Chapter 10
Efficient Wireless Power Transfer Maximization
Algorithms in the Vector Model

Ioannis Katsidimas, Sotiris Nikoletseas, Theofanis P. Raptis,
and Christoforos Raptopoulos

10.1 Introduction

Wireless Power Transfer (WPT) has recently become a commercially viable option
in various wireless systems due to the reliability of continuous power supply and
the convenience provided by the fact that no static (wired) network connections
are needed between the devices. The efficiency of the various technological
alternatives is increasing every year. Current fast-charging protocols achieve up
to 84% efficiency for WPT up to distances of 15 m [22], while at the same time
keeping thermal dissipation significantly low [23]. A WPT enabled system consists
of several wireless transmitter and receiver devices. A wireless transmitter (charger)
is a device that has a dedicated power source with significant power supply and
can transfer power wirelessly to receivers. A receiver (node) is a device that is
powered by harvesting the radio frequency energy from the chargers. A receiver is
usually an electronic device that is needed to perform a specific task in the wireless
system, for example a sensor mote in a wireless sensor network. Systems of wireless
devices have to operate under increasing demands of power in order to sustain
various computational and communication tasks. For this reason, the efficient
and distributed cooperation of the transmitters and receivers towards achieving an
effective power allocation in the system is a crucial task.
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Our Contribution While considerable research efforts have been invested into
power management in wireless systems, most of the models studied in the literature
neglect key features of electromagnetic fields. As a result, such models are unable
to explain various phenomena occurring in real applications (e.g., cancellation and
superadditive charging effects; see Sect. 10.3), yielding some algorithmic solutions
impractical. In view of the above, our contribution in this chapter is the following:

e We algorithmically study a more realistic model for WPT at far-field region
in wireless systems, which was nicely initiated in [17]. In particular, this is
a “vector” model that takes into account the superposition of electromagnetic
fields created by independent wireless transmitters, as well as fundamental
properties of the superposition of waves from physics. To the best of our
knowledge, this is the first algorithmic study of a vector model for WPT.

* We define two new computational problems for the efficient utilization of
power resources in a wireless system consisting of a family of transmitters
% and a family of receivers #. In particular, we first consider the problem
MAX-POWER of finding a configuration (set of operation levels) for transmitters
that maximizes the total power received by Z. Second, we consider the problem
MAX-kMIN-GUARANTEE of finding a configuration that maximizes the mini-
mum cumulative power' among all the sets of k receivers.

*  We formulate MAX - POWER as a quadratic program and we prove that we can find
an optimal solution efficiently by presenting a family of distributed algorithms
using different levels of knowledge of the system. We prove that these algorithms
run in pseudopolynomial time, but we experimentally show that they are quite
faster in practice.

e We design and experimentally evaluate three efficient heuristics for
MAX-kMIN-GUARANTEE that provide good approximations of the optimal
solution. The first heuristic is a generalization of our algorithmic solution to
MAX-POWER, while the second samples a few representative k-sets of receivers
and then solves the problem considering only those sets. Finally, our third
heuristic is a hybrid of the previous two ideas and we show that it outperforms
both in typical deployments of transmitters and receivers on the plane.

A preliminary version of this work [8] was appeared in the proceedings of the
18th International Conference on Distributed Computing and Networking (ICDCN
2017).

10.2 Related Work

WPT methods in large-scale networked systems have attracted much attention from
researchers worldwide. The reader can find comprehensive reviews of the relevant
literature in [11, 12, 26], and [10]. Also, the book [20] is the first systematic

I'The cumulative power for a set of nodes is the aggregate received power by the nodes of a set
from all the operational chargers.
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exposition on the domain of wireless energy transfer in ad hoc communication
networks. Several works study applications in sensor networks [1, 6, 25] and
wireless distributed systems [13, 19], UAVs [5, 14]. Different to all those works,
in this chapter we investigate a static setting, where transmitter and receiver
locations are predefined and stationary, and there are no mobile elements in the
system.

There have been some works on closely related themes to this chapter, which
investigate different aspects of the WPT process. In [27], given a set of candidate
locations for placing chargers, the authors provide a charger placement and a
corresponding power allocation to maximize the charging quality, subject to a
power budget. In a recent paper [18], a subset of the authors of this chapter
study the Low Radiation Efficient Charging Problem, in which we optimize the
amount of useful energy transferred from chargers to nodes (under constraints on
the maximum level of imposed electromagnetic radiation). In a similar setting, the
authors in [3] consider the Safe Charging with Adjustable Power (SCAPE) problem
for adjusting the power of chargers to maximize the charging utility of devices,
while assuring that electromagnetic intensity at any location in the field does not
exceed a given threshold. It is worth noting that, even though all the above works
nicely demonstrate the gains of carefully distributing the power in a wireless setting,
they use one-dimensional models, which fall short of capturing various intricate
aspects of WPT.

Wireless transfer of energy through directed radio frequency waves has the
potential to realize perennially operating sensor nodes by replenishing the energy
contained in the limited on-board battery. However, the high power energy transfer
from energy transmitters interferes with data communication, limiting the coex-
istence of these functions. In [15], the authors provide an experimental study to
quantify the rate of charging, packet loss due to interference, and suitable ranges
for charging and data communication of the energy transmitters. They also explore
how the placement and relative distances of multiple energy transmitters affect the
charging process, demonstrating constructive and destructive energy aggregation
at the sensor nodes. Finally, the authors investigate the impact of the separation
in frequency between data and energy transmissions, as well as among multiple
concurrent energy transmissions. Their results aim at providing insights on radio
frequency-based energy harvesting wireless sensor networks for enhanced protocol
design and network planning.

