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Preface

Eurocrypt 2017, the 36th annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Paris, France, from April 30 to May
4, 2017. The conference was sponsored by the International Association for Crypto-
logic Research (IACR). Michel Abdalla (ENS, France) was responsible for the local
organization. He was supported by a local organizing team consisting of David
Pointcheval (ENS, France), Emmanuel Prouff (Morpho, France), Fabrice Benhamouda
(ENS, France), Pierre-Alain Dupoint (ENS, France), and Tancrède Lepoint (SRI
International). We are indebted to them for their support and smooth collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. Only the
invited talks spanned over both tracks.

We received a total of 264 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 56 Program Committee
members. Submissions co-authored by committee members were assigned to at least four
members. Committee members were allowed to submit at most one paper, or two if both
were co-authored. The reviewing process included a first-round notification followed by a
rebuttal for papers that made it to the second round. After extensive deliberations the
Program Committee accepted 67 papers. The revised versions of these papers are included
in these three-volume proceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the paper “Scrypt Is Max-
imally Memory-Hard” by Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin,
and Stefano Tessaro. The two runners-up to the award, “Computation of a 768-bit Prime
Field Discrete Logarithm,” by Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra,
Christine Priplata, and Colin Stahlke, and “Short Stickelberger Class Relations and
Application to Ideal-SVP,” by Ronald Cramer, Léo Ducas, and Benjamin Wesolowski,
received honorable mentions. All three papers received invitations for the Journal of
Cryptology.

The program also included invited talks by Gilles Barthe, titled “Automated
Proof for Cryptography,” and by Nigel Smart, titled “Living Between the Ideal and
Real Worlds.”

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions, especially rejections of very good papers that did not
find a slot in the sparse number of accepted papers, can be very disappointing. We
sincerely hope that your works eventually get the attention they deserve.

We are also indebted to the Program Committee members and all external reviewers
for their voluntary work, especially since the newly established and unified page limits
and the increasing number of submissions induce quite a workload. It has been an
honor to work with everyone. The committee’s work was tremendously simplified by
Shai Halevi’s submission software and his support, including running the service on
IACR servers.



Finally, we thank everyone else —speakers, session chairs, and rump session chairs
— for their contribution to the program of Eurocrypt 2017. We would also like to thank
Thales, NXP, Huawei, Microsoft Research, Rambus, ANSSI, IBM, Orange, Safran,
Oberthur Technologies, CryptoExperts, and CEA Tech for their generous support.

May 2017 Jean-Sébastien Coron
Jesper Buus Nielsen
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Advances in Computer-Aided Cryptography
(Invited Talk)

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Designing, analyzing and implementing correct, secure and efficient cryptography are
challenging tasks. Computer-aided cryptography is a young field of research which
aims to provide rigorous tools that ease these tasks. Computer-aided cryptography
leverages advances in the broad area of formal methods, concerned with the devel-
opment of safe and correct high-assurance systems, and in particular program verifi-
cation. For security proofs, computer-aided cryptography exploits connections between
reductionist arguments in provable security and a program verification method for
verifying probabilistic couplings. To date, computer-aided cryptography has been used
for checking reductionistic security of primitives and protocols, for analyzing the
strength of implementations against side channels and physical attacks, and for syn-
thesizing new algorithms that achieve different trade-offs between efficiency and
security. The talk will present recent developments in computer-aided cryptography
and reflect on some of the challenges, benefits and opportunities in computer-aided
cryptography.



Contents – Part I

Lattice Attacks and Constructions I

Revisiting Lattice Attacks on Overstretched NTRU Parameters . . . . . . . . . . . 3
Paul Kirchner and Pierre-Alain Fouque

Short Generators Without Quantum Computers:
The Case of Multiquadratics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Jens Bauch, Daniel J. Bernstein, Henry de Valence, Tanja Lange,
and Christine van Vredendaal

Computing Generator in Cyclotomic Integer Rings: A Subfield Algorithm
for the Principal Ideal Problem in LjDKj 1

2

� �
and Application

to the Cryptanalysis of a FHE Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Jean-François Biasse, Thomas Espitau, Pierre-Alain Fouque,
Alexandre Gélin, and Paul Kirchner

Obfuscation and Functional Encryption

Robust Transforming Combiners from Indistinguishability Obfuscation
to Functional Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Prabhanjan Ananth, Aayush Jain, and Amit Sahai

From Minicrypt to Obfustopia via Private-Key Functional Encryption . . . . . . 122
Ilan Komargodski and Gil Segev

Projective Arithmetic Functional Encryption and Indistinguishability
Obfuscation from Degree-5 Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . 152

Prabhanjan Ananth and Amit Sahai

Discrete Logarithm

Computation of a 768-Bit Prime Field Discrete Logarithm . . . . . . . . . . . . . . 185
Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra, Christine Priplata,
and Colin Stahlke

A Kilobit Hidden SNFS Discrete Logarithm Computation . . . . . . . . . . . . . . 202
Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé

Multiparty Computation I

Improved Private Set Intersection Against Malicious Adversaries . . . . . . . . . 235
Peter Rindal and Mike Rosulek

http://dx.doi.org/10.1007/978-3-319-56620-7_1
http://dx.doi.org/10.1007/978-3-319-56620-7_2
http://dx.doi.org/10.1007/978-3-319-56620-7_2
http://dx.doi.org/10.1007/978-3-319-56620-7_3
http://dx.doi.org/10.1007/978-3-319-56620-7_3
http://dx.doi.org/10.1007/978-3-319-56620-7_3
http://dx.doi.org/10.1007/978-3-319-56620-7_3
http://dx.doi.org/10.1007/978-3-319-56620-7_4
http://dx.doi.org/10.1007/978-3-319-56620-7_4
http://dx.doi.org/10.1007/978-3-319-56620-7_5
http://dx.doi.org/10.1007/978-3-319-56620-7_6
http://dx.doi.org/10.1007/978-3-319-56620-7_6
http://dx.doi.org/10.1007/978-3-319-56620-7_7
http://dx.doi.org/10.1007/978-3-319-56620-7_8
http://dx.doi.org/10.1007/978-3-319-56620-7_9


Formal Abstractions for Attested Execution Secure Processors . . . . . . . . . . . 260
Rafael Pass, Elaine Shi, and Florian Tramèr

Lattice Attacks and Constructions II

One-Shot Verifiable Encryption from Lattices. . . . . . . . . . . . . . . . . . . . . . . 293
Vadim Lyubashevsky and Gregory Neven

Short Stickelberger Class Relations and Application to Ideal-SVP . . . . . . . . . 324
Ronald Cramer, Léo Ducas, and Benjamin Wesolowski

Universal Composability

Concurrently Composable Security with Shielded
Super-Polynomial Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Brandon Broadnax, Nico Döttling, Gunnar Hartung,
Jörn Müller-Quade, and Matthias Nagel

Unconditional UC-Secure Computation with (Stronger-Malicious) PUFs . . . . 382
Saikrishna Badrinarayanan, Dakshita Khurana, Rafail Ostrovsky,
and Ivan Visconti

Lattice Attacks and Constructions III

Private Puncturable PRFs from Standard Lattice Assumptions. . . . . . . . . . . . 415
Dan Boneh, Sam Kim, and Hart Montgomery

Constraint-Hiding Constrained PRFs for NC1 from LWE . . . . . . . . . . . . . . . 446
Ran Canetti and Yilei Chen

Zero Knowledge I

Amortized Complexity of Zero-Knowledge Proofs Revisited: Achieving
Linear Soundness Slack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Ronald Cramer, Ivan Damgård, Chaoping Xing, and Chen Yuan

Sublinear Zero-Knowledge Arguments for RAM Programs. . . . . . . . . . . . . . 501
Payman Mohassel, Mike Rosulek, and Alessandra Scafuro

Side-Channel Attacks and Countermeasures

Parallel Implementations of Masking Schemes and the Bounded Moment
Leakage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

Gilles Barthe, François Dupressoir, Sebastian Faust,
Benjamin Grégoire, François-Xavier Standaert, and Pierre-Yves Strub

XIV Contents – Part I

http://dx.doi.org/10.1007/978-3-319-56620-7_10
http://dx.doi.org/10.1007/978-3-319-56620-7_11
http://dx.doi.org/10.1007/978-3-319-56620-7_12
http://dx.doi.org/10.1007/978-3-319-56620-7_13
http://dx.doi.org/10.1007/978-3-319-56620-7_13
http://dx.doi.org/10.1007/978-3-319-56620-7_14
http://dx.doi.org/10.1007/978-3-319-56620-7_15
http://dx.doi.org/10.1007/978-3-319-56620-7_16
http://dx.doi.org/10.1007/978-3-319-56620-7_16
http://dx.doi.org/10.1007/978-3-319-56620-7_17
http://dx.doi.org/10.1007/978-3-319-56620-7_17
http://dx.doi.org/10.1007/978-3-319-56620-7_18
http://dx.doi.org/10.1007/978-3-319-56620-7_19
http://dx.doi.org/10.1007/978-3-319-56620-7_19


How Fast Can Higher-Order Masking Be in Software? . . . . . . . . . . . . . . . . 567
Dahmun Goudarzi and Matthieu Rivain

Functional Encryption I

Multi-input Inner-Product Functional Encryption from Pairings . . . . . . . . . . . 601
Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee

Simplifying Design and Analysis of Complex Predicate
Encryption Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

Shashank Agrawal and Melissa Chase

Elliptic Curves

Twisted l4-Normal Form for Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . 659
David Kohel

Efficient Compression of SIDH Public Keys. . . . . . . . . . . . . . . . . . . . . . . . 679
Craig Costello, David Jao, Patrick Longa, Michael Naehrig,
Joost Renes, and David Urbanik

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

Contents – Part I XV

http://dx.doi.org/10.1007/978-3-319-56620-7_20
http://dx.doi.org/10.1007/978-3-319-56620-7_21
http://dx.doi.org/10.1007/978-3-319-56620-7_22
http://dx.doi.org/10.1007/978-3-319-56620-7_22
http://dx.doi.org/10.1007/978-3-319-56620-7_23
http://dx.doi.org/10.1007/978-3-319-56620-7_23
http://dx.doi.org/10.1007/978-3-319-56620-7_24


Contents – Part II

Functional Encryption II

On Removing Graded Encodings from Functional Encryption. . . . . . . . . . . . 3
Nir Bitansky, Huijia Lin, and Omer Paneth

Functional Encryption: Deterministic to Randomized Functions
from Simple Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Shashank Agrawal and David J. Wu

Lattice Attacks and Constructions IV

Random Sampling Revisited: Lattice Enumeration with Discrete Pruning . . . . 65
Yoshinori Aono and Phong Q. Nguyen

On Dual Lattice Attacks Against Small-Secret LWE and Parameter Choices
in HElib and SEAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Martin R. Albrecht

Small CRT-Exponent RSA Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Atsushi Takayasu, Yao Lu, and Liqiang Peng

Multiparty Computation II

Group-Based Secure Computation: Optimizing Rounds, Communication,
and Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Elette Boyle, Niv Gilboa, and Yuval Ishai

On the Exact Round Complexity of Self-composable
Two-Party Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey

High-Throughput Secure Three-Party Computation for Malicious
Adversaries and an Honest Majority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein

Symmetric Cryptanalysis I

Conditional Cube Attack on Reduced-Round Keccak Sponge Function . . . . . 259
Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang,
and Jingyuan Zhao

http://dx.doi.org/10.1007/978-3-319-56614-6_1
http://dx.doi.org/10.1007/978-3-319-56614-6_2
http://dx.doi.org/10.1007/978-3-319-56614-6_2
http://dx.doi.org/10.1007/978-3-319-56614-6_3
http://dx.doi.org/10.1007/978-3-319-56614-6_4
http://dx.doi.org/10.1007/978-3-319-56614-6_4
http://dx.doi.org/10.1007/978-3-319-56614-6_5
http://dx.doi.org/10.1007/978-3-319-56614-6_6
http://dx.doi.org/10.1007/978-3-319-56614-6_6
http://dx.doi.org/10.1007/978-3-319-56614-6_7
http://dx.doi.org/10.1007/978-3-319-56614-6_7
http://dx.doi.org/10.1007/978-3-319-56614-6_8
http://dx.doi.org/10.1007/978-3-319-56614-6_8
http://dx.doi.org/10.1007/978-3-319-56614-6_9


A New Structural-Differential Property of 5-Round AES . . . . . . . . . . . . . . . 289
Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom

Zero Knowledge II

Removing the Strong RSA Assumption from Arguments over the Integers . . . 321
Geoffroy Couteau, Thomas Peters, and David Pointcheval

Magic Adversaries Versus Individual Reduction:
Science Wins Either Way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Yi Deng

Provable Security for Symmetric Cryptography I

The Multi-user Security of Double Encryption . . . . . . . . . . . . . . . . . . . . . . 381
Viet Tung Hoang and Stefano Tessaro

Public-Seed Pseudorandom Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . 412
Pratik Soni and Stefano Tessaro

Security Models I

Cryptography with Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Prabhanjan Ananth, Aloni Cohen, and Abhishek Jain

Fixing Cracks in the Concrete: Random Oracles with Auxiliary
Input, Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Yevgeniy Dodis, Siyao Guo, and Jonathan Katz

Provable Security for Symmetric Cryptography II

Modifying an Enciphering Scheme After Deployment . . . . . . . . . . . . . . . . . 499
Paul Grubbs, Thomas Ristenpart, and Yuval Yarom

Separating Semantic and Circular Security for Symmetric-Key Bit
Encryption from the Learning with Errors Assumption. . . . . . . . . . . . . . . . . 528

Rishab Goyal, Venkata Koppula, and Brent Waters

Security Models II

Toward Fine-Grained Blackbox Separations Between Semantic
and Circular-Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Mohammad Hajiabadi and Bruce M. Kapron

A Note on Perfect Correctness by Derandomization. . . . . . . . . . . . . . . . . . . 592
Nir Bitansky and Vinod Vaikuntanathan

XVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-56614-6_10
http://dx.doi.org/10.1007/978-3-319-56614-6_11
http://dx.doi.org/10.1007/978-3-319-56614-6_12
http://dx.doi.org/10.1007/978-3-319-56614-6_12
http://dx.doi.org/10.1007/978-3-319-56614-6_13
http://dx.doi.org/10.1007/978-3-319-56614-6_14
http://dx.doi.org/10.1007/978-3-319-56614-6_15
http://dx.doi.org/10.1007/978-3-319-56614-6_16
http://dx.doi.org/10.1007/978-3-319-56614-6_16
http://dx.doi.org/10.1007/978-3-319-56614-6_17
http://dx.doi.org/10.1007/978-3-319-56614-6_18
http://dx.doi.org/10.1007/978-3-319-56614-6_18
http://dx.doi.org/10.1007/978-3-319-56614-6_19
http://dx.doi.org/10.1007/978-3-319-56614-6_19
http://dx.doi.org/10.1007/978-3-319-56614-6_20


Blockchain

Decentralized Anonymous Micropayments . . . . . . . . . . . . . . . . . . . . . . . . . 609
Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao,
Ian Miers, and Pratyush Mishra

Analysis of the Blockchain Protocol in Asynchronous Networks . . . . . . . . . . 643
Rafael Pass, Lior Seeman, and Abhi Shelat

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

Contents – Part II XIX

http://dx.doi.org/10.1007/978-3-319-56614-6_21
http://dx.doi.org/10.1007/978-3-319-56614-6_22


Contents – Part III

Memory Hard Functions

Depth-Robust Graphs and Their Cumulative Memory Complexity. . . . . . . . . 3
Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak

Scrypt Is Maximally Memory-Hard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin,
and Stefano Tessaro

Symmetric-Key Constructions

Quantum-Secure Symmetric-Key Cryptography Based on Hidden Shifts . . . . 65
Gorjan Alagic and Alexander Russell

Boolean Searchable Symmetric Encryption with Worst-Case
Sub-linear Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Seny Kamara and Tarik Moataz

Obfuscation I

Patchable Indistinguishability Obfuscation: iO for Evolving Software . . . . . . 127
Prabhanjan Ananth, Abhishek Jain, and Amit Sahai

Breaking the Sub-Exponential Barrier in Obfustopia . . . . . . . . . . . . . . . . . . 156
Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan,
and Mark Zhandry

Symmetric Cryptanalysis II

New Impossible Differential Search Tool from Design and Cryptanalysis
Aspects: Revealing Structural Properties of Several Ciphers . . . . . . . . . . . . . 185

Yu Sasaki and Yosuke Todo

New Collision Attacks on Round-Reduced Keccak . . . . . . . . . . . . . . . . . . . 216
Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo

Obfuscation II

Lattice-Based SNARGs and Their Application to More
Efficient Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

http://dx.doi.org/10.1007/978-3-319-56617-7_1
http://dx.doi.org/10.1007/978-3-319-56617-7_2
http://dx.doi.org/10.1007/978-3-319-56617-7_3
http://dx.doi.org/10.1007/978-3-319-56617-7_4
http://dx.doi.org/10.1007/978-3-319-56617-7_4
http://dx.doi.org/10.1007/978-3-319-56617-7_5
http://dx.doi.org/10.1007/978-3-319-56617-7_5
http://dx.doi.org/10.1007/978-3-319-56617-7_6
http://dx.doi.org/10.1007/978-3-319-56617-7_7
http://dx.doi.org/10.1007/978-3-319-56617-7_7
http://dx.doi.org/10.1007/978-3-319-56617-7_8
http://dx.doi.org/10.1007/978-3-319-56617-7_9
http://dx.doi.org/10.1007/978-3-319-56617-7_9


Cryptanalyses of Candidate Branching Program Obfuscators. . . . . . . . . . . . . 278
Yilei Chen, Craig Gentry, and Shai Halevi

Quantum Cryptography

Quantum Authentication and Encryption with Key Recycling:
Or: How to Re-use a One-Time Pad Even if P ¼ NP —
Safely & Feasibly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Serge Fehr and Louis Salvail

Quantum Authentication with Key Recycling . . . . . . . . . . . . . . . . . . . . . . . 339
Christopher Portmann

Relativistic (or 2-Prover 1-Round) Zero-Knowledge Protocol
for NP Secure Against Quantum Adversaries . . . . . . . . . . . . . . . . . . . . . . . 369

André Chailloux and Anthony Leverrier

Multiparty Computation III

Faster Secure Two-Party Computation in the Single-Execution Setting. . . . . . 399
Xiao Wang, Alex J. Malozemoff, and Jonathan Katz

Non-interactive Secure 2PC in the Offline/Online and Batch Settings . . . . . . 425
Payman Mohassel and Mike Rosulek

Hashing Garbled Circuits for Free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
Xiong Fan, Chaya Ganesh, and Vladimir Kolesnikov

Public-Key Encryption and Key-Exchange

Adaptive Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Dennis Hofheinz

0-RTT Key Exchange with Full Forward Secrecy . . . . . . . . . . . . . . . . . . . . 519
Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer

Multiparty Computation IV

Computational Integrity with a Public Random String
from Quasi-Linear PCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon,
Daniel Genkin, Matan Hamilis, Evgenya Pergament, Michael Riabzev,
Mark Silberstein, Eran Tromer, and Madars Virza

XXII Contents – Part III

http://dx.doi.org/10.1007/978-3-319-56617-7_10
http://dx.doi.org/10.1007/978-3-319-56617-7_11
http://dx.doi.org/10.1007/978-3-319-56617-7_11
http://dx.doi.org/10.1007/978-3-319-56617-7_11
http://dx.doi.org/10.1007/978-3-319-56617-7_11
http://dx.doi.org/10.1007/978-3-319-56617-7_12
http://dx.doi.org/10.1007/978-3-319-56617-7_13
http://dx.doi.org/10.1007/978-3-319-56617-7_13
http://dx.doi.org/10.1007/978-3-319-56617-7_13
http://dx.doi.org/10.1007/978-3-319-56617-7_14
http://dx.doi.org/10.1007/978-3-319-56617-7_15
http://dx.doi.org/10.1007/978-3-319-56617-7_16
http://dx.doi.org/10.1007/978-3-319-56617-7_17
http://dx.doi.org/10.1007/978-3-319-56617-7_18
http://dx.doi.org/10.1007/978-3-319-56617-7_19
http://dx.doi.org/10.1007/978-3-319-56617-7_19


Ad Hoc PSM Protocols: Secure Computation Without Coordination . . . . . . . 580
Amos Beimel, Yuval Ishai, and Eyal Kushilevitz

Topology-Hiding Computation Beyond Logarithmic Diameter . . . . . . . . . . . 609
Adi Akavia and Tal Moran

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

Contents – Part III XXIII

http://dx.doi.org/10.1007/978-3-319-56617-7_20
http://dx.doi.org/10.1007/978-3-319-56617-7_21


Lattice Attacks and Constructions I



Revisiting Lattice Attacks on Overstretched
NTRU Parameters

Paul Kirchner1,2 and Pierre-Alain Fouque2,3(B)
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Abstract. In 2016, Albrecht, Bai and Ducas and independently Cheon,
Jeong and Lee presented very similar attacks to break the NTRU cryp-
tosystem with larger modulus than in the NTRUEncrypt standard. They
allow to recover the secret key given the public key of Fully Homomor-
phic Encryption schemes based on NTRU ideas. Hopefully, these attacks
do not endanger the security of the NTRUEncrypt, but shed new light
on the hardness of the NTRU problem. The idea consists in decreasing
the dimension of the NTRU lattice using the multiplication matrix by
the norm (resp. trace) of the public key in some subfield instead of the
public key itself. Since the dimension of the subfield is smaller, so is the
dimension of the lattice and better lattice reduction algorithms perform.

In this paper, we first propose a new variant of the subfield attacks
that outperforms both of these attacks in practice. It allows to break
several concrete instances of YASHE, a NTRU-based FHE scheme, but
it is not as efficient as the hybrid method on smaller concrete parame-
ters of NTRUEncrypt. Instead of using the norm and trace, the multi-
plication by the public key in a subring allows to break smaller para-
meters and we show that in Q(ζ2n), the time complexity is polynomial

for q = 2Ω(
√
n log logn). Then, we revisit the lattice reduction part of the

hybrid attack of Howgrave-Graham and analyze the success probability
of this attack using a new technical tool proposed by Pataki and Tural.
We show that, under some heuristics, this attack is more efficient than
the subfield attack and works in any ring for large q, such as the NTRU
Prime ring. We insist that the improvement on the analysis applies even
for relatively small modulus; although if the secret is sparse, it may
not be the fastest attack. We also derive a tight estimation of security
for (Ring-) LWE and NTRU assumptions and perform many practical
experiments.

1 Introduction

NTRU has been introduced by Hoffstein, Pipher and Silverman since 1996
in [26] and has since resisted many attacks [13,21,22,27]. NTRU is one of the
most attractive lattice-based cryptosystems since it is very efficient, and many
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part I, LNCS 10210, pp. 3–26, 2017.
DOI: 10.1007/978-3-319-56620-7 1
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Ring-LWE cryptosystems have a NTRU variant. Ducas, Lyubashevsky and Prest
propose an Identity Based Encryption scheme based on NTRU [20] (albeit with
a much larger standard deviation), López-Alt, Tromer and Vaikuntanathan
describe a Fully Homomorphic Encryption scheme [32], which is improved in
a scheme called YASHE [6,31], and Ducas et al. propose a very fast signature
scheme called BLISS [19].

Currently, the most efficient and heuristic attack on NTRU has been given
by Kirchner and Fouque in [29] which has subexponential-time complexity in
2(n/2+o(n))/ log log q, but the o(n) is too large to lead to attack for given para-
meters. To date, the most efficient attack on practical NTRU parameters is the
so-called hybrid attack described by Howgrave-Graham in [27].

The key recovery problem of NTRU is the following problem: given a public
key h = f/g in some polynomial ring Rq = Zq[X]/(Xn − 1) for n prime, q a
small integer and the euclidean norms of f ,g are small, recover f and g or a small
multiple of them. In NTRUEncrypt, f and g are two sparse polynomials of degrees
strictly smaller than n and coefficients {−1, 0, 1}. It is easy to see that the public
key cannot be uniformly distributed in the whole ring, since the entropy is too
small. In [42], Stehlé and Steinfeld, show that if f and g are generated using a
Gaussian distribution of standard deviation σ ≈ q1/2, then the distribution of
the public key is statistically indistinguishable from the uniform distribution.

State-of-the-Art Lattice Algorithm on NTRU. In [13], Coppersmith and
Shamir show that the (2n)-dimensional lattice Lcs generated by the columns of
the matrix (

qIn MRq

h

0 In

)
,

where MRq

h denotes the multiplication by the public key h in the ring Rq, con-
tains the vector (f , ḡ). It is easy to show that for ḡ = g(1/X) in Rq, we have
h · ḡ = f . By reducing this lattice, it is possible to find (f , ḡ) which is short if
(f ,g) is. Finally, Coppersmith and Shamir show that for cryptographic purposes,
it is sufficient to recover a small solution, maybe not the smallest one to decrypt.

In 2001, May showed in [33] how to exploit that the shifts of the target vector,
i.e. xi · f in Rq are also contained in the Lcs lattice. Consequently, we only have
to recover one of the n shifts of the target vector and the smallest vector is not
unique. The idea of May consists in constructing a lattice that contains as a short
vector only one of the shift and such that the gap between the first and second
minima of the lattice will be higher. This gap is an important parameter when
running lattice reduction algorithm. If we take into account that the vector
of the secret key contains {0,±1}-coefficients, there is a unique long run of
0-coefficients. For one of the n shifts, we can assume that this run is for instance
in the first r coefficients and if we multiply the (n+1)th to (n+ r)th columns of
Lcs matrix by a suitable large constant, only this shift will be a solution for the
new lattice. He also introduces the projection technique to reduce the dimension
of Lcs from 2n to (1 + α)n for 0 < α ≤ 1 by removing the last columns of the
matrix MOK

h or of the last rows of the original matrix. The main idea is that it
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suffices that among the n equations corresponding to h · ḡ = f , some of them will
not be fulfilled. Experimentally, since there is no other small vector except the n
shifts, then there will be no other vector with small entries in these coefficients
and we will recover the target.

In [27], Howgrave-Graham makes various experiments on NTRU lattice and
proposes a mix between lattice reduction and a combinatorial technique, known
as Odlyzko’s meet-in-the-middle attack on NTRU. The first phase of the algo-
rithm starts by reducing the original matrix corresponding to Lcs and we can
see that lattice algorithms first reduce the column vectors in the middle of the
matrix. This process that treats the columns in a symmetric manner between
[n − r, n + r] is also used in [21] in the symplectic reduction. Consequently, it is
more efficient to begin by reducing a small dimensional matrix in the center of the
original Coppersmith-Shamir matrix and then another combinatorial technique
can take into account the small coefficients in the short vector by guessing some
part of the secret key. In the following, we will speak of the middle technique.

More recently, in [1,12], Cheon, Jeong and Lee at ANTS 2016 and Albrecht,
Bai and Ducas at CRYPTO 2016, described a new attack on NTRU-like cryp-
tosystems. An attack based on similar ideas was proposed by Jonsson, Nguyen
and Stern in [23, Sect. 6]. It uses the fact that for cyclotomic number fields,
there exist subfields that allow to reduce the dimension of the lattice. The sub-
field attack recovers the norm of the secret key in these subfields, which are
smaller than in the classical NTRU lattice. In the maximal real subfield K+

of a power of two cyclotomic field K for instance, the norm can be written as
NK/K+(f) = f f̄ which is small if f is small and NK/K+(f) is of dimension half.
The lattice Lnorm is generated by the columns of the matrix of dimension n:

(
qIn/2 MO

K+

hh̄
0 In/2

)
.

The vector (NK/K+(f),NK/K+(g)) is small in Lnorm. By the Gaussian heuristic,
the expected length of the shortest vector in the lattice Lnorm is

√
qn/(2πe), and

the norm of f depends on the density of non-zero coefficients is of size around n.
For standard NTRU parameters and when n is greater than q, lattice reduction
algorithms will not recover the secret key. However, if q is large as in the case
of FHE cryptosystems to allow a large number of multiplication steps before
boostraping, then this attack can be interesting. We have not been able to apply
it for other cryptosystems, for instance on IBE and signature schemes [20].

The drawback of this technique is that q has to be very large compared to n.
We estimate asymptotically q = 2Ω(

√
n log log n) for a polynomial time complexity.

Our Results. In this paper, we revisit the lattice attacks on NTRU by consider-
ing the subfield idea, the projection of May and the middle lattice of Howgrave-
Graham in the context of large modulus.

1. We first propose a new subfield attack and give, contrary to [1,12], a precise
analysis by considering the projection technique for power of two cyclotomic
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fields. We show that using the multiplication matrix by the public key in
a subring (which has the same size as the subfield), leads to more efficient
attacks. In particular, we were able to attack concrete parameters proposed in
YASHE based on overstretched NTRU [6,7,10,14–16,30,31], meaning that we
can recover a decryption key for smaller modulus q, compared to the previous
approaches [1,12]. The previous attacks use the norm over the subfield in [1]
or the trace in [12]. It would also be possible for instance to use all the
coefficients of the characteristic polynomial. Our attack using the subring is
better than the two previous ones since in the same configuration, we can
choose exactly the size of the subfield as the number of coordinates (remove
some rows or project the lattice) in Sect. 3.

2. Secondly, we analysis lattice reduction algorithm on the full Lcs lattice using
a nice lemma due to Petaki and Tural [38] on the volume of sublattices with
high rank (Sect. 4). We show that reducing this lattice allows us to achieve
similar performances as in the projection and subfield attacks. We do not rely
in our analysis on the Hermite factor (or approximate factor). This is the first
time that the high number of small lattice vectors (shifts) are used to improve
the analysis of the attack against NTRU. May used it to run lattice reduction
on smaller dimensional lattices. The high dimensional low volume sublattice
(formed by the shift vectors) makes the approximate-SVP problem for NTRU
lattices substantially easier to solve by lattice reduction than generic lattices
of the same dimension when the modulus is sufficiently large. This result is
true in any ring and can be applied for instance on NTRUPrime with large
q. In practice, we run experiment using the middle technique in order to use
small dimension lattices.

3. We make experiments (Sect. 5) to understand the behaviour of lattice reduc-
tion algorithm and derive precise predictions when this attack will work
(Sect. 6). We show that also experimentally the subfield attack is not more
efficient than the middle technique on the original matrix. Consequently, we
mount this attack to break FHE with NTRU and overstretched NTRU Prime
scheme. Experimental computations show that if we are able to reduce this
matrix, we recover a basis consisting of n small vectors, which are rotated
version of the secret key. Finally, we provide a tight asymptotical security
estimate of NTRU and LWE schemes in order to give exact predictions for
these attacks by considering the Dual-BKZ [37].

We want to stress that the subfield attack we propose is not needed to break
the schemes. We first discovered our subfield attack and the experiments shown
in Fig. 1 have been obtained using it. The experiments on NTRUPrime with
overstretched parameters (Fig. 2) have been achieved by reducing the middle
lattice in the standard lattice. We experimentally recovered the same results for
Fig. 1 using the middle lattice later and we conclude that the subfield attack
is not needed to improve results on NTRU, but it could be useful to attack
multilinear maps [1,12].
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2 Preliminaries

Algebraic Number Field. An algebraic number field (or simply number field)
K is a finite (algebraic) field extension of the field of rational numbers Q. An
algebraic number ζ ∈ C is a root of a polynomial f(x) ∈ Q[x] and is called
an algebraic integer if f(x) is a monic (leading coefficient is 1), polynomial in
Z[x]. The minimal polynomial of ζ is a monic polynomial f(x) ∈ Q[x] of least
positive degree such that f(ζ) = 0 and the minimal polynomial of an algebraic
integer is in Z[x]. The set of all algebraic integers form a ring: the sum and
product of two algebraic integers is an algebraic integer. The ring of integers
of a number field K = Q[ζ], obtained by adjoining ζ to Q, is the ring OK =
{x ∈ K : x is an algebraic integer}. Let f(x) be the minimal polynomial of ζ of
degree n, then as f(ζ) = 0, there is an isomorphism between Q[x] mod f(x) and
K, defined by x �→ ζ and K can be seen as an n-dimensional vector space over
Q with power basis {1, ζ, . . . , ζn−1}. The conjugates of ζ are defined as all the
roots of its minimal polynomial.

A number field K = Q[ζ] of degree n has exactly n field homomorphisms
σi : K ↪→ C that fix every element of Q and they map ζ to each of its conjugates.
An embedding whose image lies in R (real root of f(x)) is called a real embedding ;
otherwise it is called a complex embedding. Since complex root of f(x) come in
pairs, so do complex embeddings. The number of real ones is denoted s1 and the
number of pairs of complex ones s2, so we get n = s1 + 2s2. By convention, we
let {σj}j∈[s1] be the real embedding and order the complex embeddings so that
σs1+s2+j = σs1+j for j ∈ [s2]. The canonical embedding σ : K → Rs1 × C2s2 is
defined by

σ(x) = (σ1(x), . . . , σn(x)).

The canonical embedding σ is a field homomorphism from K to Rs1×C2s2 , where
multiplication and addition in Rs1 ×C2s2 are component-wise. The discriminant
ΔK of K is the determinant of the matrix (σi(αj))i,j , where (αj) is a set of n
elements of K.

For elements H ⊆ Rs1 × C2s2 ⊂ Cn where

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j ,∀j ∈ [s2]},

we can identify elements of K to their canonical embeddings in H and speak of
the geometric canonical norms on K as ‖x‖ as ‖σ(x)‖2 = (

∑
i∈[n] |σi(x)|2)1/2.

The field norm of an element a ∈ K is defined as NK/Q(a) =
∏

i∈[n] σi(a).
Note that the norm of an algebraic integer is in Z as the constant coeffi-
cient of the minimal polynomial. Let L a subfield of K, the relative norm of
NK/L(a) =

∏
σi∈Gal(K/L) σi(a), where Gal(K/L) contains the elements that fix

L. The trace of a ∈ K is defined TrK/Q(a) =
∑

i∈[n] σi(a) and is the trace of the
endomorphism y �→ ay and of its matrix representation.

Let K a number field of dimension n, which has a subfield L of dimension
m |n. For simplicity, we assume that K is a Galois extension of Q, with Galois
group G; and G′ is the subgroup of G fixing L. It is a standard fact that
|G′| = n/m.
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Notice that elements of the Galois group permute or conjugate the coordi-
nates in Rr × Cs, and therefore the norm is invariant by elements of G:

∀σ ∈ G, ‖σ(x)‖ = ‖x‖.

We call NK/L : K → L the relative norm, with NK/L(a) the determinant of
the L-linear endomorphism x �→ ax. It is known that we have:

NK/L(a) =
∏
σ∈H

σ(a).

We can bound the norm using the inegality of arithmetic and geometric
means:

|NK/Q(a)| ≤
(‖a‖√

n

)n

.

The operator norm for the euclidean norm is denoted ‖ · ‖op and is defined as
‖a‖op = supx∈K∗ ‖ax‖/‖x‖. Remark that it is simply the maximum of the norm
of the coordinates in Rr ×Cs. Also, it is sub-multiplicative and ‖x‖ ≤ √

n‖x‖op.
Let O be an order of K, that is O ⊂ K and O is a commutative group which

is isomorphic as an abelian group to Zn. We define OL as O ∩L, and is an order
of L. We denote by Vol(L) the volume of the lattice L, which is the square root
of the determinant of the Gram matrix corresponding to any basis of L. We
define Δ to be the square of the volume of O, and likewise for ΔL with respect
to OL.

We define

ML
a :

L −→ O
x �−→ ax

for any lattice L ⊂ O and a ∈ O; and we also denote ML
a the corresponding

matrix for some basis of L.

Cyclotomic Field. In the case of cyclotomic field defined by Φf(x) =
∏

k∈Z
∗
f

(x − ζk
f ), where ζf = e2iπ/f ∈ C, a primitive f-root of unity. Thus, Φf(x) has

degree n = ϕ(f), is monic and irreducible over Q and its the minimal polynomial
of the algebraic integer ζf. The fth cyclotomic field is Q[ζf] and its ring of integers
is Z[ζf], also called the cyclotomic ring. In this case, there are 2s2 = n = ϕ(f)
complex canonical embeddings (no real ones), defined by σi(ζf) = ζi

f for i ∈ Z∗
f .

For an element x = ζj ∈ K in the power basis of K, all the embeddings of
x have magnitude 1, and hence ‖x‖can

2 =
√

n and ‖x‖can
∞ = 1 as well as the

coefficient embedding. The discriminant of the fth cyclotomic field of degree
n = ϕ(f) is ΔK ≤ nn.

In the cyclotomic case, we can define the maximal real subfield K+ = Q[ζf +
ζ−1
f ], which only contains real numbers. It has index 2 in K and its degree is n/2.

The rings of integers OK+ of K+ is simply Z[ζf + ζ−1
f ]. The embeddings σ1, σ−1

both fix every elements in K+ and the relative norm NK/K+(a) = σ1(a) · σ−1
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(a) = a · ā. If we represent a as a polynomial a(x) =
∑n−1

i=0 aixi ∈ Q[x]/Φf(x),
then ā(x) = a(1/x) = a0 − ∑n−1

i=1 aixi.

Ideals in the Ring of Integers. The ring of integers OK of a number field K
of degree n is a free Z-module of rank n, i.e. the set of all Z-linear combinations
of some integral basis {b1, . . . ,bn} ⊂ OK . It is also a Q-basis for K. In the case
of cyclotomic field, the power basis {1, ζf, . . . , ζ

n−1
f } is an integral basis of the

cyclotomic ring Z[ζf] which is isomorphic to Zn with n = ϕ(f).
It is well known that

Vol(Z[ζf])2 =
fφ(f)∏

p|f pφ(f)/(p−1)
.

In particular, if f is a power of two, Vol(Z[ζf]) = (f/2)f/4. In this case, we also
have that (ζi

f )
f/2−1
i=0 is an orthogonal basis for the norm ‖ · ‖.

Lattices. Let B = {b1, . . . ,bn} be a basis of a lattice L. Given B, the LLL
algorithm outputs a vector v ∈ L satisfying ‖v‖2 ≤ 2n/2·det(L)1/n in polynomial
time in the size of its input.

Theorem 1 (Minkowski). For any lattice L of dimension n, there exists x ∈
L \ {0} with ‖x‖ ≤ √

nVol(L)1/n.

We give a theorem for estimating the running time of lattice based algorithms:

Theorem 2. Given a lattice L of dimension n, we can find a non-zero vector
in L of norm less than βn/βVol(L)1/n in deterministic time smaller than 2O(β)

times the size of the description of L, for any β < n/2. With b∗
i the Gram-

Schmidt norms of the output basis, we have b∗
i /b∗

j ≤ βO((j−i)/β+log β). Further-
more, the maximum of the Gram-Schmidt norms of the output basis is at most
the maximum of the Gram-Schmidt norms of the input basis.

Proof. Combine the semi-block Korkin-Zolotarev reduction [40] and the efficient
deterministic shortest vector algorithm [36] with block size Θ(β) for the first
point. Schnorr’s algorithm combines the use of LLL reduction on a (possibly)
linearly dependent basis, which is known to not increase the maximum of the
Gram-Schmidt norms, and the insertion of a vector in position i whose projected
norm is less than b∗

i . Also, the b∗
i decrease by a factor of at most βO(log β) in

a block, and the first Gram-Schmidt norms of blocks decrease by a factor of at
most βO(β). �

Lattice Analysis. We also use the GSA assumption [41], which states that the
Gram-Schmidt norms output by a lattice reduction follow a geometric sequence.
If we draw the the curve with the log of the Gram-Schmidt norms, we see a line
with slope log β/β is the case of BKW (it is not accurate for the last ones than
follows a parabola instead). Usually, we use the fact that the minimum of the
Gram-Schmidt norms has to be smaller than the norm of the smallest vector in
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order to find it and so, the slope has to be close to horizontal, which implies that
β is large.

In our analysis, we will a result of Pataki and Tural [38] in order to take into
account that in NTRU lattice, all the shifts form a sublattice with small volume.
They proved that the volume of the sublattice generated by r vectors is larger
than the product of the r smallest Gram-Schmidt norms.

Lemma 1 [38]. Let L ⊆ Rn be a full-rank lattice and r ≥ 1. Then for any
basis (b1, . . . ,bn) of L, and any r-dimensional sublattice L′ of L, we have

det(L′) ≥ min
1≤t1<···<tr≤n

∏
1≤i≤r

b∗
ti

.

Distribution on Ideal Lattices. The discrete Gaussian distribution over a
lattice L is noted DL,s, where the probability of sampling x ∈ L is proportional
to exp(−π‖x‖2/s2). The continuous Gaussian distribution over K is noted Ds,
and its density in x is proportional to exp(−π‖x‖2/s2). We define

ρs(E) =
∑
x∈E

exp(−π‖x‖2/s2).

We will denote by E[X] the expectation of a random variable X.
We now recall two results from [35] and Banaszczyk’s lemma [4] about dis-

crete gaussian sampling over a lattice.

Lemma 2. Given a lattice L ⊂ Rn, for any s and c ∈ Rn, we have

ρs(L + c) ≤ ρs(L).

Lemma 3. For a lattice L, any t ≥ 1, the probability that x sampled according
to DΛ,s verifies ‖x‖ > st

√
n
2π is at most

exp
( − n(t − 1)2/2

)
.

We now prove a standard bound on ideal lattices, which indicates that they
do not have very short vectors:

Lemma 4. Let M ⊂ (K ⊗ R)d be an O module of rank 1. Then, for any 0 �=
v ∈ M , we have Vol(M) ≤ √

Δ‖v/
√

n‖n.

Proof. Since we can build a K-linear isometry from R ⊗ M to K ⊗ R, we can
assume d = 1. Then,

Vol(M) ≤ Vol(vO) = NK/Q(v)
√

Δ ≤ ‖v/
√

n‖n
√

Δ.

�
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3 Projection of a Subring Attack

In this section, we propose a new subfield attack, that we call subring, since
we use the multiplication by the original public key h, which is an element of
the n-dimensional ring Rq, in a subring for instance the maximal real ring of
integers Z[X + 1/X] of dimension n/2, or in a smaller subring. First, we first
show that small vectors in this lattice are linked to the norms and in the case of
the maximal real ring, the short vector is (f ḡ,gḡ). For some parameters, we also
show that the norm is not the smallest element: this explains some experiments
in [1]. Then, we show that in the case of power of two cyclotomic fields, if we
project the matrix represented the subring lattice on the last d rows and columns,
we can precisely analyze the running time of the algorithm. Moreover, removing
some rows allows to reach optimal parameters for our subring attack, which is
not possible in other subfield attacks.

3.1 Description of the Basic Subring Attack

We show that in our subring attack, the lattice vector we are looking for is short.
We first make sure that O is stable by all elements of H. This can be done by
computing the Hermite normal form of the concatenation of the basis of σ(O)
for all σ ∈ H. We may then call O the order generated by this matrix. The
attack consists in finding short vectors of the lattice generated by

A =
(

qIn MOL

h

0 Im

)

by using lattice reduction. We recall that h is the public key, so that a basis of

this lattice can be built. We want to show that
(
fNK/L(g)/g
NK/L(g)

)
is a short vector

of this lattice.
The quadratic form we reduce is actually the one induced by ‖ · ‖, i.e.

‖(x,y)‖2 = ‖x‖2 + ‖y‖2, on this lattice.

Lemma 5. For any g ∈ O, we have

NK/L(g) ∈ gO ∩ OL.

Proof. We have
NK/L(g) = g

∏
σ∈H−{1}

σ(g)

so that NK/L(g) ∈ gO. By definition of NK/L, we have NK/L(g) ∈ L. Therefore,
NK/L(g) ∈ gO ∩ OL. �

Using Banaszczyk’s lemma, we will now show that integers sampled from a
discrete Gaussian distribution behaves in a way similar to a continuous Gaussian
distribution.
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Lemma 6. Let x be sampled according to DO,s. Then, the probability that

‖x‖op ≥ s
√

2 ln(2n/ε)/π

is at most ε.

Proof. Let u be a unit vector, i.e. ‖u‖ = 1. Then,

ρs(O)E[exp(2πt〈x,u〉/s2)] =
∑
x∈O

exp(−π(〈x,x〉 − 2〈x, tu〉)/s2)

= exp(πt2/s2)
∑
x∈O

exp(−π‖x − tu‖2/s2)

= exp(πt2/s2)ρs(O − tu).

We deduce with the previous lemma

E[exp(2πt〈x,u〉/s2)] ≤ exp(πt2/s2).

Using Markov’s inequality and the union bound with −u, we have that the
probability of |〈x,u〉| ≥ t is at most 2 exp(−πt2/s2).

We now use t = s
√

ln(2n/ε)/π, so that the probability of any real or imagi-
nary part of a coordinate of x in RrCs is larger than

s
√

ln(2n/ε)/π

is at most ε. �
Theorem 3. Let f be sampled according to DO,σ, g according to DO,s and set
h = f/g. Assume h is well defined, except with probability at most ε/3. Then,
there exists x �= 0 where x is an integer vector, such that

‖Ax‖ ≤
√

n(1 + σ2/s2)
(

s
√

2 ln(6n/ε)/π

)n/m

except with probability at most ε.

Proof. With probability at least 1 − ε, we have

‖f‖op ≤ σ
√

2 ln(6n/ε)/π

and
‖g‖op ≤ s

√
2 ln(6n/ε)/π.

In this case, we consider y such that hNK/L(g)+qy = fNK/L(g)/g and consider

x =
(

y
NK/L(g)

)
.
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Using the multiplicativity of operator norms, we have

‖NK/L(g)‖op ≤
(

s
√

2 ln(6n/ε)/π

)|H|

and

‖fNK/L(g)/g‖op ≤ σ/s

(
s
√

2 ln(6n/ε)/π

)|H|
.

Finally,

‖Ax‖2 = ‖fNK/L(g)/g‖2 + ‖NK/L(g)‖2 ≤ n
(‖fNK/L(g)/g‖2

op + ‖NK/L(g)‖2
op

)
.

�
We now try to get rid of the factor Θ(ln(6n/ε))n/2m which is significant when

s is small and n/m is large. To do so, we heuristically assume that DO,σ has
properties similar to a continuous Gaussian here.

Theorem 4. Let f be sampled according to Ds and E ⊂ G. Then, except with
probability at most ε and under heuristics, we have:

∣∣∣∣
∣∣∣∣

∏
σ∈E

σ(f)
∣∣∣∣
∣∣∣∣
op

≤ Θ(s)|E| exp
(

Θ(
√

|E| log(n/ε)
)

under the condition |E| = Ω
(
log(n/ε) log2(log(n/ε))

)
.

Proof. Let X be a random variable over R+, with a probability density func-
tion proportional to exp(−πx2/s2); and Y =

√
X2

0 + X2
1 where X0 and X1 are

independent copies of X.
We have E[log(X)] = log(s) + Θ(1) and Var[log(X)] = Θ(1) and log(X) <

log(s) + Θ(log(log(n/ε))) except with probability ε/(2n2), due to standard
bounds on Gaussian tails. Also, the same is true for Y .

We can now use the one-sided version of Bernstein’s inequality [8, Theorem 3]:
for Z the average of |E| independent copies of log(X) or log(Y ), we have:

Pr[Z > t + log(s)] ≤ ε/(2n) + exp
(

− |E|t2
2(Θ(1) + Θ(log(log(n/ε)))t/3)

)
.

We then choose some t = Θ
(√

log(n/ε)/|E|), so that with our lower bound on
|E|, this probability is at most ε/n.

The result follows from the union bound over the coordinates in the canonical
embedding of

∏
σ∈E σ(f). �

For some parameters, the norm may not be the shortest element, as demon-
strated by the following theorem.
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Theorem 5. There exists an element v ∈ gO ∩ OL with

0 < ‖v‖ ≤ √
mΔ1/(2n)σn/m

with probability 1 − 2−Ω(n).

Proof. We use Banaszczyk’s lemma with t = 2, so that ‖g‖ ≤ σ
√

2n/π except
with probability exp(−n/2). Then, the determinant of v ∈ gO ∩ OL is smaller
than the determinant of NK/L(g)OL, which is NK/Q(g)

√
ΔL. But we have

NK/Q(g) ≤ (‖g‖√
n

)n and ΔL ≤ Δm/n so we conclude with Minkowski’s theorem.
�

This implies that for most parameters, the norm of the shortest non-zero
vector is around O(σ)n/m. Since this is smaller than the previous value as soon
as n/m is a bit large, it explains why [1] found vectors shorter than the solution.

3.2 Asymptotic Analysis for Power of Two Cyclotomic Fields

We set here K = Q[X]/(Xn + 1) � Q[ζ2n] for n a power of two, and O =
Z[X]/(Xn + 1) � Z[ζ2n] which is popular in cryptosystems. For some r | n (any
such r works), we select L = Q[Xr] so that OL = Z[Xr] and |H| = r, so that
m, the dimension of L is n/r. Since the Xi forms an orthogonal basis, we have
that the coordinates of f and g are independent discrete Gaussians of parameter
s/

√
n. Also, we can directly reduce the lattice generated by A with the canonical

quadratic form.
We restrict our study to power of two cyclotomic fields because O has a

known orthogonal basis, so that we can derive a closed-form expression of the
results. In more complicated cases, it is clear that we can deduce the result using
a polynomial time algorithm.

For the rest of this section, we assume that when the previous algorithm is
used on our orthogonal projection of AZn+m, and finds a vector shorter than√

kVol(L)1/k (which is about the size of the shortest vector of a random lattice
if the lattice dimension is k), then it must be a short multiple of the key. This
assumption is backed by all experiments in the literature, including ours, and
can be justified by the fact that decisional problems over lattices are usually as
hard as their search counterpart (see [34] for example).

We also assume the size of the input is in nO(1), which is the usual case.

Theorem 6. Let nB2 = ‖fNK/L(g)/g‖2 + ‖NK/L(g)‖2. Assume log(qB)
log(q/B) ≤ r.

Then, for
β

log β
=

2m log q

log(q/B)2

we can find a non-zero element Ax such that ‖Ax‖2 = O(nB2) in time
2O(β+log n).
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Proof. We extract the last d ≈ m log(q2)
log(q/B) ≤ n + m rows and columns of

A =
(

qI MOL

h

0 I

)

and call the generated lattice L. Note that it is the lattice generated by A
projected orthogonally to the first columns, so that it contains a non-zero vector
y such that ‖y‖2 ≤ nB2. Then, we can compute the needed β by

1
d

log
(√

nVol(L)1/d

√
nB

)
=

d − m

d2
log(q) − 1

d
log(B)

≈ log(q/B)
m log(q2)

(
log(qB) log(q/B) log(q)

log(q/B) log(q2)
− log(B)

)

=
log(q/B)
m log(q2)

(
log(qB)

2
− log(B)

)

=
log2(q/B)
2m log(q)

.

The previous theorem indicates we can recover a short vector z �= 0 in L with
‖z‖ ≤ nB2 in time 2Θ(β+log n), and our assumption implies it is in fact a short
vector in AZn+m. �

Notice that for B ≤ q, a necessary condition for the problem to be solvable,
we have d ≥ 2m. It implies that the optimal dimension d cannot be reached by
previous algorithms.

Theorem 7. Let f and g be sampled according to DO,σ, and h = f/g mod q
which is well defined with probability at least 1 − ε. Assume σ = nΩ(1) and
σ < q1/4. Then, we can recover a non-zero multiple of (f ,g) of norm at most√

q in time

exp

(
O

(
max

(
log n,

n log σ

log2 q
log

(
n log σ

log2 q

))))

with a probability of failure of at most ε + 2−n.
This is polynomial time for

log σ = O

(
log2 q log n

n log log n

)
.

Proof. We choose m = Θ(max(1, n log σ
log q )) ≤ n so that we can set B =

√
q, except

with probability ε. The corresponding β is given by

β

log β
=

2m log q

log(q/B)2
= Θ(m/ log(q)) = Θ

(
n log σ

log2 q

)
.

�
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If we use log σ = Θ(log n) as in many applications, we are in polynomial time
when

q = 2Ω(
√

n log log n).

If σ = Θ(
√

n), the best generic algorithm runs in time 2Θ(n/ log log q), which is
slower for any q ≥ nΘ(

√
log log n).

3.3 Comparison with Other Subfield Attacks

We consider the lattice generated by
(

qIn MOL

h

0 In/r

)
while Albrecht et al. for

instance consider

(
qIn/r MOL

NK/L(h)

0 In/r

)
, where MOL

h represents the multiplication

by the element h in the subring OL of K. Our lattice is of dimension n + n/r,
which is larger than Albrecht et al. attack, but smaller than the 2n original
lattice. Since the running time of lattice reduction algorithms depends on the
dimension of the matrix, we may think that our variant is less efficient than the
subfield attack. First of all, in order to improve the running time, we will show
that we can work in a projected lattice and not on the full (n + n/r, n + n/r)-
matrix by considering the matrix forms using the last d rows and columns. The
idea of working in this lattice is that the second important parameter is the
approximation factor. This parameter depends on the size of the Gram-Schmidt
coefficients. If we use the logarithm of their size, these coefficients draw a decreas-
ing line of slope correlated with the approximation factor, so that the smaller the
approximation factor be, the more horizontal the line will be. However, if we have
only a (2n/r)-dimensional matrix, as in the subfield attack, the determinant is
too small to produce large Gram-Schmidt norms. This problem is bypassed with
our approach since we can choose the number of coordinates and the size of the
subfield. Using this attack, we were able to break in practice proposed parame-
ters by YASHE and in other papers, which were not the case in Albrecht et al..
We also show a tight estimation of the parameters broken by lattice reduction,
and in particular that working in the original field works well. Experiments were
conducted in an extensive way, and over much larger parameters.

4 Analysis of Lattice Reduction on NTRU Lattices

We now show how to predict when this attack will work, and compare our the-
oretical analysis with experiments. While Albrecht et al. compare the subfield
attack to the attack on the full dimension lattice, we will show that, the clas-
sical attack, used in Howgrave-Graham work on the hybrid attack, performs
a lattice reduction on the matrix centered in the original Coppersmith-Shamir
lattice. This gives a better result and we show that considering subfield is not
helpful. Consequently, this attack can also be mounted on NTRU prime with
overstretched parameters and works well.
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4.1 Analysis of the Simple Method

Here, we consider the lattice reduction algorithm described in Theorem2 applied
to the full Coppersmith-Shamir matrix. We show that using Pataki-Tural lemma
and the above heuristics, we can actually achieve the same efficiency regardless
of the presence of a subfield, as long as we know an orthogonal basis of O.

The analysis hinges on the fact that the difficulty for lattice reduction to
find a vector in a sublattice of low volume depends on the rank of the sublattice.
Previous analysis relied on its special case where the rank is one, so that the
volume is the length of the generator. In this case, we can prove using the GSA
and the determinant of the lattice, that β/ log β = O

(
n/ log(q/σ2)

)
. In the

following, using the Pataki-Tural lemma, we show that we can achieve the same
efficiency as in the case of subfield, directly on the Coppersmith-Shamir lattice,
i.e. β/ log β = O

(
n log(σ)/ log2(q)

)
.

The following theorem, identical to [1, Theorem 2], indicates that short vec-
tors are multiples of the secret key.

Theorem 8. Let f ,g ∈ O with g invertible modulo q and f coprime to g. Then,
any vector shorter than nq

‖(f ,g)‖ in

(
qIn MO

f/g

0 In

)
O2 is in

(
f
g

)
O.

Proof. By coprimality, there exists F,G such that fG − gF = q. Then,
(
f F
g G

)

generates the same lattice. We let Λ =
(
f
g

)
O ⊂ (R⊗K)2 and Λ∗ the projection

of
(
F
G

)
O orthogonally to Λ. We have Vol(Λ)Vol(Λ∗) = qnΔ. Finally, let 0 �=

x ∈ Λ∗. Using twice Lemma 4, we have

‖x/
√

n‖n ≥ qnΔ√
ΔVol(Λ∗)

=
( q

√
n

‖(f ,g)‖
)n

.

�
In the following, we show that the Pataki-Tural lemma allows us to have a

lattice reduction algorithm with β around Θ̃(n log σ/ log2 q), which is close to
Theorem 7 in the case of subfield.

Theorem 9. Let f ,g sampled according DO,s such that g is invertible with prob-
ability 1−ε, and an orthogonal basis of O is known. Reducing the lattice generated

by
(

qIn MO
h

0 In

)
using the algorithm of Theorem2, assuming the minimum of the

Gram-Schmidt norms does not decrease, with
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β = Θ
(

n log σ

log2 q
log

(
n log σ

log2 q

))
,

we recover at least n/2 vectors of a basis of fO and gO, if Δ1/2nσ = qO(1) and

log q = Ω
(

log2

(
n log σ

log q

))
,

with probability 1 − ε − 2−Ω(n).

Proof. Before calling the lattice reduction algorithm, the Gram-Schmidt norms
are qΔ1/2n for the first n vectors, and Δ1/2n for the next n vectors. The lattice

contains
(
f
g

)
O so that the lattice spanned has a volume of σn

√
Δ except with

probability 2−Ω(n), thanks to Lemma 3.
We consider now the 2n-dimensional basis outputted by the reduction algo-

rithm (Theorem 2), and call b∗
i ‘small’ when it is amongst the n smallest Gram-

Schmidt norms, and ‘large’ otherwise. Let � = O
(

n log σ
log q

) ≤ n.
We consider two cases, depending whether there is a small b∗

i that has a large
value or not. We show that either case is is impossible, which will complete the
argument by contradiction. Assume first that there is an i ≤ n, such that

b∗
i ≥

√
nq

σ
≥ q1/4Δ1/2n.

Suppose then again by contradiction, that there is a b∗
j ≥ q1/4Δ1/2n which is

small (Case 1). Consequently by Theorem 2,

b∗
k ≥ q1/4Δ1/2nβ−O(	/β+log β) ≥ q1/4Δ1/2nβ−O(	/β)

for all the � first k ≥ i such that b∗
k is small (we use here the assumption that the

minimum of the Gram-Schmidt norms does not decrease). Hence, the product of
the n smallest b∗

i is at least Δ1/2q	/4β−O(	2/β) by lower bounding the last (n−�)
ones by Δ1/2n. We deduce that for small enough constants, this is impossible
using the Pataki-Tural lemma: otherwise we get a contradiction with the fact
that this product should be smaller than the smallest volume of a sublattice of
dimension n,

√
Δσn.

Suppose now every small b∗
j satisfies b∗

j < q(1/4)Δ1/(2n) (Case 2). Let j ≥ i
be the smallest such that b∗

j is small. Then, we have

b∗
k ≤ q1/4Δ1/2nβO(	/β+log β)

for all the last � indices k ≤ j such that b∗
k is large. Thus, the product of the

large Gram-Schmidt norms is at most Δ1/2qn−	/4βO(	2/β), as all b∗
k’s remain

≤ qΔ1/(2n), by Theorem 2. Since the determinant is preserved during the run-
ning of the algorithm, the product of the small Gram-Schmidt norms is at least
Δ1/2q	/4β−O(	2/β), which is impossible by using again the Pataki-Tural lemma.
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To sum up, we have proved that for all the n first b∗
i , we have b∗

i <
√

nq/σ
and so, bi < nq/σ and using Lemma 8, we can show that all the first n/2 vectors

are in
(
f
g

)
O. �

4.2 Generalization and the Middle Technique

As we can see from the formula, considering a subfield is not helpful since the
quantity n log σ is essentially constant; unless we have reasons to believe there
are huge factors of gO which are in the subfield. Even worse, it actually decreases
the efficiency when σ ≥ √

q because the value of � is forced to a suboptimal. We
also observe that the significant reduction in the dimension due to the use of
subfields, allowing to break instances of high dimension is also present here:
indeed, we can project orthogonally to the first 2n− � vectors the next � vectors
so that we reduce a lattice of dimension � instead of 2n.

Also, when we choose to work with O = Z[X]/(Xn − X − 1) as in NTRU
Prime [5], where we can use (Xi)n−1

i=0 as an orthogonal basis due to the choice
of the error distribution made by the authors (the coordinates are almost inde-
pendent and uniform over {−1, 0, 1}), the same result applies.

We stress that while our theorem does not prove much - assuming the max-
imum of the Gram-Schmidt norms decreases is wrong, except for LLL - experi-
ments indicate that either the middle part of the lattice behaves as a ‘random’

lattice as it is evaluated in [25], or the first n vectors are a basis of
(
f
g

)
O.

Furthermore, the phase transition between the two possible outputs is almost
given by the impossibility of the first case. As lattice reduction algorithms are
well understood (see [11,24]), it is thus easy to compute the actual β.

5 Implementation

Heuristically, we have that for reduced random lattices, the sequence b∗
i is

(mostly) decreasing and therefore the relevant quantity is
∏n−1

i=n−r b∗
i . It means

that when the b∗
i s decrease geometrically and det(L′)1/r is about the length of

the shortest vector, we need b∗

n−r/2� to be larger than the shortest vector instead

of the b∗
n−1 given by a standard analysis. We now remark that for r = 1, this

is pessimistic. Indeed, for a “random” short vector, we expect the projection to
reduce its length by a � √

n factor. In our case, we can expect the projection to
reduce the length by a � √

n/(n − r) factor.
For our predictions, we assumed that the determinant of the quadratic form

x �→ fNK/L(g)/gxfNK/L(g)/gx + NK/L(g)xNK/L(g)x,

which corresponds to the det(UtGU) above, is about the square of the norm over
Z of g. This quantity can be evaluated in quasi-linear time when we work within
a cyclotomic field with smooth conductor by repeatedly computing the norm
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over a subfield, instead of the generic quadratic algorithm, or its variants such
as in [2, Sect. 5.2]. We observe a very good agreement between the experiments
and the prediction, while considering only the fact that the lattice has a short
vector would lead a much higher bound. Also, while NK/L(g) has a predicted
size of nr/2 exp(

√
r log(n/r)) with σ =

√
n, we expect LLL to find a multiple

of size nr/2 exp(n/r) (possibly smaller) but none of these quantities are actually
relevant for determining whether or not LLL will recover a short element.

Finally, we may have (NK/L(g))/((g) ∩ OL) which is non-trivial. However, if
it is an ideal of norm κ, we have that κ2 divides the norm over Z of g, which is
exceedingly unlikely for even small values of κr/n.

Our predictions indicate all proposed parameters of [6, Table 1] are broken by
LLL. We broke the first three using fplll and about three weeks of computation.
The last three where broken in a few days over a 16-core processor (Intel Xeon
E5-2650).

The parameters proposed for schemes using similar overstretched NTRU
assumption, such as in homomorphic encryption [7,10,14–16,18,30,31] or in pri-
vate information retrieval [17], are also broken in practical time using LLL. For
example, we recovered a decryption key of the FHE described in [15] in only
10 h. For comparison, they evaluated AES in 29 h: that means that we can more
efficiently than the FHE evalution, recover the secret, perform the AES evalua-
tion, and then re-encrypt the result! A decryption key was recovered for [18] in
4 h. Other instanciations such as [9,28] are harder, but within range of practical
cryptanalysis, using BKZ with moderate block-size [11].

6 Explicit Complexity

We now turn towards the problem of deriving the first order of the asymptotical
complexity of heuristic algorithms. Before the dual BKZ algorithm [37], simple
derivations (as in [29, Appendix B]) could only be done using the Geometric
Series Assumption, since the heuristic Gram-Schmidt norms outputted by the
BKZ algorithm have a fairly complicated nature (see [24]), making an exact
derivation quite cumbersome if not intractable. We are only interested in the
part of the Gram-Schmidt norms known to be geometrically decreasing, which
simplifies the computations1.

We emphasize that we are only using standard heuristics, checked in practice,
and tight at the first order. We compute the necessary block-size β to solve the
problems and assume log β ≈ log n. More precisely, if log β = (1 + o(1)) log n,
then the exponent in the running time is within 1 + o(1) of its actual value.

For more information on the dual BKZ algorithm and dual lattices, see [37].
We denote by dual BKZ algorithm their Algorithm 1 followed by a forward (i.e.
primal) round, so that it attempts to minimize the first Gram-Schmidt norm (as
the previous algorithms), rather than maximizing the last Gram-Schmidt norm.
1 We remark that the last Gram-Schmidt norms have no constraints in the original

algorithm. However, we can always assume they are HKZ-reduced, so that their
logarithms are a parabola.
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Fig. 1. Experiments with LLL for solving the NTRU problem in the ring Z[X]/(q, Xn+
1), where the coefficients of the polynomials are uniform in {−1, 0, 1}. The lattice
dimension used is equal to the number of coordinates used added to n/r. The values
of [1] are the smallest moduli for which their algorithm works, up to one, one and five
bits. The prediction is the minimum log q an LLL reduction can solve assuming we use
all the (necessary) coordinates.

Fig. 2. Experiments with LLL for solving the NTRU problem in the ring Z[X]/(q, Xp−
X − 1), where the coefficients of the polynomials are uniform in {−1, 0, 1} and p is the
smallest prime larger than n. The lattice dimension used is �. The prediction is the
minimum log q an LLL reduction can solve.
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We remark that all uses of NTRU for “standard” cryptography (key-
exchange, signature and IBE) are instantiated with a modulus below n2, so
that the lattice reduction algorithms are not affected by the property.

6.1 Security of Learning with Errors

The following heuristic analysis applies for NTRU, but also for any LWE problem
with dimension n and exactly 2n samples2, or Ring-LWE with two samples. The
primal algorithm searches for a short vector in a lattice.

As usual, we build the lattice

A =
(

qIn MOL

h

0 Im

)

and apply the dual BKZ algorithm on its dual. We assume it did not find the
key, and suppose the projection of (f ,g) orthogonally to the first 2n − 1 vector
has a norm of σ/

√
n. Then, the last Gram-Schmidt norm must be smaller than

σ/
√

n and we compute the smallest block-size β such that it is not the case.
Hopefully, this means that applying the algorithm with a block-size β will find
the key.

Once the dual BKZ algorithm has converged, the 2n−β first Gram-Schmidt
norms are decreasing with a rate of ≈ β−1/β and the 2n − βth norm is about√

βV 1/β where V is the product of the last β norms. We deduce that the volume
of the dual lattice is

q−n =
( σ√

n

)−2n
β−(2n−β)2/2β−n =

( σ√
n

)−2n
β−2n2/β

so with q = na, σ = nb and β = nc we have

−a ≈ 1 − 2b − 2/c

and we deduce c = 2/(a + 1 − 2b).
Another possibility is to apply the dual BKZ algorithm on the basis. If it

reduces the last m + n vectors, then the m + n − βth Gram-Schmidt norm
cannot be smaller than the size of the key, σ. Now, if m = n this norm is√

qβn/β−(2n−β)/β , and we deduce a/2 − 1/c + 1 = b or c = 2/(a + 2 − 2b)
which happens when c ≥ 2/a (iff b ≥ 1). Else, we take m maximum so that
qm/(m+n)β(m+n)/2β = q or m = n(

√
2ca − 1) which gives qβ−(m+n−β)/β = σ or

a − (
√

2ca − 1 + 1 − c)/c = b and hence c = 2a/(a + 1 − b)2 when b ≤ 1.
The dual algorithm searches for 2o(n) short vectors in the dual lattice, so that

the inner product with a gaussian of standard deviation σ can be distinguished.
Applying the dual BKZ algorithm on the dual lattice gives a vector of norm
βn/βq−m/(n+m) = σ/n. The norm is minimized for m =

√
2ac − 1 or m = n,

which gives c = 2a/(a + 1 − b)2 when b < 1, and 2/(a + 2 − 2b) else.
In all cases, the best complexity is given by c = max(2a/(a + 1 − b)2, 2/(a +

2 − 2b)) (and when the number of samples is unlimited, this is 2a/(a + 1 − b)2).
2 Beware that an element sampled in the ring with standard deviation σ has coordi-

nates of size only σ/
√

n.
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6.2 Security of NTRU

Here, the analysis is specific to NTRU. We apply the dual BKZ algorithm to
the same lattice, and compute the β such that the product of the n last Gram-
Schmidt norms is equal to σn. Note that it is equivalent to having the product
of the n first Gram-Schmidt norms equal to q/σn.

We first compute m such that the dual BKZ algorithm changes only the 2m
middle norms. This is given by:

q =
√

qβm/β

so that m ≈ aβ/2. For a ≥ 2, we have β ≤ m so that, assuming m ≤ n, the
product of the m first norms is qmβ−m2/2β . Hence, we need βm2/2β = σn. We
deduce

a2c2/8c = b

so that c = 8b/a2.
When m > n, the first vector is of norm only

√
qβn/β , so that for c ≤ 1, we

must have
qn/2βn2/2β−n2/β = σn

so that a/2 − 1/2c ≈ b and c = 1/(a − 2b). For this formula to be correct, we
need 8b/a2a/2 ≥ 1, or 4b ≥ a.

We can show that this is better than the algorithms against Ring-LWE when
b = 1/2 (≈ binary errors) when a ≥ (4 + 3

√
262 − 6

√
129 + 3

√
262 + 6

√
129)/6 ≈

2.783. When b ≥ 1 which is the proven case, it is better for all a > 4 and
b < a/2 − 1.

We again remark that going to a subfield, so that nb is constant, does not
improve the complexity.

7 Conclusion

We conclude that the shortest vector problem over module lattices seems strictly
easier than the bounded distance decoding. Since the practical cost of transform-
ing a NTRU-based cryptosystem into a Ring-LWE-based cryptosystem is usually
small, especially for key-exchange (e.g. [3]), we recommend to dismiss the former,
in particular since it is known to be weaker (see [39, Sect. 4.4.4]). One important
difference between NTRU and Ring-LWE instances is the fact that in NTRU lat-
tices, there exist many short vectors. This has been used by May and Silverman
in [33] and in our case, the determinant of the sublattice generated by these short
vectors is an important parameter to predict the behaviour of our algorithm.

We remark that the only proven way to use NTRU is to use σ ≈
√

n3q [42].
We showed here that attacks are more efficient against NTRU than on a Ring-
LWE lattice until σ ≈ n−1√q, which suggests their result is essentially optimal.
Furthermore, the property we use is present until σ ≈ √

nq, i.e. until the public
key h is (heuristically) indistinguishable from uniform.

Our results show that the root approximation factor is a poor indicator in
the NTRU case: indeed, we reached 1.0059 using a mere LLL. We suggest to
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switch the complexity measure to the maximum dimension used in shortest vec-
tor routines (i.e. the block size of the lattice reduction algorithm) of a successful
attack. While there are less problems with LWE-based cryptosystems, the root
approximation factor has also several shortcomings which are corrected by this
modification. Indeed, highly reduced basis do not obey to the Geometric Series
Assumption, so that the root approximation factor also depends on the dimen-
sion of the lattice. Even when the dimension is much larger than the block-size,
converting the factor into a block-size - which is essentially inverting the function
β �→ ( (β/2)!

πβ/2

)1/β2

- is very cumbersome. Finally, the complexity of shortest vector
algorithms is more naturally expressed as a function of the dimension than the
asymptotical root approximation factor they can achieve.
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Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 208–220. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44774-1 17
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algorithm if the underlying number field1 is chosen as a cyclotomic field (with
“small h+”, a condition very frequently satisfied). Cyclotomic fields were consid-
ered in Gentry’s paper (“As an example, f(x) = xn±1”), in a faster cryptosystem
from Smart–Vercauteren [38], and in an even faster cryptosystem from Gentry–
Halevi [31]. Cyclotomic fields were used in all of the experiments reported in
[31,38]. Cyclotomic fields are also used much more broadly in the literature on
lattice-based cryptography, although many cryptosystems are stated for more
general number fields.

The secret key in the systems of Gentry, Smart–Vercauteren, and Gentry–
Halevi is a short element g of the ring of integers O of the number field. The
public key is the ideal gO generated by g. The attack has two stages:

– Find some generator of gO, using an algorithm of Biasse and Song [10], build-
ing upon a unit-group algorithm of Eisenträger, Hallgren, Kitaev, and Song
[24]. This is the stage that uses quantum computation. The best known pre-
quantum attacks reuse ideas from NFS, the number-field sieve for integer
factorization, and take time exponential in N c+o(1) for a real number c with
0 < c < 1 where N is the field degree. If N is chosen as an appropriate power
of the target security level then the pre-quantum attacks take time exponential
in the target security level, but the Biasse–Song attack takes time polynomial
in the target security level.

– Reduce this generator to a short generator, using an algorithm introduced by
Campbell, Groves, and Shepherd [17, p. 4]: “A simple generating set for the
cyclotomic units is of course known. The image of O× under the logarithm
map forms a lattice. The determinant of this lattice turns out to be much
bigger than the typical log-length of a private key α [i.e., g], so it is easy to
recover the causally short private key given any generator of αO e.g. via the
LLL lattice reduction algorithm.”2 This is the stage that relies on the field
being cyclotomic.

A quantum algorithm for the first stage was stated in [17] before [10], but the
effectiveness of this algorithm was disputed by Biasse and Song (see [9]) and was
not defended by the authors of [17]. The algorithm in [17, p. 4] quoted above
for the second stage does not rely on quantum computers, and its effectiveness
is easily checked by experiment.

It is natural to ask whether quantum computers play an essential role in this
polynomial-time attack. It is also natural to ask whether the problem of finding
g given gO is weak for all number fields, or whether there is something that
makes cyclotomic fields particularly weak.

1 We assume some familiarity with algebraic number theory, although we also review
some background as appropriate.

2 Beware that the analysis in [17, p. 4] is incomplete: the analysis correctly states that
the secret key is short, but fails to state that the textbook basis for the cyclotomic
units is a very good basis; LLL would not be able to find the secret key starting
from a bad basis. A detailed analysis of the basis appeared in a followup paper [22]
by Cramer, Ducas, Peikert, and Regev.
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1.1 Why Focus on the Problem of Finding g Given gO?

There are many other lattice-based cryptosystems that are not broken by the
Biasse–Song–Campbell–Groves–Shepherd attack. For example, the attack does
not break a more complicated homomorphic encryption system introduced in
Gentry’s thesis [28,30]; it does not break the classic NTRU system [32]; and
it does not break the BCNS [12] and New Hope [3] systems. But the simple
problem of finding g given gO remains of interest for several reasons.

First, given the tremendous interest in Gentry’s breakthrough paper, the
scientific record should make clear whether Gentry’s original cryptosystem is
completely broken, or is merely broken for some special number fields.

Second, despite burgeoning interest in post-quantum cryptography, most
cryptographic systems today are chosen for their pre-quantum security levels.
Fast quantum attacks have certainly not eliminated the interest in RSA and
ECC, and also do not end the security analysis of Gentry’s system.

Third, the problem of finding a generator of a principal ideal has a long
history of being considered hard—even if the ideal actually has a short generator,
and even if the output is allowed to be a long generator. There is a list of five
“main computational tasks of algebraic number theory” in [19, p. 214], and the
problem of finding a generator is the fifth on the list. Smart and Vercauteren
describe their key-recovery problem as an “instance of a classical and well studied
problem in algorithmic number theory”, point to the Buchmann–Maurer–Möller
cryptosystem [13] a decade earlier relying on the hardness of this problem, and
summarize various slow solutions.

Fourth, this problem has been reused in various attempts to build secure
multilinear maps, starting with the Garg–Gentry–Halevi construction [27]. We
do not mean to overstate the security or applicability of multilinear maps (see,
e.g., [18,21]), but there is a clear pattern of this problem appearing in the design
of advanced cryptosystems. Future designers need to understand whether this
problem should simply be discarded, or whether it can be a plausible foundation
for security.

Fifth, even when cryptosystems rely on more complicated problems, it is
natural for cryptanalysts to begin by studying the security of simpler problems.
Successful attacks on complicated problems are usually outgrowths of successful
attacks on simpler problems. As explained in AppendixB (in the full version
of this paper), the Biasse–Song–Campbell–Groves–Shepherd attack has already
been reused to attack a more complicated problem.

1.2 Contributions of This Paper

We introduce a pre-quantum algorithm that, for a large class of number fields,
computes a short g given gO. Plausible heuristic assumptions imply that, for a
wide range of number fields in this class, this algorithm (1) has success proba-
bility converging rapidly to 100% as the field degree increases and (2) takes time
quasipolynomial in the field degree.
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One advantage of building pre-quantum algorithms is that the algorithms
can be tested experimentally. We have implemented our algorithm within the
Sage computer-algebra system; the resulting measurements are consistent with
our analysis of the performance of the algorithm.

The number fields that we target are multiquadratics, such as the degree-
256 number field Q(

√
2,

√
3,

√
5,

√
7,

√
11,

√
13,

√
17,

√
19), or more generally any

Q(
√

d1,
√

d2, . . . ,
√

dn). Sometimes we impose extra constraints for the sake of
simplicity: for example, in a few steps we require d1, . . . , dn to be coprime and
squarefree, and in several steps we require them to be positive.

A preliminary step in the attack (see Sect. 5.1) is to compute a full-rank sub-
group of “the unit group of” the number field (which by convention in algebraic
number theory means the unit group of the ring of integers of the field): namely,
the subgroup generated by the units of all real quadratic subfields. We dub
this subgroup the set of “multiquadratic units” by analogy to the standard ter-
minology “cyclotomic units”, with the caveat that “multiquadratic units” (like
“cyclotomic units”) are not guaranteed to be all units.

The degree-256 example above has exactly 255 real quadratic subfields

Q(
√

2),Q(
√

3),Q(
√

6), . . . ,Q(
√

2 · 3 · 5 · 7 · 11 · 13 · 17 · 19).

Each of these has a unit group quickly computable by standard techniques. For
example, the units of Q(

√
2) are ±(1 +

√
2)Z, and the units of the last field are

±(69158780182494876719 + 22205900901368228
√

2 · 3 · 5 · 7 · 11 · 13 · 17 · 19)Z.
This preliminary step generally becomes slower as d1, . . . , dn grow, but it

takes time quasipolynomial in the field degree N , assuming that d1, . . . , dn are
quasipolynomial in N .

In the next step (the rest of Sect. 5) we go far beyond the multiquadratic
units: we quickly compute the entire unit group of the multiquadratic field. This
is important because the gap between the multiquadratic units and all units
would interfere, potentially quite heavily, with the success probability of our
algorithm, the same way that a “large h+” (a large gap between cyclotomic
units and all units) would interfere with the success probability of the cyclo-
tomic attacks. Note that computing the unit group is another of the five “main
computational tasks of algebraic number theory” listed in [19]. There is an ear-
lier algorithm by Wada [42] to compute the unit group of a multiquadratic field,
but that algorithm takes exponential time.

We then go even further (Sect. 6), quickly computing a generator of the input
ideal. The generator algorithm uses techniques similar to, but not the same as,
the unit-group algorithm. The unit-group computation starts from unit groups
computed recursively in three subfields, while the generator computation starts
from generators computed recursively in those subfields and from the unit group
of the top field.

There is a very easy way to extract short generators when d1, . . . , dn are large
enough, between roughly N and any quasipolynomial bound. This condition is
satisfied by a wide range of fields of each degree.

We do more work to extend the applicability of our attack to allow smaller
d1, . . . , dn, using LLL to shorten units and indirectly generators. Analysis of
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this extension is difficult, but experiments suggest that the success probability
converges to 1 even when d1, . . . , dn are chosen to be as small as the first n
primes starting from n2.

There are many obvious opportunities for precomputation in our algorithm,
and in particular the unit group can be reused for attacking many targets gO
in the same field. We separately measure the cost of computing the unit group
and the cost of subsequently finding a generator.

1.3 Why Focus on Multiquadratics?

Automorphisms and subfields play critical roles in several strategies to attack
discrete logarithms. These strategies complicate security analysis, and in many
cases they have turned into successful attacks. For example, small-characteristic
multiplicative-group discrete logarithms are broken in quasipolynomial time;
there are ongoing disputes regarding a strategy to attack small-characteristic
ECC; and very recently pairing-based cryptography has suffered a significant
drop in security level, because of new optimizations in attacks exploiting sub-
fields of the target field. See, e.g., [5,26,33].

Do automorphisms and subfields also damage the security of lattice-based
cryptography? We chose multiquadratics as an interesting test case because
they have a huge number of subfields, presumably amplifying and clarifying
any impact that subfields might have upon security.

A degree-2n multiquadratic field is Galois: i.e., it has 2n automorphisms,
the maximum possible for a degree-2n field. The Galois group, the group of
automorphisms, is isomorphic to (Z/2)n. The number of subfields of the field
is the number of subgroups of (Z/2)n, i.e., the number of subspaces of an n-
dimensional vector space over F2. The number of k-dimensional subspaces is the
2-binomial coefficient(

n

k

)
2

=
(2n − 1)(2n−1 − 1) · · · (21 − 1)

(2k − 1)(2k−1 − 1) · · · (21 − 1)(2n−k − 1)(2n−k−1 − 1) · · · (21 − 1)
,

which is approximately 2n2/4 for k ≈ n/2. This turns out to be overkill from
the perspective of our attack: as illustrated in Figs. 5.1 and 5.2, the number of
subfields we use ends up essentially linear in 2n.

2 Multiquadratic Fields

A multiquadratic field is, by definition, a field that can be written in the form
Q(

√
r1, . . . ,

√
rm) where (r1, . . . , rm) is a finite sequence of rational numbers. The

notation Q(
√

r1, . . . ,
√

rm) means the smallest subfield of C, the field of complex
numbers, that contains

√
r1, . . . ,

√
rm.

When we write
√

r for a nonnegative real number r, we mean specifically
the nonnegative square root of r. When we write

√
r for a negative real number

r, we mean specifically i
√−r, where i is the standard square root of −1 in
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C; for example,
√−2 means i

√
2. These choices do not affect the definition

of Q(
√

r1, . . . ,
√

rm), but many other calculations rely on each
√

r having a
definite value.

See full version of paper on multiquad.cr.yp.to for proofs.

Theorem 2.1. Let n be a nonnegative integer. Let d1, . . . , dn be integers such
that, for each nonempty subset J ⊆ {1, . . . , n}, the product

∏
j∈J dj is not a

square. Then the 2n complex numbers
∏

j∈J

√
dj for all subsets J ⊆ {1, . . . , n}

form a basis for the multiquadratic field Q(
√

d1, . . . ,
√

dn) as a Q-vector space.
Furthermore, for each j ∈ {1, . . . , n} there is a unique field automorphism
of Q(

√
d1, . . . ,

√
dn) that preserves

√
d1, . . . ,

√
dn except for mapping

√
dj

to −√
dj.

Consequently Q(
√

d1, . . . ,
√

dn) is a degree-2n number field.

Theorem 2.2. Every multiquadratic field can be expressed in the form of The-
orem2.1 with each dj squarefree.

3 Fast Arithmetic in Multiquadratic Fields

See full version of paper on multiquad.cr.yp.to.

4 Recognizing Squares

This section explains how to recognize squares in a multiquadratic field L =
Q(

√
d1, . . . ,

√
dn). The method does not merely check whether a single element

u ∈ L is a square: given nonzero u1, . . . , ur ∈ L, the method rapidly identifies
the set of exponent vectors (e1, . . . , er) ∈ Zr such that ue1

1 · · · uer
r is a square.

The method here was introduced by Adleman [2] as a speedup to NFS. The
idea is to apply a group homomorphism χ from L× to {−1, 1}, or more gen-
erally from T to {−1, 1}, where T is a subgroup of L× containing u1, . . . , ur.
Then χ reveals a linear constraint, hopefully nontrivial, on (e1, . . . , er) modulo
2. Combining enough constraints reveals the space of (e1, . . . , er) mod 2.

One choice of χ is the sign of a real embedding of L, but this is a limited
collection of χ (and empty if L is complex). Adleman suggested instead taking
χ as a quadratic character defined by a prime ideal. There is an inexhaustible
supply of prime ideals, and thus of these quadratic characters.

Section 3.6 (in the full version of this paper) used this idea for L = Q, but
only for small r (namely r = n), where one can afford to try 2r primes. This
section handles arbitrary multiquadratics and allows much larger r.

4.1 Computing Quadratic Characters

Let q be an odd prime number modulo which all the di are nonzero squares.
For each i, let si be a square root of di modulo q. The map Z[x1, . . . , xn] → Fq

defined by xi �→ si and reducing coefficients modulo q induces a homomorphism

https://multiquad.cr.yp.to
https://multiquad.cr.yp.to
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Z[x1, . . . , xn]/(x2
1 − d1, . . . , x

2
n − dn) → Fq, or equivalently a homomorphism

ϕ : Z[
√

d1, . . . ,
√

dn] → Fq.
Let P be the kernel of ϕ. Then P is a degree-1 prime ideal of Z[

√
d1, . . . ,

√
dn]

above q, i.e., a prime ideal of prime norm q. Write OL for the ring of integers of
L; then P extends to a unique degree-1 prime ideal of OL. The map ϕ extends
to the set Rϕ of all u ∈ L having nonnegative valuation at this prime ideal.
For each u ∈ Rϕ define χ(u) ∈ {−1, 0, 1} as the Legendre symbol of ϕ(u) ∈ Fq.
Then χ(uu′) = χ(u)χ(u′), since ϕ(uu′) = ϕ(u)ϕ(u′) and the Legendre symbol is
multiplicative. In particular, χ(u2) ∈ {0, 1}.

More explicitly: Given a polynomial u ∈ Z[x1, . . . , xn]/(x2
1 − d1, . . . , x

2
n − dn)

represented as coefficients of 1, x1, x2, x1x2, etc., first take all coefficients modulo
q to obtain u mod q ∈ Fq[x1, . . . , xn]/(x2

1 − d1, . . . , x
2
n − dn). Then substitute

xn �→ sn: i.e., write u mod q as u0 +u1xn, where u0, u1 ∈ Fq[x1, . . . , xn−1]/(x2
1 −

d1, . . . , x
2
n−1−dn−1), and compute u0+u1sn. Inside this result substitute xn−1 �→

sn−1 similarly, and so on through x1 �→ s1, obtaining ϕ(u) ∈ Fq. Finally compute
the Legendre symbol modulo q to obtain χ(u).

As in Sect. 3 (in the full version of this paper), assume that each coefficient of
u has at most B bits, and choose q (using the GoodPrime function from Sect. 3.2)
to have nO(1) bits. Then the entire computation of χ(u) takes time essentially
NB, mostly to reduce coefficients modulo q. The substitutions xj �→ sj involve
a total of O(N) operations in Fq, and the final Legendre-symbol computation
takes negligible time.

More generally, any element of L is represented as u/h for a positive integer
denominator h. Assume that q is coprime to h; this is true with overwhelming
probability when q is chosen randomly. (It is also guaranteed to be true for any
u/h ∈ OL represented in lowest terms, since q is coprime to 2d1 · · · dn.) Then
ϕ(u/h) is simply ϕ(u)/h, and computing the Legendre symbol produces χ(u/h).

4.2 Recognizing Squares Using Many Quadratic Characters

Let χ1, . . . , χm be quadratic characters. Define T as the subset of L on which
all χi are defined and nonzero. Then T is a subgroup of L×, the intersection of
the unit groups of the rings Rϕ defined above. Define a group homomorphism
X : T → (Z/2)m as u �→ (log−1 χ1, . . . , log−1 χm).

Given nonzero u1, . . . , ur ∈ L, choose m somewhat larger than r, and then
choose χ1, . . . , χm randomly using GoodPrime. Almost certainly u1, . . . , ur ∈ T ;
if any χ(uj) turns out to be undefined or zero, simply switch to another prime.

Define U as the subgroup of T generated by u1, . . . , ur. If a product π =
ue1
1 · · · uer

r is a square in L then its square root is in T so X(π) = 0, i.e., e1X(u1)+
· · · + erX(ur) = 0. Conversely, if X(π) = 0 and m is somewhat larger than r
then almost certainly π is a square in L, as we now explain.

The group U/(U∩L2) is an F2-vector space of dimension at most r, so its dual
group Hom(U/(U ∩ L2),Z/2) is also an F2-vector space of dimension at most r.
As in [16, Sect. 8], we heuristically model log−1 χ1, . . . , log−1 χm as independent
uniform random elements of this dual; then they span the dual with probability
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at least 1−1/2m−r by [16, Lemma 8.2]. If they do span the dual, then any π ∈ U
with X(π) = 0 must have π ∈ U ∩ L2.

The main argument for this heuristic is the fact that, asymptotically, prime
ideals are uniformly distributed across the dual. Restricting to degree-1 prime
ideals does not affect this heuristic: prime ideals are counted by norm, so asymp-
totically 100% of all prime ideals have degree 1. Beware that taking more than
one prime ideal over a single prime number q would not justify the same heuristic.

Computing X(u1), . . . , X(ur) involves mr ≈ r2 quadratic-character compu-
tations, each taking time essentially NB. We do better by using remainder trees
to merge the reductions of B-bit coefficients mod q across all r choices of q; this
reduces the total time from essentially r2NB to essentially rN(r + B).

We write EnoughCharacters(L, (v1, . . . , vs)) for a list of m randomly chosen
characters that are defined and nonzero on v1, . . . , vs. In higher-level algorithms
in this paper, the group 〈v1, . . . , vs〉 can always be expressed as 〈u1, . . . , ur〉
with r ≤ N + 1, and we choose m as N + 64, although asymptotically one
should replace 64 by, e.g.,

√
N . The total time to compute X(u1), . . . , X(uR)

is essentially N2(N + B). The same heuristic states that these characters have
probability at most 1/263 (or asymptotically at most 1/2

√
N−1) of viewing some

non-square ue1
1 · · · uer

r as a square. Our experiments have not encountered any
failing square-root computations.

5 Computing Units

This section presents a fast algorithm to compute the unit group O×
L of a mul-

tiquadratic field L. For simplicity we assume that L is real, i.e., that L ⊆ R.
Note that a multiquadratic field is real if and only if it is totally real, i.e., every
complex embedding L → C has image in R. For L = Q(

√
d1, . . . ,

√
dn) this is

equivalent to saying that each dj is nonnegative.
Like Wada [42], we recursively compute unit groups for three subfields Kσ,

Kτ , Kστ , and then use the equation u2 = NL:Kσ
(u)NL:Kτ

(u)/σ(NL:Kστ
(u)) to

glue these groups together into a group U between O×
L and (O×

L )2. At this point
Wada resorts to brute-force search to identify the squares in U , generalizing an
approach taken by Kubota in [34] for degree-4 multiquadratics (“biquadratics”).
We reduce exponential time to polynomial time by using quadratic characters
as explained in Sect. 4.

5.1 Fundamental Units of Quadratic Fields

A quadratic field is, by definition, a degree-2 multiquadratic field; i.e., a field
of the form Q(

√
d), where d is a non-square integer.

Fix a positive non-square integer d. Then L = Q(
√

d) is a real quadratic
field, and the unit group O×

L is
{
. . . ,−ε2,−ε,−1,−ε−1,−ε−2, . . . , ε−2, ε−1, 1, ε, ε2, . . .

}
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for a unique ε ∈ O×
L with ε > 1. This ε, the smallest element of O×

L larger than
1, is the normalized fundamental unit of OL. For example, the normalized
fundamental unit is 1+

√
2 for d = 2; 2+

√
3 for d = 3; and (1+

√
5)/2 for d = 5.

Sometimes the literature says “fundamental unit” instead of “normalized fun-
damental unit”, but sometimes it defines all of ε,−ε, 1/ε,−1/ε as “fundamental
units”. The phrase “normalized fundamental unit” is unambiguous.

The size of the normalized fundamental unit ε is conventionally measured by
the regulator R = ln(ε). A theorem by Hua states that R <

√
d(ln(4d) + 2),

and experiments suggest that R is typically d1/2+o(1), although it is often much
smaller. Write ε as a + b

√
d with a, b ∈ Q; then both 2a and 2b

√
d are very

close to exp(R), and there are standard algorithms that compute a, b in time
essentially R, i.e., at most essentially d1/2. See generally [36,43].

For our time analysis we assume that d is quasipolynomial in N , i.e., log d ∈
(log N)O(1). Then the time to compute ε is also quasipolynomial in N .

Take, for example, d = d1 · · · dn, where d1, . . . , dn are the first n primes,
and write N = 2n. The product of primes ≤y is approximately exp(y), so
ln d ≈ n ln n = (log2 N) ln log2 N . As a larger example, if d1, . . . , dn are primes
between N3 and N4, and again d = d1 · · · dn, then log2 d is between 3n2 and
4n2, i.e., between 3(log2 N)2 and 4(log2 N)2. In both of these examples, d is
quasipolynomial in N .

Subexponential Algorithms. There are much faster algorithms that compute ε
as a product of powers of smaller elements of L. There is a deterministic algo-
rithm that provably takes time essentially R1/2, i.e., at most essentially d1/4;
see [11]. Heuristic algorithms take subexponential time exp((ln(d))1/2+o(1)), and
thus time polynomial in N if ln(d) ∈ O((log N)2−ε); see [1,15,19,40]. Quantum
algorithms are even faster, as mentioned in the introduction, but in this paper
we focus on pre-quantum algorithms.

This representation of units is compatible with computing products, quo-
tients, quadratic characters (see Sect. 4), and automorphisms, but we also need
to be able to compute square roots. One possibility here is to generalize from
“product of powers” to any algebraic algorithm, i.e., any chain of additions,
subtractions, multiplications, and divisions. This seems adequate for our square-
root algorithm in Sect. 3.7 (in the full version of this paper): for example, h0

inside Algorithm 3.3 can be expressed as the chain (h+σ(h))/2 for an appropri-
ate automorphism σ, and the base case involves square roots of small integers
that can be computed explicitly. However, it is not clear whether our recursive
algorithms produce chains of polynomial size. We do not explore this possibility
further.

5.2 Units in Multiquadratic Fields

Let d1, . . . , dn be integers satisfying the conditions of Theorem2.1. Assume fur-
ther that d1, . . . , dn are positive. Then L = Q(

√
d1, . . . ,

√
dn) is a real multi-

quadratic field.
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This field has N − 1 = 2n − 1 quadratic subfields, all of which are real. Each
quadratic subfield is constructed as follows: take one of the N −1 nonempty sub-
sets J ⊆ {1, . . . , n}; define dJ =

∏
j∈J dj ; the subfield is Q(

√
dJ). We write the

normalized fundamental units of these N −1 quadratic subfields as ε1, . . . , εN−1.
The set of multiquadratic units of L is the subgroup 〈−1, ε1, . . . , εN−1〉 of

O×
L ; equivalently, the subgroup of O×

L generated by −1 and all units of rings of
integers of quadratic subfields of L. (The “−1 and” can be suppressed except for
L = Q.) A unit in OL is not necessarily a multiquadratic unit, but Theorem 5.2
states that its Nth power must be a multiquadratic unit.

The group O×
L is isomorphic to (Z/2)×ZN−1 by Dirichlet’s unit theorem. For

N ≥ 2 this isomorphism takes the Nth powers to {0} × (NZ)N−1, a subgroup
having index 21+n(N−1). The index of the multiquadratic units in O×

L is therefore
a divisor of 21+n(N−1). One corollary is that ε1, . . . , εN−1 are multiplicatively
independent: if

∏
ε

aj

j = 1, where each aj ∈ Z, then each aj = 0.

Lemma 5.1. Let L be a real multiquadratic field and let σ, τ be distinct non-
identity automorphisms of L. Define στ = σ ◦ τ . For 	 ∈ {σ, τ, στ} let K� be the
subfield of L fixed by 	. Define U = O×

Kσ
· O×

Kτ
· σ(O×

Kστ
). Then

(O×
L )2 ≤ U ≤ O×

L .

Proof. O×
Kσ

, O×
Kτ

, and O×
Kστ

are subgroups of O×
L . The automorphism σ pre-

serves O×
L , so σ(O×

Kστ
) is a subgroup of O×

L . Hence U is a subgroup of O×
L .

For the first inclusion, let u ∈ O×
L . Then NL:K�

(u) ∈ O×
K�

for 	 ∈ {σ, τ, στ}.
Each non-identity automorphism of L has order 2, so in particular each 	 ∈
{σ, τ, στ} has order 2 (if στ is the identity then σ = σστ = τ , contradiction), so
NL:K�

(u) = u · 	(u). We thus have

NL:Kσ
(u)NL:Kτ

(u)
σ(NL:Kστ

(u))
=

u · σ(u) · u · τ(u)
σ(u · στ(u))

= u2.

Hence u2 = NL:Kσ
(u)NL:Kτ

(u)σ(NL:Kστ
(u−1)) ∈ U . This is true for each u ∈

O×
L , so (O×

L )2 is a subgroup of U . ��
Theorem 5.2. Let L be a real multiquadratic field of degree N . Let Q be the
group of multiquadratic units of L. Then O×

L = Q if N = 1, and (O×
L )N/2 ≤ Q

if N ≥ 2. In both cases (O×
L )N ≤ Q.

Proof. Induct on N . If N = 1 then L = Q so O×
L = 〈−1〉 = Q. If N = 2 then

L is a real quadratic field so O×
L = 〈−1, ε1〉 = Q where ε1 is the normalized

fundamental unit of L.
Assume from now on that N ≥ 4. By Theorem 2.2, L can be expressed as

Q(
√

d1, . . . ,
√

dn) where d1, . . . , dn are positive integers meeting the conditions
of Theorem 2.1 and N = 2n.

Define σ as the automorphism of L that preserves
√

d1, . . . ,
√

dn except for
negating

√
dn. The field Kσ fixed by σ is Q(

√
d1, . . . ,

√
dn−1), a real multi-

quadratic field of degree N /2. Write Qσ for the group of multiquadratic units of
Kσ. By the inductive hypothesis, (O×

Kσ
)N/4 ≤ Qσ ≤ Q.
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Define τ as the automorphism of L that preserves
√

d1, . . . ,
√

dn except for
negating

√
dn−1. Then the field Kτ fixed by τ is Q(

√
d1, . . . ,

√
dn−2,

√
dn), and

the field Kστ fixed by στ is Q(
√

d1, . . . ,
√

dn−2,
√

dn−1dn). Both of these are
real multiquadratic fields of degree N /2, so (O×

Kτ
)N/4 ≤ Q and (O×

Kστ
)N/4 ≤ Q.

The automorphism σ preserves Q, so σ(O×
Kστ

)N/4 ≤ Q.
By Lemma 5.1, (O×

L )2 ≤ O×
Kσ

· O×
Kτ

· σ(O×
Kστ

). Simply take (N/4)th powers:
(O×

L )N/2 ≤ (O×
Kσ

)N/4 · (O×
Kτ

)N/4 · σ(O×
Kστ

)N/4 ≤ Q. ��

5.3 Representing Units: Logarithms and Approximate Logarithms

Sections 5.4 and 5.5 will use Lemma 5.1, quadratic characters, and square-root
computations to obtain a list of generators for O×

L . However, this is usually far
from a minimal-size list of generators. Given this list of generators we would like
to produce a basis for O×

L . This means a list of N − 1 elements u1, . . . , uN−1 ∈
O×

L such that each element of O×
L can be written uniquely as ζue1

1 · · · ueN−1
N−1

where ζ is a root of unity; i.e., as ±ue1
1 · · · ueN−1

N−1 . In other words, it is a list of
independent generators of O×

L /{±1}.
A basis u1, . . . , uN−1 for O×

L is traditionally viewed as a lattice basis in
the usual sense: specifically, as the basis Log u1, . . . ,Log uN−1 for the lattice
Log O×

L , where Log is Dirichlet’s logarithm map. However, this view compli-
cates the computation of a basis. We instead view a basis u1, . . . , uN−1 for O×

L

as a basis ApproxLog u1, . . . ,ApproxLog uN−1 for the lattice ApproxLog O×
L ,

where ApproxLog is an “approximate logarithm map”. We define our approxi-
mate logarithm map here, explain why it is useful, and explain how we use the
approximate logarithm map in our representation of units. In Sect. 5.5 we use
ApproxLog to reduce a list of generators to a basis.

Dirichlet’s Logarithm Map. Let σ1, σ2, . . . , σN be (in some order) the embeddings
of L into C, i.e., the ring homomorphisms L → C. Since L is Galois, these are
exactly the automorphisms of L. Dirichlet’s logarithm map Log : L× → RN

is defined as follows:

Log(u) = (ln |σ1(u)|, ln |σ2(u)|, . . . , ln |σN (u)|).
This map has several important properties. It is a group homomorphism from the
multiplicative group L× to the additive group RN . The kernel of Log restricted
to O×

L is the cyclic group of roots of unity in L, namely {1,−1}. The image
Log(O×

L ) forms a lattice of rank N − 1, called the log-unit lattice.
Given units u1, . . . , ub generating O×

L , one can compute Log(u1), . . . ,Log(ub)
in RN , and then reduce these images to linearly independent vectors in RN by
a chain of additions and subtractions, obtaining a basis for the log-unit lattice.
Applying the corresponding chain of multiplications and divisions to the original
units produces a basis for O×

L .
However, elements of R are conventionally represented as nearby rational

numbers. “Computing” Log(u1), . . . ,Log(ub) thus means computing nearby vec-
tors of rational numbers. The group generated by these vectors usually has rank
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larger than N − 1: instead of producing N − 1 linearly independent vectors and
b−(N −1) zero vectors, reduction can produce as many as b linearly independent
vectors.

One can compute approximate linear dependencies by paying careful atten-
tion to floating-point errors. An alternative is to use p-adic techniques as in [7].
Another alternative is to represent logarithms in a way that allows all of the
necessary real operations to be carried out without error: for example, one can
verify that Log u > Log v by using interval arithmetic in sufficiently high pre-
cision, and one can verify that Log u = Log v by checking that u/v is a root of
unity.

Approximate Logarithms. We instead sidestep these issues by introducing an
approximate logarithm function ApproxLog as a replacement for the logarithm
function Log. This new function is a group homomorphism from O×

L to RN . Its
image is a lattice of rank N − 1, which we call the approximate unit lattice. Its
kernel is the group of roots of unity in L. The advantage of ApproxLog over
Log is that all the entries of ApproxLog(u) are rationals, allowing exact linear
algebra.

To define ApproxLog, we first choose N linearly independent vectors

(1, 1, . . . , 1),ApproxLog(ε1), . . . ,ApproxLog(εN−1) ∈ QN ,

where ε1, . . . , εN−1 are the normalized fundamental units of the quadratic sub-
fields of L as before; (1, 1, . . . , 1) is included here to simplify other computations.
We then extend the definition by linearity to the group 〈−1, ε1, . . . , εN−1〉 of
multiquadratic units: if

u = ±
N−1∏
j=1

ε
ej

j

then we define ApproxLog(u) as
∑

j ej ApproxLog(εj). Finally, we further extend
the definition by linearity to all of O×

L : if u ∈ O×
L then uN is a multiquadratic

unit by Theorem 5.2, and we define ApproxLog(u) as ApproxLog(uN )/N . It is
easy to check that ApproxLog is a well-defined group homomorphism.

For example, one can take ApproxLog(ε1) = (1, 0, . . . , 0, 0), ApproxLog
(ε2) = (0, 1, . . . , 0, 0), and so on through ApproxLog(εN−1) = (0, 0, . . . , 1, 0).
Then ApproxLog(u) = (e1/N, e2/N, . . . , eN−1/N, 0) if uN = ±εe1

1 εe2
2 · · · εeN−1

N−1 .
In other words, write each unit modulo ±1 as a product of powers of ε1, . . . , εN−1;
ApproxLog is then the exponent vector.

We actually define ApproxLog to be numerically much closer to Log. We
choose a precision parameter β, and we choose each entry of ApproxLog(εj) to be
a multiple of 2−β within 2−β of the corresponding entry of Log(εj). Specifically,
we build ApproxLog(εj) as follows:

– Compute the regulator R = ln(εj) to slightly more than β + log2 R bits of
precision.

– Round the resulting approximation to a (nonzero) multiple R′ of 2−β .
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– Build a vector with R′ at the N /2 positions i for which σi(εj) = εj , and with
−R′ at the remaining N /2 positions i.

The resulting vectors ApproxLog(ε1), . . . ,ApproxLog(εN−1) are orthogonal to
each other and to (1, 1, . . . , 1).

How Units are Represented. Each unit in Algorithms 5.1 and 5.2 is implicitly
represented as a pair consisting of (1) the usual representation of an element of
L and (2) the vector ApproxLog(u). After the initial computation of ln(εj) for
each j, all subsequent units are created as products (or quotients) of previous
units, with sums (or differences) of the ApproxLog vectors; or square roots of
previous units, with the ApproxLog vectors multiplied by 1/2. This approach
ensures that we do not have to compute ln |σ(u)| for the subsequent units u.

As mentioned in Sect. 5.1, we assume that each quadratic field Q(
√

d) has
log d ∈ (log N)O(1) = nO(1), so log R ∈ nO(1). We also take β ∈ nO(1), so each
entry of ApproxLog(εj) has nO(1) bits. One can deduce an nO(1) bound on the
number of bits in any entry of any ApproxLog vector used in our algorithms, so
adding two such vectors takes time nO(1)N , i.e., essentially N .

For comparison, recall that multiplication takes time essentially NB, where
B is the maximum number of bits in any coefficient of the field elements being
multiplied. For normalized fundamental units, this number of bits is essentially
R, i.e., quasipolynomial in N , rather than log R, i.e., polynomial in n.

5.4 Pinpointing Squares of Units Inside Subgroups
of the Unit Group

Algorithm 5.1, UnitsGivenSubgroup, is given generators u1, . . . , ub of any group
U with (O×

L )2 ≤ U ≤ O×
L . It outputs generators of O×

L /{±1}.
The algorithm begins by building enough characters χ1, . . . , χm that are

defined and nonzero on U . Recall from Sect. 4.2 that m is chosen to be slightly
larger than N .

