
Robust Transforming Combiners
from Indistinguishability Obfuscation

to Functional Encryption

Prabhanjan Ananth1, Aayush Jain1(B), and Amit Sahai2

1 Center for Encrypted Functionalities, Computer Science Department,
UCLA, Los Angeles, USA

prabhanjan@cs.ucla.edu, aayushjain1728@gmail.com
2 University of California Los Angeles and Center for Encrypted Functionalities,

Los Angeles, USA
sahai@cs.ucla.edu

Abstract. Indistinguishability Obfuscation (iO) has enabled an incredi-
ble number of new and exciting applications. However, our understanding
of how to actually build secure iO remains in its infancy. While many
candidate constructions have been published, some have been broken,
and it is unclear which of the remaining candidates are secure.

This work deals with the following basic question: Can we hedge our
bets when it comes to iO candidates? In other words, if we have a col-
lection of iO candidates, and we only know that at least one of them is
secure, can we still make use of these candidates?

This topic was recently studied by Ananth, Jain, Naor, Sahai, and
Yogev [CRYPTO 2016], who showed how to construct a robust iO com-
biner: Specifically, they showed that given the situation above, we can
construct a single iO scheme that is secure as long as (1) at least one
candidate iO scheme is a subexponentially secure iO, and (2) either the
subexponential DDH or LWE assumptions hold.

In this work, we make three contributions:
– (Better robust iO combiners.) First, we work to improve the

assumptions needed to obtain the same result as Ananth et al.:
namely we show how to replace the DDH/LWE assumption with the
assumption that subexponentially secure one-way functions exist.

P. Ananth—This work was partially supported by grant #360584 from the Simons
Foundation and the grants listed under Amit Sahai.
A. Jain—This work was supported by the grants listed under Amit Sahai.
A. Sahai—Research supported in part from a DARPA/ARL SAFEWARE award,
NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276,
BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research
Award, an equipment grant from Intel, and an Okawa Foundation Research Grant.
This material is based upon work supported by the Defense Advanced Research
Projects Agency through the ARL under Contract W911NF-15-C-0205. The views
expressed are those of the authors and do not reflect the official policy or posi-
tion of the Department of Defense, the National Science Foundation, or the U.S.
Government.

c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part I, LNCS 10210, pp. 91–121, 2017.
DOI: 10.1007/978-3-319-56620-7 4

92 P. Ananth et al.

– (Transforming Combiners from iO to FE and NIKE.) Sec-
ond, we consider a broader question: what if we start with several iO
candidates where only one works, but we don’t care about achiev-
ing iO itself, rather we want to achieve concrete applications of iO?
In this case, we are able to work with the minimal assumption of
just polynomially secure one-way functions, and where the work-
ing iO candidate only achieves polynomial security. We call such
combiners transforming combiners. More generally, a transforming
combiner from primitive A to primitive B is one that takes as input
many candidates of primitive A, out of which we are guaranteed that
at least one is secure and outputs a secure candidate of primitive
B. We can correspondingly define robust transforming combiners.
We present transforming combiners from indistinguishability obfus-
cation to functional encryption and non-interactive multiparty key
exchance (NIKE).

– (Correctness Amplification for iO from polynomial secu-
rity and one-way functions.) Finally, along the way, we obtain
a result of independent interest: Recently, Bitansky and Vaikun-
tanathan [TCC 2016] showed how to amplify the correctness of an iO
scheme, but they needed subexponential security for the iO scheme
and also require subexponentially secure DDH or LWE. We show
how to achieve the same correctness amplification result, but requir-
ing only polynomial security from the iO scheme, and assuming only
polynomially secure one-way functions.

1 Introduction

Indistinguishability Obfuscation (iO), first defined by [4], has been a major rev-
elation to cryptography. The discovery of the punctured programming tech-
nique by Sahai and Waters [46] has led to several interesting applications of
indistinguishability obfuscation. A very incomplete list of such results includes
functional encryption [2,24,47], the feasibility of succinct randomized encod-
ings [7,13,39], time lock puzzles [8], software watermarking [16], instantiating
random oracles [34] and hardness of Nash equilibrium [10,26].

On the construction side, however, iO is still at a nascent stage. The first
candidate was proposed by Garg et al. [24] from multilinear maps [19,23,29].
Since then there have many proposals of iO [3,29,48]. All these constructions
are based on multilinear maps. The constructions of multilinear maps have come
under scrutiny after several successful cryptanalytic attacks [14,15,17,18,35,44]
were mounted against them. In fact, there have also been direct attacks on some
of the iO candidates as well [17,44]. However, there are (fortunately) still many
candidates that have survived all known cryptanalytic attacks. We refer the
reader to Appendix A in [1] for a partial list of these candidates1. In light of
this, its imperative to revisit the applications of iO and hope to weaken the trust
we place on any specific known iO candidate to construct these applications.

In other words, can we hedge our bets when it comes to iO candidates?
1 Several recent candidates such as [25,42,43] have not been included in this list. There

are currently no attacks known on these candidates as well.

Robust Transforming Combiners from Indistinguishability Obfuscation 93

If we’re wrong about some candidates that seem promising right now, but
not others, then can we still give explicit constructions that achieve the amazing
applications of iO?

Robust iO Combiners. Recently, Ananth et al. [1] considered the closely
related problem of constructing an iO scheme starting from many iO candi-
dates, such that the final iO scheme is guaranteed to be secure as long as even
one of the iO candidates is secure. In fact, they only assume that the secure
candidate satisfies correctness, and in particular, the insecure candidates could
also be incorrect. This notion is termed as a robust iO combiners (also studied by
Fischlin et al. [22] in a relaxed setting where multiple underlying iO candidates
must be secure) and are useful in constructing universal iO [32] 2. The work of [1]
constructs robust iO combiners assuming the existence of a sub-exponentially
secure iO scheme and sub-exponentially secure DDH/ LWE. As a consequence
of this result, we can construct the above applications by combining all known
iO candidates as long as one of the candidates is sub-exponentially secure.

While the work of [1] is a major advance, it leaves open two very natural
questions, that we study in this work. The first question is: do we really need to
assume DDH or LWE? In other words:

1. What assumption suffices to construct a robust iO combiner?
In particular, are (sub-exponentially secure) one-way functions sufficient?

The second, broader, question is: if we care about constructing applications of
iO, can we do better in terms of assumptions? In particular, recent work [27] has
shown that functional encryption – itself an application of iO – can be directly
used to construct several applications of iO. Let us then define an transforming
combiner as an object that takes several iO candidates, with the promise that
at least one of them is only polynomially secure, and outputs an explicit secure
functional encryption scheme. Then, let us consider the following question, which
truly addresses a minimal assumption:

2. Assuming only polynomially secure one-way functions, can we construct
a transforming combiner from iO to functional encryption?

Note that since the existence of iO does not even imply that P�=NP, while
functional encryption implies one-way functions, the above question lays out a
minimal assumption for constructing a transforming combiner from iO to FE.

1.1 Our Contribution

We address questions 1 and 2 in this work. We show,

Theorem 1 (Transforming Combiners). Given many iO candidates out of
which at least one of them is correct and secure and additionally assuming one-
way functions, we can construct a compact functional encryption scheme.
2 A scheme Π is said to be a universal secure iO scheme if the following holds: if there

exists a secure iO scheme (whose explicit description is unknown) then Π is a secure
iO scheme.

94 P. Ananth et al.

As a corollary, we can construct an explicit functional encryption scheme assum-
ing the existence of iO and one-way functions. In other words, we show that it
suffices that iO exists (rather than relying on a constructive proof of it) to con-
struct an explicit functional encryption scheme.

Corollary 1 (Informal). Assuming polynomially secure iO and one-way func-
tions exists, we can construct an explicit compact functional encryption scheme.
In particular, the construction of functional encryption does not rely on an
explicit description of the iO scheme.

Combining this result with the works of [2,11] who show how to construct iO
from sub-exponentially secure compact FE, we obtain the following result.

Theorem 2 (Informal). There exists a robust iO combiner assuming sub-
exponentially secure one-way functions as long as one of the underlying iO can-
didates is sub-exponentially secure.

This improves upon the result of Ananth et al. [1] who achieve the same result
assuming sub-exponentially secure DDH or LWE.

Explicit NIKE from several iO candidates: Recent works of Garg and
Srinivasan [28], Li and Micciancio [41], show how to achieve collusion resistant
functional encryption from compact functional encryption and Garg et al. [27]
show how to build multi-party non interactive key exchange (NIKE) from collu-
sion resistant functional encryption. When combined with these results, our work
shows how to obtain an explicit NIKE protocol when given any one-way func-
tion, and many iO candidates with the guarantee that only one of the candidates
is secure.

New Correctness Amplification Theorem for iO. En route to achieving
this result, we demonstrate a new correctness amplification theorem for iO. In
particular, we show how to obtain almost-correct iO starting from polynomially
secure approximately-correct iO3 and one-way functions. Prior to our work, [12]
showed how to achieved a correctness amplification theorem starting from sub-
exponentially secure iO and sub-exponentially secure DDH/ LWE.

Theorem 3 (Informal). There is a transformation from a polynomially secure
approximately-correct iO to polynomially secure almost-correct iO assuming one-
way functions.

