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Abstract. We present a multi-input functional encryption scheme
(MIFE) for the inner product functionality based on the k-Lin assump-
tion in prime-order bilinear groups. Our construction works for any poly-
nomial number of encryption slots and achieves adaptive security against
unbounded collusion, while relying on standard polynomial hardness
assumptions. Prior to this work, we did not even have a candidate for
3-slot MIFE for inner products in the generic bilinear group model. Our
work is also the first MIFE scheme for a non-trivial functionality based
on standard cryptographic assumptions, as well as the first to achieve
polynomial security loss for a super-constant number of slots under falsi-
fiable assumptions. Prior works required stronger non-standard assump-
tions such as indistinguishability obfuscation or multi-linear maps.

1 Introduction

In a functional encryption (FE) scheme [11,25], an authority can generate
restricted decryption keys that allow users to learn specific functions of the
encrypted messages and nothing else. That is, each FE decryption key skf is
associated with a function f and decrypting a ciphertext Enc(x) with skf results
in f(x). Multi-input functional encryption (MIFE) introduced by Goldwasser
et al. [19] is a generalization of functional encryption to the setting of multi-input
functions. A MIFE scheme has several encryption slots and each decryption key
skf for a multi-input function f decrypts jointly ciphertexts Enc(x1), . . . ,Enc(xn)
for all slots to obtain f(x1, . . . , xn) without revealing anything more about the
encrypted messages. The MIFE functionality provides the capability to encrypt
independently messages for different slots. This facilitates scenarios where infor-
mation, which will be processed jointly during decryption, becomes available
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at different points of time or is provided by different parties. MIFE has many
applications related to computation and data-mining over encrypted data coming
from multiple sources, which include examples such as executing search queries
over encrypted data, processing encrypted streaming data, non-interactive dif-
ferentially private data releases, multi-client delegation of computation, order-
revealing encryption [10,19]. The security requirement for FE and MIFE is that
the decryption keys are resilient to collusion attacks, namely any group of users
holding different decryption keys learns nothing about the underlying messages
beyond what each of them could individually learn.

We now have several constructions of MIFE schemes, which can be broadly
classified as follows: (i) feasibility results for general circuits [5,6,12,19], and (ii)
constructions for specific functionalities, notably comparison, which corresponds
to order-revealing encryption [10]. Unfortunately, all of these constructions rely
on indistinguishability obfuscation, single-input FE for circuits, or multi-linear
maps [15,16], which we do not know how to instantiate under standard and
well-understood cryptographic assumptions.1

1.1 Our Contributions

In this work, we present a multi-input functional encryption scheme (MIFE) for
the inner product functionality based on the k-Lin assumption in prime-order
bilinear groups. This is the first MIFE scheme for a non-trivial functionality
based on standard cryptographic assumptions with polynomial security loss, and
for any polynomial number of slots and secure against unbounded collusions.

Concretely, the functionality we consider is that of “bounded-norm” multi-
input inner product: each function is specified by a collection of n vectors
y1, . . . ,yn, takes as input n vectors x1, . . . ,xn, and outputs

fy1,...,yn
(x1, . . . ,xn) =

n∑

i=1

〈xi,yi〉.

We require that the x1, . . . ,xn,y1, . . . ,yn have bounded norm, and inner
product is computed over the integers. The functionality is a natural generaliza-
tion of single-input inner product functionality introduced by Abdalla et. al [1],
and studied in [1,2,4,7,13], and captures several useful computations arising
in the context of data-mining. A summary of our results and prior works on
single-input inner product is shown in Fig. 1.

Prior Approaches. Prior constructions of MIFE schemes in [10] requires (at
least) nm-linear maps for n slots with m-bit inputs as they encode each input bit
for each slot into a fresh level of a multi-linear map. In addition, there is typically
a security loss that is exponential in n due to the combinatorial explosion arising
from combining different ciphertexts across the slots. In the case of inner product,

1 In this paper, we refer only to unbounded collusions (i.e. the adversary can request
for any number of secret keys). See [12,20,21,24] for results on bounded collusions.
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Fig. 1. Summary of constructions from cyclic or bilinear groups. We have 8 security
notions xx-yy-zzz where xx ∈ {one, many} refers to the number of challenge ciphertexts;
yy ∈ {SEL, AD} refers to encryption queries are selectively or adaptively chosen; zzz
∈ {IND, SIM} refers to indistinguishability vs simulation-based security.

one can hope to reduce the multi-linearity to n by exploiting linearity as in the
single-input FE; indeed, this was achieved in two independent works [22,23]2

showing how to realize a two-slot MIFE for inner product over bilinear groups.
We stress that our result is substantially stronger: we show how to realize n-
slot MIFE for inner product for any polynomial n over bilinear groups under
standard assumptions, while in addition avoiding the exponential security loss.
In particular, we deviate from the prior approaches of encoding each slot into a
fresh level of a multi-linear map. We stress that prior to this work, we do not
even have a candidate for 3-slot MIFE for inner product in the generic bilinear
group model.

A Public-Key Scheme. Our first observation is that we can build a public-
key MIFE for inner product by running n independent copies of a single-input
FE for inner product. Combined with existing instantiations of the latter in [1],
this immediately yields a public-key MIFE for inner product under the standard
DDH in cyclic groups.

In a bit more detail, we recall the DDH-based public-key single-input FE
scheme from [1]:3

mpk := [w], ctx = ([s], [x + ws]), sky := 〈w,y〉

Decryption computes [〈x,y〉] = [x + ws]�y · [s]−〈w,y〉 and then recovers 〈x,y〉
by computing the discrete log.

2 This work is independent of both works.
3 Here, we use the implicit representation notation for group elements, using [s] to

denote gs and [w] to denote gw, etc.
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Our public-key MIFE scheme is as follows:

mpk := ([w1], . . . , [wn]),
ctxi

:= ([si], [xi + wisi]),
sky1,...,yn

:= (〈w1,y1〉, . . . , 〈wn,yn〉)

We note that the encryption of xi uses fresh randomness si; to decrypt, we
need to know each 〈wi,yi〉, and not just 〈w1,y1〉+ · · ·+ 〈wn,yn〉. In particular,
an adversary can easily recover each [〈xi,yi〉], whereas the ideal functionality
should only leak the sum

∑n
i=1〈xi,yi〉. In the public-key setting, it is easy to see

that 〈xi,yi〉 is in fact inherent leakage from the ideal functionality. Concretely,
an adversary can always pad an encryption of xi in the i’th slot with encryptions
of 0’s in the remaining n − 1 slots and then decrypt.

