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Abstract. Brzuska et. al. (Crypto 2011) proved that unconditional UC-
secure computation is possible if parties have access to honestly gen-
erated physically unclonable functions (PUFs). Dachman-Soled et. al.
(Crypto 2014) then showed how to obtain unconditional UC secure com-
putation based on malicious PUFs, assuming such PUFs are stateless.
They also showed that unconditional oblivious transfer is impossible
against an adversary that creates malicious stateful PUFs.
– In this work, we go beyond this seemingly tight result, by allowing

any adversary to create stateful PUFs with a-priori bounded state.
This relaxes the restriction on the power of the adversary (limited
to stateless PUFs in previous feasibility results), therefore achieving
improved security guarantees. This is also motivated by practical sce-
narios, where the size of a physical object may be used to compute
an upper bound on the size of its memory.

– As a second contribution, we introduce a new model where any adver-
sary is allowed to generate a malicious PUF that may encapsulate
other (honestly generated) PUFs within it, such that the outer PUF
has oracle access to all the inner PUFs. This is again a natural
scenario, and in fact, similar adversaries have been studied in the
tamper-proof hardware-token model (e.g., Chandran et. al. (Euro-
crypt 2008)), but no such notion has ever been considered with
respect to PUFs. All previous constructions of UC secure protocols
suffer from explicit attacks in this stronger model.

In a direct improvement over previous results, we construct UC protocols
with unconditional security in both these models.
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1 Introduction

In recent years, there has been a rich line of work studying how to enhance the
computational capabilities of probabilistic polynomial-time players by making
assumptions on hardware [33]. Two types of hardware assumptions in particular
have had tremendous impact on recent research: tamper-proof hardware tokens
and physically unclonable functions (PUFs).

The tamper-proof hardware token model introduced by Katz [24] relies on
the simple and well accepted assumption that it is possible to physically protect a
computing machine so that it can only be accessed as a black box, via oracle calls
(as an example, think of smart cards). Immediately after its introduction, this
model has been studied and its power is now understood in large part. Tamper-
proof hardware tokens allow to obtain strong security notions and very efficient
constructions, in some cases without requiring computational assumptions. In
particular, the even more challenging case of stateless tokens started by [6] has
been investigated further in [1,10,11,14,15,19,22,23,26].

1.1 Physically Unclonable Functions

Physically Unclonable Functions (PUFs) were introduced by Pappu et al. [28,29]
but their actual potential has been understood only in recent years1. Increasing
excitement over such physical random oracles generated various different (and
sometimes incompatible) interpretations about the actual features and formal-
izations of PUFs.

Very roughly, a PUF is an object that can be queried by translating an input
into a specific physical stimulation, and then by translating the physical effects
of the stimulation to an output through a measurement. The primary appealing
properties of PUFs include: (1) constructing two PUFs with similar input-output
behavior is believed to be impossible (i.e. unclonability), and (2) the output of
a PUF on a given input is seemingly unpredictable, i.e., one cannot “learn” the
behavior of an honestly-generated PUF on any specific input without actually
querying the PUF on that input.

There is a lot of ongoing exciting research on concrete constructions of PUFs,
based on various technologies. As such, a PUF can only be described in an
abstract way with the attempt to establish some target properties for PUF
designers.

However, while formally modeling a PUF, one might (incorrectly) assume
that a PUF guarantees some properties that unfortunately exceed the state of
affairs in real-world scenarios. For example, assuming that the output of a gen-
uine PUF is purely random is clearly excessive, while relying on min-entropy is
certainly a safer and more conservative assumption. Various papers have pro-
posed different models and even attempts to unify them. The interested reader

1 PUFs are used in several applications like secure storage, RFID systems, anti-
counterfeiting mechanisms, identification and authentication protocols [13,16,25,31,
32,35].
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can refer to [2] for detailed discussions about PUF models and their connections
to properties of actual PUFs. We stress that in this work we will consider the use
of PUFs in the UC model of [5]. Informally, this means that we want to study
protocols that can securely compose with other protocols that may be executing
concurrently.

1.2 UC Security Based on Physically Unclonable Functions

Starting with the work of Brzuska et al. [4], a series of papers have explored UC-
secure computation based on physically unclonable functions. The goal of this
line of cryptographic research has been to build protocols secure in progressively
stronger models.

The Trusted PUFs of Brzuska et al. [4]. Brzuska et al. [4] began the first general
attempts to add PUFs to the simulation paradigm of secure computation. They
allowed any player (malicious or honest) to create only well-formed PUFs. As
already mentioned, the output of a well-formed PUF on any arbitrary input is
typically assumed to have sufficient min-entropy. Furthermore, on being queried
with the same input, a well-formed PUF can be assumed to always produce
identical (or sufficiently close) outputs. Applying error-tolerant fuzzy extrac-
tors [9] to the output ensures that each invocation of the PUF generates a
(non-programmable) random string that can be reproduced by querying the
PUF again with the same input. Brzuska et al. demonstrated how to obtain
unconditional UC secure computation for any functionality in this model.

TheMalicious PUFs ofOstrovsky et al. [27].Ostrovsky et al. [27] then showed that
the constructions of [4] become insecure in case the adversary can produce a mali-
cious PUF that deviates from the behavior of an honest PUF. For instance, a mali-
cious PUF could produce outputs according to a pseudo-random function rather
than relying on physical phenomena, or it could just refuse to answer to a query.
Theyalso showed that it is possible toUC-securely compute any functionality using
(potentially malicious) PUFs if one is willing to additionally make computational
assumptions.TheyleftopentheproblemofachievingunconditionalUC-securecom-
putation for any functionality using malicious PUFs.

Damg̊ard and Scafuro [8] showed that unconditional UC secure commitments
can be obtained even in the presence of malicious PUFs2.

The FullyMalicious but Stateless PUFs of Dachman-Soled et al. [7]. More recently,
itwas shownbyDachman-Soled et al. [7] that unconditionalUCsecurity for general
functionalities is impossible if the adversary is allowed to create malicious PUFs
that can maintain state. They also gave a complementary feasibility result in an
intermediate model where PUFs are allowed to be malicious, but are required to be
stateless.

2 This can be extended to other functionalities but not to all functionalities.
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We note that the impossibility result of [7] crucially relies on (malicious)
PUFs being able to maintain a priori unbounded state.

Thus, the impossibility seems interesting theoretically, but its impact to prac-
tical scenarios is unclear. In the real world, this result implies that unconditional
UC secure computation of all functionalities is impossible in a model where
an honest player is unable to distinguish maliciously created PUFs with gigan-
tic memory, from honest (and therefore completely stateless) PUFs. One could
argue that this allows the power of the adversary to go beyond the reach of cur-
rent technology. On the other hand, the protocol of [7] breaks down completely
if the adversary can generate a maliciously created PUF with even one bit of
memory, and pass it off as a stateless (honest) PUF. This gap forms the starting
point for our work.

1.3 Our Contributions

The current state-of-the-art leaves open the following question:

Can we achieve UC-secure computation with malicious PUFs that are
allowed to have a priori bounded state?

In the main contribution of this work we answer this question in the affir-
mative. We show that not only it is possible to obtain UC-secure computation
for any functionality as proven in [27] with computational assumptions, but we
prove that this can be done with unconditional security, without relying on any
computational assumptions. This brings us to our first main result, which we
now state informally.

Informal Theorem 1. For any two party functionality F , there exists a proto-
col π that unconditionally and UC-securely realizes F in the malicious bounded-
stateful PUF model.

As our second contribution, we introduce a new adversarial model for PUF-
based protocols. Here, in addition to allowing the adversary to generate malicious
stateless PUFs, we also allow him to encapsulate other (honestly generated)
PUFs inside his own (malicious, stateless) PUF, even without the knowledge
of the functionality of the inner PUFs. This allows the outer malicious PUF
to make black-box (or oracle) calls to the inner PUFs that it encapsulates. In
particular, the outer malicious PUF could answer honest queries by first making
oracle calls to its inner PUFs, and generating its own output as a function of
the output of the inner PUFs on these queries. An honest party interacting with
such a malicious PUF need not be able to tell whether the PUF is malicious and
possibly encapsulates other PUFs in it, or it is honest.

In this new adversarial model3, we require all PUFs to be stateless. We
will refer to this as the malicious encapsulated PUF model. It is interesting to
3 A concurrent and independent work [30] considers an adversary that can encapsulate

PUFs but does not propose UC-secure definitions/constructions.
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note that all previously known protocols (even for limited functionalities such
as commitments) suffer explicit attacks in this stronger malicious encapsulated
(stateless) PUF model.

As our other main result, we develop techniques to obtain unconditional
UC-secure computation in the malicious encapsulated PUF model.

Informal Theorem 2. For any two party functionality F , there exists a pro-
tocol π that unconditionally and UC-securely realizes F in the malicious encap-
sulated (stateless) PUF model.

