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3.1 Introduction

The rapid development of mobile internet and internet of things (IoTs) has given
rise to a serious concern about the highly growing traffic and the support of
a massive number of connected devices. Therefore, the energy storage, power
management and increase of the battery life of these devices are major issues to
be considered in realizing the upcoming networks successfully. While many energy
efficient strategies aim at expanding the system’s battery life by reducing the energy
consumption, the others propose to recycle the ambient energy associated with
the energy harvesting (EH) sources such as vibration, heat and electromagnetic
waves. Among these different EH techniques, radiofrequency (RF) EH via RF
electromagnetic waves is one of the most appealing techniques. In this context,
the idea of using the same electromagnetic field for transferring both information
and power to wireless devices, called simultaneous wireless information and power
transfer (SWIPT) has recently attracted significant attention. It is predicted that
SWIPT will become an essential part for many commercial and industrial wireless
systems in the future, including the IoT, wireless sensor networks and small-cell
networks [1].

The ideal SWIPT receiver is the one which is able to extract energy from the
same signal as that used for information decoding (ID) [2]. However, this extraction
is not possible with the current circuit designs, since the energy carried by the RF
signal is lost during the ID process. Hence, a considerable effort has been devoted to
investigate different practical SWIPT receiver architectures. These architectures can
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Fig. 3.1 Antenna switching SWIPT receiver

(a)

(b)

Fig. 3.2 Practical designs for the co-located SWIPT receiver. (a) Time switching (TS). (b) Power
splitting (PS)

be classified into two groups of: parallel and co-located receivers [3]. In a parallel
receiver architecture, also referred to as antenna switching, energy harvester and
information receiver are equipped with independent antennas for EH and ID. As
shown in Fig. 3.1, the antenna array is divided into two subsets, one for EH and
the other for ID. In a co-located receiver architecture, the energy harvester and
the information receiver share the same antennas. Two practical methods to design
the co-located receiver architecture for SWIPT are time switching (TS) and power
splitting (PS). As shown in Fig. 3.2a, in a TS design, each reception time frame is
divided into two orthogonal time slots, one for ID and the other for EH and the
receiver switches in time between EH and ID modes. However, in PS design the
receiver splits the received signal into two streams of different power levels for EH
and ID, as shown in Fig. 3.2b.

To realize SWIPT, the available resources such as transmit power, subcarriers
and beamforming vectors should be allocated properly among both information and
energy transfer functionalities. In [4–6], the authors address the problem of design-
ing TS/PS SWIPT receivers in a point-to-point wireless environment to achieve
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various trade-offs between wireless information transfer and EH. In multi-user
environments, however, most of the researches focus on the power and subcarrier
allocation among different users such that some criteria (throughput, harvested
power, fairness, etc.) are met. Various policies have been proposed for single input-
single output (SISO) and multiple input-single output (MISO) configurations in a
multi-user downlink channel [7–12].

Resource allocation algorithm design aiming at maximization of the energy
efficiency of data transmission in a SISO PS SWIPT multi-user system is considered
in [7] with an orthogonal frequency division multiple access (OFDMA).

In MISO configuration, there exists an additional degree of freedom of beam-
forming vector optimization at the transmitter. In [11], a joint beamforming and
PS ratio allocation scheme was designed to minimize the power cost under the
constraints of throughput and harvested energy. The problem of joint power control
and TS in MISO SWIPT systems by considering the long-term power consumption
and heterogeneous quality of service (QoS) requirements for different types of
traffics is also studied in [9]. In [10] resource allocation algorithm design for SWIPT
is addressed in a multi-user coordinated multipoint (CoMP) network which includes
multiple multi-antenna remote radio heads (RRHs) and separate single antenna
EH and ID receivers. A MISO femtocell co-channel overlaid with a macro-cell is
considered in [12] to exploit the advantages of SWIPT while promoting the energy
efficiency. The femto base station sends information to ID femto users (FUs) and
transfers energy to EH FUs simultaneously, and also suppresses its interference to
macro users. A novel EH balancing technique for robust beamformers design in
MISO SWIPT system is also proposed in [8] considering imperfect channel state
information (CSI) at the transmitter.

