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Abstract. Private-key functional encryption enables fine-grained access
to symmetrically-encrypted data. Although private-key functional
encryption (supporting an unbounded number of keys and ciphertexts)
seems significantly weaker than its public-key variant, its known real-
izations all rely on public-key functional encryption. At the same time,
however, up until recently it was not known to imply any public-key
primitive, demonstrating our poor understanding of this extremely-useful
primitive.

Recently, Bitansky et al. [TCC '16B] showed that sub-exponentially-
secure private-key function encryption bridges from nearly-exponential
security in Minicrypt to slightly super-polynomial security in Cryptoma-
nia, and from sub-exponential security in Cryptomania to Obfustopia.
Specifically, given any sub-exponentially-secure private-key functional
encryption scheme and a nearly-exponentially-secure one-way function,
they constructed a public-key encryption scheme with slightly super-
polynomial security. Assuming, in addition, a sub-exponentially-secure
public-key encryption scheme, they then constructed an indistinguisha-
bility obfuscator.

We show that quasi-polynomially-secure private-key functional
encryption bridges from sub-exponential security in Minicrypt all the
way to Cryptomania. First, given any quasi-polynomially-secure private-
key functional encryption scheme, we construct an indistinguishability
obfuscator for circuits with inputs of poly-logarithmic length. Then, we
observe that such an obfuscator can be used to instantiate many nat-
ural applications of indistinguishability obfuscation. Specifically, rely-
ing on sub-exponentially-secure one-way functions, we show that quasi-
polynomially-secure private-key functional encryption implies not just
public-key encryption but leads all the way to public-key functional
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encryption for circuits with inputs of poly-logarithmic length. Moreover,
relying on sub-exponentially-secure injective one-way functions, we show
that quasi-polynomially-secure private-key functional encryption implies
a hard-on-average distribution over instances of a PPAD-complete
problem.

Underlying our constructions is a new transformation from single-
input functional encryption to multi-input functional encryption in the
private-key setting. The previously known such transformation [Brakerski
et al., EUROCRYPT ’16] required a sub-exponentially-secure single-input
scheme, and obtained a scheme supporting only a slightly super-constant
number of inputs. Our transformation both relaxes the underlying assump-
tion and supports more inputs: Given any quasi-polynomially-secure
single-input scheme, we obtain a scheme supporting a poly-logarithmic
number of inputs.

1 Introduction

Functional encryption [16,49,51] allows tremendous flexibility when accessing
encrypted data: Such encryption schemes support restricted decryption keys
that allow users to learn specific functions of the encrypted data without leaking
any additional information. We focus on the most general setting where the
functional encryption schemes support an unbounded number of functional keys
in the public-key setting, and an unbounded number of functional keys and
ciphertexts in the private-key setting. In the public-key setting, it has been
shown that functional encryption is essentially equivalent to indistinguishability
obfuscation [6,7,12,33,54], and thus it currently seems somewhat challenging
to base its security on standard cryptographic assumptions (especially given
the various attacks on obfuscation schemes and their underlying building blocks
[21,25-29,40,47,48] — see [5, Appendix A] for a summary of these attacks).

Luckily, when examining the various applications of functional encryption
(see, for example, the survey by Boneh et al. [17]), it turns out that private-key
functional encryption suffices in many interesting scenarios.! However, although
private-key functional encryption may seem significantly weaker than its public-
key variant, constructions of private-key functional encryption schemes are cur-
rently known based only on public-key functional encryption.?

Minicrypt, Cryptomania, or Obfustopia? For obtaining a better under-
standing of private-key functional encryption, we must be able to position it
correctly within the hierarchy of cryptographic primitives. Up until recently,

1 As a concrete (vet quite general) example, consider a user who stores her data on a
remote server: The user uses the master secret key both for encrypting her data, and
for generating functional keys that will enable the server to offer her various useful
services.

2 This is not true in various restricted cases, for example, when the functional encryp-
tion scheme has to support an a-priori bounded number of functional keys or cipher-
texts [39]. However, as mentioned, we focus on schemes that support an unbounded
number of functional keys and ciphertexts.
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private-key functional encryption was not known to imply any cryptographic
primitives other than those that are essentially equivalent to one-way functions
(i.e., Minicrypt primitives [42]). Moreover, Asharov and Segev [8] proved that
as long as a private-key functional encryption scheme is invoked in a black-
box manner, it cannot be used as a building block to construct any public-key
primitive (i.e., Cryptomania primitives [42]).® This initial evidence hinted that
private-key functional encryption may belong to Minicrypt, and thus may be
constructed based on extremely well-studied cryptographic assumptions.

Recently, Bitansky et al. [10] showed that private-key functional encryption
is more powerful than suggested by the above initial evidence. They proved
that any sub-exponentially-secure private-key functional encryption scheme and
any (nearly) exponentially-secure one-way function can be used to construct
a public-key encryption scheme.* Although their underlying building blocks
are at least sub-exponentially secure, the resulting public-key scheme is only
slightly super-polynomially secure. In addition, Bitansky et al. proved that any
sub-exponentially-secure private-key functional encryption scheme and any sub-
exponentially-secure public-key encryption scheme can be used to construct
a full-fledged indistinguishability obfuscator. Overall, their work shows that
sub-exponentially-secure private-key functional encryption bridges from nearly-
exponential security in Minicrypt to slightly super-polynomial security in Cryp-
tomania, and from sub-exponential security in Cryptomania to Obfustopia (see
Fig.1).

1.1 Owur Contributions

We show that quasi-polynomially-secure private-key functional encryption bridg-
es from sub-exponential security in Minicrypt all the way to Cryptomania. First,
given any quasi-polynomially-secure private-key functional encryption scheme,
we construct a (quasi-polynomially-secure) indistinguishability obfuscator for
circuits with inputs of poly-logarithmic length and sub-polynomial size. We prove
the following theorem:

Theorem 1.1 (Informal). Assuming a quasi-polynomially-secure private-key
functional encryption scheme for polynomial-size circuits, there exists an indis-
tinguishability obfuscator for the class of circuits of size 208N with inputs of
length (log \)1*° bits, for some positive constants € and 6.

Underlying our obfuscator is a new transformation from single-input func-
tional encryption to multi-input functional encryption in the private-key setting.
The previously known such transformation of Brakerski et al. [22] required a

3 This holds even if the construction is allowed to generate functional keys (in a non-
black-box manner) for any circuit that invokes one-way functions in a black-box
manner.

* Bitansky et al. overcome the black-box barrier introduced by Asharov and Segev [8]
by relying on the non-black-box construction of a private-key multi-input functional
encryption scheme of Brakerski et al. [22].
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Fig. 1. An illustration of our results (dashed arrows correspond to trivial implications).

sub-exponentially-secure single-input scheme, and obtained a multi-input scheme
supporting only a slightly super-constant number of inputs. Our transformation
both relaxes the underlying assumption and supports more inputs: Given any
quasi-polynomially-secure single-input scheme, we obtain a multi-input scheme
supporting a poly-logarithmic number of inputs.

We demonstrate the wide applicability of our obfuscator by observing that
it can be used to instantiate many natural applications of (full-fledged) indistin-
guishability obfuscation for polynomial-size circuits. We exemplify this observa-
tion by constructing a public-key functional encryption scheme (based on [54]),
and a hard-on-average distribution of instances of a PPAD-complete problem
(based on [11]).

Theorem 1.2 (Informal). Assuming a quasi-polynomially-secure private-key
Sfunctional encryption scheme for polynomial-size circuits, and a sub-exponentially-
secure one-way function, there exists a public-key functional encryption scheme for
the class of circuits of size 20°8 N with, inputs of length (log \)'*? bits, for some
positive constants € and d.

Theorem 1.3 (Informal). Assuming a quasi-polynomially-secure private-key
Sfunctional encryption scheme for polynomial-size circuits, and a sub-exponentially-
secure injective one-way function, there exists a hard-on-average distribution over
instances of a PPAD-complete problem.
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Compared to the work of Bitansky at el. [10], Theorem 1.2 shows that private-
key functional encryption implies not just public-key encryption but leads all
the way to public-key functional encryption. Furthermore, in terms of under-
lying assumptions, whereas Bitansky et al. assume a sub-exponentially-secure
private-key functional encryption scheme and a (nearly) exponentially-secure
one-way function, we only assume a quasi-polynomially-secure private-key func-
tional encryption scheme and a sub-exponentially-secure one-way function.

