
Parallel Self-organizing Map Using Shared
Virtual Memory Buffers

Noor Elaiza Bt Abd Khalid, Muhammad Firdaus B. Mustapha,
Azlan B. Ismail and Mazani B. Manaf

Abstract Parallel implementation of Self-organizing Map (SOM) has been studied
since last decade. Graphic Processing Unit (GPU) is one of most promising
architecture for executing SOM in parallel. However, there are performances issues
are highlighted when imposing larger mapping and dataset size onto parallel SOM
that executed on the GPU. Alternatively, heterogeneous systems that soldered GPU
together with Central Processing Unit (CPU) are introduced in order to improve
communication between CPU and GPU. Shared Virtual Memory (SVM) is one of
features in OpenCL 2.0 which allows the host and the device to share a common
virtual address range. Thus this research proposes to introduce a parallel SOM
architecture that suitable for both GPU and heterogeneous system with the aim to
compare the performance in term of computation time. The architecture comprises
of three kernels that executed on two different platforms (1) discrete GPU platform
and (2) heterogeneous system platform that tested using SVM buffers. The
experimental results show the parallel SOM running on heterogeneous platform has
significant improvement in computation time.

Keywords Parallel self-organizing map ⋅ GPU computing ⋅ OpenCL

N.E.B.A. Khalid (✉) ⋅ M.F.B. Mustapha (✉) ⋅ A.B. Ismail ⋅ M.B. Manaf
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA,
Shah Alam, Malaysia
e-mail: elaiza@tmsk.uitm.edu.my

M.F.B. Mustapha
e-mail: firdaus19@gmail.com

A.B. Ismail
e-mail: azlanismail08@gmail.com

M.B. Manaf
e-mail: mazani@tmsk.uitm.edu.my

© Springer International Publishing AG 2017
D. Król et al. (eds.), Advanced Topics in Intelligent Information
and Database Systems, Studies in Computational Intelligence 710,
DOI 10.1007/978-3-319-56660-3_5

49



1 Introduction

Graphic Processing Unit (GPU) is a many core processor consisting hundreds or
even thousands of compute cores that has been used to process the applications of
scientific computing and scientific simulations or also called General Purpose
Graphic Processing Unit (GPGPU) [1]. GPU computing has become popular since
the introduction of GPU programming framework such as Compute Unified Device
Architecture (CUDA) in 2007 and Open Computing Language (OpenCL) in 2009
[2]. Many researchers are trying to take advantages of GPU computing to execute
Self-organizing Map (SOM) algorithm in parallel manner. Some researchers agree
that GPU variant shows the significant speed up for large data compared to Central
Processing Unit (CPU) variant [3, 4]. Both comparisons are proven that GPU
computing achieves better performance in terms of computation time. Moreover,
GPU computation time will reduce when the increment of input dimension and
SOM network size compared to execute on CPU [5]. On the other words, the GPU
computation is suitable to handle large dataset with high dimension. However, [6]
address the larger mapping size and feature dimensions, the slower the computation
time for both CPU and GPU. The major issue is addressed by researchers in
executing parallel SOM on GPU is memory utilization increase when processing
large mapping size [5–7]. The high memory utilization leads to high rate of memory
transfers which will burden the processing time.

For the meantime, some researchers attempt to decompose several steps of the
algorithm with the aim to execute SOM in parallel. There are different configura-
tions of task decomposition on SOM algorithm has been applied and observably
many researches works are found in the literature perform decomposition on cal-
culate distance and find the Best Matching Unit (BMU) steps. For instance, [6, 8]
decompose calculate Euclidean distance and BMU searching process. Some
researchers try to decompose calculate distance, find BMU, and update the neurons’
weights [5, 7, 9, 10]. Meanwhile, [4, 11] decompose initialize neuron weights.
From the literature shows that the major steps have been decomposed include;
initialize weights, calculate distance, find the BMU, and update the weights.
Figure 1 illustrates steps in SOM algorithm that are decomposed by researchers
specifically using GPU computing platform.

Recently, heterogeneous systems using GPU has become attractive computing
model given the available scale of data-parallel performance and GPU program-
ming framework such as OpenCL. The heterogeneous systems that combine CPU
and GPU on a single chip are capable to share the same memory which leads to
improve communication between each other [12]. Thus, the aim of this paper is to
explore the parallel SOM architecture that suitable for executing discrete GPU and
heterogeneous system architecture. The architecture comprises of three kernels that
executed on two different platforms; (1) discrete GPU platform and (2) heteroge-
neous system platform that tested using SVM buffers; coarse-grained and
fine-grained buffers. The performance of both platforms are measured based on
computing time in seconds.

