool Extrae show-cases the potential for tracing
and sampling on heterogenous hardware of this new interface.

At the same time common functionalities in tools are standardised in a way, that
collaboratively maintained tools APIs are created. These APIs allow to focus on
new tool features without the need of re-inventing the infrastructure below. One
of them is the Score-P measurement infrastructure, which provides an extendable
plugin interface. In the fourth chapter, the potential of this interface is presented by
a variety of new ideas to support the development process of parallel applications.

Preface vii

Another important trend is one-sided communication to reduce communication
overheads. This is also reflected in the fact that the Message Passing Interface
(MPI) has undergone various updates in this area. Two chapters are related to
the fundamental issue of synchronisation in this programming model, where many
errors can be made by the user at the moment. One is related to the detection of
synchronisation errors and the other on lock contention.

Finally, the last chapter of this book gives a bit of an outlook on the path to future
of parallel programming: automatic program transformation. While a specialist may
provide a few simple transformation rules to increase the efficiency of a code on a
given hardware, the combination of a large set of such transformation rules leads to
such a number of combinations that only a tool is capable of evaluating them in an
effective way. Here an approach based on machine learning techniques is presented.

The topics covered in this book, clearly show the potential of giving parallel
programming tools a better, first-hand view on the internals of a parallel pro-
gramming model, as for instance by providing standard tool interfaces as OMPT,
thus allowing them to present to the user a fuller and semantically richer picture
of the application state. Also, the trend to re-use common tool infrastructure,
e.g. by providing standard APIs, data-formats, or plugin facilities, leads not only
to faster development of tools on a wider range of systems, but also to the
creation of new tools beyond the original scope of infrastructure. Finally, tools
are semi-automatically assisting developers with complex tasks such as analysis of
applications structure regarding communication or cache-access patterns, or code
transformations for various underlying hardware.

Stuttgart, Germany Christoph Niethammer
Stuttgart, Germany José Gracia
Dresden, Germany Tobias Hilbrich
Dresden, Germany Andreas Knüpfer
Stuttgart, Germany Michael M. Resch
Dresden, Germany Wolfgang E. Nagel
January 2017

Contents

Kerncraft: A Tool for Analytic Performance Modeling of Loop
Kernels . 1
Julian Hammer, Jan Eitzinger, Georg Hager, and Gerhard Wellein

Defining and Searching Communication Patterns in Event Graphs
Using the g-Eclipse Trace Viewer Plugin . 23
Thomas Köckerbauer and Dieter Kranzlmüller

Monitoring Heterogeneous Applications with the OpenMP Tools
Interface . 41
Michael Wagner, Germán Llort, Antonio Filgueras,
Daniel Jiménez-González, Harald Servat, Xavier Teruel,
Estanislao Mercadal, Carlos Álvarez, Judit Giménez,
Xavier Martorell, Eduard Ayguadé, and Jesús Labarta

Extending the Functionality of Score-P Through Plugins: Interfaces
and Use Cases . 59
Robert Schöne, Ronny Tschüter, Thomas Ilsche, Joseph Schuchart,
Daniel Hackenberg, and Wolfgang E. Nagel

Debugging Latent Synchronization Errors in MPI-3 One-Sided
Communication . 83
Roger Kowalewski and Karl Fürlinger

Trace-Based Detection of Lock Contention
in MPI One-Sided Communication . 97
Marc-André Hermanns, Markus Geimer, Bernd Mohr, and Felix Wolf

Machine Learning-Driven Automatic Program Transformation
to Increase Performance in Heterogeneous Architectures 115
Salvador Tamarit, Guillermo Vigueras, Manuel Carro, and Julio Mariño

ix

Kerncraft: A Tool for Analytic Performance
Modeling of Loop Kernels

Julian Hammer, Jan Eitzinger, Georg Hager, and Gerhard Wellein

Abstract Achieving optimal program performance requires deep insight into the
interaction between hardware and software. For software developers without an
in-depth background in computer architecture, understanding and fully utilizing
modern architectures is close to impossible. Analytic loop performance modeling
is a useful way to understand the relevant bottlenecks of code execution based on
simple machine models. The Roofline Model and the Execution-Cache-Memory
(ECM) model are proven approaches to performance modeling of loop nests. In
comparison to the Roofline model, the ECM model can also describes the single-
core performance and saturation behavior on a multicore chip.

We give an introduction to the Roofline and ECM models, and to stencil
performance modeling using layer conditions (LC). We then present Kerncraft, a
tool that can automatically construct Roofline and ECM models for loop nests by
performing the required code, data transfer, and LC analysis. The layer condition
analysis allows to predict optimal spatial blocking factors for loop nests. Together
with the models it enables an ab-initio estimate of the potential benefits of loop
blocking optimizations and of useful block sizes. In cases where LC analysis is not
easily possible, Kerncraft supports a cache simulator as a fallback option. Using a
25-point long-range stencil we demonstrate the usefulness and predictive power of
the Kerncraft tool.

1 Introduction

Expensive, large-scale supercomputers consisting of thousands of nodes make
performance a major issue for efficient resource utilization. A lot of research in
this area concentrates on massive scalability, but there is just as much potential for
optimization at the core and chip levels. If performance fails to be acceptable at
small scales, scaling up will waste resources even if the parallel efficiency is good.
Therefore, performance engineering should always start with solid insight at the

J. Hammer (�) • J. Eitzinger • G. Hager • G. Wellein
Erlangen Regional Computing Center, Erlangen, Germany
e-mail: julian.hammer@fau.de; jan.eitzinger@fau.de; georg.hager@fau.de;
gerhard.wellein@fau.de

© Springer International Publishing AG 2017
C. Niethammer et al. (eds.), Tools for High Performance Computing 2016,
DOI 10.1007/978-3-319-56702-0_1

1

mailto:julian.hammer@fau.de
mailto:jan.eitzinger@fau.de
mailto:georg.hager@fau.de
mailto:gerhard.wellein@fau.de

2 J. Hammer et al.

smallest scale: the core. Using this approach will give the performance engineer a
profound understanding of performance behavior, guide optimization attempts and,
finally, drive scaling at the relevant hardware bottlenecks.

Modeling techniques are essential to understand performance on a single core
due to the complexities hidden in modern CPU and node architectures. Without
a model it is hardly possible to navigate through the multitude of potential
performance bottlenecks such as memory bandwidth, execution unit throughput,
decoder throughput, cache latency, TLB misses or even OS jitter, which may
or may not be relevant to the specific application at hand. Analytic models, if
applied correctly, help us focus on the most relevant factors and allow validation
of the gained insights. With “analytic” we mean models that were derived not
by automated fitting of parameters of a highly generic predictor function, but by
consciously selecting key factors that can be explained and understood by experts
and then constructing a simplified machine and execution model from them.

We understand that the application of analytic performance modeling techniques
often poses challenges or tends to be tedious, even for experienced software
developers with a deep understanding of computer architecture and performance
engineering. Kerncraft [6], our tool for automatic performance modeling, addresses
these issues. Since its first publication, Kerncraft has been thoroughly extended with
the layer condition model, an independent and more versatile cache simulation,
as well as more flexible support for data accesses and kernel codes. These
enhancements will be detailed in the following sections. Kerncraft is available for
download under GPLv3 [11].

1.1 Related Work

Out of the many performance modeling tools that rely on hardware metrics,
statistical methods, curve fitting, and machine learning, there are only four projects
in the area of automatic and analytic modeling that we know of: PBound, ExaSAT,
Roofline Model Toolkit and MAQAO.

Narayanan et al. [15] describe a tool (PBound) for automatically extracting
relevant information about execution resources (arithmetic operations, loads and
stores) from source code. They do not, however, consider cache effects and parallel
execution, and their machine model is rather idealized. Unat et al. [20] introduce
the ExaSAT tool, which uses compiler technology for source code analysis and also
employs “layer conditions” [17] to assess the real data traffic for every memory
hierarchy level based on cache and problem sizes. They use an abstract simplified
machine model, whereas our Kerncraft tool employs Intel IACA to generate more
accurate in-core predictions. On the one hand this (currently) restricts Kerncraft’s in-
core predictions to Intel CPUs, but on the other hand provides predictions from the
actual machine code containing all compiler optimizations. Furthermore, ExaSAT
is restricted to the Roofline model for performance prediction. Being compiler-
based, ExaSAT supports full-application modeling and code optimizations, which is

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels 3

work in progress for Kerncraft. It can also incorporate communication (i.e., message
passing) overhead, which is not the scope of our research. Lo et al. [13] introduced
in 2014 the “Empirical Roofline Toolkit,” (ERT) which aims at automatically
generating hardware descriptions for Roofline analysis. They do not support
automatic topology detection and their use of compiler-generated loops introduces
an element of uncertainty. Djoudi et al. [1] started the MAQAO Project in 2005,
which uses static analysis to predict in-core execution time and combines it with
dynamic analysis to assess the overall code quality. It was originally developed for
the Itanium 2 processor but has since been adapted for recent Intel64 architectures
and the Xeon Phi. As with Kerncraft, MAQAO currently supports only Intel
architectures. The memory access analysis is based on dynamic run-time data, i.e.,
it requires the code to be run on the target architecture.

1.2 Performance Models

Performance modeling, historically done by pen, paper and brain, has a long
tradition in computer science. For instance, the well-known Roofline model has
its origins in the 1980s [7]. In this paper, we make use of the Roofline and the
Execution-Cache-Memory (ECM) models, both of which are based on a bottleneck
analysis under a throughput assumption. Detailed explanations of the models can be
found in previous publications; we will limit ourselves to a short overview.

1.2.1 Roofline

The Roofline model yields an absolute upper performance bound for a loop. It is
based on the assumption that either the data transfers to and from a single level in
the memory hierarchy or the computational work dictates the runtime. This implies
that all data transfers to all memory hierarchy levels perfectly overlap with each
other and with the execution of instructions in the core, which is too optimistic
in the general case. The Roofline model in the current form was popularized and
named by Williams et al. in 2009 [21].

For the types of analysis Kerncraft supports, it is useful to reformulate the
Roofline model in terms of execution time instead of performance, and to use a
basic unit of work that spans the length of a cache line (typically eight iterations):
Troof D maxk .Tcore;Tk/. The ratio Tk D ˇk=Bk, with the achievable peak bandwidth
Bk and data transfer volume ˇk, is the data transfer time for memory hierarchy level
k. Tcore D �=Pmax is the in-core execution time for computations with the amount
of work �. The latter is usually given in flops, but other well-defined metric will
do. Pmax is the applicable computational peak performance (in flops per cy) of the
code at hand. It may be smaller than the absolute peak performance because of
unbalanced multiply and add operations, because SIMD cannot be applied, etc.

4 J. Hammer et al.

Table 1 Overview of data transfers and bandwidths necessary to model a 3D seven-point stencil
kernel using the Roofline model

Level Data volume per 8 It. STREAM copy bandwidth Time for 8 It.

k ˇk Bk (GB/s) Tk (cy)

L1 448 B (only LOAD) 137:1 9:8

L2 7 CL or 384 B 68:4 16:6

L3 5 CL or 256 B 38:8 24:7

MEM 3 CL or 128 B 17:9 32:2

Applying the Roofline model to a loop kernel which loads 448 bytes from the first
level cache (L1), 6 cache lines (CL) from the second level cache (L2), 4 CLs from
the last level cache (L3), and two CLs from main memory, to produce one cache line
of results (8 iterations), gives us the data volumes in Table 1. This is what we would
expect with a 3D seven-point stencil (see Listing 1) for a certain problem size that
leads to a 3D-layer condition fulfilled in L3 and a 2D-layer condition fulfilled in L2
(see below for more on layer conditions). For the computational work, we assume 5
additions and 7 multiplications per iteration, thus 96 FLOPs for eight iterations,
i.e., � D 96 flop. Combining this with measured bandwidths from a STREAM
[14] copy kernel on an Ivy Bridge EP processor in all memory hierarchy levels,
we can derive the throughput time per eight iterations shown in the last column of
Table 1. The achievable peak bandwidth Bk is obtained via a streaming benchmark
since theoretical bandwidths published by vendors cannot be obtained in practice.
The ECM model provides a partial explanation for this effect, so it requires less
measured input data (see below).

The double precision maximum applicable performance of a code with 5=7

addition-multiplication ratio on an Ivy Bridge core is

Pmax D 40 flop

7 cy

which yields an in-core prediction of

Tcore D 96 flop

40 flop=7 cy
D 16:8 cy

The dominating bottleneck is therefore the transfer from main memory TMEM with
32:2 cy for eight iterations or updates, which corresponds to a maximum expected
(“lightspeed”) performance of 8:94 Gflop/s.

Predicting the L1 time and performance with the measured bandwidth can only
be precise if the microbenchmark mimics exactly the load/store ratio as found in the
modeled code. To circumvent this issue it is advisable to use a static analyzer with
knowledge of the architecture, like the Intel Architecture Core Analyzer (IACA) [9].
It also allows a more accurate prediction of Tcore.

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels 5

1.2.2 Execution-Cache-Memory

The Execution-Memory-Cache (ECM) model is based on the same fundamental
idea as the Roofline model, i.e., that data transfer time or execution of instructions,
whichever takes longer, determine the runtime of a loop. Unlike in the Roofline
model, all memory hierarchy levels contribute to a single bottleneck. Depending on
the microarchitecture, data transfer times to different memory hierarchy levels may
overlap (as in the Roofline model) or they may add up. This latter assumption was
shown to fit measurements quite well on x86-based processors [17, 22]; on Power8,
for instance, the cache hierarchy shows considerable overlap [8]. In the following
we will concentrate on Intel architectures, since the current version of Kerncraft
implements a strict non-overlapping ECM model.

We also need to know the data volumes transferred to and from each memory
hierarchy level and the amount of work performed in the core. To calculate the time
contributions per cache level we use documented inter-cache throughputs (e.g., two
cycles per cache line from L3 to L2 on Intel Ivy Bridge). The ECM prediction on
an Intel core for data in memory is then given by

TECM;Mem D max .TOL;TnOL C TL1�L2 C TL2�L3 C TL3�MEM/ :

TOL is the overlapping time for computations and stores, TnOL is the for the loads
from registers into L1, TL1�L2 the loads from L2 into L1, and so on. The model is
written in the following compact notation:

fTOL kTnOL j TL1�L2 j TL2�L3 j TL3�MEMg :

See [17] for more details on the model and the notation.
Applying the ECM model to the 3D seven-point stencil (see Listing 1) on an Ivy

Bridge EP processor, we get the in-core contributions from IACA:

TOL D 13:2 cy and TnOL D ˇL1 � 1
cy

64 B
D 7 cy :

The data transfers through the memory hierarchy are obtained from cache simula-
tion in combination with hardware performance characteristics:

TL1�L2 D ˇL2 � 2
cy

CL
D 14 cy

TL2�L3 D ˇL3 � 2
cy

CL
D 10 cy

TL3�MEM D
ˇMEM � 3:0

Gcy
s � 64 B

CL

63:4GB
s

D 9:1 cy

6 J. Hammer et al.

Fig. 1 Side-by-side comparison of the (x86) ECM model and the Roofline model, including the
origin of information needed as input for both, such as bandwidth and execution bottlenecks

The ECM notation for eight iterations of the 3D seven-point stencil code is then:

f13:2 k 7 j 14 j 10 j 9:1g cy :TECM;MemC max .13:2; 7 C 14 C 10 C 9:1/ cyC40:1 cy

Which corresponds to an out-of-memory performance of 7:18 Gflop/s.
A comparison of the data that goes into the ECM and Roofline analysis (manual

and automatic) is shown in Fig. 1. It also illustrates the fundamental differences in
the bottleneck assumption.

2 Kerncraft

In this section we give an overview of the architecture and analysis modes available
in Kerncraft. The recent additions, which have not been covered in our 2015
publication [6], will be explained in due detail.

The core of Kerncraft is responsible for parsing and extracting information from
a given kernel code, abstracting information about the machine, and providing
a homogenous user interface. The modules responsible for the modeling will be
described in Sect. 2.3. A visualization of the overall structure is shown in Fig. 2. The
user has to provide a kernel code (described in Sect. 2.1) and a machine description
(described in Sect. 2.2), and they have to select a performance model to apply
(options are described in Sect. 2.3). Optionally, parameters can be passed to the
kernel code, similar to constants defined by macros or -D compiler flags. For models

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels 7

Fig. 2 Overview of the Kerncraft pipeline. The user provides kernel code, constants, and a
machine description. IACA, pycachesim, and a compiler are employed to build the ECM, Roofline,
and layer condition models

that rely on prediction of caching, either the layer condition prediction or the cache
simulation (using the pycachesim module) can be employed. Both predictors will
be described in Sect. 2.4.

8 J. Hammer et al.

Listing 1 Input kernel code for a three-dimensional 7-point star stencil (3D-7pt)

double a[M][N][N];
double b[M][N][N];
double coeffs_N, coeffs_S, coeffs_W, coeffs_E,

coeffs_F, coeffs_B, s;

for(int k=1; k<M-1; ++k)
for(int j=1; j<N-1; ++j)

for(int i=1; i<N-1; ++i)
b[k][j][i] = (coeffs_W*a[k][j][i-1]

+ coeffs_E*a[k][j][i+1]
+ coeffs_N*a[k][j-1][i]
+ coeffs_S*a[k][j+1][i]
+ coeffs_B*a[k-1][j][i]
+ coeffs_F*a[k+1][j][i]) * s;

2.1 Kernel Code

Kerncraft is based on the analysis of standard-compliant C99 [10] code, which must
be provided as shown in Listing 1. Example files for several stencils are distributed
with the Kerncraft repository.1 The first lines are dedicated to variable and array
definitions. While large arrays would in practice be allocated on the heap, Kerncraft
requires arrays to be declared as local variables. The multidimensional syntax (e.g.,
a[M][N] and a[j][i]) is optional, since Kerncraft now also supports flattened
indices (e.g., a[M*N] and a[j*N+i]).

N and M in Listing 1, are constants which can be passed to the code through the
command line. During analysis they are treated as symbols, which may be replaced
by constant positive integers.

Following the variable definitions is the loop nest, which may only contain one
loop per level and only the innermost loop may contain variable assignments and
arithmetic operations. The loop indices must be local to that loop and the bounds
may only depend on constant integers and simple arithmetic operations (addition,
subtraction, and multiplication) of constant integers. The step size can be any
constant length; in Listing 1 we have a step size of one, but k+=2 would for instance
also work.

Any number of statements are allowed in the loop body, as long as they are
assignments and arithmetic operations based on constants, integers, variables, and
array references. Array references may contain arithmetic expressions in their
indices (e.g., a[j*N+i+1]). Such an expression may only be composed of
constants, integers, and loop index variables (i, j, and k in Listing 1).

Function calls, ifs, pointer arithmetic, and irregular data accesses are not
allowed, since they could not be analyzed with the algorithms used in the current

1https://github.com/RRZE-HPC/kerncraft/tree/master/examples/kernels.

https://github.com/RRZE-HPC/kerncraft/tree/master/examples/kernels

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels 9

version of Kerncraft. Moreover, the underlying models do not yet have a canonical
way of dealing with the effects arising in such cases.

2.2 Machine Description

To select the targeted machine architecture, Kerncraft needs a machine description
file in the YAML file format [2]. Example machines description files are distributed
through the Kerncraft repository.2 A machine description file always consists of
three parts: the execution architecture description, the cache and memory hierarchy
description, and benchmark results of typical streaming kernels. In the following,
we will go into some settings found in Listing 2 that are not self-explanatory.

Compute Architecture

The first section is the execution architecture description (the actual order of
elements does not matter in the YAML file format). This section describes the
compute capabilities of the machine, such as clock speed, number of cores, or
compiler flags to use for benchmarks.micro-architecture is the abbreviation
for the Intel microarchitecture codename as used by IACA (e.g., HSW for Haswell),
overlapping-ports are the execution ports corresponding to the overlapping
portion in the ECM model as reported by IACA, non-overlapping-ports are
all other ports as reported by IACA.

The machine description file with the benchmark section and partial information
about the memory hierarchy and compute architecture can be generated automat-
ically by the script likwid_bench_auto.py, which comes with Kerncraft.
It employs likwid-topology and likwid-bench [19] to gather accurate
information about the machine it is executed on.

Memory Hierarchy

Each level of the memory hierarchy has an entry in the memory hierarchy
section. cores per group is the number of physical cores that share one
resource on this level (e.g., if every core has its own private cache, cores per
group is 1). threads per group is the number of virtual threads that share
one resource on this level. groups is the total number of resources of this type (e.g.,
an L1 cache) that exist on all sockets. cycles per cacheline transfer is
only needed for caches, except for the last level cache (LLC). It denotes the number
of cycles it takes to load one cache line from the adjacent “lower” (closer to main

2https://github.com/RRZE-HPC/kerncraft/tree/master/examples/machine-files.

https://github.com/RRZE-HPC/kerncraft/tree/master/examples/machine-files

10 J. Hammer et al.

Listing 2 Shortened machine description for Haswell (skipped sections are marked by ...)

Execution Architecture:
model name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz
micro-architecture: HSW
non-overlapping ports: [2D, 3D]
overlapping ports: [’0’, 0DV, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’]
FLOPs per cycle:

DP: {ADD: 8, FMA: 8, MUL: 8, total: 16}
SP: {ADD: 16, FMA: 16, MUL: 16, total: 32}

compiler: icc
compiler flags: [-O3, -xAVX, -fno-alias]
...
Memory and Cache Hierarchy:
memory hierarchy:

- level: L1
cache per group: {

’sets’: 64, ’ways’: 8, ’cl_size’: 64, # 32 kB
’replacement_policy’: ’LRU’,
’write_allocate’: True, ’write_back’: True,
’load_from’: ’L2’, ’store_to’: ’L2’}

cores per group: 1
threads per group: 2
groups: 28
cycles per cacheline transfer: 2

...
Benchmark Description and Results:
benchmarks:

kernels:
copy:

FLOPs per iteration: 0
read streams: {bytes: 8.00 B, streams: 1}
read+write streams: {bytes: 0.00 B, streams: 0}
write streams: {bytes: 8.00 B, streams: 1}

...
measurements:

L1:
1:

cores: [1, 2, 3, ...]
results:

copy: [36.15 GB/s, 72.32 GB/s, 108.48 GB/s, ...]
...

size per core: [21.12 kB, 21.12 kB, 21.12 kB, ...]
size per thread: [21.12 kB, 21.12 kB, 21.12 kB, ...]
threads: [1, 2, 3, ...]
threads per core: 1
total size: [21.12 kB, 42.24 kB, 63.36 kB, ...]

...

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels 11

memory) cache. For the last level cache this number is calculated from the measured
saturated memory bandwidth.

The cache per group dictionary contains the cache description as required
by pycachesim [5]. write_back makes sure that a modified cache line is
transferred to the store_to cache in case of its replacement.write_allocate
enforces a load of the cache line if some part of it is updated. The product of sets,
ways, and cl_size is the size of one cache resource in bytes.

Benchmarks

Streaming benchmark results are required input for the Roofline model with all
core counts and in all memory hierarchy levels. The ECM model only needs the
measured saturated main memory bandwidth. In order to cover the whole memory
hierarchy and typical effects and configurations, many tests are performed and their
results stored in the machine description file. First, all benchmark kernels need to be
specified in the kernels dictionary. For each kernel, FLOPs per iteration
is the number of floating-point operations per iteration of the underlying kernel.
read streams is the number of bytes and different streams read at each iteration.
The ratio bytes=streams is the size of one element in the processed array.
read+write streams are accesses that are both read and written to (e.g., a in
a[i] = a[i] + 1). write streams complements read streams. The
differentiation into these three metrics is important to handle write-allocate transfers
correctly.

The benchmark results are then grouped into memory hierarchy levels and SMT
threads. Each such block has the configuration per physical core, with measured
bandwidth (without write-allocate), used memory size (total, per thread and per
core), and the number of cores and threads used.

2.3 Models

The models offered in Kerncraft are: Roofline, ECM, Layer Conditions,
and Benchmark. Although not all are, strictly speaking, performance models, each
one allows some unique and valuable insight into the performance, or some aspect
of expected behavior, of the kernel at hand.

Roofline

The Roofline model is implemented in the two variants Roofline and Roof-
lineIACA. The former counts flops in the high level code and matches them
to the FLOPs per cycle configuration in the machine description file. It also
models the first level cache to register transfers using the corresponding measured

12 J. Hammer et al.

bandwidth result. RooflineIACA, on the other hand, uses the IACA analysis to
predict in-core or compute performance and first level cache to register throughput.
This analysis will be explained in detail in the ECM section below.

Apart from the differences in the in-core and first level cache to registers
bottlenecks, both variants use the same approach for analysis throughout the rest
of the memory hierarchy: take the cache miss prediction (explained in Sect. 2.4)
and predict the required data volume (ˇk) coming out of each memory hierarchy
level per iteration. Take these volumes and divide them by the measured achievable
bandwidths (Bk) out of the corresponding hierarchy level, which yields a throughput
time for that data amount (Tk D ˇk=Bk). Out of the numerous benchmarks (as
described in Sect. 2.2), Kerncraft tries to find the one matching the kernel under
examination as closely as possible with regard to the number of read and write
streams into memory.

If IACA is available and a supported Intel architecture is analyzed, the Roof-
lineIACA model is to be preferred over the regular Roofline model, as it will
yield a much better accuracy.

ECM

Three versions of the Execution-Cache-Memory (ECM) model are supported:
ECMData (modeling only the first level cache to main memory data transfers),
ECMCPU (modeling only the in-core performance and first level cache to registers)
and ECM (combining the data and in-core predictions).ECMPCPU relies on a suitable
compiler and IACA to be available, which is why the rest of the ECM model can be
run separately.

ECMData uses either the layer conditions or cache simulation (both explained
in Sect. 2.2) to predict the data volumes out of each memory hierarchy level. Then it
applies the documented bandwidths for inter-cache transfers and the measured full-
socket main memory bandwidth for the memory to LLC transfers. By taking the
ratio of data volume and bandwidth, TL1�L2, TL2�L3, and TL3�Mem are calculated (on
machines with three cache levels). The benchmark kernel used for the main memory
bandwidth is chosen according to the read and write stream counts best matching
the analyzed kernel.

ECMCPU requires that the kernel is analyzed by IACA, which in turn requires a
compilable version of the kernel. The kernel code is therefore wrapped in a main
function that takes care of initializing all arrays and variables. Dummy function
calls are inserted to prevent the compiler from removing seemingly useless data
accesses. Once compiled to assembly language using appropriate optimizing flags,
the innermost kernel loop is extracted and the unrolling factor is determined from
it. Both are done using heuristics and may fail; if they do, interaction by the
user is requested. Using the unrolling factor, the IACA predictions can be scaled
to iterations in the high-level kernel code. IACA reports throughput cycle counts

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels 13

per port, which are then accumulated into TnOL and TOL based on the machine
description configuration.

Layer Conditions

To predict optimal blocking sizes, layer conditions can be formulated in an algebraic
way and solved for block sizes. The details are explained in [4], while the concept
of layer conditions and our generic formulation is described in Sect. 2.4.2.

Benchmark

To allow validation of the previously explained models, the benchmark model
compiles and runs the code and measures performance. The code is prepared in
basically the same way as for an IACA analysis, but arrays are initialized and
LIKWID marker calls are inserted to enable precise measurements using hardware
performance counters. The output of likwid-perfctr is used to derive familiar
metrics (Gflop/s, MLUP/s, etc.), which in turn are used for validations. It is
important to note that this model must be executed on the same machine as the
one in the machine description file passed to Kerncraft, otherwise results will not be
conclusive.

2.4 Cache Miss Prediction

One of the core capabilities of Kerncraft is the prediction of the origin of data
within the memory hierarchy, which can currently be done via two methods: a partial
cache simulation using pycachesim, or a layer condition analysis. Both prediction
methods have their strong points and drawbacks. Cache simulation can capture some
irregularities arising from the cache structure and implementation in hardware (such
as associativity conflicts) and at the same time is more generic and versatile in terms
of architectural features and the kernels it can be used for. Layer conditions, on the
other hand, yield very clean and stable results without disturbance from hardware-
specific issues. They can be evaluated very quickly and almost independently of the
code and domain size, but they only work for least-recently-used (LRU) replacement
policies and currently only handle sequential traversal patterns.

In summary, if the layer condition prediction can be applied to the kernel and
architecture of interest, it is usually the better choice.

14 J. Hammer et al.

2.4.1 Cache Simulation with Pycachesim

The open source pycachesim library is a spin-off from Kerncraft. It is designed
to efficiently model all the common cache architectures found in Intel, AMD, and
Nvidia products.3 The cache architecture is described in the machine description
file and then modeled in pycachesim. It supports inclusive and exclusive caching,
multiple replacement policies (LRU, RR, Random and FIFO) as well as victim
caches. For the Intel architectures covered in this paper, inclusive write-back caches
with LRU are assumed. The simulator, once initialized with the cache structure, gets
passed accessed data locations (loads and stores), which are followed through the
simulated memory hierarchy. It also keeps a statistic about accumulated load, store,
hit, and miss counts. After a warm-up phase, the statistic is reset, data accesses from
a precise number of loop iterations are passed to the simulator, and the updated
statistic is read out. The gained information reflects the steady state behavior.

It is very important to align the end of the warm-up period with cache line
boundaries, as well as with edges of the arrays to skip over boundary handling (e.g.,
loops that go from 2 to N � 3). If these cases are not considered, imprecise and
oscillating performance predictions are likely.

2.4.2 Layer Conditions

Another approach to predicting the cache traffic are the Layer Conditions [16, 17].
In order to utilize them for our purposes, we have generalized and reformulated them
to allow symbolic evaluation. The symbolic evaluation heavily relies on sympy [18],
a computer algebra system for python.

The basis of layer conditions is the least-recently-used replacement policy,
which (although typically not perfectly implemented in large, real caches) mimics
observed behavior quite well. By taking the relative data access offsets and
assuming sequential increments during the subsequent iterations, we can predict
very precisely which access will hit or miss depending on given cache sizes.

For demonstration we assume a double precision 2D 5-point stencil on M � N
arrays a[M][N] and b[M][N], with accesses in the jth and ith iteration to
a[j-1][i], a[j][i-1] a[j][i+1], a[j+1][i] and b[j][i]. The inner
loop index is i. Now we compute the offsets between all accesses after sorting them
in increasing order (as already shown), e.g., &a[j][i-1] - &a[j-1][i] or
.N � 1/ elements. We store them in the list L and insert, per array, another 1, since
we do not know the offsets between the arrays:

L D f 1
„ƒ‚…

first access
to a

; N � 1
„ƒ‚…

&a[j][i-1]
- &a[j-1][i]

; 2
„ƒ‚…

&a[j][i+1]
- &a[j][i-1]

; N � 1
„ƒ‚…

&a[j+1][i]
- &a[j][i+1]

; 1
„ƒ‚…

first access
to b

g

3Kerncraft currently only supports Intel Xeon and Core architectures, but pycachesim has been
developed with other architectures in mind.

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels 15

For each reuse distance t in L we can derive the required cache size Creq, hits Chits,
and misses Cmisses:

Creq D
X

.L�t/ C t � count.L>t/

Chits D count.L�t/

Cmisses D count.L>t/ :

Here, Lcondition is a sublist of L that contains only entries that fulfill the given
condition (e.g., L<t contains all elements out of L which are smaller than t).
Applying this method to the described kernel, we have the interesting case t D N�1,
for which we get Creq D 2.N � 1/ C 2 C 2.N � 1/ D 4N � 2 elements, or
32N � 16 bytes, Chits D 3, and Cmisses D 2.

This means that if an LRU-based cache can hold more than 32N�16 bytes, three
hits will be observed in each iteration and two misses will need to be passed to the
next level in the memory hierarchy, which is to leading order exactly the result from
a manual LC analysis (where the 16 bytes are typically neglected so that four layers,
i.e., rows, must fit into the cache). Since caches in modern CPUs do not operate on
bytes but on cache lines, the computed hits and misses are averaged. Once a cache
line was loaded due to a miss, subsequent accesses will be hits, which averages out
to the misses and hits per iteration yielded by the layer condition analysis.

2.5 Underlying In-Core Execution Prediction

To predict the in-core execution behavior, we employ the Intel Architecture Core
Analyzer (IACA) [9], which predicts the throughput and latency for a sequence of
assembly instructions under the assumption that all loads can be served by the first
level cache. IACA presupposes steady-state execution, i.e., the loop body is assumed
to be executed often enough to amortize any start-up effects.

Kerncraft operates on high level C code, which can not be analyzed by IACA
directly. Therefore it first needs to be transformed into a compilable version by
wrapping the kernel in a main function. It is then passed through a compiler and
converted to assembly. The assembly sequence of the inner loop body needs to
be marked to be recognized by IACA. The marked assembly is then fed into the
assembler to produce an object file as input to IACA. IACA reports the throughput
and latency analysis itemized by execution ports. We are interested in the overall
and load-related throughput and latency. Which execution ports are associated
with loads is defined in the machine description file (see Sect. 2.2 above). The
compiler might have unrolled the inner-most loop a number of times (e.g., to allow
vectorization), so this factor needs to be extracted from the assembly to scale the
IACA results to a single high-level kernel code loop iteration. The IACA output is
parsed and the data is presented by Kerncraft as part of the analysis.

16 J. Hammer et al.

Listing 3 Kernel code for a three dimensional long-range star stencil with constant coefficients

double U[M][N][N];
double V[M][N][N];
double ROC[M][N][N];
double c0, c1, c2, c3, c4, lap;

for(int k=4; k < M-4; k++) {
for(int j=4; j < N-4; j++) {

for(int i=4; i < N-4; i++) {
lap = c0 * V[k][j][i]

+ c1 * (V[k][j][i+1] + V[k][j][i-1])
+ c1 * (V[k][j+1][i] + V[k][j-1][i])
+ c1 * (V[k+1][j][i] + V[k-1][j][i])
+ c2 * (V[k][j][i+2] + V[k][j][i-2])
+ c2 * (V[k][j+2][i] + V[k][j-2][i])
+ c2 * (V[k+2][j][i] + V[k-2][j][i])
+ c3 * (V[k][j][i+3] + V[k][j][i-3])
+ c3 * (V[k][j+3][i] + V[k][j-3][i])
+ c3 * (V[k+3][j][i] + V[k-3][j][i])
+ c4 * (V[k][j][i+4] + V[k][j][i-4])
+ c4 * (V[k][j+4][i] + V[k][j-4][i])
+ c4 * (V[k+4][j][i] + V[k-4][j][i]);

U[k][j][i] = 2.f * V[k][j][i] - U[k][j][i]
+ ROC[k][j][i] * lap;

}}}

3 Kerncraft Usage

Kerncraft guides performance engineering efforts by allowing developers to predict
and validate performance. In the following sections we will use an instructive
example to demonstrate the single-core performance prediction, the scaling from
single-core to the full socket, and the analytic layer conditions. The analysis will
be based on the long-range 3D kernel (3d-long-range) in Listing 3. Predictions and
measurements will be done for the Intel Ivy Bridge EP (IVY) microarchitecture.
The details of the machine are described in Table 2.

3.1 Single-Core Performance

Using Kerncraft for a single-core performance analysis involves choosing an overall
prediction model (ECM or Roofline) and a cache predictor model (pycachesim
simulation [SIM] or layer conditions [LC]). An example using RooflineIACA,
ECM, and SIM is shown in Listing 4. It is easy to do parameter studies via simple
scripting, and scanning a range of problem sizes often leads to valuable insights.

