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6.1 Introduction

One of the key trends over the past half a century has been that technology is
getting smaller, faster, cheaper, and more powerful every day. In terms of computing
technology, the key components have become 100-times smaller each decade. For
example, the ENIAC computer (1956) used to fill a warehouse, and its equivalent
compute power now sits inside a musical greeting card at the price of $4. Standard
smartphones today have more computing power than the personal computers (PCs)
of a decade ago. Today, this miniaturization trend continues in the form of personal
wearables that can perform many of the functions of smartphones and pads of
yesteryear. Smaller devices not only enable a greater number of them in any given
space, but also enable mobility and personalization. It is envisaged that device
miniaturization will lead to over 50 billion devices connected to the Internet,
forming a large part of the Internet-of-Things (IoT) paradigm. The consequence
is that devices are getting closer to the human body and integrating and interacting
with our lifestyles. Inevitably, as device dimensions reduce to microns, they are able
to be inserted inside our body to achieve precision sensing, communications, and
actuation; potentially transforming health-care. In fact, the Internet of Nano Things
(IoNTs) has been named as one of the top ten emerging technologies by the World
Economic Forum in 2016.
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The energy efficiency of systems in general determines its operational sustain-
ability. For small devices, removing the power-tether is an important mobility
enabler. Such devices today include sensor motes, radio frequency (RF) tags, and
wearable computers. When there is limited recharging or energy storage capability,
ad-hoc harvesting of energy is a crucial technology for a variety of systems. These
devices need to harvest energy from alternative sources such as natural environment
or even intercepting ambient wireless signals. Energy harvesting techniques not
only prolong operational life-time of such devices and reduce their infrastructure
dependency, but also allow devices to be deployed in any location deemed desirable
and be mobile. Harvesting energy from high frequency electromagnetic radiation
(i.e., visible band) has been most widely used in photovoltaic cells, but requires
direct sunlight which may not always be readily available when devices are
embedded inside or in the shadow of objects. Consequently, energy harvesting from
low frequency information transmissions (i.e., radio band) have been proposed as
an alternative.

A variety of wireless systems and devices that transmit across multiple distance
scales fit this profile, from relatively power-hungry macro-base stations (BSs)
deployed in remote regions, to nano-scale sensors in vivo environments (i.e.,
embedded sensors that monitor wound healing status). The wide range of devices
transverse multiple device length scales and communicate across distance scales that
vary by up to 9 orders of magnitude (from km to microns). Yet, it remains unclear
what set of energy harvesting technologies are suitable for the different dimension
and distance scales, as well as diverse operating environments. RF energy harvesting
solutions have recently been proposed as an alternative [1], especially for low-
power devices such as sensor motes in urban and semi-urban environments [2, 3].
The concept has been around since the 1970s [4]. For example, it has been shown
experimentally that the power delivered at a location that is 20 km away from a
150 kW TV transmitter or within 30 m from a cellular BS [5] is typically in the
order of 0.1 mW [6, 7]. Recent advances in this area have shown that energy -
efficient transmitters can be entirely powered by RF energy harvesting devices,
which use cognitive methods to sense fruitful primary-network spectrum bands for
targeted energy harvesting [8] or sensing traffic patterns for targeted deployment
of nodes [9], and simultaneous wireless information and power transfer is possible
(SWIPT) [10, 11]. Given knowledge of the location of a RF energy source, a receive
antenna array can be appropriately configured to further improve energy harvesting
efficiency. However, little is known about the peak power or reliable energy level
that can be harvested from multiple transmitters of different radio networks (e.g.,
cellular base stations, Wi-Fi access points, and mobile handsets).

This chapter will review state-of-the-art technologies that allow multi-scale
wireless devices to simultaneous harvest energy and transmit data, especially from
a number of different wireless signal sources. The chapter will be organized into
different technology dimension scales, and focus on both the fundamental scientific
principles and opportunities and the engineering challenges. The key sections are
listed as follows:
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1. Macro-/Meso-scale energy harvesting for small devices such as RFID tags.
The focus will be on the potential of crowd harvesting from multiple radio
transmissions in complex urban environments.

2. Micro-/Nano-scale energy harvesting for nano devices such as drug delivery
robots and embedded health monitoring devices. The focus will be on informa-
tion and energy bearing bio-molecules and drawing inspiration from equivalent
biological processes.

We now present the detailed outline of each of the aforementioned sections.

6.2 Macro-/Meso-Scale Energy Harvesting

Current cellular and long-distance wireless systems are relatively large in dimension
and consume significant power (i.e., each antenna element can consume up to
600 W [12]). There are already efforts to reduce the power consumption of wireless
infrastructures such as macro-/metro-BSs. In certain rural areas that lack reliable
and sufficient electricity coverage, energy harvesting from solar radiation is possible
[13]. Certainly this is an active area of research for cellular network vendors such
as Alcatel-Lucent. The challenge lies in optimizing data transmission and sleep
mode in the face of an unreliable energy source with the aid of energy storage
[14]. On a smaller scale, femto-BSs and other small-cell technologies (i.e., wireless
relays), which are often deployed in areas that require coverage compensation and
may not have access to electricity in the immediate vicinity, are likely to demand
10–100 W of power. As such, indoor optical wireless systems have been proposed to
transfer power to small cells at night time [15]. Nonetheless, it remains challenging
to power a large wireless system using entirely energy harvesting. Several realistic
problems related to obstacles that obstruct the energy beams and unexpected high
traffic demand can lead to unacceptable levels of service outage.

Smaller meso-scale systems are likely to demand a significantly lower level
of power, varying from 1 mW to 1 W. As such, harvesting energy from wireless
transmissions becomes possible. This section will examine the potential of crowd
harvesting energy from all neighbouring transmissions with particular emphasis on
large-scale network modeling and theoretical bounds under full and variable traffic
patterns.

6.2.1 Crowd Energy Harvesting

6.2.1.1 Background

Over the past decade, increased urbanization and growing demands for wireless data
have led to a dramatic increase in the number and density of wireless transmitters in
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cities. The global cellular infrastructures constituted more than four million macro-
BSs and served more than seven billion active user equipments (UEs) in 2013.
Moreover, public and privately owned Wi-Fi access points (APs) in developed cities
have reached the density of over 350/km2, with top metropolitan cities reaching
over 700/km2. With IoT devices equipped with wireless capabilities, it is expected
the number of wireless devices will exceed 50 billion by 2020.