In addition, recall that average-case PPAD hardness was previously shown
based on compact public-key functional encryption (or indistinguishability obfus-
cation) for polynomial-size circuits and one-way permutations [35]. We show
average-case PPAD hardness based on quasi-polynomially-secure private-key
functional encryption and sub-exponentially-secure injective one-way function.
In fact, as shown by Hubdcek and Yogev [41], our result (as well as [11,35])
implies average-case hardness for CLS, a proper subclass of PPAD and PLS
[32]. See Fig.1 for an illustration of our results.

1.2 Overview of Our Constructions

In this section we provide a high-level overview of our constructions. First,
we recall the functionality and security requirements of multi-input functional
encryption (MIFE) in the private-key setting, and explain the main ideas under-
lying our new construction of a multi-input scheme. Then, we describe the obfus-
cator we obtain from our multi-input scheme, and briefly discuss its applications
to public-key functional encryption and to average-case PPAD hardness.

Multi-input Functional Encryption. In a private-key t-input functional
encryption scheme [37], the master secret key msk of the scheme is used for
encrypting any message x; to the it" coordinate, and for generating functional
keys for t-input functions. A functional key sk; corresponding to a function f
enables to compute f(x1,...,2:) given Enc(z1,1),...,Enc(x,t). Building upon
the previous notions of security for private-key multi-input functional encryp-
tion schemes [13,37], we consider a strengthened notion of security that com-
bines both message privacy and function privacy (as in [2,23] for single-input
schemes and as in [6,22] for multi-input schemes), to which we refer as full
security. Specifically, we consider adversaries that are given access to “left-or-
right” key-generation and encryption oracles.” These oracles operate in one out
of two modes corresponding to a randomly-chosen bit b. The key-generation ora-
cle receives as input pairs of the form (fo, f1) and outputs a functional key for the
function f;. The encryption oracle receives as input triples of the form (20, x!,4),
and outputs an encryption of the message z? with respect to coordinate i.

5 In this work we focus on selectively-secure schemes, where an adversary first submits
all of its encryption queries, and can then adaptively interact with the key-generation
oracle (see Definition2.7). This notion of security suffices for the applications we
consider in this paper.
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We require that no efficient adversary can guess the bit b with probability
noticeably higher than 1/2; as long as for each such ¢ + 1 queries (fo, f1),
(29, 21),...,(z¥,2}) it holds that fo(z9,...,20) = fi(xl,..., z}).

The BKS Approach. Given any private-key single-input functional encryption
scheme for all polynomial-size circuits, Brakerski et al. [22] constructed a t(\)-
input scheme for all circuits of size s(A) = 20°80)° where t(\) = ¢ - loglog A for
some fixed positive constants € and §, and A € N is the security parameter.

Their transformation is based on extending the number of inputs the scheme
supports one by one. That is, for any ¢ > 1, given a t-input scheme they con-
struct a (¢t + 1)-input scheme. Relying on the function privacy of the underlying
scheme, Brakerski et al. observed that ciphertexts for one of the coordinates can
be treated as a functional key for a function that has the value of the input hard-
wired. In terms of functionality, this idea enabled them to support ¢t + 1 inputs
using a scheme that supports ¢ inputs. The transformation is implemented such
that every step of it incurs a polynomial blowup in the size of the ciphertexts
and functional keys.® Thus, applying this transformation ¢ times, the size of a
functional key for a function of size s is roughly (s - \)°()". Therefore, Brakerski
et al. could only apply their transformation t(A) = ¢ - loglog A times, and this
required assuming that their underlying single-input scheme is sub-exponentially
secure, and that s(\) = 2008 V)",

Our Construction. We present a new transformation that constructs a 2t-
inputs scheme directly from any t-input scheme. Our transformation shares the
same polynomial efficiency loss as in [22], so applying the transformation ¢ times
makes a functional key be of size (s - )\)O(l)t. But now, since each transformation
doubles the number of inputs, applying the transformation ¢ times gets us all
the way to a scheme that supports 2! = (log A\)° inputs, as required. We further
observe, by a careful security analysis, that for the resulting scheme to be secure
it suffices that the initial scheme is only gquasi-polynomially secure (and the
resulting scheme can be made quasi-polynomially secure as well).

Doubling the Number of Inputs via Dynamic Key Encapsulation. As
opposed to the approach of [22] (and the similar idea of [6]), it is much less clear
how to combine the ciphertexts and functional keys of a ¢-input scheme to satisfy
the required functionality (and security) of a 2¢-input scheme.

Our high-level idea is as follows. Given a 2t-input function f, we will generate
a functional key for a function f* that gets ¢ inputs each of which is composed
of two inputs: f*(x1 || X144, .-, 2t || 22¢) = f(z1,...,22:). We will encrypt each
input such that it is possible to compute an encryption of each pair (z¢, z¢t+),
and evaluate the function in two steps. First, we concatenate each such pair to
get an encryption of xy || €g4¢. Then, given such t ciphertexts, we will apply

6 A similar strategy was also employed by Ananth and Jain [6], that showed how to use
any t-input private-key scheme to get a private-key (¢ + 1)-input scheme under the
additional assumption that a public-key functional encryption scheme exists. Their
construction, however, did not incur the polynomial blowup and could be applied
all the way to get a scheme that supports a polynomial number of inputs.
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a functional key that corresponds to f*. By the correctness of the underlying
primitives, the output must be correct. There are three main issues that we have
to overcome: (1) We need to be able to generate the encryption of xy || z¢1¢, (2)
we need to make sure all of these ciphertexts are with respect to the same master
secret key and that the functional key for f* is also generated with respect to
the same key, and (3) we need to prove the security of the resulting scheme. We
now describe our solution.

The master secret key for our scheme is a master secret key for a t-input
scheme msk and a PRF key K. We split the 2¢ input coordinates into two parts:
(1) the first ¢t coordinates 1,...,¢ which we call the “master coordinates” and
(2) the last t coordinates 1+t,...,2¢ which we call the “slave coordinates”. Our
main idea is to let each combination of the master coordinates implicitly define a
master secret “encapsulation” key mskg, . ., for a t-input scheme. Details follow.

To encrypt a message x, with respect to a master coordinate 1 < ¢ < ¢, we
encrypt x, with respect to coordinate £ under the key msk. To encrypt a message
T4t With respect to a slave coordinate 1 < ¢ < t, we generate a functional key
for a t-input function AGG,,,, x under the key msk. To generate a functional
key for a 2t-input function f, we generate a functional key for a ¢-input function
Geny i under msk. Both AGG,,,, x and Geny g first compute a pseudorandom
master secret key msky, . ., using randomness generated via the PRF key K
on input xp ...z Then, AGG,,,, x computes an encryption of (zy || ¢4¢) to
coordinate ¢ under this master secret key, and Geny i computes a functional key
for f* (described above) under this master secret key (see Fig. 2).

Geng x (T1,T2y. .., &) ¢ AGGmHt,K(wl,wg, cee,TE)

1. msky, ..o, = Setup(PRF(K,z1...2¢)). | 1. msky, .. o, = Setup(PRF(K,z1...24)).

2. Output KG(msky, ...ap, 7). 2. Output Enc(mskq,...ap, (ze || Zext), £).

Fig. 2. The t-input functions Geny r and AGG., k-

It is straightforward to verify that the above scheme indeed provides the
required functionality of a 2¢t-input scheme. Indeed, given ¢ ciphertexts corre-
sponding to the master coordinates cty,,...,cts,, t ciphertexts corresponding
to the slave coordinates cty,,,...,Cts,,, and a functional key sky for a 2¢-input
function f, we first combine ct,,, ..., ct;, with each ct,,,, to get cty,| 4, ,, Wwhich
is an encryption of zy || 2¢++ under msky, . ,,. Then, we combine ct,,,...,cts,
with sky to get a functional key sk« for f* under the same msky, . ,,. Finally,
we combine cty jjzy. ;- - Cla,|jzy, With skp- to get f*(z1 || 2144, ..., 2 || 22¢) =
f(x1,...,x9), as required.