SWIPT in multi-user MIMO interference channel is studied in [13, 14]. In [13] a
MIMO interference channel with two transmitter–receiver pairs is considered. When
both receivers are set in ID mode or EH mode, the achievable rate obtained with
iterative water-filling and without CSI sharing is studied. Strategies are proposed
for the mixed case of one ID receiver and one EH receiver, in order to maximize the
energy transfer to the EH receiver and minimize the interference to the ID receiver.
PS SWIPT in a multi-user MIMO interference channel scenario is also studied
in [14]. The objective is to minimize the total transmit power of all transmitters
by jointly designing the transmit beamformers, power splitters and receiver filters,
subject to the signal-to-interference-plus-noise ratio (SINR) constraint for ID and
the harvested power constraint for EH at each receiver.

In this chapter, we address SWIPT from the following points of view:

• First, based on the literature review conducted, most of the existing works in
SWIPT consider single cell cases with one base station (BS) and single or mul-
tiple mobile users. In a multi-cell case the system becomes interference limited,
since reuse of subcarriers from users in different cells produce interference that
degrades the system performance in terms of throughput and spectral efficiency,
particularly for cell edge users. In this perspective, important features such as
inter-cell interference coordination (ICIC) and CoMP communication have been
introduced for cellular communication networks. However, while interference
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links are always harmful for information decoding, constructive interferences
are useful for energy harvesting. This already shows the dualistic nature of
interference in SWIPT networks. On the other hand, it is worth remarking that
the signal strength of far-field RF transmission is greatly impaired by the path
loss when the separation between the transmitter and the RF energy harvester
increases. From an architectural point of view, a potential solution that could
ensure ubiquitous SWIPT is the avoidance of the high signal attenuation due
to path loss. This can be achieved, thanks to densification of network nodes.
Therefore, the concept of ICIC relying on a cloud-based centralized digital
processing can be the basis to SWIPT technologies ensuring large energy transfer
efficiency and reduced costs. In this scenario, a large number of low-cost RRHs,
also referred to as access points (APs), are randomly deployed and connected
to the baseband unit (BBU) pool through the fronthaul links. This concept has
generally been applied to macro-cells, i.e. large outdoor tower-based systems.
However, it can also be applied to small-cells that provide distributed coverage
across a large space such as a stadium, airport or office building. Such an
architecture would permit an integrated control of power and data transfer while
keeping the RF front ends relatively close to the associated devices.

• Second, we consider TS SWIPT technique, which is practically feasible and
can be implemented using simple switches, while PS receivers require highly
complex hardware due to the different power sensitivity levels of ID and EH
parts in each receiver. In this perspective, it is worth mentioning that TS SWIPT
receivers can be considered as a special case of dynamic PS SWIPT receivers
with on–off power splitting factor. Hence, since realistic values of the ID and
EH receivers’ sensitivities may differ by more than 30dB, TS and dynamic PS
SWIPT will have similar performance in practical scenarios.

• Third, existing SWIPT works have considered single objective optimization
(SOO) framework to formulate the problem of resource allocation or beamform-
ing optimization. Popular objectives are classical performance metrics such as
sum rate/ throughput (to be maximized), or transmit power (to be minimized),
or sum of energy harvested (to be maximized). However, SWIPT has a multi-
objective nature, i.e. both throughput and the amount of harvested energy are
desirable objectives in designing SWIPT systems. In SOO one of these objectives
is selected as the sole objective while the others are considered as constraints.
This approach assumes that one of the objectives is of dominating importance
and also it requires prior knowledge about the accepted values of the constraints
related to the other objectives. Therefore, the fundamental approach used in
our study is the multi-objective optimization (MOO) which investigates the
optimization of the vector of objectives, for nontrivial situations, where there is a
conflict between objectives. This approach has been proposed lately for wireless
information systems [15] and is only considered in [16, 17] very recently for a
parallel SWIPT system which consists of a multi-antenna transmitter, a single-
antenna information receiver and multiple EH receivers equipped with multiple
antennas. In this scenario, the trade-off between the maximization of the energy
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efficiency of information transmission and the maximization of the wireless
power transfer efficiency is studied by means of resource allocation using an
MOO framework.