Furthermore, in [17], they formulate the location-dependent power harvesting
rates in generalized 2D and 3D placement of multiple (RF) energy transmitters for
recharging the nodes of a wireless sensor network. In particular, they study the
distributions of total available and harvested power over the entire network. They
then provide closed matrix forms of harvestable power at any given point in space
due to the action of concurrent energy transfer from multiple energy transmitters,
explicitly considering constructive and destructive interference of the transmitted
energy signals. The authors also analyze the performance of energy transfer in the
network through power outage probability, interference, and harvested voltage as a
function of the wireless energy received from the energy transmitters. The results
reveal that the network wide received power and interference power from concurrent
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energy transfers exhibit Log-Normal distributions, and the harvested voltage over
the network follows a Rayleigh distribution.

In [24], the authors investigate the impact of wireless charging technology on
sensor network deployments and routing arrangements, formalize the deployment
and routing problem, prove it as .4/ Z?-complete, develop heuristic algorithms to
solve the problem, and evaluate the performance of the solutions through extensive
simulations.

In [4], the authors introduce a scheme for improving the transmission power
of nodes to bound end to end delay. They provide an algorithm for finding the
minimal sleep latency from a node to a sink by increasing the minimal number of
nodes whose transmission power improved. For bounding the end to end delay from
the source node to the sink, the authors propose an end to end delay maintenance
solution and demonstrate its efficiency in provide end to end delay guarantees in
rechargeable wireless sensor networks.

Finally, in [16, 21], through an experimental study, the authors first demonstrate
how the placement, the chosen frequency, and number of the RF energy transmitters
affect the sensor charging time. These studies are then used to design a MAC
protocol called RF-MAC that optimizes energy delivery to desirous sensor nodes
on request.

10.3 The Charging Model

In a recent paper [17], the authors considered a model for the superposition of
electromagnetic fields created by independent wireless energy sources, which takes
into account fundamental properties of the superposition of waves from physics. The
model of [17] goes beyond (in fact, it is a generalization of) the one-dimensional
abstraction suggested by Friis’ formula® for the power received by one antenna
under idealized conditions given another antenna some distance away. In particular,
the electric field created by an energy transmitter (charger) C, operating at full
capacity, at a receiver R at distance d = dist(C, R) is a two-dimensional vector
given by

, 10.1)
) (

2Given two antennas, the ratio of power available at the input of the receiving antenna, P,, to
output power to the transmitting antenna, P, is given by % = G,Gr(ﬁ)2 where G; and G, are
the antenna gains (with respect to an isotropic radiator) of the transmitting and receiving antennas,
respectively, A is the wavelength, and R is the distance between the antennas.
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where A depends on the frequency at which the transmitter operates, and 8 is a
constant that depends on the hardware of the transmitter and the environment.’

The main point of the charging model of [17], which also sets it apart from other
(less realistic, but more tractable) models in the wireless charging literature, is that
the total electric field created by a family of energy transmitters € at a receiver R is
the superposition (vector-sum) of their individual electric fields, that is,

E(%.R) € Y E(C.R). (10.2)
Ce¥

Furthermore, the total available power at the receiver R is given by
P(¢.R) =y - [|[E(%.R)|?, (103)

where | - || denotes the length (2-norm) of the vector. The constant y depends on
the hardware of the transmitter, the hardware of the receiver, and the RF-to-DC
conversion efficiency.

It is worth noting that the above model arises naturally from fundamental
properties of the superposition of energy fields and has been shown to be more
realistic than other one-dimensional models that have been used in the past and
can capture superadditive and cancellation effects [7, 9, 15]. To fix ideas and
to demystify the above definitions, we present the following fictitious example:
Assume that there are two transmitters C; and C; placed at points (0, 0) and (2, 0) in
the two-dimensional plane. First, consider a receiver R placed at (1, 0). Assume also,
for the sake of clarity, that all constants in the above model are setto 1,i.e.,A = § =
y = 1. When only one of the two transmitters is operational, the power received by

2
Ris P(Ci.R) = P(C2,R) = |E(C1, R)|> = |E(Co, R = (i) = 1-On

the other hand, if both transmitters are operational, the power received by R is given
by Eq. (10.2), that is,

P({Cy, C2}.R) = |E(C1,R) + E(C2, R)|>.

Furthermore, it is not hard to see that, since R is equidistant from either C; or
C,, the vectors E(Cy,R) and E(C,, R) point to the same direction. Therefore,
P({Cy,C3},R) = 4P(C,R) = 2(P(C1,R) + P(C3,R)) = 4. Notice then that the
power received by R when both transmitters are operational is larger than the sum
of the powers it receives when only one of the transmitters is operational; this is the
so-called superadditive effect and is visible in local maxima in the curve shown in
Fig. 10.1b.