Despite the growing density of RF transmitters in urban areas, doubts remain
with regard to the amount of RF energy that they can provide over a period of time.
Whilst the increase in transmitter density will undoubtedly increase the amount of
RF energy available in urban environments, a few challenges in large-scale reliable
RF energy harvesting are undeniable. As shown in Fig. 6.1, some of these challenges
are: (1) the random nature of RF transmitter locations, (2) stochastic elements
in the RF propagation channel, and (3) variations in spectrum utilization due to
varying data traffic patterns (i.e., sensors may only transmit data occasionally), all
of which need to be carefully considered in the design of an efficient RF energy
harvesting system. For example, the fluctuating harvested energy due to channel
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Fig. 6.1 Illustration of large-scale RF energy harvesting by multiple RF transmitters. On any
particular spectrum band, the transmitter may or may not be transmitting, depending on the local
traffic load
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fading and node movements needs to be converted into constant DC voltage using
a capacitor. However, longer-term stable energy harvesting is harder to predict and
more difficult to compensate for. Understanding the long-term energy harvesting
reliability is important for energy aware transmission protocols and for devices that
have a limited battery capacity [16].

6.2.1.2 Hardware

Energy harvesting of electromagnetic radiation is most widely used by photovoltaic
cells. However, direct sunlight is not always readily available. RF harvesting
solutions have been proposed as an alternative [6, 17, 18]. By amalgamating multiple
radio signals, RF energy harvesting has the greatest potential in urban areas,
where there is an abundance of wireless communication devices from multiple
Radio-Access-Technologies (RATs). Due to stochastic signal strength variations,
the fluctuating harvested power can be converted into constant DC voltage using a
capacitor. Recently, it has been shown that the power delivered is typically in the
order of 0.1 mW at a location that is 20 km away from a 150 kW TV transmitter [7],
or within a short range of 30 m from a cellular BS [5]. Several commercial devices
exist with reasonably low sensitivity (i.e., �11 dBm of the P2110 Powerharvester)
and significantly higher sensitivities are needed to harvest from a wider variety of
RF signals. Even with improved energy harvesting circuits, little is known about
the power lever that can be delivered in RF bands other than the TV channels
and when devices attempt to harvest from the increasingly densely deployed BSs,
Wi-Fi hotspots, and even mobile handsets. Due to stochastic variations in RF
signal strength and traffic load (for example, BS traffic is notoriously stochastic
[19]), the harvested power level fluctuates over time and needs to be converted
into constant DC voltage using a capacitor. However, long-term stability is harder
to predict and more difficult to compensate for. Existing performance tests have
focused on specific scenarios: single dominant link (e.g., transmission from a
nearby TV-station) [6], or field tests in a small experimental area, typically without
considering the effects of: multi-path, shadowing, traffic load, and mobility [20].

6.2.1.3 Modeling Crowd Energy Harvesting Potential

Considering energy harvesting from a large number of fixed RF transmitters, it is
possible to calculate the specific pathloss for each channel and predict the energy
harvesting performance. The computational complexity grows linearly with the
number of energy harvesting devices. If there is a lack of perfect knowledge of
transmitters’ locations, e.g., private Wi-Fi APs and mobile phones, predicting the
energy harvesting performance becomes impractical if not impossible. Therefore,
an accurate statistical notion of the available ambient RF energy as a function
of the wireless networks interested and the associated propagation environment is
needed. Stochastic geometry studies random spatial patterns, formed by spatial point
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processes. The underlying principle is that the locations of network transmitters are
random in nature, but their density and mutual distances follow certain statistical
distributions. This knowledge can be used to create tractable statistical frameworks
for analysing the performance of wireless networks [21]. In order for the results
to be accurate, the spatial distribution of the network nodes must be derived
from empirical cell location data. In this section, we offer a review of the spatial
distributions of cellular macro-BSs and present new data and spatial distributions
for femto-BSs and Wi-Fi APs.

In order to estimate the energy received from a large number of RF transmitters,
one needs to know the probability distribution of the distance between the kth
nearest RF transmitter and the energy harvesting device. In the literature, two
independent sets of macro-BS data and mathematical proofs have produced the same
spatial distribution of macro-BSs [22, 23]. The probability density function (pdf) of
the distance r between the energy harvesting device at an arbitrary location and the
kth nearest macro-BS is given by

fBS;Rk .rI k/ D 2.ƒ�/k

.k � 1/Š
r2k�1e�ƒ�r2

; k � 1; (6.1)

where ƒ is the average spatial density of macro-BSs in an area where the signal
power is high enough to be considered. Such an area is approximately 4 km2 for
urban environments concerning macro-BSs. The k D 1 case (i.e., the nearest
macro-BS), which follows a Rayleigh distribution, is most commonly considered
in wireless communications.

In recent years, femto-BSs are being deployed with increasing densities in urban
areas. Empirical data obtained has shown that the spatial distribution of the kth
nearest femto-BS is identical to that of macro-BSs. That is to say, despite the tedious
multi-variable optimization for cellular network planning, macro- and femto-BSs
are in fact randomly deployed with the spatial distribution of the kth nearest BS
given by (6.1). In the literature, Poisson cluster processes (PCPs) such as the Matern
and Thomas cluster processes have been utilized for modeling ad-hoc and small-cell
networks [24], but there is a lack of evidence base for such PCP-based modeling.

Wi-Fi APs are deployed in a fundamentally different way to cellular BSs.
Their higher density,1 possibly different spatial distribution, and higher traffic load
may yield a different prospect in terms of energy harvesting. Note that the vast
majority of Wi-Fi APs are owned by private residential or individual business
entities, as opposed to network operators, and both the density and number of
Wi-Fi APs change over time. Therefore, the locations of Wi-Fi APs are not
exactly known. Whilst certain efforts have been made to locate Wi-Fi APs using
directional spectrum sensing approaches [25], a more systematic approach is to
infer Wi-Fi APs’ locations and density through residential and business census data.

1In urban areas, the deployment density of Wi-Fi APs has grown over the past decade to 400–1000
APs per square km.
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By assigning a Wi-Fi AP to each residential or business registration address, one can
infer the approximate locations of Wi-Fi APs. Based on this data, two discoveries
were made [11]: (1) the density distribution of Wi-Fi APs is a log-normal distributed
cluster process, commonly found in the ions of materials [26], and that (2) the pdf
of the distance between a random point in space and the kth nearest Wi-Fi AP
follows the Gamma distribution, i.e., fWi � Fi;Rk .rI k/ � �.k; �/, where � is the scale
parameter. What remains undiscovered is the precise distribution of Wi-Fi APs in
terms of the scale parameter � , and the precise spatial distribution of mobile UEs.