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels 17

Table 2 Technical data of
the Ivy Bridge-based node
used for the long-range
stencil case study

Microarchitecture Ivy Bridge EP

Abbreviation IVY

Model name E5-2690v2

Clock (fixed, no turbo) 3.0 GHz

Cores per socket 10

Cacheline size 64 B

Theoretical L1-L2 bandwidth 0:5 CL=cy

Theoretical L2-L3 bandwidth per core 0:5 CL=cy

Achievable single-socket memory 47:2 GB=s (7 cores)

bandwidth (copy kernel)

Compiler version Intel ICC 16.0.3

IACA version 2.1

Kerncraft version 0.4.3

Listing 4 Excerpt from the kerncraft CLI (reformatted for brevity) for the analysis of the long-
range stencil

$ kerncraft -p ECM -p RooflineIACA --cache-predictor=SIM \
3d-long-range.c -m IVY.yaml -D M 130 -D N 1015;

=========================== kerncraft ===========================
3d-long-range-stencil.c -m IVY.yaml
-D M 130 -D N 1015
----------------------------- ECM -------------------------------
{ 52.0 || 54.0 | 40.0 | 24.0 | 48.5 } cy/CL
{ 54.0 \ 94.0 \ 118.0 \ 166.5 } cy/CL
saturating at 4 cores

------------------------- RooflineIACA --------------------------
Bottlenecks:
level | a. intensity | performance | bandwidth | bw kernel

-------+--------------+---------------+------------+----------
CPU | | 18.22 GFLOP/s | |
L2 | 0.26 FLOP/B | 17.52 GFLOP/s | 68.37 GB/s | copy
L3 | 0.43 FLOP/B | 16.57 GFLOP/s | 38.79 GB/s | copy

MEM | 0.43 FLOP/B | 7.65 GFLOP/s | 17.91 GB/s | copy

Cache or mem bound with 1 core(s)
7.65 GFLOP/s due to MEM bottleneck (bw with from copy benchmark)
Arithmetic Intensity: 0.43 FLOP/B

Running this analysis from N D 100 to N D 2000, we can see the effect of the
inner dimension increasing and visualize it in Fig. 3.

The ECM prediction (stacked areas from TnOL C TL1�L2 C TL2�L3TL3�MEM)
follows the trend of the measured throughput (black plus signs). The Roofline
Roofline prediction (green dashed line) is generally too optimistic due to the evenly
distributed runtime contribution from multiple memory hierarchy levels, which
is not correctly modeled in this particular case. The cache simulator, taking the

18 J. Hammer et al.

Fig. 3 Single-core parameter sweep of the long-range stencil for N D 100 to N D 2000 with M
chosen such that the working set will never fit into any cache and needs to be loaded from main
memory

Fig. 4 Single-core parameter sweep, with layer condition cache prediction, of the long-rang
stencil for N D 100 to N D 2000 with M chosen such that the data will never fit into any cache
and needs to be loaded from main memory

associativity of all cache levels into account, correctly identifies L1 thrashing and
a corresponding runtime increase near N D 1792 D 7 � 256. The corresponding
increase in traffic between L1 and L2 of more than 50% can be shown using
performance counter measurements. Many more such “pathological” sizes exist,
of course, but the size range was not scanned with a step size of one. In Fig. 4 the
same parameter study was done with the LC predictor. Since it knows nothing about
cache organization, the prediction is much smoother.

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels 19

3.2 Single-Socket Scaling and Saturation Point

For multi-core scaling the ECM model assumes perfect scalability until a shared
bandwidth bottleneck (usually the main memory bandwidth) is hit. It thus predicts
the number of cores where the loop performance ceases to scale:

ns D TECM;Mem

TL3�Mem
:

By default, Kerncraft reports the saturation point in the ECM model, as seen
in Listing 4. The default report assumes that the total cache size and cache
bandwidth scales with the number of cores. This is mostly true on current Intel
microarchitectures, but not for the last level cache (L3) size, which is shared among
all cores in a socket. To also take that change of cache sizes into account, Kerncraft
can be run with the -cores argument. In the case presented in Listing 4, a
reduction of the L3 cache size by a factor of four (for 4 cores) does not change
the predicted results, since no layer condition changes.

To perform the single-socket scaling we added OpenMP pragmas to the outer
loop in the code and ran with the same problem size as seen in Listing 4 (strong
scaling). The result can be seen in Fig. 5: By increasing the number of cores up to
the predicted saturation point (four cores), we expect perfect scaling (dashed gray
line), and constant performance beyond (dotted line). The scaling model fits the
observations very well except right before the saturation point, which is a known
weakness of the ECM model with data-bound kernels [17].

Fig. 5 Single-socket strong scaling of the long-range stencil for N D 1015 and M D 132 with all
cores on same socket. The vertical line denotes the predicted saturation point. The horizontal line
is the minimum runtime as given by the saturated memory bandwidth

20 J. Hammer et al.

Listing 5 Excerpt from the kerncraft CLI (reformatted for brevity) showing LC transition points
from the analysis of the long-range stencil

$ kerncraft -p LC 3d-long-range.c -m IVY.yaml -D M 130 -D N 1015;
=========================== kerncraft ===========================
3d-long-range-stencil.c -m IVY.yaml
-D M 130 -D N 1015
------------------------------ LC -------------------------------
2D Layer-Condition:
L1: N <= 216
L2: N <= 1725
L3: N <= 172463
3D Layer-Condition:
L1: N <= 19
L2: N <= 55
L3: N <= 546

3.3 Layer Conditions

Layer conditions enable a much more efficient cache behavior prediction without
extensive parameter studies through the simulator or benchmarks. As explained in
Sect. 2.4.2, they are evaluated analytically and yield a prediction for transition points
from one cache state to another. Kerncraft generally employs analytic LCs when
using the option -cache-predictor=LC, but it can also output the derived
transition points as shown in Listing 5. The predicted transition in L3 from the 3D
to the 2D layer condition at N D 546 is also clearly visible in Figs. 3 and 4.

4 Future Work

Development on Kerncraft will continue and strive to enhance usability and
portability and to allow support of a broader range of kernels and architectures.
One of the major obstacles to supporting non-Intel CPUs is IACA, which is closed-
source and only supports Intel microarchitectures. It is our goal to develop a model
and tool which will be suitable for predictions on other architectures. In the near
future we will also integrate our layer condition model with the LLVM-Polly project
[3]. This will allow the Polyhedral model to automatically choose cache-efficient
tiling sizes without user interaction.

As with all of our tools and libraries (Kerncraft, LIKWID [19], GHOST [12],
and the soon-to-be-published fault-tolerance package CRAFT), future work will
be released under open source licenses and we will support and encourage other
projects to build upon them.

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels 21

Acknowledgements This work was in part funded by the German Academic Exchange Service’s
(DAAD) FITweltweit program and the Federal Ministry of Education and Research (BMBF)
SKAMPY grant.

References

1. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.T., Jalby, W., et al.: MAQAO:
modular assembler quality analyzer and optimizer for itanium 2. In: The 4th Workshop on
EPIC architectures and compiler technology, San Jose (2005). http://www.prism.uvsq.fr/users/
bad/Research/ps/maqao.pdf

2. Evans, C., Ingerson, B., Ben-Kiki, O.: YAML Ain’t Markup Language (2001). http://yaml.org
3. Grosser, T., Groesslinger, A., Lengauer, C.: Polly – performing polyhedral optimizations

on a low-level intermediate representation. Parallel Process. Lett. 22(04), 1250010 (2012).
doi:10.1142/S0129626412500107

4. Hammer, J.: Layer conditions (2016). https://rrze-hpc.github.io/layer-condition/
5. Hammer, J.: pycachesim – a single-core cache hierarchy simulator written in python (2015).

https://github.com/RRZE-HPC/pycachesim
6. Hammer, J., Hager, G., Eitzinger, J., Wellein, G.: Automatic loop kernel analysis and

performance modeling with kerncraft. In: Proceedings of the 6th International Workshop
on Performance Modeling, Benchmarking, and Simulation of High Performance Computing
Systems, PMBS ’15, pp. 4:1–4:11. ACM, New York (2015). doi:10.1145/2832087.2832092

7. Hockney, R.W., Curington, I.J.: f1=2: a parameter to characterize memory and communication
bottlenecks. Parallel Comput. 10(3), 277–286 (1989). doi:10.1016/0167-8191(89)90100-2

8. Hofmann, J., Fey, D., Riedmann, M., Eitzinger, J., Hager, G., Wellein, G.: Performance analysis
of the Kahan-enhanced scalar product on current multi-core and many-core processors.
Concurr. Comput. Pract. Exper. (2016). doi:10.1002/cpe.3921

9. Intel Architecture Code Analyzer. https://software.intel.com/en-us/articles/intel-architecture-
code-analyzer. https://software.intel.com/en-us/articles/intel-architecture-code-analyzer

10. ISO: ISO C Standard 1999. Technical Report (1999). http://www.open-std.org/jtc1/sc22/wg14/
www/docs/n1124.pdf. ISO/IEC 9899:1999 draft

11. Kerncraft toolkit (2015). https://github.com/RRZE-HPC/kerncraft
12. Kreutzer, M., Thies, J., Röhrig-Zöllner, M., Pieper, A., Shahzad, F., Galgon, M., Basermann,

A., Fehske, H., Hager, G., Wellein, G.: GHOST: building blocks for high performance sparse
linear algebra on heterogeneous systems. Int. J. Parallel Prog. 1–27 (2016). doi:10.1007/
s10766-016-0464-z

13. Lo, Y., Williams, S., Van Straalen, B., Ligocki, T., Cordery, M., Wright, N., Hall, M., Oliker, L.:
Roofline model toolkit: a practical tool for architectural and program analysis. In: Jarvis, S.A.,
Wright, S.A., Hammond, S.D. (eds.) High Performance Computing Systems. Performance
Modeling, Benchmarking, and Simulation. Lecture Notes in Computer Science, vol. 8966, pp.
129–148. Springer International Publishing, Berlin (2015). doi: 10.1007/978-3-319-17248-4_7

14. McCalpin, J.D.: STREAM: sustainable memory bandwidth in high performance computers.
Technical Report, University of Virginia, Charlottesville, VA (1991–2007). http://www.cs.
virginia.edu/stream/. A continually updated technical report

15. Narayanan, S.H.K., Norris, B., Hovland, P.D.: Generating performance bounds from source
code. In: 2010 39th International Conference on Parallel Processing Workshops (ICPPW), pp.
197–206 (2010). doi:10.1109/ICPPW.2010.37

16. Rivera, G., Tseng, C.W.: Tiling optimizations for 3D scientific computations. In: Supercom-
puting, ACM/IEEE 2000 Conference, pp. 32–32 (2000). doi:10.1109/SC.2000.10015

http://www.prism.uvsq.fr/users/bad/Research/ps/maqao.pdf
http://www.prism.uvsq.fr/users/bad/Research/ps/maqao.pdf
http://yaml.org
http://dx.doi.org/10.1142/S0129626412500107
https://rrze-hpc.github.io/layer-condition/
https://github.com/RRZE-HPC/pycachesim
http://dx.doi.org/10.1145/2832087.2832092
http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://dx.doi.org/10.1002/cpe.3921
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
https://github.com/RRZE-HPC/kerncraft
http://dx.doi.org/10.1007/s10766-016-0464-z
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://dx.doi.org/10.1109/ICPPW.2010.37
http://dx.doi.org/10.1109/SC.2000.10015

22 J. Hammer et al.

17. Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quantifying performance bottlenecks of stencil
computations using the execution-cache-memory model. In: Proceedings of the 29th ACM
International Conference on Supercomputing, ICS ’15, pp. 207–216. ACM, New York (2015).
doi:10.1145/2751205.2751240

18. SymPy Development Team: SymPy: python library for symbolic mathematics (2016). http://
www.sympy.org

19. Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-oriented tool suite for
x86 multicore environments. In: Proceedings of PSTI2010, the First International Workshop
on Parallel Software Tools and Tool Infrastructures, San Diego, CA (2010)

20. Unat, D., Chan, C., Zhang, W., Williams, S., Bachan, J., Bell, J., Shalf, J.: ExaSAT: an exascale
co-design tool for performance modeling. Int. J. High Perform. Comput. Appl. 29(2), 209–232
(2015). doi:10.1177/1094342014568690

21. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM 52(4), 65–76 (2009). doi:10.1145/1498765.
1498785

22. Wittmann, M., Hager, G., Zeiser, T., Treibig, J., Wellein, G.: Chip-level and multi-node analysis
of energy-optimized lattice Boltzmann CFD simulations. Concurrency Comput. Pract. Exper.
28(7), 2295–2315 (2016). doi:10.1002/cpe.3489

http://dx.doi.org/10.1145/2751205.2751240
http://www.sympy.org
http://www.sympy.org
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1002/cpe.3489

Defining and Searching Communication
Patterns in Event Graphs Using the g-Eclipse
Trace Viewer Plugin

Thomas Köckerbauer and Dieter Kranzlmüller

Abstract The use of event graphs is a common approach to debug and analyze
message passing parallel programs. Although event graphs are very useful for
program understanding and debugging, they get confusing and hard to read for
programs with complex communication behavior, long runtimes and a large num-
bers of processes. An approach to ease this problem is to simplify the event graph
by marking occurrences of predefined well known communication structures. This
allows to quickly identify different regions of activity in the event graph without
further inspection. It also helps to identify parts, where certain communication
patterns are expected but do not occur due to a bug in the parallel application,
in this case the pattern might only match to a certain degree. In this paper we
present a language for the description of such communication patterns, which allows
to describe the patterns in a way that also covers variations in process numbers
and process mappings. Furthermore it demonstrates a pattern matching plugin for
the Trace Viewer of g-Eclipse which uses an specialized algorithm for detecting
patterns in prerecorded event traces of parallel programs. Based on the presented
approach a variety of improvements for the processing and presentation of event
graphs are imaginable. The extracted pattern information could be used to optimize
the analyzed program or to reduce the contents of the graph to areas of interest, by
substituting non interesting parts by placeholders.

1 Introduction

Developing and debugging parallel applications running on HPC machines adds
complexity in comparison to sequential programs that needs to be coped with by
the application developers. Two additional potential problems that can occur in a
parallel program are race conditions [4] and deadlocks [1].

T. Köckerbauer (�) • D. Kranzlmüller
MNM-Team, Ludwig-Maximilans-Universität München (LMU), Oettingenstraße 67, 80538
Munich, Germany
e-mail: koecker@nm.ifi.lmu.de; Kranzlmueller@ifi.lmu.de

© Springer International Publishing AG 2017
C. Niethammer et al. (eds.), Tools for High Performance Computing 2016,
DOI 10.1007/978-3-319-56702-0_2

23

mailto:koecker@nm.ifi.lmu.de
mailto:Kranzlmueller@ifi.lmu.de

24 T. Köckerbauer and D. Kranzlmüller

Race conditions can occur if the result of a program execution is dependant on
the timing of the involved (parallel) processes. In message passing systems this can
mainly be caused by wrong message orderings. Deadlocks occur if two or more
operations depend on each other before they can be finished.

Beside these potential problems the introduced communication between the
nodes of the machine can cause, it also requires the application developer to pay
attention on the performance impact it causes.

Debugging [7] and profiling [11] tools for message passing parallel programs
provide an insight into the inner workings of the programs and aid the developer
finding problems or bottlenecks. This is often done by intercepting communication
calls of the programs and creating measurements during program runtime using
tracing tools that store this information for further analysis and visualization. Using
trace analysis tools that analyze the recorded communication steps and the timing
of the program it is possible to provide a graphical representation of the recorded
data. Event graphs are a common approach to visualize this data.

Event graphs are directed graphs that show the different processes on one axis
and occurring events as well as the relations between them on a time scale on the
other axis. Processes are represented using lines along the time axis, symbols on
those lines mark the events that occur on the processes as vertices in the graph. If
those events are related arcs are used to connect the involved events, showing the
flow of data and possibly control.

Although these graphical representations make the dataflow and communication
easier to understand, they suffer from getting overloaded and confusing with
an increasing number of processes, increasing program runtime, and increasing
complexity of the communication structure.

Information about patterns occurring in traces can be useful for program
understanding, since the pattern information can ease the interpretation of trace
data. Knowing if expected patterns occur during program execution can aid in the
debugging process. Searching for known bad performing communication patterns
can help to improve the program performance by giving hints where to optimize.

2 Pattern Definition

To search for patterns, we first have to define what a pattern is. In the context of this
work, we define a set of constraints that a search pattern has to fulfill:

• Constraint 1: Patterns consist of send and receive events, that can blocking as
well as non-blocking (the pattern match algorithm does not distinguish between
these cases), that are forming a correct MPI communication structure.
This ensures that there are no communication events between two processes that
can be received in a different order than the one they were sent with. This is a hard
requirement in the MPI standard (in which it is described as “non-overtaking”
messages).

Defining and Searching Communication Patterns 25

However, MPI has the possibility to create such communication structures by
using different tags or communicators for the two messages. Tags and commu-
nicators are not covered in this work, but would be a possible extension of the
proposed approach. Additional effort to track the used tags and communicators
and to handle them separately would be needed in the search algorithm.

• Constraint 2: A pattern covers all processes of the trace, and it is necessary
that there is no group of processes that is independent of the other processes.
Independent means that the events on one process do not have any happened-
before relationship to the events of another process and vice versa.

• Constraint 3: A group of event sequences can only be an occurrence of a pattern
if they do not contain any additional events that are not part of the pattern.

3 Pattern Search

In order to search for a pattern it is necessary to provide some sort of reference data
that describes the structure of the pattern. This can either be a reference instance
of the pattern or some kind of description that captures the properties and structure
of the pattern. Since many interesting patterns can have more than one possible
manifestation, the use of a single reference pattern might not allow to search all
instances of a pattern, whereas a description of the pattern might allow the use of
parameters to cover different possible variations. Such variations could for example
be a different dimension count, or a different distribution of processes along the
dimensions.

In the proposed approach, pattern descriptions are used to generate a set of
reference patterns that cover the range of parameters used in the descriptions.

The pattern search process consists of the following steps:

1. Parsing one or more pattern description files which creates an Abstract Syntax
Tree (AST) of the description.

2. Executing the ASTs to create reference pattern instances, each containing a
reference event sequence per process.

3. Searching of matching event sequences on the individual processes which finds
the locations of the sequence matches per process.

4. Calculating a sequence dependency graph which describes the relationship of the
sequences in the pattern.

5. Merging of found sequences using the dependency graph to a pattern which spans
over all processes.

26 T. Köckerbauer and D. Kranzlmüller

3.1 Pattern Description

The patterns are described using a new specialized language that allows to formulate
the communication structure programmatically in a similar way as done with
MPI. The language contains basic control (for, if, else, do, while) and
arithmetic/logic statements that allow to model the communication of a program,
statements that allow to describe the topology of the patterns (description,
pattern, sum, product, sweep, range, permutate, instanceid), as
well as some built-in functions (send, recv, size, log2, pow, factorize,
sqrt, cbrt). The following example is used to illustrate the basic structure of the
pattern description language.

Example: Description of a Torus pattern with a Von Neumann neighborhood

pattern "Torus (Von Neumann)"
sweep(range(dimension, 1, size(factorize(numProcs)));

product(dimLen[dimension]) == numProcs)
instanceid("Topology: " dimLen) {

dist = 1;
nextDist = 1;
for(j=0; j<size(dimLen); j=j+1) {

nextDist = nextDist * dimLen[j];
dimLowerBound = (myId / nextDist) * nextDist;
upper = dimLowerBound + ((myId + dist) % nextDist);
lower = dimLowerBound + ((myId - dist) % nextDist);
send(upper);
send(lower);
recv(upper);
recv(lower);
dist = nextDist;

}
}

The pattern description consists of two areas, the pattern instance properties and the
pattern structure.
Pattern instance properties (lines 2–4)
Lines 2–3 of the example contain a sweep statement and arguments for it. It is
used to describe the possible manifestations of the pattern. The numProcs variable
used in the statement is set to the number of processes in the trace by the interpreter.
The sweep statement specifies that the following description code (lines 5–17)
is executed several times with different parameters which are depending on the
arguments of the sweep statement:

• The first argument of the sweep statement in this example is a range
statement. It specifies that the following arguments of the sweep statement are
evaluated with the dimension variable set to the values 1 up to the result of
size(factorize(numProcs)) which is the amount of prime factors the

Defining and Searching Communication Patterns 27

number of processes consists of. This value equals the maximum number of the
dimensions along which the nodes in the Torus pattern can be distributed.

• The second argument is the product statement. The statement sets the output
parameter dimLen, which is an array of the length dimension. It specifies that
all following arguments of the sweep statement are evaluated for all products of
the array dimLen that result in the value of numProcs. This means that the
following statements are evaluated for all possible distributions of the processes
along the specified amount of dimensions.

Line number 4 specifies an instance ID name which can be used to identify the
instance generated using the previous statements.
Pattern structure (lines 5–17)
The rest of the pattern description consists of statements to calculate communication
partner process IDs (lines 8–11) and send and receive statements (lines 12–
15), that are executed procedurally, similar to an MPI program, but without any
computational parts. A detail that is different to an implementation in C is that the
% operator calculates the modulo instead of the remainder here, so an additional +
dimLen[j] is not needed for calculating the value of lower.

3.2 Execution of the Description

To search the pattern in a trace file the pattern description is executed in an
interpreter to generate a reference trace (Step 2 in Fig. 1). The reference trace data
of the individual processes is then used to find the occurrences in the trace data to
analyze.

Fig. 1 Pattern description and search steps

28 T. Köckerbauer and D. Kranzlmüller

3.3 Event Sequence Search

Since the processes of the trace to search in might have another order than in the
reference pattern instances (for example due to another communication topology)
it is necessary to compare all reference processes with each process in the trace.
This prevents us from being able to do a simple comparison of the event types
and partner IDs in the reference processes to those in the traced processes, since a
possible permutation of the partner IDs has to be taken into account. In addition it
is possible that events on reference processes are permuted (for example if there are
wildcard receives). This means that it is necessary to make a comparison between
the reference process and the trace process which fulfills following requirements:

• The partner numbers may be permuted, since it is possible that pattern instances
in the trace have a different process numbering as in the reference pattern. This
might for example be due to a different implementation or topology.

• The events of certain ranges in the reference pattern may be permuted. This might
be the case since the order of some events might not influence the nature of a
pattern. An example for this is the All-to-One pattern where the master process
might have a series of wildcard receives. To specify the allowed sequences more
precisely additional constraints on the event order are thinkable).

The check used does not compare the reference and the trace directly, instead it
compares the amount of occurrences of send and receive events to and from the
partners.

These counts can be stored in a triangular matrix A that contains “sequence length
+ 1” (k C 1) rows and columns which represent the send and receive count of the
different partner processes in the reference trace or sliding window.

For an example reference trace process as in Eq. (1) the matrix A would look like
in Eq. (2).

P1 D �

S1 S3 S4 S4 R3 R1 R4 R4
�

(1)

A D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

5 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(2)

S D �

1 0 1 2 0 0 0 0
�

(3)

R D �

1 0 1 2 0 0 0 0
�

(4)

Defining and Searching Communication Patterns 29

The vectors S and R [Eqs. (3) and (4)] contain the amount of send or receive events
per partner process ID, i.e. 1 process ID with 2 sends and 2 receives (process 3), 2
process IDs with 1 send and 1 receive (processes 0 and 2), and 5 process IDs with
0 sends and 0 receives (processes 1, 4, 5, 6 and 7). Matrix A contains the process
counts—the row and column indices represent the corresponding send and receive
counts.

These event counts in matrix A can be calculated using a sliding window over
the trace. The changes in the event counts caused by shifting the window are used
to update a hash.

A substring search with a hash that is updated using a sliding window can be done
with the Karp-Rabin algorithm. Since the hash calculation for different permutations
of characters in a window in the Karp-Rabin-Algorithm produces different values
another hash calculation was used, which results in the same values for those
permutations.

The values added and removed in the used hash calculation are triples which
contain the amount of sends, the amount of receives and the count of how often this
combination of send and receive amounts occurs in the window.

The following paragraphs describe the modifications made to the Karp-Rabin
hash calculation.

Modified Karp-Rabin Algorithm

For finding the occurrences of the pattern in a trace we use a modified version of
the Karp-Rabin algorithm [6]. The original Karp-Rabin algorithm uses a “rolling
hash” to calculate a hash of a moving window in texts. It is mainly used for string-
matching, where the reference string and the occurrence have to be identical.

The hash introduced for searching in event graph traces has different require-
ments:

• Since permutations of event ranges should be allowed the hash value has to be
independent from the order of the characters (e.g. “S1S2S3“ should produce the
same hash value as “S3S2S1”).

• Since the processes might be permuted it is not mandatory that the characters
in the reference string are identical to those in an occurrence of the pattern. (i.e.
“S1S2S3R1“ and “S3S2S1R3” can be two different permutations of processes
for the same pattern and therefore should result in the same hash value).

These requirements are fulfilled by introducing the following changes to the
algorithm:

• Instead of encoding the character values c directly into the hash the number of
sends to and receives from a partner process are encoded into a single value per
partner process. These values and their number of occurrences in the window is
used to update the hash.

30 T. Köckerbauer and D. Kranzlmüller

• Since the values which are encoded into the hash do not represent positions in
the sliding window anymore the factor a is not multiplied to the values anymore.

The hash value of a window can be calculated using Eqs. (5) and (6).

f .i; j; b/ D b.m C 1/.iCj.kC1/� j. j�1/
2 / (5)

h D
k

X

iD0

k�i
X

jD0

f .i; j;Ai;j/ (6)

The hash of the window (h) consists of the sum of hashes for the counts (b) of the
different send (i) and receive (j) event combinations. The hash for the example in
Eq. (2), which has a process count (m) of 8, and a window length (k) of 8, would be:

h D f .0; 0; 5/ C f .1; 1; 2/ C f .2; 2; 1/ (7)

If the window is moved it is not necessary to recalculate the whole hash using
Eq. (6) to get an updated value. Instead, it is possible to subtract the value that was
added for the partner process of the new event in the window [see Eq. (9)] and to
add an updated value [see Eq. (8)]. The same has to be done for the event that leaves
the window.

For every triple .t1; t2; t3/ that gets added:

hnew D hold C f .t1; t2; t3/ (8)

For every triple .t1; t2; t3/ that gets removed:

hnew D hold � f .t1; t2; t3/ (9)

3.4 Sequence Dependency Graph

The Sequence Dependency Graph is needed to merge the sequences found in the
Event Sequence Search in the final step of the pattern search. The graph is built
from the reference traces that were created using the pattern descriptions (Fig. 2).

The graph contains nodes that represent the event sequences of the individual
processes of the reference traces. The edges represent the relations to the other
processes of the reference patterns. The information in the nodes describes the
properties of the sequences they represent. The format of the information in the
nodes is as follows:

• The first line contains the amount of send and receive events to partner processes
and the amount of partner processes that have those individual combinations of
send and receive events.

Defining and Searching Communication Patterns 31

Fig. 2 Example of a sequence dependency graph

Format: <amount of partner processes>x(<amount of send events>, <amount of
receive events>)
Example: The line “2x(1,1),1x(2,2)” means that there are two partner processes
that this sequence is connected to with one send and one receive event each, and
that there is one partner process that this sequence is connected with two sends
and two receives.

• The second line lists the pattern instance IDs of the reference patterns that
contain the sequence and also the count of occurrences in the individual reference
patterns.
Format: <pattern instance ID>(<number of processes in the pattern instance that
have this sequence>)
Example: The line “IDs: 7(8)” means that this event sequence is only part of
reference pattern instance 7, which is a bidirectional communication with a Von
Neumann neighborhood on a two-dimensional Torus topology. The sequence is
contained in 8 processes, i.e. in all processes, of this pattern instance.

• The third line contains the length of the sequence. The sum of the events in the
first line equals the length specified here. This information is redundant, but is
included for better readability, and also for easier evaluation of the constraints.
Example: The line “len: 8” means that this sequence has a length of 8 events,
which are the 4 send and the 4 receive events described in the first line.

The labels on the edges of the graph contain information about the relationship of
the sequences the nodes represent to the sequences on neighboring processes. Their
format is as follows:

• The labels at the ends of an edge specify for which combination of amounts of
send and receive events this edge connects to a sequence of a partner process.

32 T. Köckerbauer and D. Kranzlmüller

The number of the send and receive events on one side of the edge are always the
swapped numbers of the other side of the edge.
Example: “(2,2)” means that this edge describes a connection of a sequence to
another sequence via two send and two receive events.

• The label at the middle of the edge specifies which reference patterns contain
communication between the two connected reference sequences and the number
of occurrences of this connection in the individual reference patterns.
Format: <pattern instance ID>(<number of connections between the two
sequences in the pattern instance>)
Example: “7(4)” means that only reference pattern instance 7 contains con-
nections of the sequences the edge connects with the send and receive counts
specified at the ends of the edge, and that this pattern contains 4 of those
connections.

3.5 Merge of Potential Matches to Pattern Instances

The event sequences found by the modified Karp-Rabin algorithm can potentially
be part of pattern instances. Merging the sequences found on the different processes
to instances of patterns is a Constraint Satisfaction Problem (CSP). In this instance
for searching patterns the CSP P D hX;D;Ci is defined as follows:

X. . . set of variables, one variable per process of the trace
D. . . domain of values, where every value is a tuple of a found matching sequence

containing its sequence ID (every node in the sequence dependency graph gets
an unique ID) and index

C. . . set of constraints defining the patterns via the relationships between the
sequences

3.5.1 Constraints for Searching Patterns in Event Graphs

We already defined the set of variables X, which contains one variable per process,
and the domain of values D, which contains the results of the sequence search on
process level. This subsection contains the set of constraints C needed to find pattern
instances on an event graph using a CSP.

The evaluation of the constraints has different runtime complexities. It might
not be necessary to evaluate all of them if one of them fails. The following list of
constraints is ordered so that checks with low complexity that might allow to skip
checking the remaining constraints happen before the more complex ones, which
improves runtime in non-worst case scenarios.

1. The variable to assign has to be in the same connected component of the sequence
dependency graph as the already assigned variables.

Defining and Searching Communication Patterns 33

2. The value of the variable to assign has to be within the upper and lower bounds
given by already assigned variables.

3. The values of already assigned variables have to be within the ranges for partner
processes required by the value to assign to the new variable.

4. The intersection of the pattern instance IDs of already assigned variables and the
variable to assign must not be empty. This is only necessary when searching for
more than one reference pattern instance in the same run to avoid a result that
consists of a mixture of sequences from different patterns, but does not form a
pattern instance itself.

5. The number of variables that already have the same value as the one that should
be assigned to the new variable must be lower than the maximum number of
occurrences for this value for at least one pattern instance ID that is member of
the intersection in the previous constraint.

6. The edge count between the value to assign in the new variable and the already
assigned values on other variables must be lower or equal the maximum number
of edge occurrences for at least one pattern instance ID that is member of the
intersection in constraint (4) and also fulfills the requirements of constraint (5).

3.5.2 Dynamic Backtracking

The approach to solve the CSP that was chosen in this work, and was also
implemented for the experimental evaluation, is dynamic backtracking [3]. This
algorithm was chosen due to several properties that can be beneficial when used
for finding patterns in event graphs.

• It identifies which other variables conflict with the assignment of the next variable
so that the amount of trashing is reduced, i.e. there is less exploration of search
space that can not lead to a solution because an early assignment avoids it.

• When a conflict is found in dynamic backtracking it tries to replace the “culprits”
that caused the conflict, trying to leave the potential subset of the solution that
already was found intact. Such a behavior can be beneficial for our use since
in typical patterns there can be groups of processes that are less connected to
other groups of processes, or might also appear in different but similar pattern
instances.

• The dynamic backtracking algorithm can be extended to allow the dynamic
expansion of the search space. It can start with a small search space, and
expand it whenever the assignment of a potential result value for a variable
creates dependencies on the values of the other variables that can not be
fulfilled with the current search space. This ensures that the search space of
the unassigned variables always contains enough possible values to cover all
potential assignments that may lead to a found pattern instance. The same applies
for shrinking the search space. For our case the algorithm can be extended to
shrink the search space to leave out parts that can not be reached anymore.

34 T. Köckerbauer and D. Kranzlmüller

Since related events in a trace are usually close together on the time scale this
can reduce the search space vastly.

Several modifications were made to the dynamic backtracking algorithm to
optimize it to the problem of finding pattern instances in an event graph. There
are two groups of modifications that were performed: Modifications that change
the behavior of the algorithm and modifications that influence the runtime of the
algorithm.

Among the changes, one change was made that modifies the behavior of the
algorithm substantially:

• Termination Criteria: The search does not terminate after a pattern instance was
found.

There are several changes to the dynamic backtracking algorithm that do not
influence its function, but can drastically influence its runtime, depending on the
structure of the patterns to search and the trace to search in.

• Immediate Backtracking if the already merged processes do not have any more
neighbors.

Since the pattern definition does only allow pattern descriptions in which all
processes are connected (see constraint 2 in Sect. 2) it is possible to backtrack
earlier than when one of the constraints of the CSP (see Sect. 3.5.1) is not fulfilled
in some cases. If the set of already assigned variables and the set of neighbors of
the already assigned variables is identical and does not contain all variables then
the sequences that are represented by the assignments of those variables form a
group that is not connected to any other process and therefore can not be part of
an allowed pattern.

• Dynamic sizing of search space: Expand if necessary, reduce if possible.
The original dynamic backtracking algorithm uses the whole search space

from start to end, containing all possible values—the complete domain of every
variable—in its checks for conflicts and possible assignments.

The modified algorithm starts with a minimal search space. It only contains
the first value of the domain of the variable that was chosen to start with, and
expands the search space when necessary. This is possible due to the structure of
the event graphs. The events on a specific process at the begin of a trace are very
likely connected to events at the begin of other processes. Very likely there is a,
in comparison to the size of the whole trace, small window of the trace which
can contain potential candidates for partner events.

If it is not possible to assign a variable anymore in the current search space,
and usually a backtracking step would be performed, the modified algorithm
tries to expand the search space so that values that are potential candidates for
assignment, but were not in the search space before will be added to the search
space.

In a similar way the search space is shrinked again if parts of it are identified
as not being reachable anymore, or if pattern instances are found.

• Variable assignment order: Assign neighbors of already assigned variables.

Defining and Searching Communication Patterns 35

The assignment order of the variables in the original algorithm is not defined.
Defining this order to prefer variables for processes that are neighbors of
already assigned variables can improve the performance since it allows to check
constraints already after the first assignment.

• Sequence match order: The order in which the sequence matches are verified
vastly influences the amount of backtracks in some cases.

4 g-Eclipse Trace Viewer Pattern Search Plugin

This section shows the main features and the usage of the prototype implementation,
which was used as a proof-of-concept.

The prototype implementation of the pattern description editor, pattern search
and visualization is building on the trace viewer functionality [7] of the g-Eclipse [8]
project, and extends its functionality by providing a plugin to these tools.

The plugin for the g-Eclipse trace viewer consists of several components for the
different tasks in the process of finding the patterns. This section gives an overview
of the major components provided by the plugin, as well as the ones provided by
the g-Eclipse trace viewer that make up the core functionality.

• Trace viewer The g-Eclipse trace viewer plugin is the central component, the
pattern search plugin is building on. It provides the basic functionality for
accessing trace data and visualizing it. The trace viewer can be extended using the
Eclipse extension point mechanism [5] and among others provides the following
extension points that are used by the pattern search plugin:

– Actions on trace, process and event level It is possible to add actions that
can be triggered for the whole trace or selected events or processes to the trace
visualization. These actions are provided using the context menu of the trace
viewer. The pattern search can be triggered using such an action which starts
an Eclipse job performing the search.

– Markers The color and shape of the events displayed in the trace viewer can
be altered using marker plugins. The pattern marker is used to change the
background color of events that are inside the found pattern instances.

– Trace readers The pattern search uses the trace reader functionality provided
by the g-Eclipse trace viewer. The trace viewer offers a common interface
for accessing the supported trace file formats. Currently these are the NOPE
format and the OTF format.

• Pattern description interpreter The implementation of the pattern description
language consists of a scanner and a parser generated from an attributed
grammar using the COCO/R compiler generator for LL(k) grammars [10] and
an interpreter basing on those.

• Pattern description editor The pattern description editor is shown in Fig. 3.
The screenshot in the figure contains an occurrence of the error marker of the

36 T. Köckerbauer and D. Kranzlmüller

Fig. 3 Pattern editor showing a pattern description with a syntax error

Fig. 4 The autocompletion feature of the editor can complete keywords, function names and
variable names

editor, which in case of this example is for a missing semicolon in the pattern
description. The errors displayed by this marker are gathered from the parser that
is also used by the interpreter which evaluates the pattern descriptions.

The screenshot also shows the syntax highlighting feature of the editor. Syntax
highlighting is done using a simpler rule based scanner provided by Eclipse. This
scanner contains rules for detecting keywords, built-in function names, operators,
strings and comments.

The editor also features autocompletion of keywords, built-in functions and
variable names which are as well gathered using the COCO/R parser. The
autocompletion feature is shown in Fig. 4.

• Pattern selection view The pattern selection view, shown on the left of Fig. 5, is
an Eclipse view that allows to specify which patterns should be searched for by
allowing to select from the available pattern descriptions.

