
Symmetry-Preserving Numerical Schemes

Alexander Bihlo and Francis Valiquette

Abstract In these lectures we review two procedures for constructing finite
difference numerical schemes that preserve symmetries of differential equations.
The first approach is based on Lie’s infinitesimal symmetry generators, while the
second method uses the novel theory of equivariant moving frames. The advantages
of both techniques are discussed and illustrated with the Schwarzian differen-
tial equation, the Korteweg–de Vries equation and Burgers’ equation. Numerical
simulations are presented and innovative techniques for obtaining better invariant
numerical schemes are introduced. New research directions and open problems are
indicated at the end of these notes.

1 Introduction

The aim of geometric numerical integration is to develop numerical integrators
that preserve geometric properties of the system of differential equations under
investigation. Classical examples include symplectic integrators [36, 51], energy
preserving methods [77], and schemes that preserve a Lie–Poisson structure [88].
The motivation behind geometric numerical integration is that, as a rule of thumb,
such integrators will typically give better global or long term numerical results than
standard methods since they incorporate qualitative properties of the system under
consideration.

In mathematical physics, most fundamental differential equations are invariant
under a certain collection of symmetry transformations. These symmetries can be
point transformations, contact transformations, or generalized transformations [68].
In all cases, the symmetries of a differential equation encapsulate important proper-

A. Bihlo
Department of Mathematics and Statistics, Memorial University of Newfoundland,
St. John’s, NL A1C 5S7, Canada
e-mail: abihlo@mun.ca

F. Valiquette (�)
Department of Mathematics, State University of New York at New Paltz,
1 Hawk Dr., New Paltz, NY 12561-2443, USA
e-mail: valiquef@newpaltz.edu

© Springer International Publishing AG 2017
D. Levi et al. (eds.), Symmetries and Integrability of Difference Equations,
CRM Series in Mathematical Physics, DOI 10.1007/978-3-319-56666-5_6

261

mailto:abihlo@mun.ca
mailto:valiquef@newpaltz.edu


262 A. Bihlo and F. Valiquette

ties of the equation and its solutions. Furthermore, Lie group techniques are amongst
the most effective methods for obtaining explicit solutions and conservation laws of
nonlinear differential equations [11, 68, 76].

When discretizing differential equations invariant under a certain symmetry
group, there are different incentives for preserving the symmetries of these equa-
tions. From a physical standpoint, discrete spacetime models should preserve the
symmetries of their continuous counterparts. Mathematically, Lie group techniques
could then be used to find explicit solutions and compute conservation laws of
the discrete models. From a more practical point of view, symmetry-preserving
discretizations should share some exact solutions with the original differential
equations, or at least provide better approximations than noninvariant numerical
schemes.

In the last 30 years, the application of Lie group techniques to finite differ-
ence equations has become a very active field of research. To the best of our
knowledge, Yanenko and Shokin were the first to use group theoretical methods
to study finite difference schemes by introducing first differential approximations
of difference equations [82, 87]. The application of Lie group methods to finite
difference equations, as we know it today, was first introduced by Dorodnitsyn
in 1989 [23]. Early on, one of the main focuses in the field was to construct
Lie point symmetry-preserving finite difference approximations of differential
equations. Beside Dorodnitsyn, early contributors include Bakirova, Kozlov, Levi,
and Winternitz who constructed symmetry-preserving schemes for heat transfer
equations [2, 3, 26], variable coefficient Korteweg–de Vries equations [27], Burgers’
equation [37], the nonlinear Schrödinger equation [17], and second-order ordinary
differential equations [28]. Symmetry-preserving approximation of Euler–Lagrange
equations and their corresponding Lagrangian have also been considered in [29, 30],
and the application of Noether’s theorem to compute conservation laws has been
extensively studied in the discrete setting [24, 44, 45]. The applications of Lie point
symmetries to finite difference equations have also been extended to generalized
symmetries [54, 55], �-symmetries [53, 59], and contact transformations [62].

In recent years, more systematic efforts have been directed towards investigating
the numerical performance of symmetry-preserving schemes. For ordinary differen-
tial equations, symmetry-preserving schemes have proven to be very promising. For
solutions exhibiting sharp variations or singularities, symmetry-preserving schemes
systematically appear to outperform standard numerical schemes [13, 14, 18, 50].
For partial differential equations, the improvement of symmetry-preserving schemes
versus traditional integrators is not as clear [9, 49, 61, 78]. On one hand, it was
shown in [85] that symmetry-preserving schemes do much better in tracking sharp
interfaces in Hamilton–Jacobi equations. On the other hand, invariant numerical
schemes for evolution equations generally require the use of time-evolving meshes
which can lead to mesh tangling and thereby severely limit the use of symmetry-
preserving schemes. In this case, special techniques have to be developed to avoid
mesh singularities. For example, new ideas relying on r-adaptivity have been
implemented to improve the performance of invariant integrators [7]. Also, in [5, 6]
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an invariant evolution–projection strategy was introduced and invariant meshless
discretization schemes were considered in [4].

The preceding references only provide a short bibliographical overview of the
field. Many papers had to be omitted. More references on the subject can be found
in the survey papers [56, 86], and the books [25, 44].

Given a differential equation with symmetry group G, the first step in construct-
ing a symmetry-preserving numerical scheme is to compute difference invariants
of the product action of G on a chosen stencil. There are mainly two approaches
for constructing those invariants. Most of the references cited above use the
infinitesimal symmetry generators of the group action and Lie’s infinitesimal
invariance criterion to construct difference invariants. Alternatively, the difference
invariants can be constructed using the novel method of equivariant moving frames
mainly developed by Olver, which was done in [4, 21, 50, 70, 78, 79]. Given
sufficiently many difference invariants, an invariant numerical scheme is, in general,
obtained by finding a suitable combination of these invariants that converges
to the original differential equation in the continuous limit. When using Lie’s
infinitesimal generator approach, a suitable combination is found by taking the
Taylor expansion of the difference invariants and combining them in such a way
to obtained the desired invariant scheme. With the method of moving frames, a
suitable combination is found more systematically by invariantizing a noninvariant
numerical scheme. Since the symmetry group of a differential equation will,
in general, act on both the independent and dependent variables, a symmetry-
preserving numerical scheme will usually not be defined on a uniform orthogonal
mesh.

The application of Lie groups to finite difference equations is a vast and very
dynamic field of study. While preparing these lecture notes we had to omit many
interesting applications and important results. The focus of these notes will be on
the theoretical construction of invariant numerical schemes and their numerical
implementation. At the heart of all our considerations are differential equations,
finite difference equations, symmetry groups, and invariants. These familiar notions
are all reviewed in Sects. 2, 3, and 4. As outlined above, there are two different
approaches for computing invariants of a Lie group action. The infinitesimal
approach based on Lie’s symmetry generators is introduced in Sect. 4.1, while the
equivariant moving frame approach is explained in Sect. 4.2. Section 5 is devoted to
weakly invariant equations, which can play an important role in the construction of
symmetry-preserving schemes. The construction of symmetry-preserving numerical
schemes is carefully explained in Sect. 6. To illustrate the implementation, we
consider the Schwarzian differential equation and the Korteweg–de Vries (KdV)
equation. In Sect. 7 we carry out numerical simulations for the Schwarzian equation,
the KdV equation and Burgers’ equation. For partial differential equations, the
invariance of a numerical scheme does not, in general, guarantee better numerical
results. We will show that symmetry-preserving schemes can lead to mesh tangling,
which limit their practical scope. To circumvent this shortcoming, we discuss new
invariant numerical strategies. For the Korteweg–de Vries equation, we introduce
invariant evolution–projection schemes and invariant adaptive numerical schemes.
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Unlike the KdV equation, solutions to Burgers’ equation can exhibit shocks. For
these shock solutions we propose a new invariant finite volume type scheme. Finally,
in Sect. 8 we identify some open problems and challenges in the field of symmetry-
preserving numerical integrators.

2 Differential and Difference Equations

In this section we review the definitions of differential equations and finite differ-
ence equations. We take this opportunity to introduce some of the notation used
throughout these notes.

2.1 Differential Equations

Let M be an m-dimensional manifold. For 0 � ` � 1, let J.`/ D J.`/.M; p/ denote
the extended `th order jet space of 1 � p < m dimensional submanifolds S � M
defined as the space of equivalence classes of submanifolds under the equivalence
relation of `th order contact at a point [68]. Local coordinates on J.`/ are given by
the `-jet

�
x; u.`/

�
; (1)

where x D .x1; : : : ; xp/ correspond to the independent variables and u.`/ denotes the
derivatives

u˛
xJ D @ku˛

.@x1/j1 � � � .@xp/jp

with 1 � ˛ � q D m � p and 0 � k D j1 C � � � C jp � ` :

In the above notation, J D .j1; : : : ; jp/ is an ordered p-tuple of nonnegative integers,
with entries ji � 0 indicating the number of derivatives taken in the variable xi. The
order of the multi-index, denoted by # J D k, indicates how many derivatives are
being taken.

Example 2.1 In the case where p D 2 and q D 1, we have two independent
variables .x1; x2/ D .t; x/ and one dependent variable u1 D u. Then, the second
order jet space is parametrized by

.t; x; u; ut; ux; utt; utx; uxx/ :
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Definition 2.2 A differential equation of order n is the zero locus of a differential
map �W J.`/ ! R. That is,

�
�
x; u.`/

� D 0 : (2)

For later use, we introduce two regularity requirements on differential equations.

Definition 2.3 A differential equation �
�
x; u.`/

� D 0 is said to be regular if the
rank of its differential

d� D
pX

iD1

@�

@xi
dxi C

X

J

qX

˛D1

@�

@u˛
xJ

du˛
xJ

is constant on the domain of definition of �W J.`/ ! R.

Example 2.4 Any evolutionary partial differential equation

�
�
t; x; u.`/

� D ut � f .t; x; u; ux; uxx; : : : ; ux` / D 0

is regular since the rank of d� D dut � df is one.

Definition 2.5 A differential equation �
�
x; u.`/

� D 0 is locally solvable at a point
�
x0; u.`/

0

�
if there exists a smooth solution u D f .x/, defined in the neighborhood

of x0, such that u.`/
0 D f .`/.x0/. A differential equation which is both regular and

locally solvable is said to be fully regular.

The above description assumes that a submanifold S � M is locally represented
as the graph of a function S D ˚�

x; f .x/
��

. Alternatively, when no distinction
between independent and dependent variables is made, a submanifold S � M is
locally parameterized by p variables s D .s1; : : : ; sp/ 2 Rp such that

�
x.s/; u.s/

� 2 S :

In numerical analysis, the independent variables s D .s1; : : : ; sp/ are called
computational variables [39]. These are the variables that are discretized when finite
difference equations are introduced in Sect. 2.2. We let J.`/ denote the `th order
jet space of submanifolds S � M parametrized by computational variables. Local
coordinates on J.`/ are given by

�
s; x.`/; u.`/

� D .: : : si : : : xi
sA : : : u˛

sA : : : / ; (3)

with 1 � i � p, 1 � ˛ � q, and 0 � # A � `.

Remark 2.6 We hope that the jet notations
�
x; u.`/

�
and

�
s; x.`/; u.`/

�
will not confuse

the reader. The independent variable, that is x and s, respectively, indicates with
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respect to which variables the dependent variables u (and x in the second case) are
differentiated in u.`/.

Example 2.7 In the case where p D 2 and m D 3, let .s1; s2/ D .�; s/ denote the
two computational variables and let .t; x; u/ be a local parametrization of M. Then
the second order jet space J.2/ is parametrized by

.�; s; t; x; u; t� ; ts; x� ; xs; u� ; us; t�� ; t�s; tss; x�� ; x�s; xss; u�� ; u�s; uss/:

The transition between the jet coordinates (1) and (3) is given by the chain rule.
Provided

det

�
@xj

@si

�
¤ 0 ; where 1 � i; j � p ; (4)

the implicit total derivative operators

Dxi D
pX

jD1

W
j
i Dsj ;

�
W

j
i

� D
�

@xj

@si

��1

; i D 1; : : : ; p ;

are well-defined, and successive application of those operators to the dependent
variables u˛ will give the coordinate expressions for the x-derivatives of u in terms
of the s-derivatives of x and u:

u˛
xJ D .Dx1 /j1 � � � .Dxp/jp u˛ D

� pX

lD1

W l
1 Dsl

�j1

� � �
� pX

lD1

W l
p Dsl

�jp

u˛ : (5)

We note that the nondegeneracy constraint (4) implies that the change of variables
x D x.s/ is invertible.

Example 2.8 Combining Examples 2.1 and 2.7, assume that x D x.�; s/ and t D
t.�; s/ are functions of the computational variables .�; s/. Provided

det

�
t� ts
x� xs

�
D t� xs � tsx� ¤ 0 ; (6)

the implicit derivative operators

Dx D t� Ds � ts D�

xst� � x� ts
; Dt D xs D� � x� Ds

xst� � x� ts
: (7)

are well-defined. It follows that

ux D t� us � ts u�

xst� � x� ts
; ut D xs u� � x� us

xst� � x� ts
: (8)

Relations for the higher order derivatives are obtained by applying (7) to (8).
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Given a differential equation (2), the chain rule (5) can be used to re-express (2)
in terms of xi D xi.s/, u˛ D u˛.s/ and their computational derivatives xi

sA , u˛
sA :

N��
s; x.`/; u.`/

� D �
�
x; u.`/

� D 0 : (9a)

Recall that
�
s; x.`/; u.`/

� D .s; : : : xi
sA : : : u˛

sA : : : / 2 J.`/ for N� D 0 in (9a) while�
x; u.`/

� D .x; : : : u˛
xJ : : : / 2 J.`/ in � D 0. Equation (9a) can be supplemented by

companion equations [64],

Q��
s; x.`/; u.`/

� D 0 : (9b)

The latter are introduced to impose restrictions on the change of variables x D
x.s/. The system of differential equations (9) is called an extended system of the
differential equation (2). For the extended system of differential equations (9) to
share the same solution space as the original equation (2), the companion equations
(9b) cannot introduce differential constraints on the derivatives u˛

sA .
Definition 2.5 is readily adapted to the computational variable framework.

Definition 2.9 A differential equation N��
s; x.`/; u.`/

� D 0 (or system of differential
equations) is regular if the rank of its differential

d N� D
pX

iD1

@ N�
@si

dsi C
X

J

pX

iD1

@ N�
@xi

sJ

dxi
sJ C

X

J

qX

˛D1

@ N�
@u˛

sJ

du˛
sJ

is constant on the domain of definition. The equation (or system of equations) is
locally solvable at a point .s0; x.`/

0 ; u.`/
0 / if there exists a smooth solution x D f .s/,

u D g.s/, defined in the neighborhood of s0, such that x.`/
0 D f .`/.s0/ and u.`/

0 D
g.`/.s0/. The differential equation (or system of differential equations) is said to be
fully regular if it is both regular and locally solvable.