31n fact, the exact formula used in [17] for the electric field is E(C, R) & N % o154 where
Zy is a physical constant indicating the wave-impedance of a plane wave in free space, G¢ is the
gain, and Pc is the output power of the transmitter. In this chapter, without loss of generality of our
algorithmic solutions, we assume that all wireless transmitters and receivers are identical, thus the
aforementioned parameters are the same for each charger.
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Fig. 10.1 Example showing the superadditive and cancelation effects. (a) Chargers’ and nodes’
placement on a straight line at points (0, 0), (0, 2), and (0, 1), (0, %), respectively. (b) The power
distribution between the two chargers. Different curves represent different operation levels of the
chargers

Second, consider a receiver R’ placed at (% O). Then by Eq. (10.1), E(C|,R) =

‘—5‘ . |:(1):|, and also E(C,,R) = ‘5‘ . |:_01:| By Eq. (10.2), the power received by

15
Notice then that the power received by R’ when both transmitters are operational
2
is much less than min{P(Cy,R'), P(Cs,R))} = (g) ~ 0.64; this is the so-called
cancellation effect and is visible in local minima in the curve shown in Fig. 10.1b.

2
R’ when both transmitters are operational is P({Cy, C»},R') = (8) ~ 0.28.
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Fig. 10.2 Chargers’ and nodes’ deployment for the simulation

In view of our discussion in this chapter, it is worth noting that, even in the above
toy example, it is nontrivial to provide a closed formula for the point in the line
between the two chargers where the received power is maximized.

We also conducted a simple simulation in a 3m x 3 m plane with 10 chargers
and 10 nodes, randomly deployed in the field (Fig. 10.2). The parameters of this
simulation are the same with those mentioned in Sect. 10.7. In this simulation, we
present the results of two different configurations. As the scalar model suggests,
we turn on all the chargers to get the maximum cumulative received power which
is valued to 0.217 W (the evaluation is done with respect to the vector model). On
the other hand, a better configuration with respect to the vector model turns on all
the chargers except of the two at position (2.2165,0.7708) and (2.9343,0.3512).
That configuration returns 0.230 W of cumulative received power in the network.
Therefore, the claim of the toy example holds also for a more general case.

Finally, to further verify the vector model, we present the experiment, described
in the technical report of [9]. In this experiment, the distance between the node and
charger 1 is fixed to 0.3 m while the distance between the node and charger 2 varies
from 0.4 m to 1.1 m in increments of 0.1 m. The results are presented in Table 10.1,
where the second and third rows record the received power when either charger 1 or
charger 2 is turned on. The fourth row records the actual power measured when both
chargers are turned on. The next two rows give the results for each of the two models
we compare. Observe that the vector model approaches the actual measurements of
row three better than the scalar model. This can be verified from the last two rows,
which present the relative error of each model.
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Table 10.1 Charging power of two chargers

Harvesting power (mW)/Distance to

charger 2 (m) 04 |05 0.6 0.7 /0.8 0.9 1.0 |1.1

Charger 1 6.48 648 |648 @ 6.48 |6.48 6.48 | 6.48 6.48
Charger 2 321 /192 |1.96 | 0.09 |0.71 1 0.33 | 0.35 0.06
Charger 1 and charger 2 3.57 12.05 |347 | 7.78 |2.11 [ 1.32 | 9.04 | 6.04
Scalar model (Friis) 9.69 |8.40 |8.44 | 6.57 |7.19 | 6.81 6.83 | 6.54
Vector model 6.21 |5.11 |8.19 | 6.58 |5.77 1 6.62 | 6.74 |6.42
Relative error of scalar model (Friis) | 6.12 | 6.35 |4.97 —1.21 |5.08 549 —2.21 |0.14
Relative error of vector model 2.64 |3.06 472 |—1.2 [3.66 53 |—2.3 |0.02

10.3.1 A Basic Assumption

A necessary condition that is required in Friis’ formula, and by extension in the
above model, is that the wireless transmitter and receiver need to be at distance at
least A (not in the near-field region). In fact, for transmitters to receivers distances
less than A, more complex laws apply but we do not consider them here as they
are beyond the algorithmic focus of the paper. A similar constraint also holds for
the power received by receivers that are very close to each other. In particular, if
receivers R, R’ are closer than % apart, then the power received by each receiver
no longer follows Friis’ law. This was to be expected, since otherwise we could
have wireless transmitters of bounded capabilities that could theoretically provide
infinite power (e.g., by placing receivers arbitrarily close to each other and to the
transmitter).

In this chapter, we consider algorithmic problems related to power guarantees
with respect to a fixed deployment of a family 4" of wireless transmitters and a
family & of receivers. To avoid confusion, we will assume that any placement of
chargers and receivers satisfies the above placement constraints. In particular: (a)
For each charger C € ¢ and receiver R € %, we have dist(C,R) > A and (b) for
any pair of receivers R, R’ € %, we have dist(R,R’) > %

We finally note that, since % is usually smaller than a few centimeters, in
practical situations, the above placement constraints will not be restrictive, as
the nontrivial volume of any transmitting or receiving device guarantees that
transmitters and chargers are far enough from each other.

10.4 Problem Definition

Consider a system consisting of a family 4 of identical wireless chargers and a
family Z of identical wireless receivers (nodes). For each charger C € ¥, we denote
by x¢ € [0, 1] a variable that determines the level of operation of C. We assume that
the chargers are able to operate at a level of operation between 0 and 100%. x equal
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to 1 means that C is fully operational (i.e., operates at 100% capacity), while x
equal to 0 means that C is nonoperational (operates at 0%). Clearly, we must have
x € [0, 1]. In particular, generalizing Eq. (10.1), the electric field vector created by
C at the location of a receiver R, when the former operates at level x¢ is given by
xc-E(C.R)=xc-B- m . o distC.R)

We will refer to the vector x € [0, 1]7 as the configuration of the chargers in the
system. Slightly abusing notation, we will denote by ¥’(x) a family of chargers that
operate according to configuration x.