For each u ∈ U define X(u) as the vector (log−1(χ1(u)), . . . , log−1(χm(u))) ∈
(Z/2)m. If u ∈ (O×

L )2 then X(u) = 0. Conversely, if u ∈ U and X(u) = 0 then
(heuristically, with overwhelming probability) u = v2 for some v ∈ L; this v
must be a unit, so u ∈ (O×

L )2.
The algorithm assembles the rows X(u1), . . . , X(ub) into a matrix M ; com-

putes a basis S for the left kernel of M ; lifts each element (Si1, . . . , Sib) of this
basis to a vector of integers, each entry 0 or 1; and computes si = uSi1

1 · · · uSib

b . By
definition X(si) = Si1X(u1)+ · · ·+SibX(ub) = 0, so si ∈ (O×

L )2. The algorithm
computes a square root vi of each si, and it outputs u1, . . . , ub, v1, v2, . . . .

To see that −1, u1, . . . , ub, v1, v2, . . . generate O×
L , consider any u ∈ O×

L . By
definition u2 ∈ (O×

L )2, so u2 ∈ U , so u2 = ue1
1 · · · ueb

b for some e1, . . . , eb ∈
Z. Furthermore X(u2) = 0 so e1X(u1) + · · · + ebX(ub) = 0; i.e., the vector
(e1 mod 2, . . . , eb mod 2) in (Z/2)b is in the left kernel of M . By definition S is
a basis for this left kernel, so (e1 mod 2, . . . , eb mod 2) is a linear combination
of the rows of S modulo 2; i.e., (e1, . . . , eb) is some (2f1, . . . , 2fb) plus a linear
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Algorithm 5.1. UnitsGivenSubgroup(L, (u1, . . . , ub))
Input: A real multiquadratic field L; elements u1, . . . , ub of O×

L such that
(O×

L )2 ⊆ 〈u1, . . . , ub〉.
Result: Generators for O×

L /{±1}.

1 χ1, . . . , χm ← EnoughCharacters(L, (u1, . . . , ub))
2 M ← [log−1(χk(uj))]1≤j≤b,1≤k≤m

3 S ← Basis(LeftKernel(M))
4 for i = 1, . . . , #S do

5 si ←∏j u
Sij

j , interpreting exponents in Z/2 as {0, 1} in Z

6 vi ← √
si

7 return u1, . . . , ub, v1, . . . , v#S

combination of the rows of S; i.e., u2 is u2f1
1 · · · u2fb

b times a product of powers
of si; i.e., u is ±uf1

1 · · · ufb

b times a product of powers of vi.

Complexity Analysis and Improvements. Assume that the inputs u1, . . . , ub have
at most B bits in each coefficient. Each of the products s1, s2, . . . is a product of
at most b inputs, and thus has, at worst, essentially bB bits in each coefficient.

Computing the character matrix M takes time essentially bN(b + B); see
Sect. 4.2. Computing S takes O(N3) operations by Gaussian elimination over
F2; one can obtain a better asymptotic exponent here using fast matrix multi-
plication, but this is not a bottleneck in any case. Computing one product si

takes time essentially bNB with a product tree, and computing its square root
vi takes time essentially bN log2 3B. There are at most b values of i.

Our application of this algorithm has b ∈ Θ(N). The costs are essentially
N3 + N2B for characters, N3 for kernel computation, N3B for products, and
N2+log2 3B for square roots.

These bounds are too pessimistic, for three reasons. First, experiments show
that products often have far fewer factors, and are thus smaller and faster to
compute. Second, one can enforce a limit upon output size by integrating the
algorithm with lattice-basis reduction (see Sect. 5.5), computing products and
square roots only after reduction. Third, we actually use the technique of Sect. 3.5
(in the full version of this paper) to compute products of powers.

5.5 A Complete Algorithm to Compute the Unit Group

Algorithm 5.2 computes a basis for O×
L , given a real multiquadratic field L.

As usual write N for the degree of L. There is no difficulty if N = 1. For
N = 2, the algorithm calls standard subroutines cited in Sect. 5.1. For N ≥ 4,
the algorithm calls itself recursively on three subfields of degree N /2; merges
the results into generators for a subgroup U ≤ O×

L such that (O×
L )2 ≤ U ;

calls UnitsGivenSubgroup to find generators for O×
L ; and then uses lattice-basis

reduction to find a basis for O×
L . A side effect of lattice-basis reduction is that

the basis is short, although it is not guaranteed to be minimal.
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Algorithm 5.2. Units(L)
Input: A real multiquadratic field L. As a side input, a parameter H > 0.
Result: Independent generators of O×

L /{±1}.

1 if [L : Q] = 1 then
2 return ()

3 if [L : Q] = 2 then
4 return the normalized fundamental unit of L

5 σ, τ ← distinct non-identity automorphisms of L
6 for � ∈ {σ, τ, στ} do
7 G� ← Units(fixed field of �)

8 G ← −1, Gσ, Gτ , σ(Gστ )
9 (u1, . . . , ub) ← UnitsGivenSubgroup(L, G)

10 A ←

⎛

⎜
⎜
⎜
⎝

1 0 . . . 0 H · ApproxLog(u1)
0 1 . . . 0 H · ApproxLog(u2)
...

...
. . .

...
...

0 0 . . . 1 H · ApproxLog(ub)

⎞

⎟
⎟
⎟
⎠

11 A′ ← LLL(A), putting shortest vectors first
12 for i = 1, . . . , N − 1 where N = [L : Q] do

13 wi ←∏1≤j≤b u
A′

b−(N−1)+i,j

j

14 return w1, . . . , wN−1

The Subgroup and the Generators. Lemma 5.1 defines U = O×
Kσ

· O×
Kτ

·σ(O×
Kστ

)
where σ, τ are distinct non-identity automorphisms of L.

The three subfields used in the algorithm are Kσ, Kτ , and Kστ . The recursive
calls produce lists of generators for O×

Kσ
/{±1}, O×

Kτ
/{±1}, and O×

Kστ
/{±1}

respectively. The algorithm builds a list G that contains each element of the
first list; each element of the second list; σ applied to each element of the third
list; and −1. Then G generates U . As a speedup, we sort G to remove duplicates.

We cache the output of Units(L) for subsequent reuse (without saying so
explicitly in Algorithm 5.2). For example, if L = Q(

√
2,

√
3,

√
5), then the three

subfields might be Q(
√

2,
√

3), Q(
√

2,
√

5), and Q(
√

2,
√

15), and the next level
of recursion involves Q(

√
2) three times. We perform the Units(Q(

√
2)) compu-

tation once and then simply reuse the results the next two times.
The overall impact of caching depends on how σ and τ are chosen (which

is also not specified in Algorithm 5.2). We use the following specific strategy.
As usual write L as Q(

√
d1, . . . ,

√
dn), where d1, . . . , dn are integers meeting the

conditions of Theorem2.1. Assume that 0 < d1 < · · · < dn. Choose σ and τ such
that Kσ = Q(

√
d1,

√
d2, . . . ,

√
dn−1) and Kτ = Q(

√
d1,

√
d2, . . . ,

√
dn−2,

√
dn).

We depict the resulting set of subfields in Figs. 5.1 and 5.2. Notice that, in
Figs. 5.1 and 5.2, the leftmost field in each horizontal layer is a subfield used by
all fields in the horizontal layer above it.
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Fig. 5.1. How to pick subfields for the recursive algorithm for multiquadratic fields of
degree 8.

Fig. 5.2. How to pick subfields for the recursive algorithm for multiquadratic fields of
degree 16.

With this strategy, the recursion reaches exactly 2n−�+1 − 1 subfields of
degree 2�, namely the subfields of the form Q(

√
d1, . . . ,

√
d�−1,

√
D) where D

is a product of a nonempty subset of {d�, . . . , dn}. With a less disciplined strat-
egy, randomly picking 3 subfields of degree N /2 at each step, we would instead
end up with nearly 3n−� subfields of degree 2�. “Nearly” accounts for accidental
collisions and for the limited number of subfields of low degree.

Finding Short Bases Given Generators. Applying Pohst’s modified LLL algo-
rithm [37] to the vectors ApproxLog(u1), . . . ,ApproxLog(ub) would find b−(N −
1) zero vectors and N − 1 independent short combinations of the input vectors.
The algorithm is easily extended to produce an invertible b × b transformation
matrix T that maps the input vectors to the output vectors. (The algorithm in
[37] already finds the part of T corresponding to the zero outputs.) We could
simply use the entries of any such T as exponents of uj in our algorithm. It is
important to realize, however, that there are many possible choices of T (except
in the extreme case b = N − 1), and the resulting computations are often much
slower than necessary. For example, if u3 = u1u2, then an output u1/u2 might
instead be computed as u1001

1 u999
2 /u1000

3 .
We instead apply LLL to the matrix A shown in Algorithm5.2. This has

three effects. First, if H is chosen sufficiently large, then the right side of A is
reduced to b − (N − 1) zero vectors and N − 1 independent short combinations
of the vectors H · ApproxLog(u1), . . . , H · ApproxLog(ub). (We check that there
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are exactly b − (N − 1) zero vectors.) Second, the left side of A keeps track
of the transformation matrix that is used. Third, this transformation matrix
is automatically reduced: short coefficients are found for the b − (N − 1) zero
vectors, and these coefficients are used to reduce the coefficients for the N − 1
independent vectors.

An upper bound on LLL cost can be computed as follows. LLL in dimension
N , applied to integer vectors where each vector has O(B) bits, uses O(N4B)
arithmetic operations on integers with O(NB) bits; see [35, Proposition 1.26].
The total time is bounded by essentially N5B2. To bound B one can bound each
H ·ApproxLog(· · · ). To bound H one can observe that the transformation matrix
has, at worst, essentially N bits in each coefficient (see, e.g., [39]), while the
required precision of ApproxLog is essentially 1, so it suffices to take essentially
N bits in H. The total time is, at worst, essentially N7.

Our experiments show much better LLL performance for these inputs. We
observe LLL actually using very few iterations; evidently the input vectors are
already very close to being reduced. It seems plausible to conjecture that the
entries of the resulting transformation matrix have at most nO(1) bits, and that
it suffices to take H with nO(1) bits, producing B bounded by nO(1). The total
time might be as small as essentially N3, depending on how many iterations
there are.

6 Finding Generators of Ideals

This section presents the main contribution of this paper: a fast pre-quantum
algorithm to compute a nonzero g in a multiquadratic ring, given the ideal
generated by g. For simplicity we focus on the real case, as in Sect. 5. The
algorithm takes quasipolynomial time under reasonable heuristic assumptions if
d1, . . . , dn are quasipolynomial.

The algorithm reuses the equation g2 = NL:Kσ
(g)NL:Kτ

(g)/σ(NL:Kστ
(g))

that was used for unit-group computation in Sect. 5. To compute NL:K(g), the
algorithm computes the corresponding norm of the input ideal, and then calls
the same algorithm recursively.

The main algebraic difficulty here is that there are many generators of the
same ideal: one can multiply g by any unit, such as −1 or 1 +

√
2, to obtain

another generator. What the algorithm actually produces is some ug where u is
a unit. This means that the recursion produces unit multiples of NL:Kσ

(g) etc.,
and thus produces some vg2 rather than g2. The extra unit v might not be a
square, so we cannot simply compute the square root of vg2. Instead we again
use the techniques of Sect. 4, together with the unit group computed in Sect. 5, to
find a unit u such that u(vg2) is a square, and we then compute the square root.

6.1 Representing Ideals and Computing Norms of Ideals

Let L be a real multiquadratic field of degree N = 2n. Let R be an order inside
L, such as Z[

√
d1, . . . ,

√
dn] inside Q(

√
d1, . . . ,

√
dn). Our algorithm does not

require R to be the ring of integers OL, although its output allows arbitrary
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units from the ring of integers; i.e., if the input is a principal ideal I of R then
the output is some g ∈ OL such that gOL = IOL. Equivalently, one can (with
or without having computed OL) view I as representing the ideal IOL of OL.

We consider three representations of an ideal I of R:

– One standard representation is as a Z-basis ω1, ω2, . . . , ωN ∈ R, i.e., a basis
of I as a lattice.

– A more compact standard representation is the “two-element representation”
(α1, α2) representing I = α1R + α2R, typically with α1 ∈ Z. If R �= OL then
I might not have a two-element representation, but failure to convert I to a
two-element representation reveals a larger order.

– Our target cryptosystem in AppendixA uses another representation that
works for many, but certainly not all, ideals of R = Z[

√
d1, . . . ,

√
dn]: namely,

(q, s1, . . . , sn) ∈ Zn+1, where each sj is a nonzero square root of dj modulo q
and where q is odd, representing I = qR + (

√
d1 − s1)R + · · · + (

√
dn − sn)R.

Our algorithm works with any representation that allows basic ideal operations,
such as ideal norms, which we discuss next. Performance depends on the choice
of representation.

Let σ be a nontrivial automorphism of L, and let K be its fixed field; then
K is a subfield of L with [L : K] = 2. Assume that σ(R) = R, and let S
be the order K ∩ R inside K. For example, if R = Z[

√
d1, . . . ,

√
dn] and σ pre-

serves
√

d1, . . . ,
√

dn−1 while negating
√

dn, then S = Z[
√

d1, . . . ,
√

dn−1]; if R =
Z[

√
d1, . . . ,

√
dn] and σ preserves

√
d1, . . . ,

√
dn−2 while negating

√
dn−1,

√
dn,

then S = Z[
√

d1, . . . ,
√

dn−2,
√

dn−1dn].
The relative norm NL:K(I) is, by definition, Iσ(I) ∩ K, which is the same

as Iσ(I) ∩ S. This is an ideal of S. It has two important properties: it is not
difficult to compute; and if I = gR then NL:K(I) = NL:K(g)S. See, e.g., [20].

Given a Z-basis of I, one can compute a Z-basis of NL:KI by computing
{ωi · σ(ωj) | 1 ≤ i ≤ j ≤ N}, transforming this into a Hermite-Normal-Form
(HNF) basis for Iσ(I), and intersecting with S. A faster approach appears in [6]:
compute a two-element representation of I; multiply the two elements by a Z-
basis for σ(I); convert to HNF form; and intersect with S, obtaining a Z-basis
for NL:KI. This takes total time essentially N5B.

The (q, s1, . . . , sn) representation allows much faster norms, and is used in
our software. The norm to Z[

√
d1, . . . ,

√
dn−1] is simply (q, s1, . . . , sn−1), and

the norm to Z[
√

d1, . . . ,
√

dn−2,
√

dn−1dn] is simply (q, s1, . . . , sn−2, sn−1sn).

6.2 Computing a Generator of I from a Generator of I2

Assume now that we have a nonzero principal ideal I ⊆ OL, and a generator
h for I2. To find a generator g for I, it is sufficient to find a square generator
for I2 and take its square root. To this end we seek a unit u ∈ O×

L such that
uh = g2 for some g. Applying the map X from Sect. 4.2 to this equation, we
obtain

X(uh) = X(g2) = 2X(g) = 0.

Therefore X(u) = X(h).
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Algorithm 6.1. IdealSqrt(L, h)
Input: A real multiquadratic field L; an element h of O×

L · (L×)2.
Result: Some g ∈ L× such that h/g2 ∈ O×

L .

1 u1, . . . , uN−1 ← Units(L)
2 u0 ← −1
3 χ1, . . . , χm ← EnoughCharacters(L, (u0, . . . , uN−1, h))
4 M ← [log−1 χj(ui)]0≤i≤N−1,1≤j≤m

5 V ← [log−1 χj(h)]1≤j≤m

6 [e0, . . . , eN−1] ← SolveLeft(M, V )

7 u ←∏j u
ej

j , interpreting exponents in Z/2 as {0, 1} in Z

8 g ← √
uh

9 return g

We start by computing X(h) from h. We then compute a basis u1, . . . , uN−1

for O×
L , and we define u0 = −1, so u0, u1, . . . , uN−1 generate O×

L . We then solve
the matrix equation

[e0, e1, . . . , eN−1]

⎡
⎢⎢⎢⎣

X(u0)
X(u1)

...
X(uN−1)

⎤
⎥⎥⎥⎦ = X(h)

for [e0, e1, . . . , eN−1] ∈ (Z/2)N and set u =
∏

j u
ej

j . Then uh is (almost certainly)
a square, so its square root g is a generator of I. This algorithm is summarized
in Algorithm 6.1.

The subroutine SolveLeft(M,V ) solves the matrix equation eM = V for
the vector e. One can save time by precomputing the inverse of an invertible
full-rank submatrix of M , and using only the corresponding characters.

Note that for this computation to work we need a basis of the full unit group.
If we instead use units v1, . . . , vN−1 generating, e.g., the group U = (O×

L )2, and
if h = vg2 for some v ∈ O×

L − U , then uh cannot be a square for any u ∈ U : if
it were then h would be a square (since every u ∈ U is a square), so v would be
a square, so v would be in U , contradiction.

There are several steps in this algorithm beyond the unit-group precomputa-
tion. Characters for u0, . . . , uN−1 take time essentially N3 + N2B and can also
be precomputed. Characters for h take time essentially N2+NB. Linear algebra
mod 2 takes time essentially N3, or better with fast matrix multiplication; most
of this can be precomputed, leaving time essentially N2 to multiply a precom-
puted inverse by X(h). The product of powers takes time essentially N2B, and
the square root takes time essentially N1+log2 3B, although these bounds are too
pessimistic for the reasons mentioned in Sect. 5.4.
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6.3 Shortening

Algorithm 6.2, ShortenGen, finds a bounded-size generator g of a nonzero prin-
cipal ideal I ⊆ OL, given any generator h of I. See Sect. 8 for analysis of the
success probability of this algorithm at finding the short generators used in a
cryptosystem.

Recall the log-unit lattice Log(O×
L ) defined in Sect. 5.3. The algorithm finds

a lattice point Log u close to Log h, and then computes g = h/u.
In more detail, the algorithm works as follows. Start with a basis u1, . . . , uN−1

for O×
L . Compute Log h, and write Log h as a linear combination of the vec-

tors Log(u1), . . . ,Log(uN−1), (1, 1, . . . , 1); recall that (1, 1, . . . , 1) is orthogonal to
each Log(uj). Round the coefficients in this combination to integers (e1, . . . , eN ).
Compute u = ue1

1 · · · ueN−1
N−1 and g = h/u.

The point here is that Log h is close to e1 Log(u1)+ · · ·+ eN−1 Log(uN−1)+
eN (1, 1, . . . , 1), and thus to Log u + eN (1, 1, . . . , 1). The gap Log g = Log h −
Log u is between −0.5 and 0.5 in each of the Log(uj) directions, plus some
irrelevant amount in the (1, 1, . . . , 1) direction.

Normally the goal is to find a generator that is known in advance to be short.
If the logarithm of this target generator is between −0.5 and 0.5 in each of the
Log(uj) directions then this algorithm will find this generator (modulo ±1). See
Sect. 8 for further analysis of this event.

Approximations. The algorithm actually computes Log h only approximately,
and uses ApproxLog uj instead of Log uj , at the expense of marginally adjusting
the 0.5 bounds mentioned above.

Assume that h has integer coefficients with at most B bits. (We discard the
denominator in any case: it affects only the irrelevant coefficient of (1, 1, . . . , 1).)
Then |σj(h)| ≤ 2B

∏
i(1 +

√|di|), so ln |σj(h)| ≤ B ln 2 +
∑

i ln(1 +
√|di|). By

assumption each di is quasipolynomial in N , so ln |σj(h)| ≤ B ln 2 + nO(1).
To put a lower bound on ln |σj(h)|, consider the product of the other con-

jugates of h. Each coefficient of this product is between −2C and 2C where C
is bounded by essentially NB. Dividing this product by the absolute norm of
h, a nonzero integer, again produces coefficients between −2C and 2C , but also
produces exactly 1/σj(h). Hence ln |1/σj(h)| ≤ C ln 2 + nO(1).

In short, ln |σj(h)| is between essentially −NB and B, so an approximation to
ln |σj(h)| within 2−β uses roughly β + log(NB) bits. We use interval arithmetic
with increasing precision to ensure that we are computing Log h accurately;
the worst-case precision is essentially NB. Presumably it would save time here
to augment our representation of ideal generators to include approximate loga-
rithms, the same way that we augment our representation of units, but we have
not implemented this yet.

Other Reduction Approaches. Finding a lattice point close to a vector, with a
promised bound on the distance, is called the Bounded-Distance Decoding Prob-
lem (BDD). There are many BDD algorithms in the literature more sophisti-
cated than simple rounding: for example, Babai’s nearest-plane algorithm [4].
See generally [25].
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Algorithm 6.2. ShortenGen(L, h)
Input: A real multiquadratic field L, and a nonzero element h ∈ L. As a side

input, a positive integer parameter β.
Result: A short g ∈ L with g/h ∈ O×

L .

1 u1, . . . , uN−1 ← Units(L)

2 M ←

⎛

⎜
⎜
⎜
⎝

ApproxLog(u1)
...

ApproxLog(uN−1)
1 1 . . . 1 1

⎞

⎟
⎟
⎟
⎠

3 v ← approximation to Log(h) within 2−β in each coordinate
4 e ← ⌊−vM−1

⌉

5 g ← hue1
1 · · · ueN−1

N−1

6 return g

Algorithm 6.3. QPIP(Q, I)
Input: Real quadratic field Q and a principal ideal I of an order inside Q
Result: A short generator g for IOQ

1 h ← FindQGen(Q, I)
2 g ← ShortenGen(Q, h)
3 return g

Our experiments show that, unsurprisingly, failures in rounding are triggered
most frequently by the shortest vectors in our lattice bases. One cheap way
to eliminate these failures is to enumerate small combinations of the shortest
vectors.

6.4 Finding Generators of Ideals for Quadratics

We now have all the ingredients for the attack algorithm. It will work in a
recursive manner and in this subsection we will treat the base case.

Recall from Sect. 5.1 that there are standard algorithms to compute the nor-
malized fundamental unit ε of a real quadratic field Q(

√
d) in time essentially

R = ln(ε), which is quasipolynomial under our assumptions. There is, similarly,
a standard algorithm to compute a generator of a principal ideal of O

Q(
√

d) in
time essentially R + B, where B is the number of bits in the coefficients used in
the ideal. We call this algorithm FindQGen.

There are also algorithms that replace R by something subexponential in d;
see [8,14,41]. As in Sect. 5.1, these algorithms avoid large coefficients by working
with products of powers of smaller field elements, raising other performance
questions in our context.

Algorithm 6.3, QPIP, first calls FindQGen to find a generator h, and then
calls ShortenGen from Sect. 6.3 to find a short generator g. For quadratics this is
guaranteed to find a generator with a minimum-size logarithm, up to the limits
of the approximations used in computing logarithms.
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Algorithm 6.4. MQPIP(L, I)
Input: Real multiquadratic field L and a principal ideal I of an order inside L
Result: A short generator g for IOL

1 if [L : Q] = 1 then
2 return the smallest positive integer in I
3 if [L : Q] = 2 then
4 return QPIP(L, I)

5 σ, τ ← distinct non-identity automorphisms of L
6 for � ∈ {σ, τ, στ} do
7 K� ← fixed field of �
8 I� ← NL:K�(I)
9 g� ← MQPIP(K�, I�)

10 h ← gσgτ/σ(gστ )
11 g′ ← IdealSqrt(L, h)
12 g ← ShortenGen(L, g′)
13 return g

6.5 Finding Generators of Ideals for Multiquadratics

Algorithm 6.4 recursively finds generators of principal ideals of orders in real
multiquadratic fields. The algorithm works as follows.

Assume, as usual, that d1, . . . , dn are positive integers meeting the conditions
of Theorem 2.1. Let L be the real multiquadratic field Q(

√
d1, . . . ,

√
dn) of degree

N = 2n. Let I be a principal ideal of an order inside L, for which we want to
find a generator.

If N = 1 then there is no difficulty. If N = 2, we find the generator with the
QPIP routine of the previous section. Assume from now on that N ≥ 4.

As in Sect. 5.5, choose distinct non-identity automorphisms σ, τ of L, and let
Kσ,Kτ ,Kστ be the fields fixed by σ, τ, στ respectively. These are fields of degree
N /2.

For each 	 ∈ {σ, τ, στ}, compute I� = NL:K�
(I) as explained in Sect. 6.1, and

call MQPIP(K�, I�) recursively to compute a generator g� for each I�OK�
. Notice

that if g is a generator of IOL, then g	(g) generates I�OK�
, so g� = u�g	(g) for

some u� ∈ O×
K�

. Therefore

gσgτ

σ(gστ )
=

uσgσ(g)uτgτ(g)
σ(uστgστ(g))

= g2uσuτσ(u−1
στ ),

so that h = gσgτ/σ(gστ ) is a generator of I2OL. Now use IdealSqrt to find a
generator of IOL, and ShortenGen to find a bounded-size generator.

Table 6.1 summarizes the scalability of the subroutines inside MQPIP. Many
of the costs are in precomputations that we share across many ideals I, and
these costs involve larger powers of N than the per-ideal costs. On the other
hand, the per-ideal costs can dominate when the ideals have enough bits B per
coefficient.
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Table 6.1. Complexities of subroutines at the top and bottom levels of recursion of
MQPIP. Logarithmic factors are suppressed. B is assumed to be at least as large as
regulators. “UGS” means UnitsGivenSubgroup; “IS” means IdealSqrt; “SG” means
ShortenGen. “Precomp” means that the results of the computation can be reused for
many inputs I.

Precomp? Subroutine Cost

Yes Units for all quadratic fields NB

Yes Characters of units (in UGS, IS) N3 +N2B

Yes Linear algebra (in UGS, IS) N3 without fast matrix multiplication

Yes Basis reduction (in Units) N7; experimentally closer to N3

Yes Products (in UGS, Units) N3B

Yes Square roots (in UGS) N2+log2 3B

No Generators for all quadratic fields NB

No Characters for h (in IS) N2 +NB

No Linear algebra for h (in IS) N2

No Products (in IS, SG, MQPIP) N2B

No Square roots (in IS) N1+log2 3B

7 Timings

This section reports experiments on the timings of our software for our algo-
rithms: specifically, the number of seconds used for various operations in the
Sage [23] computer-algebra system on a single core of a 4 GHz AMD FX-
8350 CPU.

7.1 Basic Subroutine Timings

Table 7.1 shows the time taken for multiplication, squaring, etc., rounded to the
nearest 0.0001 s: e.g., 0.0627 s to multiply two elements of a degree-256 mul-
tiquadratic ring, each element having random 1000-bit coefficients. The table
is consistent with the analysis earlier in the paper: e.g., doubling the degree
approximately doubles the cost of multiplication, and approximately triples the
cost of square roots.

We have, for comparison, also explored the performance of multiquadratics
using Sage’s tower-field functions, Sage’s absolute-number-field functions (using
the polynomial F defined in AppendixA), and Sage’s ring constructors. The
underlying polynomial-arithmetic code inside Sage is written in C, avoiding
Python overhead, but suffers from poor algorithm scalability. Sage’s construc-
tion of degree-2 relative extensions (in towers of number fields or in towers of
rings) uses Karatsuba arithmetic, losing a factor of 3 for each extension, with
no obvious way to enable FFTs. Working with one variable modulo F produces
good scalability for multiplication but makes norms difficult. Division is very
slow in any case: for example, it takes 0.2 s, 2.8 s, and 93 s in degrees 32, 64,
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Table 7.1. Observed time for basic operations in Z[
√

d1, . . . ,
√

dn], with d1 = 2, d2 = 3,
d3 = 5, etc., and λ = 64. The “mult” column is the time to compute h = fg where
f, g have each coefficient chosen randomly between −21000 and 21000 −1. The “square”
column is the time to compute f2. The “relnorm” column is the time to compute fσ(f)
where σ is any of the automorphisms in Theorem 2.1. The “absnorm” column is the
time to compute N

Q(
√

d1,...,
√

dn):Qf . The “div” column is the time to divide h = fg by

g, recovering f . The “sqrt” column is the time to recover ±f from f2. Each timing is
the median of 21 measurements.

n 2n mult square relnorm absnorm div sqrt

3 8 0.0084 0.0062 0.0080 0.0515 0.0140 0.3547

4 16 0.0100 0.0075 0.0088 0.1119 0.0153 1.0819

5 32 0.0132 0.0101 0.0106 0.2364 0.0176 3.3507

6 64 0.0209 0.0163 0.0145 0.5013 0.0231 10.2689

7 128 0.0347 0.0275 0.0221 1.0199 0.0341 31.2408

8 256 0.0627 0.0501 0.0367 2.1024 0.0573 93.9827

and 128 respectively using the tower-field representation, and it takes 0.15 s,
1.16 s, and 11.3 s in degrees 32, 64, and 128 respectively using the single-variable
representation, while we use under 0.06 s in degree 256.

7.2 Timings to Compute the Unit Group and Generators

The difference in scalability is much more striking for unit-group computation,
as shown in Table 7.2. Our algorithm uses 2.34 s for degree 16, 7.80 s for degree

Table 7.2. Observed time to compute (once) the unit group of Z[
√

d1, . . . ,
√

dn],
with d1 = 2, d2 = 3, d3 = 5, etc.; and to break the cryptosystem presented in
Appendix A. The “tower” column is the time used by Sage’s tower-field unit-group
functions (with proof=False); for n = 6 these functions ran out of memory after
approximately 710000 s. The “absolute” column is the time used by Sage’s absolute-
field unit-group functions (also with proof=False), starting from the polynomial F
defined in Appendix A. The “new” column is the time used by this paper’s unit-group
algorithm. The “attack” column is the time to find a generator of the public key, after
the unit group is precomputed. In “new2” and “attack2” the same timings are given
for the field with the first n consecutive primes after n. In “new3” and “attack3” the
same timings are given for the field with the first n consecutive primes after n2.

n 2n tower absolute new new2 new3 attack attack2 attack3

3 8 0.05 0.03 0.63 0.65 0.66 0.10 0.11 0.11

4 16 0.51 0.24 2.34 2.21 2.18 0.27 0.35 0.36

5 32 7.24 4.80 7.80 7.71 8.22 0.96 1.36 1.47

6 64 >700000 >700000 26.62 28.08 81.78 4.36 6.68 7.48

7 128 146.60 192.19 2332.79 26.14 37.23 42.30

8 256 942.36 2364.18 65932 181.26 239.05 239.90



Short Generators Without Quantum Computers: The Case of Multiquadratics 51

32, 26.62 s for degree 64, 146.60 s for degree 128, etc., slowing down by a factor
considerably below 25 for each doubling in the degree. Sage’s internal C library
uses 4.8 s for degree 32, but we did not see it successfully compute a unit group
for degree 64.

Table 7.2 also shows that our short-generator algorithm has similar scaling
to our unit-group algorithm, as one would expect from the structure of the
algorithms. As inputs we used public keys from a Gentry-style multiquadratic
cryptosystem;3 see Appendix A. The number of bits per coefficient in this cryp-
tosystem grows almost linearly with 2n, illustrating another dimension of scala-
bility of our algorithm. See Sect. 8 for analysis of the success probability of the
algorithm as an attack against the cryptosystem.

8 Key-Recovery Probabilities

In this section we analyze the success probability of our algorithm recovering
the secret key g in a Gentry-style multiquadratic cryptosystem.

The specific system that we target is the system defined in Appendix A (in
the full version of this paper), the same system used for timings in Sect. 7.2. The
secret key g in this cryptosystem is g0 + g1

√
d1 + g2

√
d2 + g3

√
d1

√
d2 + · · · +

gN−1

√
d1 · · · √dn, where g0, g1, g2, . . . are independent random integers chosen

from intervals [−G,G], [−G/
√

d1, G/
√

d1], [−G/
√

d2, G/
√

d2], . . .. The distribu-
tion within each interval is uniform, except for various arithmetic requirements
(e.g., g must have odd norm) that do not appear to have any impact on the
performance of our attack.

Section 8.1 presents heuristics for the expected size of Log g on the basis
Log ε1, . . . ,Log εN−1 for the logarithms of multiquadratic units, a sublattice
of the log-unit lattice. Section 8.2 presents experimental data confirming these
heuristics. Section 8.3 presents experimental data regarding the size of Log g on
the basis that we compute for the full log-unit lattice. Section 8.4 presents an
easier-to-analyze way to find g when Log ε1, . . . ,Log εN−1 are large enough.

8.1 MQ Unit Lattice: Heuristics for Log g

Write UL for the group of multiquadratic units in L. Recall that UL is defined
as the group 〈−1, ε1, . . . , εN−1〉, where ε1, . . . , εN−1 are the normalized funda-
mental units of the N − 1 quadratic subfields Q(

√
D1), . . . ,Q(

√
DN−1).

The logarithms Log ε1, . . . ,Log εN−1 form a basis for the MQ unit lattice
Log UL. This is an orthogonal basis: for example, for Q(

√
2,

√
3), the basis vec-

tors are (x,−x, x,−x), (y, y,−y,−y), and (z,−z,−z, z) with x = log(1 +
√

2),

3 The dimensions we used in these experiments are below the N = 8192 recommended
by Smart and Vercauteren for 2100 security against standard lattice-basis-reduction
attacks, specifically BKZ. However, the Smart–Vercauteren analysis shows that BKZ
scales quite poorly as N increases; see Appendix A. Our attack should still be feasible
for N = 8192, and a back-of-the-envelope calculation suggests that N ≈ 220 is
required for 2100 security against our attack.
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y = log(2 +
√

3), and z = log(5 + 2
√

6). The general pattern (as in Sect. 5.3) is
that Log εj is a vector with Rj = ln εj at N /2 positions and −Rj at the other
N /2 positions, specifically with Rj at position i if and only if σi(εj) = εj .

One consequence of orthogonality is that rounding on this basis is a perfect
solution to the closest-vector problem for the MQ unit lattice. If 0 is the closest
lattice point to Log g, and u is any multiquadratic unit, then rounding Log gu
produces Log u. One can decode beyond the closest-vector problem by enumer-
ating some combinations of basis vectors, preferably the shortest basis vectors,
but for simplicity we skip this option.

Write cj for the coefficient of Log g on the jth basis vector Log εj ; note
that if each cj is strictly between −0.5 and 0.5 then 0 is the closest lattice
point to Log g. Another consequence of orthogonality is that cj is simply the
dot product of Log g with Log εj divided by the squared length of Log εj ; i.e.,
the dot product of Log g with a pattern of N /2 copies of Rj and N /2 copies of
−Rj , divided by NR2

j ; i.e., Y/(NRj), where Y is the dot product of Log g with
a pattern of N /2 copies of 1 and N /2 copies of −1.

We heuristically model g0 as a uniform random real number from the interval
[−G,G]; g1 as a uniform random real number from [−G/

√
d1, G/

√
d1]; etc. In

this model, each conjugate σi(g) is a sum of N independent uniform random
real numbers from [−G,G]. For large N , the distribution of this sum is close to
a Gaussian distribution with mean 0 and variance G2N/3; i.e., the distribution
of (G

√
N/3)N , where N is a normally distributed random variable with mean

0 and variance 1. The distribution of ln |σi(g)| is thus close to the distribution
of ln(G

√
N/3) + ln |N |.

Recall that Log(g) is the vector of ln |σi(g)| over all i, so Y is ln |σ1(g)| −
ln |σ2(g)| + · · · modulo an irrelevant permutation of indices. The mean of
ln |σ1(g)| is close to the mean of ln(G

√
N/3) + ln |N |, while the mean of

− ln |σ2(g)| is close to the mean of − ln(G
√

N/3) − ln |N |, etc., so the mean
of Y is close to 0. (For comparison, the mean of the sum of entries of Log(g)
is close to N ln(G

√
N/3) + Nc. Here c is a universal constant, the average of

ln |N |.)
To analyze the variance of Y , we heuristically model σ1(g), . . . , σN (g) as inde-

pendent. Then the variance of Y is the variance of ln |σ1(g)| plus the variance of
− ln |σ2(g)| etc. Each term is close to the variance of ln |N |, a universal constant
V , so the variance of Y is close to V N . The deviation of Y is thus close to

√
V N ,

and the deviation of cj = Y/(NRj) is close to
√

V /(
√

NRj) ≈ 1.11072/(
√

NRj).
To summarize, this model predicts that the coefficient of Log g on the jth

basis vector Log εj has average approximately 0 and deviation approximately
1.11072/(

√
NRj), where Rj = ln εj . Recall that Rj typically grows as D

1/2+o(1)
j .

8.2 MQ Unit Lattice: Experiments for Log g

The experiments in Fig. 8.1 confirm the prediction of Sect. 8.1. For each n,
we took possibilities for n consecutive primes d1, . . . , dn below 100. For each
corresponding multiquadratic field, there are N − 1 blue dots. For each D in
{d1, d2, d1d2, . . . , d1d2 · · · dn}, one of these N −1 dots is at horizontal position D.
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Fig. 8.1. Blue dots: For n = 4, 5, 6, the observed average absolute coefficient of Log(g)
in the direction of the basis vector corresponding to Q(

√
D). Yellow dots: Predicted

values. (Color figure online)
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The vertical position is the observed average absolute coefficient of Log g in the
direction of the basis vector corresponding to D, where g ranges over 1000 secret
keys for the Q(

√
d1, . . . ,

√
dn) cryptosystem. There is also a yellow dot at the

same horizontal position and at vertical position 1.11
√

2/π/(
√

N · ln εD); here√
2/π accounts for the average of |N |.
For all experiments we see a similar distribution in the yellow dots (predic-

tions) and the blue dots (experiment). We can even more strongly see this by
rescaling the x-axis from D to 1.11

√
2/π/(

√
N · ln εD), where εD is again the

normalized fundamental unit of Q(
√

D). This rescaling of the blue dots is shown
in Fig. 8.2. In purple we compare these to the x = y line.

Fig. 8.2. Rescaling of the experiments of Fig. 8.1, also including n = 3.

Fig. 8.3. Curves: n = 2, 3, 4, 5, 6, 7, 8. Horizontal axis: d1, specifying n consecutive
primes d1, . . . , dn. Vertical axis: Observed probability, for 1000 randomly drawn secret
keys g in the cryptosystem, that Log g is successfully rounded to 0 in the MQ unit
lattice.
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After exploring these geometric aspects of the MQ unit lattice, we ran exper-
iments on the success probability of rounding in the lattice. Figure 8.3 shows how
often Log(g) is rounded to 0 (by simple rounding without enumeration) in our
basis for the MQ unit lattice.

This graph shows a significant probability of failure if d1 and n are both
small. Fields that contain the particularly short unit (1 +

√
5)/2 seem to be the

worst case, as one would expect from our heuristics. However, even in this case,
failures disappear as n increases. The success probability seems to be uniformly
bounded away from 0, seems to be above 90% for all fields with d1 ≥ 7 and
n ≥ 4, and seems to be above 90% for all fields with n ≥ 7.

8.3 Full Unit Lattice: Experiments for Log g

Analyzing the full unit lattice is difficult, so we proceed directly to experiments.
We first numerically compare the MQ unit lattice basis to the full unit lat-
tice basis. The results of this are shown in Table 8.1. The index of Log(UL) in
Log(O×

L ) seems to grow as roughly N0.3N .

Table 8.1. Experimental comparison of the MQ unit lattice Log(UL), with basis
formed by logarithms of the fundamental units of the quadratic subfields, and the
full unit lattice Log(O×

L ), with basis produced by Algorithm 5.2. For each dimension
2n, UL and O×

L were computed for 1130 (except for n = 8: first 832 that have finished)
random multiquadratic fields L = Q(

√
d1, . . . ,

√
dn), with di primes bounded by 2n2.

First row shows the average over these fields of log2 ||u∗||, where ||u∗|| is the length of
the smallest Gram–Schmidt vector of the basis for UL. Second row shows the same for
O×

L . Third row shows the average of log2 of the index of Log(UL) in Log(O×
L ).

n 3 4 5 6 7 8

Average log2 ||u∗|| for UL 1.095 1.762 2.345 2.899 3.487 4.040

Average log2 ||u∗|| for O×
L 0.964 1.642 2.223 2.797 3.386 3.926

Average log2(#(O×
L /UL)) 5.711 17.462 44.095 108.133 253.722 580.099

Table 8.2. Observed attack success probabilities for various multiquadratic fields. By
definition Lj = Q(

√
d1, . . . ,

√
dn), with di the first n consecutive primes larger than or

equal to j; and psuc(Lj) is the fraction of keys out of at least 1000 trials (except 100 for
n = 8, j = 1) that were successfully recovered without any enumeration by our attack
on field Lj . Table covers j ∈ {1, n, n2

}
.

n 3 4 5 6 7 8

psuc(L1) 0.112 0.130 0.145 0.084 0.003 0.00

psuc(Ln) 0.204 0.497 0.649 0.897 0.783 0.348

psuc(Ln2) 0.782 0.980 0.999 1.000 1.000 1.000
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In Table 8.2 we see the total success probability of the attack, with public
keys provided as inputs, and with each successful output verified to match the
corresponding secret key times ±1.

We see that as the size and the number of the primes grow, the success
probability increases, as was the case for the MQ unit basis. Specifically for the
first n primes after n2 the success probability seems to rapidly converge towards
1, as was mentioned in Sect. 1.

8.4 Full Unit Lattice: An Alternative Strategy

The following alternative method of computing g is easier to analyze asymptot-
ically, because it does not require understanding the effectiveness of reduction
in the full unit lattice. It does require d1, . . . , dn to be large enough compared
to N , say larger than N1.03, and it will obviously fail for many smaller di where
our experiments succeed, but it still covers a wide range of real multiquadratic
number fields.

The point of requiring d1, . . . , dn to be larger than N1.03 is that, for suffi-
ciently large N and most such choices of d1, . . . , dn, the n corresponding regula-
tors log ε are heuristically expected to be larger than N0.51, and the remaining
regulators for d1d2 etc. are heuristically expected to be even larger. The coef-
ficients of Log g on the MQ unit basis are then predicted to have deviation at
most 1.11072/N1.01; see Sect. 8.1. We will return to this in a moment.

Compute, by our algorithm, some generator gu of the public key I. From
Theorem 5.2 we know that uN is an MQ unit. Compute NLog gu and round
in the MQ unit lattice. The coefficients of NLog g on the MQ unit basis are
predicted to have deviation at most 1.11072/N0.01, so for sufficiently large N
these coefficients have negligible probability of reaching 0.5 in absolute value.
Rounding thus produces Log(uN ) with high probability, revealing Log(gN ) and
thus ±gN . Use a quadratic character to deduce gN , compute the square root
±gN/2, use a quadratic character to deduce gN/2, and so on through ±g.

One can further extend the range of applicability of this strategy by finding
a smaller exponent e such that ue is always an MQ unit. Theorem5.2 says N /2
for N ≥ 2. By computing the MQ units for a particular field one immediately
sees the minimum value of e for that field; our computations suggest that N /2
is usually far from optimal.

A A Multiquadratic Cryptosystem

See full version of paper on multiquad.cr.yp.to.

B Recent Progress in Attacking Ideal-SVP

See full version of paper on multiquad.cr.yp.to.

https://multiquad.cr.yp.to
https://multiquad.cr.yp.to
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Abstract. The Principal Ideal Problem (resp. Short Principal Ideal
Problem), shorten as PIP (resp. SPIP), consists in finding a genera-
tor (resp. short generator) of a principal ideal in the ring of integers
of a number field. Several lattice-based cryptosystems rely on the pre-
sumed hardness of these two problems. In practice, most of them do
not use an arbitrary number field but a power-of-two cyclotomic field.
The Smart and Vercauteren fully homomorphic encryption scheme and
the multilinear map of Garg, Gentry, and Halevi epitomize this com-
mon restriction. Recently, Cramer, Ducas, Peikert, and Regev showed
that solving the SPIP in such cyclotomic rings boiled down to solving
the PIP. In this paper, we present a heuristic algorithm that solves the
PIP in prime-power cyclotomic fields in subexponential time L|ΔK| (1/2),
where ΔK denotes the discriminant of the number field. This is achieved
by descending to its totally real subfield. The implementation of our
algorithm allows to recover in practice the secret key of the Smart and
Vercauteren scheme, for the smallest proposed parameters (in dimen-
sion 256).

1 Introduction

Hard Problem in Lattices. Lattice-based problems appear to be among the
most attractive alternatives to the integer factorization and discrete logarithm
problems due to their conjectured resistance to quantum computations. For-
tunately, all cryptographic primitives can be instantiated on the hardness of
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part I, LNCS 10210, pp. 60–88, 2017.
DOI: 10.1007/978-3-319-56620-7 3
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solving lattice problems, such as signature, basic encryption, Identity Based
Encryption (IBE) as well as Fully Homomorphic Encryption (FHE) [21]. Not all
these schemes rely on the same lattice-based problem. For instance, the NTRU
cryptosystem [24], which is one of the most efficient encryption scheme related to
lattices, is based on the Shortest Vector Problem (SVP). Besides, the authors of
NTRU were the first to consider specific kinds of lattices, namely those related
to polynomial rings. This idea was followed by the definition of another lattice-
based problem that is the topic of a large body of works [31–34,44]: the Ring
Learning With Error Problem (RLWE). Cryptosystems based on RLWE present
both an efficient key size reduction and improved performance (for instance
decryption, encryption and signature are faster than with arbitrary lattices).
Yet, RLWE belongs to the specific family of ideal-lattice problems, which stem
from algebraic number theory. This raises a potential drawback, since those lat-
tices carry more structure than classical lattices, as they are derived from ideals
in integer rings of number fields.

SPIP and PIP. Another presumably hard problem related to these ideals is
called the Short Principal Ideal Problem (SPIP). It consists in finding a short1

generator of an ideal, assuming it is principal. For instance, recovering the secret
key from the public key in the Smart and Vercauteren FHE scheme [43] and in
the Garg, Gentry, and Halevi multilinear map scheme [20], consists in solving an
instance of the SPIP. This problem turns out to hinge on two distinct phases:
on the one hand finding an arbitrary generator — known as the Principal Ideal
Problem (PIP) — and on the other hand reducing such a generator to a short
one. The problem of finding a generator of a principal ideal, which is the aim of
this article, and even testing the principality of an ideal, are difficult problems
in algorithmic number theory, as precised in [15, Chap. 4] and [45, Sect. 7].

From SPIP to PIP in Cyclotomic Fields. Recently, Cramer, Ducas, Peikert,
and Regev [17] showed how to recover a small generator of a principal ideal in
a prime-power cyclotomic field from an arbitrary generator in polynomial time.
This work was based on an observation of Campbell, Groves, and Shepherd [12]
who first proposed an efficient algorithm for reduction, essentially by decoding
the log-unit lattice. The correctness of this approach was corroborated by Schank
in an independent replication study [39].

Studying SPIP and PIP in this very specific class of number fields is moti-
vated by the concrete instantiations of the various schemes. Again the Smart
and Vercauteren FHE scheme [43] and the Garg, Gentry, and Halevi Multilinear
Map scheme [20] exemplify this restriction to cyclotomic fields.

Prior Work on the PIP. Solving the PIP essentially requires the computation
of the ideal class group Cl(K) of the number field K where the ideals are defined.
This approach is described in [15, Algorithm 6.5.10] (see [5, Algorithm 7] for a

1 Short means that we have a norm. In our case, it is derived from the canonical
embedding of the number field into a Euclidean space.
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description in line with the approach of this paper). The first subexponential
algorithm for computing Cl(K) was due to Hafner and McCurley [23]. It applies
to imaginary quadratic fields, and it was later generalized by Buchmann [11]
to classes of number fields of fixed degree. In [8], Biasse and Fieker presented
an algorithm for computing Cl(K) in subexponential time in arbitrary classes
of number fields. Combined with [5, Algorithm 7], this yielded a subexponential
time algorithm for solving the PIP in arbitrary classes of number fields. In a
prime-power cyclotomic field of degree N , the Biasse-Fieker algorithm solves
the PIP in time L|ΔK| (2/3 + ε)

( ≈ 2N2/3+o(1))
, for ε > 0 arbitrarily small.

Biasse also described2 in [6] an L|ΔK| (1/2 + ε)-algorithm that computes Cl(K)
and solves the PIP in fields of the form Q(ζpk). Note that the PIP is also the
subject of research on quantum algorithms for its resolution. Recently, Biasse
and Song [9] described a quantum polynomial time algorithm for the PIP in
classes of number fields of arbitrary degree.

Our Results. The main contribution of this paper is an algorithm for
computing the class group Cl(K+) and solving the PIP in K+ in time
L|ΔK| (1/2)

( ≈ 2N1/2+o(1))
where K+ is the maximal real subfield of prime-

power cyclotomic field K and N denotes its degree. Thanks to the Gentry-Szydlo
algorithm, our algorithm also provides a solution to the PIP in K with the same
L|ΔK| (1/2)-complexity.

In addition to this theoretical study, we implement an attack against a FHE
scheme that relies on the hardness of finding a small generator of ideals in those
fields. We were able to recover in practice a generator in the field Q(ζ512). Such
parameters were proposed by Smart and Vercauteren as toy parameters in [43].
The most challenging part of the computation was to efficiently implement the
Gentry-Szydlo algorithm [22]. We used the version of Gentry-Szydlo described
by Kirchner in [26]. We also implemented an algorithm for descending to the
subfield K+ from K and for collecting relations between generators of Cl(K+).

Organization of the Paper. In Sect. 2, we recall mathematical results for
lattices and algebraic number theory that we use in the rest of the paper. Then,
Sect. 3 presents the principal ideal problem (PIP) and the cryptosystems based
on this problem such as the Smart-Vercauteren fully homomorphic encryption
scheme. Next, we describe the different steps of the algorithm to solve PIP in
Sect. 4. Finally, Sect. 5 gives information about our experimentations.

2 Mathematical Background

We recall briefly here basic facts on lattices and algebraic number theory. A more
detailed introduction is provided in the AppendixA.

2 There was a small mistake in the original description which was corrected in a
subsequent version.
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General Notations. For dealing with complexities, we introduce the L-
notation, that is classical when presenting index calculus algorithms with subex-
ponential complexity. Given two constants a and c with a ∈ [0, 1] and c ≥ 0, we
denote by:

L|ΔK|(a, c) = e(c+o(1))(log |ΔK|)a(log log |ΔK|)1−a

,

where o(1) tends to 0 as |ΔK|, the discriminant of the number field, tends to infin-
ity. We also encounter the notation L|ΔK| (a) when specifying c is superfluous,
that is considering quantities in L|ΔK|(a,O(1)).

2.1 Lattices

Lattices are defined as additive discrete subgroups of Rn, i.e. the integer span
L(b1, . . . ,bd) =

⊕d
i=1 Zbi of a linearly independent family of vectors b1, . . . ,bd

in Rn. Such a family is called a basis of the lattice, and is not unique. Neverthe-
less, all the bases of a given lattice have the same number of elements, d, which
is called the dimension of the lattice. Among the infinite number of different
bases of an n-dimensional lattice with n ≥ 2, some have interesting properties,
such as having reasonably small vectors and low orthogonality defect — that
means that they are almost orthogonal.

The problem of finding such good bases is the aim of lattice reduction. There
are in short two kinds of reduction algorithms: approximation algorithms on the
one hand, like the celebrated LLL algorithm and its blockwise variants such as
BKZ and DBKZ [35], and exact algorithms on the other hand, such as enumer-
ation or sieving, that are exponential in time and space. In high dimension, only
approximation algorithms — which run in polynomial time in the dimension3 —
can be used to find relatively short vectors, but usually not the shortest ones.

The DBKZ Algorithm and Cheon’s Determinant Trick. In this part, we
recall the complexity of DBKZ algorithm, introduced by Micciancio and Walter
in [35], its approximation factor, and a trick due to Cheon and Lee [14] that
improves this factor for integer lattices with small determinant.

Theorem 1 (Bounds for DBKZ output). The smallest vector output by
DBKZ algorithm with block-size β has a norm bounded by:

β
n−1

2(β−1) · Vol (L)
1
n .

The algorithm runs in time Poly(n, size(B)) · (3/2 + o(1))β/2, where B is the
input basis and (3/2+ o(1))β/2 stands for the cost of solving the Shortest Vector
Problem in dimension β, using sieving techniques (see [3]).

Proof. This is a direct application of [35, Theorem 1], where the Hermite con-
stant γβ is upper bounded by β.

3 BKZ and DBKZ are exponential in the block size.
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In a note [14] of 2015, Cheon and Lee suggest to convert the basis of an
integer lattice having small determinant, to its Hermite normal form (HNF)
before reducing it, for instance with the DBKZ algorithm. This algorithm seems
to be folklore. In particular, Biasse uses a similar strategy in the context of
class group computations in [5, Sect. 3.3]. This note gives a detailed analysis
and we refer to this method as Cheon’s trick. We develop here this idea and
derive corresponding bounds. For completeness purpose, the definition of HNF
is recalled in AppendixA.1. More precisely, we have the following lemma.

Lemma 1. Given B = [b1, . . . ,bn] a basis in HNF of a n-dimensional lattice L,
we have for any 1 ≤ i < n:

Vol ([b1, . . . ,bi]) ≤ Vol ([b1, . . . ,bi+1]) .

In particular, for any sublattice L′ generated by the m first vectors of B, we have
Vol (L′) ≤ Vol (L).

Remark that both the n-th root of the determinant and an exponential fac-
tor of n appear in the bound of Theorem1. Hence we can perform the DBKZ
reduction on a sublattice only generated by the first m columns of the HNF in
order to minimize this upper bound, as a trade-off between these quantities.

Explicitly we fix m =
⌊√

2β
log β log(Vol (L))

⌉
and run the algorithm of Fig. 1

on the basis B = (b1, . . . ,bn):

Fig. 1. Approx-SVP algorithm with HNF+DBKZ with block-size β.

Theorem 2. For any n-dimensional integer lattice L such that Vol (L) ≤ β
n2
2β ,

the output v of the previous Approx-SVP algorithm satisfies:

‖v‖ ≤ β(1+o(1))
√

2 logβ(Vol(L))/β .

This algorithm takes time Poly(n, size(B))(3/2 + o(1))β/2.

Proof. The condition on the covolume of L ensures that m ≤ n.
Then, by Theorem 1 and Lemma 1 we have

‖v‖ ≤ β
m
2β · Vol (L′)

1
m

≤ β
m
2β · Vol (L)

1
m

≤ β
√

2 logβ(Vol(L))/β ,

which yields the announced result.
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2.2 Number Fields

Let K = Q(α) be a number field of degree N , then there exists a monic irre-
ducible degree-N polynomial P ∈ Z[X] such that K � Q[X]/(P ). Denoting by
(α1, . . . , αN ) ∈ CN its distinct complex roots, each embedding (field homomor-
phism) σi : K → C is the evaluation of a ∈ K, viewed as a polynomial modulo P ,
at the root αi, i.e. σi : a 
→ a(αi). Let r1 be the number of real roots and r2 be the
number of pairs of complex roots (N = r1+2r2), we have K⊗R � Rr1 ×Cr2 . We
define the norm ‖ ·‖ over K as the canonical Euclidean norm of σ(x) ∈ Rr1 ×Cr2

where σ(x) = (σ1(x), . . . , σr1+r2(x)) ∈ Rr1 × Cr2 , where σ1, . . . , σr1 are the
real embeddings of K and σr1+1, . . . , σN are the complex embeddings of K,
each σr1+j being paired with its complex conjugate σr1+r2+j . The number field
K is viewed as a Euclidean Q-vector space endowed with the inner product
〈a,b〉 =

∑
σ σ(a)σ̄(b) where σ ranges over all the r1 + 2r2 embeddings K → C.

This defines the euclidean norm denoted ‖·‖. The algebraic norm on K is defined
as NK/Q(v) =

∏N
i=1 σi(v).

Coefficient Embedding and Ideal Lattices. Let α be one of the roots αi

(it may differ from the initial α if this one is not an algebraic integer). Consid-
ering the natural isomorphism between Z[α] ⊂ OK and Z[X]/(P ) gives rise to
an embedding of Z[α] trough the coefficients of associated polynomials. More
precisely, we have the following sequence of abelian groups

ZN ι
↪−−−−→ Z[X] π−−−−→−−−−−−→ Z[X]/(P ) � Z[α]

(c0, · · · , cN−1) 
−→ ∑
0≤ i < N

ciX
i 
−→ ∑

0≤ i < N

ciα
i,

defining the announced embedding by coefficients as C = ι−1 ◦ π−1. Such an
embedding provides a norm in the field, namely: ‖a‖C = ‖C(a)‖2.

Let us state a basic result on the link between field norm and polynomial
representation:

Lemma 2. For algebraic integers defined as polynomials in α, namely a = T (α)
for T ∈ Z[X], we can bound the norm by

|NK/Q(a)| ≤ (N + 1)m/2(m + 1)N/2H(T )NH(P )m,

where m = deg T , N = deg P and H(P ) is the absolute maximum of the coeffi-
cients of P .

Proof. Remark first that the norm of this element corresponds to the resultant
of the polynomials T and P [15, Proposition 4.3.4]. Then we apply the bounds
of [10, Theorem 7] for the resultant of two polynomials and conclude.

As a result, we can directly relate the norm of the embedding with the field
norm:

Corollary 1. For any a ∈ Z[α]: |NK/Q(a)| 1
N ≤ (N + 1) · H(P ) · ‖a‖C .
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Canonical Embedding and Ideals. A remarkable property of the canonical
embedding is the way it represents the ring of integers and more generally every
integral ideal. Indeed, the embedding σ(a) of any integral ideal a is a Euclidean
lattice. In particular, for the ring of integers, we have that σ(OK) is a lattice.
Its (co)volume is called the discriminant ΔK of the field K. Therefore, one can
compute the discriminant as a determinant: for (b1, . . . ,bN ) an integral basis
of OK, we have

ΔK =

⎛
⎜⎜⎜⎜⎝det

⎛
⎜⎜⎜⎜⎝

σ1(b1) σ1(b2) · · · σ1(bN )

σ2(b1)
. . .

...
...

. . .
...

σN (b1) · · · · · · σN (bN )

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

2

.

Loosely speaking, the discriminant is a size measure of the integer ring. That
is why we use it to express the complexity when we work with number fields or
rings of integers. Moreover, it acts as a proportionality coefficient between the
norm of an ideal and the covolume of its embedding:

Lemma 3. For any integral ideal a of K, we have σ(a) is a lattice of RN and

Vol (σ(a)) =
√

|ΔK|N (a),

where Vol (L) is the covolume of the lattice L.

Smoothness of Ideals. To evaluate the probability of smoothness of ideals,
we need to assume the same unproven heuristic as in [5,8], directly derived
from what has been proved for integers by Canfield, Erdős and Pomerance [13].
Let P(x, y) be the probability that a principal ideal of OK of norm bounded by x
is a power-product of prime ideals of norm bounded by y. Then, we have

Heuristic 1 [5, Heuristic 1]. We assume that under the Generalized Riemann
Hypothesis (GRH), the probability P(x, y) satisfies

P(x, y) ≥ e−u log u(1+o(1)) for u =
log x

log y
.

Heuristic 1 was put in perspective with Scourfield’s work [40] by Biasse and
Fieker [8, Sect. 3.1]. In the number field setting, the previous heuristic admits a
neat rewriting in terms of the handy L-notation:

Corollary 2 [5, Corollary 2.1]. Let x = �log L|ΔK| (a, c)� and the smoothness
bound y = �log L|ΔK| (b, c′)�. Then assuming Heuristic 1, the probability P(x, y)
that an ideal of OK of norm bounded by x is a power-product of prime ideals of
norm bounded by y satisfies

P(x, y) ≥ L|ΔK|

(
a − b,

−c

c′ (a − b)
)

.
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A similar assertion for smoothness of ideals was proved by Seysen [41] in 1985
for the quadratic case, but for arbitrary degree, it remains conjectural, even
under GRH. This is one of the reasons why the complexity of the number field
sieve (NFS) [29] is still a heuristic estimation.

2.3 Cyclotomic Fields and Cyclotomic Integers

We denote by Φm the m-th cyclotomic polynomial, that is the unique irreducible
polynomial in Q[X] dividing Xm − 1 that is not a divisor of any of the Xk − 1
for k < m. Its roots are thus the m-th primitive roots of the unity. Therefore,
cyclotomic polynomials can be written in closed form as:

Φm =
∏

1≤k≤m
gcd(k,m)=1

(
X − e2iπ k

m

)
.

The m-th cyclotomic field Q(ζm) is obtained by adjoining a primitive m-th
root ζm of unity to the rational numbers. As such, Q(ζm) is isomorphic to the
splitting field Q[X]/(Φm). Its degree over Q is deg(Φm), that is ϕ(m), where ϕ
is the Euler totient function. In this specific class of number fields, the ring of
integer is precisely Z[X]/(Φm) ∼= Z[ζm] (see [46, Theorem 2.6] for a proof of this
statement).

The canonical embedding can also be easily presented since the embeddings
are the linear functions sending ζm to ζj

m, for j ∈ (Z/mZ)∗. Since the roots come
in conjugate pairs (ζj

m = −ζm−j
m for all j), we can write down the Log-embedding

by indexing over the quotient G = (Z/mZ)∗/{−1, 1}:

Log(x) : K −→ Rϕ(m)/2

P mod Φm 
→ (
log |P (ζj

m)|)
j∈G

.

The discriminant of Q(ζm) has a closed form expression [46, Proposition 2.7]:

ΔQ(ζm) = (−1)ϕ(m)/2 mϕ(m)∏
p|m

pϕ(m)/(p−1)
,

where the product in the denominator is over primes p dividing m.

Example 1. For a prime-power cyclotomic field, we get
∣∣∣ΔQ(ζ

pk )

∣∣∣ =

p(kp−k−1)pk−1
. In particular, when p = 2,

∣∣∣ΔQ(ζ2n+1 )

∣∣∣ = 2n2n

.

For power-of-two cyclotomic fields, we then have L|ΔK| (α) = 2O(Nα log(N)).
Thus, writing the complexity as L|ΔK| (α) or 2O(Nα log(N)) is equivalent. We
choose to use the L-notation, since it eases the exposition of the complexities
presented in this paper.
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2.4 Cyclotomic Units

Giving the complete description of the units of a generic number field is a com-
putationally hard problem of algorithmic number theory. However it is possible
to describe a subgroup of finite index of the unit group, called the cyclotomic
units. This subgroup contains all the units that are products of numbers4 of the
form ζi

m − 1 for any 1 ≤ i ≤ m. More precisely we have

Lemma 4 (Lemma 8.1 of [46]). Let m be a prime power, then the group C of
cyclotomic units is generated by ±ζm and (bi)1≤i≤m, where

bi =
ζi
m − 1

ζm − 1
.

The index of the subgroup of cyclotomic units in the group of units is h+(m),
the class number of the totally real subfield of Q(ζm) (see for instance [46]). In
the case of power-of-two m, a well supported conjecture clarifies the value of h+.

Heuristic 2 (Weber’s class number problem). We assume that for power-
of-two cyclotomic fields, the class number of its totally real subfield is 1.

Thus, under Weber’s heuristic, the cyclotomic units and the units coincide
in the power-of-two cyclotomic fields.

3 Principal-Ideal Problem and Cryptography

Among all the FHE schemes proposed in the last decade, the security of a couple
of them directly relies on the ability to find relatively short generators in prin-
cipal ideals. This is the case of the proposal of Smart and Vercauteren [43],
which is a simplified version of the original scheme of Gentry [21]. Other
schemes based on the same security assumptions include the Soliloquy scheme of
Campbell, Groves and Shepherd [12] and the candidates for multilinear maps [20,
28]. More formally, the underlying — presumably hard — problem is the fol-
lowing one, already known as SPIP (Short Principal Ideal Problem) or SG-PIP
(Short Generator-Principal Ideal Problem): given some Z-basis of a principal
ideal with a promise that it possesses a “short” generator g for the Euclidean
norm, find this generator or at least a short enough generator of this ideal.

The strategy to address this problem roughly splits in two main steps:

1. Given the Z-basis of the ideal, find a generator, not necessarily short, that
is g′ = g · u for a unit u.

2. From g′, find a short generator of the ideal.

Recently, several results have allowed to deal with the second step. Indeed,
Campbell, Groves and Shepherd [12] claimed in 2014 an — although unproven —
efficient solution for power-of-two cyclotomic fields, confirmed by experiments
4 One should notice that if m is a prime power, ζi

m − 1 is not a unit, but bi is.
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conducted by Schank [39] in 2015. Eventually, the proof was provided by Cramer,
Ducas, Peikert, and Regev [17] in 2015. Throughout this paper, we focus on the
resolution of the first step, known as PIP (Principal Ideal Problem). Nonethe-
less, for completeness, we present briefly the reduction from SPIP to PIP
in Sect. 4.4.

As a direct illustration of the resolution of this problem, we present an attack
on the scheme that Smart and Vercauteren present in [43], which leads to a
full key recovery. This attack is our key thread through the exposition of the
algorithm. Before going any further in the details of the attack, we recall in Fig. 2
the key generation process in the case of power-of-two cyclotomic fields. This
instantiation is the one chosen by the authors for presenting their implementation
results.

Fig. 2. Key generation of the scheme [43].

Remark 1. The public key can be any Z-basis of the ideal generated by g, or even
a two-elements representation of this ideal. Precisely, [43] provides the public
key as a pair of elements that generates the lattice. This is always possible, see
[15, Sect. 4.7.2]. We make the choice of the Hermite Normal Form representation5.

As our attack consists in a full secret key recovery, realized directly from the
public key, we do not mention here the encryption and decryption procedures.
Even though this work tackles more on the principal ideal problem than on this
reduction, we emphasize the fact that the output of this reduction to a short
generator can be any one of the g · ζi

2N , having same Euclidean norm for any
1 ≤ i ≤ 2N . Nonetheless, this does not represent an issue, since all of these
keys are equivalent with regard to the decryption procedure. In addition, in this
precise construction of the Smart and Vercauteren FHE scheme, the only odd
coefficient of G(X) is the last one, so that we may recover the exact generator
g readily.

The whole complexity of our attack is subexponential, in L|ΔK| (1/2). This
beats the previous state-of-the-art in L|ΔK| (2/3), derived from the combined
work of [8,17].

5 The definition of the HNF is recalled for completeness in Appendix A.
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4 Solving the PIP or How to Perform a Full Key
Recovery?

We recall that our ultimate goal is to perform a full key recovery given only
the public elements. As mentioned in [43], this problem is obviously much more
difficult than recovering a plain-text from a cipher-text which is based on the
bounded distance decoding problem and the security level is set according to
this latter problem. We first give an overview of the whole strategy and then
get an in-depth view of each part. But before going any further into the details
of the attack, let us fix the notations and recurrent objects we are going to
use. The number field where the PIP is defined is Q(ζ2N ), for N = 2n, defined
by the polynomial XN + 1, in the same fashion as in Sect. 2.3. For the sake
of notation simplicity, ζ2N is simply denoted by ζ. Though we focus on power-
of-two cyclotomic fields, all our results can be easily generalized to arbitrary
prime-power cyclotomic fields. Our starting point is the public key, that is, a
somewhat “bad” basis of the principal ideal I = 〈g〉, generated by the secret
key g.

Before any other operations, the dimension of the ideals involved is shrunk
by half by reducing the problem to an equivalent one in the totally real subfield
Q(ζ + ζ−1). This is not mandatory (see [6]), but it eases the computation. This
part of the algorithm is a straightforward consequence of the Gentry-Szydlo
algorithm introduced in [22]. The problem is now reduced to the research of a
generator of an ideal I+ in the totally real subfield. Then, the strategy appears to
be recursive reductions of ideals, until we eventually reach a B-smooth ideal Is,
for a fixed bound B > 0 and an algebraic integer h such that 〈h〉 = I+ · Is. This
is the q-descent phase.

We are now interested in finding a generator of Is. We use a strategy based
on class group computation. It consists in finding a generating set of all the
relations between generators of the class group, and then rewrite the input ideal
with respect to these generators. Then we can recover a generator h0 of Is by
solving a linear system of equations. It then permits to derive the generator
of the ideal I+: h · h0

−1. A generator of the public-key ideal is then obtained
by lifting it from the totally real subfield to the initial number field Q(ζ). It
suffices to multiply the current generator by another integer obtained during the
computation. Now the PIP is solved, it only remains a final step to recover the
secret key: perform the reduction from this generator to a short one, using the
method of [17].

Consequently, the full algorithm can be split in four main steps, which are,
in a nutshell:

1. Perform a reduction from the cyclotomic field to its totally real subfield,
allowing to work in smaller dimension.

2. Then a q-descent makes the size of involved ideals decrease.
3. Collect relations and run linear algebra to construct small ideals and a

generator.
4. Eventually run the derivation of the small generator from a bigger one.

Let us now get into the details of all these parts.
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4.1 Step 1: Reduction to the Totally Real Subfield

Starting with the public key, we get a Z-basis (b1, . . . ,bN ) of an ideal I belonging
to the cyclotomic field Q(ζ) of dimension6 N . The larger the dimension is, the
harder it is to handle and even only represent such objects. However, it is possible
to halve the dimension. The main part of this step relies on the so-called Gentry-
Szydlo (GS) algorithm, first described in [22] as an attack on the NTRU scheme
and later revised and generalized by Lenstra and Silverberg in [30].

This original algorithm takes as input a Z-basis of an ideal I in the ring
Z[X]/(XN + 1) — with the promise to be principal — and the algebraic integer
u · ū, for u a generator of I. Here, ū denotes the conjugate of u for the auto-
morphism defined by ζ 
→ ζ−1. It then recovers in polynomial time the element
u. In our case, we can not perform the recovery of the generator g, secret key
of the scheme, since a priori we do not have access to any kind of information
about the product g · ḡ.

To overcome this difficulty, we introduce another integer u = N (g) g ḡ−1,
as described by Garg, Gentry, and Halevi in [20, Sect. 7.8.1]. One should notice
that the norm factor is only there to avoid introduction of denominators in the
definition of u. Although u is still unknown at this point, thanks to the Z-basis
of 〈g〉 we can construct a Z-basis of 〈u〉 and deriving the product u · ū which
simply corresponds to N (g)2.

Hence, we get access to u in polynomial time using GS. From this element u,
we directly reconstruct g ḡ−1 and using the basis of I, we then introduce the
family of vectors

ci = bi

(
1 +

ḡ
g

)
,

providing a basis of the ideal I+ generated by g + ḡ. The reader should notice
that this ideal belongs to the totally real subfield Q(ζ + ζ−1), of index 2 in Q(ζ).
From now on, we denote by O+

K
the ring of integers of Q(ζ +ζ−1), corresponding

to OK ∩ Q(ζ + ζ−1).
Let us suppose briefly that we know the generator g + ḡ of I+. Then it

would be sufficient to multiply it by 1
1+g ḡ−1 to recover the secret key g. Hence,

we have reduced the problem of finding a generator of the idea I belonging to
the cyclotomic field of dimension N to the one of finding a generator of ideal
I+ that belongs to the totally real subfield, whose dimension is N

2 . For a more
detailed presentation of this technique, see [20, Theorem 8].

Note that even though the generator is known up to a unit — i.e. (g + ḡ) · v
for v ∈ UQ(ζ) — the generator of I recovered is g ·v. This suffices, thanks to the
last reduction part, to recover a short generator.

One could wonder if working in a real field has some relevant matter with the
upcoming parts of the attack. The answer is up to our knowledge negative and we
are only interested in the halving of dimension. For the asymptotic complexity,
this initial reduction is somehow not meaningful since it only gives a speedup

6 The smallest security parameters of the Smart and Vercauteren scheme is N = 256.
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of a constant factor in the exponent. But in practice, it allows to double the
dimension of the tractable cases, implying tackling security parameters twice
bigger!

4.2 Step 2: q-descent Phase

Let us momentarily set aside the algebraic integer obtained in the previous phase
and only focus on the ideal I+. By construction, it is principal and generated
by g + ḡ. From now on, all the computations are performed in the totally real
subfield of dimension N

2 , and from then on N becomes N
2 .

The goal of this phase is to find an integer h and a B-smooth principal
ideal Is, such that 〈h〉 = I+ · Is, for a certain bound B > 0. These objects
are discovered recursively, by generating at each step ideals of norm smaller
and smaller. This descent strategy derives from discrete logarithm computations
(see [1,25]) and has been adapted to number fields of large degree by Biasse
[5, Sect. 3.2]. Since we want a global complexity in L|ΔK| (1/2), the smoothness
bound B is chosen7 in L|ΔK| (1/2). In order to bootstrap this q-descent, we first
need to find an ideal that splits in the class group as a product of multiple prime
ideals of controlled norm, that is in our case, upper bounded by L|ΔK| (1).

Initial Round: Classical DBKZ Reduction. As announced, we aim to con-
struct efficiently a L|ΔK| (1)-smooth principal ideal from I+. Formally, we want
to prove the following:

Theorem 3. Let K be a number field. Assuming Heuristic 1, from any ideal
a ⊂ OK, it is possible to generate in expected time L|ΔK| (1/2) an integral ideal
b that is L|ΔK| (1)-smooth and an integer v such that:

〈v〉 = a · b.
The difficulty of this preliminary part is that a priori the norm of the input

ideal a can be large. We thus want to construct at first an ideal whose norm
is bounded independently from N (a) in the same ideal class as a. We proceed
by ideal-lattice reduction, as Biasse did in [5, Sect. 2.2]. Through the canonical
embedding, any integral ideal a can be viewed as a Euclidean lattice. As usual
when dealing with lattice reduction, we are interested in small vectors, or equiva-
lently here, integers with small Euclidean norm. Let us first study the guarantees
that a classical DBKZ-reduction offers on the embedding of a.

Lemma 5. Let K be a number field of degree N , β ∈ {1, . . . , N}, and a be
an ideal of OK. Then it is possible to find a short element v ∈ a in time
Poly

(
N, log N (a)

)
(3/2 + o(1))β/2, that satisfies:

‖v‖ ≤ β
N
2β · |ΔK| 1

2N · N (a)
1
N

where ‖.‖ denotes the Euclidean norm.
7 Justification of this choice appears explicitly when we study the complexity of the q-

descent in the algorithm.
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Proof. This is only a direct application of Theorem1 and Lemma 3. Indeed, let v
be the short vector output by DBKZ applied to the lattice of the embedding of a.
It has determinant N (a)

√|ΔK|, yielding the announced upper bound.

Since the ideal a contains 〈v〉, there exists a unique integral ideal b satisfying
〈v〉 = a · b. From the guarantees on ‖v‖, we can bound the norm of this new
ideal b.

Corollary 3. With the same notations as in Lemma 5, we have

N (b) ≤ β
N2
2β ·
√

|ΔK|.
Proof. From Lemma 5, we have

‖v‖ ≤ β
N
2β · |ΔK| 1

2N · N (a)
1
N .

Thus, its field norm is below the N -th power of this bound — the NN term is
negligible here — and so:

N (〈v〉) ≤ β
N2
2β ·
√

|ΔK| · N (a) .

As a consequence, since 〈v〉 = a · b, we have by the multiplicative property of

the norm N (b) ≤ β
N2
2β ·√|ΔK|.

Remark 2. Because K is a cyclotomic field, we may choose a block-size β
in log L|ΔK| (1/2) since log L|ΔK| (1/2) = N1/2+o(1) ≤ N . Then Corollary 3 gen-
erates in time L|ΔK| (1/2) an integral ideal of norm bounded by L|ΔK| (3/2).

This last result allows us to find an ideal of norm bounded independently
from N (a). We then want this new ideal to split in the class group as a product
of multiple prime ideals of controlled norms. Thanks to Corollary 2, the probabil-
ity of an integral ideal b of norm bounded by L|ΔK| (3/2) to be L|ΔK| (1)-smooth
is greater than L|ΔK| (1/2)−1. In addition, using ECM for testing smoothness
keeps the complexity in L|ΔK| (1/2). The analysis of this part is left for Sect. 4.5.
Therefore, repeating the last construction L|ΔK| (1/2) times on randomized inde-
pendent inputs eventually yields a L|ΔK| (1)-smooth ideal. The simplest strategy
to perform this randomization of the input ideal is to compose it with some fac-
tors of norm less than B = L|ΔK| (1/2). Formally, we denote by B = {p1, . . . , p|B|}
the set of all prime ideals of norm upper bounded by L|ΔK| (1/2). Let k,A > 0
be fixed integers. We choose pj1 , . . . , pjk

prime ideals of norm L|ΔK| (1/2). Then
for any k-uple (e1, . . . , ek) ∈ {1, . . . , A}k, we have

N
(

a ·
k∏

i=1

p
ei
ji

)

≤ N (a) ·
k∏

i=1

N (pji)
ei ≤ N (a) · L|ΔK| (1/2)k·A = N (a) · L|ΔK| (1/2) .

We know from the Landau prime ideal theorem [27] that in every number
field K, the number of prime ideals of norm bounded by X, denoted by πK(X),
satisfies

πK(X) ∼ X

log X
. (1)
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Thus, the randomization can be done by choosing uniformly at random the
tuple (e1, . . . , ek) and k prime ideals in B. Since |B| = L|ΔK| (1/2), set of possible
samples is large enough for our purposes.

Other ways to perform the randomization may be by randomizing directly the
lattice reduction algorithm or by enumerating points of the lattice of norm close
to the norm guarantee and change the basis vectors by freshly enumerated ones.
The latter would be useful in practice as it reduces the number of reductions.

This last remark concludes the proof of Theorem3. The full outline of this
bootstrap section is given in Fig. 3.

Fig. 3. First reduction to a L|ΔK| (1)-smooth ideal.

Interlude: Reduction with Cheon’s Trick. In the proof of Theorem 3, we
use the classical -DBKZ reduction in order to find a short element in the embed-
ding of the considered ideal. We could not use directly Cheon’s trick here since
the norm of the ideal I+ — and so the determinant of its coefficient embed-
ding — is potentially large. Nonetheless, the norm of prime ideals appearing in
the factorization are by construction bounded, hence a natural question is to
look at the guarantees offered when applying the sub-cited trick. The systematic
treatment of this question is the aim of Theorem 4.

Theorem 4. Let a be an integral ideal of norm below L|ΔK| (α), for 1
2 ≤α≤ 1.

Then, in expected time L|ΔK| (1/2), it is possible to construct an algebraic inte-
ger v and an L|ΔK| ((2α + 1)/4)-smooth ideal b such that:

〈v〉 = a · b.

Proof. The core of the proof is somehow similar to the proof of Theorem 3 as
it heavily relies on lattice reduction and randomization techniques. Nonetheless,
the major difference is on the embedding with respect to which the reduction
is performed. In Theorem 3, the canonical embedding is used, whereas we use
here the coefficient embedding C. It avoids the apparition of a power of the
discriminant in the field norm of the output of DBKZ. Nonetheless, remark
that since we work in the totally real subfield, we cannot use a naive coefficients
embedding of this subfield. In order to benefit from the nice shape of the defining
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polynomial XN +1 of the cyclotomic field, we use instead a fold-in-two strategy:
the embedding of O+

K
is defined as the coefficient embedding C+ for the Z-

base (ζi + ζ−i)i. Let us denote by ‖.‖C+ the induced norm. Hence, for any
v ∈ O+

K
:

‖v‖C =
√

2‖v‖C+ .

Let L = C+(a) be the embedding of a. Its covolume is by definition its index
in Zn, that is the index of a as a Z-module in O+

K
, which is N (a). Then, with

the same block-size β = log L|ΔK| (1/2) = O(
√

N log(N)), we have

Vol (L) ≤ L|ΔK| (α) = 2O(Nα log(N)) ≤ β
N2
2β .

Using the Approx-SVP algorithm of Theorem 2 yields in time L|ΔK| (1/2) an
integer v satisfying:

‖v‖C+ ≤ β
(1+o(1))

√
2

logβ(det(L))
β ≤ β

(1+o(1))
√

4 Nα√
N log N = L|ΔK| (α/2 − 1/4) .

Using Corollary 1 to fall back on the field norm induces:

NK/Q(v) ≤ (
√

2(N + 1))
N · ‖v‖N

C = L|ΔK| (1) · L|ΔK| (α/2 + 3/4) .

Since α ≥ 1/2, we then have N (〈v〉) = NK/Q(v) ≤ L|ΔK| (α/2 + 3/4).
Because the ideal a contains 〈v〉, there exists a unique ideal b, satisfying

〈v〉 = a · b. We get that N (b) ≤ L|ΔK| (α/2 + 3/4) from the multiplicative prop-
erty of the norm and N (a) = L|ΔK| (1) ≤ L|ΔK| (α/2 + 3/4). Under Heuristic 1,
this ideal is L|ΔK| (α/2 + 1/4)-smooth with probability L|ΔK| (1/2). Eventually
performing the randomization-and-repeat technique as in the initial round, this
reduction in the coefficient embedding yields the desired couple (v, b) in expected
time L|ΔK| (1/2).

Descending to B-smoothness. After the first round, we end up with an
L|ΔK| (1)-smooth ideal, denoted by I(0), and an algebraic integer h(0) satisfying

〈h(0)〉 = I+ · I(0),

with I+ the ideal of the totally real subfield obtained after phase Sect. 4.1. The
factorization of I(0) gives

I(0) =
∏
j

I(0)
j ,

where the I(0)
j are integral prime ideals of norm upper bounded by L|ΔK| (1).

Taking the norms of the ideals involved in this equality ensures that the num-
ber of terms in this product is O(nI), with nI = log |ΔK|

log log |ΔK| = O(N). Then

applying Theorem4 on each small ideal I(0)
j gives rise to ideals I(1)

j in expected

time L|ΔK| (1/2) that are L|ΔK|
(
2×1+1

4

)
= L|ΔK| (3/4)-smooth and integers h(1)

j

such that for every j,
〈h(1)

j 〉 = I(0)
j · I(1)

j .
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For each factor I(1)
j , let us write its prime decomposition:

I(1)
j =

∏
k

I(1)
j,k .

Once again, the number of terms appearing is O(nI). Because we have the
inequality N

(
I(1)

j,k

)
≤ L|ΔK| (3/4), then performing the same procedure on each

ideal I(1)
j,k now yields L|ΔK| (5/8)-smooth ideals I(2)

j,k and integers h(2)
j,k such that

〈h(2)
j,k〉 = I(1)

j,k · I(2)
j,k ,

once again in expected time L|ΔK| (1/2). Remark that this smoothness bound

in L|ΔK| (5/8) is obtained as L|ΔK|
(

2×3/4+1
4

)
, as exposed in Theorem 4. This

reasoning naturally leads to a recursive strategy for reduction. At step k, we
want to reduce an ideal I(k−1)

a1,...,ak−1 which is L|ΔK|
(
1/2 + 1/2k+1

)
-smooth. As

before, we have a decomposition — in O(nI) terms — in smaller ideals:

I(k−1)
a1,...,ak−1

=
∏
j

I(k−1)
a1,...,ak−1,j .

Using Theorem 4 on each factor I(k−1)
a1,...,ak−1,j which have norm bounded by

L|ΔK|
(
1/2 + 1/2k+1

)
leads to L|ΔK|

(
1/2 + 1/2k+2

)
-smooth ideals I(k)

a1,...,ak−1,j

and algebraic integers h(k)
a1,...,ak−1,j such that

〈h(k)
a1,...,ak−1,j〉 = I(k−1)

a1,...,ak−1,j · I(k)
a1,...,ak−1,j ,

since 2×(1/2+1/2k+1)+1
4 = 1/2 + 1/2k+2.

As a consequence, one can generate L|ΔK| (1/2 + 1/ log N)-smooth ideals with
the previous method in at most �log2(log N)� recursive steps. At this point
only (nI)�log2(log N)� ideals and algebraic integers appear since at each step this
number is multiplied by a factor O(nI). As deriving one couple integer/ideal is
done in expected time L|ΔK| (1/2), the whole complexity remains in L|ΔK| (1/2).

However, as |ΔK| = NN , a quick calculation entails that

log L|ΔK|

(
1
2

+
1

log(N)

)
= O(N

1
2+

1
log N log(N))

= O(N
1
2 log(N)) · N

1
log N .

Since the last factor is e = exp(1), we obtain that

log L|ΔK|

(
1
2

+
1

log(N)

)
= log L|ΔK|

(
1
2

)
,

so that after at most �log2(log N)� steps, we have ideals that are L|ΔK| (1/2)-
smooth.
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At the end of this final round, we may express the input ideal as the product
of ideals for which we know a generator and others that have by construction
norms bounded by L|ΔK| (1/2). Let us denote K the final step. For avoiding to
carry inverse ideals, we may assume without loss of generality8 that K is even.
Explicitly we have

〈h(0)〉 = I+ · I(0)

= I+ ·
∏
a1

I(0)
a1

= I+ ·
〈∏

a1

h(1)
a1

∏
a1,a2,a3

h(3)
a1,a2,a3

∏
a1,a2

h(2)
a1,a2

〉
·
∏

a1,a2,a3

I(3)
a1,a2,a3

= I+ ·
〈 ∏

a1,...,aK+1

∏
t∈2Z+1

h(t)
a1,...,at

∏
s∈2Z

h(s)
a1,...,as

〉
·

∏
a1,...,aK+1

I(K)
a1,...,aK+1

.

︸ ︷︷ ︸
=Is

Fig. 4. The q-descent algorithm.

8 We can always run an additional step in the q-descent without changing the whole
complexity.
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In this last expression, the indices are chosen such that 1 ≤ t ≤ K and
2 ≤ s ≤ K. We also recall that all the quantities involved here belong to the
totally real subfield Q(ζ + ζ−1).

By construction, Is is L|ΔK| (1/2)-smooth and we directly get h ∈ O+
K

such
that 〈h〉 = I+ · Is. The full outline of this descent phase is sketched in Fig. 4.

Remark that the number of terms, which is at most O(N)K is in L|ΔK| (o(1)),
is negligible in the final complexity estimate.

4.3 Step 3: Case of L|ΔK| (1/2)-smooth Ideals

At this point, we have reduced the search for a generator of a principal ideal
of large norm to the search for a generator of a principal ideal Is which is
L|ΔK| (1/2)-smooth. If we can find a generator of Is in time L|ΔK| (1/2), from the
previous steps we directly recover the generator of I+, and so the generator of I,
that is the secret key. To tackle this final problem, we follow the approach relying
on class group computation (see [15, Algorithm 6.5.10] or [5, Algorithm 7]): we
consider the previously introduced set B of prime ideals of norm below B > 0
where B ∈ L|ΔK| (1/2) and look for relations of the shape

〈v〉 =
∏

i

pei
i , for v ∈ OK+ .

As the classes of prime ideals in B generate the class group Cl(OK+) (see [2]),
we have a surjective morphism:

Z|B| φ−→ SI
π−→ Cl(OK+)

(e1, · · · , e|B|) 
−→∏
i p

ei
i 
−→ ∏

i[pi]ei .

Formally, a relation is an element of Ker (π◦φ), which is a full-rank sublattice
of Z|B|. Following the subexponential approach of [8,11,23], we need to find at
least |B| ∈ L|ΔK| (1/2) linearly independent relations to generate this lattice. The
relation collection is performed in a similar way as [4]: due to the good shape of
the defining polynomial XN + 1, the algebraic integers whose representation as
polynomials in ζ have small coefficients also have small norms.

Let us fix an integer 0 < A ≤ L|ΔK| (0) = log |ΔK|. Then for any
integers (v0, . . . , vN

2 −1) ∈ {−A, . . . , A}N
2 , we define the element v = v0 +∑

i≥1 vi

(
ζi + ζ−i

)
. The norm of this element in K+ is upper bounded by

L|ΔK| (1). Indeed, it corresponds to the square root of its norm in K, which is
below NN · AN = L|ΔK| (1) by Lemma 2. Then under Heuristic 1, the element v
generates an ideal 〈v〉 that is L|ΔK| (1/2)-smooth with probability L|ΔK| (1/2)−1.
This means that we need to draw on average L|ΔK| (1/2) independent algebraic
integers to find one relation.

To bound the run time of the algorithm, we need to assume that the relation
we collect by this method are independent. This is a commonly used heuristic
in the analysis of index calculus algorithms for computing Cl(K).
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Heuristic 3 [4, Heuristic 2]. There exists Q negligible with respect to |B| such
that collecting Q · |B| relations suffices to generate the whole lattice of relations.

Thanks to Eq. (1), we know that B contains about L|ΔK| (1/2) elements.
Therefore, L|ΔK| (1/2) relations are needed thanks to Heuristic 3, implying that
L|ΔK| (1/2)2 = L|ΔK| (1/2) independently drawn algebraic integers suffice to gen-
erate the whole lattice of relations. Of course, the set of integers arising from the
previous construction is large enough to allow such repeated sampling, because
its size is L|ΔK| (1). We store the relations in a |B| × Q|B| matrix M , as well as
the corresponding algebraic integers in a vector G.

M

⎛
⎜⎜⎜⎝

e1,1 · · · e1,i · · · e1,Q|B|
e2,1 · · · e2,i · · · e2,Q|B|
...

...
...

e|B|,1 · · · e|B|,i · · · e|B|,Q|B|

⎞
⎟⎟⎟⎠

G
(

v1 · · · vi · · · v|B|
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀i, (vi) =
|B|∏
j=1

p
ej,i

i .

The L|ΔK| (1/2)-smooth ideal Is splits over the set B, so that there exists a
vector Y of Z|B| containing the exponents of the factorization

Is =
∏

i

pYi
i .

As the relations stored in M generate the lattice of all elements of this form,
the vector Y necessarily belongs to it. Hence solving the equation MX = Y
yields a vector X ∈ ZQ|B| from which we can recover a generator of the ideal
since: ∏

i

pYi
i = 〈vX1

1 · · ·vXQ|B|
Q|B| 〉. (2)

By construction, N (Is) ≤ L|ΔK| (K/2 + 1/2) so that the coefficients of Y
are below L|ΔK| (0). Since solving such a linear system with Dixon’s p-adic
method [18] can be done in time Poly(d, log ‖M‖) where d is the dimension
of the matrix and ‖M‖ = max |Mi,j | the maximum of its coefficients, we are
able to recover X with a complexity in L|ΔK| (1/2).

4.4 Final Step: Reduction to a Short Generator

As mentioned in Sect. 3, this part of the algorithm is a result of Cramer, Ducas,
Peikert, and Regev [17]. They state that recovering a short generator from
an arbitrary one can be solved in polynomial time in any prime-power cyclo-
tomic ring. For completeness purposes, we give here a brief overview of this
reduction.
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As a liminary observation, note that for those fields, a set of fundamental
units is given for free, whereas their computation in arbitrary number fields is
computationally hard. A second remark is that we get the promise that there
exists a small generator of the considered ideal. Then, instead of solving a general
closest vector problem (CVP), we solve an instance of bounded-distance decoding
problem (BDD). The key argument is based on a precise study of the geometry of
the log-unit lattice of prime-power cyclotomic fields (see AppendixA.3 for basic
recalls about this lattice). Finally, their geometric properties make possible to
solve BDD in this lattice in polynomial time, instead of exponential time as for
generic instances.

Theorem 5 [17, Theorem 4.1]. Let D be a distribution over Q(ζ) with the prop-
erty that for any tuple of vectors v1, . . . ,vN/2−1 ∈ RN/2−1 of Euclidean norm 1
that are orthogonal to the all-1 vector 1, the probability that the inequation
|(Log(g),vi)| < c

√
2N · log(2N)−3/2 holds for all i is at least some α > 0,

where g is chosen from D and c is a universal constant. Then there is an effi-
cient algorithm that, given g′ = g · u, where g chosen from D and u ∈ C is a
cyclotomic unit, outputs an element of the form ζj ·g with probability at least α.

The reader might argue that, in order to use this theorem on the output of
our algorithm, we should ensure that we recover a generator up to a cyclotomic
unit and not up to an arbitrary unit. In the specific case of power-of-two cyclo-
tomic fields, we can rely on Weber’s Heuristic 2 to ensure this constraint. In case
h+(N) > 1, two solutions are given in [17]. The first one is to directly compute
the group of units, which is hopefully determined by the kernel of the matrix
M arising in the third stage9. One can then enumerate the h+(N) classes of the
group of units modulo the subgroup of cyclotomic units. Another possibility is to
generate a list of ideals, sampled according to the same distribution as the input
ideal, with a known generator. Then, we run the PIP algorithm on these ideals,
and deduce the cosets of the group of units modulo the subgroup of cyclotomic
units, which are likely to be output.

The whole key recovery, combining our PIP algorithm and the aforemen-
tioned reduction is outlined in Fig. 5.

Fig. 5. Recovery of the secret key by PIP+ [17].

9 Another possibility is to use the saturation method which might run in polynomial
time [7].
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4.5 Complexity Analysis

The whole runtime of our attack is L|ΔK| (1/2), that is about 2N1/2+o(1)
opera-

tions. We have already mentioned the complexity of most parts of our algorithm.
However, we provide a brief summary in this paragraph to ensure the entirety
of our result.

For the reduction algorithms, DBKZ and Cheon’s trick, the block-size is
always in log L|ΔK| (1/2) so that the complexity is L|ΔK| (1/2). Our choice for the
smoothness bound B = L|ΔK| (1/2) ensures that the step of relation collection
together with the linear system solution are derived in time L|ΔK| (1/2).

In addition, from the work of [20], we get that the first part of the algo-
rithm, corresponding to the reduction to the totally real subfield, is performed
in polynomial time.

The last part, which corresponds to the generation of a small generator from
an arbitrary one, runs in polynomial time with respect to the input (B, t) of
Babai’s round-off algorithm (see Step 4 of the algorithm in Fig. 5), thanks to the
results of [17]. However, t = Log(g0) + Log(OK) is of subexponential size at this
stage. Indeed, according to Eq. (2),

Log(g0) = X1Log(v1) + · · · + XQ|B|Log(vQ|B|),

where each vi is of polynomial size while, by Hadamard’s bound, the Xi sat-
isfy Xi ≤ Q|B|Q|B|/2‖M‖Q|B|−1 maxj ‖Yj‖. Therefore, the bit size of the Xi are
in L|ΔK| (1/2), and the fixed point approximations of Log(vi) must be taken at
precision b ∈ L|ΔK| (1/2) to ensure the accuracy of the value of Log(g0) (and
therefore t). Babai’s round-off computation B�(B∨)t · t� has an asymptotic cost
in L|ΔK| (1/2) and returns e1, . . . , er where the ei have bit size in L|ΔK| (1/2) and
where

g′ = g0 · be1
1 · · ·ber

r =
(
vX1
1 · · ·vXQ|B|

Q|B|
)

· (be1
1 · · ·ber

r ) ,

is a short generator of the input ideal. This product cannot be evaluated directly
since the intermediate terms may have exponential size, but it may be per-
formed modulo distinct prime ideals p1, . . . , pk such that N (

∏
pi) > N (g′) and

then reconstructed by the Chinese Remainder Theorem. The complexity of this
process is in L|ΔK| (1/2).

We highlight now two points whose complexity were eluded in the exposition
of the algorithm:

– Arithmetic of ideals. All the operations made on ideals are classical, with
complexities polynomial in the dimension and in the size of the entries (see
for instance [15, Chap. 4]), which is way below the bound of L|ΔK| (1/2).

– Smoothness tests. The strategy is to deal with the norms of ideals, that are
integers. The largest norm arising in the computations is in L|ΔK| (3/2) and
appears after the initial DBKZ reduction. Testing L|ΔK| (1)-smoothness for
an integer of this size is easier than completely factorizing it, even if both
methods share the same asymptotic complexity in L|ΔK| (1/2)10. Hence all the
smoothness tests performed have complexity dominated by L|ΔK| (1/2).

10 Factorizing an integer N is done in LN (1/3).
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As a consequence the global complexity is given by the first and last steps of
the q-descent, that is in L|ΔK| (1/2).

Remark 3. This algorithm has a complexity in L|ΔK| (1/2) in the discriminant,
that represents the size of the number field involved. However, it is important to
figure out that the parameters of the keys have N3/2 bits. Therefore we present
an algorithm that is “sort of” L (1/3) in the size of the inputs.

5 Implementation Results

In addition to the theoretical improvement, our algorithm permits in practice to
break concrete cryptosystems. Our discussion is based on the scheme presented
by Smart and Vercauteren at PKC 2010. In [43, Sect. 7], security estimations are
given for parameters N = 2n for 8 ≤ n ≤ 11 since they are unable to generate
keys for larger parameters. Our implementation allows us to recover the secret
key from the public key for N = 28 = 256 in less than a day. The code runs with

[38], with an external call to [19], and all the computations are
performed on an Intel(R) Xeon(R) CPU E3-1275 v3 @ 3.50 GHz with 32 GB of
memory. Indeed the Gentry-Szydlo algorithm requires large storage.

We perform the key generation as recalled in Fig. 2. We then obtain a gen-
erator for the ideal as a polynomial in ζ = ζ512, of degree 255 and coefficients
absolutely bounded by 2

√
256+1 = 65537. That corresponds to ideals whose norm

has about 4800 bits in average, that is below the bound 6145 from Lemma2, but
above the size given in [43] (4096). As for every timing arising in this section,
we have derived a set of 10 keys, and the given time is the average one. Thus,
deriving a secret key takes on average 30 s. We test 1381 algebraic integers for
finding 10 having prime norm. Then the public key is derived from the secret
key in about 96 s.

While, in theory, the first reduction to the totally real subfield seems to be
of limited interest, it is clearly the main part of the practical results: indeed,
it reduces in our example the size of the matrices involved from 256 × 256
to 128×128. As we know that lattice-reduction is getting worse while the dimen-
sion grows, this part is the key point of the algorithm. Our code essentially cor-
responds to the Gentry-Szydlo algorithm together with the trick explained in
Sect. 4.1, in order to output the element u and a basis of the ideal I+ generated
by g + ḡ. This part of the algorithm has the largest runtime, about 20 h, and
requires 24Go of memory.

At this point, we put aside u and only consider the ideal I+. Our goal is
to recover one generator of this ideal, and a multiplication with 1

1+u is going
to lead to the generator of the input ideal. The method we have presented is
to reduce step by step the norm of the ideals involved by performing lattice
reductions. However, we observe that for the cases we run, the first reduction
suffices: the short vector we find corresponds to the generator. We make use
of the BKZ algorithm implemented in [19], with block-size 24 to begin.
It gives a correct generator with probability higher than 0.75 and runs in less
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than 10 minutes. If the output is not correct, we increase the block-size to 30.
This always works and requires between 2 and 4 h.

In addition to the good behavior of this reduction, the generator we exhibit
is already small, by construction. More precisely, it corresponds to g + ḡ, up to
a factor that is a power of ζ. Hence, we recover g · ζi thanks to u and the
decoding algorithm analyzed in [17] is unnecessary for our concern. The key
recovery is already completed after these two first steps. We still implement this
part together with a method for recovering the actual private key (up to sign).
Indeed, because all its coefficients are even except the constant one, it is easy to
identify the power of ζ that appears as a factor during the computation.

Additional Work. To illustrate the practical performances of our method,
we look at one of the main other steps of the algorithm: namely the relation
collection between generators of Cl(K+). Thanks to the good behavior of BKZ,
the relation collection is not necessary for the attack in Q(ζ512), but it is an
important part of the computation in higher dimension.

We fix our factor base as all the prime ideals in the totally-real field that lie
above a prime number p that is below the bound c (log |ΔK|)2, for a parameter
c ∈ {0.1, 0.2, 0.3}. We give in Table 1 the values, together with the size of the
factor base and the time required for building it in [16]. The computations
are performed on a laptop with Intel(R) Core(TM) i7-4710MQ CPU @ 2.50 GHz
and 8Go of RAM for this part.

Naturally, this choice of bound would not be sufficient for the descent
described in Fig. 4, because it is polynomial and not subexponential. However,
it provides a relation matrix for the computation of the class group. Reaching
a subexponential bound seems unlikely in that way, that supports the fact that
our implementation results are consequences of the small dimension obtained by
the Gentry-Szydlo algorithm.

Table 1. Construction of differently parametrized factor bases.

c Bound # primes # factor base Time (sec)

0.1 201516 149 18945 1240

0.2 403033 274 35073 2320

0.3 604549 385 49281 3320

The relation collection is performed using algebraic integers of the shape

5∑
i=1

ζai + ζ−ai =
5∑

i=1

ζai − ζ256−ai ,

for ai chosen at random in {1, . . . , 255}. This is inspired from the work of
Miller [37]. We use C++ code with NTL Library [42] for finding a set of inte-
gers with different norms that suffice for generating the full lattice of relations
(see Sect. 4.3). The size of these sets depends on the bound we have chosen and
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on the relations picked, so that the timings may vary. Our results are provided
in Table 2. Once we know these integers, we use Magma for building the entire
matrix of relations. In particular, we make use of the automorphisms on the field
for deriving 128 relations from each integer — this is the reason we use integers
of different norms. Eventually, the matrices we get are full-rank.

Table 2. Relation collection for the different parameters.

c # relations Time (hours)

Relation collection Matrix construction

0.1 1500 8.6 1.7

0.2 3400 13.8 4.9

0.3 6300 23.9 10.7

We also run our code for the algorithm described in [17] on inputs constructed
as a secret key multiplied by a random non-zero vector of the log-unit lattice
(because in the full attack described previously, we only have the null vector).
This runs in 150 s.

To conclude, for the parameter N = 28, the time of the key recovery is
below 24 h, and the main part of the computation comes from the reduction to
the totally real subfield. Hence, one may wonder if this step is mandatory, and
the answer is yes, because the surprisingly good practical behavior of the BKZ
reduction is a conjoint consequence of the dimension of lattices involved on the
one hand — the regime for such medium dimension allows better practical output
bounds than the theoretical worst case — and the specificity of the geometry of
the considered ideals induced by the abnormally small norm of its generator.
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A Mathematical Background Recalls

A.1 Hermite Normal Form

Definition 1. A m × n matrix B with integer entries has a (unique) Hermite
Normal Form (HNF) H such that there exists a square unimodular matrix U
satisfying H = BU and

1. H is lower triangular, hi,j = 0 for i < j, and any columns of zeros are located
on the right.
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2. The leading coefficient (the first nonzero entry from the top, also called the
pivot) of a nonzero column is always strictly below the leading coefficient of
the column before it and is positive.

3. The elements to the right of pivots are zero and elements to the left are non-
negative and strictly smaller than the pivot.

The computation of the HNF can be done efficiently in O(nθM(n log M)) time
and O(n2 log M) space, where nθ is the arithmetic complexity of the multiplica-
tion of two n×n matrices and M(b) = O(b) the complexity of the multiplication
of two b-bit integers (see [36] for more details).

A.2 Ring of Integers, Integer Ideals

Integers of a Number Field. An element γ of K is said to be integral if its
minimal polynomial has integer coefficients and is monic. The ring of integers
of K is the ring of all integral elements contained in K, and is denoted by OK.
Noticeably, the norm of any integer of the number field is an integer.

For α a primitive element of K, we have Z[α] ⊂ OK, but Z[α] can be strictly
included in OK. Yet, as a finite-rank sub-module of the field K, there exists a
finite family (bi)i∈i such that OK

∼=⊕i∈I Z·bi. Such a family is called an integral
basis of the number field.

Ideals and Norms. An additive subgroup a of OK such that for every x ∈ a,
the coset x·OK = {x·a|a ∈ OK} lies in a, is called an integral ideal of the number
field. One can generalize the notion of norm of an element in the number field
to integral ideals: let define the norm11 N as the integer valued map:

a 
→ [OK : a] =
∣∣OK

/
a
∣∣ .

The ideal norm is multiplicative: for any ideals a, b, N (a · b) = N (a) · N (b).
Moreover this norm is closely linked to the norm of integers in the sense that
for every a ∈ OK, N (〈a〉)) =

∣∣NK/Q(a)
∣∣, where 〈a〉 denotes the principal ideal

generated by a: 〈a〉 = {a · x|x ∈ OK}.
The norm of an ideal a can be used to give an upper bound on the norm of

the smallest nonzero element it contains: there always exists a nonzero a ∈ a for
which:

0 <
∣∣NK/Q(a)

∣∣ ≤
(

2
π

)r2√
|ΔK| N (a),

where ΔK is the discriminant of K and r2 is the number of pairs of complex
embeddings, defined as previously.

A.3 Dirichlet Unit Theorem

Unit Group of a Number Field. Let K be a number field. The unit group
UK of K is the group of all integers in OK whose inverse also lies in OK. The unit
group has a simple geometric characterization in term of norm:
11 We define here the absolute norm of an ideal.
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Lemma 6. An element a ∈ OK is a unit if and only if NK/Q(a) = 1.

Log-Unit Lattice. Let N = [K : Q] be the degree of the number field, written
as n = r1 + 2r2, where r1 and r2 are defined respectively as the number of real
embeddings and the number of pairs of complex embeddings. Define the map
Log by
{
K −→ Rr1+r2

x 
−→ (
log |σ1(x)|, . . . , log |σr1(x)|, 2 log |σr1+1(x)|, . . . , 2 log |σr1+r2(x)|)

The image of the kernel of Log by the canonical embedding σ lies in the inter-
section between the embedding σ(OK) and the set of points of coordinates lower
than 1. Since the embedding of OK is discrete, we deduce that σ(Ker Log) and
so Ker Log are discrete.