Example 2.10 As one of our main examples in these notes, we consider the
Korteweg–de Vries (KdV) equation

ut C uux C uxxx D 0 : (10)

We introduce the computational variables .�; t/ so that x D x.�; s/, t D t.�; s/.
Then the implicit total derivative operators are given by (7). Before proceeding any
further, we assume that

ts D 0 ; t�� D 0 : (11)
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In other words,

t D k� C t0 ; (12)

where k ¤ 0 and t0 are constants. The reasons for imposing the constraints (11)
are explained in Example 3.10. The operators of implicit differentiation (7) then
simplify to

Dx D 1

xs
Ds ; Dt D 1

t�

�
D� � x�

xs
Ds

�
:

Therefore,

ux D us

xs
; uxx D 1

xs

�
us

xs

�

s

; uxxx D 1

xs

�
1

xs

�
us

xs

�

s

�

s

; ut D u�

t�
� x�

t�
� us

xs

and the KdV equation (10) becomes

u�

t�
C

�
u � x�

t�

�
us

xs
C 1

xs

�
1

xs

�
us

xs

�

s

�

s

D 0 ; (13)

together with the companion equations (11). The differential equation (13) is remi-
niscent of the equation one obtains when writing the KdV equation in Lagrangian
form [9]. In the classical Lagrangian framework, the differential constraint

x�

t�
D u ; (14)

is also imposed. The KdV equation then reduces to

N� D u�

t�
C 1

xs

�
1

xs

�
us

xs

�

s

�

s

D 0 ; (15)

together with the companion equations (11), (14). In particular, when k D 1 in (12),
we obtain the system of differential equations

u� C 1

xs

�
1

xs

�
us

xs

�

s

�

s

D 0 ; x� D u :

2.2 Finite Difference Equations

We now move on to the discrete setting, which is the main focus of these lecture
notes. In the previous section, we introduced two different jets spaces, namely
J.`/ and J.`/. The motivation for introducing computational variables and the
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corresponding jet space J.`/ stems from the fact that the discrete framework is more
closely related to J.`/ than J.`/.

Let N D .n1; : : : ; np/ 2 Zp denote an integer-valued multi-index. Thinking of
the multi-index N as sampling the computational variables s D .s1; : : : ; sp/ 2 Rp at
integer values, the discrete notation .xN ; uN/ should be understood as sampling the
submanifold S D ˚�

x.s/; u.s/
�� � M at the integer-valued points s D N 2 Zp � Rp.

In other words .xN ; uN/ D �
x.N/; u.N/

�
. To approximate the `-jet

�
s; x.`/; u.`/

� 2
J.`/ at s D N, we consider a finite collection of points

.N; xŒ`�
N ; uŒ`�

N / D .N; : : : ; xNCK ; : : : ; uNCK ; : : : / ; (16)

where K 2 Zp. We require that the point .xN ; uN/ is always included and that

xNCK1 ¤ xNCK2 whenever K1 ¤ K2 ;

so that no two discrete independent variables are the same. We refer to (16) as the
`th order discrete jet at N. In numerical analysis, a point in (16) is also called a
stencil. For theoretical purposes, one can assume that the multi-index K 2 .Z�0/p

only takes nonnegative values and that 0 � # K D k1 C � � � C kp � `. The latter
provides the minimal number of points required to approximate the `-jet

�
x; u.`/

�

(or
�
s; x.`/; u.`/

�
) by first order forward differences. In applications, especially

when constructing numerical schemes, it is generally preferable to consider points
centered around .xN ; uN/ and to include more than the minimum number of points
in

�
N; xŒ`�

N ; uŒ`�
N

�
required to approximate

�
x; u.`/

�
for better numerical accuracy and

stability. From now on, we will assume that a certain stencil (16) has been chosen.
We denote by

J Œ`� D
[

N2Zp

	
N; xŒ`�

N ; uŒ`�
N




the union over all the stencils and call J Œ`� the `th order discrete jet space as J Œ`�

provides an approximation of J.`/. Since the jet coordinates of J.`/ can be expressed
in terms of the jet coordinates of J.`/ using (5), it follows that the points in J Œ`� can
be used to approximate J.`/.

Example 2.11 Consider the case where p D 2 and the dimension of the manifold M
is dim M D m D 3. Let .t; x; u/ be local coordinates on M. In the continuous case,
see Example 2.7, we introduced the computational variables .�; s/. In the discrete
case, let N D .n; i/ 2 Z2, which can be thought of as evaluating the computational
variables .�; s/ at integer values. To make the multi-index notation more compact,
we let

.tN ; xN ; uN/ D .tn
i ; xn

i ; un
i / ; N D .n; i/ 2 Z2 :



270 A. Bihlo and F. Valiquette

Working with forward differences, the simplest first order discrete jet is
parametrized by

	
tŒ1�
N ; xŒ1�

N ; uŒ1�
N



D .tn

i ; xn
i ; un

i ; tnC1
i ; xnC1

i ; unC1
i ; tn

iC1; xn
iC1; un

iC1/ :

First order approximations of the first order derivatives .t� ; x� ; u� / and .ts; xs; us/ on
a grid with unit spacing are then given by

.t� ; x� ; u� / � .tnC1
i � tn

i ; xnC1
i � xn

i ; unC1
i � un

i / ;

.ts; xs; us/ � .tn
iC1 � tn

i ; xn
iC1 � xn

i ; un
iC1 � un

i / :
(17)

Referring to (8) for the expressions of the t and x derivatives of u in terms of the
computational variable derivatives, and using (17) we have that

ux D t� us � ts u�

xst� � x� ts
� .tnC1

i � tn
i /.un

iC1 � un
i / � .tn

iC1 � tn
i /.unC1

i � un
i /

.xn
iC1 � xn

i /.tnC1
i � tn

i / � .xnC1
i � xi

n/.tn
iC1 � tn

i /
;

ut D xs u� � x� us

xst� � x� ts
� .xn

iC1 � xn
i /.unC1

i � un
i / � .xnC1

i � xn
i /.un

iC1 � un
i /

.xn
iC1 � xn

i /.tnC1
i � tn

i / � .xnC1
i � xi

n/.tn
iC1 � tn

i /
:

(18)

The latter expressions are first order forward approximations of the first order partial
derivatives ux and ut on any mesh that satisfies

det

�
.tnC1

i � tn
i / .tn

iC1 � tn
i /

.xnC1
i � xn

i / .xn
iC1 � xn

i /

�

D .xn
iC1 � xn

i /.tnC1
i � tn

i / � .xnC1
i � xn

i /.tn
iC1 � tn

i / ¤ 0 ;

the latter being a discrete version of the nondegeneracy condition (6). The procedure
can be repeated to obtain approximations of higher order derivatives on arbitrary
meshes. For example, applying the implicit derivative operators (7) to the first order
derivative expressions (8) one obtains formulas for the second order derivatives uxx,
uxt, and utt expressed in terms of the computational derivatives. Substituting the
approximations (17) and the second order derivative approximations

t�� � tnC2
i � 2tnC1

i C tn
i ; x�� � xnC2

i � 2xnC1
i C xn

i ;

t�s � tnC1
iC1 � tnC1

i � tn
iC1 C xn

i ; x�s � xnC1
iC1 � xnC1

i � xn
iC1 C xn

i ;

tss � tn
iC2 � 2tn

iC1 C tn
i ; xss � xn

iC2 � 2xn
iC1 C xn

i ;

into the formulas obtained yields discrete approximations for uxx, uxt, and utt in the
computational variables on an orthogonal grid with unit spacing.
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Definition 2.12 A finite difference equation is the zero locus of a discrete map
EWJ Œ`� ! R. That is,

E
	

N; xŒ`�
N ; uŒ`�

N



D 0 :

Definition 2.13 A finite difference equation EWJ Œ`� ! R is said to be regular if the
rank of the differential

dE D
X

K

"
pX

iD1

@E

@xi
NCK

dxi
NCK C

qX

˛D1

@E

@u˛
NCK

du˛
NCK

#

is constant for all N in the domain of definition of the equation.

Finite difference equations can be studied as mathematical objects of interest
in their own [31, 44, 63]. In the following we are interested in finite difference
equations that approximate differential equations.

Definition 2.14 A finite difference equation E.N; xŒ`�
N ; uŒ`�

N / D 0 is said to be
consistent with the differential equation �

�
x; u.`/

� D 0 (or N��
s; x.`/; u.`/

� D 0/

if in the continuous limit .xNCK ; uNCK/ ! .xN ; uN/,

E.N; xŒ`�
N ; uŒ`�

N / ! �
�
x; u.`/

�
.or E.N; xŒ`�

N ; uŒ`�
N / ! N��

s; x.`/; u.`/
�
/ :

Remark 2.15 The process of taking continuous limits is discussed in more details
in Sect. 6.

Definition 2.16 Let �
�
x; u.`/

� D 0 be a differential equation with extended system
f N��

s; x.`/; u.`/
� D 0; Q��

s; x.`/; u.`/
� D 0g. A numerical scheme is a system of finite

difference equations

E.N; xŒ`�
N ; uŒ`�

N / D 0 ; eE.N; xŒ`�
N ; uŒ`�

N / D 0 ;

where E.N; xŒ`�
N ; uŒ`�

N / D 0 approximates the differential equation

�
�
x; u.`/

� D N��
s; x.`/; u.`/

� D 0

and the equations eE.N; xŒ`�
N ; uŒ`�

N / D 0 provide an approximation of the companion
equations

Q��
s; x.`/; u.`/

� D 0 :

Intuitively, the difference equations eE.N; xŒ`�
N ; uŒ`�

N / D 0 provide constraints on
the mesh used to approximate the differential equation � D 0. The latter should not
yield any restrictions on the discrete dependent variables uŒ`�

N .
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Example 2.17 To illustrate Definition 2.16, let us consider the KdV equation (10).
Assume the equation is to be discretized on the orthogonal mesh

tn D k n C t0 ; xi D h i C x0 ; (19)

where k; h > 0, .n; i/ 2 Z2, and t0, x0 are arbitrary constants. The mesh (19) can
be encapsulated in a system of finite difference equations in different ways. For
example, it is not difficult to see that (19) is the solution to the system of equations

tnC1
i � tn

i D k ; xnC1
i � xn

i D 0 ;

tn
iC1 � tn

i D 0 ; xn
iC1 � xn

i D h :
(20)

The mesh (19) is also a solution to

tnC1
i � 2tn

i C tn�1
i D 0; xnC1

i � xn
i D 0 ;

tn
iC1 � tn

i D 0; xn
iC1 � 2xn

i C xn
i�1 D 0 :

(21)

The difference between the two systems of mesh equations is that in (20) the time
step k and the spatial step h are fixed by the system whereas in (21) those steps
corresponds to constants of integration. In both cases, the KdV equation can be
approximated by

unC1
i � un

i

k
C un

i � un
iC1 � un

i�1

2h
C un

iC2 � 2un
iC1 C 2un

i�1 � un
i�2

2h3
D 0 : (22)

The systems of equations (20)–(22) or (21)–(22) provide two examples of Definition
2.16. They also illustrate the fact that, in general, the equations eE D 0 specifying
the mesh are not unique.

3 Lie Symmetries

Let G be an r-dimensional Lie group, and let M be a d-dimensional manifold with
local coordinates z D .z1; : : : ; zd/. In the following, the manifold M can represent
the submanifold jet spaces J.`/ or J.`/ or the discrete jet space J Œ`�. In the latter
case, M should in fact be called a lattifold or lattice variety, that is a manifold-like
structure modeled on Zp [65, 67].

Definition 3.1 A transformation group acting on a manifold M is given by a Lie
group G and a smooth map ˚ W G�M ! M, such that ˚.g; z/ D g�z, which satisfies
the following two properties

e � z D z ; g � .h � z/ D .gh/ � z ; for all z 2 M, g; h 2 G ; (23)
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and where e 2 G denotes the identity element.

It follows from (23) that the inverse of the transformation defined by the group
element g is given by the inverse group element g�1. Therefore g induces a
diffeomorphism from M to itself.

Remark 3.2 Definition 3.1 assumes that the group action is global, meaning that
g � z is defined for every g 2 G and every z 2 M. In practice, group actions may only
be defined locally, meaning that for a given z 2 M, the transformation g � z is only
defined for group elements g sufficiently near the identity. For a local transformation
group, the map ˚ is defined on an open subset B with feg �M � B � G �M, and
the conditions (23) of Definition 23 are imposed wherever they are defined.

In the following, we use capital letters to denote the image of a point under a
group transformation. For example,

Z D g � z where g 2 G and z 2 M :

At the infinitesimal level, let g denote the Lie algebra of vector fields corresponding
to the infinitesimal generators of the group action. A vector field

v D
dX

aD1

�a.z/
@

@za

will be in g if it is tangent to the orbits of a one-parameter subgroup of transforma-
tions of G. The flow through the point z 2 M generated by a vector field v 2 g, is
found by solving the initial value problem

dZa

d�
D �a.Z/ ; Za.0/ D za ; a D 1; : : : ; d :

The maximal integral curve is denoted expŒ�v� � z, and is called the exponentiation
of the infinitesimal generator v.

Definition 3.3 Let G be a local Lie group of transformations acting on M. The Lie
group G is a (local) symmetry group of the (fully) regular equation1 F.z/ D 0 if and
only if

F.g � z/ D 0 whenever F.z/ D 0 ;

for all g 2 G such that the local action is defined. Infinitesimally, a connected Lie
group of transformations G acting on M is a local symmetry group of F.z/ D 0 if
and only if

1Depending whether M represents J.`/, J.`/, or JŒ`�, we refer to Definitions 2.5, 2.9, or 2.13 for
the notion of (fully) regular equation.
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v.F/
ˇ̌
FD0

D 0 for all v 2 g : (24)

Remark 3.4 Definition 3.3 extends to systems of equations and more general local
groups of transformations by including discrete transformations as well [10, 40, 42,
43]. In the following we restrict all our considerations to Lie point symmetries and
omit the interesting case of discrete symmetries.

3.1 Symmetries of Differential Equations

Symmetries of differential equations are covered extensively in many excellent
textbooks such as [11, 12, 43, 68, 71, 76]. We refer to these references for a more
detailed exposition.