2 Technical Overview

The goal of our work is to construct a compact functional encryption scheme
starting many iO candidates out of which one of them is secure. Let us start
with the more ambitious goal of building a robust compact FE combiner. If

3 An iO scheme is ε-approximately correct if every obfuscated circuit agrees with the
original circuit on ε fraction of the inputs.

Robust Transforming Combiners from Indistinguishability Obfuscation 95

we have such a combiner, then we achieve our goal since the ith compact FE
candidate used in the combiner can be built from the ith iO candidate using
prior works [24].

To build a compact FE combiner, we view this problem via the lens of secure
multi-party computation: we view every compact FE candidate as corresponding
to a party in the MPC protocol; insecure candidates correspond to adversaries.
Ananth et al. [1] took the same viewpoint when building an iO combiner and in
particular, used non-interactive MPC techniques that relied on DDH/ LWE to
solve this problem. Our goal is however to base our combiner only on one-way
functions and to achieve that, we start with an interactive MPC protocol.

A first attempt is the following: Let Π1, . . . , Πn be the n compact FE candi-
dates. We start with an interactive MPC protocol for parties P1, . . . , Pn.

– To encrypt a message x, we secret share x into n additive shares. Each of these
shares are encrypted using candidates Π1, . . . , Πn.

– To generate a functional key for function f , we generate a functional key for
the following function gi using FE candidate Πi: this function gi takes as input
message m and executes the next message function of Πi to obtain message
m′. If m′ has to be sent to Πj then it encrypts m′ under the public key of Πj

and outputs the ciphertext.

The decryption algorithm proceeds as in the evaluation of the multi-party secure
computation protocol. Since one of the candidates is secure, say ith candidate,
the hope is that the ith ciphertext hides the ith share of x and thus security of
FE is guaranteed.

However, implementing the above high level idea faces the following obstacles.

Statelessness: While a party participating in a MPC protocol is stateful, the
functional key is not. Hence, the next message function as part of the functional
key expects to receive the previous state as input. Its not clear how to ensure
without sharing state information with all the other candidates.

Oblivious Transfer: Recall that our goal was to base the combiner only on one-
way functions. However, MPC requires oblivious transfer and from Impagliazzo
and Rudich’s result [36] we have strong evidence to believe that oblivious transfer
cannot be based on one-way functions. Given this, it is unclear how to directly
use MPC to achieve our goal.

Randomized Functions: The functional key in the above solution encrypts a
message with respect to another candidate. Since encryption is a probabilistic
process, we need to devise a mechanism to generate randomness for encrypting
the ciphertext.

Correctness Amplification: A recent elegant work of Bitansky and Vaikun-
tanathan [12] study correctness amplification techniques in the context of indis-
tinguishability obfuscation and functional encryption. Their correctness ampli-
fication theorems assume DDH/ LWE to achieve this result. Indeed, this work

96 P. Ananth et al.

was also employed by Ananth et al. to construct an iO combiner. We need a
different mechanism to handle the correctness issue if our goal is to base our
construction on one-way functions.

Tackling Issues: We propose the following ideas to tackle the above issues.

Use 2-ary FE instead of compact FE: The first idea is to replace compact FE
candidates with 2-ary FE4 candidates. We can build each of 2-ary FE candidates
starting from iO candidates. The advantage of using 2-ary FE is two fold:

1. It helps in addressing the issue of statelessness. The functional keys, of say
ith candidate, are now associated with 2-ary functions, where the first input
of the function takes as input the previous state and the other input takes
as input the message from another candidate. The output of this function is
the updated state encrypted under the public key of the ith candidate and
encryption of message under public key of jth candidate, where jth candidate
is supposed to receive this message. This way, the state corresponding to the
ith candidate is never revealed to any other candidate.

2. It also helps in addressing the issue of randomized functions. The first input
to the function could also contain a PRF key. This key will be used to generate
the randomness required to encrypt messages with respect to public keys of
other candidates.

Getting Rid of OT: To deal with this issue, we use the idea of pre-processing
OTs that is extensively used in the MPC literature [5,6,20,37]5. We pre-compute
polynomially many OTs [5] ahead of time. Once we have pre-computed OTs, we
can construct an information theoretically secure MPC protocol that is secure
upto n − 1 corruptions, where n is the number of parties. Note that we can only
achieve semi-honest security in this setting, achieving malicious security would
require that the pre-processing phase outputs exponentially many bits [37].

Next, we consider whether to perform the OT pre-computation as part of the
key generation or the encryption algorithm. Depending on where we perform the
pre-computation phase, we are faced with the following issues:

1. Reusability: In a secure MPC protocol, the pre-computed OTs are used only in
one execution of the MPC protocol. So, if we perform the OT pre-computation
as part of the key generation algorithm, then the pre-computed OTs need to
be reused across different ciphertexts. In this case, no security is guaranteed.

2. Compactness: In the current secure MPC with pre-processing solutions, it
turns out that the number of OTs to be pre-computed depends on the size
of the circuit implementing the MPC functionality. So if we implement the

4 A 2-ary FE scheme is a functional encryption corresponding to 2-ary functions. A
functional key of 2-ary function f decrypts two ciphertexts CT1 (of message x) and
CT2 (of message y) to obtain f(x, y).

5 The key difference is that in prior works, the pre-processing phase is generally inde-
pendent of the inputs and in our case, it is input dependent. We require that this
pre-processing phase is compatible with any MPC functionality that will be defined
after the pre-processing phase.

Robust Transforming Combiners from Indistinguishability Obfuscation 97

OT pre-computation as part of the encryption algorithm, we need to make
sure that the encryption complexity is independent of the number of pre-
processed OTs.

We perform the OT pre-computation as part of the encryption algorithm. Hence,
we have to deal with the compactness issue stated above. To resolve this, we
“compress” the OTs using PRF keys. That is, to generate OTs between two
parties Pi and Pj , we use a PRF key Kij . The next problem is under which
public key do we encrypt Kij . Encrypting this under either ith candidate or jth

candidate could compromise the key completely. The guarantee we want is that
as long as one of the two candidates is honest, this key is not compromised.
To solve this problem, we employ a 1-out-2 combiner of 2-ary FE – given two
candidates, 1-out-2 combiner is secure as long as one of them is secure. This can
be achieved by computing an “onion” of two FE candidates. We refer the reader
to the technical section for more details.

Correctness Amplification: [12] showed how to transform ε-approximately correct
iO into an almost correct iO scheme. They do this in two steps: (i) the first step is
the self reducibility step, where they transform approximately correct iO scheme
into one, where the iO scheme is correct on every input with probability close to ε,
(ii) then they apply BPP amplification techniques to get almost correct iO. Their
self reducibility step involves using a type of secure function evaluation scheme
and they show how to construct this based on DDH and LWE. We instead show
how to achieve the self reducibility step using a single key private key functional
encryption scheme. The main idea is as follows: to obfuscate a circuit C, we
generate a functional key of C and then obfuscate the FE decryption algorithm
with the functional key hardwired inside it. Additionally, we give out the master
secret key in the clear along with this obfuscated circuit. To evaluate on an
input x, first encrypt this using the master secret key and feed this ciphertext
to the obfuscated circuit, which evaluates the decryption algorithm to produce
the output. This approach leads to the following issues: (i) firstly, revealing the
output of the FE decryption could affect the correctness of iO: for instance, the
obfuscated circuit could output ⊥ for all inputs on which the FE decryption
outputs 1, (ii) since the evaluator has the master secret key, he could feed in
maliciously generated FE ciphertexts into the obfuscated circuit.

We solve (i) by using by masking the output of the circuit. Here, the mask is
supplied as input to the obfuscated circuit. We solve (ii) by using NIZKs with
pre-processing, a tool used by Ananth et al. to construct witness encryption
combiners. This primitive can be based on one-way functions.

Our Solution in a Nutshell: Summarizing, we take the following approach
to build compact FE starting from many iO candidates out of which at least one
of them is correct and secure.

1. First check if the candidates are approximately correct. If not, discard the
candidates.

2. Apply the new correctness amplification mechanism on all the remaining iO
candidates.

98 P. Ananth et al.

3. Construct n 2-ary FE candidates from the n iO candidates obtained from the
previous step.

4. Then using an onion-based approach, obtain a 2-ary FE combiner that only
combines two candidates. This will lead to N = n2 − n candidates.

5. Construct a compact FE scheme starting from the above N 2-ary FE candi-
dates and an n-party MPC protocol with OT preprocessing phase. Essentially
every (i, j)th 2-ary FE candidate implements a channel between ith and jth

party.

We expand on the above high level approach in the relevant technical sections.

3 Preliminaries

Let λ be the security parameter. For a distribution D we denote by x
$←− an ele-

ment chosen from D uniformly at random. We denote that
{D1,λ

} ≈c,μ

{D2,λ

}
,

if for every PPT distinguisher A,
∣
∣
∣
∣ Pr

[A(1λ, x
$←− D1,λ) = 1

] − Pr
[A(1λ, x

$←−

D2,λ) = 1
]
∣
∣
∣
∣ ≤ μ(λ) where μ is a negligible function. For a language L associated

with a relation R with denote by (x,w) ∈ R an instance x ∈ L with a valid
witness w. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. By negl
we denote a negligible function. We assume that the reader is familiar with the
concepts of one-way functions, pseudorandom functions, functional encryption,
NIWI, statistically binding commitments and in particular sub-exponential secu-
rity of these primitives. We say that the one-way function is sub-exponentially
secure if no polynomial time adversary inverts a random image with a probabil-
ity greater than inverse sub-exponential in the length of the input. We refer the
reader to full version for the definitions of these primitives.