Table 1 compares our results with prior work. Our feasibility result in the
malicious bound-stateful PUF model and our feasibility result in the malicious
encapsulated-stateless PUF model directly improve the works of [4,7]. Indeed
each of our two results strengthen the power of the adversaries of [4,7] in
one meaningful and natural direction still achieving the same unconditional
results of [4,7]. A natural question is whether our techniques defeating malicious
bounded-stateful PUFs can be composed with our techniques defeating mali-
cious encapsulated-stateless PUFs to obtain unconditional UC-security for any
functionality against adversaries that can construct malicious bounded-stateful
encapsulated PUFs. While we do not see a priori any conceptual obstacle in
obtaining such even stronger feasibility result, the resulting construction would
be extremely complex and heavily tedious to analyze. Therefore we defer such a
stronger claim to future work hoping that follow up research will achieve a more
direct and elegant construction.

Table 1. The symbol � (resp. ×) indicates that the construction satisfies (resp. does
not satisfy) the corresponding security guarantee.

Reference Unconditional
UC for any
functionality

UC with
stateless
mal. PUFs

UC with
bounded stateful
mal. PUFs

UC with
encapsulated
stateless mal. PUFs

[4] � × × ×
[27] × � � ×
[7] � � × ×
This work � � � ×
This work � � × �

1.4 Our Techniques

The starting point for our constructions is the UC-secure OT protocol of [7],
which itself builds upon the works of [4,27]. We begin by giving a simplified
description of the construction in [7].

Suppose a sender S with inputs (m0,m1) and a receiver R with input bit
b want to run a UC secure OT protocol in the malicious stateless PUF model.
Then, S generates a PUF and sends it to the receiver. The receiver queries the
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PUF on a random challenge string c, records the output r and then returns the
PUF to S. Then, the sender sends two random strings (x0, x1) to the receiver.
In turn, the receiver picks xb, and sends v = c ⊕ xb to the sender. The sender
uses PUF(v ⊕ x0) to mask his input m0 and PUF(v ⊕ x1), to mask his input m1;
and sends both masked values to the receiver. Here PUF(·) denotes the output
of the PUF on the given input. Since R had to return the PUF before (x0, x1)
were revealed, with overwhelming probability, R only knows r = PUF(v ⊕ xb),
and can output one and only one of the masked sender inputs.

Enhancing [7] in the Stateless PUF Model. Though this was a simplified
overview of the protocol in [7], it helps us to explain a subtle assumption required
in their simulation strategy against a malicious sender. In particular, the simu-
lator against a malicious sender must return the PUF to the sender before the
sender picks random messages (x0, x1). However, it is evident that in order to
extract both messages (m0,m1), the simulator must know (x0 ⊕x1), and in par-
ticular know the response of the PUF on challenges (c, c ⊕ x0 ⊕ x1) for some
known string c.

But the simulator only learns (x0, x1) after sending the PUF back to S.
Thus, in order to successfully extract the input of S, the simulator should have
the ability to make these queries even after the PUF has been returned to the
malicious sender. This means that the PUF is supposed to remain accessible and
untouched even when it is again in the hands of its malicious creator. We believe
this is a very strong assumption that clearly deviates from real scenarios where
the state of a PUF can easily be changed (e.g., by damaging it).

Our protocol in Fig. 1 gets rid of this strong assumption on the simulator,
and we give a new sender simulation strategy that does not need to query the
PUF when it is back in the hands of the malicious sender S. This is also a first
step in obtaining security against bounded-stateful PUFs. In the protocol of [7],
if the PUF created by a malicious S is stateful, S on receiving the PUF can first
change the state of the PUF (say, to output ⊥ everywhere), and then output
values (x0, x1). In this case, no simulation strategy will be able to extract the
inputs of the sender.

We change the protocol in [7], by having S commit to the random values
(x0, x1) at the beginning of the protocol, using a UC-secure commitment scheme.
These values are decommitted only after R returns the PUF back to S, so the
scheme still remains UC-secure against a malicious receiver. Moreover, now the
simulator against a malicious sender can use the straight-line extractor guar-
anteed by the UC-secure commitment scheme, to extract values (x0, x1), and
query the PUF on challenges of the form (c, c ⊕ x0 ⊕ x1) for some string c. It
then sets v = c ⊕ x0 and sends it to S. Now, the sender masks are PUF(v ⊕ x0)
and PUF(v ⊕ x1), which is nothing but PUF(c) and PUF(c ⊕ x0 ⊕ x1), which
was already known to the sender simulator before returning the PUF to S. This
simulation strategy works (with the simulator requiring only black-box access to
the malicious PUF’s code) even if the PUF is later broken or its state is reset in
any way. This protocol is described formally and proven secure in Sect. 3.



388 S. Badrinarayanan et al.

Inputs: Sender S has private inputs (m0,m1) ∈ {0, 1}2n and Receiver R has
private input b ∈ {0, 1}.

1. Sender Message: S does the following:
– Generate a PUF PUFs : {0, 1}n {0, 1}n.

– Choose a pair of random strings (x0, x1)
$

0, 1}2n.
– Send PUFs and (t0, t1) = UC-Com.Commit(x0, x1) to R.

2. Receiver Message: R does the following:

– Choose a pair of random strings (c0, c1)
$

{

{0, 1}2n.
– Compute r0 = PUFs(c0), r1 = PUFs(c1).

– Set c = cp and r = rp for p
$ {0, 1}.

– Store the pair (c, r) and send PUFs to S.
3. Sender Message:

– S sends (x0, x1) = UC-Com.Decommit(t0, t1) to R.
4. Receiver Message: R does the following:

– Abort if the decommitment does not verify correctly.
– Compute and send val = c ⊕ xb to S.

5. Sender Message:
– S computes S0 = m0 ⊕ PUFs(val ⊕ x0), S1 = m1 ⊕ PUFs(val ⊕ x1) and

sends (S0, S1) to R.

Outputs: S has no output. R outputs mb which is computed as (Sb ⊕ r).

Fig. 1. Protocol Π1 for 2-choose-1 OT in the malicious stateless PUF model.

UC Security with Bounded Stateful PUFs. A malicious PUF is allowed
to maintain state, and can generate outputs (including ⊥) as a function of not
only the current query but also the previous queries that it received as input.
This allows for some attacks on the protocol we just described, but they can be
prevented by carefully interspersing coin-tossing with the protocol. Please see
Sect. 4 for more details.

A stateful PUF created by the sender can also record information about
the queries made by the receiver, and replay this information to a malicious
sender when he inputs a secret challenge. Indeed, for PUFs with unbounded
state, it is this ability to record queries that makes oblivious transfer impossible.
However, we only consider PUFs that have a-priori bounded state. In this case,
it is possible to design a protocol, parameterized by an upper bound on the size
of the state of the PUF, that in effect exhausts the possible state space of such a
malicious PUF. Our protocol then carefully uses this additional entropy to mask
the inputs of the honest party.

More specifically, we repeat the OT protocol described before (with an addi-
tional coin-tossing phase) K times in parallel, using the same (possibly malicious,
stateful) PUF, for sufficiently large K > � (where � denotes the upper bound on
the state of the PUF). At this point, what we require essentially boils down to
a one-sided malicious oblivious transfer extractor. This is a gadget that would
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yield a single OT from K leaky OTs, such that the single OT remains secure even
when a malicious sender can ask for � bits of universal leakage across all these
OTs. This setting is incomparable to previously studied OT extractors [17,21]
because: (a) we require a protocol that is secure against malicious (not just semi-
honest) adversaries, and (b) the system has only one-sided leakage, i.e., a corrupt
sender can request � bits of leakage, but a corrupt receiver does not obtain any
leakage at all.

For simplicity, we consider the setting of one-sided receiver leakage (instead
of sender leakage). It is possible to consider this because OT is reversible. To
protect against a malicious receiver that may obtain � bits of universal leakage,
the sender picks different random inputs for each OT execution, and then uses
a strong randomness extractor to extract min-entropy and mask his inputs. We
show that this in fact suffices to statistically hide the input messages of the
sender. Please see Sect. 5 for a more detailed overview and construction.

UC Security with Encapsulated PUFs. We demonstrate the feasibility of
UC secure computation, in a model where a party may (maliciously) encapsu-
late one or more PUFs that it obtained from honest parties, inside a malicious
stateless PUF of its choice. We stress that our protocol itself does not require
honest parties to encapsulate PUFs within each other.

To describe our techniques, we begin by revisiting the protocol in Fig. 1, that
we described at the beginning of this overview. Suppose parties could maliciously
encapsulate some honest PUFs inside a malicious PUF. Then a malicious receiver
in this protocol, when it is supposed to return the sender’s PUF PUFs, could
instead return a different malicious PUF ̂PUFs. In this case, the receiver would
easily learn both inputs of the sender. But as correctly pointed out in prior
work [7,8], the sender can deflect such attacks by probing and recording the
output of PUFs on some random input(s) (known as Test Queries) before sending
it to the receiver. Later the sender can check whether ̂PUFs correctly answers to
all Test Queries.

