
Chapter 8
Wireless Powered Sensor Networks

Wanchun Liu, Salman Durrani, and Xiangyun Zhou

8.1 Wireless Sensor Networks

The first wireless sensor network (WSN) was originally invented by the United
States Military in the 1950s to detect and track Soviet submarines [1]. The network,
which consisted of acoustic sensors, was distributed in the Atlantic and Pacific
oceans. In the 1980s, the United States Defense Advanced Research Projects
Agency (DARPA) started the distributed sensor network program which boosted the
civilian and scientific research on WSNs. Thanks to the advances in semiconductor,
networking and material science technologies in the past a few decades, the
ubiquitous deployment of large-scale WSNs has finally come true. The state-of-the-
art WSNs have many applications such as micro-climates measurement on farms,
habitat monitoring, volcano monitoring, structural monitoring, vehicle tracking,
human presence detection in homes and offices, electrical/gas/water metering.

For instance, consider the applications of WSNs in Australia as an example [2].
In South Australia, WSNs have been widely used to monitor the growing of grapes.
Sensors measure the temperature, light, wind speed, humidity, and soil moisture
and provide information for analysis, in order to optimize plant growth and prevent
crop loss. In Victoria, a wireless sensor network of 100 nodes was deployed over
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a 1 km square region of forest in the Dandenong Ranges. The network monitors in
real-time, a range of environmental parameters to improve situational awareness,
such as the event of bush fires. In Melbourne, in order to solve the noise pollution
problem, a WSN has been deployed across the central business district to measure
sound level. A noise map of the city is generated by the data collected from the
sensors, which is then used to manage noisy areas. In Sydney, WSNs are deployed
to detect and indicate where open parking is located in the city streets to reduce
traffic congestion.

The future Internet-of-Things (IoT), which is going to connect tens of billions
of low-complexity wireless devices such as sensors and wearable computing
devices, can be treated as a advanced evolution of WSN. The IoT will enable
new applications such as smart cities, home automation, and e-healthcare. One of
the most important implementation challenge of the IoT is that the finite battery
capacity sensor nodes have a limited lifetime and thus require regular battery
replacements [3]. This kind of battery replacement for massive number of IoT
nodes is difficult or even infeasible as many sensors are deployed in hazardous
environments or hidden in walls, furniture, and even in human bodies.

One immediate solution is to use large batteries for longer lifetimes, however,
the increased size, weight, and cost may not be affordable for the massive number
of sensors. Another solution is to adopt low power hardware, but at the cost of
lesser computation ability and lower transmission ranges. To effectively address
the finite node lifetime problem, an alternative technique, i.e., energy harvesting
powered WSN is the most promising solution.

8.2 Energy Harvesting Wireless Sensor Networks

Generally speaking, energy harvesting (EH) means harvesting energy from the
ambient environment such as solar, wind and thermal energy, or other energy
sources such as foot strike, finger strokes, and body heat, and converting it to
electrical power/energy. In theory, a sensor node can be powered perpetually as long
as the harvested energy source is continuously available. Figure 8.1 illustrates the
basic architecture of an EH WSN, which consists of multiple sensors and one sink.
The sensors are able to harvests energy from a solar panel and may also harvests
energy from other energy sources such as RF signals emitted by power beacons or
base stations (which will be discussed in the next subsection).

More precisely, an EH sensor consists of six modules which are illustrated in
Fig. 8.2: a micro-controller (not included in the figure for brevity), EH module,
battery, sensing modulo, transmitter(and receiver), and data buffer. The sensor first
needs to convert the ambient energy arrival into a direct current (DC) signal by
the EH module, which is then used to charge the battery of the sensor. Powered by
the harvested energy, the sensing module senses its relevant parameters and saves
the sensed data into the data buffer, and the transmitter transmits the sensed data to
the sink.
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Fig. 8.1 Illustration of EH WSN
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Fig. 8.2 Illustration of the components of a wireless sensor node

Table 8.1 Environmental
energy harvesting power
(reproduced from [5])

Source Average harvested energy

Solar panel 15 mW/cm2

Light (indoor) 10–100 �W/cm2

Airflow 0.4–1 mW/cm3

Vibrations 200–380 �W/cm3

Thermoelectric 40–60 �W/cm2

Piezoelectric 100–330 �W/cm3

The EH rate of different energy sources are listed in Table 8.1. It is straight-
forward to see that EH from a solar panel can provide the highest EH rate. In
addition, solar energy is the most easily accessible energy source and there are lots
of existing WSN applications based on it. For example, the outdoor multi-target
tracking networks [4], such as the zebra tracking and the turtle habitat monitoring
networks in the USA.
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8.2.1 WSN Power Consumptions

There are three main energy costs in wireless sensors, which are summarized
in [5] as

1. Energy cost of RF transmission and reception. This is the energy consumption of
the RF components of the transmitter (and also the receiver), such as the mixer
and the analog to digital converter (ADC).

2. Energy cost of information sensing and processing. This is the energy consump-
tion of the sensor chip and the ADC of the sensing module.

3. Energy cost of other basic processing while being active. This is the energy
consumption of the micro-controller of the wireless sensor node. The processing
unit, which is generally associated with a small storage unit, performs tasks,
processes data, and controls the functionality of other components in the sensor
node.