A pattern description can be used to generate and display the reference
patterns that it describes. By using the context menu on an entry in the pattern
selection view it is possible to generate reference patterns for the selected
description. After entering the number of processes for the reference pattern

Defining and Searching Communication Patterns 37

Fig. 5 Pattern selection view (left), dialog for selection of a reference pattern instance (middle),
and the corresponding reference pattern instance (right)

the instance selection dialog is shown. The screenshot in the middle of Fig. 5
shows the instance selection dialog for a mesh pattern with a “Von Neumann”
communication topology with 32 processes. This dialog allows to select a
reference pattern instance to display. On the right side of the figure a reference
pattern instance generated using this description is shown.

• Pattern search The plugin also implements the search algorithm described in
Sect. 3 for finding patterns in the trace data provided by the trace viewer plugin
of g-Eclipse.

5 Examples

An experimental evaluation using well known parallel benchmark programs was
performed. In this section some observations in traces of well known benchmark
codes are shown.

The wavefront propagation performed by the Sweep3D benchmark can easily
be recognized in the trace visualization as seen in Fig. 6. There are two alternating
directions in which the propagation takes place. The screenshot shows a change in
direction of the wavefront propagation, which consists of several instances of an
unidirectional mesh pattern with Von Neumann neighborhood. In this screenshot
eight alternating colors were used in the pattern marker so that the displacement of
the individual pattern instances can be seen better.

An interesting observation in the SMG2000 traces is that there are pattern
instances, as described above for lower process counts, that are interrupted by
communication that only takes place on a subset of the processes as shown in Fig. 7.

38 T. Köckerbauer and D. Kranzlmüller

Fig. 6 Sweep 3D trace with wavefront propagation in two different directions

Fig. 7 Part of an SMG2000 trace which has mesh patterns interrupted by other communication

6 Future Work

To further improve the performance and applicability of the algorithm, several
potential refinements can be investigated:

• Additional constraints on event sequences—The addition of constraints within
the event sequences on the individual processes could further reduce the amount
of detectable event sequences that are not part of a pattern, and therefore further
reduce the search space that needs to be covered by the backtracking algorithm. A
simple example for such an additional constraint for a bidirectional mesh pattern
could be specified as follows: Every sequence that can be part a pattern instance
needs to start with a send event.

• Parallelization of the pattern search algorithm— Another possibility to reduce
the search duration could be the parallelization of the search process. While the
parallelization of the pre-filtering step on process level is easy to implement, the
parallelization of the dynamic backtracking algorithm is non-trivial. There has
already been research on this topic [2, 12], but still the feasibility of applying
these approaches onto this adaptation of the algorithm needs to be verified.

• Improved visualization of the search result—In the prototype implementation
the results of the pattern search are visualized using a pattern marker that
modifies the background color of the sections in the traces that belong to pattern

Defining and Searching Communication Patterns 39

instances. More sophisticated ways to visualize this information are thinkable.
As a simple improvement the pattern instances could be replaced by placeholders
that make the trace visualization more compact similar to the approach presented
in [9]. Since identical pattern instances are often recurring several times, they
could be replaced by the display of an instance count only. This way the main
part of the visualization is dedicated to non-repeating information and sections
that do not match any pattern description.

• Support for additional MPI features—The approach as it is described in this
work has some constraints on the use of MPI communicators and tags. This
limitation is, however, not a mandatory restriction imposed by the basic principle
of the approach itself. Adding support for these features could be archived by
extending the search algorithm without changing its basic properties.

In conclusion, the problem of scalability still continues to increase with more
and more supercomputers of more than a million CPU cores and corresponding
applications. The solution presented in the work represents a possible solution,
which needs to be improved further by additional abstraction and automatization.

7 Conclusion

After providing a definition of patterns in the context of this work and discussing
the motivation for it the basic steps of the pattern description and search process are
introduced.

A pattern description language that combines procedural description of the
patterns with language constructs that allow to describe the topology of the patterns
is proposed and discussed.

Different approaches on filtering the event sequences on a process level for
reducing the search space, which is part of the proposed search process, are
discussed with consideration of the requirements for this use case. A modified
version of the Karp-Rabin algorithm is proposed for this task, which can efficiently
detect candidates for being part of pattern instances.

Merging the found event sequences into pattern instances, which is also part
of the search process, is modeled as a constraint satisfaction problem (CSP). A
set of constraints for this CSP is defined and a “sequence dependency graph” that
aids the evaluation of those constraints is introduced. Modifications to the dynamic
backtracking algorithm are proposed to take advantage of properties of the event
graph.

40 T. Köckerbauer and D. Kranzlmüller

References

1. Barbosa, V.C.: Strategies for the prevention of communication deadlocks in distributed parallel
programs. IEEE Trans. Softw. Eng. 16(11), 1311–1316 (1990). doi:10.1109/32.60319

2. Bessière, C., Maestre, A., Meseguer, P.: Distributed dynamic backtracking. In: International
Joint Conference on AI Workshop on Distributed Constraint Reasoning (2001)

3. Ginsberg, M.L.: Dynamic backtracking. J. Artif. Intell. Res. 1, 25–46 (1993)
4. Helmbold, D.P., McDowell, C.E.: A taxonomy of race conditions. J. Parallel Distrib. Comput.

33(2), 159–164 (1996)
5. Hennig, M., Seeberger, H.: Einführung in den “Extension Point”-Mechanismus von Eclipse.

JavaSPEKTRUM 1, 19–24 (2008)
6. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM J. Res. Dev.

31(2), 249–260 (1987). http://www.research.ibm.com/journal/rd/312/ibmrd3102P.pdf
7. Klausecker, C., Köckerbauer, T., Preissl, R., Kranzlmüller, D.: Debugging MPI Programs on

the Grid using g-Eclipse. In: Resch, M., Keller, R., Himmler, V., Krammer, B., Schulz, A. (eds.)
Tools for High Performance Computing, Proceedings of the 2nd International Workshop on
Parallel Tools for High Performance Computing, pp. 35–45. HLRS, Springer, Stuttgart (2008).
doi:http://dx.doi.org/10.1007/978-3-540-68564-7_3

8. Kornmayer, H., Stümpert, M., Knauer, M., Wolniewicz, P.: g-Eclipse - an integrated workbench
tool for grid application users, grid operators and grid application developers. In: Cracow Grid
Workshop ’06, Cracow (2006)

9. Kranzlmüller, D., Grabner, S., Volkert, J.: Event graph visualization for debugging large
applications. In: SPDT ’96: Proceedings of the SIGMETRICS symposium on Parallel and
distributed tools, pp. 108–117. ACM, New York (1996). doi:http://doi.acm.org/10.1145/
238020.238054

10. Mössenböck, H.: A generator for production quality compilers. In: CC ’90: Proceedings of the
Third International Workshop on Compiler Compilers, pp. 42–55. Springer, New York (1991).
doi:http://dx.doi.org/10.1007/3-540-53669-8_73

11. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR: visualization
and analysis of MPI resources. Supercomputer 12(1), 69–80 (1996). doi:http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.92.2371

12. Zivan, R., Meisels, A.: Concurrent dynamic backtracking for distributed CSPs. In: Proceedings
Constraint Programming, pp. 782–787 (2004). http://jmvidal.cse.sc.edu/library/zivan04a.pdf

10.1109/32.60319
http://www.research.ibm.com/journal/rd/312/ibmrd3102P.pdf
http://dx.doi.org/10.1007/978-3-540-68564-7_3
http://doi.acm.org/10.1145/238020.238054
http://doi.acm.org/10.1145/238020.238054
http://dx.doi.org/10.1007/3-540-53669-8_73
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.2371
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.2371
http://jmvidal.cse.sc.edu/library/zivan04a.pdf

Monitoring Heterogeneous Applications
with the OpenMP Tools Interface

Michael Wagner, Germán Llort, Antonio Filgueras, Daniel Jiménez-González,
Harald Servat, Xavier Teruel, Estanislao Mercadal, Carlos Álvarez,
Judit Giménez, Xavier Martorell, Eduard Ayguadé, and Jesús Labarta

Abstract Heterogeneous systems are gaining more importance in supercomputing,
yet they are challenging to program and developers require support tools to
understand how well their accelerated codes perform and how they can be improved.
The OpenMP Tools Interface (OMPT) is a new performance monitoring interface
that is being considered for integration into the OpenMP standard. OMPT allows
monitoring the execution of heterogeneous OpenMP applications by revealing the
activity of the runtime through a standardized API as well as facilitating the
exchange of performance information between devices with accelerated codes,
and the analysis tool. In this paper we describe our efforts implementing parts
of the OMPT specification necessary to monitor accelerators. In particular, the
integration of the OMPT features to our parallel runtime system and instrumentation
framework helps to obtain detailed performance information about the execution of
the accelerated tasks issued to the devices to allow an insightful analysis. As a result
of this analysis, the parallel runtime of the programming model has been improved.
We focus on the evaluation of monitoring FPGA devices studying the performance
of a common kernel in scientific algorithms: matrix multiplication. Nonetheless, this
development is as well applicable to monitor GPU accelerators and Intel R� Xeon
PhiTM co-processors operating under the OmpSs programming model.

1 Introduction

High performance computing (HPC) systems provide tremendous computational
resources, however, nowadays, the gain in performance comes with a gain in
complexity as well. One of the contributing factors is the growing heterogeneity

M. Wagner (�) • G. Llort • A. Filgueras • D. Jiménez-González • X. Teruel • E. Mercadal •
C. Álvarez • J. Giménez • X. Martorell • E. Ayguadé • J. Labarta
Barcelona Supercomputing Center (BSC) and Universitat Politècnica de Catalunya (UPC),
Barcelona, Spain
e-mail: michael.wagner@bsc.es

H. Servat
Intel Corporation, Santa Clara, CA, USA

© Springer International Publishing AG 2017
C. Niethammer et al. (eds.), Tools for High Performance Computing 2016,
DOI 10.1007/978-3-319-56702-0_3

41

mailto:michael.wagner@bsc.es

42 M. Wagner et al.

of these systems. The trend to more heterogeneous systems is glaring. Since
their introduction, the rate at which accelerators are being integrated into HPC
platforms has surged. The current TOP500 list of the world’s most powerful
supercomputers [25] counts more than a hundred heterogeneous systems based on
accelerators. This rapid raise is primarily due to the quick response of programmers
and the successful adaption of codes to benefit from the surplus in computational
power, achieving in turn significant throughput increases for moderate efforts.

Nonetheless, the inclusion of programming paradigms to use accelerators intro-
duces a set of new challenges. The way in which hardware accelerators are pro-
grammed can differ substantially from the familiar and prevalent CPU architectures.
Even modern programming interfaces like CUDA [21] and OpenCL [1] necessitate
domain-specific knowledge of the algorithm’s parallelism and particular knowledge
of the target architecture. To lower the burden, several parallel programming models,
noteworthy among which are OpenMP [22] and OmpSs [2], offer a more convenient
solution to offload the work to the accelerators with basic source code annotations.

OpenMP is a well-established shared memory parallel programming model that
allows implementing parallel applications by using a set of compiler directives. The
OpenMP runtime manages the parallel thread forking, execution and joining. It
offers incremental parallel development to the user by enabling to add the com-
piler directives gradually. Since version 3.0, OpenMP allows to express irregular
parallelism through the new OpenMP Tasking constructs. In this context, a task is
a unit of work that can be executed by one of the threads at a time, while different
other tasks may be executed by different threads. Likewise, OmpSs is a parallel
programming model based on the OpenMP standard that significantly influences
OpenMP version 4.0 with new features on the tasking constructs. In particular,
OpenMP 4.0 and OmpSs extend the OpenMP 3.0 Tasking constructs to support new
features that allow data-flow execution of tasks directed by dependence clauses.
Moreover, OmpSs a allows to accelerate tasks in devices other than a General
Purpose Processor (GPP), i.e. GPU, FPGA, or Intel R� Xeon PhiTM.

While the use of compiler directives certainly eases the access to accelerated
devices, further challenges remain such as the evaluation and optimization of their
performance. To date, there is no apparent consensus between vendors and users on
an uniform way to collect and query performance information about the accelerators
behavior. However, in order to use accelerated devices efficiently, it is crucial to
understand how they behave, how they impact the application’s performance, and
more importantly, how well they integrate and cooperate with the rest of the system
to achieve optimal performance.

To fill this gap, the OpenMP Tools Application Programming Interface for
Performance Analysis (OMPT) [7] is a newly proposed standard monitoring
interface considered for integration into OpenMP. The prevailing objective of
OMPT is enabling performance analysis tools to monitor the execution of an
application and gather performance information about the runtime activity. In
addition, the specification defines an interface for target accelerators coping with
typical difficulties associated to these devices of operating asynchronously with
respect to their host.

Monitoring Heterogeneous Applications with the OpenMP Tools Interface 43

In this paper we demonstrate our efforts in making the OpenMP tools interface
available in the parallel runtime as well as in the monitoring tool. We included
support in the OmpSs programming model runtime (Nanos++ runtime [20]), by
implementing the OMPT standard performance monitoring interface, to enable
analysis tools to collect performance metrics for both the hosts and the accelerators
during the execution. In addition, we realized the required functionality on the
part of the trace monitor library Extrae [8]. The proposed framework improves the
performance analysis workflow by providing an integrated mechanism to gather
accelerated application’s performance data. Indeed, this helps to an insightful
analysis of the application performances and the design and development of new
improvements in the programming model runtime.

We evaluate the utility of exposing this information by analyzing a common
kernel in scientific algorithms: matrix multiplication. Due to the again increasing
interest in FPGA accelerators and the virtual non-existence of tool solution to
monitor them, we focus on the evaluation of these accelerators. Nevertheless, this
development is being seamlessly extended for the analysis of General Purpose GPU
accelerators and Intel R� Xeon PhiTM co-processors.

The remainder of this paper is organized as follows: In the following section we
discuss related work and distinguish our efforts. Section 2 presents a summary of
the tools involved in this work and Sect. 3 describes our design and implementation
choices. Sections 4 and 5 showcase a detailed performance analysis of the matrix
multiply kernel and how this has led to new improvements in the programming
model runtime. Finally, we conclude the paper and present future directions in
Sect. 6.

2 Related Work

With ever new emerging functionality in OpenMP, performance tools need to extend
their capabilities to capture and represent the new concepts. Fürlinger et al. proposed
a performance profiling system for OpenMP 3.0 [10]. They used OPARI2 [17]
to instrument OpenMP applications that use OpenMP tasking constructs. Their
approach provides summarized information such as the time spent on each task, the
function executed as a such, in addition to imbalance, overhead and synchronization
time. Next to that, instrumentation-based tracing tools provide rich details about
the execution, displayed in a trace timeline representation with new task-centric
displays. Servat et al. [24] proposed a technique to collect information about
the execution of OpenMP-based tasks on top of the OmpSs runtime. Similar
information is provided with Score-P [15] by using the OPARI2 source-to-source
instrumenter.

Our work derives from the definition of OMPT, an effort to define a standard
OpenMP API for tools to collect performance measurements. OMPT was designed
upon ideas from two previous approaches: the POMP API [19] that supports
instrumentation-based measurement and the Sun/Oracle Collector API [11, 14] that

44 M. Wagner et al.

provides support for asynchronous sampling-based measurement. OMPT provides
support for asynchronous sampling, callbacks suitable for instrumentation-based
monitoring of runtime events, and interfaces to correlate performance data. Fur-
thermore, it also provides a standard interface for the tools to retrieve performance
measurements both from the host and the hardware accelerator devices. The first
extension of OMPT to include support for accelerators was proposed in [5].

The more specialized parallel computing platforms CUDA and OpenCL also
provide mechanisms to retrieve information about the activity of the accelerators.
The CUDA API [21] supports two different approaches to monitor the execution of
GPU-accelerated applications. The CUPTI [6] extension allows a monitoring tool to
use callbacks to capture the application activity at different levels, including driver
and runtime. Next to that, CUDA provides the capability to inject events into the
device that are processed by the device itself and can be used to keep track of the
activity. The OpenCL API [1] also provides a way for monitoring applications to
capture the state of the accelerator by passing a special parameter to OpenCL calls
allowing a monitoring tool to capture the timestamps of the different stages that the
activity has progressed through.

In the case of FPGA devices, profiling mechanisms are typically included in the
debugging and development phase of the hardware/software co-design. However,
those mechanisms are not intended for parallel tracing purposes. They are usually
integrated on the vendor development tools like Altera Quartus R� and Xilinx Vivado
(now integrated the SDSoc) and focused on sequential execution.

In a previous effort a non-intrusive hardware instrumentation has been used in
order to provide deferred trace information of the FPGA internal execution to the
instrumentation tool [16]. The mechanism allows tracing of several accelerators at
the same time so that parallel execution analysis can be done in a heterogeneous
parallel application. In this paper we present an extension of the previous effort
with an emphasis on evaluating its capabilities for performance analysis. We show
how the provided information can be utilized to analyze and, finally, optimize the
performance of common algorithmic kernels such as matrix-matrix-multiply. This
study provides a major extension to as well as an evaluation of our previous work
and is novel to the best of our knowledge.

3 Integration of the OpenMP Tools Interface

In this section we describe our efforts implementing a subset of the OpenMP
tools interface specification necessary to monitor accelerators both in the Nanos++
parallel runtime system and the Extrae tracing framework to enable obtaining
detailed performance information about the execution of the tasks issued to the
accelerated devices. In order to support the OpenMP tools interface, on the one
hand, the runtime must maintain information about the state of the execution and
provide a set of callbacks to notify a tool of runtime events occurring during the
run, such as thread begin/end, parallel region begin/end, and task region begin/end.

Monitoring Heterogeneous Applications with the OpenMP Tools Interface 45

On the other hand, the monitoring tool must implement above mentioned callbacks
to retrieve the information emitted by the runtime to process and store it as required.

With respect to accelerators, OMPT proposes two mechanisms to pass informa-
tion to the monitor. First, the Native Record Types interface (see Sect. 6.2 of the
OMPT API [7]) allow invoking native control functions directly on the accelerator
binding the implementation to the architecture. Second, the OMPT Record Types
are a set of standard events that express the activity of the accelerator. These events
provide a generic abstraction of the activity on the device unifying different types
of hardware accelerators. We commit to the generic OMPT Record Types, so the
underlying device is transparent to the monitoring tool, which reduces software
dependencies and device specific efforts.

Following we describe the modifications applied both to the Nanos++ runtime as
well as the Extrae instrumentation library. The extensions in Nanos++ include new
query services to instrument the FPGA device, a reshaping phase of this information
into Nanos++ internal events and an OMPT plugin The OMPT plugin captures and
handles new device events and completes the callback interface to the tool. Within
Extrae we extended the support for the tracing buffer management during program
execution and present methods to represent the recorded data for analysis.

3.1 Integration into the Parallel Runtime

The OmpSs programming model [2] extended OpenMP [22] with new directives
to support asynchronous parallelism and heterogeneity for devices such as GPG-
PUs [23], FPGAs [9], and Intel R� Xeon PhiTM [12]. In this sense, OmpSs is also an
alternative to accelerator-based APIs like CUDA [21] or OpenCL [1]. The OmpSs
environment is built on top of the Mercurium compiler [18] and the Nanos++
runtime system [20]. In the current implementation, the instrumentation system is
built on top of Extrae [8].

Nanos++ is a library designed to serve as runtime support for parallel environ-
ments. It is mainly used to support OpenMP-like shared memory programming
models by providing services to exploit task parallelism. In contrast, in Nanos++
tasks are run by user-level threads when their data-dependencies are satisfied. The
runtime also provides support for maintaining coherence across different address
spaces such as GPUs, cluster nodes, or FPGAs. One of the main design principles
of the Nanos++ runtime library is modularity. Figure 1 depicts a simplified schema
of the Nanos++ modules involved in the management of accelerated devices, the
instrumentation mechanisms, as well as the module interactions. For each supported
hardware device, Nanos++ provides a specific plug-in that implements all the
necessary logic to execute a task in the target architecture.

Executing a task on a device with a different memory address space, e.g. FPGAs,
involves several steps: the device plug-in is responsible for allocating and copying
input data to the device memory, issuing the task for execution, and deallocating and
copying results back to the host. The instrumentation support for the executed tasks

46 M. Wagner et al.

...

Fig. 1 Nanos++ Runtime Library partial class diagram: device components and instrumentation

is provided by the new OMPT plug-in, which will be used by the FPGA device to
provide performance information about the execution of the tasks on the accelerator.

The device plug-in notifies about the activity of the hardware using a set of
internal events representing the state of the accelerator to the OMPT plug-in, i.e.
copying data and running a task. In turn, the OMPT plug-in stores these events
in separate memory buffers for each active device. This requires mechanisms to
manage the creation of event buffers, as well as query services to associate the
devices with their corresponding buffers. Typical query services include registering
a new device, the number of devices, the device identifier, and the target identifier.

Furthermore, the device plug-in retrieves time-stamps for the hardware produced
events and forwards this information to the OMPT plug-in. In particular, the FPGA
hardware timings may not be common real-time clocks, but rather internal clock
cycle counters. Thus, the device plug-in must provide a mechanism to query and
translate the hardware timings into unified time-stamps according to the OMPT
standard.

All events stored in the OMPT plug-in originating from the devices are translated
into generic OMPT Record Types, which are a set of standard events designed to
exchange data between the runtime and the monitoring tool. When the buffers are
full, or on demand by the tool, the runtime will provide the event information to
the performance tool through several callbacks that are set during the initialization
phase. The tool will parse the information through a set of iterators for the OMPT
Record Types that the instrumentation plug-in provides. This process is explained
in detail in the following Section.

3.2 Integration into the Monitoring Tool

Extrae is the open-source tracing framework of the BSC tool-suite [4]. It provides
instrumentation and sampling mechanisms to record performance measurements
from most common parallel programming models like MPI, OpenMP, POSIX
threads, CUDA, OpenCL, OmpSs, and combinations of those. Typical information

Monitoring Heterogeneous Applications with the OpenMP Tools Interface 47

collected by Extrae includes the activity of the parallel runtime (e.g. message
exchanges in MPI and parallel loops in OpenMP), performance counters through the
PAPI interface [3], as well as call-stack information to correlate the measurements
with the application’s source code.

The Extrae instrumentation framework has been extended to implement the
OMPT standard allowing to monitor the activity of the parallel runtime and to
capture performance information about the work offloaded to hardware accelerators.
The recorded information helps the analyst to understand which tasks are executed
on which device, as well as their duration.

Integrating OMPT on the tool side involves two main design aspects: First, being
data storage and management. Since most accelerators lack a local memory to
allocate instrumentation buffers and access to the I/O subsystem to store the tracing
events, our solution relies on hosting the tracing buffers for accelerators in the host-
side main memory. The monitoring tool takes care for allocating memory for events
that the runtime will produce and stores the data to disk, while the emission of the
events is delegated to the runtime.

The second issue refers to the data representation for the analysis. In particular,
the tool must provide a clear depiction of which task was executed on which
accelerator. Out of the two main representations: (a) assign one timeline for each
host H and one timeline for each accelerator A (for a total of HCA timelines) or (b)
show one timeline of each accelerator for each host (resulting in H�A timelines)
where each accelerator timeline only contains the activities that originate on the
according host, we chose the latter because it allows to visualize more clearly the
interactions between host and accelerator. Furthermore, we divide each accelerator
visualization into three logical components, representing kernel computation, input,
and output memory transfers, to highlight the chain of execution and each tasks’
data dependencies.

From the implementation standpoint,1 a simplified call sequence interaction
between the tracing tool, the runtime and the application through OMPT is
shown in Fig. 2. In the initialization phase (see Fig. 2a) the tool must correct
the time latency between host and target clocks (using ompt_target_get_time
and ompt_target_translate_time), and assign thread identifiers to distinguish the
different logical components of each accelerator for each host, as explained above.

In addition, the tool must hand over two callbacks to the runtime to manage
the tracing buffers during application execution: one to handle memory allocation
requests and a second to process a buffer of events when it is full. The first callback
allocates a buffer for a target accelerator within the host’s address space, which is
given to the runtime on demand to store the monitored tracing events (see Fig. 2b).

1At the moment of writing this document, the OMPT specification has gone through a major
simplification. Due to the large number of changes in the latest version of the OMPT specification,
our implementation is based on a hybrid version based on an earlier specification plus the latest
target specification. As a result, the implementation we propose is a prototype and cannot be
considered definitive but more an approach that shows how performance tools can take advantage
of the OMPT specification for capturing accelerator activity.

48 M. Wagner et al.

Fig. 2 Simplified call sequence between the monitoring tool, runtime and accelerator device.
(a) Initialization phase. (b) Execution phase

The second callback receives a full buffer from the runtime filled with events of a
target accelerator and stores the data to the file system. As mentioned above, the run-
time records the traced events in the format of OMPT Record Types, which the tool
can parse using OMPT iterators (e.g. ompt_target_buffer_get_record_ompt) to seri-
alize the event records into the final trace. The events that we are currently monitor-
ing are ompt_event_task_begin,ompt_event_task_switch and ompt_event_task_end,
which allows keeping track of the tasks offloaded to the accelerators and their
duration.

More precisely, the ompt_event_task_begin event notifies about the currently
active task in the accelerator and provides information about the task identifier
as well as the outlined function. The event ompt_event_task_switch notifies when
a task is scheduled in and out of a device, which is used to mark in the trace
the real execution life span of the task in the accelerator. In order to provide the
correct time-stamps of these events, it is necessary to synchronize target device
and host clocks by applying the previously calculated time corrections. Finally, the
ompt_event_task_end event indicates the finalization of a given task. However, some
runtimes omit this event and only emit a last ompt_event_task_switch marking the
task as scheduled out.

Lastly, the tool notifies the runtime to start monitoring the host and the accelera-
tors activity with ompt_target_set_trace_ompt and ompt_target_start_trace. At the
end of the execution the tool still needs to store the remaining events in the OMPT
tracing buffers that are not flushed, yet. Thus, the tool calls ompt_target_stop_trace
for each accelerator device, which implicitly requests the runtime to flush the
associated allocated buffer for the given accelerator with the corresponding callback
provided by the tool.

Monitoring Heterogeneous Applications with the OpenMP Tools Interface 49

4 Experimental Setup

Results in Sect. 5 have been obtained on a Zynq SoC 702 board. This platform
integrates an SMP dual core ARM Cortex A9 processor running at 666 MHz and
a programmable logic (FPGA) based on Xilinx’s Artix 7 FPGA [26]. The OmpSs
ecosystem for FPGA/SMP heterogeneous execution used to obtain these results is
based on the Mercurium compiler 1.99.9, the Nanos++ runtime 0.10a, and Extrae
tracing framework 3.3.0. In order to generate the FPGA bitstream that implements
the accelerator’s logic for the OmpSs tasks with target device fpga we used
Xilinx’s proprietary tools Vivado and Vivado HLS at version 2015.4. For floating-
point applications, Vivado HLS synthesizes code compliant with the IEEE-754
standard. All applications and libraries have been cross-compiled using arm-linux-
gnueabihf-gcc 4.8.4 (Ubuntu/Linaro 4.8.4-2ubuntu1 14.04.1 with linux kernel 3.19).

We show trace execution results for the matrix multiply using different tile
(block) sizes, where a tile defines the fpga task granularity. In particular, 64�64

and 32�32 single-precision floating point tiles are analyzed for the matrix multiply.
Matrix multiply (Fig. 3) is a well known and common scientific computation kernel
that provides a reasonably simple scenario to illustrate how our framework is able
to display the activity of the accelerated system. We first analyze the performance
of this benchmark using different tile sizes based on the trace executions. Then, we
show results of the benchmarks after improving the OmpSs runtime, based on this
analysis.

#pragma omp target device(fpga)
#pragma omp task in([BS*BS]A,[BS*BS]B) inout([BS*BS]C)
void MxM(REAL *A, REAL *B, REAL *C)
{

for (int i = 0; i < BS; i++)
for (int k = 0; k < BS; k++) {

REAL tmp = A[i*BS+k];
for (int j = 0; j < BS; j++)

C[i*BS+j] += tmp * B[k*BS+j];
}

}

void matmul(REAL **AA, REAL **BB, REAL **CC, int NB)
{

for (int k = 0; k < NB; k++)
for(int i = 0; i < NB; i++)

for (int j = 0; j < NB; j++)
MxM(AA[i*NB+k], BB[k*NB+j], CC[i*NB+j]);

}

Fig. 3 Matrix multiplication annotated with OmpSs directives. matmul is the blocking matrix
multiplication function, and MxM performs the matrix multiplication of a block

50 M. Wagner et al.

5 Results

In this section, we present different execution scenarios varying the number and type
of accelerators, with the objective of showing the significant insight that trace-based
performance analysis of the accelerators activity provides to the user.

In particular, tiled matrix multiplication is analyzed with a varying number
of accelerators, the level of optimization of those hardware accelerators, and the
number of MxM instances in the code (unroll degree). The problem size is a
256�256 matrix, which is divided into smaller blocks of 64�64 tiles. These tiles
are automatically offloaded to the accelerator hardware, programmed in the FPGA,
by the Nanos++ runtime of OmpSs. In addition, we present some results for 32�32

tiled matrix multiplication that show some distinct characteristics due to the fine
granularity of the tasks.

Figure 4 (top) shows an execution trace of the application when using one
single fpga accelerator device. Rows represent the different computational and
communication components of the system. From top to bottom: the master thread
(Master), the kernel computations (FPGA acc MxM.1), and the DMA memory
transfer copies from main memory to the accelerator (DMA_in MxM.1) and
from the accelerator to main memory (DMA_out MxM.1). Colors represent the
different tasks executed, which in this case correspond to two instances of matrix
multiplications that are being executed interleaved. We can observe that (1) all tasks
are offloaded to the fpga accelerator device since there is not any task execution
in the Master thread (this corresponds to the MxM target device specification), and
(2) there are two MxM different tasks. In particular, the accelerator device is only
one (FPGA acc MxM.1) but two different colors appear because two different MxM
instances in the OmpSs program are called (the innermost loop of matmul function
in Fig. 3 has been unrolled by two).

Fig. 4 MxM execution trace using one MxM hardware accelerator and two MxM task instances.
Partial trace view showing the data transfer, accelerator, and master thread (top), and a zoom in of
the data transfer and accelerator execution

Monitoring Heterogeneous Applications with the OpenMP Tools Interface 51

Table 1 Average time per
computation and transfer for
a 64�64 MxM

Task #1 (red) Task #2 (blue)

FPGA acc MxM.1 334:81 us 337:53 us

DMA_in MxM.1 260:43 us 246:53 us

DMA_out MxM.1 82:82 us 82:76 us

Table 2 Average time per
computation and transfer for
a 32�32 MxM

Task #1 (red) Task #2 (blue)

FPGA acc MxM.1 46:51 us 44:51 us

DMA_in MxM.1 229:02 us 256:37 us

DMA_out MxM.1 80:49 us 82:33 us

Figure 4 (bottom) shows a detailed view of the computation of 6 tiles (3 for each
multiplication task), where it can be clearly seen that they execute alternately. We
can observe a clear dependency chain between computations and memory transfers.
First, the data has to be copied from the main memory to the accelerator, which is
shown in the DMA_in row. As soon as the data has been copied, the computation of
the task can start, displayed in the FPGA acc. Once the computation of the kernel has
finished, the data is copied back to the main memory, as shown in the DMA_out. We
can observe that the next iteration does not start until the previous one has finished
copying the data back to the host. Looking at the depicted execution pattern, we can
also infer a potential improvement for the runtime, that could consider overlapping
the input/output memory transfers and hardware computation between iterations
since the DMA channels are independent.

Table 1 shows the average execution time of each of the stages of the task
execution in an accelerator: input DMA transfer (DMA_in), acceleration execution
(FPGA acc) and output DMA transfer (DMA_out). These measurements have been
obtained using the Paraver profiling feature and validate that the MxM computation
latency matches the High Level Synthesis tool estimation, and the DMA transfer
times are very similar to the expected times.

On the one hand, the input/output DMA transfer time ratio is close to 3, and
corresponds to the three input matrices and one output matrix needed by the
hardware accelerator. However, this ratio may change for other task granularities.
For instance, we have analyzed the trace execution for 32�32 block size (see
Table 2) and the average input and output DMA transfer times are very similar
to the DMA transfer times of the 64�64 case, and larger than the expected. In
general, the DMA transfer performance may vary due to two main reasons: (1) the
different DMA input/output bandwidth [13] and (2) the different waiting time for the
corresponding DMA submit (i.e. the runtime programming the DMA), that can be
significant for fine-grain task granularity. Note that a DMA transfer is not started
until the corresponding submit is done. For instance, the task granularity in the
64�64 case is large enough to allow the runtime perform the DMA submit before
the execution of the MxM task concludes. Therefore, the DMA_out transfer can
start immediately after the hardware computation, and so the listed time accounts
for actual transfer time. On the contrary, in the finer-granularity case of 32�32

52 M. Wagner et al.

MxM, with 8� less computation latency, the hardware computation is completed so
fast that the runtime does not arrive on time to issue the DMA submit beforehand.
Therefore, the DMA_out transfer time of the 32�32 case also includes the waiting
time for the DMA submit to arrive. All the above explains why the 32�32 MxM
DMA_out transfer time is higher than expected and similar to the 64�64 case.

On the other hand, the hardware computation and the input DMA transfer times
are similar for the 64�64 MxM, but they may vary depending on the task granularity,
the computation complexity and the hardware optimizations applied, which may be
more or less aggressive depending on the FPGA resources availability. Thus, the
execution time for two different approaches of the same 64�64 hardware accelerator
may vary from 0:17 to 26:34 ms, having the same input and output memory transfer
times. For an optimized version of a 32�32 tiled matrix multiplication, the input
DMA transfer/FPGA acc execution time ratio goes up to 5 (Table 2), being the
hardware computation time significantly lower than the data transfer times.

Figure 5a, b show detailed views of the execution of the same problem using two
accelerators and two and four matrix multiplication (MxM) instances respectively.
In these cases each MxM instance may be assigned to any of the two accelerator
devices. It can be seen that tasks overlap in time, increasing the occupation of
resources and the parallelism. Table 3 shows the execution time percentage of
overlapping DMA memory transfers and hardware computations between the two
accelerators. As the reader can see, there are overlaps between input and output
DMA transfers, and between input DMA transfers and hardware computations.
However, both input and output DMA channels are never active simultaneously due
to the runtime’s task scheduling pattern. Likewise, the hardware computations from

Fig. 5 MxM execution trace using two MxM hardware accelerator and two/four MxM task
instances. (a) Execution using two accelerators and two MxM task instances. (b) Execution using
two accelerators and four MxM task instances

Monitoring Heterogeneous Applications with the OpenMP Tools Interface 53

Table 3 Time % overlap between DMA transfers and FPGA accelerator computation in matrix
multiply

DMA_in MxM.1 (%) DMA_out MxM.1 (%) FPGA acc MxM.1 (%)

DMA_in MxM.2 0 21:4 17:0

DMA_out MxM.2 20:1 0 0

FPGA_acc MxM.2 11:2 0 0

Fig. 6 Execution of 4 tasks using 2 time consuming accelerators and 4 task instances

both accelerators neither overlap due to their small execution times. For slower or
more time consuming accelerators, the hardware computations can overlap in time,
as we can observe in Fig. 6. This view presents a detailed zoom of the execution
trace of a matrix multiplication using two accelerators and four MxM instances,
where the MxM tile is computed by a non-optimized accelerator. In this case, the
execution overlap between FPGA accelerators is above 90%.

Therefore, a trace analysis of the accelerator activity provides insight about
DMA memory transfers and hardware computation overlap and their real latency
information, which is not provided by any High Level Synthesis tool to the best of
our knowledge. This analysis can help to improve the runtime memory management
and scheduling policy.

5.1 OmpSs Runtime Improvements

As commented, one of the reasons that makes the DMA transfer performance vary is
the waiting time for each DMA submits of the DMA transfers to be done in a FPGA
task execution. This difference is mainly due to the FPGA task communication
model used in the current version of OmpSs@FPGA. In this model, one different
DMA submit is required per task argument copy, in or out, before the corresponding
DMA transfer starts. In order to reduce this difference, one possible improvement
is to make the OmpSs runtime provide the necessary information of the copies (in
and out’s) to the accelerator, in just one DMA submit. With this unique submit, the
FPGA accelerator can start all the necessary DMA copies without having to wait for
each DMA submits.