The security proof is done by a sequence of hybrid experiments, where
we “attack” each possible sequence of master coordinates separately, namely,
we handle each msk,, ., separately so that it will not be explicitly needed.
A typical approach for such a security proof is to embed all possible encryptions
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and key-generation queries under msky,. 5, in the ciphertexts that are gener-
ated under msk. Handling the key-generation queries using msky, .. ., is rather
standard: whenever a key-generation query is requested we compute the corre-
sponding functional key under msk,  », and embed it into the functional key.
Handling encryption queries under msky, . ., is significantly more challenging
since for every zj ...x; sequence, there are many possible ciphertexts x4, of
slave coordinates that will be paired with it to get the encryption of z¢ || zp+¢. It
might seem as if there is not enough space to embed all these possible ciphertexts,
but we observe that we can embed each ciphertext ctg,|.,,, in the ciphertext
corresponding to x4+ (for each such z¢4;). This way, msky, ., is not explic-
itly needed in the scheme and we can use the security of the underlying ¢-input
scheme. In total, the number of hybrids is roughly T, where T is an upper bound
on the running time of the adversary. Thus, since ¢ is roughly logarithmic in the
security parameter, we have to start with a quasi-polynomially-secure scheme.

From MIFE to Obfuscation. Goldwasser et al. [37] observed that multi-input
functional encryption is tightly related to indistinguishability obfuscation [9,33].
Specifically, a multi-input scheme that supports a polynomial number of inputs
(i.e., t(A) = poly(\)) readily implies an indistinguishability obfuscator (and vice-
versa). We use a more fine-grained relationship (as observed by [10]) that is useful
when ¢(\) is small compared to A: A multi-input scheme that supports all circuits
of size s(\) and ¢(\) inputs implies an indistinguishability obfuscator for all circuits
of size s(\) that have at most t(\) - log A input bits.

This transformation works as follows. An obfuscation of a function f of
circuit-size at most s(A) that has at most ¢(A) - log A bits as input, is composed
of t(\) - A ciphertexts and one functional key. We think of f as a function f*
that gets t(A) inputs each of which is of length log A bits. The obfuscation now
consists of a functional key for the circuit f*, denoted by sky = KG(f*), and
a ciphertext ct,; = Enc(z,i) for every (z,i) € {0,1}1°8* x [t(\)]. To evaluate
C at a point z = (z1...24)) € ({0,1}°6*)!™ one has to compute and output
Dec(sky, ctyy 1, - ,ctxt(k),t(/\)) = f(z). Correctness and security of the obfusca-
tor follow directly from the correctness and security of the multi-input scheme.

Given the relationship described above and given our multi-input scheme
that supports circuits of size at most s(\) = 2(°8Y)° that have t(\) = (log \)°
inputs for some fixed positive constants ¢ and &, we obtain Theorem 1.1.

Applications of our Obfuscator. One of the main conceptual contributions of
this work is the observation that an indistinguishability obfuscator as described
above (that supports circuits with a poly-logarithmic number of input bits) is
in fact sufficient for many of the applications of indistinguishability obfuscation
for all polynomial-size circuits. We exemplify this observation by showing how
to adapt the construction of Waters [54] of a public-key functional encryption
scheme and the construction of Bitansky et al. [11] of a hard-on-average distri-
bution for PPAD, to our obfuscator. Such an adaptation is quite delicate and
involves a careful choice of the additional primitives that are involved in the
construction. In a very high level, since the obfuscator supports only a poly-
logarithmic number of inputs, a primitive that has to be secure when applied on
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(part of) the input (say a one-way function), must be sub-exponentially secure.
We believe that this observation may find additional applications beyond the
scope of our work.

Using the Multi-input Scheme of [22]. Using the multi-input scheme of
[22], one can get that sub-exponentially-secure private-key functional encryp-
tion implies indistinguishability obfuscation for inputs of length slightly super-
logarithmic. However, using such an obfuscator as a building block seems to
inherently require to additionally assume nearly-exponentially-secure primitives
and the resulting primitives are (at most) slightly super-polynomially-secure.
Our approach, on the other hand, requires quasi-polynomially-secure private-
key functional encryption. In addition, our additional primitives are only sub-
exponentially-secure and the resulting primitives are quasi-polynomially secure.

1.3 Additional Related Work

Constructions of FE Schemes. Private-key single-input functional encryp-
tion schemes that are sufficient for our applications are known to exist based
on a variety of assumptions, including indistinguishability obfuscation [33,54],
differing-input obfuscation [3,19], and multilinear maps [34]. Restricted func-
tional encryption schemes that support either a bounded number of functional
keys or a bounded number of ciphertexts can be based on the Learning with
Errors (LWE) assumption (where the length of ciphertexts grows with the num-
ber of functional-key queries and with a bound on the depth of allowed functions)
[38], and even based on pseudorandom generators computable by small-depth
circuits (where the length of ciphertexts grows with the number of functional-key
queries and with an upper bound on the circuit size of the functions) [39].

In the work of Bitansky et al. [10, Proposition 1.2 & Footnote 1] it has been
shown that, assuming weak PRFs in NC', any public-key encryption scheme can
be used to transform a private-key functional encryption scheme into a public-key
functional encryption scheme (which can be used to get PPAD-hardness [35]).
This gives a better reduction than ours in terms of security loss, but requires a
public-key primitive to begin with.

Constructions of MIFE Schemes. There are several constructions of private-
key multi-input functional encryption schemes. Mostly related to our work is
the construction of Brakerski et al. [22] which we significantly improve (see
Sect. 1.2 for more details). Other constructions [6,13,37] are incomparable as
they either rely on stronger assumptions or could be proven secure only in
an idealized generic model. Goldwasser et al. [37] constructed a multi-input
scheme that supports a polynomial number of inputs assuming indistinguishabil-
ity obfuscation for all polynomial-size circuits. Ananth and Jain [6] constructed
a multi-input functional encryption scheme that supports a polynomial number
of inputs assuming any sub-exponentially-secure (single-input) public-key func-
tional encryption scheme. Boneh et al. [13] constructed a multi-input scheme
that supports a polynomial number of inputs based on multilinear maps, and
was proven secure in the idealized generic multilinear map model.
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Proof Techniques. Parts of our proof rely on two useful techniques from
the functional encryption literature: key encapsulation (also known as “hybrid
encryption”) and function privacy.

Key encapsulation is an extremely useful approach in the design of encryption
schemes, both for improved efficiency and for improved security. Specifically, key
encapsulation typically means that instead of encrypting a message m under
a fixed key sk, one can instead sample a random key k, encrypt m under k
and then encrypt k under sk. The usefulness of this technique in the context of
functional encryption was demonstrated by [4,22]. Our constructions incorporate
key encapsulation techniques, and exhibit additional strengths of this technique
in the context of functional encryption schemes. Specifically, as discussed in
Sect. 1.2, we use key encapsulation techniques for our dynamic key-generation
technique, a crucial ingredient in our constructions and proofs of security.

The security guarantees of functional encryption typically focus on mes-
sage privacy that ensures that a ciphertext does not reveal any unnecessary
information on the plaintext. In various cases, however, it is also useful to con-
sider function privacy [2,14,15,23,53], asking that a functional key sk; does not
reveal any unnecessary information on the function f. Brakerski and Segev [23]
(and the follow-up of Ananth and Jain [6]) showed that any private-key (multi-
input) functional encryption scheme can be generically transformed into one
that satisfies both message privacy and function privacy. Function privacy was
found useful as a building block in the construction of several functional encryp-
tion schemes [4,22,46]. In particular, functional encryption allows to successfully
apply proof techniques “borrowed” from the indistinguishability obfuscation lit-
erature (including, for example, a variant of the punctured programming app-
roach of Sahai and Waters [52]).

1.4 Paper Organization

The remainder of this paper is organized as follows. In Sect.2 we provide an
overview of the notation, definitions, and tools underlying our constructions.
In Sect.3 we present our construction of a private-key multi-input functional
encryption scheme based on any single-input scheme. In Sect.4 we present our
construction of an indistinguishability obfuscator for circuits with inputs of poly-
logarithmic length, and its applications to public-key functional encryption and
average-case PPAD hardness.

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x «+ X the process of sampling
a value x from the distribution X. Similarly, for a set X we denote by =z «— X
the process of sampling a value x from the uniform distribution over X. For a
randomized function f and an input z € X, we denote by y < f(z) the process
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of sampling a value y from the distribution f(z). For an integer n € N we denote
by [n] the set {1,...,n}.