3.2 System Model

We consider a small-cell network consisting of several APs which may overlay the
existing macro-cell network as in Fig. 3.3. Small-cells are realized using multiple
RRHs which are connected to a central BBU through the fronthaul links [18]. Macro
BS and RRHs are equipped with multiple antennas and serve multiple single antenna
users. We assume that each cell in Fig. 3.3 consists of NAP APs which are equipped
with NAj ; j D 1; : : : ; NAP antennas and serve NUE single antenna user equipments
(UEs). The term UE in this chapter refers to the broader range of devices from the
ones directly used by the end-users to the autonomous sensors. The sets of all UEs
and all APs are denoted by NUE and NAP, respectively. Each user is assumed to be
served by multiple transmitters but with different beamforming vectors. Therefore,
the received signal in the ith UE can be modelled as:

yi D
NAPX

jD1

hH
ij

NUEX

lD1

xljsl C ni; (3.1)

BBU Pool
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th
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Fig. 3.3 Small-cell network with TS scheme in MISO SWIPT system
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where i; l 2 NUE; j 2 NAP, sl is the information symbol from APs to the lth
UE which originates from independent Gaussian codebooks, sl � CN .0; 1/ and
xlj 2 C

NAj �1 is the beamforming vector from the jth AP to the lth UE. We assume
quasi-static flat fading channel for all UEs and denote by hij 2 C

NAj �1 the complex
channel vector from the jth AP to the ith UE. Also ni � CN .0; �2

i / is the circularly
symmetric complex Gaussian receiver noise which includes the antenna noise and
the ID processing noise in the ith user. According to (3.1), the achievable data rate
Ri (bits/s/Hz) for the ith UE can be found from the following equation:

Ri D log2

0

@1 C
PNAP

jD1 trace.HijXij/

�2
i CPNAP

jD1

PNUE
lD1;l¤i trace.HijXlj/

1

A ; (3.2)

where Xij D xijxH
ij , Hij D hijhH

ij and therefore Xij; Hij 2 C
NAj �NAj are rank-one

matrices for i 2 NUE; j 2 NAP. This information data rate is achieved by treating
the interference as noise.

Besides, the received energy per channel use Ei (assuming normalized energy
unit of Joule/(channel use) or W) in the ith UE is given by:

Ei D
NAPX

jD1

NUEX

lD1

trace.HijXlj/; (3.3)

in which the antenna noise power is neglected. However, this amount of energy
cannot be harvested in practice due to the technical issues of RF-to-DC energy
conversion. The efficiency of the RF energy harvester depends on the efficiency of
the antenna, the accuracy of the impedance matching between the antenna and the
voltage multiplier, and the power efficiency of the voltage multiplier that converts
the received RF signals to DC voltage [19].

In this scenario, the UEs are assumed to use TS design for implementing SWIPT.
As stated before, in a TS scheme each reception time frame is divided into two
orthogonal time slots, one for ID and the other for EH. Consequently, denoting by
˛i the fraction of time devoted to ID in the ith UE, the average data rate in this
scheme can be written as:

RTS
i .X; ˛i/ D ˛iRi.X/; (3.4)

where Ri.X/ can be found from (3.2). Also we have the following equation for the
amount of harvested energy at the ith UE:

ETS
hi

.X; ˛i/ D .1 � ˛i/�iEi.X/; (3.5)

in which Ei.X/ can be found from (3.3) and �i denotes the energy harvesting
efficiency factor of the ith UE.
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3.3 Resource Allocation Optimization for TS SWIPT

In this section, we study the resource allocation optimization problem for our TS
SWIPT system in a multi-objective manner. First we formulate the problem of
designing the optimal transmit strategies X D ŒXlj�l2NUE;j2NAP and time switching
ratios ˛ D Œ˛l�l2NUE jointly to maximize the performance of all users simultane-
ously and then we propose an algorithm based on the majorization–minimization
approach [20] to solve this problem.