Our Main Scheme. The bulk of this work lies in constructing a multi-input
FE for inner product in the private-key setting, where we can no longer afford
to leak 〈xi,yi〉. We modify the previous scheme by introducing additional reran-
domization into each slot with the use of bilinear groups as follows:

msk := ([w1]1, [v1]1, [z1]1, . . . , [wn]1, [vn]1, [zn]1),

ctxi
:= ([si]1, [xi + wisi]1, [zi + visi]1),

sky1,...,yn
:= ([〈w1,y1〉 + v1r]2, . . . , [〈wn,yn〉 + vnr]2,
[r]2, [(z1 + · · · + zn)r]T )

The ciphertext ctxi
can be viewed as encrypting xi‖zi using the single-input

FE, where z1, . . . , zn are part of msk. In addition, we provide a single-input FE
key for yi‖r in the secret key, where a fresh r is sampled for each key. Decryption
proceeds as follows: first compute

[〈xi,yi〉 + zir]T = e([xi + wisi]�1, [yi]2)

· e([zi + visi]�1, [r]2) · e([si], [〈wi,yi〉 + vir]2)−1

and then

[
n∑

i=1

〈xi,yi〉]T = [(z1 + · · · + zn)r]−1
T ·

n∏

i=1

[〈xi,yi〉 + zir]T .

The intuition underlying security is that by the DDH assumption [zir]T is
pseudorandom and helps mask the leakage about 〈xi,yi〉 in [〈xi,yi〉 + zir]T ; in
particular,

[〈x1,y1〉 + z1r]T , . . . , [〈xn,yn〉 + znr]T , [(z1 + · · · + zn)r]T

constitutes a computational secret-sharing of [〈x1,y1〉 + · · · + 〈xn,yn〉]T , even
upon reusing z1, . . . , zn as long as we pick a fresh r. In addition, sharing the
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same exponent r across n elements in the secret key helps prevent mix-and-
match attacks across secret keys.

Our main technical result is that a variant of the private-key MIFE scheme
we just described selective indistinguishability-based security under the k-Lin
assumption in bilinear groups; a straight-forward extension of an impossibility
in [3,11] rules out simulation-based security. Our final scheme as described in
Fig. 6 remains quite simple and achieves good concrete efficiency. We focus on
selective security in this overview, and explain at the end the additional ideas
needed to achieve adaptive security.

Overview of Security Proof. There are two main challenges in the security
proof: (i) avoiding leakage beyond the ideal functionality, (ii) avoiding super-
polynomial hardness assumptions. Our proof proceeds in two steps: first, we
establish security with a single challenge ciphertext per slot, and from which we
bootstrap to achieve security with multiple challenge ciphertexts per slot. We
will address the first challenge in the first step and the second challenge in the
second. For notation simplicity, we focus on the setting with n = 2 slots and a
single key query y1‖y2.

Step 1. To prove indistinguishability-based security, we want to switch encryp-
tions x0

1,x
0
2 to encryptions of x1

1,x
1
2. Here, the leakage from the ideal function-

ality imposes the restriction that

〈x0
1,y1〉 + 〈x0

2,y2〉 = 〈x1
1,y1〉 + 〈x1

2,y2〉

and this is the only restriction we can work with. The natural proof strategy
is to introduce an intermediate hybrid that generates encryptions of x1

1,x
0
2.

However, to move from encryptions x0
1,x

0
2 to this hybrid, we would require

that 〈x0
1‖x0

2,y1‖y2〉 = 〈x1
1‖x0

2,y1‖y2〉, which implies the extraneous restriction
〈x0

1,y1〉 = 〈x1
1,y1〉. (Indeed, the single-input inner product scheme in [7] imposes

extraneous restrictions to overcome similar difficulties in the function-hiding
setting.)

To overcome this challenge, we rely on a single-input FE that achieves
simulation-based security, which allows us to avoid the intermediate hybrid. See
Theorem 1 and Remark 4 for further details.

Step 2. Next, we consider the more general setting with Q1 challenge ciphertexts
in the first slot and Q2 in the second, but still a single key query. We achieve
security loss O(Q1 + Q2) for two slots, and more generally, O(Q1 + · · · + Qn)
—as opposed to Q1Q2 · · · Qn corresponding to all possible combinations of the
challenge ciphertexts— for n slots.

Our first observation is that we can bound the leakage from the ideal func-
tionality by O(Q1 + Q2) relations (the trivial bound being Q1 · Q2). Denote the
j’th ciphertext query in the i’th slot by xj,b

i , where b is the challenge bit. By
decrypting the encryptions of x2,b

1 ,x1,b
2 and x1,b

1 ,x1,b
2 and substracting the two,
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the adversary learns 〈x2,b
1 −x1,b

1 ,y1〉 and more generally, 〈xj,b
i −x1,b

i ,yi〉. Indeed,
these are essentially the only constraints we need to work with, namely:

〈x1,0
1 ,y1〉 + 〈x1,0

2 ,y2〉 = 〈x1,1
1 ,y1〉 + 〈x1,1

2 ,y2〉
〈xj,0

i − x1,0
i ,yi〉 = 〈xj,1

i − x1,1
i ,yi〉, j = 2, . . . , Qi, i = 1, 2

Next, we need to translate the bound on the constraints to a O(Q1 +Q2) bound
on the security loss in the security reduction. We will switch from encryptions
of xj,0

i to those of xj,1
i as follows: we write xj,0

i = x1,0
i + (xj,0

i − x1,0
i ).

We can switch the first terms in the sums from x1,0
i to x1,1

i using security for
a single challenge ciphertext, and then switch xj,0

i −x1,0
i to xj,1

i −x1,1
i by relying

on security of the underlying single-input FE and the fact that 〈xj,0
i −x1,0

i ,yi〉 =
〈xj,1

i −x1,1
i ,yi〉. Here, we will require that the underlying single-input FE satisfies

a malleability property, namely given Δ, we can maul an encryption of x into
that of x+Δ. Note that this does not violate security because given 〈x,y〉,y,Δ,
we can efficiently compute 〈x + Δ,y〉. See Theorem 2 for further details.

Extension to Adaptive Security. The previous argument for selective secu-
rity requires to embed the challenge into the setup parameters. To circumvent
this issue, we use a two-step strategy for the adaptive security proof of MIFE.
The first step uses an adaptive argument (this is essentially the argument used
for the selective case, but applied to parameters that are picked at setup time),
while the second step uses a selective argument, with perfect security. Thus, we
can use complexity leveraging without incurring an exponential security loss,
since the exponential term is multiplied by a zero term. The idea of using com-
plexity leveraging to deduce adaptive security from selective security when the
security is perfect, already appears in [27, Remark 1].

Theoretical Perspective. The focus of this work is on obtaining constructions
for a specific class of functions with good concrete efficiency. Nonetheless, we
believe that our results do shed some new insights into general feasibility results
for MIFE:

– First, our results are indicative of further qualitative differences between MIFE
in the public-key and the private-key settings. Indeed, we already know that
the security guarantees are quite different due to additional inherent leakages
in the public-key setting. In the case of order-revealing encryption [10], the
differences are sufficient to enable positive results in the private-key setting,
while completely ruling out any construction in the public-key setting. Our
results hint at a different distinction, where the private-key setting seems to
require qualitative stronger assumptions than in the public-key setting, namely
the use of pairings.