Throughout the paper, we denote by A the security parameter. A function
neg : N — RT is negligible if for every constant ¢ > 0 there exists an inte-
ger N, such that neg(\) < A7¢ for all A > N.. Two sequences of random vari-
ables X = {X)}xeny and Y = {Y)}aen are computationally indistinguishable if
for any probabilistic polynomial-time algorithm A4 there exists a negligible func-
tion neg(-) such that |[Pr[A(1*,X,) = 1] — Pr[A(1*,Y)) = 1]| < neg(}) for all
sufficiently large A € N.

2.1 One-Way Functions and Pseudorandom Generators

We rely on the standard (parameterized) notions of one-way functions and
pseudorandom generators.

Definition 2.1 (One-way function). An efficiently computable function f:
{0,1}* — {0,1}* is (t,u)-one-way if for every probabilistic algorithm A that runs
in time t = t(\) it holds that

def _
ANOEE ) Pr LAY, F(@) € £ ()] <m0,
for all sufficiently large A € N, where the probability is taken over the choice of

x € {0,1}* and over the internal randomness of A.

Whenever ¢ = t()\) is a super-polynomial function and p = p(A) is a negligible
function, we will often omit ¢t and p and simply call the function one-way. In
case t(\) = 1/u(\) = 22", for some constant 0 < ¢ < 1, we will say that f is
sub-exponentially one-way.

Definition 2.2 (Pseudorandom generator). Let £(-) be a function. An effi-
ciently computable function PRG: {0,1}N) — {0,1}2N) s a (t,u) -secure
pseudorandom generator if for every probabilistic algorithm A that runs in time
t =t(\) it holds that

PRG A A
= = — = <
Advyd =1 {E{}ZW[A(l ,PRG(z)) = 1] — {Oﬂf}um[““(l o) = 1] < p(X)

for all sufficiently large A € N.

Whenever ¢ = t()\) is a super-polynomial function and p = p(A) is a negligible
function, we will often omit ¢ and p and simply call the function a pseudorandom
generator. In case t(\) = 1/p()\) = 22", for some constant 0 < e < 1, we will say
that PRG is sub-exponentially secure.
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2.2 Pseudorandom Functions

Let {Kx, Xx, Va}ren be a sequence of sets and let PRF = (PRF.Gen, PRF.Eval)
be a function family with the following syntax:

— PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the
unary representation of the security parameter A\, and outputs a key K € KC,.

— PRF.Eval is a deterministic polynomial-time algorithm that takes as input a
key K € IC\ and a value x € Xy, and outputs a value y € V.

The sets Ky, X\, and ), are referred to as the key space, domain, and range
of the function family, respectively. For easy of notation we may denote by
PRF.Evalg () or PRFk(-) the function PRF.Eval(K,-) for K € K. The following
is the standard definition of a pseudorandom function family.

Definition 2.3 (Pseudorandomness). 4 function family PRF = (PRF.Gen,
PRF.Eval) is (t, p)-secure pseudorandom if for every probabilistic algorithm A
that runs in time t(X), it holds that

Advprr,4(A) &f

|Pr i pRF.Gen(1%) [APRFBR()(10) = 1] — Pry_p, [ATO (1) = 1]| < p(N),

for all sufficiently large A € N, where F is the set of all functions that map X,
mto Y.

In addition to the standard notion of a pseudorandom function family, we rely
on the seemingly stronger (yet existentially equivalent) notion of a puncturable
pseudorandom function family [18,20,43,52]. In terms of syntax, this notion asks
for an additional probabilistic polynomial-time algorithm, PRF.Punc, that takes
as input a key K € Ky and a set S C X\ and outputs a “punctured” key Kg.
The properties required by such a puncturing algorithm are captured by the
following definition.

Definition 2.4 (Puncturable PRF). A (¢, u)-secure pseudorandom function
family PRF = (PRF.Gen, PRF.Eval) is puncturable if there exists a probabilis-
tic polynomial-time algorithm PRF.Punc such that the following properties are
satisfied:

1. Functionality: For all sufficiently large A € N, for every set S C Xy, and
for every x € X\ \ S it holds that

Pr [PRF.Evalk (r) = PRF.Evalg, (z)] = 1.
K «PRF.Gen(1*);
Ks+PRF.Punc(K,S)

2. Pseudorandomness at punctured points: Let A = (A, As) be any prob-
abilistic algorithm that runs in time at most t(\) such that A;(1*) outputs a
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set S C Xy, a value x € S, and state information state. Then, for any such
A it holds that

Advprr,A(A) = &«
|Pr [A2(Ks, PRF.Evalk (z), state) = 1] — Pr[Ax(Kg, y, state) = 1]| < u(A)

for all sufficiently large X € N, where (S, z,state) «— A;(1*), K «— PRF.Gen
(1"), Ks = PRF.Punc(K, S), and y < Y.

For our constructions we rely on pseudorandom functions that need to be
punctured only at one point (i.e., in both parts of Definition2.4 it holds that
S = {z} for some = € X)). As observed by [18,20,43,52] the GGM construction
[36] of PRFs from any one-way function can be easily altered to yield such a
puncturable pseudorandom function family.

2.3 Private-Key Multi-Input Functional Encryption

In this section we define the functionality and security of private-key t-input
functional encryption. For ¢ € [t] let &; = {(&X;)x}ren be an ensemble of finite
sets, and let F = {F\}en be an ensemble of finite t-ary function families. For
each A € N, each function f € F) takes as input ¢ strings, 1 € (X1)x,...,x¢ €
(X:)x, and outputs a value f(z1,...,2:) € 2.

A private-key t-input functional encryption scheme IT for F consists of four
probabilistic polynomial time algorithm Setup, Enc, KG and Dec, described as
follows. The setup algorithm Setup(1?) takes as input the security parameter A,
and outputs a master secret key msk. The encryption algorithm Enc(msk,m, )
takes as input a master secret key msk, a message m, and an index ¢ € [¢],
where m € (X;),, and outputs a ciphertext cty. The key-generation algorithm
KG(msk, f) takes as input a master secret key msk and a function f € Fy, and
outputs a functional key sky. The (deterministic) decryption algorithm Dec takes
as input a functional key sk; and ¢ ciphertexts, cty,...,ct;, and outputs a string
z€ Z\U {J_}

Definition 2.5 (Correctness). A private-key t-input functional encryption
scheme IT = (Setup, Enc,KG, Dec) for F is correct if there exists a negligible
functzon neg(-) such that for every X\ € N, for every f € Fx, and for every
(X1, ) € (X1)x X -+ X (Xy)a, it holds that

Pr [Dec(skf, Enc(msk, z1,1),...,Enc(msk, 2, t)) = f(z1,... ,:Et)] >1—neg(A),

where msk < Setup(1*), sk « KG(msk, f), and the probability is taken over the
internal randomness of Setup, Enc and KG.

In terms of security, we rely on the private-key variant of the standard
indistinguishability-based notion that considers both message privacy and func-
tion privacy [2,22,23]. Intuitively, we say that a t-input scheme is secure if for
any two t-tuples of messages (z9,...,2Y) and (21, ..., ;) that are encrypted with
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respect to indices £ = 1 through ¢ = ¢, and for every pair of functions (fo, f1), the
triplets (skf,, Enc(msk,29,1),...,Enc(msk,2?,t)) and (sky,,Enc(msk,z},1),...,
Enc(msk, z},t)) are computationally indistinguishable as long as fo(z),...,2Y) =
fi(zl,...,x}) (note that this captures both message privacy and function pri-
vacy ). The formal notions of security build upon this intuition and capture the fact
that an adversary may in fact hold many functional keys and ciphertexts, and may
combine them in an arbitrary manner. We formalize our notions of security using
left-or-right key-generation and encryption oracles. Specifically, for each b € {0, 1}

and ¢ € {1,...,t} welet the left-or-right key-generation and encryption oracles be

KGy(msk, fo, f1) o KG(msk, f;) and Ency(msk, (mqg, m1), £) def Enc(msk, my, £).

Before formalizing our notions of security we define the notion of a valid t-input
adversary. Then, we define selective security.

Definition 2.6 (Valid adversary). A probabilistic polynomial-time algorithm
A is called valid if for all private-key t-input functional encryption schemes
IT = (Setup, KG, Enc, Dec) over a message space X1 X --- x Xy = {(X1)r}ren X
<X {(X)a}ren and a function space F = {Fx}ren, for all X € Nand b € {0,1},
and for all (fo, f1) € Fx and ((29,2}),1) € X; x X; x [t] with which A queries
the left-or-right key-generation and encryption oracles, respectively, it holds that
folat, ... a)) = filat, ... 2p).