Moreover, the image Log(UK) lies in the hyperplane of equation
∑

xi = 0.
A careful analysis of this image shows that it is in fact a full-rank lattice of this
hyperplane. It is called the log-unit lattice associated to K. These remarks on
the map Log lead then to the complete description of the structure of UK.

Theorem 6 (Dirichlet’s Unit Theorem). Let K be a number field of degree
N = r1+2r2 with r1 and r2 the number of real and pairs of complex embeddings.
Then, the unit group of K is a direct product of a discrete cyclic group with a
free abelian group of rank r = r1 + r2 − 1.
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Abstract. Indistinguishability Obfuscation (iO) has enabled an incredi-
ble number of new and exciting applications. However, our understanding
of how to actually build secure iO remains in its infancy. While many
candidate constructions have been published, some have been broken,
and it is unclear which of the remaining candidates are secure.

This work deals with the following basic question: Can we hedge our
bets when it comes to iO candidates? In other words, if we have a col-
lection of iO candidates, and we only know that at least one of them is
secure, can we still make use of these candidates?

This topic was recently studied by Ananth, Jain, Naor, Sahai, and
Yogev [CRYPTO 2016], who showed how to construct a robust iO com-
biner: Specifically, they showed that given the situation above, we can
construct a single iO scheme that is secure as long as (1) at least one
candidate iO scheme is a subexponentially secure iO, and (2) either the
subexponential DDH or LWE assumptions hold.

In this work, we make three contributions:
– (Better robust iO combiners.) First, we work to improve the

assumptions needed to obtain the same result as Ananth et al.:
namely we show how to replace the DDH/LWE assumption with the
assumption that subexponentially secure one-way functions exist.
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– (Transforming Combiners from iO to FE and NIKE.) Sec-
ond, we consider a broader question: what if we start with several iO
candidates where only one works, but we don’t care about achiev-
ing iO itself, rather we want to achieve concrete applications of iO?
In this case, we are able to work with the minimal assumption of
just polynomially secure one-way functions, and where the work-
ing iO candidate only achieves polynomial security. We call such
combiners transforming combiners. More generally, a transforming
combiner from primitive A to primitive B is one that takes as input
many candidates of primitive A, out of which we are guaranteed that
at least one is secure and outputs a secure candidate of primitive
B. We can correspondingly define robust transforming combiners.
We present transforming combiners from indistinguishability obfus-
cation to functional encryption and non-interactive multiparty key
exchance (NIKE).

– (Correctness Amplification for iO from polynomial secu-
rity and one-way functions.) Finally, along the way, we obtain
a result of independent interest: Recently, Bitansky and Vaikun-
tanathan [TCC 2016] showed how to amplify the correctness of an iO
scheme, but they needed subexponential security for the iO scheme
and also require subexponentially secure DDH or LWE. We show
how to achieve the same correctness amplification result, but requir-
ing only polynomial security from the iO scheme, and assuming only
polynomially secure one-way functions.

1 Introduction

Indistinguishability Obfuscation (iO), first defined by [4], has been a major rev-
elation to cryptography. The discovery of the punctured programming tech-
nique by Sahai and Waters [46] has led to several interesting applications of
indistinguishability obfuscation. A very incomplete list of such results includes
functional encryption [2,24,47], the feasibility of succinct randomized encod-
ings [7,13,39], time lock puzzles [8], software watermarking [16], instantiating
random oracles [34] and hardness of Nash equilibrium [10,26].

On the construction side, however, iO is still at a nascent stage. The first
candidate was proposed by Garg et al. [24] from multilinear maps [19,23,29].
Since then there have many proposals of iO [3,29,48]. All these constructions
are based on multilinear maps. The constructions of multilinear maps have come
under scrutiny after several successful cryptanalytic attacks [14,15,17,18,35,44]
were mounted against them. In fact, there have also been direct attacks on some
of the iO candidates as well [17,44]. However, there are (fortunately) still many
candidates that have survived all known cryptanalytic attacks. We refer the
reader to Appendix A in [1] for a partial list of these candidates1. In light of
this, its imperative to revisit the applications of iO and hope to weaken the trust
we place on any specific known iO candidate to construct these applications.

In other words, can we hedge our bets when it comes to iO candidates?
1 Several recent candidates such as [25,42,43] have not been included in this list. There

are currently no attacks known on these candidates as well.
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If we’re wrong about some candidates that seem promising right now, but
not others, then can we still give explicit constructions that achieve the amazing
applications of iO?

Robust iO Combiners. Recently, Ananth et al. [1] considered the closely
related problem of constructing an iO scheme starting from many iO candi-
dates, such that the final iO scheme is guaranteed to be secure as long as even
one of the iO candidates is secure. In fact, they only assume that the secure
candidate satisfies correctness, and in particular, the insecure candidates could
also be incorrect. This notion is termed as a robust iO combiners (also studied by
Fischlin et al. [22] in a relaxed setting where multiple underlying iO candidates
must be secure) and are useful in constructing universal iO [32] 2. The work of [1]
constructs robust iO combiners assuming the existence of a sub-exponentially
secure iO scheme and sub-exponentially secure DDH/ LWE. As a consequence
of this result, we can construct the above applications by combining all known
iO candidates as long as one of the candidates is sub-exponentially secure.

While the work of [1] is a major advance, it leaves open two very natural
questions, that we study in this work. The first question is: do we really need to
assume DDH or LWE? In other words:

1. What assumption suffices to construct a robust iO combiner?
In particular, are (sub-exponentially secure) one-way functions sufficient?

The second, broader, question is: if we care about constructing applications of
iO, can we do better in terms of assumptions? In particular, recent work [27] has
shown that functional encryption – itself an application of iO – can be directly
used to construct several applications of iO. Let us then define an transforming
combiner as an object that takes several iO candidates, with the promise that
at least one of them is only polynomially secure, and outputs an explicit secure
functional encryption scheme. Then, let us consider the following question, which
truly addresses a minimal assumption:

2. Assuming only polynomially secure one-way functions, can we construct
a transforming combiner from iO to functional encryption?

Note that since the existence of iO does not even imply that P�=NP, while
functional encryption implies one-way functions, the above question lays out a
minimal assumption for constructing a transforming combiner from iO to FE.

1.1 Our Contribution

We address questions 1 and 2 in this work. We show,

Theorem 1 (Transforming Combiners). Given many iO candidates out of
which at least one of them is correct and secure and additionally assuming one-
way functions, we can construct a compact functional encryption scheme.
2 A scheme Π is said to be a universal secure iO scheme if the following holds: if there

exists a secure iO scheme (whose explicit description is unknown) then Π is a secure
iO scheme.
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As a corollary, we can construct an explicit functional encryption scheme assum-
ing the existence of iO and one-way functions. In other words, we show that it
suffices that iO exists (rather than relying on a constructive proof of it) to con-
struct an explicit functional encryption scheme.

Corollary 1 (Informal). Assuming polynomially secure iO and one-way func-
tions exists, we can construct an explicit compact functional encryption scheme.
In particular, the construction of functional encryption does not rely on an
explicit description of the iO scheme.

Combining this result with the works of [2,11] who show how to construct iO
from sub-exponentially secure compact FE, we obtain the following result.

Theorem 2 (Informal). There exists a robust iO combiner assuming sub-
exponentially secure one-way functions as long as one of the underlying iO can-
didates is sub-exponentially secure.

This improves upon the result of Ananth et al. [1] who achieve the same result
assuming sub-exponentially secure DDH or LWE.

Explicit NIKE from several iO candidates: Recent works of Garg and
Srinivasan [28], Li and Micciancio [41], show how to achieve collusion resistant
functional encryption from compact functional encryption and Garg et al. [27]
show how to build multi-party non interactive key exchange (NIKE) from collu-
sion resistant functional encryption. When combined with these results, our work
shows how to obtain an explicit NIKE protocol when given any one-way func-
tion, and many iO candidates with the guarantee that only one of the candidates
is secure.

New Correctness Amplification Theorem for iO. En route to achieving
this result, we demonstrate a new correctness amplification theorem for iO. In
particular, we show how to obtain almost-correct iO starting from polynomially
secure approximately-correct iO3 and one-way functions. Prior to our work, [12]
showed how to achieved a correctness amplification theorem starting from sub-
exponentially secure iO and sub-exponentially secure DDH/ LWE.

Theorem 3 (Informal). There is a transformation from a polynomially secure
approximately-correct iO to polynomially secure almost-correct iO assuming one-
way functions.

2 Technical Overview

The goal of our work is to construct a compact functional encryption scheme
starting many iO candidates out of which one of them is secure. Let us start
with the more ambitious goal of building a robust compact FE combiner. If

3 An iO scheme is ε-approximately correct if every obfuscated circuit agrees with the
original circuit on ε fraction of the inputs.
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we have such a combiner, then we achieve our goal since the ith compact FE
candidate used in the combiner can be built from the ith iO candidate using
prior works [24].

To build a compact FE combiner, we view this problem via the lens of secure
multi-party computation: we view every compact FE candidate as corresponding
to a party in the MPC protocol; insecure candidates correspond to adversaries.
Ananth et al. [1] took the same viewpoint when building an iO combiner and in
particular, used non-interactive MPC techniques that relied on DDH/ LWE to
solve this problem. Our goal is however to base our combiner only on one-way
functions and to achieve that, we start with an interactive MPC protocol.

A first attempt is the following: Let Π1, . . . , Πn be the n compact FE candi-
dates. We start with an interactive MPC protocol for parties P1, . . . , Pn.

– To encrypt a message x, we secret share x into n additive shares. Each of these
shares are encrypted using candidates Π1, . . . , Πn.

– To generate a functional key for function f , we generate a functional key for
the following function gi using FE candidate Πi: this function gi takes as input
message m and executes the next message function of Πi to obtain message
m′. If m′ has to be sent to Πj then it encrypts m′ under the public key of Πj

and outputs the ciphertext.

The decryption algorithm proceeds as in the evaluation of the multi-party secure
computation protocol. Since one of the candidates is secure, say ith candidate,
the hope is that the ith ciphertext hides the ith share of x and thus security of
FE is guaranteed.

However, implementing the above high level idea faces the following obstacles.

Statelessness: While a party participating in a MPC protocol is stateful, the
functional key is not. Hence, the next message function as part of the functional
key expects to receive the previous state as input. Its not clear how to ensure
without sharing state information with all the other candidates.

Oblivious Transfer: Recall that our goal was to base the combiner only on one-
way functions. However, MPC requires oblivious transfer and from Impagliazzo
and Rudich’s result [36] we have strong evidence to believe that oblivious transfer
cannot be based on one-way functions. Given this, it is unclear how to directly
use MPC to achieve our goal.

Randomized Functions: The functional key in the above solution encrypts a
message with respect to another candidate. Since encryption is a probabilistic
process, we need to devise a mechanism to generate randomness for encrypting
the ciphertext.

Correctness Amplification: A recent elegant work of Bitansky and Vaikun-
tanathan [12] study correctness amplification techniques in the context of indis-
tinguishability obfuscation and functional encryption. Their correctness ampli-
fication theorems assume DDH/ LWE to achieve this result. Indeed, this work
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was also employed by Ananth et al. to construct an iO combiner. We need a
different mechanism to handle the correctness issue if our goal is to base our
construction on one-way functions.

Tackling Issues: We propose the following ideas to tackle the above issues.

Use 2-ary FE instead of compact FE: The first idea is to replace compact FE
candidates with 2-ary FE4 candidates. We can build each of 2-ary FE candidates
starting from iO candidates. The advantage of using 2-ary FE is two fold:

1. It helps in addressing the issue of statelessness. The functional keys, of say
ith candidate, are now associated with 2-ary functions, where the first input
of the function takes as input the previous state and the other input takes
as input the message from another candidate. The output of this function is
the updated state encrypted under the public key of the ith candidate and
encryption of message under public key of jth candidate, where jth candidate
is supposed to receive this message. This way, the state corresponding to the
ith candidate is never revealed to any other candidate.

2. It also helps in addressing the issue of randomized functions. The first input
to the function could also contain a PRF key. This key will be used to generate
the randomness required to encrypt messages with respect to public keys of
other candidates.

Getting Rid of OT: To deal with this issue, we use the idea of pre-processing
OTs that is extensively used in the MPC literature [5,6,20,37]5. We pre-compute
polynomially many OTs [5] ahead of time. Once we have pre-computed OTs, we
can construct an information theoretically secure MPC protocol that is secure
upto n − 1 corruptions, where n is the number of parties. Note that we can only
achieve semi-honest security in this setting, achieving malicious security would
require that the pre-processing phase outputs exponentially many bits [37].

Next, we consider whether to perform the OT pre-computation as part of the
key generation or the encryption algorithm. Depending on where we perform the
pre-computation phase, we are faced with the following issues:

1. Reusability: In a secure MPC protocol, the pre-computed OTs are used only in
one execution of the MPC protocol. So, if we perform the OT pre-computation
as part of the key generation algorithm, then the pre-computed OTs need to
be reused across different ciphertexts. In this case, no security is guaranteed.

2. Compactness: In the current secure MPC with pre-processing solutions, it
turns out that the number of OTs to be pre-computed depends on the size
of the circuit implementing the MPC functionality. So if we implement the

4 A 2-ary FE scheme is a functional encryption corresponding to 2-ary functions. A
functional key of 2-ary function f decrypts two ciphertexts CT1 (of message x) and
CT2 (of message y) to obtain f(x, y).

5 The key difference is that in prior works, the pre-processing phase is generally inde-
pendent of the inputs and in our case, it is input dependent. We require that this
pre-processing phase is compatible with any MPC functionality that will be defined
after the pre-processing phase.
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OT pre-computation as part of the encryption algorithm, we need to make
sure that the encryption complexity is independent of the number of pre-
processed OTs.

We perform the OT pre-computation as part of the encryption algorithm. Hence,
we have to deal with the compactness issue stated above. To resolve this, we
“compress” the OTs using PRF keys. That is, to generate OTs between two
parties Pi and Pj , we use a PRF key Kij . The next problem is under which
public key do we encrypt Kij . Encrypting this under either ith candidate or jth

candidate could compromise the key completely. The guarantee we want is that
as long as one of the two candidates is honest, this key is not compromised.
To solve this problem, we employ a 1-out-2 combiner of 2-ary FE – given two
candidates, 1-out-2 combiner is secure as long as one of them is secure. This can
be achieved by computing an “onion” of two FE candidates. We refer the reader
to the technical section for more details.

Correctness Amplification: [12] showed how to transform ε-approximately correct
iO into an almost correct iO scheme. They do this in two steps: (i) the first step is
the self reducibility step, where they transform approximately correct iO scheme
into one, where the iO scheme is correct on every input with probability close to ε,
(ii) then they apply BPP amplification techniques to get almost correct iO. Their
self reducibility step involves using a type of secure function evaluation scheme
and they show how to construct this based on DDH and LWE. We instead show
how to achieve the self reducibility step using a single key private key functional
encryption scheme. The main idea is as follows: to obfuscate a circuit C, we
generate a functional key of C and then obfuscate the FE decryption algorithm
with the functional key hardwired inside it. Additionally, we give out the master
secret key in the clear along with this obfuscated circuit. To evaluate on an
input x, first encrypt this using the master secret key and feed this ciphertext
to the obfuscated circuit, which evaluates the decryption algorithm to produce
the output. This approach leads to the following issues: (i) firstly, revealing the
output of the FE decryption could affect the correctness of iO: for instance, the
obfuscated circuit could output ⊥ for all inputs on which the FE decryption
outputs 1, (ii) since the evaluator has the master secret key, he could feed in
maliciously generated FE ciphertexts into the obfuscated circuit.

We solve (i) by using by masking the output of the circuit. Here, the mask is
supplied as input to the obfuscated circuit. We solve (ii) by using NIZKs with
pre-processing, a tool used by Ananth et al. to construct witness encryption
combiners. This primitive can be based on one-way functions.

Our Solution in a Nutshell: Summarizing, we take the following approach
to build compact FE starting from many iO candidates out of which at least one
of them is correct and secure.

1. First check if the candidates are approximately correct. If not, discard the
candidates.

2. Apply the new correctness amplification mechanism on all the remaining iO
candidates.
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3. Construct n 2-ary FE candidates from the n iO candidates obtained from the
previous step.

4. Then using an onion-based approach, obtain a 2-ary FE combiner that only
combines two candidates. This will lead to N = n2 − n candidates.

5. Construct a compact FE scheme starting from the above N 2-ary FE candi-
dates and an n-party MPC protocol with OT preprocessing phase. Essentially
every (i, j)th 2-ary FE candidate implements a channel between ith and jth

party.

We expand on the above high level approach in the relevant technical sections.

3 Preliminaries

Let λ be the security parameter. For a distribution D we denote by x
$←− an ele-

ment chosen from D uniformly at random. We denote that
{D1,λ

} ≈c,μ

{D2,λ

}
,

if for every PPT distinguisher A,
∣∣∣∣ Pr

[A(1λ, x
$←− D1,λ) = 1

] − Pr
[A(1λ, x

$←−

D2,λ) = 1
]∣∣∣∣ ≤ μ(λ) where μ is a negligible function. For a language L associated

with a relation R with denote by (x,w) ∈ R an instance x ∈ L with a valid
witness w. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. By negl
we denote a negligible function. We assume that the reader is familiar with the
concepts of one-way functions, pseudorandom functions, functional encryption,
NIWI, statistically binding commitments and in particular sub-exponential secu-
rity of these primitives. We say that the one-way function is sub-exponentially
secure if no polynomial time adversary inverts a random image with a probabil-
ity greater than inverse sub-exponential in the length of the input. We refer the
reader to full version for the definitions of these primitives.

Important Notation. We introduce some notation that will be useful throughout
this work. Consider an algorithm A. We define the time function of A to be T
if the runtime of A(x) ≤ T (|x|). We are only interested in time functions which
satisfy the property that T (poly(n)) = |poly(T (n))|. In this section, we describe
NIZK with Pre-Processing.

3.1 NIZK with Pre-Processing

We consider a specific type of zero knowledge proof system where the messages
exchanged is independent of the input instance till the last round. We call this
zero knowledge proof system with pre-processing. The pre-processing algorithm
essentially simulates the interaction between the prover and the verifier till the
last round and outputs views of the prover and the verifier.

Definition 1. Let L be a language with relation R. A scheme PZK = (PZK.Pre,
PZK.Prove,PZK.Verify) of PPT algorithms is a zero knowledge proof system with
pre-processing, PZK, between a verifier and a prover if they satisfy the following
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properties. Let (σV , σP ) ← PZK.Pre(1λ) be a preprocessing stage where the prover
and the verifier interact. Then:

1. Completeness: for every (x,w) ∈ R we have that:

Pr [PZK.Verify(σV , x, π) = 1 : π ← PZK.Prove(σP , x, w)] = 1.

where the probability is over the internal randomness of all the PZK algo-
rithms.

2. Soundness: for every x /∈ L we have that:

Pr[∃π : PZK.Verify(σV , x, π) = 1] < 2−n

where the probability is only over PZK.Pre.
3. Zero-Knowledge: there exists a PPT algorithm S such that for any x,w

where V (x,w) = 1 there exists a negligible function μ such that it holds that:

{σV ,PZK.Prove(σP , x, w)} ≈c,μ {S(x)}

We say that PZK is sub-exponentially secure if μ(λ) = O(2−λc

) for a constant
c > 0.

Such schemes were studied in [21,40] where they proposed constructions based
on one-way functions. Sub-exponentially secure PZK can be built from sub-
exponentially secure one-way functions.

4 Definitions: IO Combiner

We recall the definition of IO combiners from [1]. Suppose we have many indis-
tinguishability obfuscation (IO) schemes, also referred to as IO candidates. We
are additionally guaranteed that one of the candidates is secure. No guarantee
is placed on the rest of the candidates and they could all be potentially broken.
Indistinguishability obfuscation combiners provides a mechanism of combining
all these candidates into a single monolithic IO scheme that is secure. We empha-
size that the only guarantee we are provided is that one of the candidates is secure
and in particular, it is unknown exactly which of the candidates is secure.

We formally define IO combiners next. We start by providing the syntax
of an obfuscation scheme. We then present the definitions of an IO candidate
and a secure IO candidate. To construct IO combiner, we need to also consider
functional encryption candidates. Once we give these definitions, we present our
construction in Sect. 5.2.

Syntax of Obfuscation Scheme. An obfuscation scheme associated to a class of
circuits C = {Cλ}λ∈N with input space Xλ and output space Yλ consists of two
PPT algorithms (Obf,Eval) defined below.

– Obfuscate, C ← Obf(1λ, C): It takes as input security parameter λ, a circuit
C ∈ Cλ and outputs an obfuscation of C, C.
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– Evaluation, y ← Eval
(
C, x

)
: This is usually a deterministic algorithm. But

sometimes we will treat it as a randomized algorithm. It takes as input an
obfuscation C, input x ∈ Xλ and outputs y ∈ Yλ.

Throughout this work, we will only be concerned with uniform Obf algorithms.
That is, Obf and Eval are represented as Turing machines (or equivalently uni-
form circuits).

We require that each candidate satisfy the following property called polyno-
mial slowdown.

Definition 2 (Polynomial Slowdown). An obfuscation scheme Π =
(Obf,Eval) is an IO candidate for a class of circuits C = {Cλ}λ∈N, with every
C ∈ Cλ has size poly(λ), if it satisfies the following property:

Polynomial Slowdown: For every C ∈ Cλ, we have the running time of Obf
on input (1λ, C) to be poly(|C|, λ). Similarly, we have the running time of Eval
on input (C, x) for x ∈ Xλ is poly(|C|, λ).

We now define various notions of correctness.

Definition 3 (Almost/Perfect Correct IO candidate). An obfuscation
scheme Π = (Obf,Eval) is an almost correct IO candidate for a class of circuits
C = {Cλ}λ∈N, with every C ∈ Cλ has size poly(λ), if it satisfies the following
property:

– Almost Correctness: For every C : Xλ → Yλ ∈ Cλ, x ∈ Xλ it holds that:

Pr
[∀x ∈ Xλ,Eval

(
Obf(1λ, C), x

)
= C(x)

] ≥ 1 − negl,

over the random coins of Obf. The candidate is called a correct IO candidate
if this probability is 1.

Definition 4 (α−worst-case Correctness). An obfuscation scheme Π =
(Obf,Eval) is α−worst-case correct IO candidate for a class of circuits C =
{Cλ}λ∈N, with every C ∈ Cλ has size poly(λ), if it satisfies the following prop-
erty:

– α−worst-case Correctness: For every C : Xλ → {0, 1} ∈ Cλ, x ∈ Xλ it
holds that:

Pr
[
Eval

(
Obf(1λ, C), x

)
= C(x)

] ≥ α,

over the random coins of Obf and Eval. The candidate is correct if this prob-
ability is 1.

Remark 1. Given any α−worst case correct IO candidate where α > 1/2 +
1/poly(λ), as observed by [12] we can gen an almost correct IO candidate while
retaining security via BPP amplification.
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ε − Secure IO candidate. If any IO candidate additionally satisfies the following
(informal) security property then we define it to be a secure IO candidate: for
every pair of circuits C0 and C1 that are equivalent6 we have obfuscations of C0

and C1 to be indistinguishable by any PPT adversary.

Definition 5 (ε-Secure IO candidate). An obfuscation scheme Π = (Obf,
Eval) for a class of circuits C = {Cλ}λ∈N is a ε-secure IO candidate if it satisfies
the following conditions:

– Security. For every PPT adversary A, for every sufficiently large λ ∈ N, for
every C0, C1 ∈ Cλ with C0(x) = C1(x) for every x ∈ Xλ and |C0| = |C1|, we
have:∣∣∣ Pr

[
0 ← A

(
Obf(1λ, C0), C0, C1

)]
−Pr

[
0 ← A

(
Obf(1λ, C1), C0, C1

)]∣∣∣ ≤ ε(λ)

Remark 2. We say that Π is a secure IO candidate if it is a ε-secure IO candidate
with ε(λ) = negl(λ), for some negligible function negl.

We remarked earlier that the identity function is an IO candidate. However, note
that the identity function is not a secure IO candidate. Whenever we refer an IO
candidate we will specify the correctness and the security notion it satisfies. For
example [4,24,33] are examples of negl-secure correct IO candidate. In particular,
an IO candidate need not necessarily have any security/correctness property
associated with it.

We have the necessary ingredients to define an IO combiner.

4.1 Definition of IO Combiner

We present the formal definition of IO combiner below. First, we provide the
syntax of the IO combiner. Later we present the properties associated with an
IO combiner.

There are two PPT algorithms associated with an IO combiner, namely,
CombObf and CombEval. Procedure CombObf takes as input circuit C along with
the description of multiple correct IO candidates7 and outputs an obfuscation
of C. Procedure CombEval takes as input the obfuscated circuit, input x, the
description of the candidates and outputs the evaluation of the obfuscated circuit
on input x.

Syntax of IO Combiner. We define an IO combiner Πcomb = (CombObf,
CombEval) for a class of circuits C = {Cλ}λ∈N.

– Combiner of Obfuscate algorithms, C ← CombObf(1λ, C,Π1, . . . , Πn): It
takes as input security parameter λ, a circuit C ∈ C, description of correct IO
candidates {Πi}i∈[n] and outputs an obfuscated circuit C.

6 Two circuits C0 and C1 are equivalent if they (a) have the same size, (b) have the
same input domain and, (c) for every x in the input domain, C0(x) = C1(x).

7 The description of an IO candidate includes the description of the obfuscation and
the evaluation algorithms.
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– Combiner of Evaluation algorithms, y ← CombEval(C, x,Π1, . . . , Πn): It
takes as input obfuscated circuit C, input x, descriptions of IO candidates
{Πi}i∈[n] and outputs y.

We define the properties associated to any IO combiner. There are three main
properties – correctness, polynomial slowdown, and security. The correctness
and the polynomial slowdown properties are defined on the same lines as the
corresponding properties of the IO candidates.

The intuitive security notion of IO combiner says the following: suppose
one of the candidates is a secure IO candidate then the output of obfuscator
(CombObf) of the IO combiner on C0 is computationally indistinguishable from
the output of the obfuscator on C1, where C0 and C1 are equivalent circuits.

Definition 6 ((ε′, ε)-secure IO combiner). Consider a circuit class C =
{Cλ}λ∈N. We say that Πcomb = (CombObf,CombEval) is a (ε′, ε)-secure IO
combiner if the following conditions are satisfied: Let Π1, . . . ,Πn be n correct
IO candidates for P/poly, and ε is a function of ε′.

– Correctness. Let C ∈ Cλ∈N and x ∈ Xλ. Consider the following process: (a)
C ← CombObf(1λ, C,Π1, . . . , Πn), (b) y ← CombEval(C, x,Π1, . . . , Πn).
Then with overwhelming probability over randomness of CombObf, Pr[y =

C(x)] ≥ 1, where the probability is over x
$←− Xλ.

– Polynomial Slowdown. For every C : Xλ → Yλ ∈ Cλ, we have the running
time of CombObf on input (1λ, C,Π1, . . . , Πn) to be at most poly(|C|+n+λ).
Similarly, we have the running time of CombEval on input (C, x,Π1, . . . , Πn)
to be at most poly(|C| + n + λ).

– Security. Let Πi be ε-secure correct IO candidate for some i ∈ [n]. For every
PPT adversary A, for every sufficiently large λ ∈ N, for every C0, C1 ∈ Cλ

with C0(x) = C1(x) for every x ∈ Xλ and |C0| = |C1|, we have:
∣
∣
∣Pr
[
0 ← A

(
C0, C0, C1, Π1, . . . , Πn

)]
− Pr

[
0 ← A

(
C1, C0, C1, Π1, . . . , Πn

)]∣
∣
∣

≤ ε′(λ),

where Cb ← CombObf(1λ, Cb,Π1, . . . , Πn) for b ∈ {0, 1}.
Some remarks are in order.

Remark 3. We say that Πcomb is an IO combiner if it is a (ε′, ε)-secure IO com-
biner, where, (c) ε′ = negl′ and, (d) ε = negl with negl and negl′ being negligible
functions.

Remark 4. We alternatively call the IO combiner defined in Definition 6 to be a
1-out-n IO combiner. In our construction we make use of 1-out-2 IO combiner.
This can be instantiated using a folklore “onion combiner” in which to obfuscate
any given circuit one uses both the obfuscation algorithms to obfuscate the
circuit one after the other in a nested fashion.
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Remark 5. We also define robust combiner, where the syntax is the same as
above except that security and correctness properties hold even if there is only
one input candidate that is secure and correct. No restriction about correctness
and security is placed on other candidates.

As seen in [1], a robust combiner for arbitrary many candidates imply universal
obfuscation as defined below.

Definition 7 ((T, ε)-Universal Obfuscation). We say that a pair of Turing
machines Πuniv = (Πuniv.Obf,Πuniv.Eval) is a universal obfuscation, parame-
terized by T and ε, if there exists a correct ε-secure indistinguishability obfuscator
for P/poly with time function T then Πuniv is an indistinguishability obfuscator
for P/poly with time function poly(T ).

4.2 Definition of 2-ary Functional Encryption Candidate

We now define 2-ary (public-key) functional encryption candidates, also referred
to as MIFE candidates). We start by providing the syntax of a MIFE scheme.

Syntax of 2-ary Functional Encryption Scheme. A MIFE scheme associated to
a class of circuits C = {Cλ}λ∈N consists of four polynomial time algorithms
(Setup,Enc,KeyGen,Dec) defined below. Let Xλ be the message space of the
scheme and Yλ be the space of outputs for the scheme (same as the output
space of Cλ).

– Setup, (EK1,EK2,MSK) ← Setup(1λ): It is a randomized algorithm takes as
input security parameter λ and outputs a keys (EK1,EK2,MSK). Here EK1

and EK2 are encryption keys for indices 1 and 2 and MSK is the master secret
key.

– Encryption, CT ← Enc(EKi,m): It is a randomized algorithm takes the
encryption key EKi for any index i ∈ [2] and a message m ∈ Xλ and outputs
an encryption of m (encrypted under EKi).

– Key Generation, skC ← KeyGen (MSK, C): This is a randomized algorithm
that takes as input the master secret key MSK and a 2-input circuit C ∈ Cλ

and outputs a function key skC .
– Decryption, y ← Dec (skC ,CT1,CT2): This is a deterministic algorithm that

takes as input the function secret key skC and a ciphertexts CT1 and CT2

(encrypted under EK1 and EK2 respectively). Then it outputs a value y ∈ Yλ.

Throughout this work, we will only be concerned with uniform algorithms. That
is, (Setup,Enc,KeyGen,Dec) are represented as Turing machines (or equivalently
uniform circuits).
We define the notion of an MIFE candidate below. The following definition of
multi-input functional encryption scheme incorporates only the correctness and
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compactness properties of a multi-input functional encryption scheme [31]. In
particular, an MIFE candidate need not necessarily have any security property
associated with it. Formally,

Definition 8 (Correct MIFE candidate). A multi-input functional encryp-
tion scheme MIFE = (Setup,Enc,KeyGen,Dec) is a correct MIFE candidate for
a class of circuits C = {Cλ}λ∈N, with every C ∈ Cλ has size poly(λ), if it satisfies
the following properties:

– Correctness: For every C : Xλ × Xλ → {0, 1} ∈ Cλ,m1,m2 ∈ Xλ it holds
that:

Pr

⎡
⎢⎢⎣

(EK1,EK2,MSK) ← Setup(1λ)
CTi ← Enc(EKi,mi) i ∈ [2]
skC ← KeyGen(MSK, C)

C(m1,m2) ← Dec(skC ,CT1,CT2)

⎤
⎥⎥⎦ ≥ 1 − negl(λ),

where negl is a negligible function and the probability is taken over the coins
of the setup only.

– Compactness: Let (EK1,EK2,MSK) ← Setup(1λ), for every m ∈ Xλ and
i ∈ [2], CT ← Enc(EKi m). We require that |CT| < poly(|m|, λ).

A scheme is an MIFE candidate if it only satisfies the correctness and com-
pactness property.

Selective Security. We recall indistinguishability-based selective security for
MIFE. This security notion is modeled as a game between a challenger C and an
adversary A where the adversary can request for functional keys and ciphertexts
from C. Specifically, A can submit 2-ary function queries f and respond with the
corresponding functional keys. It submits message queries of the form (m0

1,m
0
2)

and (m1
1,m

1
2) and receive encryptions of messages mb

i for i ∈ [2], and for some
random bit b ∈ {0, 1}. The adversary A wins the game if she can guess b with
probability significantly more than 1/2 if the following properties are satisfied:

– f(m0
1, ·) is functionally equivalent to f(m1

1, ·).
– f(·,m0

2) is functionally equivalent to f(·,m1
2)

– f(m0
1,m

0
2) = f(m1

1,m
1
2)

Formal definition is presented next.

ε − Secure MIFE candidate. If any MIFE candidate additionally satisfies the
following (informal) security property then we define it to be a secure MIFE
candidate:

Definition 9 (ε-Secure MIFE candidate). A scheme MIFE for a class of
circuits C = {Cλ}λ∈N and message space Xλ is a ε-secure FE candidate if it
satisfies the following conditions:

– MIFE is a correct and compact MIFE candidate with respect to C,
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– Security. For every PPT adversary A, for every sufficiently large λ ∈ N, we
have: ∣∣∣ Pr

[
0 ← ExptMIFE

A
(
1λ, 0

)]
− Pr

[
0 ← ExptMIFE

A
(
1λ, 1

)]∣∣∣ ≤ ε(λ)

where the probability is taken over coins of all algorithms. For each b ∈ B and
λ ∈ N, the experiment ExptMIFE

A (1λ, b) is defined below:

1. Challenge message queries: A outputs (m0
1,m

0
2) and (m0

1,m
0
2) where each

mi
j ∈ Xλ

2. The challenger computes Setup(1λ) → (EK1,EK2,MSK). It then computes
CT1 ← Enc(EK1,m

b
1) and CT2 ← Enc(EK1,m

b
2). Challenger hands CT1,CT2

to the adversary.
3. A submits functions fi to the challenger satisfying the constraint given below.

– fi(m0
1, ·) is functionally equivalent to fi(m1

1, ·).
– fi(·,m0

2) is functionally equivalent to fi(·,m1
2)

– fi(m0
1,m

0
2) = fi(m1

1,m
1
2)

For every i, the adversary gets skfi
← KeyGen(MSK, fi).

4. Adversary submits the guess b′. The output of the game is b′.

Remark 6. We say that MIFE is a secure MIFE candidate if it is a ε-secure FE
candidate with ε(λ) = negl(λ), for some negligible function negl.

5 Construction of IO Combiner

In this section we describe our construction for IO combiner. We first define an
MPC framework that will be used in our construction.

5.1 MPC Framework

We consider an MPC framework in the pre-processing model described below.
Intuitively the input is pre-processed and split amongst n deterministic parties
which are also given some correlated randomness. Then, they run a protocol
together to compute f(x) for any function f of the input x. The syntax consists
of the following algorithms:

– Preproc(1λ, n, x) → (x1, corr1, .., xn, corrn): This algorithm takes as input
x ∈ Xλ, the number of parties computing the protocol n, and the security
parameter λ. It outputs strings xi, corri for i ∈ [n]. Each corri = corri(r) is
represented both a function and a value depending on the context. (x1, .., xn)
forms a secret sharing of x.

– Eval(Party1(x1, corr1), ..,Partyn(xn, corrn), f) → f(x): The evaluate algorithm
is a protocol run by n parties with Partyi having input xi, corri. Each Partyi

is deterministic. The algorithm also takes as input the function f ∈ Cλ of size
bounded by poly(λ) and it outputs f(x).

We now list the notations used for the protocol.
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1. The number of rounds in the protocol is given by a polynomial tf (λ, n, |x|).
2. For every i ∈ [n], corri = {corri,j}j �=i. Let lenf = lenf (λ, n) denote a polyno-

mial. Then, for each i, j ∈ [n] such that i �= j, corri,j and corrj,i are generated

as follows. Sample ri,j
$←− {0, 1}lenf then compute corri,j = corri,j(ri,j) and

corrj,i = corrj,i(ri,j).
3. There exists an efficiently computable function φf that takes as input a round

number k ∈ [tf ] and outputs φf (k) = (i, j). Here, (i, j) represents that the
sender of the message at kth round is Partyi and the recipient is Partyj .

4. The efficiently computable next message function for every round k ∈ [tf ],
Mk does the following. Let φf (k) = (i, j). Then, Mk takes as input (xi, y1, ..,
yk−1, corri,j) and outputs the next message as yk.

Correctness : We require the following correctness property to be satisfied by
the protocol. For every n, λ ∈ N, x ∈ Xλ, f ∈ Cλ it holds that:

Pr

[
(x1, corr1, .., xn, corrn) ← Preproc(1λ, n, x)

Eval(Party1(x1, corr1), ...,Partyn(xn, corrn), f) → f(x)

]
= 1,

Here the probability is taken over coins of the algorithm Preproc.

Security Requirement. We require the security against static corruption of n− 1
semi-honest parties. Informally the security requirement is the following. There
exists a polynomial time algorithm that takes as input f(x) and inputs of n − 1
corrupt parties {(corri, xi)}i�=i∗ and simulates the outgoing messages of Partyi∗ .
Formally, consider a PPT adversary A. Let the associated PPT simulator be
Sim. We define the security experiment below.

Exptreal,A(1λ)

– A on input 1λ outputs n, the circuit f and input x along with the index of
the honest party, i∗ ∈ [n].

– Secret share x into (x1, .., xn).
– Part of the pre-processing step is performed by the adversary. For every i > j

such that i∗ �= i and i∗ �= j, A samples ri,j
$←− {0, 1}lenf . Then, it computes,

corri,j = corri,j(ri,j) and corrj,i = corrj,i(ri,j).

– Sample rj
$←− {0, 1}lenf for j �= i∗. Then compute corri∗,j = corri∗,j(rj) and

corrj,i∗ = corrj,i∗(rj). We denote corri = {corri,j}j �=i. This completes the pre-
processing step.

– Let y1, .., ytf be the messages computed by the parties in the proto-
col computing f(x). Output

({xi, corri}i�=i∗ , y1, .., ytf

)
. In MPC literature

({xi, corri}i�=i∗ , y1, .., ytf ) is referred to the view of the adversary in this exper-
iment. We refer this as viewExptreal,A .

Exptideal,A(1λ)

– A on input 1λ outputs n, the circuit f and input x along with the index of
the honest party, i∗ ∈ [n].
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– Secret share x into (x1, .., xn).
– Part of the pre-processing step is performed by the adversary. For every i > j

such that i∗ �= i and i∗ �= j, A samples ri,j
$←− {0, 1}lenf . Then, it computes,

corri,j = corri,j(ri,j) and corrj,i = corrj,i(ri,j).

– Sample rj
$←− {0, 1}lenf for j �= i∗. Then compute corri∗,j = corri∗,j(rj) and

corrj,i∗ = corrj,i∗(rj). This completes the pre-processing step.
– Compute Sim

(
1λ, 1|f |, f(x), {xi, corri}i�=i∗

)
. Output the result. We refer this

as viewExptideal,A .

We require that the output of both the above experiments is computationally
indistinguishable from each other. That is,

Definition 10 (Security). Consider a PPT adversary A and let the associated
PPT simulator be Sim. For every PPT distinguisher D, for sufficiently large
security parameter λ, it holds that:

∣∣Pr
[
1 ← D (

Exptreal,A(1λ)
)] − Pr

[
1 ← D(Exptideal,A

(
1λ)

)]∣∣ ≤ negl(λ),

where negl is some negligible function.

Instantiation of MPC Framework: We show how to instantiate this MPC frame-
work. We use a 1-out-of-n (i.e., n − 1 of them are insecure) information theoret-
ically secure MPC protocol secure against passive adversaries [30,38] in the OT
hybrid model. We then replace the OT oracle by preprocessing all the OTs [5]
before the execution of the protocol begins. Note that every OT pair is associated
exactly with a pair of parties.

5.2 Construction Roadmap

In this section, we describe the roadmap of our construction. We start with n IO
candidates, Π1, ..,Πn and construct n2−n IO candidates Πi,j where i �= j. Πi,j is
constructed by using an onion obfuscation combiner (one in which each obfusca-
tion candidate is run sequentially on the circuit). Each candidate Πi,j is now used
to construct a 2-ary public-key multi-input functional encryption scheme FEi,j

candidates using [9,31] (this step uses the existence of one-way function). This
is because [31] uses an existence of a public-key encryption, statistically binding
commitments and statistically sound non-interactive witness-indistinguishable
proofs. All these primitives can be constructed using IO and one-way functions
as shown in works such as [9,46]. These primitives maintain binding/soundness
as long as the underlying candidate is correct.

Any candidate FEi,j is secure as long as either Πi or Πj is secure. This follows
from the security of onion obfuscation combiner. We describe below how to
construct a compact functional encryption FE from these multi-input functional
encryption candidates and MPC framework in Sect. 5.3. Finally, using [2,11] and
relying on complexity leveraging we construct a secure IO candidate Πcomb from
FE. Below is a flowchart describing the roadmap.
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5.3 Constructing Compact FE from n2 − n FE Candidates

Consider the circuit class C. We now present our construction for a compact func-
tional encryption scheme FE for C starting from compact multi-input functional
encryption candidates FEi,j for C. Let Γ be a secure MPC protocol described in
Sect. 5.1. Let λ be the security parameter and F denote a pseudorandom function
(PRF) where F : {0, 1}λ ×{0, 1}∗ → {0, 1}len(λ) where len is some large enough
polynomial. Finally let Com be a statistically binding commitment scheme.

FE.Setup(1λ) Informally, the setup algorithm samples encryption and master
secret keys for candidates FEi,j such that i �= j and i, j ∈ [n]. These candidates
act as a channel between candidate i and j. It also samples NIWIi,j prover strings
for these candidates to prove consistency of the messages computed during the
protocol.

1. Start with n IO candidates

2. Combine each candidate pair (i,j) to get n2 − n IO candidates

3. Construct 2-ary public-key multi-input functional encryption candidates FEi,j for every i �= j

4. Construct compact functional encryption FE from all FEi,j candidates

5. Construct secure IO from compact functional encryption scheme

Using Onion Obfuscation

[32,9]

Using MPC Framework

[2,11]

1. Setting up MIFE candidates:
– For every i, j ∈ [n] and i �= j run FEi,j .Setup(1λ) → (EKi,j,1,EKi,j,2,

MSKi,j)
2. Sample NIWI prover strings

– Run NIWIi,j .Setup → σi,j for i, j ∈ [n] and i �= j. Recall, NIWIi,j is a
non-interactive statistically sound witness-indistinguishable proof scheme
(in the CRS model) constructed using IO candidate Πi,j and any one-way
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function as done in [9]8. This proof scheme remains sound if the underlying
obfuscation candidate is correct/almost correct. The proof retains witness
indistinguishability if the candidate is additionally secure.

– OutputMPK={EKi,j,1,EKi,j,2, σi,j}i,j∈[n],i �=j andMSK={MSK}i,j∈[n],i �=j .

FE.Enc(MPK,m). Informally, the encryption algorithm takes the message m and
runs preprocessing to get (m1, corr

′
1, ...,mn, corr′n). It discards corr′i (which is

allowed by our MPC framework). Then it samples PRF keys Ki,j for i �= j, which
are used to generate randomness for next message function (via computing corri
for every decryption). It also commits these message shares mi and PRF keys,
which are used to compute proofs about messages of the MPC protocol. Finally,
these shares and PRF keys are encrypted using an appropriate FE candidate.

1. MPC Preprocessing
– Run Preproc(1λ, n,m) → (m1, corr

′
1, ..,mn, corr′n). Compute commitments

Zin,i = Com(mi) for all i ∈ [n]. Let rin,i be the corresponding randomness.
2. Sample and commit PRF keys

– Sample PRF keys Ki,j for i, j ∈ [n] and i �= j with the constraint that
Ki,j = Kj,i. Compute Zi,j = Com(Ki,j) for i, j ∈ [n] and i �= j. Let ri,j

be the corresponding randomness.
– Sample PRF keys K

′
i,j for i, j ∈ [n] such that i �= j.

3. Compute encryptions
– For every i, j ∈ [n] and i �= j compute CTi,j = FEi,j .Enc(EKi,j,1,mi,

Ki,j ,K
′
i,j , {Zin,k, Zk,j}k,j∈[n],k �=j , ri,j , rin,i,⊥). Here ⊥ is a slot of size

poly(λ), which is described later.
– Output CT = {CTi,j}i�=j

FE.KeyGen(MSK, C). Let tC denote the number of rounds for the MPC proto-
col Γ for computing the circuit C. Let lenmsg denote the maximum length of
any message sent in the protocol while computing C on input. Informally, this
algorithm generates FE keys for the circuits implementing next message function
(used to compute C(m)) for every round k ∈ [tC ].

1. Computing commitments
– Compute Zout,i ← Com(⊥lenmsg ) for i ∈ [tC ].

2. Compute secret-key encryptions
– Let E by a secret-key encryption scheme. Run E.Setup(1λ) → sk. For every

i ∈ [tC ], compute ci = E.Enc(sk, 0). These encryptions encrypt messages
of sufficient length (described later).

3. Generate keys
– Sample a random tag ∈ {0, 1}λ.
– For every round k ∈ [tC ], let φ(k) = (i′, j′), generate a key skC,k ←

FEi′,j′ .KeyGen(MSKi′,j′ , Gk) where Gk is described in Fig. 1. Output
{skC,k}k∈[tC ].

8 We note that we could have also used NIZKs with pre-processing based on one-way
functions. The construction becomes a little complicated with that.
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Fig. 1. Circuit Gk

FE.Dec(skC ,CT)w

1. Evaluating the MPC protocol for circuit C
– Let φ(1) = (i1, j1). Compute CT1 = FEi1,j1 .Enc(EKi1,j1,2,⊥,⊥).

Set (x1, π1) = FEi,j .Dec(skC,1,CTi1,j1 ,CT1).
– For every round k ∈ [tC ], compute xk, πk iteratively from x1, π1,

.., xk−1, πk−1 as described below.
a Compute φ(k) = (i, j). Then, compute CTk = FEi,j .Enc(EKi,j,2,

x1, π1, .., xk−1, πk−1).
b Run (xk, πk) ← FEi,j .Dec(skC,k,CTi,j ,CTk)

– Output xtC
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Correctness: If the underlying MPC protocol is correct and the multi-input
functional encryption candidates FEi,j are correct then one can inspect that our
scheme satisfies correctness.

Compactness. Compactness is discussed next. The cipher-text encrypting any
message m, consists of FEi,j encryptions CTi,j for any i, j ∈ [n] such that i �= j.
Each CTi,j encrypts mi,Ki,j ,K

′
i,j , {Zin,k, Zk,j}k,j∈[n],k �=j , ri,j , rin,i,⊥. Note that

mi is of the same length of the message where as Ki,j ,K
′
i,j are just the PRF keys

that are of length λ. {Zin,k, Zk,j}k,j∈[n],k �=j are commitments of mi and the PRF
keys respectively while ri,j and rin,i is the randomness used for the commitments
Zi,j and Zin,i. ⊥ is a slot of size poly(λ) (which is the length of the decryption
key for scheme E). All these strings are of a fixed polynomial size (polynomial
in n, λ, |m|). If the underlying scheme FEi,j is compact, the scheme FE is also
compact. We give a brief sketch of proof here. We refer the reader to our full
version for a detailed proof.

Theorem 4. Consider the circuit class C = P/poly. Assuming Γ is a secure
MPC protocol for C according to the framework described in Sect. 5.1 and one-
way functions exist, then scheme FE is a secure functional encryption scheme as
long as there is i∗ ∈ [n] such that Πi∗ is a secure candidate.

Proof (Sketch). We now sketch the security proof of this theorem. Assume Πi∗

is a secure IO candidate. This implies FEi∗,j and FEj,i∗ is secure for any j �= i∗.
We use this crucially in our proofs. We employ the standard hybrid argument
to prove the theorem. In the first hybrid (Hyb1), the message Mb is encrypted

honestly with b
$←− {0, 1}. In the final hybrid (Hyb9), the ciphertext contains no

information about b. At this point, the probability of guessing the bit b is exactly
1/2. By arguing indistinguishability of every consecutive intermediate hybrids,
we show that the probability of guessing b in the first hybrid is negligibly close
to 1/2 (or the advantage is 0), which proves the theorem.

The first hybrid corresponds to the regular FE security game. Then we switch
to a hybrid where the secret-key encryption cipher-text ci in the function keys
for all rounds i ∈ [tC ] are hard-wired as encryptions of the output of the MIFE
decryption in those rounds. This can be done, because the cipher-text and the
function key fixes these outputs (as a function of PRF keys, e.t.c). Then, we
change the commitments Zout,k to commtiments of message output in round k
(for k such that the i∗ is the receiving or sending party in that round). This
security holds due to the security of the commitment. In the next hybrid, we
rely on the security of the scheme FEi∗,j and FEj,i∗ by generating encryptions
that does not contain the PRF keys and the openings of the commitments but
only contain the secret key for the encryption scheme E. Now we invoke the
security of the PRF to generate proofs πk hard-wired in ck for any round k (for
k such that the i∗ is the receiving or sending party in that round) randomly.
Next, we rely on the security of NIWIi∗,j and NIWIj,i∗ to use the opening of
Zout,k (for k such that the i∗ is the receiving or sending party in that round)
to generate the proofs. Now relying on the security of commitment scheme, we
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make the commitments Zi∗,j , Zj,i∗ and Zin,i∗ to commit to ⊥. Then we use the
security of the PRF to generate corri∗,j and corrj,i∗ (used for generating outputs
xn) randomly. Finally, we invoke the security of the MPC framework (by using
the simulator) to make the game independent of b.

5.4 Summing Up: Combiner Construction

We now give the combiner construction:

– CombObf(1λ, C,Π1, ..,Πn) : Use Π1, ..,Πn and any one-way function to con-
struct a compact functional encryption FE as in Sect. 5.2. Use [2,11] to con-
struct an obfuscator Πcomb. Output C ← Πcomb(1λ, C).

– CombEval(C, x) : Output Πcomb.Eval(C, x).

Correctness of the scheme is straight-forward to see because of the correctness of
FE as shown in Sect. 5.2. The security follows from the sub-exponential security
of construction in Sect. 5.2. The construction in Sect. 5.2 is sub-exponentially
secure as long as the underlying primitives are sub-exponentially secure.

We now state the theorem.

Theorem 5. Assuming sub-exponentially secure one-way functions, the con-
struction described above is a (negl, 2−λc

)−secure IO combiner for P/poly where
c > 0 is a constant and negl is some negligible function.

6 From Combiner to Robust Combiner

The combiner described in Sect. 5.2, is not robust. It guarantees no secu-
rity/correctness if the underlying candidates are not correct. A robust combiner
provides security/correctness as long as there exists one candidate Πi∗ such that
it is secure and correct. There is no other restriction placed on the other set of
candidates. A robust combiner for arbitrary many candidates imply universal
obfuscation [1].

In this section we describe how to construct a robust combiner. The idea is
the following.

– We correct the candidates (upto overwhelming probability) before feeding it
as input to the combiner.

– First, we leverage the fact that secure candidate is correct. We transform
each candidate so that all candidates are (1 − 1/λ)−worst case correct while
maintaining security of the secure candidate.

– Then using [12] we convert a worst-case correct candidate to an almost correct
candidate.

In the discussion below, we assume C consists polynomial size circuits with one
bit output. One can construct obfuscator for circuits with multiple output bits
from obfuscator with one output bit. For simplicity let us assume that Cλ consists
of circuits with input length p(λ) for some polynomial p.
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6.1 Generalised Secure Function Evaluation

The starting point to get a worst-case correct IO candidate is a variant of “Secure
Function Evaluation” (SFE) scheme as considered in [12]. They use SFE to
achieve worst-case correctness by obfuscating evaluation function of SFE for the
desired circuit C. To evaluate on input x, the evaluator first encodes x according
to the SFE scheme and feeds it as an input to the obfuscated program. Then,
it finally decodes the result as the output of the obfuscated program. Worst
case correctness is guaranteed because using the information hard-wired in the
obfuscated program its hard to distinguish an encoding of any input x1 from
that of x2.

We essentially use the same idea except that we consider a variant of SFE
with a setup algorithm (which produces secret parameters), and the evaluation
function for the circuit C is not public. It requires some helper information to
perform evaluation on the input encodings.

We consider a generalised variant of secure function evaluation [12] with the
following properties. Let Cλ be the allowed set of circuits. Let Xλ and Yλ denote
the ensemble of inputs and outputs. A secure function evaluation scheme consists
of the following algorithms:

– Setup(1λ) : On Input 1λ, the setup algorithm outputs secret parameters SP.
– CEncode(SP, C) : The randomized circuit encoding algorithm on input a circuit

C ∈ Cλ and SP outputs another C̃ ∈ Cλ.
– InpEncode(SP, x) : The randomized input encoding algorithm on input x ∈ Xλ

and SP outputs (x̃, z) ∈ Xλ × Zλ.
– Decode(y, z): Let y = C̃(x̃). The deterministic decoding algorithm takes as

input y and z to recover C(x) ∈ Yλ.

We require the following properties:

Input Secrecy: For any x1, x2 ∈ Xλ, any circuit C ∈ Cλ and SP ← Setup(1λ),
it holds that:

{CEncode(SP, C), InpEncode(SP, x1)} ≈c

{CEncode(SP, C), InpEncode(SP, x2)}

Correctness: For any circuit C ∈ Cλ and any input x, it holds that:

Pr[Decode(C̃(x̃), z) = C(x)] = 1

where SP ← Setup(1λ), C̃ ← CEncode(SP, C), (x̃, z) ← InpEncode(SP, x) and the
probability is taken over coins of all the algorithms.

Functionality: For any equivalent circuits C0, C1, SP ← Setup(1λ), C̃0 ←
CEncode(SP, C0) and C̃1 ← CEncode(SP, C1), it holds that C̃0 is equivalent to C̃1

with overwhelming probability over the coins of setup and the circuit encoding
algorithm. This captures the behaviour of the circuit encodings when evaluated
on maliciously generated input encodings.
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6.2 Modified Obfuscation Candidate

In this section we achieve the following. Given any candidate Π, we transform
it to a candidate Π ′ such that the following holds:

– If Π is both secure and correct, then so is Π ′.
– Otherwise Π ′ is guaranteed to be (1 − 1/λ)−worst-case correct.

In either case, we can amplify its correctness to get an almost correct IO candi-
date, which can be used by our combiner construction. Given any IO candidate
Π we now describe a modified IO candidate Π ′. For simplicity let us assume that
Cλ consists of circuits with one bit output and input space Xλ corresponds to
the set {0, 1}p(λ) for some polynomial p. Let SFE be a secure function evaluation
scheme as described in Sect. 6.1 for Cλ with Zλ = Yλ = {0, 1}.

– Obfuscate: On input the security parameter 1λ and C ∈ Cλ, first run SP ←
SFE.Setup(1λ), compute C̃ ← CEncode(SP, C). We now define an algorithm
Obfint,Π that takes as input C̃ and 1λ and does the following:
- Compute C ← Π.Obf(1λ, C̃).
- Then sample randomly x1, .., xλ2 ∈ {0, 1}p(λ). Compute (x̃i, zi) ←

InpEncode(SP, xi). Check that Π.Eval(C, x̃i) = C̃(x̃i) for all i ∈ [λ2].
- If the check passes output C, otherwise output C̃ 9.

Output of the obfuscate algorithm is (SP,Obfint,Π(C̃)).
– Evaluate: On input (SP, C) and an input x, first compute (x̃, z) ←
InpEncode(SP, x). Then compute ỹ ← Π.Eval(C, x̃) or ỹ ← C(x̃) depending
on the case if C = C̃ or not. We define as an intermediate evaluate algorithm,
i.e. ỹ = Evalint,Π(C, x̃).
Output y = SFE.Decode(ỹ, z).

Few claims are in order:

Theorem 6. Assuming SFE is a secure function evaluation scheme as described
in Sect. 6.1, if Π is a secure and correct candidate, then so is, Π ′.

Proof. We deal with this one by one. First we argue security. Note that when
Π is correct, the check at λ2 random points passes. In this case the obfuscation
algorithm always outputs (SP,Π.Obf(1λ, C̃b)) where C̃b ← SFE.CEncode(SP, Cb)
for b ∈ {0, 1} and SP ← SFE.Setup(1λ). Since, C̃0 is equivalent to C̃1 due to
functionality property of the SFE scheme, the security holds due to the security
of Π.

The correctness holds due to the correctness of SFE and Π.

Theorem 7. Assuming SFE is a secure function evaluation scheme as described
in Sect. 6.1, if Π is an IO candidate, then Π ′ is (1 − 2/λ)-worst case correct IO
candidate.

9 This step ensures circuit-specific correctness. Note that any correct candidate will
always pass the step. Any candidate that is not correct with high enough probability
will not pass the check. In this case, the algorithm outputs the circuit in the clear.
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Proof. The check step in the obfuscate algorithm ensures the following: Using
Chernoff bound it follows that, with overwhelming probability, for any circuit C,

Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C) ← Π ′.Obf(1λ, C), x $←− Up(λ)] ≥ (1 − 1/λ)
(1)

We now prove that for any x1, x2 it holds that, with overwhelming probability
over coins of obfuscate algorithm, for any circuit C,

|Pr[Π ′.Eval(SP, C, x1) = C(x1)|(SP, C) ← Π ′.Obf(1λ, C)]−
Pr[Π ′.Eval(SP, C, x2) = C(x2)|(SP, C) ← Π ′.Obf(1λ, C)]| ≤ negl(λ)

(2)

This is because for any input x,

Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C) ← Π ′.Obf(1λ, C)] =

Pr[Evalint,Π(C, x̃) = C̃(x̃)|SP ← Setup(1λ), C̃ ← CEncode(SP, C),

(x̃, z) ← InpEncode(SP, x),C ← Obfint,Π(1λ, C̃)]

(3)

Note that due to the input secrecy property of the SFE scheme we have that,

|Pr[Evalint,Π(C, x̃1) = C̃(x̃1)|SP ← Setup(1λ), C̃ ← CEncode(SP, C),

(x̃1, z1) ← InpEncode(SP, x1), C ← Obfint,Π(1λ, C̃)]−
Pr[Evalint,Π(C, x̃2) = C̃(x̃2)|SP ← Setup(1λ), C̃ ← CEncode(SP, C),

(x̃2, z2) ← InpEncode(SP, x2), C ← Obfint,Π(1λ, C̃)]| < negl(λ)

(4)

for a negligible function negl. Otherwise we can build a reduction R that given
any circuit-encoding, input encoding pair C̃, x̃b decides if b = 0 or b = 1 with a
non-negligible probability. The reduction just computes C ← Obfint,Π(C̃) and
checks if Evalint,Π(C, x̃b) = C̃(x̃b).

Using the pigeon-hole principle and Eq. 1, for any C ∈ Cλ there exists x∗

such that,

|Pr[Π ′.Eval(SP, C, x∗) = C(x∗)|(SP, C) ← Π ′.Obf(1λ, C)] ≥ (1 − 1/λ) (5)

Now substituting x1 = x and x2 = x∗ in Eq. 4 and then plugging into Eq. 3
gives us,

|Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C) ← Π ′.Obf(1λ, C)]−
Pr[Π ′.Eval(SP, C, x∗) = C(x∗)|(SP, C) ← Π ′.Obf(1λ, C)]| ≤ negl(λ)

(6)

Substituting result of Eq. 5 gives us the desired result. That is, For any circuit
C and input x, it holds that,

|Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C) ← Π ′.Obf(1λ, C)] ≥(1 − 1/λ) − negl(λ)
>(1 − 2/λ)

(7)

This proves the result.
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6.3 Instantiation of SFE

To instantiate SFE as described in Sect. 6.1, we use any single-key functional
encryption scheme. To compute the circuit encoding for any circuit C we com-
pute a function key for a circuit that has hard-wired a function key skHC

for
a circuit HC that takes as input (x, b) and outputs C(x) ⊕ b. This circuit uses
the hard-wired function key to decrypt the input. To encode the input x, we
just compute an FE encryption of (x, b). But this does not suffice, because then
for any equivalent circuits C0 and C1, the circuit encodings are not equivalent.
Hence, we use a one-time zero-knowledge proof system to prove that the cipher-
text is consistent. The details follow next. Our decoding/evaluation operation is
not randomized in contrast to [12], hence this allows us to directly argue security
with polynomial loss, instead of going input by input.

Theorem 8. Assuming (non-compact) public-key functional encryption scheme
for a single function key query exists, there exists an SFE according to the defi-
nition in Sect. 6.1.

Proof. Let FE denote any public-key functional encryption scheme for a single
function key. Let PZK denote a non-interactive zero knowledge proof system
with pre-processing. We now describe the scheme.

– Setup(1λ): The setup takes as input the security parameter 1λ. It first runs
(MPK,MSK) ← FE.Setup(1λ) and PZK.Pre(1λ) → (σP , σV ). Output SP =
(MPK,MSK, σP , σV ).

– CEncode(SP, C): The algorithm on input (SP, C) does the following.
- Compute skHC

← FE.KeyGen(MSK,HC). HC represents a circuit that on
input (x, b) outputs C(x) ⊕ b.

- Let H be the circuit described in Fig. 2. Output H.

Fig. 2. Circuit H
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– InpEncode(SP, x): On input an SP and an input x do the following:
- Sample a random bit b and compute CT = FE.Enc(MPK, x, b; r1).
- Compute the NIZK with pre-processing proof π proving that CT ∈ L using

the witness (x, b, r1).
- Output ((CT, π), b) = (x̃, b)

– Decode(y, b): Output y ⊕ b.

We now discuss the properties:

Correctness. It is straightforward to see correctness as it follows from the
completeness of the proof system and correctness of the functional encryption
scheme.

Functionality: Let Hb denote an circuit encoding of circuit Cb for b ∈ {0, 1}
where C0 and C1 are equivalent circuits. The circuit takes as input (CT, π)
where π is a proof that CT is an encryption of (x, b′) for some x and a bit b′.
Then it verifies the proof and decrypts the cipher-text using a function key that
computes Cb(x)⊕b′. Since, the proof system is statistically sound and FE scheme
is correct this property is satisfied with overwhelming probability over the coins
of the setup.

Input Secrecy: We want to show that for any circuit C and inputs x0, x1:

{(H, x̃0)|H ← CEncode(SP, C), SP ← Setup(1λ), (x̃0, z) ← InpEncode(SP, x0)} ≈c

{(H, x̃1)|H ← CEncode(SP, C),SP ← Setup(1λ), (x̃1, z) ← InpEncode(SP, x1)}
We claim this in a number of hybrids. The first one corresponds to the actual
game where x̃0 is given while the last one corresponds to the case of x̃1. We also
show that the hybrids are indistinguishable.

Hyb0 : This hybrid corresponds to the following experiment for C, x0. To run
setup we run (MPK,MSK) ← FE.Setup(1λ). Then we sample a random bit b
and compute CT ← FE.Enc(MPK, x0, b). We sample (σP , σV ) ← PZK.Pre(1λ)
and compute a proof π using PZK prover string σP and a witness of CT ∈ L.
We output SP = (MPK,MSK, σP , σV ). This SP is used to encode C by com-
puting a functional encryption key for circuit HC first (skHC

). Call this circuit
H (this circuit depends upon, σV and skHC

).

Hyb1 : This hybrid is the same as the previous one except that we gener-
ate π, σV differently. We run the simulator of PZK system and compute
(σV , π) ← Sim(CT). Hyb0 is indistinguishable to Hyb1 due to the zero-
knowledge security of PZK proof.

Hyb2 : This hybrid is the same as the previous one except that we generate CT
differently. CT = FE.Enc(MPK, x1, b ⊕ C(x0) ⊕ C(x1)). Hyb1 is indistinguish-
able to Hyb2 due to the security of FE proof.
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Hyb3 : This hybrid is the same as the previous one except that (σP , σV ) are gen-
erated honestly. Hyb2 is indistinguishable to Hyb3 due to the zero-knowledge
security of PZK.

Hyb4 : This hybrid is the same as the previous one except that CT is generated
as FE.Enc(MPK, x1, b). this corresponds to the experiment for input x1. Hyb3
is identical to Hyb4 as b is a random bit.

Corollary 2. Assuming public-key encryption exists [45], there exists an SFE
scheme satisfying requirements described in Sect. 6.1.

Remark 7. We note that such a scheme can be instantiated from one-way func-
tions alone. The idea is to use a secret-key functional encryption for single func-
tion query along with a statistically binding commitment scheme. The public
parameters now include a commitment of a master secret key which is used to
proof consistency of the cipher-text. Since the end result of constructing pub-
lic key functional encryption from IO candidates itself imply PKE, we do not
describe this construction.

6.4 Robust Combiner: Construction

We now describe our robust combiner. On input the candidates Π1, ..,Πn, we
transform them using the SFE scheme as done in Sect. 6.2 so that they are
(1 − 1/λ)−worst-case correct. Then using majority trick as in [12], we convert
them to almost correct. Plugging it to the construction in Sect. 5.2, gives us the
desired result. Finally, we also state our theorem about universal obfuscation.

Theorem 9. Assuming sub-exponentially secure one-way functions, there exists
a (poly, ε)-Universal Obfuscation with ε = O(2−λc

) for any constant c > 0 and
any polynomial poly.
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Abstract. Private-key functional encryption enables fine-grained access
to symmetrically-encrypted data. Although private-key functional
encryption (supporting an unbounded number of keys and ciphertexts)
seems significantly weaker than its public-key variant, its known real-
izations all rely on public-key functional encryption. At the same time,
however, up until recently it was not known to imply any public-key
primitive, demonstrating our poor understanding of this extremely-useful
primitive.

Recently, Bitansky et al. [TCC ’16B] showed that sub-exponentially-
secure private-key function encryption bridges from nearly-exponential
security in Minicrypt to slightly super-polynomial security in Cryptoma-
nia, and from sub-exponential security in Cryptomania to Obfustopia.
Specifically, given any sub-exponentially-secure private-key functional
encryption scheme and a nearly-exponentially-secure one-way function,
they constructed a public-key encryption scheme with slightly super-
polynomial security. Assuming, in addition, a sub-exponentially-secure
public-key encryption scheme, they then constructed an indistinguisha-
bility obfuscator.

We show that quasi-polynomially-secure private-key functional
encryption bridges from sub-exponential security in Minicrypt all the
way to Cryptomania. First, given any quasi-polynomially-secure private-
key functional encryption scheme, we construct an indistinguishability
obfuscator for circuits with inputs of poly-logarithmic length. Then, we
observe that such an obfuscator can be used to instantiate many nat-
ural applications of indistinguishability obfuscation. Specifically, rely-
ing on sub-exponentially-secure one-way functions, we show that quasi-
polynomially-secure private-key functional encryption implies not just
public-key encryption but leads all the way to public-key functional
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encryption for circuits with inputs of poly-logarithmic length. Moreover,
relying on sub-exponentially-secure injective one-way functions, we show
that quasi-polynomially-secure private-key functional encryption implies
a hard-on-average distribution over instances of a PPAD-complete
problem.

Underlying our constructions is a new transformation from single-
input functional encryption to multi-input functional encryption in the
private-key setting. The previously known such transformation [Brakerski
et al., EUROCRYPT ’16] required a sub-exponentially-secure single-input
scheme, and obtained a scheme supporting only a slightly super-constant
number of inputs.Our transformation both relaxes the underlying assump-
tion and supports more inputs: Given any quasi-polynomially-secure
single-input scheme, we obtain a scheme supporting a poly-logarithmic
number of inputs.

1 Introduction

Functional encryption [16,49,51] allows tremendous flexibility when accessing
encrypted data: Such encryption schemes support restricted decryption keys
that allow users to learn specific functions of the encrypted data without leaking
any additional information. We focus on the most general setting where the
functional encryption schemes support an unbounded number of functional keys
in the public-key setting, and an unbounded number of functional keys and
ciphertexts in the private-key setting. In the public-key setting, it has been
shown that functional encryption is essentially equivalent to indistinguishability
obfuscation [6,7,12,33,54], and thus it currently seems somewhat challenging
to base its security on standard cryptographic assumptions (especially given
the various attacks on obfuscation schemes and their underlying building blocks
[21,25–29,40,47,48] – see [5, Appendix A] for a summary of these attacks).

Luckily, when examining the various applications of functional encryption
(see, for example, the survey by Boneh et al. [17]), it turns out that private-key
functional encryption suffices in many interesting scenarios.1 However, although
private-key functional encryption may seem significantly weaker than its public-
key variant, constructions of private-key functional encryption schemes are cur-
rently known based only on public-key functional encryption.2

Minicrypt, Cryptomania, or Obfustopia? For obtaining a better under-
standing of private-key functional encryption, we must be able to position it
correctly within the hierarchy of cryptographic primitives. Up until recently,
1 As a concrete (yet quite general) example, consider a user who stores her data on a

remote server: The user uses the master secret key both for encrypting her data, and
for generating functional keys that will enable the server to offer her various useful
services.

2 This is not true in various restricted cases, for example, when the functional encryp-
tion scheme has to support an a-priori bounded number of functional keys or cipher-
texts [39]. However, as mentioned, we focus on schemes that support an unbounded
number of functional keys and ciphertexts.
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private-key functional encryption was not known to imply any cryptographic
primitives other than those that are essentially equivalent to one-way functions
(i.e., Minicrypt primitives [42]). Moreover, Asharov and Segev [8] proved that
as long as a private-key functional encryption scheme is invoked in a black-
box manner, it cannot be used as a building block to construct any public-key
primitive (i.e., Cryptomania primitives [42]).3 This initial evidence hinted that
private-key functional encryption may belong to Minicrypt, and thus may be
constructed based on extremely well-studied cryptographic assumptions.

Recently, Bitansky et al. [10] showed that private-key functional encryption
is more powerful than suggested by the above initial evidence. They proved
that any sub-exponentially-secure private-key functional encryption scheme and
any (nearly) exponentially-secure one-way function can be used to construct
a public-key encryption scheme.4 Although their underlying building blocks
are at least sub-exponentially secure, the resulting public-key scheme is only
slightly super-polynomially secure. In addition, Bitansky et al. proved that any
sub-exponentially-secure private-key functional encryption scheme and any sub-
exponentially-secure public-key encryption scheme can be used to construct
a full-fledged indistinguishability obfuscator. Overall, their work shows that
sub-exponentially-secure private-key functional encryption bridges from nearly-
exponential security in Minicrypt to slightly super-polynomial security in Cryp-
tomania, and from sub-exponential security in Cryptomania to Obfustopia (see
Fig. 1).

1.1 Our Contributions

We show that quasi-polynomially-secure private-key functional encryption bridg-
es from sub-exponential security in Minicrypt all the way to Cryptomania. First,
given any quasi-polynomially-secure private-key functional encryption scheme,
we construct a (quasi-polynomially-secure) indistinguishability obfuscator for
circuits with inputs of poly-logarithmic length and sub-polynomial size. We prove
the following theorem:

Theorem 1.1 (Informal). Assuming a quasi-polynomially-secure private-key
functional encryption scheme for polynomial-size circuits, there exists an indis-
tinguishability obfuscator for the class of circuits of size 2(log λ)ε

with inputs of
length (log λ)1+δ bits, for some positive constants ε and δ.

Underlying our obfuscator is a new transformation from single-input func-
tional encryption to multi-input functional encryption in the private-key setting.
The previously known such transformation of Brakerski et al. [22] required a

3 This holds even if the construction is allowed to generate functional keys (in a non-
black-box manner) for any circuit that invokes one-way functions in a black-box
manner.

4 Bitansky et al. overcome the black-box barrier introduced by Asharov and Segev [8]
by relying on the non-black-box construction of a private-key multi-input functional
encryption scheme of Brakerski et al. [22].
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Fig. 1. An illustration of our results (dashed arrows correspond to trivial implications).

sub-exponentially-secure single-input scheme, and obtained a multi-input scheme
supporting only a slightly super-constant number of inputs. Our transformation
both relaxes the underlying assumption and supports more inputs: Given any
quasi-polynomially-secure single-input scheme, we obtain a multi-input scheme
supporting a poly-logarithmic number of inputs.

We demonstrate the wide applicability of our obfuscator by observing that
it can be used to instantiate many natural applications of (full-fledged) indistin-
guishability obfuscation for polynomial-size circuits. We exemplify this observa-
tion by constructing a public-key functional encryption scheme (based on [54]),
and a hard-on-average distribution of instances of a PPAD-complete problem
(based on [11]).

Theorem 1.2 (Informal). Assuming a quasi-polynomially-secure private-key
functional encryption scheme for polynomial-size circuits, and a sub-exponentially-
secure one-way function, there exists a public-key functional encryption scheme for
the class of circuits of size 2(log λ)ε

with inputs of length (log λ)1+δ bits, for some
positive constants ε and δ.

Theorem 1.3 (Informal). Assuming a quasi-polynomially-secure private-key
functional encryption scheme for polynomial-size circuits, and a sub-exponentially-
secure injective one-way function, there exists a hard-on-average distribution over
instances of a PPAD-complete problem.
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Compared to the work of Bitansky at el. [10], Theorem 1.2 shows that private-
key functional encryption implies not just public-key encryption but leads all
the way to public-key functional encryption. Furthermore, in terms of under-
lying assumptions, whereas Bitansky et al. assume a sub-exponentially-secure
private-key functional encryption scheme and a (nearly) exponentially-secure
one-way function, we only assume a quasi-polynomially-secure private-key func-
tional encryption scheme and a sub-exponentially-secure one-way function.

In addition, recall that average-case PPAD hardness was previously shown
based on compact public-key functional encryption (or indistinguishability obfus-
cation) for polynomial-size circuits and one-way permutations [35]. We show
average-case PPAD hardness based on quasi-polynomially-secure private-key
functional encryption and sub-exponentially-secure injective one-way function.
In fact, as shown by Hubáček and Yogev [41], our result (as well as [11,35])
implies average-case hardness for CLS, a proper subclass of PPAD and PLS
[32]. See Fig. 1 for an illustration of our results.

1.2 Overview of Our Constructions

In this section we provide a high-level overview of our constructions. First,
we recall the functionality and security requirements of multi-input functional
encryption (MIFE) in the private-key setting, and explain the main ideas under-
lying our new construction of a multi-input scheme. Then, we describe the obfus-
cator we obtain from our multi-input scheme, and briefly discuss its applications
to public-key functional encryption and to average-case PPAD hardness.

Multi-input Functional Encryption. In a private-key t-input functional
encryption scheme [37], the master secret key msk of the scheme is used for
encrypting any message xi to the ith coordinate, and for generating functional
keys for t-input functions. A functional key skf corresponding to a function f
enables to compute f(x1, . . . , xt) given Enc(x1, 1), . . . ,Enc(xt, t). Building upon
the previous notions of security for private-key multi-input functional encryp-
tion schemes [13,37], we consider a strengthened notion of security that com-
bines both message privacy and function privacy (as in [2,23] for single-input
schemes and as in [6,22] for multi-input schemes), to which we refer as full
security. Specifically, we consider adversaries that are given access to “left-or-
right” key-generation and encryption oracles.5 These oracles operate in one out
of two modes corresponding to a randomly-chosen bit b. The key-generation ora-
cle receives as input pairs of the form (f0, f1) and outputs a functional key for the
function fb. The encryption oracle receives as input triples of the form (x0, x1, i),
and outputs an encryption of the message xb with respect to coordinate i.

5 In this work we focus on selectively-secure schemes, where an adversary first submits
all of its encryption queries, and can then adaptively interact with the key-generation
oracle (see Definition 2.7). This notion of security suffices for the applications we
consider in this paper.
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We require that no efficient adversary can guess the bit b with probability
noticeably higher than 1/2, as long as for each such t + 1 queries (f0, f1),
(x0

1, x
1
1), . . . , (x

0
t , x

1
t ) it holds that f0(x0

1, . . . , x
0
t ) = f1(x1

1, . . . , x
1
t ).

The BKS Approach. Given any private-key single-input functional encryption
scheme for all polynomial-size circuits, Brakerski et al. [22] constructed a t(λ)-
input scheme for all circuits of size s(λ) = 2(log λ)ε

, where t(λ) = δ · log log λ for
some fixed positive constants ε and δ, and λ ∈ N is the security parameter.

Their transformation is based on extending the number of inputs the scheme
supports one by one. That is, for any t ≥ 1, given a t-input scheme they con-
struct a (t + 1)-input scheme. Relying on the function privacy of the underlying
scheme, Brakerski et al. observed that ciphertexts for one of the coordinates can
be treated as a functional key for a function that has the value of the input hard-
wired. In terms of functionality, this idea enabled them to support t + 1 inputs
using a scheme that supports t inputs. The transformation is implemented such
that every step of it incurs a polynomial blowup in the size of the ciphertexts
and functional keys.6 Thus, applying this transformation t times, the size of a
functional key for a function of size s is roughly (s · λ)O(1)t

. Therefore, Brakerski
et al. could only apply their transformation t(λ) = δ · log log λ times, and this
required assuming that their underlying single-input scheme is sub-exponentially
secure, and that s(λ) = 2(log λ)ε

.

Our Construction. We present a new transformation that constructs a 2t-
inputs scheme directly from any t-input scheme. Our transformation shares the
same polynomial efficiency loss as in [22], so applying the transformation t times
makes a functional key be of size (s · λ)O(1)t

. But now, since each transformation
doubles the number of inputs, applying the transformation t times gets us all
the way to a scheme that supports 2t = (log λ)δ inputs, as required. We further
observe, by a careful security analysis, that for the resulting scheme to be secure
it suffices that the initial scheme is only quasi-polynomially secure (and the
resulting scheme can be made quasi-polynomially secure as well).

Doubling the Number of Inputs via Dynamic Key Encapsulation. As
opposed to the approach of [22] (and the similar idea of [6]), it is much less clear
how to combine the ciphertexts and functional keys of a t-input scheme to satisfy
the required functionality (and security) of a 2t-input scheme.

Our high-level idea is as follows. Given a 2t-input function f , we will generate
a functional key for a function f∗ that gets t inputs each of which is composed
of two inputs: f∗(x1 ‖ x1+t, . . . , xt ‖ x2t) = f(x1, . . . , x2t). We will encrypt each
input such that it is possible to compute an encryption of each pair (x�, x�+t),
and evaluate the function in two steps. First, we concatenate each such pair to
get an encryption of x� ‖ x�+t. Then, given such t ciphertexts, we will apply

6 A similar strategy was also employed by Ananth and Jain [6], that showed how to use
any t-input private-key scheme to get a private-key (t + 1)-input scheme under the
additional assumption that a public-key functional encryption scheme exists. Their
construction, however, did not incur the polynomial blowup and could be applied
all the way to get a scheme that supports a polynomial number of inputs.
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a functional key that corresponds to f∗. By the correctness of the underlying
primitives, the output must be correct. There are three main issues that we have
to overcome: (1) We need to be able to generate the encryption of x� ‖ x�+t, (2)
we need to make sure all of these ciphertexts are with respect to the same master
secret key and that the functional key for f∗ is also generated with respect to
the same key, and (3) we need to prove the security of the resulting scheme. We
now describe our solution.

The master secret key for our scheme is a master secret key for a t-input
scheme msk and a PRF key K. We split the 2t input coordinates into two parts:
(1) the first t coordinates 1, . . . , t which we call the “master coordinates” and
(2) the last t coordinates 1+ t, . . . , 2t which we call the “slave coordinates”. Our
main idea is to let each combination of the master coordinates implicitly define a
master secret “encapsulation” key mskx1...,xt

for a t-input scheme. Details follow.
To encrypt a message x� with respect to a master coordinate 1 ≤ � ≤ t, we

encrypt x� with respect to coordinate � under the key msk. To encrypt a message
x�+t with respect to a slave coordinate 1 ≤ � ≤ t, we generate a functional key
for a t-input function AGGx�+t,K under the key msk. To generate a functional
key for a 2t-input function f , we generate a functional key for a t-input function
Genf,K under msk. Both AGGx�+t,K and Genf,K first compute a pseudorandom
master secret key mskx1...xt

using randomness generated via the PRF key K
on input x1 . . . xt. Then, AGGx�+t,K computes an encryption of (x� ‖ x�+t) to
coordinate � under this master secret key, and Genf,K computes a functional key
for f∗ (described above) under this master secret key (see Fig. 2).

Fig. 2. The t-input functions Genf,K and AGGx�+t,K .

It is straightforward to verify that the above scheme indeed provides the
required functionality of a 2t-input scheme. Indeed, given t ciphertexts corre-
sponding to the master coordinates ctx1 , . . . , ctxt

, t ciphertexts corresponding
to the slave coordinates ctx1+t

, . . . , ctx2t
, and a functional key skf for a 2t-input

function f , we first combine ctx1 , . . . , ctxt
with each ctx�+t

to get ctx�‖x�+t
, which

is an encryption of x� ‖ x�+t under mskx1...xt
. Then, we combine ctx1 , . . . , ctxt

with skf to get a functional key skf∗ for f∗ under the same mskx1...xt
. Finally,

we combine ctx1‖x1+t
, . . . , ctxt‖x2t

with skf∗ to get f∗(x1 ‖ x1+t, . . . , xt ‖ x2t) =
f(x1, . . . , x2t), as required.

The security proof is done by a sequence of hybrid experiments, where
we “attack” each possible sequence of master coordinates separately, namely,
we handle each mskx1...xt

separately so that it will not be explicitly needed.
A typical approach for such a security proof is to embed all possible encryptions
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and key-generation queries under mskx1...xt
in the ciphertexts that are gener-

ated under msk. Handling the key-generation queries using mskx1...xt
is rather

standard: whenever a key-generation query is requested we compute the corre-
sponding functional key under mskx1...xt

and embed it into the functional key.
Handling encryption queries under mskx1...xt

is significantly more challenging
since for every x1 . . . xt sequence, there are many possible ciphertexts x�+t of
slave coordinates that will be paired with it to get the encryption of x� ‖x�+t. It
might seem as if there is not enough space to embed all these possible ciphertexts,
but we observe that we can embed each ciphertext ctx�‖x�+t

in the ciphertext
corresponding to x�+t (for each such x�+t). This way, mskx1...xt

is not explic-
itly needed in the scheme and we can use the security of the underlying t-input
scheme. In total, the number of hybrids is roughly T t, where T is an upper bound
on the running time of the adversary. Thus, since t is roughly logarithmic in the
security parameter, we have to start with a quasi-polynomially-secure scheme.

From MIFE to Obfuscation. Goldwasser et al. [37] observed that multi-input
functional encryption is tightly related to indistinguishability obfuscation [9,33].
Specifically, a multi-input scheme that supports a polynomial number of inputs
(i.e., t(λ) = poly(λ)) readily implies an indistinguishability obfuscator (and vice-
versa). We use a more fine-grained relationship (as observed by [10]) that is useful
when t(λ) is small compared to λ: A multi-input scheme that supports all circuits
of size s(λ) and t(λ) inputs implies an indistinguishability obfuscator for all circuits
of size s(λ) that have at most t(λ) · log λ input bits.

This transformation works as follows. An obfuscation of a function f of
circuit-size at most s(λ) that has at most t(λ) · log λ bits as input, is composed
of t(λ) · λ ciphertexts and one functional key. We think of f as a function f∗

that gets t(λ) inputs each of which is of length log λ bits. The obfuscation now
consists of a functional key for the circuit f∗, denoted by skf = KG(f∗), and
a ciphertext ctx,i = Enc(x, i) for every (x, i) ∈ {0, 1}log λ × [t(λ)]. To evaluate
C at a point x = (x1 . . . xt(λ)) ∈ ({0, 1}log λ)t(λ) one has to compute and output
Dec(skf , ctx1,1, . . . , ctxt(λ),t(λ)) = f(x). Correctness and security of the obfusca-
tor follow directly from the correctness and security of the multi-input scheme.

Given the relationship described above and given our multi-input scheme
that supports circuits of size at most s(λ) = 2(log λ)ε

that have t(λ) = (log λ)δ

inputs for some fixed positive constants ε and δ, we obtain Theorem 1.1.

Applications of our Obfuscator. One of the main conceptual contributions of
this work is the observation that an indistinguishability obfuscator as described
above (that supports circuits with a poly-logarithmic number of input bits) is
in fact sufficient for many of the applications of indistinguishability obfuscation
for all polynomial-size circuits. We exemplify this observation by showing how
to adapt the construction of Waters [54] of a public-key functional encryption
scheme and the construction of Bitansky et al. [11] of a hard-on-average distri-
bution for PPAD, to our obfuscator. Such an adaptation is quite delicate and
involves a careful choice of the additional primitives that are involved in the
construction. In a very high level, since the obfuscator supports only a poly-
logarithmic number of inputs, a primitive that has to be secure when applied on
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(part of) the input (say a one-way function), must be sub-exponentially secure.
We believe that this observation may find additional applications beyond the
scope of our work.

Using the Multi-input Scheme of [22]. Using the multi-input scheme of
[22], one can get that sub-exponentially-secure private-key functional encryp-
tion implies indistinguishability obfuscation for inputs of length slightly super-
logarithmic. However, using such an obfuscator as a building block seems to
inherently require to additionally assume nearly-exponentially-secure primitives
and the resulting primitives are (at most) slightly super-polynomially-secure.

Our approach, on the other hand, requires quasi-polynomially-secure private-
key functional encryption. In addition, our additional primitives are only sub-
exponentially-secure and the resulting primitives are quasi-polynomially secure.

1.3 Additional Related Work

Constructions of FE Schemes. Private-key single-input functional encryp-
tion schemes that are sufficient for our applications are known to exist based
on a variety of assumptions, including indistinguishability obfuscation [33,54],
differing-input obfuscation [3,19], and multilinear maps [34]. Restricted func-
tional encryption schemes that support either a bounded number of functional
keys or a bounded number of ciphertexts can be based on the Learning with
Errors (LWE) assumption (where the length of ciphertexts grows with the num-
ber of functional-key queries and with a bound on the depth of allowed functions)
[38], and even based on pseudorandom generators computable by small-depth
circuits (where the length of ciphertexts grows with the number of functional-key
queries and with an upper bound on the circuit size of the functions) [39].

In the work of Bitansky et al. [10, Proposition 1.2 & Footnote 1] it has been
shown that, assuming weak PRFs in NC1, any public-key encryption scheme can
be used to transform a private-key functional encryption scheme into a public-key
functional encryption scheme (which can be used to get PPAD-hardness [35]).
This gives a better reduction than ours in terms of security loss, but requires a
public-key primitive to begin with.

Constructions of MIFE Schemes. There are several constructions of private-
key multi-input functional encryption schemes. Mostly related to our work is
the construction of Brakerski et al. [22] which we significantly improve (see
Sect. 1.2 for more details). Other constructions [6,13,37] are incomparable as
they either rely on stronger assumptions or could be proven secure only in
an idealized generic model. Goldwasser et al. [37] constructed a multi-input
scheme that supports a polynomial number of inputs assuming indistinguishabil-
ity obfuscation for all polynomial-size circuits. Ananth and Jain [6] constructed
a multi-input functional encryption scheme that supports a polynomial number
of inputs assuming any sub-exponentially-secure (single-input) public-key func-
tional encryption scheme. Boneh et al. [13] constructed a multi-input scheme
that supports a polynomial number of inputs based on multilinear maps, and
was proven secure in the idealized generic multilinear map model.
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Proof Techniques. Parts of our proof rely on two useful techniques from
the functional encryption literature: key encapsulation (also known as “hybrid
encryption”) and function privacy.

Key encapsulation is an extremely useful approach in the design of encryption
schemes, both for improved efficiency and for improved security. Specifically, key
encapsulation typically means that instead of encrypting a message m under
a fixed key sk, one can instead sample a random key k, encrypt m under k
and then encrypt k under sk. The usefulness of this technique in the context of
functional encryption was demonstrated by [4,22]. Our constructions incorporate
key encapsulation techniques, and exhibit additional strengths of this technique
in the context of functional encryption schemes. Specifically, as discussed in
Sect. 1.2, we use key encapsulation techniques for our dynamic key-generation
technique, a crucial ingredient in our constructions and proofs of security.

The security guarantees of functional encryption typically focus on mes-
sage privacy that ensures that a ciphertext does not reveal any unnecessary
information on the plaintext. In various cases, however, it is also useful to con-
sider function privacy [2,14,15,23,53], asking that a functional key skf does not
reveal any unnecessary information on the function f . Brakerski and Segev [23]
(and the follow-up of Ananth and Jain [6]) showed that any private-key (multi-
input) functional encryption scheme can be generically transformed into one
that satisfies both message privacy and function privacy. Function privacy was
found useful as a building block in the construction of several functional encryp-
tion schemes [4,22,46]. In particular, functional encryption allows to successfully
apply proof techniques “borrowed” from the indistinguishability obfuscation lit-
erature (including, for example, a variant of the punctured programming app-
roach of Sahai and Waters [52]).

1.4 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we provide an
overview of the notation, definitions, and tools underlying our constructions.
In Sect. 3 we present our construction of a private-key multi-input functional
encryption scheme based on any single-input scheme. In Sect. 4 we present our
construction of an indistinguishability obfuscator for circuits with inputs of poly-
logarithmic length, and its applications to public-key functional encryption and
average-case PPAD hardness.

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sampling
a value x from the distribution X. Similarly, for a set X we denote by x ← X
the process of sampling a value x from the uniform distribution over X . For a
randomized function f and an input x ∈ X , we denote by y ← f(x) the process
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of sampling a value y from the distribution f(x). For an integer n ∈ N we denote
by [n] the set {1, . . . , n}.

Throughout the paper, we denote by λ the security parameter. A function
neg : N → R+ is negligible if for every constant c > 0 there exists an inte-
ger Nc such that neg(λ) < λ−c for all λ > Nc. Two sequences of random vari-
ables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if
for any probabilistic polynomial-time algorithm A there exists a negligible func-
tion neg(·) such that

∣∣Pr[A(1λ,Xλ) = 1] − Pr[A(1λ, Yλ) = 1]
∣∣ ≤ neg(λ) for all

sufficiently large λ ∈ N.

2.1 One-Way Functions and Pseudorandom Generators

We rely on the standard (parameterized) notions of one-way functions and
pseudorandom generators.

Definition 2.1 (One-way function). An efficiently computable function f :
{0, 1}∗ → {0, 1}∗ is (t,μ)-one-way if for every probabilistic algorithm A that runs
in time t = t(λ) it holds that

AdvOWF
f,A (λ) def= Pr

x←{0,1}λ
[A(1λ, f(x)) ∈ f−1(f(x))] ≤ μ(λ),

for all sufficiently large λ ∈ N, where the probability is taken over the choice of
x ∈ {0, 1}λ and over the internal randomness of A.

Whenever t = t(λ) is a super-polynomial function and μ = μ(λ) is a negligible
function, we will often omit t and μ and simply call the function one-way. In
case t(λ) = 1/μ(λ) = 2λε

, for some constant 0 < ε < 1, we will say that f is
sub-exponentially one-way.

Definition 2.2 (Pseudorandom generator). Let �(·) be a function. An effi-
ciently computable function PRG : {0, 1}�(λ) → {0, 1}2�(λ) is a (t, μ) -secure
pseudorandom generator if for every probabilistic algorithm A that runs in time
t = t(λ) it holds that

AdvPRGf,A =
∣∣∣∣ Pr
x←{0,1}�(λ)

[A(1λ,PRG(x)) = 1] − Pr
r←{0,1}2�(λ)

[A(1λ, r) = 1]
∣∣∣∣ ≤ μ(λ)

for all sufficiently large λ ∈ N.

Whenever t = t(λ) is a super-polynomial function and μ = μ(λ) is a negligible
function, we will often omit t and μ and simply call the function a pseudorandom
generator. In case t(λ) = 1/μ(λ) = 2λε

, for some constant 0 < ε < 1, we will say
that PRG is sub-exponentially secure.
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2.2 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval)
be a function family with the following syntax:

– PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the
unary representation of the security parameter λ, and outputs a key K ∈ Kλ.

– PRF.Eval is a deterministic polynomial-time algorithm that takes as input a
key K ∈ Kλ and a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range
of the function family, respectively. For easy of notation we may denote by
PRF.EvalK(·) or PRFK(·) the function PRF.Eval(K, ·) for K ∈ Kλ. The following
is the standard definition of a pseudorandom function family.

Definition 2.3 (Pseudorandomness). A function family PRF = (PRF.Gen,
PRF.Eval) is (t, μ)-secure pseudorandom if for every probabilistic algorithm A
that runs in time t(λ), it holds that

AdvPRF,A(λ) def=∣∣PrK←PRF.Gen(1λ)

[APRF.EvalK(·)(1λ) = 1
] − Prf←Fλ

[Af(·)(1λ) = 1
]∣∣ ≤ μ(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of all functions that map Xλ

into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely
on the seemingly stronger (yet existentially equivalent) notion of a puncturable
pseudorandom function family [18,20,43,52]. In terms of syntax, this notion asks
for an additional probabilistic polynomial-time algorithm, PRF.Punc, that takes
as input a key K ∈ Kλ and a set S ⊆ Xλ and outputs a “punctured” key KS .
The properties required by such a puncturing algorithm are captured by the
following definition.

Definition 2.4 (Puncturable PRF). A (t, μ)-secure pseudorandom function
family PRF = (PRF.Gen,PRF.Eval) is puncturable if there exists a probabilis-
tic polynomial-time algorithm PRF.Punc such that the following properties are
satisfied:

1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and
for every x ∈ Xλ \ S it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS
(x)] = 1.

2. Pseudorandomness at punctured points: Let A = (A1,A2) be any prob-
abilistic algorithm that runs in time at most t(λ) such that A1(1λ) outputs a
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set S ⊆ Xλ, a value x ∈ S, and state information state. Then, for any such
A it holds that

AdvPRF,A(λ) def=
|Pr [A2(KS ,PRF.EvalK(x), state) = 1] − Pr [A2(KS , y, state) = 1]| ≤ μ(λ)

for all sufficiently large λ ∈ N, where (S, x, state) ← A1(1λ), K ← PRF.Gen
(1λ), KS = PRF.Punc(K,S), and y ← Yλ.

For our constructions we rely on pseudorandom functions that need to be
punctured only at one point (i.e., in both parts of Definition 2.4 it holds that
S = {x} for some x ∈ Xλ). As observed by [18,20,43,52] the GGM construction
[36] of PRFs from any one-way function can be easily altered to yield such a
puncturable pseudorandom function family.

2.3 Private-Key Multi-Input Functional Encryption

In this section we define the functionality and security of private-key t-input
functional encryption. For i ∈ [t] let Xi = {(Xi)λ}λ∈N be an ensemble of finite
sets, and let F = {Fλ}λ∈N be an ensemble of finite t-ary function families. For
each λ ∈ N, each function f ∈ Fλ takes as input t strings, x1 ∈ (X1)λ, . . . , xt ∈
(Xt)λ, and outputs a value f(x1, . . . , xt) ∈ Zλ.

A private-key t-input functional encryption scheme Π for F consists of four
probabilistic polynomial time algorithm Setup, Enc, KG and Dec, described as
follows. The setup algorithm Setup(1λ) takes as input the security parameter λ,
and outputs a master secret key msk. The encryption algorithm Enc(msk,m, �)
takes as input a master secret key msk, a message m, and an index � ∈ [t],
where m ∈ (X�)λ, and outputs a ciphertext ct�. The key-generation algorithm
KG(msk, f) takes as input a master secret key msk and a function f ∈ Fλ, and
outputs a functional key skf . The (deterministic) decryption algorithm Dec takes
as input a functional key skf and t ciphertexts, ct1, . . . , ctt, and outputs a string
z ∈ Zλ ∪ {⊥}.

Definition 2.5 (Correctness). A private-key t-input functional encryption
scheme Π = (Setup,Enc,KG,Dec) for F is correct if there exists a negligible
function neg(·) such that for every λ ∈ N, for every f ∈ Fλ, and for every
(x1, . . . , xt) ∈ (X1)λ × · · · × (Xt)λ, it holds that

Pr
[
Dec(skf ,Enc(msk, x1, 1), . . . ,Enc(msk, xt, t)) = f(x1, . . . , xt)

] ≥ 1 − neg(λ),

where msk ← Setup(1λ), skf ← KG(msk, f), and the probability is taken over the
internal randomness of Setup,Enc and KG.

In terms of security, we rely on the private-key variant of the standard
indistinguishability-based notion that considers both message privacy and func-
tion privacy [2,22,23]. Intuitively, we say that a t-input scheme is secure if for
any two t-tuples of messages (x0

1, . . . , x
0
t ) and (x1

1, . . . , x
1
t ) that are encrypted with
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respect to indices � = 1 through � = t, and for every pair of functions (f0, f1), the
triplets (skf0 ,Enc(msk, x0

1, 1), . . . ,Enc(msk, x0
t , t)) and (skf1 ,Enc(msk, x1

1, 1), . . . ,
Enc(msk, x1

t , t)) are computationally indistinguishable as long as f0(x0
1, . . . , x

0
t ) =

f1(x1
1, . . . , x

1
t ) (note that this captures both message privacy and function pri-

vacy). The formal notions of security build upon this intuition and capture the fact
that an adversary may in fact hold many functional keys and ciphertexts, and may
combine them in an arbitrary manner. We formalize our notions of security using
left-or-right key-generation and encryption oracles. Specifically, for each b ∈ {0, 1}
and � ∈ {1, . . . , t} we let the left-or-right key-generation and encryption oracles be
KGb(msk, f0, f1)

def= KG(msk, fb) and Encb(msk, (m0,m1), �)
def= Enc(msk,mb, �).

Before formalizing our notions of security we define the notion of a valid t-input
adversary. Then, we define selective security.

Definition 2.6 (Valid adversary). A probabilistic polynomial-time algorithm
A is called valid if for all private-key t-input functional encryption schemes
Π = (Setup,KG,Enc,Dec) over a message space X1 × · · · × Xt = {(X1)λ}λ∈N ×
· · ·×{(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N, for all λ ∈ N and b ∈ {0, 1},
and for all (f0, f1) ∈ Fλ and ((x0

i , x
1
i ), i) ∈ Xi × Xi × [t] with which A queries

the left-or-right key-generation and encryption oracles, respectively, it holds that
f0(x0

1, . . . , x
0
t ) = f1(x1

1, . . . , x
1
t ).

Definition 2.7 (Selective security). Let t = t(λ), T = T (λ), Qkey = Qkey(λ),
Qenc = Qenc(λ) and μ = μ(λ) be functions of the security parameter λ ∈ N.
A private-key t-input functional encryption scheme Π = (Setup,KG,Enc,Dec)
over a message space X1 × · · · × Xt = {(X1)λ}λ∈N × · · · × {(Xt)λ}λ∈N and a
function space F = {Fλ}λ∈N is (T,Qkey, Qenc, μ)-selectively-secure if for any
valid adversary A that on input 1λ runs in time T (λ) and issues at most Qkey(λ)
key-generation queries and at most Qenc(λ) encryption queries for each index
i ∈ [t], it holds that

AdvselFEt

Π,F,A
def=

∣∣∣∣Pr
[
ExpselFEt

Π,F,A(λ) = 1
]

− 1
2

∣∣∣∣ ≤ μ(λ),

for all sufficiently large λ ∈ N, where the random variable ExpselFEt

Π,F,A(λ) is defined
via the following experiment:

1. ( �x1, . . . , �xt, state) ← A1

(
1λ

)
, where �xi = ((x0

i,1, x
1
i,1), . . . , (x

0
i,T , x1

i,T )) for
i ∈ [t].

2. msk ← Setup(1λ), b ← {0, 1}.
3. cti,j ← Enc(msk, xb

i,j , 1) for i ∈ [t] and j ∈ [T ].

4. b′ ← AKGb(msk,·,·)
2

(
1λ, {cti,j}i∈[t],j∈[T ], state

)
.

5. If b′ = b then output 1, and otherwise output 0.

Known Constructions for t = 1. Private-key single-input functional encryp-
tion schemes that satisfy the above notion of full security and support circuits
of any a-priori bounded polynomial size are known to exist based on a variety
of assumptions.
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Ananth et al. [4] gave a generic transformation from selective security to
full security. Moreover, Brakerski and Segev [23] showed how to transform
any message-private functional encryption scheme into a functional encryption
scheme which is fully secure, and the resulting scheme inherits the security guar-
antees of the original one. Therefore, based on [4,23], given any selectively-secure
message-private functional encryption scheme we can generically obtain a fully
secure scheme. This implies that schemes that are fully secure for any number of
encryption and key-generation queries can be based on indistinguishability obfus-
cation [33,54], differing-input obfuscation [3,19], and multilinear maps [34]. In
addition, schemes that are fully secure for a bounded number of key-generation
queries Qkey can be based on the Learning with Errors (LWE) assumption (where
the length of ciphertexts grows with Qkey and with a bound on the depth of
allowed functions) [38], and even based on pseudorandom generators computable
by small-depth circuits (where the length of ciphertexts grows with Qkey and with
an upper bound on the circuit size of the functions) [39].

Known Constructions for t > 1. Private-key multi-input functional encryp-
tion schemes are much less understood than single-input ones. Goldwasser
et al. [37] gave the first construction of a selectively-secure multi-input func-
tional encryption scheme for a polynomial number of inputs relying on indis-
tinguishability obfuscation and one-way functions [9,33,44]. Following the work
of Goldwasser et al., a fully-secure private-key multi-input functional encryp-
tion scheme for a polynomial number of inputs based was constructed based on
multilinear maps [13]. Later, Ananth, Jain, and Sahai, and Bitasnky and Vaikun-
tanathan [6,7,12] showed a selectively-secure multi-input functional encryption
scheme for a polynomial number of inputs based on any sub-exponentially secure
single-input public-key functional encryption scheme. Brakerski et al. [22] showed
that a fully-secure single-input private-key scheme implies a fully-secure multi-
input scheme for any constant number of inputs. Furthermore, Brakerski et al.
observed that their construction can be used to get a fully-secure t-input scheme
for t = O(log log λ) inputs, where λ is the security parameter, if the underlying
single-input scheme is sub-exponentially secure.

2.4 Public-Key Functional Encryption

In this section we define the functionality and security of public-key (single-
input) functional encryption. Let X = {Xλ}λ∈N be an ensemble of finite sets,
and let F = {Fλ}λ∈N be an ensemble of finite function families. For each λ ∈ N,
each function f ∈ Fλ takes as input a string, x ∈ Xλ, and outputs a value
f(x) ∈ Zλ.

A public-key functional encryption scheme Π for F consists of four proba-
bilistic polynomial time algorithm Setup, Enc, KG and Dec, described as follows.
The setup algorithm Setup(1λ) takes as input the security parameter λ, and
outputs a master secret key msk and a master public key mpk. The encryption
algorithm Enc(mpk,m) takes as input a master public key mpk and a message
m ∈ Xλ, and outputs a ciphertext ct. The key-generation algorithm KG(msk, f)
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takes as input a master secret key msk and a function f ∈ Fλ, and outputs
a functional key skf . The (deterministic) decryption algorithm Dec takes as
input a functional key skf and t ciphertexts, ct1, . . . , ctt, and outputs a string
z ∈ Zλ ∪ {⊥}.

Definition 2.8 (Correctness). A public-key functional encryption scheme
Π = (Setup,Enc,KG,Dec) for F is correct if there exists a negligible function
neg(·) such that for every λ ∈ N, for every f ∈ Fλ, and for every x ∈ Xλ, it
holds that

Pr
[
Dec(skf ,Enc(mpk, x)) = f(x)

] ≥ 1 − neg(λ),

where (msk,mpk) ← Setup(1λ), skf ← KG(msk, f), and the probability is taken
over the internal randomness of Setup,Enc and KG.

In terms of security, we rely on the public-key variant of the existing
indistinguishability-based notions for message privacy.7 Intuitively, we say that
a scheme is secure if the encryption of any pair of messages Enc(mpk,m0)
and Enc(mpk,m1) cannot be distinguished as long as for any function f for
which a functional key is queries, it holds that f(m0) = f(m1). The formal
notions of security build upon this intuition and capture the fact that an adver-
sary may in fact hold many functional keys and ciphertexts, and may combine
them in an arbitrary manner. We formalize our notions of security using left-
or-right key-generation (similarly to the private-key setting). Specifically, for
each b ∈ {0, 1} we let the left-or-right key-generation and encryption oracles
be KGb(msk, f0, f1)

def= KG(msk, fb) and Encb(msk, (m0,m1))
def= Enc(msk,mb),

respectively. Before formalizing our notions of security we define the notion of a
valid adversary. Then, we define selective security.8.

Definition 2.9 (Valid adversary). A probabilistic polynomial-time algorithm
A is called valid if for all public-key functional encryption schemes Π = (Setup,
KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function space F =
{Fλ}λ∈N, for all λ ∈ N and b ∈ {0, 1}, and for all f ∈ Fλ and ((x0, x1) ∈ (X )2

with which A queries the left-or-right encryption oracle, it holds that f(x0) =
f(x1).

Definition 2.10 (Selective security). Let t = t(λ), T = T (λ), Qkey = Qkey(λ)
and μ = μ(λ) be functions of the security parameter λ ∈ N. A public-key
functional encryption scheme Π = (Setup,KG,Enc,Dec) over a message space
X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is (T,Qkey, μ)-selectively
secure if for any valid adversary A that on input 1λ runs in time T (λ) and
issues at most Qkey(λ) key-generation queries, it holds that

Advsel-pkFEΠ,F,A
def=

∣∣∣∣Pr
[
Expsel-pkFEΠ,F,A (λ) = 1

]
− 1

2

∣∣∣∣ ≤ μ(λ),

7 We note that the notion of function privacy is very different from the one in the
private-key setting, and in particular, natural definitions already imply obfuscation.