If M D J.`/, then the local group action is given by the prolonged action
.X; U.`// D g � �

x; u.`/
�

on the submanifold `-jet
�
x; u.`/

�
. Let

Xi D g � xi ; i D 1; : : : ; p ; U˛ D g � u˛ ; ˛ D 1; : : : ; q (25)

denote the local group action of G on the manifold M locally coordinatized by .x; u/.
To compute the prolonged action, we introduce the implicit differentiation operators
[33],

DXi D
pX

jD1

W
j
i Dxj ; where .W

j
i/ D

�
@Xj

@xi

��1

(26)

denotes the entries of the inverse Jacobian matrix and

Dxj D @

@xj
C

X

J

qX

˛D1

u˛

xJCej

@

@u˛
xJ

is the total differentiation operator with respect to the independent variable xj. In the
above formula, ej D .0; : : : ; 0; 1; 0; : : : ; 0/ 2 Rp denotes the unit vector with zeros
everywhere except in the jth component. We note that the operators (26) mutually
commute

ŒDXi ; DXj � D 0 ; 1 � i; j � p :

Successively applying the implicit differentiation operators (26) to U˛ D g � u˛

yields the expressions for the prolonged action

U˛
XJ D .DX1 /j1 � � � .DXp/jp U˛ ; ˛ D 1; : : : ; q; # J � 0 :
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At the infinitesimal level, let

v D
pX

iD1

� i.x; u/
@

@xi
C

qX

˛D1

	˛.x; u/
@

@u˛
(27)

denote an infinitesimal generator of the group action (25). The prolongation of (27)
to J.`/ is given by

v.`/ D
pX

iD1

� i @

@xi
C

qX

˛D1

X

J

	˛IJ @

@u˛
xJ

;

where the prolonged vector field coefficients are defined recursively by the standard
prolongation formula

	˛IJCej D Dxj	˛IJ �
pX

iD1

.Dxj� i/ u˛

xJCei
:

Given a differential equation �
�
x; u.`/

� D 0, the Lie point symmetries of the
equation are found from the infinitesimal invariance criterion

v.`/.�/
ˇ̌
�D0

D 0 for all v 2 g : (28)

The latter yields a differential equation in x, u and the derivatives of u with respect
to x, as well as � i.x; u/ and 	˛.x; u/ and their partial derivatives with respect to
x and u. After eliminating any dependencies among the derivatives of the us due
to the equation �

�
x; u.`/

� D 0, one can equate the coefficients of the remaining
unconstrained partial derivatives of u to zero. This yields a system of linear partial
differential equations for the coefficients � i and 	˛ , called the determining equations
of the (maximal) Lie symmetry algebra. The procedure for obtaining and solving
the determining equations has been implemented in all major computer algebra
systems such as MACSYMA, MAPLE, MATHEMATICA, MUMATH and REDUCE.
An extensive list of references on the subject can be found in [19].

Example 3.5 To illustrate the algorithm outlined above, we compute the infinites-
imal generators of the KdV equation (10). Let v D �.t; x; u/@x C 
.t; x; u/@t C
	.t; x; u/@u denote a general vector field on R3. The third order prolongation of v is

v.3/ D �
@

@x
C 


@

@t
C 	

@

@u
C 	x @

@ux
C 	 t @

@ut
C 	xx @

@uxx
C 	xt @

@uxt
C 	 tt @

@utt

C 	xxx @

@uxxx
C 	xxt @

@uxxt
C 	xtt @

@uxtt
C 	 ttt @

@uttt
;
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where

	 t D Dt	 � uxDt� � utDt
 ;

	x D Dx	 � uxDx� � utDx
 ;

	xx D Dx.	
x/ � uxxDx� � uxtDx


D D2
x	 � uxD2

x� � utD
2
x
 � 2uxxDx� � 2uxtDx
 ;

	xxx D Dx.	
xx/ � uxxxDx� � uxxtDt


D D3
x	 � uxD3

x� � utD
3
x
 � 3uxxD2

x� � 3uxtD
2
x


� 3uxxxDx� � 3uxxtDx
 :

(29)

Applying the infinitesimal invariance criterion (24) to the KdV equation (10) we
obtain

	 t C u	x C ux	 C 	xxx D 0 ; (30)

where u satisfies (10). Substituting the expressions (29) into (30) and replacing ut

by �uux � uxxx, we obtain the determining equations of the Lie symmetry algebra,
which we now solve. Firstly, the coefficient of uxxt is Dx
 D 
x Cux
u which implies
that 
x D 
u D 0. In other words, 
 D 
.t/ is a function of t only2. Secondly, the
coefficient of u2

xx yields �u D 0 and thus � D �.t; x/, implying that the admitted
Lie symmetries are projectable. Next, the coefficient of uxxx gives 
t � 3�x D 0.
Integrating the latter with respect to x, we find that � D 1

3
x 
t C�.t/. The coefficient

of uxx implies that 	uu D 	xu D 0 so that 	 D �.t/u C '.t; x/. Next the coefficient
in ux yields the equation

��t C u.
t � �x/ C 	 D 0 :

Substituting the expressions for � and 	, we find

� D � 2
3

t and ' D 1

3
x 
tt C �t so that 	 D � 2

3
u 
t C 1

3
x 
tt C �t :

Finally, the term with no derivatives of u gives 	t C 	xxx C u 	x D 0, which after
substitution yields

� 1
3
u 
tt C 1

3
x 
ttt C �tt D 0 :

Since 
 D 
.t/ and � D �.t/ are functions of t, the latter equation holds for all
.t; x; u/ provided that 
tt D �tt D 0. Therefore,

� D c1 C c2 t C c3 x ; 
 D c4 C 3c3 t ; 	 D c2 � 2c3 u ;

2This is true for all evolution equations.
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and the maximal Lie symmetry algebra is spanned by the four vector fields

v1 D @

@x
; �! space translations ;

v2 D @

@t
; �! time translations ;

v3 D t
@

@x
C @

@u
; �! Galilean boosts ;

v4 D x
@

@x
C 3t

@

@t
� 2u

@

@u
; �! scalings :

(31)

Exercise 3.6 Show that the symmetry group of the ordinary differential equation
uxx D 0 is eight-dimensional, and generated by

@

@x
; x

@

@x
; u

@

@x
; x2 @

@x
C xu

@

@u
;

@

@u
; x

@

@u
; u

@

@u
; xu

@

@x
C u2 @

@u
:

(32)

Show that the corresponding group of local transformations is the projective group
SL.3;R/ acting via fractional linear transformations

X D �1x C �2u C �3

�7x C �8u C �9

; U D �4x C �5u C �6

�7x C �8u C �9

; det

2

4
�1 �2 �3

�4 �5 �6

�7 �8 �9

3

5 D 1 ;

where �1; : : : ; �9 2 R are group parameters.

Exercise 3.7 Consider the Schwarzian differential equation

ux uxxx � .3=2/u2
xx

u2
x

D F.x/ ; (33)

where F.x/ is an arbitrary function.

1. Find the determining equations for the vector fields spanning the maximal Lie
symmetry algebra and show that a basis is given by

v1 D @

@u
; v2 D u

@

@u
; v3 D u2 @

@u
: (34)

2. Show that the corresponding local Lie group of transformations is

X D x ; U D au C b

cu C d
; with ad � bc D 1 : (35)
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3. When F.x/ 	 0 is identically zero, show that the maximal Lie symmetry algebra
is four-dimensional and determine a basis. Also find the corresponding finite
group transformations.

Exercise 3.8 Show that the maximal Lie symmetry algebra of Burgers’ equation

ut C uux D uxx ; (36)

where  > 0 denotes the viscosity, is spanned by the vector fields

v1 D @

@x
; v2 D @

@t
; v3 D t

@

@x
C @

@u
;

v4 D x
@

@x
C 2t

@

@t
� u

@

@u
; v5 D tx

@

@x
C t2

@

@t
C .x � tu/

@

@u
:

(37)

In the computational variable framework, the local transformation group G acting
on the manifold M is trivially extended to the computational variables. That is,

g � .s; x; u/ D .s; g � x; g � u/ :

The prolongation of an infinitesimal generator (27) to J.`/ is then simply given by

v.`/ D
pX

iD1

X

J

DJ
s � i @

@xi
sJ

C
qX

˛D1

X

J

DJ
s 	˛ @

@u˛
sJ

;

where DJ
s D .Ds1 /j1 � � � .Dsp/jp denotes the total differentiation operator in the

computational variables s D .s1; : : : ; sp/ with

Dsj D @

@sj
C

pX

iD1

X

J

xi
sJCej

@

@xi
sJ

C
qX

˛D1

X

J

u˛

sJCej

@

@u˛
sJ

; j D 1; : : : ; p:

Definition 3.9 Let G be a symmetry group of the differential equation �
�
x; u.`/

� D
0. The extended system of differential equations

f N��
s; x.`/; u.`/

� D 0; Q��
s; x.`/; u.`/

� D 0g (38)

is said to be G-compatible if G is a symmetry group of (38). That is,

( N�.s; g � x.`/; g � u.`// D 0;

Q�.s; g � x.`/; g � u.`// D 0;
whenever

( N��
s; x.`/; u.`/

� D 0;

Q��
s; x.`/; u.`/

� D 0;



Symmetry-Preserving Numerical Schemes 279

and where the prolonged action is defined. At the infinitesimal level,

v.`/. N�/
ˇ̌
f N�D0; Q�D0g D 0 and v.`/. Q�/

ˇ̌
f N�D0; Q�D0g D 0

for all infinitesimal generators v 2 g.

Example 3.10 Recall from Example 3.5 that the KdV equation (10) is invariant
under a four-dimensional maximal Lie symmetry group whose associated algebra
of infinitesimal generators is spanned by the vector fields (31). In the computational
variables .�; s/ introduced in Example 2.10, the first prolongation of the infinitesimal
generators (31) is given by

v.1/
1 D @

@x
; v.1/

2 D @

@t
; v.1/

3 D t
@

@x
C @

@u
C ts

@

@xs
C @

@us
C t�

@

@x�

C @

@u�

;

v.1/
4 D x

@

@x
C 3t

@

@t
� 2u

@

@u
C xs

@

@xs
C 3ts

@

@ts
� 2us

@

@us

C x�

@

@x�

C 3t�
@

@t�
� 2u�

@

@u�

:

By direct computation, it is not hard to verify that for the differential equation (15)

v.2/
1 Œ N��

ˇ̌
N�D0

D v.2/
2 Œ N��

ˇ̌
N�D0

D v.2/
3 Œ N��

ˇ̌
N�D0

D v.2/
4 Œ N��

ˇ̌
N�D0

D 0 :

Therefore, Eq. (15) is invariant under the symmetry group of the KdV equation.
Also,

v.2/
� .ts/ D 0 ; v.2/

� .t�� / D 0 ; v.2/
�

�
x�

t�
� u

�
D 0 ; � D 1; 2; 3; 4;

whenever

ts D 0 ; tss D 0 ;
x�

t�
� u D 0 :

Therefore, the companion equations (11), (14) are invariant under the symmetry
group of the KdV equation. The extended system of differential equations (11),
(14), (15) is therefore G-compatible with the symmetry group of the KdV equation.

3.2 Symmetries of Finite Difference Equations

As in Sect. 3.1, let G be a local Lie group of transformations acting smoothly on the
manifold M. The induced action on the discrete n-jet .N; xŒ`�

N ; uŒ`�
N / is given by the

product action
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g � .N; xŒ`�
N ; uŒ`�

N / D .N; : : : ; g � xNCK ; : : : ; g � uNCK ; : : : / ; (39)

where each point .xNCK ; uNCK/ is transformed by the same group transformation g.
At the infinitesimal level, given the vector field

v D
pX

iD1

� i
N

@

@xi
N

C
qX

˛D1

	˛
K

@

@u˛
N

; (40)

where � i
N D � i.xN ; uN/ and 	˛

N D 	˛.xN ; uN/, the prolonged vector field is given by

vŒ`� D
X

K

� pX

iD1

� i
NCK

@

@xi
NCK

C
qX

˛D1

	˛
NCK

@

@u˛
NCK

�
;

which is obtained by adding copies of v evaluated at the different points in the
discrete jet .N; xŒ`�

N ; uŒ`�
N /.

Remark 3.11 The above considerations can be generalized by allowing the group
action (39) or the infinitesimal generator (40) to depend on the multi-index N. For
example, in (40), the vector field coefficients could be functions of N so that � i

N D
� i.N; xN ; uN/ and 	˛

N D 	˛.N; xN ; uN/. When constructing symmetry-preserving
schemes, this more general case does not occur as the transformation group that one
considers is the group of point symmetries of the differential equation �

�
x; u.`/

� D
0, which only contains point transformations in the x; u variables.

Using the infinitesimal invariance criterion

vŒ`�.E/
ˇ̌
ED0

D 0 for all v 2 g ; (41)

the symmetries of finite difference equations can be computed in a manner similar to
the differential case. Equation (41) yields a finite difference equation for the vector
field coefficients � i

N and 	˛
N . Since the invariance condition (41) only has to hold on

the solution of the difference equation, one must eliminate any dependencies among
.xN ; uN/ and their shifts due to the equation E.N; xŒ`�

N ; uŒ`�
N / D 0. Differentiating the

resulting equation with respect to the remaining variables sufficiently many times,
one obtains a system of differential equations for the vector field coefficients. Once
the differential equations are solved, one will, in general, have to substitute the
solution into the original difference equation for the vector field coefficients, or an
intermediate equation obtained along the way, and solve the resulting equation to
obtain the symmetry generators.

Example 3.12 As a first example, let us compute the admitted infinitesimal genera-
tors of the ordinary difference equation

uiC2 D a.i/uiC1 C b.i/ui where a.i/b.i/ ¤ 0 8 i 2 Z : (42)
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Let

v D 	i
@

@ui

be a vector field, where we allow 	i D 	.i; ui/ to depend on the discrete index
i 2 Z. Applying the infinitesimal invariance criterion (41) we obtain the equation

	.i C 2; a.i/uiC1 C b.i/ui/ D a.i/	.i C 1; uiC1/ C b.i/	.i; ui/ ; (43)

where we replaced uiC2 by the right-hand side of (42). Applying the differential
operator

�
1=b.i/

�
@ui � �

1=a.i/
�
@uiC1

to (43) we obtain the differential–difference
equation

� 	0.i C 1; uiC1/ C 	0.i; ui/ D 0 ; (44)

where the prime notation means differentiation with respect to the second entry of
the function. Differentiating (44) with respect to ui we obtain

	00.i; ui/ D 0 :

Integrating this equation once, we find that

	0.i; ui/ D ˛.i/ ; (45)

for some arbitrary function ˛.i/. Substituting (45) in (44) yields ˛.i C 1/ D ˛.i/.
Thus, ˛.i/ D c is constant. Integrating (45), we obtain that

	.i; ui/ D c ui C ˇ.i/ : (46)

Substituting (46) in (43) we conclude that ˇ.i/ must be a solution of the equation
ˇiC2 D a.i/ˇiC1 C b.i/ˇi. Thus, the Lie algebra of infinitesimal symmetry
generators is spanned by

v1 D ui
@

@ui
; �! dilations ;

vˇ D ˇ.i/
@

@ui
; �! linear superposition of solutions :

Example 3.13 As a second example, we consider the autonomous discrete potential
Korteweg–de Vries equation (dpKdV)

unC1
iC1 D un

i C 1

un
iC1 � unC1

i

; (47)
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which can be found in the work of Hirota [38]. Let

v D 	n
i

@

@un
i

; 	n
i D 	.i; n; un

i /

be a vector field. Implementing the infinitesimal invariance criterion (41), we obtain
the equation

	nC1
iC1 D 	n

i C 	nC1
i � 	n

iC1

.un
iC1 � unC1

i /2
;

where 	nC1
iC1 D 	

�
i C 1; n C 1; un

i C 1

un
iC1 � unC1

i

�
: (48)

Applying the operator @un
iC1

C @unC1
i

yields

	0.i; n C 1; unC1
i / � 	0.i C 1; n; un

iC1/ D 0 : (49)

Differentiating with respect to un
iC1 gives

	00.i C 1; n; un
iC1/ D 0 so that 	n

i D ˛.i; n/un
i C ˇ.i; n/ :

Substituting 	n
i in (49) we obtain the difference equation

˛.i; n C 1/ � ˛.i C 1; n/ D 0 ;

which implies that ˛.i; n/ D �.i C n/. Substituting 	n
i in (48) yields the constraints

�.i C n C 2/ D ��.i C n C 1/ D �.i C n/ ;

ˇ.i C 1; n C 1/ D ˇ.i; n/ ; ˇ.i C 1; n/ D ˇ.i; n C 1/ ;

which imply that

	n
i D c1.�1/iCnun

i C c2.�1/iCn C c3 ;

where c1; c2; :c3 are arbitrary constants. We conclude that the Lie algebra of
infinitesimal symmetry generators is spanned by

v1 D .�1/iCnun
i

@

@un
i

; v2 D .�1/iCn @

@un
i

; v3 D @

@un
i

:

These vector fields satisfy the commutation relations

Œv1; v2� D �v3 ; Œv1; v3� D �v2 ; Œv2; v3� D 0 ;
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which are isomorphic to the commutation relations of the pseudo-Euclidean Lie
algebra e.1; 1/ [83].