The power consumptions for processing, sensing, and transmission/reception for
most commonly used WSN nodes are summarized in Tables 8.2, 8.3, and 8.4,
respectively. In Table 8.2, we list two micro-controllers PXA271 and ATmega
128/L, which are used in WSN nodes Inote2 and MicaZ, respectively. We also
include three micro-controllers of TI’s low voltage low power series. Comparing
TI’s MSP430F2132 with ATmel’s ATmega 128/L, we see that the active power
consumption is significantly reduced. In Table 8.3, we list six sensor chips with
the functions of dual-axis accelerometer, three-axis accelerometer, pressure sensing,
light sensing, temperature sensing, and thermopile sensing. We see that the power
consumption of different types of sensors varies greatly. In Table 8.4, we list six
commonly used 2.4 GHz Low Power Transceiver for the IEEE 802.15.4 standard.
Comparing TI’s CC2502 with Freescale’s MC1321, it is easy to see that MC1321’s
power consumption is almost doubled compared to CC2502 in the receive mode,
while the transmit power consumption is almost the same.

We see that the energy cost of processing and sensing is much smaller compared
to the energy cost of transmission, and this is the reason why majority of the current
work on EH WSNs has considered only the energy cost of transmission, while
ignoring the energy cost of processing and sensing [6, 7].

However, the IoT will require various more complicated sensing functions, such
as charge coupled device (CCD) or complementary metal oxide semiconductor
(CMOS) image sensors that adopt array sensing, and high-rate and high-resolution
acoustic and seismic sensors [8] (and the references therein). The energy cost of
sensing in this scenario can actually be higher than the energy cost of transmis-
sion. Moreover, as an emerging low power communication technique, backscatter
communication [9], which does not have any active RF components and relies on
passive RF signal reflection, has an ultra low power consumption roughly within
a �W level when active for transmissions [10, 11]. Therefore, in these application
scenarios, power consumptions for sensing are comparable to or even much higher
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than that of transmission/reception. The first study is [12] that considers a WSN
energy allocation problem taken into account both the sensing and transmission
power consumptions.

8.2.2 EH Models

In order to evaluate the performance of EH-based communications, we need to
model the EH process first. Most of the studies have modeled EH processes as
a time-discrete process or a block-by-block process, due to the fact that sensors,
in practice, operate in a time-block-based manner, i.e., transmission and sensing
tasks are processed in one or several time blocks. In other words, we care about
how much energy is harvested in different EH time blocks, rather than the entire
time-continuous energy harvesting process within each of the block. In general,
the harvested energy in each EH block could either remain constant or change
from block to block. These EH fluctuations in time-domain are characterized by
the coherent time. The coherence time is the time interval (i.e., the number of EH
time blocks) within which the harvested energy does not change much.

There are three EH models listed below, as illustrated in Fig. 8.3.

1. Deterministic EH Model. Deterministic energy arrival is the most simple EH
model. It is a proper model when the coherence time of the EH process is
much larger than the duration of the entire communication session, such as
EH by solar panel on clear days. Since the deterministic EH model is very
simple, it is commonly adopted to evaluate the performance of EH-based WSN
communications [13–15].

2. Non-Causal EH Model. Non-causal EH model is an ideal EH model that the
future EH process is entirely known at the beginning of transmission. If the
non-causal EH information is known at a node, it can adopt the optimal energy
scheduling strategy and achieves the maximum communication performance.
Therefore, non-causal EH model is useful to provide a performance upper bound.

3. Random EH Models. The most popular EH model in the recent years is the
random EH model in which the EH process is regarded as random processes.
In general, random EH process can be treated as a casual EH model. They are
divided into two categories:

Fig. 8.3 Classification of EH
models

EH Models

Deterministic

Non-Causal

Random

Correlated

Independent
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a. Correlated EH process is an EH process that the harvested energy in the
current time block, which is a random variable, is related to the harvested
energy in the previous time blocks, i.e., a Markov EH model [6, 7, 16]. For
example, in [17, 18], the EH process is modeled as an ON–OFF two-state a
first-order discrete-time Markov process, where the harvested energy during
an ON block is constant while there is no energy harvested in OFF blocks.

b. Independent EH process is an EH process that the harvested energy in the
current time block is independent to the harvested energy in the previous
time blocks, i.e., an i.i.d. EH model. For the i.i.d. energy arrival model,
the available harvested energy in each time block follows i.i.d. continuous
distribution [19–21]. In [21, 22], Bernoulli i.i.d. discrete EH process is
considered.

8.2.3 Design and Performance Analysis

Most of the EH WSN design problems can be treated as energy/power schedul-
ing/management problems under dynamic EH processes. If the allocated power
usage in one time block is very high, an energy outage may happen in the next
few time blocks in which the EH rate is very low and cannot support the relevant
power consumptions, and thus causes performance losses. While if the allocated
power usage is very low in one time block, an energy overflow may happen in the
next a few time blocks in which the EH rate is very high and a finite battery cannot
store all the available energy, and thus causes a waste of energy. Therefore, it is very
important to carefully design the power scheduling protocols.