6.2.1.4 Full Spectrum Utilization Upper-Bound Analysis

In this section, we consider the aggregated RF power density (Watts per Hz) over a
bandwidth of B and from an area with an average transmitter density of ƒ. We first
assume that all transmitters are transmitting across the whole spectrum available and
emit with the maximum allowable power spectrum density on all frequency bands,
and hence this is an upper-bound analysis. Leveraging the spatial distributions of
RF transmitters found in the previous section, the total average received RF power
from K RF transmitters is given by

P�
rx.˛; �/ D B

KX

kD1

Z C1

0

Ptx�r�˛
k fRk .rkI k/ drk; (6.2)

where Ptx is the transmit power, � is the frequency dependent pathloss constant, ˛

is the pathloss distance exponent, and fRk .rkI k/ is given in (6.1).
As an example, let us consider the aggregate harvested power Prx for a deploy-

ment of macro-BSs that follow the spatial distribution given by (6.1). By inte-
grating (6.2), the total power harvested is found to have the following scaling
relationships:

• Linearly proportional to the transmit power: P�
rx / Ptx;

• Exponentially proportional to the cell density: P�
rx / .ƒ/1C ˛

2 .

Alternative spatial distributions of RF transmitters are likely to yield different
solutions.

A key question at this stage of the analysis is: given that transmitters further
away are unlikely to contribute much more power, what is the power difference
between harvesting from only the closest transmitter and crowd harvesting? Based
on both simulation and the analytical expression in (6.2), the latter can harvest
approximately 5–10% more power than the former. Note that this considers only
power. When energy is considered, one also needs to take into account spectrum
utilization over time. The reliability of crowd harvesting energy over time will
improve dramatically over targeting just a single transmitter.
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6.2.1.5 Variable Spectrum Utilization Analysis

In the previous section we have studied the upper-bound to the amount of power
that can be harvested from a number of RF transmitters. In order to estimate the
harvestable RF energy, it is important to consider the spectrum utilization over time
for each RF transmitter. Spectrum utilization depends on the traffic load of each
transmitter. Unlike TV channels, which are fewer in number and broadcast over long
periods, cellular and Wi-Fi network nodes transmit on demand and the demands can
fluctuate in unpredictable temporal and spatial patterns.

Over the past decade, wireless network traffic has shifted from mainly circuit-
switched call traffic to packet-switched data traffic dominated. Whilst voice call
traffic is well understood, data traffic arrival and departure patterns are much
more diversified and unpredictable over time and geographical locations. In this
subsection, we leverage the statistical attributes of real 3G HSPA data from a
European city’s 3G network [27]. Two key observations have been made in all
cellular network areas used for traffic data collection:

1. The mean traffic Rk at the kth BS is related to the mean capacity of the BS. In
other words, given that each BS has the same bandwidth, cells having superior
propagation conditions emit greater energy. The relationship between the traffic
and the BS capacity Ck is approximately logarithmic, i.e., Rk � log10 Ck [27].

2. The pdf of the traffic load Lk at the kth BS is exponentially distributed, i.e.,
fLk � exp.�/, whereby the rate of decay � is the same for each cell and varies
slowly with time (e.g., hours in a day, and days in a week) [19].

Given knowledge of the statistical properties of data traffic, one can infer the
spectrum utilization pattern at each BS as a ratio of the traffic and the peak capacity
of the BS, i.e., Lk D Rk

Ck
. Given that each of the K BSs is independent and identically

distributed in space and in spectrum utilization, the pdf of the power density (Watts
per Hz) harvested from the sum of all K RF transmitters is the K-fold continuous
convolution of the traffic load pdf and the inverse of the received power upper-bound
from (6.2):

fPrx D
KO

kD1

fLk =P�
rx: (6.3)

The cumulative distribution function (CDF) of harvested power density (Watts
per Hz) shows the reliability of harvestable power density at any given instance in
time, where the main variation is derived from the spectrum utilization pattern. By
aggregating the CDF over both the frequency bands and time, we can obtain the
total expected RF energy that is harvestable.
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6.2.2 Case Study: Central London

6.2.2.1 Above Ground

In this section, we consider a central London case study area detailed in [28] that is
of 9 km wide and 5 km long. It covers Hyde Park, parts of the Thames River, and
major tourism hotspots such as Trafalgar Square, Piccadilly Circus, the Parliament,
China Town, London Eye, and Oxford Street. Multiple RATs are included: (1) 4G
Cellular Macro-BS Downlink (50 MHz); (2) 4G Cellular UE Uplink (20 MHz);
(3) Wi-Fi AP Downlink (20 MHz); and (4) TV Broadcast (100 MHz). The main
parameters of the case study are given in Table 6.1.

Table 6.2 shows the mean peak power for different RATs on the per 20 MHz band
level, with the whole spectrum available to each RAT. This was a study conducted
in [28]. It can be seen that the greatest opportunity for power harvesting lies in the
Wi-Fi and TV broadcast RATs. In fact, given that the network traffic on Wi-Fi and
TV is typically higher than that of the cellular RAT, it is advisable to focus energy
harvesting in these bands, at least before femto-BSs are more widely deployed. By
comparing with existing test observations that 100 �W can be achieved at a 20 km
distance from a 150 kW TV station [7] or within 30 m from a cellular BS [5], we
can see that in general the mean energy harvestable is approximately 5–10 times
lower than the special cases tested in [5, 7]. This is primarily due to the log-normal
shadow fading considered in our model, as well as the non-line-of-sight (NLOS)
positioning of the energy harvesting devices with respect to the RF transmitters.

Due to the small number and fixed locations of TV masts, their energy harvesting
potential has been well analysed. We now focus on the effect of Wi-Fi APs’ density,
number of spectrum bands, and the shadow fading variance on the power harvesting
effectiveness. Figure 6.2 shows the simulated aggregate power available to harvest
for various Wi-Fi hotspot densities and number of bands available (each band having
a bandwidth of 20 MHz). In the simulations, a number of cellular and TV bands
are also in operation, with static parameter values set to the peak values shown in
Table 6.1. The simulation results show that for a high Wi-Fi density (1000/km2),
the ambient RF power available is in the order of �W, depending on the number of
spectrum bands.

Figure 6.3 shows the simulated aggregate power available to harvest versus
various Wi-Fi hotspot densities and log-normal shadow fading variance. We can
see that when log-normal shadow fading is considered, the average RF power
available for harvesting degrades log-linearly with the shadowing variance. In
realistic channel conditions, the shadow fading variance can be up to 	2 D
9 dB [29]. Compared to the case with no shadow fading, the RF power available
for harvesting is lowered by 9 dB for the 3 dB shadow fading variance, and 35 dB
for the 6 dB shadow fading variance. Accordingly, in order to achieve a good RF
energy harvesting performance, the devices need to be deployed at locations that
experience a shadow fading variance of no greater than 3 dB.
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Table 6.1 London simulation case study parameters

Parameters Symbol and value

Case study environment

Geographic area Central London, 45 km2

Energy harvester location Uniform random

No. of energy harvesters 500

Duration of study 2 week period

Propagation model 3GPP urban micro [29]

Pathloss constant �, 10�4

Pathloss distance exponent ˛, 2–4

Channel fading Rayleigh

Shadow fading Log-normal (3 dB variance)