– Next, our results provide the first evidence supporting the intuition that
MIFE requires qualitatively stronger assumptions than FE, but not too much
stronger. Concretely, for the inner product FE, we have existing positive
results under the DDH assumption in pairing-free groups. Prior to this work,
it was not clear if we could extend the positive results to MIFE for n-ary inner
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product under the same assumptions, or if n-ary inner product would already
require the same complex assumptions as MIFE for circuits. Our results sug-
gest a rather different picture, namely that going from single-input to multi-
input should require no more than an extra level of multi-linearity, even for
restricted functionalities. The situation is somewhat different for general cir-
cuits, where we now know that going from single-input to multi-input incurs
no more than a quantitative loss in the underlying assumptions [5,12].

– Finally, we presented the first MIFE for a non-trivial functionality that poly-
nomial security loss for a super-constant number of slots under falsifiable
assumptions. Recall that indistinguishability obfuscation and generic multi-
linear maps are not falsifiable, whereas the constructions based on single-input
FE in [5,8,12] incur a security loss which is exponential in the number of slots.
Indeed, there is a reason why prior works relied on non-falsifiable assumptions
or super-polynomial security loss. Suppose an adversary makes Q0 key queries,
and Q1, . . . , Qn ciphertext queries for the n slots. By combining the cipher-
texts and keys in different ways, the adversary can learn Q0Q1 · · · Qn different
decryptions. When n is super-constant, the winning condition in the secu-
rity game may not be efficiently checkable in polynomial-time, hence the need
for either a non-falsifiable assumption or a super-polynomial security loss.
To overcome this difficulty, we show that for inner product, we can exploit
linearity to succinctly characterize the Q0Q1 · · · Qn constraints by roughly
Q0 · (Q1 + · · · Qn) constraints.

1.2 Discussion

Beyond Inner Product? Our constructions and techniques may seem a-priori
largely tailored to the inner product functionality and properties of bilinear
groups. We clarify here that our high-level approach (which builds upon [9,27])
may be applicable beyond inner product, namely:

i. start with a multi-input FE that is only secure for a single ciphertext per
slot and one secret key, building upon a single-input FE whose security is
simulation-based for a single ciphertext (in our case, this corresponds to
introducing the additional z1, . . . , zn to hide the intermediate computation
〈xi,yi〉);

ii. achieve security for a single ciphertext per slot and multiple secret keys, by
injecting additional randomness to the secret keys to prevent mix-and-match
attacks (for this, we replaced z1, . . . , zn with z1r, . . . , znr, r in the exponent);

iii. “bootstrap” to multiple ciphertexts per slot, where we also showed how to
avoid incurring an exponential security loss.

In particular, using simulation-based security for i. helped us avoid additional
leakage beyond what is allowed by the ideal functionality.

Additional Related Work. Goldwasser et al. [19] showed that both two-input
public-key MIFE as well as n-input private-key MIFE for circuits already implies
indistinguishability obfuscation for circuits.
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There have also been several works that proposed constructions for private-
key multi-input functional encryption. The work of Boneh et al. [10] constructs
a single-key MIFE in the private key setting, which is based on multilinear maps
and is proven secure in the idealized generic multilinear map model. Two other
papers explore the question how to construct multi-input functional encryp-
tion starting from the single input variant. In their work [5] Ananth and Jain
demonstrate how to obtain selectively secure MIFE in the private key setting
starting from any general-purpose public key functional encryption. In an inde-
pendent work, Brakerski et al. [12] reduce the construction of private key MIFE
to general-purpose private key (single input) functional encryption. The resulting
scheme achieves selective security when the starting private key FE is selectively
secure. Additionally in the case when the MIFE takes any constant number of
inputs, adaptive security for the private key FE suffices to obtain adaptive secu-
rity for the MIFE construction as well. The constructions in that work provide
also function hiding properties for the MIFE encryption scheme.

While this line of work reduces MIFE to single-input FE for general-purpose
constructions, the only known instantiations of construction for public and pri-
vate key functional encryption with unbounded number of keys require either
indistinguishability obfuscation [16] or multilinear maps with non-standard
assumptions [17]. We stress that the transformations from single-input to MIFE
in [5,12] are not applicable in the case of inner product since these transfor-
mations require that the single-input FE for complex functionalities related to
computing a PRF, which is not captured by the simple inner functionality.

Open Problems. One natural open problem is to eliminate the use of pairings
in MIFE for inner product; we think such a result would be quite surprising
though. Another open problem is to achieve function privacy, as considered in
the setting of single-input inner product functional encryption in [7,13]. Note
that these latter results require pairings. Our first guess is that it would be
possible to achieve private-key, function-hiding MIFE for inner product under
the k-Lin assumption in bilinear groups.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at ran-
dom from a finite set S. By PPT, we denote a probabilistic polynomial-time
algorithm. Throughout, we use 1λ as the security parameter. We use lower case
boldface to denote (column) vectors and upper case boldface to denote matrices.

Cryptographic Assumptions. We follow the notation and algebraic frame-
work for Diffie-Hellman-like assumptions in [14]. We fix a pairing group PG :=
(G1, G2, GT ) with e : G1 × G2 → GT of prime order q, where q is a prime of
Θ(λ) bits. We use the implicit representation notation for group elements: for
fixed generators g1 and g2 of G1 and G2, respectively, and for a matrix M over
Zq, we define [M]1 := gM1 and [M]2 := gM2 , where exponentiation is carried out
component-wise.
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We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH)
Assumption [14].

Definition 1 (Matrix Distribution). Let k, � ∈ N, with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
q of full rank k in polynomial

time. We write Dk := Dk+1,k.

Without loss of generality, we assume the first k rows of A ←R D�,k form an
invertible matrix. The D�,k-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A ←R D�,k, w ←R Z

k
q and

u ←R Z
�
q.

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let
Dk be a matrix distribution. We say that the Dk-Matrix Diffie-Hellman (Dk-
MDDH) Assumption holds relative to PG in Gs for s ∈ {1, 2}, if for all PPT
adversaries A, there exists a negligible function Adv such that:

AdvDk-mddh
Gs,A (λ) := |Pr[A(PG, [A]s, [Aw]s) = 1] − Pr[A(PG, [A]s, [u]s) = 1]|

= negl(λ),

where the probability is taken over A ←R Dk,w ←R Z
k
q ,u ←R Z

k+1
q .

For each k ≥ 1, [14] specifies distributions Lk, SCk, Ck (and others) over Z
(k+1)×k
q

such that the corresponding Dk-MDDH assumptions are generically secure in
bilinear groups and form a hierarchy of increasingly weaker assumptions. Lk-
MDDH is the well known k-Linear Assumption k-Lin with 1-Lin = DDH. In
this work we are mostly interested in the uniform matrix distribution U�,k.

Definition 3 (Uniform Distribution). Let �, k ∈ N, with � > k. We denote
by U�,k the uniform distribution over all full-rank � × k matrices over Zq. Let
Uk := Uk+1,k.