Important Notation. We introduce some notation that will be useful throughout
this work. Consider an algorithm A. We define the time function of A to be T
if the runtime of A(x) ≤ T (|x|). We are only interested in time functions which
satisfy the property that T (poly(n)) = |poly(T (n))|. In this section, we describe
NIZK with Pre-Processing.

3.1 NIZK with Pre-Processing

We consider a specific type of zero knowledge proof system where the messages
exchanged is independent of the input instance till the last round. We call this
zero knowledge proof system with pre-processing. The pre-processing algorithm
essentially simulates the interaction between the prover and the verifier till the
last round and outputs views of the prover and the verifier.

Definition 1. Let L be a language with relation R. A scheme PZK = (PZK.Pre,
PZK.Prove,PZK.Verify) of PPT algorithms is a zero knowledge proof system with
pre-processing, PZK, between a verifier and a prover if they satisfy the following

Robust Transforming Combiners from Indistinguishability Obfuscation 99

properties. Let (σV , σP) ← PZK.Pre(1λ) be a preprocessing stage where the prover
and the verifier interact. Then:

1. Completeness: for every (x,w) ∈ R we have that:

Pr [PZK.Verify(σV , x, π) = 1 : π ← PZK.Prove(σP , x, w)] = 1.

where the probability is over the internal randomness of all the PZK algo-
rithms.

2. Soundness: for every x /∈ L we have that:

Pr[∃π : PZK.Verify(σV , x, π) = 1] < 2−n

where the probability is only over PZK.Pre.
3. Zero-Knowledge: there exists a PPT algorithm S such that for any x,w

where V (x,w) = 1 there exists a negligible function μ such that it holds that:

{σV ,PZK.Prove(σP , x, w)} ≈c,μ {S(x)}

We say that PZK is sub-exponentially secure if μ(λ) = O(2−λc

) for a constant
c > 0.

Such schemes were studied in [21,40] where they proposed constructions based
on one-way functions. Sub-exponentially secure PZK can be built from sub-
exponentially secure one-way functions.

4 Definitions: IO Combiner

We recall the definition of IO combiners from [1]. Suppose we have many indis-
tinguishability obfuscation (IO) schemes, also referred to as IO candidates. We
are additionally guaranteed that one of the candidates is secure. No guarantee
is placed on the rest of the candidates and they could all be potentially broken.
Indistinguishability obfuscation combiners provides a mechanism of combining
all these candidates into a single monolithic IO scheme that is secure. We empha-
size that the only guarantee we are provided is that one of the candidates is secure
and in particular, it is unknown exactly which of the candidates is secure.

We formally define IO combiners next. We start by providing the syntax
of an obfuscation scheme. We then present the definitions of an IO candidate
and a secure IO candidate. To construct IO combiner, we need to also consider
functional encryption candidates. Once we give these definitions, we present our
construction in Sect. 5.2.

Syntax of Obfuscation Scheme. An obfuscation scheme associated to a class of
circuits C = {Cλ}λ∈N with input space Xλ and output space Yλ consists of two
PPT algorithms (Obf,Eval) defined below.

– Obfuscate, C ← Obf(1λ, C): It takes as input security parameter λ, a circuit
C ∈ Cλ and outputs an obfuscation of C, C.

100 P. Ananth et al.

– Evaluation, y ← Eval
(
C, x

)
: This is usually a deterministic algorithm. But

sometimes we will treat it as a randomized algorithm. It takes as input an
obfuscation C, input x ∈ Xλ and outputs y ∈ Yλ.

Throughout this work, we will only be concerned with uniform Obf algorithms.
That is, Obf and Eval are represented as Turing machines (or equivalently uni-
form circuits).

We require that each candidate satisfy the following property called polyno-
mial slowdown.

Definition 2 (Polynomial Slowdown). An obfuscation scheme Π =
(Obf,Eval) is an IO candidate for a class of circuits C = {Cλ}λ∈N, with every
C ∈ Cλ has size poly(λ), if it satisfies the following property:

Polynomial Slowdown: For every C ∈ Cλ, we have the running time of Obf
on input (1λ, C) to be poly(|C|, λ). Similarly, we have the running time of Eval
on input (C, x) for x ∈ Xλ is poly(|C|, λ).

We now define various notions of correctness.

Definition 3 (Almost/Perfect Correct IO candidate). An obfuscation
scheme Π = (Obf,Eval) is an almost correct IO candidate for a class of circuits
C = {Cλ}λ∈N, with every C ∈ Cλ has size poly(λ), if it satisfies the following
property:

– Almost Correctness: For every C : Xλ → Yλ ∈ Cλ, x ∈ Xλ it holds that:

Pr
[∀x ∈ Xλ,Eval

(
Obf(1λ, C), x

)
= C(x)

] ≥ 1 − negl,

over the random coins of Obf. The candidate is called a correct IO candidate
if this probability is 1.

Definition 4 (α−worst-case Correctness). An obfuscation scheme Π =
(Obf,Eval) is α−worst-case correct IO candidate for a class of circuits C =
{Cλ}λ∈N, with every C ∈ Cλ has size poly(λ), if it satisfies the following prop-
erty:

– α−worst-case Correctness: For every C : Xλ → {0, 1} ∈ Cλ, x ∈ Xλ it
holds that:

Pr
[
Eval

(
Obf(1λ, C), x

)
= C(x)

] ≥ α,

over the random coins of Obf and Eval. The candidate is correct if this prob-
ability is 1.

Remark 1. Given any α−worst case correct IO candidate where α > 1/2 +
1/poly(λ), as observed by [12] we can gen an almost correct IO candidate while
retaining security via BPP amplification.

Robust Transforming Combiners from Indistinguishability Obfuscation 101

ε − Secure IO candidate. If any IO candidate additionally satisfies the following
(informal) security property then we define it to be a secure IO candidate: for
every pair of circuits C0 and C1 that are equivalent6 we have obfuscations of C0

and C1 to be indistinguishable by any PPT adversary.

Definition 5 (ε-Secure IO candidate). An obfuscation scheme Π = (Obf,
Eval) for a class of circuits C = {Cλ}λ∈N is a ε-secure IO candidate if it satisfies
the following conditions:

– Security. For every PPT adversary A, for every sufficiently large λ ∈ N, for
every C0, C1 ∈ Cλ with C0(x) = C1(x) for every x ∈ Xλ and |C0| = |C1|, we
have:
∣
∣
∣ Pr

[
0 ← A

(
Obf(1λ, C0), C0, C1

)]
−Pr

[
0 ← A

(
Obf(1λ, C1), C0, C1

)]∣∣
∣ ≤ ε(λ)

Remark 2. We say that Π is a secure IO candidate if it is a ε-secure IO candidate
with ε(λ) = negl(λ), for some negligible function negl.

We remarked earlier that the identity function is an IO candidate. However, note
that the identity function is not a secure IO candidate. Whenever we refer an IO
candidate we will specify the correctness and the security notion it satisfies. For
example [4,24,33] are examples of negl-secure correct IO candidate. In particular,
an IO candidate need not necessarily have any security/correctness property
associated with it.

We have the necessary ingredients to define an IO combiner.

4.1 Definition of IO Combiner

We present the formal definition of IO combiner below. First, we provide the
syntax of the IO combiner. Later we present the properties associated with an
IO combiner.

There are two PPT algorithms associated with an IO combiner, namely,
CombObf and CombEval. Procedure CombObf takes as input circuit C along with
the description of multiple correct IO candidates7 and outputs an obfuscation
of C. Procedure CombEval takes as input the obfuscated circuit, input x, the
description of the candidates and outputs the evaluation of the obfuscated circuit
on input x.

Syntax of IO Combiner. We define an IO combiner Πcomb = (CombObf,
CombEval) for a class of circuits C = {Cλ}λ∈N.

– Combiner of Obfuscate algorithms, C ← CombObf(1λ, C,Π1, . . . , Πn): It
takes as input security parameter λ, a circuit C ∈ C, description of correct IO
candidates {Πi}i∈[n] and outputs an obfuscated circuit C.

6 Two circuits C0 and C1 are equivalent if they (a) have the same size, (b) have the
same input domain and, (c) for every x in the input domain, C0(x) = C1(x).

7 The description of an IO candidate includes the description of the obfuscation and
the evaluation algorithms.

102 P. Ananth et al.

– Combiner of Evaluation algorithms, y ← CombEval(C, x,Π1, . . . , Πn): It
takes as input obfuscated circuit C, input x, descriptions of IO candidates
{Πi}i∈[n] and outputs y.

We define the properties associated to any IO combiner. There are three main
properties – correctness, polynomial slowdown, and security. The correctness
and the polynomial slowdown properties are defined on the same lines as the
corresponding properties of the IO candidates.