3.3.1 Problem Formulation

As mentioned earlier, the data rate and harvested energy are both desirable for
each user in SWIPT scenarios. Therefore, in our problem formulation, we define
the utility vector of the ith UE by ui.X; ˛i/ D ŒRTS

i .X; ˛i/; ETS
hi

.X; ˛i/� which
includes both the data rate and the harvested energy values of the ith TS SWIPT
UE. Our optimization objective is then to maximize the utility vector of the whole
system defined by u.X;˛/ D Œu1.X; ˛1/; u2.X; ˛2/; : : : ; uNUE.X; ˛NUE/� jointly via
the multi-objective problem formulation. This problem can be written as:

Maximize
X;˛

u.X;˛/

subject to (1)
NAPX

jD1

NUEX

lD1

trace.Xlj/ � Pmax

(2) Xlj � 0; Rank.Xlj/ D 1; 8l; j

(3) ˛l 2 Œ0; 1�; 8l;

(3.6)

where constraint (1) denotes the average power constraint for APs across all
transmitting antennas with upper limit of Pmax, constraint (2) considers the rank-
one property of Xljs and constraint (3) is due to definition of TS rates.

The design problem for the ideal SWIPT case in which energy is assumed to be
extracted simultaneously while information decoding is the same as problem (3.6)
but with utility vectors of ui.X/ D ŒRi.X/; �iEi.X/�, where Ri.X/ and Ei.X/ can be
found from (3.2) and (3.3), respectively. As already stated, this ideal receiver is not
feasible in practice; however, for theoretical benchmarking, its performance can be
used as an upper bound for the performance of the TS SWIPT.
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3.3.2 Resource Allocation Algorithm

Our approach to solve problem (3.6) is to relax the rank constraints on Xljs.
It is proved in [21] that the optimal solution of the relaxed problem satisfies
Rank.Xlj/ D 1; 8l 2 NUE; 8j 2 NAP. As the objectives in problem (3.6) are con-
flicting, this problem cannot be solved in a globally optimal way and the Pareto
optimality of the resource allocation will be adopted as the optimality criterion.
Pareto optimality is a state of allocating the resources in which none of the objectives
can be improved without degrading the other objectives [22]. As there usually exists
multiple Pareto optimal solutions for MOO problems, it is generally converted into
a SOO problem involving possibly some parameters or additional constraints to
compute each Pareto optimal point. This conversion is called scalarization and
examples of it are the weighted sum, weighted product and the weighted Chebyshev
methods [15].

To solve the relaxed version of MOO problem (3.6), we use the weighted
Chebyshev method, which provides the complete Pareto optimal set by varying
predefined preference parameters. The weighted Chebyshev goal function is

fch.:/ D Minimum
i2NUE;mD1;2

u.m/
i

v
.m/
i

; (3.7)

where u.m/
i denotes the mth element of ui.X; ˛i/ and v

.1/
i ; v

.2/
i 8i 2 NUE are

the predefined preference parameters that specify the priority of each objective.
Therefore, introducing the new parameter �, weighted Chebyshev scalarization is
equivalent to the following problem:

Maximize
X;˛;�

�

subject to (1) ˛iRi.X/ � �v
.1/
i ; 8i

(2) .1 � ˛i/�iEi.X/ � �v
.2/
i ; 8i

(3)
NAPX

jD1

NUEX

lD1

trace.Xlj/ � Pmax

(4) Xlj � 0; 8l; j

(5) ˛i 2 Œ0; 1�; 8i;

(3.8)

The above problem is a non-convex semidefinite program (SDP) due to not only
the coupled TS ratios and Ri, Ei in the first and second constraints but also the
definition of Ri.X/ as presented in (3.2). Introducing the new variables Ri; Ei; Ii and
ˇi, problem (3.8) can be represented as:
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Maximize
X;˛i;ˇi;Ri;Ei;Ii;�; 8i

�

subject to (C1) ˛iRi � �v
.1/
i ; 8i

(C2) ˇi�iEi � �v
.2/
i ; 8i

(C3) Ei D
NAPX

jD1

NUEX

lD1

trace.HijXlj/; 8i

(C4) Ii D
NAPX

jD1

NUEX

lD1;l¤i

trace.HijXlj/; 8i

(C5) Ri D log.Ei C �2
i / � log.Ii C �2

i /; 8i

(C6)
NAPX

jD1

NUEX

lD1

trace.Xlj/ � Pmax

(C7) Xlj � 0; 8l; j

(C8) ˛i C ˇi D 1; 8i

(C9) ˛i 2 Œ0; 1�;