The power scheduling problem has basically two scenarios: offline and online,
corresponding to non-causal and causal EH processes, respectively. The design
targets of the power scheduling problems are mostly focused on average trans-
mission throughput maximization during a certain time duration and transmission
completion time minimization, and average delay minimization, such as [23–25],
respectively. The required constraints of the optimization problems include the
energy causality, i.e., not using energy in the future, and the battery capacity.

For the offline optimization problems, where the full knowledge of both the
energy state information and the transmission channel state information are known
before the beginning of transmission, when both the object function is a concave
and the constraints are convex, the optimal power scheduling strategy can be
found by solving Karush–Kuhn–Tucker conditions [23]. However, most of the EH
power scheduling problems are not convex, and in this case, optimal (deterministic)
dynamic programming policy and greedy policy are helpful [26]. The approach in
the optimal dynamic programming policy is to break an optimization problem into
sub-problems and then recursively find the optimal solutions to the sub-problems.
The greedy policy also first breaks down the problem into sub-problems, but then it
simply picks optimal choices for each sub-problem as the solution. However, such
locally optimal (i.e., greedy) choices may result in a bad global solution. On the
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other hand, the greedy policy has a much lower computation and space complexity
compared to the optimal dynamic programming policy and usually provides an
acceptable sub-optimal solution in some scenarios.

For the online optimization problems, the optimization only accounts for partial
or full statistical knowledge of the EH and transmission channel fading dynamic
processes, and the problem is usually solved as an online optimal power control
problem. The most commonly used method is the stochastic dynamic program-
ming [26, 27]. Formally, the stochastic dynamic policy has the same components
as the deterministic one. The only difference is that for the stochastic dynamic
programming, when evaluating each sub-problem, the long-term effect caused by
the adopted strategy should be taken into account.

8.3 Wireless Power Transfer and Wireless Sensor Networks

Leveraging the far-field radiative properties of electromagnetic waves, wireless
receivers are able to harvest energy remotely from RF signals radiated by RF signal
emitters. This simple invention has been known long (a century ago) before the
recent excitement about WPT. WPT techniques are considered popular because of
the following two properties:

1. Wireless, which enables conveniently powering large-scale ubiquitous nodes
without battery replacements or specific conventional EH sources, particularly
for implanted in-body sensors. In other words, WPT technologies have the
potential to make people’s life truly wire free.

2. RF signals carry both energy and information at the same time, which enables
wireless power and information transfer at the same time.

Compared to conventional EH techniques, WPT has another two advantages:

1. WPT is more controllable and does not rely on environmental EH sources.
2. RF EH devices, i.e., rectifier-based simple passive components, are suitable for

large-scale WSNs and IoT nodes. This is in contrast to: solar-energy-based node
is equipped with heavy solar panel, vibration-energy-based node is equipped
with relatively complex mechanical construction, thermal-energy-based node is
equipped with relatively large area thermoelectric generators, wind-energy-based
node is equipped with big size wind turbine.

A summary of some of the industry studies about the available harvested
RF power is listed in Table 8.5. Compared with the EH rate provided by the
conventional ambient EH methods shown in Table 8.1, we see that the EH rate of the
WPT techniques in general is much lower and decays rapidly with the distance with
the RF signal emitter. This is the main problem of WPT. However, for low power
WSNs, WPT is viable and an attractive solution.
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Table 8.5 Wireless power transfer experimental data [28]

Amount of energy
Source Source power Distance harvested (�W)

Isotropic RF transmitter 4 W 15 m 5.5

Isotropic RF transmitter 1.78 W 25 m 2.3

Isotropic RF transmitter 1.78 W 27 m 2

TX91501 powercaster transmitter 3 W 5 m 189

TX91501 powercaster transmitter 3 W 11 m 1

Tokyo TV tower 48 kW 6.3 km 0.1–0.25

KING-TV tower (Seattle) 960 kW 4.1 km 60

KING-TV tower (Seattle) 960 kW 10.4 km �15.8

Diode LPF

Battery

Rectifier

RF signal DC signal

Fig. 8.4 Illustration of an RF-EH device

The architecture of a WPT-based wireless sensor is almost the same with an EH
wireless sensor, as illustrated in Fig. 8.2. The only difference is that the EH module
is replaced with an RF-DC converter, which is further discussed below.

8.3.1 RF-DC Converter

As mentioned above, an RF-EH device converting an RF signal to DC signal via a
rectifier architecture is quite simple. It consists of a Schottky diode and a low pass
filter (LPF), as illustrated in Fig. 8.4. To accurately measure how much available RF
power captured by the antenna can be harvested, a proper model is required for the
non-linear power conversion property introduced by the Schottky diode.

The I-V curve of a Schottky diode is illustrated in Fig. 8.5a, and it shows that
only the positive part of the receive signal that is beyond a certain threshold can
be harvested. The harvested power increases monotonically from zero when the
receive signal power increases and is larger than the threshold. More precisely, the
non-truncated part of the non-linear model can be written as

I D Is

�
e�V � 1

�
; (8.1)

where Is is the saturation current, V is the voltage drop across the diode, and � is the
reciprocal of the thermal voltage.