We initially consider the following problem:

Definition 1 (MAX-POWER). Given a family of chargers 4 and family
of receivers # that satisfy the placement constraints of Sect.10.3.1, find a
configuration for the chargers that maximizes the total power to %. That is, find x*
such that

x* € arg max P(%(x), %), (10.4)

x€[0.1]¢

where P(€¢'(X), Z) = ) _pey P(€(X),R).

We will denote by (‘f ) the family of all subsets of & containing k nodes. In this
chapter, we also study the following generalization of MAX-POWER, which finds
a configuration that provides a minimum charging guarantee among all k-sets of
nodes:

Definition 2 (MAX-kKMIN-GUARANTEE). Given a family of chargers ¥ and a
family of receivers Z that satisfy the placement constraints of Sect. 10.3.1, find
a configuration for the chargers that maximizes the minimum cumulative power
among all subsets of & of size k. That is, find x* such that

x* € arg max min P(%(x),A), (10.5)
gxe[o.l]‘gAe(?) (¢00.4)

where P(€'(x),A) = Y _res P(€(X), R).

10.5 Maximum Total Power

In this section, we present an efficient algorithm for MAX - POWER. For simplicity,
consider a family of wireless chargers 4 = {Ci,...,Cy}, where m = |%|, and a
family of receivers #Z = {Ry,...,R,}, where n = |Z)|. Let also x € [0, 1] be the
configuration of the chargers, where x; is the level of operation of charger C;, j € [m].

We first show that the MAX-POWER problem can be expressed as a quadratic
program. To this end, for each R € %, define Q% be a 2 x m matrix whose j-th
column is the two-dimensional vector of the electric field created from C; at R, i.e.,
fo) = /¥ - E(C;,R), for each j € [m]. Notice now that we can write the power
harvested by the receiver R as follows:
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P(€(x).R) = y|E(©(x),R)|
2

=y | D_xcE(C.R)
Ce¥
T
= 2_XcVVEC.R) | | D xcyVE(C.R)
Ce?¢ Ce¥
— (Q(R)X)TQ(R)X,

. . def
where (-)7 denotes the transpose of a matrix or vector. Therefore, setting H =

T
Y ke (Q(R)) Q™| the solution to MAX - POWER is given by

x* € arg max x'Hx. (10.6)
xe[0,1]m

It is worth noting that, in general, the maximization of a quadratic form is a non-
convex quadratic program (even when H is positive semi-definite, which is the
case here), hence cannot be solved in polynomial time. Nevertheless, by taking
into account several properties and the special form of our problem, we are able
to provide an efficient algorithm for MAX - POWER.

We first need the following elementary lemma that considerably reduces the size
of the search space.

Lemma 1. [f x* is an optimal solution to MAX-POWER, then x* € {0,1}". In
particular, there exists an optimal solution to MAX - POWER in which each charger
either operates at full capacity or not at all.

Proof. Lety € [0, 1] be such that
(a) y € argmaxyeo, ) x"Hx (i.e., it is an optimal solution to MAX-POWER) and
(b) y has the minimum number of elements that are neither O nor 1; let also k be
the number of such elements, i.c., k & [{i : yi ¢ {0,1}}|. If kK = O, then there is
nothing to prove, so we will assume for the sake of contradiction that k > 0. Let j
be an index such that y; ¢ {0, 1} and define vectors y® and y) that are equal to y
(M

everywhere, except on position j, where yj(o) = 0 andy;

;" = 1. Notice now that, by

T

the optimality and minimality assumptions on y, we have that y’ Hy > (y(o)) Hy©
T

and y"Hy > (y(l)) Hy.

On the other hand, for z € (0, 1), define the vector y© & (1 — 2)y©@ + zy®.

In particular, y® is the m-dimensional vector that is equal to y everywhere, except
T

on position j, where y](;) = z. Consider now the function f(z) = (y(Z)> Hy®.

Notice that f(z) is a single variable polynomial of degree 2, and it is a simple
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matter of calculus to show that its second derivative satisfies ‘% = H;; =
Y ke YIE(C,R)|> = P(C;,#), which is strictly positive. But this implies
that f(z) < max{f(0),f(1)}, for all z € (0,1). However, this is a contradic-

tion, since we have already established that, by assumption, f(y;) = y’Hy >

max{(y(o))THy(O), (y(1)>THy”)} = max{f(0),f(1)}. We conclude that in any
optimal solution to MAX-POWER each charger either operates at full capacity or
not at all. a

We now prove a useful property of global maxima of the objective function
x"Hx in [0, 1]™. The proof uses properties of positive semi-definite (PSD) matrices
(see [2] for an introduction to PSD matrices and their properties). We note here
that Lemma 1 and Theorem 1 below imply that any local maxima of the objective
function P(¢'(x),R) = (Qx)” Qx are also global maxima that belong to {0, 1}
In particular, this means that the gradient descent method can be used to find a
global maximum (i.e., an optimal solution to MAX - POWER). Nevertheless, in our
experimental evaluation, we used a pseudopolynomial distributed algorithm for
computing the exact optimum configuration for MAX - POWER, which is quite fast
in practice. We present this algorithm later in this section.