The intuitive security notion of IO combiner says the following: suppose
one of the candidates is a secure IO candidate then the output of obfuscator
(CombObf) of the IO combiner on C0 is computationally indistinguishable from
the output of the obfuscator on C1, where C0 and C1 are equivalent circuits.

Definition 6 ((ε′, ε)-secure IO combiner). Consider a circuit class C =
{Cλ}λ∈N. We say that Πcomb = (CombObf,CombEval) is a (ε′, ε)-secure IO
combiner if the following conditions are satisfied: Let Π1, . . . ,Πn be n correct
IO candidates for P/poly, and ε is a function of ε′.

– Correctness. Let C ∈ Cλ∈N and x ∈ Xλ. Consider the following process: (a)
C ← CombObf(1λ, C,Π1, . . . , Πn), (b) y ← CombEval(C, x,Π1, . . . , Πn).
Then with overwhelming probability over randomness of CombObf, Pr[y =

C(x)] ≥ 1, where the probability is over x
$←− Xλ.

– Polynomial Slowdown. For every C : Xλ → Yλ ∈ Cλ, we have the running
time of CombObf on input (1λ, C,Π1, . . . , Πn) to be at most poly(|C|+n+λ).
Similarly, we have the running time of CombEval on input (C, x,Π1, . . . , Πn)
to be at most poly(|C| + n + λ).

– Security. Let Πi be ε-secure correct IO candidate for some i ∈ [n]. For every
PPT adversary A, for every sufficiently large λ ∈ N, for every C0, C1 ∈ Cλ

with C0(x) = C1(x) for every x ∈ Xλ and |C0| = |C1|, we have:
∣
∣
∣Pr
[

0 ← A
(

C0, C0, C1, Π1, . . . , Πn

)]

− Pr
[

0 ← A
(

C1, C0, C1, Π1, . . . , Πn

)]∣
∣
∣

≤ ε′(λ),

where Cb ← CombObf(1λ, Cb,Π1, . . . , Πn) for b ∈ {0, 1}.
Some remarks are in order.

Remark 3. We say that Πcomb is an IO combiner if it is a (ε′, ε)-secure IO com-
biner, where, (c) ε′ = negl′ and, (d) ε = negl with negl and negl′ being negligible
functions.

Remark 4. We alternatively call the IO combiner defined in Definition 6 to be a
1-out-n IO combiner. In our construction we make use of 1-out-2 IO combiner.
This can be instantiated using a folklore “onion combiner” in which to obfuscate
any given circuit one uses both the obfuscation algorithms to obfuscate the
circuit one after the other in a nested fashion.

Robust Transforming Combiners from Indistinguishability Obfuscation 103

Remark 5. We also define robust combiner, where the syntax is the same as
above except that security and correctness properties hold even if there is only
one input candidate that is secure and correct. No restriction about correctness
and security is placed on other candidates.

As seen in [1], a robust combiner for arbitrary many candidates imply universal
obfuscation as defined below.

Definition 7 ((T, ε)-Universal Obfuscation). We say that a pair of Turing
machines Πuniv = (Πuniv.Obf,Πuniv.Eval) is a universal obfuscation, parame-
terized by T and ε, if there exists a correct ε-secure indistinguishability obfuscator
for P/poly with time function T then Πuniv is an indistinguishability obfuscator
for P/poly with time function poly(T).

4.2 Definition of 2-ary Functional Encryption Candidate

We now define 2-ary (public-key) functional encryption candidates, also referred
to as MIFE candidates). We start by providing the syntax of a MIFE scheme.

Syntax of 2-ary Functional Encryption Scheme. A MIFE scheme associated to
a class of circuits C = {Cλ}λ∈N consists of four polynomial time algorithms
(Setup,Enc,KeyGen,Dec) defined below. Let Xλ be the message space of the
scheme and Yλ be the space of outputs for the scheme (same as the output
space of Cλ).

– Setup, (EK1,EK2,MSK) ← Setup(1λ): It is a randomized algorithm takes as
input security parameter λ and outputs a keys (EK1,EK2,MSK). Here EK1

and EK2 are encryption keys for indices 1 and 2 and MSK is the master secret
key.

– Encryption, CT ← Enc(EKi,m): It is a randomized algorithm takes the
encryption key EKi for any index i ∈ [2] and a message m ∈ Xλ and outputs
an encryption of m (encrypted under EKi).

– Key Generation, skC ← KeyGen (MSK, C): This is a randomized algorithm
that takes as input the master secret key MSK and a 2-input circuit C ∈ Cλ

and outputs a function key skC .
– Decryption, y ← Dec (skC ,CT1,CT2): This is a deterministic algorithm that

takes as input the function secret key skC and a ciphertexts CT1 and CT2

(encrypted under EK1 and EK2 respectively). Then it outputs a value y ∈ Yλ.

Throughout this work, we will only be concerned with uniform algorithms. That
is, (Setup,Enc,KeyGen,Dec) are represented as Turing machines (or equivalently
uniform circuits).
We define the notion of an MIFE candidate below. The following definition of
multi-input functional encryption scheme incorporates only the correctness and

104 P. Ananth et al.

compactness properties of a multi-input functional encryption scheme [31]. In
particular, an MIFE candidate need not necessarily have any security property
associated with it. Formally,

Definition 8 (Correct MIFE candidate). A multi-input functional encryp-
tion scheme MIFE = (Setup,Enc,KeyGen,Dec) is a correct MIFE candidate for
a class of circuits C = {Cλ}λ∈N, with every C ∈ Cλ has size poly(λ), if it satisfies
the following properties:

– Correctness: For every C : Xλ × Xλ → {0, 1} ∈ Cλ,m1,m2 ∈ Xλ it holds
that:

Pr

⎡

⎢
⎢
⎣

(EK1,EK2,MSK) ← Setup(1λ)
CTi ← Enc(EKi,mi) i ∈ [2]
skC ← KeyGen(MSK, C)

C(m1,m2) ← Dec(skC ,CT1,CT2)

⎤

⎥
⎥
⎦ ≥ 1 − negl(λ),

where negl is a negligible function and the probability is taken over the coins
of the setup only.

– Compactness: Let (EK1,EK2,MSK) ← Setup(1λ), for every m ∈ Xλ and
i ∈ [2], CT ← Enc(EKi m). We require that |CT| < poly(|m|, λ).

A scheme is an MIFE candidate if it only satisfies the correctness and com-
pactness property.

Selective Security. We recall indistinguishability-based selective security for
MIFE. This security notion is modeled as a game between a challenger C and an
adversary A where the adversary can request for functional keys and ciphertexts
from C. Specifically, A can submit 2-ary function queries f and respond with the
corresponding functional keys. It submits message queries of the form (m0

1,m
0
2)

and (m1
1,m

1
2) and receive encryptions of messages mb

i for i ∈ [2], and for some
random bit b ∈ {0, 1}. The adversary A wins the game if she can guess b with
probability significantly more than 1/2 if the following properties are satisfied:

– f(m0
1, ·) is functionally equivalent to f(m1

1, ·).
– f(·,m0

2) is functionally equivalent to f(·,m1
2)

– f(m0
1,m

0
2) = f(m1

1,m
1
2)

Formal definition is presented next.

ε − Secure MIFE candidate. If any MIFE candidate additionally satisfies the
following (informal) security property then we define it to be a secure MIFE
candidate:

Definition 9 (ε-Secure MIFE candidate). A scheme MIFE for a class of
circuits C = {Cλ}λ∈N and message space Xλ is a ε-secure FE candidate if it
satisfies the following conditions:

– MIFE is a correct and compact MIFE candidate with respect to C,

Robust Transforming Combiners from Indistinguishability Obfuscation 105

– Security. For every PPT adversary A, for every sufficiently large λ ∈ N, we
have:

∣
∣
∣ Pr

[
0 ← ExptMIFE

A
(
1λ, 0

)]
− Pr

[
0 ← ExptMIFE

A
(
1λ, 1

)]∣∣
∣ ≤ ε(λ)

where the probability is taken over coins of all algorithms. For each b ∈ B and
λ ∈ N, the experiment ExptMIFE

A (1λ, b) is defined below:

1. Challenge message queries: A outputs (m0
1,m

0
2) and (m0

1,m
0
2) where each

mi
j ∈ Xλ

2. The challenger computes Setup(1λ) → (EK1,EK2,MSK). It then computes
CT1 ← Enc(EK1,m

b
1) and CT2 ← Enc(EK1,m

b
2). Challenger hands CT1,CT2

to the adversary.
3. A submits functions fi to the challenger satisfying the constraint given below.

– fi(m0
1, ·) is functionally equivalent to fi(m1

1, ·).
– fi(·,m0

2) is functionally equivalent to fi(·,m1
2)

– fi(m0
1,m

0
2) = fi(m1

1,m
1
2)

For every i, the adversary gets skfi
← KeyGen(MSK, fi).

4. Adversary submits the guess b′. The output of the game is b′.

Remark 6. We say that MIFE is a secure MIFE candidate if it is a ε-secure FE
candidate with ε(λ) = negl(λ), for some negligible function negl.

5 Construction of IO Combiner

In this section we describe our construction for IO combiner. We first define an
MPC framework that will be used in our construction.