54 M. Wagner et al.

Fig. 7 Original (top) and Improved (bottom) FPGA task communication model. Only one helper
thread is used. (a) One submit per task copy (in or out) of the accelerated 64 MxM tile. (b) One
submit per full task execution of the accelerated 64 MxM tile

A partial implementation of this new FPGA task communication model has been
implemented in the current OmpSs@FPGA with promising results. Figure 7a, b are
time scaled and show several FPGA task executions (64�64 tiles) with the same
computation time (FPGA acc time) for two different versions of the OmpSs runtime
where: (1) one DMA submit per task argument copy is necessary (top), and (2) just
one DMA submit for all the task argument copies of a task execution is necessary
(bottom). As it can be seen, while five full tasks can be run in the original version, six
full tasks can be run in the improved runtime. This improvement is due to shortening
the waiting time in the DMA transfers, as shown for the first task execution of the
Figures. The DMA_in of the first task in the original version is much longer than
the first DMA_in of the first task of the improved version. Indeed, it also seems
that a larger number of DMA submits, with the corresponding synchronization
overheads, in the original runtime impacts the average DMA transfer time (DMA_in
and DMA_out’s); doubling the DMA_in transfer time of the improved version.

More improvements are expected once the full implementation of the new task
communication model is finished. Figure 7b shows some idle time between the
DMA_out and DMA_in of consecutives task executions. That is due to there are
some removable runtime overheads of the previous communication model that
are still in this partial implementation that provokes that idle time between two
consecutives task executions.

Monitoring Heterogeneous Applications with the OpenMP Tools Interface 55

6 Conclusions

In this paper we describe our efforts implementing the parts of the OpenMP Tools
Interface (OMPT) specification necessary to monitor heterogeneous applications
using accelerators. We integrated the OMPT features in the OmpSs programming
model runtime system and the Extrae instrumentation framework to obtain detailed
performance information about the execution of the accelerated tasks issued to the
devices. The combined framework yields a major improvement to the performance
analysis workflow by providing an integrated mechanism to gather accelerated
application’s performance data. It supports an insightful analysis of the application
performances as well as the design and development of new improvements in the
programming model runtime. In fact, the analysis helped us improving the parallel
runtime of the programming model.

We evaluate the utility of exposing this information by analyzing a common
kernel in scientific algorithms: matrix-matrix multiplication. With a focus on the
analysis of FPGA-enabled applications, we have successfully generated execution
traces displaying the runtime task offloading, the kernel computations and the DMA
memory transfers between the host processor and the FPGA target devices. As
shown in this paper, this representation allows to easily follow the lifetime of a
certain task through a timeline and see it’s migration from one device to another.
In addition, it visualizes execution of tasks and their data dependencies. The trace
representation provides useful insight enabling the detection and identification of
performance issues impossible before.

OMPT has enabled a standardized cooperation between the parallel runtime
and the monitoring tool to exchange performance information. An implementation
following the standard holds the major advantage of providing seamless software
interoperability and enables interchanging compliant runtimes or performance tools.
In this respect, we are working on extending the runtime support for both GPU and
Intel R� Xeon PhiTM co-processors to conduct further performance analysis studies.

Acknowledgements This work was partially supported by the European Union H2020 program
through the AXIOM project (grant ICT-01-2014 GA 645496) and the Mont-Blanc 2 project, by
the Ministerio de Economía y Competitividad, under contracts Computación de Altas Prestaciones
VII (TIN2015-65316-P); Departament d’Innovació, Universitats i Empresa de la Generalitat de
Catalunya, under projects MPEXPAR: Models de Programació i Entorns d’Execució Paral�lels
(2014-SGR-1051) and 2009-SGR-980; the BSC-CNS Severo Ochoa program (SEV-2011-00067);
the Intel-BSC Exascale Laboratory project; and the OMPT Working Group.

References

1. Aaftab, M., et al. (eds.): Khronos OpenCL working group. the OpenCL specification (2009).
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

2. Ayguadé, E., et al.: A proposal to extend the OpenMP tasking model for heterogeneous
architectures. In: Evolving OpenMP in an Age of Extreme Parallelism, vol. 5568, pp. 154–
167 (2009)

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

56 M. Wagner et al.

3. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming interface
for performance evaluation on modern processors. Int. J. High Perform. Comput. Appl. 14,
189–204 (2000)

4. BSC tools. http://www.bsc.es/computer-sciences/performance-tools
5. Cramer, T., Dietrich, R., Terboven, C., Müller, M.S., Nagel, W.E.: Performance analysis for

target devices with the OpenMP tools interface. In: 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop, IPDPS 2015, Hyderabad, 25–29 May 2015, pp.
215–224 (2015)

6. CUDA profiling tools interface. http://docs.nvidia.com/cuda/cupti
7. Eichenberger, A.E., Mellor-Crummey, J.M., Schulz, M., Wong, M., Copty, N., Dietrich, R.,

Liu, X., Loh, E., Lorenz, D.: OMPT and OMPD: openmp tools application programming
interface for performance analysis and debugging. In: Rendell, A.P., Chapman, B.M., Müller,
M.S. (eds.) IWOMP. Lecture Notes in Computer Science, vol. 8122, pp. 171–185. Springer,
Berlin (2013)

8. Extrae instrumentation package. http://www.bsc.es/paraver
9. Filgueras, A., Gil, E., Jimenez-Gonzalez, D., Alvarez, C., Martorell, X., Langer, J., Noguera,

J., Vissers, K.: Ompss@zynq all-programmable soc ecosystem. In: Proceedings of the 2014
ACM/SIGDA International Symposium on Field-programmable Gate Arrays, FPGA’14, pp.
137–146. ACM, New York, NY (2014)

10. Fürlinger, K., Skinner, D.: Performance profiling for OpenMp tasks. In: Evolving OpenMP in
an Age of Extreme Parallelism. Lecture Notes in Computer Science, vol. 5568, pp. 132–139.
Springer, Berlin (2009)

11. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP Runtime API for Profiling. Sun
Microsystems, Inc. OpenMP ARB White Paper. Available online at http://www.compunity.
org/futures/omp-api.html

12. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Programming, 1st edn.
Morgan Kaufmann Publishers Inc., San Francisco, CA (2013)

13. Jiménez-González, D., Álvarez, C., Filgueras, A., Martorell, X., Langer, J., Noguera, J.,
Vissers, K.A.: Coarse-grain performance estimator for heterogeneous parallel computing
architectures like Zynq all-programmable SoC. CoRR, abs/1508.06830, 2015

14. Jost, G., Mazurov, O., an Mey, D.: Adding new dimensions to performance analysis through
user-defined objects. In: OpenMP Shared Memory Parallel Programming: International Work-
shops, IWOMP 2005 and IWOMP 2006, Eugene, OR, 1–4 June 2005, Reims, 12–15 June
2006. Proceedings, pp. 255–266. Springer, Berlin (2008)

15. Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer,
M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Philippen, P., Saviankou,
P., Schmidl, D., Shende, S., Tschüter, R., Wagner, M., Wesarg, B., Wolf, F.: Score-P: A Joint
Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and Vampir,
pp. 79–91. Springer Berlin Heidelberg, Berlin (2012)

16. Llort, G., Filgueras, A., Jiménez-González, D., Servat, H., Teruel, X., Mercadal, E., Álvarez,
C., Giménez, J., Martorell, X., Ayguadé, E., Labarta, J.: The Secrets of the Accelerators
Unveiled: Tracing Heterogeneous Executions Through OMPT, pp. 217–236. Springer
International Publishing, Cham (2016)

17. Lorenz, D., Mohr, B., Rössel, C., Schmidl, D., Wolf, F.: How to reconcile event-based
performance analysis with tasking in OpenMP. In: Beyond Loop Level Parallelism in OpenMP:
Accelerators, Tasking and More: 6th International Workshop on OpenMP, IWOMP 2010,
Tsukuba, June 14–16, 2010 Proceedings, pp. 109–121. Springer, Berlin (2010)

18. Mercurium C/C++ source-to-source compiler. http://pm.bsc.es/projects/mcxx
19. Mohr, B., Malony, A., Hoppe, H.-C., Schlimbach, F., Haab, G., Shah, S.: A performance

monitoring interface for OpenMP. In: Proceedings of the 4th European Workshop on OpenMP
(EWOMP’02), Rom, Italien, Sept 2002, 2002. Record converted from VDB: 12.11.2012

20. Nanos++ RTL. http://pm.bsc.es/projects/nanox
21. NVIDIA CUDA compute unified device architecture programming guide. http://docs.nvidia.

com

http://www.bsc.es/computer-sciences/performance-tools
http://docs.nvidia.com/cuda/cupti
http://www.bsc.es/paraver
http://www.compunity.org/futures/omp-api.html
http://www.compunity.org/futures/omp-api.html
http://pm.bsc.es/projects/mcxx
http://pm.bsc.es/projects/nanox
http://docs.nvidia.com
http://docs.nvidia.com

Monitoring Heterogeneous Applications with the OpenMP Tools Interface 57

22. OpenMP architecture review board. OpenMP Application Program Interface v 3.0. May (2008)
23. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A

survey of general-purpose computation on graphics hardware. In: Computer Graphics Forum,
vol. 26, pp. 80–113. Wiley Online Library, New York (2007)

24. Servat, H., Teruel, X., Llort, G., Duran, A., Giménez, J., Martorell, X., Ayguadé, E., Labarta,
J.: On the instrumentation of OpenMP and OmpSs tasking constructs. Euro-Par 2012: Parallel
Processing Workshops: BDMC, CGWS, HeteroPar, HiBB, OMHI, Paraphrase, PROPER,
Resilience, UCHPC, VHPC, Rhodes Islands, 27–31 Aug 2012. Revised Selected Papers,
pp. 414–428. Springer, Berlin (2013)

25. Top 500 supercomputing sites. http://www.top500.org
26. Zynq-7000 all programmable SoC overview. http://www.xilinx.com/support/documentation/

data_sheets/ds190-Zynq-7000-Overview.pdf

http://www.top500.org
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

Extending the Functionality of Score-P Through
Plugins: Interfaces and Use Cases

Robert Schöne, Ronny Tschüter, Thomas Ilsche, Joseph Schuchart,
Daniel Hackenberg, and Wolfgang E. Nagel

Abstract Performance measurement and runtime tuning tools are both vital in
the HPC software ecosystem and use similar techniques: the analyzed application
is interrupted at specific events and information on the current system state is
gathered to be either recorded or used for tuning. One of the established performance
measurement tools is Score-P. It supports numerous HPC platforms and parallel
programming paradigms. To extend Score-P with support for different back-ends,
create a common framework for measurement and tuning of HPC applications,
and to enable the re-use of common software components such as implemented
instrumentation techniques, this paper makes the following contributions: (1)
We describe the Score-P metric plugin interface, which enables programmers to
augment the event stream with metric data from supplementary data sources that
are otherwise not accessible for Score-P. (2) We introduce the flexible Score-P
substrate plugin interface that can be used for custom processing of the event stream
according to the specific requirements of either measurement, analysis, or runtime
tuning tasks. (3) We provide examples for both interfaces that extend Score-P’s
functionality for monitoring and tuning purposes.

1 Introduction and Related Work

There are numerous tools for monitoring and tuning High Performance Computing
(HPC) applications. All of them use similar techniques to gather information
about the executed hardware and software environment. Ilsche et al. classify
performance analysis tools by three different layers: data acquisition, recording,

R. Schöne (�) • R. Tschüter • T. Ilsche • D. Hackenberg • W.E. Nagel
Center for Information Services and High Performance Computing (ZIH), Technische Universität
Dresden, 01062 Dresden, Germany
e-mail: robert.schoene@tu-dresden.de; ronny.tschueter@tu-dresden.de;
thomas.ilsche@tu-dresden.de; daniel.hackenberg@tu-dresden.de; wolfgang.nagel@tu-dresden.de

J. Schuchart
High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, 70569 Stuttgart,
Germany
e-mail: schuchart@hlrs.de

© Springer International Publishing AG 2017
C. Niethammer et al. (eds.), Tools for High Performance Computing 2016,
DOI 10.1007/978-3-319-56702-0_4

59

mailto:robert.schoene@tu-dresden.de
mailto:ronny.tschueter@tu-dresden.de
mailto:thomas.ilsche@tu-dresden.de
mailto:daniel.hackenberg@tu-dresden.de
mailto:wolfgang.nagel@tu-dresden.de
mailto:schuchart@hlrs.de

60 R. Schöne et al.

and presentation [10]. In this paper we focus on the monitoring of applications,
which includes the first two layers. The two proposed data acquisition techniques
are sampling and instrumentation, which Ilsche et al. define in more detail in [10,
Sect. 2.1]. Monitoring tools for HPC applications like Score-P, VampirTrace [14],
Scalasca 1.x [7], Extrae [3], Open|Speedshop [22], and TAU [23] use different
instrumentation frameworks for parallelization paradigms, for example MPI (via
PMPI [6, Sect. 14.2]), OpenMP (via Opari [13] or OMPT [5]), CUDA (via
CUPTI [15]), as well as automatic and manual user instrumentation.

These frameworks are also used to tune parallel applications, for example for
energy efficiency. The Periscope Tuning Framework (PTF) [8], for example, can
apply concurrency throttling and frequency scaling to a user instrumented function.
Bhalachandra et al. instrument MPI parallel programs [4] to perform load balancing
via clock modulation. Rountree et al. use dynamic voltage and frequency scaling
(DVFS) instead, but also use MPI instrumentation via MPI’s profiling interface [18].
Wang et al. also apply DVFS, but balance OpenMP parallel applications via an
Opari instrumentation [27]. On a different scale, the Linux operating system has
its own tuning mechanisms, that rely on instrumentation or even sampling which
influence the performance and efficiency of parallel programs. The cpuidle kernel
infrastructure [17] instruments the Linux scheduler and applies specific power states
to idling hardware threads based on the presumed future behavior. The Linux
ondemand governor [16] interrupts the workload of a CPU periodically to re-
evaluate frequency decisions. Table 1 summarizes the different methods and tools.

Table 1 Examples of existing monitoring and tuning tools, their data acquisition techniques and
the supported recording or tuning options

Tool Data acquisition Recording/tuning

Monitoring

Score-P [12] Instrumentation, sampling Summarization, logging

VampirTrace [14] Instrumentation Summarization, logging

Scalasca 1.x [7] Instrumentation Summarization

Extrae [3] Instrumentation Logging

HPCToolkit [1] Sampling Summarization, logging

Open|Speedshop [22] Instrumentation, sampling Summarization, loggings

TAU [23] Instrumentation, sampling Summarization, logging

Tuning

Renci/UNC [4] Instrumentation Clock modulation

Adagio [18] Instrumentation DVFS

ENAW [27] Instrumentation DVFS

PTF [8] Instrumentation Various plugins

ondemand gov. [16] Sampling DVFS

cpuidle menu gov. [17] Instrumentation Idle states

Green Governors [24] Sampling DVFS

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 61

Data acquisition techniques are not the only aspect that such tools have in
common. Both, monitoring and tuning tools collect metrics like performance
counters to enrich the information about the executed application with additional
data that can be used to optimize its execution. Since essential components of these
tools are shared, a common infrastructure that can be used for monitoring and tuning
is desirable. This is for example done by Score-P, which supports tuning (via PTF)
and recording (profiling and tracing).

With open interfaces, the existing infrastructure can be used to implement new
functionalities with little effort. In Sect. 3, we describe an interface of Score-P that
can be used to capture additional information. We show how the additional data
can help to interpret performance results with three examples. Another extension
of Score-P that enables programmers to write additional back-ends for Score-P is
presented in Sect. 4. This can exploit the capabilities of the existing infrastructure to
optimize the execution of the workload or write alternative performance information
which is shown in three examples. Section 5 summarizes our paper and outlines
future work.

2 Score-P Overview

Score-P is a highly scalable performance measurement tool that supports various
HPC architectures and parallel programming paradigms to enable users to interpret
the performance of their parallel applications. To do so, Score-P provides different
adapters. Adapters interrupt the monitored application to capture and record its
current status. Available adapters include the instrumentation of parallel program-
ming paradigms, user instrumentation, and sampling. However, some information
about the hardware and software environment is independent of the chosen data
acquisition method. Hence, Score-P includes different services that collect such
independent data. These services include for example system trees, which describe
the hardware layout, and metrics like performance monitoring counters (PMCs),
which can be used to monitor the utilization of processor resources. The data that
is collected by adapters and services is then passed to substrates, which represent
the recording layer in the classification given by Ilsche et al. Existing substrates
implement tracing and profiling.

One major target of Score-P is to provide high code quality and a robust
infrastructure. Thus, designing and merging new functionality is a protected process
that requires multiple steps. Additionally, some functionality targets only specific
architectures or projects and is abandoned once the funding has expired. To increase
the flexibility of the sophisticated Score-P infrastructure, we implemented two
interfaces that enable users to easily provide additional metrics and implement new
substrates. The basic structure of Score-P including our extensions is depicted in
Fig. 1.

62 R. Schöne et al.

Score-P

CUDA
Instrumenta�on

OPARI
Instrumenta�on

MPI
Instrumenta�on Sampling

Profiling Plugin Interface

Adapters

Substrates

Services
Stack-

Informa�on

PAPI

...

Profiling
Plugin

Interface

Substrate Plugins

Recording Op�miza�onEvent Flow
Graphs

Load Balancing
Op�miza�on

Metric Plugins

RAPL

dataheap

uncore

watchpoint

Fig. 1 Score-P overview. Described interfaces and possible extensions are marked orange

3 The Metric Plugin Interface

In this section, we describe the Score-P metric plugin interface. We illustrate
different design criteria for metric plugins and how Score-P supports them in
Sect. 3.1. Section 3.2 lists the calls from Score-P to a plugin in detail. In Sect. 3.3,
we measure the overhead for the interface on a contemporary system. Two examples
for metric plugins are given in Sects. 3.4 and 3.5.

Historically, Score-P metric plugins succeed the VampirTrace plugin counters
that we introduced in [20]. The previous interface has been used in several
publications to incorporate new metrics into application performance traces, e.g.,
power and energy measurements. We translated this interface to Score-P 1.2 and
further refined it in Score-P 2.0 in a backward compatible way.

3.1 Metric Design Criteria

Metrics can have different spatial scopes, value ranges, information types, and
temporal scopes. The spatial scope of a metric can be any software instance or
hardware device. Score-P focuses on applications and does not provide detailed
hardware topology descriptions like core or NUMA mappings. Therefore, the
interface supports four scopes: per thread, per process, per computing node, and
global. Hardware metrics should be assigned to one of the latter: either to a node
or the total monitored system. Examples for the different scopes are per-thread
stack size, per-process allocated memory, per-node inlet temperature, and total
system power consumption. Additional scopes have to be used informally, e.g., if
the performance analyst knows that the thread has been pinned to a specific core

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 63

and simultaneous multithreading is not used, he can relate all hardware events of a
core to the thread that is pinned to it.

Score-P supports different value ranges for metrics: uint64_t, int64_t,
and double. The attributes base, exponent, and unit describe the numerical
semantics of a metric in more detail: base can be either 2 (binary) or 10 (decimal)
and exponent specifies the prefix, e.g., �3 with a base of 10 represents milli.
This allows us to cover a wide range of values with 64-bit integers. In addition,
the plugin description contains a human-readable unit string. Taken all together
a measurement of a metric can be interpreted as: value � baseexponent unit. For
example, to define a memory bandwidth metric in GiB/s base has to be set to
binary, exponent to 30, and unit to “B/s”.

The temporal scope of metrics can be defined with a next, last, start, or point
semantic. The values of next metrics are valid from the associated timestamp to the
next measurement point. Writing the current amount of allocated memory directly
after (de)allocation operations would result in a next metric. Generally, next metrics
represent state changes that are captured directly. By contrast, last metrics contain
values that are valid from the previous timestamp to the timestamp associated with
the current value. This can be the count of operations since the last measurement
point. The special case of operations since the start of the measurement, is
described with the start semantic. Measurements with instantaneous characteristics
are described as point metrics. For instance taking a instantaneous samples of the
current processor voltage without any averaging would be recorded as a point
metric. It is important to distinguish the temporal scope when correlating metrics
with applications measurements, both for visualization and statistical analyses.

Metric plugins can provide their measurement data either synchronously or
asynchronously. Synchronous data is gathered when an adapter of the measurement
system interrupts the analyzed application. If the plugin defines the metric to be
strictly_sync, it has to supply a new measurement value on each of these events.
Other sync plugins can specify a minimum time delta between queries e.g., to
account for the underlying measurement resolution. Synchronous plugins should
be able to provide data very quickly, otherwise the perturbation can spoil the
measurement. Since the reported value will be associated with the current time,
it should not be outdated.

For asynchronous (async) plugins, measurements are acquired at arbitrary points
in time. All values are collected once at the end of the execution. As a result,
the plugin is responsible for buffering the measurement data at runtime. Either
a background thread, a different process, or even a separate system collects the
measurement values and timestamps during execution. Measurements that occur
independently from the running application, especially those with a fixed update
rate (e.g. average power over 10 ms) should be recorded with an async plugin. In
the special case async_event, a plugin is queried for series of timestamp/value data
more frequently during execution. Due to the mismatch between the timestamps
from metrics and application events, asynchronously collected data cannot easily
be mapped to the application events. One possibility would be trace-replay which
sorts the different events and metric values according to the spatial scope of the used

64 R. Schöne et al.

locations and location groups.1 However, this would rely on trace records as profiles
do not store timing information. Thus, asynchronous metrics are not supported when
profiling is enabled.

3.2 Calls to Plugins

The interface has been designed to account for the many degrees of freedom that
metrics can have. A plugin has to implement five functions for basic functionality.
The entry point is the only function that has to be exported by the plugin. It passes
the necessary function pointers to the Score-P runtime system.

In the initialization function of a plugin, all processes can check for the availabil-
ity of required resources and initialize appropriate data structures. Afterwards, the
function get_event_info should provide a mapping between the user-supplied
metric specification strings and actual metric names, e.g., to resolve wildcards in
the specification. Thus, multiple metric names can be returned for each metric
specification. Based on the specification of the spatial scope of the plugin, the
function add_counter is called once per thread, process, host, or once globally.
It is used to set up the measurement of the requested metric and should return an
identifier that is later used to reference this metric. The last mandatory callback
function is the finalization call.

Additional functions may be implemented by a plugin depending on the
characteristics of its metrics. For (strictly) synchronous plugins, the functions
get_current_value and get_optional_value, respectively, should
return the current value of the metric. For asynchronous plugins, the function
get_all_values is called to provide all collected values at the end of the
application run. The values should be timestamped according to Score-P’s internal
clock. A reference to this clock can be acquired through the set_clock callback.
Timestamps from external sources need to be converted by the plugin, e.g. using
linear interpolation. The optional synchronize callback is called for all threads
and processes, both at the beginning and at the end of the application run.

A C++ interface is available2 in addition to the native C interface. The C++
wrapper enables the development of plugins in a more high-level and object-oriented
manner. The synchronicity and spatial scope are defined as policies. The plugin class
inherits from a base class with policies as template parameters. Facilities for id
management, message logging as well as type-safe timestamps (ticks) are provided.
All abstractions are done with runtime-efficient in mind (Fig. 2).

1In the Score-P syntax locations define scopes that are monitored. Typically a single location is a
thread that is executed on a CPU (CPU location) or an external device. Multiple locations can be
grouped to location groups, e.g., all OpenMP threads within a process or all processes within a
compute node.
2https://github.com/score-p/scorep_plugin_cxx_wrapper.

https://github.com/score-p/scorep_plugin_cxx_wrapper

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 65

Entry
Point ini�alize

set_clock

get_event_info add_counter finalize

synchronize synchronizeget_op�onal_value
/get_current_value

get_all_values

On event

Fig. 2 Order of functions triggered in metric plugins by the Score-P measurement infrastructure.
Blue elements depict mandatory functions, optional functions are colored orange

3.3 Introduced Overhead

This section compares the overhead introduced by plugins by testing minimal
strictly synchronous and asynchronous metric plugins. Listing 1 shows the source
code of the test program. The workload of this test case is reduced to a main loop
generating a predefined number of function calls. The source was compiled with the
Score-P instrumenter and automatic compiler instrumentation enabled. With this
setup, two events will be recorded for each function call—one event for entering
and another event for leaving the function. All experiments were executed on a
dual-socket system equipped with Intel Xeon E5-2690 v3 processors running at
2:5 GHz. We run each of the experiments ten times and use the median runtime for
further calculations.

In the first experiment, the runtime overhead for minimal strictly synchronous
metric plugins is investigated. The plugin is implemented to not take any mea-
surements but to return 0 as current value. The program was executed with the
Score-P infrastructure attached in profiling mode. Figure 3 depicts the experiment
results. The points in this figure represent measured values, the lines indicate best fits
generated by linear regression. The baseline for this experiment is an application run
without a registered plugin. In additional runs, a plugin provides varying numbers
of metrics ranging from 0 to 4. The runtimes were determined by querying the
inclusive time of the main function with the cube_stat tool. The results show the
same runtimes for runs without a plugin registered and runs with a registered plugin
that produces no metric. Hence, there is no runtime penalty for just registering a
plugin. Nevertheless, there is an initial overhead when the first metric is activated.
We denote this initial overhead activation factor ˛. Based on the experiment result ˛

can be determined to 6.67 ns. This initial overhead is more costly than the overhead
of adding further metrics. With a linear regression over the slopes of the lines for n
metrics (n�1) the cost for adding a strictly synchronous metric can be determined.
In our experiments the additional cost ˇ for a single metric is 4.97 ns (�20 cycles).

Generally, the overall costs can be calculated by the term ˛ C ˇ � n.
In addition, we repeated the measurements and repeat the experiments with one

active internal Score-P metric recording the CPU cycles via Linux perf. Since there
is always at least one strictly synchronous metric active, ˛ cannot be measured
anymore. In these measurements a higher runtime and more variation is noticeable.
Both can be related to the perf metric. ˇ increases to 6 ns (24 cycles).

66 R. Schöne et al.

Listing 1 Minimal program to determine overhead

void foo ()
{
}
int main ()
{

unsigned long long i =0;
for (i =0; i <NUM_CALLS; i ++)

foo () ;
}

Fig. 3 Measured overhead
for minimal strictly
synchronous metric

In the second experiment, a minimal asynchronous metric plugin was used.
The minimal program was compiled to produce 5,000,000 function calls. The
asynchronous metric plugin writes 1, 2, 3, 4, or 5 million elements at the end of
the application run. As the profiling mode of Score-P currently does not support
asynchronous metrics, we used the time command line tool to compare the
experiment runtimes. Regardless of the number of supplied elements, no change
in the runtimes could be detected. As expected for asynchronous metric plugins, the
runtimes are always similar to the ones without plugins.

3.4 Use Case: Uncore Counter

The first example of a metric plugin provides information from Intel uncore
performance counters (UPMCs). UPMCs are used to monitor events in uncore
devices that are shared by the processor cores, like the integrated memory controller,
the last level cache slices, or the power control unit (PCU). The available uncore
devices and their respective performance events are described in vendor manuals,
e.g. [11]. Linux provides the perf_events interface [28] to access them from user
space. This interface is also used by PAPI [25] which relies on libpfm to assign

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 67

events to names. However, the support for uncore components depends on the Linux
kernel version, e.g., uncore events for Intel Haswell processors are available since
kernel 3.18. Older kernels that are often used in HPC do not support such events.
Another interface that allows users to poll UPMCs is likwid [26]. However, it relies
on accesses that are usually only available for privileged users. To circumvent these
restrictions, likwid provides a daemon that can be run as root and polled from
userspace applications. While this solves the issue of the restricted access, it also
increases the latency for reading values.

Instead, we use a direct access to the perf_event interface or, alternatively, the
x86_adapt kernel module [19]. This kernel module exposes save register regions
that can be read or written from user space. To provide meaningful names for the
events, we use libpfm.

These metrics are registered per-host. Thus, the master thread of one process on
each host will set-up the UPMCs and collect their data. Each registered event is
measured on all sockets. Thus, on a dual-socket system, one registered event will
result in two metrics being included in the trace. To distinguish events from different
sockets, the plugin includes the socket ID in the metric name. This information can
be used later to match the captured software information if the scheduling of threads
and processes is known.

One use case for this plugin is to visualize the number of cores that reside in
certain idle states. Such an information can be used to check whether intentionally
idling processor cores are placed into a hardware idle state by the operating system.
To be able to map the metrics to a group of OpenMP threads, we pin the first
twelve threads of the monitored application to the cores on the first socket and the
remaining threads on the second socket. In Fig. 4, we show that the operating system
correctly uses idle states in OpenMP synchronizing routines. As the threads on the

Fig. 4 Execution of OpenMP parallel NAS benchmark BT (24 threads, Class
C). The top display depicts the executed regions, the bottom displays show
the percentage of active cores, based on PCU counter hswep_unc_pcu::
UNC_P_POWER_STATE_OCCUPANCY:CORES_C0:e=0:i=0:t=0. Within the depicted
time frame, the probability that a core in package 0 is not in an idle state is 97.2 % and 88.7 %
for package 1 cores, respectively. This corresponds with the time spent in synchronization regions
(cyan)

68 R. Schöne et al.

second package spend more time in synchronization, the average number of active
cores is lower.

3.5 Use Case: Watchpoints

Sometimes it is unfeasible or too time-consuming to instrument variables and
functions for program analysis. This could be the case if an analyst uses a build
system he is not familiar with or if the code is too complex. For these cases, we
developed two plugins that enable users to trace local and global variables and the
usage of uninstrumented functions.

The first plugin provides information on the number of accesses to a specific
memory address, i.e., reading or writing a variable or calling function. Each mon-
itored access to such a variable or function is associated with a specific overhead.
The remaining measurement perturbation for Score-P’s basic functionality is not
influenced. For each registered function or variable, the plugin checks whether
it is defined globally, using libbfd. If it found the associated address, it enables
performance monitoring via the perf_event interface and watches for accesses to this
address. Mapping symbols to addresses is done per process, i.e., in the initialization
phase. Thus, in an MPI parallel application each rank can watch a different address.
Each monitored variable or function provides a backward-looking per-thread strictly
synchronous metric with an uint64_t data type. The metrics name does not
include address information, which makes it easy to compare values of different
processes.

In Fig. 5, we show a resulting trace for the OpenMP parallel NAS benchmark BT
in class W. We defined two functions that the plugin should survey for execution:
matmul_sub_ and matvec_sub_. The trace indicates that these are executed
from all OpenMP threads, but the number of calls to these subroutines is unevenly

Fig. 5 OpenMP parallel NPB BT (class W, 4 threads), number of calls to sub-functions
matmul_sub_ and matvec_sub_. While the first two threads call these functions 3036 times
per parallel region (=6*506), the latter threads only call it 2530 times (=5*506), which leads to an
imbalance

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 69

Listing 2 OpenMP example, which accesses a global variable d_var

static double d_va r =0;
void func (int i) {
#pragma omp c r i t i c a l

{
d_va r =0.5� i ;

}
}

int main (int argc ,
char �� a rgv){

int i =0;
#pragma omp p a r a l l e l for s c h e d u l e (r u n t i m e)

for (i =0; i <100000; i ++){
func (i) ;

}
return 0 ;

}

spread, which creates an imbalance that is depicted by the cyan synchronization
phases of the trace. While thread 0 and 1 execute 3036 iterations of the subroutines,
thread 2 and 3 only execute 2530 iterations per parallel region. One can assume
that the parallel loop assigns n chunks of 506 iterations to each thread. A total of
22 chunks are scheduled, where the first and latter two threads execute 6 and 5
respectively, which correlates with the imbalance at the end of the parallel region.
This knowledge can be used to assign an optimized number of parallel threads to
the workload and predict the scalability of the parallel loops.

The second version of a watchpoint plugin extends the functionality and provides
the content of the variable as an asynchronous metric. This means that transitions
within the content of the memory region that hold a variable are recorded. To do
so we use libbfd and libdwarf to gather the address of a variable whose name is
registered by the user. We then set up a hardware breakpoint for this variable using
the Linux perf_events interface. In the following, the thread that changes the variable
interrupts its execution, gathers the current value and stores it in an array. When
multiple threads write the same variable concurrently, the content of the variable
cannot necessarily be recorded since another thread can change it before the content
has been read by the interrupt handler that is defined by the plugin. Still, the number
of recorded transitions matches the number of writes to the variable, even though
the recorded values might be flawed.

We show the functionality for a global variable with a short example program
(Listing 2). In this example, a number of OpenMP threads access a shared global
variable d_var. Based on the selected scheduling routine for OpenMP parallel
loops, the content of the variable over time changes. The resulting value of d_var
is depicted in Fig. 6. While for static scheduling, the number of iterations are
split in a way that one thread executes the first 50,000 iterations and the other thread
the remaining 50,000. Thus, while one thread always writes numbers between 0

70 R. Schöne et al.

Fig. 6 Value of d_var over time for different settings of OMP_SCHEDULE and two threads. The
minimal value for a time range depicted in one pixel is marked blue, the maximal red, the average
black. (a) OMP_SCHEDULE=static. (b) OMP_SCHEDULE=dynamic,4096

and 24,999.5, the other thread writes numbers between 25,000 and 49,999.5. For
dynamic scheduling with a chunk size of 4096 iterations, the written values are
much closer as the current chunks of the threads are likely to be close.

In future work, one could implement a monitor for local variables that would be
reported per thread. To do so, the plugin would watch for the function that defines
the local variable. As soon as the function is entered, the plugin gathers the address
of the current stack base, calculates the offset of the local variable via libdwarf and
sets up temporary watchpoints for the local variable and the return address. When
the return address is executed, the plugin clears the temporary watchpoints.

4 The Substrate Plugin Interface

In addition to the interface for additional metrics, we introduce an interface
for substrates. These can use the existing infrastructure in Score-P like adapters
and services to implement a new functionality. In previous publications, we
described the idea of integrating performance and energy efficiency measurement
and tuning [19, 21]. We used VampirTrace where the individual components are
tightly coupled. Since the profiling and tracing can not be disabled completely, a
significant runtime overhead reduces the applicability of VampirTrace for such an
infrastructure.

Score-P already uses an internal substrate interface, which makes it much
easier to decouple and integrate additional functionality. However, implementing
an internal substrate requires recompilation of the measurement environment and
an integration in the Score-P source code tree. This is impractical for experimental
and system specific extensions. Thus, we provide a plugin interface to dynamically
access the internal substrate functionality. In this Section we describe the interface
itself and three plugin implementations, which make use of the new interface to
increase Score-P’s functionality with new tuning and recording options.

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 71

4.1 Substrates Design Criteria

Different substrates put diverging demands on the information that is provided by
the monitoring infrastructure. Thus, Score-P must not only pass the incoming events
to the registered plugins, but must also provide information about the supplied
data. With the proposed interface, substrate plugins can register for specific types
of events. These cover general events like the entering and exiting of a function,
but also specialized events that are related to specific adapters. With each of these
events, plugins receive a minimal set of information, which is an identifier for the
thread whose monitoring issued the event and the timestamp associated with it.
Further data depends on the type of the event that is monitored and can for example
include information about the communication partner (e.g., for MPI events) or a set
of strictly synchronous metrics (e.g., for enter and exit events). Substrate plugins
may chose to register only for those events that are relevant to them. Additionally,
they can query the Score-P runtime for meta-data about the supplied information,
e.g. the type and name of the thread where the current event occurred.

If the monitoring is distributed among different processes, plugins should also be
able to communicate to enable a global view of the current state. Score-P enables
plugins to use an internal interface for multi processing paradigm (MPP) communi-
cation. With this interface, processes can synchronize their state independent of the
MPP used in the analyzed program.

Substrate plugins receive an event when the monitored application finishes,
allowing them to write out the collected information. Likewise, when the monitoring
is initialized, an appropriate call enables them to read existing configuration
variables.

4.2 Calls to Plugins

We designed the interface in a way that enables programmers to access all
relevant data to get a most comprehensive status for their monitoring or tuning
implementations. The interface currently consists of three major parts:

1. The plugin definition, which provides callbacks to the substrate plugin for 15
management events,

2. A list of 62 application events that a substrate plugin can register for, and
3. A list of 46 callbacks to Score-P internals, that enable plugins to interpret events

and synchronize the distributed state.