Definition 2.7 (Selective security). Lett = t(A), T =T(N\), Qrey = Qrey(N),
Qenc = Qenc(A) and p = p(N) be functions of the security parameter A € N.
A private-key t-input functional encryption scheme II = (Setup, KG, Enc, Dec)
over a message space Xp X --- X Xy = {(X1)atreny X -+ X {(X)a}ren and a
function space F = {Fatren s (T, Qkeys Qenc, ft)-selectively-secure if for any
valid adversary A that on input 1* runs in time T()\) and issues at most Qyey(A)
key-generation queries and at most Qenc(\) encryption queries for each index
i € [t], it holds that

selFE, def
Adviy s =

Pr [Bxpi () = 1] - ‘ < (N,

for all sufficiently large A € N, where the random variable Expﬁl’F;fA()\) is defined
via the following experiment:

1. (@1,...,2,state) — A, (1’\), where T; = ((x?,l, %1,1)7 cee (w?’Tw}’T)) for
i€ [t].

msk « Setup(1*), b « {0,1}.

ctij < Enc(msk,a? ;,1) fori € [t] and j € [T).

b — Ang(mSk7.7.) (1)‘, {Cti,j}ie[t],jE[T]a state) .

If V' = b then output 1, and otherwise output 0.

Guds o b

Known Constructions for ¢ = 1. Private-key single-input functional encryp-
tion schemes that satisfy the above notion of full security and support circuits
of any a-priori bounded polynomial size are known to exist based on a variety
of assumptions.
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Ananth et al. [4] gave a generic transformation from selective security to
full security. Moreover, Brakerski and Segev [23] showed how to transform
any message-private functional encryption scheme into a functional encryption
scheme which is fully secure, and the resulting scheme inherits the security guar-
antees of the original one. Therefore, based on [4,23], given any selectively-secure
message-private functional encryption scheme we can generically obtain a fully
secure scheme. This implies that schemes that are fully secure for any number of
encryption and key-generation queries can be based on indistinguishability obfus-
cation [33,54], differing-input obfuscation [3,19], and multilinear maps [34]. In
addition, schemes that are fully secure for a bounded number of key-generation
queries Qkey can be based on the Learning with Errors (LWE) assumption (where
the length of ciphertexts grows with Qke, and with a bound on the depth of
allowed functions) [38], and even based on pseudorandom generators computable
by small-depth circuits (where the length of ciphertexts grows with Quey and with
an upper bound on the circuit size of the functions) [39].

Known Constructions for ¢ > 1. Private-key multi-input functional encryp-
tion schemes are much less understood than single-input ones. Goldwasser
et al. [37] gave the first construction of a selectively-secure multi-input func-
tional encryption scheme for a polynomial number of inputs relying on indis-
tinguishability obfuscation and one-way functions [9,33,44]. Following the work
of Goldwasser et al., a fully-secure private-key multi-input functional encryp-
tion scheme for a polynomial number of inputs based was constructed based on
multilinear maps [13]. Later, Ananth, Jain, and Sahai, and Bitasnky and Vaikun-
tanathan [6,7,12] showed a selectively-secure multi-input functional encryption
scheme for a polynomial number of inputs based on any sub-exponentially secure
single-input public-key functional encryption scheme. Brakerski et al. [22] showed
that a fully-secure single-input private-key scheme implies a fully-secure multi-
input scheme for any constant number of inputs. Furthermore, Brakerski et al.
observed that their construction can be used to get a fully-secure ¢t-input scheme
for t = O(loglog A) inputs, where A is the security parameter, if the underlying
single-input scheme is sub-exponentially secure.

2.4 Public-Key Functional Encryption

In this section we define the functionality and security of public-key (single-
input) functional encryption. Let X = {X)} en be an ensemble of finite sets,
and let 7 = {F)}xen be an ensemble of finite function families. For each A € N,
each function f € F) takes as input a string, x € X, and outputs a value
f(.T) € 2.

A public-key functional encryption scheme IT for F consists of four proba-
bilistic polynomial time algorithm Setup, Enc, KG and Dec, described as follows.
The setup algorithm Setup(1*) takes as input the security parameter ), and
outputs a master secret key msk and a master public key mpk. The encryption
algorithm Enc(mpk,m) takes as input a master public key mpk and a message
m € Xy, and outputs a ciphertext ct. The key-generation algorithm KG(msk, f)
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takes as input a master secret key msk and a function f € F,, and outputs
a functional key sky. The (deterministic) decryption algorithm Dec takes as
input a functional key sk; and t ciphertexts, cty,...,ct;, and outputs a string
z€ Z\U {J_}

Definition 2.8 (Correctness). A public-key functional encryption scheme
IT = (Setup, Enc,KG, Dec) for F is correct if there exists a negligible function
neg(-) such that for every A € N, for every f € Fx, and for every x € Xy, it
holds that

Pr [Dec(sks, Enc(mpk, z)) = f(z)] > 1 — neg()),

where (msk, mpk) < Setup(1%), sky « KG(msk, f), and the probability is taken
over the internal randomness of Setup, Enc and KG.

In terms of security, we rely on the public-key variant of the existing
indistinguishability-based notions for message privacy.” Intuitively, we say that
a scheme is secure if the encryption of any pair of messages Enc(mpk,mg)
and Enc(mpk,m;) cannot be distinguished as long as for any function f for
which a functional key is queries, it holds that f(mg) = f(m1). The formal
notions of security build upon this intuition and capture the fact that an adver-
sary may in fact hold many functional keys and ciphertexts, and may combine
them in an arbitrary manner. We formalize our notions of security using left-
or-right key-generation (similarly to the private-key setting). Specifically, for

each b € {0,1} we let the left-or-right key-generation and encryption oracles

be KGy(msk, fo, f1) &f KG(msk, fp) and Ency(msk, (mg,m1)) &ef Enc(msk, mp),

respectively. Before formalizing our notions of security we define the notion of a
valid adversary. Then, we define selective security.®.

Definition 2.9 (Valid adversary). A probabilistic polynomial-time algorithm
A is called valid if for all public-key functional encryption schemes II = (Setup,
KG, Enc,Dec) over a message space X = {X\}ren and a function space F =
{Fa}ren, for all X € N and b € {0,1}, and for all f € Fy and ((2°,2') € (X)?
with which A queries the left-or-right encryption oracle, it holds that f(x°) =
f@h).

Definition 2.10 (Selective security). Lett = t(\), T = T'(\), Qkey = Qkey(N)
and p = wu(N) be functions of the security parameter X € N. A public-key
functional encryption scheme II = (Setup, KG, Enc, Dec) over a message space
X = {X}ren and a function space F = {Fatren s (T, Qkey, pt)-selectively
secure if for any valid adversary A that on input 1* runs in time T()\) and
issues at most Qrey(A) key-generation queries, it holds that

Advsel—kaE def

In,F,A — 9

Pr (B3 2T = 1] - ’ < p(N),

7 We note that the notion of function privacy is very different from the one in the
private-key setting, and in particular, natural definitions already imply obfuscation.

8 We focus on selective securiy and do not define full security since there is a generic
transfomation [4].
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for all sufficiently large A € N, where the random variable Expﬁl'ﬁk;E(/\) is defined
via the following experiment: o

1. (20, 2!, state) «— A, (11).

2. (msk, mpk) « Setup(1*), b « {0,1}.

3. b — AKCrmsk) (1*, Enc(mpk, z*), state).

4. If b/ = b then output 1, and otherwise output 0.

2.5 Indistinguishability Obfuscation

We consider the standard notion of indistinguishability obfuscation [9,33]. We
say that two circuits, Cy and Cy are functionally equivalent, and denote it by
Co = (4, if for every z it holds that Cy(z) = Cy(z).

Definition 2.11 (Indistinguishability obfuscation). Let C = {C,}nen be
a class of polynomial-size circuits operating on inputs of length n. An efficient
algorithm 1O s called a (t,p) -indistinguishability obfuscator for the class C if
it takes as input a security parameter A and a circuit in C and outputs a new
circuit so that following properties are satisfied:

1. Functionality: For any input length n € N, any A € N, and any C € C, it
holds that
Pr[C =i0(1*,C)] =1,

where the probability is taken over the internal randomness of iO.