Theorem 1. A configuration x* € {0, 1} is an optimal solution to MAX - POWER
if and only if P(€(x*), %) > P(€(y), %), for each'y that comes from X by setting
exactly one of its coordinates to either 0 or 1.

Proof. For a configuration x € {0, 1} and for all j € [m] and a € {0, 1}, define

xUo &y + (a —x;)e;, where e; is the j-th vector in the standard basis of R". Notice
that x0-1 (respectively, xV'?) is the configuration that is identical to x, with the only
difference that charger j operates at full capacity (respectively, does not operate).

Clearly, if x* is an optimal solution, then P(%(x*), #Z) > P(%€ (x*U?), %), for
any j € [m] and a € {0, 1}. Therefore, it remains to prove the “only if” part of
the Theorem. To this end, let x* be such that P(¢'(x*), #) > P(€ (x*09), %), for
any j € [m] and a € {0, 1}, and assume for the sake of contradiction that there is a
configuration z such that P(¢' (x*), Z) < P(¢(z), %#).

By Lemma 1, we only need to consider configurations in {0, 1}". Therefore,
assume that x* € {0,1}" and z = x* + Z;'n=1 aje; = X" + a, for some a €
{—1,0,1}", such that z’Hz = P(%€(z), #Z) > P(¢(x), #Z) = x*'Hx*.

Note that, since H is symmetric, for any j € [m] we have ¢/ Hx* = x*"He;,
and so

(x* + aje)"H(x* + aje)) = x*"Hx* + 2q;¢] Hx* + o H;;. (10.7)

Rearranging, and using the assumption that P(¢'(x*), Z) > P(€¢(x* + aje)), %),
we get

2ae] HX* + a;H;; < 0, (10.8)
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for any j € [m]. By a similar computation, we have
z'Hz = x*"Hx* + 2a”"Hx* + a’Ha
= x*"Hx* + Xm: 2aje] Hx + a" Ha. (10.9)
=1
Summing (10.8) over all j € [m] and substituting in (10.9), we get
z'Hz — x*"Hx* < — Xm: a’H;; +a"Ha. (10.10)
j=1

It is now a simple matter of algebra to show that the right-hand side of the above
inequality is nonpositive. Indeed, let H' be the m’ x m’ principal submatrix of H
corresponding to rows (and columns) j for which a; # 0 (in particular, m’ is the
number of nonzero elements of a). Clearly, since H is PSD, then so is H'. Let | >

> A, > 0andv],...,v 6 be the eigenvalues and eigenvectors of H'. Now
notice that Y 7" a?H;; = Y7 @’ H, = w(H') = Y7 A/, where tr(H') is the

trace of H' and we have used the fact that the trace of a matrix is equal to the sum
of its eigenvalues. Finally, since a is an orthonormal rotation of the vector Zm=/1 VJ{,
we have a’Ha = Y7, A/,

In view of the above, by inequality (10.10), we get that zZ’Hz — x*"Hx* <
0, which is a contradiction. Therefore, we conclude that if P(%(x*),%) >
P(€ (x*V9), %), for any j € [m] and a € {0, 1}, then x* is an optimal solution. O

Lemma 1 and Theorem 1 suggest that the following distributed algorithm
(which we call IterativeMaxPower) can be used to find an exact optimum
configuration for MAX - POWER: Initially, we begin from an arbitrary configuration
in {0, 1}". In each subsequent step, we parse the set of chargers in order to find a
charger C € % such that the total power received by R can be increased by flipping
the operation level of C (e.g., if C operates at full capacity, it checks whether the
received power is increased if it is not operational). The algorithm terminates if there
is no such charger C.

For a given placement of a family & of chargers and a family % of receivers,
def

define §(¢, Z) = min{|P(€ (x), Z) — P(€(¥*),Z)| : x € {0,1}",a € {0,1},] €
[m]}. In particular, §(%, %) is the minimal increment in the total received power
that can be incurred by a single iteration of ITterativeMaxPower. In addition,
notice that every such iteration takes O(m?) time. Finally, given that the chargers
and receivers satisfy the placement constraints of Sect. 10.3.1, a crude upper bound
for the maximum total power is nm?y 24%22 = O(nm?). Therefore, we have the
following:

Theorem 2. Given a family € of m chargers and a family % of n receivers that sat-
isfy the placement constraints of Sect. 10.3.1, Algorithm IterativeMaxPower

finds an optimal solution of MAX- POWER in O (mnms)
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Algorithm 1: TterativeMaxPower

Input : dist, Z, €, communication_range
Output: x

1 begin

2 x € {0, 1} is a random initial charger configuration;

3 while 3C; € ¢ : P(¢(x), Z) < P(€(xV9), %), a € {0,1} do

4 choose randomly a charger C; € ¢';

5 «—%C,- =0 5

6 foreach R € # do

7 if dist(Cj, R) < communicationrange then

8 %(;f - %C,- UR

/fat this point C; communicates with R and receives E(%'(x), R);

9 end if

10 end foreach

11 X¢; = arg max,e{o,1} P(%’(x(/"")),,%cl);
12 end while

13 return x;