5.1 MPC Framework

We consider an MPC framework in the pre-processing model described below.
Intuitively the input is pre-processed and split amongst n deterministic parties
which are also given some correlated randomness. Then, they run a protocol
together to compute f(x) for any function f of the input x. The syntax consists
of the following algorithms:

– Preproc(1λ, n, x) → (x1, corr1, .., xn, corrn): This algorithm takes as input
x ∈ Xλ, the number of parties computing the protocol n, and the security
parameter λ. It outputs strings xi, corri for i ∈ [n]. Each corri = corri(r) is
represented both a function and a value depending on the context. (x1, .., xn)
forms a secret sharing of x.

– Eval(Party1(x1, corr1), ..,Partyn(xn, corrn), f) → f(x): The evaluate algorithm
is a protocol run by n parties with Partyi having input xi, corri. Each Partyi

is deterministic. The algorithm also takes as input the function f ∈ Cλ of size
bounded by poly(λ) and it outputs f(x).

We now list the notations used for the protocol.

106 P. Ananth et al.

1. The number of rounds in the protocol is given by a polynomial tf (λ, n, |x|).
2. For every i ∈ [n], corri = {corri,j}j �=i. Let lenf = lenf (λ, n) denote a polyno-

mial. Then, for each i, j ∈ [n] such that i �= j, corri,j and corrj,i are generated

as follows. Sample ri,j
$←− {0, 1}lenf then compute corri,j = corri,j(ri,j) and

corrj,i = corrj,i(ri,j).
3. There exists an efficiently computable function φf that takes as input a round

number k ∈ [tf] and outputs φf (k) = (i, j). Here, (i, j) represents that the
sender of the message at kth round is Partyi and the recipient is Partyj .

4. The efficiently computable next message function for every round k ∈ [tf],
Mk does the following. Let φf (k) = (i, j). Then, Mk takes as input (xi, y1, ..,
yk−1, corri,j) and outputs the next message as yk.

Correctness : We require the following correctness property to be satisfied by
the protocol. For every n, λ ∈ N, x ∈ Xλ, f ∈ Cλ it holds that:

Pr

[
(x1, corr1, .., xn, corrn) ← Preproc(1λ, n, x)

Eval(Party1(x1, corr1), ...,Partyn(xn, corrn), f) → f(x)

]
= 1,

Here the probability is taken over coins of the algorithm Preproc.

Security Requirement. We require the security against static corruption of n− 1
semi-honest parties. Informally the security requirement is the following. There
exists a polynomial time algorithm that takes as input f(x) and inputs of n − 1
corrupt parties {(corri, xi)}i�=i∗ and simulates the outgoing messages of Partyi∗ .
Formally, consider a PPT adversary A. Let the associated PPT simulator be
Sim. We define the security experiment below.

Exptreal,A(1λ)

– A on input 1λ outputs n, the circuit f and input x along with the index of
the honest party, i∗ ∈ [n].

– Secret share x into (x1, .., xn).
– Part of the pre-processing step is performed by the adversary. For every i > j

such that i∗ �= i and i∗ �= j, A samples ri,j
$←− {0, 1}lenf . Then, it computes,

corri,j = corri,j(ri,j) and corrj,i = corrj,i(ri,j).

– Sample rj
$←− {0, 1}lenf for j �= i∗. Then compute corri∗,j = corri∗,j(rj) and

corrj,i∗ = corrj,i∗(rj). We denote corri = {corri,j}j �=i. This completes the pre-
processing step.

– Let y1, .., ytf be the messages computed by the parties in the proto-
col computing f(x). Output

({xi, corri}i�=i∗ , y1, .., ytf

)
. In MPC literature

({xi, corri}i�=i∗ , y1, .., ytf) is referred to the view of the adversary in this exper-
iment. We refer this as viewExptreal,A .

Exptideal,A(1λ)

– A on input 1λ outputs n, the circuit f and input x along with the index of
the honest party, i∗ ∈ [n].

Robust Transforming Combiners from Indistinguishability Obfuscation 107

– Secret share x into (x1, .., xn).
– Part of the pre-processing step is performed by the adversary. For every i > j

such that i∗ �= i and i∗ �= j, A samples ri,j
$←− {0, 1}lenf . Then, it computes,

corri,j = corri,j(ri,j) and corrj,i = corrj,i(ri,j).

– Sample rj
$←− {0, 1}lenf for j �= i∗. Then compute corri∗,j = corri∗,j(rj) and

corrj,i∗ = corrj,i∗(rj). This completes the pre-processing step.
– Compute Sim

(
1λ, 1|f |, f(x), {xi, corri}i�=i∗

)
. Output the result. We refer this

as viewExptideal,A .

We require that the output of both the above experiments is computationally
indistinguishable from each other. That is,

Definition 10 (Security). Consider a PPT adversary A and let the associated
PPT simulator be Sim. For every PPT distinguisher D, for sufficiently large
security parameter λ, it holds that:

∣
∣Pr

[
1 ← D (

Exptreal,A(1λ)
)] − Pr

[
1 ← D(Exptideal,A

(
1λ)

)]∣∣ ≤ negl(λ),

where negl is some negligible function.

Instantiation of MPC Framework: We show how to instantiate this MPC frame-
work. We use a 1-out-of-n (i.e., n − 1 of them are insecure) information theoret-
ically secure MPC protocol secure against passive adversaries [30,38] in the OT
hybrid model. We then replace the OT oracle by preprocessing all the OTs [5]
before the execution of the protocol begins. Note that every OT pair is associated
exactly with a pair of parties.

5.2 Construction Roadmap

In this section, we describe the roadmap of our construction. We start with n IO
candidates, Π1, ..,Πn and construct n2−n IO candidates Πi,j where i �= j. Πi,j is
constructed by using an onion obfuscation combiner (one in which each obfusca-
tion candidate is run sequentially on the circuit). Each candidate Πi,j is now used
to construct a 2-ary public-key multi-input functional encryption scheme FEi,j

candidates using [9,31] (this step uses the existence of one-way function). This
is because [31] uses an existence of a public-key encryption, statistically binding
commitments and statistically sound non-interactive witness-indistinguishable
proofs. All these primitives can be constructed using IO and one-way functions
as shown in works such as [9,46]. These primitives maintain binding/soundness
as long as the underlying candidate is correct.

Any candidate FEi,j is secure as long as either Πi or Πj is secure. This follows
from the security of onion obfuscation combiner. We describe below how to
construct a compact functional encryption FE from these multi-input functional
encryption candidates and MPC framework in Sect. 5.3. Finally, using [2,11] and
relying on complexity leveraging we construct a secure IO candidate Πcomb from
FE. Below is a flowchart describing the roadmap.

108 P. Ananth et al.

5.3 Constructing Compact FE from n2 − n FE Candidates

Consider the circuit class C. We now present our construction for a compact func-
tional encryption scheme FE for C starting from compact multi-input functional
encryption candidates FEi,j for C. Let Γ be a secure MPC protocol described in
Sect. 5.1. Let λ be the security parameter and F denote a pseudorandom function
(PRF) where F : {0, 1}λ ×{0, 1}∗ → {0, 1}len(λ) where len is some large enough
polynomial. Finally let Com be a statistically binding commitment scheme.

FE.Setup(1λ) Informally, the setup algorithm samples encryption and master
secret keys for candidates FEi,j such that i �= j and i, j ∈ [n]. These candidates
act as a channel between candidate i and j. It also samples NIWIi,j prover strings
for these candidates to prove consistency of the messages computed during the
protocol.

1. Start with n IO candidates

2. Combine each candidate pair (i,j) to get n2 − n IO candidates

3. Construct 2-ary public-key multi-input functional encryption candidates FEi,j for every i �= j

4. Construct compact functional encryption FE from all FEi,j candidates

5. Construct secure IO from compact functional encryption scheme

Using Onion Obfuscation

[32,9]

Using MPC Framework

[2,11]

1. Setting up MIFE candidates:
– For every i, j ∈ [n] and i �= j run FEi,j .Setup(1λ) → (EKi,j,1,EKi,j,2,

MSKi,j)
2. Sample NIWI prover strings

– Run NIWIi,j .Setup → σi,j for i, j ∈ [n] and i �= j. Recall, NIWIi,j is a
non-interactive statistically sound witness-indistinguishable proof scheme
(in the CRS model) constructed using IO candidate Πi,j and any one-way

Robust Transforming Combiners from Indistinguishability Obfuscation 109

function as done in [9]8. This proof scheme remains sound if the underlying
obfuscation candidate is correct/almost correct. The proof retains witness
indistinguishability if the candidate is additionally secure.

– OutputMPK={EKi,j,1,EKi,j,2, σi,j}i,j∈[n],i �=j andMSK={MSK}i,j∈[n],i �=j .

FE.Enc(MPK,m). Informally, the encryption algorithm takes the message m and
runs preprocessing to get (m1, corr

′
1, ...,mn, corr′n). It discards corr′i (which is

allowed by our MPC framework). Then it samples PRF keys Ki,j for i �= j, which
are used to generate randomness for next message function (via computing corri
for every decryption). It also commits these message shares mi and PRF keys,
which are used to compute proofs about messages of the MPC protocol. Finally,
these shares and PRF keys are encrypted using an appropriate FE candidate.