However, a malicious receiver may create ̂PUFs that encapsulates PUFs, such
that ̂PUFs is programmed to send most outer queries to PUFs and echo its output
externally; in order to pass the sender’s test. However, ̂PUFs may have its own
malicious procedure to evaluate some of the other external queries. In particular,
the “unpredictability” of ̂PUFs may break down completely on these queries.

It turns out that the security of the sender in the basic OT protocol of Fig. 1
hinges on the unpredictability of the output of PUFs (in this situation, ̂PUFs)
on a “special challenge query” only, which we will denote by s. It is completely
feasible for a receiver to create a malicious encapsulating PUF ̂PUFs that passes
the sender tests, and yet its output on this special query s is completely known
to the receiver, therefore breaking sender security.

We overcome this issue by ensuring that s is chosen using a coin toss, and
is completely unknown to the receiver until after he has sent ̂PUFs (possibly a
malicious encapsulating PUF) back to the sender. Intuitively, this means that
̂PUFs will either not pass the sender tests, or will be highly likely to deflect this
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the query s to the inner PUF and echo its output (thereby ensuring that the
output of the PUF on input s is unpredictable for the receiver). An additional
subtlety that arises is that the receiver might use an incorrect s in the protocol
(instead of using the output of the coin toss): the receiver is forced to use the
correct s via a special cut-and-choose mechanism. For a more detailed overview
and construction, please see to Sect. 6.

UC-Secure Commitments Against Encapsulation Attacks. Finally, UC-
secure commitments against encapsulation attacks play a crucial role in our
UC-secure OT protocol in the encapsulation model. But, we note that the basic
commitment protocol of [8] is insecure in this stronger model, and therefore we
modify the protocol of [8] to achieve UC-security in this scenario. In a nutshell,
this is done by having the receiver send an additional PUF at the end of the
protocol, and forcing any malicious committer to query this additional PUF on
the committer’s input bit. We then show that even an encapsulating (malicious)
committer will have to carry out this step honestly in order to complete the
commit phase. Then, a simulator can extract the adversary’s committed value
by observing the queries of the malicious committer to this additional PUF. We
illustrate in detail, how prior constructions of UC-secure commitments fail in
the PUF encapsulation model in Sect. 7. Our UC-secure commitment protocol
in the encapsulated malicious (stateless) PUF model is also described in Sect. 7.

1.5 Organization

The rest of this paper is organized as follows. In Sect. 2, we discuss PUFs and
other preliminaries relevant to our protocols. In Sect. 3, we describe an improved
version of the protocol in [7], in the stateless PUF model. In Sects. 4 and 5, we
boost this protocol to obtain security in the bounded stateful PUF model. In
Sects. 6 and 7, we discuss protocols that are secure in the PUF encapsulation
model. In AppendixA, we discuss the formal modelling of our PUFs. The com-
plete models and proofs that could not be included in this version owing to space
restrictions, can be found in the full version of the paper.

2 Preliminaries

2.1 Physically Unclonable Functions

A PUF is a noisy physical source of randomness. The randomness property
comes from an uncontrollable manufacturing process. A PUF is evaluated with
a physical stimulus, called the challenge, and its physical output, called the
response, is measured. Since the processes involved are physical, the function
implemented by a PUF can not (necessarily) be modeled as a mathematical
function, neither can be considered computable in PPT. Moreover, the output
of a PUF is noisy, namely, querying a PUF twice with the same challenge,
could yield distinct responses within a small Hamming distance to each other.
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Moreover, the response need not be random-looking; rather, it is a string drawn
from a distribution with high min-entropy. Prior work has shown that, using
fuzzy extractors, one can eliminate the noisiness of the PUF and make its output
uniformly random. For simplicity, we assume this in the body of the paper and
give a detailed description in the full version.

A PUF-family is a pair of (not necessarily efficient) algorithms Sample and
Eval. Algorithm Sample abstracts the PUF fabrication process and works as
follows. On input the security parameter, it outputs a PUF-index id from the
PUF-family satisfying the security properties (that we define soon) according to
the security parameter. Algorithm Eval abstracts the PUF-evaluation process.
On input a challenge q, it evaluates the PUF on q and outputs the response a
of length rg, denoting the range. Without loss of generality, we assume that the
challenge space of a PUF is a full set of strings of a certain length.

Security of PUFs. Following [4], we consider only the two main security prop-
erties of PUFs: unclonability and unpredictability. Informally, unpredictability
means that the output of the PUF is statistically indistinguishable from a uni-
form random string. Formally, unpredictability is modeled via an entropy con-
dition on the PUF distribution. Namely, given that a PUF has been measured
on a polynomial number of challenges, the response of the PUF evaluated on a
new challenge still has a significant amount of entropy. For simplicity, a PUF is
unpredictable if its output on any given input appears uniformly random.

Informally, unclonability states that in a protocol consisting of several parties,
only the party in whose possession the PUF is, can evaluate the PUF. When a
party sends a PUF to a different party, it can no longer evaluate the PUF till
the time it gets the PUF back. Thus a party not in possession of a PUF cannot
predict the output of the PUF on an input for which it did not query the PUF,
unless it maliciously created the PUF. A formal definition of unclonability is
given in the full version of this paper.

A PUF can be modeled as an ideal functionality FPUF, which mimics the
behavior of the PUF in the real world. We formally define ideal functionalities
corresponding to honestly generated and various kinds of maliciously generated
PUFs in AppendixA. We summarize these here: the model for honestly gener-
ated PUFs and for malicious stateless/stateful PUFs has been explored in prior
work [7,27], and we introduce the model for encapsulated PUFs.

– An honestly generated PUF can be created according to a sampling algo-
rithm Samp, and evaluated honestly using an evaluation algorithm Eval. The
output of an honestly generated PUF is unpredictable even to the party that
created it, i.e., even the creator cannot predict the output of an honestly
generated PUF on any given input without querying the PUF on that input.

– A malicious stateless PUF, on the other hand, can be created by the
adversary substituting an Evalmal procedure of his choice for the honest Eval
procedure. Whenever a (honest) party in possession of this PUF evaluates
the PUF, it runs the stateless procedure Evalmal(c) instead of Eval(c) (and
cannot distinguish Evalmal(c) from Eval(c) unless they are distinguishable with
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black-box access to the PUF). The output of such a PUF cannot depend on
previous queries, moreover no adversary that creates the PUF but does not
possess it, can learn previous queries made to the PUF when it was not in its
possession. We adapt the definitions from [27], where Evalmal is a polynomial-
time algorithm with oracle access to Eval. This is done to model the fact that
the Evalmal algorithm can access an (honest) source of randomness Eval, and
can arbitrarily modify its output using any polynomial-time strategy.

– A malicious stateful PUF can be created by the adversary substituting a
stateful Evalmal procedure of his choice for the honest Eval procedure. When-
ever a party in possession of this PUF evaluates the PUF, it runs the stateful
procedure Evalmal(c) instead of Eval(c). Thus, the output of a stateful mali-
cious PUF can possibly depend on previous queries, moreover an adversary
that created a PUF can learn previous queries made to the PUF by query-
ing it, say, on a secret input. Evalmal is a polynomial-time stateful Turing
Machine with oracle access to Eval. Again, this is done to model the fact that
the Evalmal algorithm can access an (honest) source of randomness, Eval, and
arbitrarily modify its output using any polynomial-time strategy. Malicious
stateful PUFs can further be of two types:

• Bounded Stateful. Such a PUF can maintain a-priori bounded mem-
ory/state (which it may rewrite, as long as the total memory is bounded).

• Unbounded Stateful. Such a PUF can maintain unbounded memory/state.
– A malicious encapsulating PUF can possibly encapsulate other (honestly

generated) PUFs inside it4, without knowing the functionality of these inner
PUFs. Such a PUF PUFmal can make black-box calls to the inner PUFs, and
generate its outputs as a function of the output of the inner (honest) PUFs.
This is modeled by having the adversary substitute an Evalmal procedure of
his choice for the honest Eval procedure in the PUFmal that it creates, where
as usual Evalmal is a polynomial-time Turing Machine with oracle access to
Eval. Similar to the two previous bullets, this is done to model the fact that
the Evalmal algorithm can access an (honest) source of randomness, Eval, and
arbitrarily modify its output using any polynomial-time strategy.
In addition, Evalmal can also make oracle calls to polynomially many other
(honestly generated) procedures Eval1,Eval2, . . .EvalM that are contained in
PUFs PUF1,PUF2, . . .PUFM , for any a-priori unbounded M = poly(n). These
correspond to honestly generated PUFs that the adversary may be encap-
sulating within its own malicious PUF. Thus on some input c, the Evalmal

procedure may make oracle calls to Eval1,Eval2, . . .EvalM on polynomially
many inputs, and compute its output as a function of the outputs of the
Eval,Eval1,Eval2, . . .EvalM procedures. Of course, we ensure that the adver-
sary’s Evalmal procedure can make calls to some honestly generated procedure
Evali only if the adversary owns the PUF PUFi implementing the Evali proce-
dure when creating the encapsulating malicious PUF. Furthermore, when the

4 Since the adversary knows the code of maliciously generated PUFs, this model auto-
matically captures real-world scenarios where an adversary may be encapsulating
other malicious PUFs inside its own.
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adversary passes such a PUF to an honest party, the adversary “loses own-
ership” of PUFi and is no longer allowed to access the Evali procedure, this
is similar to the unclonability requirement. This is modeled by assigning an
owner to each PUF, and on passing an outer (encapsulating) PUF to an hon-
est party, the adversary must automatically pass all the inner (encapsulated)
honest PUFs. Whenever an honest party is in possession of such an adversar-
ial PUF PUFmal and evaluates it, it receives the output of Evalmal. When the
adversary is allowed to construct encapsulating PUFS, we restrict all PUFs
to be stateless. Therefore the model with encapsulating PUFs is incompara-
ble with the model with bounded-stateful malicious PUFs. Further details on
the modeling of malicious stateless PUFs that may encapsulate other stateless
PUFs, are provided in AppendixA.