14 end

Note Inour experiments, we implemented IterativeMaxPower using different
levels of knowledge of the wireless system. In particular, we define the communi-
cation range of a charger as the maximum radius of the disc area within which it
can send and receive messages from nodes. Hence, a transmitter ignores any node
that is outside its communication range. Whenever a charger C; communicates with
a node R, the latter sends to C; the energy field vector E(%4(x), R), where X is the
configuration at the time when the communication took place. This information
is enough for the charger to compute P(% (xU?),R), for each a € {0, 1}, since
P(€(xV9),R) = y|E(€¢(x).R) + (a — x;))E(C;, R)||>. By using the above, it is
easy to compute P(‘g(x(j"’)),%cj) for each a € {0, 1}, where Z¢; C % includes
the nodes in the communication range of the charger C;. The pseudocode of
IterativeMaxPower can be found in Algorithm 1 that simulates the distributed
process in order to have an output.

10.6 Maximum k-Minimum Guarantee

In this section, we present our algorithmic solutions to MAX -kMIN-GUARANTEE.
This is more general than MAX-POWER and, even though we believe that it is
computationally hard, we were unable to prove this formally. It is worth noting that
the hardness of this problem does not lie in the computation of the minimum power
among all k-set of receivers for a given configuration x. It is not hard to see that this
quantity is equal to the sum of powers of nodes having the k minimum powers.

On the other hand, exhaustive search algorithms do not work in the general
case. In particular, Lemma 1 does not apply, as we show in the following example
in which it is established that fractional operation power level of the transmitters
can achieve better performance than x € {0, 1}". Assume again that there are
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Fig. 10.3 Counterexample for fractional operation level of the chargers in
MAX-kMIN-GUARANTEE problem. (a) Chargers’ and nodes’ placement on a straight line
at points (0, 0), (0, 4) and (0, —%), (0, 13), respectively. (b) The power distribution in the straight
line from the two chargers. Different curves represent different operation levels of the chargers

two transmitters C; and C, placed at points (0,0) and (4,0) and two receivers
Ry at (—%, 0) and R, at (1743, 0), respectively (see Fig. 10.3a). Also, assume that all
constants in the above model are set to 1, i.e., A = § = y = 1. Figure 10.3b
demonstrates the example on how the fractional operation level of C; can increase
the min{P({Cy, C2}, {R1}). P({C1, C2},{R>})}. So, if x € {0, 1}2, there are three
operation cases (obviously when both chargers are closed is excluded). Firstly, if
only Cy is on, then P(C1,R;) = (5)* = 1.77 and P(C1,Ry) = (55)* = 0.094. On
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the other hand if C, is only on, the min{P(C,, Ry), P(C2,Ry)} = (}‘)2 = 0.0625. In
the final case, where xc, = x¢, = 1, the power at the points is P({C, C2},R1) =
(4 + 4)? =238 and P({C1, G2}, Ry) = (4 — £)? = 1.025. Clearly if the power
from R is reduced by a small amount e, then P({C;, C,}, R,) achieves a better
minimum and at the same time P({C, C»}, R) remains high.

In view of the above hardness indications, we consider a relaxation of
MAX -kMIN-GUARANTEE in which we are only interested in optimal configurations
in {0, 1}, i.e., configurations in which each charger is either full operational or does

not operate.

Optimal Configuration in {0, 1} We consider the following exhaustive search
solution, which we use as a measure of comparison for our heuristics. In particular,
Optimal Algorithm (OPT) uses brute force to find an optimal solution. Due to its
high time complexity O(2™), it is not practical when the problem size tends to grow.
OPT can serve as a performance upper bound when benchmarking our algorithms.

Algorithm 2 crushingly searches (without taking anything into consideration)
among all the possible configurations of the chargers the one that maximizes the
cumulative power of the k-set of nodes with the least power received.

Greedy Algorithm (GRE) The algorithm initiates from a random configuration
which through an iterative process improves. The algorithm’s decision for the
chargers’ operation level is the one that contributes more to the cumulative received
power of the k-set that consist of the nodes with the least power received. Although
the heuristic disambiguation can sometimes perform badly, it may yield locally
optimal solution that approximates the global optimum in reasonable time. Clearly,
time complexity depends on the number the algorithm checks to calibrate the
chargers.

Algorithm 2: Brute-force (OPT)
Input :dist, Z, €,k
Output: x°°7
1 begin
2 maxpowerof kset = 0,
3 foreach x € {0,1}" do
4 foreach R € % do
5 | p(R) = P(¢(x). R);
6
7
8
9

end foreach

sort(p, asc);

if ( ZLI p(i) > maxpowerof kset) then
maxpowerof kset = Zf-(:l p(i);

10 xOfT = x;
11 end if

12 end foreach

13 return x°°7;

14 end
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Algorithm 3: Greedy (GRE)

Input :dist, Z, €,k
Output: Chargers configuration

1 begin
2 choose an arbitrary x € {0, 1}";
3 y = a random chargers sequence;
4 for i = 1 — length(y) do
5 foreach R € % do
6 P1(R) = P(¢(x"D), R);
7 PO(R) = P(¢(x" ) R);
8 end foreach
9 sort(pl, asc);
10 sort(p0, asc);
11 if (Y,—, pOG) < Yj_, p1())) then
12 ‘ Xyi) = 15
13 else
14 ‘ Xy(,') = 0;
15 end if
16 end for
17 return x

18 end

Algorithm 3 tries to find an optimal solution after a number of iterations. In each
step, it randomly chooses a charger y(i), computes the power received from each
node R, and stores them in the vector p1 when y(i) is activated and at vector p0 when
it is deactivated. Subsequently, GRE measures the cumulative received power of the
k nodes that receive the less power from pl and p0, respectively. The operation
level that is providing the larger amount of cumulative received power will be the
algorithm’s choice for the current step.