Let Q ≥ 1. For W ←R Z
k×Q
q ,U ←R Z

(k+1)×Q
q , we consider the Q-fold U�,k-

MDDH Assumption which consists in distinguishing the distributions ([A],
[AW]) from ([A], [U]). That is, a challenge for the Q-fold U�,k-MDDH Assump-
tion consists of Q independent challenges of the U�,k-MDDH Assumption (with
the same A but different randomness w). We recall in Lemma 1 the random
self reducibility of the Q-fold U�,k-MDDH assumption, namely, the fact that it
reduces to the 1-fold Uk assumption.

Lemma 1 (Uk-MDDH ⇒ Q-fold U�,k-MDDH [14,18]). Let �, k ∈ N
∗, with

� > k, and s ∈ {1, 2}. For any PPT adversary A, there exists a PPT adversary
B such that

Adv
Q-U�,k-mddh
Gs,A (λ) ≤ AdvUk-mddh

Gs,B (λ) +
1

q − 1
,

where Adv
Q-U�,k-mddh
Gs,A (λ) := |Pr[A(PG, [A]s, [AW]s) = 1]−Pr[A(PG, [A], [U]) =

1]| and the probability is taken over A ←R U�,k,W ←R Z
k×Q
q ,U ←R Z

(k+1)×Q
q .
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Among all possible matrix distributions Dk, the uniform matrix distribution Uk

is the hardest possible instance, so in particular k-Lin ⇒ Uk-MDDH, as stated
in Lemma 2.

Lemma 2 (Dk-MDDH ⇒ Uk-MDDH, [14]). Let Dk be a matrix distribu-
tion. For any PPT adversary A, there exists a PPT adversary B such that
AdvUk-mddh

Gs,B (λ) ≤ AdvDk-mddh
Gs,A (λ).

3 Definitions for Multi-input Functional Encryption

We recall the definitions for multi-input functional encryption from [19]. We
focus here on the private-key setting, which allows us to simplify the definitions.

Definition 4 (Multi-input Function Encryption). Let {Fn}n∈N be an
ensemble where each Fn is a family of n-ary functions. A function f ∈ Fn

is defined as follows f : X1 × . . . × Xn → Y. A multi-input functional encryption
scheme MIFE for F consists of the following algorithms:

– Setup(1λ,Fn): on input the security parameter λ and a description of Fn ∈ F ,
outputs a master public key mpk4 and a master secret key msk. All of the
remaining algorithms get mpk as part of its input.

– Enc(msk, i, xi): on input the master secret key msk, i ∈ [n], and a message xi ∈
Xi, outputs a ciphertext ct. We assume that each ciphertext has an associated
index i, which denotes what slot this ciphertext can be used for. If n = 1, we
omit the input i.

– KeyGen(msk, f): on input the master secret key msk and a function f ∈ Fn,
outputs a decryption key skf .

– Dec(skf , f, ct1, . . . , ctn): on input a decryption key skf for function f and n
ciphertexts, outputs a string y ∈ Y.

The scheme MIFE is correct if for all f ∈ F and all xi ∈ Xi for 1 ≤ i ≤ n,
we have

Pr

⎡

⎢⎣
(mpk,msk) ← Setup(1λ, n);

skf ← KeyGen(msk, f);
Dec(skf , f,Enc(msk, 1, x1), . . . ,Enc(msk, n, xn)) = f(x1, . . . , xn)

⎤

⎥⎦

= 1,

where the probability is taken over the coins of Setup, KeyGen and Enc.

3.1 Security Notions

Following [3], we may consider 8 security notions xx-yy-zzz where xx ∈ {one,
many} refers to the number of challenge ciphertexts; yy ∈ {SEL, AD} refers
4 We note that in the private key setting of MIFE, we can make mpk part of msk,

but we allow for a separate master public key for better clarity in our proofs. In
constructions where we do not need mpk we omit it.
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to encryption queries are selectively or adaptively chosen; zzz ∈ {IND, SIM}
refers to indistinguishability vs simulation-based security. We have the following
trivial relations: many ⇒ one, AD ⇒ SEL, and the following standard relations:
SIM ⇒ IND, and one-yy-IND ⇒ many-yy-IND, the latter in the public-key
setting. Here, we focus on {one,many}-SEL-IND and one-SEL-SIM, which are
the notions most relevant to our positive results.

Definition 5 (xx-SEL-IND-secure MIFE). For every multi-input func-
tional encryption MIFE := (Setup,Enc,KeyGen,Dec) for F , every security
parameter λ, every stateful adversary A, and every xx ∈ {one,many}, the advan-
tage of A is defined as

AdvMIFE,SEL−IND(λ,A) =
∣∣∣ Pr

[
SEL − INDMIFE

0 (1λ,A) = 1
]

− Pr
[
SEL − INDMIFE(1λ,A) = 1

] ∣∣∣

where the experiments are defined as follows:

Experiment xx-SEL-INDMIFE
β (1λ, A): Experiment xx-SEL-INDMIFE(1λ, A):

β ←R {0, 1}
{xb

i}i∈[n],j∈[Qi],b∈{0,1} ← A(1λ, Fn) {xb
i}i∈[n],j∈[Qi],b∈{0,1} ← A(1λ, Fn)

(mpk,msk) ← Setup(1λ, Fn) (mpk,msk) ← Setup(1λ, Fn)

ctji ← Enc(msk, i, xj,β
i ) ∀i ∈ [n], j ∈ [Qi] ctji ← Enc(msk, i, xj,β

i ) ∀i ∈ [n], j ∈ [Qi]

β′ ← AKeyGen(msk,·) (mpk, (ctji )i∈[n],j∈[Qi]

)
β′ ← AKeyGen(msk,·) (mpk, (ctji )i∈[n],j∈[Qi]

)

Output: β′ Output: 1 if β′ = β, 0 otherwise.

where A only makes queries f to KeyGen(msk, ·) satisfying

f(xj1,0
1 , . . . , xj1,0

n ) = f(xj1,1
1 , . . . , xj1,1

n )

for all j1, . . . , j1 ∈ [Q1] × · · · × [Qn]. For xx = one, we require additionally that
the adversary A only sends one challenge per slot, i.e. for all i ∈ [n], Qi = 1.

The private key multi-input functional encryption MIFE is xx-SEL-IND-
secure if for every PPT adversary A, there exists a negligible function negl such
that for all λ ∈ N: AdvMIFE,xx-SEL-IND

A (λ) = negl(λ).

Remark 1 (winning condition). Note that the winning condition is in general not
efficiently checkable because of the combinatorial explosion in the restriction on
the queries.

Next, we present the simulation-based security definition for MIFE, in the setting
with a single challenge ciphertext per slot.