To simplify notation, we write PUF ← Sample(1K), r = PUF(c) and assume
that PUF is a deterministic function with random output.

2.2 UC Secure Computation

The UC framework, introduced by [5] is a strong framework which gives security
guarantees even when protocols may be arbitrarily composed.

Commitments. A UC-secure commitment scheme UC-Com consists of the usual
commitment and decommitment algorithms, along with (straight-line) proce-
dures allowing the simulator to extract the committed value of the adversary
and to equivocate a value that the simulator committed to. We denote these
by (UC-Com.Commit, UC-Com.Decommit,UC-Com.Extract,UC-Com.Equivocate).
Damg̊ard and Scafuro [8] realized unconditional UC secure commitments using
stateless PUFs, in the malicious stateful PUF model.

OT. Ideal 2-choose-1 oblivious transfer (OT) is a two-party functionality that
takes two inputs m0,m1 from a sender and a bit b from a receiver. It outputs mb

to the receiver and ⊥ to the sender. We use Fot to denote this functionality. Given
UC oblivious transfer, it is possible to obtain UC secure two-party computation
of any functionality.

Formal definitions of these functionalities and background on prior results
are provided in the full version of this paper.

3 Unconditional UC Security with (Malicious) Stateless
PUFs

As a warm up, we start by considering malicious stateless PUFs as in [7] and we
strengthen their protocol in order to achieve security even when the simulator
does not have access to a malicious PUF that is in possession of the adversary
that created it.
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Construction. Let n denote the security parameter. The protocol Π1 in Fig. 2
UC-securely and unconditionally realizes 2-choose-1 OT in the malicious state-
less PUF model, between a sender S and receiver R, with the following
restrictions:

1. The random variables (x0, x1) are chosen by S independently of PUFs
5.

2. A (malicious) R returns to S the same PUF, PUFs that it received6.

We enforce these restrictions in this section only for simplicity and modularity
purposes. We remove them in Sects. 4 and 6 respectively.

Inputs: Sender S has private inputs (m0,m1) ∈ {0, 1}2n and Receiver R has
private input b ∈ {0, 1}.

1. Sender Message: S does the following:
– Generate a PUF PUFs : {0, 1}n 0, 1}n.

– Choose a pair of random strings (x0, x1)
$

0, 1}2n.
– Send PUFs and (t0, t1) = UC-Com.Commit(x0, x1) to R.

2. Receiver Message: R does the following:

– Choose a pair of random strings (c0, c1)
$

0, 1}2n.
– Compute r0 = PUFs(c0), r1 = PUFs(c1).

– Set c = cp and r = rp for p
$

{
{

{

{0, 1}.
– Store the pair (c, r) and send PUFs to S.

3. Sender Message:
– S sends (x0, x1) = UC-Com.Decommit(t0, t1) to R.

4. Receiver Message: R does the following:
– Abort if the decommitment does not verify correctly.
– Compute and send val = c ⊕ xb to S.

5. Sender Message:
– S computes S0 = m0 ⊕ PUFs(val ⊕ x0), S1 = m1 ⊕ PUFs(val ⊕ x1) and

sends (S0, S1) to R.

Outputs: S has no output. R outputs mb which is computed as (Sb ⊕ r).

Fig. 2. Protocol Π1 for 2-choose-1 OT in the malicious stateless PUF model.

Our protocol makes black-box use of a UC-commitment scheme, denoted
by the algorithms UC-Com.Commit and UC-Com.Decommit. We use UC-Com.
Commit(a, b) to denote a commitment to the concatenation of strings a and b.
5 This is fixed later by using coin-tossing to generate (x0, x1), see Sect. 4.
6 In Sect. 6, we consider an even stronger model where R may encapsulate PUFs

within a possibly malicious ̂PUFs. ̂PUFs externally forwards some queries to PUFs

and forwards the outputs to the evaluator, while possibly replacing some or all of
these outputs with other arbitrary values. We note that this covers the case where
the receiver generates ̂PUFs malicious and independently of PUFs.
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UC-secure commitments can be unconditionally realized in the malicious state-
less PUF model [8]. Formally, we prove the following theorem:

Theorem 1. The protocol Π1 in Fig. 2 unconditionally UC-securely realizes Fot

in the malicious stateless PUF model.

This protocol is essentially the protocol of Dachman-Soled et al. [7], modified
to enable correct extraction of the sender’s input. The protocol as specified in [7],
even though private, does not allow for straight-line extraction of the sender’s
input messages, unless one is willing to make the strong assumption that the
simulator can make queries to a (malicious) PUF that an adversary created, even
when this malicious PUF is in the adversary’s possession (i.e., the adversary is
forced not to update nor to damage/destroy the PUF).

Our main modification is to have the sender commit to his values (x0, x1)
using a UC-secure commitment scheme. In this case, it is possible for the sim-
ulator to extract (x0, x1) in a straight-line manner from the commitment, and
therefore extract the sender’s input while it remains hidden from a real receiver.
The rest of the proof follows in the same manner as [7]; recall that we already
gave an overview in Sect. 1.4. The formal proofs of correctness and security can
be found in the full version of this paper.

4 UC-Security with (Bounded-Stateful Malicious) PUFs

Overview. A malicious stateful PUF can generate outputs as a function of its
previous input queries. For the (previous) protocol in Fig. 2, note that in Step
2, SimS makes two queries (c1, c2) to the PUF such that (c1 ⊕ c2) = (x1 ⊕ x2),
where (x1, x2) are the sender’s random messages. On the other hand, an honest
receiver makes two queries (c1, c2) to the PUF such that (c1 ⊕ c2) = rv, for an
independent random variable rv.

Therefore, when combined with the sender’s view, the joint distribution of
the evaluation queries made to the PUF by SimS , differs from the joint distrib-
ution of the evaluation queries made to the PUF by an honest receiver. Thus, a
malicious sender can distinguish the two worlds by having a malicious stateful
PUF compute a reply to c2 depending on the value of the previous challenge c1.
We will call these attacks of Type I. In this section, we will describe a protocol
secure against all possible attacks where a stateful PUF computes responses to
future queries as a function of prior queries.

A stateful PUF created by the sender can also record information about the
queries made by the receiver, and replay this information to a malicious sender
when he inputs a secret challenge. For PUFs with bounded state, we view these
as ‘leakage’ attacks, by considering all information recorded and replayed by a
PUF as leakage. We will call these attacks of Type II. We describe a protocol
secure against general bounded stateful PUFs (i.e., secure against attacks of
both Type I and Type II) in Sect. 5.
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Repeat the following protocol K times in parallel for fresh private inputs (mi
0,m

i
1)

of the sender and bi of the receiver for i ∈ [K].
Inputs: Sender S has private inputs (m0,m1) = (mi

0,m
i
1) ∈ {0, 1}2n and Re-

ceiver R has private input b = bi ∈ {0, 1}.

1. Sender Message: S does the following.
– Generate a PUF PUFs : {0, 1}n 0, 1}n.(Use the same PUF for all

the K parallel sessions).

– Choose a pair of random strings (x0, x1)
$

0, 1}2n.
– Send PUFs and (t0, t1) = UC-Com.Commit(x0, x1) to R.

2. Receiver Message: R does the following.

– Choose a pair of random strings (c0, c1)
$

0, 1}2n.
– Compute r0 = PUFs(c0), r1 = PUFs(c1).

– Set c = cp and r = rp for p
$

0, 1} and store the pair (c, r).

– Pick and send (x̂0, x̂1)
$

{

{

{

{
{0, 1}2n along with PUFs, to S.

3. Sender Message:
S sends (x0, x1) = UC-Com.Decommit(t0, t1) to R.

4. Receiver Message: If UC-Com.Decommit(t0, t1) does not verify, abort. Else,
compute and send val = c ⊕ xb⊕x̂b to S.

5. Sender Message: S does the following.
– Compute

S0 = m0 ⊕ PUFs(val ⊕ x0⊕x̂0) and S1 = m1 ⊕ PUFs(val ⊕ x1⊕x̂1).
– Send (S0, S1) to R.