8 We focus on selective securiy and do not define full security since there is a generic
transfomation [4].
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for all sufficiently large λ ∈ N, where the random variable Expsel-pkFEΠ,F,A (λ) is defined
via the following experiment:

1.
(
x0, x1, state

) ← A1

(
1λ

)
.

2. (msk,mpk) ← Setup(1λ), b ← {0, 1}.
3. b′ ← AKGb(msk,·,·)

2

(
1λ,Enc(mpk, xb), state

)
.

4. If b′ = b then output 1, and otherwise output 0.

2.5 Indistinguishability Obfuscation

We consider the standard notion of indistinguishability obfuscation [9,33]. We
say that two circuits, C0 and C1 are functionally equivalent, and denote it by
C0 ≡ C1, if for every x it holds that C0(x) = C1(x).

Definition 2.11 (Indistinguishability obfuscation). Let C = {Cn}n∈N be
a class of polynomial-size circuits operating on inputs of length n. An efficient
algorithm iO is called a (t, μ) -indistinguishability obfuscator for the class C if
it takes as input a security parameter λ and a circuit in C and outputs a new
circuit so that following properties are satisfied:

1. Functionality: For any input length n ∈ N, any λ ∈ N, and any C ∈ Cn it
holds that

Pr
[
C ≡ iO(1λ, C)

]
= 1,

where the probability is taken over the internal randomness of iO.

2. Indistinguishability: For any probabilistic adversary A = (A1,A2) that
runs in time t = t(λ), it holds that

AdviO
iO,C,A

def=
∣∣∣∣Pr

[
ExpiO

iO,C,A(λ) = 1
]

− 1
2

∣∣∣∣ ≤ μ(λ),

for all sufficiently large λ ∈ N, where the random variable ExpiO
iO,C,A(λ) is

defined via the following experiment:
(a) (C0, C1, state) ← A1(1λ) such that C0, C1 ∈ C and C0 ≡ C1.
(b) Ĉ ← iO(Cb), b ← {0, 1}.
(c) b′ ← A2

(
1λ, Ĉ, state

)
.

(d) If b′ = b then output 1, and otherwise output 0.

3 Private-Key MIFE for a Poly-Logarithmic Number
of Inputs

In this section we present our construction of a private-key multi-input func-
tional encryption scheme. The main technical tool underlying our approach is a
transformation from a t-input scheme to a 2t-input scheme which is described
in Sect. 3.1. Then, in Sects. 3.2 and 3.3 we show that by iteratively applying
our transformation O(log log λ) times, and by carefully controlling the security
loss and the efficiency loss by adjusting the security parameter appropriately, we
obtain a t-input scheme, where t = (log λ)δ for some constant 0 < δ < 1 (recall
that λ ∈ N denotes the security parameter).
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3.1 From t Inputs to 2t Inputs

Let F = {Fλ}λ∈N be a family of 2t-input functionalities, where for every λ ∈ N

the set Fλ consists of functions of the form f : (X1)λ × · · · × (X2t)λ → Zλ. Our
construction relies on the following building blocks:

1. A private-key t-input functional encryption scheme FEt = (FEt.S,FEt.KG,
FEt.E,FEt.D).

2. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval).

Our scheme FE2t = (FE2t.S,FE2t.KG,FE2t.E,FE2t.D) is defined as follows.

– The setup algorithm. On input the security parameter 1λ the setup algo-
rithm FE2t.S samples a master secret key for a t-input scheme mskin ←
FEt.S(1λ), and a PRF key Kmsk ← PRF.Gen(1λ), and outputs msk = (mskin,
Kmsk).

– The key-generation algorithm. On input the master secret key msk and
a function f ∈ Fλ, the key-generation algorithm FE2t.KG samples a PRF key
Kkey ← PRF.Gen(1λ) and outputs skf ← FEt.KG(mskin,Genf,⊥,Kmsk,Kkey,⊥),
where Genf,⊥,Kmsk,Kkey,⊥ is the t-input function that is defined in Fig. 3.

Fig. 3. The t-input functions Genf0,f1,Kmsk,Kkey,w and Cf .

– The encryption algorithm. On input the master secret key msk, a message
x and an index � ∈ [2t], the encryption algorithm FE2t.E distinguished between
the following three cases:

• If � = 1, it samples a random string τ ∈ {0, 1}λ, and then outputs ct�
defined as follows:

ct� ← FEt.E(mskin, (x,⊥, τ, 1, 1, . . . , 1, 0︸ ︷︷ ︸
t slots

), �).
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• If 1 < � ≤ t, it samples a random string τ ∈ {0, 1}λ, and then outputs ct�
defined as follows:

ct� ← FEt.E(mskin, (x,⊥, τ, 1), �).

• If t < � ≤ 2t, it samples a PRF key Kenc ← PRF.Gen(1λ) and outputs sk�

defined as follows:

sk� ← FEt.KG(mskin,AGGx,⊥,�,Kmsk,Kenc,⊥),

where AGGx,⊥,�,Kmsk,Kenc,⊥ is the t-input function that is defined in Fig. 4.

Fig. 4. The t-input function AGGx0
�+t

,x1
�+t

,�+t,Kmsk,Kenc,v.

– The decryption algorithm. On input a functional key skf and ciphertexts
ct1, . . . , ctt, skt+1, . . . , sk2t, the decryption algorithm FEt.D computes

∀i ∈ {t + 1, . . . , 2t} : ct′i = FEt.D(ski, ct1, . . . , ctt)
sk′ = FEt.D(skf , ct1, . . . , ctt),

and outputs FEt.D(sk′, ct′t+1, . . . , ct
′
2t).

Correctness. For any λ ∈ N, f ∈ Fλ and (x1, . . . , x2t) ∈ (X1)λ × · · · × (X2t)λ,
let skf denote a functional key for f and let ct1, . . . , ctt, skt+1, . . . , sk2t denote
encryptions of x1, . . . , x2t. Then, for every i ∈ {1, . . . , t}, it holds that

ct′i+t = FEt.D(ski+t, ct1, . . . , ctt)
= AGGxi+t,⊥,i+t,Kmsk,Kenc

i+t,⊥((x1,⊥, τ1, 1, 1, . . . , 1, 0), (x2,⊥, τ2, 1), . . . ,

(xt,⊥, τt, 1))
= FEt.E(mskτ1,...,τt

, (xi, xi+t), i;PRF.Eval(Kenc
i+t, τ1 . . . τt))
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and

sk′ = FEt.D(skf , ct1, . . . , ctt)
= Genf,⊥,Kmsk,Kkey

f ,⊥((x1,⊥, τ1, 1, 1, . . . , 1, 0), (x2,⊥, τ2, 1), . . . , (xt,⊥, τt, 1))

= FEt.KG(mskτ1,...,τt
, Cf ;PRF.Eval(Kkey

f , τ1 . . . τt))

where mskτ1,...,τt
= FEt.S(1λ,PRF.Eval(Kmsk, τ1 . . . τt)). Therefore,

FEt.D(sk′, ct′t+1, . . . , ct
′
2t) = Cf ((x1, xt+1), . . . , (xt, x2t)) = f(x1, . . . , x2t).

Security. The following theorem captures the security our transformation. The
proof can be found in the full version [45].

Theorem 3.1. Let t = t(λ), T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ) and
μ = μ(λ) be functions of the security parameter λ ∈ N, and assume that FEt is
a (T,Qkey, Qenc, μ)-selectively-secure t-input functional encryption scheme and
that PRF is a (T, μ)-secure puncturable pseudorandom function family. Then,
FE2t is (T ′, Q′

key, Q
′
enc, μ

′)-selectively-secure, where

– T ′(λ) = T (λ) − Qkey(λ) · poly(λ), for some fixed polynomial poly(·).
– Q′

key(λ) = Qkey(λ) − t(λ) · Qenc(λ).
– Q′

enc(λ) = Qenc(λ).
– μ′(λ) = 8t(λ) · (Qenc(λ))t(λ)+1 · Qkey(λ) · μ(λ).

3.2 Efficiency Analysis

In this section we analyze the overhead incurred by our transformation. Specifi-
cally, for a message space X1 × · · · × X2t and a function space F that consists of
2t-input functions, we instantiate our scheme (by applying our transformation
log t times) and analyze the size of a master secret key, the size of a functional-
key, the size of a ciphertext and the time it takes to evaluate a functional-key
with 2t ciphertexts.

Let λ ∈ N be a security parameter with which we instantiate the 2t-input
scheme, let us assume that F consists of functions of size at most s = s(λ) and
that each Xi consists of messages of size at most m = m(λ). Assuming that
log t ≤ poly(λ) (to simplify notation), we show that there exists a fixed constant
c ∈ N such that:

– the setup procedure takes time λc,
– the key-generation procedure takes time (s · λ)tlog c

,
– the encryption procedure takes time (m · λ)tlog c

, and
– the decryption procedure takes time tlog t · λc.

In Sect. 3.3 we will choose s,m, t and λ to satisfy Lemma 3.2.
For a circuit A that receives inputs of lengths x1 . . . , xm, we denote by

Time(A, x1, . . . , xm) the size of the circuit when applied to inputs of length
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∑m
i=1 xi. For a function family F , we denote by Size(F) the maximal size of the

circuit that implements a function from F .
We analyze the overhead incurred by our transformation

The Setup Procedure. The setup procedure of FE2t is composed of sampling
a key for a scheme FEt and generating a PRF key. Iterating this, we see that a
master secret key in our final scheme consists of a single master secret key for a
single-input scheme and log t additional PRF keys. Namely,

Time(FE2t.S, 1λ) = Time(FEt.S, 1λ) + p1(λ),

where p1 is a fixed polynomial that depends on the key-generation time of the
PRF, and thus

Time(FE2t.S, λ) = Time(FE1.S, λ) + log t · p1(λ).

The Key-Generation Procedure. The key-generation procedure of FE2t

depends on the complexity of the key-generation procedure of the FEt scheme.
Let F2t be the function family that is supported by the scheme FE2t.

Time(FE2t.KG, λ, Size(FE2t.S, λ), Size(F2t)) =

Time(FEt.KG, λ, 2Size(F2t),Time(FEt.S, λ),Time(FEt.KG, Size(F2t)), p2(λ)))

+ p3(λ),

where p2 subsumes the size of the embedded PRF keys and the complexity of
the simple operations that are done in Gen, and p3 subsumes the running time
of the generation of the PRF key Kkey.

The dominant part in the above equation is that the time it takes to generate
a key with respect to FE2t for a function whose size is Size(F2t) depends on the
circuit size of key-generation in the scheme FEt for a function whose size is
Time(FEt.KG,Size(F2t)) (namely, it is a function that outputs a functional key
for a function whose size is Size(F2t)). Thus, applying this equation recursively,
we get that for large enough c ∈ N (that depends on the exponents of p2 and
p3), it holds that

Time(FE2t.KG, λ,Time(FE2t.S, λ),Size(F2t)) ≤
(Size(F2t) · λ)clog t

= (Size(F2t) · λ)tlog c

.

The Encryption Procedure. The encryption procedure of FE2t depends on
the complexity of encryption and key-generation of the FEt scheme. Let m be
the length of a message to encrypt. For � ≤ t, the complexity is at most

Time(FE2t.E, λ,Size(FE2t.S, λ),m) ≤ Time(FEt.E, λ, 2m, (t + 2)λ).

For t + 1 ≤ � ≤ 2t, the complexity of encryption is

Time(FE2t.E, λ,Size(FE2t.S, λ),m) ≤
Time(FEt.KG, λ,Time(FEt.S, λ),Time(FEt.E, 2m), p4(λ)),
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where p4 subsumes the running time of the key-generation procedure of the PRF
and the various other simple operations made by AGG.

The dominant part is that an encryption of a message with respect to the
scheme FE2t requires generating a key with respect to the scheme FEt for a
function whose size is Time(FEt.E, 2m). Thus, similarly to the analysis of the
key-generation procedure, we get that for some fixed c ∈ N (that depends on
the exponents of p4 and the time it takes to encrypt a message with respect to
FE1), we get that

Time(FE2t.E, λ,Size(FE2t.S, λ),m) ≤ (m · λ)tlog c

.

The Decryption Procedure. Decryption in the scheme FE2t requires t + 2
decryption operations with respect to the scheme FEt. Let ct(t) and sk(t) be the
length of a ciphertext and a key in the scheme FEt, respectively. We get that

Time(FE2t.D, sk(t), 2t · ct(t)) =

(t + 2) · Time(FEt.D, sk(t), t · ct(t)) ≤ (t + 2)log t · p5(λ),

where p5 is a polynomial that subsumes the complexity of decryption in FE1.

3.3 Iteratively Applying Our Transformation

In this section we show that by iteratively applying our transformation
O(log log λ) times we obtain a t-input scheme, where t = (log λ)δ for some con-
stant 0 < δ < 1. We prove the following two theorems:

Lemma 3.2. Let T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ) and μ = μ(λ)
be functions of the security parameter λ ∈ N and let ε ∈ (0, 1). Assume any
(T,Qkey, Qenc, μ)-selectively-secure single-input private-key functional encryption
scheme with the following properties:

1. it supports circuits and messages of size poly(2(log λ)2ε

) and
2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)2ε

),

then for some constant δ ∈ (0, 1), there exists a
(
T ′, Q′

key, Q
′
enc, μ

′
)
-selectively-

secure (log λ)δ-input private-key functional encryption scheme with the following
properties:

1. it supports circuits and messages of size poly(2(log λ)ε

),
2. T ′(λ) ≥ T (λ) − (log log λ) · p(λ),
3. Q′

key(λ) ≥ Qkey(λ) − (2 log λ) · Qenc(λ),
4. Q′

enc(λ) = Qenc(λ), and
5. μ′(λ) ≤ 2(3 log log λ)2 · (Qenc(λ))2(log λ)δ+2 · (Qkey(λ))log log λ · μ(λ).
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Proof. Let FE1 be a (T,Qkey, Qenc, μ)-selectively-secure single-input scheme with
the properties from the statement.

Let us analyze the complexity of the t-input scheme where t(λ) = (log λ)δ,
where δ > 0 is some fixed constant that we fix later. In terms of complexity,
using the properties of the single-input scheme and our efficiency analysis from
Sect. 3.2, we have that setup takes a polynomial time in λ, key-generation for
a function of size s takes time at most (s · λ)tlog c

and encryption of a message
of length m takes time (m · λ)tlog c

for some large enough constant c > 1 (recall
that c is an upper bound on the exponents of the running time of key generation
and encryption procedures of the underlying single-input scheme). Plugging in
δ = 2ε/(3 log c), t = (log λ)δ and s,m ≤ 2c′·(log λ)ε

for any c′ ∈ N, we get that key-
generation and encryption take time at most 2c′·(log λ)2ε/3·(log λ)ε

= 2c′·(log λ)5ε/3
.

Notice that for large enough λ, decryption of such a key-message pair takes time
at most poly(2(log λ)5ε/3

) · (t + 2)log t ≤ 2(log λ)2ε

.
In terms of security, by Theorem3.1, we have that if FEt is (T (t), Q

(t)
key,

Q
(t)
enc, μ(t))-selectively-secure and PRF is a (T (t), μ(t))-secure puncturable pseudo-

random function family, then FE2t is (T (2t), Q
(2t)
key , Q

(2t)
enc , μ(2t))-selectively-secure,

where

1. T (2t)(λ) = T (t)(λ) − p(λ),
2. Q

(2t)
key (λ) = Q

(t)
key(λ) − t · Q

(t)
enc,

3. Q
(2t)
enc (λ) = Q

(t)
enc(λ), and

4. μ(2t)(λ) = 2(3 log log λ)2 · (Qenc(λ))2(log λ)δ+2 · (Qkey(λ))log log λ · μ(λ).

Iterating these recursive equations, using the fact that Q
(2t)
key ≤ Q

(t)
key, and plugging

in our initial scheme parameters, we get that

Q′
enc(λ) = Q(1)

enc(λ) = Qenc(λ)

Q′
key(λ) = Q

(t)
key(λ) − t(λ) · Qenc(λ)

≥ Qkey(λ) − 2t(λ) · Qenc(λ)
≥ Qkey(λ) − (2 log(λ)) · Qenc(λ)

T ′(λ) ≥ T (λ) − log t(λ) · p(λ)
≥ T (λ) − (log log λ) · p(λ)

μ′(λ) ≤ (8t(λ))log t(λ) · (Qenc(λ))2t(λ)+2 · (Qkey(λ))log t(λ) · μ(λ)

≤ 2(3 log t(λ))2 · (Qenc(λ))2t(λ)+2 · (Qkey(λ))log t(λ) · μ(λ)

≤ 2(3 log log λ)2 · (Qenc(λ))2(log λ)δ+2 · (Qkey(λ))log log λ · μ(λ)

�
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Claim 3.3. Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1).
Assuming any (22·(log λ)1/ε

, 22·(log λ)1/ε

, 2(log λ)1/ε

, 2−(log λ)1.5/ε

)-selectively-secure
single-input private-key functional encryption scheme supporting polynomial-
size circuits, there exists a (22·(log λ)2 , 22·(log λ)2 , 2(log λ)2 , 2−(log λ)3)-selectively-
secure single-input private-key functional encryption scheme with the following
properties

1. it supports circuits and messages of size poly(2(log λ)2ε

) and
2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)2ε

).

Proof. We instantiate the given scheme with security parameter λ̃ = 2(log λ)2ε

.
The resulting scheme is

(
22·(log λ)2 , 22·(log λ)2 , 2(log λ)2 , 2−(log λ)3

)
-selectively-

secure and for a circuit (resp., message) of size λ̃, the size of a functional key
(resp., ciphertext) is bounded by poly(λ̃). �

Combining Theorem 3.3 and Lemma 3.2 we get the following theorem.

Theorem 3.4. Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1).
Assuming any (22·(log λ)1/ε

, 21·(log λ)2/ε

, 2(log λ)1/ε

, 2−(log λ)1.5/ε

)-selectively-secure
single-input private-key functional encryption scheme supporting polynomial-
size circuits, then for some δ ∈ (0, 1), there exists a (2(log λ)2 , 2(log λ)2 ,

2(log λ)2 , 2−(log λ)2)-selectively-secure (log λ)δ-input private-key functional encryp-
tion scheme supporting circuits of size 2(log λ)ε

.

Proof. Assuming any
(
22·(log λ)1/ε

, 22·(log λ)1/ε

, 2(log λ)1/ε

, 2−(log λ)1.5/ε
)
-selectively-

secure single-input private-key functional encryption scheme supporting polyn-
omial-size circuits. By 3.3, it implies a

(
22·(log λ)2 , 22·(log λ)2 , 2(log λ)2 , 2−(log λ)3

)
-

selectively-secure single-input private-key functional encryption scheme with
the following properties:

1. it supports circuits and messages of size poly(2(log λ)2ε

) and
2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)2ε

).

Using Lemma 3.2, we get that for some constant δ ∈ (0, 1), there exists a(
T ′, Q′

key, Q
′
enc, μ

′
)
-selectively-secure (log λ)δ-input private-key functional encr-

yption scheme with the following properties:

1. it supports circuits and messages of size at most poly(2(log λ)ε/2
),

2. T ′(λ) ≥ 22·(log λ)2 − (log log λ) · p(λ) ≥ 2(log λ)2 ,
3. Q′

key(λ) ≥ 22·(log λ)2 − (2 log λ) · 2(log λ)2 ≥ 2(log λ)2 ,
4. Q′

enc(λ) = 2(log λ)2 , and
5. μ′(λ)≤2(3 log log λ)2 ·(2(log λ)2)2(log λ)δ+2 ·(2(log λ)2)log log λ ·2−(log λ)3 ≤2−(log λ)2 .

�
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4 Applications of Our Construction

In this section we present our construction of an indistinguishability obfuscator
for circuits with inputs of poly-logarithmic length, and its applications to public-
key functional encryption and average-case PPAD hardness.

4.1 Obfuscation for Circuits with Poly-Logarithmic Input Length

We show that any selectively-secure t-input private-key functional encryption
scheme that supports circuits of size s can be used to construct an indistin-
guishability obfuscator that supports circuits of size s that have at most t · log λ
inputs, where λ ∈ N is the security parameter. This is similar to the proof
of Goldwasser et al. [37] that showed that private-key multi-input functional
encryption for a polynomial number of inputs implies indistinguishability obfus-
cation (and a follow-up refinement of Bitansky et al. [10]).

We consider the following restricted class of circuits:

Definition 4.1. Let λ ∈ N and let s(·) and t′(·) be functions. Let Cs,t′
λ denoet

the class of all circuits of size at most s(λ) that get as input t′(λ) bits.

Lemma 4.2. Let t = t(λ), s = s(λ), T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ)
and μ = μ(λ) be functions of the security parameter λ ∈ N, and assume
a (T,Qkey, Qenc, μ)-selectively-secure t-input private-key functional encryption
scheme for functions of size at most s, where Qkey(λ) ≥ 1 and Qenc(λ) ≥ λ. Then,
there exists a (T (λ)−λ·t(λ)·p(λ), μ(λ))-secure indistinguishability obfuscator for
the circuit class Cs,t′

λ , where p(·) is some fixed polynomial and t′(λ) = t(λ) · log λ.

Proof. Let FEt be a t-input scheme as in the statement of the lemma. We con-
struct an obfuscator for circuits of size at most s(λ) that receive t(λ) · log λ bits
as input. On input a circuit C ∈ Cs,t′

λ , the obfuscator works as follows:

1. Sample a master secret key msk ← FEt.S(1λ).
2. Compute cti,j = FEt.E(msk, i, j) for every i ∈ {0, 1}log λ and j ∈ [t(λ)].
3. Compute skC = FEt.KG(msk, C)
4. Output Ĉ = {skC} ∪ {cti,j}i∈{0,1}log λ,j∈[t(λ)].

Evaluation of an obfuscated circuit Ĉ on an input x ∈ ({0, 1}log λ)t, where
we view x as x = x1 . . . xt and xi ∈ {0, 1}log λ, is done by outputting the
result of a single execution of the decryption procedure of the t-input scheme
FEt.D(skC , ctx1,1, . . . , ctxt,t). Notice that the description size of the obfuscated
circuit is upper bounded by some fixed polynomial in λ.

For security, notice that a single functional key is generated and it is for a
circuit of size at most s(λ). Moreover, the number of ciphertexts is bounded by λ
ciphertexts per coordinate. Thus, following [37], one can show that an adversary
that can break the security of the above obfuscator can be used to break the
security of the FEt scheme with the same success probability (it can even break
FEt that satisfies a weaker security notion in which the functional keys are also
fixed ahead of time, before seeing any ciphertext). �
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Applying Lemma 4.2 with the t-input scheme from Theorem 3.4 we obtain
the following corollary.

Corollary 4.3. Let λ ∈ N be a security parameter and fix any constant ε ∈
(0, 1). Assume a (22(log λ)1/ε

, 22(log λ)1/ε

, 2(log λ)1/ε

, 2−(log λ)1.5/ε

)-selectively-secure
single-input private-key functional encryption scheme for all functions of polyno-
mial size. Then, for some constant δ ∈ (0, 1), there exists a (2(log λ)2 , 2−(log λ)2)-

secure indistinguishability obfuscator for the circuit class C2O((log λ)ε),(log λ)1+δ

λ .

4.2 Public-Key Functional Encryption

In this section we present a construction of a public-key functional encryption
scheme based on our multi-input private-key scheme.

Theorem 4.4. Let λ ∈ N be a security parameter and fix any ε ∈ (0, 1). There
exists a constant δ > 0 for which the following holds. Assume a (22(log λ)1/ε

,

22(log λ)1/ε

, 2(log λ)1/ε

, 2−(log λ)1.5/ε

)-selectively-secure single-input private-key func-
tional encryption scheme for all functions of polynomial size, and that (22λε′

,

2−2λε′
)-secure one-way functions exist for ε′ > 1/(1 + δ). Then, for some con-

stant ζ > 1, there exists a (2(log λ)ζ

, 2(log λ)ζ

, 2−(log λ)ζ

)-selectively-secure public-

key encryption scheme for the circuit class C2O((log λ)ε),(log λ)1+δ

λ .

Our construction is essentially the construction of Waters [54], who showed
how to construct a public-key functional encryption scheme for the set of
all polynomial-size circuits assuming indistinguishability obfuscation for all
polynomial-size circuits. We make a more careful analysis of his scheme and
show that for a specific range of parameters, it suffices to use the obfuscator we
have obtained in Corollary 4.3. The proof of Theorem 4.4 can be found in the
full version [45].

4.3 Average-Case PPAD Hardness

We present a construction of a hard-on-average distribution of Sink-of-Verifiable-
Line (SVL) instances assuming any quasi-polynomially-secure private-key (single-
input) functional encryption scheme and sub-exponentially-secure one-way func-
tion. Following the work of Abbot et al. [1] and Bitansky et al. [11], this shows
that the complexity class PPAD [24,30,31,50] contains complete problems that
are hard on average (we refer the reader to [11] for more details). In what follows
we first recall the SVL problem, and then state our hardness result. The proof can
be found in the full version [45].

Definition 4.5 (Sink-of-Verifiable-Line). An SVL instance (S,V, xs, T ) con-
sists of a source xs ∈ {0, 1}λ, a target index T ∈ [2λ], and a pair of circuits
S : {0, 1}λ → {0, 1}λ and V : {0, 1}λ × [T ] → {0, 1}, such that for (x, i) ∈
{0, 1}λ × [T ], it holds that V(x, i) = 1 if and only if x = xi = Si−1(xs), where
x1 = xs. A string w ∈ {0, 1}λ is a valid witness if and only if V(w, T ) = 1.
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Theorem 4.6. Let λ ∈ N be a security parameter and fix any constant ε ∈
(0, 1). Assume a (22(log λ)1/ε

, 22(log λ)1/ε

, 2(log λ)1/ε

, 2−(log λ)1.5/ε

)-selectively-secure
single-input private-key functional encryption scheme for all functions of poly-
nomial size, and that (2λ2ε′

, 2−λ2ε′
)-secure injective one-way functions exist for

some large enough constant ε′ ∈ (0, 1). Then, there exists a distribution with
an associated efficient sampling procedure that generates instances of sink-of-
verifiable-line which are hard to solve for any polynomial-time algorithm.
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10. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53644-5 15

11. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
Nash equilibrium. In: Proceedings of the 56th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 1480–1498 (2015)

http://web.mit.edu/tabbott/Public/final.pdf
http://web.mit.edu/tabbott/Public/final.pdf
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-662-53008-5_17
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-662-53644-5_15
http://dx.doi.org/10.1007/978-3-662-53644-5_15


From Minicrypt to Obfustopia via Private-Key FE 149

12. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Proceedings of the 56th Annual IEEE Symposium on Foundations
of Computer Science, pp. 171–190 (2015)

13. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 563–594. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 19

14. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40084-1 26

15. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-42033-7 14

16. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

17. Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key
cryptography. Commun. ACM 55(11), 56–64 (2012)

18. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

19. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 3

20. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

21. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Crypt-
analysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report
2015/845 (2015)

22. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49896-5 30

23. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 12

24. Chen, X., Deng, X., Teng, S.: Settling the complexity of computing two-player Nash
equilibria. J. ACM 56(3) (2009). http://doi.acm.org/10.1145/1516512.1516516

25. Cheon, J.H., Fouque, P.A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. Cryptology ePrint Archive, Report
2016/135 (2016)

26. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multi-
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Abstract. In this work, we propose a variant of functional encryp-
tion called projective arithmetic functional encryption (PAFE). Roughly
speaking, our notion is like functional encryption for arithmetic circuits,
but where secret keys only yield partially decrypted values. These par-
tially decrypted values can be linearly combined with known coefficients
and the result can be tested to see if it is a small value.

We give a degree-preserving construction of PAFE from multilinear
maps. That is, we show how to achieve PAFE for arithmetic circuits
of degree d using only degree-d multilinear maps. Our construction is
based on an assumption over such multilinear maps, that we justify in
a generic model. We then turn to applying our notion of PAFE to one
of the most pressing open problems in the foundations of cryptography:
building secure indistinguishability obfuscation (iO) from simpler build-
ing blocks.

iO from degree-5 multilinear maps. Recently, the works of Lin [Euro-
crypt 2016] and Lin-Vaikuntanathan [FOCS 2016] showed how to build
iO from constant-degree multilinear maps. However, no explicit constant
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was given in these works, and an analysis of these published works shows
that the degree requirement would be in excess of 30. The ultimate
“dream” goal of this line of work would be to reduce the degree require-
ment all the way to 2, allowing for the use of well-studied bilinear maps,
or barring that, to a low constant that may be supportable by alterna-
tive secure low-degree multilinear map candidates. We make substantial
progress toward this goal by showing how to leverage PAFE for degree-5
arithmetic circuits to achieve iO, thus yielding the first iO construction
from degree-5 multilinear maps.

1 Introduction

Functional encryption (FE), introduced by Sahai and Waters [SW05,SW08],
allows for the creation of secret keys skf corresponding to functions f , such that
when such a secret key skf is applied to an encryption of x, decryption yields f(x)
but, intuitively speaking, nothing more is revealed about x. In this work, we will
focus on the secret-key variant of FE where knowledge of the master secret key is
needed to perform encryption. Functional encryption has proven to be remark-
ably versatile: it captures as special cases efficient applications like attribute-
based encryption for formulas [GPSW06,BSW07] and predicate encryption for
inner products [KSW08] from bilinear maps. At the same time, the general notion
of functional encryption implies remarkably powerful primitives, including most
notably indistinguishability obfuscation (iO) [AJ15,BV15,AJS15,BNPW16].

In this work, we continue the study of functional encryption notions, con-
structions, and implications. As a byproduct of our study, we tackle the one of
the most pressing open problems in theoretical cryptography: building secure iO
from simpler building blocks. In particular, we give the first construction of iO
using only degree-5 multilinear maps.

FE in the Arithmetic Context. For a number of cryptographic objects that
deal with general computations, arithmetic circuits have been considered in addi-
tion to boolean circuits. The primary motivation for this arises when we wish to
apply these objects to cryptographic computations, since many cryptographic
computations can be better expressed as arithmetic circuits rather than boolean
circuits. For example, zero-knowledge proofs [GMR89] for arithmetic circuits
(e.g. [GS08] in the bilinear setting) have been influential because they allow
for the construction of zero-knowledge protocols whose structure and complex-
ity more closely match the structure and complexity of algebraic cryptographic
algorithms.

In a similar spirit, we study general FE in the context where secret keys
should correspond to arithmetic circuits. Notably however, our motivation will
not (primarily) be efficiency, but rather achieving new feasibility results, as we
will elaborate below.

Previous work has studied FE for arithmetic circuits in two special cases:
The work of Boneh et al. [BNS13,BGG+14] studied attribute-based encryp-
tion for arithmetic circuits from the LWE assumption. (Our work will diverge
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technically from this.) Another line of work started with the work of Katz,
Sahai, and Waters [KSW08], studying FE where secret keys corresponded to
arithmetic inner product computations, using bilinear groups as the under-
lying cryptographic tool. There has been several followup papers on FE for
inner products [ABCP15,AAB+15,BJK15,ABCP16,DDM16,LV16] with vari-
ous security notions and correctness properties. An issue that will be important
to us, and that arises already in the context of inner products, concerns the
correctness property of the FE scheme. Ideally, a secret key for an arithmetic
circuit C, when applied to an encryption of x, should allow the decryptor to
learn C(x). However, FE constructions typically store values “in the exponent,”
and thus the difficulty of discrete logarithms in bilinear groups implies that
if C(x) is superpolynomial, it will be difficult to recover. This issue has been
dealt with in the past either by requiring that decryption only reveals whether
C(x) = 0, as in [KSW08], or by requiring that decryption only reveals C(x) if
C(x) is polynomially bounded, such as in the works of Abdalla et al. and oth-
ers [ABCP15,BJK15,ABCP16,DDM16]. We will diverge from past work when
dealing with this issue, in order to provide greater flexibility, and in so doing,
we introduce our notion of projective1 arithmetic FE.

1.1 Our Contributions

Projective Arithmetic FE (PAFE). In projective arithmetic FE, like in
FE, encrypting a value x yields a ciphertext c. Also like in (arithmetic) FE, in
PAFE each secret key skC is associated with an arithmetic circuit2 C. However,
unlike in FE, in PAFE when the secret key skC is applied to the ciphertext
c, it does not directly yield the decrypted value C(x), but rather this yields a
partial decryption pC . We call this process projective decryption. We envision a
party holding a collection of secret keys {skC}C would apply projective decryp-
tion using these secret keys to the ciphertext c to obtain a collection of partial
decryptions {pC}C . Finally, this party can choose any collection of small coef-
ficients {αC}C arbitrarily, and then call a different efficient recovery algorithm
which is given all the partial decryptions {pC}C and coefficients {αC}C . The
recovery algorithm then outputs a bit that indicates whether

∑
C αCC(x) = 0

1 We call our notion projective FE because, roughly speaking, a user holding a col-
lection of keys {skC}C for several arithmetic circuits C can only learn information
about various linear projections

∑
C αCC(x) for known small coefficients {αC}C .

We discuss this in more detail below. Our name is also loosely inspired by the notion
of projective hash functions, introduced by Cramer and Shoup [CS02], where keys
(called projective keys) only allow one to evaluate the hash function on inputs x
in some NP language, but not on all strings. In our setting, as well, our keys are
similarly only “partially functional” in that they only allow the user to learn infor-
mation about various linear projections, and they do not in general reveal the full
information that should be learned by obtaining all C(x) values. However, to the
best of our knowledge, only this loose relationship exists between projective hash
functions and our notion of projective FE.

2 We only are interested in arithmetic circuits of fan-in 2.
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or not. (More generally, we can allow the user to recover the value of
∑

C αCC(x)
as long as it is bounded by a polynomial.)

Thus, projective arithmetic FE can be seen as relaxing the correctness guar-
antee that would be provided by the standard notion of FE when applied to
arithmetic circuits over fields of superpolynomial size (which is not known to be
achievable). Of course, if decryption actually allowed a user to learn {C(x)}C

for several arithmetic circuits C, then the user would be able to compute∑
C αCC(x) for any set of small coefficients {αC}C of her choice. Note that

our notion is more permissive than only revealing whether C(x) = 0, as in
the original work for FE for inner products [KSW08], or only revealing C(x)
if it is polynomially bounded, such as in other works on FE for inner prod-
ucts [ABCP15,BJK15,ABCP16,DDM16]. With regard to security, our notion
will, intuitively speaking, only require indistinguishability of encryptions of x
from encryptions of y, if C(x) = C(y) for all secret keys skC obtained by the
adversary. However, for our application of PAFE to iO, we require a stronger
notion of security that we call semi-functional security. We give an intuitive
explanation of this notion in the technical overview.

Degree-Preserving Construction of PAFE from Multilinear Maps. The
first main technical contribution of our work is a construction of (secret-key)
PAFE for degree-d arithmetic circuits, from degree-d asymmetric multilinear
maps3. Furthermore, it suffices that the groups over which the multilinear maps
are defined are prime order. Our construction is based on an explicit pair of
assumptions over such multilinear maps, that we can justify in the standard
generic multilinear model.

Theorem 1 (Informal). There exists secret-key PAFE for degree-d arithmetic
circuits from degree-d prime order asymmetric multilinear maps under Assump-
tions #1 and #2 (see Sect. 4.1).

Our assumptions do not require any low-level encodings of 0 to be given to
the adversary, and we thus believe them to be instantiable using existing can-
didate multilinear maps. Indeed, because of some pseudorandomness properties
of our construction and generic proof of security, we believe that our assump-
tions can be proven secure in the Weak MMap model considered in the works
of Miles et al. and Garg et al. [MSZ16,GMM+16], which would give further
evidence of its instantiability. Because we want to posit instantiable assump-
tions, we do not formulate a succinct version of our assumption together with
a reduction of security as was done in the works of Gentry et al. or Lin and
Vaikuntanathan [GLSW15,LV16], because unfortunately no existing candidate
multilinear map construction is known to securely support such reductions, and
indeed the assumptions of [GLSW15,LV16] are broken when instantiated with
existing candidates. We stress that, like in the recent work of [Lin16,LV16], if

3 Roughly speaking, asymmetric multilinear maps disallows pairing of elements from
the same group structure.
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the degree d is constant, then our pair of assumptions would only involve a
constant-degree multilinear map.

Our construction can be seen as a generalizing FE for inner products (degree
2 functions) from bilinear maps, to higher degrees in a degree preserving manner.
Thus, our construction can be applied to cryptographic computations that are
naturally represented as arithmetic functions of low degree, but not as inner
products. In more detail, we introduce the notion of slotted encodings that has
the same flavor of multilinear maps defined over composite order groups. We
then show how to emulate slotted encodings using prime-order multilinear maps.
However, this emulation strategy only works in the case of constant degree.
We hope that this technique will be useful to transform constructions based
on constant degree composite order multilinear maps (for example [Lin16]) to
constructions based on constant degree prime order multilinear maps.

iO from Degree-5 Multilinear Maps. Our motivation for building PAFE for
arithmetic circuits in a degree-preserving manner is to achieve new feasibility
results for iO from low-degree multilinear maps. The concept of iO was first
defined by Barak et al. [BGI+01]. Informally speaking, iO converts a program
(represented by a boolean circuit) into a “pseudo-canonical form.” That is, for
any two equivalent programs P0, P1 of the same size, we require that iO(P0) is
computationally indistinguishable from iO(P1). The first candidate construction
of iO was given by Garg et al. [GGH+13b], and especially since the introduc-
tion of punctured programming techniques of Sahai and Waters [SW14], iO has
found numerous applications, with numerous papers published since 2013 that
use iO to accomplish cryptographic tasks that were not known to be feasible
before (see, e.g., [GGH+13b,SW14,GGHR14,HSW14,GGG+14,BPR15,BP15,
CHN+16,BGJ+16]). However, it is still not known how to build iO from stan-
dard cryptographic assumptions. Given the enormous applicability of iO to a
wide variety of cryptographic problems, one of the most pressing open problems
in the foundations of cryptography is to find ways to construct iO from simpler
building blocks. Indeed, while there have been dozens of papers published show-
ing how to use iO to accomplish amazing things, only a handful of papers have
explored simpler building blocks that suffice for constructing iO.

One line of work toward this objective is by Lin [Lin16] and Lin and Vaikun-
tanathan [LV16], who showed how to build iO from constant-degree multilinear
maps. Unfortunately, no explicit constant was given in these works, and an
analysis of these published works shows that the degree requirement would be in
excess of 100. The ultimate “dream” goal of this line of work would be to reduce
the degree requirement all the way to 2, allowing for the use of well-studied
bilinear maps, or barring that, to a low constant that may be supportable by
alternative secure low-degree multilinear map candidates.

We make substantial progress toward this goal by showing how to achieve iO
starting from PAFE. Specifically, we first construct ε-sublinear secret key func-
tional encryption for NC1 circuits, with constant ε < 1, starting from PAFE4 for
4 We additionally require that PAFE has encryption complexity to be multiplicative

overhead in the message size. Our construction of PAFE satisfies this property.
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degree-d arithmetic circuits and a specific type of degree d-randomizing polyno-
mials [IK00,AIK06]5. We require that the randomizing polynomials satisfy some
additional properties such as the encoding polynomials should be homogenous,
the randomness complexity6 is ε-sub-linear in the circuit size and the decoding
algorithm should be executed as a sequence of linear functions. We call a scheme
that satisfies these additional properties as homogenous randomizing polynomi-
als with ε-sub-linear randomness complexity. As we will see later, we can achieve
ε-sub-linear randomness complexity property for free by employing an appropri-
ate pseudorandom generator of 1

ε′ -stretch, where constant ε′ > 1 is related to ε.
Hence, we only care about constructing homogenous randomizing polynomials
(without sublinear property) and we provide an information theoretic construc-
tion achieving the same.

Once we construct ε-sublinear secret key functional encryption, we can then
invoke the result of [BNPW16] and additionally assume learning with errors to
obtain iO. For this transformation, we are required to assume that the underlying
FE scheme and learning with errors is sub-exponentially secure. Thus,

Theorem 2 (Informal). We construct an indistinguishability obfuscation
scheme for P/poly assuming the following: for some constant d,

1. Sub-exponentially secure PAFE scheme for degree d arithmetic circuits with
multiplicative overhead in encryption complexity. From Theorem 1, this can
be based on sub-exponentially secure Assumptions #1 and #2 (Sect. 4.1).

2. Sub-exponentially secure degree d homogenous randomizing polynomials with
ε-sub-linear randomness complexity. This can be based on sub-exponentially
secure pseudorandom generators of stretch 1

ε′ , where constant ε′ > 1 is related
to ε.

3. Sub-exponentially secure learning with errors.

Instantiation: We show how to leverage PAFE for degree-5 arithmetic circuits
to achieve iO, thus yielding the first iO construction from degree-5 multilinear
maps. The crucial step in this transformation is to first construct homogenous
randomizing polynomials with sub-linear randomness complexity of degree 15.
We first identify that the work of [AIK06] satisfies the required properties of
a degree-3 homogenous randomizing polynomials scheme. To achieve sublinear
randomness complexity, we assume an explicit degree-2 pseudo-random genera-
tor (PRGs) achieving super-linear stretch in the boolean setting, and a related
explicit degree-3 PRG achieving super-quadratic stretch in the arithmetic set-
ting. In particular we use a boolean PRG of stretch 1.49 and an algebraic PRG
of stretch 2.49 [OW14] (see also [AL16]). We then observe that for a special
class of circuits C, the degree of the above polynomials can be reduced to 5 if
we additionally allow for pre-processing of randomness. Also, we show how to

5 The degree of a randomizing polynomial is defined to be the maximum degree of the
polynomials computing the encoding function.

6 Randomness complexity in this context refers to the size of the random string used
in the encoding algorithm.
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remove the algebraic PRG part in the construction of randomizing polynomials
for C.

As alluded to above, the fact that our PAFE can directly deal with an arith-
metic PRG in a degree-preserving manner is critical to allowing us to achieve iO
with just degree-5 mutlilinear maps.

Theorem 3 (Informal). We construct an indistinguishability obfuscation
scheme for P/poly assuming the following: for some constant d,

1. Sub-exponentially secure PAFE scheme for degree 5 arithmetic circuits with
multiplicative overhead in encryption complexity. From Theorem 1, this can
be based on sub-exponentially secure Assumptions #1 and #2 (Sect. 4.1).

2. Sub-exponentially secure degree 5 homogenous randomizing polynomials for
C with ε-sub-linear randomness complexity. This can be based on sub-
exponentially secure boolean PRG of stretch 1.01.

3. Sub-exponentially secure learning with errors.

Concurrent Work(s). In a concurrent work, Lin obtains a new IO construc-
tion with a security reduction to (1) L-linear maps with the subexponential
symmetric external Diffie-Hellman (SXDH) assumption, (2) subexponentially
secure locality-L PRG, and (3) subexponential LWE. When using a locality 5
PRG, 5-linear maps with the SXDH assumption suffice. The L-linear maps con-
sist of L source groups G1, · · · , GL, whose elements ga1

1 , · · · , gaL

L can be “paired”
together to yield an element in a target group ga1···aL

T . The SXDH assumption
on such multilinear maps is a natural generalization of the SXDH assumption
on bilinear maps: It postulates that the DDH assumption holds in every source
group Gd, that is, elements ga

d , gb
d, g

ab
d are indistinguishable from ga

d , gb
d, g

r
d, for

random a, b and r.
To obtain IO, she first constructs collusion-resistant FE schemes for com-

puting degree-L polynomials from L-linear maps, and then bootstraps such FE
schemes to IO for P, assuming subexponentially secure locality-L PRG and LWE.

A corollary of our degree-preserving PAFE construction is a construc-
tion of FE for degree-2 polynomials from bilinear maps. Concurrently, two
works [BCF16,Gay16] achieved the same result based on concrete assumptions
on bilinear maps.
We now give a technical overview of our approach.

1.2 Technical Overview

We give an informal description of the algorithms of projective arithmetic func-
tional encryption (PAFE). We focus on secret-key setting in this work.

– Setup: It outputs secret key MSK.
– Key Generation: On input an arithmetic circuit C and master secret key,

it produces a functional key skC .
– Encryption: On input message x, it outputs a ciphertext CT.
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– Projective Decryption: On input a functional key skC and ciphertext CT,
it produces a partial decrypted value ι.

– Recover: On input many partial decrypted values {ιi} and a linear function
(specified as co-efficients), it outputs the result of applying the linear function
on the values contained in {ιi}.

We first show how to achieve iO starting from secret-key PAFE. Later, we show
how to obtain PAFE for degree D polynomials starting from degree D multilinear
maps.

iO from Secret-Key PAFE: We start with the goal of constructing a sub-
linear secret-key FE scheme for NC1 (from which we can obtain iO [BNPW16])
starting from PAFE for constant degree arithmetic circuits. Our goal is to min-
imize the degree of arithmetic circuits that suffices us to achieve sub-linear FE.

We start with the standard tool of randomizing polynomials to implement
NC1 using a constant degree arithmetic circuit. We use randomizing polynomi-
als with a special decoder: the decoder is a sequence of linear functions chosen
adaptively7. At a high level the construction proceeds as follows: let the ran-
domizing polynomial of circuit C, input x and randomness r be of the form
p1(x; r), . . . , pN (x; r). The sub-linear FE functional key corresponding to a cir-
cuit C are a collection of PAFE keys for p1, . . . , pN . The encryption of x w.r.t
sublinear FE scheme is a PAFE encryption of (x, r). To obtain C(x), first exe-
cute the projective decryption algorithm on key of pi and ciphertext of (x, r)
to obtain partial decrypted values corresponding to pi(x, r). Now, execute the
recover algorithm on input a linear function and the above partial decrypted
values, where the linear function is chosen by the decoder of the randomizing
polynomials scheme. Depending on the output of the recover algorithm, the
decoder picks a new linear function. This process is repeated until we finally
recover the output of the circuit C.

Before we justify why this scheme is secure, we remark as to why this scheme
satisfies the sub-linear efficiency property. In order to achieve sub-linear effi-
ciency, we require that |r| = |C|1−ε for some ε > 0. Thus, we require random-
izing polynomials with sub-linear randomness complexity. We remark later how
to achieve this.

The next goal is to argue security: prior works either employ function privacy
properties [BS15] or Trojan techniques [CIJ+13,ABSV15] to make the above
approach work. However, going through these routes is going to increase the
degree of arithmetic circuits required to achieve sub-linear FE. Instead, we start
with a PAFE scheme with a stronger security guarantee called semi-functional
security. This notion is inspired by the dual system methodology introduced by
Waters [Wat09] in different context and later employed by several other works

7 That is, choice of every linear function could depend on the output of the previously
chosen linear functions on the encoding of computation.
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(see for example, [LOS+10,GGHZ14]). Associated with this notion, there are
two types of objects:

– Semi-Functional Keys: A semi-functional key is associated with an arithmetic
circuit C and a hardwired value v.

– Semi-Functional Ciphertexts: A semi-functional ciphertext is generated just
using the master secret key.

We define how honestly generated keys, honestly generated ciphertexts and semi-
functional keys, semi-functional ciphertexts are required to behave with each
other in Table 1. Honestly generated key or ciphertext refers to generation of
key or ciphertext according to the description of the scheme.

Table 1. We consider four possibilities of decryption: (a) honestly generated keys cor-
rectly decrypts honestly generated ciphertexts (from correctness property), (b) semi-
functional keys also correctly decrypts honestly generated ciphertexts, (c) there is no
correctness guarantee on the decryption of honestly generated keys on semi-functional
ciphertexts, (d) Finally, the decryption of semi-functional keys on semi-functional
ciphertexts yields the hardwired value associated with the key.

Honestly
generated
keys

Semi-functional
keys

Honestly
generated
ciphertexts

Honest
decryption

Honest decryption

Semi-
functional
ciphertexts

Not defined Output hardwired
value

A PAFE scheme is said to satisfy semi-functional security if both the following
definitions are satisfied:

– Indistinguishability of Semi-functional keys: It should be hard to distinguish
an honestly generated functional key of C from a semi-functional key of C
associated with any hardwired value v.

– Indistinguishability of Semi-functional Ciphertexts: It should be hard to distin-
guish an honestly generated ciphertext of x from a semi-functional ciphertext
if every functional key of C issued is a semi-functional key associated with
hardwired value C(x).

Once we have a secret key PAFE scheme that satisfies semi-functional security
then we can prove the security as follows: we consider a simple case when the
adversary only submits one message query (x0, x1).

– We first turn the functional key associated with an arithmetic circuit C into
a semi-functional key with the hardwired value C(x0).

– Once all the functional keys are semi-functional, we can now switch the cipher-
text of x0 to semi-functional ciphertext.
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– Since C(x0) = C(x1), we can switch back the semi-functional keys to be
honestly generated functional keys.

– Finally, we switch back the ciphertext from semi-functional to honestly gen-
erated ciphertext of x1.

If the adversary requests multiple message queries, then the above process is to
be repeated one message query at a time.

Choice of Randomizing Polynomials with Sub-linear Randomness: The
next question is what randomizing polynomials do we choose to instantiate the
above approach. As we will see later, if we choose randomizing polynomials
with sub-linear randomness complexity of degree D then it suffices build PAFE
from degree D multilinear maps. Also, we will require the polynomials to be
homogenous.

Hence, our goal is to choose a homogenous randomizing polynomials with
minimal degree and also satisfying (i) linear decodability and (ii) sub-linear
randomness complexity properties. We achieve this in the following steps:

1. First, build randomizing polynomials with minimal degree. We start
with [AIK06] for NC1, where the polynomials are of degree 3. In spirit, this is
essentially information theoretic Yao with the wire keys being elements over
Fp and every wire key is associated with a random mask (which is represented
as a bit) that helps in figuring out which of the four entries to be decoded for
the next gate.

2. The above scheme already satisfies linear decodability property. This is
because the decryption of every garbled gate is a linear operation. The lin-
ear function chosen to decrypt one garbled gate now depends on the linear
functions chosen to decrypt its children gates.

3. Next, we tackle sub-linear randomness complexity: we generate the wire keys
and the random masks as the output of a PRG. The total length of all the
wire keys is roughly square the size of the NC1 circuit. This is because, the
size of the wire keys at the bottom most (input) layer are proportional to the
size of the circuit. We use an algebraic PRG of stretch (2 + ε) to generate
the wire keys and we use a boolean PRG to generate the random masks. The
degree of the algebraic PRG over Fp is 3 while the degree of the boolean
PRG represented over Fp is 5. When the above PRGs are plugged into the
randomizing polynomials construction from the above step, we get the degree
of the polynomials to be 15.

4. Finally, we show how to make the above randomizing polynomials homoge-
nous. This is done using a standard homogenization argument: add dummy
variables to the polynomials such that the degree of all the terms in the
polynomials are the same. While evaluating these polynomials, set all these
dummy variables to 1. This retains the functionality and at the same time
ensures homogeneity.

We can now use the above randomizing polynomials scheme to instantiate
the above approach. After partial decryption, we get partial decrypted values
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associated with {pi(x; r)}. Now, since the decoding is composed of many linear
functions, we can execute the Recover algorithm (multiple times) to recover the
output.

Reducing the Degree: We can apply some preprocessing to reduce the degree of
the above polynomials further. We remark how to reduce the degree to 5. Later,
in the technical sections, we explore alternate ways of reducing the degree, as
well.

Suppose we intend to construct sublinear FE for a specific class of circuits
C. In this case, we are required to construct randomizing polynomials only for
C ∈ NC1.

We define C as follows: every circuit C ∈ C of output length N is of the
form C = (C1, . . . , CN), where (i) Ci outputs the ith output bit of C, (ii) |Ci| =
poly(λ) for a fixed polynomial poly, (iii) Depth of Ci is c · log(λ), where c is a
constant independent of |C| and, (iv) Ci for every i ∈ [N] has the same topology–
what is different, however, are the constants associated with the wires. We show
later that it suffices to build sublinear FE for C to obtain iO. We now focus on
obtain randomizing polynomials for C.

We start with the randomizing polynomials scheme that we described above.
Recall that it involved generating a garbled table for every gate in the circuit
C. Moreover, the randomness to generate this garbled table is derived from
an algebraic and a boolean PRG. We make the following useful changes: let
C = (C1, . . . , CN) such that Ci outputs the ith output bit of C. Let wi

1, . . . , w
i
nw

be the set of wires in Ci and Gi
1, . . . , G

i
ng be the set of gates in Ci.

– We invoke nw number of instantiations of boolean PRGs bPRGw
1 , . . . , bPRGw

nw

and bPRGr
1, . . . , bPRG

r
nw. All these PRGs have the same structure (i.e., same

predicates is used) and have degree 5 over arbitrary field (with slightly super-
linear stretch 1+ε). Pseudorandom generator bPRGw

j is used to generate wire
keys for wires w1

j , . . . , wN
j . Recall that earlier we were using an algebraic PRG

of quadratic stretch. This is because the size of wire keys was proportional
to exponential in depth, which could potentially be linear in the size of the
circuit. However, since we are considering the specific circuit class C, the depth
of every circuit is c log(λ). And thus the size of the wire keys is independent of
the security parameter. This is turn allows us to use just a PRG of superlinear
stretch 1+ε. Finally, bPRGr

j is used to generate random masks for the wires
w1

j , . . . , wN
j .

– We now consider the [AIK06] randomizing polynomials associated with circuit
C. As before, we substitute the variables associated with wire keys and random
masks with the polynomials associated with the appropriate PRGs. The formal
variables in the PRG polynomials are associated with the seed.

– The result of the above process is the encoding of C consisting of polynomials
p1, . . . , pN with variables associated with the seeds of PRGs. Note that the
degree of these polynomials is still 15.
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– We then observe that there are polynomials q1, . . . , qT in seed variables such
that p1, . . . , pN can be rewritten in terms of q1, . . . , qT and moreover, the
degree of pi in the new variables {qi} is 5. The advantage of doing this is that
the polynomials {qi} can be evaluated during the encryption phase8. The only
thing we need to be wary of is the fact that T could be as big as |C|. If this
is the case then the encryption complexity would be at least linear in |C|,
which violate the sublinearity of the FE scheme. We show how to carefully
pick q1, . . . , qT such that T is sub-linear in |C| and the above properties hold.
We refer the reader to the technical sections for more details.

The only missing piece here is to show that sublinear FE for this special class of
circuits C with sub-exponential security loss implies iO. To show this, it suffices
to show that sublinear FE for C implies sublinear FE for all circuits. Consider the
transformation from FE for NC1 to FE for all circuits by [ABSV15] – the same
transformation also works for single-key sublinear secret key FE. We consider a
variant of their transformation. In this transformation, a sublinear FE key for
circuit C ′ is generated by constructing a circuit C that has hardwired into it
C ′ and value v. Circuit C takes as input x, PRF key K and mode b. If b = 0
it outputs a Yao’s garbled circuit of (C, x) computed w.r.t randomness derived
from K. If b = 1 it outputs the value v. We can re-write C as being composed of
sub-circuits C1, . . . , CN such that each of Ci is in NC1, |Ci| = poly(λ) and depth
of Ci is c · log(λ) for a fixed polynomial poly and fixed constant c. Intuitively,
Ci, has hardwired into it gate Gi of C ′ and ith block of v. It computes a garbled
table corresponding to Gi if b = 0, otherwise it outputs the ith block of v.

Constructing PAFE: We now focus on building PAFE from multilinear maps.
The first attempt to encrypt the input x = (x1, . . . , x�inp) would be to just
encode every xi separately. Now, during evaluation of circuits C1, . . . , CN on
these encodings will yield a top level encoding of Ci(x). This homomorphic
evaluation would correspond to projective decryption operation. The recover
algorithm would just compute a linear function on all the top level encodings
of Ci(x) and using zero test parameters, recover the answer if the output of the
linear function is 0.

However, we cannot allow the adversary to evaluate recover outputs for cir-
cuits Ci of his choice. We should ensure that he recovers outputs only for circuits
corresponding to which he has been issued functional keys. The main challenge
in designing a functional key for C is to guarantee authenticity – how do we
ensure that if the adversary, given a functional key corresponding to C, can only
evaluate C on these inputs? To ensure this, we introduce a parallel branch of
computation: we instead encode (xi, αi) where {αi} are random elements deter-
mined during the setup. Then as part of the functional key associated with C,
we give out an encoding of C({αi}) at the top level that will allow us to cancel
the αi part after computing C on encodings of {(xi, αi)} and in the end, just
get an encoding of C(x). However, to implement this, we need to make sure that

8 This idea is similar in spirit to the recent work of Bitansky et al. [BLP16], who
introduced degree reduction techniques in a different context.
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the computation of C on {xi} and {αi} are done separately even though xi and
αi are encoded together.

The work of [Zim15,AB15] used the above idea in the context of designing
iO. As we will discuss below, we extend their techniques in several ways, to
deal with the problem of mixing ciphertext components and achieving the semi-
functional security properties we need from our PAFE scheme. However, before
we discuss these difficulties, we note that the work of [Zim15,AB15] implement
parallel branches by using composite order multilinear maps. Composite order
multilinear maps allow for jointly encoding for a vector of elements such that
addition and multiplication operations can be homomorphically performed on
every component of the vector separately.

However, one of the primary motivations for this line of work on build-
ing constructions for iO from low-degree multilinear maps is to enable the
use of future candidate low-degree multilinear maps, where achieving com-
posite order may not be possible. Indeed, current instantiations of compos-
ite order multlinear maps [CLT13] have poorly understood security properties,
and have been subject to efficient cryptanalytic attacks in some settings (see,
e.g., [CHL+15,CGH+15]). Thus, instead of relying on composite order multilin-
ear maps, we do the following: we introduce a primitive called a slotted encod-
ing scheme, that allows for the same functionality as offered by composite order
multilinear maps. This then helps us in implementing the idea of [Zim15,AB15]
using a slotted encoding scheme. We later show how to realize a constant degree
slotted encoding scheme using prime order multilinear maps. We define slotted
encodings next.

Slotted Encoding: A slotted encoding scheme, parameterized by L (number
of slots), has the following algorithms: (i) Setup: this generates the secret para-
meters, (ii) Encode: it takes as input (a1, . . . , aL) and outputs an encoding of it,
(iii) Arithmetic operations: it takes two encodings of (a1, . . . , aL) and (b1, . . . , bL)
and performs arithmetic operations on every component separately. For instance,
addition of encoding of (a1, . . . , aL) and (b1, . . . , bL) would lead to encoding of
(a1 + b1, . . . , aL + bL), (iv) Zero Testing: It outputs success if the encoding of
(a1, . . . , aL) is such that ai = 0 for every i.

In this work, we will be interested in asymmetric slotted encodings, where
the slotted encodings is associated with a tree T such that every encoding is
associated with a node in T and two encodings can be paired only if their asso-
ciated nodes are siblings. The degree of slotted encodings is defined to be the
maximum degree of polynomials the scheme lets us evaluate.

Constant Degree Slotted Encoding from Prime Order MMaps: We
start with the simple case when degree of slotted encodings is 2 (the bilinear
case). The idea of dual vector spaces were introduced by [OT08] and further
developed as relevant to us by [OT09,BJK15] to address this problem for bilin-
ear maps. In this framework, there is an algorithm that generates 2n vectors
(μ1, . . . , μn), (ν1, . . . , νn) of dimension n such that: (i) inner product, 〈μi, νi〉 = 1
and, (ii) inner product, 〈μi, νj〉 = 0 when i �= j. Using this, we can encode
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(a1, . . . , an) associated with some node u in the tree as follows: encode every ele-
ment of the vector a1μ1+· · ·+anμn. The encoding of (b1, . . . , bn) associated with
a node v, which is a sibling of u, will be encodings of the vector b1ν1+ · · ·+bnνn.
Now, computing inner product of both these encodings will lead to an encoding
of a1 · b1 + · · · + an · bn.

This idea doesn’t suffice for degree 3. So our idea is to work modularly, and
consider multiple layers of vectors. The encoding of (a1, . . . , an) under node u
will be encodings of the vector (a1μ1 ⊗ μ′

1 + · · · + anμn ⊗ μ′
n)9, where {μ′

i} is
a basis of a vector space associated with the parent of node u. Now, when this
is combined with encoding of b1ν1 + · · · + bnνn, computed under node v, we get
encoding of (a1b1μ

′
1 + · · · anbnμ′

n). Using this we can then continue for one more
level.

To generalize this for higher degrees we require tensoring of multiple vectors
(potentially as many as the depth of the tree). This means that the size of the
encodings at the lower levels is exponential in the depth and thus, we can only
handle constant depth trees. Implementing our tensoring idea for multiple levels
is fairly technical, and we refer the reader to the relevant technical section for
more details.

PAFE from Slotted Encodings: Using slotted encodings, we make a next
attempt in constructing PAFE:

– To encrypt x = (x1, . . . , x�inp), we compute a slotted encoding of (xi, αi), where
αi are sampled uniformly at random during the setup phase.

– A functional key of C consists of a slotted encoding of (0, C({αi})) at the top
level.

The partial decryption first homomorphically evaluates C on slotted encodings
of (xi, αi) to get a slotted encoding of (C({xi}), C({αi})). The second slot can
be ‘canceled’ using top level encoding of (0, C({αi})) to get an encoding of
(C({xi}), 0). The hope is that if the evaluator uses a different circuit C ′ then
the second slot will not get canceled and hence, he would be unable to get a zero
encoding.

However, choosing a different C ′ is not the only thing an adversary can do.
He could also mix encodings from different ciphertexts and try to compute C on
it – the above approach does not prevent such attacks. In order to handle this,
we need to ensure that the evaluation of ciphertexts can never be mixed. In order
to solve this problem, we use a mask γ that be independently sampled for every
ciphertext. Every encoding will now be associated with this mask. Implementing
this idea will crucially make use of the fact that the polynomial computed by
the arithmetic circuit is a homogenous polynomial.

Yet another problem arises is in the security proof: for example, to design
semi-functional keys, we need to hardwire a value in the functional key. In order
to enable this, we introduce a third slot. With this new modification, we put

9 Here, μi ⊗ μj denotes the tensoring of μi and μj .
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forward a template of our construction. Our actual construction involves more
details which we skip to keep this section informal.

– To encrypt x = (x1, . . . , x�inp), we compute a slotted encoding of (xi, αi, 0),
where αi are sampled uniformly at random during the setup phase. Addition-
ally, you give out encoding of (0, S, 0) at one level lower than the top level,
where S is also picked at random in the setup phase.

– A functional key of C consists of a slotted encoding of (0, C({αi}) · S−1, 0) at
the top level.

The decryption proceeds as before, except that the encodings of (0, C
({αi}) · S−1, 0) and (0, S, 0) are paired together before we proceed.

Note that in both the ciphertext and the functional key, the third slot is not
used at all. The third slot helps in the security proof. To see how we describe
the semi-functional parameters at a high level as follows:

- Semi-functional Ciphertexts: To encrypt x = (x1, . . . , x�inp), we compute a
slotted encoding of (0, αi, 0), where αi is computed as before. Additionally,
you give out encoding of (0, S, 1) at one level lower than the top level, where
S is also picked at random in the setup phase. Note that the third slot now
contains 1 which signals that it is activated.

- Semi-functional Keys: A functional key of C consists of a slotted encoding of
(0, C({αi}), v) at the one level lower than top level, where v is the hardwired
value associated with the semi-functional key.

During the decryption of semi-functional key with honestly generated ciphertext,
the third slot will not be used since it will be deactivated in the ciphertext. So the
decryption proceeds normally. However, during the decryption of semi-functional
key with semi-functional ciphertexts, the third slot is used since the third slot
is activated in the ciphertext. We argue the security of our construction in the
ideal multilinear map model.

Comparison with [LV16]. We now compare our work with the recent exciting
work of [LV16], in order to illustrate some differences that allow us to achieve
lower degree. The work of [LV16] first defines FE for NC0 with a non-trivial
efficiency property and give a new bootstrapping theorem10 to achieve compact
FE. They then show how to achieve FE for NC0 from constant degree multilinear
maps11. Interestingly, they use arithmetic randomizing polynomials within their
construction of FE for NC0 – this will be important as we note below.
10 Their bootstrapping theorem also works if we start with FE for constant degree

polynomials over F2.
11 Note that, in particular, the security of their scheme reduces to a succinct assumption

called the multilinear joint SXDH assumption. As we noted earlier, unfortunately this
assumption is not known to be instantiable with existing multilinear map candidates.
However, one can posit a different assumption that directly assumes their FE for
NC0 scheme to be secure, and we do not know of any attacks on that (non-succinct)
assumption.
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In contrast, we do not build FE for NC0, but rather show how to proceed
directly from projective arithmetic FE for degree-5 arithmetic circuits to iO
(without additional use of multilinear maps). Furthermore, our construction of
PAFE is degree preserving, so to achieve PAFE for degree-5 arithmetic circuits,
we only need degree-5 multilinear maps. In contrast, in [LV16], to build FE for
NC0, their work has to “pay” in degree not only based on the depth of the NC0

circuit that underlies each secret key, but also for the arithmetic randomizing
polynomial that they apply to the NC0 circuit. This adds a significant overhead
in the constant degree their multilinear map must support. Our approach is sim-
pler, as our randomizing polynomials are only used in the path from PAFE to
iO, which does not use multilinear maps in any additional way. There are, of
course, many other technical differences between our work and [LV16], as well.
Another conceptual idea that we introduce, and that is different from [LV16],
is the notion of slotted encodings, an abstraction of composite order multilin-
ear maps, and our method for emulating slotted encodings using prime order
multilinear maps without increasing the degree.

Organization. We define the notion of projective arithmetic functional encryp-
tion and present a degree-preserving construction of PAFE from slotted encod-
ings. In the full version, we show how to combine PAFE and (a stronger notion
of) randomizing polynomials to obtain secret key functional encryption that can
then bootstrapped to obtain iO.

2 Projective Arithmetic Functional Encryption

Throughout this paper we will use standard cryptographic notation and con-
cepts; for details, refer to the full version. In this section, we introduce the notion
of projective arithmetic functional encryption scheme. There are two main dif-
ferences from a (standard) functional encryption scheme:

– Functional keys are associated with arithmetic circuits.
– The projective decryption algorithm only outputs partial decrypted values.

There is a recover algorithm that computes on the partial decrypted values
and produces an output.

2.1 Definition

We can consider either a public key projective arithmetic FE scheme or a secret
key projective arithmetic secret key FE scheme. In this work, we define and
construct a secret key projective arithmetic FE scheme.

A secret-key projective arithmetic functional encryption (FE) scheme PAFE
over field Fp is associated with a message space X = {Xλ}λ∈N and a arithmetic
circuit class C = {Cλ}λ∈N over Fp. Here, X comprises of strings with every
symbol in the string belongs to Fp.
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PAFE comprises of a tuple (Setup,KeyGen,Enc,ProjectDec) of PPT algo-
rithms with the following properties:

– Setup(1λ): The setup algorithm takes as input the unary representation of the
security parameter, and outputs a secret key MSK.

– KeyGen(MSK, C): The key-generation algorithm takes as input the secret key
MSK and a arithmetic circuit C ∈ Cλ, over Fp, and outputs a functional key
skC .

– Enc(MSK, x): The encryption algorithm takes as input the secret key MSK
and a message x ∈ Xλ, and outputs a ciphertext CT.

– ProjectDec(skC ,CT): The projective decryption algorithm takes as input a
functional key skC and a ciphertext CT, and outputs a partial decrypted
value ι.

– Recover(c1, ι1, . . . , c�f , ι�f ): The recover algorithm takes as input co-efficients
c1, . . . , c�f ∈ Fp, partial decrypted values ι1, . . . , ι�f and outputs out.

We first define the correctness property and later, define the security property.

B-Correctness. The correctness is parameterized by a set B ⊆ Fp. We emphasize
that B is a set of polynomial size, i.e., |B| = poly(λ). Consider an honestly gener-
ated ciphertext CT of input x. Consider honestly generated keys skC1 , . . . , skC�f

.
Denote the corresponding decrypted values to be ι1, . . . , ι�f . If it holds that∑�f

i=1 ci · Ci(x) = out∗ ∈ B then we require that Recover(c1, ι1, . . . , c�f , ι�f ),
where ci ∈ Fp, always outputs out∗.

Remark 1. Our construction only supports the case when B = {0} when imple-
mented by multilinear maps that only allows for zero testing at the final level.
However, if encodings of 1 are given out at the top level, then B can be defined
to be the set {0, . . . ,poly(λ)}, where poly is a fixed polynomial.

Remark 2 ((B,B′)-Correctness). We can also consider a property that we call
(B,B′)-correctness. It is the same as B-correctness except that the co-efficients
ci input to the above evaluation algorithm has to be in the set B′ ⊆ Fp.

Remark 3 (Alternate Notation of Evaluation). Instead of feeding coefficients to
the evaluation algorithm, we can directly feed in the description of the linear
function. That is, if out∗ ← Recover(f, (ι1, . . . , ι��f

)) with f being a linear function
then we require that f(C1(x), . . . , C��f

) = out∗, where ιi is obtained by decrypting
a functional key of Ci with x.

2.2 Semi-Functional Security

We introduce a notion of semi-functional security associated with projective
arithmetic FE. We refer the reader to the technical overview for an informal
intuition behind the notion of semi-functional security.

We define the following two auxiliary algorithms.
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Semi-Functional Key Generation, sfKG(MSK, C, θ): On input master secret
key MSK, arithmetic circuit C, value θ, it outputs a semi-functional key skC .

Semi-Functional Encryption, sfEnc(MSK, 1�inp): On input master secret key
MSK and 	inp, it outputs a semi-functional ciphertext CT.

We now introduce two security properties. We start with the first property,
namely indistinguishability of semi-functional keys.

This property states that it should be hard for an efficient adversary to dis-
tinguish a semi-functional key associated with circuit C and value v from an hon-
estly generated key associated with C. Additionally, the adversary can request
for other semi-functional keys or honestly generated keys. The ciphertexts will
be honestly generated.

Definition 1 (Indistinguishability of Semi-Functional Keys). Consider
a projective arithmetic functional encryption scheme PAFE = (Setup,KeyGen,
Enc,ProjectDec,Recover). We say that PAFE satisfies indistinguishability of
semi-functional keys with respect to sfKG if for any PPT adversary A there
exists a negligible function negl(·) such that

AdvtgePAFEA (λ) =
∣∣∣Pr[ExptPAFEA (λ, 0) = 1] − Pr[ExptPAFEA (λ, 1) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the exper-
iment ExptPAFEA (1λ, b), modeled as a game between the adversary A and a chal-
lenger, is defined as follows:

1. Setup phase: The challenger samples MSK ← Setup(1λ).
2. Message queries: On input 1λ the adversary submits (x1, . . . , x�x) for some

polynomial 	x = 	x(λ).
3. Function queries: The adversary also submits arithmetic circuit queries to

the challenger. There are three tuples the adversary submits:
– This comprises of circuits and values associated with every circuit;

(C0
1 , θ1, . . . , C

0
�f

, θ�f ). Here, θj ∈ Fp.
– This comprises of just circuits; (C1

1 , . . . , C1
�′
f
).

– This corresponds to a challenge circuit pair query (C∗, θ∗)
4. Challenger’s response: The challenger replies with (CT1, . . . ,CT�x), where

CTi ← Enc(MSK, xi) for every i ∈ [	x]. It also sends the following functional
keys: for every j ∈ [	f ],
– skC0

j
← sfKG(MSK, C0

j , θj).
– skC1

j
← KeyGen(MSK, C1

j ).
– If b = 0, generate skC∗ ← sfKG(MSK, C∗, θ∗). Otherwise generate skC∗ ←

KeyGen(MSK, C∗).
5. Output phase: The adversary outputs a bit b′ which is defined as the output

of the experiment.

The second property is indistinguishability of semi-functional ciphertexts. This
property states that it should be hard for an efficient adversary to distinguish
honestly generated ciphertext of x from a semi-functional ciphertext. In this
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experiment, it is required that the adversary only gets semi-functional keys asso-
ciated with circuits Ci and value vi such that vi = Ci(x).

Definition 2 (Indistinguishability of Semi-Functional Ciphertexts).
Consider a projective arithmetic functional encryption scheme PAFE = (Setup,
KeyGen,Enc,ProjectDec,Recover). We say that PAFE satisfies indistinguisha-
bility of semi-functional ciphertexts with respect to sfEnc if for any PPT
adversary A there exists a negligible function negl(·) such that

AdvtgePAFEA (λ) =
∣∣∣Pr[ExptPAFEA (λ, 0) = 1] − Pr[ExptPAFEA (λ, 1) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the exper-
iment ExptPAFEA (1λ, b), modeled as a game between the adversary A and a chal-
lenger, is defined as follows:

1. Setup phase: The challenger samples MSK ← Setup(1λ).
2. Message queries: On input 1λ the adversary submits (x1, . . . , x�x) for some

polynomial 	x = 	x(λ) and it also sends the challenge query x∗.
3. Function queries: The adversary also submits arithmetic circuit queries to

the challenger. The query is of the form (C1, θ1, . . . , C�f , θ�f ). It should hold
that θj = Cj(x∗) for every j ∈ [	f ]. If it does not hold, the experiment is
aborted.

4. Challenger’s response: The challenger replies with (CT1, . . . ,CT�x), where
CTi ← Enc(MSK, xi) for every i ∈ [	x]. It sends CT∗ ← Enc(MSK, x∗) only if
b = 0, otherwise it sends CT∗ ← sfEnc

(
MSK, 1|x∗|). Finally, it sends the fol-

lowing functional keys: for every j ∈ [	f ], compute skCj
← sfKG(MSK, Cj , θj).

5. Output phase: The adversary outputs a bit b′ which is defined as the output
of the experiment.

Remark 4. One can also define a stronger property where instead of submit-
ting one challenge message x∗, the challenger submits a challenge message pair
(x∗

0, x
∗
1) and the requirement that for every circuit Cj query, Cj(x∗

0) = Cj(x∗
1).

The reduction, in response, encrypts x∗
b where b is the challenge bit. It can be

seen that this stronger security property is implied by the above property.

We now define semi-functional security property.

Definition 3. We say that a projective arithmetic FE scheme, over Fp, is said
to be semi-functionally secure if it satisfies both (i) indistinguishability of
semi-functional keys property and, (ii) indistinguishability of semi-functional
ciphertexts property.

2.3 Other Notions

We also consider the following two notions of projective arithmetic FE.

Constant Degree Projective Arithmetic FE. In this work, we are interested in
projective arithmetic FE for circuits that compute constant degree arithmetic
circuits. In particular, we consider constant degree arithmetic circuits over arbi-
trary field Fp.
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Multiplicative Overhead in Encryption Complexity. We say that a projective
arithmetic FE scheme, over field Fp, satisfies multiplicative overhead in encryp-
tion complexity property if the complexity of encrypting x is |x| ·poly(λ, log(p)).
That is,

Definition 4 (Multiplicative Overhead in Encryption Complexity).
Consider a projective arithmetic FE scheme PAFE = (Setup,KeyGen,Enc,
ProjectDec), over field Fp. We say that PAFE satisfies multiplicative overhead
in encryption complexity if |Enc(MSK, x)| = |x| · poly(λ, log(p)), where MSK is
the secret key generated during setup.

Circuits versus Polynomials. Often in this manuscript, we interchangeably use
arithmetic circuits over Fp with polynomials computed over Fp. If there is a poly-
nomial p over Fp having poly(λ) number of terms then there is a poly′(λ)-sized
arithmetic circuit over Fp, where poly and poly′ are polynomials. However, the
reverse in general need not be true: if there is a poly′(λ)-sized arithmetic circuit
over Fp then the associated polynomial could have exponentially many terms.
For example: (x1 +x2) · · · (x2n−1 +x2n) has a succinct circuit representation but
when expanded as a polynomial has exponential number of terms.

In this work, we are only interested in arithmetic circuits which can be
expressed as polynomials efficiently. In particular, we consider arithmetic cir-
cuits of constant fan-in and constant depth.

3 Slotted Encodings

We define the notion of slotted encodings: this concept can be thought of as
abstraction of composite order multilinear maps. It allows for jointly encoding
a vector of elements. Given the encodings of two vectors, using the addition
and multiplication operations it is possible to either homomorphically add the
vectors component-wise or multiply them component-wise.

To define this primitive, we first define the notion of structured asymmetric
multilinear maps in Sect. 3.1. We show in Sect. 3.2 how to instantiate this form
of structured asymmetric multilinear maps using current known instantiations of
multilinear maps. Once we have armed ourselves with the definition of structured
multilinear maps, we define the notion of slotted encodings (a special type of
structured multilinear maps) in Sect. 3.3. In the full version, we show how to
realize slotted encodings using structured asymmetric multilinear maps for the
constant degree12 case.

3.1 Structured (Asymmetric) Multilinear Maps

We define the notion of structured asymmetric multilinear maps. It is associ-
ated with a binary tree T . Every node is associated with a group structure and
12 As we see later, this corresponds to the scenario where the structured multilinear

maps is associated with constant number of bilinear maps.
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additionally, every non leaf node is associated with a noisy bilinear map. Every
element in this group structure has multiple noisy representations as in the case
of recent multilinear map candidates [GGH13a,CLT13,GGH15].

Suppose nodes u and v are children of node w in tree T . And let the respective
associated groups be Gu,Gv and Gw respectively. Let euv be the bilinear map
associated with node w. Then euv : Gu × Gv → Gw.

Before we define structured multilinear maps we first put forward some nota-
tion about trees and also define some structural properties that will be useful
later.

Notation About Trees: Consider a tree T = (V,E), where V denotes the set
of vertices and E denotes the set of edges. We are only interested in binary trees
(every node has only two children) in this work.

1. We define the function lc : [V ] → {0, 1} such that lc(u) = 0 if u is the left
child of its parent, else lc(u) = 1 if u is the right child of its parent.

2. We define par : [V ] → [V ] such that par(u) = v if v is the parent of u.
3. rt(T ) = w if the root of T is w.

Definition of Structured Multilinear Maps. A structured multilinear maps is
defined by the tuple SMMap = (T = (V,E), {Gu}u∈V ) and associated with
ring R, where:

– T = (V,E) is a tree.
– Gu is a group structure associated with node u ∈ V . The order of the group

is N .

The encoding of elements and operations performed on them are specified by
the following algorithms:

– Secret Key Generation, Gen(1λ): It outputs secret key sk and zero test
parameters ztpp.

– Encoding, Encode(sk, a, u ∈ V ): In addition to secret key sk, it takes as
input a ∈ R and a node u ∈ V . It outputs an encoding [a]u.

– Add, [a]u + [b]u = [a + b]u. Note that only elements corresponding to the
same node in the tree can be added.

– Multiply, [a]u ◦ [b]v = [a · b]w. Here, w is the parent of u and v, i.e., w =
par(u) and w = par(v).

– Zero Test, ZeroTest(ztpp, [a]r): On input zero test parameters ztpp and an
encoding [a]r at level r, where r = rt(T ), output 0 if and only if a = 0.

We define degree of structured multilinear maps.

Definition 5 (Degree of SMMAP). Consider a structured multilinear maps
scheme given by SMMap = (T = (V,E), {Gu}u∈V ). The degree of SMMap is
defined recursively as follows.
We assign degree to every node in the tree as follows:

– Degree of every leaf node u is 1.
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– Consider a non leaf node w. Let u and v be its children. The degree of w is
the sum of degree of u and degree of v.

The degree of SMMap is defined to be the degree of the root node.

Remark 5. If we restrict ourselves to only binary trees (which is the case in our
work) and if d is the depth of the binary tree T then the degree of SMMap,
associated with (T, {Gu}u∈V ) is 2d.

Useful Notation: We employ the following notation that will be helpful later.
Suppose [v1]i , . . . , [vm]i be a vector of encodings and let v = (v1, . . . , vm) ∈ Zm

N .
Then, [v]mi denotes ([v1]i , . . . , [vm]i). If the dimension of the vector is clear, we
just drop m from the subscript and write [v]i.

3.2 Instantiations of Structured Multilinear Maps

We can instantiate structured multilinear maps using the ‘asymmetric’ version
of existing multilinear map candidates [GGH13a,CLT13]. For example, in asym-
metric GGH, every encoding is associated with set S. Two encodings associated
with the same set can be added. If there are two encodings associated with sets
S1 and S2 respectively, then they can be paired if and only if S1 ∩ S2 = ∅. The
encoding at the final level is associated with the universe set, that is the union
of all the sets.

To construct a structure multilinear map associated with (T = (V,E), φ),
we can start with a universal set U = {1, . . . , |V ′|}, where V ′ ⊆ V is the set
of leaves in T . That is, there are as many elements as the number of leaves in
V . We then design a bijection ψ : U → [V ′]. An encoding is encoded at a leaf
node u under the set Su = {ψ−1(u)}. For a non leaf node w, the encoding is
performed under the set Sw = Su ∪ Sv, where u and v are the children of w.

3.3 Definition

A L-slotted encoding SEnc is a type of structured multilinear maps SMMap =
(T = (V,E), {Gu}u∈V ) associated with ring R and is additionally parameterized
by L. It consists of the following algorithms:

– Secret Key Generation, Gen(1λ): It outputs secret key sk and zero test
parameters ztpp.

– Encoding, Encode(sk, a1, . . . , aL, u ∈ V ): In addition to secret key sk, it
takes as input a1, . . . , aL ∈ R and a node u ∈ V . If u is not the root node, it
outputs an encoding [a1| · · · |aL]u. If u is indeed the root node, it outputs an

encoding
[∑L

i=1 ai

]
u
.

– Add, [a1| · · · |aL]u + [b1| · · · |bL]u = [a1 + b1| · · · |aL + bL]u. Note that only
elements corresponding to the same node in the tree can be added. Further,
the elements in the vector are added component-wise.
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– Multiply: Suppose w = par(u) and w = par(v).

[a1| · · · |aL]u ◦ [b1| · · · |bL]v =

⎧⎪⎨
⎪⎩

[a1b1| · · · |aLbL]w if rt(T ) �= w[
L∑

i=1

aibi

]
w

otherwise

The elements in the vectors are multiplied component-wise.
– Zero Test, ZeroTest(ztpp, [a]r): On input zero test parameters ztpp and an

encoding [a]r at level r, where r = rt(T ), output 0 if and only if a = 0.

Remark 6. The degree of slotted encodings can be defined along the same lines
as the degree of structured multilinear maps.

3.4 Evaluation of Polynomials on Slotted Encodings

We consider the homomorphic evaluation of (T, φ)-respecting polynomials on
slotted encodings. We first define evaluation of (T, φ)-respecting monomials
on slotted encodings and then using this notion define evaluation of (T,

−→
φ )-

respecting polynomials on slotted encodings.

HomEval (t,SMMap, {E1,u}u∈V , . . . , {En,u}u∈V ): The input to this algorithm
is (T, φ)-respecting monomial t ∈ Fp[y1, . . . , yn], slotted encoding scheme
SMMap = (T = (V,E), {Gu}u∈V ) and slotted encodings Ei,u, for every i ∈ [n]
and every u ∈ V , encoded under Gu.

The evaluation proceeds recursively as follows: for every non leaf node u ∈ V ,
set Ẽu = Eφ(u),u. Consider the case when u is a non-leaf node and let v and w

be the children of u. Compute encoding associated with node u as Ẽu = Ẽv ◦ Ẽw.
Let rt be the root of T . Output the encoding Ẽrt associated with rt.

HomEval (p,SMMap, {E1,u}u∈V , . . . , {En,u}u∈V ): The input to this algorithm
is (T,

−→
φ )-respecting polynomial p ∈ Fp[y1, . . . , yn], slotted encoding scheme

SMMap = (T = (V,E), {Gu}u∈V ) and slotted encodings Ei,u, for every i ∈ [n]
and every u ∈ V , encoded under Gu.

Let p =
∑n

i=1 citi, for ci ∈ Fp and ti is a (T, φi)-respecting monomial
for every i ∈ [n]. The evaluation proceeds as follows: for every i ∈ [n], exe-

cute Ẽrt

(i) ← HomEval(ti,SMMap, {E1,u}u∈V , . . . , {En,u}u∈V ). Compute Ert =
n∑

i=1

ciẼrt

(i)
. Output the encoding Ert.

Remark 7. Based on the current implementation of multilinear maps, given an
encoding of an element a ∈ Fp, we don’t know how to securely obtain encoding of
c·a for some scalar c ∈ Fp of our choice. But instead, we can still obtain encoding
of c · a, when c is small (for instance, polynomial in security parameter). This
can achieved by adding encoding of a, c number of times.
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4 Projective Arithmetic FE from Slotted Encodings

We show how to construct projective arithmetic FE starting from the notion of
slotted encodings defined in Sect. 3.3.

Consider a L-slotted encoding scheme SEnc, defined with respect to struc-
tured multilinear maps SMMap = (T = (V,E), {Gu}u∈V ) and is parameter-
ized by L. We construct a multi-key secret key projective arithmetic functional
encryption scheme PAFE for a function class C = {Cλ}λ∈N as follows. Here, Cλ

consists of functions with input length λ and output length poly(λ).

Setup(1λ): On input security parameter λ,

– It executes the secret key generation algorithm of the slotted encoding scheme
to obtain sk ← Gen(1λ).

– Sample values αi,u ∈ Fp for every i ∈ [	inp], u ∈ V at random. We define 	inp
later. Denote −→α = (αi,u)i∈[�inp],u∈V .

– Sample a random value S ∈ Fp.

It outputs MSK = (sk,−→α , S).

KeyGen(MSK, p): It takes as input master secret key MSK and a T -respecting
polynomial p ∈ Fp[y1, . . . , y�inp ] associated with an arithmetic circuit C, where
T is the same tree associated with the structured multilinear maps. Since p is
T -respecting, we have the following: There exists φ = (φ1, . . . , φK) with φi :
[V ] → [	inp] such that:

– p =
∑K

j=1 citi, where ci ∈ Fp.
– ti is a (T, φi)-respecting monomial in 	inp variables.

Let δi be obtained by first assigning αφi(u),u to every leaf node u and then
evaluating T 13. That is, δi is the value obtained at the root of T . Assign Δ =∑K

i=1 ci · δi.
Let rt be the root of T and let u be its left child and v be its right

child. Compute EC = Encode (sk, (0,Δ · S, p(0; 0)), u) for every i ∈ [n]. Out-
put skC = (C,EC).

Enc(MSK, x): It takes as input master secret key MSK and input x ∈ {0, 1}�x .
Let inp = x and 	inp = |x|.

It also samples an element γ ∈ Fp at random. For every i ∈ [	inp], u ∈ V and
u is a leaf node, encode the tuple (inpi, γ ·αi,u, 0) with inpi denoting the ith bit of
inp, as follows: Einp

i,u = Encode (MSK, (inpi, γ · αi,u, 0), u). Also encode γD under
group Gv, where v is the right child of rt: Eγ = Encode(MSK, (0, γD ·S−1, 0), v).
Recall that D is the degree of homogeneity of RP.

Output the ciphertext CT =
(
(Ei,u)i∈[inp],u∈V ,Eγ

)
.

ProjectDec(skC ,CT): It takes as input functional key skC and ciphertext CT. It
parses skC as (C,EC) and CT as

(
(Ei,u)i∈[inp],u∈V ,Eγ

)
. It executes the following:

13 Note that every non leaf node is treated as a multiplication gate.
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– Compute out1 = HomEval(p,SMMap, (Ei,u)i∈[inp],u∈V ).
– Compute out2 = EC ◦ Eγ .

Output the partial decrypted value ι = out1 − out2.

Recover(c1, ι1, . . . , c�f
, ι�f

): On input co-efficients ci ∈ Fp, partial decrypted val-
ues ιi, it first computes:

temp = c1ι1 + · · · + c�f
ι�f

The addition carried out above corresponds to the addition associated with the
slotted encodings scheme. Now, perform ZeroTest(ztpp, temp) and output the
result. Note that the output is either in {0, . . . , B} or its ⊥.

(B,B′)-Correctness. From the correctness of HomEval and slotted encodings, it
follows that out1 is an encoding of (p(x), γD · p({αi,u}), 0). Further, out2 is an
encoding of (0, γD · p({αi,u}), 0). Thus, the partial decrypted value out1 − out2
is an encoding of (p(x), 0, 0).

With this observation, we remark that for many polynomials p1, . . . , pN , the
decryption of functional key of pi on encryption of x yields as partial decrypted
values, encodings of (pi(x), 0, 0). Thus, sum of all encodings of (ci · pi(x), 0, 0),
where ci ∈ B′ and B′ = {0, . . . ,poly(λ)}, yields a successful zero test query if
and only if

∑N
i=1 cipi(x) = 0.

We remark that if ztpp just contains parameters to test whether a top level
encoding is zero or not, then the above construction only supports B = {0}. If
it additionally contains encoding of 1, then we can set B = poly(λ).

Encryption Complexity: Multiplicative Overhead. We calculate the encryption
complexity as follows.

|Enc(MSK, x)| = |x| · (Number of groups in SMMap) · poly(λ)

Thus, the above scheme satisfies the multiplicative overhead property.

4.1 Proof of Security

Semi-Functional Algorithms: We describe the semi-functional encryption
and the key generation algorithms. We start with the semi-functional key gen-
eration algorithm.

sfKG(MSK, p, θ): Parse MSK as (sk,−→α , S). In addition, it takes as input a (T, φ)-
respecting polynomial p and value θ to be hardwired in the third slot. Let p =∑K

j=1 cjtj , where tj is a (T, φj)-respecting monomial in 	inp variables. Let δj be
obtained by first assigning αφj(u),u to every leaf node u and then evaluating T .
That is, δj is the value obtained at the root of T . Assign Δ =

∑K
j=1 ci,j · δj .

Let rt be the root of T and let u be its left child and v be its right child.
Compute Ep = Encode (sk, (0,Δ · S, p(0; 0) − θ), u) for every i ∈ [n]. Output
skC = (p,Ep).
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We now describe the semi-functional encryption algorithm.

sfEnc(MSK, 1�inp): Parse MSK as (sk,−→α ). It samples an element γ ∈ Fp at
random.

For every i ∈ [	inp], u ∈ V and u is a leaf node, encode the tuple (0, γ ·αi,u, 0)
as follows: Einp

i,u = Encode (MSK, (0, γ · αi,u, 0), u). Also encode γD under group
Gv, where v is the right child of rt: Eγ = Encode(MSK, (0, γD, 1), v). Recall that
D is the degree of homogeneity of RP.

Output the ciphertext CT =
(
(Ei,u)i∈[inp],u∈V ,Eγ

)
.

We now prove the indistinguishability of semi-functional ciphertexts and indis-
tinguishability of functional keys properties. Before that we state the assump-
tions on the slotted encodings upon which we prove the security of our scheme.

Assumptions. We define the following two assumptions.

Assumption #1: For all (i) inputs x = (x1, . . . , xμ) ∈ {0, 1}μ·�x , (ii) polynomials
p ∈ Fp[y1, . . . , yn],q = (q1, . . . , qN ) ∈ Fp[y1, . . . , yn]N be (T, φ)-respecting poly-
nomials, (iii) subset I ⊆ [n] and finally, (iv) values θ ∈ Fp, Θ = (θi)i∈I ∈ F

|I|
p

and for every sufficiently large λ ∈ N, the following holds:

{ KeyGen(MSK, p), aux[x,q, I, Θ] } ∼=c { sfKG(MSK, p, θ), aux[x,q, I, Θ]}
– MSK ← Setup(1λ)
– aux[x,q, I, Θ] = (CT1, . . . ,CTμ, sk1, . . . , skN ) consists of two components:

1. For every i ∈ [n], compute CTi ← Enc(MSK, xi).
2. For every i ∈ [N ] and i ∈ I, compute ski ← sfKG(MSK, qi, θi). Else if

i /∈ I, compute ski ← KeyGen(MSK, qi).

Assumption #2: For all (i) inputs x∗ ∈ {0, 1}�x ,x = (x1, . . . , xμ) ∈ {0, 1}μ·�x ,
(ii) polynomials q = (q1, . . . , qN ) ∈ Fp[y1, . . . , yn]N be (T, φ)-respecting polyno-
mials and finally, (iii) values Θ = (θi)i∈[N ] and for every sufficiently large λ ∈ N,
the following holds:{

sfEnc(MSK, 1�inp), aux[x,q, Θ]
} ∼=c { Enc(MSK, x∗), aux[x,q, Θ]}

– MSK ← Setup(1λ)
– aux[x,q, Θ] = (CT1, . . . ,CTμ, sk1, . . . , skN ) is computed in the following way:

1. For every i ∈ [n], compute CTi ← Enc(MSK, xi).
2. For every i ∈ [N ] θi = qi(x∗).
3. For every i ∈ [N ], compute ski ← sfKG(MSK, qi, θi).

The following two theorems directly follow from the above two assumptions.

Theorem 4. The scheme PAFE satisfies indistinguishability of semi-functional
keys under Assumption #1.

Theorem 5. The scheme PAFE satisfies indistinguishability of semi-functional
ciphertexts under Assumption #2.

From the above two theorems, we have the following theorem.

Theorem 6. The PAFE satisfies semi-functional security under Assumptions
#1 and #2.
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Abstract. This paper reports on the number field sieve computation of
a 768-bit prime field discrete logarithm, describes the different parameter
optimizations and resulting algorithmic changes compared to the factor-
ization of a 768-bit RSA modulus, and briefly discusses the cryptologic
relevance of the result.
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1 Introduction

Let p = [2766π] + 62762, which is the smallest 768-bit prime number larger than
2766π for which p−1

2 is prime too1. Let g = 11, which is a generator of the
multiplicative group F×

p of the prime field Fp. On June 16, 2016, we finished the
computation of the discrete logarithm of t = [2766e] with respect to g. We found
that the smallest non-negative integer x for which gx ≡ t mod p equals

325923617918270562238615985978623709128341338833721058543950813
521768156295091638348030637920237175638117352442299234041658748
471079911977497864301995972638266781162575370644813703762423329
783129621567127479417280687495231463348812.

By itself, this is a useless result. What is interesting is how we found it, that
we did so with much less effort than we expected, and what the result implies
for cryptographic security that relies on the difficulty of larger similar problems.
These issues are discussed in this paper.

The result was obtained using the number field sieve (NFS, [13,28]). It
required the equivalent of about 5300 core years on a single core of a 2.2 GHz
Xeon E5-2660 processor, mostly harvested during the period May to December,
2015, on clusters at the authors’ universities. On average each additional dis-
crete logarithm requires two core days. This result is a record for computing
1 Here [x] denotes the classical entier function, the largest integer less than or equal

to x.
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prime field discrete logarithms. It closes the gap between record calculations for
general purpose integer factoring and computing arbitrary prime field discrete
logarithms, with the 768-bit integer factorization record [21] dating back to 2009.
Although our effort was substantial, we spent a fraction of what we originally
expected. The purpose of this paper is to describe how this was achieved.

Records of this sort are helpful to get an impression of the security offered by
cryptographic systems that are used in practice. The 768-bit number field sieve
factorization from [21], for instance, required about 1700 core years. Because
factoring a single 1024-bit RSA modulus [34] using the number field sieve is
about three orders of magnitude more work (cf. end of Sect. 2), an educated
guess follows for the worst-case effort to break a 1024-bit RSA key. Interpreta-
tion of the resulting estimate is another matter. Depending on one’s perception,
applications, incentives, taste, . . ., it may boost or undermine one’s confidence
in the security of 1024-bit RSA moduli.

The ratio is similar between the difficulties of computing 768-bit and 1024-bit
prime field discrete logarithms (cf. Sect. 2). It follows that even the nonchalant
users of 1024-bit RSA, ElGamal [11], or DSA [36] have no reason to be nervous
anytime soon if their concern is an “academic attack” such as the one presented
here (cf. [6]). They have to be a bit more concerned, however, than suggested
by [2, Sect. 4.1]. Also, we explicitly illustrate in Sect. 3 that continued usage of
1024-bit prime field ElGamal or DSA keys is much riskier than it is for 1024-bit
RSA (all are still commonly used), because once a successful attack has been
conducted against a single well-chosen prime field all users of that prime field [27,
Sect. 4] may be affected at little additional effort [2].

As shown in Sect. 5 our result gives a good indication for the difficulty of
computing discrete logarithms in multiplicative groups of other 768-bit prime
fields as well. One such group, the so-called First Oakley Default Group, is of
some historical interest as it was one of the groups supported by the Inter-
net Key Exchange standard from 1998 [15], a standard that has been obsolete
since 2005 [16]. In some cryptographic applications, however, one may prefer to
use a generator of a relatively small prime order subgroup of F×

p that is chosen
in such a way that comparable efforts would be required by Pollard’s rho in the
subgroup and by the number field sieve in F×

p . Our choice of p assures that no
(published) shortcut can be taken for our discrete logarithm computation. It
also represents the most difficult case for the number field sieve, in particular
for its linear algebra step. It follows from the numbers presented below that,
for a discrete logarithm computation, our choice is overall more difficult than a
subgroup order that may sometimes be preferred for cryptographic applications.
With independently optimized parameters the two efforts are however of the
same order of magnitude (cf. Sect. 4).

Two simple methods can be used to give an a priori estimate of the effort
to solve our 768-bit prime field discrete logarithm problem. The first is direct
extrapolation (cf. Sect. 2): given that solving a 596-bit prime field discrete log-
arithm problem took 130 core years (cf. [7]), extrapolation suggests that our
768-bit problem should be doable in about thirty thousand core years. For the
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second method we observe that the number field sieve for factoring or for prime
field discrete logarithms is essentially the same algorithm. When applied to 768-
bit composites or 768-bit prime fields and when using comparable number fields,
they deal with similar probabilities and numbers of comparable sizes, with the
sole exception occurring in the linear algebra step: although in both cases the
matrix is very sparse and all non-zero entries are (absolutely) very small, when
factoring linear algebra is done in a matrix modulo two, but for discrete loga-
rithm problems the matrix elements are taken modulo the group order (a 767-bit
integer in our case). An opposite effect, however, is caused by the fact that, with
proper care, the number fields will not be comparable because modulo large
primes polynomial selection methods can be used that do not work modulo
large composites.

It follows that the numbers reported in [21] can be used to derive an upper
bound for the 768-bit prime field discrete logarithm effort, simply by using a
767-fold increase (cf. Sect. 3) of the linear algebra effort from [21] while leaving
the other steps unchanged. With [21, Sect. 2.4] we find that fifty thousand core
years should suffice for our problem. If we would switch to a 768-bit prime that
allows a much smaller but cryptographically still interesting subgroup this rough
overall estimate would be reduced by a factor of about five.

Thirty or fifty thousand core years would be a waste of resources for a cal-
culation of this sort, and the more doable small subgroup alternative would be
of insufficient interest; independent of our estimates, a very similar figure was
derived in [2, Sect. 4.1]. All these estimates, however, overlook several points.
Direct extrapolation of the 596-bit effort turned out to be meaningless due to
software improvements and because the limited size did not allow an optimiza-
tion that applies to our case. But more importantly, the very different nature
and size of the moduli used in, respectively, the polynomial selection and linear
algebra steps imply a radical shift in the trade-off between the steps of the num-
ber field sieve, which in turn leads to very different parameter and algorithmic
choices compared to what is done for factoring. We are not aware of a satisfac-
tory theoretical analysis of this different trade-off and the resulting parameter
selection, or of a reliable way to predict the practical implication for the relative
hardness of integer factoring and prime field discrete logarithm problems. It is
clear, however, that the issue is more subtle than recognized in the literature,
such as [26,31] and, more recently, [2, Sect. 4.1].

As described in Sect. 3, adapting the parameter choices and algorithms to
the case at hand – and guided by multiple experiments – it was found that it
should be possible to reduce the fifty thousand core years estimate by almost
an order of magnitude. This led to the conclusion that actually doing the full
calculation would be a worthwhile undertaking: in the first place because it
shows that for our current range of interest k-bit factoring and computing k-bit
prime field discrete logarithms require a comparable effort; and in the second
place, and possibly more interesting, because it required more than just a casual
application of known methods.
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The previous 596-bit and current 768-bit prime field discrete logarithm
records should not be confused with extension field discrete logarithm records.
Due to recent developments, we now have much better methods than the num-
ber field sieve to compute discrete logarithms in small characteristic extension
fields. As a consequence, those fields are no longer relevant for basic crypto-
graphic applications such as DSA. Indeed, recent extension field records imply
that impractically large extension fields would have to be used to get an appre-
ciable level of security: for instance, computing discrete logarithms in the multi-
plicative group of the 9234-bit field F22·35·19 took less than fifty core years [14],
and in the 3796-bit group F×

35·479 the problem was dealt with in less than a single
core year [18]. On the other hand, the current characteristic two prime extension
degree record involved the much smaller finite field F21279 and took between three
and four core years [20]: the advantage of the new methods over the number field
sieve strongly depends on properties of the extension degree, but for favorable
degrees the advantage is much bigger than the advantage for the number field
sieve when factoring special numbers (such as Mersenne or Fermat numbers)
compared to general ones (such as RSA moduli).

While the correctness of the outcome of our calculation can simply be verified,
independent validation of the other claims made in this paper requires access to
suitable source code and data. We have established a long-standing tradition of
open collaborations [30] with other leading researchers in this field (see [21,22]
and the references therein) which applies to anything relevant for the present
project as well.

The paper is organized as follows. Section 2 presents the background for the
rest of the paper. Section 3 describes the impact of the parameter selection on
the way one of the main steps of the number field sieve is best implemented for
the problem solved here and lists all relevant details of our new record calcula-
tion. Section 4 gives more details about the trade-off between the main steps of
the number field sieve, and presents estimates for the effort required to solve a
discrete logarithm problem in a small subgroup. In Sect. 5 it is shown that our
choice of p = [2766π] + 62762 is not more or less favorable than other primes of
the same size.

2 Algorithm Overview

Descriptions of the number field sieve are available in the literature, ranging
from the high level narrative [33] to the somewhat simplified and fully detailed
versions in [29] and [28], respectively.

Index Calculus Method [1,24,25]. Let Fp be a finite field of cardinality p, identi-
fied with {0, 1, . . . , p−1} in the usual manner, and let g generate its multiplicative
group F×

p . To compute discrete logarithms with respect to g, an index calculus
method fixes a so-called factor base B ⊂ F×

p , collects more than #B multiplica-
tive relations between the elements of B ∪ {g}, and uses linear algebra modulo
the order of g to determine for all elements of B their discrete logarithm with
respect to g. Given this information, the discrete logarithm of any h ∈ F×

p is
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then found by finding a multiplicative relationship between h and the elements
of B ∪ {g}.

Doing more or less the same modulo a composite N (as opposed to modulo p)
and using linear algebra modulo two (as opposed to modulo the order of g) an
integer solution to x2 ≡ y2 mod N may be found, and thus a chance to factor N
by computing gcd(N,x − y). This explains the similarity in the algorithms for
factoring and computing discrete logarithms as well as the difference between
the matrices for factoring and discrete logarithms that was pointed out in the
introduction. The effect of the prime p versus the composite N , as also mentioned
in the introduction, is touched upon below and in Sect. 3.

Different index calculus methods vary mostly in the way the multiplicative
relations are found. This affects the way B is chosen. For prime p for instance,
relations may be collected by considering ge for random integers e and keeping
those that factor over B. With B the set of primes up to some bound b one would
thus be collecting b-smooth ge-values. Faster methods increase the smoothness
probabilities by generating smaller values in {1, 2, . . . , p − 1}; select the values
in an arithmetic progression so that sieving can be used to faster recognize
smooth values; allow in relations a few large primes between b and a large prime
bound b�; or they manage to combine those speedups. Dan Gordon [13] was
the first to show how for prime p the ideas from the number field sieve for
integer factorization [28] can be included as well. Many other variants have been
proposed since then; the most accurate reference for the one used here is [35].

Relations in the Number Field Sieve. A property of the number field sieve that
sets it apart from the earlier index calculus methods is that for a relation two
distinct numbers must be smooth (with both numbers asymptotically signifi-
cantly smaller than the values considered before). Let f and g be two coprime
irreducible polynomials in Z[X] of degrees df and dg, respectively, chosen in such
a way that they have a root m in common modulo p (see Sect. 3 for how this
may be done). A relation corresponds to a coprime pair of integers (a, b) with
b ≥ 0 such that the two integers Nf (a, b) = bdf f(a

b ) and Ng(a, b) = bdgg(a
b ) are

smooth with respect to appropriately chosen bounds.
This is, very briefly, explained as follows. The integer Nf (a, b) is essen-

tially (except for the leading coefficient of f) the norm of a − αfb ∈ Z[αf ] ⊂
Q(αf ), where αf denotes a zero of f and Q(αf ) is the algebraic number field
Q[X]/(f(X)). The smoothness of Nf (a, b) then implies a factorization into small
prime ideals in Q(αf ) of the ideal (a−αfb) (cf. [8]). Noting that mapping αf to
the common root m results in a ring homomorphism ϕf from Z[αf ] to Fp, and
defining αg and ϕg in a similar manner for g, a relation (a, b) thus corresponds
to factorizations of the ideals (a − αfb) and (a − αgb) that map, via ϕf and ϕg,
respectively, to the same element a − bm ∈ Fp.