(3.9)

where Ei and Ii defined in (C3) and (C4) are the received energy and the interference
level in the ith UE, respectively. Also (C5) is directly obtained from substituting the
definition of Ei and Ii in the definition of Ri given by Eq. (3.2). It is shown in [21]
that the constraint (C5) in problem (3.9) can be relaxed to .C5/ defined below:

.C5/ Ri � log.Ei C �2
i / � log.Ii C �2

i /: (3.10)

We define O� D log.�/, and use the monotonicity and concavity properties of the
logarithm function to reformulate the above problem as below:

Maximize
X;˛i;ˇi;Ri;Ei;Ii;O�; 8i

O�

subject to .C1/ log.˛i/ C log.Ri/ � O� C log.v
.1/
i /

.C2/ log.ˇi/ C log.�iEi/ � O� C log.v
.2/
i /

(C3)–(C4)

.C5/ Ri � log.Ei C �2
i / � log.Ii C �2

i /

(C6)–(C9);

(P)

in which the nonconvexity of problem (3.9) is concentrated in inequality .C5/.
Now problem (P) can be considered as a DC (difference of convex) programming
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[23] since .C5/ is the difference of two convex functions (Ri � log.Ei C �2
i ),

� log.Ii C �2
i /). Therefore, it can be solved using local optimization method

of convex–concave procedure (CCP) [24]. CCP is a majorization–minimization
algorithm [20] that solves DC programs as a sequence of convex programs by
linearizing the concave part, log.Ii C �2

i /, around the current iteration solution of Ii.
To this end, we use the first order Taylor expansion and replace problem (P) in the
kth step by the following subproblem:

Maximize
X;˛i;ˇi;Ri;Ei;Ii;O�; 8i

O�

subject to .C1/; .C2/; (C3)–(C4)

.C5/ Ri � log.Ei C �2
i / �

 
log.Ik

i C �2
i / C 1

Ik
i C �2

i

.Ii � Ik
i /

!

(C6)–(C9):
(Pk)

This problem is a convex SDP and it can be solved by standard optimization
techniques such as Interior-Point Method. In this paper, we have used the CVX
package to solve (Pk). The linearization point is updated with each iteration until
it satisfies the termination criterion as described in Algorithm 1. It can be easily
verified that if Ik

i is the stationary point of subproblem (Pk), i.e. fulfilling the

Algorithm 1: CCP Algorithm for TS SWIPT
1: Define a step size � 2 R and a given tolerance " > 0.

2: Initialize: choose a value for I0
i inside the convex set defined by (C1)-(C4),

(C6)-(C9).

3: Set k WD 0.

4: For the given Ik
i , solve the convex SDP of (Pk) to obtain the solution OIi.Ik

i /.

5: if kOIi.Ik
i / � Ik

i k � " then

6: stop.

7: else

8: update Ik
i D Ik

i C �. OIi.Ik
i / � Ik

i /.

9: update iteration, k D k C 1.

10: go back to line 4.

11: end if
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KKT conditions of subproblem (Pk), it is also a stationary point of problem (P)
[25]. The conditions under which the constrained CCP algorithm converges to a
stationary point of the original problem are studied in [26] using Zangwill’s global
convergence theory [27] of iterative algorithms. These conditions are shown to be
satisfied for Algorithm 1 in [21].

3.4 Numerical Results

In this section, we provide numerical results to demonstrate the performance of the
proposed beamforming and TS algorithm in terms of harvested energy-data rate
trade-off. We investigate the effect of different parameters on this trade-off to get a
general overview for the practical design of the network.