50 N.E.B.A. Khalid et al.



2 Evolution of Parallelism in Hardware

Nowadays, CPU approximately touches its limit whereas increasing the frequency
of CPU will consume large power. As an alternative, modern graphic cards or GPU
take role of powerful computation hardware. The performance gap between CPU
and GPU becomes wider as GPU achieves seven times for gigaflops and bandwidth
metrics compared to CPU [13].

There are another types of accelerator core that gained interest over last decade
such as Field-Programmable Gate Arrays (FPGAs) and the Cell Broadband Engine

Fig. 1 Task decomposition of SOM algorithm

Parallel Self-organizing Map Using Shared Virtual Memory Buffers 51



(Cell BE) [13]. However, the GPUs are most popular among these accelerator cores
because large numbers of desktop and laptops computers have a dedicated GPU
compared to FPGAs and the Cell BE are only found in specially ordered
setup. Additionally, the future of the Cell BE is currently uncertain and FPGAs too
hard to program for general-purpose computing [13].

The most recent technology, heterogeneous systems, that incorporated CPUs and
GPUs together on a single integrated circuit (IC) chip, is quickly becoming the
design paradigm for today’s platform because of their impressive parallel processing
capabilities [14]. The introduction of heterogeneous programming models such as
OpenCL 2.0 in July 2013 is to improve the communication between CPU and GPU.
This framework treats the GPUs as a first-class computing device which allows the
GPUs to manage their own resources, as well as access some of the CPU’s resources.

2.1 GPU Programming Framework

OpenCL 1.2
OpenCL is a framework of parallel programming that can be used for pro-

gramming a heterogeneous collection of central processing units (CPUs), GPUs and
other discrete computing devices are organized into a single platform [12]. An
OpenCL device or GPU is divided into one or more compute units (CUs) where
each CU has one or more processing elements (PEs).

An OpenCL program is executed on a host and the host is connected to one or
more GPUs. The host code portion of an OpenCL program runs on a host processor
according to the models native to the host platform. The OpenCL program host
code submits various commands to a command queue, to be executed by processing
elements within the device. The command can be of different types, such as for
execution, memory management, or synchronization.

Meanwhile, the device code or kernel is executed on GPU. Kernels are sets of
instructions that are executed in parallel. Each kernel program is stored in a separate
file with the extension of. cl. However, the main problem in performance for
OpenCL 1.2 applications is data transfers between the host code and device code
[14]. Moreover, the memory management in OpenCL 1.2 still relied on the pro-
grammer to take care of data movement between the CPU and the GPU.

OpenCL 2.0
OpenCL 2.0 is the next release of OpenCL framework which introduced new
features that concentrate on managing the heterogeneous system. This feature is to
overcome the data transfers between CPU and GPUs. OpenCL 2.0 introduced
Shared Virtual Memory (SVM) which allows the host and the device to share a
common virtual address range [12]. This reduces overhead by eliminating deep
copies during host-to-device and device-to-host data transfers. Deep copies involve
completely duplicating objects in memory [14]. SVM implementations can be
described the following below:

52 N.E.B.A. Khalid et al.



• Coarse-grained: includes synchronization during mapping and unmapping of
memory objects, along with during kernel launch and completion. Accordingly
the memory object updates after the completion of kernel and the unmapping of
memory.

• Fine-grained: the synchronization occurs during the implementation of SVM
buffers. Therefore the memory objects are updated coherently for both CPU and
GPU.

2.2 Proposed Architecture

This paper proposes to parallelize all of the three steps using separate kernels code.
The first kernel is to calculate the distance between neurons and a current input
vector. The second kernel is to find BMU for each input vector. The BMUs values
are then used by the third kernel to update the map appropriately. The parallel SOM
will be tested on three different buffers; (1) non-SVM buffers, (2) coarse-grained
buffer SVM, and (3) fine-grained buffer SVM. Figure 2 shows the proposed
architecture of parallel SOM.

Initially, the input data are retrieved and stored into an array and follows by
initialization of SOM parameter such as learning factor and weights. These tasks are
performed at host side. In order to execute the kernels three functions are created for
providing setting, initializing parameters, and calling the kernels. For example, the
calculate distance function uses to call Calculate Distance kernel and it is done the
same way with the other two kernels.

All of the kernels are implemented on the device side. The Distance Calculation
kernel is to calculate the distance between neurons and current input vector and
store the distance values into an array. It is represented by amount of work-items
that is equal to the number of neurons in the SOM map. As such, each work-item of
the kernel is responsible for finding the distance between a single neuron and the
current input vector. This research applies Manhattan distance calculation.