The 768-bit factorization from [21] used degrees df = 6 and dg = 1; con-
sequently, the labels algebraic or rational were used to distinguish values and
computations related to f or g, respectively. These intuitive labels can no longer
be used here, because the primality of our modulus (p) offers flexibility in the
polynomial selection that is not available for composite moduli and that resulted,
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as could be expected, in the “better” choices df = 3 and dg = 4 for the present
paper. Though the f - and g-related parts here are thus both algebraic, it will be
seen that the g-part is easier to deal with, and thus, to some extent, corresponds
to the rational side in [21]. Because f and g have rather different properties, dif-
ferent considerations come into play when selecting the factor bases for Nf (a, b)
and Ng(a, b). The single factor base B is therefore replaced by two distinct fac-
tor bases, denoted by Bf and Bg. For the present purposes it may be assumed
that Bf and Bg consist of the primes bounded by bf and bg. We make no dis-
tinction between f and g for the large prime bound (which is thus still denoted
by b�, with #B� denoting the number of primes bounded by b�), but may allow
different numbers of large primes in Nf (a, b) and Ng(a, b), denoted by nf and ng.

Finding Relations in the Number Field Sieve. As each relation requires two num-
bers being smooth, collecting relations is a two-stage process: in the first stage
pairs (a, b) for which Nf (a, b) is smooth are located; in the second stage, from
the pairs found those for which Ng(a, b) is smooth as well are selected. Thus,
the first stage treats the numbers that are least likely to be smooth, thereby
minimizing the number of pairs to be considered for the second stage: switching
the roles of f and g would have led to more pairs to be treated in the second
stage. Depending on the factor base sizes, various methods may be used to find
relations.

The search for relations is typically limited to a (large) rectangular region S of
the lattice Z2. For the first stage (and numbers in the current range of interest)
index-q sublattices Lq of Z2 are identified such that q divides Nf (a, b) for all
pairs (a, b) ∈ Lq and for primes q close to and often somewhat larger than bf

(these primes are referred to as special q primes). The process described below
is repeated for different special q primes until, after removal of unavoidable
duplicates, enough relations have been collected.

Given a special q prime, lattice sieving is conducted over a rectangular
region Sq (which roughly approximates Lq ∩ S), to locate (a, b) pairs for which
Nf (a, b) is bf -smooth (except for q and at most nf large primes ≤ b�). The
number of “surviving” pairs thus found is denoted by yf . If yf is large (and the
pairs are not spread too widely as for instance in [9,22]), it is best to again use
lattice sieving in Sq to collect from those yf pairs the yg pairs that are actually
relations, i.e., for which Ng(a, b) is bg-smooth as well (again with at most ng

large primes ≤ b�). This is the regular approach to the second stage, and was
used in [21]. But there are circumstances where the second stage is best done in
another manner: in [22], for instance, factorization trees (cf. [12, Sect. 4] and [4])
were used. This is also the approach taken here, as further described in Sect. 3.

Effort Required by the Number Field Sieve. With natural logarithms, let

E(x, c) = exp
(
((649 )

1
3 + c)(log x)

1
3 (log log x)

2
3
)
;

this slight variation on a well-known and more common notation allows us to
focus on what is of greatest interest in the present context. The current best
heuristic expected effort to compute a discrete logarithm in F×

p using the number
field sieve is E(p, o(1)), asymptotically for p → ∞ [13]. This is the same as the
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effort E(N, o(1)) (for N → ∞) to factor a composite N using the number field
sieve [8]. This “same” should, however, be taken with a grain of salt because
the o(1) hides different functions for the two cases.

Optimal Factor Base Sizes. The smoothness probabilities, the number of rela-
tions to be collected, and the dimension of the matrix handled by the linear alge-
bra all increase with the smoothness parameters bf , bg, b�, nf and ng. The result-
ing trade-off leads to optimal factor base sizes #Bf and #Bg, namely E(p, o(1))

1
2

for discrete logarithms and E(N, o(1))
1
2 for factoring. As noted above, even if

[log p] = [log N ], in a given model of computation the optimal values for both
factoring and discrete logarithm computation may be very different because the
two o(1)-functions behave quite differently. Moreover, in practice the situation is
further complicated because of the software and hardware actually used. Thus,
naively using factor base sizes that worked well for a factoring problem for a
similarly sized prime field discrete logarithm problem, as done in the introduc-
tion and despite the “correction” attempted there, will at best result in a rough
upper bound. Section 3 discusses this issue in more detail.

Remark on Using E(x, c) in Practice. The uncertain function hiding in the o(1)
makes it challenging to use E(p, o(1)) to give an absolute estimate for the effort to
solve a discrete logarithm problem in F×

p . It turns out, however, that a somewhat
pessimistic indication can be obtained for the relative effort for F×

p̄ compared
to F×

p , for p̄ not much bigger than p (say, p̄ ≤ p
4
3 ), by dropping the o(1). Obvi-

ously, this assumes similar software that suffers no ill side-effects nor profits from
new optimizations when moving to the larger p̄. The same works for factoring.

As an example, the three orders of magnitude difference between the efforts of
factoring 768-bit and 1024-bit moduli, as mentioned in the introduction, follows
from E(21024,0)

E(2768,0) ≈ 1200; the jump from 130 core years for a 596-bit prime field
discrete logarithm problem to about thirty thousand core years for 768 bits
follows from E(2768,0)

E(2596,0) ≈ 275 – an extrapolation that failed to be useful because
of the reasons mentioned in the introduction.

3 Computational Details

This section provides some background on our parameter choices. For compar-
ison, we also provide the parameters that were used for the 768-bit factoring
effort from [21].

Polynomial Selection. To get an initial impression of the feasibility of the cal-
culation an extensive search was conducted using the method from [17]. First
all integer polynomials g of degree four with coefficients absolutely bounded by
165 (and noting that g(X), g(−X), and X4g( 1

X ) and thus X4g(−1
X ) are equiva-

lent) were inspected, by using, for all the roots of g modulo p, lattice reduction
to find a corresponding degree three integer polynomial f , and measuring the
overall quality of all resulting pairs (f, g) (as usual with respect to their small
modular roots and size properties). For the second search, with bound 330, roots
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and size properties of g were first considered and only for the most promising
candidates the roots of g modulo p were calculated and, if any, the polynomial f
was derived. The best pair was found during the first search:

f(X) = 370863403886416141150505523919527677231932618184100095924X3

− 1937981312833038778565617469829395544065255938015920309679X2

− 217583293626947899787577441128333027617541095004734736415X
+ 277260730400349522890422618473498148528706115003337935150,

g(X) = 140X4 + 34X3 + 86X2 + 5X − 55.

Because it requires root finding modulo p, the above search does not work to
find polynomials for the number field sieve for integer factorization. There one is
limited to more restrictive methods that cannot be expected to result in polyno-
mials of comparable “quality”, with respect to the metric used in this context:
indeed, the above pair is noticeably better than the degree (6, 1) pair used for the
slightly smaller 768-bit modulus factored in [21]. A more quantitative statement
requires a more careful analysis than we are ready to provide here. No signifi-
cant amount of time was spent on searching for pairs (f, g) of other degrees than
df = 3 and dg = 4.

Parameter Selection Background. The two main steps of the number field sieve
after the polynomial selection, relation collection and linear algebra, are of a very
different nature. Relation collection is long-term but low-maintenance: core years
are easily harvested on any number of otherwise idle independent cores on any
number of clusters that one can get access to, progress will be steady, and the
process requires almost no human interaction. The results can easily be checked
for correctness (cf. [22, Sect. 6]) and results that are lost or forgotten are easily
replaced by others. Compared to this almost “happy-go-lucky” relation collection
process, the linear algebra is tedious and cumbersome, despite the elegance of the
block Wiedemann method used for it [10,37]. It involves careful orchestration of
a (modest number of) substeps each of which requires as many tightly coupled
cores as needed to store the data (easily on the order of hundreds of GB), frequent
checkpointing, and a central step that is even more memory-demanding but
otherwise fortunately relatively swift. Overall, based on past experience core
years are collected at about half the rate compared to relation collection.

For both main steps the required effort is well understood:

• Given relation collection software and any choice of smoothness parameters
a small number of experiments suffices to get an accurate indication for the
effort required to collect any specified number of relations (it follows from the
description in Sect. 5 how this may be done).

• Similarly, given block Wiedemann software and any matrix dimension, weight,
and modulus-size, the overall linear algebra effort can be reliably estimated
based on the effort required for a few matrix× vector multiplications on the
processor network of one’s choice.

However, the relations as collected are never directly used for the linear
algebra, because doing so would be hugely inefficient. Instead, a linear algebra
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preprocessing step is applied to the relations in order to reduce the dimension
of the matrix while keeping its weight under control, thereby (substantially)
reducing the linear algebra effort. This preprocessing becomes more effective as
more relations are available (cf. Sect. 4) but the precise behavior of both dimen-
sion and weight depends on how (large) primes in a relation can be matched
with the same primes in other relations and is thus uncertain. In practice one
collects relations while occasionally doing a preprocessing attempt, and stops
when the resulting linear algebra effort is within the targeted range. When to
stop is a judgment call as more often than not the additional effort invested
in relation collection is more than the expected linear algebra savings: it thus
serves more to reduce the linear algebra headaches than to reduce the overall
effort. As an example, for the current 768-bit factoring record about twice the
strictly necessary relation collection effort was spent to make the linear alge-
bra more manageable, an extra effort that was commented on as being “well
spent” (cf. [21, Introduction]). These “negative returns” are further illustrated
in Sect. 4.

Based on consistent past behavior of the preprocessing and given specific
smoothness parameters, it can be roughly estimated how many relations have to
be collected for a targeted matrix dimension and weight. Given the uncertainty
alluded to above, this estimate can only be a guess, though it is a mildly educated
one. With the known behavior of the software, an overall effort estimate assuming
those specific smoothness parameters can be derived. Repeating this for different
smoothness parameters, the “best” – despite a lack of clear optimization criteria
– overall effort then follows.

Parameter Selection. Our starting point was that on current equipment the lin-
ear algebra effort for the 768-bit modulus factored in [21] would be about 75
core years. Given the similarity of the algorithms and sizes, and using the same
smoothness parameters as in [21], the overall effort to solve our discrete loga-
rithm problem can be estimated as 1500 + 767 · 75 = 59025 core years; due to
the small entries of the matrix the linear algebra effort only depends linearly on
the size of the group order. The fifty thousand core years estimate mentioned in
the introduction then follows from the expected favorable comparison of poly-
nomials found using the method from [17] compared to the method used in [21];
we refer to the papers involved for an explanation of this effect.

All that is clear at this point is that attempts to lower this estimate must
focus on lowering the linear algebra effort; thus the smoothness parameters must
be reduced, but by how much and what the overall effect is going to be is unclear.
Because the block Wiedemann effort is roughly proportional to the product of
the matrix dimension and weight, reducing the matrix dimension by a factor of c
while keeping the same average row-weight, cuts the linear algebra effort by a
factor of c2. Thus, given any targeted linear algebra effort a reduction factor c
for the dimension follows. Assuming that, for our problem, a thousand core
years would be acceptable for the linear algebra effort, a dimension reduction
factor of about 7.6 follows, because 767·75

7.62 ≈ 1000. Compared to the parameters
used in [21], such a drastic reduction requires severely cutting the smoothness
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parameters and the number of special q primes one may use. This in turn entails
a more than proportional increase in the search space and thus a substantial
increase in the overall relation collection effort compared to the 1500 core years
spent in [21]. A priori, however, and as argued above, the effect of any of the
changes that one may wish to consider cannot be accurately predicted.

While conducting experiments with a 640-bit example to better understand
the increase in the relation collection effort depending on various possible combi-
nations of smaller smoothness parameters and larger search spaces, we observed
a mildly beneficial side-effect which – once observed – is obvious, but which
was unanticipated: in the notation of Sect. 2, if Bf decreases, the number yf of
bf -smooth norms Nf (a, b) becomes smaller too, at a given point to an extent
that it becomes more efficient to replace sieving for the second search stage (as
used in [21]) by factorization trees. For the 640-bit example the effect was still
small, i.e., yf was still relatively large. But for our 768-bit prime the impact soon
turned out to be considerable, almost halving the (inflated, compared to [21])
relation collection effort.

The resulting “best” parameters that we settled for are listed in Table 1
(though for some special q primes larger factor bases were used), along with the
parameters used in [21] for the 768-bit number field sieve factorization. The clear
difference is that the choices for 768-bit factoring were optimized for speed dur-
ing relation collection (collecting relations until the after-preprocessing matrix
dimension and weight were found to be acceptable), whereas our choices try to
squeeze as many relations as possible out of every special q prime under a rel-
atively restrictive smoothness regime. Compared to [21], #Bf is reduced by a
factor of a bit more than two, the number of special q primes is reduced by a
factor of more than twenty, the number of large primes per relation is cut from
4+3 to 2+2 with a large prime bound that is reduced by a factor of 24 from 240

to 236, while #Bg remains unchanged and the search space is on average (forced
to be) more than 28 times larger. As a result the number of relations per core
unit of time drops by a factor of about sixteen compared to [21].

The first preprocessing attempt that resulted in the hoped-for matrix dimen-
sion and weight occurred when 1.09e10 relations had been collected, i.e., about
six times fewer relations than in [21]. The resulting overall relation collection
effort thus became 16

6 · 1500 = 4000 core years. With 920 core years the lin-
ear algebra effort was close to but less than the thousand core years that we
had hoped to achieve. A much smaller set of relations would in principle have
sufficed too, but it would have resulted in a larger linear algebra effort; Sect. 4
below describes the trade-off in more detail.

Some of the details in Table 1 are listed for completeness; for explanations
we refer to [21]. Like most of our computational number theory colleagues, we
missed the fact (which apparently had not escaped numerical analysts) that the
evaluation stage of the block Wiedemann method can be sped up considerably
using Horner’s rule [19]; it would have reduced our overall effort to approximately
5000 core years.
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Table 1. Comparison of 768-bit factoring and computing 768-bit prime field discrete
logarithms.

Database. The linear algebra step resulted in the (virtual) logarithms of 24 mil-
lion prime ideals. Spending less than 200 core years for additional sieving and
further processing, a database was built containing the about 3e9 logarithms of
all prime ideals of norms up to 235.

Individual Logarithms. Using the database and q-descent, the logarithm of the
target t from the introduction was computed in approximately 115 core hours.
Similar computations for t + 1, t + 2, . . . , t + 10 took on average about 96 core
hours per logarithm.
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With improved software any individual logarithm can now be computed at an
average effort of 43 core hours (and a rather large variation, cf. Table 1). Further
software enhancements are easily conceivable, but this already insignificant effort
underscores the point made in the introduction that once a single number field
sieve based attack has been carried out successfully, other attacks against the
same prime field are straightforward.

4 Trade-Off

During relation collection occasional preprocessing attempts were made, until the
resulting matrix was found to be acceptable. Data about the non-final attempts
were not kept, so for the purpose of the present paper part of this work was
redone to be able to give an impression how the linear algebra effort decreases
as more relations become available.

Table 2 summarizes the results of these “after the fact” preprocessing
attempts of the sets of relations found for special q primes up to increasing
bounds bq, along with the resulting extrapolations of the block Wiedemann
efforts (not using Horner’s rule for the evaluation stage). Estimates are also
listed for the effort required for a discrete logarithm problem in a 160-bit sub-
group of the multiplicative group of a 768-bit prime field. For each set of relations
up to five preprocessing attempts were made, and the best was selected depend-
ing on the subgroup size; this explains why for five of the 160-bit subgroup
entries the matrix dimension and weight are different from those in the 767-bit
subgroup entry. The last two rows show the effect of the 1e8 forgotten relations
(cf. Table 1): including those and spending more time on constructing the matrix
could have reduced the matrix effort by 20 (or 5) core years.

The difference between the linear algebra estimate in the last row for the
matrix as actually used and the effort as reported in Table 1 is due to a lower
number of nodes on which the experiment was run: for a full execution it would
lower the linear algebra effort, but increase the calendar time. The effort required
for polynomial selection and individual logarithms is independent of the bq-value,
and is not included in the “combined effort”. The database building effort may
be up to three times larger for the smallest feasible bq-value, but is not included
either.

The numbers in the “combined effort” columns of Table 2 illustrate the neg-
ative returns mentioned in Sect. 3: with more patience to deal with a larger
linear algebra problem (that would have required disproportionally more cal-
endar time), our overall effort could have been reduced from 5300 to less than
4000 core years. As in [21], the additional relation collection effort was well spent,
because a large block Wiedemann job requires constant attention and any way
to reduce the calendar time is welcome.

Note that for the smaller subgroup problem the overall least effort is reduced
by a factor smaller than two.
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Table 2. Relation collection effort, matrix dimension and weight as a result of pre-
processing, estimated linear algebra effort, and the combined effort (all efforts are in
core years), when using special q primes up to bq and both for 767-bit and 160-bit
subgroup orders. The overshoot factor is the ratio of the number of relations and the
number of relations for the least bq (2.8e8) for which enough relations had been found.
Relations are unique and factored and include the free relations.

Relation collection 767-bit subgroup order (our problem) 160-bit subgroup order

bq Relation
count

Effort Overshoot
factor

Dimension
and weight

Nodes Matrix
effort

Combined
effort

Dimension
and weight

Nodes Matrix
effort

Combined
effort

2.70e8 2.33e9 Insufficient

2.80e8 2.58e9 1300 1.000 5.62e7 9.5e9 25 6575 7875 5.62e7 9.5e9 9 1780 3080

3.06e8 3.24e9 1625 1.255 3.27e7 6.2e9 12 2095 3720 4.00e7 4.7e9 4 500 2125

3.35e8 3.90e9 1850 1.508 2.96e7 4.5e9 9 1420 3270 2.96e7 4.5e9 4 325 2175

3.67e8 4.52e9 2100 1.751 2.62e7 4.4e9 9 1120 3220 2.76e7 3.9e9 4 270 2370

4.03e8 5.15e9 2400 1.995 2.47e7 4.2e9 9 1000 3400 2.57e7 3.8e9 4 240 2640

4.75e8 6.50e9 2975 2.516 2.36e7 3.7e9 9 870 3845 2.48e7 3.3e9 4 210 3185

5.37e8 7.74e9 3475 2.997 2.41e7 3.1e9 6 790 4265 2.41e7 3.1e9 4 190 3665

6.30e8 9.15e9 4000 3.542 2.17e7 3.6e9 6 740 4740 2.08e7 4.0e9 4 180 4180

(used) 9.08e9 4000 3.515 2.35e7 3.1e9 6 760 4760 2.35e7 3.1e9 4 185 4185

5 Other Prime Fields

To convince ourselves that our results were not due to unexpected, lucky prop-
erties of our choice of prime field, we tested ten other similarly chosen 768-
bit primes and roughly compared them to our p with respect to their sieving
yield. Define the following eleven transcendental or supposed-to-be transcenden-
tal numbers:

ρ0 = π;
ρ1 = e, Euler’s number;
ρ2 = γ, the Euler-Mascheroni constant;

ρ3 =
√

2
√
2
;

ρ4 = ζ(3), where ζ is the Riemann zeta function;
ρ5 = log(1+

√
5

2 ), the regulator of the “smallest” real quadratic number field;
ρ6 = ΩX0(11), the real period of the “smallest” elliptic curve, namely X0(11)

given by y2 + y = x3 − x2 − 10x − 20;
ρ7 = ĥX0(37)(P37), the canonical height of a generator P37 = (0, 0) of the

“smallest” rank 1 elliptic curve, namely X0(37) given by y2 + y = x3 − x;
ρ8 = t0, the imaginary part of the first zero 1

2 + t0i on the critical strip of ζ;
ρ9 = πe;
ρ10 =

∑∞
i=1 10−i!, Liouville’s constant.

For 0 ≤ i ≤ 10 let εi = 767 − [ log ρi

log 2 ] and let pi be the least prime larger than
2εiρi for which pi−1

2 is prime as well. Then p0 = p. Let πj be the number of
primes in [j · 1e7, (j + 1) · 1e7]; for 19 ≤ j ≤ 62 these intervals cover our range of
special q primes (cf. Table 1).
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For each of the eleven primes pi with 0 ≤ i ≤ 10 the following calculation
was carried out:

Polynomial Selection. Find the best pair (fi, gi) for pi among the first 5e9 can-
didate polynomials for gi. (This requires about one core year.)

Sieving Experiments. For 19 ≤ j ≤ 62 find the number rj of relations when
sieving with the parameters as in Table 1 but with the polynomials fi and gi

and the prime pi and for the least special q prime larger than j ·1e7+5e6. (This
requires less than four core days, cf. Table 1.)

Overall Yield Estimate. Let Ri =
∑62

j=19 πjrj .

Table 3. Relative performance of p = p0 compared to ten other choices.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

pi/p0 1.000 0.865 0.735 1.039 0.765 1.225 0.808 1.041 1.125 0.894 1.120

Ri/R 0.844 0.821 0.847 0.820 0.864 0.800 0.795 0.884 0.848 0.798 0.823

Ri/R0 1.000 0.973 1.004 0.972 1.024 0.948 0.942 1.048 1.005 0.946 0.975

We also carried out the same sieving experiments for the polynomial pair (f, g)
from Sect. 3 and p = p0, finding an overall yield estimate R = 1.02e10. This
is less than the 1.09e10 relations reported in Table 1, because there some of
the sieving jobs used a larger factor base bound than reported in Table 1, thus
producing more duplicates. But it is more than R0 (which was found to be 8.6e9),
matching the expectation that (f, g) is considerably better than (f0, g0). Table 3
lists the relative performance of our p compared to the ten new choices: as can
be seen in the final row, four of the ten perform better and six are worse, but
they are all within a 6% margin from p. It also follows that the core years spent
on polynomial selection for our p were well spent.

Although our tests counter suspicions about p being special, it may be
argued that in practice primes used in cryptography would be chosen with high
entropy [5]. Testing a few “random” primes as well might strengthen our argu-
ment. It is unclear to us, however, how such primes may be obtained in a manner
that is sufficiently convincing to any suspicious reader, without input from that
reader [32].

6 Conclusion

We presented the computation of a discrete logarithm in the multiplicative group
of a 768-bit prime field. This is a new record in its category, beating the previous
596-bit record. We showed the beneficial effect of judicious choice of parameters
and algorithms, and highlighted the differences with integer factorization. Based
on our findings we may conclude that for sizes that are currently within reach of
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an academic effort, the hardness of factoring and computing prime field discrete
logarithms is comparable, though discrete logarithms are harder. Although this
was always suspected to be the case, the gap between the two problems is quite
a bit smaller than we expected. Compared to the 768-bit factoring record (which
required 1700 core years as opposed to our 5300 core years) we used less calen-
dar time and a smaller collaborative and less heterogeneous effort [23]. We also
conclude that the explicit 1024-bit estimates from [2, Sect. 4.1] should be redone,
as they require not entirely straightforward re-optimization efforts.

Unless algorithmic improvements are proposed or new insights may be
expected, pushing for actual new factoring or prime field discrete logarithm
records – as opposed to studies that result in reliable estimates – is mostly a
waste of energy. We are not aware of any developments based on which we could
realistically expect publication of a 1024-bit record within the next, say, five
years. As usual, this may change at any moment, but so far the predictions
made back in 2009 (cf. [6]) have already turned out to be accurate, or remain
valid. In this context it is relevant to note that the project embarked on in [3] is
still ongoing.
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J.A., Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wus-
trow, E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward secrecy: how
Diffie-Hellman fails in practice. In: 22nd ACM Conference on Computer and Com-
munications Security, October 2015 (2015)

3. Bailey, D.V., Baldwin, B., Batina, L., Bernstein, D.J., Birkner, P., Bos, J.W., van
Damme, G., de Meulenaer, G., Fan, J., Güneysu, T., Gurkaynak, F., Kleinjung,
T., Lange, T., Mentens, N., Paar, C., Regazzoni, F., Schwabe, P., Uhsadel, L.:
The certicom challenges ECC2-X. Special-Purpose Hardware for Attacking Cryp-
tographic Systems - SHARCS 2009 (2009). http://www.hyperelliptic.org/tanja/
SHARCS/record2.pdf

4. Bernstein, D.J.: How to find small factors of integers, june 2002. http://cr.yp.to/
papers.html

5. Bernstein, D.J., Chou, T., Chuengsatiansup, C., Hülsing, A., Lange, T., Niederha-
gen, R., van Vredendaal, C.: How to manipulate curve standards: a white paper for
the black hat. Cryptology ePrint Archive, Report 2014/571 (2014). http://eprint.
iacr.org/2014/571

6. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: On
the security of 1024-bit RSA and 160-bit elliptic curve cryptography. Cryptology
ePrint Archive, Report 2009/389 (2009). http://eprint.iacr.org/

http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf
http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://eprint.iacr.org/2014/571
http://eprint.iacr.org/2014/571
http://eprint.iacr.org/


200 T. Kleinjung et al.

7. Bouvier, C., Gaudry, P., Imbert, L., Hamza, J., Thomé, E.: Discrete logarithms in
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J., Thomé, E., Jermini, P., Thiémard, M., Leyland, P., Montgomery, P.L., Tim-
ofeev, A., Stockinger, H.: A heterogeneous computing environment to solve the
768-bit RSA challenge. Cluster Comput. 15, 53–68 (2012)

24. Kraitchik, M.: Théorie des nombres, Tome I. Gauthiers-Villars, Paris (1922)
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Abstract. We perform a special number field sieve discrete logarithm
computation in a 1024-bit prime field. To our knowledge, this is the
first kilobit-sized discrete logarithm computation ever reported for prime
fields. This computation took a little over two months of calendar time
on an academic cluster using the open-source CADO-NFS software.

Our chosen prime p looks random, and p − 1 has a 160-bit prime
factor, in line with recommended parameters for the Digital Signature
Algorithm. However, our p has been trapdoored in such a way that the
special number field sieve can be used to compute discrete logarithms in
F∗
p, yet detecting that p has this trapdoor seems out of reach. Twenty-

five years ago, there was considerable controversy around the possibility
of backdoored parameters for DSA. Our computations show that trap-
doored primes are entirely feasible with current computing technology.
We also describe special number field sieve discrete log computations car-
ried out for multiple conspicuously weak primes found in use in the wild.

As can be expected from a trapdoor mechanism which we say is hard
to detect, our research did not reveal any trapdoored prime in wide use.
The only way for a user to defend against a hypothetical trapdoor of this
kind is to require verifiably random primes.

1 Introduction

In the early 1990’s, NIST published draft standards for what later became the
Digital Signature Algorithm (DSA) [40]. DSA is now widely used. At the time,
many members of the cryptographic community voiced concerns about the pro-
posal. Among these concerns were that the standard encouraged the use of a
global common prime modulus p [45], and that a malicious party could specially
craft a trapdoored prime so that signatures would be easier to forge for the
trapdoor owner [31]. This latter charge was the subject of a remarkable panel at
Eurocrypt 1992 [1,15]. Most of the panelists agreed that it appeared to be diffi-
cult to construct an undetectably trapdoored modulus, and that such trapdoors
appeared unlikely. To protect against possible trapdoored primes, the Digital
Signature Standard suggests that primes for DSA be chosen in a “verifiably ran-
dom” way, with a published seed value [49]. Yet DSA primes used in the wild
today are seldom published with the seed.
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part I, LNCS 10210, pp. 202–231, 2017.
DOI: 10.1007/978-3-319-56620-7 8
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Concerns about cryptographic backdoors have a long history (for instance,
it has been formalized as “kleptography” in the 90’s [54]) and regained promi-
nence in recent years since the disclosure of NSA documents leaked by Edward
Snowden. A set of leaked documents published in September 2013 by the NY
Times [43], The Guardian [4], and ProPublica [30] describe an NSA “SIGINT
Enabling Project” that included among its goals to “Influence policies, stan-
dards, and specification for commercial public key technologies”. The newspaper
articles describe documents making specific reference to a backdoor in the Dual
EC random number generator, which had been standardized by both NIST and
ANSI. NIST responded by withdrawing its recommendation for the Dual EC
DRBG, writing “This algorithm includes default elliptic curve points for three
elliptic curves, the provenance of which were not described. Security researchers
have highlighted the importance of generating these elliptic curve points in a
trustworthy way. This issue was identified during the development process, and
the concern was initially addressed by including specifications for generating
different points than the default values that were provided. However, recent
community commentary has called into question the trustworthiness of these
default elliptic curve points” [38]. There is evidence that the ability to back-
door the Dual EC algorithm has been exploited in the wild: Juniper Networks
had implemented Dual EC in NetScreen VPN routers, but had used it with
custom-generated parameters. In December 2015 Juniper published a security
advisory [25] announcing that an attacker had made unauthorized modifications
to the source code for these products to substitute a different curve point in the
Dual EC implementation [10].

In this paper, we demonstrate that constructing and exploiting trapdoored
primes for Diffie-Hellman and DSA is feasible for 1024-bit keys with modern aca-
demic computing resources. Current estimates for 1024-bit discrete log in general
suggest that such computations are likely within range for an adversary who can
afford hundreds of millions of dollars of special-purpose hardware [2]. In contrast,
we were able to perform a discrete log computation on a specially trapdoored
prime in two months on an academic cluster. While the Dual EC algorithm
appears to have only rarely been used in practice [9], finite-field Diffie-Hellman
and DSA are cornerstones of public-key cryptography. We neither show nor claim
that trapdoored primes are currently in use. However, the near-universal failure
of implementers to use verifiable prime generation practices means that use of
weak primes would be undetectable in practice and unlikely to raise eyebrows.

The Special Number Field Sieve Trapdoor

The Number Field Sieve (NFS), still very much in its infancy at the beginning of
the 1990’s, was originally proposed as an integer factoring algorithm [32]. Gordon
adapted the algorithm to compute discrete logarithms in prime fields [22]. Both
for the integer factoring and the discrete logarithm variants, several theoretical
and computational obstacles had to be overcome before the NFS was practical
to use for large scale computations. For the past twenty years, the NFS has been
routinely used in record computations, and the underlying algorithms have been
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thoroughly improved. The NFS is now a versatile algorithm which can handle
an arbitrary prime p, and compute discrete logarithms in F∗

p in asymptotic time
Lp(1/3, (64/9)1/3)1+o(1), using the usual L-notation (see Sect. 3.2).

Current computational records for the number field sieve include a 768-bit
factorization of an RSA modulus, completed in December 2009 by Kleinjung
et al. [27] and a 768-bit discrete log for a safe prime, completed in June 2016 by
Kleinjung et al. [28].

Very early on in the development of NFS, it was observed that the algorithm
was particularly efficient for inputs of a special form. Some composite integers
are particularly amenable to being factored by NFS, and primes of a special form
allow easier computation of discrete logarithms. This relatively rare set of inputs
defines the Special Number Field Sieve (SNFS). It is straightforward to start with
parameters that give a good running time for the NFS—more precisely, a pair of
irreducible integer polynomials meeting certain degree and size constraints—and
derive an integer to be factored, or a prime modulus for a discrete logarithm.
In general, moving in the other direction, from a computational target to SNFS
parameters, is known to be possible only in rare cases (e.g. the Cunningham
project). The complexity of SNFS is Lp(1/3, (32/9)1/3)1+o(1), much less than its
general counterpart. A 1039-bit SNFS factorization was completed in 2007 by
Aoki et al. [3].

In 1992, Gordon [21] suggested several methods that are still the best known
for trapdooring primes to give the best running time for the SNFS, without
the trapdoored SNFS property being conspicuous1. Most of his analysis remains
valid, but there has been significant improvement in the NFS algorithm in the
past 25 years. In the early days, an NFS computation had to face issues of dealing
with class groups and explicit units. That meant much less flexibility in creating
the trapdoor, to the point that it was indeed difficult to conceal it. It is now well
understood that these concerns were artificial and can be worked around [46],
much to the benefit of the trapdoor designer. Gordon’s analysis and much of
the discussion of trapdoored DSA primes in 1992 focused on 512-bit primes, the
suggested parameter sizes for NIST’s DSS draft at the time. However, 25 years
later, 1024-bit targets are of greater cryptanalytic interest.

We update the state of the art in crafting trapdoored 1024-bit primes for
which practical computation of discrete logarithms is possible, and demon-
strate that exploitation is practical by performing a 1024-bit SNFS discrete log
computation.

We begin by reviewing in Sect. 2 the origin of primes found in multiple prac-
tical cryptographic contexts. Section 3 recalls a brief background on the Number
Field Sieve. In Sect. 4, we reevaluate Gordon’s work on trapdooring primes for
SNFS given the modern understanding of the algorithm, and explain for a given
target size which polynomial pair yields the fastest running time. This answers
a practical question for the problem at hand—how to optimally select trapdoor

1 In 1991, another method was suggested by Lenstra in [31], and played a role in
triggering the Eurocrypt panel [15]. Gordon’s trap design is more general.
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parameters to simplify computations with the prime—and is also of wider inter-
est for NFS-related computations.

We then run a full 1024-bit experiment to show that trapdoored primes are
indeed a practical threat, and perform a full 1024-bit SNFS discrete log com-
putation for our trapdoored prime. We describe our computation in Sect. 5. We
show how various adaptations to the block Wiedemann algorithm are essential
to minimizing its running time, compared to previous computations of the same
kind. We detail the descent procedure, and the various challenges which must be
overcome so as to complete individual logs in a short time. We also provide an
extensive appendix giving details on the analysis of individual logarithm com-
putation in AppendixA, as this portion of the computation is not well detailed
in the literature.

Finally, we evaluate the impact of our results in Sect. 6. Our computation
required roughly a factor of 10 less resources than the recent 768-bit GNFS
discrete log announced by Kleinjung et al. However, we have found a number
of primes amenable to non-hidden SNFS DLP computations in use in the wild.
We describe additional SNFS computations we performed on these primes in
Sect. 6.2.

2 Modern Security Practices for Discrete Log
Cryptosystems

Verifiable Prime Generation. It is legitimate to wonder whether one should
worry about trapdoored primes at all. Good cryptographic practice recommends
that publicly agreed parameters must be “verifiably random”. For example,
Appendix A.1.1.2 of the FIPS 186 standard [40] proposes a method to gener-
ate DSA primes p and q from a random seed and a hash function, and suggests
that one should publish that seed alongside with p and q. The publication of
this seed is marked optional. Primes of this type are widely used for a vari-
ety of cryptographic primitives; for example NIST SP 800-56A specifies that
finite-field parameters for key exchange should be generated using FIPS 186
[41, Sect. 5.5.1.1].

While it is true that some standardized cryptographic data includes “verifi-
able randomness”2 or rigidity derived from “nothing up my sleeve” numbers, it is
noteworthy that this is not always the case. For example, both France and China
standardized elliptic curves for public use without providing any sort of justifica-
tion for the chosen parameters [8, Sect. 3.1]. RFC 5114 [33] specifies a number of
groups for use with Diffie-Hellman, and states that the parameters were drawn
from NIST test data, but neither the NIST test data [39] nor RFC 5114 itself
contain the seeds used to generate the finite field parameters. In a similar vein,
the origin of the default 2048-bit prime in the Helios voting system used in the
most recent IACR Board of Directors Election in 2015 is undocumented. Most

2 This still leaves the question of whether the seed is honest, see e.g. [8,47]. We do not
address this concern here.
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users would have to go out of their way to generate verifiable primes: the default
behavior of OpenSSL does not print out seeds when generating Diffie-Hellman
or DSA parameter sets. However, some implementations do provide seeds. Java’s
sun.security.provider package specifies hard-coded 512-, 768-, and 1024-bit
groups together with the FIPS 186 seeds used to generate them.

Standardized and Hard-Coded Primes. It is also legitimate to wonder whether
one should be concerned about widespread reuse of primes. For modern com-
puters, prime generation is much less computationally burdensome than in the
1990s, and any user worried about a backdoor could easily generate their own
group parameters. However, even today, many applications use standardized or
hard-coded primes for Diffie-Hellman and DSA. We illustrate this by several
examples.

In the TLS protocol, the server specifies the group parameters that the client
and server use for Diffie-Hellman key exchange. Adrian et al. [2] observed in 2015
that 37% of the Alexa Top 1 Million web sites supported a single 1024-bit group
for Diffie-Hellman key exchange. The group parameters were hard-coded into
Apache 2.2, without any specified seed for verification. They also observed that
in May 2015, 56% of HTTPS hosts selected one of the 10 most common 1024-
bit groups when negotiating ephemeral Diffie-Hellman key exchange. Among
13 million recorded TLS handshakes negotiating ephemeral Diffie-Hellman key
exchange, only 68,000 distinct prime moduli were used. The TLS 1.3 draft
restricts finite-field Diffie-Hellman to a set of five groups modulo safe primes
ranging in size from 2048 to 8196 bits derived from the nothing-up-my-sleeve
number e [19].

In the IKE protocol for IPsec, the initiator and responder negotiate a group
for Diffie-Hellman key exchange from a set list of pre-defined groups; Adrian et al.
observed that 66% of IKE responder hosts preferred the 1024-bit Oakley Group 2
over other choices. The Oakley groups specify a collection of primes derived from
a “nothing-up-my-sleeve” number, the binary expansion of π, and have been built
into standards, including IKE and SSH, for decades [42]. The additional finite-
field Diffie-Hellman groups specified in RFC 5114 are widely used in practice:
Internet-wide scans from September 2016 found that over 900,000 (2.25%) of
TLS hosts on port 443 chose these groups [16]. Scans from February 2016 of
IKE hosts on port 500 revealed that 340,000 (13%) supported the RFC 5114
finite-field Diffie-Hellman parameters [53].

RFC 4253 specifies two groups that must be supported for SSH Diffie-
Hellman key exchange: Oakley Group 2 (which is referred to as SSH group 1)
and Oakley Group 14, a 2048-bit prime. SSH group 1 key exchange was dis-
abled by default in OpenSSH version 7.0, released in August 2015 [18]. Option-
ally, SSH clients and servers may negotiate a different group using the group
exchange handshake. However, OpenSSH chooses the group negotiated during
this exchange from a pre-generated list that is generally shipped with the soft-
ware package. The /etc/ssh/moduli file on an Ubuntu 16.04 machine in our
cluster contained 267 entries in size between 1535 and 8191 bits. The 40 to 50
primes at each size appear to have been generated by listing successive primes
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from a fixed starting point, and differ only in the least significant handful of bits.
We examined data from a full IPv4 SSH scan performed in October 2015 [53]
that offered Diffie-Hellman group exchange only, and found 11,658 primes in
use from 10.9 million responses, many of which could be clustered into groups
differing only in a handful of least significant bits.

The SSH protocol also allows servers to use long term DSA keys to authen-
ticate themselves to clients. We conducted a scan of a random 1% portion of
the IPv4 space for hosts running SSH servers on port 22 with DSA host keys in
September 2016, and found that most hosts seemed to generate unique primes
for their DSA public keys. The scan yielded 27,380 unique DSA host keys from
32,111 host servers, of which only 557 shared a prime with another key. DSA
host key authentication was also disabled by default in OpenSSH 7.0 [18].

1024-Bit Primes in Modern Cryptographic Deployments. It is well understood
that 1024-bit factorization and discrete log computations are within the range of
government-level adversaries [2], but such computations are widely believed by
practitioners to be only within the range of such adversaries, and thus that these
key sizes are still safe for use in many cases. While NIST has recommended a
minimum prime size of 2048 bits since 2010 [6], 1024-bit primes remain extremely
common in practice. Some of this is due to implementation and compatibility
issues. For example, versions of Java prior to Java 8, released in 2014, did not
support Diffie-Hellman or DSA group sizes larger than 1024 bits. DNSSEC limits
DSA keys to a maximum size of 1024-bit keys [29], and stated, in 2012, that with
respect to RSA keys, “To date, despite huge efforts, no one has broken a regular
1024-bit key; . . . it is estimated that most zones can safely use 1024-bit keys
for at least the next ten years.” SSL Labs SSL Pulse estimated in September
2016 that 22% of the 200,000 most popular HTTPS web sites performed a key
exchange with 1024-bit strength [50].

3 The Number Field Sieve for Discrete Logarithms

3.1 The NFS Setting

We briefly recall the Number Field Sieve (NFS) algorithm for computing dis-
crete logarithms in finite fields. This background is classical and can be found
in a variety of references. NFS appeared first as an algorithm for factoring inte-
gers [32], and has been adapted to the computation of discrete logarithms over
several works [22,23].

Let Fp be a prime field, let γ ∈ F∗
p be an element of prime order q | p − 1.

We wish to solve discrete logarithms in 〈γ〉. The basic outline of the NFS-DL
algorithm is as follows:

Polynomial selection. Select irreducible integer polynomials f and g, sharing
a common root m modulo p. Both polynomials define number fields, which
we denote by Q(α) and Q(β).
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Sieving. Find many pairs a, b such that the two integers (called norms – albeit
improperly if f or g are not monic) Res(f(x), a − bx) and Res(g(x), a − bx)
factor completely into primes below a chosen smoothness bound B.

Filtering. Form multiplicative combinations of the (a, b) pairs to reduce the
number of prime ideals appearing in the corresponding ideal factorizations.

Compute maps. Compute q-adic characters (known as Schirokauer maps [46]).
This yields a relation matrix which can be written as (M‖S), with M the
block with ideal valuations, and S the block with Schirokauer maps.

Linear algebra. Solve the linear system (M‖S)x = 0, which gives virtual log-
arithms.

Individual logarithm. Given a target value z ∈ 〈γ〉, derive its logarithm as a
linear combination of a subset of the virtual logarithms.

3.2 Complexity Analysis

NFS complexity analysis involves the usual L-notation, defined as

Lp(e, c) = exp(c(log p)e(log log p)1−e). (1)

This notation interpolates between polynomial (e = 0) and exponential (e = 1)
complexities. It adapts well to working with smoothness probabilities. In this
formula and elsewhere in the paper, we use the log notation for the natural
logarithm. In the few places where we have formulae that involve bit sizes, we
always use log2 for the logarithm in base 2.

The polynomials f and g have a crucial impact on the size of the integers
Res(f(x), a − bx) and Res(g(x), a − bx), and therefore on the probability that
these integers factor into primes below B (in other words, are B-smooth).

Table 1. Polynomial selection choices for NFS variants.

Variant deg f ‖f‖ deg g ‖g‖ Complexity exponent

General NFS (base-m) d p1/(d+1) 1 p1/(d+1) (64/9)1/3

General NFS (Joux-Lercier) d′ + 1 O(1) d′ p1/(d
′+1) (64/9)1/3

Special NFS (for example) d O(1) 1 p1/(d+1) (32/9)1/3

The analysis of the NFS depends on the prime p. When no assumptions are
made on p, we have the so-called general number field sieve (GNFS). It is possible
to perform polynomial selection so that (deg f,deg g) is (1, d) (by choosing m ≈
N1/d and writing p in “base-m”, or similar), or (d′ + 1, d′) (the Joux-Lercier
method [23]). The degrees d and d′ in each case are integer parameters, for
which an educated guess is provided by their asymptotic optimum, namely d =
(3log p/log log p)1/3, and d′ = d/2. Both approaches lead to an overall complexity
Lp(1/3, (64/9)1/3)1+o(1) for a discrete logarithm computation, as indicated in
Table 1, where ‖f‖ denotes the maximum absolute value of the coefficients of f .
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In contrast, some prime numbers are such that there exist exceptionally small
polynomial pairs (f, g) sharing a common root modulo p. This makes a consider-
able difference in the efficiency of the algorithm, to the point that the exponent
in the complexity drops from (64/9)1/3 to (32/9)1/3—a difference which is also
considerable in practice. In most previously considered cases, this special struc-
ture is clear from the number itself. For the SNFS factorization performed by
Aoki et al. for the composite integer 21039 − 1, they chose f(x) = 2x6 − 1 and
g(x) = x − 2173 [3].

4 Heidi Hides Her Polynomials

Early on in the development of NFS, Gordon [21] suggested that one could craft
primes so that SNFS polynomials exist, but may not be apparent to the casual
observer. Heidi, a mischievous designer for a crypto standard, would select a pair
of SNFS polynomials to her liking first, and publish only their resultant p (if it is
prime) afterwards. The hidden trapdoor then consists in the pair of polynomials
which Heidi used to generate p, and that she can use to considerably ease the
computation of discrete logarithms in Fp.

Twenty-five years later, we reconsider the best-case scenario for Heidi: given
a target size, what type of polynomial pair will give the fastest running time for
a discrete logarithm computation? For the current state of the art in algorithmic
development and computation power, is there a parameter setting for which the
computations are simultaneously within reach, Heidi can efficiently generate a
trapdoored prime, and defeat attempts at unveiling it?

4.1 Best Form for SNFS Polynomials

The Special Number Field Sieve has been mostly used in the context of integer
factorization, in particular for numbers from the Cunningham Project. In that
case the integers are given, and typically the only way to find SNFS polynomials
for these numbers is to take one linear polynomial with large coefficients and
a polynomial of larger degree, with tiny coefficients. In our situation, the con-
struction can go the opposite way: we are free to choose first the form of the
polynomials, hoping that their resultant will be a prime number. We thus have
more freedom in the construction of our polynomial pair.

Let n be the number of bits of the SNFS prime p we will construct. We
consider first the case where we have two polynomials f and g that are non-
skewed, i.e. all the coefficients of each polynomial have roughly the same size.
We denote df and dg their respective degrees, and ‖f‖ and ‖g‖ the respective
maximum absolute values of their coefficients. Since the resultant must be almost
equal to p, we have

df log2 ‖g‖ + dg log2 ‖f‖ ≈ n. (2)

Let A be a bound on the a and b integers we are going to consider during relation
collection. Then the product of the norms that have to be tested for smoothness
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can be approximated by ‖f‖ ‖g‖Adf+dg . We will try to make its size as small as
possible, so we want to minimize

log2 ‖f‖ + log2 ‖g‖ + (df + dg) log2 A. (3)

Of course, the value taken by A will also depend on the size of the norms. If
this size is larger than expected, then the probability of finding a relation is too
small and the sieving range corresponding to A will not allow the creation of
enough relations. But assuming A is fixed is enough to compare various types
of polynomial constructions: if one of them gives larger norms, then for this
construction, the value of A should be larger, leading to even larger norms. In
other words, the optimal value is unchanged whether we consider A fixed or let
it depend on df and dg.

The Best Asymmetric Construction is the Classical SNFS. We first
analyze the case where df and dg are distinct. Let us assume df > dg. We first
remark that subject to constraint (2), Expression (3) is minimized by taking
‖f‖ as small as possible (i.e. log2 ‖f‖ = 0) and log2 ‖g‖ = n/df . This yields an
optimal norm size equal to n/df + (df + dg) log2 A. It follows that given df , we
should choose dg to be minimal, which leads us precisely to the classical case, the
example construction listed in the third row of Table 1. The optimal df yields
an optimal norm size equal to 2

√
n log2 A.

An All-Balanced Construction. In many situations, the optimal value is
obtained by balancing each quantity as much as possible. Unfortunately, this is
suboptimal in our case. If df = dg, Expression (3) becomes n/df + 2df log2 A.
Choosing the best possible value for df , we obtain 2

√
2n log2 A. This is much

worse than in the classical construction and in fact, pushing the analysis to its
end would lead to a GNFS complexity with a (64/9)1/3 exponent.

More General Constructions. Unfortunately, it seems to be impossible to
combine the SNFS construction with Coppersmith’s multiple number field strat-
egy [11,12,35] and obtain a complexity with an exponent smaller than (32/9)1/3.
Any linear combination of f and g will lead to a polynomial having both high
degree and large coefficients, which must be avoided to achieve SNFS complexity.

In principle, one could also perform an analysis allowing skewed polynomi-
als, where the ratio between two consecutive coefficients is roughly a constant
different from 1. This general analysis would require still more parameters than
the one we did, so we skip the details, since we did not find a situation where
this could lead to a good asymptotic complexity.

4.2 Hiding the Special Form

The conclusion of the previous discussion is that the best form for a pair of
SNFS polynomials is still the same as the one considered by Gordon more than
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20 years ago. His discussion about how to hide them is still valid. We recall it
here for completeness.

The goal is to find a prime p, and possibly a factor q of p − 1, together
with an SNFS pair of polynomials, such that from the knowledge of p (and
q) it is harder to guess the SNFS pair of polynomials than to run a discrete
logarithm computation with the general NFS algorithm, or using Pollard Rho
in the subgroup of order q.

We enumerate requirements on the construction below.

The Polynomial f Must Be Chosen Within a Large Enough Set. If
f is known, then its roots modulo p can be computed. With the Extended
Euclidean Algorithm, it can be efficiently checked whether one of them is equal
to a small rational number modulo p. If this is the case, then the numerator
and the denominator are (up to sign) the coefficients of g. Therefore, if f has
been chosen among a small set, an exhaustive search over the roots modulo p of
all these polynomials will reveal the hidden SNFS pair of polynomials. Thus we
must choose f from a large enough set so that this exhaustive search takes at
least as much time as a direct discrete logarithm computation.

The Two Coefficients of g Must Be Large. If g is a monic polynomial
g = x − g0, then, since p = f(g0), the most significant bits of p depend only on
g0 and the leading coefficient fd of f . In that case, recovering the hidden SNFS
polynomials reduces to an exhaustive search on the leading coefficient of f : we
can use the LLL algorithm to minimize the other coefficients of f by writing a
multiple of p as a sum of powers of g0. Examining the least significant bits of p
shows that having a polynomial g with a constant term equal to 1 is equally bad.
More generally, having one of the coefficients of g belonging to a small set also
leads to a faster exhaustive search than if both are large. In the following, we
will therefore always consider linear polynomials g for which the two coefficients
have similar sizes; compared to using a monic g, this has only a marginal impact
on the effectiveness of the SNFS efficiency in our context.

Attempts to Unveil the Trapdoor. Heidi does not want her trapdoor to be
unveiled, as she would not be able to plausibly deny wrongdoing. It is therefore
highly important that Heidi convinces herself that the criteria above are sufficient
for the trapdoor to be well hidden. We tried to improve on the method mentioned
above that adapts to monic g. In particular, we tried to take advantage of the
possibility that the leading coefficient of f might be divisible by small primes.
This did not lead to a better method.

4.3 Adapting the Prime to the Hider’s Needs

Algorithm to Build a DSA-like Prime. In Algorithm 1, we recall the method
of Gordon to construct hidden SNFS parameters in a DSA setting. The general
idea is to start from the polynomial f and the prime q, then derive a polynomial
g such that q divides the resultant of f and g minus 1, and only at the end
check if this resultant is a prime p. This avoids the costly factoring of p − 1 that
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would be needed to check whether there is a factor of appropriate size to play
the role of q. Our version is slightly more general than Gordon’s, since we allow
signed coefficients for the polynomials. As a consequence, we do not ensure the
sign of the resultant, so that the condition q | p − 1 can fail. This explains the
additional check in Step 8. The size of the coefficients of f are also adjusted
so that an exhaustive search on all the polynomials will take more or less the
same time as the Pollard Rho algorithm in the subgroup of order q, namely 2sq/2

where sq is the bit-length of q.
In Step 6, it is implicitly assumed that 2sq is smaller than 2sp/d/‖f‖, that

is sq < sp/d − sq/2(d + 1). This condition will be further discussed in the next
subsection. We note however that if it fails to hold by only a few bits, it is possible
to run the algorithm and hope that the root r produced at Step 5 will be small
enough. We can expect that r will behave like a uniformly random element
modulo q, so that the probability that this event occurs can be estimated.

Input : The bit-sizes sp and sq for p and q; the degree d of f .
Output: HSNFS parameters f , g, p, q.

1 Pick a random irreducible polynomial f , with ‖f‖ ≈ 2sq/2(d+1);
2 Pick a random prime q of sq bits;

3 Pick a random integer g0 ≈ 2sp/d/‖f‖;
4 Consider the polynomial G1(g1) = Resx(f(x), g1x + g0) − 1 of degree d in g1;
5 Pick a root r of G1 modulo q; if none exists go back to Step 1;

6 Add a random multiple of q to r to get an integer g1 of size ≈ 2sp/d/‖f‖;
7 Let p = | Resx(f(x), g1x + g0)|;
8 If p has not exactly sp bits or if p is not prime or if q does not divide p− 1, then

go back to Step 1;
9 Return f , g, p, q.

Algorithm 1. Gordon’s hidden SNFS construction algorithm

Selecting Good f -Polynomials. In Algorithm 1, in the case of failure at Step 5
or Step 8, we could restart only at Step 2, in order to keep using the same
f -polynomial for a while. More generally, the polynomial f could be given as
input of the algorithm, opening the opportunity for the hider to use a polyno-
mial f with nice algebraic properties that accelerate the NFS algorithm. The
so-called Murphy-α value [37, Sect. 3.2] has a measurable influence on the prob-
ability of the norms to be smooth. A norm of s bits is expected to have a
smoothness probability similar to the one of a random integer of s + α

log 2 bits.
A negative α-value is therefore helping the relation collection.

Experimentally, for an irreducible polynomial of fixed degree over Z with
coefficients uniformly distributed in an interval, the α-value follows a centered
normal law with standard deviation around 0.94 (measured empirically for degree
6). From this, it is possible to estimate the expected minimum α-value after
trying N polynomials: we get αmin ∼ −0.94

√
2 log N .



A Kilobit Hidden SNFS Discrete Logarithm Computation 213

In a set of 280 candidates for the f -polynomial, we can therefore expect to
find one with an α-value around −10. But it is a priori very hard to find this
polynomial, and if it were easy, then it would not be a good idea for the hider
to choose it, because then it would not be hidden anymore. A compromise is
for the hider to try a small proportion of the candidates and keep the one with
the best α. Since checking the α-value of a polynomial is not really faster than
checking its roots modulo p, the attacker gains no advantage by knowing that f
has a smaller value than average. For instance, after trying 220 polynomials, one
can expect to find an f that has an α-value of −5 which gives a nice speed-up
for the NFS without compromising the hidden property.

Apart from the α-value, another well-known feature of polynomials that influ-
ences the smoothness properties is the number of real roots: more real roots
translates into finding relations more easily. We did not take this into account
in our proof of concept experiments, but this could certainly also be used as a
criterion to select f .

4.4 Size Considerations

Algorithm 1 does not work if the size sq of the subgroup order q is too large
compared to the size of the coefficients of the g-polynomials that are optimal for
the size of p. The condition is

sq < sp/d − sq/2(d + 1),

where d is the optimal degree of the f -polynomial for running SNFS on a prime
of sp bits. We can plug in the asymptotic formula for d in terms of sp: it is
proportional to (sp/ log(sp))1/3, leading to a condition of the form

sq < c(sp)2/3(log(sp))1/3 = log(Lp(2/3, c)),

for a constant c. Now, sq will be chosen so that the running time of Pollard
Rho in the subgroup of order q matches the running time of the NFS algorithm
modulo p. The former grows like 2sq/2, while the latter grows like Lp(1/3, c′) ≈
2s1/3

p . Therefore, asymptotically, it makes sense to have sq close to proportional
to s

1/3
p , and the condition for Algorithm1 to work is easily satisfied.
Back in 1992, when Gordon studied the question, the complexity analysis of

the Number Field Sieve was not as well understood, and the available computing
power was far less than today. At that time, sq = 160 and sp = 512 were the
proposed parameter sizes for DSA, leading to difficulties satisfying the condi-
tion of Algorithm 1 unless a suboptimal d was chosen. Nowadays, popular DSA
parameters are sp = 1024 and sq = 160, leaving much room for the condition to
hold, and it is possible to choose d = 6, which is optimal for our NFS implemen-
tation. Therefore, the relevant parameters for today are beyond the point where
Gordon’s algorithm would need to be run with suboptimal parameters.
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4.5 Reassessing the Hiding Problem

The prudent conclusions of cryptographers in the 1990’s was that it might be
difficult to put a useful and hard to detect trapdoor in a DSA prime. For example
in [15], Lenstra concludes that “this kind of trap can be detected”, based on the
trap design from [31]. It is true that whether for Lenstra’s trap method in [31],
or Gordon’s trap in Algorithm1, f had to be chosen within a too-small set given
the state of the art with NFS back in 1992. This stance is also found in reference
books from the time, such as the Handbook of Applied Cryptography by Menezes,
van Oorschot, and Vanstone [36, note Sect. 8.4] which remain influential today.

This is no longer true. It is now clearly possible to hide an SNFS pair of
polynomials for a DSA prime p of 1024 bits with a 160-bit subgroup. It remains
to show that this SNFS computation is indeed feasible, even with moderate
academic computing resources.

5 Computation of a 1024-Bit SNFS DLP

In addition to the computational details, we describe the algorithmic improve-
ments and parameter choices that played a key role in the computation (Table 2).

Table 2. Our 1024-bit hidden SNFS discrete log computation took around two months
of calendar time to complete. We used a variety of resources for sieving, so the total
number of cores in use varied over time.

5.1 Selecting a Target

We ran Algorithm 1 to find a hidden SNFS prime p of 1024 bits such that Fp

has a subgroup of prime order q of 160 bits. For these parameters, a polynomial
f of degree d = 6 is the most appropriate. After a small search among the
polynomials with (signed) coefficients of up to 11 bits, we selected

f = 1155x6 + 1090x5 + 440x4 + 531x3 − 348x2 − 223x − 1385,

for which the α-value is about −5.0. The set of all polynomials with this degree
that satisfy the coefficient bound is a bit larger than 280, which is the expected
cost of Pollard Rho modulo q. We note that the cost of testing a polynomial f
(a root finding modulo p and the rational reconstruction of these roots) is much
higher than one step of Pollard Rho (one multiplication modulo p), so this is a
conservative setting.
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We then ran the rest of Algorithm 1 exactly as it is described. The resulting
public parameters are

p = 163323987240443679101402070093049155030989439806917519173580070791569
227728932850358498862854399351423733697660534800194492724828721314980
248259450358792069235991826588944200440687094136669506349093691768902
440555341493237296555254247379422702221515929837629813600812082006124
038089463610239236157651252180491

q = 1120320311183071261988433674300182306029096710473,

and the trapdoor polynomial pair is

f = 1155x6 + 1090x5 + 440x4 + 531x3 − 348x2 − 223x − 1385
g = 567162312818120432489991568785626986771201829237408x

−663612177378148694314176730818181556491705934826717.

This computation took 12 core-hours, mostly spent in selecting a polynomial
f with a good α-value. No effort was made to optimize this step.

5.2 Choosing Parameters for the Sieving Step

The sieving step (also known as relation collection) consists of finding many
(a, b)-pairs such that the two norms Res(f(x), a − bx) and Res(g(x), a − bx) are
simultaneously smooth.

We use the special-q sieving strategy, where we concentrate the search in the
positions where we know in advance that one of the two norms will be divisible
by a large prime: the special q. For the general number field sieve, it is always
the case that one norm is much larger than the other, so it makes sense to choose
the special q on the corresponding side. In our case, the norms have almost the
same size (about 200 bits each), so there is no obvious choice. Therefore, we
decided to sieve with special q’s on both sides. As a consequence, the largest
special q that we had to consider were 1 or 2 bits smaller than if we had allowed
special q’s to be only on one side; the norms were accordingly a bit smaller.

The general strategy used for a given special q is classical: among a vast
quantity of candidates, we mark those that are divisible by primes up to a given
sieving bound using a sieve à la Eratosthenes; then the most promising candidates
are further scrutinized using the ECM method, trying to extract primes up to
the smoothness bound B. The criterion for selecting those promising candidates
is best expressed as the number of times the smoothness bound is allowed for
the remaining part of the norms once the sieved primes have been removed. This
is usually referred to as the number of large primes allowed on a given side.

For the 1024-bit computation, we used the following parameters. On the
rational side, we sieved all the prime special q in the 150M–1.50G range (that
is, with 1.5 · 108 < q < 1.5 · 109), and on the algebraic side, we sieved special-q
prime ideals in the range 150M–1.56G. The difference between the two is due to
the fact that we used two different clusters for this step, and when we stopped
sieving, one was slightly ahead of the other.
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For each special q, the number of (a, b)-pairs considered was about 231. This
number includes the pairs where both a and b are even, but almost no time is
spent on those, since they cannot yield a valid relation.

All primes on both sides up to 150M were extracted using sieving, and the
remaining primes up to the smoothness bound B = 231 were extracted using
ECM. On the side where the special q was placed, we allowed 2 large primes,
while 3 large primes were allowed on the other side.

This relation collection step can be parallelized almost infinitely with no
overhead since each special q is handled completely separately from the others.
We used a variety of computational resources for the sieving, and in general
took advantage of hyperthreading and in addition oversubscribed our virtual
cores with multiple threads. Aggregating reported CPU time for virtual cores
over all of the machine types we used, we spent 5.08 · 109 CPU seconds, or 161
CPU years sieving the rational side, and 5.03 · 109 CPU seconds, or 159 CPU
years sieving the algebraic side. In order to obtain a more systematic estimate
of the CPU effort dedicated to sieving without these confounding factors, we
ran sampling experiments on a machine with 2 Intel Xeon E5-2650 processors
running at 2.00 GHz with 16 physical cores in total. From these samples, we
estimate that sieving would have taken 15 years on this machine, or 240 core-
years. We spent about one month of calendar time on sieving.

The total number of collected relations was 520M relations: 274M from the
rational side and 246M from the algebraic side. Among them, 249M were unique,
involving 201M distinct prime ideals. After filtering these relations, we obtained
a matrix with 28M rows and columns, with 200 non-zero entries per row on
average.

Before entering the linear algebra step, we calculated the dense block of
“Schirokauer maps”, which are q-adic characters introduced by Schirokauer
in [46]. These consist, for each matrix row, in 3 full-size integers modulo q (the
number 3 is here the unit rank of the number field defined by our polynomial f).

5.3 Linear Algebra

The linear algebra problem to be solved can be viewed in several ways. One is to
consider a square matrix of size N×N , whose left-hand side M of size N×(N−r)
is the matrix produced by the filtering task, while the right block S of size N ×r
is made of dense Schirokauer maps. Recent work [24] has coined the term “nearly
sparse” for such matrices. We seek a non-trivial element of the right nullspace
of the square matrix (M‖S).3 This approach has the drawback that an iterative
linear algebra algorithm based on the matrix (M‖S) is hampered by the weight
of the block S, which contributes to each matrix-times-vector product.

3 The integer factorization case, in contrast, has q = 2, and requires an element of the
left nullspace. The latter fact allows for a two-stage algorithm selecting first many
solutions to xM = 0, which can then be recombined to satisfy x(M‖S) = 0. No such
approach works for the right nullspace.
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Shirokauer Maps Serve as Initialization Vectors. An alternative method,
originally proposed by Coppersmith [13, Sect. 8] alongside the introduction of
the block Wiedemann algorithm, is to use this algorithm to constructively write
a zero element in the sum of the column spaces of M and S. In this case,
the iterative algorithm is run on the square matrix M0 = (M‖0), which is of
considerably lower weight than (M‖S). More precisely, the block Wiedemann
algorithm, with two blocking factors which are integers m and n, achieves this
by proceeding through the following steps. The blocking factor n is chosen so
that n ≥ r, and we let D(t) be the diagonal n × n matrix with coefficients t (r
times) and 1 (n − r times).

Initialization. Pick blocks of projection vectors x ∈ FN×m
q and starting vectors

y ∈ FN×n
q . The block x is typically chosen of very low weight, while we set

y = (S‖R), with R a random block in F
N×(n−r)
q .

Sequence. Compute the sequence of matrices ai = txM i
0y, for 0 ≤ i < L, with

L = �N/m� + �N/n� + �m/n + n/m�.
Linear generator. Let A(t) =

∑
i ait

i. Let A′(t) = A(t)D(t) div t. Compute
an n × n matrix of polynomials F (t) such that A′(t)F (t) is a matrix of
polynomials of degree less than deg F , plus terms of degree above L (see [13,
52]). We typically have deg F ≈ N/n.

Solution. Consider one column of degree d of F (t). Write the corresponding
column of D(t)F (t) as ctd+1 + f0t

d + · · · + fd with c, fi ∈ Fn×1
q . With high

probability, we have c = 0 and w = (S‖0)c + M0

∑
i≥0 M i

0yfi = 0. Rewrite
that as Mu + Sv = 0, where u and v are:

u = first N − r coefficients of
∑
i≥0

M i
0yfi,

v = first r coefficients of c

This readily provides a solution to the problem.

Solving the Linear System with (1 + o(1))N SpMVs. The most expensive
steps above are the sequence and solution steps. The dominating operation is
the sparse matrix-times-vector operation (SpMV), which multiplies M0 by a
column vector in FN×1

q . It is easy to see that the sequence step can be run as n
independent computations, each requiring L SpMV operations (therefore nL =
(1 + n/m)N in total): matrices ai are computed piecewise, column by column.
Once all these computations are completed, the fragments of the matrices ai

need to be collated to a single place in order to run the linear generator step.
It is tempting to regard the solution step in a directly similar way (as was

done, e.g., in the context of the recent 768-bit DLP computation [28]). However,
as was pointed out very early on by Kaltofen [26, Step C3, p. 785, and corollary
to Theorem 7] yet seems to have been overlooked since, one should proceed dif-
ferently. Assume that some of the vectors M i

0y from the sequence step have been
kept as regular checkpoints (an obvious choice is MKj

0 y for some well chosen
checkpoint period K). For an arbitrary j, we compute

∑i=K−1
i=0 M i

0M
Kj
0 yfKj+i
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with a Horner evaluation scheme which costs K SpMV operations only. These
expressions together add up to u, and can be computed independently (using
as many independent tasks as K allows). This adds up to deg F ≈ N/n SpMV
operations.

In total, this evaluation strategy yields a cost of (1 + n/m + 1/n)N SpMV
operations (see [26, Theorem 7]), which can be freely parallelized n-fold for the
sequence step, and possibly much more for the solution step. It is important
to note that as blocking factors m and n grow with m � n, this brings the
total cost close to N SpMV operations, a count which to our knowledge beats
all other exact sparse linear algebra algorithms. The only limiting point to that
is the linear generator step, whose cost depends roughly linearly on (m + n).
Thanks to the use of asymptotically fast algorithms [7,20,52], this step takes
comparatively little time.

Linear Algebra for 1024-Bit SNFS DLP. The matrix M0 had 28 million
rows and columns, and 200 non-zero coefficients per row on average. We used
the linear algebra code in CADO-NFS [51]. We chose blocking factors m = 24,
n = 12. Consequently, a total of 44 million SpMV operations were needed. We ran
these in two computing facilities in the respective research labs of the authors,
with a roughly even split. For the sequence step, each of the 12 independent
computations used between 4 and 8 nodes, each with up to 44 physical cores. The
nodes we used were interconnected with various fabrics, including Mellanox 56
Gbps Infiniband FDR and 40 Gbps Cisco UCS Interconnects. The total time for
the sequence step was about 123 core-years. The linear generator step was run on
36 nodes, and cost 13 core-years. The solution step was split in 48 = deg F=2400000

K=50000
independent tasks. Each used a fairly small number of nodes (typically one or
two), which allowed us to minimize the communication cost induced by the
parallelization. Despite this, each iteration was 33% more expensive than the
ones for the sequence step, because of the extra cost of the term MKj

0 yfKj+i

which is to be added at each step. The total time for the solution step was 9
core-years, which brings the total linear algebra cost for this computation below
150 core-years. In total we spent about one month of calendar time on linear
algebra. Table 4 in AppendixB gives more details of the iteration times for the
different machine architectures present in our clusters.

After this step and propagating the knowledge to relations that were elimi-
nated during the filtering step we obtained the logarithm of 198M elements, or
94.5% of the prime ideals less than 231.

5.4 Individual Logarithms

In our scenario where a malicious party has generated a trapdoored prime with
a goal of breaking many discrete logarithms in the corresponding group, it is
interesting to give details on the individual logarithm step, which is often just
quickly mentioned as an “easy” step (with the notable exception of [2] where it
is at the heart of the attack).
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From now on, we denote by z the element of the group G for which we
want the discrete logarithm (modulo q). The database of discrete logarithms
computed thus far is with respect to an a priori unknown generator. In order to
obtain the logarithm of z with respect to a generator specified by the protocol
being attacked, it is typical that two individual logarithm queries are necessary.
This aspect will not be discussed further.

The individual logarithm step can itself be decomposed in two sub-steps:

Initialization. Find an exponent e such that z′ = ze ≡ u/v mod p, where
u and v are Binit-smooth numbers of size about half of the size of p. Note
that Binit has to be much larger than B to get a reasonable smoothness
probability.

Descent. For every factor of u or v that is larger than the smoothness bound,
treat it as a special-q to rewrite its discrete logarithm in terms of smaller
elements, and continue recursively until it is rewritten in terms of elements
of known logarithm.

We emphasize that the Initialization step does not use the polynomials
selected for the NFS computation, and therefore, it does not take advantage
of the SNFS nature of the prime p. For the Descent step, on the other hand, this
makes heavy use of the polynomials, and here knowing the hidden polynomials
corresponding to p helps significantly.

Asymptotic Complexities. In terms of asymptotic complexity, the Initial-
ization step is more costly than the Descent step, and in a theoretical analysis,
the bound Binit is chosen in order to minimize the expected time of the Ini-
tialization step only. The early-abort analysis of Barbulescu [5, Chap. 4] gives
Bi = Lp(2/3, 0.811), for a running time of Lp(1/3, 1.232).

For the Descent step, the complexity analysis can be found in two different
flavours in the literature: either we use polynomials of degree 1 (the polynomial
a − bx corresponding to an (a, b)-pair) like in [48], or polynomials of possibly
higher degrees, depending on where we are in the descent tree similarly to [17].

Using higher degree polynomials, we get a complexity of Lp(1/3, 0.763),
where the last steps of the descent are the most costly. Sticking with poly-
nomials of degree 1, the first steps become more difficult and the complex-
ity is Lp(1/3, 1.117). Both are lower than the complexity of the Initialization
step.

We give further details on the complexity analysis of individual logarithms
in AppendixA.

Practical Approach. This theoretical behaviour gives only a vague indication
of the situation for our practical setting. For the initialization step, we follow the
general idea of Joux-Lercier [23]. For a random integer e, we compute z′ ≡ ze

mod p, and take two consecutive values in the extended Euclidean algorithm to
compute u0, v0, u1, v1 of size about

√
p such that z′ ≡ u0

v0
≡ u1

v1
mod p. We then

look for two integers a and b such that u = au0 + bu1 and v = av0 + bv1 are
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both smooth. Since this is an unlikely event, and testing for smoothness is very
costly, we do a 3-step filtering strategy.

First, we sieve on the set of small (a, b)-pairs, to detect pairs for which the
corresponding u and v are divisible by many small primes. For this, we re-use
the sieving code that helps collecting relations. After this first step, we keep only
(a, b)-pairs for which the remaining unfactored part is less than a given threshold
on each side.

Then, many ECM factorizations are run on each remaining cofactor; this
is tuned so that we expect most of the prime factors up to a given bit size to
be extracted. After this step, we again keep only the candidates for which the
remaining unfactored parts are smaller than another threshold. The cofactors of
the surviving pairs are then fully factored using MPQS.

At each stage, if a prime factor larger than the smoothness bound B is found,
we naturally abort the computation.

This practical strategy keeps the general spirit of filters used in the theoretical
analysis of Barbulescu which relies only on ECM, but we found that combined
with sieving and MPQS, it is much faster.

Parameters for the 1024-Bit SNFS Computation. For the 1024-bit com-
putation, we used a bound Binit = 135 bits for this Initialization step. After
applying the Joux-Lercier trick, we first sieved to extract primes up to 231,
and we kept candidates for which the unfactored parts are both less than 365
bits. Then we used GMP-ECM with 600 curves and B1 = 500, 000, hoping to
remove most of the prime factors of 100 bits and less. After this second step,
we kept only the candidates for which the unfactored parts are both less than
260 bits.

For the Descent step, we used only polynomials of degree 1. Polynomials of
degree 2 do not seem to yield smaller norms even for the largest 135-bit primes
to be descended. The depth of the recursion was rarely more than 7. A typical
example of a sequence of degrees encountered while following the tree from the
top to a leave is

135 → 90 → 65 → 42 → 33 → 31,

but this is of course different if the ideals along the path are on the rational or
the algebraic side.

Both the Initialization and the Descent steps can be heavily parallelized.
The expected CPU-time for computing an individual logarithm is a few days
on a typical core, distributed more or less equally between the two steps. Using
parallelization, we managed to get a result in 80 mins of wall-clock time: the
initialization took around 20 min parallelized across 500 cores, and the descent
took 60 min parallelized across 352 cores. (We used 44 cores for each large special
q to be descended.)

As an example, we computed the discrete logarithm of

z = �π10307� = 3141592653 · · · 7245871,
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taking 2 as a generator. More precisely, we are talking about their images in
the subfield of order q obtained by raising 2 and z to the power (p − 1)/q.
We obtained:

log z/ log 2 ≡ 409559101360774669359443808489645704082239513256 mod q,

which can be easily checked to be the correct answer.

6 Discussion

6.1 Comparison with GNFS DLP for Various Sizes

The recently reported GNFS 768-bit discrete logarithm computation [28] took
about 5000 core-years. It is tempting to directly compare this number to the
400 core-years that we spent in our experiments. As a rule of thumb, one would
expect the 768-bit GNFS to be about a factor of 10 more difficult than a 1024-
bit SNFS computation, and this appears to hold in the numbers we report.
However, we note that first, the software used in both experiments are different
(the CADO-NFS sieving implementation is slower than Kleinjung’s), and second,
the GNFS-768 computation was done with a safe prime, while we used a DSA
prime, thus saving a factor of 6 in the linear algebra running time.

It is possible to get another hint for the comparison by considering the typical
sizes of the norms in both contexts. For GNFS-768, they appear to be roughly
20 bits larger (in total) than for SNFS-1024. Taking all correcting factors into
account, like the α-values, the (un-)balance of the norms, and the special-q, this
translates to roughly a factor of 8 in the smoothness probability, thus more or
less confirming the ratio of running times observed in practice.

Asymptotically, the difference of complexities between GNFS and SNFS
(namely the factor 21/3 in the exponent) means that we would expect to obtain
similar running times when SNFS is run on an input that is twice the size of the
one given to GNFS. However, key sizes relevant to current practice and practical
experiments are still too small for these asymptotic bounds to be accurate.

To get concrete estimates for these smaller key sizes, we can compare the size
of the norms and estimate that an 1152-bit SNFS computation would correspond
to the same amount of time as a GNFS-768. For an SNFS of 2048 bits, the
equivalent would be around a GNFS of 1340 bits. And finally, for an SNFS of
4096 bits, the equivalent would be around a GNFS of 2500 bits. Of course, for
such large sizes these are more educated guesses than precise estimates.

6.2 Non-hidden SNFS Primes in Real Use

We have found multiple implementations using non-hidden SNFS primes in the
real world. 150 hosts used the 512-bit prime 2512−38117 for export-grade Diffie-
Hellman key exchange in a full IPv4 HTTPS scan performed by Adrian et al. [2]
in March 2015. Performing the full NFS discrete log computation for this prime
took about 215 min on 1288 cores, with 8 min spent on the sieving stage, 145 min
spent on linear algebra, and the remaining time spent filtering relations and
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reconstructing logarithms. In September 2016, 134 hosts were observed still using
this prime.

We also found 170 hosts using the 1024-bit prime 21024 − 1093337 for non-
export TLS Diffie-Hellman key exchange in scans performed by Adrian et al.
In September 2016, 106 hosts were still using this prime. We estimate that
performing a SNFS-DL computation for this prime would require about 3 times
the amount of effort for the sieving step as the 1024-bit SNFS computation that
we performed. This difference is mostly due to the α-value of the f -polynomial
that can not easily be made small. The linear algebra step will suffer at the very
least a 7-fold slowdown. Indeed, since this prime is safe, the linear algebra must
be performed modulo (p − 1)/2, which is more expensive than the 160-bit linear
algebra we used for a DSA prime in our computation. Furthermore, since the
smoothness probabilities are worse, we expect also the matrix to be a bit larger,
and the linear algebra step cost to grow accordingly.

The LibTomCrypt library [14], which is widely distributed and provides pub-
lic domain implementations of a number of cryptographic algorithms, includes
several hard-coded choices for Diffie-Hellman groups ranging in size from 768 to
4096 bits. Each of the primes has a special form amenable to the SNFS. The
768-bit strength (actually a 784-bit prime) is 2784−228+1027679. We performed
a SNFS discrete log for this prime. On around a thousand cores, we spent 10
calendar days sieving and 13 calendar days on linear algebra. The justification
for the special-form primes appears to be the diminished radix form suggested
by Lim and Lee [34], which they suggest for decreasing the cost of modular
reduction. We examined the TLS and SSH scan datasets collected by Adrian et
al. [2] and did not find these primes in use for either protocol.

We also carried out a perfunctory search for poorly hidden SNFS primes
among public key datasets, based on the rather straightforward strategy
in Sect. 4.2, hoping for monic g, and f such that 2 ≤ d ≤ 9 and |fd| ≤ 1024.
We carried out this search for the 11,658 distinct SSH group exchange primes,
68,126 distinct TLS ephemeral Diffie-Hellman primes, and 2,038,232 distinct El
Gamal and DSA primes from a dump of the PGP public key database. This
search rediscovered the special-form TLS primes described above, but did not
find any other poorly hidden primes susceptible to SNFS. We cannot rule out the
existence of trapdoored primes using this method, but if hidden SNFS primes
are in use the designers must have followed Gordon’s advice.

6.3 Lessons

It is well known among the cryptographic community that 1024-bit primes are
insufficient for cryptosystems based on the hardness of discrete logarithms. Such
primes should have been removed from use years ago. NIST recommended tran-
sitioning away from 1024-bit key sizes for DSA, RSA, and Diffie-Hellman in
2010 [6]. Unfortunately, such key sizes remain in wide use in practice. Our results
are yet another reminder of the risk, and we show this dramatically in the case
of primes which lack verifiable randomness. The discrete logarithm computation
for our backdoored prime was only feasible because of the 1024-bit size.
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The asymptotic running time estimates suggest that a SNFS-based trapdoor
for a 2048-bit key would be roughly equivalent to a GNFS computation for a
1340-bit key. We estimate that such a computation is about 16 million times
harder than the 1024-bit computation that we performed, or about 6.4 · 109

core-years. Such a computation is likely still out of range of even the most sophis-
ticated adversaries in the near future, but is well below the security guarantees
that a 2048-bit key should provide. Since 2048-bit keys are likely to remain in
wide usage for many years, standardized primes should be published together
with their seeds.

In the 1990s, key sizes of interest were largely limited to 512 or 1024 bits,
for which a SNFS computation was already known to be feasible in the near
future. Both from this perspective, and from our more modern one, dismissing
the risk of trapdoored primes in real usage appears to have been a mistake, as
the apparent difficulties encountered by the trapdoor designer in 1992 turn out
to be easily circumvented. A more conservative design decision for FIPS 186
would have required mandatory seed publication instead of making it optional.
As a result, there are opaque, standardized 1024-bit and 2048-bit primes in wide
use today that cannot be properly verified.
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A Complexity Analysis of Individual Logarithms

The complexity analysis of individual logarithms is not well detailed in the liter-
ature, in particular in the SNFS case. For convenience we summarize the results
in this appendix. As usual in the NFS context, the claimed complexities are not
rigorously proven and rely on heuristics.

The notation is the same as in the main body of the paper: p is a prime
and we have to compute the discrete logarithm of an element z in a prime order
subgroup of F∗

p. We are given f and g a pair of polynomials that have been used
for an NFS computation so that the (virtual) logarithms of all the ideals of norm
less than a bound B should have been pre-computed. The bound B, the degrees
of f and g, and the sizes of their coefficients depend on the General vs Special
NFS variant.
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We recall the classical corollary of the Canfield-Erdős-Pomerance theorem
that expresses smoothness probabilities in terms of the L-notation:

Theorem 1. Let a, b, u, v be real numbers such that a > b > 0 and u, v > 0. As
x → ∞, the proportion of integers below Lx(a, u) that are Lx(b, v)-smooth is

Lx

(
a − b,

u

v
(a − b) + o(1)

)−1

.

A.1 Initialization of the Descent

This step consists of first “smoothing” z in order to bootstrap the subsequent
descent step. We choose a random integer e, compute the element z′ ≡ ze

mod p, and test it for smoothness. Many elements are tested until one is found to
be Binit-smooth. The best known algorithm for smoothness testing is the ECM
algorithm: it extracts (with high probability) all primes up to a bound K in time
LK(1/2,

√
2 + o(1)). The dependence in the size of the integer from which we

extract primes is polynomial, so we omit it: in our context this type of factor
ends up being hidden in the o(1) in the exponents.

From this estimate, one can derive that if we want to allow a running time
in Lp(1/3, ·), then Binit can only be as large as Lp(2/3, ·); otherwise, testing
the smoothness would be too costly. At the same time, the probability that z′

is Binit-smooth drives the number of attempts and puts additional constraints.
It is remarkable that it also imposes a smoothness bound Binit in Lp(2/3, ·)
to get an Lp(1/3, ·) number of attempts. Following Commeine-Semaev [11], if
we set Binit = Lp(2/3, c), one can show that the expected running time for
the basic algorithm for the initialization step is in Lp(1/3, 1

3c + 2
√

c/3 + o(1)),
which is minimal for c = 1/ 3

√
3, yielding a complexity of Lp(1/3, 3

√
3 + o(1)) ≈

Lp(1/3, 1.442).
Inspired by the early abort strategy that Pomerance [44] had developed in

the context of the quadratic sieve, Barbulescu [5] has shown that this complexity
can be reduced. The idea is to start the smoothness test with a bound smaller
than the target Binit smoothness bound: this allows one to extract the smallest
factors. Then, we make a decision based on the size of the remaining unfactored
part: if it is too large, the probability that this will yield a Binit-smooth number
is too small and we start again with another random exponent e. In other words,
instead of testing immediately for Binit-smoothness, we first run a filter, with
cheaper ECM parameters, that allows us to select promising candidates for which
the full test is run. Analyzing this technique and optimizing all the involved
parameters is not a simple task; according to [5], we obtain a final complexity
of ≈ Lp(1/3, 1.296) for a smoothness bound Binit = Lp(1/3, 0.771).

This is not the end of the story: instead of just one filter, one can add
more. The analysis becomes even more involved, but this improves again on the
complexity. Numerical experiments indicate that performance does not improve
beyond 6 filters, and for 6 filters, the final complexity given in [5] is summarized
in the following fact:
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Fact. The initialization step of the descent can be done in time Lp(1/3, 1.232)
with a smoothness bound Binit = Lp(1/3, 0.811).

Finally, we mention that writing z′ ≡ u
v mod p for u and v that are about

half the size of p, and testing them for smoothness does not change the asymp-
totic complexities, but it yields a huge practical improvement, especially when
combined with sieving as in Joux-Lercier [23].

On the other hand, when neither f nor g are linear polynomials, the smooth-
ing test has to be done in one of the number fields, and then, in this context,
using half-size elements is necessary to get the appropriate complexity; we refer
to [5, Sect. 8.4.3] for details about this.

A.2 Descent Step

After the initialization step, the discrete logarithm of z can be expressed in terms
of the virtual logarithms of a few ideals of degree 1 in one of the number fields
associated to f or g. Those whose norm is less than the smoothness bound B
that was used in the sieving and linear algebra steps are assumed to be already
known. Since B = Lp(1/3, ·) while Binit = Lp(2/3, ·), we expect to have a handful
of prime ideals whose logarithms are not known. These are the ones that will
be subject to this descent step. We do the analysis for one ideal of maximal size
Binit; since there are only polynomially many of them, doing all of them will
contribute only to the o(1) in the final exponent.

Let q be an ideal of norm q = Lp(α, c), where α ∈ [13 , 2
3 ]. We consider the

lattice of polynomials ϕ(x) = a0+a1x+ · · ·+ak−1x
k−1 that, after being mapped

to a principal ideal in the number field where q belongs, become divisible by q.
For k = 2, this would correspond to the (a, b)-pairs corresponding to q seen as
a special-q, but we allow larger degrees. Since we are going to allow a search
that takes a time T in Lp(1/3, ·) for handling q, the ai’s can be bounded by
(qT )1/k = Lp(α, c/k)Lp(1/3, ·).

Let us analyze first the case where α > 1/3 so that the second factor can be
neglected. The product of the norms is given by

Res(f(x), ϕ(x))Res(g(x), ϕ(x)) ≈ ‖ϕ‖deg f+deg g‖f‖k−1‖g‖k−1

≈ Lp(α, c/k(deg f + deg g))(‖f‖ ‖g‖)k−1.

Let us write deg f + deg g = δ(log p/ log log p)1/3, so that we can cover all the
variants. Then ‖f‖ ‖g‖ is Lp(2/3, 2/δ) in the case of GNFS and Lp(2/3, 1/δ) in
the case of SNFS. Finally, the product of the norms is

Lp

(
α + 1/3,

cδ

k

)
Lp

(
2/3, { 1 for SNFS

2 for GNFS}k − 1
δ

)
.

Here there are two strategies: we can fix k = 2, so that the second factor does
not contribute to the complexity, or we can let k grow in order to balance the
two factors.
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Descending with Higher Degree Polynomials. The best value for k is pro-
portional to (log p/ log log p)α/2−1/6 (we deliberately omit to analyze the pro-
portionality ratio). In that case, the product of the norms takes the form

Lp(α/2 + 1/2, ·),

so that, since we allow a time Lp(1/3, ·), we can expect to find an element that
is Lp(α/2 + 1/6, ·)-smooth. The smoothness test implies multiplying the cost by
Lp(α/4 + 1/12, ·), which is bounded by Lp(1/4, ·) since α ≤ 2/3, and therefore
does not contribute to the final complexity. As a consequence, as long as α is
more than 1

3 , it is possible to descend a q whose norm is in Lp(α, ·) in prime
ideals of norms at most Lp(α/2 + 1/2, ·), in time bounded by Lp(1/3, ·). We
can choose the exponent constant smaller than the other steps of the descent so
that these first steps become negligible. This is true whether we are dealing with
GNFS or SNFS.

As we get close to α = 1
3 , the value of k tends to a constant. We postpone

the corresponding analysis.

Descending with Degree-1 Polynomials. In the case where we force k = 2,
the product of the norms is dominated by the first factor and we get Lp(α +
1
3 , cδ/2). Let us try to descend q in prime ideals of norms slightly smaller than
the norm q of q, namely we target Lp(α, cλ), for some value λ that we hope
to be strictly less than 1. The probability of the product of the norms being
qλ-smooth is then in Lp( 13 , δ

6λ + o(1))−1. The cost of smoothness testing with
ECM is in Lp(α

2 , ·), which is negligible as soon as α < 2/3. Hence, the cost of the
descent with degree-1 polynomials is dominated by the case α = 2/3, which we
will now focus on. In this limiting case, the cost of ECM is LLp(2/3,cλ)(1/2,

√
2+

o(1)) = Lp(1/3, 2
√

cλ/3 + o(1)), so that the time to descend q in prime ideals
of norms bounded by qλ is in Lp(1/3, δ

6λ + 2
√

cλ/3 + o(1)). This is minimized
for λ = 3

√
δ2/12c and yields a running time of Lp(1/3, (3cδ/2)1/3 + o(1)). In the

case of GNFS, we have δ = 31/3, while it is δ = (3/2)1/3 for SNFS. We fix λ
so that we minimize the time when dealing with the largest q coming out from
the initialization step, namely for q = Lp(2/3, 0.811); this value c = 0.811 gives
λ = 0.598 in the case of GNFS, and λ = 0.513 in the case of SNFS. Both are
less than 1, which means that the descent process indeed descends. Finally, we
obtain the following:
Fact. If we use degree-1 polynomials, the cost of the first stages of the descent
is Lp(1/3, 1.206) for GNFS and Lp(1/3, 1.117) for SNFS.

Last Steps of the Descent. We now deal with the final steps of the descent
where q = Lp(1/3, c), with c larger than the constant involved in the smooth-
ness bound B = Lp(1/3, ·), which depends on whether we are in the GNFS or
SNFS case. In this setting, there is no gain in considering k > 2, so we keep
k = 2. The factor that was neglected when evaluating the size of the ai’s is no
longer negligible, so we start again, and assume that we are going to spend time
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T = Lp(1/3, τ + o(1)). This propagates into the formulae and gives a bound
Lp(1/3, (τ + c)/2) for the ai’s, which in turn gives

Lp(2/3, (τ + c)δ/2)‖f‖ ‖g‖

for the product of the norms. Let us denote B = Lp(1/3, β) the smoothness
bound used for sieving and linear algebra, and write c = β + ε, where ε > 0. We
omit the details, but it can be checked that if we allow time Lp(1/3, β), we can
descend q in prime ideals of norms at most Lp(1/3, β + ε

4 ). This analysis is valid
both for GNFS and SNFS, even though the values of β and δ are different for
these two cases. This is no surprise that this is the cost of finding one relation in
the sieving step, since when q is just above the smoothness bound, descending
involves essentially the same procedure as what we do during sieving with special-
q that are marginally smaller. We obtain therefore:
Fact. The cost of the last stages of the descent is Lp(1/3, 0.961) for GNFS and
Lp(1/3, 0.763) for SNFS.

In this analysis, we have not studied the transition between the two modes
where we decrease the value α or the value c when descending an ideal of size
Lp(α, c). This technicality is dealt with in [17] in the context of the Function
Field Sieve, but it applies mutatis mutandis to our NFS situation.

In the following table, we summarize the exponent constants in the Lp(1/3, ·)
complexities of the various steps of the descent, for GNFS and SNFS, allowing
or not sieving with higher degree polynomials:

Initialization step Descent step

Large q Small q

Sieving deg = 1 Sieving higher deg

GNFS 1.232 1.206 o(1) 0.961

SNFS 1.232 1.117 o(1) 0.763

B Block Wiedemann Algorithm Timings

Table 3. We ran both sieving and linear algebra on various clusters of different con-
figurations. For the CPU clock speed, we give both nominal and turbo speeds.

Location Nodes CPU type Clock speed Cores RAM Interconnect

UPenn 20 2 × Xeon E5-2699v4 2.2–2.8 GHz 44 512GB eth40g

8 2 × Xeon E5-2680v3 2.5–2.9 GHz 24 512GB eth40g

6 2 × Xeon E5-2699v3 2.3–2.8 GHz 36 128GB eth10g

Nancy 48 2 × Xeon E5-2650v1 2.0–2.4 GHz 16 64GB ib56g
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Table 4. Timings for the Block Wiedemann algorithm as run on the various clusters
for the 1024-bit SNFS Discrete Log computation. Table 3 gives details on the node
configurations.

CPU type Interconnect Nodes/job Seconds per iteration

Sequence Solution Communication

Xeon E5-2699v4 eth40g 1 2.42 0.12

4 0.41 0.17

8 0.19 0.17

12 0.13 0.14

16 0.10 0.21 0.13

Xeon E5-2680v3 eth40g 2 2.24 0.30

8 0.35 0.15

Xeon E5-2699v3 eth10g 6 0.36 0.33

Xeon E5-2650v1 ib56g 2 3.7 0.19

8 0.60 0.10
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Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow, E.,
Béguelin, S.Z., Zimmermann, P.: Imperfect forward secrecy: how Diffie-Hellman
fails in practice. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015: 22nd
Conference on Computer and Communications Security, Denver, CO, USA, 12–16
October 2015, pp. 5–17. ACM Press (2015)

3. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 1–12. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2 1

4. Ball, J., Borger, J., Greenwald, G.: Revealed: how US and UK spy agencies defeat
internet privacy and security. The Guardian, 5 September 2013. https://www.
theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

5. Barbulescu, R.: Algorithmes de logarithmes discrets dans les corps finis. Ph.D.
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Abstract. Private set intersection (PSI) refers to a special case of secure
two-party computation in which the parties each have a set of items and
compute the intersection of these sets without revealing any additional
information. In this paper we present improvements to practical PSI pro-
viding security in the presence of malicious adversaries.

Our starting point is the protocol of Dong, Chen & Wen (CCS 2013)
that is based on Bloom filters. We identify a bug in their malicious-secure
variant and show how to fix it using a cut-and-choose approach that has
low overhead while simultaneously avoiding one the main computational
bottleneck in their original protocol. We also point out some subtleties
that arise when using Bloom filters in malicious-secure cryptographic
protocols.

We have implemented our PSI protocols and report on its perfor-
mance. Our improvements reduce the cost of Dong et al.’s protocol by a
factor of 14 − 110× on a single thread. When compared to the previous
fastest protocol of De Cristofaro et al., we improve the running time by
8 − 24×. For instance, our protocol has an online time of 14 s and an
overall time of 2.1 min to securely compute the intersection of two sets
of 1 million items each.

1 Introduction

Private set intersection (PSI) is a cryptographic primitive that allows two parties
holding sets X and Y , respectively, to learn the intersection X ∩ Y while not
revealing any additional information about X and Y .

PSI has a wide range of applications: contact discovery [19], secret hand-
shakes [12], measuring advertisement conversion rates, and securely sharing secu-
rity incident information [22], to name a few.

There has been a great deal of recent progress in efficient PSI protocols
that are secure against semi-honest adversaries, who are assumed to follow the
protocol. The current state of the art has culminated in extremely fast PSI
protocols. The fastest one, due to Kolesnikov et al. [16], can securely compute
the intersection of two sets, each with 220 items, in less than 4 s.
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Looking more closely, the most efficient semi-honest protocols are those that
are based on oblivious transfer (OT) extension. Oblivious transfer is a
fundamental cryptographic primitive (see Fig. 1). While in general OT requires
expensive public-key computations, the idea of OT extension [3,13] allows the
parties to efficiently realize any number of effective OTs by using only a small
number (e.g., 128) of base OTs plus some much more efficient symmetric-key
computations. Using OT extension, oblivious transfers become extremely inex-
pensive in practice. Pinkas et al. [23] compared many paradigms for PSI and
found the ones based on OTs are much more efficient than those based on alge-
braic & public-key techniques.

Our Contributions. In many settings, security against semi-honest adversaries is
insufficient. Our goal in this paper is to translate the recent success in semi-honest
PSI to the setting of malicious security. Following the discussion above, this
means focusing on PSI techniques based on oblivious transfers. Indeed, recent
protocols for OT extension against malicious adversaries [1,15] are almost as
efficient as (only a few percent more expensive than) OT extension for semi-
honest adversaries.

Our starting point is the protocol paradigm of Dong et al. [8] (hereafter
denoted DCW) that is based on OTs and Bloom filter encodings. We describe
their approach in more detail in Sect. 3. In their work they describe one of the
few malicious-secure PSI protocols based primarily on OTs rather than algebraic
public-key techniques. We present the following improvements and additions to
their protocol:

1. Most importantly, we show that their protocol has a subtle security flaw,
which allows a malicious sender to induce inconsistent outputs for the receiver.
We present a fix for this flaw, using a very lightweight cut-and-choose
technique.

2. We present a full simulation-based security proof for the Bloom-filter-based
PSI paradigm. In doing so, we identify a subtle but important aspect about
using Bloom filters in a protocol meant to provide security in the presence
of malicious adversaries. Namely, the simulator must be able to extract all
items stored in an adversarially constructed Bloom filter. We argue that this
capability is an inherently non-standard model assumption, in the sense that
it seems to require the Bloom filter hash functions to be modeled as (non-
programmable) random oracles. Details are in Sect. 5.1.

3. We implement both the original DCW protocol and our improved version.
We find that the major bottleneck in the original DCW protocol is not in the
cryptographic operations, but actually in a polynomial interpolation compu-
tation. The absence of polynomial interpolation in our new protocol (along
with our other improvements) decreases the running time by a factor of over
8 − 75×.
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1.1 Related Work

As mentioned above, our work builds heavily on the protocol paradigm of Dong
et al. [8] that uses Bloom filters and OTs. We discuss this protocol in great detail
in Sect. 3. We identify a significant bug in that result, which was independently
discovered by Lambæk [17] (along with other problems not relevant to our work).

Several other paradigms for PSI have been proposed. Currently the fastest
protocols in the semi-honest setting are those in a sequence of works initiated by
Pinkas et al. [16,22,23] that rely heavily on oblivious transfers. Adapting these
protocols to the malicious setting is highly non-trivial, and we were unsuccessful
in doing so. However, Lambæk [17] observes that the protocols can easily be made
secure against a malicious receiver (but not also against a malicious sender).

Here we list other protocol paradigms that allow for malicious security when
possible. The earliest technique for PSI is the elegant Diffie-Hellman-based pro-
tocol of [12]. Protocols in this paradigm achieving security against malicious
adversaries include the one of De Cristofaro et al. [7]. We provide a performance
analysis comparing their protocol to ours.

Freedman et al. [9] describe a PSI paradigm based on oblivious polynomial
evaluation, which was extended to the malicious setting in [6].

Huang et al. [11] explored using general-purpose 2PC techniques (e.g., gar-
bled circuits) for PSI. Several improvements to this paradigm were suggested in
[22]. Malicious security can be achieved in this paradigm in a generic way, using
any cut-and-choose approach, e.g., [18].

Kamara et al. [14] presented PSI protocols that take advantage of a semi-
trusted server to achieve extremely high performance. Our work focuses on the
more traditional setting with just 2 parties.

2 Preliminaries

We use κ to denote a computational security parameter (e.g., κ = 128 in our
implementations), and λ to denote a statistical security parameter (e.g., λ = 40
in our implementations). We use [n] to denote the set {1, . . . , n}.

2.1 Efficient Oblivious Transfer

Our protocol makes use of 1-out-of-2 oblivious transfer (OT). The ideal func-
tionality is described in Fig. 1. We require a large number of such OTs, secure
against malicious adversaries. These can be obtained efficiently via OT exten-
sion [3]. The idea is to perform a fixed number (e.g., 128) of “base OTs”, and
from this correlated randomness derive a large number of effective OTs using
only symmetric-key primitives.

The most efficient OT extension protocols providing malicious security are
those of [2,15,21], which are based on the semi-honest secure paradigm of [13].
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Parameters: � is the length of the OT strings.

– Oninput( m0,m 1) ∈ ({0, 1}�)2 from the sender and b ∈{ 0, 1} from the re-
ceiver, give output mb to the receiver.

Fig. 1. Ideal functionality for 1-out-of-2 OT

2.2 Private Set Intersection

In Fig. 2 we give the ideal functionality that specifies the goal of private set
intersection. We point out several facts of interest. (1) The functionality gives
output only to Bob. (2) The functionality allows corrupt parties to provide larger
input sets than the honest parties. This reflects that our protocol is unable to
strictly enforce the size of an adversary’s set to be the same as that of the honest
party. We elaborate when discussing the security of the protocol.

We define security of a PSI protocol using the standard paradigm of 2PC. In
particular, our protocol is secure in the universal composability (UC) framework
of Canetti [4]. Security is defined using the real/ideal, simulation-based paradigm
that considers two interactions:

– In the real interaction, a malicious adversary A attacks an honest party
who is running the protocol π. The honest party’s inputs are chosen by an
environment Z; the honest party also sends its final protocol output to Z. The
environment also interacts arbitrarily with the adversary. Our protocols are
in a hybrid world, in which the protocol participants have access to an ideal
random-OT functionality (Fig. 1). We define real[π,Z,A] to be the (random
variable) output of Z in this interaction.

– In the ideal interaction, a malicious adversary S and an honest party simply
interact with the ideal functionality F (in our case, the ideal PSI protocol of
Fig. 2). The honest party simply forwards its input from the environment to
F and its output from F to the environment. We define ideal[F ,Z,S] to be
the output of Z in this interaction.

We say that a protocol π UC-securely realizes functionality F if: for all
PPT adversaries A, there exists a PPT simulator S, such that for all PPT
environments Z:

Parameters: σ is the bit-length of the parties’ items. n is the size of the honest
parties’ sets. n′ >n is the allowed size of the corrupt party’s set.

– On input Y ⊆{ 0, 1}σ from Bob, ensure that |Y |≤ n if Bob is honest, and
that |Y |≤ n′ if Bob is corrupt. Give output bob-input to Alice.

– Thereafter, on input X ⊆{ 0, 1}σ from Alice, likewise ensure that |X| ≤ n if
Alice is honest, and that |X| ≤ n′ if Alice is corrupt. Give output X ∩ Y to
Bob.

Fig. 2. Ideal functionality for private set intersection (with one-sided output)
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real[π,Z,A] ≈ ideal[F ,Z,S]

where “≈” denotes computational indistinguishability.
Our protocol uses a (non-programmable) random oracle. In Sect. 5.4 we

discuss technicalities that arise when modeling such global objects in the UC
framework.

2.3 Bloom Filters

A Bloom filter (BF) is an N -bit array B associated with k random functions
h1, . . . , hk : {0, 1}∗ → [N ]. To store an item x in the Bloom filter, one sets
B[hi(x)] = 1 for all i. To check the presence of an item x in the Bloom filter, one
simply checks whether B[hi(x)] = 1 for all i. Any item stored in the Bloom filter
will therefore be detected when queried; however, false positives are possible.

3 The DCW Protocol Paradigm

The PSI protocol of Dong et al. [8] (hereafter DCW) is based on representing
the parties’ input sets as Bloom filters (BFs). We describe the details of their
protocol in this section.

If B and B′ are BFs for two sets S and S′, using the same parameters
(including the same random functions), then it is true that B ∧ B′ (bit-wise
AND) is a BF for S ∩ S′. However, one cannot construct a PSI protocol simply
by computing a bit-wise AND of Bloom filters. The reason is that B ∧ B′ leaks
more about S and S′ than their intersection S ∩ S′. For example, consider the
case where S ∩ S′ = ∅. Then the most natural Bloom filter for S ∩ S′ is an all-
zeroes string, and yet B ∧ B′ may contain a few 1 s with noticeable probability.
The location of these 1 s depends on the items in S and S′, and hence cannot
be simulated just by knowing that S ∩ S′ = ∅.

DCW proposed a variant Bloom filter that they call a garbled Bloom
filter (GBF). In a GBF G meant to store m-bit strings, each G[i] is itself an
m-bit string rather than a single bit. Then an item x is stored in G by ensuring
that x =

⊕
i G[hi(x)]. That is, the positions indexed by hashing x should store

additive secret shares of x. All other positions in G are chosen uniformly.
The semi-honest PSI protocol of DCW uses GBFs in the following way.

The two parties agree on Bloom filter parameters. Alice prepares a GBF G rep-
resenting her input set. The receiver Bob prepares a standard BF B representing
his input set. For each position i in the Bloom filters, the parties use oblivious
transfer so that Bob can learn G[i] (a string) iff B[i] = 1. These are exactly
the positions of G that Bob needs to probe in order to determine which of his
inputs is stored in G. Hence Bob can learn the intersection. DCW prove that
this protocol is secure. That is, they show that Bob’s view {G[i] | B[i] = 1} can
be simulated given only the intersection of Alice and Bob’s sets.

DCW also describe a malicious-secure variant of their GBF-based proto-
col. The main challenge is that nothing in the semi-honest protocol prevents
a malicious Bob from learning all of Alice’s GBF G. This would reveal Alice’s
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entire input, which can only be simulated in the ideal world by Bob sending the
entire universe {0, 1}σ as input. Since in general the universe is exponentially
large, this behavior is unsimulatable and hence constitutes an attack.

To prevent this, DCW propose to use 1-out-of-2 OTs in the following way.
Bob can choose to either pick up a position G[i] in Alice’s GBF (if Bob has a
1 in B[i]) or else learn a value si (if Bob has a 0 in B[i]). The values si are an
N/2-out-of-N secret sharing of some secret s∗ which is used to encrypt all of
the G[i] values. Hence, Alice’s inputs to the ith OT are (si,Enc(s∗, G[i])), where
Enc is a suitable encryption scheme. Intuitively, if Bob tries to obtain too many
positions of Alice’s GBF (more than half), then he cannot recover the key s∗

used to decrypt them.
As long as N > 2k|Y | (where Y is Bob’s input set), an honest Bob is guar-

anteed to have at least half of his BF bits set to zero. Hence, he can reconstruct
s∗ from the si shares, decrypt the G[i] values, and probe these GBF positions
to learn the intersection. We describe the protocol formally in Fig. 3.

Parameters: X is Alice’s input, Y is Bob’s input. N is the required Bloom filter
size; We assume the parties have agreed on common BF parameters.

1. Alice chooses a random key s∗ ∈ {0, 1}κ and generates an N/2-out-of-N secret
sharing (s1, . . . , sN ).

2. Alice generates a GBF G encoding her inputs X. Bob generates a standard
BF B encoding his inputs Y .

3. For i ∈ [N ], the parties invoke an instance of 1-out-of-2 OT, where Alice gives
inputs (si, ci = Enc(s∗, G[i])) and Bob uses choice bit B[i].

4. Bob reconstructs s∗ from the set of shares {si | B[i] = 0} he obtained in the
previous step. Then he uses s∗ to decrypt the ciphertexts {ci | B[i] = 1},
obtaining {G[i] | B[i] = 1}. Finally, he outputs {y ∈ Y | y =

⊕
i G[hi(y)]}.

Fig. 3. The malicious-secure protocol of DCW [8].

3.1 Insecurity of the DCW Protocol

Unfortunately, the malicious-secure variant of DCW is not secure1! We now
describe an a attack on their protocol, which was independently & concurrently
discovered by Lambæk [17]. A corrupt Alice will generate si values that are not
a valid N/2-out-of-N secret sharing. DCW do not specify Bob’s behavior when
obtaining invalid shares. However, we argue that no matter what Bob’s behavior
is (e.g., to abort in this case), Alice can violate the security requirement.