Traffic and spectrum

Spectrum utilization pdf fLk

User arrival pdf Poisson

Data traffic pdf Log-normal

Traffic time sample 15 min

4G cellular RAT

Total no. of macro-BSs 96

Macro-BS density ƒmacro � BS, 2/km2

Macro-BS distribution Uniform random [22]

Macro-BS transmit power Ptx; macro � BS, 40 W

Total no. of UE 700,000

UE density ƒUE, 15,500/km2

UE distribution Uniform random (assumed)

UE transmit power Ptx; UE, 0.1 W

Total no. of Wi-Fi APs 45,000

Wi-Fi AP density ƒWi � Fi, 1000/km2

Wi-Fi AP distribution Log-normal cluster based

Wi-Fi AP transmit power Ptx; Wi � Fi, 1 W

Total no. of TV masts 4–5

TV mast density ƒTV, 0.1/km2

TV mast distribution Fixed

TV mast transmit power Ptx; TV, 1000 kW

As shown previously in (6.3), the energy harvested depends on the convolution
between the peak power available for harvesting and the pdf of the spectrum
utilization level. The peak power value given by (6.2) is largely determined by
the spatial distribution and density of RF transmitters, as well as the propagation
environment itself. We have shown that the harvested power value can be improved
by 5–10% through crowd harvesting as compared to harvesting from the closest
transmitter only. Moreover, the spectrum usage can be dynamic and in the event that
the closest transmitter is not transmitting, crowd energy harvesting shines. When
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Table 6.2 London case study results with different RATs [28]

RAT Peak power per band (�W/sqm)

Cellular downlink 0.3

UE uplink 1

Wi-Fi downlink 5

TV broadcast 1.2

RAT Peak power (�W/sqm)

Cellular downlink (50 MHz) 0.6

UE uplink (20 MHz) 1

Wi-Fi downlink (20 MHz) 5

TV broadcast (100 MHz) 6

RAT Aggregate daily energy

Cellular downlink (50 MHz) 5 mJ/sqm

UE uplink (20 MHz) 4.2 mJ/sqm

Wi-Fi downlink (20 MHz) 8 0.13 J/sqm

TV broadcast (100 MHz) 0.5 J/sqm

Peak power and aggregate daily energy harvested averaged across all devices over a 2 week period
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Fig. 6.2 Simulated aggregate power available to harvest for various Wi-Fi hotspot densities and
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Fig. 6.3 Simulated aggregate power available to harvest for various Wi-Fi hotspot densities and
shadow fading variances (dB)

the investigation factors in the variational spectrum utilization, it is apparent that
the total energy harvested from all ambient RF transmitters will produce a fixed 5%
of improved reliability in energy delivery per second over that from the strongest
transmitter. For a fixed reliability demand (i.e., deliver at least a certain power
level for at least 30% of the time), the power harvested has improved from 4 �W
(harvesting from the closest transmitter only) to 8.5 �W (crowd harvesting), an
improvement of over 100%. This is primarily down to exploiting diverse variations
in spectrum utilization at different transmitters by harvesting energy from a diverse
range of radio sources. The aggregate daily energy harvested (averaged across all
devices) is given in Table 6.2. It shows that Wi-Fi and TV broadcast remain the most
promising bands to harvest because of their wider bandwidth and greater spectrum
utilization due to higher traffic.

6.2.2.2 Below Ground

Table 6.3 shows a different study conducted for central London detailed in [2] for
underground stations. The study uses real measurement data across from 400 MHz
to 2.5 GHz to test the average and peak received power density. The results show
that GSM900 and GSM1800 and 3G all have similar high energy harvesting
potential, whilst Wi-Fi and DTV remain significantly weaker (by approximately
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Table 6.3 London underground case study results with different RATs [2]

RAT Average power (�W/sqm) Peak power

Cellular downlink (75 MHz) 840 64 mW/sqm

UE uplink (75 MHz) 5 200 �W/sqm

Wi-Fi downlink (100 MHz) 1.8 60 �W/sqm

TV broadcast (140 MHz) 8.9 4.6 mW/sqm

Average power density and maximum power density

20 dBm/sqcm). These results seem to indicate that in reality BSs are a far better
source of energy harvesting than DTV and Wi-Fi, possibly because of the nature of
the embedded underground environment.

6.2.3 Optimization for Crowd Harvesting

We have so far reviewed the potential of crowd harvesting across different RATs,
which is attractive, especially in the TV bands (LoS) and Wi-Fi bands (NLoS).
However, what remains unclear is how a relay system, where the nodes are
sufficiently apart (and hence have different energy harvesting potentials), can
collaborate to achieve optimal relaying performance. In this section we discuss
node collaboration and transmission scheduling for crowd harvesting [11]. It has
been revealed that the correlation distance of the traffic density is less than 80 m
in urban areas [30], indicating that the RF energy harvesting process may follow
similar spatial correlation. Two nodes that are more than 100 m apart tend to have
almost independent energy harvesting processes, and thus node collaboration can be
performed to exploit the independent relationship between energy profiles, e.g., to
achieve energy harvesting diversity gains.

First we illustrate the benefit of node collaboration via combining the SWIPT and
ambient energy harvesting, in order to compensate for the possible energy shortage.
Assuming that the source can harvest more ambient RF energy than the relay node,
the energy harvesting phase can be split further into two parts: (1) source-to-relay
energy delivery, and (2) ambient RF energy harvesting at relay. Note that the source
can make use of the time when the relay forwards the message, to harvest additional
ambient RF energy. Furthermore, for the scenario where the nodes have no SWIPT
structure or have some common information to the same destination, for example,
the multiple relays in the second hop of a relaying transmission, or multiple sensors
that sense the same target and need to deliver the sensing results to the sink. In this
case, collaborative transmission can be used to address the uneven energy arrival
rates. As a simple example, a transmission frame can be divided into two subframes.
In the first subframe, only one of the nodes can be scheduled to transmit in the
conventional way. In the second subframe, multiple nodes can perform simultaneous
joint transmission (JT) to the destination with distributed beamforming. To this end,
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the frame division portion and the node scheduling should be jointly optimized,
taking into account the ESI of all nodes. For both cases, to get the optimal system
parameters, practical online algorithms should be designed based on the prediction
of the mobile traffic that generates the crowd EH source. One can model the mobile
traffic variation with Markovian model, of which the transition probabilities can
be trained based on real data [11], and then MDP policy iteration will provide the
optimal transmission scheduling and system parameters. To reduce the complexity
of MDP, one can do conventional optimization on a per-frame basis, with the energy
arrivals and channel conditions of several future frames as known, given the traffic
prediction precision is high.