Although the model (8.1) is precise, it is not tractable for general analysis.
In [29], the authors take a Taylor expansion of the exponential function in (8.1), and
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Fig. 8.5 Illustration of the
models for RF-DC converter.
(a) Accurate non-linear
behavior of the Schottky
diode. (b) Near-practical
approximation. (c) Ideal
approximation

I

V

I = Is eγV − 1
)

Is: saturation current
γ: reciprocal of the

thermal voltage

PRF

PDC

Pth0 PRF

PDC

Pth0

(a)

(b) (c)

the optimal waveform design is considered based on the simplified model. In [30],
in order to better capture the truncated property of the Schottky diode, a non-linear
model is considered as

PDC D M

1 C exp
��a .PRF � b/

� ; (8.2)

where M, a, b are the constant diode parameters, and PRF and PDC are the input RF
power and the output DC power, respectively. Then an optimal resource allocation
problem is considered for a multi-user simultaneous wireless information and power
transfer system based on the non-linear model.

There are another two commonly considered simplified models for RF-DC power
conversion, as illustrated in Fig. 8.5a,b.

1. For the near-practical model (Fig. 8.5b), the converted DC power is assumed to
increase linearly with the received RF power only if it passes a threshold [31, 32].

2. For the ideal model (Fig. 8.5c), the converted DC power is assumed to be
proportional to the RF power only if it is beyond the threshold [33, 34].
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8.3.2 Network Model for WPT

There are three network models for WPT.

1. WPT only network, where energy transfer is in the downlink. In [35], the authors
proposed a power beacon-based hybrid cellular network. In the network, mobile
users are wirelessly powered by randomly deployed power beacons, which
enables mobile users to have a much longer lifetime without battery replacement.

Different scenarios such as single-/multi-user, relays, multi-carrier have been
considered with WPT [29, 33, 36–41].

In [33], wirelessly power transfer from a multi-antenna PB to single/multiple
energy receivers is studied, where the optimal WPT strategy are obtained. In [36],
a system consisting of a single power beacon and multiple energy receivers
was considered, where the energy receiver can only do one-bit feedback. The
optimal channel learning algorithm was also proposed for such a WPT system.
In [37], the distributed WPT system with limited-feedback was studied, where a
distributed channel learning method was proposed. In [38], WPT-based sensor
networks were considered, where a large-scale sensor network is powered
by randomly deployed power beacons. The sensor-active probability was also
studied.

In [39], the multiple power beacon placement problem was considered.
The location of the power beacons was optimized which maximized the WPT
powered communication network. In [40] and [41], WPT-based single- and
bi-directional relay networks were considered, respectively, where the relay
is wirelessly powered by the transmitter for relaying the information to the
destination. The maximal throughput of such a relay networks was derived.

In [29], WPT with multi-carrier waveform was considered, where waveform
optimization method was proposed.

2. Simultaneous wireless information and power transfer (SWIPT) network, where
energy and information are transferred simultaneously in the downlink by
leveraging the property that RF signal carries both information and energy.
In [33], the authors first proposed a practical SWIPT system, where the receiver
can obtain information and energy simultaneously from the received signal by
using a time-switching or power-splitting method, as illustrated in Fig. 8.6.

For the time-switching-based SWIPT receiver, the RF antenna periodically
switches between an information receiver and an energy receiver for information
detection and energy harvesting, respectively. In this way, the SWIPT receiver is
able to detect information for a certain percentage of time, and harvest energy in
the rest of the time. For the power-splitting-based SWIPT receiver, the received
RF signal is first split into two streams by a passive power splitter, and then one
signal is sent to the information receiver and the other signal is sent to the energy
receiver.

SWIPT for a multi(MISO) broadcast channel was investigated in [42]. SWIPT
in OFDM-based systems were further investigated in [43, 44]. Such systems
are important, since 4G systems are based on OFDM. In [43], downlink
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Fig. 8.6 SWIPT receivers.
(a) Time-switching receiver.
(b) Power-splitting receiver
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OFDM-SWIPT in a multi-user system was studied, where the optimal resource
allocation problem was solved. In [44], the resource allocation problem of an
OFDM cellular system, which performs downlink SWIPT and uplink informa-
tion transmission, was comprehensively studied.

3. Wireless powered communication network (WPCN), where energy is transferred
in the downlink and information is transferred in the uplink. In [45], the authors
first proposed the WPCN network model. In this network, mobile users harvest
RF energy emitted by a base station, and transmit information to the base
station when it has harvested enough energy. The WPCN is particularly useful in
wireless sensor networks, since wireless sensors usually have very low downlink
data rate but high uplink data rate, e.g., updating the sensed information to
the sink.

8.3.3 WPT-Based WSN Transmission Protocols

Unlike traditional battery-operated communications, the available harvested RF
power to the wirelessly powered nodes is time-variant due to the WPT channel
fading. To smooth out the WPT channel randomness effect, the harvested RF energy
is stored in an energy buffer, i.e., a battery or a super-capacitor, and there are two
kinds of WSN transmission protocols that rely on the stored battery energy:

1. Harvest-use protocol, where the harvested energy in one time block is assumed to
be used entirely within the same block. The harvest-use protocol can be adopted
by WSNs with small battery storage [19, 33, 34, 45, 46], where the harvested
energy should be used immediately, otherwise, the battery energy overflow
occurs and leads to communication performance losses. On the other hand, the
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performance analysis of harvest-use protocol-based WSNs is often tractable,
which is hence adopted by many research studies. Therefore, the performance
of a harvest-use protocol-based WSN can be treated as a lower bound of that
obtained by an optimal transmission protocol.