To register one or multiple substrate plugins, users set the environment
variable SCOREP_SUBSTRATE_PLUGINS. When monitoring is initialized,
Score-P reads this variable and attempts to load the respective libraries. If
for example, the plugin foo is registered, Score-P loads the shared object
libscorep_substrate_foo.so. Afterwards, it retrieves the plugin

72 R. Schöne et al.

definition. Management events that are supplied with the plugin definition are
stored for future reference. Afterwards, Score-P initializes the substrate by calling
its initialize function. If the initialization failed, a warning is prompted and
Score-P de-registers the plugin. If the initialization succeeds, plugins are supplied
with callbacks to internal functions (set_callbacks). These can be used to
retrieve internal information (e.g., the scope of a metric or the name of a location)
and to access internal functionality like a synchronization mechanism, which
transparently maps the calls to the used MPP. The usage of MPP functions should
be delayed until the MPP is available, i.e., initialize_mpp is called. After
Score-P callbacks are provided to the plugin, a list of functions for application
events is gathered via the function get_event_functions. From this moment
on, internal definitions (e.g., metrics or code regions) can be defined. Substrates
receive such information via the new_definition_handle function. Later in
the initialization phase, an identifier is assigned to each substrate plugin via a call
to assign_id. This identifier can later be used to store and retrieve thread-local
data. Afterwards, the measurement is started and the plugin is able to retrieve the
same management and application events as the existing substrates, profiling and
tracing. When the monitoring ends, substrate can receive calls when Score-P is
about to unify the collected monitoring data (pre_unify), when it flushes data

Fig. 7 Order of calls to substrate plugin management functions. All functions except for the
plugin definition (entry point) are optional. Management events issued by Score-P are colored
blue (mandatory implementation) or orange (optional implementation). Application events that
are issued by the monitored application are colored green. (a) Per process substrate plugin calls.
(b) Per location substrate plugin calls

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 73

to the file system (write_data) and when the measurement system is shut down
(finalize).

In the measurement phase, plugins are called whenever a new location (e.g., a
thread) is created (create_location). Locations are distinguished into CPU
locations and other locations, e.g., threads that are executed on a GPGPU. CPU
locations are activated after they are created (activate_cpu_location) and
de-activated (deactivate_cpu_location) before they are closed. In the
meantime, they can also be activated and deactivated, e.g., when a thread is
suspended from providing monitoring data. If the CPU locations use task model
programming (e.g., OpenMP 3 tasks), these tasks are also published to the plugin.
Whenever a location is not de-activated, it can create application events. When
a location is closed, the delete_location function of plugins is called. An
overview of per-process and per-location calls is depicted in Fig. 7.

4.3 Introduced Overhead

Score-P loads the plugins in each process using the dynamic linker library functions
dlopen and dlsym. This initialization is performed only once before the actual
measurement and therefore introduces no perturbation and limited overhead. The
retrieved function pointers for event and management functions are stored in Null-
terminated lists. If plugins do not implement specific functions, the effective length
of these lists is reduced. When an event or management function is called within
Score-P and at least one plugin registered for this function, the measurement
environment traverses the respective list and calls the registered functions. If no
plugin registered for an event, the plugin infrastructure does not cause any overhead.

The overhead is analyzed in experiments designed similar to the tests presented
in Sect. 3.3 using the same system and test program (Listing 1). Runtime events
are recorded by Score-P’s profiling substrate and the inclusive runtime of the main
function is determined in combination with the cube_stat tool. We do not
use any metrics, but a minimal substrate plugin that registers for enter and exit
events as defined in Listing 3. Again, we change the number of loops that call
the instrumented function foo, repeat the measurement of each problem size ten
times and use the median result. The resulting runtimes are depicted in Fig. 8, where
measured values are points and the lines represent the linear regression of these
points. The difference of the slopes of the two linear fits represents the costs for a
single call to the substrate, which happens to be 3 ns (12 cycles).

4.4 Use Case: Region-Based Energy Efficiency Tuning

As a first example for back-ends, we use libadapt, which has previously been
used to enable energy efficiency optimizations with VampirTrace, e.g. for OpenMP

74 R. Schöne et al.

Listing 3 Minimal substrate event

static void e n t e r _ r e g i o n (. . .) {
}
static void e x i t _ r e g i o n (. . .) {
}

/* Register event functions */
static u i n t 3 2 _ t
g e t _ e v e n t _ f u n c t i o n s (
SCOREP_Substrates_Mode mode ,
SCOREP_Subs t ra t e s_Ca l lback�� r e t u r n e d)
{

f u n c t i o n s = c a l l o c (. . .) ;
f u n c t i o n s [SCOREP_EVENT_ENTER_REGION] = e n t e r _ r e g i o n ;
f u n c t i o n s [SCOREP_EVENT_EXIT_REGION] = e x i t _ r e g i o n ;
� r e t u r n e d = f u n c t i o n s ;
return SCOREP_SUBSTRATES_NUM_EVENTS;

}

Fig. 8 Measured overhead for a minimal substrate plugin that registers for enter and exit events

parallel [19] and MPI parallel [21] programs. It provides various back-ends that sup-
port tuning of processor frequencies, idle states, and various low level optimizations
at the level of code-regions.

In order to use libadapt, the plugin registers four management events (initialize,
set_callbacks, get_event_functions, and new_definition_handle) and four applica-
tion events (enter region, exit region, fork, and join). To be able to cope with

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 75

Fig. 9 MPI parallel NPB BT (576 ranks). Left side (from top to bottom): executed functions
(function names on right panel), average frequency of involved processor cores, average power
consumption of nodes

incoming region handles at enter and exit events, the plugin stores the handles when
they are defined. Afterwards, the plugin calls libadapt with every enter and exit event
of registered functions and adjusts the hardware/software environment according to
the user’s specification. Since, Score-P interrupts threads and processes, the user has
to enforce the pinning of threads to cores or hardware threads. Neither the plugin
nor libadapt check whether the applied tuning parameters result in an optimized
execution. However, such an analysis can be done with Vampir and Scalasca. An
example is depicted in Fig. 9 where we used Score-P and libadapt to change the
processor core frequency of an MPI parallel benchmark depending on the executed
region. The power monitoring is provided via a plugin metric for the HDEEM
measurement infrastructure [9].

4.5 Use Case: Balancing-Based Energy Efficiency Tuning

Some parallel programs struggle with load imbalances that lead to a significant
portion of time spent in synchronization. The overall energy efficiency of such
programs can be improved by reducing the clock frequency and voltage for those
threads that would enter the synchronization early at nominal speed. Examples that
target different parallelization paradigms are given in Sect. 1.

The load balancing substrate plugin intercepts the start and end of a list of
blocking MPI and OpenMP calls. It then optimizes the execution of a “synchronized
region” r. This region consists of a computing part (which might include non-
blocking communication) and a blocking communication part. The plugin assumes
that the blocking communication part is fast and slows down the whole synchronized
region to an extent that the computing arrives just in time for synchronization.
Different synchronized regions are distinguished by using a strictly synchronous
metric that provides a unique identifier based on the current call stack. The target
frequencies ft.r/ are adjusted in the following way: if the compute time represents

76 R. Schöne et al.

Fig. 10 Execution of weather prediction workload (COSMO SPECS FD4) on 96 MPI ranks
with load balancing substrate. Displayed information from top to bottom: executed MPI functions
(colored red); average frequency of involved cores; average power consumption

at least 95% of the synchronized regions, ft.r/ is set to the reference frequency.
If it constitutes at least 85%, ft.r/ is set to the frequency that has been used
recently fm.r/. If it is less than 85%, ft is computed by multiplying fm.r/, with the
fraction of the computation time and adding a delta frequency to still arrive too
early for synchronization in future executions: ft.r/ D tcompute

ttotal
� fm.r/ C ı. To avoid

flickering frequencies, the maximal predicted optimal frequency of the previous four
repetitions of the synchronized region is applied (Fig. 10).

4.6 Use Case: Event Flow Graphs

As a third example, we present event flow graphs comparable to [2]. Event flow
graphs represent a function call sequence of a program where each node represents
an instrumented region, and each edge the transition rules between the regions. In
our version, each node represents a specific call stack and is labeled with the name
of the lowest function of the respective stack, i.e., the instrumented functions. To
distinguish call stacks, we use the same metric that is also used in the previous
section. We use three different notations for edge labels. The first one is represented
by a single number n, which describes that this transition is taken the nth time
the previous node is traversed. The second notation comprises three numbers i; j; k.
Here, i and j describe the first and last time the previous node is traversed and this
transition has been taken. k describes the stride: the transition is taken when the
previous node is executed the ith, .iCk/th, .iC2k/th . . . , jth time. The third notation
i; j; k; l;m extends this scheme with additional information on nested loops. The
outer loop has stride l and is executed m times. This enables us to further reduce the
number of edges when a loop that can be represented with three values is interrupted
at a regular interval.

One example for event flow graphs is given in Fig. 11, which depicts the
main loop of the first MPI rank of the NAS Parallel Benchmark LU. The MPI
communication within this loop starts with an MPI_Send (top node) and ends with

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 77

Fig. 11 Event flow graph of
the MPI communication for
the inner computation loop of
MPI parallel NAS Parallel
Benchmark LU (Class A, 4
ranks), rank 0

78 R. Schöne et al.

Listing 4 Communication in inner compute loop for first rank of MPI parallel NPB LU - Class A,
4 ranks total

for (i =1; i <=250; i ++) {
for (j =1; j <=61; j ++) {

MPI_Send () ;
MPI_Send () ;

}
for (j =1; j <=61; j ++) {

MPI_Recv () ;
MPI_Recv () ;

}
if (i == 250) {

MPI_Al l reduce () ;
}
MPI_Send () ;
MPI_Irecv () ;
MPI_Wait () ;
MPI_Send () ;
MPI_Irecv () ;
MPI_Wait () ;

}

an MPI_Wait (bottom node). This loop is executed 250 times. The event flow graph
can be used to reproduce the communication pattern for testing purposes. Listing 4
depicts such a reproduced code.

The same plugin can also be used for OpenMP parallel programs. In another
example, we execute a thread parallel NPB LU with size C on 24 threads and extend
the performance measurement with PAPI metrics that are provided by Score-P. To
illustrate the effectiveness of the program execution, we color the nodes and edges
depending on their relative stall cycles.3 A green edge or node has no or only some
stall cycles, a red node or edge indicates that most cycles are spent stalled. A general
overview of the program is depicted in Fig. 12a. However, such a representation
cannot depict nested calls. In the next step, we attribute a node to every enter and
exit event. Now, the nodes represent single monitoring events and the edges the
regions between the instrumentation points. Since monitoring events do not provide
performance metrics, only the compute regions (edges) are colored. To limit the
amount of events, we filter omp flush directives. A fragment of the resulting plot
is depicted in Fig. 12b.

3Relative stall cycles D CYCLE_ACTIVITYWCYCLES_NO_EXECUTE
PAPI_TOT_CYC .

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 79

Fig. 12 Event flow graphs of parallel regions for NAS Parallel Benchmark LU (OpenMP, Size C)
with colored nodes and edges. A green color indicates no stall cycles, red indicates a high amount
of stall cycles. (a) Master Thread, Event flow graph of parallel regions. (b) Event flow graph of
OpenMP instrumentation, zoom into parallel region @l2norm.f:43

80 R. Schöne et al.

5 Conclusion and Further Work

In this paper we described two interfaces that can be used to extend the functionality
of Score-P. We summarized the general idea behind the interface and the calls
that possible plugins do receive. Additionally, we demonstrated that the expected
runtime overhead of the interfaces is adequate, compared to the overhead that is
introduced by the remaining Score-P infrastructure. Furthermore, we have shown
several examples for the described interfaces. We demonstrated that watchpoints
can be used to monitor accesses to functions and variables. This enables analysts
to investigate them without an explicit instrumentation. We also, described how
performance counters can be used that can not be associated to single threads.
For substrates, we demonstrated that it is possible to tune the hardware/software
environment at the level of code-regions. We also demonstrated how a balancing-
based energy-efficiency optimization could be implemented. Our last use case
recorded event flow graphs. Such a plugin can be used to provide performance
analysts with a high-level abstraction of the recorded events, since it reduces the
number of displayed events significantly in comparison to traces. It can also be used
to accompany profiles that do not store the order of executed regions.

Future work includes supplemental spatial scopes for metrics. For example,
uncore metrics, as described in Sect. 3.4, would benefit if they could declare that
they are recorded per socket. To implement such scopes, the system tree, which is
gathered by Score-P must collect and store architectural information from within
a compute node. Another challenge is the mapping of hardware thread events to
software threads, which relies on such an extended system tree. Here, Score-P could
parse the affinity of monitored software threads and store it for a post-mortem
analysis. Finally, the analysis tool Vampir should be extended so that metrics of
different scopes can be tallied up. For example, if the instructions are counted per
thread and the last level cache accesses are counted per socket, the instructions per
cache access can be calculated per node.

Acknowledgements This work has been funded by the Bundesministerium für Bildung und
Forschung via the research project Score-E (BMBF 01IH13001), the German Research Foundation
(DFG) in the Collaborative Research Center “Highly Adaptive Energy-Efficient Computing”
(HAEC, SFB 912), and by the European Union’s Horizon 2020 Programme in the READEX
project under grant agreement number 671657.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent,
N.R.: HPCTOOLKIT: Tools for performance analysis of optimized parallel programs. Concurr.
Comput. Pract. Exper. (2010). doi:10.1002/cpe.1553

2. Aguilar, X., Fürlinger, K., Laure, E.: MPI trace compression using event flow graphs. In:
Proceedings of the International European Conference on Parallel and Distributed Computing
(Euro-Par) (2014). doi:10.1007/978-3-319-09873-9_1

10.1002/cpe.1553
10.1007/978-3-319-09873-9_1

Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases 81

3. Barcelona Supercomputing Center: Extra user guide manual for version 3.1.0. https://www.
bsc.es/sites/default/files/public/computer_science/performance_tools/extrae-3.1.0-user-guide.
pdf. Online at bsc.es; Accessed 20 Dec 2016

4. Bhalachandra, S., Porterfield, A., Prins, J.F.: Using dynamic duty cycle modulation to improve
energy efficiency in high performance computing. In: IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW) (2015). doi:10.1109/IPDPSW.
2015.144

5. Eichenberger, A.E., Mellor-Crummey, J., Schulz, M., Wong, M., Copty, N., Dietrich, R.,
Liu, X., Loh, E., Lorenz, D.: Ompt: an openmp tools application programming interface for
performance analysis. Lect. Notes Comput. Sci (2013). doi:10.1007/978-3-642-40698-0_13

6. Forum, M.: MPI: a message-passing interface standard. version 3.1 (2015). http://mpi-forum.
org/docs/mpi-3.1/mpi31-report.pdf. Online at mpi-forum.org; Accessed 20 Dec 2016

7. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. Concurr. Comput. Pract. Exper. (2010). doi:10.1002/cpe.
1556

8. Gerndt, M., César, E., Benkner, S. (eds.): Automatic Tuning of HPC Applications - The
Periscope Tuning Framework (PTF). Shaker Verlag, Herzogenrath (2015)

9. Hackenberg, D., Ilsche, T., Schuchart, J., Schöne, R., Nagel, W.E., Simon, M., Georgiou, Y.:
Hdeem: high definition energy efficiency monitoring. In: Energy Efficient Supercomputing
Workshop (E2SC) (2014). doi:10.1109/E2SC.2014.13

10. Ilsche, T., Schuchart, J., Schöne, R., Hackenberg, D.: Combining instrumentation and sampling
for trace-based application performance analysis. In: Tools for High Performance Computing
(2015). doi:http://dx.doi.org/10.1007/978-3-319-16012-2_6

11. Intel: Intel xeon processor E5 and E7 v3 family uncore performance monitoring reference
manual (2015). Reference number: 331051-002

12. Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer, M.,
Gerndt, M., Lorenz, D., Malony, A., et al.: Score-p: a joint performance measurement run-
time infrastructure for periscope, Scalasca, Tau, and Vampir. In: Tools for High Performance
Computing (2012). doi:10.1007/978-3-642-31476-6_7

13. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and prototype of a performance tool
interface for OpenMP. J. Supercomput. (2002). doi:10.1023/A:1015741304337

14. Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel, W.E.:
Developing scalable applications with Vampir, Vampirserver and Vampirtrace. In: Parallel
Computing Conference (PARCO) (2007)

15. NVIDIA: CUPTI user’s guide (2016). http://docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf.
Online at docs.nvidia.com; Accessed Dec 2016 20

16. Pallipadi, V., Starikovskiy, A.: The ondemand governor past, present, and future. In:
Proceedings of the Ottawa Linux Symposium (OLS) (2006). https://www.kernel.org/doc/ols/
2006/ols2006v2-pages-223-238.pdf. Online at kernel.org

17. Pallipadi, V., Li, S., Belay, A.: cpuidle: do nothing, efficiently. In: Proceedings of the Ottawa
Linux Symposium (OLS) (2007). https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-
126.pdf. Online at kernel.org

18. Rountree, B., Lownenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch, T.:
Adagio: Making dvs practical for complex hpc applications. In: Proceedings of the 23rd
International Conference on Supercomputing (ISC) (2009). doi:10.1145/1542275.1542340

19. Schöne, R., Molka, D.: Integrating performance analysis and energy efficiency optimizations
in a unified environment. Comput. Sci. Res. Dev. (2013). doi:10.1007/s00450-013-0243-7

20. Schöne, R., Tschüter, R., Hackenberg, D., Ilsche, T.: The vampirtrace plugin counter interface:
introduction and examples. In: Proceedings of the International European Conference on
Parallel and Distributed Computing (Euro-Par) Workshops (2011). doi:10.1007/978-3-642-
21878-1_62

21. Schöne, R., Treibig, J., Dolz, M.F., Guillen, C., Navarrete, C., Knobloch, M., Rountree, B.:
Tools and methods for measuring and tuning the energy efficiency of HPC systems. Sci.
Program. (2014). doi:10.3233/SPR-140393

https://www.bsc.es/sites/default/files/public/computer_science/performance_tools/extrae-3.1.0-user-guide.pdf
https://www.bsc.es/sites/default/files/public/computer_science/performance_tools/extrae-3.1.0-user-guide.pdf
https://www.bsc.es/sites/default/files/public/computer_science/performance_tools/extrae-3.1.0-user-guide.pdf
10.1109/IPDPSW.2015.144
10.1109/IPDPSW.2015.144
10.1007/978-3-642-40698-0_13
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
10.1002/cpe.1556
10.1002/cpe.1556
10.1109/E2SC.2014.13
http://dx.doi.org/10.1007/978-3-319-16012-2_6
10.1007/978-3-642-31476-6_7
10.1023/A:1015741304337
http://docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-126.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-126.pdf
10.1145/1542275.1542340
10.1007/s00450-013-0243-7
10.1007/978-3-642-21878-1_62
10.1007/978-3-642-21878-1_62
10.3233/SPR-140393

82 R. Schöne et al.

22. Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., Cranford, S.:
Open|speedshop: an open source infrastructure for parallel performance analysis. Sci.
Programm. (2008). doi:10.1155/2008/713705

23. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High Perform.
Comput. Appl. (2006). doi:10.1177/1094342006064482

24. Spiliopoulos, V., Kaxiras, S., Keramidas, G.: Green governors: a framework for continuously
adaptive DVFS. In: International Green Computing Conference and Workshops (IGCC)
(2011). doi:10.1109/IGCC.2011.6008552

25. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Tools for High Performance Computing. In:
Collecting Performance Data with PAPI-C (2010). doi:10.1007/978-3-642-11261-4_11

26. Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-oriented tool suite for
x86 multicore environments. In: Proceedings of the International Conference on Parallel
Processing Workshops (ICPPW) (2010). doi:10.1109/ICPPW.2010.38

27. Wang, B., Schmidl, D., Müller, M.S.: Evaluating the energy consumption of openmp applica-
tions on Haswell processors. Lect. Notes Comput. Sci. (2015). doi:10.1007/978-3-319-24595-
9_17

28. Weaver, V.M.: Linux perf_event features and overhead. In: The 2nd International Workshop
on Performance Analysis of Workload Optimized Systems, FastPath (2013)

10.1155/2008/713705
10.1177/1094342006064482
10.1109/IGCC.2011.6008552
10.1007/978-3-642-11261-4_11
10.1109/ICPPW.2010.38
10.1007/978-3-319-24595-9_17
10.1007/978-3-319-24595-9_17

Debugging Latent Synchronization Errors
in MPI-3 One-Sided Communication

Roger Kowalewski and Karl Fürlinger

Abstract The Message Passing Interface (MPI-3) provides a one-sided commu-
nication interface, also known as MPI Remote Memory Access (RMA), which
enables one process to specify all required communication parameters for both the
sending and receiving side. While this communication interface enables superior
performance potential developers have to deal with a complex memory consistency
model. Proper synchronization of asynchronous remote memory accesses to shared
data structures is a challenging task. More importantly, it is difficult to pinpoint
such synchronization bugs as they do not necessarily manifest in an error or occur
for example only after porting the application to a different HPC environment.

We introduce a debugging tool to support the detection of latent synchronization
bugs. Based on the semantic flexibility of the MPI-3 specification we dynamically
modify executions of improperly synchronized MPI remote memory accesses to
force a manifestation of an error. An experimental evaluation with small applications
and the usage in a library which heavily relies on MPI RMA reveal that this approach
can uncover synchronization bugs which would otherwise likely go unnoticed.

1 Introduction

MPI, as the de-facto standard for programming scientific applications, specifies
RMA as an alternative communication approach where processes communicate
shared data by one-sided put and get primitives. In contrast to traditional message-
passing the target process (receiver) does not necessarily need to synchronize with
the origin (sender) to complete the communication. This significantly reduces the
required synchronization overhead and enables new programming models such
as Partitioned Global Address Space (PGAS). PGAS provides shared memory
abstractions on distributed machines to boost programmer productivity. An example
is DASH [4] which is a C++ template library to specify distributed generic data
structures (e.g. arrays, lists) and algorithms. It supports among other options MPI-3
RMA as the low-level communication backend.

R. Kowalewski (�) • K. Fürlinger
Ludwig-Maximilians-Universität München, Munich, Germany
e-mail: kowalewski@nm.ifi.lmu.de

© Springer International Publishing AG 2017
C. Niethammer et al. (eds.), Tools for High Performance Computing 2016,
DOI 10.1007/978-3-319-56702-0_5

83

mailto:kowalewski@nm.ifi.lmu.de

84 R. Kowalewski and K. Fürlinger

Fig. 1 Application samples with synchronization bugs. (a) Data race condition between native
load and MPI_Get. (b) Unsynchronized Put-Get sequence. (c) Non-atomic Put

Fig. 2 Exemplified modifications by Nasty-MPI. (a) Deferred MPI_Get. (b) Reordered Put-Get
sequence. (c) Split non-atomic Put

However, MPI RMA comes with a complex memory model which is often
poorly understood and makes it difficult to precisely reason about the semantics
of RMA applications, especially when changing the underlying network fabrics or
MPI library. To illustrate the semantic challenges, consider the code in Fig. 1a. If
we reason about the outcome based on a sequentially consistent execution the value
in the local variable buf is 1. However, MPI RMA provides only weak ordering
guarantees meaning that the final value of buf may be 0,1 or even undefined
because the get action may happen concurrently with the local write (buf = 1).
Figure 2a illustrates a semantically equal execution if we reason in terms of the
MPI-3 specification. In order to avoid such data race conditions program developers
have to properly synchronize RMA and native memory accesses. Debugging these
synchronization bugs can be very time-consuming as the execution depends on the
underlying hardware and scheduling interleavings at runtime.

We propose Nasty-MPI, a debugging tool to support the detection of latent
synchronization errors in any MPI-3 RMA application at runtime. We apply a
heuristic approach which takes the semantic flexibility given by the MPI-3 standard
into account and forces pessimistic executions to manifest synchronization bugs.
Because each application may have numerous of such pessimistic executions
we provide external configuration parameters to refine the Nasty-MPI heuristic.
Utilizing the PMPI interface enables easy integration into any MPI application.
Since we have no semantic model of the target application we rely on supplied

Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 85

program invariants (e.g. assert statements) raising an error if the application’s
semantics are not satisfied.

The remainder is organized as follows. We first explain the MPI-3 RMA
synchronization semantics and present a formalism to model memory consistency
in Sect. 2 to set the stage of this contribution. Section 3 elaborates the concept
and strategies of Nasty-MPI to uncover synchronization errors. An experimental
evaluation in Sect. 4 with small test cases compares the behavior of applications
with latent synchronization bugs on different HPC platforms. We further show
that applying Nasty-MPI to the extensive DASH unit test suite uncovered a latent
synchronization error in the underlying MPI-3 RMA communication. Finally,
Sect. 5 summarizes related work and Sect. 6 concludes.

2 MPI-3 One-Sided Communication Semantics

RMA communication can be applied only on a point-to-point basis. All com-
munication actions (puts, gets, accumulates) operate in the context of a window
abstracting the distributed memory between MPI processes and are grouped into
synchronization phases, called access epochs. No RMA operation may be issued
before opening an access epoch and no consistency guarantees, neither local nor
remote, are available before closing an access epoch.

MPI RMA offers two synchronization modes which are called the active target
and passive target mode. In contrast to passive target, the active target mode
requires target processes to actively synchronize with the origin to complete the
communication. For this reason we focus only on passive target which closely
matches the semantic requirements of PGAS models. The origin issues lock/unlock
operations to open and close an access epoch on the target window, respectively. We
can, however, adopt the concept to active target synchronization as well.

2.1 Modeling Memory Consistency

To model and analyze the RMA operations issued by an application, we use a
formalism based on a paper written by the MPI RMA Working Group [8].

Two memory accesses a and b conflict if they target overlapping memory and

are not synchronized by both a happens-before (
hb�!) [11] and a consistency edge

(
co�!) [8]. The happens-before order may either be the program order, if both

operations occur in a single process, or the synchronization order between two MPI
processes, such as blocking send-receive pairs. A consistency edge between two

operations (i.e. a
co�! b) implies that the memory effects of a may be observed by

b. Consistency edges are established by the RMA synchronization primitives, as
described earlier.

86 R. Kowalewski and K. Fürlinger

Fig. 3 Unsynchronized (two executions)

Fig. 4 Synchronized execution

Utilizing this notation, we derive an execution model of all issued RMA
communications in an MPI program P. All executions E over the set of RMA
calls in P may be modeled as a partially ordered happens-before graph, formed

by the transitive closure of
hb�! and

co�! edges. Two executions e1 and e2 in E are
semantically equivalent if they result in the same happens-before graph. If a and b
are not synchronized, they are contained in a parallel region. For example, Fig. 3
represents a happens-before graph, derived from the program in Fig. 1b. Since both
RMA operations operate on overlapping memory and are within a parallel region,
the program includes a synchronization error. If we want to guarantee that both
operations remotely complete in program order, one valid solution is to synchronize

by an additional flushwhich establishes the required
cohb��! edge, as depicted in Fig. 4.

2.2 Consistency Properties

After formalizing the memory consistency model of MPI-3 RMA we discuss
essential semantic properties of one-sided communication actions. These properties
are fundamental to satisfy correctness in even simple concurrent programs:

Atomicity Fast put and get communications are non-atomic. Only accumulates
guarantee element-wise atomic reads and writes to a single target if they use the
same basic data type. Figure 1c shows an example where an origin copies an

Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 87

array, consisting of 100 integers, to a target memory. This MPI_Put is non-
atomic and can result in a race condition with any memory accesses operating
concurrently on the target memory location.

Ordering MPI-3 provides no ordering guarantees for RMA calls in a single
epoch. An exception is made for a sequence of accumulates directed to the
same target. In addition, both the reduction operator and basic data type have
to be identical among subsequent accumulates. In Fig. 1b, two RMA calls read
(MPI_Put) and write (MPI_Get) a local memory buffer, respectively. Since the
operations may complete in any order they conflict with each other.

Completion RMA communication operations are not guaranteed to complete
before the surrounding access epoch is explicitly synchronized. For example in
Fig. 1a, the receive buffer (buf) for the MPI_Get is subsequently accessed by a
native store. Both memory accesses conflict, resulting in a data race condition.

In order to prevent memory consistency issues as illustrated in Fig. 1, MPI specifies
dedicated primitives to synchronize pending RMA communications [15]. One
approach is to synchronize by distinct access epochs. This concept fits well into
the structure of many scientific applications which consist of communication and
computation phases. For more fined-grained control in irregular communication
patterns, such as graph problems, MPI additionally provides flush_local and flush
primitives to locally or remotely complete pending RMA operation during an access
epoch. While local completion guarantees consistent memory buffers only on the
origin process, remote completion guarantees memory consistency of the target
memory as well.

3 Uncovering Latent Synchronization Errors

After elaborating the semantic challenges of MPI RMA we describe an effective
approach to support programmers in debugging MPI programs with improperly
synchronized RMA communications. Suppose an MPI program P contains a latent
synchronization error. Assume further that P has a predefined correctness model in
the form of included program invariants, as illustrated by the assert statements
in Fig. 1. Based on the presented memory consistency model we are able to explore
different execution paths in the happens-before graph of P with the objective of
finding at least one execution which forces a manifestation of this error.

3.1 Conceptual Overview

By exploiting the PMPI interface we intercept all RMA communication actions
at runtime and initially buffer them, instead of handing them over to the MPI
library. This enables us to dynamically construct a happens-before graph and, in

88 R. Kowalewski and K. Fürlinger

particular, track all its parallel regions. The approach relies on the RMA completion
semantics, allowing to defer the execution of communication actions to a matching
synchronization call. When the application issues a synchronization action, it
triggers a three-stage rescheduling process.

1. Completion Stage: We consider only those communication actions which are
necessarily required to complete, as specified by the synchronization action.

2. Atomicity Stage: We break non-atomic communication actions into a set of
smaller requests in such a way that the memory semantics are identical.

3. Reordering Stage: We reorder communication actions which do not conceptu-
ally give any ordering guarantees within the synchronized access epoch.

Figure 2 illustrates the rescheduling techniques when applying Nasty-MPI to the
programs in Fig. 1 in the form of source code modifications that are equivalent to
the effects achieved by the dynamic interception and rescheduling process.

In Fig. 2a, Nasty-MPI exploits the completion semantics and defers communica-
tion actions to a matching synchronization. Thus, the MPI_Get will be issued to
the MPI library after the native store.

Figure 2b demonstrates the reordering technique. Suppose both RMA calls in
Fig. 1b are required to complete as encountered. Since there is no synchronization
to guarantee program order, we may reverse the order. Note the additional flush,
issued by Nasty-MPI to force the reverse order.

The last example depicts how we utilize the atomicity semantics. In Fig. 2c, we
split one single MPI_Put into 100 separate MPI_Put calls. While both variants
have identical semantics, splitting RMA operations can effectively force errors
which result from non-atomic memory access on overlapping locations.

In the next section, we explain the rescheduling process in more detail and
discuss how the tool uses the full semantic flexibility, given by the MPI standard, to
schedule pessimistic executions.

3.2 Nasty-MPI Rescheduling Process

When Nasty-MPI receives a synchronization operation it triggers the rescheduling
process on buffered communication actions. The three stages of this rescheduling
process are described in the following.

3.2.1 Completion Stage

Nasty-MPI first distinguishes between local and remote completion. If the issued
synchronization action has remote completion semantics (i.e. unlock or flush),
we filter all buffered RMA calls which are necessarily required to complete. A
synchronization action can complete either all pending RMA calls within a window
or to a specific target rank [15].

Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 89

Table 1 Nasty-MPI configuration parameters

Parameter Value type Default

1 NASTY_SKIP_COMPLETION_STAGE bool false

2 NASTY_LOCAL_COMPLETION_ENABLED bool true

3 NASTY_SKIP_ATOMICITY_STAGE bool false

4 NASTY_SUBMIT_ORDER string (see Table 2) random

5 NASTY_ADD_FLUSH_ENABLED bool true

6 NASTY_ADD_LATENCY unit32_t 0

In the case of local completion (i.e. flush_local) all MPI_Put calls remain in
the buffer and are not issued to the MPI library. This approach is allowed, because
local completion only guarantees memory consistency of local buffers. However,
because local completion creates a consistency edge between two consecutive

memory access (i.e. a
co�! b), we have to copy the source buffer of a to keep it

internally until remote completion is forced. This approach is applicable to RMA
accumulates as well. However, because accumulates are conceptually ordered under
certain conditions [15], we have to make sure that there are no subsequent correlated
accumulates which atomically fetch data from remote memory. In this case, we are
not allowed to further postpone the first accumulate operation. Several experiments
revealed that some MPI libraries do not necessarily distinguish between local and
remote completion, i.e. they always apply remote completion. Table 1 lists two
parameters for the completion stage to control, whether Nasty-MPI should apply
local completion semantics (Table 1, line 2) or even bypass the completion stage
(Table 1, line 1).

3.2.2 Atomicity Stage

While fast RMA data transfers (i.e. put, get) are non-atomic, accumulates guarantee
this only on a per element granularity. We apply a splitting technique to break
a single RMA call into a set of many smaller RMA calls which have identical
memory semantics. We first analyze the count and datatype parameters which
are contained in the signature of each RMA call. If the count parameter is specified
with at least two elements, we further determine the extent of a single datatype
element. Based on these two parameters we split a single RMA call into many
single-element operations. For example, in Fig. 1c, count is 100 and the extent
of MPI_INT is 4 bytes. This results in 100 MPI_Put calls, each having a source
buffer which starts at increasing 4 bytes offsets relative to the original buffer address
(see Fig. 2c).

RMA put and get calls can be even split into 1-byte RMA operations. However,
we are restricted by the displacement unit in MPI windows which defines the
minimum size of a single element. This approach applies only if the displacement
unit is specified with a size of MPI_BYTE at window creation. Dynamic MPI

90 R. Kowalewski and K. Fürlinger

Table 2 Options for
NASTY_SUBMIT_ORDER

Option Description

random Random (default)

reverse_po Reverse program order

put_before_get Schedule put before get calls

get_before_put Schedule get before put calls

windows always satisfy this condition. The atomicity stage may skipped by setting
the corresponding parameter (Table 1, line 3) to true.

3.2.3 Reordering Stage

Passing the first two stages gives a set of RMA calls which are (a) required to
remotely complete; and (b) split into many small RMA calls in order to explore
the minimal completion and atomicity semantics. Before we hand over these RMA
calls to the native MPI library, they are finally reordered. The only restriction applies
to accumulates. We can interleave them with any other communication action,
however, their syntactic order has to be preserved. The default reordering approach
is to randomly shuffle buffered communication actions. More fine-grained control
is provided by the configuration parameter NASTY_SUBMIT_ORDERwhich can be
set to any of the options in Table 2. However, simply reordering RMA operations
does not guarantee that the native MPI library obeys the scheduled order. MPI
libraries are free to reorder or even apply additional optimizations, such as merging
of RMA calls [5]. Thus, we must explicitly force the scheduled ordering. One option
is to simulate communication latency between consecutive communication actions,
giving the MPI library a chance to asynchronously process an RMA operation
before the next call is issued. However, if the MPI library does not facilitate
asynchronous progress mechanisms or applies lazy execution, this approach has
no effect. An effective solution is to issue additional flush operations which are
semantically valid, as we modify only parallel regions in the original happens-before
graph.

The reordering stage can be further controlled by two parameters in order to
configure the simulation of communication latency (Table 1, line 6) and whether
Nasty-MPI is allowed to inject additional flush synchronizations (Table 1, line 5).

4 Experimental Evaluation

The experiments were conducted on two HPC platforms: The NERSC Edison
Cray XC 30 supercomputer [16] and SuperMUC Petascale System [12] at the
Leibniz Supercomputing Centre. The Cray machine is interconnected by an Aries
network and provides its own MPI library and compiler, included in Cray’s Message
Passing Toolkit. SuperMUC facilitates a fully non-blocking Infiniband network and

Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 91

supports three MPI libraries: IBM (v9.1.4), Intel (v5.0) and Open MPI (v1.8). The
corresponding compiler is Intel icc (v15.0.4). A prototypical implementation of
Nasty-MPI is publicly available on Github.1

4.1 Methodology

All experiments include at least two MPI processes which communicate by improp-
erly synchronized RMA operations. The correctness model of these applications
is defined by included assert statements in the source code to uncover the
synchronization errors.

Each experiment is evaluated with all MPI libraries in four scenarios which are
based on two settings. First, we have to consider process locality, i.e. the origin and
target process reside either on a single node or on two distant nodes. Process locality
is an important property, because MPI libraries may hide communication latency in
MPI RMA calls by utilizing shared memory semantics. And second, we run each
test with and without linking Nasty-MPI. If Nasty-MPI is linked, all applications
are repeatedly executed with distinct combinations of the Nasty-MPI configuration
parameters, listed in Table 1.

Our assumption is that without linking Nasty-MPI some, if not all, MPI libraries
can successfully execute the test cases, i.e. the assert statements manifest no errors.
For these cases there has to be at least one configuration for Nasty-MPI which forces
a pessimistic execution to uncover the synchronization error.