Outputs: S has no output. R outputs mb which is computed as (Sb ⊕ r).

Fig. 3. Protocol ΠK for K 2-choose-1 OTs (with at most �-bounded leakage) in the
malicious stateful PUF model. The changes from the protocol in Fig. 2 are underlined.

Our Strategy. Let � denote a polynomial upper bound on the size of the memory
of any malicious PUF created by the sender S. Our strategy to obtain secure
oblivious transfer from any PUF with �-bounded state is as follows: We use (the
same) PUFs created by the sender, to execute K = Θ(�) oblivious transfers in
parallel. In our new protocol in Fig. 3, we carefully intersperse an additional
round of coin tossing with our basic protocol from Fig. 2, to obtain security
against attacks of Type I.

Specifically, we modify the protocol of Fig. 2 as follows: instead of having S
generate the random strings (x0, x1), we set the protocol up so that both S and
the receiver R generate XOR shares of (x0, x1). Furthermore, R generates his
shares only after obtaining the PUF and a commitment to sender shares from
S. In such a case, the PUF created by S must necessarily be independent of the
receiver shares and consequently, also independent of (x0, x1).

Recall from Sect. 3, that the simulator against a malicious sender succeeds if
it can obtain the output of the PUF to queries of the form (c, c ⊕ x0 ⊕ x1) for a
random c, whereas an honest receiver can only make queries of the form (c1, c2)
for randomly chosen (c1, c2). Since (x0, x1) appear to be distributed uniformly
at random to the PUF, the distributions of (c, c ⊕ x0 ⊕ x1) and (c1, c2) are
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also statistically indistinguishable to the PUF7. Therefore, the sender simulator
succeeds whenever the honest receiver does not abort and this suffices to prove
security against a malicious sender.

Finally, we note that the simulation strategy against a malicious receiver
remains similar to one of Sect. 3, even if the receiver has the ability to create
PUFs with unbounded state.

Construction. The protocol ΠK in Fig. 3 allows us to use an �-bounded state-
ful PUF to obtain K secure (but one-sided leaky) oblivious transfers, such that
a malicious sender can obtain at most � bits of additional universal leakage
on the joint distribution of the receiver’s choice input bits (b1, b2, . . . bK). Our
protocol makes black-box use of a UC-commitment scheme, denoted by the algo-
rithms UC-Com.Commit and UC-Com.Decommit8. UC-secure commitments can
be unconditionally realized in the malicious stateful PUF model [8].

Theorem 2. The protocol ΠK unconditionally UC-securely realizes K instances
of OT(F [⊗K]

ot ) in an �-bounded-stateful PUF model, except that a malicious
sender can obtain at most � bits of additional universal leakage on joint dis-
tribution of the receiver’s choice bits over all F [⊗K]

ot .

Correctness is immediate from inspection, and the complete proof of security
is in the full version of the paper.
7 We assume the simulator can control which simulator queries the adversary’s PUF

records (but an honest party cannot). Indeed, without our assumption, if a stateful
PUF recorded every simulator query, a malicious sender on getting back PUFs may
observe the correlation between queries (c, c′) recorded by the PUF when the sim-
ulator queried it, versus two random queries when an actual honest party queried
it. Ours is a natural assumption and obtaining secure OT remains extremely non-
trivial even with this assumption. We note that this requirement can be removed
using standard secret sharing along with cut-and-choose, but at the cost of a more
complicated protocol with a worse OT production rate. This protocol is described
in the full version of this paper.

8 The UC framework (and its variants) seemingly fail to capture the possibility of
transfer of physical devices like PUFs across different protocols, to the best of our
knowledge. Within our OT protocol, we invoke the ideal functionality for UC-secure
commitments. Thus, we would like to ensure that our UC-secure commitment scheme
composes with the rest of the protocol even if PUFs created in the commitment
scheme are used elsewhere in the OT protocol and vice versa. In our protocol, the
only situation where such an issue might arise, is if one of the parties in the main
OT protocol, later maliciously passes a PUF that it received from the honest party
during a commitment phase. This is avoided by requiring all parties to return the
PUFs to their original creator at the end of the decommitment phase. Note that this
does not violate security even if the PUFs are malicious and stateful. The creating
party, like in previous works [7,8] can probe a random point before sending the PUF,
and then check this point again on receiving the PUF, to ensure that they received
the correct PUF. Generic results attempting to model UC security in presence of
physical devices that can be transferred across different protocol executions have
been presented in [3,20].
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5 One-Sided Correlation Extractors with Malicious
Security

From Sect. 4, in the �-bounded stateful PUF model, we obtain K leaky oblivious
transfers, such that the sender can obtain � bits of universal leakage on the joint
distribution of the receiver’s choice bits over all K oblivious transfers.

Because OT is reversible [37], it suffices to consider a reversed version of the
above setting, i.e., where the receiver can obtain � bits of additional universal
leakage on the joint distribution of all the sender’s messages over all K oblivious
transfers. More formally, the leakage model we consider is as follows:

One-Sided Leakage Model for Correlation Extractors. Here, we begin by describ-
ing our leakage model for OT correlations formally, and then we define one-sided
correlation extractors for OT. Our leakage model is as follows:

1. K-OT Correlation Generation Phase: For i ∈ [K], the sender S obtains
(xi

0, x
i
1) ∈ {0, 1}2 and the receiver R gets (bi, xi

bi
).

2. Corruption and Leakage Phase: A malicious adversary corrupts the
receiver and sends a leakage function L : {0, 1}K → {0, 1}tR . It receives
L({(xi

0, x
i
1)}i∈[K]).

Let (X,Y ) be a random OT correlation (i.e., X = (x0, x1), Y = (r, xr), where
(x0, x1, r) are sampled uniformly at random.) We denote a tR-leaky version of
(X,Y )K described above as ((X,Y )K)[tR].

Definition 1 ((n, p, tR, ε) One-Sided Malicious OT-Extractor). An (n, p,
tR, ε) one-sided malicious OT-extractor is an interactive protocol between 2 par-
ties S and R with access to ((X,Y )n)[tR] described above. The protocol imple-
ments p independent copies of secure oblivious transfer instances with error ε.

In other words, we want the output oblivious transfer instances to satisfy the
standard ε-correctness and ε-privacy requirements for OT. In more detail, the
correctness requirement is that the receiver output is correct in all p instances
of OT with probability at least (1− ε). The privacy requirement is that in every
instance of the output OT protocol, a corrupt sender cannot output the receiver’s
choice bit, and a corrupt receiver cannot output the ‘other message’ of the sender
with probability more than 1

2 + ε.

Theorem 3 (Extracting a Single OT). There exists a (2�+2n+1, 1, �, 2−n)
one-sided OT extractor according to Definition 1.

Theorem 4 (High Production Rate). There exists a (2� + 2n, n
log2 n

, �,
1

n logn ) one-sided OT extractor according to Definition 1.

We prove these theorems by giving a construction and proof of security of
such extractors in the following sections. We will make use of strong seeded
extractors in our construction, and we define such extractors below.
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Definition 2 (Strong seeded extractors). A function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is called a strong seeded extractor for entropy k if for any
(n, k)-source X and an independent random variable Y that is uniform over
{0, 1}d, it holds that (Ext(X,Y ), Y ) ≈ (Um, Y ).

Here, Um is a random variable that is uniformly distributed over m bit strings
and is independent of Y , namely (Um, Y ) is a product distribution. In particular,
it is known [12,18,34] how to construct strong seeded extractors for any entropy
k = Ω(1) with seed length d = O(log n) and m = 0.99 k output bits.

Construction. In Fig. 4, we give the basic construction of an OT extractor that
securely obtains a single oblivious transfer from K = (2� + 2n) OTs, when a
receiver can obtain at most � bits of universal leakage from the joint distribution
of sender inputs over all the OTs.

Let E : {0, 1}K ×{0, 1}n {0, 1} be a strong randomness (K, 2−n)-extractor for
seed length d = O(n).
Inputs: Sender S has private inputs (x0, x1) ∈ {0, 1}2n and receiver R has
private input b ∈ {0, 1}.
Given: K = 2� + 2n OTs, such that a malicious receiver can obtain additional
� bits of leakage on the joint distribution of all sender inputs.

1. Invoking OT Correlations:

– For i ∈ [K], S picks inputs mi
0, m

i
1

$ {0, 1}.
– For i ∈ [K], S invokes the ith OT on input mi

0, m
i
1.

– For i ∈ [K], R invokes the ith OT on input (the same) choice bit b.
2. Sender Message:

– S picks random seed s
$ {0, 1}d for the strong seeded extractor

E , and computes M0 = E .Ext(m1
0||m2

0||m3
0 . . . mK

0 , s) and M1 =
E .Ext(m1

1||m2
1||m3

1 . . . mK
1 , s), where || denotes the concatenation oper-

ator.
– S sends y0 = M0 ⊕ x0, y1 = M1 ⊕ x1 to R, along with seed s.