2. Harvest-store-use protocol, where the harvested energy in one time block can
be stored for future use. Since the harvested energy does not need to be
consumed entirely, the harvest-store-use protocol provides a better transmission
performance compared with the harvest-use protocol. The harvest-store-use
protocol is adopted by WSNs with large battery storage [47–49]. In this case, the
sensors do not need to use all the available energy at each time block, and thus can
better utilize the available harvested energy and schedule its power consumption
to improve the communication performance. In theory, in order to achieve a
globally optimal performance of transmission, a sensor can adaptively change
the transmit power in each time block depending on the current energy storage
and the length of data queue. However, most of the WPT-based WSNs are simple
devices, which require low-complexity protocols that do not allow adaptively
changing the transmit power. Therefore, the widely adopted harvest-store-use
protocol is a threshold-based protocol, which transmits with a constant power
within a time block as long as there is sufficient energy for the transmission [47–
49].

8.3.4 Performance Analysis

There is one important metric for each of the WPT network, SWIPT network, and
WPCN, as shown below.

WPT efficiency is considered in WPT only networks, which is defined as

�WPT D Ptx

Prx
; (8.3)

where Ptx and Prx are the transmit signal power and the harvested signal power at
the transmitter and the receiver, respectively. WPT efficiently indicates the quality
of a WPT protocol design, such as channel training-based energy transfer [50, 51],
and multi-antenna energy beamforming [36, 37, 52].

Rate-energy region is considered in SWIPT networks, which is the boundary
of all the achievable tradeoff for maximal information rate versus energy transfer
[33, 34]. A large rate-energy region means the SWIPT network is more capable for
simultaneously harvesting RF energy and detecting information, or the performance
losses on information detection due to the RF energy harvesting is smaller.

Uplink throughput is the key metric for a WPCN. WPCNs encounter a doubly
near-far problem due to the fact that a far sensor from the sink, which receives
less wireless energy than a nearer sensor in the downlink, has to transmit with
more power in the uplink to achieve the same reliable information transmission
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rate [45]. Therefore, in order to achieve a better uplink throughput of a WSN, we
need to properly design the downlink WPT and the uplink information transmission
protocols. A time-division-multiple-access-based uplink–downlink user scheduling
is proposed in [45].

8.4 Design Challenges

8.4.1 Sensor Power Consumption

Besides modeling the EH process, to accurately analyze the EH powered sensor
behavior, we need an accurate model for sensor’s energy costs. As discussed in
the previous section, there are three main energy costs for a wireless sensors, and
particularly, the energy costs of sensing and transmission/reception dominate the
overall energy consumption.

Therefore, for a status monitoring WSN, we need to taken into account both the
energy costs of sensing and transmission when analyze the performance of status
monitoring.

8.4.2 The Age of Information

The recent internet-of-things brings ubiquitous wireless sensors together, which
monitor environmental data and update them to the users. In this status monitoring
application, we need the sensors to update their monitored status as timely as
possible. The conventional metric to measure the timeliness of a WSN is update
cycle, which measures the time elapsed from one status update at the sink to the
next [48]. Update cycle captures how frequently the status information is updated
at the user. For example, if the average update cycle of a WSN is 10 s, then we can
expect that the status updates successfully at the user every 10 s. However, from
the 10 s update cycle, we cannot see when the status was originally generated. For
example, when a successful status is received/updated at the user, the status could
be collected 9 s ago, which is not a fresh status, or 1 s ago, which is a fresh status.
Measuring the freshness of the updated status has long been desirable, but it is only
recently that it have been seriously considered and modeled in [53–55], and named
as update age.

Since both the update frequency and freshness are related to determine how
timely a status monitoring WSN is, we need both the update cycle and update age
to accurately measure the timeliness of the status monitoring WSN. It was first
proposed in a recent study [48] that using update cycle together with update age
brings a comprehensive measure of the timeliness of a status monitoring WSN. The
idea is simple that since update age and update cycle are complementary to each
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other, i.e., update cycle does not reflect the update freshness at the sink whereas
update age does not reflect the update frequency, the best way to evaluate the
performance of a status monitoring WSN is to jointly utilize both of them.

8.5 WPT-WSN: Delay Analysis Considering Energy Costs
of Sensing and Transmission

8.5.1 System Model

We consider a status monitoring scenario where a wirelessly powered sensor
periodically transmits its sensed status information to a sink, as illustrated in
Fig. 8.1. The sensor is able to harvest RF energy from a nearby power beacon.
To complete the status monitoring task, the sensor has two main functions, i.e.,
sensing and transmission, each having individual energy cost. Before performing
either sensing or transmission, the sensor first needs to spend a certain amount of
time on EH. The harvested energy is stored in a half-duplex battery, which cannot
charge and discharge at the same time [19]. Because the commercial battery capacity
typically ranges from joules to thousands of joules [4], and the available harvested
energy per second is only a few millijoules, as shown in Table 8.5, we assume that
the battery has a sufficient capacity such that the amount of energy stored in the
battery never reaches its maximum capacity.