6.2.4 Summary and Discussion

Most existing work on energy harvesting has focused on the hardware design of
energy harvesting devices. Field tests of those devices are typically in LoS with
a nearby BS or TV mast. Whilst the results are beneficial, they reveal very little
about how such devices will perform when mass deployed in an urban environment.
In an urban mass deployment, the energy harvesting devices may need to be at
locations to serve a purpose (e.g., to sense the pollution level at a specific location)
and there is very little flexibility in alternative locations. Such locations are likely to
be in NLoS from RF transmitters, and far away from powerful TV mast transmitters.
Crowd energy harvesting can leverage the growing density of BSs, Wi-Fi APs, and
mobile UEs. However, an analytical framework backed up by empirical data has
been absent thus far. This review paper has shown that stochastic geometry has the
potential to provide a upper-bound to the power available to harvest (6.2), provided
that we know the spatial distribution of the transmitters. Further understanding of
the traffic patterns can yield insight into the spectrum usage level. By convolving the
upper-bound of the power from multiple transmissions with the spectrum utilization
probability function, the reliability distribution of energy harvesting from multiple
sources can be found (6.3).

What the preliminary study has shown can be summarized as:

• The upper-bound power available for harvesting scales linearly with transmit
power, and exponentially with the transmitter density. This is sensitive to both
the pathloss distance exponent and the spatial distribution of the transmitters.
Harvesting power from multiple sources offers a 5–10% improvement over
harvesting from only the closest source.

• The reliability of the energy available for harvesting depends on the upper-bound
power, as well as the traffic pattern. The pdf of the spectrum utilization typically
follows a log-normal distribution. Harvesting energy from multiple sources offers
greater diversity, which translates into a 5% improvement in reliability and 100%
improvement of energy level as compared to harvesting from the closest source.
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There remains plenty of further work to be carried out, including large-scale field
trials, finding accurate spatial distributions for transmitters of different RATs, as
well as their traffic load distributions. Whilst TV and cellular networks are relatively
well understood, Wi-Fi and mobile UEs are not. Yet, it is the Wi-Fi APs and mobile
UEs that could potentially grow the fastest in terms of transmitter density, and their
cluster-like spatial distributions offer the greatest prospect of improving crowd RF
energy harvesting.

6.3 Micro-/Nano-Scale Energy Harvesting

6.3.1 Introduction

Today, micro-electronic devices can perform comparable operations to analog
electronic machines that used to occupy a factory floor. One consequence of increas-
ing device miniaturization is that we can now carry, wear, and embed advanced
machinery on or inside ourselves. As the technology for mobile and wearable
devices matures, research focus has now shifted towards embedded devices for
health monitoring. Whilst macro-scale implantable devices (i.e., pacemakers) can
trace its origin back to late 1950s, a new generation of micro-scale sensors can
monitor a variety of physical and biochemical states (i.e., wound recovery, hormone
levels) in the human body are being developed.

Nano-machines or nano-robotics define a broad number of devices comprised
of components that are close to the scale of a nanometre. Nano-machines have a
variety of applications that range from precision drug delivery, real-time sensing,
and controlling cell dynamics. Nanotechnology in this context has emerged greatly
in the early state (theoretical designs and simulated performance testing, with
a few in vitro and in vivo tests), although there are still some limitations for
further development. Currently, nano-machines lack the ability to communicate
with each other, limiting their potential to perform coordinated tasks. For example,
coordinated and controlled (via light, pH, swelling/shrinkage, etc.) drug delivery can
maximize the therapeutic range and minimize toxicity and ineffectiveness. Being
able to achieve nano-scale communications will herald a new era of nano-medicine:
connecting a plethora of nano-sensors and realizing a key component in the Internet
of Bio-Nano things (IoBNT) paradigm [31].

IoBNT systems are an essential component of nano-medicine, which promises
to revolutionize health-care. The demand for precision medicine such as nano-
machines operating in vivo environments is immense (current market valued at
$100 billion with a 14% CAGR). One example application area is coordinated
drug delivery. Today, poor drug delivery effectiveness costs the world $ billions
and exposes patients to the risk of high toxicity. Normal delivery of drugs through
the digestion and blood stream causes a long exposure to toxicity across a
wide range of cells. In effect, the therapeutic range is small and waste is high.
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Coordinated drug deliveries by mechanical and chemically triggered processes are
sensitive to the unpredictable in vivo environment, and do not achieve coordination
between devices. Coordinated drug delivery by a swarm of nano-machines that
can coordinate a simultaneous payload release can improve the therapeutic range
and decrease toxicity risk and waste. Wireless communication between such robots
and the outside world is necessary for the purposes of command and control,
and monitoring. Yet, wireless communication is extraordinarily challenging at the
nano-scale in fluidic in vivo environments, i.e., small device dimension limits
electromagnetic waves to be at the lossy THz band. On the other hand, cells use
molecular signaling. Drawing an inspiration from these processes, researchers have
set out to design functional bioengineering sub-systems (i.e., remote controlled
DNA-circuits and bacteria systems [32]), as well as molecular communication sub-
systems [33]. In converting theoretical designs into practice, recent progress in
building macro-scale prototypes [34, 35] has allowed researchers to test various
signal detection and diversity schemes. Despite this progress at the macro-scale,
there remains no viable pathway to downscale the testbeds to the nano-scale
(Fig. 6.4).

6.3.1.1 Challenges with Wireless Energy Efficiency

In the previous section, we reviewed the growing focus on increasing the energy
efficiency of both mobile and fixed wireless systems. Whilst we have built up a good
understanding of power consumption mechanisms in terrestrial mobile networks,
we still lack understanding in how nano-machines can communicate in an energy
efficient manner. As communications and energy is vital for coordination and
control of any system, so too will they be for nano-machines. It is envisaged that
nano-scale communications will be critical to nano-machines that seek to coordinate
tasks such as in vivo drug delivery and surgery [31]. Whilst many meso- and
macro-scale in vivo medical devices (i.e., pacemaker) are battery powered, nano-
batteries (50 �m [36]) are still significantly larger or of the same dimension as

Transmitter

Messenger Molecules
undergoing Diffusion

Receiver 1Receiver 2

Molecule
Absorbed

Molecule
Absorbed

Fig. 6.4 Illustration of molecular communications via diffusion (MCvD) with a single emitter and
multiple absorbing receivers
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their nano-machine counter-parts. Therefore, charging batteries using externally
generated acoustic [37] and electromagnetic radiation is not always viable and
furthermore, nano-machines can be embedded in vivo areas that are either sensitive
to radiation or difficult for radiation to penetrate. As such, energy harvesting
from the nano-machines’ locality is needed, i.e., the energy source should be near
the nano-machine. Over the past decade, there is increasing interest to harvest
energy from communication signals and achieve simultaneous wireless information
and power transfer (SWIPT). In this chapter, we draw on our understanding of
energy consumption and harvesting knowledge in current wireless systems to better
understand nano-scale communications and exploit opportunities.