Definition 6 (one-SEL-SIM-secure FE). A single-input functional encryp-
tion FE for function F is one-SEL-SIM-secure if there exists a PPT simulator5

(S̃etup, Ẽncrypt, K̃eyGen) such that for every PPT adversary A and every λ ∈ N,
the following two distributions are computationally indistinguishable:

5 That is, S̃etup, Ẽncrypt, K̃eyGen correspond respectively to the simulated Setup,Enc,
KeyGen.
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Experiment REALFE(1λ,A): Experiment IDEALFE(1λ,A):
x ← A(1λ,F) x ← A(1λ,F)
(mpk,msk) ← Setup(1λ,F) (m̃pk, m̃sk) ← S̃etup(1λ,F)
ct ← Enc(msk, x) ct ← Ẽncrypt(m̃sk)
α ← AKeyGen(msk,·)(mpk, ct) α ← AO(·)(m̃pk, ct)
Output: α Output: α

The oracle O(·) in the above ideal experiment has access to an oracle that pro-
vides the value 〈x,y〉, for each y ∈ Z

m
p queried to O(·). Then, O(·) returns

K̃eyGen(m̃sk,y, 〈x,y〉).
Namely, for every stateful adversary A,we define

AdvFE,one-SEL-SIM (λ,A) =
∣∣∣∣Pr

[
REALFE(1λ,A) = 1

] − Pr
[

˜IDEAL
FE

(1λ,A) = 1
]∣∣∣∣ ,

and we require that for every PPT A, there exists a negligible function negl such
that for all λ ∈ N, AdvFE,one-SEL-SIM (λ,A) = negl(λ).

Zero vs Multiple Queries in Private-Key Setting. It is convenient in our
proof of security to assume that Q1, . . . , Qn ≥ 1, that is, there is at least one
ciphertext for each encryption slot, which is where the technical bulk of the
work lies as we would need to reason about leakage from the ideal function-
ality. In the setting where some Qi = 0, the ideal functionality leaks nothing,
and here, we can easily achieve semantic security for all of the messages being
encrypted in the private key MIFE setting, via the following simple generic
transformation.

Lemma 3. Let (Setup,Enc,KeyGen,Dec) be a private key MIFE construction
for n-input functions in the class Fn, which satisfies any xx-yy-zzz MIFE secu-
rity definition when the adversary receives at least one ciphertext for each encryp-
tion slot. Let (GenSE,EncSE,DecSE) be symmetric key encryption. The private key
MIFE scheme (Setup′,Enc′,KeyGen′,Dec′) described in Fig. 2 satisfies xx-yy-zzz
security without any restrictions on the ciphertext challenge sets.

Proof (Sketch). We consider two cases:

– Case 1: there exists some i ∈ [n] for which Qi = 0. Here, ki and thus K
is perfectly hidden from the adversary. Then, security follows readily from
semantic security of (GenSE,EncSE,DecSE).

– Case 2: for all i, Qi ≥ 1. Here, security follows immediately from that of
(Setup,Enc,KeyGen,Dec). ��
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Fig. 2. Compiler from private-key MIFE with xx-yy-zzz security when |Qi| > 0 for all
i to private-key MIFE with xx-yy-zzz security

3.2 Inner Product Functionality

Multi-input Inner Product. We construct a multi-input functional encryption
that supports the class of multi-input bounded-norm inner product functions,
which is defined as Fm,B

n = {fy1,...,yn
: (Zm)n → Z} where

fy1,...,yn
(x1, . . . ,xn) =

n∑

i=1

〈xi,yi〉.

We require that the norm of the inner product of any two vector components
from function and input 〈x,y〉 is bounded by B. This bound will determine the
parameters of the bilinear map groups that we will be using in our constructions;
in particular, we will choose a target group that has order q 
 n ·B. To simplify
naming conventions, we will omit “bounded-norm” for the rest of the paper,
but we will always refer to a multi-input inner-product functionality with this
property.

Remark on Leakage. Let (xj,0
i ,xj,1

i )i∈[n],j∈[Qi] be the ciphertext queries, and
y1‖ · · · ‖yn be a secret key query. For all slots i ∈ [n], all j ∈ [Qi], and all bits
b ∈ {0, 1}, the adversary can learn 〈xj,b

i − xj,b
i ,yi〉 via the ideal functionality. In
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the IND security game, this means the adversary is restricted to queries satisfying
〈xj,0

i − x1,0
i ,yi〉 = 〈xj,1

i − x1,1
i ,yi〉. In the hybrid, we want to avoid additional

constraints such as

〈xj,0
i − x1,0

i ,yi〉 = 〈xj,0
i − x1,1

i ,yi〉 = 〈xj,1
i − x1,0

i ,yi〉 = 〈xj,1
i − x1,1

i ,yi〉

4 Private-Key MIFE for Inner Product

In this section, we present a private-key MIFE for inner product that achieves
many-SEL-IND security. We use a pairing group (G1, G2, GT ) with e : G1×G2 →
GT of prime order q, where q is a prime of Θ(λ) bits. Our construction relies on
the k-Lin Assumption in G1 and in G2 and is shown in Fig. 6.

We present our construction in two steps: first, in Sect. 4.1, we show how
to construct a selectively-secure MIFE scheme starting from a single-input one-
SEL-SIM scheme that satisfies some additional structural properties. Then, we
show how to instantiate the underlying single-input scheme (cf. Fig. 7) and we
present a self-contained description of the scheme in Fig. 6. We refer the reader
to Sect. 1.1 for an overview of the construction.

4.1 Selectively-Secure, Multi-input Scheme from Single-Input
Scheme

Main Construction. We build a private key multi-input FE (Setup′,Enc′,
KeyGen′,Dec′) for the class Fm,B

n , starting from a private key one-SEL-SIM
secure, single-input FE (Setup,Enc,KeyGen,Dec) for the class Fm+k,B

1 . We
present our construction in Fig. 3.

Correctness. Correctness follows readily from the correctness of the underlying
scheme and the equation:

〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉 = (
n∑

i=1

〈xi‖zi,yi‖r〉) − 〈z1 + · · · + zn, r〉

Finally, we use the fact that 〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉 mod q = 〈x1‖ · · · ‖xn,
y1‖ · · · ‖yn〉, since for all slots i ∈ [n], we have 〈xi,yi〉 ≤ B, and q > Bn.

Additional Requirements. The construction and the analysis requires that
(Setup,Enc,KeyGen,Dec) satisfies the following structural properties:

– The scheme can be instantiated over G1, where the ciphertext is a vector [c]1
over G1 and the secret key is a vector di over Zq.

– Enc is linearly homomorphic and public-key. More specifically, we only require
that, given mpk,Enc(msk,x),x′, we can generate a fresh random encryption
of x + x′, i.e. Enc(msk,x + x′).

– For correctness, Dec should be linear in its inputs (d,y) and c, so that
Dec([d]2, [y]2, [c]1) = [Dec(d,y, c)]T ∈ GT can be computed using a pairing.
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Fig. 3. Multi-input functional encryption scheme (Setup′,Enc′,KeyGen′,Dec′) for the
class Fm,B

n . (Setup,Enc,KeyGen,Dec) refers to the single-input functional encryption
scheme for the class Fm+k,B

1 .

– For an efficient MIFE decryption, Dec must work without any restriction on
the norm of the output as long as the output is in the exponent.