For more examples, we refer the reader to [41, 44, 56–58].

4 Invariants

Intuitively, an invariant is a quantity that remains unchanged under the action
of a group of local transformations. In this section, we review two methods for
constructing invariants. The first approach is based on Lie’s infinitesimal invariance
criterion which leads to systems of first order partial differential equations that can
be solved using the method of characteristics. The second approach uses the novel
theory of equivariant moving frames. In this framework, invariants are obtained by
solving a system of nonlinear algebraic equations. Remarkably, the latter can be
solved for a wide variety of group actions.

4.1 Lie’s Infinitesimal Approach

As in Sect. 3, we consider the differential and finite difference cases simultaneously
by considering an r-parameter local Lie group G acting on M, which can represent
either J.`/, J.`/ or J Œ`�.

Definition 4.1 A function IWM ! R is said to be a G-invariant if

I.g � z/ D I.z/ for all g 2 G (50)

where the action is defined. At the infinitesimal level, IWM ! R is an invariant if

v.I/ D 0 for all v 2 g. (51)

Remark 4.2 The notion of an invariant is more restrictive than that of an invariant
equation. The invariance of an equation only has to hold on its solution space
whereas the invariance of a function must hold on its domain of definition.

Finding invariants from the group invariance condition (50) can be difficult as
the group action is generally nonlinear. One of the key insights of Sophus Lie was
to work with the infinitesimal invariance condition (51) as the latter is a linearized
version of the nonlinear problem. Let

v� D
dX

aD1

�a
� .z/

@

@za
; � D 1; : : : ; r D dim g ; (52)
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be a basis of the Lie algebra g of infinitesimal generators of the Lie group action G.
To find the functions IWM ! R invariant under the group action G, we require that
the infinitesimal invariance criterion (51) holds for each basis element (52). This
yields the system of first order linear partial differential equations

dX

aD1

�a
� .z/

@I

@za
D 0 ; � D 1; : : : ; r : (53)

The latter is solved using the method of characteristics. The corresponding charac-
teristic system of ordinary differential equations is

dz1

�1
� .z/

D dz2

�2
� .z/

D � � � D dzd

�d
� .z/

; � D 1; : : : ; r ; (54)

and, in the generic case, the system of equations (54) yields a complete set of
dimM � r functionally independent invariants

I.z/ ;  D 1; : : : ; dimM � r :

Definition 4.3 A set of invariants Ic D f: : : ; I.z/; : : : g is said to be complete if any
invariant function IWM ! R can be expressed in terms of those invariants. That is,

I.z/ D F.: : : ; I.z/; : : : / :

Most textbooks on symmetries and differential equations cover Lie’s infinitesi-
mal method of computing differential invariants [11, 12, 43, 68, 71, 76]. Differential
invariants are fundamental objects in mathematics and have many applications.
They occur in geometry as the curvature of curves, surfaces, and submanifolds
[35], they are used in differential equations to reduce the order of ordinary
differential equations and find invariant solution of partial differential equations
[11, 12, 43, 68, 76], their signature manifold is used to solve local equivalence
problems [34, 47, 71, 84], geometric flows of differential invariants are closely
related to completely integrable equations [66], and have applications in computer
vision [48], climate and turbulence modeling [8], and much more.

In the finite difference situation, since the Lie group G acts trivially on the
multi-index N, the components of N will always provide p invariants. Solving the
infinitesimal invariance criterion

vŒ`�
� .I/ D

X

K

� pX

iD1

� i
�INCK

@I

@xNCK
C

qX

˛D1

	˛
�INCK

@I

@u˛
NCK

�
D 0 ; (55)

where � D 1; : : : ; r; will, in the generic case, produce dimJ Œ`� � p � r difference
invariants I.xŒ`�

N ; uŒ`�
N / independent of the multi-index N.
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Example 4.4 To illustrate the application of the infinitesimal invariance criterion
(55), we consider the special linear group SL.2;R/ acting on M D R2 D f.x; u/g
by the fractional linear action (35) with infinitesimal generators (34). For future
reference, we consider the order three discrete jet space J Œ3� with coordinates

.i; xi�1; ui�1; xi; ui; xiC1; uiC1; xiC2; uiC2/ : (56)

To compute a complete set of finite difference invariants on J Œ3�, we prolong the
infinitesimal generators (34) to J Œ3�:

vŒ3�
1 D @

@ui�1

C @

@ui
C @

@uiC1

C @

@uiC2

;

vŒ3�
2 D ui�1

@

@ui�1

C ui
@

@ui
C uiC1

@

@uiC1

C uiC2

@

@uiC2

;

vŒ3�
3 D u2

i�1

@

@ui�1

C u2
i

@

@ui
C u2

iC1

@

@uiC1

C u2
iC2

@

@uiC2

:

(57)

Omitting the trivial invariant given by the index i, we expect .dimJ Œ3��1/�dim g D
8 � 3 D 5 functionally independent invariants. Clearly, four of them are given by

xi�1 ; xi ; xiC1 ; xiC2 : (58)

To find the remaining functionally independent invariant I D I.ui�1; ui; uiC1; uiC2/,
we first solve the differential equation

vŒ3�
1 .I/ D @I

@ui�1

C @I

@ui
C @I

@uiC1

C @I

@uiC2

D 0

using the method of characteristics. The corresponding characteristic system of
ordinary differential equations is given by

dui�1 D dui D duiC1 D duiC2 :

The three functionally independent solutions are

Ii�1 D ui � ui�1 ; Ii D uiC1 � ui ; IiC1 D uiC2 � uiC1 : (59)

The functions (59) form a complete set of difference invariants for the infinitesimal
generator v1. To proceed further, we notice that any function IWJ Œ3� ! R invariant
under all three infinitesimal generators (57) must necessarily be a function of the
invariants (59), that is I D I.Ii�1; Ii; IiC1/. Thus to find the functions that are
simultaneously invariant under vŒ3�

1 and vŒ3�
2 , we must now restrict the vector field

vŒ3�
2 to the variables (59). The result is



286 A. Bihlo and F. Valiquette

vŒ3�
2 D Ii�1

@

@Ii�1

C Ii
@

@Ii
C IiC1

@

@IiC1

:

Thus, the characteristic system associated with the differential equation

vŒ3�
2 .I/ D Ii�1

@I

@Ii�1

C Ii
@I

@Ii
C IiC1

@I

@IiC1

D 0

is

dIi�1

Ii�1

D dIi

Ii
D dIiC1

IiC1

:

The two functionally independent solutions are

Ji D Ii�1

Ii
; JiC1 D Ii

IiC1

: (60)

Therefore, any invariant function I must be expressible in terms of (60). That it,
I D I.Ji; JiC1/. The restriction of the vector field vŒ3�

3 to the variables (60) yields

vŒ3�
3 D �Ii

�
JiŒJi C 1�

@

@Ji
C Œ1 C JiC1�

@

@JiC1

�
:

Thus, the equation vŒ3�
3 .I/ D 0 becomes

JiŒJi C 1�
@I

@Ji
C Œ1 C JiC1�

@I

@JiC1

D 0 :

Solving the characteristic system

dJi

JiŒJi C 1�
D dJiC1

1 C JiC1

we find that the cross-ratio

Ri D Ji

.1 C Ji/.1 C JiC1/
D .ui � ui�1/.uiC2 � uiC1/

.uiC1 � ui�1/.uiC2 � ui/
(61)

is an invariant of the SL.2;R/ product action on J Œ3�.

Exercise 4.5 Continuing Exercise 3.8, introduce the discrete points .tn
i ; xn

i ; un
i /,

where .n; i/ 2 Z2.



Symmetry-Preserving Numerical Schemes 287

1. Verify that the equation

tn
iC1 � tn

i D 0 ; (62)

is invariant. Therefore, Burgers’ equation can be invariantly discretized on a
mesh with horizontal time layers, the discrete time tn being only a function
of n 2 Z.

2. Compute a complete set of difference invariants on the lattice



.tn; xn

i�1; un
i�1/



.tn; xn

i ; un
i /



.tn; xn

iC1; un
iC1/



.tnC1; xnC1

i�1 ; unC1
i�1 /



.tnC1; xnC1

i ; unC1
i /



.tnC1; xnC1

iC1 ; unC1
iC1 /

using Lie’s infinitesimal method.

4.2 Moving Frame Approach

The method of equivariant moving frames is a new theoretical formulation of
Cartan’s method of moving frames [16, 34, 47, 71]. In this novel framework, moving
frames are no longer constrained by frame bundles or connections and can thereby
be extended to discrete geometry. The theory of equivariant moving frames for
local Lie group actions was first presented in [33] and then extended to infinite-
dimensional Lie pseudo-group actions in [73, 74]. For a comprehensive introduction
we refer the reader to the textbook [64]. In the discrete setting, the theoretical
foundations have been expounded in [67, 70].

As in the previous sections, our starting point is an r-dimensional local Lie group
of transformations G acting on the d-dimensional manifold M.

Definition 4.6 A right moving frame is a G-equivariant map �WM ! G. The G-
equivariance means that

�.g � z/ D �.z/g�1:

Remark 4.7 It is also possible to consider left moving frames. Given a right moving
frame �WM ! G, a left moving frame N�WM ! G is simply given by group
inversion, N� D ��1. Thus, a left moving frame N� is a G-equivariant map satisfying
N�.g � z/ D g N�.z/.

To guarantee the existence of a moving frame, the group action must satisfy
certain regularity assumptions.
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Definition 4.8 A Lie group G is said to act freely at z if the isotropy group

Gz D fg 2 G j g � z D zg

is trivial, i.e. Gz D feg. The group action is locally free at z if the isotropy group is
discrete. The action is (locally) free on M if it is (locally) free at all z 2 M.

When the action is (locally) free, the dimension of the group orbits is constant
and equal to r D dim G.

Definition 4.9 A Lie group action is said to be regular if the orbits form a regular
foliation.

The main existence theorem for moving frames is given by the following
proposition.

Proposition 4.10 If the action of G on M is locally free and regular, then a moving
frame locally exists on M.

Remark 4.11 Let V be a connected open submanifold of M where a moving frame
exists. By restricting M to V , we can always assume that a moving frame is globally
defined on M.

In practice, the construction of a moving frame is based on the choice of a cross-
section K to the group orbits. For simplicity, we assume that K is a coordinate
cross-section, which means that it is specified by fixing some of the coordinates of
z 2 M to constant values:

K D fza� D c� j � D 1; : : : ; r D dim Gg : (63)

When the action is free and regular, the right moving frame at z is the unique group
element �.z/ sending z onto the cross-section K , that is �.z/�z 2 K . The expressions
for the right moving frame are obtained by solving the normalization equations

g � za� D c� ; � D 1; : : : ; r ; (64)

for the group parameters g D �.z/. Given a right moving frame, there is a systematic
mechanism for constructing invariants known as the invariantization procedure.

Definition 4.12 The invariantization of a function F.z/ is the invariant

�.F/.z/ D F.�.z/ � z/ : (65)

The fact that (65) is an invariant follows from the G-equivariance of the right
moving frame:

�.F/.g � z/ D F.�.g � z/ � g � z/ D F.�.z/ � g�1 � g � z/ D F.�.z/ � z/ D �.F/.z/:
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Geometrically, �.F/ is the unique invariant that agrees with F on the cross-
section K . In particular, the invariantization of an invariant I is the invariant itself,
�.I/ D I. Therefore, the invariantization map � defines a canonical projection
(depending upon the moving frame) from the space of functions to the space of
invariants.

The invariantization of the components of z is of particular interest. The
invariants �.za/ D �.z/ � za, a D 1; : : : ; d; are called normalized invariants. By
the moving frame construction, the invariantization of the component functions
defining the cross-section (63) yields constant invariants, �.za� / D c� . These are
called phantom invariants. The following proposition explains why the normalized
invariants are important.

Proposition 4.13 The normalized invariants �.za/, a D 1; : : : ; d, form a complete
set of invariants on M.

Proposition 4.13 follows from the replacement principle. If I D I.z/ is an
invariant, since �.I/ D I, it follows that

I.z/ D �.I/.z/ D I
�
�.z/

�
:

In other words, the invariant I.z/ can be expressed as a function of the normalized
invariants by replacing z with the invariants �.z/.

For an arbitrary manifold M, the group action of G on M, does not have to
be free. On the other hand, when M is either JŒ`�, J.`/ or J Œ`�, it is always possible,
under some mild assumptions, to choose ` large enough so that the prolonged action
becomes (locally) free. To state the result precisely, we need the following technical
definitions.

Definition 4.14 Let G be a local Lie group of transformations acting on the
manifold M. The isotropy subgroup of a subset S of M is the subgroup

GS D fg 2 G j g � S D Sg :

The global isotropy subgroup of a subset S of M is the subgroup

G?
S D fg 2 G j g � z D z for all z 2 Sg :

Definition 4.15 A local Lie group of transformations G is said to act effectively on
subsets if, for any open subset U � M, G?

U D feg. The local Lie group acts locally
effectively on subsets if, for any open subset U � M, G?

U is a discrete subgroup of G.

In the differential case, the following theorem due to Ovsiannikov [76], and
corrected by Olver [69], states that if a group acts (locally) effectively on subsets,
then its prolonged action will eventually become free.
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Proposition 4.16 If a local Lie group of transformations G acts (locally) effectively
on subsets of M, then there exists `0 such that for all ` � `0, the prolonged action
of G acts locally freely on an open dense subset V.`/ � J.`/ (or V .`/ � J.`/).

The discrete version of Proposition 4.16 was proved in [15].