3.4.1 Experimental Setup

We consider two small-cells as shown in Fig. 3.4, consisting of NAP D 2 APs
equipped with NA1 , NA2 antennas and NUE TS SWIPT sensors. Sensors are dis-
tributed uniformly in a region bounded by two concentric circles with radius of dmin

and dmax. The distance of APs from each other is denoted by D as shown in Fig. 3.4.
Transmission channel gains, hij; 8i 2 NUE; j D 1; 2, depend on the location of
sensors with respect to APs and the channel fading model. At each sensor location,
channel gains are generated with Rayleigh fading and path loss exponent of 3. Noise
powers are assumed to be �2

i D �90 dBm, 8i 2 NUE and the maximum total power
budget is set to Pmax D 1 W. Parameter assumptions in this section (unless they are
clearly stated with different values) are summarized in Table 3.1.

3.4.2 Discussion

In this section, we illustrate the Pareto boundary of TS and ideal SWIPT systems
to investigate the trade-off between the harvested energy and the data rate. To plot
the Pareto boundaries, we solve the optimization problems (3.6) using Algorithm 1
in several directions by changing the preference weights of v

.1/
i ; v

.2/
i ; 8i. To have

a general view of the Pareto boundary, we first consider a setup which includes

Fig. 3.4 Simulation scheme

dmin

D

dmax
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Table 3.1 Parameter assumptions

Parameters Specification Parameters Specification

NAP 2 Pmax 1 W

NA1 D NA2 2 dmin 2 m

N0 �150 dBm/Hz dmax 10 m

�W 1 MHz Multipath exponent 3

D 20 m Fading Rayleigh

�i 0.6 No. of channel realizations 100

two UEs served by two coordinated APs. The first UE is assumed to be a SWIPT
sensor while the second UE is assumed to be an ID receiver such as smartphone.
Therefore, we set v

.1/
1 D �2�1; v

.2/
1 D �2; v

.1/
2 D �1 and search for the optimal

solutions in different directions by changing the values of �1 and �2. In this setup,
�1 changes the trade-off between the harvested energy and the data rate in the first
UE and �2 changes the data rate preference between the first and second UE.

Figure 3.5 depicts the 3D Pareto boundary and its three 2D projections for one
channel realization. As can be seen in Fig. 3.5a, the maximum harvested energy
occurs when both the data rate of the first and second UEs are almost zero. By
decreasing the amount of desired harvested energy, we can achieve higher data rates.
In this scenario, the first UE (SWIPT sensor) desires high amount of harvested
energy. Achieving high data rate is not required by this sensor while it is desired
for the second UE. The desired trade-off is therefore the boundary marked in pink
colour in Fig. 3.5d. The corresponding counterparts are also shown in Fig. 3.5b,c. To
explain the behaviour of the Pareto boundary in this area, we study the performance
in three different regions shown in Fig. 3.5d. At point A, we have the maximum
data rate for the second UE, i.e. RTS

2 D 33 bits/s/Hz, RTS
1 D 2 bits/s/Hz and ETS

1 D
0:08 mW. At this point, the whole power is assigned to the AP which is closest to the
second UE (it should be noted that we have assumed global power constraint for the
APs in our system model). A small part of this power is only devoted to the sensor
and therefore we will have such a low data rate and harvested energy in the first UE.
By adapting the TS ratio of the sensor we can increase the harvested energy to a
certain point B in which we have ETS

1 D 0:5 mW with the data rate of RTS
1 D 1:8

bits/s/Hz in this case. As a result while we are increasing the harvested energy, data
rate of the second UE decreases only slightly to RTS

2 D 30 bits/s/Hz. However, to
further increase the harvested energy, the beamformers should be aligned toward the
first UE and this yields to an interference which suddenly decreases the data rate of
the second UE to RTS

2 D 10 bits/s/Hz at point C. As a result, region 2 is the region
in which both APs are active. In region 3, we are willing to harvest more energy
and therefore the power will be assigned to the AP which is closer to the first UE.
Therefore by transferring the power to the first AP and adapting the TS ratio we
could harvest up to ETS

1 D 0:9 mW (point D).
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Now we consider a symmetric setup which includes N D NUE
2

D 1 UE with the

same priority in each small-cell. Therefore we set v
.1/
i D �1; v

.2/
i D 1 8i and search

for the optimal solutions by changing the value of �1 only. Figure 3.6 shows the
average Pareto boundary of the first TS SWIPT UE. As it can be seen, the average
harvested energy is a monotonically decreasing function of the achievable data
rate. This result shows that these two objectives are generally conflicting and any
resource allocation algorithm that maximizes the harvested energy cannot maximize
the data rate. In this plot, as the amount of harvested energy increases from 0.45 	W
to 1.8 mW, the average data rate reduces from 29.13 to 0.2657 bits/s/Hz.