As a concrete attack, let Alice honestly generate shares si of s∗, but then
change the value of s1 in any way. She otherwise runs the protocol as instructed.
1 We contacted the authors of [8], who confirmed that our attack violates malicious

security.
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If the first bit of Bob’s Bloom filter is 1, then this deviation from the protocol is
invisible to him, and Alice’s behavior is indistinguishable from honest behavior.
Otherwise, Bob will pick up s1 which is not a valid share. If Bob aborts in
this case, then his abort probability depends on whether his first BF bit is 1.
The effect of this attack on Bob’s output cannot be simulated in the ideal PSI
functionality, so it represents a violation of security.

Even if we modify Bob’s behavior to gracefully handle some limited number of
invalid shares, there must be some threshold of invalid shares above which Bob
(information theoretically) cannot recover the secret s∗. Whether or not Bob
recovers s∗ therefore depends on individual bits of his Bloom filter. And whether
we make Bob abort or do something else (like output ∅) in the case of invalid
shares, the result cannot be simulated in the ideal world. Lambæk [17] points out
further attacks, in which Alice can cleverly craft shares and encryptions of GBF
values to cause her effective input to depend on Bob’s inputs (hence violating
input independence).

4 Our Protocol

The spirit of DCW’s malicious protocol is to restrict the adversary from setting
too many 1 s in its Bloom filter, thereby learning too many positions in Alice’s
GBF. In this section, we show how to achieve the spirit of the DCW protocol
using a lightweight cut-and-choose approach.

The high-level idea is to generate slightly more 1-out-of-2 OTs than the
number of BF bits needed. Bob is supposed to use a limited number of 1 s for
his choice bits. To check this, Alice picks a small random fraction of the OTs
and asks Bob to prove that an appropriate number of them used choice bit 0.
If Alice uses random strings as her choice-bit-0 messages, then Bob can prove
his choice bit by simply reporting this string.2 If Bob cannot prove that he used
sufficiently many 0 s as choice bits, then Alice aborts. Otherwise, Alice has high
certainty that the unopened OTs contain a limited number of choice bits 1.

After this cut-and-choose, Bob can choose a permutation that reorders the
unopened OTs into his desired BF. In other words, if c1, . . . , cN are Bob’s choice
bits in the unopened OTs, Bob sends a random π such that cπ(1), . . . , cπ(N)

are the bits of his desired BF. Then Alice can send her GBF, masked by the
choice-bit-1 OT messages permuted in this way.

We discuss the required parameters for the cut-and-choose below. However,
we remark that the overhead is minimal. It increases the number of required
OTs by only 1–10%.

4.1 Additional Optimizations

Starting from the basic outline just described, we also include several important
optimizations. The complete protocol is described formally in Fig. 4.

2 This committing property of an OT choice bit was pointed out by Rivest [24].



242 P. Rindal and M. Rosulek

Parameters: X is Alice’s input, Y is Bob’s input. Nbf is the required Bloom filter
size; k is the number of Bloom filter hash functions; Not is the number of OTs to
generate. H is modeled as a random oracle with output length κ. The choice of
these parameters, as well as others α, pchk, Nmaxones, is described in Section 5.2.

1. [setup] The parties perform a secure coin-tossing subprotocol to choose (seeds
for) random Bloom filter hash functions h1, . . . , hk : {0, 1}∗ → [Nbf].

2. [random OTs] Bob chooses a random string b = b1 . . . bNot with an α fraction
of 1s. Parties perform Not OTs of random messages (of length κ), with Alice
choosing random strings mi,0, mi,1 in the ith instance. Bob uses choice bit bi

and learns m∗
i = mi,bi .

3. [cut-and-choose challenge] Alice chooses a set C ⊆ [Not] by choosing each
index with independent probability pchk. She sends C to Bob. Bob aborts if
|C| > Not − Nbf.

4. [cut-and-choose response] Bob computes the set R = {i ∈ C | bi = 0}
and sends R to Alice. To prove that he used choice bit 0 in the OTs indexed
by R, Bob computes r∗ =

⊕
i∈R m∗

i and sends it to Alice. Alice aborts if
|C| − |R| > Nmaxones or if r∗ �= ⊕

i∈R mi,0.
5. [permute unopened OTs] Bob generates a Bloom filter BF containing his

items Y . He chooses a random injective function π : [Nbf] → ([Not] \ C) such
that BF [i] = bπ(i), and sends π to Alice.

6. [randomized GBF] For each item x in Alice’s input set, she computes a
summary value

Kx = H

⎛
⎝x

∥∥∥∥
⊕

i∈h∗(x)

mπ(i),1

⎞
⎠ ,

where h∗(x)
def
= {hi(x) : i ∈ [k]}. She sends a random permutation of K =

{Kx | x ∈ X}.
7. [output] Bob outputs {y ∈ Y | H(y ‖ ⊕

i∈h∗(y) m∗
π(i)) ∈ K}.

Fig. 4. Malicious-secure PSI protocol based on garbled Bloom filters.

Random GBF. In their treatment of the semi-honest DCW protocol, Pinkas
et al. [23] suggested an optimization that eliminates the need for Alice to send her
entire masked GBF. Suppose the parties use 1-out-of-2 OT of random messages
(i.e., the sender Alice does not choose the OT messages; instead, they are chosen
randomly by the protocol/ideal functionality). In this case, the concrete cost of
OT extension is greatly reduced (cf. [1]). Rather than generating a GBF of her
inputs, Alice generates an array G where G[i] is the random OT message in the
ith OT corresponding to bit 1 (an honest Bob learns G[i] iff the ith bit of his
Bloom filter is 1).

Rather than arranging for
⊕

i G[hi(x)] = x, as in a garbled BF, the idea is
to let the G-values be random and have Alice directly send to Bob a summary
value Kx =

⊕
i G[hi(x)] for each of her elements x. For each item y in Bob’s

input set, he can likewise compute Ky since he learned the values of G corre-
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sponding to 1 s in his Bloom filter. Bob can check to see whether Ky is in the
list of strings sent by Alice. For items x not stored in Bob’s Bloom filter, the
value Kx is random from his point of view.

Pinkas et al. show that this optimization significantly reduces the cost, since
most OT extension protocols require less communication for OT of random
messages. In particular, Alice’s main communication now depends on the number
of items in her set rather than the size of the GBF encoding her set. Although the
optimization was suggested for the semi-honest variant of DCW, we point out
that it also applies to the malicious variant of DCW and to our cut-and-choose
protocol.

In the malicious-secure DCW protocol, the idea is to prevent Bob from see-
ing GBF entries unless he has enough shares to recover the key s∗. To achieve
the same effect with a random-GBF, we let the choice-bit-1 OT messages be
random (choice-bit-0 messages still need to be chosen messages: secret shares
of s∗). These choice-bit-1 OT messages define a random GBF G for Alice.
Then instead of sending a summary value

⊕
i G[hi(x)] for each x, Alice sends

[
⊕

i G[hi(x)]] ⊕ F (s∗, x), where F is a pseudorandom function. If Bob does not
use choice-bit-0 enough, he does not learn s∗ and all of these messages from Alice
are pseudorandom.

In our protocol, we can let both OT messages be random, which significantly
reduces the concrete overhead. The choice-bit-0 messages are used when Bob
proves his choice bit in the cut-and-choose step. The choice-bit-1 messages are
used as a random GBF G, and Alice sends summary values just as in the semi-
honest variant.

We also point out that Pinkas et al. and DCW overlook a subtlety in how the
summary values and the GBF should be constructed. Pinkas et al. specify the
summary value as

⊕
i G[hi(x)] where hi are the BF hash functions. Suppose that

there is a collision involving two BF hash functions under the same x — that is,
hi(x) = hi′(x). Note that since the range of the BF hash functions is polynomial
in size ([Nbf]), such a collision is indeed possible with noticeable probability.
When such a collision happens, the term G[hi(x)] = G[hi′(x)] can cancel itself
out from the XOR summation and the summary value will not depend on this
term. The DCW protocol also has an analogous issue.3 If the G[hi(x)] term was
the only term unknown to the Bob, then the collision allows him to guess the
summary value for an item x that he does not have. We fix this by computing
the summary value using an XOR expression that eliminates the problem of
colliding terms:

⊕
j∈h∗(x)

G[j], where h∗(x) def= {hi(x) : i ∈ [k]}.

Note that in the event of a collision among BF hash functions, we get |h∗(x)| < k.

3 Additionally, if one strictly follows the DCW pseudocode then correctness may be
violated in the event of a collision hi(x) = hi′(x). If hi(x) is the first “free” GBF
location then G[hi(x)] gets set to a value and then erroneously overwritten later.
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Finally, for technical reasons, it turns out to be convenient in our protocol
to define the summary value of x to be H(x‖⊕

j∈h∗(x) G[j]) where H is a (non-
programmable) random oracle.4

Hash Only “On Demand.” In OT-extension for random messages, the parties
compute the protocol outputs by taking a hash of certain values derived from
the base OTs. Apart from the base OTs (whose cost is constant), these hashes
account for essentially all the cryptographic operations in our protocol. We there-
fore modify our implementation of OT extension so that these hashes are not
performed until the values are needed. In our protocol, only a small number
(e.g., 1%) of the choice-bit-0 OT messages are ever used (for the cut-and-choose
check), and only about half of the choice-bit-1 OT messages are needed by the
sender (only the positions that would be 1 in a BF for the sender’s input). Hence,
the reduction in cost for the receiver is roughly 50%, and the reduction for the
sender is roughly 75%. A similar optimization was also suggested by Pinkas
et al. [23], since the choice-bit 0 messages are not used at all in the semi-honest
protocol.

Aggregating Proofs-of-Choice-Bits. Finally, we can reduce the communication
cost of the cut-and-choose step. Recall that Bob must prove that he used choice
bit 0 in a sufficient number of OTs. For the ith OT, Bob can simply send mi,0,
the random output he received from the ith OT. To prove he used choice bit 0
for an entire set I of indices, Bob can simply send the single value

⊕
i∈I mi,0,

rather than sending each term individually.

Optimization for Programmable Random Oracles. The formal description of our
protocol is one that is secure in the non-programmable random oracle model.
However, the protocol can be significantly optimized by assuming a program-
mable random oracle. The observation is that Alice’s OT input strings are
always chosen randomly. Modern OT extension protocols natively give OT of
random strings and achieve OT of chosen strings by sending extra correction
data (cf. [1]). If the application allows the OT extension protocol itself to deter-
mine the sender’s strings, then this additional communication can be eliminated.
In practice, this reduces communication cost for OTs by a factor of 2.

We can model OT of random strings by modifying the ideal functionality
of Fig. 1 to choose m0,m1 randomly itself. The OT extension protocol of [21]
securely realizes this functionality in the presence of malicious adversaries, in the
programmable random oracle model. We point out that even in the semi-honest
model it is not known how to efficiently realize OT of strings randomly chosen
by the functionality, without assuming a programmable random oracle.

4 In practice H is instantiated with a SHA-family hash function. The xor expression
and x itself are each 128 bits, so both fit in a single SHA block.
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5 Security

5.1 BF Extraction

The analysis in DCW argues for malicious security in a property-based manner,
but does not use a standard simulation-based notion of security. This turns out
to mask a non-trivial subtlety about how one can prove security about Bloom-
filter-based protocols.

One important role of a simulator is to extract a corrupt party’s input. Con-
sider the case of simulating the effect of a corrupt Bob. In the OT-hybrid model
the simulator sees Bob’s OT choice bits as well as the permutation π that he
sends in 5. Hence, the simulator can easily extract Bob’s “effective” Bloom fil-
ter. However, the simulator actually needs to extract the receiver’s input set that
corresponds to that Bloom filter, so that it can send the set itself to the ideal
functionality.

In short, the simulator must invert the Bloom filter. While invertible Bloom
filters do exist [10], they require storing a significant amount of data beyond that
of a standard Bloom filter. Yet this PSI protocol only allows the simulator to
extract the receiver’s OT choice bits, which corresponds to a plain Bloom filter.
Besides that, in our setting we must invert a Bloom filter that may not have
been honestly generated.

Our protocol achieves extraction by modeling the Bloom filter hash functions
as (non-programmable) random oracles. The simulator must observe the adver-
sary’s queries to the Bloom filter hash functions.5 Let Q be the set of queries
made by the adversary to any such hash function. This set has polynomial size,
so the simulator can probe the extracted Bloom filter to test each q ∈ Q for mem-
bership. The simulator can take the appropriate subset of Q as the adversary’s
extracted input set. More details are given in the security proof below.

Simulation/extraction of a corrupt Alice is also facilitated by observing her
oracle queries. Recall that the summary value of x is (supposed to be) H(x‖⊕

j∈h∗(x) mπ(j),1). Since H is a non-programmable random oracle, the simulator
can obtain candidate x values from her calls to H.

More details about malicious Bloom filter extraction are given in the security
proof in Sect. 5.3.

Necessity of Random Oracles. We show that random oracles are necessary, when
using plain Bloom filters for a PSI protocol.

Lemma 1. There is no PSI protocol that simultaneously satisfies the following
conditions:

– The protocol is UC secure against malicious adversaries in the standard model.
– When Bob is corrupted in a semi-honest manner, the view of the simulator

can be sampled given only on a Bloom filter representation of Bob’s input.
– The parameters of the Bloom filter depend only on the number of items in the

parties’ sets, and in particular not on the bitlength of those items.
5 The simulator does not, however, require the ability to program the random oracle.
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In our protocol, the simulator’s indeed gets to see the receiver’s OT choice
bits, which correspond to a plain Bloom filter encoding of their input set. How-
ever, the simulator also gets to observe the receiver’s random oracle queries, and
hence the statement of the lemma does not apply.

The restriction about the Bloom filter parameters is natural. One important
benefit of Bloom filters is that they do not depend on the bit-length of the items
being stored.

Proof. Consider an environment that chooses a random set S ⊆ {0, 1}� of size
n, and gives it as input to both parties (� will be chosen later). An adversary
corrupts Bob but runs semi-honestly on input S as instructed. The environment
outputs 1 if the output of the protocol is S (note that it does not matter if only
one party receives output). In this real execution, the environment outputs 1
with overwhelming probability due to the correctness of the protocol.

We will show that if the protocol satisfies all three conditions in the lemma
statement, then the environment will output 0 with constant probability in the
ideal execution, and hence the protocol will be insecure.

Suppose the simulator for a corrupt Bob sees only a Bloom filter representa-
tion of Bob’s inputs. Let N be the total length of the Bloom filter representation
(the Bloom filter array itself as well as the description of hash functions). Set
the length of the input items � > 2N . Now the simulator’s view can be sampled
given only N bits of information about S, whereas S contains randomly chosen
items of length � > 2N . The simulator must extract a value S′ and send it on
behalf of Bob to the ideal functionality. With constant probability this S′ will
fail to include some item of S (it will likely not include any of them). Then since
the honest party gave input S, the output of the functionality will be S ∩ S′ �= S,
and the environment outputs zero.

5.2 Cut-and-Choose Parameters

The protocol mentions various parameters:

Not: the number of OTs
Nbf: the number of Bloom filter bits
k: the number of Bloom filter hash functions
α: the fraction of 1 s among Bob’s choice bits
pchk: the fraction of OTs to check
Nmaxones: the maximum number of 1 choice bits allowed to pass the cut-and-

choose.

As before, we let κ denote the computational security parameter and λ denote
the statistical security parameter.

We require the parameters to be chosen subject to the following constraints:

– The cut-and-choose restricts Bob to few 1s. Let N1 denote the number of OTs
that remain after the cut and choose, in which Bob used choice bit 1. In the
security proof we argue that the difficulty of finding an element stored in the
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Bloom filter after the fact is (N1/N)k (i.e., one must find a value which all k
random Bloom filter hash functions map to a 1 in the BF).
Let B denote the “bad event” that no more than Nmaxones of the checked OTs
used choice bit one (so Bob can pass the cut-and-choose), and yet (N1/Nbf)k ≥
2−κ. We require Pr[B] ≤ 2−λ.
As mentioned above, the spirit of the protocol is to restrict a corrupt receiver
from setting too many 1 s in its (plain) Bloom filter. DCW suggest to restrict
the receiver to 50% 1s, but do not explore how the fraction of 1 s affects security
(except to point out that 100% 1s is problematic). Our analysis pinpoints
precisely how the fraction of 1 s affects security.

– The cut-and-choose leaves enough OTs unopened for the Bloom filter. That is,
when choosing from among Not items, each with independent pchk probability,
the probability that less than Nbf remain unchosen is at most 2−λ.

– The honest Bob has enough one choice bits after the cut and choose. When
inserting n items into the bloom filter, at most nk bits will be set to one. We
therefore require that no fewer than this remain after the cut and choose.

Our main technique is to apply the Chernoff bound to the probability that
Bob has too many 1 s after the cut and choose. Let m1

h = αNot (resp. m0
h =

(1 − α)Not) be the number of 1 s (resp. 0s) Bob is supposed to select in the
OT extension. Then in expectation, there should be m1

hpchk ones in the cut and
choose open set, where each OT message is opened with independent probability
pchk. Let φ denote the number of ones in the open set. Then applying the Chernoff
bound we obtain,

Pr[φ ≥ (1 + δ)m1
hpchk] ≤ e− δ2

2+δ m1
hpchk ≤ 2−λ

where the last step bounds this probability to be negligible in the statistical
security parameter λ. Solving for δ results in,

δ ≤ λ +
√

λ2 + 8λm1
hpchk

2m1
hpchk

.

Therefore an honest Bob should have no more than Nmaxones = (1 + δ)m1
hpchk

1s revealed in the cut and choose, except with negligible probability. To ensure
there are at least nk ones6 remaining to construct the bloom filter, set m1

h =
nk +Nmaxones. Similarly, there must be at least Nbf unopened OTs which defines
the total number of OTs to be Not = Nbf +(1+δ∗)Notpchk where δ∗ is analogous
to δ except with respect to the total number of OTs opened in the cut and
choose.

A malicious Bob can instead select m1
a ≥ m1

h ones in the OT extension. In
addition to Bob possibly setting more 1 s in the BF, such a strategy will increase
the probability of the cut and choose revealing more than Nmaxones 1s. A Chernoff
bound can then be applied to the probability of seeing a δ′ factor fewer 1 s than
6 nk ones is an upper bound on the number of ones required. A tighter analysis could

be obtained if collisions were accounted for.
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expected. Bounding this to be negligible in the statistical security parameter λ,
we obtain,

Pr[φ ≤ (1 − δ′)pchkm1
a] ≤ e− δ′2

2 pchkm
1
a ≤ 2−λ.

Solving for δ′ then yields δ′ ≤
√

2λ
pchkm1

a
. By setting Nmaxones equal to

(1 − δ′)pchkm1
a we can solve for m1

a such that the intersection of these two
distribution is negligible. Therefore the maximum number of 1 s remaining is
N1 = (1 − pchk)m1

a +
√

2λpchkm1
a.

For a given pchk, n, k, the above analysis allows us to bound the maximum
advantage a malicious Bob can have. In particularly, a honest Bob will have at
least nk 1 s and enough 0 s to construct the bloom filter while a malicious Bob
can set no more than N1/Nbf fraction of bits in the bloom filter to 1. Modeling
the bloom filter hash function as random functions, the probability that all k
index the boom filter one bits is (N1/Nbf)k. Setting this to be negligible in the
computational security parameter κ we can solve for Nbf given N1 and k. The
overall cost is therefore Nbf

(1−pchk)
. By iterating over values of k and pchk we obtain

set of parameters shown in Fig. 5.

Fig. 5. Optimal Bloom filter cut and choose parameters for set size n to achieve sta-
tistical security λ = 40 and computational security κ = 128. Not denotes the total
number of OTs used. Nbf denotes the bit count of the bloom filer. α is the faction of
ones which should be generated. Nmaxones is the maximum number of ones in the cut
and choose to pass.

5.3 Security Proof

Theorem 2. The protocol in Fig. 4 is a UC-secure protocol for PSI in the
random-OT-hybrid model, when H and the Bloom filter hash functions are non-
programmable random oracles, and the other protocol parameters are chosen as
described above.

Proof. We first discuss the case of a corrupt receiver Bob, which is the more
difficult case since we must not only extract Bob’s input but simulate the output.
The simulator behaves as follows:

The simulator plays the role of an honest Alice and ideal functionalities in
steps 1 through 5, but also extracts all of Bob’s choice bits b for the OTs.
Let N1 be the number of OTs with choice bit 1 that remain after the cut
and choose. The simulator artificially aborts if Bob succeeds at the cut and
choose and yet (N1/Nbf)k ≥ 2−κ. From the choice of parameters, this event
happens with probability only 2−λ.



Improved Private Set Intersection Against Malicious Adversaries 249

After receiving Bob’s permutation π in step 5, the simulator computes Bob’s
effective Bloom filter BF [i] = bπ(i). Let Q be the set of queries made by Bob to
any of the Bloom filter hash functions (random oracles). The simulator com-
putes Ỹ = {q ∈ Q | ∀i : BF [hi(q)] = 1} as Bob’s effective input, and sends Ỹ
to the ideal functionality. The simulator receives Z = X∩Ỹ as output, as well
as |X|. For z ∈ Z, the simulator generates Kz = H(z ‖⊕

j∈h∗(z) mπ(j),1). The
simulator sends a random permutation of Kz along with |X| − |Z| random
strings to simulate Alice’s message in step 6.

To show the soundness of this simulation, we proceed in the following sequence
of hybrids:

1. The first hybrid is the real world interaction. Here, an honest Alice also
queries the random oracles on her actual inputs x ∈ X. For simplicity later
on, assume that Alice queries her random oracle as late as possible (in step
6 only).

2. In the next hybrid, we artifically abort in the event that (N1/Nbf)k ≥ 2−κ.
As described above, our choice of parameters ensures that this abort happens
with probability at most 2−λ, so the hybrids are indistinguishable.
In this hybrid, we also observe Bob’s OT choice bits. Then in step 5 of the
protocol, we compute Q, BF , and Ỹ as in the simulator description above.

3. We next consider a sequence of hybrids, one for each item x of Alice such
that x ∈ X \ Ỹ . In each hybrid, we replace the summary value Kx =
H(x ‖⊕

j∈h∗(x) mπ(j),1) with a uniformly random value.
There are two cases for x ∈ X \ Ỹ :

– Bob queried some hi on x before step 5: If this happened but x was not
included in Ỹ , then x is not represented in Bob’s effective Bloom filter
BF . There must be an i such that Bob did not learn mπ(hi(x)),1.

– Bob did not query any hi on x: Then the value of hi(x) is random for
all i. The probability that x is present in BF is the probability that
BF [hi(x)] = 1 for all i, which is (N1/Nbf)k since Bob’s effective Bloom
filter has N1 ones. Recall that the interaction is already conditioned on the
event that (N1/Nbf)k < 2−κ. Hence it is with overwhelming probability
that Bob did not learn mπ(hi(x)),1 for some i.

In either case, there is an i such that Bob did not learn mπ(hi(x)),1,
so that value is random from Bob’s view. Then the corresponding sum⊕

j∈h∗(x) mπ(j),1 is uniform in Bob’s view.7 It is only with negligible proba-
bility that Bob makes the oracle query Kx = H(x ‖⊕

j∈h∗(x) mπ(j),1). Hence
Kx is pseudorandom and the hybrids are indistinguishable.

In the final hybrid, the simulation does not need to know X, it only needs
to know X ∩ Ỹ . In particular, the values {Kx | x ∈ X \ Ỹ } are now being

7 This is part of the proof that breaks down if we compute a summary value using⊕
i mπ(hi(x)),1 instead of

⊕
j∈h∗(x) mπ(j),1. In the first expression, it may be that

hi′(x) = hi(x) for some i′ �= i so that the randomizing term mπ(hi(x)),1 cancels out
in the sum.



250 P. Rindal and M. Rosulek

simulated as random strings. The interaction therefore describes the behavior of
our simulator interacting with corrupt Bob.

Now consider a corrupt Alice. The simulation is as follows:

The simulator plays the role of an honest Bob and ideal functionalities in
steps 1 through 4. As such, the simulator knows Alice’s OT messages mi,b for
all i, b, and can compute the correct r∗ value in step 4. The simulator sends
a completely random permutation π in step 5.
In step 6, the simulator obtains a set K as Alice’s protocol message. Recall
that each call made to random oracle H has the form q‖s. The simulator
computes Q = {q | ∃s : Alice queried H on q‖s}. The simulator computes
X̃ = {q ∈ Q | H(q ‖⊕

j∈h∗(q) mπ(j),1) ∈ K} and sends X̃ to the ideal
functionality as Alice’s effective input. Recall Alice receives no output.

It is straight-forward to see that Bob’s protocol messages in steps 4 & 5 are
distributed independently of his input.

Recall that Bob outputs {y ∈ Y | H(y ‖⊕
j∈h∗(y) m∗

π(j)) ∈ K} in the last
step of the protocol. In the ideal world (interacting with our simulator), Bob’s
output from the functionality is X̃ ∩ Y = {y ∈ Y | y ∈ X̃}. We will show that
the two conditions are the same except with negligible probability. This will
complete the proof.

We consider two cases:

– If y ∈ X̃, then H(y ‖⊕
j∈h∗(y) m∗

π(j)) = H(y ‖⊕
j∈h∗(y) mπ(j),1) ∈ K by

definition.
– If y �∈ X̃, then Alice never queried the oracle H(y‖·) before fixing K, hence

H(y ‖⊕
j∈h∗(y) m∗

π(j)) is a fresh oracle query, distributed independently of K.
The output of this query appears in K with probability |K|/2κ.

Taking a union bound over y ∈ Y , we have that, except with probability
|K||Y |/2κ,

H(y ‖⊕
j∈h∗(y) m∗

π(j)) ∈ K ⇐⇒ y ∈ X̃

Hence Bob’s ideal and real outputs coincide.

Size of the Adversary’s Input Set. When Alice is corrupt, the simulator extracts
a set X̃. Unless the adversary has found a collision under random oracle H
(which is negligibly likely), we have that |X̃| ≤ |K|. Thus the protocol enforces
a straightforward upper bound on the size of a corrupt Alice’s input.

The same is not true for a corrupt Bob. The protocol enforces an upper bound
only on the size on Bob’s effective Bloom filter and a bound on the number of 1 s
in that BF. We now translate these bounds to derive a bound on the size of the
set extracted by the simulator. Note that the ideal functionality for PSI (Fig. 2)
explicitly allows corrupt parties to provide larger input sets than honest parties.

First, observe that only queries made by the adversary before step 5 of the
protocol are relevant. Queries made by the adversary after do not affect the
simulator’s extraction. As in the proof, let Q be the set of queries made by Bob
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before step 5. Bob is able to construct a BF with at most N1 ones, and causing
the simulator to extract items Ỹ ⊆ Q, only if:

∣∣∣∣∣∣
⋃

y∈Ỹ ;i∈[k]

hi(y)

∣∣∣∣∣∣ ≤ N1.

Then by a union bound over all Bloom filters with N1 bits set to 1, and all
Ỹ ⊆ Q of size |Ỹ | = n′, we have:

Pr
[

simulator extracts
some set of size n′

]
≤

(|Q|
n′

)(
Nbf

N1

)(
N1

Nbf

)kn′

.

The security proof already conditions on the event that (N1/Nbf)k ≤ 2−κ, so we
get:

Pr
[

simulator extracts
some set of size n′

]
≤

(|Q|
n′

)(
Nbf

N1

)
2−κn′

≤
(
|Q|n′) (

2Nbf
)
2−κn′

To make the probability less than 2−κ it therefore suffices to have n′ = (κ +
Nbf)/(κ − log |Q|).

In our instantiations, we always have Nbf ≤ 3κn, where n denotes the
intended size of the parties’ sets. Even in the pessimistic case that the adversary
makes |Q| = 2κ/2 queries to the Bloom filter hash functions, we have n′ ≈ 6n.
Hence, the adversary is highly unlikely to produce a Bloom filter containing 6
times the intended number of items. We emphasize that this is a very loose
bound, but show it just to demonstrate that the simulator indeed extracts from
the adversary a modestly sized effective input set.

5.4 Non-Programmable Random Oracles in the UC Model

Our protocol makes significant use of a non-programmable random oracle. In the
standard UC framework [4], the random oracle must be treated as local to each
execution for technical reasons. The UC framework does not deal with global
objects like a single random oracle that is used by many protocols/instances.
Hence, as currently written, our proof implies security when instantiated with a
highly local random oracle.

Canetti et al. [5] proposed a way to model global random oracles in the UC
framework (we refer to their model as UC-gRO). One of the main challenges is
that (in the plain UC model) the simulator can observe the adversary’s oracle
queries, but an adversary can ask the environment to query the oracle on its
behalf, hidden from the simulator. In the UC model, every functionality and
party in the UC model is associated with a session id (sid) for the protocol
instance in which it participates. The idea behind UC-gRO is as follows:
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– There is a functionality gRO that implements an ideal random oracle. Fur-
thermore, this functionality is global in the sense that all parties and all
functionalities can query it.

– Every oracle query in the system must be prefixed with some sid.
– There is no enforcement that oracle queries are made with the “correct” sid.

Rather, if a party queries gRO with a sid that does not match its own, that
query is marked as illegitimate by gRO.

– A functionality can ask gRO for all of the illegitimate queries made using that
functionality’s sid.

Our protocol and proof can be modified in the following ways to provide security
in the UC-gRO model:

1. In the protocol, all queries to relevant random oracles (Bloom filter functions
hi and outer hash function H) are prefixed with the sid of this instance.

2. The ideal PSI functionality is augmented in a standard way of UC-gRO:
When the adversary/simulator gives the functionality a special command
illegitimate, the functionality requests the list of illegitimate queries from
gRO and forwards them to the adversary/simulator.

3. In the proof, whenever the simulator is described as obtaining a list of the
adversary’s oracle queries, this is done by observing the adversary’s queries
and also obtaining the illegitimate queries via the new mechanism.

With these modifications, our proof demonstrates security in the UC-gRO model.

6 Performance Evaluation

We implemented our protocol in addition to the protocols of DCW [8] outlined
in Sect. 3 and that of DKT [7]. In this section we report on their performance
and analyze potential trade offs.

6.1 Implementation and Test Platform

In the offline phase, our protocol consists of performing 128 base OTs using the
protocol of [20]. We extend these base OTs to Not OTs using an optimized imple-
mentation of the Keller et al. [15] OT extension protocol. Our implementation
uses the programmable-random-oracle optimization for OT of random strings,
described in Sect. 4.1. In the multi-threaded case, the OT extension and Base
OTs are performed in parallel. Subsequently, the cut and choose seed is pub-
lished which determines the set of OT messages to be opened. Then one or more
threads reports the choice bits used for the corresponding OT and the XOR
sum of the messages. The sender validates the reported value and proceeds to
the online phase.

The online phase begins with both parties inserting items into a plaintext
bloom filter using one or more threads. As described in Sect. 5.1, the BF hash
functions should be modeled as (non-programmable) random oracles. We use
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SHA1 as a random oracle but then expand it to a suitable length via a fast PRG
(AES in counter mode) to obtain:8

h1(x)‖h2(x)‖ · · · ‖hk(x) = PRG(SHA1(x)).

Hence we use just one (slow) call to SHA to compute all BF hash functions
for a single element, which significantly reduces the time for generating Bloom
filters. Upon the computing the plaintext bloom filter, the receiver selects a
random permutation mapping the random OT choice bits to the desired bloom
filter. The permutation is published and the sender responds with the random
garbled bloom filter masks which correspond to their inputs. Finally, the receiver
performs a plaintext intersection of the masks and outputs the corresponding
values.

We evaluated the prototype on a single server with simulated network latency
and bandwidth. The server has 2 36-cores Intel(R) Xeon(R) CPU E5-2699 v3 @
2.30 GHz and 256 GB of RAM (e.i. 36 cores & 128 GB per party). We executed
our prototype in two network settings: a LAN configuration with both parties
in the same network with 0.2 ms round-trip latency, 1 Gbps; and a WAN config-
uration with a simulated 95 ms round-trip latency, 60 Mbps. All experiments we
performed with a computational security parameter of κ = 128 and statistical
security parameter λ = 40. The times reported are an average over 10 trials. The
variance of the trials was between 0.1%–5.0% in the LAN setting and 0.5%–10%
in the WAN setting with a trend of smaller variance as n becomes larger. The
CPUs used in the trials had AES-NI instruction set for fast AES computations.

6.2 Parameters

We demonstrate the scalability of our implementation by evaluating a range of
set sizes n ∈ {28, 212, 216, 220} for strings of length σ = 128. In all of our tests, we
use system parameters specified in Fig. 5. The parameters are computed using
the analysis specified in Sect. 5.2. Most importantly they satisfy that except with
probability negligible in the computation security parameter κ, a receiver after
step 5 of Fig. 4 will not find an x not previously queried which is contained in
the garbled bloom filter.

The parameters are additionally optimized to reduce the overall cost of the
protocol. In particular, the total number of OTs Not = Nbf/(1 − pchk) is min-
imized. This value is derived by iterating over all the region of 80 ≤ k ≤ 100
hash functions and cut-and-choose probabilities 0.001 ≤ pchk ≤ 0.1. For a given
value of n, k, pchk, the maximum number of ones N1 which a possibly malicious
receiver can have after the cut and choose is defined as shown in Sect. 5.2. This
in turn determines the minimum value of Nbf such that (Nbf/N1)−k ≤ 2−κ and
therefore the overall cost Not. We note that for κ other than 128, a different
range for the number of hash functions should be considered.

8 Note that if we model SHA1 as having its queries observable to the simulator, then
this property is inherited also when expanding the SHA1 output with a PRG.
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6.3 Comparison to Other Protocols

For comparison, we implemented two other protocol paradigms, which we
describe here:

DCW Protocol. Our first point of comparison is to the protocol of Dong et al. [8],
on which ours is based. The protocol is described in Sect. 3. While their protocol
has issues with its security, our goal here is to illustrate that our protocol also
has significantly better performance.

In [8], the authors implement only their semi-honest protocol variant, not the
malicious one. An aspect of the malicious DCW protocol that is easy to overlook
is its reliance on an N/2-out-of-N secret sharing scheme. When implementing
the protocol, it becomes immediately clear that such a secret-sharing scheme is
a major computational bottleneck.

Recall that the sender generates shares from such a secret sharing scheme,
and the receiver reconstructs such shares. In this protocol, the required N is the
number of bits in the Bloom filter. As a concrete example, for PSI of sets of size
220, the Bloom filter in the DCW protocol has roughly 228 bits. Using Shamir
secret sharing, the sender must evaluate a random polynomial of degree ∼227

on ∼228 points. The sender must interpolate such a polynomial on ∼227 points
to recover the secret. Note that the polynomial will be over GF (2128), since the
protocol secret-shares an (AES) encryption key.

We chose not to develop a full implementation of the malicious DCW pro-
tocol. Rather, we fully implemented the [garbled] Bloom filter encoding steps
and the OTs. We then simulated the secret-sharing and reconstruction steps in
the following way. We calculated the number of field multiplications that would
be required to evaluate a polynomial of the suitable degree by the Fast Fourier
Transform (FFT) method, and simply had each party perform the appropriate
number of field multiplications in GF (2128). The field was instantiated using
the NTL library with all available optimizations enabled. Our simulation signif-
icantly underestimates the cost of secret sharing in the DCW protocol, since:
(1) it doesn’t account for the cost associated with virtual memory accesses when
computing on such a large polynomial; and (2) evaluating/interpolating the poly-
nomial via FFT reflects a best-case scenario, when the points of evaluation are
roots of unity. In the protocol, the receiver Bob in particular does not have full
control over which points of the polynomial he will learn.

Despite this optimistic simulation of the secret-sharing step, its cost is sub-
stantial, accounting for 97% of the execution time. In particular, when comparing
our protocol to the DCW protocol, the main difference in the online phase is the
secret sharing reconstruction which accounts for a 113× increase in the online
running time for n = 216.

We simulated two variants of the DCW malicious-secure protocol. One vari-
ant reflects the DCW protocol as written, using OTs of chosen messages. The
other variant includes the “random GBF” optimization inspired by [23] and
described in Sect. 4. In this variant, one of the two OT messages is set randomly
by the protocol itself, and not chosen by the sender. This reduces the online
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communication cost of the OTs by roughly half. However, it surprisingly has a
slight negative effect on total time. The reason is that during the online phase
Alice has more than enough time to construct and send a plain GBF while Bob
performs the more time intensive secret-share reconstruction step. For n = 216,
the garbled bloom filter takes less than 5% of the secret share reconstruction
time to be sent. When using a randomized GBF, Alice sends summary values
to Bob, which he must compare to his own summary values. Note that there is
a summary value for each item in a party’s set (e.g., 220), so these comparisons
involve lookups in some non-trivial data structure. This extra computational
effort is part of the the critical path since the Bob has to do it. In summary,
the “random GBF” optimization does reduce the required communication, how-
ever it also increases the critical path of the protocol due to the secret-share
reconstruction hiding the effects of this communication savings and the small
additional overhead of performing n lookups.

DH-Based PSI Protocols. Another paradigm for PSI uses public-key techniques
and is based on Diffie-Hellman-type assumptions in cyclic groups. The most
relevant protocol in this paradigm that achieves malicious security is that of
De Cristofaro et al. [7] which we refer to as DKT. While protocols in this para-
digm have extremely low communication complexity, they involve a large number
of computationally expensive public-key operations (exponentiations). Another
potential advantage of the DKT protocol over schemes based on Bloom filters
is that the receiver can be restricted to a set size of exactly n items. This is
contrasted with our protocol where the receiver can have a set size of n′ ≈ 6n.

We fully implemented the [7] PSI protocol both in the single and multi
threaded setting. In this protocol, the parties perform 5n exponentiations and
2n related zero knowledge proofs of discrete log equality. Following the sugges-
tions in [7], we instantiate the zero knowledge proofs in the RO model with the
Fiat-Shamir transform applied to a sigma protocol. The resulting PSI protocol
has in total 12n exponentiations along with several other less expensive group
operations. The implementation is built on the Miracl elliptic curve library using
Curve 25519 achieving 128 bit computational security. The implementation also
takes advantage of the Comb method to perform a precomputation to increase
the speed of exponentiations (point multiplication). Additionally, all operations
are performed in a streaming manner allowing for the greatest amount of work
to be performed concurrently by the parties.

6.4 Results

The running time of our implementation is shown in Fig. 7. We make the dis-
tinction of reporting the running times for both the total time and online phase
when applicable. The offline phase contains all operations which are independent
of the input sets. For the bloom filter based protocols the offline phase consists
of performing the OT extension and the cut and choose. Out of these operations,
the most time-consuming is the OT extension. For instance, with n = 220 we
require 260 million OTs which requires 124 s; the cut and choose takes only 3 s.
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For the smaller set size of n = 212, the OT extension required 461 ms and the
cut and choose completed in 419 ms. The relative increase in the cut and choose
running time is primarily due to the need to open a larger portion of the OTs
when n is smaller.

The online phase consists of the receiver first computing their bloom filter.
For set size n = 220, computing the bloom filter takes 6.4 s. The permutation
mapping the receiver’s OTs to the bloom filter then computed in less than a
second and sent. Upon receiving the permutation, the sender computes their
PSI summary values and sends them to the receiver. This process when n = 220

takes roughly 6 s. The receiver then outputs the intersection in less than a second.
As expected, our optimized protocol achieves the fastest running times com-

pared to the other malicious secure constructions. When evaluating our imple-
mentation with a set size of n = 28 on a single thread in the LAN setting, we
obtain an online running time of 3 ms and an overall time of 0.2 s. The next
fastest is that of DH-based DKT protocol which required 1.7 s, an 8.5× slow-
down compared to our protocol. For the larger set size of n = 212, our overall
running time is 0.9 s with an online phase of just 40 ms. The DKT protocol is
again the next fastest requiring 25× longer resulting in a total running time of
22.6 s. The DCW protocol from which ours is derived incurs more than a 60×
overhead. For the largest set size performed of n = 220, our protocol achieves
an online phase of 14 s and an overall time of 127 s. The DKT protocol overall
running time was more than 95 min, a 47× overhead compared to our running
time. The DCW protocol took prohibitively long to run but is expected to take
more than 100× longer than our optimized protocol.

When evaluating our protocol in the WAN setting with 95 ms round trip
latency our protocol again achieves the fastest running times. For the small set
size of n = 28, the protocol takes an overall running time of 0.95 s with the online
phase taking 0.1 s. DKT was the next fastest protocol requiring a total time of
1.7 s, an almost 2× slowdown. Both variants of the DCW protocol experience
a more significant slowdown of roughly 4×. When increasing the set size, our
protocol experiences an even greater relative speedup. For n = 216, our protocol
takes 56 s, with 11 of the seconds consisting of the online phase. Comparatively,
DKT takes 393 s resulting in our protocol being more than 7× faster. The DCW
protocols are even slower requiring more than 19 min, a 20× slowdown. This is
primarily due to the need to perform the expensive secret-sharing operations
and send more data.

In addition to faster serial performance, our protocol also benefits from easily
being parallelized, unlike much of the DCW online phase. Figure 6 shows the
running times of our protocol and that of DKT when parallelized using p threads
per party in the LAN setting. With p = 4 we obtain a speedup of 2.3× for
set size n = 216 and 2× speedup for n = 220. However, the DKT protocol
benefits from being trivially parallelizable. As such, they enjoy a nearly one-
to-one speedup when more threads are used. This combined with the extremely
small communication overhead of the DKT protocol could potentially allow their
protocol to outperform ours when the network is quite slow and the parties have
many threads available.
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Fig. 6. Total running time in seconds for the DKT and our protocol when 4, 16, and 64
threads per party are used. The evaluations were performed in the LAN setting with
a 0.2 ms round trip time.

Fig. 7. Total time in seconds, with online time in parentheses, for PSI of two sets of
size n with elements of 128 bits. The LAN (resp. WAN) setting has 0.2 ms (resp. 95 ms)
round trip time latency. As noted in Sect. 6.3, when the protocol is marked with an
asterisk, we report an optimistic underestimate of the running time. Missing times (-)
took >5 h.

In Fig. 8 we report the empirical and asymptotic communication costs of the
protocols. Out of the bloom filter based protocols, ours consumes significantly
less bandwidth. For n = 28, only 1.9 MB communication was required with most

Fig. 8. The empirical and asymptotic communication cost for sets of size n reported
in megabytes, and bits respectively. φ = 283 is the size of the elliptic curve elements.
Missing entries had prohibitively long running times and are estimated to be greater
than 8,500 MB.
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of that cost in the offline phase. Then computing the intersection for n = 216,
our protocol uses 324 MB of communication, approximately 5 KB per item. The
largest amount of communication occurs during the OT extension and involves
the sending of a roughly 2nκ2-bit matrix. The cut and choose contributes min-
imally to the communication and consists of npchk choice bits and the xor of
the corresponding OT messages. In the online phase, the sending of the per-
mutation consisting of Nbf log2(Not) ≈ 2nκ log(2nκ) bits that dominates the
communication.
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Abstract. Realistic secure processors, including those built for acad-
emic and commercial purposes, commonly realize an “attested execu-
tion” abstraction. Despite being the de facto standard for modern secure
processors, the “attested execution” abstraction has not received ade-
quate formal treatment. We provide formal abstractions for “attested
execution” secure processors and rigorously explore its expressive power.
Our explorations show both the expected and the surprising.

On one hand, we show that just like the common belief, attested
execution is extremely powerful, and allows one to realize powerful cryp-
tographic abstractions such as stateful obfuscation whose existence is
otherwise impossible even when assuming virtual blackbox obfuscation
and stateless hardware tokens. On the other hand, we show that surpris-
ingly, realizing composable two-party computation with attested execu-
tion processors is not as straightforward as one might anticipate. Specif-
ically, only when both parties are equipped with a secure processor can
we realize composable two-party computation. If one of the parties does
not have a secure processor, we show that composable two-party compu-
tation is impossible. In practice, however, it would be desirable to allow
multiple legacy clients (without secure processors) to leverage a server’s
secure processor to perform a multi-party computation task. We show
how to introduce minimal additional setup assumptions to enable this.
Finally, we show that fair multi-party computation for general function-
alities is impossible if secure processors do not have trusted clocks. When
secure processors have trusted clocks, we can realize fair two-party com-
putation if both parties are equipped with a secure processor; but if only
one party has a secure processor (with a trusted clock), then fairness is
still impossible for general functionalities.

1 Introduction

The science of cybersecurity is founded atop one fundamental guiding principle,
that is, to minimize a system’s Trusted Computing Base (TCB) [69]. Since it
is notoriously difficult to have “perfect” software in practice especially in the
presence of legacy systems, the architecture community have advocated a new
paradigm to bootstrap a system’s security from trusted hardware (henceforth
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part I, LNCS 10210, pp. 260–289, 2017.
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also referred to as secure processors). Roughly speaking, secure processors aim
to reduce a sensitive application’s trusted computing base to only the processor
itself (possibly in conjunction with a minimal software TCB such as a secure
hypervisor). In particular, besides itself, a sensitive application (e.g., a bank-
ing application) should not have to trust any other software stack (including the
operating system, drivers, and other applications) to maintain the confidentiality
and/or integrity of mission-critical data (e.g., passwords or credit card numbers).
Security is retained even if the software stack can be compromised (as long as the
sensitive application itself is intact). Besides a software adversary, some secure
processors make it a goal to defend against physical attackers as well. In par-
ticular, even if the adversary (e.g., a rogue employee of a cloud service provider
or a system administrator) has physical access to the computing platform and
may be able to snoop or tamper with memory or system buses, he should not
be able to harvest secret information or corrupt a program’s execution.

Trusted hardware is commonly believed to provide a very powerful abstrac-
tion for building secure systems. Potential applications are numerous, ranging
from cloud computing [11,28,50,61,62], mobile security [60], web security, to
cryptocurrencies [73]. In the past three decades, numerous secure processors
have been proposed and demonstrated by both academia and industry [6,22,
27,31,32,48,49,51,66,72]; and several have been commercialized, including the
well-known Trusted Platform Modules (TPMs) [1], Arm’s TrustZone [5,7], and
others. Notably, Intel’s recent release of its new x86 security extensions called
SGX [6,26,51] has stirred wide-spread interest to build new, bullet-proof systems
that leverage emerging trusted hardware offerings.

1.1 Attested Execution Secure Processors

Although there have been numerous proposals for the design of trusted hard-
ware, and these designs vary vastly in terms of architectural choices, instruction
sets, implementation details, cryptographic suites, as well as adversarial models
they promise to defend against — amazingly, it appears that somehow most
of these processors have converged on providing a common abstraction, hence-
forth referred to as the attested execution abstraction [1,6,27,51,66,68]. Roughly
speaking, an attested execution abstraction enables the following:

– A platform equipped with an attested execution processor can send a pro-
gram and inputs henceforth denoted (prog, inp) to its local secure processor.
The secure processor will execute the program over the inputs, and compute
outp := prog(inp). The secure processor will then sign the tuple (prog, outp)
with a secret signing key to obtain a digital signature σ — in practice, a hash
function is applied prior to the signing. Particularly, this signature σ is com-
monly referred to as an “attestation”, and therefore this entire execution is
referred to as an “attested execution”.

– The execution of the aforementioned program is conducted in a sandboxed
environment (henceforth referred to as an enclave), in the sense that a software
adversary and/or a physical adversary cannot tamper with the execution,
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or inspect data that lives inside the enclave. This is important for realizing
privacy-preserving applications. For example, a remote client who knows the
secure processor’s public key can establish a secure channel with a secure
processor residing on a remote server S. The client can then send encrypted
and authenticated data (and/or program) to the secure processor — while the
messages are passed through the intermediary S, S cannot eavesdrop on the
contents, nor can it tamper with the communication.

– Finally, various secure processors make different concrete choices in terms of
how they realize such secure sandboxing mechanisms as mentioned above —
and the choices are closely related to the adversarial capabilities that the secure
processor seeks to protect against. For example, roughly speaking, Intel’s SGX
technology [6,51] defends against a restricted software adversary that does
not measure timing or other possible side channels, and does not observe the
page-swap behavior of the enclave application (e.g., the enclave application
uses small memory or is by design data-oblivious); it also defends against a
restricted physical attacker capable of tapping memory, but not capable of
tapping the addresses on the memory bus or measuring side-channel informa-
tion such as timing and power consumption.
We refer the reader to Shi et al. [64] for a general-purpose introduction of
trusted hardware, and for a comprehensive comparison of the different choices
made by various secure processors.

The fact that the architecture community has converged on the “attested
execution” abstraction is intriguing. How exactly this has become the de facto
abstraction is beyond the scope of this paper, but it is helpful to observe that
the attested execution abstraction is cost-effective in practice in the following
senses:

– General-purpose: The attested execution abstraction supports the computa-
tion of general-purpose, user-defined programs inside the secure enclave, and
therefore can enable a broad range of applications;

– Reusability: It allows a single trusted hardware token to be reused by multi-
ple applications, and by everyone in the world — interestingly, it turns out
such reusability actually gives rise to many of the technicalities that will be
discussed later in the paper;

– Integrity and privacy: It offers both integrity and privacy guarantees. In par-
ticular, although the platform P that is equipped with the trusted hardware
serves an intermediary in every interaction with the trusted hardware, privacy
guarantees can be bootstrapped by having remote users establish a secure
channel with the secure processor.

In the remainder of the paper, whenever we use the term “secure processors”
or “trusted hardware”, unless otherwise noted we specifically mean attested
execution secure processors.
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1.2 Why Formal Abstractions for Secure Processors?

Although attested execution has been accepted by the community as a de facto
standard, to the best of our knowledge, no one has explored the following fun-
damental questions:

1. Precisely and formally, what is the attested execution abstraction?
2. What can attested execution express and what can it not express?

If we can formally and precisely articulate the answers to these questions,
the benefits can be wide-spread. It can help both the producer as well as the
consumer of trusted hardware, in at least the following ways:

– Understand whether variations in abstraction lead to differences in expressive
power. First, various secure processors may provide similar but subtly different
abstractions — do these differences matter to the expressive power of the
trusted hardware? If we wish to add a specific feature to a secure processor
(say, timing), will this feature increase its expressive power?

– Enable formally correct use of trusted hardware. Numerous works have
demonstrated how to use trusted hardware to build a variety of secure
systems [11,12,23,28,50,55,59,61–63]. Unfortunately, since it is not even
clear what precise abstraction the trusted hardware offers, the methodology
adopted by most existing works ranges from heuristic security to semi-formal
reasoning.
Moreover, most known secure processors expose cryptography-related instruc-
tions (e.g., involving hash chains or digital signatures [1,6,26,51]), and this
confounds the programming of trusted hardware — in particular, the program-
mer essentially has to design cryptographic protocols to make use of trusted
hardware. It is clear that user-friendly higher-level programming abstractions
that hide away the cryptographic details will be highly desirable, and may well
be the key to the democratization of trusted hardware programming (and in
fact, to security engineering in general) — and yet without precisely artic-
ulating the formal abstraction trusted hardware offers, it would clearly be
impossible to build formally correct higher-level programming abstractions
atop.

– Towards formally secure trusted hardware. Finally, understanding what is a
“good” abstraction for trusted hardware can provide useful feedback to the
designers and manufacturers of trusted hardware. The holy grail would be
to design and implement a formally secure processor. Understanding what
cryptography-level formal abstraction to realize is a necessary first step
towards this longer-term goal — but to realize this goal would obviously
require additional, complementary techniques and machinery, e.g., those devel-
oped in the formal methods community [31,57,58,72], that can potentially
allow us to ensure that the actual secure processor implementation meets the
specification.
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1.3 Summary of Our Contributions

To the best of our knowledge, we are the first to investigate cryptographically
sound and composable formal abstractions for realistic, attested execution secure
processors. Our findings demonstrate both the “expected” and the (perhaps)
“surprising”.

The Expected and the Surprising. On one hand, we show that attested
execution processors are indeed extremely powerful as one might have expected,
and allow us to realize primitives that otherwise would have been impossible
even when assuming stateless hardware tokens or virtual blackbox secure cryp-
tographic obfuscation.

On the other hand, our investigation unveils subtle technical details that
could have been easily overlooked absent an effort at formal modeling, and we
draw several conclusions that might have come off as surprising initially (but of
course, natural in hindsight). For example,

– We show that universally composable two-party computation is impossible if a
single party does not have such a secure processor (and the other party does);

This was initially surprising to us, since we commonly think of an attested
execution processor as offering an “omnipotent” trusted third party that can
compute general-purpose, user-defined programs. When such a trusted third
party exists, it would appear that any function can be evaluated securely and
non-interactively, hiding both the program and data. One way to interpret our
findings is that such intuitions are technically imprecise and dangerous to pre-
sume — while attested execution processors indeed come close to offering such
a “trusted third party” ideal abstraction, there are aspects that are “imper-
fect” about this ideal abstraction that should not be overlooked, and a rigorous
approach is necessary towards formally correct usage of trusted hardware.

Additional Results for Multi-party Computation. We additionally show
the following results:

– Universally composable two-party computation is indeed possible when both
parties are equipped with an attested execution processor. We give an explicit
construction and show that there are several interesting technicalities in its
design and proof (which we shall comment on soon). Dealing with these techni-
calities also demonstrates how a provably secure protocol candidate would dif-
fer in important details from the most natural protocol candidates [41,55,62]
practitioners would have adopted (which are not known to have provable com-
posable security). This confirms the importance of formal modeling and prov-
able security.

– Despite the infeasibility of multi-party computation when even a single party
does not have a secure processor, in practice it would nonetheless be desirable
to build multi-party applications where multiple possibly legacy clients out-
source data and computation to a single cloud server equipped with a secure
processor.



Formal Abstractions for Attested Execution Secure Processors 265

We show how to introduce minimal global setup assumptions — more specif-
ically, by adopting a global augmented common reference string [18] (hence-
forth denoted Gacrs) — to circumvent this impossibility. Although the theo-
retical feasibility of general UC-secure MPC is known with Gacrs even without
secure processors [18], existing constructions involve cryptographic computa-
tion that is (at least) linear in the runtime of the program to be securely evalu-
ated. By contrast, we are specifically interested in practical constructions that
involve only O(1) amount of cryptographic computations, and instead per-
form all program-dependent computations inside the secure processor (and
not cryptographically).

Techniques. Several interesting technicalities arise in our constructions. First,
composition-style proofs typically require that a simulator intercepts and mod-
ifies communication to and from the adversary (and the environment), such
that the adversary cannot distinguish whether it is talking to the simulator or
the real-world honest parties and secure processors. Since the simulator does not
know honest parties’ inputs (beyond what is leaked by the computation output),
due to the indistinguishability, one can conclude that the adversary cannot have
knowledge of honest parties inputs either.

– Equivocation. Our simulator’s ability to perform such simulation is hampered
by the fact that the secure processors sign attestations for messages coming
out — since the simulator does not possess the secret signing key, it cannot
modify these messages and must directly forward them to the adversary. To
get around this issue would require new techniques for performing equivoca-
tion, a technicality that arises in standard protocol composition proofs. To
achieve equivocation, we propose new techniques that place special backdoors
inside the enclave program. Such backdoors must be carefully crafted such
that they give the simulator more power without giving the real-world adver-
sary additional power. In this way, we get the best of both worlds: (1) honest
parties’ security will not be harmed in the real-world execution; and (2) the
simulator in the proof can “program” the enclave application to sign any out-
put of its choice, provided that it can demonstrate the correct trapdoors. This
technique is repeatedly used in different forms in almost all of our protocols.

– Extraction. Extraction is another technical issue that commonly arises in pro-
tocol composition proofs. The most interesting manifestation of this technical
issue is in our protocol that realizes multi-party computation in the presence
of a global common reference string (Gacrs) and a single secure processor (see
Sect. 2.5). Here again, we leverage the idea of planting special backdoors in
the enclave program to allow for such extraction. Specifically, when provided
with the correct identity key of a party, the enclave program will leak the
party’s inputs to the caller. Honest parties’ security cannot be harmed by this
backdoor, since no one ever learns honest parties’ identity keys in the real
world, not even the honest parties themselves. In the simulation, however, the
simulator learns the corrupt parties’ identity keys, and therefore it can extract
corrupt parties’ inputs.
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Trusted Clocks and Fairness. Finally, we formally demonstrate how differ-
ences in abstraction can lead to differences in expressive power. In particular,
many secure processors provide a trusted clock, and we explore the expressive
power of such a trusted clock in the context of fair 2-party computation. It is
well-known that in the standard setting fairness is impossible in 2-party compu-
tation for general functionalities [25]. However, several recent works have shown
that the impossibility for general functionalities does not imply impossibility
for every functionality — interestingly, there exist a broad class of functionali-
ties that can be fairly computed in the plain setting [8,38,39]. We demonstrate
several interesting findings in the context of attested execution processors:

– First, even a single attested execution processor already allows us to compute
more functionalities fairly than in the plain setting. Specifically, we show that
fair two-party coin flipping, which is impossible in the plain setting, is possible
if only one party is equipped with an attested execution processor.

– Unfortunately, we show that a single attested execution processor is insufficient
for fairly computing general 2-party functionalities;

– On the bright side, we prove that if both parties are equipped with an attested
execution processor, it is indeed possible to securely compute any function
fairly.

Variant Models and Additional Results. Besides the trusted clock, we
also explore variations in abstraction and their implications — for example, we
compare non-anonymous attestation and anonymous attestation since various
processors seem to make different choices regarding this.

We also explore an interesting model called “transparent enclaves” [70], where
secret data inside the enclave can leak to the adversary due to possible side-
channel attacks on known secure processors, and we show how to realize inter-
esting tasks such as UC-secure commitments and zero-knowledge proofs in this
weaker model — here again our protocols must deal with interesting technicali-
ties related to extraction and equivocation.

1.4 Non-goals and Frequently Asked Questions

Trusted hardware has been investigated by multiple communities from differ-
ent angles, ranging from how to architect secure processors [6,22,27,31,32,48,
49,51,66,72], how to apply them in applications [11,12,23,28,50,55,59,61–63],
side-channels and other attacks [36,46,47,67,71,74] and protection against such
attacks [32,49,72,74]. Despite the extensive literature, cryptographically sound
formal abstractions appear to be an important missing piece, and this work aims
to make an initial step forward towards this direction. In light of the extensive lit-
erature, however, several natural but frequently asked questions arise regarding
the precise scope of this paper, and we address such questions below.

First, although we base our modeling upon what realistic secure processors
aim to provide, it is not our intention to claim that any existing secure proces-
sors provably realize our abstraction. We stress that to make any claim of this
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nature (that a secure processor correctly realizes any formal specification) is an
area of active research in the formal methods and programming language com-
munities [31,57,58,72], and thus still a challenging open question — let alone
the fact that some commercial secure processor designs are closed-source.

Second, a frequently asked question is what adversarial models our formal
abstraction defends against. The answer to such a question is processor-specific,
and thus outside the scope of our paper — we leave it to the secure proces-
sor itself to articulate the precise adversarial capabilities it protects against.
The formal models and security theorems in this paper hold assuming that the
adversary is indeed confined to the capabilities assumed by the specific secure
processor. As mentioned earlier, some processors defend only against software
adversaries [27]; others additionally defend against physical attackers [32–34,49];
others defend against a restricted class of software and/or physical attackers that
do not exploit certain side channels [1,6,48,51,66]. We refer the reader to a com-
prehensive systematization of knowledge paper by Shi et al. [64] for a taxonomy
and comparison of various secure processors.

Finally, it is also not our goal to propose new techniques that defend against
side-channel attacks, or suggest how to better architect secure processors —
these questions are being explored in an orthogonal but complementary line of
research [27,31–34,49,72,74].

2 Technical Roadmap

2.1 Formal Modeling

Modeling Choices. To enable cryptographically sound reasoning, we adopt
the universal composition (UC) paradigm in our modeling [17,18,21]. At a high
level, the UC framework allows us to abstract complex cryptographic systems as
simple ideal functionalities, such that protocol composition can be modularized.
The UC framework also provides what is commonly referred to as “concurrent
composition” and “environmental friendliness”: in essence, a protocol π proven
secure in the UC framework can run in any environment such that (1) any
other programs or protocols executing possibly simultaneously will not affect
the security of the protocol π, and (2) protocol π will not inject undesirable side
effects (besides those declared explicitly in the ideal abstraction) that would
affect other programs and protocols in the system.

More intuitively, if a system involving cryptography UC-realizes some ideal
functionality, henceforth, a programmer can simply program the system pretend-
ing that he is making remote procedural calls to a trusted third party without
having to understand the concrete cryptography implementations. We refer the
reader to the full version of this work [56] for a more detailed overview of the
UC framework in our context. Before we proceed, we stress the importance of
cryptographically sound reasoning: by contrast, earlier works in the formal meth-
ods community would make assumptions that cryptographic primitives such as
encryption and signatures realize the “most natural” ideal box without formal
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justification — and such approaches have been shown to be flawed when the
ideal box is actually instantiated with cryptography [2–4,9,13,20,43,44,53,54].

Roadmap for Formal Modeling. We first describe an ideal functionality
Gatt that captures the core abstraction that a broad class of attested execution
processors intend to provide. We are well aware that various attested execution
processors make different design choices — most of them are implementation-
level details that do not reflect at the abstraction level, but a few choices do
matter at the abstraction level — such as whether the secure processor pro-
vides a trusted clock and whether it implements anonymous or non-anonymous
attestation.

In light of such differences, we first describe a basic, anonymous attestation
abstraction called Gatt that lies at the core of off-the-shelf secure processors such
as Intel SGX [6,51]. We explore the expressive power of this basic abstraction
in the context of stateful obfuscation and multi-party computation. Later in the
paper, we explore variants of the abstraction such as non-anonymous attesta-
tion and trusted clocks. Therefore, in summary our results aim to be broadly
applicable to a wide class of secure processor designs.

Gatt[Σ, reg]

// initialization:
On initialize: (mpk,msk) := Σ.KeyGen(1λ), T = ∅

// public query interface:
On receive∗ getpk() from some P: send mpk to P

Enclave operations

// local interface — install an enclave:
On receive∗ install(idx , prog) from some P ∈ reg:
if P is honest, assert idx = sid

generate nonce eid ∈ {0, 1}λ, store T [eid , P] := (idx , prog,0), send eid to P
// local interface — resume an enclave:
On receive∗ resume(eid , inp) from some P ∈ reg:
let (idx , prog,mem) := T [eid , P], abort if not found
let (outp,mem) := prog(inp,mem), update T [eid , P] := (idx , prog,mem)
let σ := Σ.Sigmsk(idx , eid , prog, outp), and send (outp, σ) to P

Fig. 1. A global functionality modeling an SGX-like secure processor.
Blue (and starred∗) activation points denote reentrant activation points.
Green activation points are executed at most once. The enclave program prog
may be probabilistic and this is important for privacy-preserving applications. Enclave
program outputs are included in an anonymous attestation σ. For honest parties, the
functionality verifies that installed enclaves are parametrized by the session id sid of
the current protocol instance. (Color figure online)
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The Gatt Abstraction. We first describe a basic Gatt abstraction capturing the
essence of SGX-like secure processors that provide anonymous attestation (see
Fig. 1). Here we briefly review the Gatt abstraction and explain the technicalities
that arise in the formal modeling. More detailed discussions can be found in the
full version [56, Sect. 3].

1. Registry. First, Gatt is parametrized with a registry reg that is meant to cap-
ture all the platforms that are equipped with an attested execution processor.
For simplicity, we consider a static registry reg in this paper.

2. Stateful enclave operations. A platform P that is in the registry reg may
invoke enclave operations, including
– install: installing a new enclave with a program prog, henceforth referred

to as the enclave program. Upon installation, Gatt simply generates a fresh
enclave identifier eid and returns the eid . This enclave identifier may now
be used to uniquely identify the enclave instance.

– resume: resuming the execution of an existing enclave with inputs inp.
Upon a resume call, Gatt executes the prog over the inputs inp, and obtains
an output outp. Gatt would then sign the prog together with outp as well as
additional metadata, and return both outp and the resulting attestation.

Each installed enclave can be resumed multiple times, and we stress that the
enclave operations store state across multiple resume invocations. This state-
ful property will later turn out to be important for several of our applications.

3. Anonymous attestation. Secure processors such as SGX rely on group sig-
natures and other anonymous credential techniques [15,16] to offer “anony-
mous attestation”. Roughly speaking, anonymous attestation allows a user to
verify that the attestation is produced by some attested execution processor,
without identifying which one. To capture such anonymous attestation, our
Gatt functionality has a manufacturer public key and secret key pair denoted
(mpk,msk), and is parametrized by a signature scheme Σ. When an enclave
resume operation is invoked, Gatt signs any output to be attested with msk
using the signature scheme Σ. Roughly speaking, if a group signature scheme
is adopted as in SGX, one can think of Σ as the group signature scheme
parametrized with the “canonical” signing key. Gatt provides the manufac-
turer public key mpk to any party upon query — this models the fact that
there exists a secure key distribution channel to distribute mpk. In this way,
any party can verify an anonymous attestation signed by Gatt.

Globally Shared Functionality. Our Gatt functionality essentially captures all
attested execution processors in the world. Further, we stress that Gatt is globally
shared by all users, all applications, and all protocols. In particular, rather than
generating a different (mpk,msk) pair for each different protocol instance, the
same (mpk,msk) pair is globally shared.

More technically, we capture such sharing across protocols using the Uni-
versal Composition with Global Setup (GUC) paradigm [18]. As we show later,
such global sharing of cryptographic keys becomes a source of “imperfectness”
— in particular, due to the sharing of (mpk,msk), attestations signed by msk
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from one protocol instance (i.e., or application) may now carry meaning in a
completely unrelated protocol instance, thus introducing potentially undesirable
side effects that breaks composition.

Additional Discussions and Clarifications. More detailed discussions of
our modeling choices, and importantly, clarifications on how the environment Z
interacts with Gatt are deferred to our technical report [56, Sect. 3].

Throughout this paper, we assume that parties interact with each other over
secure channels. It is possible to realize (UC-secure) secure channels from authen-
ticated channels through key exchange. Whenever applicable, our results are
stated for the case of static corruption.

2.2 Power of Attested Execution: Stateful Obfuscation

We show that the attested execution abstraction is indeed extremely powerful as
one would have expected. In particular, we show that attested execution proces-
sors allow us to realize a new abstraction which we call “stateful obfuscation”.

Theorem 1 (Informal). Assume that secure key exchange protocols exist.
There is a Gatt-hybrid protocol that realizes non-interactive stateful obfuscation,
which is not possible in plain settings, even when assuming stateless hardware
tokens or virtual-blackbox secure cryptographic obfuscation.

Stateful obfuscation allows an (honest) client to obfuscate a program and
send it to a server, such that the server can evaluate the obfuscated program
on multiple inputs, while the obfuscated program keeps (secret) internal state
across multiple invocations. We consider a simulation secure notion of stateful
obfuscation, where the server should learn only as much information as if it
were interacting with a stateful oracle (implementing the obfuscated program)
that answers the server’s queries. For example, stateful obfuscation can be a
useful primitive in the following application scenario: imagine that a client (e.g.,
a hospital) outsources a sensitive database (corresponding to the program we
wish to obfuscate) to a cloud server equipped with trusted hardware. Now, an
analyst may send statistical queries to the server and obtain differentially private
answers. Since each query consumes some privacy budget, we wish to guarantee
that after the budget is depleted, any additional query to the database would
return ⊥. We formally show how to realize stateful obfuscation from attested
execution processors. Further, as mentioned, we prove that stateful obfuscation
is not possible in the plain setting, even when assuming the existence of stateless
hardware tokens or assuming virtual-blackbox secure obfuscation.

2.3 Impossibility of Composable 2-Party Computation
with a Single Secure Processor

One natural question to ask is whether we can realize universally composable
(i.e., UC-secure) multi-party computation, which is known to be impossible in
the plain setting without any setup assumptions — but feasible in the presence of
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a common reference string [17,19], i.e., a public random string that is generated
in a trustworthy manner freshly and independently for each protocol instance.
On the surface, Gatt seems to provide a much more powerful functionality than a
common reference string, and thus it is natural to expect that it will enable UC-
secure multi-party computation. However, upon closer examination, we find that
perhaps somewhat surprisingly, such intuition is subtly incorrect, as captured in
the following informal theorem.

Theorem 2 (Informal). If at least one party is not equipped with an attested
execution processor, it is impossible to realize UC-secure multi-party computation
absent additional setup assumptions (even when all others are equipped with an
attested execution processor).

Here the subtle technicalities arise exactly from the fact that Gatt is a global
functionality shared across all users, applications, and protocol instances. This
creates a non-deniability issue that is well-known to the cryptography commu-
nity. Since the manufacturer signature key (mpk,msk) is globally shared, attes-
tations produced in one protocol instance can carry side effects into another.
Thus, most natural protocol candidates that send attestations to other parties
will allow an adversary to implicate an honest party of having participated in a
protocol, by demonstrating the attestation to a third party. Further, such non-
deniability exists even when the secure processor signs anonymous attestations:
since if not all parties have a secure processor, the adversary can at least prove
that some honest party that is in Gatt’s registry has participated in the protocol,
even if he cannot prove which one. Intuitively, the non-deniability goes away if
all parties are equipped with a secure processor — note that this necessarily
means that the adversary himself must have a secure processor too. Since the
attestation is anonymous, the adversary will fail to prove whether the attestation
is produced by an honest party or he simply asked his own local processor to sign
the attestation. This essentially allows the honest party to deny participation in
a protocol.

Impossibility of Extraction. We formalize the above intuition, and show that
not only natural protocol candidates that send attestations around suffer from
non-deniability, in fact, it is impossible to realize UC-secure multi-party compu-
tation if not all parties have secure processors. The impossibility is analogous to
the impossibility of UC-secure commitments in the plain setting absent a com-
mon reference string [19]. Consider when the real-world committer C is corrupt
and the receiver is honest. In this case, during the simulation proof, when the
real-world C outputs a commitment, the ideal-world simulator Sim must capture
the corresponding transcripts and extract the value v committed, and send v to
the commitment ideal functionality Fcom. However, if the ideal-world simulator
Sim can perform such extraction, the real-world receiver must be able too (since
Sim does not have extra power than the real-world receiver) — and this violates
the requirement that the commitment must be hiding. As Canetti and Fischlin
show [19], a common reference string allows us to circumvent this impossibility
by giving the simulator more power. Since a common reference string (CRS)
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is a local functionality, during the simulation, the simulator can program the
CRS and embed a trapdoor — this trapdoor will allow the simulator to perform
extraction. Since the real-world receiver does not possess such a trapdoor, the
protocol still retains confidentiality against a real-world receiver.

Indeed, if our Gatt functionality were also local, our simulator Sim could
have programmed Gatt in a similar manner and extraction would have been
easy. In practice, however, a local Gatt function would mean that a fresh key
manufacturer pair (mpk,msk) must be generated for each protocol instance (i.e.,
even for multiple applications of the same user). Thus, a local Gatt clearly fails
to capture the reusability of real-world secure processors, and this justifies why
we model attested execution processors as a globally shared functionality.

Unfortunately, when Gatt is global, it turns out that the same impossibility
of extraction from the plain setting would carry over when the committer C is
corrupt and only the receiver has a secure processor. In this case, the simulator
Sim would also have to extract the input committed from transcripts emitted
from C. However, if the simulator Sim can perform such extraction, so can the
real-world receiver — note that in this case the real-world receiver is actually
more powerful than Sim, since the real-world receiver, who is in the registry, is
capable of meaningfully invoking Gatt, while the simulator Sim cannot!

It is easy to observe that this impossibility result no longer holds when the
corrupt committer has a secure processor — in this case, the protocol can require
that the committer C send its input to Gatt. Since the simulator captures all
transcripts going in and coming out of C, it can extract the input trivially. Indeed,
we show that not only commitment, but also general 2-party computation is
possible when both parties have a secure processor.

2.4 Composable 2-Party Computation when both have Secure
Processors

Theorem 3 (Informal). Assume that secure key exchange protocols exist.
Then there exists an Gatt-hybrid protocol that UC-realizes F2pc. Further, in this
protocol, all program-dependent evaluation is performed inside the enclave and
not cryptographically.

We give an explicit protocol in Fig. 2 (for concreteness, we use Diffie-Hellman
key exchanges in our protocols, although the same approach extends to any
secure key-exchange). The protocol is efficient in the sense that it performs
only O(1) (program-independent) cryptographic computations; and all program-
dependent computation is performed inside the enclave. We now explain the
protocol briefly.

– First, the two parties’ secure processors perform a key exchange and establish
a secret key sk for an authenticated encryption scheme.

– Then, each party’s enclave encrypts the party’s input with sk. The party then
sends the resulting authenticated ciphertext ct to the other.

– Now each enclave decrypts ct and perform evaluation, and each party can
query its local enclave to obtain the output.
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prog2pc[f, P0, P1, b]

On input (“keyex”): y
$←Zp, return gy

On input (“send”, gx, inpb):
assert that “keyex” has been called
sk := (gx)y, ct := AE.Encsk(inpb), return ct

On input (“compute”, ct, v):
assert that “send” has been called and ct not seen
inp1−b := AE.Decsk(ct), assert that decryption succeeds
if v �= ⊥, return v; else return outp := f(inp0, inp1)

Prot2pc[sid , f, P0, P1, b]

On input inpb from Z:
eid := Gatt.install(sid , prog2pc[f, P0, P1, b])
henceforth denote Gatt.resume(·) := Gatt.resume(eid , ·)
(gy, σ) := Gatt.resume(“keyex”)
send (eid , gy, σ) to P1−b, await (eid ′, gx, σ′)
assert Σ.Vermpk((sid , eid ′, prog2pc[f, P0, P1, 1 − b], gx), σ′)
(ct, ) := Gatt.resume(“send”, gx, inpb), send ct to P1−b, await ct′

(outp, ) := Gatt.resume(“compute”, ct′, ⊥), output outp

Fig. 2. Composable 2-party computation: both parties have secure processors. AE
denotes authenticated encryption. All ITIs’ activation points are non-reentrant. When
an activation point is invoked for more than once, the ITI simply outputs ⊥. Although
not explicitly noted, if Gatt ever outputs ⊥ upon a query, the protocol aborts outputting
⊥. The group parameters (g, p) are hardcoded into prog2pc.

– Most of the protocol is quite natural, but one technique is necessary for equiv-
ocation. Specifically, the enclave program’s “compute” entry point has a back-
door denoted v. If v = ⊥, Gatt will sign the true evaluation result and return
the attested result. On the other hand, if v �= ⊥, the enclave will simply sign
and output v itself. In the real-world execution, an honest party will always
supply v = ⊥ as input to the enclave program’s “compute” entry point. How-
ever, as we explain later, the simulator will leverage this backdoor v to perform
equivocation and program the output.

We now explain some interesting technicalities that arise in the proof for the
above protocol.

– Extraction. First, extraction is made possible since each party sends their
input directly to its local enclave. If a party is corrupt, this interaction will be
captured by the simulator who can then extract the corrupt party’s input;

– Equivocate. We now explain how the backdoor v in the enclave program allows
for equivocation in the proof. Recall that initially, the simulator does not
know the honest party’s input. To simulate the honest party’s message for
the adversary (which contains an attestation from the enclave), the simulator
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must send a dummy input to Gatt on behalf of the honest party to obtain the
attestation. When the simulator manages to extract the corrupt party’s input,
it will send the input to the ideal functionality F2pc and obtain the outcome
of the computation denoted outp∗. Now when the corrupt party queries its
local enclave for the output, the simulator must get Gatt to sign the correct
outp∗ (commonly referred to as equivocation). To achieve this, the simulator
will make use of the aforementioned backdoor v: instead of sending (ct,⊥) to
Gatt as in the real-world protocol, the simulator sends (ct, outp∗) to Gatt, such
that Gatt will sign outp∗.

– A note on anonymous attestation. It is interesting to note how our protocol
relies on the attestation being anonymous for security. Specifically, in the
proof, the simulator needs to simulate the honest party’s messages for the
adversary A. To do so, the simulator will simulate the honest party’s enclave
on its own (i.e., the adversary’s) secure processor — and such simulation is
possible because the attestations returned by Gatt are anonymous. Had the
attestation not been anonymous (e.g., binding to the party’s identifier), the
simulator would not be able to simulate the honest party’s enclave (see our
full version [56, Sect. 8.4] for more discussions).

2.5 Circumventing the Impossibility with Minimal Global Setup

In practice, it would obviously be desirable if we could allow composable multi-
party computation in the presence of a single attested execution processor. As
a desirable use case, imagine multiple clients (e.g., hospitals), each with sensi-
tive data (e.g., medical records), that wish to perform some computation (e.g.,
data mining for clinical research) over their joint data. Moreover, they wish to
outsource the data and computation to an untrusted third-party cloud provider.
Specifically, the clients may not have secure processors, but as long as the cloud
server does, we wish to allow outsourced secure multi-party computation.

We now demonstrate how to introduce a minimal global setup assumption to
circumvent this impossibility. Specifically, we will leverage a global Augmented
Common Reference String (ACRS) [18], henceforth denoted Gacrs. Although the
feasibility of UC-secure multi-party computation is known with Gacrs even absent
secure processors [18], existing protocols involve cryptographic computations
that are (at least) linear in the runtime of the program. Our goal is to demon-
strate a practical protocol that performs any program-dependent computation
inside the secure enclave, and performs only O(1) cryptographic computation.

Theorem 4 (Informal). Assume that secure key exchange protocols exist.
Then, there exists a (Gacrs,Gatt)-hybrid protocol that UC-realizes Fmpc and makes
use of only a single secure processor. Further, this protocol performs all program-
dependent computations inside the secure processor’s enclave (and not crypto-
graphically).

Minimal Global Setup Gacrs. To understand this result, we first explain the
minimal global setup Gacrs. First, Gacrs provides a global common reference
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string. Second, Gacrs also allows each (corrupt) party P to query an identity
key for itself. This identity key is computed by signing the party’s identifier P
using a global master secret key. Note that such a global setup is minimal since
honest parties should never have to query for their identity keys. The identity
key is simply a backdoor provided to corrupt parties. Although at first sight, it
might seem counter-intuitive to provide a backdoor to the adversary, note that
this backdoor is also provided to our simulator — and this increases the power
of the simulator allowing us to circumvent the aforementioned impossibility of
extraction, and design protocols where honest parties can deny participation.

MPC with a Single Secure Processor and Gacrs. We consider a setting with
a server that is equipped with a secure processor, and multiple clients that do
not have a secure processor.

Let us first focus on the (more interesting) case when the server and a subset
of the clients are corrupt. The key question is how to get around the impossibility
of extraction with the help of Gacrs — more specifically, how does the simulator
extract the corrupt clients’ inputs? Our idea is the following — for the readers’
convenience, we skip ahead and present the detailed protocol in Fig. 3 as we
explain the technicalities. We defer formal notations and proofs to [56, Sect. 6].

– First, we parametrize the enclave program with the global common reference
string Gacrs.mpk.

– Second, we add a backdoor in the enclave program, such that the enclave
program will return the secret key for Pi’s secure channel with the enclave, if
the caller provides the correct identity key for Pi. In this way, the simulator
can be a man-in-the-middle for all corrupt parties’ secure channels with the
enclave, and extract their inputs. We note that honest parties’ security will
not be harmed by this backdoor, since honest parties will never even query
Gacrs for their identity keys, and thus their identity keys should never leak.
However, in the simulation, the simulator will query Gacrs for all corrupt par-
ties’ identity keys, which will allow the simulator to extract corrupt parties’
inputs by querying this backdoor in the enclave program.

– Third, we introduce yet another backdoor in the enclave program that allows
the caller to program any party’s output, provided that the caller can demon-
strate that party’s identity key. Again, in the real world, this backdoor should
not harm honest parties’ security because honest parties’ identity keys never
get leaked. Now in the simulation, the simulator will query Gacrs for all cor-
rupt parties’ identity keys which will give the simulator the power to query the
corrupt parties’ outputs. Such “programmability” is necessary, because when
the simulator obtains the outcome outp from Fmpc, it must somehow obtain
the enclave’s attestation on outp — however, since the simulator does not
know honest parties’ inputs, he cannot have provided honest parties’ inputs
to the enclave. Therefore, there must be a special execution path such that
the simulator can obtain a signature on outp from the enclave.

Now, let us turn our attention to the case when the server is honest, but
a subset of the clients are corrupt. In this case, our concern is how to achieve
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progmpc[f, Gacrs.mpk, S, P1, . . . , Pn]

On input (“init”): for i ∈ [n]: (pki, ski) ← PKE.Gen(1λ); return {pk1, . . . , pkn}
On input (“input”, {cti}i∈[n]):

for i ∈ [n]: (inpi, ki) := PKE.Decski(cti); return Ω := {cti}i∈[n]

On input (“extract”, {idki}i∈[n]):
for i ∈ [n]: if check(Gacrs.mpk, Pi, idk) = 1, vi := ski, else vi := ⊥; return {vi}i∈[n]

On input (“program”, {idki, ui}i∈[n]):
for i ∈ [n]: if check(Gacrs.mpk, Pi, idk) = 1, outpi := ui

On input (“proceed”, {ct′i}i∈[n]):
for i ∈ [n]: assert AE.Decki(ct

′
i) = “ok”

outp∗ := f(inp1, . . . , inpn), return “done”

On input∗ (“output”, Pi):
assert outp∗ has been stored
if outpi has been stored, ct := Encki(outpi), else ct := Encki(outp

∗)
return ct

Protmpc[sid , f, Gacrs.mpk, S, P1, . . . , Pn]

Server S:

let eid := Gatt.install(sid , progmpc[f, Gacrs.mpk, S, P1, . . . , Pn])
henceforth let Gatt.resume(·) := Gatt.resume(eid , ·)
let ({pki}i∈[n], σ) := Gatt.resume(“init”), send (eid , ψ(Pi, {pki}i∈[n], σ)) to each Pi

for each Pi: await (“input”, cti) from Pi

(Ω, σ) := Gatt.resume(“input”, {cti}i∈[n]), send ψ(Pi, Ω, σ) to each Pi

for each Pi: await (“proceed”, ct′i) from Pi

Gatt.resume(“proceed”, {ct′i}i∈[n])
for each Pi: (cti, σi) := Gatt.resume(“output”, Pi), send cti to Pi

Remote Party Pi: On input inp from Z:

await (eid , ψ) from S
// Henceforth for ψ̃ := (msg, C, π),

// let Ver(ψ̃) := Ver(crs, (sid , eid , C,mpk, Gacrs.mpk, Pi,msg), π)
assert Ver(ψ), parse ψ := ({pki}i∈[n], , )

k ← {0, 1}λ, ct = PKE.Encpk(inp, k) where pk := pki

send (“input”, ct) to S, await ψ from S, assert Ver(ψ), parse ψ := (Ω, , )
assert Ω[i] = ct, send eid to all parties, wait for all parties to ack the same eid
let ct′ := AE.Enck(“ok”), send (“proceed”, ct′) to S, await ct, assert ct not seen
outp := Deck(ct), assert ct decryption successful, return outp

Fig. 3. Composable multi-party computation with a single secure processor.
ψ(P,msg, σ) outputs a tuple (msg, C, π), where π is a witness-indistinguishable proof
that the ciphertext C either encrypts a valid attestation σ on msg, or encrypts P’s
identity key. PKE and AE denote public-key encryption and authenticated encryption
respectively. The notation send denotes messages sent over a secure channel.
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deniability for the server — specifically, an honest server should be able to deny
participation in a protocol. If the honest server sends an attestation in the clear
to the (possibly corrupt) clients, we cannot hope to obtain such deniability,
because a corrupt client can then prove to others that some honest party in
Gatt’s registry must have participated, although it might not be able to prove
which one since the attestation is anonymous. To achieve deniability, our idea is
the following:

– Instead of directly sending an attestation on a message msg, the server will
produce a witness indistinguishable proof that either he knows an attesta-
tion on msg, or he knows the recipient’s identity key. Note that in the real
world protocol, the server always provide the attestation as the witness when
producing the witness indistinguishable proof.

– However, in the simulation when the server is honest but a subset of the clients
are corrupt, the simulator is unable to query any enclave since none of the cor-
rupt clients have a secure processor. However, the simulator can query Gacrs

and obtain all corrupt parties’ identity keys. In this way, the simulator can use
these identity keys as an alternative witness to construct the witness indis-
tinguishable proofs — and the witness indistinguishability property ensures
that the adversary (and the environment) cannot distinguish which witness
was provided in constructing the proof.

Implementing Gacrs. In practice, the Gacrs functionality can be implemented by
having a trusted third party (which may be the trusted hardware manufacturer)
that generates the reference string and hands out the appropriate secret keys [18].

It is instructive to consider why Gacrs cannot be implemented from Gatt itself
(indeed, this would contradict our result that it is impossible to obtain com-
posable MPC in the presence of a single attested execution processor, with no
further setup assumptions). Informally, the reason this does not work is that
unless all parties have access to Gatt (which is the case we consider), then if only
the party that does not have access to Gatt is corrupted, the view of the adversary
cannot be simulated—in particular, the attested generation of the CRS cannot
be simulated (since the adversary does not have access to Gatt) and as such serves
as evidence that some honest party participated in an execution (i.e., we have a
“deniability attack”).

2.6 Fairness

It is well-known that fairness is in general impossible in secure two-party compu-
tation in the plain model (even under weaker security definitions that do not nec-
essarily aim for concurrent composition). Intuitively, the party that obtains the
output first can simply abort from the protocol thus preventing the other party
from learning the outcome. Cleve [25] formalized this intuition and demonstrated
an impossibility result for fair 2-party coin tossing, which in turns suggests the
impossibility of fairness in general 2-party computation. Interestingly, a sequence
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of recent works show that although fairness is impossible in general, there are a
class of non-trivial functions that can indeed be computed fairly [8,38,39].

Since real-world secure processors such as Intel’s SGX offer a “trusted clock”
abstraction, we explore whether and how such trusted clocks can help in attain-
ing fairness. It is not hard to see that Cleve’s lower bound still applies, and
fairness is still impossible when our attested execution processors do not have
trusted clocks. We show how having trusted clocks in secure processors can help
with fairness.

First, we show that fairness is indeed possible in general 2-party computation,
when both parties have secure processors with trusted clocks. Specifically, we
consider a clock-adjusted notion of fairness which we refer to as Δ-fairness.
Intuitively, Δ-fairness stipulates that if the corrupt party receives output by
some round r, then the honest party must receive output by round Δ(r), where
Δ is a polynomial function.

Theorem 5 (Informal). Assume that secure key exchange protocols exist, and
that both parties have an attested execution processor with trusted clocks, then
there exists a protocol that UC-realizes F2pc with Δ-fairness where Δ(r) = 2r.

In other words, if the corrupt party learns the outcome by round r, the honest
party is guaranteed to learn the outcome by round 2r. Our protocol is a tit-for-
tat style protocol that involves the two parties’ enclaves negotiating with each
other as to when to release the output to its owner. At a high level, the protocol
works as follows:

– First, each party sends their respective input to its local secure processor.
– The two secure processors then perform a key exchange to establish a secret

key k for an authenticated encryption scheme. Now the two enclave exchange
the parties’ inputs over a secure channel, at which point both enclaves can
compute the output.

– However, at this point, the two enclaves still withhold the outcome from their
respective owners, and the initial timeout value δ := 2λ is set to exponentially
large in λ. In other words, each enclave promises to release the outcome to its
owner in round δ.

– At this moment, the tit-for-tat protocol starts. In each turn, each secure
enclave sends an acknowledgment to the other over a secure channel. Upon
receiving the other enclave’s acknowledgment, the receiving enclave would
now halve the δ value, i.e., set δ := δ

2 . In other words, the enclave promises to
release the outcome to its owner by half of the original timeout.

– If both parties are honest, then after λ turns, their respective enclaves disclose
the outputs to each party.

– If one party is corrupt, then if he learns the outcome by round r, clearly the
other party will learn the outcome by round 2r.

To have provably security in the UC model, technicalities similar to our
earlier 2-party computation protocol (the case when both parties have a secure
processor) exist. More specifically, both parties have to send inputs to their local
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enclave to allow extraction in the simulation. Moreover, the enclave program
needs to leave a second input (that is not used in the real-world protocol) such
that the simulator can program the output for the corrupt party after learning
the output from F2pc.

It is also worth noting that our protocol borrows ideas from gradual release-
style protocols [14,30,35]. However, in comparison, known gradual release-style
protocols rely on non-standard assumptions which are not necessary in our pro-
tocol when a clock-aware Gatt is available.

We next consider whether a single secure processor enabled with trusted clock
can help with fairness. We show two results: first, fairness is in impossible for
generic functionalities when only one party has a clock-aware secure processor;
and second, a single clock-aware secure processor allows us to fairly compute a
broader class of functions than the plain setting.

Theorem 6 (Informal). Assume that one-way functions exist, then, fair 2-
party computation is impossible for general functionalities when only one party
has a clock-aware secure processor (even when assuming the existence of Gacrs).

First, to prove the general fairness impossibility in the presence of a single
secure processor, we consider a specific contract signing functionality Fcontract

in which two parties, each with a secret signing key, exchange signatures over a
canonical message, say 0 (see our full version [56, Sect. 7] for a formal definition).
In the plain model, there exists a (folklore) fairness impossibility proof for this
functionality — and it helps to understand this proof first before presenting
ours. Imprecisely speaking, if one party, say P0, aborts prior to sending the last
protocol message, and P0 is able to output a correct signature over the message,
then P1 must be able to output the correct signature as well by fairness. As
a result, we can remove protocol messages one by one, and show that if the
previous protocol Πi fairly realizes Fcontract, then Πi−1 (that is, the protocol Πi

with the last message removed) must fairly realize Fcontract as well. Eventually,
we will arrive at the empty protocol, and conclude that the empty protocol
fairly realizes Fcontract as well which clearly is impossible if the signature scheme
is secure. Although the intuition is simple, it turns out that the formal proof is
somewhat subtle — for example, clearly the proof should not work had this been
some other functionality that is not contract signing, since we know that there
exist certain functions that can be computed fairly in the plain model [8,38,39].
We formalize this folklore proof and also give an alternative proof in the full
version of this work [56, Sect. 7.4].

We now discuss how we can prove impossibility when only one party has a
clock-aware secure processor. The overall structure of the proof is very similar
to the aforementioned folklore proof where protocol messages are removed one
by one, however, as we do so, we need to carefully bound the time by which
the corrupt (i.e., aborting) party learns output. Without loss of generality, let
us assume that party P0 has a secure processor and party P1 does not. As we
remove protocol messages one by one, in each alternate round, party P1 is the
aborting party. Suppose party P1 aborts in round r ≤ g(λ) where g(λ) is the



280 R. Pass et al.

runtime of the protocol if both parties are honest. Since P1 does not have a
secure processor, if he can learn the result in polynomially many rounds by the
honest protocol, then he must be able to learn the outcome in round r too — in
particular, even if the honest protocol specifies that he waits for more rounds, he
can just simulate the fast forwarding of his clock in a single round and complete
the remainder of his execution. This means that as we remove protocol messages
one by one, in every alternate turn, the aborting party is guaranteed to obtain
output by round g(λ) — and thus even if he aborts, the other party must receive
output by round Δ(g(λ)). Similar as before, we eventually arrive at an empty
protocol which we conclude to also fairly compute Fcontract (where the parties
do not exchange protocol messages) which clearly is impossible if the signature
scheme is secure.

We stress that the ability to reset the aborting party’s runtime back to g(λ)
in every alternative round is important for the proof to work. In particular, if
both parties have a clock-aware secure processor, the lower bound clearly should
fail in light of our upper bound — and the reason that it fails is because the
runtime of the aborting party would increase by a polynomial factor every time
we remove a protocol message, and after polynomially many such removals the
party’s runtime would become exponential.

We also note that the above is simply the intuition, and formalizing the proof
is somewhat subtle which we leave to the full version of this work [56, Sect. 7.4].

Although fairness is impossible in general with only one clock-aware secure
processor, we show that even one clock-aware secure processor can help with
fairness too. Specifically, it broadens the set of functions that can be computed
fairly in comparison with the plain setting.

Theorem 7 (Informal). Assume that secure key exchange protocols exist, then
when only a single party has a clock-aware secure processor, there exist functions
that can be computed with Δ-fairness in the (Gatt,Gacrs)-hybrid model, but cannot
be computed fairly in the Gacrs-hybrid model.

Specifically, we show that 2-party fair coin toss, which is known to be impos-
sible in the plain model, becomes possible when only one party has a clock-aware
secure processor. Intuitively, the issue in the standard setting is that the party
that obtains the output first can examine the outcome coin, and can abort if
he does not like the result, say abort on 0. Although the other party can now
toss another coin on his own — the first party aborting already suffices to bias
the remaining party’s output towards 1. We now propose a (Gatt,Gacrs)-hybrid
protocol that realizes 2-party fair toss, assuming that Gatt is clock aware and
that only one party has a secure processor. The idea is the following. Let the
server S and the client C be the two parties involved, and suppose that the
server has a secure processor but the client does not. The server’s enclave first
performs key exchange and establishes a secure channel with the client. Now the
server’s enclave flips a random coin and sends it to the client over the secure
channel in a specific round, say, round 3 (e.g., assuming that key exchange takes
two rounds). At this moment, the server does not see the outcome of the coin
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yet. If the client does not receive this coin by the end of round 3, it will flip an
independent coin on its own; otherwise it outputs the coin received. Finally, in
round 4, the server will receive the outcome of the coin from its local enclave.
Observe that server can decide to abort prior to sending the client the coin (over
the secure channel), however, the server cannot base the decision upon the value
of the coin, since he does not get to see the coin until round 4. To formalize this
intuition and specifically to prove the resulting protocol secure in the UC model,
again we need to rely on the help of Gacrs.

2.7 Additional Results

We provide some additional interesting variations in modeling and results.

The Transparent Enclave Model. Many known secure processors are known
to be vulnerable to certain side-channel attacks such as cache-timing or differ-
ential power analysis. Complete defense against such side channels remains an
area of active research [31–34,49,72].

Recently, Tramèr et al. [70] ask the question, what kind of interesting applica-
tions can we realize assuming that such side-channels are unavoidable in secure
processors? Tramèr et al. [70] then propose a new model which they call the
transparent enclave model. The transparent enclave model is almost the same
as our Gatt, except that the enclave program leaks all internal states to the
adversary A. Nonetheless, Gatt still keeps its master signing key msk secret.
In practice, this model requires us to only spend effort to protect the secure
processor’s attestation algorithm from side channels, and we consider the entire
user-defined enclave program to be transparent to the adversary.

Tramèr et al. then show how to realize interesting security tasks such as
cryptographic commitments and zero-knowledge proofs with only transparent
enclaves. We note that Tramèr et al. adopt modeling techniques that inherit
from an earlier manuscript version of the present paper. However, Tramèr et al.
model Gatt as a local functionality rather than a globally shared functionality
— and this lets them circumvent several technical challenges that stem from
the functionality being globally shared, and allow them to achieve universally
composable protocols more trivially. As mentioned earlier, if Gatt were local, in
practice this would mean that a fresh (mpk,msk) pair is generated for every
protocol instance — even for different applications of the same user. This clearly
fails to capture the reusability of real-world secure processors.

We show how to realize UC-secure commitments assuming only transparent
enclaves, denoted Ĝatt, when both parties have a secure processor (since other-
wise the task would have been impossible as noted earlier). Although intuition
is quite simple — the committer could commit the value to its local enclave, and
later ask the enclave to sign the opening — it turns out that this natural protocol
candidate is not known to have provable security. Our actual protocol involves
non-trivial techniques to achieve equivocation when the receiver is corrupt, a
technical issue that arises commonly in UC proofs.
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Theorem 8 (Informal). Assume that secure key exchange protocols exist.
There is a Ĝatt-hybrid protocol that UC-realizes Fcom where Ĝatt is the trans-
parent enclave functionality.

Challenge in Achieving Equivocation. We note that because the committer must
commit its value b to its local enclave, extraction is trivial when the committer is
corrupt. The challenge is how to equivocate when the receiver is corrupt. In this
case, the simulator must first simulate for the corrupt receiver a commitment-
phase message which contains a valid attestation. To do so, the simulator needs to
ask its enclave to sign a dummy value — note that at this moment, the simulator
does not know the committed value yet. Later, during the opening phase, the
simulator learns the opening from the commitment ideal functionality Fcom. At
this moment, the simulator must simulate a valid opening-phase message. The
simulator cannot achieve this through the normal execution path of the enclave
program, and therefore we must provide a special backdoor for the simulator
to program the enclave’s attestation on the opened value. Furthermore, it is
important that a real-world committer who is potentially corrupt cannot make
use of this backdoor to equivocate on the opening.

Our idea is therefore the following: the committer’s enclave program must
accept a special value c for which the receiver knows a trapdoor x such that
owf(x) = c, where owf denotes a one-way function. Further, the committer’s
enclave must produce an attestation on the value c such that the receiver can
be sure that the correct c has been accepted by the committer’s enclave. Now,
if the committer produces the correct trapdoor x, then the committer’s enclave
will allow it to equivocate on the opening. Note that in the real-world execution,
the honest receiver should never disclose x, and therefore this backdoor does not
harm the security for an honest receiver. However, in the simulation when the
receiver is corrupt, the simulator can capture the receiver’s communication with
Ĝatt and extract the trapdoor x. Thus the simulator is now able to program the
enclave’s opening after it learns the opening from the Fcom ideal functionality.

More specifically, the full protocol works as follows:

– First, the receiver selects a random trapdoor x, and sends it to its local enclave.
The local enclave computes c := owf(x) where owf denotes a one-way function,
and returns (c, σ) where σ is an attestation for c.

– Next, the committer receives (c, σ) from the receiver. If the attestation verifies,
it then sends to its enclave the bit b to be committed, along with the value
c that is the outcome of the one-way function over the receiver’s trapdoor x.
The committer’s secure processor now signs the c value received in acknowl-
edgment, and the receiver must check this attestation to make sure that the
committer did send the correct c to its own enclave.

– Next, during the opening phase, the committer can ask its local enclave to
sign the opening of the committed value, and demonstrate the attestation to
the receiver to convince him of the opening. Due to a technicality commonly
referred to as “equivocation” that arises in UC proofs, the enclave’s “open”
entry point provides the following backdoor: if the caller provides a pair of
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values (x, b′) such that owf(x) = c where c was stored earlier by the enclave,
then the enclave will sign b′ instead of the previously committed value b.

Non-anonymous Attestation. Although most of the paper is concerned
about modeling anonymous attested execution as inspired by Intel’s most recent
SGX [6,51] and later versions of TPM [1], some secure processors instead imple-
ment non-anonymous attestation. In non-anonymous attestation, the signature
binds to the platform’s identity. Typically in a real-world implementation, the
manufacturer embeds a long-term signing key henceforth denoted ak in each
secure processor. The manufacturer then signs a certificate for the ak using
its manufacturer key msk. In formal modeling, such a certificate chain can be
thought of as a signature under msk, but where the message is prefixed with the
platform’s identity (e.g., ak).

It is not hard to see that our (Gatt,Gacrs)-hybrid protocol that realizes multi-
party computation with a single secure processor can easily be adapted to work
for the case of non-anonymous attestation as well. However, we point out that
our 2-party protocol when both have secure processors would not be secure if
we directly replaced the signatures with non-anonymous ones. Intuitively, since
in the case of non-anonymous attestation, attestations bind to the platform’s
identity, if such signatures are transferred in the clear to remote parties, then
a corrupt party can convince others of an honest party’s participation in the
protocol simply by demonstrating a signature from that party. In comparison, if
attestations were anonymous and secure processors are omnipresent, then this
would not have been an issue since the adversary could have produced such a
signature on its own by asking its local secure processor.

2.8 Related Work

Trusted Hardware Built by Architects. The architecture community
have been designing and building general-purpose secure processors for sev-
eral decades [6,22,27,31–34,48,49,51,66,72]. The motivation for having secure
processors is to minimize the trust placed in software (including the operating
system and user applications) — and this seems especially valuable since software
vulnerabilities have persisted and will likely continue to persist. Several efforts
have been made to commercialize trusted hardware such as TPMs [1], Arm’s
Trustzone [5,7], and Intel’s SGX [6,51]. As mentioned earlier, many of these
secure processors adopt a similar attested execution abstraction despite notable
differences in architectural choices, instruction sets, threat models they defend
against, etc. For example, some secure processors defend against software-only
adversaries [27]; others additionally defend against physical snooping of mem-
ory buses [33,34,49]; the latest Intel SGX defends against restricted classes of
software and physical attackers, particularly, those that do not exploit certain
side channels such as timing, and do not observe page swaps or memory access
patterns (or observe but discard such information). A comprehensive survey and
comparison of various secure processors is beyond the scope of this paper, and
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we refer the reader to the recent work by Shi et al. [64] for a systematization of
knowledge and comparative taxonomy.

Besides general-purpose secure processors, other forms of trusted hard-
ware also have been built and commercialized, e.g., hardware cryptography
accelerators.

Cryptographers’ Explorations of Trusted Hardware. The fact that
general-purpose secure processors being built in practice have more or less con-
verged to such an abstraction is interesting. By contrast, the cryptography com-
munity have had a somewhat different focus, typically on the minimal abstrac-
tion needed to circumvent theoretical impossibilities rather than practical per-
formance and cost effectiveness [24,29,37,40,45]. For example, previous works
showed what minimal trusted hardware abstractions are needed to realize tasks
such as simulation secure program obfuscation, functional encryption, and uni-
versally composable multiparty computation — tasks known to be impossible in
the plain setting. These works do not necessarily focus on practical cost effec-
tiveness, e.g., some constructions rely on primitives such as fully homomorphic
encryption [24], others require sending one or more physical hardware tokens
during the protocol [37,40,42,52], thus limiting the protocol’s practicality and
the hardware token’s global reusability. Finally, a couple recent works [42,52]
also adopt the GUC framework to model hardware tokens — however, the use
of GUC in these works [42,52] is to achieve composition when an adversary
can possibly pass a hardware token from one protocol instance to another; in
particular, like earlier cryptographic treatments of hardware tokens [24,37,45],
these works [42,52] consider the same model where the hardware tokens are
passed around between parties during protocol execution, and not realistic secure
processors like SGX.

Use of Trusted Hardware in Applications. Numerous works have demon-
strated how to apply trusted hardware to design secure cloud systems [11,
28,50,61,62], cryptocurrency systems [73], collaborative data analytics appli-
cations [55], and others [12,23,59,63]. Due to the lack of formal abstractions
for secure processors, most of these works take an approach that ranges from
heuristic security to semi-formal reasoning. We hope that our work can lay the
foundations for formally correctly employing secure processors in applications.

Formal Security Meets Realistic Trusted Hardware. A couple earlier
works have aimed to provide formal abstractions for realistic trusted hard-
ware [10,65], however, they either do not support cryptographically sound rea-
soning [65], or do not support cryptographically sound composition in general
protocol design [10].

We note that our goal of having cryptographically sound formal abstractions
for trusted hardware is complementary and orthogonal to the goal of providing
formally correct implementations of trusted hardware [31,72]. In general, build-
ing formally verified implementations of trusted hardware — particularly, one
that realizes the abstractions proposed in this paper — still remains a grand
challenge of our community.
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3 Formal Definitions, Constructions, and Proofs

In the interest of space, we present our formal definitions, constructions, and
proofs in a full version of this work [56] — we refer the reader to the technical
roadmap section for an intuitive explanation of the key technical insights, the
technicalities that arise in proofs, and how we handle them.
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Abstract. Verifiable encryption allows one to prove properties about
encrypted data and is an important building block in the design of cryp-
tographic protocols, e.g., group signatures, key escrow, fair exchange pro-
tocols, etc. Existing lattice-based verifiable encryption schemes, and even
just proofs of knowledge of the encrypted data, require parallel compo-
sition of proofs to reduce the soundness error, resulting in proof sizes
that are only truly practical when amortized over a large number of
ciphertexts.

In this paper, we present a new construction of a verifiable encryp-
tion scheme, based on the hardness of the Ring-LWE problem in the
random-oracle model, for short solutions to linear equations over polyno-
mial rings. Our scheme is “one-shot”, in the sense that a single instance of
the proof already has negligible soundness error, yielding compact proofs
even for individual ciphertexts. Whereas verifiable encryption usually
guarantees that decryption can recover a witness for the original lan-
guage, we relax this requirement to decrypt a witness of a related but
extended language. This relaxation is sufficient for many applications
and we illustrate this with example usages of our scheme in key escrow
and verifiably encrypted signatures.

One of the interesting aspects of our construction is that the decryp-
tion algorithm is probabilistic and uses the proof as input (rather than
using only the ciphertext). The decryption time for honestly-generated
ciphertexts only depends on the security parameter, while the expected
running time for decrypting an adversarially-generated ciphertext is
directly related to the number of random-oracle queries of the adversary
who created it. This property suffices in most practical scenarios, espe-
cially in situations where the ciphertext proof is part of an interactive
protocol, where the decryptor is substantially more powerful than the
adversary, or where adversaries can be otherwise discouraged to submit
malformed ciphertexts.