Meanwhile, the Find BMU kernel applies reduction method with the aim of
finding BMU in parallel. The kernel utilizes work unit the same number of neurons
on SOM map. This process includes two stages where the first stage is to divide the
work unit per compute unit (CU). The work unit per CU then is divided by the size
of local work group in order to acquire the amount of work units for each pro-
cessing element must deal with. Each work-item in the work-groups will find the
minimum distance among the distance values covered by the work groups. The
minimum distance value identified by the kernel is stored in a local array. The
second stage is to find minimum distance for each CU from the minimum values in
the local array. The minimum values of each CU then stored into global array and
the host will determine the winning neurons.

Parallel Self-organizing Map Using Shared Virtual Memory Buffers 53



On the other hand, the third kernel involves updating the weight of neurons
based on learning rate and neighborhood function. The learning rate describes how
much a neuron’s vector is changed during an update according to how far away the

Fig. 2 The proposed architecture of parallel SOM

54 N.E.B.A. Khalid et al.



neuron is from the BMU on the map. The BMU and its close neighbors will be
changed the most, while the neurons on the outer edges of the neighborhood are
changed the least. Right after executing the three kernels, modify learning factor
and neighborhood radius take place. All of the steps include in the loop block will
repeat until n iteration or epoch before the SOM map is generated.

2.3 OpenCL Buffers Types

With the interest to evaluate the performance of SVM buffers, the proposed
architecture is tested with three different type of OpenCL buffer. The following
Table 1 shows the implementation of three buffers.

The non-SVM buffer is following the OpenCL 1.x specification, meanwhile the
SVM buffers that comprise of coarse-grained and fine-grained buffers are using
OpenCL 2.0 specification. The fine-grained SVM applies CL_MEM_SVM_FI-
NE_GRAIN_BUFF in order to activate fine-grained compared to coarse-grained
SVM. Additionally, the synchronization point of coarse-grained SVM occurs
during mapping or unmapping of memory objects and kernel launch and comple-
tion. While the synchronization point of fine-grained SVM happens during the
executing of the memory objects.

Table 1 The implementation setting of buffers

Type of
OpenCL
buffers

Parameter
declaration

Allocating the parameters

Non-SVM cl::Buffer
input_buff;

input_buff = cl::Buffer
(device_context, CL_MEM_READ_WRITE |
CL_MEM_USE_HOST_PTR, sizeof(float)*
input_size * input_length, input,
&err);

Coarse-grained
SVM

float*
input_buff;

input_buff = (float*)clSVMAlloc
(oclobjects.context,
CL_MEM_READ_WRITE, input_size
*input__length *sizeof(float,0);

Fine-grained
SVM

float*
input_buff;

input_buff = (float*)clSVMAlloc
(oclobjects.context,
CL_MEM_READ_WRITE|
CL_MEM_SVM_FINE_GRAIN_BUFF,
input_size * input_length * sizeof
(float,0);

Parallel Self-organizing Map Using Shared Virtual Memory Buffers 55



3 Computation Experiment

3.1 Experimental Setup

In this study, Bank Marketing dataset from UCI Machine Learning Repository is
applied for the computation experiments. Three sizes of dataset has selected; 5000,
10000 and 15000. Table 2 depicts the description of the dataset and experimental
design for this paper. The experiments are conducted in order to examine the
performance of parallel SOM using three different buffers; non-SVM (NSVM),
coarse-grained SVM (CG), and fine-grained SVM (FG). The evaluations are based
on computation time that divided into three: total kernel time, total setup time, and
total time. The experiments were conducted on a laptop equipped with Intel
i7-6700HQ processor, 16 GB of RAM and built in Intel® HD Graphics 530. This
processor belongs to the Skylake family which supports the OpenCL 2.0. It is
equipped with 4 CPU cores and 24 number of execution units placed at GPUs.

3.2 Computation Results and Analysis

The results of the computation experiments are presented in Fig. 3. Performance of
three different buffers are included into the figure using the following label; NSVM,
FG, and CG. Each buffer has tested on three different sizes of dataset and four SOM
mapping size. The NSVM is executed on OpenCL 1.x platform meanwhile CG and
FG are performed on OpenCL 2.0.

From the results, FG outperforms NSVM and its sibling for every dataset size.
The parallel SOM triggered by FG well utilize SVM features in OpenCL 2.0 due to
CPU and GPU efficiently share a common virtual address space where it is
removing the need to explicitly copy buffers back and forth between the two
devices [14]. Meanwhile the CG performs the worst among of three buffers where it
suffers from consuming the most total setup time. The CG buffers which also utilize
SVM feature but apply clEnqueueSVMMap and clEnqueueSVMUnmap for the
synchronization point likely to burden the processing. Overall, all of the buffers
types share the same trends as the bar chart raise higher when executing larger
dataset size and mapping size.