1. MPC Preprocessing
– Run Preproc(1λ, n,m) → (m1, corr

′
1, ..,mn, corr′n). Compute commitments

Zin,i = Com(mi) for all i ∈ [n]. Let rin,i be the corresponding randomness.
2. Sample and commit PRF keys

– Sample PRF keys Ki,j for i, j ∈ [n] and i �= j with the constraint that
Ki,j = Kj,i. Compute Zi,j = Com(Ki,j) for i, j ∈ [n] and i �= j. Let ri,j

be the corresponding randomness.
– Sample PRF keys K

′
i,j for i, j ∈ [n] such that i �= j.

3. Compute encryptions
– For every i, j ∈ [n] and i �= j compute CTi,j = FEi,j .Enc(EKi,j,1,mi,

Ki,j ,K
′
i,j , {Zin,k, Zk,j}k,j∈[n],k �=j , ri,j , rin,i,⊥). Here ⊥ is a slot of size

poly(λ), which is described later.
– Output CT = {CTi,j}i�=j

FE.KeyGen(MSK, C). Let tC denote the number of rounds for the MPC proto-
col Γ for computing the circuit C. Let lenmsg denote the maximum length of
any message sent in the protocol while computing C on input. Informally, this
algorithm generates FE keys for the circuits implementing next message function
(used to compute C(m)) for every round k ∈ [tC].

1. Computing commitments
– Compute Zout,i ← Com(⊥lenmsg) for i ∈ [tC].

2. Compute secret-key encryptions
– Let E by a secret-key encryption scheme. Run E.Setup(1λ) → sk. For every

i ∈ [tC], compute ci = E.Enc(sk, 0). These encryptions encrypt messages
of sufficient length (described later).

3. Generate keys
– Sample a random tag ∈ {0, 1}λ.
– For every round k ∈ [tC], let φ(k) = (i′, j′), generate a key skC,k ←

FEi′,j′ .KeyGen(MSKi′,j′ , Gk) where Gk is described in Fig. 1. Output
{skC,k}k∈[tC].

8 We note that we could have also used NIZKs with pre-processing based on one-way
functions. The construction becomes a little complicated with that.

110 P. Ananth et al.

Fig. 1. Circuit Gk

FE.Dec(skC ,CT)w

1. Evaluating the MPC protocol for circuit C
– Let φ(1) = (i1, j1). Compute CT1 = FEi1,j1 .Enc(EKi1,j1,2,⊥,⊥).

Set (x1, π1) = FEi,j .Dec(skC,1,CTi1,j1 ,CT1).
– For every round k ∈ [tC], compute xk, πk iteratively from x1, π1,

.., xk−1, πk−1 as described below.
a Compute φ(k) = (i, j). Then, compute CTk = FEi,j .Enc(EKi,j,2,

x1, π1, .., xk−1, πk−1).
b Run (xk, πk) ← FEi,j .Dec(skC,k,CTi,j ,CTk)

– Output xtC

Robust Transforming Combiners from Indistinguishability Obfuscation 111

Correctness: If the underlying MPC protocol is correct and the multi-input
functional encryption candidates FEi,j are correct then one can inspect that our
scheme satisfies correctness.

Compactness. Compactness is discussed next. The cipher-text encrypting any
message m, consists of FEi,j encryptions CTi,j for any i, j ∈ [n] such that i �= j.
Each CTi,j encrypts mi,Ki,j ,K

′
i,j , {Zin,k, Zk,j}k,j∈[n],k �=j , ri,j , rin,i,⊥. Note that

mi is of the same length of the message where as Ki,j ,K
′
i,j are just the PRF keys

that are of length λ. {Zin,k, Zk,j}k,j∈[n],k �=j are commitments of mi and the PRF
keys respectively while ri,j and rin,i is the randomness used for the commitments
Zi,j and Zin,i. ⊥ is a slot of size poly(λ) (which is the length of the decryption
key for scheme E). All these strings are of a fixed polynomial size (polynomial
in n, λ, |m|). If the underlying scheme FEi,j is compact, the scheme FE is also
compact. We give a brief sketch of proof here. We refer the reader to our full
version for a detailed proof.

Theorem 4. Consider the circuit class C = P/poly. Assuming Γ is a secure
MPC protocol for C according to the framework described in Sect. 5.1 and one-
way functions exist, then scheme FE is a secure functional encryption scheme as
long as there is i∗ ∈ [n] such that Πi∗ is a secure candidate.

Proof (Sketch). We now sketch the security proof of this theorem. Assume Πi∗

is a secure IO candidate. This implies FEi∗,j and FEj,i∗ is secure for any j �= i∗.
We use this crucially in our proofs. We employ the standard hybrid argument
to prove the theorem. In the first hybrid (Hyb1), the message Mb is encrypted

honestly with b
$←− {0, 1}. In the final hybrid (Hyb9), the ciphertext contains no

information about b. At this point, the probability of guessing the bit b is exactly
1/2. By arguing indistinguishability of every consecutive intermediate hybrids,
we show that the probability of guessing b in the first hybrid is negligibly close
to 1/2 (or the advantage is 0), which proves the theorem.

The first hybrid corresponds to the regular FE security game. Then we switch
to a hybrid where the secret-key encryption cipher-text ci in the function keys
for all rounds i ∈ [tC] are hard-wired as encryptions of the output of the MIFE
decryption in those rounds. This can be done, because the cipher-text and the
function key fixes these outputs (as a function of PRF keys, e.t.c). Then, we
change the commitments Zout,k to commtiments of message output in round k
(for k such that the i∗ is the receiving or sending party in that round). This
security holds due to the security of the commitment. In the next hybrid, we
rely on the security of the scheme FEi∗,j and FEj,i∗ by generating encryptions
that does not contain the PRF keys and the openings of the commitments but
only contain the secret key for the encryption scheme E. Now we invoke the
security of the PRF to generate proofs πk hard-wired in ck for any round k (for
k such that the i∗ is the receiving or sending party in that round) randomly.
Next, we rely on the security of NIWIi∗,j and NIWIj,i∗ to use the opening of
Zout,k (for k such that the i∗ is the receiving or sending party in that round)
to generate the proofs. Now relying on the security of commitment scheme, we

112 P. Ananth et al.

make the commitments Zi∗,j , Zj,i∗ and Zin,i∗ to commit to ⊥. Then we use the
security of the PRF to generate corri∗,j and corrj,i∗ (used for generating outputs
xn) randomly. Finally, we invoke the security of the MPC framework (by using
the simulator) to make the game independent of b.

5.4 Summing Up: Combiner Construction

We now give the combiner construction:

– CombObf(1λ, C,Π1, ..,Πn) : Use Π1, ..,Πn and any one-way function to con-
struct a compact functional encryption FE as in Sect. 5.2. Use [2,11] to con-
struct an obfuscator Πcomb. Output C ← Πcomb(1λ, C).

– CombEval(C, x) : Output Πcomb.Eval(C, x).

Correctness of the scheme is straight-forward to see because of the correctness of
FE as shown in Sect. 5.2. The security follows from the sub-exponential security
of construction in Sect. 5.2. The construction in Sect. 5.2 is sub-exponentially
secure as long as the underlying primitives are sub-exponentially secure.

We now state the theorem.

Theorem 5. Assuming sub-exponentially secure one-way functions, the con-
struction described above is a (negl, 2−λc

)−secure IO combiner for P/poly where
c > 0 is a constant and negl is some negligible function.

6 From Combiner to Robust Combiner

The combiner described in Sect. 5.2, is not robust. It guarantees no secu-
rity/correctness if the underlying candidates are not correct. A robust combiner
provides security/correctness as long as there exists one candidate Πi∗ such that
it is secure and correct. There is no other restriction placed on the other set of
candidates. A robust combiner for arbitrary many candidates imply universal
obfuscation [1].

In this section we describe how to construct a robust combiner. The idea is
the following.

– We correct the candidates (upto overwhelming probability) before feeding it
as input to the combiner.

– First, we leverage the fact that secure candidate is correct. We transform
each candidate so that all candidates are (1 − 1/λ)−worst case correct while
maintaining security of the secure candidate.

– Then using [12] we convert a worst-case correct candidate to an almost correct
candidate.

In the discussion below, we assume C consists polynomial size circuits with one
bit output. One can construct obfuscator for circuits with multiple output bits
from obfuscator with one output bit. For simplicity let us assume that Cλ consists
of circuits with input length p(λ) for some polynomial p.

Robust Transforming Combiners from Indistinguishability Obfuscation 113

6.1 Generalised Secure Function Evaluation

The starting point to get a worst-case correct IO candidate is a variant of “Secure
Function Evaluation” (SFE) scheme as considered in [12]. They use SFE to
achieve worst-case correctness by obfuscating evaluation function of SFE for the
desired circuit C. To evaluate on input x, the evaluator first encodes x according
to the SFE scheme and feeds it as an input to the obfuscated program. Then,
it finally decodes the result as the output of the obfuscated program. Worst
case correctness is guaranteed because using the information hard-wired in the
obfuscated program its hard to distinguish an encoding of any input x1 from
that of x2.