We adopt a block-wise operation following the state-of-the-art EH sensor design
practice [56]. Specifically, we assume that one sensing operation or one transmission
is performed in one time block of duration T seconds, and sensing and transmission
cannot occur within a same time block. In general, a sensor may spend different
amounts of time on one sensing operation and one packet transmission [8]. Thus,
in future study, the assumed protocol and analysis can be generalized to different
sensing and transmission time durations. At the beginning of each block, the sensor
makes a decision to perform either energy harvesting, sensing, or transmission
depending on the current battery energy storage. Before the discussion of such
sensing and transmission protocol, firstly, we need the following definitions of three
types of time blocks:

1. Energy harvesting block (EHB): The sensor harvests RF energy and stores
the energy in its battery. We consider that the wireless channel between the
power beacon and the sensor suffers from independent and identically distributed
(i.i.d.) block Rayleigh fading. In general, Rayleigh fading channel is commonly
considered in the scenario where there is no line-of-sight, and there are sufficient
scatters between the transmitter and the receiver. Note that if there is line-of-sight
between the power beacon and the sensor, Rician or Nakagami fading channel
model should be adopted, which is further studied in [48].
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With the i.i.d. Rayleigh fading channel assumption for the WPT link, the
harvested energy in each EHB follows the same exponential distribution and
changes independently from block to block. Thus, we refer to the energy arrival
process as exponential energy arrival process. The average EH rate is � Joules
per block.

2. Sensing Block (SB): The sensor samples the environmental status information,
and then processes and packs the sensed information into a data packet. The
energy cost in a SB is denoted by ESB Joules.

3. Transmission Block (TB): The sensor transmits the data packet, which was
generated from the last sensing operation, to the sink with energy cost ETB Joules,
i.e., the transmit power is PTB D ETB=T . To indicate successful packet
reception, the sink sends a one-bit feedback signal to the sensor after each
TB. Note that the time and energy consumed for receiving the feedback signal
at the sensor is negligible as compared to its packet transmission time. If the
transmission is successful, we have a successful transmission block (STB);
otherwise, we have a failed transmission block (FTB).

The transmission outage, i.e., the probability of a TB being a FTB, is denoted
by Pout. We assume that a transmission outage from the sensor to the sink occurs
when the SNR at the sink � is lower than SNR threshold �0 D 40 dB [57]. The
outage probability is

Pout D Pr f� < �0g : (8.4)

The SNR at the sink is defined as [58]

� D jhj2Ptx

� d�	2
; (8.5)

where h is the sensor-sink transmission channel fading gain, � is a path loss
factor which is assumed to be one [31] for simplicity, 	2 is the noise power at
the sink, d is the distance between the sensor and the sink, and � is the path loss
exponent.

Also we assume that h is block-wise Rayleigh fading. Using (8.5), the
transmission outage probability can be written as

Pout D 1 � exp

 
�d�	2�0

Ptx

!
: (8.6)

8.5.2 Sensing and Transmission Protocol

The time-varying EH process results in randomness in the delay for performing
sensing and transmission. To properly design a sensing and transmission protocol
for a status monitoring WSN, two issues need to be considered.
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The first issue is about when to perform sensing. Considering the energy cost of
sensing, it is necessary to harvest sufficient energy, ESB, before a sensing operation.
However, it is not a good choice to perform sensing as soon as the harvested energy
reaches ESB. Because there may not be sufficient energy left for transmission after
the sensing operation, a certain amount of time for EH is required to prepare for
transmission which results in unnecessary delay and makes the sensed status less
timely. Therefore, to avoid such delays and make the update timely, we define the
condition for the sensing operation to be when the harvested energy in the battery
exceeds ESB C ETB. In this way, a transmission of sensed status information occurs
immediately after the sensing operation (i.e., a SB is always followed by a TB).

The second issue is about whether we need a retransmission when a failed
transmission (i.e., a FTB) occurs. Considering the energy cost of sensing, it is
necessary to perform retransmission(s) if the first TB after a SB is failed, rather
than drop the packet and perform the next sensing operation. However, an arbitrary
number of retransmissions that make a status-information-containing packet to be
eventually received by the sink should be prevented. This is because a very long
retransmission process would make the updated status very untimely at the sink.
Therefore, we impose a time window for retransmissions to control the delay caused
by retransmissions. We denote W as the maximum number of time blocks after a SB,
within which transmission and retransmission(s) of the currently sensed information
can take place. Specifically, the time window for retransmissions is W � 1 time
blocks, due to the fact that the first transmission always happens immediately after
the SB.

We present the sensing and transmission protocol as follows, and the flowchart
of the protocol is illustrated in Fig. 8.7.

(a) First, several EHBs are required to harvest enough energy, ESB C ETB, and then
a SB and a TB occur immediately.

(b) If the TB is a STB, i.e., the transmission in the TB is successful, in order to
prepare for the next sensing period, the sensor attempts to harvest energy, which
may take several EHBs, until the battery energy exceeds ESB C ETB again.

(c) If the TB is a FTB, i.e., the transmission in the TB fails, in order to prepare for a
retransmission, the sensor has to go back to harvesting energy, which may take
several EHBs, until the battery energy exceeds ETB.