2. Indistinguishability: For any probabilistic adversary A = (A1, As) that
runs in time t = t(\), it holds that

O def
AdViO,C,A =

Pr {Expﬁg,C,A(/\) = 1} - 2‘ < (A,

for all sufficiently large A € N, where the random variable Expﬁg,c,A(A) 18
defined via the following experiment:

(a) (Co,Ch,state) — A1 (1) such that Co,Cy € C and Co = Cy.

(b) C —iO(Cy), b — {0,1}.

(c) b — Ay (1/\,6', state).

(d) If b/ = b then output 1, and otherwise output 0.

3 Private-Key MIFE for a Poly-Logarithmic Number
of Inputs

In this section we present our construction of a private-key multi-input func-
tional encryption scheme. The main technical tool underlying our approach is a
transformation from a t-input scheme to a 2¢t-input scheme which is described
in Sect.3.1. Then, in Sects. 3.2 and 3.3 we show that by iteratively applying
our transformation O(loglog A) times, and by carefully controlling the security
loss and the efficiency loss by adjusting the security parameter appropriately, we
obtain a t-input scheme, where ¢ = (log )\)‘S for some constant 0 < § < 1 (recall
that A € N denotes the security parameter).
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3.1 From t Inputs to 2t Inputs

Let F = {Fx}ren be a family of 2t-input functionalities, where for every A € N
the set F consists of functions of the form f: (X1)x X -+ X (Xat)x — 2. Our
construction relies on the following building blocks:

1. A private-key t-input functional encryption scheme FE, = (FE;.S, FE;.KG,
FE;.E, FE;.D).
2. A puncturable pseudorandom function family PRF = (PRF.Gen, PRF.Eval).

Our scheme FEy; = (FE9;.S, FEo:.KG, FEo;.E, FE5;.D) is defined as follows.

The setup algorithm. On input the security parameter 1* the setup algo-
rithm FE5,.S samples a master secret key for a t¢-input scheme msk;, «—
FE;.S(1"), and a PRF key K™k « PRF.Gen(1?), and outputs msk = (mski,,
Kmsk).

— The key-generation algorithm. On input the master secret key msk and
a function f € F), the key-generation algorithm FEs;.KG samples a PRF key
K*Y — PRF.Gen(1*) and outputs sky < FE;. KG(mskin, Gens | jems gter 1),
where Geny | gms gre | is the t-input function that is defined in Fig. 3.

Genfo’flaKmsk’Kkey’w
0o 1 0o 1 o _1
((x1, 1, T1,C1,thre, ..., thry), (@2, 2, T2,C2),y . .oy (Tg, Ty, T, Ct))

1. Fori=1,...,t do:

(a) If ¢; < thry, then set f = f1 and exit loop.

(b) If ¢; > thr;, then set f = fo and exit loop.

(c) If ¢; = thr; and @ < ¢, continue to next iteration (with ¢ = ¢+ 1).
(d) If ¢; = thr; and ¢ = ¢, then output w and HALT.

Compute r1 = PRF.EvaI(KmSk, TL...Tt).

Compute ry = PRF,EvaI(Kkey, TL...Tt).

Compute mskr,. -, = FE;.S(1*,r1).

Output FE;.KG(msks,,....r,, C;72).

Cf(($1,$t+1), ceey (mhw?t)) :

O WD

1. Output f(z1,...,z2t).

Fig. 3. The t-input functions Genjo 1 pemsk fekey o, and C'y.

— The encryption algorithm. On input the master secret key msk, a message
x and an index ¢ € [2¢], the encryption algorithm FEg;.E distinguished between
the following three cases:

e If / = 1, it samples a random string 7 € {0,1}*, and then outputs cty
defined as follows:

cty « FE;.E(mskiy, (z, L, 7,1,1,...,1,0),¢).
——

t slots
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e If 1 < ¢ <t, it samples a random string 7 € {0,1}*, and then outputs cty
defined as follows:

cty — FE;.E(mskin, (x, L,7,1),).

o If t < ¢ < 2t, it samples a PRF key K" « PRF.Gen(1*) and outputs sk,
defined as follows:

Sk[ — FEt.KG(msk;n, AGGQ:,L,Z,K’"S",KE"C,L);

where AGG,, | ¢ gmse genc | is the t-input function that is defined in Fig. 4.

AGGCD?—Ft ’w}_'_t A4t Kmsk fgenc o,

((w?,mi,ﬁ,cl,thrl, ...y thry), (a:g,a:é,‘rg,cz), vy (w?,m%,n,ct)) :

1. Fori=1,...,t do:

(a) If ¢; < thr;, then set a; = x; for all i € [t] and exit loop.

(b) If ¢; > thr;, then set 2; = 22 for all 4 € [t] and exit loop.

(c) If ¢; = thr; and @ < ¢, continue to next iteration (with ¢ = ¢ + 1).
(d) If ¢; = thr; and ¢ = t, output v and HALT.

Compute r1 = PRF.Eval(K™* 71 ... 7).

Compute 7o = PRF.Eval(K", 71 ... 7).

Compute msk,, -, = FE..S(1*,7)

Output FE¢.E(mskr,,...r,, (Te, Tete), {5 72).

O WD

Fig. 4. The t-input function AGG

0

P 7$%+t ,Z-Q—t,KmSk,Ke"C,U .

x

— The decryption algorithm. On input a functional key sky and ciphertexts
cty,...,cty,skit1, ... ,ska, the decryption algorithm FE;.D computes

Vie{t+1,...,2t}: ct; = FE;.D(skj, cty, ..., cty)
sk’ = FE;.D(skys,cty, ..., cty),

and outputs FE;.D(sk’,ct} 4, ..., cth,).

Correctness. For any A € N, f € F) and (21,...,29:) € (X1)x X -+ X (Xag)x,
let sk; denote a functional key for f and let cty,...,cts,skey1,...,sko; denote
encryptions of x1,...,zs:. Then, for every i € {1,...,t}, it holds that

ct;,, = FE;.D(skjt¢,Cty, ..., Cty)
= AGG£i+t,7i,i+t,K’“5k,Kflct,L(($1? J_,Tl, ]., ].7 ceey 1,0), (.’[2, J_,TQ, 1), ey
('I't, J—a Tt, 1))

= FE;.E(msk;, ... 7, (%i, %iye), 4 PRE.Eval (K5, 71 ... 7))

3
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and

sk’ = FE;.D(skys,cty, ..., ct;)
= Genf7L7Km5k7Kkey,L((x1, L,7m,1,1,...,1,0), (20, L, 72, 1), ..., (2, L, 7, 1))

= FE;.KG(msky, ...+, Cy; PRF.Eval(K, 71 ... 7))
where msk,, . ., = FE;.S(1*,PRF.Eval(K™* 7y ...7;)). Therefore,

FEt.D(Sk/7Ct2+1, . ,Ctét) = Cf((d?l, l‘t+1), ey (It,xgt)) = f(ZZ?1, . ,$2t).

Security. The following theorem captures the security our transformation. The
proof can be found in the full version [45].

Theorem 3.1. Let t = t(A), T = T(N), Qrey = Qkey(A); Qenc = Qenc(A) and
= p(X) be functions of the security parameter A € N, and assume that FE; is
a (T, Qxey, Qenc, 1) -selectively-secure t-input functional encryption scheme and
that PRF is a (T, p)-secure puncturable pseudorandom function family. Then,
FE2t is (1", Qiey» Qenc, 1) -selectively-secure, where

- T’( ) =T(A) — Quey(A) - poly(N), for some fized polynomial poly(-).
- y( ) ley( ) (>‘) : Qenc()‘)'

enc( ) = Qenc( )

() = 8t(N) + (Qenc (W)™ Quey(A) - p(N).-

3.2 Efficiency Analysis

In this section we analyze the overhead incurred by our transformation. Specifi-
cally, for a message space X7 X --- x Xo; and a function space F that consists of
2t-input functions, we instantiate our scheme (by applying our transformation
log ¢ times) and analyze the size of a master secret key, the size of a functional-
key, the size of a ciphertext and the time it takes to evaluate a functional-key
with 2t ciphertexts.

Let A € N be a security parameter with which we instantiate the 2¢t-input
scheme, let us assume that F consists of functions of size at most s = s(\) and
that each X; consists of messages of size at most m = m(\). Assuming that
logt < poly(X) (to simplify notation), we show that there exists a fixed constant
¢ € N such that:

— the setup procedure takes time A€,
logc
— the key-generation procedure takes time (s- A\)t """,

logc
)t

— the encryption procedure takes time (m - A , and

— the decryption procedure takes time t'°8% . \°.