Sampling Algorithm (SAM) Instead of going through all possible solutions
extensively as the Brute-force algorithm does, and in order to avoid the greedy
approach and its disadvantages, we propose a sampling heuristic. It randomly
samples o k-sets of nodes and aims to maximize the cumulative received power
of all possible k-sets with the configuration that will come up from the sample. In
this way, the algorithm overcomes the threat of a locally optimal solution but due
to the random grouping, it does not take into account the nodes that form the k-set
with the least received power.

Algorithm 4 consists of two phases. During the first phase, it randomly chooses
o k-sets of nodes and finds their optimal chargers configuration x' : i € [I,0]
via Algorithm 1. The second phase is iterative. Within each iteration, it chooses a
charger perm(j) from a random permutation (perm) of the chargers set and measures
the cumulative received power of each k-set that belongs to the sample when the
charger is activated and when it is not. Then, it sums the gain when the charger
is activated (gainl) and compares it with the gain when it is closed (gain0). The
operation level with the larger sum of gain is decided as the final operation level
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Algorithm 4: Sampling (SAM)
Input :dist, Z, €,k

Output: x
1 begin
2 choose randomly o k-sets of nodes {k;, ks, ..., ks};
3 fori=1—o0do
4 X' = IterativeMaxPower(dist, k;, €, open);
5 end for
6 perm = a random permutation of chargers;
7 forj=1-—> mdo
8 gain0 = 0;
9 gainl = 0;
10 fori=1—0do
11 pO()) = P(e ("), ko);
12 p1() = P (‘""" k)
13 if (p1(i) < p0(i)) then
14 ‘ gain0 = gain0 + p0(i) — p1(i);
15 else
16 ‘ gainl = gainl + p1(i) — p0(i);
17 end if
18 end for
19 if (gainl < gain0) then
20 ‘ Vie [o],xj,g,m(/.) =0;
21 else
22 ‘ Vie [O’],X;erm(/-) =1
23 end if
24 end for
25 return any x' : i € [0]
26 end

of the charger. Thus, at the end of the process the o k-sets share the same chargers
configuration. Finally, the configuration of the sampled k-sets is SAM’s output.

Fusion Algorithm (FUS) Our last algorithm tries to combine the advantages of
the previous ones and at the same time to restrict their weaknesses. FUS initiates
by having the best chargers configuration for each node individually. Step by step it
changes the operation level of one charger at the time. This way, the algorithm fuses
the n different configurations to one with respect to the received power sum of the
k nodes with the least power. FUS takes into consideration the received power for
each node separately and aims to keep it as high as possible.

Algorithm 5 consists of two phases. During the first phase, it finds the optimal
chargers configuration x* via Algorithm 1 for each node R individually. During
the second phase, it proceeds iteratively. Within each iteration, it chooses a charger
perm(j) from a random permutation of the chargers set and measures the power of
each node when it is activated and when it is not. Those power values are stored
in two vectors, pl and pO0, respectively. In the sequel, it sums the k nodes with the
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Algorithm 5: Fusion (FUS)

Input :dist, Z, €.k
Output: Chargers configuration
begin

foreach R € % do

1

2

3

4

5 end foreach
6

7 forj=1— mdo
8

9

//find optimal configuration for each node;
xRk = IterativeMaxPower(dist, R, €, open);

perm = a random permutation of chargers;,

foreach R € # do
PO(R) = P(% (xR(erm()-0) R);
10 p1(R) = P(€ (xk(permi-D) Ry
11 end foreach
12 sort(pl, asc);
13 sort(pO0, asc);
14 it (Y0, p1() < Y'_, p0(i)) then
15 | YReZ XX, =0
perm(j)
16 else
R — 1.
17 | YRez xf,,.;,=1
18 end if
19 end for
20 return any xX : R € %
21 end

Table 10.2 Summary table

Algorithm | Assumption

Greedy Initiate from a random
configuration for chargers

Sampling | Initiate with o different
configuration, optimal for
each sample

Fusion Initiate with n different
configuration, optimal for
each node

Knowledge

Checks all the nodes of
the network

Checks only the nodes
of the sample

Checks all the nodes of
the network

Running
time
Fast

Average

Slow

Performance
Low

Low for small
k, Average

High

least power for each operation level and compares them. The operation level of the
charger with the larger sum will be chosen. That way FUS changes the charger’s
operation level to the one that has the less negative impact on the k-set with the
least received power that has risen. At the end of the algorithm, all the nodes share
the same chargers configuration. In Table 10.2 you can find a list of advantages and

limitations for each algorithm.
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10.7 Evaluation

We conducted simulations in order to evaluate our methods and reveal insights of the
proposed design performance, using Matlab R2016a. The system that we consider
for the performance evaluation consists of chargers and nodes randomly deployed
in a square field of 10 m x 10 m. Each charger delivers to the transmit antenna power
equal to 2 W and it has 2 dbi gain, while the gain of the receiver’s antenna is 1 dbi.
The number of chargers and nodes is set to 15 and 200, respectively, and all the
experiments run on the same system where the wavelength is 29 cm. Figure 10.4a
depicts an instance of the deployment. For statistical smoothness, we conducted
each simulation 100 times. Even though the statistical analysis of the findings
demonstrates very high concentration around the mean, in the following simulation
results we also depict the confidence intervals. Actually, we provide the confidence
intervals for 20 repetitions, in order to demonstrate an earlier convergence.