3. Output: R computes xb = yb ⊕ E .Ext(m1
b ||m2

b ||m3
b . . . ||mK

b , s).

Fig. 4. (2� + 2n, 1, �, 2−n) one-sided malicious correlation extractor.

Correctness is immediate from inspection. Intuitively, the protocol is secure
against � bits of universal (joint) leakage because setting K = 2�+2n still leaves
n bits of high entropy even when the receiver can obtain 2� + n bits of leakage.
Moreover, with � bits of additional universal leakage over all pairs of sender
inputs (m1

0,m
1
1,m

2
0, m2

1, . . . m
K
0 ,mK

1 ), the strong seeded extractor extracts an
output that is statistically close to uniform, and this suffices to mask the sender
input.

The formal proof of security can be found in the full version of this paper.
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High Production Rate: It is possible to obtain an improved production rate
at the cost of higher simulation error. This follows using techniques developed
in prior work [17,36], and the details can be found in the full version.

6 UC Secure Computation in the Malicious Encapsulation
Model

Let us consider the stateless protocol described in Sect. 3. In this protocol, the
receiver must query PUFs that he obtained from the sender on a random chal-
lenge c, before returning PUFs to the sender. A malicious receiver cannot have
queried PUFs on both c and (c ⊕ x0 ⊕ x1), because (x0 ⊕ x1) is chosen by the
sender, independently and uniformly at random, and is revealed only after the
receiver has returned PUFs. If a malicious receiver was restricted to honestly
returning the PUF generated by the sender, by unpredictability of PUFs, the
output of PUFs on (c ⊕ x0 ⊕ x1) would be a completely unpredictable uniform
random variable from the point of view of the receiver, and this sufficed to prove
sender security.

However, if a malicious receiver had no such restriction, it could possibly
generate a malicious PUF ̂PUF of his own and give it to the sender, in place of
the sender’s PUF that it was actually supposed to return. The output of ̂PUF
would no longer remain unpredictable to the receiver and this would lead to a
total break of security. As already pointed out in [7], this can be fixed by having
the sender make “test queries” to the PUF he generates, before sending the PUF
to the receiver. Indeed, when ̂PUF is generated by the receiver independently of
PUFs, the response of ̂PUF on the sender’s random test query will not match
the response of PUFs and the sender will catch such a cheating receiver with
overwhelming probability.

However there could be a different attack: a malicious receiver can construct
̂PUF encapsulating PUFs, such that ̂PUF redirects all test queries to PUFs (and
outputs the value output by PUFs on the evaluation query), whereas it mali-
ciously answers all protocol queries. In order to rule this out, we ensure that
the protocol queries (i.e., the input c that the receiver must query PUFs with)
are generated uniformly at random, by using coin-tossing, combined with cut-
and-choose tests to ensure that they are properly used. This is done carefully to
ensure that the test queries and protocol queries are identically distributed in
the view of ̂PUF (and are revealed only after the receiver has sent ̂PUF to the
sender).

This ensures that if a maliciously generated ̂PUF correctly answers all test
queries, then with overwhelming probability it must necessarily have answered
at least one evaluation query correctly according to the output of PUFs. At this
point, an OT combiner is used to obtain one secure instance of OT.

Let the security parameter be n. The protocol in Fig. 5 UC-securely real-
izes 2-choose-1 OT in a stronger model, where a malicious party is allowed
to create malicious PUFs that encapsulate other honest PUFs (see Sect. 2.1).
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Inputs: Sender S has private inputs (m0,m1) ∈ {0, 1}2n and Receiver R has
private input b ∈ {0, 1}.

1. Coin Flip I: For i ∈ [n], R picks ci1
$ {0, 1}n, sends di =

UC-Com.Commit(ci1) to S. S chooses ci2
$ {0, 1}n, sends ci2 to R. R computes

ci = ci1 ⊕ ci2.
2. Sender Message: S generates PUFs : {0, 1}n {0, 1}n, and does:

– Test Queries: For each i ∈ [n], choose TQi
$ {0, 1}n and compute

TRi = PUFs(TQi). Store the pair (TQi,TRi).

– For each i ∈ [n], choose a pair of random strings (xi0, x
i
1)

$
0, 1}2n.

Compute (ti0, t
i
1) = UC-Com.Commit(xi0, x

i
1). Send (ti0, t

i
1) and PUFs to

R.
3. Receiver Message: For each i ∈ [n], choose a random string (ci0)

$

{

{0, 1}n

and obtain ri = PUFs(c
i), ri0 = PUFs(c

i
0). Abort if PUFs aborts, else send

PUFs to S. For i ∈ [n], pick and send (x̂i0, x̂
i
1)

$ {0, 1}2n.
4. Sender Message: S does the following.

– Verification of TQ: For each i ∈ [n], if TRi �= PUFs(TQi), abort.

– For each i ∈ [n], send (xi0, x
i
1) = UC-Com.Decommit(ti0, t

i
1) to R.

5. Receiver Message: Abort if UC-Com.Decommit(ti0, t
i
1) does not verify for

any i ∈ [n]. Else pick bi
$ {0, 1}, compute and send vali = ci ⊕ xibi ⊕ x̂ibi to

S.
6. Cut-and-choose:

– Coin Flip II: S picks rS
$

0, 1}2K , sends tS = UC-Com.Commit(rS).

R picks and sends rR
$

{
{0, 1}2K . S sends rS = UC-Com.Decommit(tS),

and (S, R) use (rS ⊕ rR) to pick a subset I of indices i ∈ [n], of size K
2

.
– For i ∈ [I], R sends ci1 = UC-Com.Decommit(di).
– Verification: S computes ci = ci1 ⊕ ci2 and checks if either vali = ci ⊕

xi0 ⊕ x̂i0 OR vali = ci ⊕ xi1 ⊕ x̂i1. If not, S aborts.
7. Receiver Message: For each i ∈ [n] \ I, R sends bci = bi ⊕ b to S.
8. Sender Message: S computes S0 = m0

⊕
i∈n\I PUFs(val

i ⊕ xibci ⊕ x̂ibci),

S1 = m1

⊕
i∈n\I PUFs(val

i ⊕ xi1−bci
⊕ x̂i1−bci

). S sends (S0, S1) to R.

Outputs: S has no output. R outputs mb := (Sb ⊕ r1 ⊕ . . . ⊕ rn).

Fig. 5. OT in the malicious stateless PUF model with encapsulation. We underline all
differences from the protocol in the stateless malicious PUF model.

We emphasize that our protocol does not require that honest parties must
have the capability to encapsulate PUFs, yet it is secure even when adversar-
ial parties can create encapsulated PUFs. The protocol uses a UC-commitment
scheme, secure in the malicious stateless encapsulated PUF model. We use Com
to denote the ideal functionality for such a scheme. We construct such a scheme
in Sect. 7.
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Though the commitment scheme we construct is UC-secure, it is not imme-
diately clear that it composes with the rest of the OT protocol for the same
reasons as were described in Sect. 4. Namely, the UC framework seemingly does
not capture the possibility of transfer of PUFs across sub-protocols, thus we
would like to ensure that our UC-commitment scheme composes with the rest
of the protocol even if PUFs created for the commitment scheme are used
elsewhere.

Like in Sect. 4, this can be resolved by requiring both parties to return PUFs
back to the respective creators at the end of the decommitment phase, and
the creators performing simple verification checks to ensure that the correct
PUF was returned. If any party fails to return the PUF, the other party aborts
the protocol. Therefore, parties cannot pass off PUFs used by some party in a
previous sub-protocol as a new PUF in a different sub-protocol.

Correctness

Claim. For all (m0,m1) ∈ {0, 1}2 and b ∈ {0, 1}, the output of R equals mb.

Proof. If b = 0, bci = bi for all i, and the receiver computes:

m′
0 = S0

⊕

i∈n\I ri = S0

⊕

i∈n\I PUFs(ci) = S0

⊕

i∈n\I PUFs(vali ⊕ xi
bi

)

= m0

⊕

i∈n\I PUFs(vali ⊕ xi
bci

)
⊕

i∈n\I PUFs(vali ⊕ xi
bi

) = m0.

If b = 1, 1 − bci = bi for all i, and the receiver computes:

m′
1 = S1

⊕

i∈n\I ri = S1

⊕

i∈n\I PUFs(ci) = S1

⊕

i∈n\I PUFs(vali ⊕ xi
bi

)

= m1

⊕

i∈n\I PUFs(vali ⊕ xi
1−bci

)
⊕

i∈n\I PUFs(vali ⊕ xi
bi

) = m1.

The formal proof of security can be found in the full version of the paper.

7 UC Commitments in the Malicious Encapsulation
Model

In this section we construct unconditional UC commitments using stateless
PUFs. The model we consider is incomparable with respect to the one of [8]
since in our model an adversary can encapsulate honest PUFs (see Sect. 2.1)
when creating malicious stateless encapsulated PUFs. Note that the protocol
does not require any honest party to have the ability to encapsulate PUFs, but
is secure against parties that do have this ability.