Example 4.17 We now implement the moving frame construction for the projective
action (35) on the order three submanifold jet space

J.3/ D f.x; u; ux; uxx; uxxx/g :

We must therefore compute the prolonged action up to the third derivative. Since
the independent variable x is an invariant of the action (35), the implicit derivative
operator (26) is

DX D Dx D @

@x
C ux

@

@u
C uxx

@

@ux
C uxxx

@

@uxx
C � � � ;

and the prolonged action, up to order 3, is

UX D DX.U/ D ux

.cu C d/2
;

UXX D D2
X.U/ D uxx

.cu C d/2
� 2cu2

x

.cu C d/3
;

UXXX D D3
X.U/ D uxxx

.cu C d/2
� 6cuxuxx

.cu C d/3
C 6c2u3

x

.cu C d/4
:

Assuming ux ¤ 0, we construct a moving frame by choosing the cross-section

K D fu D 0; ux D � D sign.ux/; uxx D 0g : (66)

Solving the normalization equations

U D au C b

cu C d
D 0 ; UX D ux

.cu C d/2
D � ;

UXX D uxx

.cu C d/2
� 2cu2

x

.cu C d/3
D 0 ;

for the group parameters and using the unitary constraint ad � bc D 1, we obtain
the right moving frame

a D 1

juxj1=2
; b D � u

juxj1=2
; c D uxx

2juxj3=2
; d D 2u2

x � uuxx

2juxj3=2
: (67)
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Invariantizing �uxxx, we obtain the Schwarzian derivative

� �.uxxx/ D uxuxxx � .3=2/u2
xx

u2
x

:

Exercise 4.18 Referring to Exercise 4.5:

1. Find the one-parameter group action induced by each of the infinitesimal
generators (37).

2. Construct a moving frame on J.1/ D f.t; x; u; ut; ux/g.
3. Compute the normalized invariant �.uxx/.

Example 4.19 We now reconsider Example 4.4 using the method of moving frames.
The product action on J Œ3� is

Xi�1 D xi�1 ; Xi D xi ; XiC1 D xiC1 ; XiC2 D xiC2 ;

Ui�1 D aui�1 C b

cui�1 C d
; Ui D aui C b

cui C d
;

UiC1 D auiC1 C b

cuiC1 C d
; UiC2 D auiC2 C b

cuiC2 C d
:

In the following, we let

�i D sign

�
uiC1 � ui�1

.ui � ui�1/.uiC1 � ui/

�
:

Then, a cross-section to the group orbits is given by

K D fui�1 D �i; ui ! 1; uiC1 D 0g ; (68)

where we let ui tend to infinity. Solving the normalization equations

Ui�1 D �i ; Ui ! 1 ; UiC1 D 0 ;

we obtain the right moving frame

a D � 1

c.uiC1 � ui/
; b D � uiC1

c.uiC1 � ui/
; d D �cui ;

where

c D ˙
sˇ̌

ˇ̌ uiC1 � ui�1

.uiC1 � ui/.ui � ui�1/

ˇ̌
ˇ̌ :
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Invariantizing �iuiC2 we obtain the same difference invariant as in (61):

�i �.uiC2/ D Ri D .uiC2 � uiC1/.ui � ui�1/

.uiC2 � ui/.uiC1 � ui�1/
:

The latter could also be derived from the replacement principle. Invariantizing
(61) we find that

Ri D �.Ri/ D .�.ui/ � �.ui�1//.�.uiC2/ � �.uiC1//

.�.uiC1 � �.ui�1//.�.uiC2/ � �.ui//

D .�.ui/ � �i/�.uiC2/

��i.�.uiC2/ � �.ui//
�����!
�.ui/!1 �i �.uiC2/ :

5 Weakly Invariant Equations

As observed in Remark 4.2, the notion of an invariant function is more restrictive
than that of an invariant equation. This brings us to distinguish two types of invariant
equations.

Definition 5.1 An equation F.z/ D 0 is said to be weakly invariant if it is invariant
only on its solution space. That is

F.g � z/ D 0 provided F.z/ D 0

and the action is defined. An equation F.z/ D 0 is said to be strongly invariant if
the function FWM ! R is G-invariant. That is,

F.g � z/ D F.z/ for all g 2 G

where the action is defined.

Remark 5.2 We note that a weakly invariant equation can, sometimes, be made
strongly invariant by appropriately multiplying the equation by a certain relative
invariant. We recall that a relative invariant of weight � is a function R.z/ which
satisfies R.g � z/ D �.g; z/R.z/. Indeed, if a weakly invariant equation F.z/ D 0 is
such that F.g � z/ D �.g; z/F.z/, with �.g; z/ ¤ 0, then multiplying the equation by
a relative invariant R.z/ ¤ 0 of weight 1=� yields the strongly invariant equation
R.z/F.z/ D 0.

As a simple example, let M D JŒ1� D f.i; xi; xiC1; ui; uiC1/g, and consider the
product action

Xi D �xi C a ; XiC1 D �xiC1 C a ; Ui D �ui C b ; UiC1 D �uiC1 C b ;
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where � > 0 and a; b 2 R. Then the equation

uiC1 � ui D 0 (69)

is weakly invariant as g �uiC1 �g �ui D �.uiC1 �ui/. Dividing Eq. (69) by the relative
invariant hi D xiC1 � xi, one obtains the equivalent strongly invariant equation

uiC1 � ui

xiC1 � xi
D 0:

We now explain how to systematically search for weakly invariant equations.
As always, we assume that G is an r-dimensional Lie group acting locally on a
d-dimensional manifold M.

5.1 Lie’s Infinitesimal Approach

A weakly invariant equation is found by searching for a submanifold S � M,
defined as the zero locus of an equation W.z/ D 0, where the isotropy group is
nontrivial. To find such a submanifold we consider a basis of infinitesimal generators
(52) and introduce the corresponding Lie matrix.

Definition 5.3 The Lie matrix is the r � d matrix whose components are given by
the coefficients of the infinitesimal generators (52):

L.z/ D

2

6
4

�1
1.z/ : : : �d

1 .z/
:::

:::

�1
r .z/ : : : �d

r .z/

3

7
5 : (70)

Proposition 5.4 The dimension of the group orbit through z 2 M is equal to the
rank of the Lie matrix L.z/.

Proposition 5.5 Let 0 � k � r. The set of points

Sk D fz 2 M j rank L.z/ D kg
is invariant under the action of G. The number of functionally independent
invariants on Sk is given by the formula

dimM � rank LjSk D d � k :

The sets of points Sk where the rank of the Lie matrix L is not maximal, i.e.
rank L < r, are described by equations of the form W.z/ D 0. By Proposition
5.5, these equations are weakly invariant. Therefore, weakly invariant equations
are found by searching for submanifolds where the rank of the Lie matrix is not
maximal.
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Example 5.6 To illustrate the above considerations, we consider the Lie algebra of
vector fields

v1 D @

@x
; v2 D @

@u
; v3 D x

@

@x
; v4 D x

@

@u
; v5 D u

@

@u
; (71)

and search for weakly invariant equations on the discrete jet space

J Œ2� D f.i; xi�1; xi; xiC1; ui�1; ui; uiC1/g : (72)

The prolongation of the infinitesimal generators (71) to J Œ2� is given by

vŒ2�
1 D @

@xi�1

C @

@xi
C @

@xiC1

; vŒ2�
2 D @

@ui�1

C @

@ui
C @

@uiC1

;

vŒ2�
3 D xi�1

@

@xi�1

C xi
@

@xi
C xiC1

@

@xiC1

;

vŒ2�
4 D xi�1

@

@ui�1

C xi
@

@ui
C xiC1

@

@uiC1

;

vŒ2�
5 D ui�1

@

@ui�1

C ui
@

@ui
C uiC1

@

@uiC1

;

and the corresponding Lie matrix is

L D

2

66666
4

1 1 1 0 0 0

0 0 0 1 1 1

xi�1 xi xiC1 0 0 0

0 0 0 xi�1 xi xiC1

0 0 0 ui�1 ui uiC1

3

77777
5

:

Assuming that hi D xiC1 � xi ¤ 0 and hi�1 D xi � xi�1 ¤ 0, the Lie matrix can be
row reduced to

L �

2

66666
4

1 1 1 0 0 0

0 0 0 1 1 1

�hi�1 0 hi 0 0 0

0 0 0 �hi�1 0 hi

0 0 0 W 0 0

3

77777
5

;

where W D hi�1.uiC1 � ui/ � hi.ui � ui�1/. Therefore, when

hi�1.uiC1 � ui/ � hi.ui � ui�1/ D 0 (73)

the rank of the Lie matrix is not maximal and (73) yields a weakly invariant
equation.
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5.2 Moving Frame Approach

As explained in Sect. 4.2, a moving frame �WM ! G exists provided the group
action is free. In terms of the Lie matrix (70), this occurs where the rank of L.z/ D
r D dim G is maximal. Therefore, submanifolds where the rank of the Lie matrix is
not maximal occur where a moving frame does not exist. In those situations it is still
possible to construct partial moving frames [72, 75, 84]. Intuitively, a partial moving
frame is the G-equivariant map that one obtains when some of the group parameters
cannot be normalized during the normalization procedure. Given a partial moving
frame, the invariantization map is still defined as in (65), and a complete set of
normalized difference invariants can still be constructed.

In applications, partial moving frames naturally occur as one attempts to solve
the normalizing equations (64). The solution to the normalization equations will, in
general, require some nondegeneracy conditions to hold and submanifolds where
those constraints are not satisfied will determine weakly invariant equations.

Example 5.7 We now reconsider Example 5.6 using the equivariant moving frame
method. The group of transformations induced by the infinitesimal generators is
given by

X D �x C a ; U D ˛u C ˇx C b ;

where � > 0, ˛ > 0, and a; b; ˇ 2 R. The product action on the discrete jet space
(72) is

Xi�1 D �xi�1 C a; Ui�1 D ˛ui�1 C ˇxi�1 C b ;

Xi D �xi C a; Ui D ˛ui C ˇxi C b ;

XiC1 D �xiC1 C a; UiC1 D ˛uiC1 C ˇxiC1 C b :

(74)

Starting the normalization process, we first set Xi D 0 and Ui D 0. Solving the
normalization equations

0 D Xi D �xi C a ; 0 D Ui D ˛ui C ˇxi C b ;

we obtain

a D ��xi ; b D �˛ui � ˇxi : (75)

Introducing the notation

hi D xiC1 � xi ; hi�1 D xi � xi�1 ; �ui D uiC1 � ui ; �ui�1 D ui � ui�1 ;
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the substitution of the group normalizations (75) into the product action (74) yields

Xi�1 D �� hi�1; Ui�1 D �˛ �ui�1 � ˇ hi�1 ;

XiC1 D � hi; UiC1 D ˛ �ui C ˇ hi :
(76)

At this stage, assuming that hi�1 > 0 (and similarly hi > 0) we can set Xi�1 D
�1, which leads to the group normalization

� D 1

hi�1

: (77)

Substituting (77) into (76) yields the difference invariant

Hi D �.xiC1/ D hi

hi�1

:

To normalize the remaining group parameters ˛ and ˇ in

�
Ui�1

UiC1

�
D

���ui�1 �hi�1

�ui hi

� �
˛

ˇ

�
;

it is necessary for the coefficient matrix to be invertible. On the other hand, if the
matrix is not invertible, that is, if

0 D det

���ui�1 �hi�1

�ui hi

�
D �hi �ui�1 C hi�1 �ui ; (78)

one can only construct a partial moving frame and (78) is a weakly invariant
equation, which is identical to (73). When (78) holds, we can normalize either UiC1

or Ui�1. Let Ui�1 D 0, then

ˇ D �˛
�ui�1

hi�1

;

and one obtains the partial moving frame

a D � xi

hi�1

; b D ˛

hi�1

det

�
ui xi

ui�1 xi�1

�
; � D 1

hi�1

; ˇ D �˛
�ui�1

hi�1

:

Finally, we note that

�.uiC1/ D ˛

�
�ui � hi

hi�1

�ui�1

�
D 0 ;

by virtue of (78).
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6 Symmetry-Preserving Numerical Schemes

At this point, given a Lie group of local transformations G acting on M, we have
everything needed to construct G-invariant equations. As introduced in Sect. 5,
a G-invariant equation F.z/ D 0 will either be weakly invariant or strongly
invariant. To obtain strongly invariant equations, the first step consists of computing
a complete set of invariants Ic using either Lie’s infinitesimal approach or the
moving frame method. Once a complete set of invariants Ic has been computed,
a strongly invariant equation 0 D F.z/ D eF.Ic/ is simply obtained by combining
invariants from Ic. To obtain weakly invariant equations, one simply has to use one
of the two procedures outlined in Sect. 5.

When M D J.`/, the above procedure will produce all the differential equations
�

�
x; u.`/

� D 0 admitting G as a symmetry group. Similarly, when M D J.`/,
one obtains all the differential equations N��

s; x.`/; u.`/
� D 0 invariant under the

prolonged action of G. Obtaining these differential equations is referred to as the
inverse problem of group classification. Given a G-invariant differential equation
�

�
x; u.`/

� D 0, the procedure can also be used to construct an extended system
of equations f N��

s; x.`/; u.`/
� D 0; Q��

s; x.`/; u.`/
� D 0g that is G-compatible with

�
�
x; u.`/

� D 0.
In the following, we are mainly interested in the case when M D J Œ`�. Given a

differential equation �
�
x; u.`/

� D 0 with symmetry group G, we want to construct
a system of finite difference equations that approximates the differential equation,
specifies constraints on the mesh, and preserves the symmetry group G. This is
now obviously done by finding an appropriate collection of strongly invariant and
weakly invariant difference equations, which, in the continuous limit, converge
to the differential equation. To find an approximation of the differential equation
�

�
x; u.`/

� D 0, the first step consists of computing a complete set of difference
invariants using either Lie’s infinitesimal approach or the moving frame method and
to consider their Taylor expansion. Then one searches for a combination of these
Taylor expansions that will, in the continuous limit, converge to the differential
equation, and thereby provide a finite difference approximation of the equation.
This step will not always work. It is possible that the difference invariants cannot be
combined in such a way to converge to the differential equation in the continuous
limit. When this is the case, one should search for a weakly invariant equation
W.xŒ`�

N ; uŒ`�
N / D 0 that converges to � D 0. If the later fails, one can try to add

more points in the lattice. It is not clear yet if all invariant differential equations
admit at least one symmetry-preserving scheme. Differential equations with infinite-
dimensional symmetry groups are particularly challenging. To this day, no one
has been able to systematically construct symmetry-preserving schemes for such
equations.