We essentially use the same idea except that we consider a variant of SFE
with a setup algorithm (which produces secret parameters), and the evaluation
function for the circuit C is not public. It requires some helper information to
perform evaluation on the input encodings.

We consider a generalised variant of secure function evaluation [12] with the
following properties. Let Cλ be the allowed set of circuits. Let Xλ and Yλ denote
the ensemble of inputs and outputs. A secure function evaluation scheme consists
of the following algorithms:

– Setup(1λ) : On Input 1λ, the setup algorithm outputs secret parameters SP.
– CEncode(SP, C) : The randomized circuit encoding algorithm on input a circuit

C ∈ Cλ and SP outputs another C̃ ∈ Cλ.
– InpEncode(SP, x) : The randomized input encoding algorithm on input x ∈ Xλ

and SP outputs (x̃, z) ∈ Xλ × Zλ.
– Decode(y, z): Let y = C̃(x̃). The deterministic decoding algorithm takes as

input y and z to recover C(x) ∈ Yλ.

We require the following properties:

Input Secrecy: For any x1, x2 ∈ Xλ, any circuit C ∈ Cλ and SP ← Setup(1λ),
it holds that:

{CEncode(SP, C), InpEncode(SP, x1)} ≈c

{CEncode(SP, C), InpEncode(SP, x2)}

Correctness: For any circuit C ∈ Cλ and any input x, it holds that:

Pr[Decode(C̃(x̃), z) = C(x)] = 1

where SP ← Setup(1λ), C̃ ← CEncode(SP, C), (x̃, z) ← InpEncode(SP, x) and the
probability is taken over coins of all the algorithms.

Functionality: For any equivalent circuits C0, C1, SP ← Setup(1λ), C̃0 ←
CEncode(SP, C0) and C̃1 ← CEncode(SP, C1), it holds that C̃0 is equivalent to C̃1

with overwhelming probability over the coins of setup and the circuit encoding
algorithm. This captures the behaviour of the circuit encodings when evaluated
on maliciously generated input encodings.

114 P. Ananth et al.

6.2 Modified Obfuscation Candidate

In this section we achieve the following. Given any candidate Π, we transform
it to a candidate Π ′ such that the following holds:

– If Π is both secure and correct, then so is Π ′.
– Otherwise Π ′ is guaranteed to be (1 − 1/λ)−worst-case correct.

In either case, we can amplify its correctness to get an almost correct IO candi-
date, which can be used by our combiner construction. Given any IO candidate
Π we now describe a modified IO candidate Π ′. For simplicity let us assume that
Cλ consists of circuits with one bit output and input space Xλ corresponds to
the set {0, 1}p(λ) for some polynomial p. Let SFE be a secure function evaluation
scheme as described in Sect. 6.1 for Cλ with Zλ = Yλ = {0, 1}.

– Obfuscate: On input the security parameter 1λ and C ∈ Cλ, first run SP ←
SFE.Setup(1λ), compute C̃ ← CEncode(SP, C). We now define an algorithm
Obfint,Π that takes as input C̃ and 1λ and does the following:
- Compute C ← Π.Obf(1λ, C̃).
- Then sample randomly x1, .., xλ2 ∈ {0, 1}p(λ). Compute (x̃i, zi) ←

InpEncode(SP, xi). Check that Π.Eval(C, x̃i) = C̃(x̃i) for all i ∈ [λ2].
- If the check passes output C, otherwise output C̃ 9.

Output of the obfuscate algorithm is (SP,Obfint,Π(C̃)).
– Evaluate: On input (SP, C) and an input x, first compute (x̃, z) ←
InpEncode(SP, x). Then compute ỹ ← Π.Eval(C, x̃) or ỹ ← C(x̃) depending
on the case if C = C̃ or not. We define as an intermediate evaluate algorithm,
i.e. ỹ = Evalint,Π(C, x̃).
Output y = SFE.Decode(ỹ, z).

Few claims are in order:

Theorem 6. Assuming SFE is a secure function evaluation scheme as described
in Sect. 6.1, if Π is a secure and correct candidate, then so is, Π ′.

Proof. We deal with this one by one. First we argue security. Note that when
Π is correct, the check at λ2 random points passes. In this case the obfuscation
algorithm always outputs (SP,Π.Obf(1λ, C̃b)) where C̃b ← SFE.CEncode(SP, Cb)
for b ∈ {0, 1} and SP ← SFE.Setup(1λ). Since, C̃0 is equivalent to C̃1 due to
functionality property of the SFE scheme, the security holds due to the security
of Π.

The correctness holds due to the correctness of SFE and Π.

Theorem 7. Assuming SFE is a secure function evaluation scheme as described
in Sect. 6.1, if Π is an IO candidate, then Π ′ is (1 − 2/λ)-worst case correct IO
candidate.

9 This step ensures circuit-specific correctness. Note that any correct candidate will
always pass the step. Any candidate that is not correct with high enough probability
will not pass the check. In this case, the algorithm outputs the circuit in the clear.

Robust Transforming Combiners from Indistinguishability Obfuscation 115

Proof. The check step in the obfuscate algorithm ensures the following: Using
Chernoff bound it follows that, with overwhelming probability, for any circuit C,

Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C) ← Π ′.Obf(1λ, C), x $←− Up(λ)] ≥ (1 − 1/λ)
(1)

We now prove that for any x1, x2 it holds that, with overwhelming probability
over coins of obfuscate algorithm, for any circuit C,

|Pr[Π ′.Eval(SP, C, x1) = C(x1)|(SP, C) ← Π ′.Obf(1λ, C)]−
Pr[Π ′.Eval(SP, C, x2) = C(x2)|(SP, C) ← Π ′.Obf(1λ, C)]| ≤ negl(λ)

(2)

This is because for any input x,

Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C) ← Π ′.Obf(1λ, C)] =

Pr[Evalint,Π(C, x̃) = C̃(x̃)|SP ← Setup(1λ), C̃ ← CEncode(SP, C),

(x̃, z) ← InpEncode(SP, x),C ← Obfint,Π(1λ, C̃)]

(3)

Note that due to the input secrecy property of the SFE scheme we have that,

|Pr[Evalint,Π(C, x̃1) = C̃(x̃1)|SP ← Setup(1λ), C̃ ← CEncode(SP, C),

(x̃1, z1) ← InpEncode(SP, x1), C ← Obfint,Π(1λ, C̃)]−
Pr[Evalint,Π(C, x̃2) = C̃(x̃2)|SP ← Setup(1λ), C̃ ← CEncode(SP, C),

(x̃2, z2) ← InpEncode(SP, x2), C ← Obfint,Π(1λ, C̃)]| < negl(λ)

(4)

for a negligible function negl. Otherwise we can build a reduction R that given
any circuit-encoding, input encoding pair C̃, x̃b decides if b = 0 or b = 1 with a
non-negligible probability. The reduction just computes C ← Obfint,Π(C̃) and
checks if Evalint,Π(C, x̃b) = C̃(x̃b).

Using the pigeon-hole principle and Eq. 1, for any C ∈ Cλ there exists x∗

such that,

|Pr[Π ′.Eval(SP, C, x∗) = C(x∗)|(SP, C) ← Π ′.Obf(1λ, C)] ≥ (1 − 1/λ) (5)

Now substituting x1 = x and x2 = x∗ in Eq. 4 and then plugging into Eq. 3
gives us,

|Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C) ← Π ′.Obf(1λ, C)]−
Pr[Π ′.Eval(SP, C, x∗) = C(x∗)|(SP, C) ← Π ′.Obf(1λ, C)]| ≤ negl(λ)

(6)

Substituting result of Eq. 5 gives us the desired result. That is, For any circuit
C and input x, it holds that,

|Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C) ← Π ′.Obf(1λ, C)] ≥(1 − 1/λ) − negl(λ)
>(1 − 2/λ)

(7)

This proves the result.

116 P. Ananth et al.

6.3 Instantiation of SFE

To instantiate SFE as described in Sect. 6.1, we use any single-key functional
encryption scheme. To compute the circuit encoding for any circuit C we com-
pute a function key for a circuit that has hard-wired a function key skHC

for
a circuit HC that takes as input (x, b) and outputs C(x) ⊕ b. This circuit uses
the hard-wired function key to decrypt the input. To encode the input x, we
just compute an FE encryption of (x, b). But this does not suffice, because then
for any equivalent circuits C0 and C1, the circuit encodings are not equivalent.
Hence, we use a one-time zero-knowledge proof system to prove that the cipher-
text is consistent. The details follow next. Our decoding/evaluation operation is
not randomized in contrast to [12], hence this allows us to directly argue security
with polynomial loss, instead of going input by input.

Theorem 8. Assuming (non-compact) public-key functional encryption scheme
for a single function key query exists, there exists an SFE according to the defi-
nition in Sect. 6.1.

Proof. Let FE denote any public-key functional encryption scheme for a single
function key. Let PZK denote a non-interactive zero knowledge proof system
with pre-processing. We now describe the scheme.

– Setup(1λ): The setup takes as input the security parameter 1λ. It first runs
(MPK,MSK) ← FE.Setup(1λ) and PZK.Pre(1λ) → (σP , σV). Output SP =
(MPK,MSK, σP , σV).