We note that it suffices to construct an extractable commitment scheme that
is secure against encapsulation. Indeed, given such a scheme, Damg̊ard and Sca-
furo [8] show that it is possible to compile the extractable commitment scheme
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using an additional ideal commitment scheme, to obtain a UC commitment
scheme that is secure in the malicious stateless PUF model. Since the compiler
of [8] does not require any additional PUFs at all, if the extractable commitment
and the ideal commitment are secure against encapsulation attacks, then so is
the resulting UC commitment.

Extractable Commitments. We describe how to construct an extractable bit
commitment scheme ExtCom = (ExtCom.Commit,ExtCom.Decommit,ExtCom.
Extract) that is secure in the malicious stateless PUFs model with encapsu-
lation. We start with the extractable commitment scheme of [8] that is secure
against malicious PUFs in the non-encapsulated setting. They crucially rely on
the fact that the initial PUF (let’s call it PUFr) sent by the receiver can not be
replaced by the committer (as that would be caught using a previously computed
test query). To perform extraction, the simulator against a malicious committer
observes the queries made by the committer to PUFr and extracts the commit-
ter’s bit. However, in the encapsulated setting, the malicious committer could
encapsulate the receiver’s PUF inside another PUF (let’s call it ̂PUFr) that,
for all but one query, answers with the output of PUFr. For the value that the
committer is actually required to query on, ̂PUFr responds with a maliciously
chosen value. Observe that in the protocol description, this query is chosen only
by the committer and hence this is an actual attack. Therefore, except with
negligible probability, all the receiver’s test queries will be answered by ̂PUFr

with the output of the receiver’s original PUF PUFr. On the other hand, since
the target query is no longer forwarded by ̂PUFr to the receiver’s original PUF,
the simulator does not get access to the target query and hence can not extract
the committer’s bit.

To overcome this issue, we develop a new technique that forces the malicious
committer to reveal the target query to the simulator (but not to the honest
receiver). After the committer returns ̂PUFr, the receiver creates a new PUF
(let’s call it PUFR). Now, using the commitment, the receiver queries PUFR on
two values, one of which is guaranteed to be the output of ̂PUFr on the target
query. The receiver stores these two outputs and sends PUFR to the committer.
The malicious committer now has to query PUFR with ̂PUFr’s output on his
target query and commit to the value that is given in output by PUFR (using an
ideal commitment scheme). In the decommitment phase, using the previously
stored values and the committer’s input bit, the receiver can verify that the
committer indeed queried PUFR on the correct value. Observe that since the
receiver has precomputed the desired output, the malicious committer will not
be able to produce an honest decommitment if he tampers with PUFR and
produces a different output. Therefore, the malicious committer must indeed
query PUFR and this can be observed by the simulator and used to extract the
committer’s bit. Our scheme is described in Fig. 6. We show that this scheme is
correct, statistically hiding, and extractable; and give further details in the full
version.
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Inputs: Committer C has private input b ∈ {0, 1} and receiver R has no input.
Commitment Phase:

1. Receiver Message: R does the following:
– Generate a PUF PUFr : {0, 1}3n 0, 1}3n.

– Test Queries : For each i ∈ [n], choose TQi
$

0, 1}3n, and compute
TRi = PUFr(TQi). Store the pair (TQi,TRi). Send PUFr to C.

2. Committer Message: C does the following:
– Generate a PUF PUFs : {0, 1}n 0, 1}3n.
– For each i ∈ [n], choose si ∈ {0, 1}n. Compute σsi = PUFs(si) and

σri = PUFr(σsi). Send PUFs,PUFr to R.
3. Receiver Message: R does the following:

– Verification : For each i ∈ [n], if TRi �= PUFr(TQi), abort.

– For each i ∈ [n], choose a random string ri
$

0, 1}3n and send ri to C.
4. Committer Message: C does the following: If b = 0, set ci = σsi for i ∈ [n],

else set ci = (σsi ⊕ ri) for i ∈ [n]. Send ci to R.
5. Receiver Message: R does the following:

– Generate a PUF PUFR : {0, 1}3n

{
{

{

{

{0, 1}3n.
– For i ∈ [n], set yi = PUFR(PUFr(ci)), zi = PUFR(PUFr(ci ⊕ ri)), send

PUFR to C.
6. Committer Message: For each i ∈ [n], C computes xi = PUFR(σri). C

computes and sends ti = IdealCom.Commit(xi) to R.

Decommitment Phase:

1. Committer Message: C does the following:
– Send b to R and for each i ∈ [n], send si, IdealCom.Decommit(xi) to R.

2. Receiver R does the following:
– For any i ∈ [n], if IdealCom.Decommit(xi) does not verify, output ⊥.
– If b = 0, ci = PUFs(si) and xi = yi for all i ∈ [n], output 0, else ⊥.
– If b = 1, ci = (PUFs(si)⊕ ri) and xi = zi for all i ∈ [n], output 1, else ⊥.

Fig. 6. Protocol for Extractable Commitment in the malicious stateless PUF model
with encapsulation.

Acknowledgements. We thank the anonymous reviewers for valuable comments, and
in particular for suggesting some important updates to our functionality for encapsu-
lated PUFs.

A Formal Models for PUFs

While we discuss the physical behaviour of PUFs, and their various properties
in detail in the full version of the paper, here, we describe the formal modelling
of various honest, malicious and encapsulating PUFs.

We model honest PUFs similar to prior work. The ideal functionality for
honest PUFs is described in Fig. 7. We assume that in situations where Pi is
required to send a message of the form (. . . , Pi, . . .), the ideal functionality checks
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FHPUF uses PUF family P = (Sample,Eval) with parameters (rg, dnoise, dmin, m). It runs
on input the security parameter 1K , with parties P = {P1, . . . , Pn} and adversary S.

– When a party P̂ ∈ P ∪ {S} writes (initPUF, sid, P̂ ) on the input tape of FHPUF,
FHPUF checks whether L already contains a tuple (sid, ∗, ∗, ∗, ∗):

• If this is the case, then turn into the waiting state.
• Else, draw id Samplemode(1

K) from the PUF family. Put (sid, id, P̂ , notrans)
in L and write (initializedPUF, sid) on the input tape of P̂ .

– When party Pi writes (evalPUF, sid, Pi, q) on FHPUF’s input tape, FHPUF checks if
there exists a tuple (sid, id, Pi, notrans) in L.

• If not, then turn into waiting state.
• Else, run a Evalmode(1

K , id, q). Write (responsePUF, sid, q, a) on Pi’s input
tape.

– When a party Pi sends (handoverPUF, sid, Pi, Pj) to FHPUF, check if there exists a
tuple (sid, ∗, Pi, notrans) in L.

• If not, then turn into waiting state.
• Else, modify the tuple (sid, id, Pi, notrans) to the updated tuple (sid, id, ⊥,

trans(Pj)). Write (invokePUF, sid, Pi, Pj) on Pi’s input tape.

– When the adversary sends (evalPUF, sid, Pi, q) to FHPUF, check if L contains a tuple
(sid, id, ⊥, trans(∗)).

• If not, then turn into waiting state.
• Else, run a Evalmode(1

K , id, q) and return (responsePUF, sid, q, a) to Pi.
– When the adversary sends (readyPUF, sid, Pi) to FHPUF, check if L contains the

tuple (sid, id, mode, ⊥, trans(Pj)).
• If not found, turn into the waiting state.
• Else, change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, Pi, notrans)

and write (handoverPUF, sid, Pi) on Pj ’s input tape and store the tuple
(receivedPUF, sid, Pi).

– When the adversary sends (receivedPUF, sid, Pi) to FHPUF, check if the tuple
(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else,
write this tuple to the input tape of Pi.

Fig. 7. The ideal functionality FHPUF for honest PUFs.

that the message is indeed coming from party Pi, if not the ideal functionality
FHPUF turns into waiting state.

Modeling Malicious PUFs. We model malicious PUFs as in [27]. Their ideal
functionality is parameterized by two PUF families in order to handle hon-
estly and maliciously generated PUFs: The honestly generated family is a pair
(Samplenormal,Evalnormal) and the malicious one is (Samplemal,Evalmal). Whenever
a party Pi initializes a PUF, then it specifies if it is an honest or a malicious PUF
by sending mode ∈ {nor,mal} to the functionality FPUF. The ideal functionality
then initialises the appropriate PUF family and it also stores a tag nor or mal
representing this family. Whenever the PUF is evaluated, the ideal functionality
uses the evaluation algorithm that corresponds to the tag.
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The handover procedure is identical to the original formulation of Brzuska
et al., where each PUF has a status flag ∈ {trans(R), notrans} that indicates
if a PUF is in transit or not. A PUF that is in transit can be queried by the
adversary. Thus, whenever a party Pi sends a PUF to Pj , then the status flag
is changed from notrans to trans and the attacker can evaluate the PUF. At
some point, the attacker sends readyPUF to the ideal functionality to indicate
that it is not querying the PUF anymore. The ideal functionality then hands the
PUF over to Pj and changes the status flag back to notrans. The party Pj may
evaluate the PUF. Finally, when the attacker sends the message receivedPUF to
the ideal functionality, then FPUF sends receivedPUF to Pi in order to notify Pi

that the handover is over. The ideal functionality for malicious PUFs is shown
in Fig. 8. We refer the reader to [27] for more details on the different properties
of malicious PUFs.