In parallel, one also searches for a set of strongly and/or weakly invariant
difference equations that will constrain the mesh on which the differential equation
is approximated. Mesh equations do not always have to be included. If they are
avoided, this leads to invariant meshless discretization schemes [4], which tend
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to be more complicated numerical schemes as they can operate on an arbitrary
collection of nodes where the solution is sought numerically. When, included, the
mesh equations will influence how the continuous limit should be taken in the
above paragraph. The number of equations specifying the mesh is not a priori fixed.
The only requirements are that those equations should not impose any constraints
on the dependent variables uŒ`�

N , that they should be compatible, and have the
appropriate continuous limit. The latter can mean different things depending on the
point of view used. For example, in [13, 14, 18, 28–30, 56, 61], the discrete indices
N C K are assumed to be fixed and in the continuous limit, the points .xNCK ; uNCK/

converge to .xN ; uN/ for all K 2 Zp. With this perspective, the mesh equations will
converge, in the continuous limit, to identities such as 0 D 0. Alternatively, if one
regards the discrete index N D .n1; : : : ; np/ as sampling the computational variables
s D .s1; : : : ; sp/, one can take the limit in the index variables [67, 78, 79]. To this
end, we introduce the variation parameters � D .�1; : : : ; �p/ 2 Œ0; 1�p. One can then
write the multi-index N C K as

N C K D N C � � Kj�D.1;:::;1/ D .n1 C �1k1; : : : ; np C �pkp/j�D.1;:::;1/ :

Letting � ! 0C, one has that

lim
�!0C

N C � � K D N :

By introducing the variation parameters � D .�1; : : : ; �p/ in the mesh equations and
letting � ! 0C, the latter will now converge to the companion equations (9b).

We now illustrate the above procedure for constructing symmetry-preserving
numerical schemes by considering three examples.

Example 6.1 As our first example, we construct a symmetry-preserving scheme
for the Schwarzian differential equation (33), whose symmetry group is given
by the fractional linear action (35). The difference invariants on the lattice (56)
are given by the index i, the discrete x-variables (58), and the cross-ratio (61).
These invariants are sufficient to construct a symmetry-preserving scheme of the
Schwarzian equation. We begin by specifying the mesh equation, as this step is the
easiest. Clearly, we can set

xiC1 � xi D h ;

where h > 0 is a positive constant. From the mesh equation, it follows that

xi�1 D xi � h ; xiC1 D xi C h ; xiC2 D xi C 2h :
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Therefore, the Taylor expansions of ui�1, uiC1, and uiC2 centered at xi are

ui�1 D u.xi�1/ D u � hux C h2

2
uxx � h3

6
uxxx C O.h4/ ;

uiC1 D u.xiC1/ D u C hux C h2

2
uxx C h3

6
uxxx C O.h4/ ;

uiC2 D u.xiC2/ D u C 2hux C 2h2uxx C 4h3

3
uxxx C O.h4/ ;

(79)

where the function u and its derivatives are evaluated at xi. Substituting the Taylor
expansions (79) in the difference invariant (61), we obtain

Ri D h2u2
x C h3uxuxx C h4

�
.4=3/uxuxxx � .3=4/u2

xx

� C O.h5/

4h2u2
x C 4h3uxuxx C .10=3/h4uxuxxx C O.h5/

:

Therefore,

4 � 1=Ri

h2
D 2uxuxxx � 3u2

xx

u2
x

C O.h/

and an invariant approximation of the Schwarzian equation (33) is given by

1

h2

�
2 � 1

2Ri

�
D F.xi/ : (80)

Example 6.2 As a second example, we consider the second order ordinary differ-
ential equation

uxx D 0 : (81)

As seen in Exercise 3.6, the infinitesimal symmetry algebra is spanned by the vector
fields (32). In the following, we construct a symmetry-preserving scheme of the
differential equation (81) invariant under the five-dimensional symmetry subgroup
generated by (71) on the discrete jet space J Œ2� D f.i; xi�1; xi; xiC1; ui�1; ui; uiC1/g:
Since dimJ Œ2� � dim g D 7 � 5 D 2, other than the index i, we expect one more
difference invariant. Solving the system of first order partial differential equations

vŒ2�
1 .I/ D @I

@xi�1

C @I

@xi
C @I

@xiC1

D 0 ;

vŒ2�
2 .I/ D @I

@ui�1

C @I

@ui
C @I

@uiC1

D 0 ;

vŒ2�
3 .I/ D xi�1

@I

@xi�1

C xi
@I

@xi
C xiC1

@I

@xiC1

D 0 ;
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vŒ2�
4 .I/ D xi�1

@I

@ui�1

C xi
@I

@ui
C xiC1

@I

@uiC1

D 0 ;

vŒ2�
5 .I/ D ui�1

@I

@ui�1

C ui
@I

@ui
C uiC1

@I

@uiC1

D 0 ;

we obtain the invariant

Hi D xiC1 � xi

xi � xi�1

D hi

hi�1

: (82)

Note that this invariant was also found in our construction of a partial moving
frame in Example 5.7. Clearly, it is not possible to approximate (81) using only the
invariant (82). We therefore search for weakly invariant equations. In Example 5.6
(and Example 5.7) we found that W D hi�1.uiC1�ui/�hi.ui �ui�1/ D 0 is a weakly
invariant equation. Since the product of a weakly invariant equation W.xŒ2�

i ; uŒ2�
i / D 0

by a nonzero difference function F.i; xŒ2�
i ; uŒ2�

i / ¤ 0 remains weakly invariant,

2W

hihi�1.hi C hi�1/
D 2

xiC1 � xi�1

�
uiC1 � ui

xiC1 � xi
� ui � ui�1

xi � xi�1

�
D 0

is weakly invariant equation, and happens to approximate the differential equation
uxx D 0. As for the mesh equation, we set Hi D f .i/, with f .i/ > 0 for all i, and
obtain

xiC1 � .1 C f .i//xi C f .i/xi�1 D 0 :

Exercise 6.3 (This Exercise Was Taken from [81]) The first-order ordinary
differential equation

u0 D A0.x/u C B0.x/eA.x/ (83)

is invariant under the infinitesimal symmetry generators

v1 D eA.x/ @

@u
; v2 D Œu � B.x/eA.x/�

@

@u
:

Working on the discrete jet space

J Œ1� D f.i; xi; xiC1; ui; uiC1/g W
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1. Show that, other than the index i, the only two invariants are xi and xiC1.
2. Find a weakly invariant difference equation.
3. Write down a symmetry-preserving scheme for (83).

Example 6.4 The standard discretization of the KdV equation on an orthogonal
mesh given in (22) is not invariant under the Galilean boosts

X D x C vt ; T D t ; U D u C v ; v 2 R :

Indeed, under this transformation, the second term in (22) is transformed to

.un
i C v/ � un

iC1 � un
i�1

2h
;

while the other two terms remain unchanged. Thus, the discretization (22) does
not preserve all the symmetries of the equation. It is not difficult to see that the
discretization (22) is only invariant under shifts and dilations.

We now proceed to the construction of a symmetry-preserving scheme for the
KdV equation. Introducing the multi-index N D .n; i/, let

.tN ; xN ; uN/ D .tn
i ; xn

i ; un
i /

as in Example 2.17. Recall that the symmetry generators of the KdV equation were
found in (31). Clearly, the ratios

tn
iC1 � tn

i

tnC1
i � tn

i

and
tnC1
i � tn

i

tn
i � tn�1

i

are invariant under space and time translations, Galilean boosts, and scalings.
Therefore, we can use these two invariants to fix invariant constraints on the

discretization of the time variable t by setting
tniC1

�tni

tnC1
i �tni

D 0 and tnC1
i �tni
tni �tn�1

i
D 1. These

two equations are equivalent to

tn
iC1 � tn

i D 0 ; tnC1
i � 2tn

i C tn�1
i D 0 : (84)

The latter imply that a symmetry-preserving scheme for the KdV equation can be
formulated on a mesh with flat, equally spaced time layers:

tn D k n C t0 :

From here on, we assume that (84) hold. The prolongation of the vector fields (31)
to the points in the stencil depicted in Fig. 1 is given by
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•
(tn,xn

i−2,u
n
i−2)

•
(tn,xn

i−1,u
n
i−1)

•
(tn,xn

i ,u
n
i )

•
(tn,xn

i+1,u
n
i+1)

•
(tn,xn

i+2,u
n
i+2)

•
(tn+1,xn+1

i−2 ,u
n+1
i−2 )

•
(tn+1,xn+1

i−1 ,u
n+1
i−1 )

•
(tn+1,xn+1

i ,un+1
i )

•
(t n+1,xn+1

i+1,u
n+1
i+1 )

•
(t n+1,xn+1

i+2,u
n+1
i+2 )

Fig. 1 Stencil for the KdV equation

v1 D
1X

lD0

@

@tnCl
; v2 D

1X

lD0

2X

jD�2

@

@xnCl
iCj

;

v3 D
1X

lD0

2X

jD�2

tnCl @

@xnCl
iCj

C @

@unCl
iCj

;

v4 D
1X

lD0

"

3tnCl @

@tnCl
C

2X

jD�2

xnCl
iCj

@

@xnCl
iCj

� 2unCl
iCj

@

@unCl
iCj

#

:

(85)

To simplify the notation, we introduce

k D tnC1 � tn ; hn
i D xn

iC1 � xn
i ;

�n
i D xnC1

i � xn
i ; Dun

i D un
iC1 � un

i

hn
i

;
(86)

for the spacings and elementary first order discrete x-derivatives. Applying the
infinitesimal invariance criterion (53) and solving the corresponding system of
first order partial differential equations, we obtain the following 18 functionally
independent invariants

HnCl
iCj D hnCl

iCj�1

hnCl
iCj

; l D 0; 1; j D �1; 0; 1 ;

In
i D hnC1

i

hn
i

; Jn
i D .hn

i /3

k
;

Ln
i D �n

i � k � un
i

hn
i

; Tn
i D .unC1

i � un
i /.hn

i /2 ;

KnCl
iCj D k � DunCl

iCj ; l D 0; 1; j D �2; �1; 0; 1 :

(87)
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Introducing the invariant quantity

Qn
i D Hn

iC1

�
Kn

iC1 � Kn
i

1 C Hn
iC1

�
�

�
Kn

i � Kn
i�1

1 C Hn
i

�
;

an invariant numerical scheme for the KdV equation (together with the mesh
equations (84)) is given by

Tn
i � Jn

i � Ln
i

�
Kn

i C Kn
i�1

2

�
C Qn

i C Qn
i�1

.Hn
i /2

D 0 : (88)

Introducing the third order discrete x-derivative

D3un
i D 2

hn
i

��
Dun

iC1 � Dun
i

hn
iC1 C hn

i

�
�

�
Dun

i � Dun
i�1

hn
i C hn

i�1

��
; (89)

the explicit expression of the invariant scheme (88) is

unC1
i � un

i

k
C

�
un

i � �n
i

k

�
Dun

i C Dun
i�1

2
C 1

2

�
D3un

i C D3un
i�1

� D 0 : (90)

A more appropriate invariant numerical scheme can be realized on the entire ten
point lattice. The latter is given by

Tn
i � Jn

i � Ln
i

�
Kn

i C Kn
i�1 C KnC1

i C KnC1
i�1

4

�

C 1

2

�
1

In
i

�
QnC1

i C Qn
i�1

In
i .HnC1

i /2

�
C Qn

i C Qn
i�1

.Hn
i /2

�
D 0 :

Explicitly,

unC1
i � un

i

k
C

�
un

i � �n
i

k

�
Dun

i C Dun
i�1 C DunC1

i C DunC1
i�1

4

C 1

4

�
D3unC1

i C D3unC1
i�1 C D3un

i C D3un
i�1

� D 0 : (91)

To use the scheme (90) or (91), the grid velocity

�n
i

k
D xnC1

i � xn
i

k

must be specified in an invariant manner to preserve the symmetries of the KdV
equation. One possibility is to set
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Ln
i D 0 so that

�n
i

k
D un

i : (92)

Together, the Eqs. (84), (90) (or (91)), and (92) provide a numerical approximation
of the extended system of differential equations (11), (14), (15) for the KdV
equation. The latter scheme can perform poorly as there is no built-in mechanism
preventing the clustering of grid points as the numerical integration proceeds.
Alternatives to using (92) to obtain the position of the grid points at the next time
level will be presented in Sect. 7. Using adaptive moving mesh methods, we will
construct more reliable invariant numerical schemes.

We conclude this example by discussing the continuous limit of the numerical
scheme (90) with mesh equations (84), (92). Let us introduce the variation parame-
ters .�; ı/ so that

n C l D n C l�
ˇ
ˇ
�D1

and i C j D i C jı
ˇ
ˇ
ıD1

:

In the numerical scheme (90), (84), (92), let

unC1
i � un

i D unC�
i � un

i

�
; un

iC1 � un
i D un

iCı � un
i

ı
;

un
iC1 � 2un

i C un
i�1 D un

iCı � 2un
i C un

i�ı

ı2
;

un
i�2 � 3un

iC1 C 3un
i � un

i�1 D un
iC2ı � 3un

iCı C 3un
i � un

i�ı

ı3

with � D 1 and ı D 1, and similarly for the differences in t and x. Then, as � ! 0

and ı ! 0,

unC�
i � un

i

�
! u� ;

un
iCı � un

i

ı
! us ;

un
iCı � 2un

i C un
i�ı

ı2
! uss ;

un
iC2ı � 3un

iCı C 3un
i � un

i�ı

ı3
! usss ;

and the numerical scheme (90), (84), (92), converges to (15), (11), and (14),
respectively.

Alternatively, if one lets tnCl
iCj ! tn

i , xnCl
iCj ! xn

i , unCl
iCj ! un

i , without introducing
the variation parameters .�; ı/, then after multiplying equation (92) by k, the mesh
equations (84), (92) converge to the identity 0 D 0, while (90) converges to the
original KdV equation (10).

Exercise 6.5 Using the difference invariants computed in Exercise 4.5 part 2,
construct a symmetry-preserving scheme for Burgers’ equation (36).

When using the method of equivariant moving frames to construct symmetry-
preserving numerical schemes, it is possible to avoid the step where one has to
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search for a combination of the difference invariants that will approximate the
differential equation �

�
x; u.`/

� D 0. In general, for this to be the case, some
care needs to be taken when constructing the discrete moving frame �Œ`�WJ Œ`� ! G.
The latter has to be compatible with a continuous moving frame �.`/W J.`/ ! G.
By this, we mean that the discrete moving frame �Œ`� must converge, in the
continuous limit, to the moving frame �.`/. If K Œ`� is the cross-section used to
define �Œ`� and K .`/ is the cross-section defining �.`/, then the moving frame �Œ`�

will be compatible with �.`/ if, in the coalescing limit, K Œ`� converges to K .`/. As
shown in [67], discrete compatible moving frames can be constructed by using the
Lagrange interpolation coordinates on J Œ`�, although in applications these can lead
to complicated expressions that may limit the scope of the method. It is frequently
preferable to fix invariant constraints on the mesh, and then consider finite difference
approximations of the derivatives compatible with the mesh. On a nonuniform mesh,
these expressions can be obtained by following the procedure of Example 2.11.

Given a compatible moving frame �Œ`� an invariant approximation of the differen-
tial equation �

�
x; u.`/

� D 0 is simply obtained by invariantizing any finite difference

approximation E.N; xŒ`�
N ; uŒ`�

N / D 0, compatible with the mesh. In particular, the

equation E.N; xŒ`�
N ; uŒ`�

N / D 0 does not have to be invariant.
We now illustrate the construction of symmetry-preserving numerical schemes

using the method of moving frames.