In Sect. 3.3 we will choose s, m,t and A to satisfy Lemma 3.2.
For a circuit A that receives inputs of lengths zi...,z,,, we denote by
Time(A, x1,...,%,) the size of the circuit when applied to inputs of length
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>, ;. For a function family F, we denote by Size(F) the maximal size of the
circuit that implements a function from F.
We analyze the overhead incurred by our transformation

The Setup Procedure. The setup procedure of FEo; is composed of sampling
a key for a scheme FE; and generating a PRF key. Iterating this, we see that a
master secret key in our final scheme consists of a single master secret key for a
single-input scheme and log ¢ additional PRF keys. Namely,

Time(FE3,.S,1%) = Time(FE..S, 17) + p1()),

where p; is a fixed polynomial that depends on the key-generation time of the
PRF, and thus

Time(FE2:.S,\) = Time(FE1.S, ) 4 logt - p1(A).

The Key-Generation Procedure. The key-generation procedure of FEo;
depends on the complexity of the key-generation procedure of the FE; scheme.
Let F?! be the function family that is supported by the scheme FEq;.

Time(FE2:.KG, \, Size(FE2;.S, \), Size(F*")) =
Time(FE;.KG, ), 2Size(F>"), Time(FE;.S, \), Time(FE;.KG, Size(F*")), p2(\)))
+p3(A),

where py subsumes the size of the embedded PRF keys and the complexity of
the simple operations that are done in Gen, and ps subsumes the running time
of the generation of the PRF key K.

The dominant part in the above equation is that the time it takes to generate
a key with respect to FEy; for a function whose size is Size(F?*) depends on the
circuit size of key-generation in the scheme FE; for a function whose size is
Time(FE;.KG, Size(F?)) (namely, it is a function that outputs a functional key
for a function whose size is Size(F?!)). Thus, applying this equation recursively,
we get that for large enough ¢ € N (that depends on the exponents of py and
p3), it holds that

Time(FE2.KG, A, Time(FEy,.S, \), Size(F?*)) <
(Size(F2) - \)°**" = (Size(F2) - \)

tlogc

The Encryption Procedure. The encryption procedure of FEs; depends on
the complexity of encryption and key-generation of the FE; scheme. Let m be
the length of a message to encrypt. For ¢ < ¢, the complexity is at most

Time(FEq:.E, A, Size(FE3;.S, A),m) < Time(FE..E, X\, 2m, (t 4+ 2))\).
For t + 1 < ¢ < 2t, the complexity of encryption is

Time(FEa:.E, A, Size(FE2:.S, A),m) <
Time(FE;.KG, A, Time(FE;.S, \), Time(FE;.E, 2m), p4(\)),
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where p, subsumes the running time of the key-generation procedure of the PRF
and the various other simple operations made by AGG.

The dominant part is that an encryption of a message with respect to the
scheme FEs; requires generating a key with respect to the scheme FE; for a
function whose size is Time(FE;.E,2m). Thus, similarly to the analysis of the
key-generation procedure, we get that for some fixed ¢ € N (that depends on
the exponents of p, and the time it takes to encrypt a message with respect to
FE1), we get that

log c

Time(FE.E, ), Size(FEg;.S, \),m) < (m - \)*

The Decryption Procedure. Decryption in the scheme FEs; requires ¢ + 2
decryption operations with respect to the scheme FE;. Let ct(¢) and sk(t) be the
length of a ciphertext and a key in the scheme FE;, respectively. We get that

Time(FEy;.D, sk(t), 2t - ct(t)) =
(t+2) - Time(FE..D, sk(t),t - ct(t)) < (t +2)!°8% . ps(N),

where ps is a polynomial that subsumes the complexity of decryption in FE;.

3.3 Iteratively Applying Our Transformation

In this section we show that by iteratively applying our transformation
O(loglog \) times we obtain a t-input scheme, where t = (log \)? for some con-
stant 0 < § < 1. We prove the following two theorems:

Lemma 3.2. Let T = T()\), Qrey = Qkey(A);, Qenc = Qenc(A) and p = p(N)
be functions of the security parameter A € N and let € € (0,1). Assume any
(T, Quey: Qenc, 1t)-selectively-secure single-input private-key functional encryption
scheme with the following properties:

1. it supports circuits and messages of size poly(2(1°8 )‘)26) and

2. the size of a ciphertext and a functional key is bounded by poly(2(log A)Qe),
then for some constant § € (0,1), there exists a (T’, ’key, gnc,u’) -selectively-
secure (log \)° -input private-key functional encryption scheme with the following
properties:

it supports circuits and messages of size poly(2(1°<°>r )‘)E),

- T'(A) =2 T(A) — (loglog A) - p(A),

Leyo‘) > Qrey(A) — (210g A) - Qenc(N),

gnc(A) = Qenc()‘)’ and

L) < 9(3loglog X)? (Qenc()\))z(log)\)5+2 . (leyo\))loglogz\ . ,U()\)

TR s te =
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Proof. Let FE; be a (T, Qkey, Qenc, it)-selectively-secure single-input scheme with
the properties from the statement.

Let us analyze the complexity of the t-input scheme where t(\) = (log \)?,
where § > 0 is some fixed constant that we fix later. In terms of complexity,
using the properties of the single-input scheme and our efficiency analysis from
Sect. 3.2, we have that setup takes a polynomial time in A, key-generation for
a function of size s takes time at most (s - )\)tlogc and encryption of a message
of length m takes time (m - )\)tlogc for some large enough constant ¢ > 1 (recall
that ¢ is an upper bound on the exponents of the running time of key generation
and encryption procedures of the underlying single-input scheme). Plugging in
6 =2¢/(3loge), t = (log A)® and s, m < 218N for any ¢ € N, we get that key-

generation and encryption take time at most 9¢'-(1og )**/-(1og ) — 9c”-(log A)**/*

Notice that for large enough A, decryption of such a key-message pair takes time
at most poly(2008V)™/?) . (¢ 4 2)logt < llog H)**
In terms of security, by Theorem 3.1, we have that if FE; is (T(t), Ql(fe)y,

o p)-selectively-secure and PRF is a (T®), u()-secure puncturable pseudo-
random function family, then FEy; is (T(?") Q(Qt) QY. p?)-selectively-secure,
where
L TCYN) =TO ) ~ (/\)7

- Qi) (V) = Qe (V) — 1+ Qure.

G () = Q&L(N), and
M(Qt)()‘) — 9(3loglog N2, (Qenc()\))z(log N2 (ley()\))log log X | M()\)

Iterating these recursive equations, using the fact that Qki}t,) < sz/,
in our initial scheme parameters, we get that

Qenc( ) Qenc( ) Qenc(A)

.»s—OMH

and plugging

Q((ey( ) ley(A) ()‘) : Qenc(A)
Z ley(>\) - 2t(>\) : Qenc(A)
> ley(A) - (2 log(/\)) ' Qenc(/\)
T'(A) 2 T(A) = logt(A) - p(A)
> T(A) — (loglog A) - p(A)
1 (0) < (8E(N)' 2 - (Qenc(N)!™ 2 - (Quey (V)8 - ()
< 2(310gt()\)) ( ( ))Zt()\)+2 . (ley()\))logt(/\) 'u(/\)
< 2(310glog>\)2 . ( enc( ))2(10gz\)5+2 . (ley()\>)loglog)\ /J'()\)
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Claim 3.3. Let A € N be a security parameter and fix any constant € € (0,1).
Assuming any (2% (08 Ne , 22 (log Ne , 2(log M , 2~ (log A)l's/e)—selectively—secure
single-input private-key functional encryption scheme supporting polynomial-
size circuits, there exists a (22'(103/\)2,22‘(1°g/\)2,2(1085’\)272_(1°g)‘)3)—selectively-
secure single-input private-key functional encryption scheme with the following
properties

1. it supports circuits and messages of size poly(2(1°8 )‘)26) and
2. the size of a ciphertext and a functional key is bounded by poly(2(log A)Qe).

Proof. We instantiate the given scheme with security parameter X = 2(log )

The resulting scheme is (22‘(1"3)‘)2,22‘(1°g/\)2,2(logk)2,2_(10"5)‘)3)—selectively—

secure and for a circuit (resp., message) of size A, the size of a functional key

(resp., ciphertext) is bounded by poly(\). [ |
Combining Theorem 3.3 and Lemma 3.2 we get the following theorem.