4.2 Nasty-MPI Test Cases

The first test case is a binary tree broadcast algorithm which was described by
Luecke et al. [13]. The code relies on MPI_Get being a blocking MPI call because
there is no synchronization action which actually completes it. The relevant snippet
is shown in Fig. 5. Executing this program leads to different results, depending on
the test setup. If the communicating processes, involved in the MPI_Get, reside
on distant nodes no MPI library can successfully terminate this program due to
an infinite loop. But the situation changes, if both processes reside on the same
node. While IBM MPI and Open MPI again cannot exit from the polling loop, the
implementations of Intel (SuperMUC) and Cray (NERSC Edison) can complete the
RMA call. This demonstrates that process locality may impact the behavior of RMA
communications, depending on the underlying MPI library. If Nasty-MPI is linked
and the completion stage is not skipped, the MPI library does never receive the
MPI_Get request, because no synchronization action completes the buffered RMA
call.

1https://github.com/dash-project/nasty-MPI.

https://github.com/dash-project/nasty-MPI

92 R. Kowalewski and K. Fürlinger

Fig. 5 Non-completed
MPI_Get

Fig. 6 Improperly
synchronized Acc

Table 3 Results of the experiments without linking Nasty-MPI

NERSC Edison LRZ SuperMUC

Test program Cray IBM Intel Open MPI

1 Binary broadcast [13] ✗ ✓ ✗ ✓

2 MCS lock [14] ✗ ✗ ✓ ✗

3 Local completion ✗ ✗ ✗ ✗

4 Put-Put sequence ✗ ✗ ✓ ✗

✓ Synchronization error manifested
✗ Synchronization error not manifested

The second test case is an implementation of the MCS lock [14] which can
be implemented using MPI RMA primitives [8]. In the code for acquiring the
lock (Fig. 6), a requesting process issues two RMA calls which are directed to
different targets, namely self and predecessor. For test purposes, we have injected
a synchronization error in such a way that only MPI calls to one target are
synchronized. As listed in Table 3, all MPI libraries, except Intel, can successfully
execute this program. This observation confirms that some MPI libraries always
complete all pending RMA calls, regardless of the specified target process. In
Nasty-MPI, however, only the second RMA call reaches the native MPI library,
while the first MPI_Accumulate is rejected in the completion stage, causing a
manifestation of the synchronization error.

The third test case is a slight modification from the example in Fig. 1b. The
MPI_Put modifies a remote memory location x and is only locally completed by
a flush_local. All MPI libraries pass the assert statement, i.e. the MPI_Get fetches
the modified value by the MPI_Put. If Nasty-MPI is linked and the parameter

Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 93

NASTY_LOCAL_COMPLETION_ENABLED is set to 1, it defers the MPI_Get to
the unlock call, leading to a manifestation of the synchronization error.

Program 4 tests the given ordering properties of MPI libraries. It requires
that two consecutive MPI_Put calls, as illustrated in Fig. 1a, are completed
in target memory as encountered by the program order. However, there is no
synchronization action to ensure this order. If the origin and target processes reside
on a single node, all MPI libraries, except Intel, complete both RMA calls in
program order. Nasty-MPI can easily manifest the synchronization error by setting
NASTY_SUBMIT_ORDER to reverse_po.

Finally, Nasty-MPI helped to detect a synchronization error in the DASH
library, while it was applied to a large test suite. In dash::copy_async we
asynchronously copy a strided memory block from a distant node to a local memory
buffer. The aggressive splitting described in Sect. 3.2 forced a situation where the
initiator of the copy operation accessed an element in the local memory buffer before
the communication was completed. After fixing this issue the error is not present
anymore.

4.3 Discussion

The observations show that consistency properties differ among the examined MPI
libraries. Some of them provide even stronger consistency properties than required
by the MPI-3 specification. However, we cannot explain all results only by the
libraries themselves but have to consider the underlying network fabrics. Cray MPT
uses DMAPP as communication backend and provides strong in-order guarantees
based on the DMAPP_ROUTING_DETERMINISTIC attribute [3]. This attribute is
a default setting on the NERSC Edison and guarantees ordering of two subsequent
RMA calls if and only if both calls are directed to the same target process. Test
cases 3 and 4 satisfy this condition which confirms the results, however, it does not
explain the behavior in test cases 1 and 2.

On the other hand, Infiniband does not provide parametric in-order guarantees
but specifies implicit ordering between two subsequent RDMA reads or writes [9].
This may explain some observations with test case 4, however, does not apply to the
remaining applications on the SuperMUC system.

Summarizing the results we have shown that the concept of Nasty-MPI can
effectively force various kinds of synchronization errors. While the presented test
cases are no real world applications, it is a useful tool during development and can
be easily integrated into any test environment. We use Nasty-MPI on a daily basis
in the extensive unit test suite of the DASH library.

Regarding the additional overhead with Nasty-MPI we still have to evaluate
larger scientific applications. Depending on the configuration parameters it dras-
tically increases the number of communication and synchronization actions. In
particular, additional flush operations which specify very expensive semantics cause
significant runtime overhead. Linking the tool to the DASH unit test suite roughly

94 R. Kowalewski and K. Fürlinger

increases the execution time by 20–30%. We expect that it may get worse with more
complex applications.

5 Related Work

We discuss related research focused on MPI RMA as well as other RMA program-
ming languages.

MC-Checker [1] can dynamically detect memory consistency errors by profiling
both MPI RMA and native memory accesses, i.e. loads and stores. Based on the
MPI semantics, it effectively finds potential data races even between different MPI
processes which concurrently access overlapping target memory. However, MC-
Checker only covers the MPI-2 standard which follows different synchronization
semantics compared to MPI-3. Moreover, the approach is different from this
work because we do not actually detect synchronization errors but rather force
a manifestation based on given program invariants. UPC-Thrill [17] has similar
functionality to detect data races in UPC programs. Significant semantic differences
between UPC and MPI RMA distinguish the work presented here.

Another approach applies model checking [18] for deadlock and synchronization
bug detection in MPI RMA programs. While it can effectively uncover latent
synchronization bugs it requires to model the target application with a dedicated
language.

MUST [7] is another runtime debugging tool focusing on semantic parameter
checking. It detects errors which are caused by an erroneous sequence of MPI
RMA calls, for example mismatched lock/unlock calls. However, it cannot uncover
memory consistency errors caused by improperly synchronization RMA calls
at runtime. MUST may complement with Nasty-MPI to debug both memory
consistency and semantic parameter errors.

Scalasca [6] which is a well-known tool for performance optimization in two-
sided MPI can detect inefficient wait states to pinpoint performance bottlenecks in
MPI RMA applications.

Finally, we have related research which focuses on RMA programming models
in general. Dan et al. provide a formal abstraction to model RMA languages
and analyze semantic corner cases based on the specification of the hardware
vendors [2]. It confirms the observations of this work that semantic guarantees
heavily depend on the capabilities and configuration of the network fabrics.

6 Conclusion and Future Work

This work points out the major challenges of MPI-3 RMA communication which
specifies only weak consistency guarantees. An experimental evaluation reveals
that MPI libraries exploit implicit guarantees of underlying network fabrics which

Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication 95

may result in stronger consistency than specified by the MPI standard. This makes
it challenging to write well-defined applications since a latent synchronization
bug does not necessarily manifest in an error. It is even more crucial for library
developers which have to provide correct semantics on any HPC platform.

For this purpose Nasty-MPI effectively supports programmers as it exploits
the weak MPI RMA semantics to force pessimistic corner case executions. The
observations in Sect. 4 show that this approach uncovers synchronization bugs
which would otherwise only occur either after porting to an HPC platform with
a different network interconnect or in large-scale scenarios. Examples include
both small applications and the DASH library which supports MPI RMA as its
communication backend.

Future work addresses the question whether we can guarantee to detect synchro-
nization bugs based on formally proven scenarios. We will refine the semantic model
of Nasty-MPI and verify the strategies with more productive use cases.

Acknowledgements We gratefully acknowledge funding by the German Research Founda-
tion (DFG) through the German Priority Programme 1648 Software for Exascale Computing
(SPPEXA). We further want to inform that this work is an extended revision from an originally
published paper [10].

References

1. Chen, Z., Dinan, J., Tang, Z., Balaji, P., Zhong, H., Wei, J., Huang, T., Qin, F.: MC-
Checker: detecting memory consistency errors in MPI one-sided applications. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 499–510. IEEE Press, Piscataway (2014)

2. Dan, A.M., Lam, P., Hoefler, T., Vechev, M.: Modeling and analysis of remote memory access
programming. In: Proceedings of the ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, Amsterdam, pp. 129–144
(2016)

3. Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., Johnson, T., Kopnick,
J., Higgins, M., Reinhard, J.: Cray cascade: a scalable HPC system based on a dragonfly
network. In: 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 1–9. IEEE, Washington, DC (2012)

4. Fürlinger, K., Fuchs, T., Kowalewski, R.: DASH: a C++ PGAS library for distributed data
structures and parallel algorithms. In: Proceedings of the 18th IEEE International Conference
on High Performance Computing and Communications HPCC (2016)

5. Gropp, W., Thakur, R.: An evaluation of implementation options for MPI one-sided commu-
nication. In: Recent Advances in Parallel Virtual Machine and Message Passing Interface,
pp. 415–424. Springer, Berlin (2005)

6. Hermanns, M.A., Miklosch, M., Böhme, D., Wolf, F.: Understanding the formation of wait
states in applications with one-sided communication. In: Proceedings of the 20th European
MPI Users’ Group Meeting, pp. 73–78. ACM, New York (2013)

7. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: MPI runtime error
detection with MUST: advances in deadlock detection. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12,
pp. 30:1–30:11. IEEE Computer Society Press, Los Alamitos, CA (2012)

96 R. Kowalewski and K. Fürlinger

8. Hoefler, T., Dinan, J., Thakur, R., Barrett, B., Balaji, P., Gropp, W., Underwood, K.: Remote
memory access programming in MPI-3. ACM Trans. Parallel Comput. 2(2), 9:1–9:26 (2015).
doi:10.1145/2780584

9. Infiniband Trade Association: InfiniBand Architecture Specification Volume 2. https://cw.
infinibandta.org/document/dl/7155 (2006)

10. Kowalewski, R., Fürlinger, K.: Nasty-MPI: Debugging Synchronization Errors in MPI-3 One-
Sided Applications. Lecture Notes in Computer Science, pp. 51–62. Springer, Cham (2016).
doi:10.1007/978-3-319-43659-3_4. http://dx.doi.org/10.1007/978-3-319-43659-3_4

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21(7), 558–565 (1978). doi:10.1145/359545.359563

12. Leibniz Supercomputing Centre, Munich, Germany: SuperMUC Petascale System. https://
www.lrz.de/services/compute/supermuc/systemdescription/. Last accessed 2016

13. Luecke, G.R., Spanoyannis, S., Kraeva, M.: The performance and scalability of SHMEM and
MPI-2 one-sided routines on a SGI origin 2000 and a Cray T3E-600: performances. Concurr.
Comput. Pract. Exper. 16(10), 1037–1060 (2004). doi:10.1002/cpe.v16:10

14. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991).
doi:10.1145/103727.103729

15. MPI Forum: MPI: A Message-Passing Interface Standard. Version 3.0 (2012). Available at:
http://www.mpi-forum.org

16. National Energy Research Center, United States: Edison System Configuration. https://www.
nersc.gov/users/computational-systems/edison/configuration/. Last accessed 2016

17. Park, C.S., Sen, K., Hargrove, P., Iancu, C.: Efficient data race detection for distributed memory
parallel programs. In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pp. 51:1–51:12. ACM, New York
(2011). doi:10.1145/2063384.2063452

18. Pervez, S., Gopalakrishnan, G., Kirby, R., Thakur, R., Gropp, W.: Formal verification of
programs that use MPI one-sided communication. In: Mohr, B., Träff, J., Worringen, J.,
Dongarra, J. (eds.) Recent Advances in Parallel Virtual Machine and Message Passing
Interface. Lecture Notes in Computer Science, vol. 4192, pp. 30–39. Springer, Berlin/
Heidelberg (2006). doi:10.1007/11846802_13

https://cw.infinibandta.org/document/dl/7155
https://cw.infinibandta.org/document/dl/7155
http://dx.doi.org/10.1007/978-3-319-43659-3_4
https://www.lrz.de/services/compute/supermuc/systemdescription/
https://www.lrz.de/services/compute/supermuc/systemdescription/
http://www.mpi-forum.org
https://www.nersc.gov/users/computational-systems/edison/configuration/
https://www.nersc.gov/users/computational-systems/edison/configuration/

Trace-Based Detection of Lock Contention
in MPI One-Sided Communication

Marc-André Hermanns, Markus Geimer, Bernd Mohr, and Felix Wolf

Abstract Performance analysis is an essential part of the development process
of HPC applications. Thus, developers need adequate tools to evaluate design
and implementation decisions to effectively develop efficient parallel applications.
Therefore, it is crucial that tools provide an as complete support as possible for
the available language and library features to ensure that design decisions are not
negatively influenced by the level of available tool support. The message passing
interface (MPI) supports three basic communication paradigms: point-to-point,
collective, and one-sided. Each of these targets and excels at a specific application
scenario. While current performance tools support the first two quite well, one-sided
communication is often neglected. In our earlier work, we were able to reduce
this gap by showing how wait states in MPI one-sided communication using
active-target synchronization can be detected at large scale using our trace-based
message replay technique. Further extending our work on the detection of progress-
related wait states in ARMCI, this paper presents an improved infrastructure that
is capable of not only detecting progress-related wait states, but also wait states
due to lock contention in MPI passive-target synchronization. We present an event-
based definition of lock contention, the trace-based algorithm to detect it, as well
as initial results with a micro-benchmark and an application kernel scaling up to
65,536 processes.

M.-A. Hermanns (�) • B. Mohr
JARA-HPC, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
e-mail: m.a.hermanns@fz-juelich.de; b.mohr@fz-juelich.de

M. Geimer
Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
e-mail: m.geimer@fz-juelich.de

F. Wolf
Parallel Programming, TU Darmstadt, Darmstadt, Germany
e-mail: wolf@cs.tu-darmstadt.de

© Springer International Publishing AG 2017
C. Niethammer et al. (eds.), Tools for High Performance Computing 2016,
DOI 10.1007/978-3-319-56702-0_6

97

mailto:m.a.hermanns@fz-juelich.de
mailto:b.mohr@fz-juelich.de
mailto:m.geimer@fz-juelich.de
mailto:wolf@cs.tu-darmstadt.de

98 M.-A. Hermanns et al.

1 Introduction

The Message Passing Interface (MPI) standard [11] supports three communication
paradigms: point-to-point, collective, and one-sided communication. Together, they
span the space of possible message-passing scenarios using MPI, each supporting
distinct communication patterns. Although the functionality of either paradigm may
be implemented using one of the others, the separate interfaces enable internal
optimizations for a specific communication scenario. While point-to-point and
collective communication are well supported by current performance analysis tools,
one-sided communication is in comparison still lacking equal support. We believe
that the level of available tool support for a language feature or library has a direct
influence on the level of adoption by users. Considering that MPI 3.0 expanded its
support for MPI one-sided communication, especially in the area of passive-target
synchronization, it is therefore important to close this support gap, and open these
new features to new users.

The Scalasca performance analysis toolset [5] provides a trace-based parallel
performance analyzer, which automatically identifies wait states in communication
and synchronization scenarios. Such wait states are situations in the parallel applica-
tion execution where one process or thread waits for an activity on another process
or thread to begin or end, before it can continue its own activities. A classic example
of such a wait state is the Late Sender pattern, where a receiving process is waiting
in a blocking receive operation for the sender to start the data transfer. To enable
an efficient handling of large event traces, Scalasca uses a post-mortem parallel
message replay technique, where performance relevant information is passed along
the recorded communication paths of the measured application. We have shown in
our earlier work how this replay technique can also be used to detect wait states
in one-sided communication in the case of MPI active-target synchronization [6].
Passive-target synchronization, however, poses significant challenges to the replay
technique. Information on communication and synchronization paths are largely
implicit, thus the original replay does not have sufficient information to identify such
wait states. For Wait for Progress wait states, we have shown—using the example
of the one-sided communication interface ARMCI [7]—how the limitations of the
original replay can be overcome by extending the communication infrastructure
with an active-message-like communication interface, capable of sending asyn-
chronous messages between arbitrary processes.

Progress-related wait states, however, are not the only wait states in passive-target
synchronization. MPI provides passive-target synchronization using the concept
of locks. As with all synchronization functions, using locks to ensure mutual
exclusion during updates to remote memory bears the potential for wait states on
processes with conflicting accesses. The detection of such wait states in MPI

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 99

passive-target synchronization, however, required a significant redesign of our initial
implementation. The contributions of this work include

1. the extension and generalization of the communication infrastructure introduced
in our earlier work [7], and

2. the detection of the Lock Contention wait state in lock-based synchronization.

The remainder of this paper is organized as follows. Section 2 discusses related
work regarding the detection of lock contention in message-passing systems.
Sections 3 and 4 first define the Lock Contention wait state and then discuss our
implementation to detect it in MPI passive-target synchronization. Section 5 shows
early results of measurements with two benchmark applications to demonstrate
scalability and applicability in two common scenarios. Finally, Sect. 6 summarizes
the contributions of this paper and provides an outlook on further optimizations of
the detection as well as future integration of detected information in other parts of
Scalasca’s automatic analysis.

2 Related Work

Available performance analysis tools investigating lock contention, such as Intel
VTune [8] or HPCToolkit [1], commonly focus on multi-threading scenarios. Locks
in multi-threaded systems are similar in concept to locks in one-sided commu-
nication, however, their analysis can draw from different sources of information,
such as accessing information already shared on the process-level. In this context,
Tallent et al. even investigate root causes of shared-memory lock contention using
blame shifting [13].

Tallent et al. also investigated the root causes of network contention in one-sided
communication [14]. They focus on the message delivery and compare the actual
time with the expected time, estimated through a model based on network and mes-
sage parameters, and specifically exclude the investigation of synchronization time.
Furthermore, they accurately estimate the total delay through network contention,
yet, do not identify other processes or threads that are involved in the contention
instance.

Zounmevo et al. describe the inefficiency pattern Late Unlock [15], which is
a sub-pattern to the Lock Contention pattern described in this work, where lock
contention occurs due to processes holding on to a lock longer than necessary. It is
similar in nature to the Late Complete wait state defined in our earlier work on
one-sided communication wait-state patterns [10]. The existence of such wait states
in the use of MPI one-sided communication forms the motivation for the actual
focus of their paper, the introduction of non-blocking epochs to prevent this kind
of wait state. However, how to detect or quantify lock contention wait states is not
discussed. With the infrastructure presented in this paper, the detection of their Late
Unlock wait state pattern is a straight-forward part of our future work.

100 M.-A. Hermanns et al.

In our earlier work [7], we have introduced a scalable framework to identify wait
states in passive-target synchronization in the Aggregate Remote Memory Copy
Interface (ARMCI) [12]. The presented prototype used ARMCI one-sided commu-
nication with a collectively allocated fixed-size buffer per process to exchange data.
While being suited for the fixed-size message data needed to identify progress-
related wait states, the analysis of lock contention in MPI-based applications
cannot guarantee a fixed upper bound to the buffer size, as it needs the full epoch
information (including a dynamic number of RMA operations) to identify the point
of lock acquisition within the lock epoch.

3 Lock Contention

Remote memory accesses need to use synchronization mechanisms to ensure
consistency in the case of concurrent accesses. MPI defines two classes of syn-
chronization schemes based on the explicit involvement of the target process:
active-target and passive-target. Synchronization using the active-target class has
both processes, the target and the origin of the one-sided communication operation,
perform synchronization calls. In our earlier work [6], we have shown how
wait states occurring in this synchronization class can be detected efficiently.
Such synchronization can be employed effectively when the target process knows
that its memory is being accessed during a specific period of time. In contrast,
synchronization using the passive-target class has only the origin process actively
involved in the synchronization, leaving the target process passive. Synchronization
of this kind uses the concept of shared and exclusive locks to ensure mutual
exclusion where necessary when accessing an MPI memory window. In lock-based
synchronization schemes, critical code sections need to be guarded by calls to
acquire and release a lock at the beginning and end of the code section, respectively.
However, only the process performing the memory access (origin) has to call the
synchronization explicitly. Target-side synchronization is performed implicitly by
the runtime system. With exclusive locks, only a single process can hold a lock at
any single moment; with shared locks, multiple origin processes can hold a lock
concurrently. As shared locks only block other exclusive locks until their release
but allow concurrent shared locks to be acquired, they present less chance of wait
states and should be preferred in scenarios where the target memory is not modified.

The acquisition of any type of lock may naturally lead to a wait state, depending
on the current state of the lock. To allow implementations to minimize such wait
states, the MPI standard does not mandate the call to MPI_Win_lock to block
until the lock is acquired for a window on a remote process, as long as the
implementation also ensures that any accesses to the corresponding window are also
postponed until the lock is finally acquired. Only the call to MPI_Win_unlock
ensures that all pending accesses are completed once the call returns. The acquisi-
tion of the lock in MPI passive-target synchronization can therefore occur at any
point in time between entering the MPI_Win_lock call and leaving the call to

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 101

MPI_Win_unlock. Local accesses to a given window also have to be guarded by
the same synchronization calls. Unlike remote accesses, local stores to the window
cannot be postponed by the runtime, as those updates are not performed through
MPI functions. Therefore, the call to MPI_Win_lock has to block until the lock
can actually be acquired by the process.

A lock is an access token and can be seen as a shared resource itself, with multiple
processes competing for its ownership. The state when a process experiences wait
states or delays due to other processes accessing the same shared resource is called
contention. Wait states in the lock-based mutual exclusion mechanisms are therefore
a special case of the general resource contention that can also be experienced with
other shared resources, such as file systems or network devices. For their detection,
information about all concurrent accesses needs to be gathered and analyzed.

In general, the Lock Contention wait state occurs when a process requests a lock
of conflicting type to the one that is currently held by another process on the same
resource. It then has to wait for the release of the lock by that process. If a process
holds an exclusive lock for a given resource, no other process can acquire a lock—
shared or exclusive—before the lock is released. If a process holds a shared lock,
other shared locks can be obtained by other processes, while an exclusive lock can
only be obtained again after all shared locks are released. This means that a specific
process (if waiting) is only waiting for a specific process to release a lock, while
multiple processes may be waiting for the same process to release it.

Figure 1 shows the different acquisition scenarios possible in MPI passive-target
synchronization. The MPI prefixes to the respective calls have been omitted for
clarity. The duration of each MPI call is modeled by an enter event (E) and a
leave event (L) with corresponding time stamps. Remote memory access (RMA)
operations as well as locking and unlocking events are modeled by corresponding
event types in the respective function calls, but have been omitted in the figure

time

pr
oc

es
se

s

A

B

C

D

E

Lock Put Unlock

Lock Get Unlock

Lock Get Unlock

Lock Put Unlock

Lock Put Unlock

E L E L E L

E L E L E L

E L E L E L

E L E L E L

E L E L E L

Lock Contention

Lock Contention

Lock Contention

Lock Contention

Fig. 1 Potential locations of wait states due to Lock Contention. When multiple processes access
the same window on the same location, lock access chains build up. In this example, write accesses
are protected by exclusive locks, whereas read accesses are protected by shared locks. In MPI
passive-target synchronization, the moment of lock acquisition may not be known explicitly, but
can only be inferred by checking the time of release of previous lock owners

102 M.-A. Hermanns et al.

for clarity as well. The locking behavior of a specific MPI implementation may
depend on the available networking hardware or runtime parameters and thus may
or may not be the same throughout the execution of the application. As already
noted, similar to the relaxed blocking semantics of MPI general active-target
synchronization, MPI passive-target synchronization only requires the unlock to
guarantee completion of all pending RMA operations to the corresponding memory
window, as long as the mutual exclusion requirements of the requested locking types
are met. In the figure, we assume that all put operations are guarded by exclusive
locks, while the get operations are guarded by shared locks. The target process
is not shown, as it is not explicitly involved in the ordering of the concurrent
accesses.

Process A requests an exclusive lock to the target window. As no other process
is currently holding a lock, it can acquire it without waiting time. For this example,
it is of no further interest which of the calls on process A actually acquired the lock.
Processes B and C request shared locks to the target window, while process A still
holds its exclusive lock. On either process, the lock acquisition and RMA operations
are postponed until the unlock function call, where both processes wait for process
A to release its lock. Process D requests an exclusive lock, while processes B and
C still hold their shared locks. While the lock acquisition is postponed until after
the return of the lock function call, the RMA operation call is blocked until the
lock can be acquired after the last of the two processes (process C) releases its
lock. Finally, process E requests the lock while process D is still holding on to its
lock, and directly waits in the lock acquisition call until the lock is released by
process D. The different scenarios shown in this figure depict all locations in the
passive-target synchronization scenarios where a Lock Contention wait state can
occur.

Generalizing from its potential locations in passive-target synchronization, the
waiting time due to a Lock Contention wait state can formally be defined as the
dependency between two activities on two distinct origin processes.

Definition 1 (Lock Contention) Let ap and aq be the activities of a passive-target
synchronization or remote-memory access operation on origin processes p and q.
Assume that ap cannot complete before the acquisition of the corresponding lock
held by process q. Assume further that q releases the lock at the end of activity aq.

Then, the waiting time ! on process p is defined as the overlapping time of the
two activities between the start of ap and the end of aq:

! D
(

Leave.aq/ � Enter.ap/ ; if Enter.ap/ < Leave.aq/ � Leave.ap/

0 ; otherwise

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 103

4 Wait-State Detection

The detection and quantification of Lock Contention wait states described in
this paper is embedded into the message-replay algorithm of the Scalasca trace-
based performance analysis toolset [5]. Scalasca assumes that wait states occur at
points in the application execution where the execution of a thread or a process
needs to communicate or synchronize with another thread or process, respectively.
The detection of waiting time on either process needs information from all threads
and processes involved. Using the communication and synchronization information
encoded in the event trace, created during a measurement run, Scalasca transfers
the information from one thread or process to another, for the latter to detect and
quantify any waiting time. This approach has been employed successfully in the
past for point-to-point and collective [5] as well as MPI one-sided communication
using active-target synchronization [6]. For passive-target synchronization, two
main challenges exist: (1) communication and synchronization information are only
available in the event trace of the origin process and (2) only partial synchronization
information is available during measurement. To address these challenges, the
original replay infrastructure needed to be extended to allow communication along
implicit communication paths.

4.1 The Active-Message Infrastructure

In our earlier work [7], we have introduced a framework that overcomes the original
shortcoming of Scalasca’s replay method for the case of detecting wait states due
to insufficient target-side progress. While the overall concept as an active-message
framework is also applicable to the detection of Lock Contention wait states, the
information needed to detect which operation actually acquired the lock in MPI
passive-target synchronization added the requirement of arbitrary-sized messages.
This led to a complete re-design of the implementation. The overall requirements
on the messaging infrastructure for the detection of lock contention in MPI passive-
target synchronization are: the support of (1) inter-process communication not
relying on specific target-side event records, (2) communication on paths not
explicitly recorded, (3) asynchronous information exchange to enable runtime
optimizations during event processing, (4) target-side execution of arbitrary tasks
based on the communicated message, and (5) the exchange of messages of arbitrary
size.

Our initial ARMCI prototype already fulfilled the first four requirements,
however, the efficient exchange of arbitrary-sized messages through one-sided com-
munication on collectively allocated fixed-sized memory windows posed a serious
challenge. Furthermore, the initial implementation also used ARMCI constructs to
perform the analysis of the ARMCI events in the trace. Although unproblematic for
the general use case of Scalasca, where the measurement and analysis are performed

104 M.-A. Hermanns et al.

on the same machine, it does add complexity to use cases where the measurement
and analysis are performed on different systems. The Scalasca analyzer, however, is
a parallel application in its own right, independent of the measured application and
is not required to re-use the same communication infrastructure. With the ubiquity
of MPI on HPC platforms, a single implementation to serve the analysis of any one-
sided communication interface, supporting both use cases, would benefit the user.
With this in mind, the re-design of the active-message infrastructure was driven by
the requirement for dynamic message sizes.

Two-sided and collective communication are often used as the data exchange
layer in cooperative algorithms where the receiver receives a specific message.
The receiver decides where the message data is stored and how to process it.
The knowledge of how the data needs to be processed emerges from the context
containing the explicit reception of the data. However, for unexpected messages
on the application layer, the receiver cannot place the messages in the correct
context and therefore does not know how to process them in the application. Any
target-side processing of the data therefore needs to be part of the message. Active
messages encode the context with the message or the message envelope, enabling
target-side execution of specific code after the one-sided transfer succeeded. For
specific message types, a message handler can be registered that will process a
message ad hoc at the receiver. The sender, knowing for which context it provides
data in the message, also sends the appropriate handler selection with the message.
This effectively decouples the message from its receiving context, as the receiver
can provide the appropriate message context by calling the handler selected by the
sender.

To enable this, all processes need to agree on a specific set of message handlers
to be used for communication and how they are encoded. The complexity of
actions that can be encoded into a message largely depends on the communication
interface and framework used. Some interfaces have a rather restricted set of
message handlers that focus on the notification of the data arrival and sending
an acknowledgment of transfer completion back to the sender. Others allow more
complex message handlers, such as remote procedure calls.

Three classes form the cornerstones of Scalasca’s active-message framework:
(1) A runtime class, which defines the interface to message progress; (2) request
classes, which define how data is transferred between processes; and (3) handler
classes, which define packaging of data by the sender, and its processing by the
receiver.

The runtime class is designed as a singleton object for each analysis process.
It is agnostic to the concrete actions that need to be taken to transfer or process
messages and delegates all these actions to other classes. Its interface enables
users to enqueue requests that are then transferred to and executed on the target
process asynchronously. To enable such asynchronous transfer and execution, the
runtime class provides a call to advance communication independently of the
current execution context. This enables the use of a variety of polling-based
progress engines at the target. Scalasca explicitly calls into the runtime as part

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 105

of the event replay mechanism at least once per event. Additionally, it provides
capabilities to continuously advance the communication while waiting at collective
synchronization points.

Request classes define all concrete actions needed to transfer data between pro-
cesses. For each communication interface used by the active-message framework, a
distinct request class needs to be implemented. The current implementation provides
an MPI-based request class, yet, support for further communication interfaces can
easily be achieved by implementing further request classes. Note that the MPI-based
requests can also be used to analyze applications that do not use MPI themselves,
such as ARMCI-only and SHMEM-only applications, as the analysis is performed
post mortem and the analyzer is a parallel application separate from the user
application, potentially executed on a different HPC system. Additional request
classes are therefore only necessary in cases where MPI is not available or a different
implementation is desirable.

Handler classes define which data is packed at the origin and how it is unpacked
and processed at the receiver. An application using the active-message framework,
such as Scalasca’s parallel analyzer, needs to derive specific handlers for each
distinct task on the receiver side. Each handler provides an interface to pack all
necessary data on the origin and execute data processing on the target.

Figure 2 shows an example of an active-message interaction between an origin
and a target process. The origin initially creates a request that is passed to specific
handler classes adding data to the request buffer. A single request may contain
data from more than one handler (indicated by the opt keyword), enabling request
aggregation. The origin enqueues the requests for sending and continues execution,
while the runtime sends the message to the target as part of the advance()
call. The target uses the same call to check for incoming requests. Upon incoming
requests, the runtime automatically receives and decodes the message, and creates
corresponding handler objects on-the-fly. The handler objects are immediately
executed in packaging order. After all pending requests are processed, the progress
call returns to the user. Using this flexible active-message framework, Scalasca’s
parallel analysis now supports the detection of two distinct wait-state patterns: (1)
the Wait for Progress as presented in [7] and (2) the Lock Contention as described
in more detail in the following section.

4.2 Detecting Lock Contention

To identify lock contention in one-sided communication, the analysis needs to
process the lock acquisition and release times of all locks on a given window. The
time between requesting or acquiring a lock and its release by a process is called a
lock epoch. For one-sided communication interfaces with blocking lock semantics,
such as ARMCI [12] and SHMEM [4], this is directly modeled by the events of the
respective activities. For these interfaces, the only activities of the lock epoch that
need to be evaluated during the analysis are the respective activities for acquiring

106 M.-A. Hermanns et al.

create

createcreate

create

getBuffer()
buffer

pack(req)

create

getBuffer()
buffer

pack(req)

send()
enqueue(req)

probe()

advance()

probe()

advance()

getBuffer()

buffer
create

execute()

create

execute()

probe()

advance()

origin target

ort:AmRuntime

trt:AmRuntimereq:AmRequest

oh1:AmHandlerOne

oh2:AmHandlerTwo
opt

th1:AmHandlerOne

th2:AmHandlerTwo
opt

Fig. 2 Interactions between AmRuntime, AmRequest, and AmHandler classes in Scalasca’s
active-message infrastructure. Calls with solid arrowheads are synchronous and block until task
completion. Calls with line arrowheads are asynchronous and return after initialization; the task
will complete as part of the runtime progress. Fragments marked with opt are optional. The origin
creates a request and passes it to one or more handlers, packing handler-specific data into its buffer.
Once, the origin enqueues the request, the runtime transfers it to the target (not shown). The target
has to probe regularly for incoming requests. Upon an incoming request, the handlers are created
and executed with information from the request message buffer

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 107

and releasing the lock. For one-sided communication interfaces with non-blocking
lock semantics, such as MPI, the lock acquisition time has to be computed during
the contention analysis, as the event data does not directly encode the time of lock
acquisition. For such interfaces, all remote-memory access activities of the lock
epoch need to be available to the analysis process to determine the true time of lock
acquisition. As a lock epoch can comprise an arbitrary number of RMA operations,
the full information needed is of dynamic size.

Lock contention leads to so-called contention chains, where multiple processes
wait for the successful acquisition of the lock, leading to partial access serialization.
Moreover, two or more origin processes may compete for the access to a specific
resource, but do not explicitly know of each other. To identify contention, however,
the individual local information on the processes have to be compared to each
other to (1) identify the order of accesses to the resource and (2) quantify potential
waiting time due to a blocked resource. To enable contention analysis for one-
sided communication interfaces, all origin processes need to gather the required
information at a well-known location. It is important to note that any deterministic
location will work, as long as all origin processes locking the same resource
choose the same location and allow the contention chain to be determined. For
our initial prototype, we chose the target process of a locked window. Further
note that the current heuristic to determine the order of accesses does not have
enough information to detect and correct skew in the timestamps of locking events.
To correct such skew, ordering information would need to be gathered during
measurement, where such information is currently not available. Therefore the
analysis assumes the accuracy of the timestamps to suffice for ordering.

The analysis follows two phases: (1) gather epoch information; and (2) compute
and distribute waiting time information. In the first phase, each origin process caches
the relevant lock epoch data until it processes the lock-release event. Then, it creates
an active-message request, packed with the lock epoch information, and sends it to
the target process. On the target side, the request unpacks the data and stores it for
later retrieval. As the active messages coming in from the individual origin processes
do not generally arrive in the same order the lock was acquired and released by the
application, the target needs to save incoming lock epochs until it reaches a point
where it can safely assume to possess the full information on all lock epochs relevant
for the contention analysis. Such points are reached at each collective or group-
based synchronization point of the window or at collective synchronization points
that synchronize at least all processes of the window’s communicator. At these
points the active-message runtime of Scalasca ensures that all requests are processed
before continuing with the analysis. Independent of the locking semantics, all
one-sided communication interfaces ensure completion of pending events with the
release of the lock. Therefore, the release time of the lock is an indicator for the
actual locking order during the application measurement. The target therefore stores

108 M.-A. Hermanns et al.

Input: Priority queue EpochQueue of lock epochs ordered by descending lock-release time
Output: Waiting time !p

if NumElements(EpochQueue) � 2 then
currentEpoch dequeue(EpochQueue);
while NotEmpty(EpochQueue) do

previousEpoch dequeue(EpochQueue);
aq GetReleaseActivity(previousEpoch);
ap FindBlockedActivity(currentEpoch, aq);
if Enter(ap) < aq � Leave(ap) then

!p Leave(aq) � Enter(ap);
SendContentionInfoTo(p);

end
currentEpoch previousEpoch;

end
end

Algorithm 1: Compute lock contention

the individual lock epochs provided by the origin processes in a data structure sorted
by the release time of the lock in the respective epoch.