1 Introduction

Lattice cryptography has matured to the point where the general belief is that
any primitive that can be constructed from any other assumption can also be
constructed based on a lattice assumption. The main question that remains is
how efficient (in a practical, rather than asymptotic, sense) one can make the
lattice-based constructions. A primitive that has been getting a lot of recent
attention is a “proof of plaintext knowledge.”
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part I, LNCS 10210, pp. 293–323, 2017.
DOI: 10.1007/978-3-319-56620-7 11
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In a proof of plaintext knowledge, a prover who has a message μ produces a
ciphertext t = Enc(μ) and a zero-knowledge proof of knowledge π showing that
he knows the value of Dec(t). Proving knowledge of the value of Dec(t) is usually
the same as proving that t is a correctly formed ciphertext along with proving
the knowledge of μ that was used to construct it.

By itself, a proof of plaintext knowledge is not particularly useful, and it is
almost always used as a part of a primitive known as a verifiable encryption
scheme. In such a scheme, there is a relation RL and a language

L = {x : ∃w s.t. RL(x,w) = 1}.

Thus the value w is a witness to the fact that x is in the language L. The relation
RL and the element x are public, while the prover possesses the secret witness
w. He then produces an encryption t = Enc(w) as well as a zero-knowledge
proof of knowledge π of the value w = Dec(t) and that w satisfies RL(x,w) = 1.
Verifiable encryption can therefore also be seen as an extractable non-interactive
zero-knowledge proof. It is a building block for many primitives, e.g.,

– group signatures [CvH91], where a group manager hands distinct signing keys
to all users, using which they can anonymously sign messages. A trusted opener
is able to trace back a signature to the identity of the signer. A common
construction [CL06] is to let users verifiably encrypt their identity under the
opener’s public key together with a proof that they know a signature by the
group manager on the same identity.

– key escrow protocols [YY98,PS00], where users encrypt their decryption key
under the public key of a trusted escrow authority. Using verifiable encryption,
communication partners or network providers can check that the ciphertext
indeed encrypts the user’s decryption key, and not some bogus data.

– optimistic fair exchange protocols [ASW00,BDM98], where two parties can
fairly exchange secrets by, in a first step, proving that they encrypted their
respective secrets under the public key of a trusted authority, who can later be
called upon to recover the secret in case one of the parties aborts the protocol
early;

– verifiable secret sharing, where one dealer sends verifiably encrypted shares
of a secret to a set of parties, and proves to an external third party that the
ciphertexts contain actual shares of the secret.

1.1 Proofs of Plaintext Knowledge from Lattices – Prior Work

If one uses a lattice-based encryption scheme based on LWE or Ring-LWE, then

the encryption of a message m satisfies the linear relation A
[
r
m

]
= tmod q.

There are several known techniques to prove that the ciphertext t is well-formed
and one knows the message m. One technique is adapting Stern’s protocol based
on permutations [Ste93] to lattice-based schemes [LNSW13]. This approach is
unfortunately very impractical due to the fact that each round of the protocol
has soundness error 2/3 (and therefore needs to be repeated 192 times to achieve
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128-bit security). Furthermore, if proving relations where the secret has
coefficients of size k, the size of the proof increases by a factor of log k
[LNSW13]. This makes schemes using Stern’s protocol unsuitable for most prac-
tical applications.

Another approach is to use the “Fiat-Shamir with Aborts” zero-knowledge
proof technique from [Lyu09,Lyu12] with 0/1 challenges. This also has the prob-
lem of having soundness error 1/2 and needing to be repeated 128 times for
128-bit security. This approach, however, is more algebraic than Stern’s proof of
knowledge and it was shown to admit several improvements. If one uses a Ring-
LWE encryption scheme, then it was shown in [BCK+14] how the soundness
error can be reduced to 1/(2n), where n is the dimension of the ring being used
(typically 1024 or 2048). For 128-bit security, one then only needs to run the
protocol around a dozen times. A scenario where the Fiat-Shamir with Aborts
technique leads to truly practical protocols is when one wants to simultane-
ously do many proofs of plaintext knowledge. If one then considers the amor-
tized cost of the proof of knowledge, then the number of iterations is only a
small constant (approaches 2 as the number of instances increases) per proof
[DPSZ12,BDLN16,CD16].

Despite having received considerable attention in the literature, there seems
to be no satisfactory solution for the most natural scenario where the prover
has a single instance to prove and would like to do it in “one shot”—that is,
without repeating a protocol to amplify soundness. It is therefore conceivable
that lattice-based encryption schemes are not compatible with efficient proofs of
plaintext knowledge, which would make all the applications much less efficient
than their number theoretic counterparts.

1.2 Proofs of Plaintext Knowledge – Our Results

In this work, we introduce a very efficient “one-shot” protocol for proving plain-
text knowledge. The caveat is that the running time of the decryption algorithm
depends on the running time of the prover. More precisely, our decryption algo-
rithm is randomized in that it tries to decrypt ciphertexts that are “close” to the
one provided by the prover. And we show that the expected number of decryption
tries our decryptor needs is within a small factor (essentially 1) of the number
of random oracle queries that the prover makes while constructing the proof of
knowledge π. If q is the number of queries made by the prover, then Markov’s
inequality implies that the probability that the decryptor will need more than
α · q decryption tries is less than 1/α. If the prover is honest, though, then the
decryptor will succeed from the first try.

While tying the decryption time to the adversary’s running time is unusual,
this should be acceptable in many scenarios. Apart from creating out-of-band
incentives such as fines to prevent cheating, there are also technical ways to limit
the power of the adversary. If the protocol in which the proof of knowledge is
being used is interactive, then the verifier can send the prover a fresh salt during
every interaction that has to be included in the cryptographic hash function
(modeled as a random oracle) and require that the prover performs the proof
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within a certain small amount of time. Thus the adversary will have a limited
time-frame during which he can make queries to the random oracle (because each
new salt in essence creates a new random oracle). The decryption algorithm, on
the other hand, is almost always off-line and is therefore allowed more time. In
non-interactive settings, the prover can be required to use a salt from a public
“randomness beacon” (such as one provided by NIST) at the time the proof was
created.

In our scheme, the verification algorithm uses one random oracle query and
the decryption algorithm uses none. Thus another simple way of preventing an
adversary from using too many random oracle queries during encryption would
be to artificially make the computational complexity of computing the hash
function high (e.g. by iterating SHA-256 some number of times to produce one
output). This has the effect of significantly slowing down a cheating prover, while
keeping the decryption time exactly the same.

We also show that, if one wishes, one can upper-bound the running time of
the decryptor by making the protocol “k-shot” rather than one shot. In this
scenario, the length of the proof of knowledge would go up by a factor k, but
one could bound the decryption algorithm’s running time to k · 2λ/k for λ-bit
security.

1.3 Verifiable Encryption Schemes – Our Results

We build upon our proof of plaintext knowledge to construct a verifiable encryp-
tion scheme that is adapted to be used as a building block for lattice construc-
tions. The relations that are most common in lattice cryptography are those of
the form

Bm = umod p (1)

where B is a matrix over some ring, m is a vector with small coefficients, and u
is the product of Bm modulo p. For example, in (Ring)-LWE encryption B,u
is the public key and m is the secret key. In full domain hash signatures, B is
the public key, m is the signature, and u = H(μ) is derived from the message μ.
Giving a verifiable encryption scheme for such relations is a main building block
for many of the protocols listed in the introduction.

While verifiable encryption would normally guarantee that decrypting a valid
ciphertext yields a witness satisfying (1), our construction relaxes this guarantee
to only yield a witness (m, c) with small coefficients satisfying

Bm = cumod p. (2)

This relaxation actually turns out to be sufficient for many applications of veri-
fiable encryption. Lattice schemes can often be slightly augmented to allow for
relations of the form (2) to be “useful” whenever those of the form (1) are. We
will see this in the two examples provided in Sect. 6.

Notice also how it appears as if the decryption and the proof of knowledge are
disjoint. Indeed, the proof of knowledge π may prove the existence of some wit-
ness (m, c), whereas the decryption algorithm may obtain a completely different
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witness (m′, c′). But in addition to still being sufficient for many applications,
there is also a connection between the two tuples that is actually crucial to our
construction – we have that

m/c = m′/c′ mod p.

While this property is not needed in many applications, the presence of this rela-
tionship may be useful when constructing group signatures or other primitives
where it is important that the decryption recovers some specific attribute of the
prover rather than just a witness to a relation.

1.4 Paper Organization

We present the Ring-LWE encryption scheme and the non-interactive “Fiat-
Shamir with Aborts” zero-knowledge proof protocol in Sects. 2.5 and 2.6. Slight
variations of these two primitives are used throughout our constructions.

We then present the definitions of our relaxed version of verifiable encryption
in Sect. 3.1, and describe all the elements of the scheme in Sect. 3.2. In Sect. 7,
we give some example instantiations for the proofs of plaintext knowledge and
verifiable encryption schemes. The proof of plaintext knowledge scheme requires
9 KB for the ciphertext and 9 KB for the proof. This is quite efficient since this
ciphertext is only around 4 times larger than a regular Ring-LWE ciphertext.

The efficiency of the verifiable encryption scheme is mostly affected by the size
of the modulus p and the witness m in the relation. The larger these values, the
larger the proofs and ciphertexts will be. The sample instantiations in Sect. 7 are
meant to support the two sample applications in Sect. 6, where we describe how
our relaxed verifiable encryption scheme can be used to build key escrow schemes
and verifiably encrypted signatures. In Sects. 4 and 5 we describe two variants
of our schemes, the former trading longer ciphertexts for bounded decryption
time, the latter adding simulatability under chosen-ciphertext to the scheme.1

2 Preliminaries

For a set S, we write a
$← S to mean that a is chosen uniformly at random

from S. If D is a distribution, then a
$← D signifies that a is randomly chosen

according to the distribution D. The assignment operator a ← b signifies that
a gets assigned the value b. We will also sometimes write column vectors of the

form

⎡
⎣a1

. . .
ak

⎤
⎦ as [ a1 ; . . . ; ak ].

1 Unlike Camenisch and Shoup [CS03], we cannot use standard indistinguishability
security notions, because our decryption algorithm needs the proof to be included
in the ciphertext.
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2.1 The Ring Z[x]/(xn + 1).

Consider the ring R = Z[x]/(xn +1) and Rq = Zq[x]/(xn +1) where n is a power
of 2 integer and q is some prime. The elements of the latter ring are polynomials
of degree at most n − 1 with coefficients between −(q − 1)/2 and (q − 1)/2 (for
the ring R, there is no restriction on the sizes of coefficients). All definitions
that follow apply both to R and Rq. We will denote elements of Z and of R by
lower-case letters, elements of vectors in Rk by bold lower-case letters, and of
matrices in Rk×l by bold upper-case letters.

We will define the �1, �2, and �∞ lengths of an element a =
n−1∑
i=0

aixi ∈ R as

‖a‖1 =
n−1∑
i=0

|ai|, ‖a‖ =

√√√√n−1∑
i=0

a2
i and ‖a‖∞ = max

i
(|ai|)

respectively.2 For k-dimensional vectors a = [ a1 | . . . | ak ] ∈ Rk, we
write ‖a‖1 = ‖a1‖1 + . . . + ‖ak‖1, ‖a‖ =

√‖a1‖2 + . . . + ‖ak‖2 and ‖a‖∞ =
maxi ‖ai‖∞. We will denote by Si (respectively Sk

i ), the set of elements of R
(resp. of Rk) whose �∞ length is at most i.

It is not hard to check that for any two polynomials a,b ∈ R, we have
‖ab‖∞ ≤ ‖a‖1 · ‖b‖∞ and ‖ab‖∞ ≤ ‖a‖ · ‖b‖. Similarly for a,b ∈ Rk, we
have the same inequalities on the �∞ norms of their inner products: that is,
‖a · b‖∞ ≤ ‖a‖1 · ‖b‖∞ and ‖a · b‖∞ ≤ ‖a‖ · ‖b‖.

2.2 Special Properties of Zq[x]/(xn + 1)

The algebraic properties of the ring Rq = Zq[x]/(xn + 1), where n is a power
of 2, depend on the prime q. For efficiency, one often takes q = 1mod (2n),
which results in the polynomial xn + 1 splitting into n linear factors modulo q.
Operations within the ring can then be performed extremely efficiently using
the number theory transform. On the other hand, one sometimes wants the ring
to be “almost a field”. In particular, it is sometimes desirable for the ring to
have many invertible elements. While there do not exist q that will make Rq

a field, using q = 3mod 8 (as first suggested in [SSTX09]) has the effect that
xn + 1 factors into two irreducible polynomials of degree n/2 and so the ring Rq

contains qn − 2qn/2 +1 invertible elements. By the Chinese Remainder theorem,
it is also easy to see that all elements of degree less than n/2 are invertible.

We have not seen this used in previous works, but it turns out that setting
q = 5mod 8 may be even more convenient. Modulo such a q, the polynomial
xn+1 also factors into two irreducible polynomials of degree n/2. And in addition
to all elements of degree less than n/2 being invertible, one can also show that
all elements (of degree up to n) with small coefficients are invertible as well. We
2 We point out that since Zq is a finite group, these do not correspond exactly to

norms when working in Rq because we do not have ‖α · a‖ = α · ‖a‖. The other two
properties of norms (i.e. that the norm of 0 is 0 and the triangle inequality) do hold.
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present the proof of this statement in Lemma 2.2. To the best of our knowledge,
this lemma was first proven in an unpublished manuscript of Lyubashevsky and
Xagawa.

Lemma 2.1 ([LN86], special case of Theorem 3.35, p. 88). Let q =
5(mod 8) be prime and r be an integer such that r2 = −1(mod q). Then for
all positive integers κ, the polynomials x2κ − r and x2κ

+ r are irreducible over
Zq[x]. And in particular, the complete factorization into irreducibles over Zq[x]
of the polynomial x2κ+1

+ 1 is x2κ+1
+ 1 = (x2κ − r)(x2κ

+ r)mod q.

Lemma 2.2. Let Rq = Zq[x]/(xn + 1) where n > 1 is a power of 2 and q is a
prime congruent to 5(mod 8). This ring has exactly 2qn/2 − 1 elements without
an inverse. Moreover, every non-zero polynomial a in Rq with ‖a‖∞ <

√
q/2

has an inverse.

Proof. In all that follows, the reduction modulo q will be implicit. By Lemma 2.1,
xn + 1 = (xn/2 − r)(xn/2 + r) where r2 = −1 and xn/2 ± r are irreducible. Any
element a ∈ Rq can be written as a = a0 + xn/2a1, where a0, a1 are polynomials
in Z[x] of degree less than n/2. Then the Chinese remainder decomposition of
a is

CRT (a) = (amod (xn/2 − r), amod (xn/2 + r)) = (a0 + ra1, a0 − ra1).

If a is not invertible, it means that either a0 + ra1 = 0 or a0 − ra1 = 0. If a1 = 0,
then a0 = 0 and a is the zero polynomial. If a1 �= 0, then some coefficient of
a0, say α0, must be equal to ±rα1, where α1 is a non-zero coefficient of a1.
Therefore we have α2

0 = (±rα1)2 = −α2
1. In other words, α2

0 +α2
1 = 0. But since

we assumed that |α0|, |α1| <
√

q/2, this is not possible, and thus proves the
second part of the lemma by contradiction. The first part of the lemma follows
from the fact that CRT is a bijection and all the elements without an inverse
must be 0 modulo at least one of xn/2 ± r. �	

2.3 Lattices and the Discrete Gaussian Distribution

A full-rank integer lattice Λ of dimension n is an additive subgroup of Zn that
is generated by some basis B = [b1 | . . . | bn] ∈ Zn×n of linearly-independent
vectors. If a basis B is a generator for a lattice Λ, we will write L(B) = Λ.

For a matrix A ∈ Zn×m, we define

L⊥(A) = {y ∈ Zm : Ay = 0mod q}. (3)

It’s easy to see that L⊥(A) is a full-rank lattice of dimension m.
For a full-rank integer lattice Λ, we define the discrete Gaussian distribution

DΛ,c,σ(v) = e
−‖v−c‖2

2σ2

/ ∑
w∈Λ

e
−‖w−c‖2

2σ2 for any v ∈ Λ, and 0 on all other points

in space.
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For the special case of Λ = Zm, we know that

Pr
s

$←DZm,0,σ

[‖s‖∞ > tσ] < 2m · e−t2/2,

which implies that for t = 6, the probability that any coefficient of s is greater
than 6σ is less than m · 2−25.

2.4 Polynomial Lattices and Sampling over the Ring R

In this paper, rather than working over the ring Zq (with the usual addition
and multiplication operation modulo q), we will be working over the ring R =
Zq[x]/(xn + 1) with the usual addition and multiplication operations modulo q
and xn + 1. Analogously to (3), for a vector A ∈ R1×m, a lattice L⊥(A) can be
defined as

L⊥(A) = {y ∈ (Z[x]/(xn + 1))m : Ay = 0mod q}.

Note that while it is an m-dimensional lattice over Z[x]/(xn + 1), it is really an
nm-dimensional lattice over Z.

If we want to generate a discrete Gaussian sample over Z[x]/(xn +1), we can
simply generate it over Zn and then map into Z[x]/(xn + 1) using the obvious
embedding of coordinates into coefficients of the polynomials. We will slightly
abuse notation and write y $← DR,0,σ to mean that y is generated accord-
ing to DZn,0,σ and then interpreted as an element of R. Similarly, we write
(y1, . . . , yl)

$← DRl,0,σ to mean that z is generated according to DZln,0,σ and
then gets interpreted as l polynomials yi.

2.5 Ring-LWE Encryption Scheme

We recall the Ring-LWE encryption scheme from [LPR13]. For simplicity, we take
the distribution of the secret keys and the randomness to be uniformly-random
elements with �∞ norm 1. The secret keys are chosen as s1, s2

$← S1 and the
public keys are a $← Rq and t ← as1 +s2. There is also a public parameter p > 2,
which is a positive integer. To encrypt a message m ∈ Rp, the encryptor chooses
r, e, e′ $← S1 and outputs (v,w) where v ← p(ar + e) and w ← p(tr + e′) + m.
The decryption procedure computes

w − vs1 mod q mod p = p(rs2 + e′ − es1) + mmod p = m, (4)

where the last equality holds in the case that ‖p(rs2 +e′ − es1)+m‖∞ < q/2.
From the above equations, we see that the encryption of a plaintext m under

public keys a, t is a ciphertext v,w satisfying the equation

[
v
w

]
=
[
pa | p | 0 | 0
pt | 0 | p | 1

]
⎡
⎢⎢⎣

r
e
e′

m

⎤
⎥⎥⎦ mod q, (5)
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Extending this, the encryption of k messages m1, . . . ,mk under the same
public key a, t satisfies the following relation:

2k

4k︷ ︸︸ ︷⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

pa p
. . . . . .

pa p
pt p 1

. . . . . . . . .
pt p 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1
. . .
rk

e1
. . .
ek

e′
1

. . .
e′
k

m1

. . .
mk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

v1

. . .
vk

w1

. . .
wk

⎤
⎥⎥⎥⎥⎥⎥⎦

mod q,

(6)
which we will write in abbreviated form as

[
paIk pIk 0k×k 0k×k

ptIk 0k×k pIk Ik

]
⎡
⎢⎢⎣
r
e
e′

m

⎤
⎥⎥⎦ =

[
v
w

]
mod q, (7)

where Ik corresponds to an identity matrix of dimension k and 0�×k corresponds
to an � × k matrix of all zeroes. The decryption procedure is then simply the
vector analogy of (4), i.e.

m = w − vs1 mod q mod p.

2.6 “Fiat-Shamir with Aborts” Proofs of Knowledge of Linear
Relations

In [Lyu09,Lyu12], Lyubashevsky introduced a technique for constructing prac-
tical digital signatures (in the random oracle model) based on the hardness of
lattice problems. At the heart of the construction is a zero-knowledge proof of
knowledge that, given an s ∈ Rk satisfying the relation

As = tmod q, (8)

proves the knowledge of low-norm s̄ and c̄ that satisfy

As̄ = c̄tmod q.

The idea in [Lyu09,Lyu12] was to construct a Σ-protocol with the main
twist being that the prover does not always output the result. In particular,
the protocols use rejection sampling to tailor the distribution so that it does
not depend on the secret s. This rejection sampling can be done by making
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Algorithm 1. “Fiat-Shamir with Aborts” zero-knowledge proof of knowledge
Input:A matrix A ∈ R�×k, vector s ∈ S ⊂ Rk, a vector t ∈ R�, and a vector q ∈ Z�

such that As = tmodq. Challenge domain C ⊂ R. Standard deviation σ ∈ R+ such
that σ ≥ 11 · maxs∈S,c∈C ‖sc‖. Cryptographic hash function H : {0, 1}∗ → C.
Output: z ∈ Rk such that z ∼ DRk,0,σ and c ∈ C such that c = H(A, t,Az −
tc modq).

1: y
$← DRk,0,σ

2: c ← H(A, t,Aymodq)
3: z ← sc + y

4: with probability
D

Rk,0,σ
(z)

3·D
Rk,sc,σ

(z)
, goto 1

5: if‖z‖∞ > 6σ, goto 1
6: output (c, z)

Algorithm 2. “Fiat-Shamir with Aborts” Verification Algorithm
Input: A matrix A ∈ R�×k, a vector t ∈ R�, a vector q ∈ Z�, σ ∈ R+. A tuple
(c, z) ∈ C × Rk. Cryptographic hash function H : {0, 1}∗ → C.
Output: Bits 0 or 1 corresponding to Reject/Accept.

1: if ‖z‖∞ > 6σ, return 0
2: if c 	= H(A, t,Az − tc modq), return 0
3: return 1

the resulting distribution uniform in a box (as in [Lyu09]), or the more efficient
approach in [Lyu12] of making it a discrete Gaussian. The interactive protocol
is then converted to a non-interactive one in the random-oracle model [BR93]
using the Fiat-Shamir technique [FS86]. This combined technique is sometimes
referred to as “Fiat-Shamir with Aborts”.

A variation of the signing protocol from [Lyu12] is given in Algorithm 1. It
was shown in that work that the output z is distributed according to DRk,0,σ.
In particular, the rejection sampling stem on line 4 has the effect that the dis-
tribution of z is independent of the secret vector s (and the challenge c). This
algorithm is therefore honest-verifier zero knowledge since a simulator can sim-
ply output z $← DRk,0,σ, c

$← C and program c = H(A, t,Az − tc modq). 3 We
also make the observation that one does not need to use the same modulus q
for every row of the relation in (8). One can instead use a different modulus for
each row, and we represent this in the protocol by a vector q – having different
moduli is crucial to the application in this paper.

We also need simulation soundness [Sah99], meaning that an adversary can-
not create proofs of incorrect statements, even after seeing simulated proofs of
incorrect statements. Faust et al. [FKMV12] showed that Fiat-Shamir proofs are
simulation-sound if the underlying three-move protocol is honest-verifier zero-
knowledge and has “quasi-unique responses”, meaning that an adversary cannot

3 Because the entropy of z is high, there is a very low probability that the value for
H(A, t,Az − tc modq) was previously assigned.
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create two accepting transcripts that are different only in the response value. For
our proof system, this translates into finding z �= z′ such that Az = Az′ mod q
be hard. Finding such z, z′ would imply that A(z − z′) = 0mod q where A is
the matrix in Eq. 7. Thus, there is either a non-zero tuple (y1, y2) ∈ Rq with l∞
norm less than 12σ such that ay1 + py2 = 0mod q or py1 + y2 = 0mod q. In our
applications p > 12σ and 12σp+12σ < q, which implies that the second equality
is not possible. Also, for most of the parameter sets (see the table in Sect. 7),
(24σ)2 < q, and therefore a standard probabilistic argument can be used to show
that for all y1, y2 of �∞ norm less than 12σ,

Pr
a

$←Rq

[ay1 + py2 = 0mod q] = 2−Ω(n).

Thus for almost all a, there will not be a short solution (y1, y2) that satisfies
ay1 + py2 = 0.

If (24σ)2 > q, then the probabilistic argument no longer applies, but then
finding such (y1, y2) gives a solution to Ring-SIS [LM06] problem for a random
a, which is a computationally hard problem when the norm of yi is small-enough
with relation to q (which it is in all applications).

3 One-Shot Verifiable Encryption for Linear Relations
from Ring-LWE

We follow Camenisch and Shoup [CS03] in defining verifiable encryption as
encrypting a witness for a member of a language. The class of languages that
we’ll be looking at will be the linear relations of short vectors in a ring. While
Camenisch and Shoup defined soundness by requiring that decryption of a valid
ciphertext always recovers a valid witness, we will only achieve a relaxed prop-
erty that recovers a witness for a related “extended” language that includes the
original language. As we will see in Sect. 6, however, this weaker property suffices
for many practical applications of verifiable encryption.

3.1 Definition of Relaxed Verifiable Encryption

We relax Camenisch and Shoup’s [CS03] definitions for verifiable encryption
in two ways. First, as mentioned above, and analogous to relaxed knowledge
extraction for proofs of knowledge [CKY09], the encryption algorithm encrypts
a witness w for a member x of a language L, but soundness only guarantees that
decryption of a valid ciphertext returns a witness w̄ of an extented language
L̄ instead of L. Second, rather than looking at verifiable encryption as a com-
bination of a standard public-key encryption scheme with an associated proof
system, we consider encryption and proof as a single algorithm, producing a
verifiable ciphertext that includes the proof. This generalization allows for more
efficient schemes, in particular our construction that speeds up decryption using
information from the proof.
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Let L ⊆ {0, 1}∗ be a language with witness relation RL, i.e., x ∈ L iff there
exists a witness w such that (x,w) ∈ RL. Let L̄ with witness relation RL̄ be an
extension of L, meaning that L ⊆ L̄ and RL ⊆ RL̄. For our language of linear
relations over short vectors, we will consider the language L with relation

RL = {((B,u), (m, 1)) ∈ (R�×k
p ×R�

p)× (Rk
p ×Rp) : Bm = umod p ∧m ∈ Sk

γ}

and the extended language L̄ with relation

RL̄ = {((B,u), (m̄, c̄)) ∈ (R�×k
p × R�

p) × (Rk
p × Rp) :

Bm̄ = c̄umod p ∧ ‖m̄‖∞ < 6σ ∧ c̄ ∈ C̄},

where C̄ = {c − c′ : c, c′ ∈ C} for C = {c ∈ R : ‖c‖∞ = 1, ‖c‖1 ≤ 36} and other
parameters are described in Algorithm 3.

A relaxed verifiable encryption scheme for languages L, L̄ is a tuple of algo-
rithms (Kg,Enc,V,Dec) where the key generation algorithm Kg(1λ) returns a
public and secret key (pk , sk); the encryption algorithm Enc(pk , x, w) returns a
verifiable ciphertext t that encrypts the witness w of language member x ∈ L;
the verification algorithm V(pk , x, t) returns 1 or 0 indicating whether t encrypts
a witness for x; the decryption algorithm Dec(sk , x, t) returns a witness w̄ or a
failure symbol ⊥. We will focus on the case where the ciphertext t includes a
Fiat-Shamir proof of a Σ-protocol, where the proof π = (cmt , c, rsp) consists
of a commitment cmt , a challenge c = H(pk , x, t , cmt , . . .) generated through a
random oracle H, and a response rsp. We require that the algorithms satisfy the
following adapted properties from [CS03]:

Correctness. Correctness requires that Dec(sk , x,Enc(pk , x, w)) = w with
probability one for all (x,w) ∈ RL and all key pairs (pk , sk) $← Kg(1λ).

Completeness. For all (x,w) ∈ RL and all key pairs (pk , sk) $← Kg(1λ),
V(pk , x,Enc(pk , x, w)) = 1 with probability one.

Soundness. Soundness requires that a ciphertext with a valid proof for x ∈ L
can with overwhelming probability be decrypted to a valid witness w̄ such
that (x, w̄) ∈ RL̄, i.e., the following probability is negligible:

Pr

[
b = 1 ∧ (x, w̄) �∈ RL̄ :

(pk , sk) $← Kg(1λ), (x, t) $← A(pk , sk),
b ← V(pk , x, t), w̄ $← Dec(sk , x, t)

]
.

Simulatability. There exists a simulator Sim such that no adversary A can
distinguish real from simulated ciphertexts, i.e., the following advantage of A
is negligible:

∣∣∣∣∣Pr

[
b′ = b :

b
$← {0, 1}, (pk , sk) $← Kg(1λ), (, , x, w) $← A(pk),

t0
$← Enc(pk , x, w), t1

$← Sim(pk , x), b′ $← A(, tb)

]
− 1

2

∣∣∣∣∣ .



One-Shot Verifiable Encryption from Lattices 305

3.2 Construction

Given a linear relation
Bm = umod p, (9)

for a matrix B ∈ R�×k
p , our goal is to produce a ciphertext and a proof that the

decryption of this ciphertext is (m, c) that satisfies the relation

Bm = uc mod p. (10)

Key generation. Key pairs are generated as for the Ring-LWE encryption scheme
from Sect. 2.5, i.e., by choosing s1, s2

$← S1 and computing a $← R and t ←
as1 + s2. The public key is pk = (a, t, p, q), where p is the same value as the
modulus that we are proving our linear relation over. The secret key is sk = s1.

Encryption and verification. The prover encrypts a witness w = m for language
member x = (B,u) satisfying (9) with randomness (r, e, e′) $← S3k

1 as in (7).
The prover then concatenates this with (9) to form the relation below:

⎡
⎣paIk pIk 0k×k 0k×k

ptIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤
⎦
⎡
⎢⎢⎣
r
e
e′

m

⎤
⎥⎥⎦ =

⎡
⎣v
w
u

⎤
⎦ mod q

mod q
mod p

(11)

As discussed, there is no practical proof of knowledge for the above relation,
and so the prover instead uses the “Fiat-Shamir with Aborts” approach from
Sect. 2.6 to construct a proof of knowledge π of low-weight r, e, e′,m, and c that
satisfy ⎡

⎣paIk pIk 0k×k 0k×k

ptIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤
⎦
⎡
⎢⎢⎣
r
e
e′

m

⎤
⎥⎥⎦ = c

⎡
⎣v
w
u

⎤
⎦ mod q

mod q
mod p

(12)

This procedure and the corresponding verification is presented in Algorithms 3
and 4.

Decryption. The main result of our work is showing that, when given the cipher-
text t = (v,w, c, z), the decryptor can recover some (m, c) that satisfies (10).

Because the proof of knowledge (c, z) does not imply that
[
v
w

]
is a valid Ring-

LWE ciphertext, we cannot simply use the Ring-LWE decryption algorithm
from (4).

Instead, the intuition is to guess a value for c and then attempt to decrypt

the ciphertext c
[
v
w

]
mod q in hopes of recovering m. The problem with this

straightforward approach is that the decryption algorithm will always return
something, and so one needs a way to decide whether this decryption is something
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Algorithm 3. One-Shot Verifiable encryption Enc(pk , x, w)
Input: Public key pk = (a, t, p, q), language member x = (B,u), witness w = m ∈ Sk

γ .
Challenge domain C = {c ∈ R : ‖c‖∞ = 1, ‖c‖1 ≤ 36}. Cryptographic hash function
H : {0, 1}∗ → C. Standard deviation σ = 11 · max

c∈C
‖c‖1 ·√kn(3 + γ).

1: r, e, e′ $← Sk
1

2:

[
v
w

]

←
[
paIk pIk 0k×k 0k×k

ptIk 0k×k pIk Ik

]
⎡

⎢
⎢
⎣

r
e
e′

m

⎤

⎥
⎥
⎦

mod q
mod q

3: y ←

⎡

⎢
⎢
⎣

yr

ye

ye′

ym

⎤

⎥
⎥
⎦

$← DR4k,0,σ

4: c ← H

⎛

⎜
⎜
⎝

⎡

⎣
paIk pIk 0k×k 0k×k

ptIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤

⎦ ,

⎡

⎣
v
w
u

⎤

⎦ ,

⎡

⎣
paIk pIk 0k×k 0k×k

ptIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤

⎦

⎡

⎢
⎢
⎣

yr

ye

ye′

ym

⎤

⎥
⎥
⎦

mod q
mod q
mod p

⎞

⎟
⎟
⎠

5: s ←

⎡

⎢
⎢
⎣

r
e
e′

m

⎤

⎥
⎥
⎦ c

6: z ← s + y

7: with probability
D

R4k,0,σ
(z)

3·D
R4k,s,σ

(z)
, continue, else goto 3

8: if ‖z‖∞ > 6 · σ, goto 3
9: return t = (v,w, c, z)

Algorithm 4. One-Shot Verification V(pk , x, t)
Input: Public key pk = (a, t, p, q), language member x = (B,u), ciphertext
t = (v,w, c, z). Cryptographic hash function H, positive real σ as in Algo-
rithm 3.

1: if ‖z‖∞ > 6 · σ , return 0

2: if c 	= H

⎛

⎝

⎡

⎣
paIk pIk 0k×k 0k×k

ptIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤

⎦,

⎡

⎣
v
w
u

⎤

⎦,

⎡

⎣
paIk pIk 0k×k 0k×k

ptIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤

⎦z − c

⎡

⎣
v
w
u

⎤

⎦
mod q
mod q
mod p

⎞

⎠,

return 0
3: return 1

valid or just garbage. In Lemma3.1, we show that if the parameters of the Ring-
LWE encryption scheme are set in a particular way, then the decryptor can test

whether a particular ciphertext c
[
v
w

]
mod q is “valid”, and for any c and c′

that lead to valid ciphertexts decrypting to m and m′, respectively, we have the
equality

m/c = m′/c′ mod p (13)
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The implication of the above equation is that once the decryptor decrypts
some pair (m′, c′), it is a valid solution to (10). This is because the proof of
knowledge π proves knowledge of some (m, c) that satisfies Bm = cumod p, or
equivalently Bm/c = umod p. Equation (13) then implies that

Bm′ = c′umod p.

The second issue is how to find a valid c. In particular, if we would like the
proof of knowledge to be “one-shot”, then the challenge space should be expo-
nentially large, and so it is impractical to simply try all the possible c (of which
there are actually even more than in the challenge space). We show in Lemma3.2,
however, that the decryptor can try random c (there is some relation between π
and which c̄ should be tried), and then the expected number of tries is essentially
the number of random oracle queries that the prover makes when constructing
π, where the probability is taken over the randomness of the random oracle
(modeled as a random function) and the coins of the decryptor. Algorithm5 is
the decryption algorithm that guesses a random c′ from C, constructs c = c− c′,

where c is part of the proof π, and then checks whether c
[
v
w

]
mod q is a valid

ciphertext (actually k valid ciphertexts because the plaintext m is encrypted as
k independent plaintexts). If it is, then it decrypts it, and otherwise it guesses a
new random c′.

Algorithm 5. One-Shot Decryption Dec(sk , x, t)
Input: Secret key sk = s1, language member x = (B,u), ciphertext t = (v,w, c, z),
constant C = max

c,c′∈C
‖c − c′‖1.

1: if V(pk , x, t) = 1 then
2: loop

3: c′ $← C
4: c ← c − c′

5: m ← (w − vs1)c mod q
6: if ‖m‖∞ < q/2C then
7: m ← mmod p
8: return (m, c̄)
9: end if

10: end loop
11: end if

If the prover is honest, then of course
[
v
w

]
will already be a valid ciphertext,

and then it’s not hard to see that any c will result in a valid decryption (or
the decryptor can try c = 1 first). On the other hand, what Lemma 3.2 roughly
implies is that if the prover can only query the random oracle a few times, then
the decryptor will also expect to recover a solution to (10) within a few queries.
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In Sect. 4, we propose a modification to our protocol that still retains the
relation between the number of random-oracle queries the prover makes and the
expected number of decryption tries that the decryptor needs, but also puts an
upper-bound on the decryption time. The idea is to reduce the space of challenges
in the zero-knowledge proof from, say, 2128 down to 232 and then doing the proof
in parallel 4 times. This increases the proof size by a factor of 4, but upperbounds
the number of decryptions tries to 4 · 232. One can of course adjust the trade-off
between the decryption-time upper bound and the size of the proof to suit the
particular scenario. This is the main advantage of this parallelized protocol over
the earlier idea in [BCK+14]. In the latter scheme, the size of the challenge space
could not be varied – if one were working over the ring Z[x]/(xn + 1), then the
challenge space was exactly 2n + 1.

3.3 Interlude: Proofs of Plaintext Knowledge

One can see proofs of plaintext knowledge as a verifiable encryption scheme
without a relation, or where the relation is trivially satisfied. In our case, one
could consider the scheme from the previous section with B and u being 0, or
simply the row(s) containing B and u not being present in relation (11).

The soundness requirement that a valid ciphertext must decrypt to a valid
witness obviously makes no sense if the relation is trivial. Instead, soundness for
a proof of plaintext knowledge requires that decryption returns the same value
as can be extracted from the proof of knowledge. Our randomized decryption
algorithm as described in Algorithm 5 does not satisfy such a requirement, as it
potentially returns a different pair (m, c) at each execution. However, because
of the property that m/c = m′/c′ mod p for any (m, c), (m′, c′) returned by
the decryption algorithm, we can make the decryption deterministic by let-
ting it return m/c mod p. Because this unique value can also be extracted from
the proof, this turns our verifiable encryption scheme into a proof of plaintext
knowledge.

3.4 Correctness and Security

Soundness. We first show the soundness property of our relaxed verifiable encryp-
tion scheme by showing that decryption of a valid ciphertext, if it finishes, yields a
witness fromRL̄. InSect. 3.5,weprovethat theexpectedrunningtimeof thedecryp-
tion algorithm is proportional to the number of random-oracle queries made by the
adversary who created the ciphertext.

If an adversary A who is trying to break the soundness of the scheme outputs
a ciphertext t = (v,w, c, z) that is valid for x = (B,u), then by the verification
procedure described in Algorithm 4 we have that ‖z‖∞ ≤ 6 · σ and

c = H

⎛
⎝B′,

⎡
⎣v
w
u

⎤
⎦ ,B′z − c

⎡
⎣v
w
u

⎤
⎦ mod q

mod q
mod p

⎞
⎠ (14)
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where

B′ =

⎡
⎣paIk pIk 0k×k 0k×k

ptIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤
⎦ . (15)

Let A denote the first argument of the above random-oracle query and y the
last, i.e., the above equation can be rewritten as c = H(A, [ v ; w ; u ],y).

With overwhelming probability, there exists a second challenge c′ ∈ C\{c} for
which there exists a vector z′ with ‖z′‖∞ ≤ 6 · σ and y = Az′ − c′[ v ; w ; u ].
Indeed, if c were the only such challenge, then at the moment of making the
above random-oracle query, A would have had probability 1/|C| of hitting the
only challenge c for which a valid proof exists. The probability that A outputs a
proof for which only one such challenge c exists is therefore at most qH/|C|.

So with overwhelming probability such c′, z′ does exist, and we have that
y = Az − c[ v ; w ; u ] = Az′ − c′[ v ; w ; u ] with ‖z‖∞ ≤ 6 · σ and
‖z′‖∞ ≤ 6 · σ. Hence, letting c̄ = c − c′ and z̄ = z′ − z = [ r̄ ; ē ; ē′ ; m̄ ], we
have that Az̄ = c̄[ v ; w ; u ] with ‖z̄‖∞ ≤ 12 · σ.

By choosing the scheme parameters appropriately, e.g., such that (36p +
12)σ < q/2C, one can satisfy the preconditions of the following crucial lemma
that shows that for any (m̄′, c̄′) returned by the decryption algorithm, we have
that m̄′/c̄′ = m̄/c̄, and, because Bm̄ = c̄u, that Bm̄′ = c̄′u.

Lemma 3.1. Let (a, t, p, q) and (s1, s2) be generated keys as in Sect. 3.2. If for
given v,w ∈ Rq there exist r, e, e′,m, c such that

[
pa | p | 0 | 0
pt | 0 | p | 1

]
⎡
⎢⎢⎣

r
e
e′

m

⎤
⎥⎥⎦ = c

[
v
w

]
mod q

and
‖p(rs2 + e′ − es1) + m‖∞ < q/2C (16)

where C = max
c∈C

‖c‖1 = max
c,c′∈C

‖c − c′‖1, then

1. ‖(w − vs1)c mod q‖∞ < q/2C
2. For any c′ ∈ C for which ‖(w − vs1)c′ mod q‖∞ < q/2C,

(w − vs1)c′ mod q/c′ mod p = m/c mod p.

�	
Proof. To prove the first part, we note that by the definition of Ring-LWE
decryption,

(w − vs1)c mod q = p(rs2 + e′ − es1) + m,

which has �∞ length less than q
2C by the hypothesis of the lemma.
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To prove the second part, we first note that

(w − vs1)cc′ mod q mod p = (p(rs2 + e′ − es1) + m)c′ mod q mod p

= mc′ mod p. (17)

Then we can write

((w − vs1)c′ mod q) / c′ mod p = ((w − vs1)c′ mod q) · c/(cc′)mod p

= ((w − vs1)cc′ mod q)/(cc′)mod p

= mc′/(cc′)mod p = m/c mod p

The first equality is an identity, the second equality holds since ‖(w − vs1)c′

mod q‖∞ < q
2C and therefore multiplication by c does not cause a reduction

modulo q. The third equality follows from (17). �	
By checking that ‖(w−vs1)c mod q‖∞ < q/2C in line 6 of the Dec algorithm,

we ensure that the condition of the second part of Lemma3.1 is satisfied for
decryption, so that the value (m̄′(w−vs1)c′ mod q mod p, c′) is indeed a witness
for (B,u) ∈ L̄. This proves the soundness of our scheme.

Correctness. Correctness is straightforward because a valid encryption (see (5))
satisfies the preconditions of Lemma 3.1 with [ r̄ ; ē ; ē′ ; m̄ ] = [ r ; e ; e′ ; m ]
and c̄ = 1; and it’s clear that ‖p(rs2+e′−es1)+m‖∞ ≤ ‖p(r̄s2+ē′−ēs1)+m̄‖∞.

Completeness. Completeness follows from the completeness of the proof system
of Sect. 2.6.

Simulatability. The simulator Sim creates a Ring-LWE encryption [ v ; w ] of
m = 1 using the scheme of Sect. 2.5 and runs the zero-knowledge simulator for
the proof system of Sect. 2.6 to create a valid-looking proof (c, z) for (B,u). The
indistinguishability from the real proof follows from the IND-CPA security of
Ring-LWE encryption and the zero-knowledge property of the proof system.

3.5 Decryption Running Time

Even though the running time of the decryption algorithm is unbounded in
principle, we show that its expected running time is proportional to the number
of times that the adversary queries the random oracle. More precisely, we show
that if an adversary uses qH random-oracle queries to construct a ciphertext,
then the probability that the decryption algorithm requires more than α · qH
iterations is less than 1/α.

We prove the above information-theoretic statement for any adversary A,
and we can therefore limit the analysis to deterministic adversaries, since the
coins that maximize the adversary’s success can always be hardwired into its
code.
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Lemma 3.2. For a given key pair (pk , sk) ∈ Kg(1λ), consider the following
experiment with an adversary A:

(x, t) $← AH(pk)
If V(pk , x, t) = 1 then w̄

$← Dec(sk , x, t).

Let Ĥ be the random coins of the function H (when it is modeled as a random
function) and D̂ be the random coins of the Decryption algorithm Dec. Let T
be the number of loop iterations in the execution of Dec (see Algorithm5 lines
2–10) until it produces its output w̄. Then there is an event G, such that for all
algorithms A that make at most qH − 1 queries to H, all key pairs (pk , sk), and
any positive integer f , it holds that

1. ExpĤ,D̂[ T | G ] ≤
(
1 + 1

f

)
· qH.

2. PrĤ,D̂[¬G] ≤ qH · f/|C|
ByMarkov’s inequality and optimization over f , this implies that for any positiveα,

Pr
Ĥ,D̂

[ T ≥ α · qH] ≤ 1
α

+ 2 ·
√

qH
α · |C| +

qH
|C| .

Proof. For a given public key pk , language member x = (B,u), and valid
ciphertext t = (v,w, c, z), let A and y be the matrix and vector in the ver-
ification algorithm (Algorithm 4) so that c = H(A, [ v ; w ; u ],y) and
y = Az − c[ v ; w ; u ]. Let Gt be the set of “good” challenges c′ for which a
valid zero-knowledge proof response z′ exists, i.e.,

Gt = {c′ ∈ C : ∃ z′ : y = Az′ − c′[ v ; w ; u ] ∧ ‖z′‖∞ ≤ 6σ} .

Let G be the “good” event that the adversary A produces a ciphertext t
(for the decryption algorithm) with |Gt | > f . Let D̂ denote the coins of the
decryption algorithm Dec and let Ĥ denote the coins determining the random
oracle H. For any ciphertext t, the probability over D̂ that one particular iteration
of Dec decrypts successfully, i.e., hits a good challenge c′ ∈ Gt \ {c}, is |Gt |−1

|C| .

We therefore have that the expected number of iterations for a ciphertext t is

Exp
D̂

[ T | AH outputs t ] =
|C|

|Gt | − 1

and therefore, conditioned on the event G, that

Exp
D̂

[ T | AH outputs t ∧ G ] ≤ |C|
f

. (18)
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Below, when we say that “AH outputs ti”, we mean that AH outputs a
language member x = (B,u) and a ciphertext t = (v,w, c, z) such that A’s i-th
random-oracle query is

c = H

⎛
⎝B′,

⎡
⎣v
w
u

⎤
⎦ ,B′z − c

⎡
⎣v
w
u

⎤
⎦ mod q

mod q
mod p

⎞
⎠ ,

where B′ is the matrix defined in (15). Also, for any adversary making at most
qH − 1 queries, there exists an adversary making at most qH queries that include
the above query; we consider the latter adversary A in the rest of the analysis.

Because we are conditioning on the event G, we can assume without loss
of generality that A only makes random-oracle queries for ciphertexts ti with
|Gti | > f . (It is easy to see that for any A that does not obey these rules, there
exists an adversary A′ producing the same output that does.) We now have that

Exp
Ĥ,D̂

[ T | G ] =
qH∑

i=1

Pr
Ĥ

[AH outputs ti | G ] · Exp
D̂

[ T | AH outputs ti ∧ G ] (19)

The above is true because
qH∑

i=1

Pr
Ĥ

[AH outputs ti | G ] · Exp
D̂

[ T | AH outputs ti ∧ G ]

=
qH∑

i=1

Pr
Ĥ

[AH outputs ti | G ] ·
∑

j∈Z+

Pr
D̂

[ T = j | AH outputs ti ∧ G ] · j

=
∑

j∈Z+

j ·
qH∑

i=1

Pr
Ĥ,D̂

[ T = j ∧ AH outputs ti | G ]

=
∑

j∈Z+

j · Pr
D̂,Ĥ

[ T = j | G ]

= Exp
Ĥ,D̂

[ T | G ]

For each random-oracle query that A makes for a ciphertext ti (all the cipher-
texts need not be distinct), the probability that A can output ti (over the ran-
domness Ĥ) is at most the probability that the output of the random-oracle
query is in Gti , because otherwise no valid response z exists. Thus each ti has
the probability of being output at most |Gti |/|C|, regardless of the strategy of
the adversary. Plugging this and (18) into (19), we obtain

Exp
Ĥ,D̂

[ T | G ] ≤
qH∑

i=1

|Gti |
|C| · |C|

|Gti | − 1
≤ qH · max

i=1,...,qH

( |Gti |
|Gti | − 1

)
≤ qH · (f + 1)

f
.

(20)
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By applying Markov’s inequality, we have that for any positive β,

Pr
Ĥ,D̂

[T ≥ β] = Pr
Ĥ,D̂

[T ≥ β | G ] · Pr
Ĥ,D̂

[G] + Pr
Ĥ,D̂

[T ≥ β | ¬G] · Pr
Ĥ,D̂

[¬G]

≤ ExpĤ,D̂[T | G ]

β
+ Pr

Ĥ,D̂
[¬G] (21)

It is furthermore easy to see that

Pr
Ĥ,D̂

[¬G] = 1 − Pr
Ĥ

[G] ≤ 1 −
( |C| − f

|C|
)qH

≤ qHf

|C| .

Plugging this and (20) into (21) and letting β = α · qH yields

Pr
Ĥ,D̂

[ T ≥ α · qH] ≤ 1
α

·
(

1 +
1
f

)
+

qHf

|C| .

To minimize this expression, we set f =
⌈√

|C|
αqH

⌉
, which gives us the claim in

the Lemma. �	

4 Multi-shot Verifiable Encryption – Construction
with a Bounded Decryption Time

If one would like to put a limit on how much computational time decryption
takes in the worst case, then the idea is to reduce the size of the challenge space
and repeat the proof-of-knowledge protocol from Algorithm3 in parallel α times
using the standard approach. This protocol is described in Algorithm6. The
verification procedure simply checks if all the α copies are verified correctly.

One can show that with probability approximately 1−|C|−α, there will be at

least one c for which c
[
v
w

]
is a valid ciphertext satisfying Lemma 3.1, and so one

simply needs to find it (and check its validity) analogously to the way c
[
v
w

]
was

found in Algorithm5. The main difference is that the challenge space is no longer
exponentially large, and so one can search through all the c = c(i) − c′ in time
α · |C|. This procedure is described in Algorithm 8. If one wants to also maintain
the relationship between the number of random oracle queries of the prover to
the number of decryption tries, one could “dovetail” between Algorithm8 which
systematically goes through all c′ ∈ C with one that randomly guesses them at
random.

The trade-off between having the decryption running time be upper-bounded
by α · |C| is that the proof of knowledge is now approximately α times larger.
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Algorithm 6. α-shot Verifiable encryption Enc(pk , x, w)
Input: Public key pk = (a, t, p, q), language member x = (B,u), witness w = m ∈ Sk

γ .
Challenge domain C. Cryptographic hash function H : {0, 1}∗ → Cα. Standard
deviation σ = 11 · max

c∈C
‖c‖1 ·√αkn(3 + γ)

1: r, e, e′ $← Sk
1

2:

[
v
w

]

←
[
paIk pIk 0k×k 0k×k

tI 0k×k pIk Ik

]
⎡

⎢
⎢
⎣

r
e
e′

m

⎤

⎥
⎥
⎦

mod q
mod q

3: for i = 1 to α do

4: y(i) ←

⎡

⎢
⎢
⎣

yr
(i)

ye
(i)

ye′ (i)

ym
(i)

⎤

⎥
⎥
⎦

$← DR4k,0,σ

5: f (i) ←
⎡

⎣
paIk pIk 0k×k 0k×k

tIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤

⎦

⎡

⎢
⎢
⎣

yr
(i)

ye
(i)

ye′ (i)

ym
(i)

⎤

⎥
⎥
⎦

mod q
mod q
mod p

6: end for

7: (c(1), . . . , c(α)) ← H

⎛

⎝

⎡

⎣
paIk pIk 0k×k 0k×k

tIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤

⎦ ,

⎡

⎣
v
w
u

⎤

⎦ , f (1), . . . , f (α)

⎞

⎠

8: for i = 1 to � do

9: s(i) ←

⎡

⎢
⎢
⎣

r
e
e′

m

⎤

⎥
⎥
⎦ c(i)

10: z(i) ← s(i) + y(i)

11: end for

12: s ←
⎡

⎣
s(1)

. . .

s(α)

⎤

⎦, z ←
⎡

⎣
z(1)

. . .

z(α)

⎤

⎦

13: with probability
D

R4kα,0,σ
(z)

3·D
R4kα,s,σ

(z)
, continue, else goto 3

14: if ‖z‖∞ > 6 · σ, goto 3
15: return t = (v,w, c(1), . . . , c(α), z(1), . . . , z(α))

5 Chosen-Ciphertext Security

Many applications require a verifiable ciphertext to hide the encrypted wit-
ness, even when the adversary has access to decryptions of other ciphertexts. As
a natural analog of indistinguishability under chosen-ciphertext attack (IND-
CCA) for standard public-key encryption schemes, we define chosen-ciphertext
simulatability and describe a construction that satisfies it.
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Algorithm 7. α-shot Verification V(pk , x, t)
Input: Public key pk = (a, t, p, q), language member x = (B,u), ciphertext
t = (v,w, c(1), . . . , c(α), z(1), . . . , z(α)). Cryptographic hash function H : {0, 1}∗ → Cα.
Positive real σ as in Algorithm 6.

1: z ←
⎡

⎣
z(1)

. . .

z(α)

⎤

⎦

2: if ‖z‖∞ > 6 · σ, return 0
3: for i = 1 to α do

4: f (i) ←
⎡

⎣
paIk pIk 0k×k 0k×k

tIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤

⎦ z(i) − c(i)

⎡

⎣
v
w
u

⎤

⎦
mod q
mod q
mod p

5: end for

6: if (c(1), . . . , c(α)) 	= H

⎛

⎝

⎡

⎣
paIk pIk 0k×k 0k×k

ptIk 0k×k pIk Ik

0�×k 0�×k 0�×k B

⎤

⎦ ,

⎡

⎣
v
w
u

⎤

⎦ , f (1), . . . , f (α)

⎞

⎠, return 0

7: return 1

Algorithm 8. α-shot Decryption Dec(sk , x, t)
Input: Secret key sk = s1, language member x = (B,u), ciphertext t =
(v,w, c(1), . . . , c(α), z(1), . . . , z(α)).

1: if V(pk , t , π) = 1 then
2: for i = 1 to α do
3: for all c′ ∈ C do
4: c ← c(i) − c′

5: m ← (w − vs1)c mod q
6: if ‖m‖∞ < q/2C then
7: m ← mmod p
8: return (m, c)
9: end if

10: end for
11: end for
12: end if

Our construction essentially follows the Naor-Yung paradigm [NY90] where
the sender encrypts the message twice under different public keys and adds a non-
interactive zero-knowledge (NIZK) proof that both ciphertexts encrypt the same
message. Naor and Yung only proved their approach secure under non-adaptive
chosen-ciphertext (CCA1), but Sahai [Sah99] later showed that if the NIZK proof
is simulation-sound, then the resulting encryption scheme is secure against adap-
tive chosen-ciphertext (CCA2) attacks. Faust et al. [FKMV12] showed that Fiat-
Shamir proofs are simulation-sound in the random-oracle model if the underlying
proof system has quasi-unique responses.

Furthermore, because the verifiable encryption scheme for a CPA-secure
encryption scheme already includes a NIZK, this conversion from CPA to CCA2
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security is rather cheap, increasing the size of the proof and ciphertext by factors
less than 2 (see (22)).

Chosen-ciphertext simulatability. We say that a relaxed verifiable encryption
scheme (Kg,Enc,V,Dec) is chosen-ciphertext simulatable when there exists a
simulator Sim such that the following advantage is negligible for all PPT adver-
saries A:∣∣∣∣∣Pr

[
b′ = b :

b
$← {0, 1}, (pk , sk) $← Kg(1λ), (st , x, w) $← A(pk),

t0
$← Enc(pk , x, w), t1

$← Sim(pk , x), b′ $← ADec(sk ,·,·)(st , tb)

]
− 1

2

∣∣∣∣∣ ,

where A is not allowed to query its Dec oracle on the challenge ciphertext tb. In
the random-oracle model, Sim can additionally program the random oracle.

Construction. The receiver generates a Ring-LWE key pair by choosing the
secrets s1, s′

1, s2, s
′
2

$← S1 and a $← R, and computing t1 ← as1 + s2 and t1 ←
as′

1 + s′
2. The public key is pk = (a, t1, t2, p, q), where p is modulus for proving

the linear relation. The secret key is sk = s1.
The sender encrypts a witness w = m for language member x = (B,u) by

choosing randomness (r1, e1, e′
1, r2, e2, e

′
2)

$← S6k
1 , computing

⎡
⎢⎢⎣

paIk pIk 0k×k 0k×k 0k×k 0k×k 0k×k

pt1Ik 0k×k pIk 0k×k 0k×k 0k×k Ik

0k×k 0k×k 0k×k paIk pIk 0k×k 0k×k

0k×k 0k×k 0k×k pt2Ik 0k×k pIk Ik

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1
e1
e′
1

r2
e2
e′
2

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
v1

w1

v2

w2

⎤
⎥⎥⎦

mod q
mod q
mod q
mod q

(22)

and concatenating a proof (c, z) using the relaxed NIZK proof system of Sect. 2.6
for the language element:

⎡
⎢⎢⎢⎢⎣

paIk pIk 0k×k 0k×k 0k×k 0k×k 0k×k

pt1Ik 0k×k pIk 0k×k 0k×k 0k×k Ik

0k×k 0k×k 0k×k paIk pIk 0k×k 0k×k

0k×k 0k×k 0k×k pt2Ik 0k×k pIk Ik

0�×k 0�×k 0�×k 0�×k 0�×k 0�×k B

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1
e1
e′
1

r2
e2
e′
2

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

v1

w1

v2

w2

u

⎤
⎥⎥⎥⎥⎦

mod q
mod q
mod q
mod p

. (23)

Verification of a ciphertext (v1,w1,v2,w2, c, z) is done by verifying the zero-
knowledge proof (c, z) for the language element (23). Decryption works exactly
as in Algorithm 5, using w1 instead of w.

Security. Correctness, completeness, and soundness all hold under the same
assumptions as the CPA-secure scheme in Sect. 3.4. The following theorem states
the chosen-ciphertext simulatability of the scheme. The proof can be found in
the full version.
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Theorem 5.1. If the Ring-LWE encryption scheme is IND-CPA secure and
the relaxed NIZK proof system is unbounded non-interactive zero-knowledge and
unbounded simulation-sound, then the above construction is chosen-ciphertext
simulatable.

6 Applications

6.1 Key Escrow for Ring-LWE Encryption

A verifiable escrow scheme for decryption keys [YY98,PS00] allows a key owner
to encrypt his private decryption key under the public key of a trusted authority
so that anyone can check that the ciphertext is indeed an encryption of the pri-
vate key corresponding to the owner’s public key, but only the trusted authority
can actually recover the private key. Intuitively, the owner is giving a proof that
all messages sent to his public key can also be decrypted by the trusted third
party. Note that a key escrow scheme cannot prevent parties from communicating
securely, because even when forced to use escrowed keys, the parties can choose
to double-encrypt messages under a non-escrowed key, or apply steganography
to hide the fact that they are communicating altogether. The goal, therefore, is
rather to prevent “dishonest” usage of public-key infrastructures, e.g., by using
it to certify non-escrowed keys.

We show how our verifiable encryption scheme can be used to verifiably
escrow Ring-LWE decryption keys. While, due to our relaxation of verifiable
encryption, we cannot guarantee that the trusted authority recovers the actual
decryption key, we show that whatever he recovers suffices to decrypt messages
encrypted under the corresponding public key.

Let the authority have a Ring-LWE public key t = as1+s2 mod q as described
in Sect. 2.5. Users also have Ring-LWE encryption keys, but in Rp instead of
Rq. Meaning, a secret key is a pair (m1,m2)

$← S2
1 , while the public key is

u = bm1 + m2 mod p for b $← Rp together with a prime p′ < p. Encryption and
decryption work as in regular Ring-LWE, i.e., the sender chooses r, e, e′ $← S1

and computes
v = p′(br + e)mod p
w = p′(ur + e′) + μmod p .

(24)

To decrypt, the receiver computes μ ← w − vs1 mod p mod p′.
To escrow his decryption key, the key owner creates a verifiable encryption

of his secret key m = [ m1 ; m2 ] using our scheme from Sect. 3.2 under the
authority’s public t with a proof that m is a witness for the relation

[ b 1 ]
[
m1

m2

]
= u mod p .

The soundness property of our relaxed verifiable encryption scheme guaran-
tees that the authority can decrypt a witness (m̄, c̄) such that

bm̄1 + m̄2 = c̄u mod p .
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The authority can decrypt an honestly generated ciphertext of the form (24) by
computing

c̄w − vm̄1 mod p = c̄p′(ur + e′) + c̄μ − p′(br + e)m̄1 mod p

= p′((bm̄1 + m̄2)r + c̄e′) + c̄μ − p′(bm̄1r + em̄1)mod p

= p′(m̄2r + c̄e′ − em̄1) + c̄μmod p

from which μ can be recovered by reducing modulo p′ and then dividing by c̄
modulo p′ (note that it is important that p′ is chosen such that all differences of
challenges in the challenge space are invertible), as long as the parameters are
chosen such that ‖p′(m̄2r + c̄e′ − em̄1) + c̄μ‖∞ < p/2.

6.2 Verifiably Encrypted Signatures

Suppose two parties want to engage in a contract together and exchange signa-
tures on the agreed contract. Neither of the parties wants to be the first to send
his signature, however, fearing that the other party may not reciprocate and
hold the first party liable to the conditions in the contract, without being held
liable himself. Fair signature exchange protocols [ASW00,BDM98] ensure that
no party can obtain a significant advantage over the other party by aborting the
protocol early.

Verifiably encrypted signatures [ASW00,BDM98,BGLS03] are an important
tool to build optimistic fair exchange protocols. The first party initially sends
his signature encrypted under the key of a trusted adjudicator such that the
other party can verify that the ciphertext indeed contains a valid signature on
the agreed contract, but cannot recover the signature itself. The second party
responds by sending his signature, after which the first party also sends over his
signature. In case the first party refuses to send his signature in the last step,
the second party can contact the adjudicator to have the encrypted signature
from the first decrypted.

We show how our relaxed verifiable encryption scheme can be used to build
verifiably encrypted signatures for the ring-based variant of Gentry-Peikert-
Vaikuntanathan (Ring-GPV) signature scheme [GPV08] based on the hardness
of the Ring-SIS or NTRU problems [SS11,DLP14]. Here, the signer’s public key
is a polynomial b ∈ Rp, while the secret key is a trapdoor allowing to find, for
a given u ∈ Rp, short polynomials m1,m2 such that bm1 + m2 = u. A signa-
ture on a message μ in the usual scheme is a short vector (m1,m2) such that
bm1 + m2 = H(μ)mod p, where H : {0, 1}∗ → Rp is a random oracle. It is easy
to show, however, that the scheme remains secure if one relaxes the verifica-
tion algorithm to accept any tuple of short polynomials (m1,m2, c) such that
bm1 + m2 = cH(μ)mod p.

In the usual security proof, when the adversary produces a forgery, bm1 +
m2 = H(μ)mod p, the simulator already possesses another equality bm′

1+m′
2 = H

(μ)mod p, and thus obtains a solution to Ring-SIS as b(m1 −m′
1)+(m2 −m′

2) =
0mod p. If, on the other hand, the adversary produces a forgery bm1 + m2 =
cH(μ)mod p, then the simulator can obtain the equation b(cm1 − m′

1) + (cm2 −
m′

2) = 0mod p, which is still a (slightly longer) solution to Ring-SIS.
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For this modified signature scheme that we build a verifiably encrypted sig-
nature scheme using our CCA-secure relaxed verifiable encryption scheme from
Sect. 5. Namely, to encrypt an honest signature (m1,m2, 1) under the adju-
dicator’s public key, one encrypts the witness m = [ m1 ; m2 ] with the
encryption scheme from Sect. 5 while proving that [ b 1 ] m = H(μ)mod p.
When the adjudicator decrypts the signature, it recovers (m̄, c̄) such that
[ b 1 ] m̄ = c̄H(μ)mod p, which is also a valid signature on μ. Unforgeabil-
ity follows from the unforgeability of the relaxed Ring-GPV scheme, while the
security against extraction follows from the security of Ring-LWE encryption.

6.3 Other Applications

One of the most prominent applications of verifiable encryption is in group sig-
natures [CvH91], where group members can sign anonymously in name of the
entire group, but their anonymity can be lifted by a dedicated opening authority.
A common construction paradigm [CL06,BCK+14] is to let a user’s signing key
consist of a signature by the group manager on the user’s identity. To sign a
message, the user encrypts his identity under the public key of the opener and
creates a NIZK proof of knowledge of a valid signature for the encrypted identity.
To recover the identity of the signer, the opener simply decrypts the ciphertext
included in the signature.

Our verifiable encryption scheme could be very useful to group signatures in
principle, what is missing is a practical signature scheme where the message m
and the signature s are short vectors for which the verification equation can be

expressed as a linear relation B
[
m
s

]
= u.

7 Concrete Parameters

In this section we give some sample concrete instantiations of proofs of plain-
text knowledge and verifiable encryption schemes (see Table 1). We express the

Table 1. Sample parameter sets for the verifiable encryption scheme

I II III

n 1024 2048 2048

k 1 2 2

p 13 215 230

‖m‖∞ 1 1 218

σ 25344 50688 ≈ 223.6

q ≈ 234 ≈ 247 ≈ 270

gamma factor ≈ 1.0046 ≈ 1.0033 ≈ 1.0052

proof size 9 KB 38 KB 54 KB

Ciphertext size 9 KB 48 KB 71 KB
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security of each scheme in terms of the “gamma factor” from [GN08]. Values of
1.01 can be broken today, 1.007 seem to be fairly secure (conjectured at least
80-bits), and those less than 1.005 are believed to require more than 2128 time
even for quantum computers. There have been some other attacks considered
(e.g. in [ADPS16]), but those require as much memory as time, and are at this
point not as useful in practice as variations of lattice-reduction attacks based
on LLL (e.g. [CN11]). It is of course possible that attacks that are currently
impractical can be made more practical, and at that point the concrete para-
meters (for all lattice-based schemes) would have to be adjusted. But the ratio
between parameter sizes for verifiable encryption and regular encryption (and
zero-knowledge authentication) should remain the same. One caveat would be
if the algorithms for “overstretched” NTRU would become applicable to Ring-
LWE. It was recently shown that when the modulus in NTRU is larger than
the secrets by a sub-exponential (i.e. 2O(

√
d), where d is the lattice dimension)

factor, then the NTRU problem becomes easy [ABD16,CJL16,KF16]. This is in
contrast to LWE and Ring-LWE, for which efficient algorithms are only known
in the case that the modulus is 2ω(d)). If these attacks are transferred to the
Ring-LWE setting, then this would have implications toward all constructions
(e.g. those in this paper, most FHE schemes based on Ring-LWE, etc.) in which
the secrets are significantly smaller than the modulus.

Our schemes are instantiated from the Ring-LWE cryptosystem where we
take the secret and error parameters to be from the set {−1, 0, 1}. While the
worst-case to average-case hardness of Ring-LWE (and LWE) was only proven
with larger parameters [Reg09,LPR13], there haven’t been any weaknesses found
when constructing public-key encryption schemes with smaller errors. In particu-
lar, the part of the NTRU cryptosystem [HPS98] that is based on the Ring-LWE
assumption has never been attacked due to having secret and error vectors hav-
ing coefficients from the set {−1, 0, 1}. The most practical attacks is still to
rewrite the Ring-LWE instance as a lattice problem and apply lattice reduction.

For all the parameter sets, we analyze the hardness of recovering the vector
[r; e; e′; m] in (11). In column I, we give parameters for a proof of plaintext
knowledge where there is no message m. The exact parameters for verifiable
encryption will of course depend on the parameters of the relation in (9). In
columns II and III, we give the parameters that are large enough to instantiate
the two example cases in Sect. 6. All the parameters are as defined in Algorithm3
with the value of q is taken so as to satisfy (16) in the statement of Lemma 3.1
which is required for the decryption algorithm to function correctly. We point
out that in the application to key escrow, there is also an encryption in the
key escrow itself. But because that encryption works over modulus p, which is
smaller than q, the hardness of breaking it is at least as hard as breaking the
verifiable encryption scheme.
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Abstract. The worst-case hardness of finding short vectors in ideals
of cyclotomic number fields (Ideal-SVP) is a central matter in lat-
tice based cryptography. Assuming the worst-case hardness of Ideal-
SVP allows to prove the Ring-LWE and Ring-SIS assumptions, and
therefore to prove the security of numerous cryptographic schemes and
protocols — including key-exchange, digital signatures, public-key
encryption and fully-homomorphic encryption.

A series of recent works has shown that Principal Ideal-SVP is
not always as hard as finding short vectors in general lattices, and
some schemes were broken using quantum algorithms — the Solilo-
quy encryption scheme, Smart-Vercauteren fully homomorphic encryp-
tion scheme from PKC 2010, and Gentry-Garg-Halevi cryptographic
multilinear-maps from Eurocrypt 2013.

Those broken schemes were using a special class of principal ideals,
but these works also showed how to solve SVP for principal ideals in
the worst-case in quantum polynomial time for an approximation fac-
tor of exp(Õ(

√
n)). This exposed an unexpected hardness gap between

general lattices and some structured ones, and called into question the
hardness of various problems over structured lattices, such as Ideal-SVP
and Ring-LWE.

In this work, we generalize the previous result to general ideals. Pre-
cisely, we show how to solve the close principal multiple problem (CPM)
by exploiting the classical theorem that the class-group is annihilated
by the (Galois-module action of) the so-called Stickelberger ideal. Under
some plausible number-theoretical hypothesis, our approach provides a
close principal multiple in quantum polynomial time. Combined with
the previous results, this solves Ideal-SVP in the worst case in quantum
polynomial time for an approximation factor of exp(Õ(

√
n)).

Although it does not seem that the security of Ring-LWE based cryp-
tosystems is directly affected, we contribute novel ideas to the crypt-
analysis of schemes based on structured lattices. Moreover, our result
shows a deepening of the gap between general lattices and structured
ones.
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1 Introduction

The problem of finding the shortest vector of a Euclidean lattice (the short-
est vector problem, or SVP) is a central hard problem in complexity theory.
Approximated versions of this problem (approx-SVP) have become the theoreti-
cal foundation for many cryptographic constructions thanks to the average-case
to worst-case reductions of Ajtai [Ajt99] — a classical reduction from approx-
SVP to the Short Integer Solution (SIS) problem — and Regev [Reg05] — a
quantum reduction from approx-SVP to Learning with Errors (LWE).

For efficiency reasons, it is tempting to rely on structured lattices, in partic-
ular lattices arising as ideals or modules over certain rings, the earliest example
being the NTRUencrypt1 proposal from Hoffstein et al. [HPS98]. Later on,
variations on these foundations were also considered.

Precisely, the Ring-SIS [Mic02,LM06,PR06] and Ring-LWE [SSTX09,
LPR10] problems were introduced, and shown to reduce to worst-case instances
of Ideal-SVP, a specialization of SVP to ideals viewed as lattices. Both prob-
lems Ring-SIS and Ring-LWE have shown very versatile problems for building
efficient cryptographic schemes upon.

The typical choices of rings for Ring-SIS, Ring-LWE and Ideal-SVP are the
ring of integers of a cyclotomic number field of conductor m, that is K = Q(ωm),
of degree n = ϕ(m), where ωm is a complex primitive m-th root of unity. This
choice further ensures the hardness of the decisional version of Ring-LWE under
the same worst-case Ideal-SVP hardness assumption [LPR10].

Attack on Principal Ideals. For some time, it seemed plausible that the
structured versions of lattice problems should be just as hard to solve as the
unstructured ones: only some (almost) linear-time advantages were known. This
was challenged by a claim of Campbell et al. [CGS14]: a quantum polynomial-
time attack against their schemes Soliloquy. The attack also applies to the
fully-homomorphic encryption scheme of [SV10] and the cryptographic multilin-
ear maps candidates [GGH13,LSS14], as they all share a common key generation
procedure, describe below.

For the secret key, choose an integral element g ∈ OK with small distortion,
i.e. a g ∈ OK such that

maxσ |σ(g)|
minσ |σ(g)| ≤ poly(n) (1)

where σ ranges over the n complex embeddings K �→ C. A corresponding public
key consists of the ideal I = (g), described by a “bad” Z-basis (e.g. a Z-basis in
Hermite normal form).

The attack consists of two steps, sketched in [CGS14]. First, using a quantum
computer, it should be possible to solve the Principal Ideal Problem (PIP): given
I ⊂ OK find h ∈ OK such that I = (h). Second, a (classical) close-vector

1 Proposal which is not supported by a worst-case hardness argument, but a variant
is [SS11].
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algorithm in the log-unit lattice Log O×
K should allow to recover the secret key2

g from h. Both steps are claimed to be polynomial time.
While the analysis of the quantum step was unclear3, such a result

seemed plausible considering the recent breakthrough on the Hidden Subgroup
Problem over Rn by Eisentrager et al. [EHKS14] including efficient quan-
tum unit-group computation. And indeed Biasse and Song [BS16] general-
ized [EHKS14] to S-unit-group computation, allowing in particular to solve PIP
[BS16, Theorem 1.3].

The claimed correctness of the short generator recovery step also raised ques-
tions: unless a particularly orthogonal basis of the log-unit lattice Log O×

K is
known, this step should take exponential time. It was already noticed [GGH13,
Full version, pp. 43] that the log-unit lattice could be efficiently decoded up to
a radius of n−O(log log n) thanks to the Gentry-Szydlo algorithm [GS02], but
this is far from sufficient. Yet, the claim that it can be done in polyno-
mial time was quickly supported by convincing numerical experiments [Sch15].
And indeed, by analyzing the geometry of cyclotomic units, Cramer et al.
[CDPR16, Theorem 4.1] proved that the decoding-radius given by a basis of
such units is in fact much better.

A second result of Cramer et al. [CDPR16, Theorem 6.3] analyses how good of
an approximation of the shortest vector is obtained in the worst-case, i.e. without
condition (1). Using a variation on the algorithm of [CGS14], they prove that
from any generator h of I, one can efficiently find a generator g of euclidean
length (NI)1/n · exp(Õ(

√
n)). Combined with [BS16], this solves in quantum

polynomial time the Short Vector Problem over principal ideals in the worst-
case for an approximation factor γ = exp(Õ(

√
n)).

Claim 1 ([BS16, Theorem 1.3] Combined with [CDPR16, Theorem 6.3]).
There exists a quantum polynomial time algorithm PrincipalIdealSVP(a),
that given an ideal of OK for K a cyclotomic number field of prime power conduc-
tor, returns an generator v ∈ a of Euclidean norm ‖v‖ ≤ (Na)1/n · exp(Õ(

√
n)).

In particular, v is a solution to Ideal-SVP for an approximation factor γ =
‖v‖/λ1(a) = exp(Õ(

√
n)) where λ1(a) denotes the length of the shortest vector

of a.

It is also shown [CDPR16, Lemma 6.2] that this result is tight up to a
polylog(n) factor in the exponent: the shortest generator is typically larger than
the shortest element by a factor exp(Õ(

√
n)).

Impact and Limitatioms of the Attack on Principal Ideals. Whereas
some cryptosystems were broken by this quantum attack, the current limitations
of this approach to tackle more standard problems as Ring-LWE are three-fold.

(i) First, it is restricted to principal ideals, while Ring-SIS and Ring-LWE rely
on worst-case hardness of SVP over general ideals.

2 Up to a root of unity.
3 And even challenged [BS16, Sect. 6].
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Fig. 1. Best known (quantum) time–approximation factor tradeoffs to solve approx-
SVP in arbitrary lattices (on the left) and in principal ideal lattices (on the right), in
the worst case. The approximation factors of (ideal)-SVP used to build cryptography
upon are typically between polynomial poly(n) and quasi-polynomial exp(polylog(n)).

(ii) Second, the approximation factor γ = exp(Õ(
√

n)) in the worst-case is
asymptotically too large to affect any actual Ring-LWE based schemes even
for advanced cryptosystems such as the state of the art fully homomorphic
encryption schemes (see [BV11,DM15]).

(iii) Third, Ring-LWE is known to be at least as hard as Ideal-SVP but not
known to be equivalent.

But it does show an asymptotic gap between the search of mildly short vectors
in general lattices and in certain structured lattices (see Fig. 1), and calls for a
more thorough study of the hardness assumption over structured lattices. This
work addresses the first of them.

1.1 Contributions

This work provides strong evidence that the general case of Ideal-SVP is not
harder than the principal case for similar approximation factors. As a conse-
quence, the approximation factors reachable in quantum polynomial time appear
to be significantly smaller in arbitrary ideals of cyclotomic fields of prime-
power conductor than known for general lattices, dropping from exp(Θ̃(n)) to
exp(Θ̃(

√
n)).
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Main Result (Under GRH, Assumptions 1 and 2). There exists a quantum
polynomial time algorithm IdealSVP(a), that given an ideal of OK for K a
cyclotomic number field of prime power conductor, returns an element v ∈ a of
Euclidean norm ‖v‖ ≤ (Na)1/n · exp(Õ(

√
n)).

In other words, Ideal-SVP is solvable in quantum polynomial time in cyclo-
tomic number fields for an approximation factor γ = exp(Õ(

√
n)).

The strategy consists in reducing the problem over general ideals to that over
principal ideals, for cyclotomic fields of prime-power conductor m. We show that
under some number-theoretic assumptions, it is possible to solve the close princi-
pal multiple (CPM) problem in quantum polynomial time for an a good enough
approximation factor. More precisely, the CPM problem consists in finding a
principal ideal c ⊂ a for an arbitrary ideal a, such that the algebraic norm of
c is not much larger than the norm of a, say up to a factor exp(Õ(n1+c)). We
will argue that one can reach c = 1/2, yet, any c < 1 will provide a better
time-approximation factor tradeoff than the generic algorithms LLL and BKZ.

Our main tool to solve CPM is the classical theorem that the class-group
is annihilated by the Galois-module action of the so-called Stickelberger ideal:
it provides explicit class relations between an ideal and its Galois conjugates.
An important fact is that this Stickelberger ideal has many short elements and
that these can be explicitly constructed (see for example [Sch10]). This leads to
a quantum polynomial time algorithm to solve CPM for a factor exp(Õ(n1+c)),
where the constant c depends on how many Galois orbits of prime ideals are used
to generate the (minus part of the) class group. It remains to apply the short
generator recovery to c to find a short vector of a, approximating the shortest
vector by a factor exp(Õ(nmax(1/2,c))).

We follow the notations of Fig. 1. If the exponent c can be made strictly
smaller than 1, this gives a non-trivial result compared to generic lattice algo-
rithms (see [Sch87,GN08]): we get t = 0 for any a ≥ max(1/2, c), and in partic-
ular a+ t < 1, against a+ t = 1 for generic algorithms. If c can be made as small
as 1/2, then the asymptotic tradeoffs for Ideal-SVP are as good as the tradeoffs
for Principal-Ideal-SVP.

Concluding formally on which value of c can be achieved is not straightfor-
ward, as it relies on the structure of the class group ClK as a Z[G]-module (see
Sect. 2.3). Based on computations of the class group structure of Schoof [Sch98]
and a heuristic argument, we strongly believe it is plausible that c = 1/2 is
reachable at least for a dense family of conductors m, if not all. This leads to
the main result stated above.

1.2 Impact, Open Questions and Recommendations

To the best of our knowledge, this new result does not immediately lead to an
attack on any proposed scheme, since most of them are based on Ring-LWE:
obstacles (ii) and (iii) remain. Each of this obstacle leaves a crucial open crypt-
analytic questions.
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– The first question is whether the γ = exp(Õ(
√

n)) approximation factors can
be improved, potentially increasing the running time. One could for example
consider many CPM solutions rather than just one, and hope that one of them
leads to a much shorter vector.

– The second is whether an oracle for Ideal-SVP (an approx-SVP oracle for
modules of rank 1) can be helpful to solve Ring-LWE, which can be summa-
rized as an “unusually-Short Vector Problem” over a module of rank 3. Note
that the natural approach of using LLL generalized to other rings as done by
Napias [LLL82,Nap96] fails since only the ring of integers of a few cyclotomic
fields of small conductor are Euclidean [Len75].

Despite those two serious obstacles to attack Ring-LWE based schemes by
the algebraic approach developed in [CGS14,BS16,CDPR16] and in this paper,
it seems a reasonable precaution to start considering weaker structured lattice
assumptions, such as Module-LWE [LS15] (i.e., an “unusually-Short Vector Prob-
lem” in a module of larger rank over a smaller ring), which provides an interme-
diate problem between ring-LWE and general LWE.

It is also possible to consider other rings, as done in [BCLvV16]. Yet, the
latter proposal surprisingly relies on the seemingly stronger NTRU assumption
(“unusually-Short Vector Problem” over modules of rank 2). In the current state
of affairs [KF16], there seems to be an asymptotic hardness gap between NTRU
and Ring-LWE, whatever the ring4, and down to quite small polynomial approxi-
mation factors. Should the concrete security claims of [BCLvV16] not be directly
affected, the same reasonable precaution principle should favor weaker assump-
tions, involving modules of a larger rank.

2 Overview

2.1 Notations and Reminders

Throughout this paper, let m be a prime power, ωm ∈ C be a complex primitive
m-th root of unity, and K = Q(ωm) be the cyclotomic number field of conductor
m. It is a number field of degree n = ϕ(m) = Θ(m). Let G denote its Galois
group over Q and τ ∈ G denotes the complex conjugation. We recall that the
discriminant ΔK of K asymptotically satisfies log |ΔK | = O(n log n).

Ideals as Lattices. The field K is endowed with a canonical Hermitian vector
space structure via its Minkowsky embedding. Concretely, its inner product is
defined via the trace map Tr : K → Q by 〈a, b〉 = Tr(aτ(b)), and the associated
Euclidean norm is denoted ‖ · ‖ : a �→ 〈a, a〉 = Tr(aτ(a)).

The ring of integers of K is denoted OK and in the cyclotomic case is simply
given by OK = Z[ωm]. Any ideal h of OK can be viewed as a Euclidean lattice
via the above inner-product. The algebraic norm of an ideal h is written Nh.
4 This actually seems to hold even without any commutative ring structure, i.e., when

comparing “matrix-NTRU” to regular LWE.
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The volume of h as a lattice relates to its algebraic norm by Vol(h) =
√|ΔK |Nh.

The length λ1(h) of the shortest vector of h is determined by its algebraic norm
up to a polynomial factor:

1
poly(n)

N(h)1/n ≤ λ1(h) ≤ poly(n)N(h)1/n.

The right inequality is an application of Minkowsky’s second theorem, whereas
the left one follows from the fact that the ideal vOK generated by the shortest
vector v of h is a multiple (a sub-ideal) of h, and that Vol(vOK) ≤ ‖v‖n.

Class Group. The class group ClK = IK/PK of K is the quotient of the
(abelian) multiplicative group of fractional ideals IK by the subgroup of frac-
tional principal ideals. We denote [h] ∈ ClK the class of an ideal h. The trivial
class [OK ] is the class of principal ideals. Given two ideals h and f, we write h ∼ f
if they have the same class. The class group is written multiplicatively.

The class number hK = |ClK | is the order of the class group. Loosely speak-
ing, the class group measures the lack of principality of the ring OK . In partic-
ular, the class group is trivial (hK = 1) if and only if OK is a principal ideal
domain. This holds only for finitely many conductors m ≥ 1 and, more precisely,
we know that log hK = Θ(n log m) [Was12, Theorem 4.20].

2.2 Overview

It has been shown [CGS14,BS16,CDPR16] (under reasonable assumptions) that
given an arbitrary principal ideal a ⊂ OK , one can recover in quantum polyno-
mial time an element g ∈ a (in fact a generator of a, i.e. such that a = gOK)
such that ‖g‖ ≤ (Na)1/n ·exp(Õ(n1/2)). Our goal is to reduce the case of general
ideals to the case of principal ideals.

The Close Principal Multiple Problem (CPM). To do so, a folklore app-
roach is to search for a reasonably close multiple c = ab of a that is principal; in
other words, one searches for a small integral ideal b such that b ∼ a−1. If such
an ideal b with norm less than exp(Õ(n1+c)) for some constant c > 0 is found,
this implies, by the aforementioned results, that one can find a generator g of c
such that

‖g‖ ≤ (Nc)1/n · exp
(
Õ

(
n1/2

))

≤ (Na)1/n · (Nb)1/n · exp
(
Õ

(
n1/2

))

≤ (Na)1/n · exp
(
Õ

(
nmax(1/2,c)

))
.

Because g ∈ c ⊂ a, one has found a short vector of a, larger than the shortest
vector of a by a sub-exponential approximation factor exp(Õ(nmax(1/2,c))). This
is asymptotically as good as the principal case when c = 1/2, and better than
LLL for any c < 1.
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CPM as a Close Vector Problem. Before searching for a solution to the CPM
problem, let us discuss wether a exp(Õ(n1+c))-close principal multiple exists in
general. A positive answer follows from the results of [JW15, Corrolary 6.5]5

setting a prime factor basis B = {p | Np ≤ n4+o(1)}, for any class C ∈ ClK , there
exists a non-negative small solution e ∈ ZB

≥0 to the class equation [
∏

pep ] = C,
of 
1-norm ‖e‖1 ≤ O(n1+o(1)). This proves, assuming GHR, the existence of a
solution b =

∏
pep to the CPM problem as small as exp(Õ(n1+c)) for c = o(1).

The previous argument is based on the analysis of the expander properties
of certain Caley graphs on the class group. For our purpose, existence is not
enough, as we wish to efficiently find a close principal multiple. We instead
write the class group using lattices. If the factor basis B generates the whole
class group, then one may rewrite ClK  ZB/Λ where Λ is the lattice of class
relations: Λ = {e ∈ ZB|[∏ pep ] = [OK ]}. Otherly said, Λ ⊂ ZB is the kernel of
the surjection μ : ZB � ClK . In fact, it will be enough to consider any full-rank
sublattice Γ ⊂ Λ of class relations, i.e. any subgroup Γ ⊂ Λ of finite index.

The CPM problem can now be rephrased as a close vector problem: given a
class C = [a]−1 ∈ ClK , one first use the Biasse-Song quantum algorithm [BS16]
to compute a representative of that class α ∈ ZB in base B (see Proposition 2),
that is an α such that μ(α) = C. Then one reduces this representation, by
searching for a lattice vector β ∈ Γ close to α. Note that μ(α − β) = μ(α) = C.
This provides a solution6 b =

∏
pαp−βp , of norm at most B‖α−β‖1 , where B is

a bound such that Np ≤ B for every p ∈ B. It is therefore sufficient to find an
appropriate factor basis together with a good basis of the lattice of relations Γ
to attack this problem. The condition over Γ to be of full-rank is necessary to
have any guarantee on the length of the reduced representative α − β.

The Stickelberger Ideal: Class Relations for Free. For this discussion, let
us assume for now that the class group can be generated by a single ideal of
small norm and its conjugates: B = {pσ = σ(p)|σ ∈ G} and Np = poly(n).

Stickelberger’s theorem will provide explicit class relations between any ideal
h and its conjugates. More precisely, consider the group ring Z[G], which natu-
rally acts on OK-ideals as follows:

hs =
∏
σ∈G

hsσ·σ =
∏
σ∈G

σ(h)sσ where s =
∑
σ∈G

sσ · σ ∈ Z[G].

Stickelberger gave an explicit construction of a Z[G]-ideal S ⊂ Z[G] that annihi-
lates the class group, i.e. hs ∼ OK (i.e., hs is principal) for any ideal h ⊂ OK and
any element s ∈ S. Forgetting the multiplicative structure of Z[G] directly gives
a lattice of class relations μ(S) ⊂ ZB by the canonical morphism of Z-modules
κ : Z[G] → ZB, sending σ to the canonical vector 1pσ .

5 The earlier result of [JMV09, Corrolary 1.3] is not sufficient as it does not keep track
of the dependence on the degree of the number fields, left hidden in the constants.

6 One notes that this solution is not integral as desired, yet getting rid of negative
exponents will be easy, at least in the relative class group Cl−K .
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A technical issue is that the Stickelberger ideal is not of full rank in Z[G]
as a Z-module, so needs to be extended7 in order to serve as the lattice of
relations Γ . This can be resolved by working only with the minus part Cl−K of
the class group, i.e., the relative class group of K over the maximal real subfield
K+. More formally, Cl−K is the kernel of the morphism ClK → ClK+ induced
by the relative norm map NK/K+ : h �→ hhτ . This subgroup Cl−K ⊂ ClK is
annihilated by the augmented Stickelberger ideal S′ = S + (1 + τ)Z[G]. For this
discussion, let us just assume that ClK+ is trivial, so that the whole class group
ClK = Cl−K is annihilated by the augmented Stickelberger ideal S′.

The Geometry of the Stickelberger Ideal. An important fact is that this
ideal has many short elements and that these can be explicitly constructed —
this remark is certainly not new, at least for prime conductors [Sch10]. Under
our simplifying assumption that B = {pσ | σ ∈ G} generates ClK , and the
additional assumption that the plus part of the class group ClK+ is trivial, this
approach will allow to solve the close multiple problem within a norm bound

exp
(
Õ

(
n3/2

))
.

Sufficient Conditions. In the result sketched above, we made two simplifying
assumptions. We now sketch how those assumptions can be relaxed, and provide
evidences for the relaxed assumptions. Those assumptions and their supporting
evidences will be detailed in Sect. 2.3.

Triviality of ClK+ . One assumption was that the plus part ClK+ of the class
group is trivial. In fact, we can rather easily handle a non-trivial plus-part as
long as h+

K = |ClK+ | = poly(n), using rapid-mixing properties of some Cayley
graphs on ClK+ . And since h+

K is the class number of a totally real number
field, it is actually expected to be small. This assumption is already present
in [CGS14,CDPR16], and is supported by numerical evidences ([Was12, p. 420,
Table 4], computed by Schoof [Sch89]), and by arguments based on the Cohen-
Lenstra heuristic [BPR04].

Knowledge of a Z[G]-generator of Cl−K . The other assumption was that we know
of a factor basis of Cl−K of the form B = {pσ = σ(p) | σ ∈ G} for a single ideal
p of small norm Np = poly(n). Otherly said, we know of a small norm ideal
p ⊆ OK such that [p] is a Z[G]-generator of Cl−K .

This assumption can also be relaxed. We may allow a few primes and their
conjugates in the factor basis. Assuming one knows a factor basis B = {pσ

i |
σ ∈ G, i = 1, . . . , d} composed of d Galois orbits, (with Npi ≤ poly(n)) that
generates Cl−K , our approach leads to solving the close principal multiple problem
within a norm bound

exp
(
Õ

(
d · n3/2

))
.

7 If a lattice is not of full rank, no close-vector algorithm can guarantee any distance
bound, as any fundamental domain is unbounded.
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This leads to solving approximate Ideal-SVP with a better approximation factor
than pure lattice reduction for any class of conductors m ∈ Z whenever one can
build a factor basis of size d = Õ(na) for an a < 1/2.

Therefore, the crux of the matter is about how small of a factor basis B
can be built8. The structure of the class group Cl−K remains quite elusive, but it
appears that it admits a very small minimum number of generators as a Z[G]-
module. Schoof [Sch98] computed that for all prime conductors m ≤ 509, Cl−K
is Z[G]-cyclic (i.e., it is generated by a single element as a Z[G]-module). This
property is sufficient to argue that one can efficiently find a small generating
set and reach c = 1/2, under the heuristic that classes of small random ideals
behave similarly to uniformly random classes. Even if the minimal number of
generators is not always 1 but still small, say O(nε) for some ε > 0, this heuristic
allows to reach c = 1/2 + ε.

2.3 Assumptions

Our main result is conditionned on two assumptions concerning the asymptotic
structure of the class group, sketched above and stated below. Of course, if those
statement were to not hold for all prime power conductors m, our result remains
meaningful if both assumptions simultaneously hold for a common infinite class
of conductors, such as M� = {m = 
e | e ≥ 0} for a fixed prime 
. We also note
that the second assumption can be weakened from d = polylog(n) to d = nε for
any ε < 1/2 to reach a non trivial approximation factor γ = exp(Õ(n1/2+ε)).

The Real Class Number. The first assumption concerns the size h+
K of the

class group of the real subfield K+, and is already used in [CGS14,CDPR16].
For any integer m, let h+(m) be the class number of the maximal totally real
subfield of the cyclotomic field of conductor m.

Assumption 1. For prime powers m, it holds that h+(m) ≤ poly(n).

The literature on h+
K provides strong theoretical and computational evidence

that it is indeed small enough. First, the Buhler, Pomerance, Robertson [BPR04]
formulate and argue in favor of the following conjecture, based on Cohen-Lenstra
heuristics.

Conjecture 1 (Buhler, Pomerance, Robertson [BPR04]). For all but
finitely many pairs (
, e), where 
 is a prime and e is a positive integer, we
have h+(
e+1) = h+(
e).

A stronger version for the case 
 = 2 was formulated by Weber.

8 Note that, as a computational problem, this task is non-uniform. That is, it must be
ran once for each conductor m of interest, but does not need to be re-run for each
CPM instance in OK . A proof of existence of such a factor basis would already have
a consequence in a complexity theoretic perspective. We however heuristically argue
in Sect. 2.3 that a good basis can actually be found efficiently.



334 R. Cramer et al.

Conjecture 2 (Weber’s Class Number Problem). For any e, h+(2e) = 1.

A direct consequence of Conjecture 1 is that for fixed 
 and increasing e,
h+(
e) is O(1), implying that Assumption 1 holds over the class M�.

But even for increasing primes 
, h+(
) itself is also small: Schoof [Sch03]
computed all the values of h+(
) for 
 < 10, 000 (correct under heuristics of
type Cohen-Lenstra, and Miller proved in [Mil15] its correctness under GRH at
least for the primes 
 ≤ 241). According to this table, for 75.3% of the primes

 < 10, 000 we have h+(
) = 1 (matching Schoof’s prediction of 71.3% derived
from the Cohen-Lenstra heuristics). All the non-trivial values remain very small,
as h+(
) ≤ 
 for 99.75% of the primes.

Constructing Small Factor Bases of Cl−K . This assumption is arguably
new, and can be read as a strengthened version of a Theorem of Bach [Bac90,
Theorem 4] and its generalizations from [JMV09] and [JW15, Corrolary 6.5].

Assumption 2. There are integers d ≤ polylog(n) and B ≤ poly(n) such that
the following holds. Choose uniformly at random d prime ideals p1, . . . , pd among
the finitely many ideals p satisfying Np ≤ B and [p] ∈ Cl−K . Then, the factor
basis B = {pσ

i | σ ∈ G, i = 1 . . . d} generates Cl−K with probability at least 1/2.

To argue for this assumption, we prove (Proposition 1) that if Cl−K can be
generated by r ideal classes, then r · polylog(n) many uniformly random classes
in Cl−K will generate it.

Proposition 1. Let K be a cyclotomic field of conductor m, with Galois group
G and relative class group Cl−K . Let r be the minimal number of Z[G]-generators
of Cl−K . Let α ≥ 1 be a parameter, and s be any integer such that

s ≥ r(log2 log2(h
−
K) + α)

(note that log2 log2(h
−
K) ∼ log2(n)). Let g1, . . . , gs be s independent uniform

elements of Cl−K . The probability that {g1, . . . , gs} generates Cl−K as a Z[G]-
module is at least exp

(− 3
2α

)
= 1 − O(2−α).

The proof is deferred to AppendixA.
To justify Assumption 2, we first argue that r is admittedly as small as

polylog(n). For the case m = 2e, this can be argued by just looking at the
value of h−(2e) computed up to e = 9 in [Was12, Table 3]. These values are
square-free, so Cl−K is Z-cyclic and therefore Z[G]-cyclic; in other words, r = 1.
The case of prime conductors was also studied by Schoof [Sch98]: he proved that
Cl−K is Z[G]-cyclic for every prime conductor m ≤ 509; again, r = 1.

While it is unclear that this cyclicity should be the typical behavior asymp-
totically, it seems reasonable to assume that r remains as small as polylog(n),
at least for a dense class of prime power conductors.

Once it is admitted that r ≤ polylog(n), Assumption 2 simply assumes that
Proposition 1 remains true when imposing that the random classes g1 . . . gs are
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chosen as the classes of random ideals of small norm, i.e. gi = [pi] where Npi ≤
poly(n). This restriction on the norms seems reasonable considering that it has
been proven that prime ideals of norm poly(n) are sufficient to generate Cl−K ,
assuming GRH and Assumption 1 (see [JW15, Corrolary 6.5]).

3 Quantum Algorithms for Class Groups

Searching for a principal multiple of the ideal a in OK will require to perform
computations in the class group in an efficient way. Classically, problems related
to class group computations remain difficult, and the best known classical algo-
rithms run in sub-exponential time (for example, see [BF14,BEF+17]). Yet,
building on the recent advances on quantum algorithms for the Hidden Sub-
group Problem in large dimensions [EHKS14], Biasse and Song [BS16] intro-
duced a quantum algorithm to perform S-unit group computations. It implies
class group computations, and solution to the principal ideal problem (PIP) in
quantum polynomial time.

The Biasse-Song [BS16] algorithm for S-unit group computation also allows
to solve the class group discrete logarithm problem: given a basis B of ideals
generating a subgroup of the class group ClK containing the class of a, express
the class of a as a product of ideals in B. Below, we give a formal statement and
in the AppendixB, we provide a proof for completeness.9

Proposition 2 ([BS16]). Let B be a set of prime ideals generating a sub-
group H of ClK . There exists a quantum algorithm ClDLB which, when given
as input any ideal a in OK such that [a] ∈ H, outputs a vector y ∈ ZB such
that

∏
pyp ∼ a, and runs in polynomial time in n = deg(K), maxp∈B log(Np),

log(Na), and |B|.

4 Close Multiple in the Relative Class Group

Let K+ = Q(ωm + ω−1
m ) denote the maximal real subfield of K, and ClK+ the

class group of K+. The relative norm map NK/K+ : ClK → ClK+ on ideal
classes (which sends the class of a to the class of aaτ , where τ is the complex
conjugation) is a surjection, and its kernel is the relative class group Cl−K . In
particular, it induces the isomorphism ClK+ ∼= ClK/Cl−K .

The core of the method to find a close principal multiple of an ideal a works
within the relative class group Cl−K ⊂ ClK . Therefore, as a first step, we need to
“send” the ideal a ∈ ClK into this subgroup. More precisely, we want an integral
ideal b of small norm such that ab ∈ Cl−K ; the rest of the method then works
with ab. Let hK = |ClK | be the class number of K, and h−

K = |Cl−K | its relative
class number. The difficulty of this step is directly related to the index of Cl−K
inside ClK , which is the real class number h+

K = |ClK+ | of K+, and is expected
to be very small.
9 In fact, Proposition 2 is a corollary of [BS16, Theorem 1.1]. Even though it is not

stated explicitly in that paper, it must be attributed to that paper nevertheless.
Indeed, the implication is straightforward and its authors have already sketched it in
public talks. Our purpose here is merely to include technical details for completeness.
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4.1 Random Walks to the Relative Class Group

For any x > 0, consider the set Sx of ideals in OK of prime norm at most x, and
let Sx be the multiset of its image in ClK . Let Gx denote the induced Cayley
(multi)graph Cay(ClK , Sx). From [JW15, Corrolary 6.5] (under GRH), for any
ε > 0 there is a constant C and a bound

B = O
(
(n log ΔK)2+ε

)
= O

(
(n2 log n)2+ε

)
such that any random walk in GB of length at least C log(hK)/ log log(ΔK), for
any starting point, lands in the subgroup Cl−K with probability at least 1/(2h+

K).
A random walk of length 
 = �C log(hK)/ log log(ΔK)� = Õ(n) is a sequence

p1, . . . , p� of ideals chosen independently, uniformly at random in SB , and their
product b =

∏
pi has a norm bounded by

Nb =
�∏

i=1

Npi ≤ B� = exp(polylog(n) · Õ(log hK)) = exp(Õ(n)),

If [a] is the starting point of the random walk in the graph, the endpoint [ab]
falls in Cl−K with probability at least 1/(2h+

K), and therefore an ideal b such
that [ab] ∈ Cl−K can be found in probabilistic polynomial time in h+

K . Note that
the PIP algorithm of Biasse and Song [BS16] allows to test the membership
[ab] ∈ Cl−K , simply by testing the principality of NK/K+(ab) as an ideal of O+

K .
The procedure is summarized as Algorithm 1, and the effiency is stated below.

Under GRH and Assumption 1, this procedure runs in polynomial time.

Lemma 1 (Under GRH). Algorithm1 (WalkToCl−(a)) runs in expected
time O(h+

K) · poly(n, log Na) and is correct.

Algorithm 1. WalkToCl−(a): random walk to Cl−K
Require: An ideal a in OK

Ensure: An integral ideal b such that [ab] ∈ Cl−K and Nb ≤ exp(Õ(n))
1: � = Õ(n); B = poly(n)
2: repeat
3: for all i = 1 . . . � do
4: Choose pi uniformly among the prime ideal of norm less than B
5: end for
6: Set b =

∏
pi

7: until NK/K+(ab) is principal (using the PIP algorithm of [BS16])

8: b ←∏d
i=1 pi

9: return b

5 Short Relations in Cl−K via the Stickelberger Ideal

Consider any ideal f of OK such that [f] ∈ Cl−K , and its orbit under the action of
the Galois group G, denoted F = G(f). Let R be the group ring Z[G]. It projects
to ZF, via the map sending σ to 1fσ .
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We now show the construction of an explicit full-rank lattice of class relations
in ZF with an explicit set of short generators. We proceed by augmenting the
Stickelberger ideal. This allows to reduce the representation of a given class
expressed in basis F, as shown in Subsect. 5.3.

Recall that the Galois group G is canonically isomorphic to (Z/mZ)∗ via
a �→ σa = ζm �→ ζa

m. The norms ‖ · ‖ and ‖ · ‖1 denote the usuals 
2 (Euclidean)
and 
1 norms over Rn, and are defined over Z[G] via the natural isomorphism
Z[G] ∼=Z Zn.

The fractional part of a rational x ∈ Q is denoted {x}, it is defined as the
unique rational in the interval [0, 1) such that {x} = x mod Z; equivalently,
{x} = x − �x�.

5.1 The (augmented) Stickelberger Ideal

Definition 1 (The Stickelberger ideal). The Stickelberger element θ ∈ Q[G]
is defined as

θ =
∑

a∈(Z/mZ)∗

{ a

m

}
σ−1

a .

The Stickelberger ideal is defined as S = R∩θR. We will refer to the Stickelberger
lattice when S is considered as a Z-module.

This ideal S ⊂ R will provide some class relations in ZF, thanks to the
following theorem.

Theorem 1 (Stickelberger’s theorem [Was12, Theorem 6.10]). The Stickel-
berger ideal annihilates the ideal class group of K. In other words, for any ideal
h of OK and any s ∈ S, the ideal hs is principal.

We cannot directly use S ⊂ R as our lattice of class relations since it does
not have full rank in R as a Z-module (precisely its Z-rank is n/2 + 1 when
m ≥ 2). Indeed, if the lattice is not full rank, there can be no guarentee of how
short of a representant will be obtained by reducing modulo the lattice. To solve
this issue, we will augment the Stickelberger ideal to a full-rank ideal which still
annihilates the minus part Cl−K of the class group.

Definition 2. The augmented Stickelberger ideal S′ is defined as

S′ = S + (1 + τ)R. (2)

We will refer to the augmented Stickelberger lattice when S′ is considered as a
Z-module.

Lemma 2. The augmented Stickelberger ideal S′ annihilates Cl−K . In other
words, for any ideal h of OK such that [h] ∈ Cl−K and any s ∈ S, the ideal
hs is principal. Moreover, S′ ⊂ R has full-rank n as a Z-module.
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Proof. For the annihilation property it suffices to show that both S and (1+τ)R
annihilate Cl−K . By Stickelberger’s theorem S annihilates ClK so it in particular
annihilates the subgroup Cl−K ⊂ ClK . The ideal (1 + τ)R also annihilates Cl−K
since h1+τ = hh̄ = NK/K+(h). We conclude from the fact that Cl−K is exactly
the kernel of the norm map NK/K+ : ClK → Cl+K .

For the rank, consider the ideal S− = S ∩ (1 − τ)R. A theorem from
Iwasawa (originally published in [Sin80] but reformulated more conveniently
in [Was12, Theorem 6.19]) states that S− is full rank in (1 − τ)R. Noting that
2R ⊂ (1 − τ)R + (1 + τ)R, we conclude that S− + (1 + τ)R has full rank in 2R,
and so does S′. ��

5.2 Short Generating Vectors of the Augmented Stickelberger
Lattice

In the following, the elements of (Z/mZ)∗ are canonically identified with the
positive integers 0 < a1 < a2 < · · · < an < m such that each ai is coprime to
m. The elements of G are indexed as (σa1 , . . . , σan

). Define the extra element
an+1 = m + a1, and note that a2 ≤ 3 and that ai+1 − ai ≤ 2 for any i.

Lemma 3. The Stickelberger lattice is generated by the vectors vi = (ai − σai
)θ

for i ∈ {2, . . . , n + 1}.
Proof. This is almost [Was12, Lemma 6.9]. There, S is considered as an ideal
in R, whereas we need these elements to generate S as a Z-module. Let L be the
Z-module generated by the vi’s. First, [Was12, Lemma 6.9] immediately implies
that vi ∈ S and thereby L ⊆ S. Now, let

(∑n+1
i=2 xiσai

)
θ be an arbitrary

element of S, with ai ∈ Z. One can prove as in [Was12, Lemma 6.9] that m

divides
∑n+1

i=2 xiai ∈ Z. Since m = (m + 1) − σm+1, mθ is in L, and we deduce

that
(∑n+1

i=2 xiai

)
θ is also in L. Therefore,

(
n+1∑
i=2

xiσai

)
θ =

(
n+1∑
i=2

xi(σai
− ai)

)
θ +

(
n+1∑
i=2

xiai

)
θ ∈ L.