Theorem 3.4. Let A € N be a security parameter and fix any constant e € (0,1).
Assuming any (2% (08 R , 21 (log N , 2(log M , 2~ (log A )-selectively-secure
single-input private-key functional encryption scheme supporting polynomial-
size circuits, then for some 6 € (0,1), there exists a (2(°8 >‘)2, 2(log ’\)2,
2(log 2)?* 9—(log A)z)-selectively-secure (log \)? -input private-key functional encryp-
tion scheme supporting circuits of size 2008 )",

)1/6, 92-(log )\)1/5, 9(log A)l/ﬁ, 9~ (log k)l's/e)—selectively-

Proof. Assuming any (22‘(1°g)‘
secure single-input private-key functional encryption scheme supporting polyn-
omial-size circuits. By 3.3, it implies a (22'(10g N? 92-(log 1) o(logA)® - 9—(log A)*)_
selectively-secure single-input private-key functional encryption scheme with
the following properties:

1. it supports circuits and messages of size poly(2(°82)°°) and
2. the size of a ciphertext and a functional key is bounded by poly(2(10g )‘)k).

Using Lemma 3.2, we get that for some constant 6 € (0, 1), there exists a

(T’, Ley, v )—selectively—secure (log A\)%-input private-key functional encr-

yption scheme with the following properties:

it supports circuits and messages of size at most poly(2(1°8 /\)6/2),
T'(A) > 2208 )* _ (loglog A) - p(A) > 2008 V)*)
Ike},()\) > 92:(log N2 (2 log )\) . 9(log 22 > 2(logk)2’
/enc(>‘) = 2oz )\)2, and
'u/()\) < 9(3loglog )2, (2(10g /\)2)2(log A)°42. (2(10g 2)? )10g log X . 9—(log 23 < o-(log NE .
|

ALY
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4 Applications of Our Construction

In this section we present our construction of an indistinguishability obfuscator
for circuits with inputs of poly-logarithmic length, and its applications to public-
key functional encryption and average-case PPAD hardness.

4.1 Obfuscation for Circuits with Poly-Logarithmic Input Length

We show that any selectively-secure t-input private-key functional encryption
scheme that supports circuits of size s can be used to construct an indistin-
guishability obfuscator that supports circuits of size s that have at most ¢ -log A
inputs, where A € N is the security parameter. This is similar to the proof
of Goldwasser et al. [37] that showed that private-key multi-input functional
encryption for a polynomial number of inputs implies indistinguishability obfus-
cation (and a follow-up refinement of Bitansky et al. [10]).
We consider the following restricted class of circuits:

Definition 4.1. Let A € N and let s(-) and t'(-) be functions. Let Cf\’t/ denoet
the class of all circuits of size at most s(\) that get as input t'(N\) bits.

Lemma 4.2. Lett =t(A\), s = s(A\), T =T()), Qrey = Qkey(N), Qenc = Qenc(N)
and p = p(A) be functions of the security parameter X € N, and assume
a (T, Qrey; Qenc, 11)-selectively-secure t-input private-key functional encryption
scheme for functions of size at most s, where Qyey(A) > 1 and Qenc(A) > . Then,
there exists a (T(A)—A-t(X)-p(N\), u(N))-secure indistinguishability obfuscator for
the circuit class Cf\’tl, where p(-) is some fized polynomial and t'(N\) = t(X\)-log A.

Proof. Let FE; be a t-input scheme as in the statement of the lemma. We con-
struct an obfuscator for circuits of size at most s(A) that receive t(\) - log A bits

as input. On input a circuit C € Cf\’tl, the obfuscator works as follows:

1. Sample a master secret key msk « FE;.S(1%).

2. Compute ct; ; = FE;.E(msk, 4, j) for every i € {0,1}1°¢* and j € [t(\)].
3. Computq\skc = FE;.KG(msk, C)

4. Output C = {Skc} U {Cti)j}ie{o’l}log)\’je[t()\)].

Evaluation of an obfuscated circuit C' on an input € ({0,1}°8*), where
we view ¥ as ¥ = x1...7; and x; € {0,1}'°8* is done by outputting the
result of a single execution of the decryption procedure of the t-input scheme
FE;.D(skc, cty, 1,--.,Cty, ¢). Notice that the description size of the obfuscated
circuit is upper bounded by some fixed polynomial in \.

For security, notice that a single functional key is generated and it is for a
circuit of size at most s(A). Moreover, the number of ciphertexts is bounded by A
ciphertexts per coordinate. Thus, following [37], one can show that an adversary
that can break the security of the above obfuscator can be used to break the
security of the FE; scheme with the same success probability (it can even break
FE; that satisfies a weaker security notion in which the functional keys are also
fixed ahead of time, before seeing any ciphertext). |
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Applying Lemma4.2 with the t-input scheme from Theorem 3.4 we obtain
the following corollary.

Corollary 4.3. Let A € N be a security parameter and fix any constant € €
(0,1). Assume a (2208 >‘)1/€,22(log )‘)1/672(10g )‘)1/5,27(log A)l'o/e)—selectively—secure
single-input private-key functional encryption scheme for all functions of polyno-

mial size. Then, for some constant 6 € (0,1), there exists a (2(1°8 /\)2,2_(10"5 ’\)2)—
O((log N)¢) 146
secure indistinguishability obfuscator for the circuit class Ci 7 (log )T

4.2 Public-Key Functional Encryption

In this section we present a construction of a public-key functional encryption
scheme based on our multi-input private-key scheme.

Theorem 4.4. Let A € N be a security parameter and fiz any ¢ € (0,1). There
exists a constant 6 > 0 for which the following holds. Assume a (22(1°g/\)1/‘,
92(log )M/ , 2(log M , 2 (log A )-selectively-secure single-input private-key func-

tional encryption scheme for all functions of polynomial size, and that (22’\6 ,

2_2’\6,)-secure one-way functions exist for ¢ > 1/(1 + ). Then, for some con-
stant ¢ > 1, there exists a (2(10g )‘)<,2(1°g A)C,Q’(l"g )‘)C)—selectively—secure public-
L . . . 20((1"3”)‘)6),(10g/\)lJr‘S

ey encryption scheme for the circuit class C) .

Our construction is essentially the construction of Waters [54], who showed
how to construct a public-key functional encryption scheme for the set of
all polynomial-size circuits assuming indistinguishability obfuscation for all
polynomial-size circuits. We make a more careful analysis of his scheme and
show that for a specific range of parameters, it suffices to use the obfuscator we
have obtained in Corollary4.3. The proof of Theorem4.4 can be found in the
full version [45].

4.3 Average-Case PPAD Hardness

We present a construction of a hard-on-average distribution of Sink-of-Verifiable-
Line (SVL) instances assuming any quasi-polynomially-secure private-key (single-
input) functional encryption scheme and sub-exponentially-secure one-way func-
tion. Following the work of Abbot et al. [1] and Bitansky et al. [11], this shows
that the complexity class PPAD [24,30,31,50] contains complete problems that
are hard on average (we refer the reader to [11] for more details). In what follows
we first recall the SVL problem, and then state our hardness result. The proof can
be found in the full version [45].

Definition 4.5 (Sink-of-Verifiable-Line). An SVL instance (S,V, x4, T) con-
sists of a source x, € {0,1}*, a target index T € [2], and a pair of circuits
S: {0,1}* — {0,1}* and V: {0,1}* x [T] — {0,1}, such that for (x,i) €
{0,1}* x [T, it holds that V(z,i) = 1 if and only if v = z; = S*~!(x,), where
71 = 7. A stringw € {0,1}* is a valid witness if and only if V(w,T) = 1.
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Theorem 4.6. Let A € N be a security parameter and fiz any constant € €
(0,1). Assume a (220198 MM 92(10g 1)< 9(log\)'/¢ 9—(log /\)1'5/6)—selectively—secure
single-input private-key functional encryption scheme for all functions of poly-

nomial size, and that (2)‘26/,2_>‘2€/)—8€CU7’6 injective one-way functions exist for
some large enough constant € € (0,1). Then, there exists a distribution with
an associated efficient sampling procedure that generates instances of sink-of-
verifiable-line which are hard to solve for any polynomial-time algorithm.
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