– Let (S̃etup, Ẽnc, K̃eyGen) be the stateful simulator for the one-SEL-SIM
security of the single-input inner-product FE scheme. We require that
K̃eyGen(m̃sk, ·, ·) is linear in its inputs (y, a), so that we can compute
K̃eyGen(m̃sk, [y]2, [a]2) = [K̃eyGen(m̃sk,y, a)]2. This property is used in the
proof of Lemma 5.

Remark 2 (notation). We use subscripts and superscripts for indexing over mul-
tiple copies, and never for indexing over positions or exponentiation. Concretely,
the j’th ciphertext query in slot i is xj

i .

Security. Theorem 1 and Theorem 2 below, together with the fact that one-
SEL-SIM security implies one-SEL-IND security, which itself implies many-SEL-
IND security for a public-key FE, such as (Setup,Enc,KeyGen) used in the con-
struction presented in Fig. 3, implies the many-SEL-IND security of the MIFE
(Setup′,Enc′,KeyGen′).

Theorem 1 (one-SEL-IND Security of MIFE). Suppose the single-input
FE (Setup,Enc,KeyGen,Dec) is one-SEL-SIM secure, and that the Dk-MDDH
assumption holds in G2. Then, the multi-input FE (Setup′,Enc′,KeyGen′,Dec′)
is one-SEL-IND-secure.
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Fig. 4. Gamei for i ∈ {0, . . . , 3} for the proof of Theorem 1.

That is, we show that our multi-input FE is selectively secure when there is
only a single challenge ciphertext.

Proof (of Theorem 1). We proceed via a series of Gamei for i ∈ {0, . . . , 3},
described in Fig. 4. Let A be a PPT adversary, and λ ∈ N be the security
parameter.

Game0: is the experiment one-SEL-INDMIFE (see Definition 5).



Multi-input Inner-Product Functional Encryption from Pairings 617

Game1: we replace (Setup,KeyGen,Enc) by the efficient simulator (S̃etup,
K̃eyGen, Ẽnc), using the one-SEL-SIM security of FE , via a hybrid argument
across all slots i ∈ [n] (cf Lemma 4).

Lemma 4 (Game0 to Game1). There exists a PPT adversary B1 such that

Adv0(A) − Adv1(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B1).

Fig. 5. Description of (Setup′,Enc′,KeyGen′) defining game 0.� for the proof of
Lemma 4.

Proof. In Game1, we replace (Setup,Enc,KeyGen) by (S̃etup, Ẽnc, K̃eyGen), which
is a PPT simulator whose existence is ensured by the one-SEL-SIM security of
(Setup,KeyGen,Enc) (see Definition 6). A complete description of Games0 and
Game1 is given in Fig. 4.

We use a hybrid argument, which involves hybrid Game0.� for � ∈ {0, . . . , n},
defined in Fig. 5, and we use Adv0,�(λ,A) to denote Pr[Game0.�(λ,A) = 1], where
the probability is taken over the random coins of A and Game0.�. Notice that
Game0 and Game1 are identical to Game0.0 and Game0.n, respectively. For any
� ∈ [n], we build a PPT adversary B0.� such that

Adv0.�−1(A) − Adv0.�(A) ≤ AdvFE,one-SEL-SIM (1λ,B0.�).
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– Simulation of mpk : First, B0.� receives the challenge {xb
i}i∈[n],b∈{0,1}

from A. Then, it picks β ←R {0, 1}, zi ←R Z
k
q for all i ∈ [n], and sends

xβ
� ‖z� to the experiment it is interacting with, which is either REALFE or

˜IDEAL
FE

. Then, B0.� receives mpk′
�, and a ciphertext ct, which are either

of the form mpk′
� := mpk�, where (msk�,mpk�) ← Setup(1λ,Fm+k,B

1 ), and
ct := Enc(msk�,x

β
� ‖z�) if B3.� is interacting with the experiment REALFE ;

or of the form mpk′
� := m̃pk�, where (m̃sk�, m̃pk�) ← S̃etup(1λ,Fm+k,B

1 ),

ct := Ẽnc(m̃sk�) if B3.� is interacting with the experiment ˜IDEAL
FE

. It sam-
ples (m̃pki, m̃ski) ← S̃etup(1λ,Fm+k,B

1 ) for i = 1, . . . , � − 1, (mpki,mski) ←
Setup(1λ,Fm+k,B

1 ) for i = �+1, . . . , n, and returns mpk := (m̃pk1, . . . , m̃pk�−1,
mpk′

�,mpk�+1, . . . ,mpkn) to A.
– Simulation of cti : B0.� computes cti := Enc(mski,x

β
i ‖zi) for all i < �

(note that B0.� can do so since it knows mski, xβ
i , and zi), and computes

cti := Ẽnc(m̃ski) for all i > � (again, B0.� can do so since it knows m̃ski).
Finally, B0.� sets ct� := ct and returns {cti}i∈[n] to A.

– Simulation of KeyGen′(msk , ·) : For each query y1‖ . . . ‖yn that A makes
to KeyGen′(msk, ·), B0.� picks r ←R Z

k
q , and computes di ← K̃eyGen(m̃ski,

yi‖r, 〈xβ
i ‖zi,yi‖r〉) for i = 1, . . . , � − 1, di ← KeyGen(mski,yi‖r) for i =

� + 1, . . . , n. Then it computes d� by querying the oracle it has access to,
which is KeyGen(msk, ·) in the experiment REALFE , or O(·) in the experiment
IDEALFE , on input y�‖r. Then, it computes z := 〈z1 + · · · + zn, r〉 and it
returns sky1‖···‖yn

:=
({[di]2}i∈[n], [r]2, [z]T

)
.

Finally, B0.� outputs 1 if A outputs 1, 0 otherwise. It is clear that when B0.�

interacts with the experiment REALFE , it simulates the Game 0, whereas it
simulates the Game 1 when it interacts with IDEALFE . Therefore,

AdvFE,one-SEL-SIM (λ, 1λ,B0.�)

=
∣∣Pr

[
REALFE(1λ,B0.�) = 1

] − Pr
[
IDEALFE(1λ,B0.�) = 1

]∣∣
= |Adv0.�−1(A) − Adv0.�(A)|

Summing up for all � ∈ [n], we obtain the lemma. ��

Game2: we replace the values 〈zi, r〉 used by KeyGen′(msk, ·) to z̃i ←R Zq, for
all slots i ∈ [n], using the Dk-MDDH assumption in G2 (cf Lemma 5).

Lemma 5 (Game1 to Game2). There exists a PPT adversary B2 such that:

Adv1(A) − Adv2(A) ≤ AdvUk-mddh
G2,B2

(λ) +
1

q − 1
.