Pareto boundary of the infeasible ideal SWIPT is also shown in this figure
as an upper bound. It can be observed that the maximum value of the harvested
energy Ehmax and the achievable data rates Rmax are the same for ideal and TS
SWIPT. However, as expected, the minimum value of the harvested energy and the
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Fig. 3.6 Pareto boundary of TS SWIPT and ideal SWIPT

achievable data rates are not zero in this case since the ideal SWIPT is assumed
to be able to harvest energy while decoding the information. It should be noticed
that if the AP is able to change its beamforming vector for EH and ID, the optimal
strategy would be to use the beamforming vectors related to the two extreme points
of the ideal SWIPT Pareto boundary in each time slot. In this case, the optimal TS
Pareto boundary would simply be the dashed linear line in Fig. 3.6. However, since
in our scenario the same beamforming vector is used for EH and ID, the optimal
TS Pareto boundary is the envelope of all linear lines connecting the projection of
ideal Pareto boundary points .R�; E�

h / on two axes, i.e. .0; E�
h / and .R�; 0/. Besides,

as it is evident from Fig. 3.6, the Pareto boundary of TS SWIPT generated from the
objectives in our problem formulation is non-convex. This is due to the multiple
AP schemes and joint optimization of TS ratios and the beamforming vectors
considered in this problem. In the following, we study the effect of the network
parameters such as the number of UEs, distance of the APs from each other and the
maximum possible distance of UEs from the APs on the Pareto boundary of the TS
SWIPT UE.
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3.4.2.1 Effect of the Number of UEs

To study the effect of the number of UEs, we consider a symmetric setup which
includes N D NUE

2
D 1; 2; 3 UEs in each small-cell with the same user preference

weights as in previous plot. Figure 3.7 shows the Pareto boundary of the first TS
SWIPT UE in this setup.

As can be seen, increasing the number of UEs highly affects the possible amount
of harvestable energy at each UE, while the maximum data rate changes very
slightly by increasing the number of UEs. For example, the maximum harvested
energy in Fig. 3.7 reduces approximately from 1.8 mW to 0.5 mW and 0.3 mW by
increasing the number of UEs at each small-cell from N D 1 to N D 2 and N D 3,
respectively. This result is expectable, due to the fixed total power consumption
assumption and the direct impact of transmit power on the received energy.

In Fig. 3.7 we have also plotted the Pareto boundaries of ideal SWIPT for
N D 1; 2; 3 UEs in each small-cell. Comparing the results of ideal and TS SWIPT
for different number of UEs shows that the harvested energy loss of TS SWIPT with
respect to the ideal SWIPT for a fixed required data rate reduces with increasing the
number of UEs. As can be seen in Fig. 3.7, to achieve R1 D 5 bits/s/Hz in the first
UE, we lose approximately 1 mW in TS SWIPT with respect to the ideal SWIPT
in N D 1 UE per small-cell. However, this amount reduces to nearly 0.3 mW and
0.2 mW in N D 2 and N D 3, respectively.
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3.4.2.2 Effect of the Distance D Between APs

The effect of multi-user interference on the harvested energy-data rate trade-off is
shown in Fig. 3.8. In this figure, we have plotted the Pareto boundaries for the first
UE for different AP distances of D D 10; 15; 20 m for two cases of dmax D 5; 10 m.
As can be seen in Fig. 3.8a, in dmax D 5 m, the Pareto boundaries are quite
close to each other for different values of D. The maximum harvested energy is
slightly higher in D D 10 m because of the higher level of interference in this
case. However, by increasing the demand for the data rate, this interference will
degrade the performance. In the case of dmax D 10 m, as plotted in Fig. 3.8b, Pareto
boundaries for D D 15; 20 m are very close to each other. However, by decreasing
the distance to D D 10 m the harvested energy increases in a fixed desired data
rate. This is due to the fact that in higher dmaxs the probability of utilizing both APs
increases while in lower dmaxs the UEs are mostly fed with their nearest AP.