In this section, we provide our simulation results on three performance metrics:
(a) cumulative power fuelled into the system, (b) communication overhead (the
number of messages that has been sent or received from nodes), and (c) power
balance (the variation of power among nodes).

Cumulative Power In general, as the communication range of the chargers grows,
the distributed Algorithm 1 achieves a near optimal solution. Figure 10.4b depicts
the cumulative received power by the nodes by varying the communication range of
the chargers over time (for 90 rounds). In each round, a charger is chosen randomly
and decides on its operation level.

We can see that the cumulative power with the open communication range never
decreases over time like the others do. This is because every charger has global
knowledge of the power exchange in the system. Indeed, when a charger has limited
communication range, then its choice serves the nodes in the communication range
that covers, but for the rest of the nodes the result might be negative. On the other
hand, at the first steps of the distributed algorithm, choices made from chargers with
short communication range can benefit temporarily the cumulative power for the
next steps, but in the end, the one with the global knowledge will perform better.

We also observe that when the communication range is 1 m we achieve a near
optimal solution. The reason behind this is that the received power of the nodes far
from the charger is reduced due to distance and they do not contribute that much
to the cumulative received power. The confidence intervals which are presented
in the Fig. 10.4c show a high concentration around the mean. As the time passes,
Algorithm 1 has higher concentration around the mean and without overlaps unlike
at the first steps.

As mentioned before, it is impractical to run OPT because it uses brute-force
approach. For this reason, we use the same experimental setup with a small number
of chargers as above for comparing GRE, SAM, and FUS with OPT. Figure 10.4a
shows the corresponding deployment.

We are also interested in the impact of the number k. Figure 10.5a depicts the
cumulative power of the k nodes with the least power over various k. An interesting
observation is that SAM does not perform much better than GRE for low k. On the
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Fig. 10.5 Performance of different algorithms. (a) Cumulative power (of k-set with minimum
power) for different values of k. (b) Confidence intervals for Fig. 10.5a. GRE . SAM . FUS
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other hand, for k > 27 we have a considerable improvement. The reason behind this
is the sampling that SAM does. On the contrary, the rest of the algorithms compare
the k least power values of all the system without any restriction. So for small &
SAM by default has a disadvantage. For example, it is hard to sample in the same
k-set for k = 10 even the two of the nodes with the least received power among 200
nodes. Thus, as k increases, the performance of SAM improves. At the experiments
o = 30 (the size of the sample for SAM). Different values of o did not provide
any significant improvement, but if it is too small the sample is not representative
and poor. As expected, FUS outperforms the other two algorithms and it is the one
that approximates OPT better. This is because FUS checks the power received for
all the nodes and has more than one initial chargers’ configuration unlike GRE.
The confidence intervals are also presented in the Fig. 10.5b. As we claimed, the
algorithms present high concentration around the mean and there are no overlaps as
the value of k grows.

Communication Overhead Figure 10.6a meters the number of messages for
ranges from 0.3 to 1.5 that have been exchanged in the system during the running
time of the distributed algorithm. When the communication range of the chargers
increases, the communication overhead goes up. Moreover, the effect of different
communication ranges (from 0.3 to 1.5 and open) on the cumulative received
power of the system is depicted in Fig. 10.6b. As we mentioned above, a limited
communication range (1.1-1.5 m) can achieve the performance of open. We observe
that there is a trade-off between the communication overhead and the cumulative
power that the nodes receive (Fig.10.6c). As the communication range grows,
the ratio of cumulative received power to communication overhead decreases. It
is evident that the contribution of the messages drops for communication range
bigger than 1-1.2 m. After that point, the contribution of the extra messages, which
are many, is very low. Note that the communication overhead depends on the
relative position of the chargers and the nodes. As the number of nodes in the
communication range of a charger increases, then the number of messages increases
as well. The chargers’ placement for communication optimization is not considered
in this study.

Power Balance We finally study the impact of our methods on the system in
relation to power balance (the variation of power among the various nodes). The
simulation results are shown in Fig. 10.7 where we examine the performance of the
algorithms in the general case. Obviously, there is room for improvement in this
area, as our methods do not take power balance into consideration and we leave this
as an open problem for future work.

10.8 Conclusion and Future Work

In this chapter, we studied the problem of finding the best configuration setup of the
wireless power transmitters in a wireless system with respect to the maximization
of the cumulative received power and we proposed heuristic algorithms to succeed
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in this goal. Finally, we evaluated the performance of the proposed algorithms
through experimental simulation and provided numerical results to validate their
efficiency. A main contribution of our work lies on the fact that, for the first time
power maximization algorithms are given under the vector model which realistically
addresses the superposition of energy fields.

In future work, we opt to improve the power balance of the algorithms in
exchange of a small amount of the cumulative received power. We will also explore
solutions with good approximation ratios to maximize the cumulative received
power from the point of view of nodes or chargers deployment.
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