Proof. Here, we switch {[r]2, [〈zi, r〉]2}i∈[n] used by KeyGen(msk, ·) to {[r]2,
[z̃i]2}i∈[n], where for all i ∈ [n], zi ←R Z

k
q , z̃1, . . . , z̃n ←R Zp and r ←R Z

k
q .
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This is justified by the fact that [r�‖〈z1, r〉‖ · · · ‖〈zn, r〉]2 ∈ G
1×(k+n)
2 is iden-

tically distributed to [r�U�]2 where U ←R Uk+n,k (wlog. we assume that the
upper k rows of U are full rank), which is indistinguishable from a uniformly
random vector over G

1×(k+n)
2 , that is, of the form: [r‖z̃1‖ · · · ‖z̃n]2, according to

the Uk+n,k-MDDH assumption. To do the switch simultaneously for all calls to
KeyGen, that is, to switch {[rj ]2, [〈zi, rj〉]2}i∈[n],j∈[Q0] to {[rj ]2, [z̃

j
i ]2}i∈[n],j∈[Q0],

where Q0 denotes the number of calls to KeyGen(msk, ·), and for all i ∈ [n],
zi ←R Z

k
q , z̃j

1, . . . , z̃
j
n ←R Zp and for all j ∈ [Q0], rj ←R Z

k
q , we use the Q0-

fold Uk+n,k-MDDH assumption. Namely, we build a PPT adversary B′
2 such

that Adv1(A)−Adv2(A) ≤ Adv
n-fold UQ0,k-mddh

G2,B′
2

(λ). This, together with Lemma1
(Uk-MDDH ⇒ n-fold UQ0,k-MDDH), implies the lemma.

– Simulation of mpk : Upon receiving an Q0-fold Uk+n,k-MDDH challenge
(
PG, [U]2 ∈ G

(k+n)×k
2 ,

[
h1‖ · · · ‖hQ0

]
2

∈ G
(k+n)×Q0
2

)
,

and the challenge {xb
i}i∈[n],b∈{0,1} from A, B′

1 picks β ←R {0, 1}, sam-

ples (m̃pki, m̃ski) ← S̃etup(1λ,Fm+k,B
1 ) for i ∈ [n], and returns mpk :=

(m̃pk1, . . . , m̃pkn) to A.
– Simulation of cti : B′

2 computes cti := Ẽnc(m̃ski) for all i ∈ [n], which it
can do since it knows m̃ski, and returns {cti}i∈[n] to A.

– Simulation of KeyGen′(msk , ·) : On the j’th query y1‖ · · · ‖yn of A
to KeyGen′, B′

2 sets [rj ]2 := [hj ]2, where hj ∈ Z
k
q denotes the k-upper

components of hj ∈ Z
k+n
q , and for each i ∈ [n], computes [di]2 :=

[K̃eyGen(m̃ski,yi‖rj , 〈xβ
i ,yi〉 + hj

k+i)]2, where hj
k+i denotes the k + i’th coor-

dinate of the vector hj ∈ Z
k+n
p . Here we rely on the fact that K̃eyGen(m̃sk, ·, ·)

is linear in its inputs (y, a), so that we can compute K̃eyGen(m̃sk, [y]2, [a]2) =
[K̃eyGen(m̃sk,y, a)]2. Note that when

[
h1‖ · · · ‖hQ0

]
2

is a real MDDH chal-
lenge, B′

2 simulate Game1, whereas it simulates Game2 when
[
h1‖ · · · ‖hQ0

]
2

is uniformly random over G
(k+n)×Q0
1 . ��

Game3: here the values di for i ∈ [n], and z, computed by KeyGen′(msk, ·), are

of the form: di ← K̃eyGen
(
m̃ski,yi‖r, z̃i

)
, and z := z̃1+ · · ·+ z̃n− ∑

i〈xβ
i ,yi〉 .

In Lemma 6, we prove that Game3 and Game2 are perfectly indistinguishable,
using a statistical argument that crucially relies on the fact that Game3 and
Game2 are selective. In Lemma 7, we prove that no adversary can win Game3,
using the restriction on the queries to KeyGen′(msk, ·) and the challenge {xb

i}i∈[n]

imposed by the ideal functionality.

Lemma 6 (Game2 to Game3). Adv2(A) = Adv3(A).
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Proof. Here, we use the fact that for all y1‖ · · · ‖yn ∈ (Zm
q )n, for all {xb

i ∈
Z

m
q }i∈[n],b∈{0,1}, all β ∈ {0, 1}, the following are identically distributed: {z̃i}i∈[n]

and {z̃i − 〈xβ
i ,yi〉 }i∈[n], where z̃i ←R Zq for all i ∈ [n].

For each query y1‖ · · · ‖yn, KeyGen′(msk,y1‖ · · · ‖yn) picks values z̃i ←R

Zq for i ∈ [n] that are independent of y1‖ · · · ‖yn and the challenge {xb
i ∈

Z
m
q }i∈[n],b∈{0,1} (note that here we crucially rely on the fact the Game2 and

Game3 are selective), therefore, using the previous fact, we can switch z̃i to z̃i −
〈xβ

i ,yi〉 without changing the distribution of the game. This way, KeyGen′(msk,

y1‖ · · · ‖yn) computes di ← K̃eyGen(m̃ski,yi‖r, z̃i) for all i ∈ [n], and z :=
z̃1 + . . . + z̃n − ∑n

i=1〈xβ
i ,yi〉, as in Game3. ��

Lemma 7 (Game3). Adv3(A) = 0.

Proof. We use the fact that for all i ∈ [n], the query (i,x0
i ,x

1
i ) to Enc′ (recall that

there can be at most one query per slot i ∈ [n]), and for all queries y1‖ · · · ‖yn

to KeyGen′, by definition of the security game, we have:
n∑

i=1

〈x0
i ,yi〉 =

n∑

i=1

〈x1
i ,yi〉.

Therefore, for each call to KeyGen(msk, ·), the value z, which is of the form
z :=

∑
i z̃i − ∑

i〈xβ
i ,yi〉, is independent of β. Since the challenge ciphertext and

the public key are also independent of β, we have Adv3(A) = 0. ��
Summing up, we proved that for all security parameter λ ∈ N and all PPT

adversaries A, the following holds.

– In Lemma 4, we show that there exists a PPT adversary B1 such that
Adv0(A) − Adv1(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B1).

– In Lemma 5, we show that there exists a PPT adversary B2 such that
Adv1(A) − Adv2(A) ≤ AdvUk-mddh

G2,B2
(λ) + 1

q−1 .
– In Lemma 6, we show that Adv2(A) = Adv3(A).
– In Lemma 7, we show that Adv3(A) = 0.

Putting everything together, we obtain:

Adv0(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B0) + AdvUk-mddh
G2,B2

(λ) +
1

q − 1
.