Example 6.6 As our first example, we revisit Example 6.1 using the moving frame
machinery. In Example 4.19, we constructed a discrete moving frame for the
symmetry group of the Schwarzian differential equation. This moving frame was
constructed using the cross-section (68), which is not compatible with the cross-
section (66) used to define a moving frame in the differential case. Indeed, in (66)
we have u D 0, while in the discrete case we let ui ! 1. Therefore, one should not
expect that the invariantization of the standard scheme

uiC2 � 3uiC1 C 3ui � ui�1

.uiC1 � ui/h2
� 3

2

�
uiC1 � 2ui C ui�1

.uiC1 � ui/h

�2

D F.xi/ (93)

will provide an invariant approximation of the Schwarzian equation (33). Indeed,
the invariantization of (93), yields the inconsistent equation

� 9

h2
D F.xi/ :

In this case one has to combine the normalized invariants xi�1, xi, xiC1, xiC2, and
the cross-ratio �i�.uiC2/ D Ri as in Example 6.1 to obtain the invariant numerical
scheme (80).

For the invariantization of (93) to give a meaningful invariant discretization, we
need to construct a discrete moving frame compatible with (67). Working on the
uniform mesh
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xiC1 � xi D h ;

we introduce the finite difference derivatives

Dui D uiC1 � ui

h
; D2ui D uiC1 � 2ui C ui�1

h2
;

D3ui D uiC2 � 3uiC1 C 3ui � ui�1

h3
:

To obtain a compatible discrete moving frame, we consider a finite difference
approximation of the cross-section (66) used in the differential case. Namely, let

K D fui D 0; Dui D �i; D2ui D 0g
where �i D sign.uiC1 � ui/.ui � ui�1/.uiC2 � ui�1/ :

The latter is equivalent to

K D fui�1 D �h�i; ui D 0; uiC1 D h�ig :

Solving the normalization equations

�h�i D Ui�1 D aui�1 C b

cui�1 C b
; 0 D Ui D aui C b

cui C d
;

h�i D UiC1 D auiC1 C b

cuiC1 C b
;

and using the unitary constraint ad � bc D 1, we obtain the moving frame

a D D2ui

2c Dui Dui�1

; b D � uiD2ui

2c Dui Dui�1

;

d D c � uiC1 Dui�1 � ui�1 Dui

Dui � Dui�1

;

where

c2 D �i.D2ui/
2

2 Dui Dui�1.Dui C Dui�1/
:

We note that the right-hand side of the last equality is nonnegative by definition of �i.
Invariantizing the noninvariant scheme (93), we obtain the invariant discretization

.uiC2 � ui/.uiC1 � ui�1/

h3Œ.uiC2 � ui�1/Dui � .uiC2 � uiC1/Dui�1�
� 2

h2
D F.xi/ : (94)
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The latter can be written using cross-ratios in a form similar to the invariant scheme
(80). After some simplifications, the invariant scheme (94) is equivalent to

1

h2

�
1

Ri � Ri
� 2

�
D F.xi/ ;

where

Ri D .uiC2 � ui�1/.uiC1 � ui/

.uiC2 � ui/.uiC1 � ui�1/
and Ri D .uiC2 � uiC1/.ui � ui�1/

.uiC2 � ui/.uiC1 � ui�1/
:

Example 6.7 As our final example, we consider the invariant discretization of the
KdV equation. The group action induced by the infinitesimal generators (31) is
given by

X D �x C vt C a ; T D �3t C b ; U D u

�2
C v ; (95)

where a; b; v 2 R and � 2 RC. As in Example 6.4, to simplify the computations,
we assume that (84) holds. When this is the case, it follows from (18) that

ut � unC1
i � un

i

k
� �n

i

k
Dun

i ; ux � Dun
i ;

where we use the notation that was introduced in (86). For better numerical
accuracy, we let

ut � �tu
n
i D unC1

i � un
i

k
� �n

i

k
� Dun

i C Dun
i�1

2
;

ux � �xun
i D Dun

i C Dun
i�1

2
:

(96)

Also, recalling formula (89), we let

uxxx � �3
xun

i D 1
2
ŒD3un

i C D3un
i�1� : (97)

Implementing the discrete moving frame construction, we choose the cross-
section

K D fxn
i D 0; tn D 0; un

i D 0; �xun
i D 1g ;

which is compatible with the cross-section fx D 0; t D 0; u D 0; ux D 1g that
one could use to construct a moving frame in the continuous case. Solving the
normalization equations
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�xn
i C vtn C a D 0 ; �3tn C b D 0 ; ��2un

i C v D 0 ;

��2un
iC1 C v

�xn
iC1 C vtn C a

C ��2un
i�1 C v

�xn
i�1 C vtn C a

D 2 ;

for the group parameters a; b; v; �, we obtain the right moving frame

a D �xn
i .�xun

i /1=3 C tnun
i

.�xun
i /2=3

; b D �tn �xun
i ;

v D � un
i

.�xun
i /2=3

; � D .�xun
i /1=3 :

(98)

To obtain an invariant scheme, we approximate the KdV equation using (96) and
(97),

�tu
n
i C un

i � �xun
i C �3

xun
i D 0 : (99)

and invariantize the resulting scheme. Since the latter is already invariant, the
scheme remains the same. We note that the scheme (99) is the same as (90).

Exercise 6.8 Referring to Exercise 4.5:

1. Construct a discrete moving frame on the stencil

˚�
n; i; tn; tnC1; xn

i�1; xn
i ; xn

iC1; xnC1
i�1 ; xnC1

i ; xnC1
iC1 ; un

i�1; un
i ; un

iC1; unC1
i�1 ; unC1

i ; unC1
iC1

��

compatible with the differential moving frame found in Exercise 4.18 part 2.
2. Invariantize the discrete approximation

uxx � D2un
i D 2

hn
i C hn

i�1

ŒDun
i � Dun

i�1�:

3. Write a symmetry-preserving scheme for Burgers’ equation (36).

7 Numerical Simulations

In this section we present some numerical simulations using the invariant numerical
schemes derived in Sect. 6.
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7.1 Schwarzian ODE

indexSchwarz’ equationWe begin with the Schwarzian ODE (33) with F.x/ D 2. In
other words, we consider the differential equation

ux uxxx � .3=2/u2
xx

u2
x

D 2 : (100)

By the Schwarz’ Theorem [64], the general solution of (100) is

u.x/ D a sin x C b cos x

c sin x C d cos x
with ad � bc ¤ 0 :

Choosing a D d D 1 and b D c D 0, we obtain the particular solution u.x/ D tan x.
We now aim to obtain this particular solution numerically using the invariant scheme
(80) and a standard noninvariant scheme, and compare the results. For the standard
method, we choose the explicit fourth order adaptive Runge–Kutta solver ode45
as provided by MATLAB. On the surface, this appears to be an unfair comparison
since the invariant scheme (80) is only first order accurate. However, preserving
geometric properties can give a numerical scheme a distinct advantage, even if it is
only of relatively low order. This is verified in Fig. 2.

The relative error tolerance controlling the step size in the (noninvariant) adaptive
Runge–Kutta method was set to 10�12. Despite this extremely small tolerance, the
numerical solution diverges at the point x D �=2 where the solution has a vertical
asymptote. On the other hand, the invariant method, with a step size of h D 0:01, is
able to integrate beyond this singularity and follows the exact solution u.x/ D tan x
very closely. For the conceptually related case where F.x/ D sin x in (33), see [13].
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invariant
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Fig. 2 Numerical integration of the Schwarzian ODE (33) with F.x/ D 2. Blue: Non-invariant
fourth order adaptive RK method. Red: Invariant first order method. Black: Exact solution
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7.2 Korteweg–de Vries Equation

As reviewed in the previous sections, the earliest examples of invariant numerical
schemes for evolution equations almost exclusively rested on the discretization of
their associated Lagrangian form. However, the use of fully Lagrangian techniques
for discretizing differential equations is not common due to their tendency to cluster
grid points in certain areas of the computational domain and to poorly resolve
the remaining parts of the domain. Even more problematic, Lagrangian numerical
methods regularly lead to mesh tangling, especially in the case of several space
dimensions.

For the KdV equation this basic problem is readily demonstrated using the
invariant Lagrangian scheme given by (91) and (92). To do so, we numerically
implement this scheme using as initial condition a double soliton solution of the
form

u.t; x/ D 1

2
c1 sech2

�p
c1

2
.x C a1 � c2t/

�

C 1

2
c2 sech2

�p
c2

2
.x C a2 � c2t/

�
; (101)

where c1; c2 2 R are the phase velocities of the individual solitons and a1; a2 2 R
are the initial displacements. In our numerical simulations, we set a1 D 20, a2 D 5,
c1 D 1, c2 D 0:5, and restricted the computational domain to the interval Œ�30; 30�

discretized with a total of N D 128 spatial grid points. The time step k was chosen
to be proportional to h3, k / h3, and the final integration time for the Lagrangian
experiment was t D 0:75. The result of the computation is presented in Fig. 3.

It is visible from the evolution of the mesh points in Fig. 3 (right) that mesh
tangling (here: crossing of mesh lines) is about to occur. This leads to numerical
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Fig. 3 Left: Numerical solution for the KdV equation using the invariant Lagrangian scheme (91)
and (92). Right: Associated evolution of the mesh points
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instability that is visible as high wavenumber oscillations between the two solitons,
which sets in almost immediately after the start of the numerical integration. In
other words, the invariant Lagrangian scheme is unsuitable for practical applications
in virtually all relevant numerical situations, since no inherent control over the
evolution of the mesh points is build into the scheme.

It is striking to observe that, despite the well-known shortcomings of Lagrangian
numerical schemes, the latter have played a prominent role in the field of symmetry-
preserving discretization. This can be explained by the fact that for most papers
on the subject, invariant numerical schemes were constructed more as an example
highlighting the possibility of deriving symmetry-preserving schemes of differential
equations rather than as a tool for practical numerical experiments. Indeed, it is fair
to say that even now, the numerical analysis of invariant discretization schemes is
still lacking rigor.

In order to make the invariant numerical scheme (91) practical, a different
invariant grid equation has to be derived. Possible strategies include the use of
invariant evolution–projection schemes and invariant adaptive numerical schemes.

The invariant evolution–projection scheme conceptually builds upon the invari-
ant Lagrangian scheme. The main idea of this approach is to use the invariant
numerical scheme and the invariant mesh equations only over a single time step,
and use an interpolation scheme to project the solution of the differential equation
defined at the new spatial grid points back to the initial (typically uniform)
spatial grid. The entire procedure is invariant if the interpolation scheme used is
invariant [5]. The main appeal of this method is that it enables the use of invariant
numerical schemes on rectangular meshes.

It is readily verified that classical interpolation methods such as linear, quadratic,
cubic or spline interpolations are all invariant under the maximal symmetry group
of the KdV equation. The main reason is that all these schemes are polynomials in
terms like .xnC1

iC1 � xnC1
i / or .OxnC1 � xnC1

i /=.xnC1
iC1 � xnC1

i /, where OxnC1 is the inter-
polation point, which are invariant under spatial and temporal shifts and Galilean
boosts. The invariance under scaling transformations follows from the consistency
of the interpolation scheme. For example, consider the linear interpolation given by

u.OxnC1
i / D unC1

i C unC1
iC1 � unC1

i

xnC1
iC1 � xnC1

i

.OxnC1
i � xnC1

i /:

Then, under the action of the KdV symmetry group given by (95), the linear
interpolation formula remains invariant. In other words, it follows that

U.bXnC1
i / D UnC1

i C UnC1
iC1 � UnC1

i

XnC1
iC1 � XnC1

i

.bXnC1
i � XnC1

i /:

For more details and examples, see [5, 6].
In Fig. 4 we present the numerical results for the scheme (91), (92) using the

double soliton (101) as initial condition on the interval Œ�30; 30�. As opposed to
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Fig. 4 Numerical solution
for the KdV equation using
the invariant scheme (91),
(92) augmented with a cubic
spline interpolation after
every step to project the
solution back to the original
uniform mesh
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the previous simulation, we now introduce a cubic spline interpolation at each time
integration to project the solution back to the original space grid. The number of
discrete spatial points is as before, that is N D 128, and the final integration
time is t D 40. As it can be seen, the two solitons interact with each other
and remain unchanged after their collision, which is properly captured by the
invariant evolution–projection scheme. We point out though that the scheme is rather
dissipative, with the amplitudes of the solitons slowly decreasing over time. While in
the present example dissipation can be seen as a disadvantage, this dissipation can
be essential in hyperbolic problems that involve shock solutions. For these shock
solutions, numerical simulations usually require schemes, such as upwind or Lax–
Friedrich and Lax–Wendroff methods, which exhibit artificial dissipation.

A second possibility for completing the invariant numerical scheme (91) without
using Lagrangian methods rests on moving mesh methods. Without going into great
details, we present here an invariant r-adaptive scheme for the KdV equation (for
more information, see [9]). In r-adaptive numerical schemes a fixed number of grid
points is redistributed so that points automatically move to regions where higher
resolution is required, for example near shocks. Therefore, r-adaptive numerical
methods are particularly important for hyperbolic problems. We refer to [39] for a
comprehensive review of such methods.

For one-dimensional problems, r-adaptive moving meshes on the interval Œa; b�

are uniquely determined through the equidistribution principle, which in differential
form reads

.ı.t; x/xs/s D 0 (102)

with boundary conditions x.t; 0/ D a and x.t; 1/ D b. In (102), the function ı is
called the mesh density function or monitor function. Its role is to control the areas
where grid points should concentrate or de-concentrate. It is typically linked to the
solution of the physical differential equation. For example, the arc-length type mesh
density function is
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Fig. 5 Left: Numerical solution for the KdV equation using the invariant adaptive scheme (91),
(104). Right: Associated evolution of the mesh points

ı D
q

1 C ˛u2
x ; (103)

where ˛ 2 R is a constant adaptation parameter.
To complete the invariant scheme for the KdV equation, we discretize (102)

and (103) using the difference invariants given in (87) or using the invariantization
map induced by the discrete moving frame (98). In particular, it turns out that the
straightforward discretization

ın
iC1 C ın

i

2
.xnC1

iC1 � xnC1
i / � ın

i C ın
i�1

2
.xnC1

i � xnC1
i�1 / D 0 ;

ın
i D

s

1 C ˛

�
k

un
iC1 � un

i

xn
iC1 � xn

i

�2

;

(104)

is invariant under the maximal Lie symmetry group of the KdV equation.
In Fig. 5 we present the numerical solution for the KdV equation using the

invariant adaptive scheme (91) with (104) and the same double soliton initial
condition (101) as in the previous simulation. The final integration time was again
chosen to be t D 40 and the adaptation parameter was set to ˛ D 10.