(d) Retransmission may occur several times until either one of the two conditions
is met: (1) The sensed information is successfully transmitted to the sink, i.e., a
STB finally occurs, or (2) the time window for retransmissions W �1 is reached
but no STB occurs. Then, the data packet at the sensor is dropped, no matter
successful retransmission or not, and the sensor goes back to harvesting energy
for a new sensing operation.

An illustration of the sensing and transmission protocol with W D 6 is shown in
Fig. 8.8. From the example, we see that two EHB occur first, after which the battery
energy exceeds ESB C ETB, and then a SB together with a TB occurs. Although
the TB is a FTB, after two retransmissions, a STB occurs. Then, after three EH
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blocks, a new SB occurs, after which, however, a STB never occurs within 6 time
blocks. Therefore, the sensed packet has to be dropped. In other words, the sensed
information in the second SB is not able to be received by the sink.

The time indices shown in Fig. 8.8 will be defined in the following section.

8.5.3 Delay Related Metrics

As discussed in Sect. 8.4.2, to completely capture the timeliness of the status
monitoring WSN, we need both the update cycle and the update age metrics.
Recall that update age measures the time taken from when information is obtained
by the sensor to when the sensed information is successfully transmitted to the
sink, i.e., how timely the updated information at the sink is, and update cycle
measures the time duration between two consecutive successful transmissions, i.e.,
how frequently the information at the sink is updated. Thus, both the metrics are
important for measuring the timeliness of the status monitoring WSN.

As shown in Fig. 8.8, for the ease of describing the two metrics, tSTB;j is used to
denote the block index for the jth STB during the entire sensing and transmission
operation. Since each STB corresponds to a SB that generates the status information
contained in the STB, tSB;j is used to denote the block index for the SB in which the
sensed information is transmitted in the jth STB.

The two delay related metrics, expressed in terms of the number of time blocks,
are formally defined in the following.

Definition 1 (Update Age). For the jth STB, the update age is given by the number
of time blocks from tSB;j to tSTB;j (shown in Fig. 8.8). The jth update age is

TUA;j D tSTB;j � tSB;j; j D 1; 2; 3; : : : : (8.7)

Remark 1. Conditioned on a successful status-information-containing packet
reception at the sink, the update age measures the time elapsed from the generation
of the packet at the sensor to the successful reception of the packet at the sink.
A larger update age implies that a more outdated status is received by the sink.
However, the update age does not capture the delay that caused by dropped data
packets, and hence is not able to reflect the update frequency at the sink.

Definition 2 (Update Cycle). For the jth STB, the update cycle is given by the
number of time blocks from tSTB;j�1 to tSTB;j (shown in Fig. 8.8). The jth update
cycle is

TUC;j D tSTB;jC1 � tSTB;j; j D 1; 2; 3; : : : : (8.8)

Remark 2. The update cycle measures the time elapsed from one successful status
update at the sink to the next, which takes into account the delay due to dropped
data packets. However, the update cycle is not able to measure the update freshness
at the sink, i.e., the time duration from the generation of a packet to its successful
reception at the sink.



262 W. Liu et al.

Therefore, update age and update cycle complement each other, and they jointly
capture the update freshness and frequency. Using both the metrics provides
comprehensive measure of the performance of a status monitoring WSN.

8.5.3.1 Modeling Update Age and Update Cycle as i.i.d. Random
Variables

To study the steady-state behavior of the update age and the update cycle during the
sensing and transmission process, we need the following lemma first.

Lemma 1. For an exponential energy arrival process, the steady-state distribution
of the energy level after each TB has pdf

g ."/ D 1

�
e� "

� ; (8.9)

where � is the average harvested energy.

Proof. This proof is identical to [59, Lemma 1]. We repeat some of the details here
for sake of completeness.

Because the harvested energy in each EHB is an exponentially distributed
random variable with parameter �, as we have mentioned in Sect. 8.5.1, the energy
accumulation process by consecutive EHBs can be treated as a Poisson process [60].
Using the memorylessness property of the Poisson process [60, p. 134], conditioned
on that the available energy is higher than any given threshold value, the amount of
energy exceeding that threshold has the same distribution with the harvested energy
in each time block, i.e., Eq. (8.9). This completes the proof of Lemma 1.

From the definitions of the update age and the update cycle, TUA;j and TUC;j

only depend on (1) the available energy after the first TB following a SB, and
(2) the random EH process after the TB. Since the steady-state distribution after
each TB is the same (i.e., Lemma 1) and the EH process is a steady-state process
(i.e., the i.i.d. exponential energy arrival process), both TUA;j and TUC;j have steady-
state distributions. For convenience, we remove subscript j for TUA and TUC in (8.7)
and (8.8), respectively.

8.5.4 Delay Analysis

We present the analytical results of the update age and the update cycle in this
section.
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8.5.4.1 Update Age and Update Cycle

Theorem 1. For an exponential energy arrival process, average update age is
given by

NTUA D .1 � Pout/

Psuc

0
@1 C

WX
lD2

l
lX

nD2

.Pout/
n�1 Pois

�
l � n; .n � 1/ETB=�

�
1
A (8.10)

where

Psuc D 1 � Pout C .1 � Pout/
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nD2
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n�1 Pois

�
l � n; .n � 1/ETB=�

�
: (8.11)

From Theorem 1, the average update age is independent with the energy cost of
sensing.