Once the analysis system can assume that all distributed lock epochs have
been collected and inserted into the queue, it can start its contention analysis
as described by Algorithm 1. The pseudo-code given assumes a priority-queue
data structure that sorts by the unlock timestamp of the corresponding epochs.
Furthermore, process p denotes the waiting process, whereas process q denotes the
process that p is waiting for. As the epochs are ordered in reverse-chronological
lock-release order, the last lock epoch in the contention chain is processed first.
The epoch information (currentEpoch) is taken from the queue to initialize the
algorithm. Then, while more epoch information is available in the queue, another
epoch (previousEpoch) is dequeued to compute the waiting time. For the previous
epoch, we identify the activity aq that released the lock, and the waiting activity
ap within the current epoch. This is done by finding overlap with one of the
synchronization or remote-memory access operations within the current epoch
with the lock-release activity of the previous epoch. If an overlapping activity
is found, the waiting time is computed by the difference between the leave
event of aq and the enter event of ap, and the respective information is sent
to the waiting processes p. Then, the algorithm moves on to the next epoch
available in the queue. On process p, the active message handler retrieves the
message and adds the waiting time to the respective call path. The algorithm
finishes when no further epochs are in the queue, which means the head of the
contention chain is reached; the first epoch never suffers from lock contention
itself.

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 109

5 Results

We tested our implementation of the lock contention detection algorithm using
two benchmarks. The first is a verification benchmark that explicitly creates a lock
contention to ensure the analysis works correctly. The second is an SOR benchmark,
which we have used as a scalability test in earlier work, adapted to use MPI passive
target synchronization for the data exchange.

5.1 Micro Benchmark

The lock-contention micro benchmark is used to verify the detection algorithm.
It explicitly creates lock contention wait states in a controlled scenario. Processes
are partitioned into process 0 acting as the target for all RMA operations, and the
rest of the processes, scheduling RMA operations to update the window on the
target process. After an initial barrier synchronization of all processes, all processes
call the function foo() to simulate work with process-individual workloads. The
simulated workload is the lowest on target rank 0 and increases with rank, thus the
processes return from foo() in rank order. As the target has the lowest workload,
it is the first to return from the call to foo() and is guaranteed to lock its local
window before any of the other processes requested the lock. Locks on the local
window are never postponed but block until the lock is successfully acquired, as
a local lock epoch needs to ensure that local loads and stores to the window are
appropriately protected. While the target holds the lock, it executes the function
bar() for 2 s to simulate local updates to the window before releasing the lock
again. The skew in the workload simulated by foo() ensures that the workers
request the lock after it has been acquired by the target rank 0. They form a
contention chain waiting for rank 0 to release the lock. Each process calls foo()
again for a duration of 100 �s after its release of the lock. Finally, all processes are
synchronized by another barrier operation.

The skew of the processes after completing the remote memory access leading
to a subsequent Wait at Barrier wait state is independent of the initial skew induced
by the calls to foo on the different processes; it only depends on the time needed to
complete the RMA access and to pass the lock ownership to the next process.

The benchmark was executed on two nodes of a Linux Cluster with InfiniBand
network using Open-MPI 1.10.0. Figure 3 shows screenshots of Vampir timeline
views of selected regions of the measurement, as well as the corresponding Cube
report as generated by Scalasca’s trace analyzer. In the timeline views, user
functions are shown in grey and MPI functions are shown in blue. Figure 3a shows
the start of the lock contention, where each process initially calls function foo()
for a rank-dependent duration. The following call to MPI_Win_lock() is too
short for Vampir to place the name of the call in the respective timeline. The same
applies for the RMA operations following the locks on processes 1 and higher.

110 M.-A. Hermanns et al.

Fig. 3 Timeline views and Cube report of the execution of the lock-contention micro benchmark.
(a) Process 0 acquires the lock and executes bar(), while remaining processes request the lock.
(b) Process 0 releases the lock and process 1 completes access; process 2 cannot obtain the
lock due to insufficient target-side progress. (c) Process 0 provides progress in barrier, enabling
remaining processes to complete access. (d) Cube analysis report shows waiting time classified as
Lock contention on all processes but process 2; waiting time on the latter is classified as Wait for
Progress

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 111

Process 0, as the target, obtains an exclusive lock and executes the function bar()
for 2 s. The remaining processes each block in the call to MPI_Win_unlock(),
waiting for the target to release the lock. Figure 3b shows a detailed view of the time
interval in which the target releases its lock on the window and passes the lock to
process 1. Process 1 obtains the lock and performs its RMA operation, releasing the
lock again. Process 2, however, is unable to obtain the lock directly from process
1, as the target (process 0) is busy with the execution of foo() after its release of
the lock. Process 2 can obtain the lock only after process 0 provides progress within
the barrier operation (Fig. 3c). As the barrier spans all processes, process 0 has to
wait for the last process to join and continues to provide progress for all remaining
processes. The call to foo() before the barrier is rank independent and lasts for
100 �s.

The Cube performance report shown in Fig. 3d reflects the observed behavior.
The time spent in the Lock Contention wait state is about 2 s for process 1, which
requested the lock right after process 0 and had to wait for the end of the 2 s
execution of bar(). The waiting time on process 2 is not classified as Lock
Contention but as Wait for Progress (not directly shown), as insufficient progress
was the last factor extending the overall waiting time. However, for the remaining
processes, progress was provided and the waiting time is classified as contention-
based. The waiting time on processes 2 and higher is increased by about 100 �s
compared to process 1 as further progress was only provided again after the
execution of foo() on the target process.

5.2 SOR

The SOR benchmark is a computational kernel that iteratively solves the Poisson
equation using a red-black successive over-relaxation method, distributing work
on a two-dimensional Cartesian grid. It performs a nearest-neighbor halo exchange
in each iteration. Originally implemented using point-to-point communication, we
adapted the halo exchange to use one-sided communication in different synchro-
nization schemes. After each iteration, a collective reduction is performed to test for
convergence. Problem size and number of processes can easily be configured for a
specific run. For the presented scaling measurements, the benchmark was configured
for weak scaling, keeping the load per process constant. To prevent convergence, it
was configured to perform a maximum of 500 iterations with a small error tolerance
of 1 � 10�7, to ensure the same number of iterations for each run. For the different
execution scales, the processes were doubled in alternating dimensions, starting with
a 32 � 16 process grid.

The Scalasca analyzer processes the event trace in different stages. The initial
stage identifies the majority of the wait states, while further stages concentrate on
the computation of higher-level metrics such as root causes and the critical path.

112 M.-A. Hermanns et al.

9 10 11 12 13 14 152 2 2 2 2 2 2 216

0

20

40

processes

an
al
y
si
s
ti
m
e
[s
]

point-to-point one-sided w/locks

Fig. 4 Scaling results for the analysis of the SOR benchmark configured to run with point-to-
point and one-sided communication using lock synchronization, respectively

As these extended analyses are outside the scope of this paper, Fig. 4 only shows
the execution time of the initial stage of the analysis. Measurements were taken
on the IBM Blue Gene/Q system JUQUEEN at the Jülich Supercomputing Centre
of Forschungszentrum Jülich [9]. The two data series are named after the SOR
implementation of the halo exchange measured. The analysis times shown for both
SOR implementations also include the detection and quantification of collective
communication wait states. While the analysis time for each scale is significantly
higher for the analysis of one-sided communication compared to the point-to-
point case, the study still demonstrates a similar scaling behavior in general. This
indicates scale-independent overheads in the replay mechanism. Initial performance
measurements indicate up to 10% of the runtime overhead due to the additional
execution of the progress engine. Most of the overhead is therefore part of the
message transfer itself (i.e., the active-message requests) and the execution of
the handlers. Improved buffer reuse for the active-message requests may lower
memory allocation overheads for the data transfer. For the handler execution, most
handlers need to search the target-side trace for the corresponding event, incurring
an O.log n/ additional execution overhead per handler execution where n is number
of events in the target-side trace, which may prove difficult to reduce. We plan
to further investigate optimization targets to reduce the overall runtime overhead
during the integration of the analysis prototype into the production version of the
Scalasca analyzer, however, the out-of-order nature of the data handling during the
analysis of passive-target synchronization constructs will likely remain more costly
than the in-order processing of point-to-point and active-target synchronization
constructs.

Trace-Based Detection of Lock Contention in MPI One-Sided Communication 113

6 Conclusion and Outlook

In this paper we showcased our extended and generalized infrastructure for detecting
and quantifying waiting time in passive-target one-sided communication constructs,
at the example of lock contention. Using this infrastructure, we were able to
re-construct process synchronization schemes not directly evident from the mea-
surement data, and to demonstrate that waiting time is correctly detected and
classified. The current analysis heuristic evaluates contention and progress-related
wait states and classifies waiting time accordingly. While the implementation
still provides room for optimization, the software prototype showed good scaling
behavior up to 65,536 processes for the analysis of a common computational kernel
using a halo exchange on a two-dimensional Cartesian grid.

The presented analysis prototype is handling MPI-2 one-sided communication.
As part of our future work, we plan to extend the support to the additional
synchronization calls of MPI-3 and beyond. Further optimization of the messaging
infrastructure will be a high priority for the integration into the production version
of the Scalasca analyzer. To provide a better load balancing during the analysis, we
also plan to explore different epoch distribution schemes beyond the current target-
centric approach, such as timeslice-based round robin distribution.

For the identification of the critical path [3] and root causes of wait states [2]
it is critical to identify all wait states in the application. With contention-based
wait states for one-sided communication being detected by the analyzer, we further
plan to integrate their handling into our current critical-path and root-cause analysis.
Furthermore, such an integration can then be used to also cover thread-based locking
mechanisms as provided by POSIX threads or OpenMP.

Acknowledgements This work has been partly funded by the Excellence Initiative of the German
federal and state governments. The authors gratefully acknowledge the computing time granted by
the JARA-HPC Vergabegremium and VSR commission provided on the JARA-HPC Partition part
of the supercomputer JUQUEEN [9] at Forschungszentrum Jülich.

References

1. Adhianto, L., Banerjee, S., Fagan, M.W., Krentel, M., Marin, G., Mellor-Crummey, J.M.,
Tallent, N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel programs.
Concurr. Comput.: Pract. Exper. 22(6), 685–701 (2010). doi:10.1002/cpe.1553. http://doi.
wiley.com/10.1002/cpe.1553

2. Böhme, D., Geimer, M., Wolf, F., Arnold, L.: Identifying the root causes of wait states in large-
scale parallel applications. In: Proceedings of the 39th International Conference on Parallel
Processing (ICPP), San Diego, CA, pp. 90–100 (2010). doi:10.1109/ICPP.2010.18

3. Böhme, D., de Supinski, B.R., Geimer, M., Schulz, M., Wolf, F.: Scalable critical-path based
performance analysis. In: Proceedings of the 26th IEEE International Parallel & Distributed
Processing Symposium (IPDPS), Shanghai (2012)

http://doi.wiley.com/10.1002/cpe.1553
http://doi.wiley.com/10.1002/cpe.1553

114 M.-A. Hermanns et al.

4. Chapman, B.M., Curtis, A., Pophale, S., Poole, S.W., Kuehn, J.A., Koelbel, C., Smith, L.,
Curtis, T., Pophale, S., Poole, S.W., Kuehn, J.A., Koelbel, C., Smith, L., Curtis, A., Pophale,
S., Poole, S.W., Kuehn, J.A., Koelbel, C., Smith, L.: Introducing OpenSHMEM: SHMEM
for the PGAS community. In: Proceedings of the Fourth Conference on Partitioned Global
Address Space Programming Model, no. c in PGAS ’10, pp. 2:1–2:3. ACM, New York, NY
(2010). doi:10.1145/2020373.2020375. http://doi.acm.org/10.1145/2020373.2020375

5. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: A scalable tool architecture for diagnosing
wait states in massively parallel applications. Parallel Comput. 35(7), 375–388 (2009).
doi:10.1016/j.parco.2009.02.003

6. Hermanns, M.A., Geimer, M., Mohr, B., Wolf, F.: Scalable detection of MPI-2 remote memory
access inefficiency patterns. Int. J. High Perform. Comput. Appl. 26(3), 227–236 (2012).
doi:10.1177/1094342011406758

7. Hermanns, M.A., Krishnamoorthy, S., Wolf, F.: A scalable infrastructure for the per-
formance analysis of passive target synchronization. Parallel Comput. 39(3), 132–
145 (2013). doi:10.1016/j.parco.2012.09.002. http://www.sciencedirect.com/science/article/
pii/S0167819112000762

8. Intel Corp.: Intel VTune Amplifier XE (2012). http://software.intel.com/en-us/intel-vtune-
amplifier-xe

9. Jülich Supercomputing Centre: JUQUEEN: IBM Blue Gene/Q Supercomputer System at the
Jülich Supercomputing Centre. J. Large-Scale Res. Facil. 1(A1) (2015). doi:10.17815/jlsrf-1-
18. http://dx.doi.org/10.17815/jlsrf-1-18

10. Kühnal, A., Hermanns, M.A., Mohr, B., Wolf, F.: Specification of inefficiency patterns for
MPI-2 one-sided communication. In: Proceedings of the 12th Euro-Par Conference, Dresden.
Lecture Notes in Computer Science, vol. 4128, pp. 47–62. Springer, Berlin (2006)

11. MPI Forum (ed.): MPI: A Message-Passing Interface Standard. Version 3.1. MPI Forum
(2015). http://www.mpi-forum.org/

12. Nieplocha, J., Carpenter, B.: ARMCI: a portable remote memory copy library for distributed
array libraries and compiler run-time systems. In: Proceedings of the 11 IPPS/SPDP’99
Workshops Held in Conjunction with the 13th International Parallel Processing Symposium
and 10th Symposium on Parallel and Distributed Processing, vol. 1586, pp. 533–546. Springer,
London (1999). doi:10.1007/BFb0097937. http://dl.acm.org/citation.cfm?id=645611.662053

13. Tallent, N.R., Mellor-Crummey, J.M., Porterfield, A.: Analyzing lock contention in multi-
threaded applications. SIGPLAN Not. 45(5), 269–280 (2010). doi:10.1145/1837853.1693489.
http://doi.acm.org/10.1145/1837853.1693489

14. Tallent, N.R., Vishnu, A., Van Dam, H., Daily, J., Kerbyson, D.J., Hoisie, A.: Diagnosing
the causes and severity of one-sided message contention. In: Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2015,
pp. 130–139. ACM, New York, NY (2015). doi:10.1145/2688500.2688516. http://doi.acm.org/
10.1145/2688500.2688516

15. Zounmevo, J.A., Zhao, X., Balaji, P., Gropp, W., Afsahi, A.: Nonblocking epochs in MPI one-
sided communication. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14, pp. 475–486. IEEE Press, Piscataway,
NJ (2014). doi:10.1109/SC.2014.44. http://dx.doi.org/10.1109/SC.2014.44

http://doi.acm.org/10.1145/2020373.2020375
http://www.sciencedirect.com/science/article/pii/S0167819112000762
http://www.sciencedirect.com/science/article/pii/S0167819112000762
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://dx.doi.org/10.17815/jlsrf-1-18
http://www.mpi-forum.org/
http://dl.acm.org/citation.cfm?id=645611.662053
http://doi.acm.org/10.1145/1837853.1693489
http://doi.acm.org/10.1145/2688500.2688516
http://doi.acm.org/10.1145/2688500.2688516
http://dx.doi.org/10.1109/SC.2014.44

Machine Learning-Driven Automatic Program
Transformation to Increase Performance
in Heterogeneous Architectures

Salvador Tamarit, Guillermo Vigueras, Manuel Carro, and Julio Mariño

Abstract We present a program transformation approach to convert procedural
code into functionally equivalent code adapted to a given platform. Our framework
is based on the application of guarded transformation rules that capture semantic
conditions to ensure the soundness of their application. Our goal is to determine
a sequence of rule applications which transform some initial code into final code
which optimizes some non-functional properties. The code to be transformed is
adorned with semantic annotations, either provided by the user or by external
analysis tools. These annotations give information to decide whether applying a
transformation rule is or is not sound. In general, there are several rules applicable at
several program points and, besides, transformation sequences do not monotonically
change the optimization function. Therefore, we face a search problem that grows
exponentially with the length of the transformation sequence. In our experience
with even small examples, that becomes impractical very quickly. In order to
effectively deal with this issue, we have adopted a machine-learning approach using
classification trees and reinforcement learning. It learns from successful transforma-
tion sequences and produces encodings of strategies which can provide long-term
rewards for a given characteristic, avoiding local minima. We have evaluated the
proposed technique in a series of benchmarks, adapting standard C code to GPU
execution via OpenCL. We have found the automatically produced code to be as
efficient as hand-written code generated by an expert human programmer.

S. Tamarit (�)
Universitat Politècnica de València, València, Spain
e-mail: stamarit@dsic.upv.es

G. Vigueras
IMDEA Software Institute, Madrid, Spain
e-mail: guillermo.vigueras@imdea.org

M. Carro
IMDEA Software Institute, Madrid, Spain
Universidad Politécnica de Madrid, Madrid, Spain
e-mail: manuel.carro@upm.es; manuel.carro@imdea.org

J. Mariño
Universidad Politécnica de Madrid, Madrid, Spain
e-mail: julio.marino@upm.es

© Springer International Publishing AG 2017
C. Niethammer et al. (eds.), Tools for High Performance Computing 2016,
DOI 10.1007/978-3-319-56702-0_7

115

mailto:stamarit@dsic.upv.es
mailto:guillermo.vigueras@imdea.org
mailto:manuel.carro@upm.es
mailto:manuel.carro@imdea.org
mailto:julio.marino@upm.es

116 S. Tamarit et al.

1 Introduction

There is a strong trend in high-performance computing towards the integration
of heterogeneous computing elements (vector processors, GPUs, FPGAs, etc.)
specially suited for some class of computations. Such platforms are becoming a
cost-effective alternative to more traditional supercomputing architectures [4, 12]
in terms of performance and energy consumption. This specialization comes at the
price of additional hardware and, notably, software complexity. Thus, programming
these systems is restricted to a few experts, which hinders its widespread adoption,
increases the likelihood of bugs, and limits portability. For these reasons, defining
programming models that ease the task of efficiently programming heterogeneous
systems has become a topic of great relevance and is the objective of many ongoing
efforts.

Many relevant research and industrial projects use scientific code for simulations
or numerical solving of differential equations. They often rely on existing algorithms
and code that need to be ported to new architectures to exploit their computational
strengths to the limit, while at the same time preserving the functional properties
of the original code. Unfortunately, and although scientific code commonly follows
patterns rooted in its mathematical origin, (legacy) code often does not clearly spell
its meaning. In this case, successfully adapting it needs a very careful (and error-
prone) transformation process that is hard for humans to do.

Our aim is to obtain a framework for the semantics-preserving transformation of
(scientific) C code that improves performance-related metrics on a given destination
platform. Despite the broad range of compilation and refactoring tools available, no
existing tool fits our goals by being adaptable enough to recognize specific source
patterns and generate code better adapted to different architectures. Therefore, we
decided to design and implement our own transformation framework. A couple of
examples will clarify our motivations and objective.

Figure 1 shows a sequence of program transformation steps to optimize code
working on arrays of floats. Some transformation steps can be done by existing
optimizing compilers.1 However, they are usually internally performed at the
intermediate representation (IR) level, and with few, if any, opportunities for user
intervention or tailoring. This falls short to cater for many relevant situations that
we want to address:

• In many cases programmers know properties that static analyzers cannot dis-
cover. In Fig. 1 a compiler would rely on knowledge of the properties of
arithmetic operations (with the caveat in Footnote 1). But if we had calls to func-
tions implementing operations with comparable properties, such as operations

1 Note, however, that some can not. The standard for floating point arithmetic does not guarantee
the preservation of numerical results under the transformation in Step 4 of Fig. 1, and it is therefore
not enabled by default in C compilers. However, if this transformation is interesting for some
particular domain or application, it can be enabled in our framework by adding the corresponding
rule to the ruleset.

Machine Learning-Driven Automatic Program Transformation 117

0 - ORIGINAL 1 - FOR-LOOP FUSION 2 - AUG. ADDITION

float c[N],v[N],a,b;
for(int i=0;i<N;i++)
c[i] = a*v[i];

for(int i=0;i<N;i++)
c[i] += b*v[i];

for(int i=0;i<N;i++) {
c[i] = a*v[i];
c[i] += b*v[i];

}

for(int i=0;i<N;i++) {
c[i] = a*v[i];
c[i] = c[i] + b*v[i];

}

3 - JOIN ASSIGNMENTS 4 - UNDO DISTRIBUTE 5 -INV. CODE MOTION

for(int i=0;i<N;i++)
c[i] = a*v[i]+b*v[i];

for(int i=0;i<N;i++)
c[i] = (a+b) * v[i];

float k = a + b;
for(int i=0;i<N;i++)
c[i] = k * v[i];

Fig. 1 A sequence of transformations of a piece of C code to compute c D avCbv. This style
marks code to be modified and this style marks code generated from the previous stage

INITIAL CODE FINAL CODE

Complex c[N], v[N], a, b, aux;

for (int i = 0; i < N; i++)
cmp_mult(v[i], a, c[i]);

for (int i = 0; i < N;i++) {
cmp_mult(b, v[i], aux);
cmp_add(aux, c[i], c[i]);
}

Complex c[N], v[N], a, b, k;

cmp_add(a, b, k);
for (int i = 0; i < N;i++)
cmp_mult(k, v[i], c[i]);

Fig. 2 Transformation enabled by properties similar to those used in Fig. 1

on complex numbers (Fig. 2), the presented transformations would unlikely be
performed by a standard compiler.

• Most compilers implement a set of transformations useful for one particular
architecture—usually von Neumann-style CPUs. Compiling for a particular
architecture needs a specific, ad-hoc compiler that often requires source code to
follow some specific guidelines. Our tool can help generate code that complies
with these patterns.

• The transformations that generate code amenable to be compiled for spe-
cific architectures are often complex, architecture-specific, and domain-specific.
Therefore, they are better expressed at a higher level, rather than inside a
compiler’s architecture, and implemented as extensible plugins.

We aim at generating code that improves some measure of a non-functional
characteristic. That needs to select the right rule at every step in the transformation.
As part of its modular design, the transformation engine does not have any hard-
wired strategy to select which rules have to be applied in each case; instead, it is
designed to communicate with external oracles that help in selecting which rules
have to be applied. This selection is, however, not without problems. First of all,
we require that all the applications are sound—i.e., the (functional) semantics of
the code are respected. That needs rules to be applied only when certain conditions

118 S. Tamarit et al.

are met. Rules, in our proposal, have guards that express semantic conditions to
enable their applications. The code to be transformed is checked to ensure that these
conditions are met. As a unifying mechanism, we require that the input code is
adorned with pragmas expressing properties that cannot be readily derived from the
syntactic shape of the code. These pragmas can be inserted by automatic analysis
tools or, when they fall short, by the programmer.

Second, when a rule that is part of a sequence that eventually improves some
metric is selected and applied, this application may or may not improve that metric.
Additionally, at every transformation step several rules can be applied at several
points. Therefore, an optimization process may need an exhaustive search in a
state space that grows exponentially with the number of steps in the transformation
sequence. In our experience, and for relatively small examples, it is typical to have
in the order of ten possibilities or more per step and around 50–100 steps in a
transformation sequence. That makes exploring the search space unfeasible. In order
to deal with that problem we have developed a machine learning-based tool that
learns termination conditions and long-range transformation strategies. It is used as
an external oracle to select the most promising rule that is part of a transformation
chain able to finally improve the code for the target platform. When code deemed
good enough for the target architecture is reached, it is handed out to a translator
that adapts it to the programming model of the target platform.

In the rest of the paper, Sect. 2 reviews previous work in program transformation
systems and related approaches using machine learning. Section 3 describes the
transformation rule language and properties and the transformation engine. Sec-
tion 4 discusses the rule selection problem, and Sect. 5 describes a solution based
on machine learning. Section 6 presents some preliminary results and, finally, Sect. 7
summarizes the conclusions and proposes future work.

2 Related Work

Stratego-XT [22] is a language-independent transformation tool similar to our
proposal, but oriented towards strategies rather than rewriting rules. Rule firing does
not depend on semantic conditions that express when applying a rule is sound. This
is enough for a language with referential transparency, but not for a procedural one.

CodeBoost [2], built on top of Stratego-XT, performs domain-specific optimiza-
tions to C++ code following an approach conceptually similar to ours. User-defined
rules express domain-specific optimizations; code annotations are used as precon-
ditions and inserted as postconditions during the rewriting process. However, it is a
mostly abandoned project that, additionally, mixes C++, the Stratego-XT language,
and their rule language. All of this together makes it to have a steep learning curve.
Concept-based frameworks such as Simplicissimus [19] transform C++ based on
user-provided algebraic properties. Its rule application strategy can be guided by the
cost of the resulting operation, that is defined at the expression level rather than at
the statement level and has only a local view of the transformation process. These

Machine Learning-Driven Automatic Program Transformation 119

issues make its applicability limited and prone to become trapped in local minima
(see Sect. 5).

Machine learning techniques have been used for compilation and program
transformation [1, 13, 17]. Previous approaches target specific architectures, thereby
limiting their applicability and making them unsuitable for heterogeneous plat-
forms. All of them use an abstraction of the input programs, as we do. However,
none of the previous works have explored the use of reinforcement learning (RL)
methods [9] in the field of program transformation and compilation.

3 Source-to-Source Transformations

The core of the transformation process is a language for defining semantically sound
code transformation rules (Sect. 3.1). These rules are fired when some syntactic
pattern is found and a given semantic property holds. These properties can be either
inferred (with the help of an analysis tool) or provided as source code annotations
(Sects. 3.2 and 3.3).

3.1 STML Rules

Figure 3 shows a template of a transformation rule. Transformation rules contain
a syntactical pattern that matches input code and describes the skeleton of the
code to generate, which will replace the matched code. STML rules (from Seman-
tic Transformation Meta-Language) may also specify semantic conditions to
ensure that their application is sound.2 As we will see later, these conditions are
checked against a combination of static analysis and user-provided annotations in
the source code.

Figure 4 shows an example: a rule that applies distributivity “backwards”. Pattern
components are matched using tagged meta-variables: e1, e2, and e3 in the pattern
are tagged to specify which kind of component is matched: cexpr(e1) states
that e1 must be an expression. These meta-variables are replaced by the matched
expression in the generated code. Additional conditions and primitives (Table 1) are
used to write sound and expressive rules. In Fig. 4, pure(cexpr(e1)) means
that e1 is pure, e.g., it does not write to any variable or, in general, it does not
perform any state change, including IO. The rule in Fig. 5 performs expression
substitution across statements, removing duplicated assignments to variables when
possible. In it, cstmts(si) requires si to be a sequence of statements. A
cstmt(s) tag would instead make s refer to a single statement.

2Properties of the generated code can also be included, but we are not showing them for simplicity.

120 S. Tamarit et al.

rule_name {
pattern: {...}
condition: {...}
generate: {...}

}

Fig. 3 STML rule template

undo_distributive {
pattern: {
(cexpr(e1) * cexpr(e2)) + (cexpr(e1) * cexpr(e3));

}
condition: {
pure(cexpr(e1));
pure(cexpr(e2));
pure(cexpr(e3));

}
generate: {
cexpr(e1) * (cexpr(e2) + cexpr(e3));

}
}

Syntactical pattern

Semantic conditions
(uses predefined properties)

Resulting code

Fig. 4 STML rule: distributive property backwards (steps 3–4 of Fig. 1)

Table 1 presents most of the currently available constructs to write STML rules. In
that table, E represents an expression, S represents a statement and [S] represents
a sequence of statements. The function bin_oper(Eop,El,Er) matches or
generates a binary operation (El Eop Er) and can be used in the pattern and
generate sections.

The decision of whether to apply or not a given rule depends on two factors: the
transformation must preserve the semantics of the transformed code (ensured using
the conditions section) and it should eventually improve some efficiency metric.
Ensuring the latter is far from trivial, and Sect. 5 will be entirely devoted to our
approach to do it effectively. In the next sections we will focus on how to verify that
semantic conditions hold before applying a rule.

3.2 Inferring and Annotating Properties

Some properties used in the condition section can be verified with a local, syn-
tactical check, performed by the transformation engine. However, most interesting
conditions need inferring semantic information that requires non-local analysis and
we rely on external sources to derive this information. In particular, we are currently
using Cetus [5] to this end. Cetus is a compiler framework, written in Java, to
implement source-to-source transformations, which we have modified to extract
analysis information.

Machine Learning-Driven Automatic Program Transformation 121

Table 1 Constructs for STML rules

Construct Description

All sections

bin_op(Eop,E1,E2) Eop is a binary operation with operands E1 and E2

una_op(Eop,E) Eop is a unary operation with operand E

Condition section

no_write((S|[S]|E)1,
(S|[S]|E)2)

(S|[S]|E)1 does not write in any location read by
(S|[S]|E)2 .

no_write_except_arrays
((S|[S]|E)1,(S|[S]|E)2,E)

As the previous condition, but not taking arrays accessed
using E into account.

no_write_prev_arrays
((S|[S]|E)1 , (S|[S]|E)2,

E)

No array writes indexed using E in (S|[S]|E)1 access
previous locations to array reads indexed using E in
(S|[S]|E)2 .

no_read((S|[S]|E)1,
(S|[S]|E)2)

(S|[S]|E)1 does not read from any location written to
by (S|[S]|E)2 .

pure((S|[S]|E)) (S|[S]|E) does not write in any location.

writes((S|[S]|E)) Locations written by (S|[S]|E).

distributes_over(E1,E2) Operation E1 distributes over operation E2.

occurs_in(E,(S|[S]|E)) Expression E occurs in (S|[S]|E).

fresh_var(E) E should be a new variable.

is_identity(E) E is the identity.

is_assignment(E) E is an assignment.

is_subseteq(E1,E2) E1 	 E2

Generate section

subs((S|[S]|E),Ef,Et) Replace each occurrence of Ef in (S|[S]|E) for Et.

if_then:{Econd; (S|[S]|E);} If Econd is true, then generate (S|[S]|E).

if_then_else:{Econd; If Econd is true, then generate (S|[S]|E)t

(S|[S]|E)t;(S|[S]|E)e;} else generate (S|[S]|E)e .

gen_list: {[(S|[S]|E)];} Each element in [(S|[S]|E)] produces a different
rule consequent.

Instead of devising an internal API to communicate results, all analysis infor-
mation is passed on to the rewriting engine by annotating the source code with
#pragmas. A pragma captures properties belonging to the code block immediately
following it and the properties range from expression pureness to read/write depen-
dencies in arrays. Figure 6 shows four pieces of code that read and write on arrays
with an offset w.r.t. the loop index as expressed by the annotations. For example,
Fig. 6b writes in c[] in positions i+0 and i-1, with i being the loop index. This
is expressed with the set {-1, 0}. The core syntax of STML annotations is shown
for reference in Listing 1, and Table 2 gives a summary overview of higher-level
annotations. A more thorough explanation of their semantics is to be found in [20].

It is often the case that automatic analyzers cannot infer all the information
necessary to decide the soundness of the application of some rules. In that case,
we rely on the programmer to annotate the code by hand using pragmas. That is

122 S. Tamarit et al.

join_assignments {
pattern: {

cstmts(s1);
cexpr(v) = cexpr(e1);
cstmts(s2);
cexpr(v) = cexpr(e2);
cstmts(s3);

}
condition: {

no_write(cstmts(s2), {cexpr(v), cexpr(e1)});
no_read(cstmts(s2), {cexpr(v)});
pure(cexpr(e1));
pure(cexpr(v));

}
generate: {

cstmts(s1);
cstmts(s2);
cexpr(v) = subs(cexpr(e2), cexpr(v), cexpr(e1));
cstmts(s3);

}
}

Fig. 5 STML rule: assignment propagation (steps 2–3 of Fig. 1)

#pragma stml writes c in {0}
for (i = 0; i < N; i++)

c[i] = i*2;

(a)

#pragma stml writes c in {-1,0}
for (i = 1; i < N; i++){

c[i-1] = i;
c[i] = c[i-1] * 2;}

(b)

#pragma stml reads c in {0}
for (i = 0; i < N; i++)

a += c[i];

(c)

#pragma stml reads c in {-1,0,+1}
for (i = 1; i < N - 1; i++)

a += c[i-1]+c[i+1]-2*c[i];

(d)

Fig. 6 Code with STML annotations

one reason to use them as interface to communicate information to the rewriting
engine: information becomes available in a uniform format regardless of its origin.
If the annotations automatically inferred by external tools contradict those provided
by the user, the properties provided by the user are preferred to those deduced from
external tools, but a warning is issued.

3.3 High-Level Annotations

STML annotations can capture very detailed information regarding code properties
and programmers can fill in the gaps when automatic analysis is not enough. How-

Machine Learning-Driven Automatic Program Transformation 123

Listing 1 BNF grammar core for STML

<code_prop_list> ::= "#pragma stml" <code_prop> |
"#pragma stml" <code_prop> <code_prop_list>

<code_prop> ::= <loop_prop> | <exp_prop> <exp> |
[<op>] <op_prop> <op> |
"write("<exp>") =" <location_list> |
"same_length" <exp> <exp> | "output("<exp>")" |
<mem_access> <exp> ["in" <offset_list>]

<loop_prop> ::= "iteration_independent" |
"iteration_space" <parameter> <parameter>

<exp_prop> ::= "appears" | "pure" | "is_identity"
<op_prop> ::= "commutative" | "associative" |

"distributes_over"
<mem_access> ::= "writes" | "reads" | "rw"

Table 2 Intuitive meaning of STML annotations

write(exp) = loc expression exp writes in location loc

writes exp the block below write in a location identified
by exp

writes exp in offsets the block below write in the set of locations
identified by array exp with offsets w.r.t. a
loop index

iteration_space exp1 ex2 the index of the annotated loop ranges from
exp1 to exp2

iteration_independent loop iterations are independent from each other

same_length a1 a2 arrays a1 and a2 have the same length

input exp exp is to be seen as an input of the
following code block

output exp exp is to be seen as an output of the
following code block

appears exp exp appears in the block below

pure exp exp does not update any variable

is_identity exp exp is an identity element

commutative op op is commutative

associative op op is associative

op1 distributes_over op2 self-explanatory

ever, the type of information necessary is not what a programmer has naturally in
mind, and the amount of annotations necessary may exceed what can be considered
as an acceptable effort. Therefore, we also accept a second level of annotations
that were devised as part of the POLCA project.3 They have, intuitively, a more

3http://www.polca-project.eu/.

http://www.polca-project.eu/

124 S. Tamarit et al.

float c[N], v[N], a, b;

#pragma polca map BODY1 v c
for(int i=0;i<N;i++)
#pragma polca def BODY1
#pragma polca input v[i]
#pragma polca output c[i]

c[i] = a*v[i];

#pragma polca zipWith BODY2 v c c
for(int i=0;i<N;i++)
#pragma polca def BODY2
#pragma polca input v[i]
#pragma polca input c[i]
#pragma polca output c[i]

c[i] += b*v[i];

Fig. 7 Annotations for the code in Fig. 1

float c[N], v[N], a, b;

#pragma polca map BODY1 v c
#pragma stml reads v in {0}
#pragma stml writes c in {0}
#pragma stml same_length v c
#pragma stml pure BODY1
#pragma stml iteration_space 0 length(v)
#pragma stml iteration_independent
for(int i = 0; i < N; i++)
#pragma polca def BODY1
#pragma polca input v[i]
#pragma polca output c[i]

c[i] = a*v[i];

#pragma polca zipWith BODY2 v c c
#pragma stml reads v in {0}
#pragma stml reads c in {0}
#pragma stml writes c in {0}
#pragma stml same_length v c
#pragma stml pure BODY2
#pragma stml iteration_space 0 length(v)
#pragma stml iteration_independent
for(int i = 0; i < N; i++)
#pragma polca def BODY2
#pragma polca input v[i]
#pragma polca input c[i]
#pragma polca output c[i]

c[i] += b*v[i];

Fig. 8 Translation of high-level annotations in Fig. 7 into STML

algorithmic appearance (they are actually inspired by functional programming [10])
and capture simultaneously algorithm skeletons and low-level properties.

For instance, for loops performing a mapping between an input and an output
array can be annotated with a map pragma (see one example in Fig. 7, left). The
scheme for a map annotation is

#pragma polca map Func Input Output

where Func stands for the name of a block of code and Input and Output
are names of array variables. The map annotation in Fig. 7 indicates that the loop
traverses the input array v and applies the function computed by BODY1 element-
wise to v giving as result the (output) array c. Besides this algorithmic view, the
annotation also implies several properties of the code: (a) BODY1 behaves as if it
were side effect-free (it may read and write from/to other variables not declared
as parameters, but it should behave as if these variables did not implement a state
for BODY1), (b) v and c are arrays of the same size, (c) every element c[i] is
computed by applying BODY1 to v[i], (d) the applications of BODY1 do not
assume any particular order: they can go from v[0] upwards to v[N-1], in the
opposite direction, or in any other order.