6.3.1.2 Challenges with Wave-Based Systems

The traditional practices of wireless planning with known coverage areas and
propagation environments start to breakdown at the micro- and nano-scales. Com-
munication systems in complex biological environments must be: bio-compatible,
low-power consumption, low complexity, small dimension, and achieve reliable
signaling in a fluid environment with complex cell/tissue obstacles. Such constraints
are challenging for both EM-based THz systems and nano-acoustic systems. Current
electricity and wave-based information delivery cannot downscale to the nano-scale
whilst retaining the required level of propagation robustness and energy efficiency
in vivo fluidic environments.

6.3.2 Molecular Communication via Diffusion

For centuries, scientists have known that molecular signaling underpins biological
processes across multiple distance scales: from microscopic cell regulation to long
range insect signaling. Inspired by the abundant use of molecules in biological
signaling, Molecular communication via diffusion (MCvD) utilizes molecular
signal (i.e., a chemical pulse) as an alternative carrier for information [33]. MCvD
avoids the limitations of wave generation and propagation, and allows the signal
to both persist and propagate to areas that are difficult to reach [38, 39]. The
information in MCvD can be repetitive signaling from a limited alphabet, which is
common in biological systems; or generic information from a rich alphabet, which
is more common in human interaction. Historically, molecular-based signaling
between animals has been observed since the ancient times, and more explicit
arguments relating signaling success and natural selection were articulated by
Darwin in 1871 [40]. It is only in the last decade or so that molecular communication
from a telecommunications and information theory perspective has been explored
[41]. Primarily, this has been due to the rise in demand from nano-scale engineering
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(e.g., communication between swarms of nano-robots for targeted drug delivery
[42]) and also the demand for industrial sensing in adverse environments. In both
of these cases, the local environment can be adverse to the efficient propagation of
electromagnetic (EM) wave signals.

Intense interest in molecular signaling between external bodies began over
two decades ago, the scientific community paid particular interest to the pulse
modulation techniques used by moths to attract mating partners [43]. Over the
last decade, observations showed that chemical signals were encoded and decoded
both in the time- and spatial-domains to assist homing and message delivery [44],
and the moth’s antenna system has been successfully reverse-engineered using
biochemical sensors [45]. A more generalized communication system capable of
transmitting any alpha-numeric message was later devised and built [34], linking
the aforementioned bioengineering research with the field of telecommunication. In
recent years, a growing body of significant molecular communication research has
been devoted to a wide range of channel modeling [46] and telecommunication
system design [47–49], information theory [50, 51], sensor and circuit design
[45, 52], as well as biological system modeling [53, 54]. Furthermore, information
theorists have become interested in the achievable reliable information rate of the
random walk channel [50]. This led to various channel models been constructed,
including and not limited to the capacity of a delay-time modulated channel [51].

With the advent of IoBNT systems in nano-medicine, there is an urgent need to
connect various elements and sub-systems together to perform coordinated action.
Yet, engineers simply do not know how to design and build nano-scale commu-
nication systems that can operate reliably and efficiently in vivo environments
over long durations. Existing work in molecular communications has extended
earlier understanding of chemical signals to transmit continuous information (i.e.,
a sequence of distinctive data packets, as opposed to repetitive data). As such,
challenges in encoding and transmission strategies that relate to inter-packet chem-
ical interference arise, which are exasperated by the stochastic nature of molecular
diffusion channels.

6.3.3 Biological Communication and Energy Harvesting
Systems

In biology, chemical signaling using molecules exchanges information and energy.
In this subsection, we review some of the chemical signaling mechanisms in
the communications context. In particular, we focus on biological cell signaling,
which is essential to organized behaviour in multi-cellular organisms. A human
body contains 100 trillion cells that coordinate actions through chemical signaling.
Whilst the distances in cell signaling are typically small, hormone signals can
transverse over long distances (i.e., several metres in the blood stream). A mixture
of reception models exist. For example, signal receptors exist both within the cell
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cytoplasm and on the surface of the cell membrane. Cell surface receptors often use
secondary messengers to transmit an amplified signal to the cytoplasm. Adjacent
cells often form direct passages that link their cytoplasms, permitting the passage of
messengers.

6.3.3.1 Intra- and Inter-Cell Signaling

A variety of chemical macromolecules are used for signaling, including but not
limited to peptides, proteins, dissolved gases, amino acids, nucleotides, steroids, and
other lipids. Cell receptors are designed only to react to certain chemical signals,
whilst ignoring the large volume and diversity of other signals. Receptor proteins
have unique shapes that fit the shape of a specific signal molecule. Binding with the
right signal will produce a response within the cell. Intra-cell signaling only affects
a single cell and is divided into two categories. Intracrine occurs within the cell,
binding to receptors inside the cell’s cytoplasm and is used to regulate intracellular
events. Autocrine signaling also affects the host cell, but the chemical messenger
is ejected out of the cell and binds to the surface receptors of the cell. Inter-
cell signaling affects a secondary cell or cells. Inter-cell signaling occurs across
multiple distance scales, from a few microns (adjacent cells), to a metre (across
the human body). Juxtacrine signaling is a contact dependent signaling process
that allows chemical messengers to transverse via a ligand, junction, or matrix to
another attached cell (see Fig. 6.5a). Longer distance cell-to-cell communications is
called paracrine signaling. Here, cells eject molecular messengers that diffuse to a
local cell, a few hundred microns away (see Fig. 6.5b). Longer distance diffusion
communications occurs across the body between gland cells. This is known as
endocrine signaling. The gland cells excrete hormones that use the circulatory
system to be carried to target organ cells (see Fig. 6.5c).

The diffusive nature of endocrine signaling means that distant communications
is slow. The nervous system provides rapid communication between distant cells
and this is called synaptic signaling. Fiber extensions of nerve cells release
neurotransmitters (chemical messengers) from their tips close to the target cells via
the synaptic gap (see Fig. 6.5d). In addition to the aforementioned four techniques,
some signals perform autocrine signaling, where it secrets signals for the sole
purpose of binding to its own receptors, reinforcing developmental changes.