– CEncode(SP, C): The algorithm on input (SP, C) does the following.
- Compute skHC

← FE.KeyGen(MSK,HC). HC represents a circuit that on
input (x, b) outputs C(x) ⊕ b.

- Let H be the circuit described in Fig. 2. Output H.

Fig. 2. Circuit H

Robust Transforming Combiners from Indistinguishability Obfuscation 117

– InpEncode(SP, x): On input an SP and an input x do the following:
- Sample a random bit b and compute CT = FE.Enc(MPK, x, b; r1).
- Compute the NIZK with pre-processing proof π proving that CT ∈ L using

the witness (x, b, r1).
- Output ((CT, π), b) = (x̃, b)

– Decode(y, b): Output y ⊕ b.

We now discuss the properties:

Correctness. It is straightforward to see correctness as it follows from the
completeness of the proof system and correctness of the functional encryption
scheme.

Functionality: Let Hb denote an circuit encoding of circuit Cb for b ∈ {0, 1}
where C0 and C1 are equivalent circuits. The circuit takes as input (CT, π)
where π is a proof that CT is an encryption of (x, b′) for some x and a bit b′.
Then it verifies the proof and decrypts the cipher-text using a function key that
computes Cb(x)⊕b′. Since, the proof system is statistically sound and FE scheme
is correct this property is satisfied with overwhelming probability over the coins
of the setup.

Input Secrecy: We want to show that for any circuit C and inputs x0, x1:

{(H, x̃0)|H ← CEncode(SP, C), SP ← Setup(1λ), (x̃0, z) ← InpEncode(SP, x0)} ≈c

{(H, x̃1)|H ← CEncode(SP, C),SP ← Setup(1λ), (x̃1, z) ← InpEncode(SP, x1)}
We claim this in a number of hybrids. The first one corresponds to the actual
game where x̃0 is given while the last one corresponds to the case of x̃1. We also
show that the hybrids are indistinguishable.

Hyb0 : This hybrid corresponds to the following experiment for C, x0. To run
setup we run (MPK,MSK) ← FE.Setup(1λ). Then we sample a random bit b
and compute CT ← FE.Enc(MPK, x0, b). We sample (σP , σV) ← PZK.Pre(1λ)
and compute a proof π using PZK prover string σP and a witness of CT ∈ L.
We output SP = (MPK,MSK, σP , σV). This SP is used to encode C by com-
puting a functional encryption key for circuit HC first (skHC

). Call this circuit
H (this circuit depends upon, σV and skHC

).

Hyb1 : This hybrid is the same as the previous one except that we gener-
ate π, σV differently. We run the simulator of PZK system and compute
(σV , π) ← Sim(CT). Hyb0 is indistinguishable to Hyb1 due to the zero-
knowledge security of PZK proof.

Hyb2 : This hybrid is the same as the previous one except that we generate CT
differently. CT = FE.Enc(MPK, x1, b ⊕ C(x0) ⊕ C(x1)). Hyb1 is indistinguish-
able to Hyb2 due to the security of FE proof.

118 P. Ananth et al.

Hyb3 : This hybrid is the same as the previous one except that (σP , σV) are gen-
erated honestly. Hyb2 is indistinguishable to Hyb3 due to the zero-knowledge
security of PZK.

Hyb4 : This hybrid is the same as the previous one except that CT is generated
as FE.Enc(MPK, x1, b). this corresponds to the experiment for input x1. Hyb3
is identical to Hyb4 as b is a random bit.

Corollary 2. Assuming public-key encryption exists [45], there exists an SFE
scheme satisfying requirements described in Sect. 6.1.

Remark 7. We note that such a scheme can be instantiated from one-way func-
tions alone. The idea is to use a secret-key functional encryption for single func-
tion query along with a statistically binding commitment scheme. The public
parameters now include a commitment of a master secret key which is used to
proof consistency of the cipher-text. Since the end result of constructing pub-
lic key functional encryption from IO candidates itself imply PKE, we do not
describe this construction.

6.4 Robust Combiner: Construction

We now describe our robust combiner. On input the candidates Π1, ..,Πn, we
transform them using the SFE scheme as done in Sect. 6.2 so that they are
(1 − 1/λ)−worst-case correct. Then using majority trick as in [12], we convert
them to almost correct. Plugging it to the construction in Sect. 5.2, gives us the
desired result. Finally, we also state our theorem about universal obfuscation.

Theorem 9. Assuming sub-exponentially secure one-way functions, there exists
a (poly, ε)-Universal Obfuscation with ε = O(2−λc

) for any constant c > 0 and
any polynomial poly.

References

1. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions
and robust combiners for indistinguishability obfuscation and witness encryption.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 491–520.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 17

2. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 15

3. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 13

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

http://dx.doi.org/10.1007/978-3-662-53008-5_17
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1

Robust Transforming Combiners from Indistinguishability Obfuscation 119

5. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995). doi:10.1007/
3-540-44750-4 8

6. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 317–342. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 14

7. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: STOC (2015)

8. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: ITCS (2016)

9. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46497-7 16

10. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
Nash equilibrium. In: FOCS (2015)

11. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS (2015)

12. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: from approxi-
mate to exact. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562,
pp. 67–95. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 4

13. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-
cation of iterated circuits and RAM programs. In: STOC (2015)

14. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 20

15. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multi-
linear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 1

16. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC (2016)

17. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 12

18. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 mul-
tilinear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 607–628. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 21

19. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

20. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 35

21. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge with pre-
processing. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 269–282.
Springer, New York (1990). doi:10.1007/0-387-34799-2 21

22. Fischlin, M., Herzberg, A., Noon, H.B., Shulman, H.: Obfuscation combiners. Cryp-
tology ePrint Archive, Report 2016/289 (2016). http://eprint.iacr.org/

http://dx.doi.org/10.1007/3-540-44750-4_8
http://dx.doi.org/10.1007/3-540-44750-4_8
http://dx.doi.org/10.1007/978-3-642-54242-8_14
http://dx.doi.org/10.1007/978-3-662-46497-7_16
http://dx.doi.org/10.1007/978-3-662-46497-7_16
http://dx.doi.org/10.1007/978-3-662-49096-9_4
http://dx.doi.org/10.1007/978-3-662-49890-3_20
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-53008-5_21
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://dx.doi.org/10.1007/0-387-34799-2_21
http://eprint.iacr.org/

120 P. Ananth et al.

23. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

24. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

25. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53644-5 10

26. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of find-
ing a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 579–604. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 20

27. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. IACR Cryptology ePrint Archive 2016 (2016)

28. Garg, S., Srinivasan, A.: Single-Key to multi-key functional encryption with poly-
nomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 419–442.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53644-5 16

29. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 20

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC (1987)

31. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai,
A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-55220-5 32

32. Goldwasser, S., Tauman Kalai, Y.: Cryptographic assumptions: a position paper.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 505–522.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 21

33. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-70936-7 11

34. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-55220-5 12

35. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 21

36. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC (1989)

37. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36594-2 34

38. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: CRYPTO (2008)

39. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC (2015)

http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-662-53008-5_20
http://dx.doi.org/10.1007/978-3-662-53644-5_16
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-642-55220-5_32
http://dx.doi.org/10.1007/978-3-662-49096-9_21
http://dx.doi.org/10.1007/978-3-540-70936-7_11
http://dx.doi.org/10.1007/978-3-540-70936-7_11
http://dx.doi.org/10.1007/978-3-642-55220-5_12
http://dx.doi.org/10.1007/978-3-662-49890-3_21
http://dx.doi.org/10.1007/978-3-642-36594-2_34
http://dx.doi.org/10.1007/978-3-642-36594-2_34

Robust Transforming Combiners from Indistinguishability Obfuscation 121

40. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). doi:10.1007/3-540-38424-3 26

41. Li, B., Micciancio, D.: Compactness vs collusion resistance in functional encryption.
In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 443–468. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53644-5 17

42. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 2

43. Lin, H., Vaikunthanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: FOCS (2016)

44. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. Cryptology ePrint
Archive, Report 2016/147 (2016). http://eprint.iacr.org/

45. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, pp. 463–472. ACM (2010)

46. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

47. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. Cryptology ePrint Archive, Report 2014/588 (2014)

48. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 15

http://dx.doi.org/10.1007/3-540-38424-3_26
http://dx.doi.org/10.1007/978-3-662-53644-5_17
http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-46803-6_15

	Robust Transforming Combiners from Indistinguishability Obfuscation to Functional Encryption
	1 Introduction
	1.1 Our Contribution

	2 Technical Overview
	3 Preliminaries
	3.1 NIZK with Pre-Processing

	4 Definitions: IO Combiner
	4.1 Definition of IO Combiner
	4.2 Definition of 2-ary Functional Encryption Candidate

	5 Construction of IO Combiner
	5.1 MPC Framework
	5.2 Construction Roadmap
	5.3 Constructing Compact FE from n2-n FE Candidates
	5.4 Summing Up: Combiner Construction

	6 From Combiner to Robust Combiner
	6.1 Generalised Secure Function Evaluation
	6.2 Modified Obfuscation Candidate
	6.3 Instantiation of SFE
	6.4 Robust Combiner: Construction

	References