3.4.2.3 Effect of Maximum UE Distance dmax from the AP

The effect of small-cell size is investigated in this section by plotting the Pareto
boundaries for different maximum distance of UEs from the APs. Figure 3.9 shows
the harvested energy-data rate trade-off for N D 1, dmax D 5; 7:5; 10 m. As can be
seen, by decreasing the maximum distance of the UEs from the AP, in the same
number of UEs, the system can benefit from less path loss and harvest more energy.
This superior performance is mostly seen in the region when harvested energy has a
higher preference weight. By decreasing the dmax further to 5 m, the system can also
benefit from less interference due to the farther distance of UEs in each cell from
the AP of the other cell and therefore, this better performance can also be observed
in the data-rate preference region.

3.4.2.4 Effect of Inter-User Trade-Off

To study the trade-off between users in different small-cells, we choose different
preference weights for NUE D 2 UEs by setting v2

1 D �1�2; v2
1 D �2 and v1

2 D
�1; v2

2 D 1. As a result, the trade-off between harvested energy and data rate is
changing with �1 for both UEs the same as previous plots, but the priority of the
first UE is �2 times the second UE.

Figure 3.10a,b show the Pareto boundaries of these two UEs for �2 D 1; 5; 10; 15.
As can be seen, both UEs have the same Pareto boundaries for �2 D 1. To benefit
from better performance in the first UE, we increase the �2. It can be inferred from
Fig. 3.10 that this superior performance is not achievable by only adapting the TS
ratio. Consequently beamformers will be aligned toward the first UE by allocating
more power to the first AP which results in increasing the ETS

h1
without increasing

the interference on the first UE. Hence the maximum data rate and harvested energy
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both decrease in the second UE. Therefore, improving the performance of one
user by increasing its preference weight will be at the expense of decreasing the
performance of the other user drastically.

3.4.2.5 Effect of the TS Ratios ’i

In this section, we study the effect of the TS ratios on harvested energy-data rate
trade-off. Specifically, we compare the Pareto boundaries of the optimal TS SWIPT
with the Pareto boundaries of the TS SWIPT which uses fixed predefined switching
rate. We consider a symmetric scenario with N D 1 and for the fixed switching rate
case, we assume the same TS rate for both users. Figure 3.11 illustrates the Pareto
boundaries for fixed switching rates of ˛1 D 0:1; : : : ; 0:9. As can be seen, for lower
switching rates, we have higher maximum harvested energy and lower maximum
achievable data rates. However, the optimal TS SWIPT leverages the best possible
harvested energy and data rate by optimizing ˛i; 8i jointly with the beamforming
strategy.
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3.5 Conclusion

In this chapter, we studied the resource allocation optimization for SWIPT in small-
cell networks. We considered a small-cell network with MISO SWIPT system
model and we addressed the problem of joint transmit beamforming and receiver
time switching design in an MOO manner. The design problem was formulated as
a non-convex MOO problem with the goal of maximizing the harvested energy and
information data rates for all users simultaneously. The proposed MOO problem
was scalarized employing the weighted Chebyshev method. This problem is a non-
convex SDP which is relaxed and solved using convex–concave procedure based on
the majorization–minimization algorithm. The trade-off between energy harvested
and information data rate and the effect of network parameters on this trade-off was
investigated by means of numerical results. The numerical results showed that:

• For TS SWIPT receiver, the energy performance loss with respect to ideal case
increases when the number of UEs decreases.

• Interference is beneficial in case of low-rate devices operating in a very dense
network.
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• Cooperation among multiple transmitters can be used to drastically increase the
achievable trade-off of one UE but the effect on the trade-off of other UEs could
be detrimental.

In this work, we have considered perfect CSI. However, channel estimation is
not possible during energy harvesting phase which may lead to out-dated CSI if
the harvesting phase is too long. Reliability of CSI estimation also depends on
TS ratio. Analysing this dependence and its associated trade-off which implies
robust beamforming and SWIPT strategy can be considered as an interesting future
work. Also generalization of this work can be applied in distributed massive MIMO
scenario which has the potential to increase the harvested energy.
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