6.3.3.2 GABA Re-Uptake Mechanism

Energy harvesting using signaling molecules is common in biology at the cellular
level. One such biological example that utilizes two types of molecules is the
GABA re-uptake mechanism at the synaptic cleft. Glial cell absorbs/harvests GABA
molecules and converts them to glutamine for utilizing at the signaling mechanisms
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(a) Direct Contact (b) Paracrine Signalling

(c) Endocrine Signalling (d) Synaptic Signalling
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Fig. 6.5 Four kinds of cell signaling: (a) Juxtacrine signaling—cells in direct contact with each
other send signals across junctions. (b) Paracrine signaling—secretions from one cell have an
effect only on cells in the immediate area. (c) Endocrine signaling—hormones are released into
the circulatory system, which carries them to the target cells. (d) Synaptic signaling—transmission
of signal molecules (neurotransmitters) from a neuron over a small synaptic gap to the target cell

of presynaptic region. Type A molecule generated by the source is absorbed and
converted to type B molecule inside the receiving node to be utilized in another
subsequent signaling mechanism. The 
 -Aminobutyric acid (GABA) metabolism
and uptake is widely distributed across almost all regions of mammalian brain.
GABA is constructed by glutamate via enzymatic reaction with glutamic acid
decarboxylase (GAD) in the presynaptic neuron cell, which is then released as a
neurotransmitter for sending signal to both neighbour Glia cells and postsynaptic
neuron cells via GABA transporters (GATs). In this example, the presynaptic neuron
cell acts as the source to emit the GABA as type A molecule, and Glia cell acts as
the molecule harvesting node, and emit glutamine as type B molecule in response
to the electrical charge polarization caused by GABA. This example of molecular
signaling and simultaneous molecule harvesting demonstrates the dual usage of
signaling molecules in biology.
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6.3.4 Nano-Scale Energy Models

Almost all nano-scale systems have biological equivalents, which lends us an
opportunity to better understand the energy levels involved. Biochemical processes
in a cell are performed by molecular machines (mostly protein based). Molecular
machine building blocks are constructed from single to multiple molecules. These
building blocks are generally divided between passive mechanisms (i.e., switches
react to a chemical stimulant) and active mechanisms (i.e., actuators consume
energy to perform an action) [55]. Unlike macroscopic machines, molecular
machines operate at energy scales close to the thermal energy, i.e., kT , where
k is Boltzmann’s constant and T is the temperature. Many of the motor actions
are driven by non-equilibrium thermodynamics, converting force (i.e., chemical
potential) into flux (motor movement, chemical flow). This process is known as
free energy transduction. There are many examples of molecular motors in action,
such as the muscle myosin, which is a motor that causes muscle contraction by
converting ATP (chemical fuel) into mechanical work (i.e., for ATP hydrolysis the
energy is 20kT � 4 zJ).

6.3.5 Nano-Scale Propagation Models

The power expenditure model of a generic wireless system can be approximately
modularized into a number of contributing components. In this paper, the authors
focus on the propagation layer of consumption (including the data modulation,
amplification, antenna loss, and propagation effects). The overhead consumption
due to signal processing and cooling elements are left for future discussions. The
main factors are: (1) the receiver antenna gain with radius R, (2) the free-space
propagation loss �, (3) the transmitter efficiency (i.e., power amplifier efficiency �

or chemical synthesis cost �), (4) absorption loss � (also known as transmittance),
and the (5) the circuit power consumption. In general, the received electromagnetic
(EM) power (PRx) or molecular number (NRx) is a small fraction of the total power
extracted by the transmitter PTotal:

PRx

PTotal
/ � � �

�
R2

d˛

�
for EM

NRx

PTotal
/ 1

�.nTx � 1/
�

�
R

d C R

�
for MCvD: t ! 1;

(6.4)

assuming that the communication circuit power is relatively small in a nano-
machine. Like RF communications, there is an energy efficiency factor for generat-
ing NTx molecules for transmission. This is related to the number of basic chemical
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components per molecule nTx and the energy cost to bind or synthesize them �

[56, 57]. We now explain the reasoning and details of the efficiency equations given
in Eq. (6.4) in the rest of the section.

6.3.5.1 THz Electromagnetic (EM) Communications

We first examine the EM communications case. One can see that the best achievable
efficiency in Eq. (6.4) is limited by d�˛ for EM and limited by �d�˛ for THz nano-
scale communications (where � / exp.�kfd/). The absorption loss � is log-linear
proportional to absorption coefficient k, which depends on the chemical composition
of the medium and is typically 1�10�5 for air and 1�3 for water at f D 0�10 THz
[58]. To illustrate the aforementioned reasoning, we show an illustration of radio
wave versus molecular propagation in Fig. 6.6. In the (a) subplot, an isotropic EM
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Fig. 6.6 Illustration of power loss in transmitting signals in (a) electromagnetic (EM) wave
communications, and (b) Molecular communications via diffusion (MCvD)
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antenna transmits to a receiver antenna with an effective area Aeff / .fR/2, and the
resulting received power after propagating a distance of d is �EM

R2

d�˛ , where the
value of �EM is typically 10–30% for EM systems [59].

6.3.5.2 Molecular Communication via Diffusion

MCvD, on the other hand, relies on message bearing molecules to freely diffuse
from the transmitter to the receiver. We do not consider the base energy cost of
physical matter (i.e., the molecules) as matter is not lost in the communication
process. We do consider the energy cost of creating specific chemical compounds,
as well as the energy benefits of restructuring the compound. In general, MCvD
involves messenger molecules performing a random walk motion across the com-
munication channel through collision interaction and a diffusion gradient. For each
emitted molecule, there is a finite probability that it will reach the intended receiver.
The power in the system at any given time instance is proportional to the number
of molecules. Whilst the stochastic process is intuitively unreliable and requires a
transmission time that is orders of magnitude longer than wave propagation, these
deficiencies can be mitigated by communicating at very small distances (microns)
or with the aid of strong ambient flow. For a basic random walk process, consider
(as in Fig. 6.6b) a point emitter that transmits NTx molecules. The full absorption
receiver, will capture NRx molecules given by Yilmaz [46]:

NRx D NTxhc; hc D
�

R

d C R

�
dp

4�Dt3
e

�d2

4Dt ; (6.5)

where hc is known as the first passage time density distribution.
The resulting expected number of received molecules up to time t D T is

NTxFc, where Fc D R
dCR erfc. dp

4DT
/. This converges to NTx for 1-dimensional (1-D)

space and NTx
R

dCR for 3-D space as t ! 1 [60]. This means the full harvest
of all transmitted molecules is possible in certain conditions, independent of the
transmission distance. Naturally, the reality is that molecules will have a half life
and not all data bearing molecules can be harvested. Reactions with other chemicals
(i.e., enzymes) in the environment can reduce the effectiveness of energy harvesting
in MCvD over time [61]. Yet, the potential to capture the vast majority of the
transmitted molecules due to the random walk nature of propagation demonstrates
the potential of MCvD over wave-based transmission. As with EM communications,
there is a cost to produce the NTx molecules at the source in the first place. This can
be shown to be [57]: PTotal D �.nTx � 1/NTx, where � is the synthesizing cost of
bonding nTx amino acids per transmitted molecule.