We additionally allow malicious PUFs to maintain poly(n) a-prior bounded
memory. This is done by allowing Evalmal to be a stateful procedure.

FMPUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters
(rg, dnoise, dmin, m), and P2 = (Samplemal,Evalmal). It runs on input the security pa-
rameter 1K , with parties P = {P1, . . . , Pn} and adversary S.

– When a party P̂ ∈ P∪{S} writes (initPUF, sid, mode, P̂ ) on the input tape of FMPUF,
where mode ∈ {normal, mal}, then FMPUF checks whether L already contains a
tuple (sid, ∗, ∗, ∗, ∗): If this is the case, then turn into the waiting state. Else,
draw id Samplemode(1

K) from the PUF family. Put (sid, id, mode, P̂ , notrans) in
L and write (initializedPUF, sid) on the input tape of P̂ .

– When party Pi ∈ P writes (evalPUF, sid, Pi, q) on FMPUF’s input tape, check if there
exists a tuple (sid, id, mode, Pi, notrans) in L. If not, then turn into waiting state.
Else, run a Evalmode(1

K , id, q). Write (responsePUF, sid, q, a) on Pi’s input tape.
– When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a tu-

ple (sid, ∗, ∗, Pi, notrans) in L. If not, then turn into waiting state. Else, modify the
tuple (sid, id, mode, Pi, notrans) to the updated tuple (sid, id, mode, ⊥, trans(Pj)).
Write (invokePUF, sid, Pi, Pj) on Pi’s input tape to indicate that a handover oc-
curred between Pi and Pj .

– When the adversary sends (evalPUF, sid, Pi, q) to FMPUF, check if L contains a
tuple (sid, id, mode, ⊥, trans(∗)) or (sid, id, mode, Pi, notrans). If not, then turn into
waiting state. Else, run a Evalmode(1

K , id, q) and return (responsePUF, sid, q, a)
to Pi.

– When the adversary sends (readyPUF, sid, Pi) to FMPUF, check if L contains the
tuple (sid, id, mode, ⊥, trans(Pj)). If not found, turn into the waiting state. Else,
change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans) and write
(handoverPUF, sid, Pi) on Pj ’s input tape and store the tuple (receivedPUF, sid, Pi).

– When the adversary sends (receivedPUF, sid, Pi) to FMPUF, check if the tuple
(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else,
write this tuple to the input tape of Pi.

Fig. 8. The ideal functionality FMPUF for malicious PUFs.
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FE-PUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters
(rg, dnoise, dmin, m), and P2 = (Samplemal,Evalmal). It runs on input the security pa-
rameter 1K , with parties P = {P1, . . . , Pn} and adversary S corrupting some parties.

– When a party Pi ∈ P ∪ {S} writes (initPUF, sid, mode, Pi) on the input tape of
FE-PUF, where mode ∈ {normal, mal}, then FE-PUF checks whether L already con-
tains a tuple (sid, id, ∗, ∗, ∗, ∗) for some id. If it does, turn to waiting state. Else,
draw id Samplemode(1

K) from the PUF family. Put (sid, id, mode, Pi, notrans) in
L and write (initializedPUF, sid) on the input tape of Pi. If any of the checks failed,
turn to waiting state.

– When the adversary Pi writes reassign(sid, sid′, Pi) on the input tape of FE-PUF,
check if there exists a tuple (sid, id, mode, Pi, notrans), and check that L does
not already contains a tuple (sid, id, ∗, ∗, ∗, ∗) for some id. If either of the con-
ditions are not met, turn to waiting state. Else, replace the first tuple with
(sid′, id, mode, Pi, notrans).

– When the adversary Pi writes (encapPUF, sid, sid
′, Pi) on the input tape of FE-PUF,

check if there exist tuples (sid, ∗, ∗, Pi, notrans) and (sid′, ∗, ∗, Pi, notrans). If such
tuples exist, set owner(sid) = sid′ a.

– When party Pi sends (handoverPUF, sid, Pi, Pj) to FE-PUF, check if there exists
a tuple (sid, ∗, ∗, Pi, notrans) in L. If not, then turn into waiting state. Else,
modify the tuple (sid, id, mode, Pi, notrans) to (sid, id, mode, ⊥, trans(Pj)). Write
(invokePUF, sid, Pi, Pj) on Pi’s input tape b.

– When a party Pi ∈ P ∪ {S} writes (evalPUF, sid, Pi, q) on FE-PUF’s input tape,
check if there exists a tuple (sid, id, mode, Pi, notrans) or (sid, id, mode, ⊥, trans(∗))
in L. If not, then turn into waiting state. Else, run a Evalmode(1

K , id, q). Write
(responsePUF, sid, q, a) on Pi’s input tape.

– The Evalmal procedure can either makes calls to Evalnormal, or can write
(evalPUF, sid∗, sid, q∗) on FE-PUF’s input tape. If Evalmal writes (evalPUF, sid∗, sid, q∗)
on FFE-PUF ’s input tape, check if owner(sid∗) = sid. If not, turn to wait-
ing state. Else, like the previous bullet, check if there exists a tuple
(sid∗, id, mode, Pi, notrans) or (sid∗, id, mode, ⊥, trans(∗)) in L. If not, then turn into
waiting state. Else, run a Evalmode(1

K , id, q) and return (responsePUF, sid∗, q, a)
as output to sid.

– When the adversary sends (readyPUF, sid, Pi) to FE-PUF, check if L
contains (sid, id, mode, ⊥, trans(Pj)). If not, turn into waiting state.
Else, change (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans), write
(handoverPUF, sid, Pi) on Pj ’s input tape and store (receivedPUF, sid, Pi).

– When the adversary sends (receivedPUF, sid, Pi) to FE-PUF, check if
(receivedPUF, sid, Pi) has been stored. If not, return to waiting state. Else,
write this tuple to the input tape of Pi.

a Intuitively, when a (malicious) party encapsulates a PUF, this sets the outer PUF
as owner of the inner PUF. Even the adversary can access the inner PUF via eval-
uation queries to outer PUF. This step permits multiple iterative encapsulations.

b Handover does not change the owner (outer PUF) of an (inner) encapsulated PUF.

Fig. 9. The ideal functionality FE-PUF for malicious PUFs that may encapsulate PUFs.
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Modeling Encapsulating PUFs. We model malicious PUFs that can encapsulate
functionalities as in [6,27]. This functionality formalizes the intuition that an
honest user can create a PUF implementing a random function, but an adversary
given the PUF can only observe its input/output characteristics.

FE-PUF models the PUF (sent by party Pi to party Pj) encapsulating some
functionality Mij . The changes from the previous definition [27] that we make
is that Mij is now an oracle machine (instead of a functionality) which can
make evaluation calls to other PUFs itself. The ideal functionality for malicious
PUFs that could possibly encapsulate honest PUFs, is described in Fig. 9. FE-PUF

models the following sequence of events: (1) a party Pi samples a random PUF
from the challenge space, (2) Pi then gives this PUF to another party Pj (the
receiver) who can use the PUF as a black-box implementing Mij , (3) On giving
Mij , Pi loses oracle access to all PUFs of which it was previously the owner but
which Mij has oracle access to. Figure 9 has the formal description of FE-PUF

based on such an algorithm Mij .
We assume that every PUF has a single calling procedure known as its owner.

This owner can either be a party, or another PUF (in the case of adversarially
generated PUFs). This models (refer to the first bullet in Fig. 9) the fact that
an adversary that receives a PUF implementing Mxy can either keep the PUF
to make calls later or incorporate the functionality of this PUF in a black-
box manner into another (maliciously created) PUF, but cannot do both. The
evaluation procedure for a malicious encapsulating outer PUF, carefully checks
that the outer PUF has ownership of inner PUFs (refer the second bullet in
Fig. 9), before allowing the malicious outer evaluation procedure oracle access
to any inner PUF. The handover operation (described in the third bullet in
Fig. 9) is similarly carefully modified to ensure that the party that receives an
encapsulated PUF can only access the inner PUF via evaluation queries to the
outer PUF. Each PUF is uniquely identified by an identifier known as id.

Finally, we note that our model may also allow an adversary to “dismount”
a PUF, i.e., separate out its inner component PUFs. For simplicity, we choose
to not formalize this requirement. Our protocols trivially remain secure in this
model since we never require the honest parties to hand over any “encap”-PUFs
back to the adversary, where an “encap”-PUF is a malicious PUF that may be
encapsulating honest PUFs.
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