By Definition 6, Adv0(A) = AdvMIFE,one-SEL-IND(1λ,A). Therefore, by the
one-SEL-SIM security of (Setup,Enc,KeyGen) and the Dk-MDDH assumption
in G2, AdvMIFE,one-SEL-IND(1λ,A) is a negligible function of λ. ��
Remark 3 (decryption capabilities). As a sanity check, we note that the simu-
lated secret keys will correctly decrypt a simulated ciphertext. However, unlike
schemes proven secure via the standard dual system encryption methodology
[26], a simulated secret key will incorrectly decrypt a normal ciphertext. This is
not a problem because we are in the private-key setting, so a distinguisher will
not be able to generate normal ciphertexts by itself.
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Remark 4 (why a naive argument is inadequate). We cannot afford to do a naive
hybrid argument across the n slots for the challenge ciphertext as it would intro-
duce extraneous restrictions on the adversary’s queries. Concretely, suppose we
want to use a hybrid argument to switch from encryptions of x0

1,x
0
2 in game 0

to those of x1
1,x

1
2 in game 2 with an intermediate hybrid that uses encryptions

of x1
1,x

0
2 in Game1. To move from game 0 to game 1, the adversary’s query

y1‖y2 must satisfy 〈x0
1‖x0

2,y1‖y2〉 = 〈x1
1‖x0

2,y1‖y2〉, which implies the extrane-
ous restriction 〈x0

1,y1〉 = 〈x1
2,y1〉.

As described in the proof above, we overcome the limitation by using
simulation-based security. Note that what essentially happens in the first
slot in our proof is as follows (for k = 1, that is, DDH): we switch from
Enc(msk1,x0

1‖z1) to Enc(msk1,x1
1‖z1) while giving out a secret key which con-

tains KeyGen(msk1,y1‖r1), [r1]2. Observe that

〈x0
1‖z1,y1‖r1〉 = 〈x0

1,y1〉 + z1r
1, 〈x1

1‖z1,y1‖r1〉 = 〈x1
1,y1〉 + z1r

1

may not be equal, since we want to avoid the extraneous restriction 〈x0
1,y1〉 =

〈x1
2,y1〉. This means that one-SEL-IND security does not provide any guarantee

that the ciphertexts are indistinguishable. However, one-SEL-SIM security does
provide such a guarantee, because

([〈x0
1,y1〉 + z1r

1]2, [r1]2) ≈c ([〈x1
1,y1〉 + z1r

1]2, [r1]2)

via the DDH assumption in G2. Since the outcomes of the decryption are com-
putationally indistinguishable, the output of the simulated ciphertext would also
be computationally indistinguishable.

Theorem 2 (many-SEL-IND Security of MIFE). Suppose the single-input
FE (Setup,Enc,KeyGen,Dec) is many-SEL-IND-secure and the multi-input FE
(Setup′,Enc′,KeyGen′,Dec′) is one-SEL-IND-secure. Then, the multi-input FE
(Setup′,Enc′,KeyGen′,Dec′) is many-SEL-IND-secure.

That is, we show that our multi-input FE is selectively secure in the setting
with multiple challenge ciphertexts (and since our multi-input FE is a private
key scheme, one-SEL-IND security does not immediately imply many-SEL-IND
security).

Proof Overview.

– We first switch encryptions of x1,0
1 , . . . ,x1,0

n to those of x1,1
1 , . . . ,x1,1

n in a
“single shot”, and for the remaining ciphertexts, we switch from an encryption
of xj,0

i = (xj,0
i −x1,0

i )+x1,0
i to that of (xj,0

i −x1,0
i )+x1,1

i . This basically follows
from the setting where there is only a single ciphertext in each slot.

– Then, we apply a hybrid argument across the slots to switch from encryptions
of (x2,0

i − x1,0
i ) + x1,1

i , . . . , (xQi,0
i − x1,0

i ) + x1,1
i to those of (x2,1

i − x1,1
i ) +

x1,1
i , . . . , (xQi,1

i − x1,1
i ) + x1,1

i .
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As described earlier, to carry out the latter hybrid argument, the queries
must satisfy the constraint

〈(xj,0
i − x1,0

i ) + x1,1
i ,yi〉 = 〈(xj,1

i − x1,1
i ) + x1,1

i ,yi〉
⇐⇒ 〈xj,0

i − x1,0
i ,yi〉 = 〈xj,1

i − x1,1
i ,yi〉

where the latter is already imposed by the ideal functionality.
We defer to the full version of this paper for the complete proof.

5 Achieving Adaptive Security

In this section, we show that the multi-input FE in Fig. 7 is many-AD-IND
secure. Roughly speaking, xx-AD-IND security, where xx ∈ {many, one}, is
defined as xx-SEL-IND security (see Definition 5), except that the adversary
does not have to commit to its challenge beforehand, and queries secret keys
adaptively. See the full version of this paper for the formal definition of xx-AD-
IND security.

Theorem 3. Suppose the Dk-MDDH assumption holds in G1 and G2. Then,
the multi-input FE in Fig. 6 is many-AD-IND-secure.

Fig. 6. Our private-key MIFE scheme for the class Fm,B
n (self-contained description).

The scheme is many-AD-IND-secure under the Dk-MDDH assumption in G1 and G2.
We use e([X]1, [Y]2) to denote [X�Y]T .
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Proof Overview. The security proof proceeds in three steps:

– First, we show that the MIFE in Fig. 6 is one-AD-IND secure, that is, it is
adaptively secure when there is only a single challenge ciphertext. To achieve
adaptive security, we borrow the techniques used in the selective security proof,
using complexity leveraging to obtain adaptive security. Note that in our case,
we can afford the exponential security loss from complexity leveraging, since
this is used in the proof in combination with perfect indistinguishability, there-
fore, the exponential term is multiplied by a zero term.

– Then, we show that the generic construction of MIFE in Fig. 3 is many-AD-
IND secure, if the underlying single-input FE is many-AD-IND secure, and
the MIFE is one-AD-IND secure.

– Finally, we show that the single-input scheme in Fig. 7 is many-AD-IND.

Putting everything together, we obtain many-AD-IND security of the MIFE in
Fig. 6. We defer to the full version of this paper for a complete proof, and for
the definition of one-AD-IND and many-AD-IND security.

A One-SEL-SIM, Many-AD-IND Secure Scheme
for Single-Input Inner Products

In Fig. 7, we describe the scheme for Single-Input Inner Products from [28], which
is essentially the same as those in [2,4], extended explicitly to the Dk-MDDH
assumption. In the full version of this paper, we recall the proof of one-SEL-
SIM-security from [28] and we prove its many-AD-IND security. Moreover, note
that the scheme is public key, linearly homomorphic, and satisfies additional
requirements for the construction in Fig. 3.

Fig. 7. A one-SEL-SIM scheme for single-input inner product Fm,B
1 [28].

Theorem 4 (one-SEL-SIM, many-AD-IND Security of FE). If the Dk-
MDDH assumption holds in G, then the single-input FE in Fig. 7 is one-SEL-
SIM secure (see Definition 6), and many-AD-IND secure.

We defer to the full version of this paper for the complete proof. We provide
the description of the simulator for the proof of one-SEL-SIM security from [28],
in Fig. 8.
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Fig. 8. Simulator (S̃etup, K̃eyGen, Ẽnc) from [28] for the one-SEL-SIM security of the
single-input scheme for inner product Fm,B

1 in Fig. 7
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