Comparing MCvD with EM propagation at the macro-scale to draw similar levels
of performance (see Fig. 6.7), the received EM power is / d�˛ , where ˛ typically
varies between 2 and 4. On the other hand, the received molecules from MCvD
can asymptotically be / d�1, and at best independent of d in 1-D space, provided
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Fig. 6.7 Plot of received EM power (PRx) or MCvD molecules (NRx) for different transmission
distances (d). The results show that MCvD can achieve asymptotic distance-dependent power
decay at the rate of / d�1, which is superior to all EM scenarios. Modeling parameters: mass
diffusivity (water molecules in air) D D 0:28 cm2=s, EM frequency 5 GHz with parabolic receiver
antenna Aeff D 0:56  R2, and receiver radius of R D 10 cm

the receiver is willing to wait for a long time t ! 1. Yet, the long waiting time is
not as ridiculous as it may appear for the following two reasons. Firstly, the rate of
diffusion is in reality accelerated by ambient air flow (i.e., convection currents) or
shortened to a few milliseconds at the nano-scale. Secondly, when one transmits
a continuous stream of symbols, the power emitted for the first symbol will be
recovered by the N-th symbol’s time (when N is large). Hence, there are no incurred
delays to power or energy recovery in MCvD, provided a long stream of information
symbols are transmitted (Fig. 6.8).

Several aspects of the previously reviewed biological processes can inspire
engineers to design energy efficient communication systems at the nano-scale.
As mentioned previously, the GABA is constructed by glutamate via enzymatic
reaction with glutamic acid decarboxylase (GAD) in the presynaptic neuron cell,
which is then released as a neurotransmitter for sending signal to both neighbour
Glia cells and postsynaptic neuron cells via GABA transporters (GATs). In this
example, the presynaptic neuron cell acts as the source to emit the GABA as type A
molecule, and Glia cell acts as the relay, and emit glutamine as type B molecule
in response to the electrical charge polarization caused by GABA. Note that the
energy harvesting relay can also be engineered in cell by using genetic circuits with
chemical reaction promoted by certain catalyst. The idea of using biological circuits
for engineering transmitter and receiver in molecular communication system has
already been studied.
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Fig. 6.8 Illustration of molecular relay communications with simultaneous energy harvesting. The
mechanism is similar to the GABA biological mechanism in recycling molecules and converting
molecular types through fragmentation and synthesis

6.3.6 Molecular Crowd Harvesting

As shown previously, despite the growing density of RF transmissions across
multiple spectrum bands, the amount of energy available to harvest is dominated
by the closest high power link. The rapid loss in RF energy due to transmission
distance limits the potential for crowd harvesting, and unless all the transmitters are
spaced equal distant to the receiver, crowd harvesting energy from N transmitters
is not significantly superior to receiving energy from the nearest transmitter. For
MCvD systems, as mentioned in Sect. 6.2, the energy of molecules does not obey
the propagation laws of waves. Instead of experiencing a hostile / d�˛ rate of
energy decay, molecular numbers (or energy) decay / d�1. Therefore, the potential
to harvest energy from a field of transmitters is far greater for MCvD than for RF
communications. If one assumes that the molecular transmitters are randomly and
uniformly distributed according to a Poisson Point Process (PPP) or Poisson Cluster
Process (PCP), one can leverage on existing stochastic geometry techniques [62]
to find the expected molecular energy. This typically involves understanding the
general distance distribution fD.d; n/ from the energy harvesting node to the n-th
nearest transmitter node [63].

Figure 6.9 shows a simulation of crowd harvesting energy from a formation
of nodes distributed according to a modified Thomas PCP. Subplot (a) shows
an instant snap-shot of the PCP formation of nodes with an energy harvesting
receiver at the centre. Subplot (b) shows a scatter and box plot of the percentage of
energy harvested for MCvD and RF transmissions. The results show that RF energy
harvesting is far more sensitive to the density of transmitter nodes than MCvD
energy harvesting. The random walk nature of molecular propagation means that the
distance distribution (i.e., fD.d; n/) is not a key consideration in crowd harvesting,
whereas it is for RF systems. This demonstrates the potential for crowd harvesting in
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Fig. 6.9 Crowd harvesting energy from a formation of nodes distributed according to a Thomas
PCP. Subplot (a) shows an instant snap-shot of the PCP formation of nodes with an energy
harvesting receiver at the centre. Subplot (b) shows a scatter and box plot of the percentage of
energy harvested for MCvD and RF transmissions as a function of node density (per m2). Modeling
parameters: a variable modeling area radius 0.1–1 km, 20 clusters each with 10 nodes 2D Gaussian
distributed with s.d. 30 m, mass diffusivity D D 79:5 ţm2=s, pathloss exponent ˛ D 2, transmit
power PTx D 1 W, transmit molecule NTx D 1, and receiver radius of R D 1 m

molecular systems, which can achieve 2–5 dB improvement in harvesting efficiency
compared to RF systems in a similar setting, with the highest relative gain at low
node densities.

6.4 Conclusions and Future Work

The performance of communication systems is fundamentally limited by the loss of
energy through propagation and circuit inefficiencies. In this chapter, we have shown
that it is possible to achieve ultra-low energy communications across different
device size and transmission distance scales.

At the macro-scale, we have reviewed recent progress in simultaneous energy
and information transfer for large-scale networks. It can greatly reduce the use of
battery power and increase the availability and reliability for relaying. Through a
case study, we show that it is better to harvest energy from TV bands in LoS channels
and ambient Wi-Fi signals in NLoS conditions. Furthermore, we have discussed the
optimization of transmissions in crowd harvesting, especially with the use of node
collaboration.

At the nano-scale, we show that while the energy of waves will inevitably decay
as a function of transmission distance and time, the energy in molecules does not.
In fact, over time, the molecular receiver has an opportunity to recover some, if
not all of the molecular energy transmitted. Inspired by the GABA metabolism
system in nature, which fragments and reassembles molecules, we discuss a number
of communication systems. For point-to-point links, we found that given sufficient
time, the energy harvested can be fully recovered in 1-D channels and scales with
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d�1 in 3-D channels. This fundamentally improves over wave-systems that have a
free-space upper-bound of d�2. For more complex systems, we designed two relay
systems that can achieve high energy harvesting efficiency (12–25% at the relay).
For parallel channels, we found that molecular communications offer superior
energy harvesting scaling with node density (2–5 dB gain) and are significantly less
sensitive to the spatial distribution of nodes. Regarding the information capacity,
the generalized capacity remains to be discovered, but capacity limits for specific
modulation schemes exist and are beyond the scope of this paper. In summary,
chemically manipulation to improve energy efficiency of information transmission
is something that has no parallel in radio frequency communications. What currently
remains beyond engineering capabilities is the ability to build such biological
functionalists into realistic systems. Nonetheless, the preliminary results in this
article indicate that the potential for simultaneous molecular information and energy
transfer (SMIET) is immense and further cross-discipline research is needed to
transform theory to reality.
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