Table 2 The experimental setting

Dataset parameters SOM parameters Performance measurement
No. of samples No. of parameters Iterations Mapping size Time, s

5000 3 30 10 × 10
20 × 20
30 × 30
40 × 40

Total kernel time
10000 Total setup time
15000 Total time

56 N.E.B.A. Khalid et al.



4 Conclusion

This paper proposes a parallel SOM architecture that comprise of three kernels.
There is a possible way to parallelize the SOM algorithm through decomposing
three major steps; calculate distance, find the BMU, and updating the weights. On
the other note, GPU computing offers a great solution for SOM parallelism where
the large amount of calculation could be catered by massive parallelism. The aim of
this architecture is to accelerate SOM training. From the results show that the
proposed parallel SOM architecture is capable to execute parallel SOM especially
for FG buffers.

Acknowledgements This work was funded by Ministry of Higher Education (MOHE) of
Malaysia, under the Fundamental Research Grant Scheme (FRGS), grant no. FRGS/81/2015 and
Academic Staff Bumiputera Training Scheme (SLAB). The authors also would like to thank the
Universiti Teknologi MARA for supporting this study.

References

1. Perelygin, K., Lam, S., Wu, X.: Graphics Processing Units and Open Computing Language
for parallel computing. Comput. Electr. Eng. 40(1), 241–251 (2014)

2. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors. Elsevier (2013)
3. Wittek, P., Darányi, S.: Accelerating text mining workloads in a MapReduce-based

distributed GPU environment. J. Parallel Distrib. Comput. 73(2), 198–206 (2013)
4. Lachmair, J., Merényi, E., Porrmann, M., Rückert, U.: A reconfigurable neuroprocessor for

self-organizing feature maps. Neurocomputing 112, 189–199 (2013)
5. Gajdos, P., Platos, J.: GPU based parallelism for self-organizing map. In: Advances in

Intelligent Systems and Computing, IHCI 2011, vol. 179, pp. 3–12 (2013)
6. Hasan, S., Shamsuddin, S.M., Lopes, N.: Machine learning big data framework and analytics

for big data problems. Int. J. Adv. Soft Comput. Appl. 6(2), 1–17 (2014)

Fig. 3 Computation time performances of three different buffers

Parallel Self-organizing Map Using Shared Virtual Memory Buffers 57



7. McConnell, S., Sturgeon, R., Henry, G., Mayne, A., Hurley, R.: Scalability of self-organizing
maps on a GPU cluster using OpenCL and CUDA. J. Phys. Conf. Ser. 341, 12018 (2012)

8. Moraes, F.C., Botelho, S.C., Filho, N.D., Gaya, J.F.O.: Parallel high dimensional self
organizing maps using CUDA. In: 2012 Brazilian Robotics Symposium Latin American
Robotics Symposium, pp. 302–306 (Oct. 2012)

9. Khan, S.Q., Ismail, M.A.: Design and implementation of parallel SOM model on GPGPU. In:
2013 5th International Conference Computer Science Information Technology, pp. 233–237
(Mar. 2013)

10. Wang, H., Zhang, N., Créput, J.-C.: A Massive Parallel Cellular GPU Implementation of
Neural Network to Large Scale Euclidean TSP. In: Castro, F., Gelbukh, A., González, M.
(eds.) Advances in Soft Computing and Its Applications: 12th Mexican International
Conference on Artificial Intelligence, MICAI 2013, Mexico City, Mexico, 24–30 November
2013, Proceedings, Part II, pp. 118–129. Springer, Berlin, Heidelberg (2013)

11. Faro, A., Giordano, D., Palazzo, S.: Integrating unsupervised and supervised clustering
methods on a GPU platform for fast image segmentation. In: 2012 3rd International
Conference Image Processing Theory, Tools Applications IPTA 2012, pp. 85–90 (2012)

12. Khronos OpenCL: OpenCL Specification (2014)
13. Brodtkorb, A.R., Hagen, T.R., Sætra, M.L.: Graphics processing unit (GPU) programming

strategies and trends in GPU computing. J. Parallel Distrib. Comput. 73(1), 4–13 (2013)
14. Mukherjee, S., Sun, Y., Blinzer, P., Ziabari, A.K., Kaeli, D.: A comprehensive performance

analysis of HSA and OpenCL 2.0. In: 2016 IEEE International Symposium Performance
Analysis System Software (April, 2016)

58 N.E.B.A. Khalid et al.


	5 Parallel Self-organizing Map Using Shared Virtual Memory Buffers
	Abstract
	1 Introduction
	2 Evolution of Parallelism in Hardware
	2.1 GPU Programming Framework
	2.2 Proposed Architecture
	2.3 OpenCL Buffers Types

	3 Computation Experiment
	3.1 Experimental Setup
	3.2 Computation Results and Analysis

	4 Conclusion
	Acknowledgements
	References