Theorem 2. For an exponential energy arrival process, average update cycle is
given by

NTUC D 1 � Psuc

Psuc

�
ESB

�
C NV C W C 1

�
C ESB C ETB

�
C NTUA C 1; (8.12)

where NTUA and Psuc are given in (8.10) and (8.11), and
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Proof. See Appendix F of [48].

From Theorem 2, the average update cycle depends on both the energy cost of
sensing and transmission.
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8.5.4.2 Asymptotic Update Age and Update Cycle

We also present the asymptotic update age and update cycle when the retransmission
window W � 1 is sufficiently large.

Corollary 1. For an exponential energy arrival process, NTUA increases with W, and
as W gets large, the asymptotic NTUA is given by

lim
W!1

NTUA D 1 C Pout

1 � Pout

�
ETB

�
C 1

�
: (8.15)

Proof. See Appendix G of [48].

Corollary 2. For an exponential energy arrival process, NTUC decreases with W,
and as W grows large, the asymptotic NTUC is given by

lim
W!1

NTUC D 2 C ESB C ETB

�
C Pout

1 � Pout

�
ETB

�
C 1

�
: (8.16)

Proof. See Appendix G of [48].

8.5.4.3 Numerical Results

In this section, we present numerical results for the update age and update cycle.
We set the distance between the sensor and the sink as d D 90 m. This is because
the typical outdoor range for a wireless sensor is from 75 to 100 m [61]. Also we
set the path loss exponent for the sensor-sink transmission link as � D 3 [31]. The
noise power at the sink is 	2 D �100 dBm [40]. The duration of a time block is
T D 5 ms[14]. The average harvested power is 10 mW [62], i.e., average harvested
energy per time block, � D 50 �J. The RF-DC sensitivity level is �20 dBm [28].
Unless otherwise stated, (1) we set the power consumption in each TB, PTB D
40 mW, i.e., ETB D 200 �J. Note that this includes RF circuit consumption (main
consumption) and the actual RF transmit power Ptx D �5 dBm1 and (2) we set the
power consumption in each SB as PSB D 45 mW[8], i.e., ESB D 225 �J. In the
following calculations, power and SNR related quantities use a linear scale.

Assuming the SNR threshold � D 40 dB [57], we apply (8.6) to Theorems 1–2
and Corollaries 1–2, we compute the expressions of average and the asymptotic
values of TUA and TUC.

Pmfs of Update Age and Update Cycle Figure 8.9 plots the pmfs of update cycle,
TUC, and update age, TUA, for the exponential energy arrival process, respectively.
The results are plotted using Monte Carlo simulation method with 109 points. We

1The values we chose for PTB and Ptx are typical for commercial sensor platforms, such as
MICAz [61].
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set W D 40, i.e., the time window for retransmissions is W � 1 D 39 time blocks.
We see that the pmfs in general cannot be modeled by commonly used pmfs, such
as Poison distribution.

In the following figures, i.e., Figs. 8.7 and 8.8, we only present the numerical
results for the average update age and the average update cycle, which have been
presented in Corollaries 1–2.

Average Update Age and Average Update Cycle Figure 8.10 shows the average
update age, NTUA, and the average update cycle, NTUC, for different W, i.e., different
retransmission window, W � 1. The results are generated using Theorems 1 and 2
and Corollaries 1 and 2, respectively. We can see that as the time window for
retransmissions increases, the average update age increases monotonically and
approaches its asymptotic value given by Corollary 1, while the average update
cycle decreases monotonically and approaches its analytical lower bound given by
Corollary 2. Also we see that with a larger retransmission window W�1, the updated
status is in general less fresh, but the update frequency is higher.

Effect of Energy Cost of Sensing on Average Update Cycle We illustrate the
effect of energy cost of sensing on average update cycle. Figure 8.11 shows the
average update age, NTUA, and the average update cycle, NTUC, versus W, with different
energy cost of sensing, PSBT . The results are generated using Theorems 1 and 2.
The figure shows that the average update age increases with W, which is consistent
with Fig. 8.10, but it does not change with the energy cost of sensing, i.e., the update
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age does not rely on the energy cost of sensing. This is because the update age is
the delay after a SB, and is independent with the energy cost of sensing. We can
see that for a fixed value of W, e.g., W D 50, the average update cycle increases
as the sensing power consumption increases from 0 to 45 mW, i.e., the higher the
energy cost of sensing the larger update cycle. This is because during an update
cycle several SB occurs, and the higher energy cost of sensing the more EHBs within
the update cycle. We can see that NTUC is almost constant around the value of 52 and
does not vary much with W, i.e., the effect retransmission window on the average
update cycle is limited when the energy cost of sensing is ignored.

Summary

In this chapter, we have discussed the basic architecture of EH-based WSNs and
wireless power transfer-based WSNs. We have highlighted the advantage and
suitability of wireless power transfer-based WSNs, and discussed the associated
design challenges. We have presented a novel solution to one of the challenges,
related to the timeliness of the status monitoring WSNs, i.e., update cycle and update
age. Moreover, we have presented a framework of analysis for both the update cycle
and the update age, which takes into account both the energy cost of sensing and
transmission.
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