It is readily seen from Fig. 5 that the invariant adaptive scheme (91), (104)
again does not suffer from the shortcomings observed for the Lagrangian scheme
(91), (92). In particular, no mesh tangling occurs. The associated adaptive mesh
suitably tracks the position of the solitons and remains almost uniform away from
the two waves, although the adaptation is relatively weak since the solution does not
exhibiting overly steep gradients. An advantage of the invariant r-adaptive scheme
over the invariant evolution–projection scheme is that the amplitudes of the solitons
are not damped during the adaptation strategy.
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In general, using invariant adaptive schemes has the merit of combining a
geometric numerical method with a well-proven numerical strategy for dynamically
redistributing the points in a mesh. In particular, this technique works for all
evolution equations that are invariant under the Galilean group, which are virtually
all equations of classical hydrodynamics, including the shallow-water equations, the
Euler equations and the Navier–Stokes equations. Since shock waves are physically
important solutions in these models, invariant adaptive schemes are of high practical
relevance in this field.

7.3 Burgers’ Equation

In this section we construct a new numerical scheme for Burgers’ equation (36)
invariant under the four-parameter symmetry group

X D e�4x C �3t C �1 ; T D e2�4 t C �2 ; U D e��4u C �3 ;

�1; �2; �3; �4 2 R (105)

generated by the vector fields v1; v2; v3; v4 given in (37). We exclude the one-
parameter group of transformations generated by v5 since in numerical simulations
the evolution of the time variable t should always be strictly increasing, and allowing
the inversion transformations generated by v5 would enable one to reverse the time
direction, which is not desirable from a numerical standpoint.

Remark 7.1 As an exercise, the reader is invited to adapt the constructions below
by including the inversion transformations generated by v5. This has never been
attempted and could potentially lead to interesting new results!

Due to the similarities between the symmetry subgroup action (105) and the KdV
symmetry group (31), the underlying symmetry-preserving schemes for Burgers’
equation are conceptually similar to the invariant schemes constructed before for
the KdV equation. Though, one important differences between the two equations
is that solutions to Burgers’ equation can develop very steep gradients (although
remaining smooth for all times provided that  ¤ 0). This is particularly the case if
 approaches zero. Hence, grid adaptation is of practical relevance for this equation.

In [49], an invariantization for the Crank–Nicolson scheme for Burgers’ equation
was proposed. However, we note that the Crank–Nicolson scheme is implicit and
thus in the case where  is small it might not be the most efficient way of solving
Burgers’ equation since an explicit scheme should then suffice. In the following, we
propose a new scheme which draws some ideas from high-resolution finite volume
methods [52]. It is well-known that high order schemes, such as the Lax–Wendroff
method, lead to oscillations in the numerical solution near shocks, whereas low
order schemes, such as the upwind method, develop no such oscillations but exhibit
an excessive amount of numerical viscosity. The idea in the high-resolution method
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is thus to use a high order method away from the shock and a low resolution method
near the shock. The transition between the two regions is accomplished through the
use of flux/slope limiters.

To formulate an indexinvariant finite volume schemeinvariant finite volume type
method for Burgers’ equation, we rewrite (36) in the form

ut C Qfx D 0 ; Qf D 1
2
u2 � ux : (106)

We now discretize (106) on a moving mesh, which, as we have previously seen, is
enough to guarantee invariance under Galilean transformations. As in Examples 2.8
and 2.10, we introduce the computational variables .�; s/ and let t D t.�/ D k� C t0

and x D x.�; s/. Then, a suitable conservative form of Burgers’ equation in the
computational variables .�; s/ is given by

.xsu/� C k

�
1

2
u2 � 

us

xs
� ux�

k

�

s

D .xsu/� C kfs D 0 ; (107)

see also [39]. We then discretize the flux f in two different ways, once using
the second order centered difference method (high resolution) and once using the
first order upwind method (low resolution). In doing so, we observe, as in [9],
that the invariance under Galilean transformations requires us to discretize (107)
in such a way that all spatial derivatives are evaluated using the same finite
difference discretizations. With that said, the high order discretization of (107) is
�� .xsu/high C k �sf high D 0, with

�� .xsu/high D .hnC1
i C hnC1

i�1 /unC1
i � .hn

i C hn
i�1/un

i ;

�sf
high D 1

2

�
.un

iC1/2 � .un
i�1/2

� � .Dun
i � Dun

i�1/

�
�

�n
iC1

k
un

iC1 � �n
i�1

k
un

i�1

�
:

On the other hand, the low order discretization of (107) is �� .xsu/lowCk �sf low D 0,
where

�� .xsu/low D
(

hnC1
i�1 unC1

i � hn
i�1un

i ; un
i � 0;

hnC1
i unC1

i � hn
i un

i ; un
i < 0;

and

�sf
low D

(
�sf low� ; un

i � 0;

�sf low
< ; un

i < 0;



316 A. Bihlo and F. Valiquette

with

�sf
low� D 1

2

�
.un

i /2 � .un
i�1/2

� � .Dun
i�1 � Dun

i�2/ �
�

�n
i

k
un

i � �n
i�1

k
un

i�1

�
;

�sf
low
< D 1

2

�
.un

iC1/2 � .un
i /2

� � .Dun
iC1 � Dun

i / �
�

�n
iC1

k
un

iC1 � �n
i

k
un

i

�
:

The invariant high-resolution method is obtained by dynamically selecting the
regions of the domain where the high order and low order methods are used. For
this purpose, we introduce the ratio

�n
i D �un

I�1

�un
i�1

; where �un
i�1 D un

i � un
i�1 ;

and I D i � 1 if un
i � 0 and I D i C 1 if un

i < 0. Geometrically, the quantity �n
i

measures the smoothness of the solution over the interval Œxi�1; xi�. This ratio is, by
its definition, invariant under the symmetry subgroup (105), and therefore so is any
function of �n

i .
We proceed to discretize (107) by considering

�� .xsu/ C k�sf D 0 ; (108)

with

�� .xsu/ D �� .xsu/low � ˚.�n
i�1/

�
�� .xsu/low � �� .xsu/high

�
;

�sf D �sf
low � ˚.�n

i�1/
�
�sf

low � �sf
high

�
;

and where, for the flux limiter function ˚.�n
i /, we choose the so-called minmod-

limiter, ˚.�n
i / D maxf0; min.1; �n

i /g. For further discussions on flux limiters,
see [52]. To complete the invariant finite volume type scheme for Burgers’ equation,
we use the same grid adaptation strategy as for the KdV equation to obtain the spatial
step size �n

i D xnC1
i � xn

i as time evolves.
As a numerical example, we carry out an experiment similar to the one given

in [49] for the exact solution

u.x/ D � sinh
�
x=.2/

�

cosh
�
x=.2/

� C exp
��.c C t/=.4/

� ;

where c 2 R. We discretize the spatial domain Œ�0:5; 0:5� with N D 128 grid points
using Dirichlet boundary conditions, and choose the time step k to be proportional
to h2, k / h2. The final integration time is t D 0:5 and for numerical purposes
c D 0:25 and the viscosity was set to  D 0:001. The adaptation parameter ˛ in the
arc-length type mesh density function in (104) was set to ˛ D 0:5. The respective
numerical results are depicted in Fig. 6.
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Fig. 6 Left: Numerical solution of Burgers’ equation using the invariant adaptive scheme (104),
(108). Right: Corresponding evolution of the mesh points

Unlike in the numerical simulations for the KdV equation presented in Sect. 7.2,
Fig. 6 clearly demonstrates the need for an adaptive moving mesh. While this is
implied from the structure of the numerical solution, it is remarkable that the
requirement for a moving mesh is already encoded in the structure of the symmetry
group of Burgers’ equation. Hence, numerically preserving symmetries can be seen
as a geometrical justification for using r-adaptive numerical methods. Moreover, due
to the use of a high-resolution finite volume type scheme, no unphysical oscillations
around the shock is observed.

8 Conclusion

To recapitulate, let us summarize the algorithm for constructing symmetry-
preserving finite difference schemes. Given a differential equation �

�
x; u.`/

� D 0:

1. Use the infinitesimal invariance criterion (28) to determine a basis of infinitesimal
symmetry generators.

2. Choose a lattice on which the differential equation is to be discretized.
3. When possible, in particular when discretizing a partial differential equation,

impose obvious invariant constraints on the mesh. This step is not necessary but
if implemented it can, in general, simplify the implementation of the remaining
steps.

4. Use either Lie’s infinitesimal approach or the moving frame method to compute
a complete set of difference invariants, and, if necessary, to find weakly
invariant difference equations. When using the moving frame method, one has to
exponentiate the infinitesimal generators found in Step 1 to obtain the connected
component of the group of local symmetry transformations.

5. Combine the difference invariants and the weakly invariant equations in such a
way to obtain an approximation of the differential equation �

�
x; u.`/

� D 0 and
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(possibly) constraints on the mesh. If using the moving frame method, invari-
antize a finite difference approximation of the differential equation compatible
with the mesh to obtain an invariant approximation of the differential equation.

The basic algorithm for constructing symmetry-preserving numerical schemes is
now fairly well-understood. Below are some open problems and comments for the
interested reader.

• Many important differential equations in mathematical physics admit an infinite-
dimensional symmetry group. Such equations include the Davey–Stewartson
equations [20], Liouville’s equation, the Kadomtsev–Petviashvili equation [22],
the Infeld–Rowland equation [32], the Euler equations [68], and many other
equations from fluid dynamics [46]. Implementing the above algorithm for
infinite-dimensional symmetry groups remains a challenge. One particularity
of these groups is that as new points are added to the stencil, new group
parameters appear, which does not occur in the finite-dimensional case. To avoid
this difficulty, one possibility is to consider finite-dimensional subgroups of
the infinite-dimensional symmetry group and implement the algorithm above
[60, 61]. Another possibility, which preserves the infinite-dimensional nature of
the group action, is to discretize the Lie pseudo-group action [79].

• In the last 25 years, a great deal of efforts has been devoted to constructing
symmetry-preserving finite difference numerical schemes. With the emergence
of finite element methods [80], and discrete exterior calculus [1], it would be
interesting to extend the above symmetry-preserving algorithm to these settings
as well. Further extensions to finite volume and spectral methods should also be
considered.

• As with any geometric integrator, one of the motivations for developing
symmetry-preserving schemes is to obtain better long term numerical results. As
we saw in Sect. 7, and as observed in the literature [13, 14, 18, 50], symmetry-
preserving schemes for ordinary differential equations perform extremely well,
particularly near singularities. For first order ordinary differential equation, it is
even possible to construct symmetry-preserving schemes that will approximate
exactly the solution of the original equation [81]. On the other hand, the
numerical improvements for partial differential equations are not as clear
[4, 9, 21, 49, 61, 78, 79]. In many cases, they tend to be comparable to standard
schemes. Now that the theoretical foundations are on firm grounds, one of the
main challenges in the field of symmetry-preserving schemes is to investigate
the numerical properties of invariant schemes and understand why and when
these schemes give better numerical results.

• Most partial differential equations invariantly discretized to date have been
evolutionary equations (such as the KdV and Burgers’ equations). Much more
work, especially from the numerical side, has to be devoted to the invari-
ant discretization of other types of partial differential equations, such as the
wave equation, Laplace’s equation, and the sine-Gordon equation. In particular,
constructing symmetry-preserving schemes compatible with given boundary
conditions is an important avenue of research.
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• Symmetries are usually not the only geometric properties that a differential
equation admits. Other, equally important properties such as a Hamiltonian
structure or conservation laws might be present as well. Developing geometric
integrators that will preserve more than just one geometric property at the time is
an important research direction to pursue.

9 Answers to Selected Exercises

Exercise 4.5, part 2: A complete set of difference invariants is given by the nine
invariants

I1 D hn
i

hn
i�1

; I2 D hnC1
i

hnC1
i�1

; I3 D hn
i hnC1

i

kn
; I4 D hn

i hn
i�1.Dun

i � Dun
i�1/ ;

I5 D hnC1
i hnC1

i�1 .DunC1
i � DunC1

i�1 / ; I6 D hn
i

�
�n

i

kn
� un

i

�
;

I7 D hnC1
i

�
�n

i

kn
� unC1

i

�
; I8 D .hn

i /2

�
Dun

i C 1

kn

�
;

I9 D .hnC1
i /2

�
DunC1

i � 1

kn

�
;

where

hn
i D xn

iC1 � xn
i ; kn D tnC1 � tn; �n

i D xnC1
i � xn

i ; Dun
i D un

iC1 � un
i

hn
i

:

Exercise 4.18, part 1: The one-parameter group actions are

expŒ�1v1� � .t; x; u/ D .x C �1; t; u/;

expŒ�2v2� � .t; x; u/ D .x; t C �2; u/;

expŒ�3v3� � .t; x; u/ D .x C �3t; t; u C �3/;

expŒ�4v4� � .t; x; u/ D .e�4x; e2�4 t; e��4u/;

expŒ�5v5� � .t; x; u/ D
�

x

1 � �5t
;

t

1 � �5t
; .1 � �5t/u C �5x

�
:

Exercise 4.18, part 2: Working on the open dense set V .1/ D f.t; x; u; ut; ux/ 2
J.1/ j uux C ut ¤ 0g, the right moving frame corresponding to the cross-section

K D ft D 0; x D 0; u D 0; ux D 0; ut D 1g
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is

�1 D �x ; �2 D �t ; �3 D �u ; e�4 D .uux C ut/
1=3 ; �5 D �ux :

Exercise 4.18, part 3: The invariantization of uxx yields the differential invari-
ant

�.uxx/ D uxx

uux C ut
:

Exercise 6.3, part 2: A weakly invariant equation is given by

uiC1e�A.xiC1/ � uie
�A.xi/ � B.xiC1/ C B.xi/ D 0 :

Exercise 6.5: Along with the equations (62), we can add the mesh equation
I6 D 0 (refer to the solution of Exercise 4.5, part 2). On this mesh, the differential
equation can be approximated by

�I7I3 D 2I4I1I2

1 C I1

:

Explicitly,

hnC1
i hnC1

i�1

hn
i hn

i�1

� unC1
i � un

i

kn
D D2un

i :

Using the mesh equation �n
i D knun

i , we obtain the explicit scheme

.1 C knDun
i /.1 C knDun

i�1/

�
unC1

i � un
i

kn

�
D D2un

i

with tn
iC1 D tn

i and �n
i D knun

i .
Exercise 6.8, part 1: A compatible discrete cross-section is given by

K D


tn D 0; xn
i D 0; un

i D 0;
un

iC1

xn
iC1

C un
i�1

xn
i�1

D 0; unC1
i D tnC1

�
:

The corresponding discrete moving frame is

�1 D �xn
i ; �2 D �tn ; �3 D �un

i ;

e�4 D Œ.1 C kn�xun
i /.�tu

n
i C unC1

i �xun
i /�1=3 ; �5 D ��xun

i ;

where

�xun
i D Dun

i C Dun
i�1

2
and �tu

n
i D unC1

i � un
i

kn
� �n

i

kn
� �xun

i :
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Exercise 6.8, part 2: The invariantization yields the finite difference invariant

�.D2un
i / D D2un

i

.1 C kn�xun
i /.�tun

i C unC1
i �xun

i /
:

Exercise 6.8, part 3: Invariantizing �tun
i C un

i �xun
i D D2un

i we obtain the
invariant scheme

.1 C kn�xun
i /.�tu

n
i C unC1

i �xun
i / D D2un

i :
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