These properties have a counterpart in STML and are the kind of conditions that
the transformation engine checks: it reads the high-level pragmas and transforms
them into STML for internal use. As an example, Fig. 8 shows the translation of
the code in Fig. 7 into STML. The difference between them supports our claim that
high-level annotations make annotating the program easier and can convey a large
amount of relevant information.

Machine Learning-Driven Automatic Program Transformation 125

3.4 Implementation Notes

The transformation engine is subdivided into two subcomponents, illustrated in
Fig. 9. The rule-driven code transformation stage proper changes the structure
of the code until it has the patterns appropriate for the destination architecture
and produces what we call ready code. Note that this transformation stage can
additionally be used to other purposes, such as sophisticated code refactoring.
A second code translation stage converts this code into the input language for a
compiler for the destination architecture. This last translation stage is in many cases
straightforward as it only introduces the “idioms” necessary for the architecture
(e.g., for OpenMP), performs a syntactical translation (e.g., for OpenCL) or mixes
both (e.g. for ROCCC [8]), but some targets (e.g., MaxJ [15]) are admittedly more
involved. The particular target architecture is specified with an annotation, which is
also used to decide what transformations should be applied.

The transformation phase is a key part of the tool. In order to be able to
experiment and prototype as easily as possible, (including the STML definition,
code generation, and the search/rule selection procedures), we needed a flexible
and expressive implementation platform. We considered using the infrastructure
provided by existing open source C compilers. Among these, the CLang / LLVM

GPGPU (OpenCL)
Translated code

OpenMP

MPI

FPGA (MaxJ, POROTO)

DSP (FlexaWare)

Ready code

Initial
code

Transformation Translation

Engine written in Haskell

Rule
library
(STML)

.hs

Rule library (Haskell)

Rule execution(s)

Fig. 9 Architecture of the transformation tool

126 S. Tamarit et al.

libraries/APIs have probably the best design. However, since their goal is compi-
lation rather than source-to-source transformation, we found the available interface
neither easy to use nor effective in many situations. Moreover, existing documen-
tation warns about its instability. Additionally, code transformation routines had to
be coded in C++, which made them verbose and full of low-level details, contrary
to the flexibility we needed. Compiling rules to C++ was an option, but the gap
between the rules and the API was quite large, pointing to a cumbersome translation
stage that would require considerable maintenance as the rule language evolved.
Moreover, the whole CLang project needed recompilation after every rule update.
That would have made project development and testing very slow, and adding user-
defined rules complicated.

We decided therefore to use a declarative language and we implemented the
transformation engine in Haskell. Parsing the input code and the rules is done by
means of the Language.C library [6] that returns the AST as a data structure
that is easy to manipulate. In particular, we used the Haskell facilities to deal with
generic data structures through the Scrap Your Boilerplate (SYB) library [11]. This
allows us to easily extract information from the AST or modify it with a generic
traversal of the whole structure.

The rules are written in a subset of C and are parsed using Language.C. They
are compiled into Haskell code (contained in the file Rules.hs—see Fig. 9) that
performs the traversal and (when applicable) the transformation of the AST. This
module is loaded with the rest of the tool, therefore avoiding the extra overhead of
interpreting the rules.

Rule compilation divides rules into two classes: those that operate on expressions
and those that can, in addition, manipulate sequences of statements. In the latter
case, sequences of statements of unknown length need to be considered: for
example, s1, s2, and s3 in Fig. 5. In general, the rule has to try several possibilities
to determine if there is a match that meets the rule conditions. Haskell code that
explicitly performs an AST traversal has to be generated. Expressions, on the other
hand, are syntactically bound and the translation of the rule is much easier.

4 Rule Selection

In most cases, several (often many) rules can be safely applied at multiple code
points in every step of the rewriting process. Deciding which rule has to be fired
should be ultimately decided based on whether it eventually increases performance.
We currently provide two rule selection mechanisms: a human interface and a API
to communicate with external tools.

The human interface allows making interactive transformations possible. The
user is presented with the rules that can be applied at some point and, after selecting
a rule, the code before and after applying it. Auxiliary programs, such as Meld,4 can

4http://meldmerge.org/.

http://meldmerge.org/

Machine Learning-Driven Automatic Program Transformation 127

Fig. 10 Functions provided by the transformation tool

Fig. 11 Functions provided by the oracle

Fig. 12 Interaction between the transformation and the oracle interface

be used to highlight the differences. This is useful to refine/debug rules or to perform
general-purpose refactoring. However, in our experience, manual rule selection is
not scalable when working in adapting code to a given platforms, and using it is not
feasible even for medium-sized programs. Therefore, mechanizing this process as
much as possible is a must and we designed a general interface to connect external
components. Regardless of how such an external component works, from the point
of view of the transformation engine it is an oracle that, given some code and a set
of applicable rules, returns which rule should be applied.

The interface of the transformation tool (Fig. 10) is composed by functions
AppRules and Trans. The former determines the possible transformations applicable
to a given input code Code and returns a set of tuples containing each a rule name
and the position (e.g., the identifier of an AST node) where the rule can be applied.
Function Trans applies rule Rule to code CodeI at position Pos and returns the
transformed code CodeO.

The API from the external tool (Fig. 11) includes operations to decide which rule
has to be applied and whether the search should stop. Function SelectRule receives
a set of safe possibilities, each of them composed of a code fragment and a set of
rules that can be applied to it, and returns one of the input code fragments and the
rule that should be applied to it. Function IsFinal decides whether a given code can
be considered ready for translation or not.

In Fig. 12, function NewCode sketches how the interaction between the transfor-
mation engine and the external oracle takes place. In a nutshell, NewCode is invoked
with code to be transformed and generates transformed code which is, in turn,
iteratively passed to NewCode until a termination condition is fulfilled (i.e., IsFinal
evaluates to true), and the generated code is then final. In more detail, NewCode

128 S. Tamarit et al.

receives input code in the parameter CodeI and a set of (candidate) transformation
rules fRuleig and returns: (a) one piece of transformed code (CodeO) and (b) one
rule (RuleO). When the transformation is not finished, NewCode is called again with
the transformed code CodeO and with the singleton set of rules fRuleOg. Therefore,
when NewCode applies a transformation, the oracle decides which rule should be
applied next to the just-generated transformed code.

This approach makes it unnecessary for the external oracle to consider code
positions where a transformation can be applied, since that choice is implicit in
the selection of a candidate code between all possible code versions obtained using
a single input rule. Furthermore, by selecting the next rule to be applied, it takes
the control of the next step of the transformation. The key here is the function
SelectRule: given inputs Codei and fRulejg, SelectRule selects a resulting code
between all the codes that can be generated from Codei using Rulej. The size of
the set received by function SelectRule corresponds to the total number of positions
where Rulej can be applied. In this way, SelectRule is implicitly selecting a position.

5 Controlling the Transformation Process with Machine
Learning

Several outstanding problems are faced by the rewriting engine. On the one hand,
the space of transformation sequences leading to different code versions is very
large (actually infinite) and the only guide is a non-monotonic fitness function (e.g.,
performance) very costly and cumbersome to evaluate. On the other hand, deciding
when a sequence finishes is difficult to check: the final state is reached when the
most efficient possible code has been generated.

Selecting at each step a rule that improves more some metric is not sound: code
performance along good transformation sequences evolves non-monotonically.5

This non-monotonicity can make the search be trapped in local minima. In addition,
and as another face of non-monotonicity, the performance of ready code is not
correlated with that of the code translated for the final architecture, so ready code
cannot be used to make reliable predictions of final performance. Exploring a
bounded neighborhood is not a satisfactory solution, either, since a large boundary
would have efficiency problems and a small boundary would not avoid the local
minima problem.

Therefore, we need a mechanism that can make local decisions taking into
account global strategies—i.e., a procedure able to select a rule under the knowledge
that it is part of a larger sequence that will eventually improve code performance for
a given platform. Our approach uses classification trees to decide when to finish a

5Not only in theory: in our experience, it is often necessary to apply transformations that
temporarily reduce performance because they enable further transformations.

Machine Learning-Driven Automatic Program Transformation 129

transformation sequence and reinforcement learning to select which transformation
rule has to be applied at every moment. We will describe our approaches in the next
sections.

5.1 Mapping Code to Abstractions

Machine learning operates on descriptions of the problem domain (C code, in our
case). They have to be able to capture the changes performed by the transformation
rules at the AST level and represent code patterns that match the syntactic/semantic
restrictions of target compiler/programming models in order to decide when a
transformation sequence can finish. For these reasons, the abstraction includes
quantitative descriptions involving features like AST patterns, control flow, data
layout, data dependencies, etc. The current abstraction consists of a vector of
features shown in Table 3 and a short explanation of some of them follows:

• Number of auxiliary array variables: number of auxiliary variables used to
index an array. For Listing 2 its value would be “one”.

• All loops have static limits: it is false iff some for loop in the analyzed code
has a non-static iteration limit. It would be false for Listing 3, since clean or
update could change the data structure.

• Scheduled loop: two nested loops iterate over an array “split in fragments”. This
is deduced from the annotation in Listing 4.

• Shifted writes in array: number of loops where some (but not all) writes to
arrays have a positive offset w.r.t. the iteration variable. It would have a value of
“one” in Listing 5.

Table 3 Features currently used in the learning process

Description Type

Maximum depth among nested for loops N

Number of function calls present in the analyzed code N

Number of array accesses with positive offset in bodies of for loops N

Are there loops with non-structured flow? B

Is any global variable written on? B

Number of if statements N

Has any for loop a non-static iteration limit? B

Number of for loops without dependencies across iterations N

Whether two nested loops iterate over an array split in fragments B

Number of variables used inside a loop and unmodified inside it N

Number of variables modified within a loop N

Number of arrays with two or more dimensions N

How many auxiliary variables are used to index arrays N

Total number of for loops N

Number of for with iteration step different from 1 N

130 S. Tamarit et al.

Listing 2 Aux. variable array index

aux = 0;
for(j=0; j<N; j++) {

w[j] = v[aux];
aux++;

}

Listing 3 Static loop limits

for(j=0;j<N;j++) {
for(i=0;i<size(v);i++)

update(v,i);
clean(v);

}

Listing 4 Loop with schedule pattern

#pragma stml loop_schedule
for(j=0; j<M; j++) {

w[j] = 0;
for(i=0;i<N;i++)

w[j] += v[j*N+i];
}

Listing 5 Array writes shifted

for(i=1;i<N;i+=2) {
v[i] = v[i-1];
v[i+1] = v[i-1]*i;

}

The code abstraction is generated through an analysis tool that parses the AST to
extract the abstraction features, thereby implementing a function

A W Code ! Abstraction

that maps codes to abstractions. In order to simplify communication with the rest
of the machine learning component, that uses Python libraries, the code abstraction
extraction is also implemented in Python using the pycparser6 module. It extracts
features both by analyzing the code and by parsing code annotations. The current
set of features were enough to obtain the results for our current set of use cases
(Sect. 6).

5.2 Deciding Termination with Classification Trees

Classification is the problem of identifying the category to which a new observation
belongs among a set of pre-defined categories. Classification is done by training
using a set of observations for which it is known to which category they belong [14].
Among the existing approaches, we have evaluated classification trees since it can
perform feature selection without complex data preparation.

A classification tree organizes examples according to a set of input features
belonging to finite discrete domains. One of the features is the target variable and
the classification tree aims at inferring its value from the values of the rest of the
features. Each element of the domain of the target variable is called a class.

In a classification tree each non-leaf node is labeled with an input feature and
each leaf node is labeled with a class or a probability distribution over the classes.
A classification tree can be built by splitting the source data set into subsets based

6https://github.com/eliben/pycparser.

https://github.com/eliben/pycparser

Machine Learning-Driven Automatic Program Transformation 131

on values of input features and recursively repeating the process on each derived
subset. The recursion finishes when the subset of data in a node has the same value
for the target variable or when splitting no longer improves the predictions. The
source data typically comes in records of the form

.Œx1; x2; x3; : : : ; xk�;Y/

Y is the target variable that the classification tree generalizes in order to be
able to classify new observations. The elements xi are the input features used for
the classification, drawn from those in Table 3. The target variable determines to
what platform(s) the code can be translated. Since a given code (and its associated
abstraction) might be suited for more than one platform, for n platforms we have
2n � 1 classes in the target variable. In our current setup, since we currently support
FPGAs, GPUs, Shared-Memory CPUs, and Distributed-Memory CPUs, we have 15
elements in the domain of Y.

The classes obtained for the target variable define the final states for the reinforce-
ment learning algorithm described next. The classification-based learning described
in this section has been implemented using the Python library Scikit-learn [16]. This
library implements several machine learning algorithms, provides good support and
ample documentation, and is widely used in the scientific community.

5.3 Reinforcement Learning

Reinforcement learning [14] is an area of machine learning whose aim is to decide
how software agents ought to act to maximize some notion of cumulative reward. A
reinforcement learning agent interacts with its environment in discrete time steps.
At time t, the agent receives an observation ot that typically includes a reward rt. It
then chooses an action at that is sent to the environment which changes from state st
to state stC1 providing the reward rt associated with the transition .st; at; stC1/. The
goal of a reinforcement learning agent is to collect as much reward as possible.

RL seems well suited to represent the process of a programmer or a compiler:
iteratively improving an initial program in discrete steps. Actions correspond to code
changes (caused in our case by the application of transformation rules) and states
correspond to code versions. Code can in principle be evaluated after every change
according to properties such as execution time, memory consumption speedup
factor, etc. The result of these evaluations can be translated into rewards and
penalties that feed the learning procedure.

The final result of the learning process of the agent is a state-action table Q
(Fig. 15) that contains, for each combination .s; a/ of states and actions, the expected
profit to be obtained from applying action a to state s. This table is initially filled in
with a default value and is iteratively updated following a learning process that we
briefly describe below.

132 S. Tamarit et al.

Reinforcement learning uses a set of predetermined transformation sequences
that are assumed to be models to learn from. Each sequence S is composed of a set
of states S D s0; s1; : : : ; sl and the actions that transform one state into the next one.
The final state of each transformation sequence has a different reward related to the
performance of corresponding code. The training phase of reinforcement learning
consists of an iterative, stochastic process where a state s from the training sequences
is randomly selected and a learning episode is started by selecting the action a
with the highest value in Q for that s. The learning process moves to a new state
s0 according to the transition .s; a; s0/ and the process is repeated from state s0 until
a final state is reached or a given number of steps is performed. When the episode
terminates, the values in Q corresponding to the states and actions of the visited
sequence are updated according to the formula in Fig. 13, where Qinit.st; at/ is the
initial value of Q for state st and action at (resp. Q.st; at/). Note that st (resp. at) is
the t-th state in the temporal ordering of states in the sequence used to learn.

The final states in Fig. 13 are defined based on the classification described in
Sect. 5.2. Two parameters appear in Fig. 13: the learning rate ˛; 0 < ˛ � 1, and the
discount factor �; 0 < � � 1. The learning rate determines to what extent the newly
acquired information will override the old information. A factor of 0 will make
the agent not to learn anything while a factor of 1 would make the agent consider
only the most recent information. The discount factor determines the importance of
future rewards, and so it implements delayed rewards. A factor of 0 will make the
agent opportunistic by considering only current rewards and a factor close to 1 will
make it strive for long-term rewards. If the discount factor reaches or exceeds 1, the
learning process may diverge [14].

Code abstractions and transformation rules are mapped to states and actions,
respectively, to index the state-action table, using functions SM and AM (Fig. 14).
Using the mapping of abstractions and rules to states and actions, the state-action
table can also be modeled as a function Q ranging over code and rules (Fig. 14).
The rule selection strategy of the transformation toolchain can then be modeled
with function RS that takes as input a code c and selects the transformation rule r
associated to action AM.r/ that maximizes the value provided by Q for the state
SM.A.c// associated to input code c.

Fig. 13 Update of reinforcement learning matrix

Fig. 14 RL function definitions

Machine Learning-Driven Automatic Program Transformation 133

Fig. 15 State-Action table for code, code abstraction, and rules

The operator arg max in function RS returns, by definition, a set that can be empty
or non-singleton. However, in our problem, parameters ˛ and � , as well as the
reward values rtC1, can be tuned to ensure that a single rule is returned, thus avoiding
a non-deterministic RS function. The workflow is then as follows (Fig. 15): for a
concrete code ck we find its abstraction Ci D A.ck/. Let us assume i D 0. From the
row i we obtain the column j with the highest value qi;j in matrix Q (in our example,
q0;1, in blue and boldface). Column j corresponds to rule rj, which is expected to give
the next step in the most promising sequence when applied to a code state whose
abstraction is Ci (in our case it would be r1). Rule rj would be applied to ck to give
cl. If cl corresponds to a final state, the procedure finishes. Otherwise, we repeat the
procedure taking cl as input and finding again a rule to transform cl.

We have implemented the reinforcement learning component using the Python
library PyBrain [18]. This library adopts a modular structure separating in classes
the different concepts present in reinforcement learning, such as the environment,
the observations and rewards, the actions, etc. This modularity allowed us to extend
the different classes and ease their adaptation to our problem. The PyBrain library
also provides flexibility to configure the different parameters of the reinforcement
learning algorithm.

134 S. Tamarit et al.

5.4 A Simple Example

We will use a 2D convolution kernel (Listing 6) to show the process of learning
a state-action table from a transformation sequence. This kernel can already be
executed in parallel by adding OpenMP pragmas. However, adapting it to target
platforms like GPUs or FPGAs requires a different set of transformations. For
example, by joining the two outer loops, to obtain a linear iteration space or
transforming the data layout of 2D arrays into 1D arrays, we obtain a sequential
code easier to map onto the two platforms mentioned before.

We will use five states (Listings 6–10) and two transformation rules to showcase
how these transformations can be executed. The first rule (R0) transforms a non-1D
array into a 1D array and the second rule (R1) collapses two nested for loops into
a single loop. Color codes are as in Fig. 1.

Listing 6 Initial code

//[3,0,0,0,0,0,1,0,0,1,1,3,2,4,0]
for (r = 0; r < N - K + 1; r++)
for (c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
sum += img_in[r+i][c+j] * kernel[i][j];

img_out[r+dead_rows][c+dead_cols] = (sum /
normal_factor);

}

Listing 7 Transformation step 1

// [3,0,0,0,0,0,1,0,0,1,1,2,2,4,0]
for (r = 0; r < N - K + 1; r++)
for (c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
sum +=
img_in[(r+i)*(N-K+1)+(c+j)]

* kernel[i][j];
img_out[r+dead_rows][c+dead_cols]

= (sum / normal_factor);
}

Listing 8 Transformation step 2

// [3,0,0,0,0,0,1,0,0,1,1,1,2,4,0]
for (r = 0; r < N - K + 1; r++)
for (c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
sum +=
img_in[(r+i)*(N-K+1)+(c+j)]

* kernel[i*K+j];
img_out[r+dead_rows][c+dead_cols]

= (sum / normal_factor);
}

Machine Learning-Driven Automatic Program Transformation 135

Listing 9 Transformation step 3

// [3,0,0,0,0,0,1,0,0,1,1,0,2,4,0]
for(r = 0; r < N - K + 1; r++)
for(c = 0; c < N - K + 1; c++) {
sum = 0;
for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
sum +=
img_in[(r+i)*(N-K+1)+(c+j)]

* kernel[i*K+j];
img_out[(r+dead_rows)*(N-K+1) +

(c+dead_cols)] =

(sum / normal_factor);
}

Listing 10 Transformation step 4

// [2,0,0,0,0,0,1,1,0,1,1,0,2,3,0]
for(z=0; z<(N-K+1)*(N-K+1); z++) {
int r = (z / (N - K + 1));
int c = (z % (N - K + 1));
sum = 0;
for (i = 0; i < K; i++)
for (j = 0; j < K; j++)
sum +=
img_in[(r+i)*(N-K+1)+(c+j)]

* kernel[i*K+j];
img_out[(r+dead_rows)*(N-K+1) +

(c+dead_cols)] =
(sum / normal_factor);

}

AM(R0) AM(R1) RS(Ci)
SM(A(C0)) 17.03718317 16.21544456 R0
SM(A(C1)) 17.25327145 16.80486418 R0
SM(A(C2)) 17.51541052 16.7189079 R0
SM(A(C3)) 16.72942327 17.78007298 R1
SM(A(C4)) 1. 1. -

Fig. 16 Values learned for Q table

Every listing shows, at the beginning, the feature vector marking the feature
component that changed w.r.t. the previous state. In Listings 7 to 9, rule R0 is
applied to Listing 6 to transform 2-D arrays img_in, kernel, and img_out (in
this order) into 1-D arrays. Listing 10 shows the result of applying rule R1, which
collapses the two outermost loops into one for loop keeping an iteration space with
the same number of iterations.

Figure 16 shows a table with the final state-action table Q for the transformation
sequence described before, obtained as the result of the learning process described
before. The table has a column for each applied rule and a row for each state
corresponding to the code versions in the learning sequence. The values in blue mark
the learned sequence (the highest value in each row), composed of three applications
of rule R0 and one application of rule R1. These values decrease from the state
SM.A.C3// down to the initial state SM.A.C0//. This decay behavior is caused by
the discount factor � . The values in Q for the final states are not updated by the
recursive expression in Fig. 13 and therefore the state SM.A.C4// keeps its initial
value.

We have seen the transformations applied to C code. However, since machine
learning methods work on program abstractions, the approach is very generic and
suitable for other imperative languages (e.g., FORTRAN). Applying our approach
to other languages would require changes to accommodate for language-specific
syntactic patterns. Nevertheless, the abstraction features described in Sect. 5.1
capture common aspects like control flow, data layout, data dependencies, etc. and
can therefore be applied to other imperative languages with little effort.

136 S. Tamarit et al.

6 Results

We will evaluate our proposal on a set of image processing-related benchmarks.
We will first show the non-monotonic behavior of non-functional properties for
good transformation sequences and, second, we will evaluate the effectiveness of
reinforcement learning to learn from these non-monotonic sequences and apply the
learned knowledge.

We will illustrate the non-monotonic behavior of performance characteristics
with four transformation sequences applied to code for the discrete cosine transform.
These four sequences finish by producing C code than can be straightforwardly
translated into OpenCL. We have measured the average execution time of 30 runs
for each intermediate state of each sequence and represented them in Fig. 17, where
the non-monotonic behavior is clear.

Next, we translated into OpenCL the code corresponding to the final states in
Fig. 17 and we compared its performance against the original C code (Fig. 18).
The fastest OpenCL version corresponds to sequence 4; however, Fig. 17 reveals
that the ready code for sequence 4 was actually the second slowest one on a
CPU. In fact, comparing Figs. 17 and 18, there does not seem to be any clear
correlation between the execution time of the ready code and the performance of
the corresponding OpenCL version. We hypothesize that the same would happen to
other non-functional properties. Based on these results we conclude that an effective
method to automatically generate high-performance code must discover (and learn)
uncorrelated relations between code behavior on CPUs and on target platforms. That
is one of the reasons to base our approach on reinforcement learning, since it is
driven by final performance measurements rather than on intermediate values.

Fig. 17 Execution times for transformation sequences (on a CPU)

Machine Learning-Driven Automatic Program Transformation 137

Fig. 18 Execution times for OpenCL versions (on a GPU)

To evaluate reinforcement learning as a technique to learn and guide our program
transformation component, we have selected a training set of four benchmarks
targeting OpenCL. The training set contains the image compression program
(compress), an image filter that separates an RGB image into different images for
each color channel (rgbFilter), an image edge detection routine using a Sobel filter
(edgeDetect), and code for image segmentation given a threshold value (threshold).

Once the training set is defined, the reinforcement learning process requires
tuning the learning rate (˛) and the discount factor (�). We experimentally adjusted
them to values leading to transformation sequences providing the fastest OpenCL
versions (with ˛ D 0:5 and � D 0:6). The reward values were chosen to reinforce
sequences leading to code with better performance. In our case we gave them a
reward 100 times bigger than that of the other sequences.

After training, three different applications were used as prediction set; these
were mechanically transformed according to the previously learned sequences and
finally translated into OpenCL. The prediction set shares code patterns with the
training set; this is aligned with the idea that transformation rules can be tailored
to the application domain. Independently, OpenCL versions of the prediction set
were manually written to compare automatically- and manually-generated code.
Figure 19 shows the results: the automatically generated code provides speedup
factors comparable to the manually coded versions. Although this preliminary
evaluation is based on a small sample, it shows that our approach is promising.

138 S. Tamarit et al.

Fig. 19 Speedups for training and prediction sets

7 Conclusions and Future Work

We have presented a transformation toolchain that uses guarded rewriting rules
and semantic information contained in annotations (which, together, make STML)
in the source code to adapt initial code to different platforms. An engine that
interprets and executes these rules plus a machine learning-based module that
decides which rules have to be executed have been implemented. A preliminary
evaluation with representative small to mid-sized examples suggests that this is a
promising technique that can generate code with good performance results—at least
on a par with what a seasoned human programmer can write.

As part of the plans for the future, we seek to improve STML and enhance and
adapt Cetus to obtain more advanced / specific properties. At the same time, we are
evaluating other analysis tools that can hopefully infer more precise information and
for a wider range of code. On the one hand, we are exploring tools like PLuTo [3],
PET [21], and the Clang / LLVM analyzers to dependency information in array-
based loops. On the other hand, we are studying tools such as VeriFast [7] that can
reason on dynamically-allocated mutable structures.

We plan to use additional benchmarks to train and evaluate the machine learning
tool; that will likely need to enrich the feature vector used to generate program
abstractions. We also plan to study the use of multi-objective rewards combining
different properties. This would make it possible to define transformation strategies
that, for example, could generate the code that consumes the least amount of energy
among those with the shortest execution time. Finally, we want to explore the use
of different learning rates for different states/transformation sequences in order to
converge faster towards transformed codes.

Machine Learning-Driven Automatic Program Transformation 139

Acknowledgements This work has been partially funded by EU FP7-ICT-2013.3.4 project
610686 POLCA, Comunidad de Madrid project S2013/ICE-2731 N-Greens Software, Generalitat
Valenciana grant APOSTD/2016/036 and MINECO Projects TIN2012-39391-C04-03/TIN2012-
39391-C04-04 StrongSoft, TIN2013-44742-C4-1-R CAVI-ROSE, and TIN2015-67522-C3-1-R
TRACES.

We are also grateful to the various members of the POLCA project consortium for many fruitful
discussions and feedback. We are in particular indebted to Jan Kuper, Lutz Schubert, Daniel Rubio,
Colin Glass, Lotfi Guedria, and Robert de Groote.

References

1. Agakov, F., et al.: Using machine learning to focus iterative optimization. In: Proceedings of
the International Symposium on Code Generation and Optimization, CGO ’06, pp. 295–305.
IEEE Computer Society, Washington, DC (2006). doi:10.1109/CGO.2006.37

2. Bagge, O.S., Kalleberg, K.T., Visser, E., Haveraaen, M.: Design of the CodeBoost transfor-
mation system for domain-specific optimisation of C++ programs. In: Third International
Workshop on Source Code Analysis and Manipulation (SCAM 2003), pp. 65–75. IEEE (2003).
doi:10.1109/SCAM.2003.1238032

3. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic
polyhedral parallelizer and locality optimizer. SIGPLAN Not. 43(6), 101–113 (2008).
doi:10.1145/1379022.1375595

4. Danalis, A., et al.: The Scalable Heterogeneous Computing (SHOC) benchmark suite. In:
Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing
Units, pp. 63–74. ACM (2010). doi:10.1145/1735688.1735702

5. Dave, C., Bae, H., Min, S., Lee, S., Eigenmann, R., Midkiff, S.P.: Cetus: a source-
to-source compiler infrastructure for multicores. IEEE Comput. 42(11), 36–42 (2009).
doi:10.1109/MC.2009.385

6. Huber, B.: The Language.C Package. https://hackage.haskell.org/package/language-c (2014)
7. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: Verifast: A

powerful, sound, predictable, fast verifier for C and Java. In: Proceedings of the Third
International Symposium on NASA Formal Methods, NFM 2011, Pasadena, CA, 18–20 April
2011, pp. 41–55 (2011). doi:10.1007/978-3-642-20398-5_4

8. Jacquard Computing Inc.: ROCCC 2.0 User’s Manual, revision 0.74 edn. (2012). http://roccc.
cs.ucr.edu/UserManual.pdf

9. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement learning: a survey. J. Artif. Intell.
Res. 4, 237–285 (1996). doi:10.1613/jair.301

10. Kuper, J., Schubert, L., Kempf, K., Glass, C., Bonilla, D.R., Carro, M.: Program transfor-
mations in the POLCA project. In: Giorgi, R., Silvano, C. (eds.) Proceedings of Design,
Automation and Test in Europe (2016)

11. Lammel, R., Jones, S.P., Magalhaes, J.P.: The SYB Package. https://hackage.haskell.org/
package/syb (2009)

12. Lindtjorn, O., Clapp, R.G., Pell, O., Fu, H., Flynn, M.J., Mencer, O.: Beyond traditional
microprocessors for geoscience high-performance computing applications. IEEE Micro 31(2),
41–49 (2011). doi:10.1109/MM.2011.17

13. Mariani, G., Palermo, G., Meeuws, R., Sima, V.M., Silvano, C., Bertels, K.: Druid: design-
ing reconfigurable architectures with decision-making support. In: 19th Asia and South
Pacific Design Automation Conference, Singapore, 20–23 January 2014, pp. 213–218 (2014).
doi:10.1109/ASPDAC.2014.6742892

14. Marsland, S.: Machine Learning: An Algorithmic Perspective, 1st edn. Chapman & Hall/CRC,
Boca Raton, FL (2009). doi:10.1111/j.1751-5823.2010.00118_11.x

https://hackage.haskell.org/package/language-c
http://roccc.cs.ucr.edu/UserManual.pdf
http://roccc.cs.ucr.edu/UserManual.pdf
https://hackage.haskell.org/package/syb
https://hackage.haskell.org/package/syb

140 S. Tamarit et al.

15. Maxeler Technologies: Max Compiler MPT. https://www.maxeler.com/solutions/low-latency/
maxcompilermpt/ (2016)

16. Pedregosa, F., et al.: Scikit-Learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–
2830 (2011)

17. Pekhimenko, G., Brown, A.: Efficient program compilation through machine learning tech-
niques. In: Naono, K., Teranishi, K., Cavazos, J., Suda, R. (eds.) Software Automatic Tuning,
pp. 335–351. Springer, New York (2010). doi:10.1007/978-1-4419-6935-4_19

18. Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., Rückstieß, T., Schmidhuber,
J.: PyBrain. J. Mach. Learn. Res. (2010). doi:10.1145/1756006.1756030

19. Schupp, S., Gregor, D., Musser, D., Liu, S.M.: Semantic and behavioral library transforma-
tions. Inf. Softw. Technol. 44(13), 797–810 (2002). doi:10.1016/S0950-5849(02)00122-2

20. Tamarit, S., Mariño, J., Vigueras, G., Carro, M.: Towards a semantics-aware code transfor-
mation toolchain for heterogeneous systems. In: Villanueva, A. (ed.) Proceedings of XIV
Jornadas sobre Programación y Lenguajes (PROLE 2016), pp. 17–32 (2016). http://hdl.handle.
net/11705/PROLE/2016/014

21. Verdoolaege, S., Grosser, T.: Polyhedral extraction tool. In: Second International Workshop
on Polyhedral Compilation Techniques (IMPACT’12), Paris, pp. 1–16 (2012). http://impact.
gforge.inria.fr/impact2012/workshop_IMPACT/verdoolaege.pdf

22. Visser, E.: Program transformation with Stratego/XT: rules, strategies, tools, and systems in
StrategoXT-0.9. In: Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific
Program Generation. Lecture Notes in Computer Science, vol. 3016, pp. 216–238. Springer
(2004). doi:10.1007/978-3-540-25935-0_13

https://www.maxeler.com/solutions/low-latency/maxcompilermpt/
https://www.maxeler.com/solutions/low-latency/maxcompilermpt/
http://hdl.handle.net/11705/PROLE/2016/014
http://hdl.handle.net/11705/PROLE/2016/014
http://impact.gforge.inria.fr/impact2012/workshop_IMPACT/verdoolaege.pdf
http://impact.gforge.inria.fr/impact2012/workshop_IMPACT/verdoolaege.pdf

	Preface
	Contents
	Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels
	1 Introduction
	1.1 Related Work
	1.2 Performance Models
	1.2.1 Roofline
	1.2.2 Execution-Cache-Memory

	2 Kerncraft
	2.1 Kernel Code
	2.2 Machine Description
	Compute Architecture
	Memory Hierarchy
	Benchmarks

	2.3 Models
	Roofline
	ECM
	Layer Conditions
	Benchmark

	2.4 Cache Miss Prediction
	2.4.1 Cache Simulation with Pycachesim
	2.4.2 Layer Conditions

	2.5 Underlying In-Core Execution Prediction

	3 Kerncraft Usage
	3.1 Single-Core Performance
	3.2 Single-Socket Scaling and Saturation Point
	3.3 Layer Conditions

	4 Future Work
	References

	Defining and Searching Communication Patterns in Event Graphs Using the g-Eclipse Trace Viewer Plugin
	1 Introduction
	2 Pattern Definition
	3 Pattern Search
	3.1 Pattern Description
	3.2 Execution of the Description
	3.3 Event Sequence Search
	Modified Karp-Rabin Algorithm

	3.4 Sequence Dependency Graph
	3.5 Merge of Potential Matches to Pattern Instances
	3.5.1 Constraints for Searching Patterns in Event Graphs
	3.5.2 Dynamic Backtracking

	4 g-Eclipse Trace Viewer Pattern Search Plugin
	5 Examples
	6 Future Work
	7 Conclusion
	References

	Monitoring Heterogeneous Applications with the OpenMP Tools Interface
	1 Introduction
	2 Related Work
	3 Integration of the OpenMP Tools Interface
	3.1 Integration into the Parallel Runtime
	3.2 Integration into the Monitoring Tool

	4 Experimental Setup
	5 Results
	5.1 OmpSs Runtime Improvements

	6 Conclusions
	References

	Extending the Functionality of Score-P Through Plugins: Interfaces and Use Cases
	1 Introduction and Related Work
	2 Score-P Overview
	3 The Metric Plugin Interface
	3.1 Metric Design Criteria
	3.2 Calls to Plugins
	3.3 Introduced Overhead
	3.4 Use Case: Uncore Counter
	3.5 Use Case: Watchpoints

	4 The Substrate Plugin Interface
	4.1 Substrates Design Criteria
	4.2 Calls to Plugins
	4.3 Introduced Overhead
	4.4 Use Case: Region-Based Energy Efficiency Tuning
	4.5 Use Case: Balancing-Based Energy Efficiency Tuning
	4.6 Use Case: Event Flow Graphs

	5 Conclusion and Further Work
	References

	Debugging Latent Synchronization Errors in MPI-3 One-Sided Communication
	1 Introduction
	2 MPI-3 One-Sided Communication Semantics
	2.1 Modeling Memory Consistency
	2.2 Consistency Properties

	3 Uncovering Latent Synchronization Errors
	3.1 Conceptual Overview
	3.2 Nasty-MPI Rescheduling Process
	3.2.1 Completion Stage
	3.2.2 Atomicity Stage
	3.2.3 Reordering Stage

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Nasty-MPI Test Cases
	4.3 Discussion

	5 Related Work
	6 Conclusion and Future Work
	References

	Trace-Based Detection of Lock Contentionin MPI One-Sided Communication
	1 Introduction
	2 Related Work
	3 Lock Contention
	4 Wait-State Detection
	4.1 The Active-Message Infrastructure
	4.2 Detecting Lock Contention

	5 Results
	5.1 Micro Benchmark
	5.2 SOR

	6 Conclusion and Outlook
	References

	Machine Learning-Driven Automatic Program Transformationto Increase Performance in Heterogeneous Architectures
	1 Introduction
	2 Related Work
	3 Source-to-Source Transformations
	3.1 STML Rules
	3.2 Inferring and Annotating Properties
	3.3 High-Level Annotations
	3.4 Implementation Notes

	4 Rule Selection
	5 Controlling the Transformation Process with Machine Learning
	5.1 Mapping Code to Abstractions
	5.2 Deciding Termination with Classification Trees
	5.3 Reinforcement Learning
	5.4 A Simple Example

	6 Results
	7 Conclusions and Future Work
	References