This proves that S ⊆ L, hence L = S. ��
We are now ready to construct our set of short generators for S′. Let w2 = v2

and wi+1 = vi+1 − vi for i ∈ {2, . . . , n}, and let

W = {w2, . . . , wn+1} ∪ {(1 + τ)σ, σ ∈ G}.

Lemma 4. The set S is a set of short generators of S′. More precisely,

1. W generates the augmented Stickelberger lattice S′,
2. For any i ∈ {3 . . . n + 1}, wi =

∑
b∈(Z/mZ)∗ εi,b · σ−1

b , with εi,j ∈ {0, 1, 2},
3. For any w ∈ W , we have ‖w‖ ≤ max(2

√
n,

√
10).
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The second item essentially generalizes [Sch10, Proposition 9.4] from prime con-
ductors to prime-power conductors.

Proof. We prove each item individually.

1. First note that {w2, . . . , wn+1} generates S: this is a direct consequence of
Lemma 3 and the construction of W . By definition of R = Z[G], the set
{(1 + τ)σ, σ ∈ G} generates (1 + τ)R. One can conclude from the definition
of S′ = S + (1 + τ)R.

2. We follow the computation in the proof of [Was12, Lemma 6.9]:

vi = (ai − σai
)θ =

∑
b∈(Z/mZ)∗

(
ai

{
b

m

}
−

{
aib

m

})
σ−1

b

=
∑

b∈(Z/mZ)∗

⌊
ai

{
b

m

}⌋
σ−1

b

using the identity x{y} − {xy} = �x{y}� for any integer x and real number
y, since this difference is an integer and the term {xy} is in the range [0, 1).
It remains to rewrite wi =

∑
b∈(Z/mZ)∗ εi,bσ

−1
b , where

εi,b =
⌊
ai+1

{
b

m

}⌋
−

⌊
ai

{
b

m

}⌋
≤ ai+1 − ai ≤ 2.

3. The property follows from the previous item for any i > 2. For i = 2, we
have w2 = v2 = a2 − σa2 , and therefore ‖w2‖ =

√
a2
2 + 1 ≤ √

32 + 1 =
√

10.
Finally, elements w ∈ W of the form (1 + τ)σ have norm ‖w‖ =

√
2 ≤ √

10.
��

5.3 Reducing a Class Representative in an R-cycle of Cl−K
We now show how to exploit the previously constructed set W of short relations
to reduce class representations. More precisely, for any large α ∈ R we will find
a short β ∈ R such that Cβ = Cα, for any class C ∈ Cl−K . We shall rely on the
following close vector algorithm.

Proposition 3 (Close vector algorithm). Let Γ ⊂ Rk be a lattice, and let
W be a set generating Γ . There exists a (classical) polynomial time algorithm
CV, that when given any y ∈ Γ ⊗R as input, outputs a vector x = CV(y,W ) ∈ Γ
such that ‖x − y‖1 ≤ k

2 · maxw∈W ‖w‖.
Proof. Let first B ⊂ W be a basis of a full-rank sublattice Γ ′ ⊂ Γ (this is easily
built in polynomial time). Let B̃ denote the Gram-Schmidt orthogonalization of
B. Let g = maxb∈B̃ ‖b̃‖ ≤ maxb∈B ‖b‖ ≤ maxw∈W ‖w‖. Applying the Nearest
Plane algorithm leads to x ∈ Γ such that x − y belongs to the fundamental
parallelepiped {B̃z, z ∈ [−1/2, 1/2]}. We then have

‖x − y‖22 ≤ 1
4

∑
‖b̃i‖2.

In particular, ‖x − y‖2 ≤ √
k · g/2 and one concludes ‖x − y‖1 ≤ kg/2. ��
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Theorem 2. Assume n ≥ 3. There is an algorithm Reduce, that given α ∈ R,
finds in polynomial time in n and log(||α||), an element β = Reduce(α) ∈ R
such that ||β||1 ≤ n3/2, and Cα = Cβ for any C ∈ Cl−K .

Proof. Let W be the basis for the augmented Stickelberger ideal S′ as in
Lemma 4. From Lemma 2, it has full rank in R. So the close vector algorithm
from Proposition 3 can be applied to find an element γ = CV(α,W ) ∈ S′ such
that ||α − γ||1 ≤ n

2 · maxw∈W ‖w‖ ≤ n3/2. Let β = α − γ. For any C ∈ Cl−K ,
Lemma 2 implies that Cγ = 0 and therefore Cα = Cβ . ��

6 Close Principal Multiple Within the Relative Class
Group

We now show how to solve the CPM problem for ideals sitting in Cl−K , given a
factor basis B of Cl−K . The CPM approximation factor will depend on the size
of the factor basis B.

Suppose the ideal a is in the relative class group Cl−K . We are looking for
an integral ideal b in OK of small norm such that ab is principal. Let B =
{pσ

i | σ ∈ G, i = 1, . . . , d} be a set generating Cl−K , composed of d Galois orbits,
such that Npi ≤ poly(n) for all i. To state the algorithm and its correctness, no
assumption is made on the factor basis B. In the final Sect. 7, we will employ
Assumption 2 to provide a factor basis with d = polylog(n) to this algorithm.

Algorithm 2. ClosePrincipalMultiple−(a,B): close principal multiple in
the relative class group
Require: An ideal a in OK such that [a] ∈ Cl−K , a factor basis B = {pσ

i |i = 1 . . . d, σ ∈
G} generating Cl−K , such that Npi ≤ poly(n) for all i.

Ensure: An (integral) ideal b in OK such that ab ∼ OK and Nb = exp
(
Õ
(
dn3/2

))

1: y ← ClDLB(a)
2: for i = 1 to d do
3: αi ←∑σ∈Gi

y(pσ
i )σ ∈ Z[G]

4: βi ← Reduce(αi)
5: (γ+

i , γ−
i ) ← the pair of elements in Z[G] with only positive coefficients, such that

γ+
i − γ−

i = −βi

6: bi ← p
γ+

i +τγ−
i

i

7: end for
8: b ←∏d

i=1 bi

9: return b

Theorem 3. Algorithm2, ClosePrincipalMultiple−, runs in quantum
polynomial time in n = deg(K), d and log(Na), and is correct.
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Proof. Let a,B be proper inputs, that is, a is an ideal of OK such that [a] ∈ Cl−K ,
and B is a factor basis B = {pσ

i | i = 1 . . . d, σ ∈ G} generating Cl−K , such that
Npi ≤ poly(n) for all i.

The running time follows immediately from Proposition 2 and Theorem 2.
Let us now prove the correctness. We have

φ(y) =
∏
p∈B

pyp =
d∏

i=1

∏
p∈Bi

pyp =
d∏

i=1

∏
σ∈Gi

(pσ
i )y(pσ

i
) =

d∏
i=1

pαi
i .

Observe that for each i, bi ∼ p−βi

i , since p−1
i ∼ pτ

i . From Theorem 2, we obtain
pαi

i bi ∼ OK , which implies that φ(y)b ∼ ∏d
i=1 p

αi
i bi ∼ OK . From Proposition 2,

we have φ(y) ∼ a, and therefore ab ∼ OK .
Now, Theorem 2 ensures that ||β||1 ≤ n3/2. So ||γ+

i ||1 + ||γ−
i ||1 is bounded

by n3/2 and we obtain that Nbi ≤ (Npi)n3/2
. Then,

Nb =
d∏

i=1

Nbi ≤
(

max
i=1...d

Npi

)dn3/2

= exp
(
Õ

(
dn3/2

))
,

where the last inequality uses the fact that each Npi is polynomially bounded
in n. ��

7 Main Result

We now have all the ingredients to demonstrate our main result:

Main Result (Under GRH, Assumptions 1 and 2). Assuming simultane-
ously the Generalized Riemann Hypothesis, Assumption 1, and Assumption 2,
there exists a quantum polynomial time algorithm IdealSVP(a), that given an
ideal of OK for K a cyclotomic number field of prime power conductor, returns
an element v ∈ a of Euclidean norm ‖v‖ ≤ (Na)1/n · exp(Õ(

√
n)).

Algorithm 3. IdealSVP(a): finding mildly short vectors in an ideal
Require: An ideal a in OK

Ensure: An element v ∈ a of norm ‖v‖ ≤ (Na)1/n exp(Õ(
√

n))
1: d = polylog(n); B = poly(n)
2: Set M = {p|Np ≤ B, [p] ∈ Cl−K}
3: Choose p1, . . . , pd uniformly at random in M

4: Set B = {pσ
i |i ∈ {1 . . . d}, σ ∈ G}

5: b′ = WalkToCl−(a)
6: b = ClosePrincipalMultiple−(ab′,B)
7: v = PrincipalIdealSVP(abb′)
8: return v
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Proof. The algorithm is given as Algorithm 3. Efficiency and correctness follow
from the previous statements and assumptions:

– Step 2 is quantum polynomial time since membership in Cl−K can be tested by
applying the Biasse-Song PIP algorithm [BS16, Theorem 1.3] to NK/K+(ab).

– By Assumption 2, Steps 3 and 4 produce a factor basis B generating Cl−K .
Both steps can trivially be performed in polynomial time.

– By Lemma 1, GRH and Assumption 1, Step 5 is quantum polynomial time,
and produces an integral ideal b′ such that Nb′ ≤ exp(Õ(n)) and [ab′] ∈ Cl−K .

– By Theorem 3, Step 6 produces (in quantum polynomial time) an integral
ideal b such that

Nb ≤ exp(Õ(dn3/2)) = exp(Õ(n3/2))

and such that abb′ is principal.
– By Claim 1 ([CGS14,BS16,CDPR16]), Step 7 produces in quantum polyno-

mial time a vector v ∈ abb′ of length ‖v‖ ≤ (Nabb′)1/n · exp(Õ(
√

n)).

Because b and b′ are integral, abb′ ⊂ a, and v ∈ a. Finally,

‖v‖ ≤ (Na)1/n(Nb)1/n(Nb′)1/n · exp(Õ(
√

n))

≤ (Na)1/n · exp(Õ(
√

n)).
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A Proof of Proposition 1

In this appendix, we provide the proof of Proposition 1 (restated below, used to
support Assumption 2).

Proposition 1. Let K be a cyclotomic field of conductor m, with Galois group
G and relative class group Cl−K . Let r be the minimal number of Z[G]-generators
of Cl−K . Let α ≥ 1 be a parameter, and s be any integer such that

s ≥ r(log2 log2(h
−
K) + α)

(note that log2 log2(h
−
K) ∼ log2(n)). Let x1, . . . , xs be s independent uniform

elements of Cl−K . The probability that {x1, . . . , xs} generates Cl−K as a Z[G]-
module is at least exp

(− 3
2α

)
= 1 − O(2−α).
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In other words, a set of Θ(r log(n)) random ideal classes in Cl−K will generate
this Z[G]-module with very good probability. Let us first prove a few lemmas.

Lemma 5. Let R be a finite commutative local ring of cardinality 
n, for some
prime number 
. A set of s independent uniformly random elements in R gen-
erates R as an R-module with probability at least 1 − 
−s.

Proof. An element generates R if and only if it is invertible, meaning that it is
not in the maximal ideal of R. This ideal is a fraction at most 
−1 of R, so an
element does not generate R with probability at most 
−1. Among s independent
elements, the probability that none of them is a generator is at most 
−s.

Lemma 6. Let R be a finite commutative local ring of cardinality 
n, for some
prime number 
. Let M be a cyclic R-module. A set of s independent uniformly
random elements in M generates M with probability at least 1 − 
−s.

Proof. Let g be a generator of M , and consider the homomorphism ϕ : R →
M : α �→ αg. Let x1, . . . , xs be s independent uniformly random element in
M . For each i, let αi be a uniformly random element of the coset ϕ−1(xi). The
elements αi are independent and uniformly distributed in R, so from Lemma 5,
they generate R with probability at least 1 − 
−s. If the αi’s generate R, then
the xi’s generate M , and we conclude.

Lemma 7. Let R be a finite commutative local ring of cardinality 
n, for some
prime number 
. Let M be an R-module, and let r be the smallest number of
R-generators of M . A set of s independent uniformly random elements in M
generates M with probability at least

(
1 − 
−�s/r	)r

.

Proof. Proceed by induction on r. The case r = 1 is Lemma 6. Suppose that for
any R-module M ′ generated by r − 1 elements, and any positive s′, a set of s′

random elements in M ′ generates M ′ with probability at least

(
1 − 
−�s′/(r−1)	

)r−1

.

Choose s independent uniformly random elements x1, . . . , xs in M , and let
t = �s/r�. Let g1, . . . , gr be a generating set for M . The quotient M/(Rgr)
is generated by r − 1 elements, so the first s − t random elements generate it
with probability at least

(
1 − 
−�(s−t)/(r−1)	

)r−1

≥
(
1 − 
−�s/r	

)r−1

.

Now assume that these s − t elements indeed generate M/(Rgr). It remains to
show that adding the remaining t random elements allow to generate the full
module M with probability at least 1 − 
−�s/r	. Let N ⊂ M be the submodule
of M generated by the first s − t random elements. Observe that the module
M/N is generated by gr. Indeed, let m be an arbitrary element of M . Since
M/(Rgr) is generated by N , there is an n ∈ N such that m + Rgr = n + Rgr.
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This implies that there is an element αgr ∈ Rgr such that m + N = αgr + N ,
proving that M/N is generated by gr. From Lemma 6, M/N is generated by the
last t random elements with probability at least 1 − 
−�s/r	. So M is generated
by x1, . . . , xs with probability at least

(
1 − 
−�s/r	)r

.

Theorem 4. Let R be a finite commutative ring, and M a finite R-module of
cardinality m, and r be the minimal number of R-generators of M . A set of s
independent uniformly random elements in M generates M with probability at
least

(
1 − 2−�s/r	)log2 m

.

Proof. The ring R decomposes as an internal direct sum
⊕k

i=1 Ri of finite local
subrings Ri. For each i, define ei ∈ R the idempotent which projects to the
unity of Ri and to zero in all other components of the decomposition (then,
Ri = eiR). In particular, we have that M =

⊕
i eiM , and eiM may be viewed

as an Ri-module.
Let x1, . . . , xs be s independent uniformly random elements in M . They gen-

erate M as an R-module if and only if for any i, the projections eix1, . . . , eixs

generate Mi as an Ri-module. Let pi be the probability that eix1, . . . , eixs gen-
erate Mi, and let ri be the minimal number of generators of Ri. From Lemma 7,
pi is at least

(
1 − 2−�s/ri	)ri

. We have the two bounds ri ≤ r and ri ≤ log2 |Mi|,
and we deduce

pi ≥
(
1 − 2−�s/r	

)log2 |Mi|
.

Therefore x1, . . . , xs generate M with probability at least

k∏
i=1

pi =
(
1 − 2−�s/r	

)∑
i log2 |Mi|

=
(
1 − 2−�s/r	

)log2 m

,

concluding the proof.

Proof of Proposition 1. Note that a set of elements in Cl−K generate it as
a Z[G]-module if and only if they generate it as a (Z/h−

KZ)[G]-module. We
deduce from Theorem 4 that x1, . . . , xs generate Cl−K with probability at least
(1−2−�s/r	)log2 h−

K . For any 0 < x ≤ 1/2, we have ln(1−x) > −(3/2)x. We have
2−�s/r	 ≤ 2−�α	 ≤ 1/2, so

1
(
1 − 2−�s/r	

)log2 h−
K

= exp
(
log2 h−

K ln
(
1 − 2−�s/r	

))

≥ exp
(

−3
2

log2(h
−
K)2−�s/r	

)
.

With s ≥ r(log2 log2(h
−
K) + α), we get �s/r� ≥ log2 log2(h

−
K) + α − 1 and

1
(
1 − 2−�s/r	

)log2 h−
K ≥ exp

(
− 3

2α

)
.

��
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B Proof of Proposition 2

Given the Theorem 1.1 of [BS16] the proof of this corollary is standard, and
known as the linear-algebra step of index calculus methods.

The prime factorization a = qa1
1 . . . qak

k can be obtained in polynomial time
in n, log(ΔK) and log(Na), by Shor’s algorithm [Sho97,EH10]. Let C = B ∪
{q1 . . . , qk}, and one can assume without loss of generality that this union is
disjoint. Let r = n1+n2−1, where n1 is the number of real embeddings of K, and
n2 is the number of pairs of complex embeddings. Consider the homomorphism

ψ : ZB × Zk −→ ClK : ((ep)p∈B, (f1, . . . , fk)) �−→
⎡
⎣ ∏
p∈B

pep

⎤
⎦ ·

[
d∏

i=1

qfi

i

]
.

As described in [BS16, Sect. 4], solving the C-unit problem provides a gener-
ating set of size c = r + |B|+ k for the kernel L of ψ. From [BS16, Theorem 1.1]
such a generating set {vi}c

i=1 can be found by a quantum algorithm in time
polynomial in n, maxp∈C{log(Np)}, log(dK) and |C| = O(|B| + log(Na)). For
each i, write vi = ((wi,p)p∈B, (vi,1, . . . , vi,k)). Since [a] ∈ H and B generates H,
the system of equations {∑c

j=1 xjvj,i = ai}k
i=1 has a solution x ∈ Zc which can

be computed in polynomial time. We obtain

0 = ψ

(
c∑

i=1

xivi

)
=

⎡
⎣ ∏
p∈B

p
∑

j xjwj,p

⎤
⎦ ·

[
d∏

i=1

q
∑

j xjvj,i

i

]
=

⎡
⎣ ∏
p∈B

p
∑

j xjwj,p

⎤
⎦ · [a].

Then, the output of ClDLB is y =
(
−∑

j xjwj,p

)
p∈B

. ��
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Abstract. We propose a new framework for concurrently composable
security that relaxes the security notion of UC security. As in previous
frameworks, our notion is based on the idea of providing the simula-
tor with super-polynomial resources. However, in our new framework
simulators are only given restricted access to the results computed in
super-polynomial time. This is done by modeling the super-polynomial
resource as a stateful oracle that may directly interact with a functional-
ity without the simulator seeing the communication. We call these oracles
“shielded oracles”.

Our notion is fully compatible with the UC framework, i.e., protocols
proven secure in the UC framework remain secure in our framework. Fur-
thermore, our notion lies strictly between SPS and Angel-based security,
while being closed under protocol composition.

Shielding away super-polynomial resources allows us to apply new
proof techniques where we can replace super-polynomial entities by indis-
tinguishable polynomially bounded entities. This allows us to construct
secure protocols in the plain model using weaker primitives than in pre-
vious Angel-based protocols. In particular, we only use non-adaptive-
CCA-secure commitments as a building block in our constructions.

As a feasibility result, we present a constant-round general MPC pro-
tocol in the plain model based on standard polynomial-time hardness
assumptions that is secure in our framework. Our protocol can be made
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fully black-box. As a consequence, we obtain the first black-box con-
struction of a constant-round concurrently secure general MPC protocol
in the plain model based on polynomial-time hardness assumptions.

1 Introduction

Cryptographic protocols typically run in a network where multiple protocols
interact with each other. Some of them may even act in an adversarial manner.
This makes designing protocols that are secure in such a general setting a com-
plicated task. The universal composability (UC) framework [Can01] provides
means for designing and analyzing cryptographic protocols in this concurrent
setting. More specifically, it captures a security notion that implies two major
properties: general concurrent security and modular analysis. The former means
that a protocol remains secure even when run in an environment with multi-
ple instances of arbitrary protocols. The latter implies that one can deduce the
security of a protocol from its components. Unfortunately, there exist strong
impossibility results [CF01,CKL03,Lin03,PR08,KL11] regarding the realizaility
of cryptographic tasks in the UC framework: One requires trusted setup assump-
tions in order to design UC-secure protocols for many cryptographic tasks. UC-
secure protocols have thus been constructed based on various setup assumptions
[Can+02,Bar+04,Can+07,KLP07,Kat07,CPS07,LPV09,Dac+13]. However, if
the trusted setup is compromised, all security guarantees are lost. In general,
one would like to base the security of cryptographic protocols on as little trust
as possible.

In order to drop the requirement for trusted setup, relaxed notions of security
have been developed. One of the most prominent solutions is “UC security with
super-polynomial time simulators” (SPS), introduced in [Pas03]. In this model,
the simulator is allowed to run in super-polynomial time, thereby overcoming the
impossibility results. Various multi-party computation protocols without trusted
setup that satisfy this notion have been constructed, e.g., [Pas03,BS05,LPV09,
LPV12,Gar+12,Dac+13,Ven14]. SPS security weakens the security of the UC
framework because the simulator, being able to run in super-polynomial time,
may now be able to carry out stronger attacks in the ideal setting. Still, this
security notion is meaningful, since for many cryptographic tasks the ideal setting
has an information-theoretic nature. Contrary to UC security, however, security
in this model is not closed under protocol composition. As a consequence, this
notion neither supports general concurrent security nor modular analysis.

“Angel-based security” [PS04] overcomes these issues. In this model, both the
adversary and the simulator have access to an oracle called “(Imaginary) Angel”
that provides super-polynomial resources for specific computational problems.
Many general MPC protocols without setup have been constructed in the Angel-
based framework [PS04,MMY06,CLP10,LP12,KMO14,Kiy14,Goy+15,HV16].
Like UC-security, this notion is closed under protocol composition. Furthermore,
Angel-based security implies SPS security. In fact, it provides a stronger security
notion since the simulator has only access to specific super- polynomial compu-
tations. [CLP10] later recast the Angel-based security model in the extended
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UC (EUC) framework [Can+07] and dubbed their notion “UC with super-
polynomial helpers”. In contrast to the non-interactive and stateless Angels in
previous works, the “helpers” in [CLP10] are highly interactive and stateful.

In this work, we take this framework a step further. In our new frame-
work, simulators only have restricted access to the results computed in super-
polynomial time. More specifically, we model the super-polynomial resources
as stateful oracles that are “glued” to an ideal functionality. These oracles may
directly interact with the functionality without the simulator observing the com-
munication. The outputs of these oracles are therefore “shielded away” from the
simulator. As with Angel-based security, our notion implies SPS security. More-
over, it can be shown that our notion is in fact strictly weaker than Angel-based
security. Furthermore, our notion comes with a composition theorem guarantee-
ing general concurrent security. While modular analysis is not directly implied
for technical reasons, using our composition theorem one can achieve modular
analysis by constructing protocols with strong composition features. Protocols
with these features can be “plugged” into large classes of UC-secure protocols in
such a way that the composed protocol is secure in our framework. As a proof of
concept, we construct a constant-round commitment scheme with such features.

In order to obtain a composable security notion, environments are “aug-
mented” in our framework, i.e., they may invoke additional (ideal) protocols
that include shielded oracles. Since the super-poly computations in these proto-
cols are hidden away, these augmented environments have the unique property
that they do not “hurt” protocols proven secure in the UC framework. Therefore,
our notion is in fact fully compatible with the UC framework. Moreover, our con-
cept of “shielding away” super-polynomial resources allows us to apply new proof
techniques not applicable in previous frameworks: We are able to replace entities
involving super-polynomial resources in our proofs by indistinguishable polyno-
mially bounded entities. This allows us to construct (constant-round) protocols
using weaker primitives than in previous Angel-based protocols.

1.1 Our Results

We propose a new framework that is based on the idea of granting simulators
only restricted access to the results of a super-polynomial oracle. We have the
following results:

– New Composable Security Notion: Our notion of security is closed under gen-
eral composition, it implies SPS security and is strictly weaker than Angel-
based security (Theorem 9, Proposition 8, Theorem 17).

– UC-compatibility : Protocols proven secure in the UC framework are also secure
in our new framework (Theorem 12, Corollary 13).

– Modular Composition: As a proof of concept, we present a constant-round
commitment scheme in the plain model based on OWPs that is secure in our
framework and can be “plugged” into a large class of UC-secure protocols,
such that the composite protocol is secure in our framework. Furthermore, this
construction can be made fully black-box based on homomorphic commitment
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schemes. To our best knowledge, this is the first constant-round (black-box)
commitment scheme in the plain model based on a standard polynomial-time
hardness assumption with such a composition feature (Theorem21, Corol-
lary 22, Corollary 23, Theorem 26, Corollary 30).

– Constant-round (black-box) MPC : We present a modular construction of a
constant-round general MPC protocol in the plain model based on standard
polynomial-time hardness assumptions that is secure in our framework. This
protocol can be made fully black-box based on homomorphic commitment
schemes. As a consequence, we obtain the first black-box construction of a
constant-round concurrently secure general MPC protocol in the plain model
based on polynomial-time hardness assumptions (Theorem 31).

– Building on non-adaptive CCA-commitments: Our constructions require
weaker primitives than previous Angel-based protocols. Specifically, it suffices
to use non-adaptive CCA-secure commitment schemes as a building block in
our constructions instead of CCA-secure commitment schemes used previously
(Theorem 21, Theorem 26).

2 Related Work

The frameworks most related to ours are SPS and Angel-based security.
SPS security, introduced by [Pas03], provides a meaningful security notion

for many cryptographic tasks such as commitment schemes or oblivious trans-
fer. However, SPS security does not come with a composition theorem. There
exist many constructions (in the plain model) satisfying this notion, e.g., [Pas03,
BS05,LPV09,LPV12,Gar+12,Dac+13,Ven14]. Notably, [LPV12,Gar+12] con-
structed (non-black-box) constant-round general MPC protocols based on stan-
dard polynomial-time hardness assumptions.

Angel-based security [PS04] implies SPS security and comes with a com-
position theorem. Various general MPC protocols without setup have been
constructed in the Angel-based setting [PS04,MMY06,CLP10,LP12,KMO14,
Kiy14,Goy+15,HV16]. Some rely on non-standard or super-polynomial time
assumptions [PS04,MMY06,KMO14]. The construction in [CLP10] is the first
one to rely on standard polynomial-time assumptions, but has non-constant
round complexity. Later works [Goy+15,Kiy14] have improved the round-
complexity, while also relying on standard assumptions. The most round-efficient
construction based on standard polynomial-time assumptions is [Kiy14], which
requires Õ(log2 n) rounds and makes only black-box use of the underlying cryp-
tographic primitive. Some Angels in the literature, e.g., [CLP10,KMO14,Kiy14,
Goy+15] come with a feature called “robustness” which guarantees that any
attack mounted on a constant-round protocol using this angel can be carried
out by a polytime adversary with no angels. Protocols proven secure for robust
Angels can be “plugged” into UC-secure protocols, resulting in Angel-secure pro-
tocols. All known constructions for robust Angels based on standard polytime
assumptions require a super-constant number of rounds. Moreover, [CLP13] con-
struct a (super-constant-round) protocol that is secure in the Angel-based setting
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and additionally preserves certain security properties of other protocols running
in the system. They call such protocols “environmentally friendly”.

We want to note that other security notions in the concurrent setting have
been proposed that are not based on the idea of simulators with super-polynomial
resources. The “multiple ideal query model” [GJO10,GJ13,GGJ13,CGJ15] con-
siders simulators that are allowed to make more than one output query per ses-
sion to the ideal functionality. Another (not simulation-based) notion is “input
indistinguishability” [MPR06,Gar+12] which guarantees that an adversary can-
not decide which inputs have been used by the honest protocol parties. We note
that this security notion is incomparable to ours.

3 Shielded Oracles

3.1 Definition of the Framework

Our model is based on the universal composability framework (UC). In this
model, a protocol π carrying out a given task is defined to be secure by comparing
it to an ideal functionality F , which is a trusted and incorruptible party that
carries out a given task in an ideally secure way. π is said to be secure if it
“emulates” F .

While the plain UC model leaves open how session identifiers and corruptions
are organized, we follow the convention that both must be consistent with the
hierarchical order of the protocols: The session identifier (sid) of a sub-protocol
must be an extension of the session id of the calling protocol. Likewise, in order
to corrupt a sub-party, an adversary must corrupt all parties that are above that
sub-party in the protocol hierarchy.

We relax the UC security notion by introducing a super-polynomial time
machine that may aid the simulator. This machine is modeled as a stateful oracle
O that is “glued” to an the ideal functionality F . O may freely interact with
the simulator and F . However, the simulator does not “see” the communication
between O and F . Since the output of the oracle is partially hidden from the
simulator, we call O a shielded oracle.

Definition 1 (Shielded oracles). A shielded oracle is a stateful oracle O that
can be implemented in super-polynomial time. By convention, the outputs of a
shielded oracle O are of the form (output-to-fnct, y) or (output-to-adv, y).

The simulator is allowed to communicate with the functionality only via the
shielded oracle. This way, the shielded oracle serves as an interface that car-
ries out specific tasks the simulator could not do otherwise. The communication
between the shielded oracle and the functionality is hidden away from the sim-
ulator. The actions of the shielded oracle may depend on the session identifier
(sid) of the protocol session as well as the party identifiers of the corrupted
parties.

Definition 2 (O-adjoined functionalities). Given a functionality F and a
shielded oracle O, define the interaction of the O-adjoined functionality FO in
an ideal protocol execution with session identifier sid as follows:
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– FO internally runs an instance of F with session identifier sid.
– When receiving the first message x from the adversary, FO internally invokes

O with input (sid , x).
All subsequent messages from the adversary are passed to O.

– Messages between the honest parties and F are forwarded.
– Corruption messages are forwarded to F and O.
– When F sends a message y to the adversary, FO passes y to O.
– The external write operations of O are treated as follows:

• If O sends (output-to-fnct, y), FO sends y to F .
• If O sends (output-to-adv, y), FO sends y to the adversary.

Let IDEAL(FO) be the ideal protocol with functionality FO as defined
in [Can01].

In order to obtain a composable security notion, we introduce the notion of
augmented environments. Augmented environments are UC environments that
may invoke, apart form the challenge protocol, polynomially many instances of
IDEAL(FO) for a given functionality FO. The only restriction is that the session
identifiers of these instances as well as the session identifier of the challenge
protocol are not extensions of one another.

Augmented environments may send inputs to and receive outputs from any
invoked instance of IDEAL(FO). In addition, augmented environments can play
the role of any adversary via the adversary’s interface of the functionality. In par-
ticular, augmented environments may corrupt parties sending the corresponding
corruption message as input to the functionality.

In what follows we give a definition of an execution experiment with an
FO-augmented environment. For simplicity and due to space constraints, the
description is kept informal.

Definition 3 (The FO-execution experiment). An execution of a protocol
σ with adversary A and an FO-augmented environment Z on input a ∈ {0, 1}∗

and with security parameter n ∈ N is a run of a system of interactive Turing
machines (ITMs) with the following restrictions:

– First, Z is activated on input a ∈ {0, 1}∗.
– The first ITM to be invoked by Z is the adversary A.
– Z may invoke a single instance of a challenge protocol, which is set to be σ by

the experiment. The session identifier of σ is determined by Z upon invocation.
– Z may pass inputs to the adversary or the protocol parties of σ.
– Z may invoke, send inputs to and receive outputs from instances of

IDEAL(FO) as long as the session identifiers of these instances as well as
the session identifier of the instance of σ are not extensions of one another.

– The adversary A may send messages to protocol parties of σ as well as to the
environment.

– The protocol parties of σ may send messages to A, pass inputs to and receive
outputs from subparties and give outputs to Z.
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Denote by Exec
(
σ,A,Z[FO]

)
(n, a) the output of the FO-augmented environ-

ment Z on input a ∈ {0, 1}∗ and with security parameter n ∈ N when interacting
with σ and A according to the above definition.

Define Exec
(
σ,A,Z[FO]

)
=

{
Exec

(
σ,A,Z[FO])(n, a)

}
n∈N,a∈{0,1}∗

We will now define security in our framework in total analogy to the UC
framework:
Definition 4 (FO-emulation). Let π and φ be protocols. π is said to emulate
φ in the presence of FO-augmented environments, denoted by π ≥FO φ, if for
any PPT adversary A there exists a PPT adversary (called “simulator”) S such
that for every FO-augmented PPT environment Z it holds that

Exec
(
π,A,Z[FO]

) c≡ Exec
(
φ,S,Z[FO]

)
(1)

Throughout this paper, we only consider static corruptions.

3.2 Basic Properties and Justification

In this section, we show that that our security notion is transitive and that
the dummy adversary is complete within this notion. As a justification for our
notion, we show that it implies super-polynomial time simulator (SPS) security.

Definition 5 (FO-emulation with respect to the dummy adversary).
The dummy adversary D is an adversary that when receiving a message
(sid , pid ,m) from the environment, sends m to the party with party identifier
pid and session identifier sid, and that, when receiving m from the party with
party identifier pid and session identifier sid, sends (sid , pid ,m) to the environ-
ment.

Let π and φ be protocols. π is said to emulate φ in the presence of FO-
augmented environments with respect to the dummy adversary, if

∃SD ∀Z : Exec
(
π,D,Z[FO]

) c≡ Exec
(
φ,SD,Z[FO]

)
. (2)

Proposition 6 (Completeness of the dummy adversary). Let π and φ be
protocols. Then, π emulates φ in the presence of FO-augmented environments
if and only if π emulates φ in the presence of FO-augmented environments with
respect to the dummy adversary.

The proof is almost exactly the same as in [Can01], and therefore only given
in the full version of this work. The proof of transitivity is omitted here, too.

Proposition 7 (Transitivity). Let π1, π2, π3 be protocols. If π1 ≥FO π2 and
π2 ≥FO π3 then it holds that π1 ≥FO π3.

In order to justify our new notion, we prove that security with respect to FO-
emulation implies security with respect to SPS-emulation which we will denote
by ≥SPS. See the full version for a formal definition of π ≥SPS φ. The proof is
straightforward: View the oracle as part of the simulator. This simulator runs in
super-polynomial time, hence can be simulated by an SPS-simulator.
Proposition 8 (FO-emulation implies SPS-emulation). Let O be a
shielded oracle. Assume π ≥FO FO. Then it holds that π ≥SPS F .
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3.3 Universal Composition

A central property of the UC framework is the universal composition theorem.
This theorem guarantees that the security of a protocol is closed under protocol
composition. This means that security guarantees can be given for a UC-secure
protocol even if multiple other protocols interact with this protocol in a poten-
tially adversarial manner. We prove a similar theorem in our framework. More
specifically, we generalize the universal composition theorem to also include FO-
hybrid protocols.

Theorem 9 (Composition theorem). Let O be a shielded oracle, F and G
functionalities.

1. (Polynomial hybrid protocols) Let π, ρG be protocols. Assume π ≥FO G. Then
it holds that ρπ ≥FO ρG.

2. (FO-hybrid protocols) Let π be a protocol, ρFO
a protocol in the FO-hybrid

model. Assume π ≥FO FO. Then it holds that ρπ ≥FO ρFO
.

Proof (of the second statement). For single instance composition (where ρ calls
only a single instance of π), treat ρ as part of the environment and use the
premise that π ≥FO FO.

For the general case iteratively apply the single instance composition theo-
rem. In each iteration a new instance of IDEAL(FO) is replaced by an instance
of π, and the remaining instances of π, IDEAL(FO) and ρ are treated as part
of the augmented environment. The claim then follows using transitivity. ��

The universal composition theorem in the UC framework has two impor-
tant implications: general concurrent security and modular analysis. The former
means that a protocol remains secure even when run in an environment with
multiple instances of arbitrary protocols. The latter implies that one can deduce
the security of a protocol from its components.

Theorem 9 directly implies general concurrent security (with super-
polynomial time simulators). However, modular analysis is not directly implied
by Theorem 9. This is because the oracle O may contain all “complexity” of the
protocol π, i.e., proving security of ρFO

may be as complex as proving security
of ρπ.

Still, one can use Theorem 9 to achieve modular analysis by constructing
secure protocols with strong composition features. A protocol π with such com-
position features allows analyzing the security of a large class of protocols ρF

in the UC framework and achieve security in our framework when replacing F
with π. As a proof of concept, we will show, using Theorem 9, that a large a
class of protocols in the Fcom-hybrid model can be composed with a commitment
protocol presented in this paper (Theorem26).

The following is a useful extension of Theorem 9 for multiple oracles. The
reader is referred to the full version for a proof.

Corollary 10 (Composition theorem for multiple oracles). Let O, O′

be shielded oracles. Assume that π ≥FO FO and ρFO ≥FO,GO′ GO′
. Then there

exists a shielded oracle O′′ such that ρπ ≥GO′′ GO′′
.
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3.4 Polynomial Simulatability

We show a unique feature of our framework: For appropriate oracles to be
defined below, augmented environments do not “hurt” UC-secure protocols. This
means that a protocol that was proven secure in the UC framework is secure in
our framework, too. This makes our security notion fully compatible with UC
security.

Definition 11 (Polynomial simulatability). Let O be a shielded oracle, F
a functionality. Say that O adjoined to F is polynomially simulatable if there
exists a (PPT) functionality M such that for all FO-augmented environments
Z it holds that

FO ≥
FO

M (3)

If a functionality FO is polynomially simulatable then the super-polynomial
power of the oracle O is totally “shielded away” from the environment. Note
that in Definition 11, indistinguishability must hold for augmented environments
not only for polynomial environments.

As a consequence, FO-augmented environments can be replaced by efficient
environments if FO is polynomially simulatable.

Theorem 12 (Reduction to polynomial time environments). Let O be a
shielded oracle and F a functionality such that FO is polynomially simulatable.
Let π, φ be protocols that are PPT or in the FO-hybrid model. It holds that

π ≥
FO

φ ⇐⇒ π ≥
poly

φ (4)

where the right-hand side means that π emulates φ in the presence of all FO-
augmented environments that never invoke an instance of IDEAL(FO).

Proof. Poly-emulation implies FO-emulation: Replace all instances of
IDEAL(FO) with instances of M using the fact that FO is polynomially simu-
latable. Treat all instances of M as part of the environment. This new environ-
ment runs in polynomial time. Substitute π by φ using the premise. Replace all
instances of M with instances of IDEAL(FO) again. The statement follows.

The converse is trivial. ��
As augmented environments that never invoke instances of IDEAL(FO) are

identical to an UC-environment, the following corollary immediately follows.

Corollary 13 (Compatibility with the UC framework). Let O be a
shielded oracle and F a functionality such that FO is polynomially simulatable.
It holds that

π ≥
FO

φ ⇐⇒ π ≥
UC

φ (5)
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Note that this does not contradict the classical impossibility results for the plain
UC framework (cp. [CF01]): If π ≥FO FO for a polynomially simulatable FO,
then this only means that π ≥UC FO, but it does not follow that π ≥UC F .
Although the super-polynomial power of O is shielded away from the outside, it
is indeed necessary.

Replacing augmented environments with efficient environments will be a key
property in various proofs later in this paper. In particular, it will allow us to
prove the security of protocols in our framework using relatively weak prim-
itives such as non-adaptively-secure-CCA commitments as opposed to CCA-
secure commitments, which are commonly used in Angel-based protocols.

Next, we show that by suitably tweaking a given oracle O one can make FO

polynomially simulatable while preserving the security relation.

Lemma 14 (Derived oracle). Let O be a shielded oracle such that π ≥FO FO.
Then there exists a shielded oracle O′ such that π ≥FO′ FO′

and additionally
O′ adjoined to F is polynomially simulatable.

Proof. Since π emulates FO, there exists a simulator SD for the dummy adver-
sary D. Define the shielded oracle O′ as follows: O′ internally simulates SD and
O, passes each message SD sends to F to O, sends each output-to-fnct out-
put from O to F and each output-to-adv output from O to SD, and forwards
the communication between SD and the environment. By construction, for all
FO-augmented environments Z it holds that

Exec(π,D,Z[FO])
c≡ Exec(FO,SD,Z[FO]) ≡ Exec(FO′

,D,Z[FO]) (6)

It follows from Proposition 6 that π ≥FO FO′
and FO′ ≥FO π. Since SD runs

in polynomial time, FO-augmented environments can simulate FO′
-augmented

environments. Therefore, π ≥FO′ FO′
and FO′ ≥FO′ π. The theorem follows by

defining M to be the functionality that internally simulates the protocol π. ��
The following corollary shows that UC-secure protocols can be used as sub-

protocols in protocols proven secure in our framework, while preserving security.

Corollary 15 (Composition with UC-secure protocols). Let π, ρF be pro-
tocols such that π ≥UC F and ρF ≥GO GO. Then there exists a shielded oracle
O′ such that

ρπ ≥
GO′

GO′
(7)

Proof. Since ρF is PPT there exists a shielded oracle O′ such that GO′
is polyno-

mially simulatable and ρF ≥GO′ GO′
by Lemma 14. From Corollary 13 it follows

that π ≥GO′ F . The statement then follows from the composition theorem and
the transitivity of GO′

-emulation. ��
The last result demonstrates the compatibility of our framework with the

UC framework again. While it is much more desireable to “plug” a protocol
proven secure in our framework into a UC secure protocol—in order to obtain
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a secure protocol in the plain model (this will be addressed in Theorem 26 and
Corollary 30)—doing it the other way around is still a convenient property. For
instance, it allows one to instantiate “auxiliary” functionalities such as authen-
ticated channels Fauth or secure channels FSMT, while preserving security.

3.5 Relation with Angel-Based Security

A natural question that arises is how our security notion compares to Angel-
based security. We will prove that for a large class of Angels (which to our best
knowledge includes all Angels that can be found in the literature), Angel-based
security implies our security notion. However, assuming the existence of one-way
functions, the converse does not hold. Thus, our notion is strictly weaker than
Angel-based security.

In the following, we denote by π ≥Γ -Angel φ if π securely realizes φ with
respect to an angel Γ . Note that the following results also hold for “UC with
super-polynomial helpers” put forward by [CLP10].

Definition 16 (Session-respecting Angel (informal)). (See the full ver-
sion for a formal treatment.) An Angel is called session-respecting if its internal
state can be regarded as a vector with independent components for each session
the Angel is queried for.

Theorem 17 (Relation between angels and shielded oracles)

1. Assume π ≥Γ -Angel F for an imaginary Angel Γ . If Γ is session-respecting,
then there exists a shielded oracle O such that π ≥FO FO.

2. Assume the existence of one-way functions. Then there exists a protocol ρ
(in the Fauth-hybrid model), a functionality G and a shielded oracle O s.t.
ρ ≥GO GO but no imaginary angel Γ can be found such that ρ ≥Γ -Angel G
holds.

We give a proof sketch below. See the full version for a more formal treatment.

Proof (Idea of proof)

1. We consider the dummy adversary D only. Since π ≥Γ -Angel F we have

∃SΓ
D ∀ZΓ : Exec(π,DΓ ,ZΓ ) ≡ Exec(F ,SΓ

D ,ZΓ ) (8)

Now, we consider the experiment with shielded oracle O = SΓ
D , ideal func-

tionality FO and simulator S = SD. Note that the code of SD is executed
twice: by O and by S. As Γ is assumed to be session-respecting the operation
of the Angel is split between O, that internally runs a copy of the Angel for
all queries within the challenge session, and the simulator S, that handles all
remaining queries having access to the global Angel Γ . It follows

Exec(F ,SΓ
D ,ZΓ ) ≡ Exec(FO,SΓ ,ZΓ ) (9)
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In order to prove π ≥FO FO we need to show

∃S ∀Z : Exec(π,D,Z[FO]) ≡ Exec(FO,S,Z[FO]) (10)

and we claim that S from above suffices. Assume that (10) does not hold, i.e.
there is a Z[FO] that can distinguish between interacting with π and D or
with FO and S. Then there exists an environment ZΓ that internally runs
FO simulating all augmented FO-sessions by means of the global Γ and thus
contradicts (9).

2. Let ρ̃ be a commitment protocol such that ρ̃ ≥FO
com

FO
com and O adjoined

to Fcom is poly-simulatable. One can find such a protocol using the Angel-
based protocol in [CLP10], part 1 of this theorem and Lemma 14, assuming
the existence of one-way functions. Define the protocol ρ to be identical to ρ̃
except for the following instruction:
Before the actual commit phase begins, the receiver chooses a1, . . . , an uni-
formly at random (n is the security parameter) and sends Commit(ai) (i =
1, . . . , n) to the sender (by running the program of the honest sender in ρ̃
with the pid of the sender). The sender replies with (1, . . . , 1) ∈ {0, 1}n.
The receiver then checks if the values he received from the sender equal
(a1, . . . , an). If yes, the receiver outputs “11” (2-bit string). Otherwise, the
protocol parties execute the protocol ρ̃.
By construction, it holds that ρ ≥FO

com
FO

com. This follows from the fact that
every FO-augmented environment can be replaced by an efficient environ-
ment (since O attached to F is polynomially simulatable) and efficient envi-
ronments can guess the correct ai only with negligible probability (otherwise
ρ̃ would be insecure, contradicting ρ̃ ≥FO

com
FO

com).
Assume for the sake of contradiction that there exists an imaginary angel Γ
s.t. ρ ≥Γ -Angel Fcom holds. Let the sender be corrupted. Since the adversary
has access to Γ , he can run the program of the simulator. The simulator must
be able to extract commitments (because ρ ≥Γ -Angel Fcom). This enables the
adversary to extract all ai (by relaying the commitments from the receiver
each to a different internal copy of the simulator), forcing the receiver to out-
put “11” in the real model experiment. This cannot be simulated in the ideal
model experiment, however. We have thus reached a contradiction. ��
Theorem 17 raises the question if it is possible to construct secure protocols

with “interesting properties” in our framework that are not (known to be) secure
in the Angel-based setting. We will answer this question in the affirmative, pre-
senting a modular construction of a general MPC protocol in the plain model
that is constant-round (and black-box) and based only on standard polynomial-
time hardness assumptions (Theorem 31).

We would like to briefly note that by Theorem17 we can already conclude
that we can realize every (well-formed) functionality in our framework by import-
ing the results of [CLP10].
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Proposition 18 (General MPC in the plain model). Assume the existence
of enhanced trapdoor permutations. For every (well-formed)1 functionality F ,
there exists an extraction oracle O and a protocol ρ (in the plain model2) such
that

ρ ≥
FO

FO (11)

4 A Constant-Round Commitment Scheme

In this section we will construct a constant-round commitment scheme that is
secure in our framework. We note that we assume authenticated channels and
implicitly work in the Fauth-hybrid model.

Let 〈C,R〉 be a commitment scheme that we will use a building block for
our bit commitment scheme Π later. We require 〈C,R〉 to be tag-based. In
a tag-based commitment scheme the committer and receiver additionally use a
“tag”—or identity—as part of the protocol [PR05,DDN00]. Moreover we require
〈C,R〉 to be “immediately committing” as in the following definition.

Definition 19 (Immediately committing). A commitment scheme 〈C,R〉 is
called immediately committing if the first message in the protocol comes from
the sender and already perfectly determines the value committed to.

The above definition implies that the commitment scheme is perfectly binding
and super-polynomially extractable, i.e., given the transcript an extractor can
find the unique message of the commitment by exhaustive search.

For the discussion of our commitment scheme, we settle the following nota-
tion. Let s = ((si,b)) ∈ {0, 1}2n for i ∈ [n] and b ∈ {0, 1} be a 2n-tuple of
bits. For an n-bit string I = b1 · · · bn, we define sI := (s1,b1 , . . . , sn,bn). Thus I
specifies a selection of n of the si,b, where one of these is selected from each pair
si,0, si,1.

Construction 1. The bit commitment scheme Π is defined as follows. When-
ever the basic commitment scheme 〈C,R〉 is used, the committing party uses its
pid and the sid as its tag. Let m ∈ {0, 1}
– Commit(m):

• R: Choose a random n-bit string I and commit to I using 〈C,R〉.
• S: Pick n random bits si,0 and compute si,1 = si,0 ⊕ m for all i ∈ [n].
• S and R run 2n sessions of 〈C,R〉 in parallel in which S commits to the

si,bi (i ∈ [n], bi ∈ {0, 1}).
– Unveil:

• S: Send all si,bi ∈ {0, 1} (i ∈ [n], bi ∈ {0, 1}) to R.
• R: Check if s1,0 ⊕ s1,1 = . . . = sn,0 ⊕ sn,1. If this holds, unveil the string

I to S.
1 See [Can+02] for a definition of well-formed functionalities.
2 A model without any trusted setup except for authenticated communication chan-

nels.
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• S: If R unveiled the string correctly, then unveil all sI .
• R: Check if S unveiled correctly. If yes, let s′

1, . . . , s
′
n be the unveiled values.

Check if s′
i = si,bi for all i ∈ [n]. If so, output m := s1,0 ⊕ s1,1.

The above construction is reminiscent of [DS13] who presented a compiler
that transforms any ideal straight-line extractable commitment scheme into an
extractable and equivocal commitment scheme.

Note that if an attacker is able to learn the index set I in the commit phase
then he can easily open the commitment to an arbitrary message m′ by sending
“fake” shares ti,b, such that tI = sI , and t¬I = sI ⊕ (m′, . . . ,m′). (Here ⊕ is
interpreted element-wise.) Hence Π is equivocal for super-polynomial machines.

We claim that this protocol securely realizes FO
com for a certain shielded oracle

O. We first describe O, before we move to the theorem.

Construction 2. We define the actions of the shielded oracle O as follows.3

If the sender is corrupted

– O chooses a random n-bit string I, and commits to the string I to the adver-
sary A using 〈C,R〉.

– O acts as honest receiver in 2n sessions of 〈C,R〉 in parallel. After these
sessions have completed, O extracts each instance of 〈C,R〉, obtaining the
shares (si,b for i ∈ [n]) and b ∈ {0, 1}. (If a commitment cannot be extracted,
the corresponding share is set to ⊥).

– O computes mi := si,0 ⊕ si,1 for all i ∈ [n]. (Indices i where one or both of the
si,b is ⊥ are ignored.) Let m ∈ {0, 1} be the most frequently occurring mi. (If
there are multiple mi occurring with the highest frequency, m chooses m = 0).
O relays (Commit, m) to Fcom.

– When A sends shares s′
1,0, s

′
1,1, . . . , s

′
n,0, s

′
n,1 in the unveil phase of Π, O acts

as an honest receiver, unveiling I.
– Finally, if A’s unveil is accepting, O instructs Fcom to unveil the message.

If the receiver is corrupted

– O acts as the sender in an execution of Π, engaging in a commit session
of 〈C,R〉 with the adversary. If the adversary’s commitment is accepting, O
extracts this instance of 〈C,R〉 obtaining a string I (If parts of this string
cannot be extracted they are set to ⊥).

– O picks n random bits si,0, and lets si,1 = si,0 for all i ∈ [n], as if it were
honestly committing to m = 0. Next, it runs 2n instances of Π in parallel,
committing to the si,b.

– In the unveil phase, when O learns the message m, it computes “fake” shares
ti,b as follows: tI = sI and t¬I = s¬I ⊕ (m, . . . ,m) (⊕ is interpreted element-
wise.). O sends these shares ti,b to the adversary.

– O acts as the honest sender in the unveil phase of Π. If A’s unveil of I
is accepting, then O honestly executes the unveil phase for all bit shares tI .
(Otherwise, O outputs nothing and ignores all further inputs.)

3 For ease of notation, we drop the prefixes output-to-fnct and output-to-adv in the
messages output by O.
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If no parties are corrupted, O simulates an honest execution of protocol
Π on input 0, forwarding all messages to the adversary. Since O knows the index
string I (because O has created it itself) it can create fake shares just like in the
case of a corrupted receiver.

If both parties are corrupted, O just executes the dummy adversary D
internally. (Note that Z only interacts with D in the real experiment if both
parties are corrupted).

This concludes the description of the shielded oracle O. Observe that O can be
implemented in super-polynomial time. Also note that in the case of both or no
party being corrupted, O can be implemented in polynomial time.

Before we can state our theorem, we need another assumption about the
commitment scheme 〈C,R〉.
Definition 20 (pCCA-secure commitment schemes). Let 〈C,R〉 be a tag-
based commitment scheme. A pCCA-decommitment oracle E interacts with an
adversary A in polynomial many parallel sessions of 〈C,R〉 as an honest receiver
with tags chosen by the adversary. After all sessions have been completed suc-
cessfully, E simultaneously reveals all committed values to A (note that when a
session has multiple compatible committed values, E reveals only one of them.
Hence, there might exist many decommitment oracles).

Consider the probabilistic experiment INDb(〈C,R〉,AE , 1n, z) with b ∈ {0, 1}:
On input 1n and auxiliary input z, the adversary A adaptively chooses a pair

of challenge values v0, v1 ∈ {0, 1} together with a tag and sends them to the
challenger. The challenger commits to vb using 〈C,R〉 with that tag. The output
of the experiment is the output of AE . If any of the tags used by A for queries
to the pCCA-decommitment oracle equals the tag of the challenge, the output of
the experiment is replaced by ⊥.

〈C,R〉 is said to be parallel-CCA-secure if there exists an E s.t. for all PPT
adversaries A it holds that:4

IND0(〈C,R〉,AE , 1n, z)
c≡ IND1(〈C,R〉,AE , 1n, z)

Note that previous protocols proven secure in the Angel-based framework
required (adaptive) CCA-secure commitments schemes [CLP10,Goy+15,Kiy14].
For our notion it suffices to assume parallel-CCA-secure (i.e. non-adaptive) com-
mitment schemes as a building block.

Theorem 21. Assume that 〈C,R〉 is parallel-CCA-secure and immediately com-
mitting. Then Π ≥FO

com
FO

com, where Π is as defined in Construction 1 and O is
the shielded oracle as defined in Construction 2.

Proof. By Proposition 6 it suffices to find a simulator for the dummy adversary.
By construction of O the simulator in the ideal experiment can be chosen to be
identical to the dummy adversary.
4 In our special case the decommitment oracle E is unique since we assume an imme-

diately committing commitment scheme.
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The main idea of the proof is to consider a sequence of hybrid experiments
for a PPT environment Z that may externally invoke polynomially many FO

com-
sessions and iteratively replace those sessions by the real protocol Π in a specific
order utilizing the fact that the super-polynomial computations of O are hidden
away and thus the replacements are unnoticeable by Z, or otherwise we would
obtain a PPT adversary against the hiding property of 〈C,R〉.

Step 1: Let Z be a PPT environment that may externally invoke polynomial
many FO

com-sessions. We denote the output of this experiment by the random
variable Exec

(FO
com,Z)

. Let Exec
(
Π,Z)

be the output of Z if all instances of
FO

com sessions are replaced by the instances of the protocol Π. We show that for
all environments Z it holds that

Exec
(FO

com,Z) c≡ Exec
(
Π,Z)

(12)

Let Z be an environment. By a standard averaging argument we can fix some
random coins r for Z. Thus we can assume henceforth that Z is deterministic.

We call instances of FO
com (or Π) where the sender or receiver is corrupted

sender sessions or receiver sessions, respectively. Since in the cases where both or
no party is corrupted, the O-adjoinded functionalities in this case can be treated
as part of the environment. We therefore only need to consider FO-augmented
environments that only invoke either sender sessions or receiver sessions.

We say a discrepancy occurred, if in any ideal sender session of FO
com O

extracts a value m, but later Z correctly unveils a value m′ �= m. First notice that
unless a discrepancy happens, the output of an ideal sender session is identically
distributed to the output of the real protocol Π.

We will now distinguish two cases.

1. The probability that Z causes a discrepancy is negligible.
2. The probability that Z causes a discrepancy is non-negligible.

Case 1: We replace all sender sessions with instances of Π, incurring only a
negligible statistical distance. We are left with a hybrid experiment in which
only the receiver sessions are still ideal. We will now iteratively replace ideal
receiver sessions with the real protocol, beginning with the last session that is
started.

Assume that there are at most q receiver sessions. Define hybrids H0, . . . ,Hq

as follows. Hybrid Hi is the experiment where the first i receiver sessions are
ideal and the remaining q − i receiver sessions are replaced by instances of Π
(in which the receiver is corrupted). Clearly, Hq is identical to the experiment
where all receiver sessions are ideal, whereas H0 is the experiment where all
receiver sessions are real. The experiment Hi outputs whatever Z outputs. Let
Pi = Pr[Hi = 1] denote the probability that Z outputs 1 in the hybrid game
Hi. Assume now that ε := |P0 − Pq| is non-negligible, i.e., Z has non-negligible
advantage ε in distinguishing H0 from Hq. We will now construct an adversary
AΠ that breaks the hiding property of Π with advantage ε/q.
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By the averaging principle, there must exist an index i∗ ∈ [q] such that
|Pi∗−1 − Pi∗ | ≥ ε/q. By a standard coin-fixing argument, we can fix the coins
selected by the O-instances inside the first i∗ −1 (ideal) receiver sessions. Fixing
these coins maintains Z’s distinguishing advantage. Since we fixed the coins of Z
before, the experiment is now deterministic until the start of receiver session i∗.
Since Z is fully deterministic up until this point, the first message of Z in session
i∗, which is a commitment on the bit string I, is also computed deterministically.

We can now construct the non-uniform adversary A against the hiding prop-
erty of 〈C,R〉. (We note that we do not construct an adversary A for the stan-
dard hiding game but for a multi-instance variant.) As a non-uniform advice, A
receives a complete trace of all messages sent until this point. This includes all
bit strings I1, . . . , Ii∗ to which Z committed to in all receiver sessions 1, . . . , i∗

(it also includes Z’s input). Note that all messages come from a deterministic
process, and the corresponding Ii are uniquely determined by the first messages
of each session i since 〈C,R〉 is immediately committing.

A now proceeds as follows. A internally simulates Z and all sessions invoked
by Z. This simulation can be done in polynomial time, since all sender sessions
and the subsequent receiver sessions i∗ + 1 through q have been replaced by
instances of Π, and A knows the index strings Ii that are used in the (ideal)
receiver sessions 1 through i∗.

Let m∗ be the message that Z chooses as input for the sender in session i∗. A
reads I

def= Ii∗ from its non-uniform advice and samples a tuple sI of n random
strings. It then computes s¬I = sI ⊕ (m∗, . . . ,m∗) and s′

¬I = sI for all i ∈ [n].
A sends the messages (s¬I , s

′
¬I) to the hiding experiment. It now forwards all

the messages between the hiding experiment and Z and simultaneously commits
honestly on all values sI to Z. When Z requires that the commitments for all sI

be opened, A honestly unveils these. When Z terminates, A outputs whatever
Z output in the experiment. This concludes the description of A.

We will now analyze A’s advantage. If the challenger of the hiding game
picks the messages s′

¬I , Z obtains a commitment on the all-zero string in A’s
simulation. Therefore, in this case the view of Z is distributed identically to
the view inside the hybrid Hi∗ . If the challenger of the hiding game picks the
messages s¬I , Z obtains a commitment to the message m which is identical to
the view of Z inside the hybrid Hi∗−1. It follows

Adv(A) =
∣∣Pr[Hi∗ = 1] − Pr[Hi∗−1 = 1]

∣∣ = |Pi∗ − Pi∗−1| ≥ ε/q, (13)

i.e. A breaks the hiding property of protocol 〈C,R〉 with advantage ε/q, which
concludes case 1. (Note that in this case A does not need the pCCA oracle.)

Case 2: We now turn to case 2. A first observation is that we only need to con-
sider augmented environments that invoke exactly one external session where
the sender is corrupted. This is because if a (general) environment Z causes a
discrepancy with non- negligible probability, then there exists a session j∗ in
which a discrepancy happens for the first time. An environment Z ′ that invokes
only one session where the sender is corrupted can then simulate Z, guess j∗
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and simulate all the other sessions where the sender is corrupted with the real
protocol. It holds that Z ′ also causes a discrepancy with non-negligible proba-
bility.

So we henceforth assume that Z invokes at most q sessions and only one
session where the sender is corrupted. In what follows, we will replace all ideal
sessions where the receiver is corrupted with real protocols using the same strat-
egy as in case 1. Define the hybrids H0, . . . ,Hq as in case 1 except that now Z
can additionally invoke exactly one sender session in all these hybrids. Clearly,
Hq is identical to the experiment where all sessions are ideal, whereas H0 is the
experiment where all receiver sessions are real. Let Pi = Pr[Hi = 1] again.

Assume now that Z can distinguish between H0 and Hq with non-negligible
advantage ε. Then there exists an index i∗ ∈ [q] such that |Pi∗−1 − Pi∗ | ≥ ε/q.
We can now fix the coins that are used in the first i∗ − 1 ideal sessions until the
point where session i∗ starts, while maintaining Z’s distinguishing advantage.

We will construct a non-uniform adversary A′ that breaks the parallel-cca-
security of 〈C,R〉 with advantage ε/q. As in case 1, A′ receives as a non-uniform
advice a trace of a run of Z which also includes all index sets Ii to which Z
committed in all sessions until session i∗ and possibly the shares to which Z
committed in the only sender-session (again, it also includes Z ′s input).

A′ now proceeds the same way as in case 1. It internally runs Z and simulates
either hybrid Hi∗−1 or Hi∗ for Z by embedding the challenge of the hiding
game into the simulated session i∗. The adversary A′ simulates all ideal receiver
sessions for i ≤ i∗ with the help of its advice while all subsequent receiver sessions
for i > i∗ have already been replaced by Π. If Z has already started to commit
to the shares in the only sender session then (by definition) these shares are also
part of A′’s advice and A′ can simulate the sender session. (Note that 〈C,R〉 is
immediately committing, hence the first message of (the parallel executions of)
〈C,R〉 uniquely determines the shares). If Z has not yet started to commit to
the shares in the sender session then A′ can use its parallel-cca oracle to extract
them by forwarding the corresponding messages between the oracle and Z. After
the experiment terminates, A′ outputs whatever Z outputs.

The analysis of A′ is the same as in case 1 and we end up with the conclusion
that A′ breaks the parallel-cca-security of protocol 〈C,R〉 with advantage ε/q.

Hence, it remains to consider environments that invoke exactly one sender-
session (all receiver sessions are real and hence can be treated as part of the
environment). Assume that such an environment Z causes a discrepancy with
non-negligible probability ε′.

We will now construct a non-uniform adversary A′′ that breaks the hiding
property of the commitment scheme 〈C,R〉. A′′ takes part in a partial one-way
hiding experiment where the challenger picks a random string I = b1 · · · bn and
commits to this string using the commitment scheme 〈C,R〉. A′′ then sends a
vector (a1, . . . , an) to the experiment where al ∈ {0, 1,⊥}. Let M = {l | al �= ⊥}.
A′′ wins if card(M) ≥ n/2 and al = bl for all l ∈ M . It holds that since 〈C,R〉
is hiding, A′′ can win this experiment only with negligible probability.
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A′′ receives as non-uniform advice the input of Z. A′′ now proceeds as fol-
lows: A′′ forwards the commitment it receives in the experiment to Z as in the
commit phase of the one sender session that Z can invoke. When Z sends the
commitments on the shares sl,b, A′′ forwards them to its parallel-CCA-oracle,
thus learning the values sl,b that Z committed to. A can now simulate the oracle
O and reconstruct the message m defined by these shares (by defining m to be
the most frequent value that occurs in {si,0 ⊕ si,1}i∈[n] just like O). When Z
sends the shares s′

l,b in the unveil phase of the sender session, A′′ compares them
to the originally extracted shares sl,b and defines the vector (a1, . . . , an) as

al :=

{
bl if ∃ bl ∈ {0, 1} : sl,bl = s′

l,bl
∧ sl,¬bl �= s′

l,¬bl
(	)

⊥ else (if no such bi exists)
(14)

and sends (a1, . . . , an) to the experiment.
We will now analyze A′′’s success probability. Let M be the set of indices l

for that condition (	) holds. If Z causes a discrepancy, it holds that all tuples of
shares (s′

l,0, s
′
l,1) define the same but different message m′ �= m than the majority

of the original shares (sl,0, sl,1), i.e. card(M) ≥ n/2. Moreover, for each l ∈ M
bl equals the lth bit of I. Hence, by construction, A′′ wins with non- negligible
probability if Z causes a discrepancy with non-negligible probability.

Step 2: We will now prove that for every FO-augmented environment

Exec
(
Π,D,Z[FO

com]
) c≡ Exec

(FO
com,D,Z[FO

com]
)
.

If the sender is corrupted then nothing needs to be shown, as in this case the
real and ideal experiment are statistically close. This follows from the fact that
by step 1, case 2, an FO

com-augmented environment can cause a discrepancy only
with negligible probability.

If the receiver is corrupted then by step 1 the real and ideal experiment are
both indistinguishable to an experiment where all instances of FO

com invoked by
the environment have been replaced by the real protocol. Hence the outputs of
the real and ideal experiment are indistinguishable.

If no party is corrupted then one can first replace all sender sessions and
receiver sessions with the real protocol using step 1, obtaining a polynomial time
environment. Then one can prove indistinguishability by using a very similar
reduction to the hiding property as in step 1, case 1.

If both parties are corrupted then the real and ideal experiment are identically
distributed. ��

The premise of Theorem 21 can be further relaxed by using only a weakly
pCCA oracle instead of a standard pCCA oracle. A weakly pCCA oracle returns
⊥ everywhere in case that at least one commitment is not accepting. Weakly
pCCA suffices because a shielded oracle in a sender session (acting as the honest
receiver) aborts if at least one commitment is not accepting in the commit phase.

The underlying commitment scheme 〈C,R〉 can be instantiated with the 8-
round construction in [Goy+14]. It is straightforward to see that this scheme is
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pCCA secure by using the extractor in its security proof. The Zero-Knowledge
Argument of Knowledge inside [Goy+14] is instantiated with the Feige-Shamir
protocol [FS90] and—deviating from the original work —the basic commitment
scheme is instantiated by the Blum commitment [Blu81] because we require
an immediately committing protocol. Since this scheme is constant-round, we
obtain the following result:

Corollary 22. Assume the existence of one-way permutations. Then there is
a constant-round protocol Πcom and a shielded oracle O such that Πcom ≥FO

com

FO
com.

The above construction is non-black-box since [Goy+14] (instantiated this
way) is non-black-box. However, recall that the only non-black-box part of
[Goy+14] is a ZK proof for proving knowledge of committed values and that
these values satisfy linear relations. As already pointed out in [Goy+14], this
can both be done making only black-box use of a homomorphic commitment
scheme. Instantiating [Goy+14] with a perfectly binding homomorphic commit-
ment scheme thus yields a fully black-box construction. Since we need an imme-
diately committing scheme in the plain model for our protocol we let the sender
(and not a trusted setup) generate the commitment key of the homomorphic
commitment. This construction can be used as a building block in [Goy+14]
if the homomorphic commitment scheme is “verifiable”. A verifiable homomor-
phic commitment scheme allows one to (non-interactively) verify that a commit-
ment key is well-formed. For instance, the ElGamal commitment scheme [ElG84]
(which is based on the DDH assumption) is a verifiable perfectly binding homo-
morphic commitment scheme [AIR01]. The Linear Encryption scheme [BBS04]
(which is based on the DLin assumption) can also be viewed as a commitment
scheme with these properties.

Corollary 23. Assume the existence of verifiable perfectly binding homomor-
phic commitment schemes. Then there exists a constant-round black-box protocol
ΠBB

com and a shielded oracle O such that ΠBB
com ≥FO

com
FO

com

5 A Modular Composition Theorem for Π

We show that we can plug the protocol Π from Construction 1 into a large
class of UC-secure protocols in the Fcom-hybrid model in such a way that the
composite protocol is secure in our framework. We first define Commit-Compute
protocols and parallel-CCA-UC-emulation.

Definition 24 (Commit-Compute protocols). Let ρFcom be a protocol in the
Fcom-hybrid model. We call ρFcom a commit-compute protocol or CC protocol if
it can be broken down into two phases: An initial commit phase, where the only
communication allowed is sending messages to instances of Fcom. After the com-
mit phase is over, a compute phase begins where sending messages to instances
of Fcom except for unveil-messages is prohibited, but all other communication
is allowed.
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Definition 25 (pCCA-UC-emulation). We write ρ ≥E-pCCA φ if a protocol
ρ UC-emulates a protocol φ in the presence of (non-uniform) environments that
may interact with a pCCA-decommitment oracle E as defined in Definition 20 for
tags that are not extensions of the session identifier of the challenge protocol.

In the following, let Π be the protocol as in Construction 1 with an imme-
diately committing and parallel-CCA secure commitment scheme 〈C,R〉. Let E
be the (uniquely defined) pCCA-decommitment oracle of 〈C,R〉.

We are now ready to state the theorem:

Theorem 26. Let ρFcom be a CC protocol and G a functionality. If
ρFcom ≥E-pCCA G then there exists a shielded oracle O′ such that

ρΠ ≥
GO′

GO′

Proof. Since ρFcom ≥E-pCCA G there exists a dummy adversary simulator SD.
Let O be the shielded oracle from Construction 2, s.t. Π ≥FO

com
FO

com. We define
the shielded oracle O′ as follows. O′ internally simulates multiple instances of O
(one for each instance of Fcom in ρ) and SD, and forwards messages as follows.

– Messages from the adversary addressed to an instance of Fcom are forwarded
to the corresponding internal instance of O.

– Messages from an internal instance of O to an instance of Fcom are forwarded
to the dummy adversary simulator SD.

– Messages between SD and the functionality G are forwarded.
– Messages from the dummy adversary simulator SD addressed as coming from

an instance of Fcom are forwarded to the respective instance of O.
– Messages from the dummy adversary simulator SD not addressed as coming

from an instance of Fcom are output to the adversary (without forwarding
them to an internal instance of O).

We claim that for this oracle ρΠ ≥GO′ GO′
holds. By Proposition 6 it is

sufficient to find a simulator for the dummy adversary. The simulator will be the
dummy adversary in the ideal world.

Recall that we call instances of FO
com (or Π) where the sender or receiver is

corrupted sender sessions or receiver sessions, respectively.
We denote by ρΠS,FO

com the protocol ρFO
com where all ideal sender sessions have

been replaced by the real protocol. Let Exec(ρΠS,FO
com ,Z) denote an execution of

an environment Z with (polynomially many) instances of ρΠS,FO
com . Furthermore,

denote by Exec(GO′
,Z) an execution of an environment Z where all instances

of ρΠS,FO
com have been replaced by instances of GO′

.
Let Z be an environment in the experiment Exec(ρΠS,FO

com ,Z). By a standard
averaging argument we can fix some random coins r for Z. Thus we can assume
henceforth that Z is deterministic.

In the following hybrid argument, we will have to globally order the main
sessions by the ending of their commit-phase and (adaptively) invoke instances
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of ρΠS,FO
com , ρFO

com or GO′
based on this order. Since the message scheduling may

be random, however, this order is not determined a-priori.
In the following, we will therefore have the experiment in the hybrids imple-

ment the commit-phases of all invoked protocols “obliviously”, i.e., interact with
the environment by running the programs of the shielded oracles and store the
inputs of the honest parties without following their instructions in the commit-
phases. Note that the only communication that is visible to the environment in
the commit-phase is its interaction with the shielded oracles or the receiver in
an instance of ΠS. The latter interaction is identical to an interaction with the
shielded oracle in a sender session. Each time the adversary commits to a value,
this value is extracted (by a super-polynomial computation) and stored. Note
that the inputs of the honest parties have no effect on the messages the shielded
oracles output to the adversary in the commit phase.

Once the commit phases of an instance of ρΠS,FO
com has ended, the experiment

in the hybrids will invoke an instance of ρΠS,FO
com , ρFO

com or GO′
depending on

the position within the global order of sessions. The experiment will then invoke
the honest parties with their respective inputs and follow their instructions (it
will also invoke the simulator SD with the extracted values if this session is
GO′

). Messages from FO
com or SD to instances of O (which are “ok” messages)

are suppressed. This way, the emulation is consistent with the messages in the
commit phase and distributed identically as if one of the protocols GO′

, ρΠS,FO
com ,

or ρFO
com was executed from the beginning.

Step 1. We show that

Exec(ρΠS,FO
com ,Z)

c≡ Exec(GO′
,Z) (15)

Let q(n) be an upper bound on the number of instances of ρΠS,FO
com that Z

invokes. Consider the 2q(n) + 1 hybrids H00,H01,H10,H11,H20, . . . ,Hq(n)0 which
are constructed as follows:

Definition of Hybrid Hij: Execute the commit phases of each session “with-
out running the code of the parties” by invoking instances of O. Follow the
instruction of each instance of O. Parties are only there as placeholders for the
environment in the commit phase. Their instructions will be execute after the
commit phase of the respective session is over. Note that this can be done since
the actions of the parties in the commit phase have no effect on the view of the
environment in this phase. Messages output from an instance of O are stored as
well. After the commit phase of a session is over do the following:

1. If this is the kth session in which the commit phase has ended and k ≤ i then
invoke an instance of the dummy adversary simulator and the functionality
G. Hand the dummy parties their respective inputs and the dummy adversary
simulator the messages output by the instances of O. Follow the instructions
of the dummy adversary simulator and G. Ignore messages of the dummy
adversary simulator to the environment if these messages are coming from an
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instance of Fcom in the commit phase (i.e. an “ok” message). In the unveil
phase, messages from the dummy adversary simulator mimicking an interac-
tion with Fcom (which are messages of the form (unveil, b)) are forwarded to
the respective instance of O Messages from the dummy adversary simulator
not mimicking an interaction with an instance of Fcom are output (without
forwarding them to an internal instance of O).

2. If k = i + 1 and j = 0 or k > i + 1 then run the protocol parties of ρFcom

with their inputs and follow their instructions. For all subsessions where the
sender is corrupted invoke instances ΠS and execute the commit phase of ΠS

using the same randomness for the receiver as the respective oracle (do not
pass the messages to the environment). For all subsessions where the receiver
or both or no party has been corrupted invoke instances of Fcom and adjoin
the respective oracle. Send the outputs of the instances of O to the respective
instances of Fcom. Ignore “ok” messages from the instances of Fcom.

3. If k = i + 1 and j = 1 then run the parties of ρFcom with their inputs in
the commit phase and follow their instructions. For all subsessions invoke
an instance of Fcom and adjoin the respective oracle. Send the extracted
committed values of the O-instances in sender sessions to the respective Fcom-
instance. Ignore “ok” messages from the instances of Fcom.

Observe that H00 = Exec(ρΠS,FO
com ,Z) and Hq(n)0 = Exec(GO′

,Z).
Let Pij denote the probability that Z outputs 1 in hybrid Hij . Assume∣∣P00 − Pq(n)0

∣∣ is non-negligible. Then there exists an index i∗ such that either∣∣Pi∗1 − P(i∗+1)0

∣∣ or |Pi∗0 − Pi∗1| is also non-negligible.

Case 1:
∣∣Pi∗1 − P(i∗+1)0

∣∣ is non-negligible. In this case, these neighboring hybrids
are equal except that in the (i∗ + 1)th session ρFO

com is replaced by GO′
.

We fix the coins that are used in the experiment in all sessions until the point
where the (i∗ +1)th commit phase has ended, while maintaining Z’s distinguish-
ing advantage.

We can now construct an environment Z ′ that distinguishes ρFcom from G.
As a non-uniform advice, Z ′ receives a complete trace of all messages sent until
this point, including all shares si and strings I that Z committed to until the
point where the (i∗ + 1)th commit phase has ended. Z ′ internally simulates the
execution experiment with Z using its advice. Messages to the (i∗ +1)th session
are sent to the challenge protocol. Z ′ may (tentatively) also invoke instances of
FO

com in order to simulate the instances of FO
com that are invoked after the point

where the (i∗ + 1)th commit phase has ended.
Observe that the real execution corresponds to hybrid Hi∗1 and the ideal

execution to hybrid H(i∗+1)0. By construction, Z ′ distinguishes ρFcom from G.
Since FO

com is polynomially simulatable, Z ′ can be replaced by a polynomial time
environment that also distinguishes ρFcom from G, using Theorem 12. This is a
contradiction (to the definition of the dummy adversary simulator).

Case 2: |Pi∗0 − Pi∗1| is non-negligible. In this case, these neighboring hybrids
are equal except that in the (i∗ + 1)th session ρΠS,FO

com is replaced by ρFO
com .
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Since Z distinguishes these hybrids it holds that with non-negligible probability
Z causes a discrepancy in hybrid Hi∗1 as otherwise these hybrids would be
statistically close. Let Z̃ be the environment that internally runs Z and outputs
1 as soon as a discrepancy occurs.5 By construction, Z̃ outputs 1 with non-
negligible probability in Hi∗1. We will now consider i∗+1 new hybrids h0, . . . , hi∗ .

Definition of Hybrid hj: Execute the commit phases of each session “without
running the code of the parties” as described in the description of the hybrids
Hij . After the commit phase of a session is over do the following (for a fixed
j ∈ {0, . . . , i∗}):

1. If k ≤ i∗ − j then invoke an instance of the dummy adversary simulator and
the functionality G. Hand the dummy parties their respective inputs and the
dummy adversary simulator the messages output by the instances of O. Follow
the instructions of the dummy adversary simulator and G. Ignore messages
of the dummy adversary simulator to the environment if these messages are
coming from an instance of Fcom in the commit phase (i.e. an “ok” message).
In the unveil phase, messages from the dummy adversary simulator mimicking
an interaction with Fcom (which are messages of the form (unveil, b)) are
forwarded to the respective instance of O (with the same SID). Messages
from the dummy adversary simulator not mimicking an interaction with an
instance of Fcom are output (without forwarding them to an internal instance
of O)

2. If this is the kth session in which the commit phase has ended and i∗ −j+1 ≤
k ≤ i∗ + 1 then run the protocol parties of ρFcom with their inputs in the
commit phase and follow their instructions. For all subsessions where the
receiver or both or no party is corrupted invoke instances of Fcom and adjoin
the respective oracle Send the outputs of the instances of O to the respective
instances of Fcom. Ignore “ok” messages from the instances of Fcom.

3. If k ≥ i∗ + 2 then run the protocol parties of ρFcom with their inputs in
the commit phase and follow their instructions. For all subsessions invoke
an instance of Fcom and adjoin the respective oracle. Send the extracted
committed values of the O-instances in sender sessions to the respective Fcom-
instance. Ignore “ok” messages from the instances of Fcom.

5 To make the environment able to learn the committed value in a FO
com-hybrid pro-

tocol, we redefine the shielded oracle O for the case of a corrupted sender as follows:
After the unveil phase is over, the oracle first outputs the extracted committed
value to the simulator and after receiving a notification message from the simula-
tor it sends an unveil message to the functionality. Denote this modified oracle by
Õ. Furthermore define Π̃ to be identical to Π, except that before outputting the
committed value, the receiver sends the committed value to the sender. The sender
then sends a notification message to the receiver, who then outputs the commit-
ted value. It follows from the exact same arguments as in the proof of Theorem

21 that Π̃ ≥FÕ
com

F Õ
com and that Õ adjoined to Fcom is polynomially simulatable.

Using these modified versions in the above proof one obtains ρΠ̃ ≥GO′ GO′
. Since Π

unconditionally emulates Π̃ it holds that ρΠ ≥GO′ ρΠ̃ , hence ρΠ ≥GO′ GO′
.
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Observe that h0 = Hi∗1. Let j∗ be the largest index such that Z̃ causes a discrep-
ancy in hybrid hj∗ with non-negligible probability. (j∗ is well-defined, since there
is an index for which this property holds, namely 0). Furthermore, j∗ ≤ i∗ − 1.
This follows from the following argument. Observe that the last hybrid hi∗ only
contains instances of ρFcom (since all instance of G have been replaced). Because
Π emulates FO

com and due to the composition theorem Exec(ρΠ ,Z) is indistin-
guishable from hi∗ . Since no discrepancy occurs in Exec(ρΠ ,Z) it follows that a
discrepancy can occur in hi∗ only with negligible probability.

By construction, Z̃ distinguishes the hybrids hj∗ and hj∗+1 (in the first hybrid
Z̃ outputs 1 with non-negligible probability and in the second hybrid only with
negligible probability).

We will now modify these hybrids. For k ∈ {j∗, j∗ + 1} define the hybrid
hybk−j∗ to be identical to hk except for the following: At the beginning, the
experiment randomly selects one sender session in one of the commit phases
1, . . . , i∗ + 1. In all commit phases that end after the (i∗ − j∗)th commit phase
the real protocol ΠS is invoked instead of FOS in all sender sessions that have
not been selected at the beginning. The one sender session that has been selected
at the beginning always remains ideal.

It holds that Z̃ also distinguishes hyb0 from hyb1. This is because Z̃ still
causes a discrepancy in hyb0 with non-negligible probability because with high
probability (1/poly) the first session in which Z̃ causes a discrepancy is selected.
Furthermore, Z̃ causes a discrepancy in hyb1 only with negligible probability.

We fix the coins that are used in the experiment in all sessions until the
point where the (i∗ − j∗)th commit phase has ended, while maintaining Z̃’s
distinguishing advantage.

We can now construct an environment Z ′′ that distinguishes ρFcom from G.
As a non-uniform advice, Z ′′ receives a complete trace of all messages sent until
this point, including all shares si and index sets I that Z̃ committed to until the
point where the (i∗ − j∗)th commit phase has ended. Z ′′ proceeds as follows: It
internally simulates the execution experiment with Z̃ using its advice, randomly
picking a sender session at the beginning. Messages to the (i∗ − j∗)th session are
sent to the challenge protocol. Z ′′ can simulate the only instance of FOS that
may occur in a commit phase with its pCCA-oracle E . Z ′′ may (tentatively) also
invoke ideal receiver sessions in order to simulate ideal receiver sessions that are
invoked after the point where the (i∗ − j∗)th commit phase has ended.

Observe that the real execution corresponds to hybrid hyb1 and the ideal
execution to hybrid hyb0. By construction, Z ′′ distinguishes ρFcom from G. With
the same argument as in the proof of Theorem 21, step 1, case 2, one can replace
all ideal receiver sessions that Z ′′ invokes with instances of the real protocol.
By construction, an environment Z ′′ was found that can query the pCCA-
oracle E and distinguish ρFcom and D from G and SD. We have thus reached a
contradiction.

Step 2. We show that ρΠ ≥GO′ GO′
, completing the proof.

Let Z be a GO′
-augmented environments. By step 1, we can replace all

instances of GO′
with instances of ρΠS,FO

com . Since Π emulates FO
com, it follows
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from the composition theorem that we can replace (the challenge protocol) ρΠ

also with ρΠS,FO
com . Again by step 1, we can replace all instances of ρΠS,FO

com back
with instances of GO′

. The theorem follows. ��
If the following property holds for the commitment scheme 〈C,R〉, the

premise ρFcom ≥E-pCCA G is automatically fulfilled.

Definition 27 (r-non-adaptive robustness). Let 〈C,R〉 be a tag-based com-
mitment scheme and E a pCCA-decommitment oracle for it as in Definition 20.
For r ∈ N, we say that 〈C,R〉 is r-non-adaptively-robust w.r.t. E if for every
PPT adversary A, there exists a PPT simulator S, such that for every PPT
r-round interactive Turing machine B, the following two ensembles are compu-
tationally indistinguishable:

– {〈B(y),AE(z)〉(1n)}n∈N,y∈{0,1}∗,z∈{0,1}∗

– {〈B(y),S(z)〉(1n)}n∈N,y∈{0,1}∗,z∈{0,1}∗

The above definition is a weakening of the (adaptive) robustness property put
forward by [CLP10].

Corollary 28. If additionally the commitment scheme 〈C,R〉 in Π is r-non-
adaptively-robust, then for every r-round CC protocol ρFcom it holds that if
ρFcom ≥UC G then there exists a shielded oracle O′ such that

ρΠ ≥
GO′

GO′

Up to now we could instantiate 〈C,R〉 with a modified version of [Goy+14]
as described above of Corollary 22. To additionally make this scheme r-non-
adaptively-robust w.r.t. E one can add “redundant slots” using the idea of [LP09]
(the scheme needs to have at least r + 1 slots to be r-non-adaptively-robust).

In the following lemma we show that every UC-secure protocol ρFcom can be
transformed into a UC-secure CC protocol.

Lemma 29 (CC compiler). Let ρFcom be a protocol in the Fcom-hybrid model.
Then there exists a CC protocol Comp(ρ)Fcom such that Comp(ρ)Fcom ≥UC ρFcom .
Furthermore, if ρFcom is constant-round then so is Comp(ρ)Fcom .

Proof (Idea of proof). Replace each instance of Fcom with a randomized com-
mitment where the sender commits to a bit b by sending a random value a to
Fcom and a ⊕ b to the receiver. Note that since the protocol is PPT the number
of commitments of each party is polynomially bounded. Put all randomized calls
to Fcom in a single commit phase. ��

Let Πr be the constant-round protocol as in Construction 1 where 〈C,R〉 is
instantiated with the immediately committing, parallel-CCA secure and r-non-
adaptively-robust modified version of [Goy+14] as described above. Furthermore,
let ΠBB

r be the same as Πr, except that [Goy+14] is instantiated with a ver-
ifiable perfectly binding homomorphic commitment scheme, thus making the
construction fully black-box. Applying Corollary 28 and Lemma 29 one obtains
the following:
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Corollary 30. Assume the existence of one-way permutations. Let ρFcom be a
constant-round protocol and G a functionality. If ρFcom ≥UC G then there exists
a shielded oracle O′ such that for sufficiently large r it holds that

Comp(ρ)Πr ≥
GO′

GO′

Furthermore, assuming the existence of verifable perfectly binding homomorphic
commitment schemes, the same property holds for ΠBB

r .

6 Constant-Round (Black-Box) General MPC

We can now apply Corollary 30 to obtain a constant-round general MPC pro-
tocol based on standard polynomial-time hardness assumptions that is secure
in our framework. [HV15] showed that for every well-formed functionality F
there exists a constant-round protocol ρFcom that UC-emulates F , assuming
two-round semi-honest oblivious transfer. Plugging Πr (for a sufficiently large r)
into this protocol yields a constant-round general MPC protocol based on stan-
dard assumptions (e.g. enhanced trapdoor permutations). Furthermore, since
the construction in [HV15] is black-box, plugging ΠBB

r into [HV15] yields a
fully black-box construction of a constant-round general MPC protocol based
on polynomial-time hardness assumptions that is secure in our framework.

Theorem 31 (Constant-round general MPC in the plain model)

(a) Assume the existence of enhanced trapdoor permutations. Then for every
well-formed functionality F , there exists a constant-round protocol πF (in
the plain model) and a shielded oracle O such that

πF ≥
FO

FO (16)

(b) Assume the existence of verifiable perfectly binding homomorphic commit-
ment schemes and two-round semi-honest oblivious transfer.
Then for every well-formed functionality F , there exists a constant-round
protocol πBB

F (in the plain model) and a shielded oracle O such that

πBB
F ≥

FO
FO (17)

πBB
F uses the underlying homomorphic commitment scheme and oblivious

transfer only in a black-box way.

7 Conclusion

Shielded super-polynomial resources allow for general concurrent composition
in the plain model while being compatible with UC security. As an applica-
tion a secure constant-round (black-box) general MPC protocol was modularly
designed and future work will be needed to make this proof of concept a general
principle.
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Abstract. Brzuska et. al. (Crypto 2011) proved that unconditional UC-
secure computation is possible if parties have access to honestly gen-
erated physically unclonable functions (PUFs). Dachman-Soled et. al.
(Crypto 2014) then showed how to obtain unconditional UC secure com-
putation based on malicious PUFs, assuming such PUFs are stateless.
They also showed that unconditional oblivious transfer is impossible
against an adversary that creates malicious stateful PUFs.
– In this work, we go beyond this seemingly tight result, by allowing

any adversary to create stateful PUFs with a-priori bounded state.
This relaxes the restriction on the power of the adversary (limited
to stateless PUFs in previous feasibility results), therefore achieving
improved security guarantees. This is also motivated by practical sce-
narios, where the size of a physical object may be used to compute
an upper bound on the size of its memory.

– As a second contribution, we introduce a new model where any adver-
sary is allowed to generate a malicious PUF that may encapsulate
other (honestly generated) PUFs within it, such that the outer PUF
has oracle access to all the inner PUFs. This is again a natural
scenario, and in fact, similar adversaries have been studied in the
tamper-proof hardware-token model (e.g., Chandran et. al. (Euro-
crypt 2008)), but no such notion has ever been considered with
respect to PUFs. All previous constructions of UC secure protocols
suffer from explicit attacks in this stronger model.

In a direct improvement over previous results, we construct UC protocols
with unconditional security in both these models.
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1 Introduction

In recent years, there has been a rich line of work studying how to enhance the
computational capabilities of probabilistic polynomial-time players by making
assumptions on hardware [33]. Two types of hardware assumptions in particular
have had tremendous impact on recent research: tamper-proof hardware tokens
and physically unclonable functions (PUFs).

The tamper-proof hardware token model introduced by Katz [24] relies on
the simple and well accepted assumption that it is possible to physically protect a
computing machine so that it can only be accessed as a black box, via oracle calls
(as an example, think of smart cards). Immediately after its introduction, this
model has been studied and its power is now understood in large part. Tamper-
proof hardware tokens allow to obtain strong security notions and very efficient
constructions, in some cases without requiring computational assumptions. In
particular, the even more challenging case of stateless tokens started by [6] has
been investigated further in [1,10,11,14,15,19,22,23,26].

1.1 Physically Unclonable Functions

Physically Unclonable Functions (PUFs) were introduced by Pappu et al. [28,29]
but their actual potential has been understood only in recent years1. Increasing
excitement over such physical random oracles generated various different (and
sometimes incompatible) interpretations about the actual features and formal-
izations of PUFs.

Very roughly, a PUF is an object that can be queried by translating an input
into a specific physical stimulation, and then by translating the physical effects
of the stimulation to an output through a measurement. The primary appealing
properties of PUFs include: (1) constructing two PUFs with similar input-output
behavior is believed to be impossible (i.e. unclonability), and (2) the output of
a PUF on a given input is seemingly unpredictable, i.e., one cannot “learn” the
behavior of an honestly-generated PUF on any specific input without actually
querying the PUF on that input.

There is a lot of ongoing exciting research on concrete constructions of PUFs,
based on various technologies. As such, a PUF can only be described in an
abstract way with the attempt to establish some target properties for PUF
designers.

However, while formally modeling a PUF, one might (incorrectly) assume
that a PUF guarantees some properties that unfortunately exceed the state of
affairs in real-world scenarios. For example, assuming that the output of a gen-
uine PUF is purely random is clearly excessive, while relying on min-entropy is
certainly a safer and more conservative assumption. Various papers have pro-
posed different models and even attempts to unify them. The interested reader

1 PUFs are used in several applications like secure storage, RFID systems, anti-
counterfeiting mechanisms, identification and authentication protocols [13,16,25,31,
32,35].
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can refer to [2] for detailed discussions about PUF models and their connections
to properties of actual PUFs. We stress that in this work we will consider the use
of PUFs in the UC model of [5]. Informally, this means that we want to study
protocols that can securely compose with other protocols that may be executing
concurrently.

1.2 UC Security Based on Physically Unclonable Functions

Starting with the work of Brzuska et al. [4], a series of papers have explored UC-
secure computation based on physically unclonable functions. The goal of this
line of cryptographic research has been to build protocols secure in progressively
stronger models.

The Trusted PUFs of Brzuska et al. [4]. Brzuska et al. [4] began the first general
attempts to add PUFs to the simulation paradigm of secure computation. They
allowed any player (malicious or honest) to create only well-formed PUFs. As
already mentioned, the output of a well-formed PUF on any arbitrary input is
typically assumed to have sufficient min-entropy. Furthermore, on being queried
with the same input, a well-formed PUF can be assumed to always produce
identical (or sufficiently close) outputs. Applying error-tolerant fuzzy extrac-
tors [9] to the output ensures that each invocation of the PUF generates a
(non-programmable) random string that can be reproduced by querying the
PUF again with the same input. Brzuska et al. demonstrated how to obtain
unconditional UC secure computation for any functionality in this model.

TheMalicious PUFs ofOstrovsky et al. [27].Ostrovsky et al. [27] then showed that
the constructions of [4] become insecure in case the adversary can produce a mali-
cious PUF that deviates from the behavior of an honest PUF. For instance, a mali-
cious PUF could produce outputs according to a pseudo-random function rather
than relying on physical phenomena, or it could just refuse to answer to a query.
Theyalso showed that it is possible toUC-securely compute any functionality using
(potentially malicious) PUFs if one is willing to additionally make computational
assumptions.TheyleftopentheproblemofachievingunconditionalUC-securecom-
putation for any functionality using malicious PUFs.

Damg̊ard and Scafuro [8] showed that unconditional UC secure commitments
can be obtained even in the presence of malicious PUFs2.

The FullyMalicious but Stateless PUFs of Dachman-Soled et al. [7]. More recently,
itwas shownbyDachman-Soled et al. [7] that unconditionalUCsecurity for general
functionalities is impossible if the adversary is allowed to create malicious PUFs
that can maintain state. They also gave a complementary feasibility result in an
intermediate model where PUFs are allowed to be malicious, but are required to be
stateless.

2 This can be extended to other functionalities but not to all functionalities.
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We note that the impossibility result of [7] crucially relies on (malicious)
PUFs being able to maintain a priori unbounded state.

Thus, the impossibility seems interesting theoretically, but its impact to prac-
tical scenarios is unclear. In the real world, this result implies that unconditional
UC secure computation of all functionalities is impossible in a model where
an honest player is unable to distinguish maliciously created PUFs with gigan-
tic memory, from honest (and therefore completely stateless) PUFs. One could
argue that this allows the power of the adversary to go beyond the reach of cur-
rent technology. On the other hand, the protocol of [7] breaks down completely
if the adversary can generate a maliciously created PUF with even one bit of
memory, and pass it off as a stateless (honest) PUF. This gap forms the starting
point for our work.

1.3 Our Contributions

The current state-of-the-art leaves open the following question:

Can we achieve UC-secure computation with malicious PUFs that are
allowed to have a priori bounded state?

In the main contribution of this work we answer this question in the affir-
mative. We show that not only it is possible to obtain UC-secure computation
for any functionality as proven in [27] with computational assumptions, but we
prove that this can be done with unconditional security, without relying on any
computational assumptions. This brings us to our first main result, which we
now state informally.

Informal Theorem 1. For any two party functionality F , there exists a proto-
col π that unconditionally and UC-securely realizes F in the malicious bounded-
stateful PUF model.

As our second contribution, we introduce a new adversarial model for PUF-
based protocols. Here, in addition to allowing the adversary to generate malicious
stateless PUFs, we also allow him to encapsulate other (honestly generated)
PUFs inside his own (malicious, stateless) PUF, even without the knowledge
of the functionality of the inner PUFs. This allows the outer malicious PUF
to make black-box (or oracle) calls to the inner PUFs that it encapsulates. In
particular, the outer malicious PUF could answer honest queries by first making
oracle calls to its inner PUFs, and generating its own output as a function of
the output of the inner PUFs on these queries. An honest party interacting with
such a malicious PUF need not be able to tell whether the PUF is malicious and
possibly encapsulates other PUFs in it, or it is honest.

In this new adversarial model3, we require all PUFs to be stateless. We
will refer to this as the malicious encapsulated PUF model. It is interesting to
3 A concurrent and independent work [30] considers an adversary that can encapsulate

PUFs but does not propose UC-secure definitions/constructions.
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note that all previously known protocols (even for limited functionalities such
as commitments) suffer explicit attacks in this stronger malicious encapsulated
(stateless) PUF model.

As our other main result, we develop techniques to obtain unconditional
UC-secure computation in the malicious encapsulated PUF model.

Informal Theorem 2. For any two party functionality F , there exists a pro-
tocol π that unconditionally and UC-securely realizes F in the malicious encap-
sulated (stateless) PUF model.

Table 1 compares our results with prior work. Our feasibility result in the
malicious bound-stateful PUF model and our feasibility result in the malicious
encapsulated-stateless PUF model directly improve the works of [4,7]. Indeed
each of our two results strengthen the power of the adversaries of [4,7] in
one meaningful and natural direction still achieving the same unconditional
results of [4,7]. A natural question is whether our techniques defeating malicious
bounded-stateful PUFs can be composed with our techniques defeating mali-
cious encapsulated-stateless PUFs to obtain unconditional UC-security for any
functionality against adversaries that can construct malicious bounded-stateful
encapsulated PUFs. While we do not see a priori any conceptual obstacle in
obtaining such even stronger feasibility result, the resulting construction would
be extremely complex and heavily tedious to analyze. Therefore we defer such a
stronger claim to future work hoping that follow up research will achieve a more
direct and elegant construction.

Table 1. The symbol � (resp. ×) indicates that the construction satisfies (resp. does
not satisfy) the corresponding security guarantee.

Reference Unconditional
UC for any
functionality

UC with
stateless
mal. PUFs

UC with
bounded stateful
mal. PUFs

UC with
encapsulated
stateless mal. PUFs

[4] � × × ×
[27] × � � ×
[7] � � × ×
This work � � � ×
This work � � × �

1.4 Our Techniques

The starting point for our constructions is the UC-secure OT protocol of [7],
which itself builds upon the works of [4,27]. We begin by giving a simplified
description of the construction in [7].

Suppose a sender S with inputs (m0,m1) and a receiver R with input bit
b want to run a UC secure OT protocol in the malicious stateless PUF model.
Then, S generates a PUF and sends it to the receiver. The receiver queries the
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PUF on a random challenge string c, records the output r and then returns the
PUF to S. Then, the sender sends two random strings (x0, x1) to the receiver.
In turn, the receiver picks xb, and sends v = c ⊕ xb to the sender. The sender
uses PUF(v ⊕ x0) to mask his input m0 and PUF(v ⊕ x1), to mask his input m1;
and sends both masked values to the receiver. Here PUF(·) denotes the output
of the PUF on the given input. Since R had to return the PUF before (x0, x1)
were revealed, with overwhelming probability, R only knows r = PUF(v ⊕ xb),
and can output one and only one of the masked sender inputs.

Enhancing [7] in the Stateless PUF Model. Though this was a simplified
overview of the protocol in [7], it helps us to explain a subtle assumption required
in their simulation strategy against a malicious sender. In particular, the simu-
lator against a malicious sender must return the PUF to the sender before the
sender picks random messages (x0, x1). However, it is evident that in order to
extract both messages (m0,m1), the simulator must know (x0 ⊕x1), and in par-
ticular know the response of the PUF on challenges (c, c ⊕ x0 ⊕ x1) for some
known string c.

But the simulator only learns (x0, x1) after sending the PUF back to S.
Thus, in order to successfully extract the input of S, the simulator should have
the ability to make these queries even after the PUF has been returned to the
malicious sender. This means that the PUF is supposed to remain accessible and
untouched even when it is again in the hands of its malicious creator. We believe
this is a very strong assumption that clearly deviates from real scenarios where
the state of a PUF can easily be changed (e.g., by damaging it).

Our protocol in Fig. 1 gets rid of this strong assumption on the simulator,
and we give a new sender simulation strategy that does not need to query the
PUF when it is back in the hands of the malicious sender S. This is also a first
step in obtaining security against bounded-stateful PUFs. In the protocol of [7],
if the PUF created by a malicious S is stateful, S on receiving the PUF can first
change the state of the PUF (say, to output ⊥ everywhere), and then output
values (x0, x1). In this case, no simulation strategy will be able to extract the
inputs of the sender.

We change the protocol in [7], by having S commit to the random values
(x0, x1) at the beginning of the protocol, using a UC-secure commitment scheme.
These values are decommitted only after R returns the PUF back to S, so the
scheme still remains UC-secure against a malicious receiver. Moreover, now the
simulator against a malicious sender can use the straight-line extractor guar-
anteed by the UC-secure commitment scheme, to extract values (x0, x1), and
query the PUF on challenges of the form (c, c ⊕ x0 ⊕ x1) for some string c. It
then sets v = c ⊕ x0 and sends it to S. Now, the sender masks are PUF(v ⊕ x0)
and PUF(v ⊕ x1), which is nothing but PUF(c) and PUF(c ⊕ x0 ⊕ x1), which
was already known to the sender simulator before returning the PUF to S. This
simulation strategy works (with the simulator requiring only black-box access to
the malicious PUF’s code) even if the PUF is later broken or its state is reset in
any way. This protocol is described formally and proven secure in Sect. 3.



388 S. Badrinarayanan et al.

Inputs: Sender S has private inputs (m0,m1) ∈ {0, 1}2n and Receiver R has
private input b ∈ {0, 1}.

1. Sender Message: S does the following:
– Generate a PUF PUFs : {0, 1}n {0, 1}n.

– Choose a pair of random strings (x0, x1)
$

0, 1}2n.
– Send PUFs and (t0, t1) = UC-Com.Commit(x0, x1) to R.

2. Receiver Message: R does the following:

– Choose a pair of random strings (c0, c1)
$

{

{0, 1}2n.
– Compute r0 = PUFs(c0), r1 = PUFs(c1).

– Set c = cp and r = rp for p
$ {0, 1}.

– Store the pair (c, r) and send PUFs to S.
3. Sender Message:

– S sends (x0, x1) = UC-Com.Decommit(t0, t1) to R.
4. Receiver Message: R does the following:

– Abort if the decommitment does not verify correctly.
– Compute and send val = c ⊕ xb to S.

5. Sender Message:
– S computes S0 = m0 ⊕ PUFs(val ⊕ x0), S1 = m1 ⊕ PUFs(val ⊕ x1) and

sends (S0, S1) to R.

Outputs: S has no output. R outputs mb which is computed as (Sb ⊕ r).

Fig. 1. Protocol Π1 for 2-choose-1 OT in the malicious stateless PUF model.

UC Security with Bounded Stateful PUFs. A malicious PUF is allowed
to maintain state, and can generate outputs (including ⊥) as a function of not
only the current query but also the previous queries that it received as input.
This allows for some attacks on the protocol we just described, but they can be
prevented by carefully interspersing coin-tossing with the protocol. Please see
Sect. 4 for more details.

A stateful PUF created by the sender can also record information about
the queries made by the receiver, and replay this information to a malicious
sender when he inputs a secret challenge. Indeed, for PUFs with unbounded
state, it is this ability to record queries that makes oblivious transfer impossible.
However, we only consider PUFs that have a-priori bounded state. In this case,
it is possible to design a protocol, parameterized by an upper bound on the size
of the state of the PUF, that in effect exhausts the possible state space of such a
malicious PUF. Our protocol then carefully uses this additional entropy to mask
the inputs of the honest party.

More specifically, we repeat the OT protocol described before (with an addi-
tional coin-tossing phase) K times in parallel, using the same (possibly malicious,
stateful) PUF, for sufficiently large K > � (where � denotes the upper bound on
the state of the PUF). At this point, what we require essentially boils down to
a one-sided malicious oblivious transfer extractor. This is a gadget that would
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yield a single OT from K leaky OTs, such that the single OT remains secure even
when a malicious sender can ask for � bits of universal leakage across all these
OTs. This setting is incomparable to previously studied OT extractors [17,21]
because: (a) we require a protocol that is secure against malicious (not just semi-
honest) adversaries, and (b) the system has only one-sided leakage, i.e., a corrupt
sender can request � bits of leakage, but a corrupt receiver does not obtain any
leakage at all.

For simplicity, we consider the setting of one-sided receiver leakage (instead
of sender leakage). It is possible to consider this because OT is reversible. To
protect against a malicious receiver that may obtain � bits of universal leakage,
the sender picks different random inputs for each OT execution, and then uses
a strong randomness extractor to extract min-entropy and mask his inputs. We
show that this in fact suffices to statistically hide the input messages of the
sender. Please see Sect. 5 for a more detailed overview and construction.

UC Security with Encapsulated PUFs. We demonstrate the feasibility of
UC secure computation, in a model where a party may (maliciously) encapsu-
late one or more PUFs that it obtained from honest parties, inside a malicious
stateless PUF of its choice. We stress that our protocol itself does not require
honest parties to encapsulate PUFs within each other.

To describe our techniques, we begin by revisiting the protocol in Fig. 1, that
we described at the beginning of this overview. Suppose parties could maliciously
encapsulate some honest PUFs inside a malicious PUF. Then a malicious receiver
in this protocol, when it is supposed to return the sender’s PUF PUFs, could
instead return a different malicious PUF P̂UFs. In this case, the receiver would
easily learn both inputs of the sender. But as correctly pointed out in prior
work [7,8], the sender can deflect such attacks by probing and recording the
output of PUFs on some random input(s) (known as Test Queries) before sending
it to the receiver. Later the sender can check whether P̂UFs correctly answers to
all Test Queries.

However, a malicious receiver may create P̂UFs that encapsulates PUFs, such
that P̂UFs is programmed to send most outer queries to PUFs and echo its output
externally; in order to pass the sender’s test. However, P̂UFs may have its own
malicious procedure to evaluate some of the other external queries. In particular,
the “unpredictability” of P̂UFs may break down completely on these queries.

It turns out that the security of the sender in the basic OT protocol of Fig. 1
hinges on the unpredictability of the output of PUFs (in this situation, ̂PUFs)
on a “special challenge query” only, which we will denote by s. It is completely
feasible for a receiver to create a malicious encapsulating PUF ̂PUFs that passes
the sender tests, and yet its output on this special query s is completely known
to the receiver, therefore breaking sender security.

We overcome this issue by ensuring that s is chosen using a coin toss, and
is completely unknown to the receiver until after he has sent P̂UFs (possibly a
malicious encapsulating PUF) back to the sender. Intuitively, this means that
P̂UFs will either not pass the sender tests, or will be highly likely to deflect this
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the query s to the inner PUF and echo its output (thereby ensuring that the
output of the PUF on input s is unpredictable for the receiver). An additional
subtlety that arises is that the receiver might use an incorrect s in the protocol
(instead of using the output of the coin toss): the receiver is forced to use the
correct s via a special cut-and-choose mechanism. For a more detailed overview
and construction, please see to Sect. 6.

UC-Secure Commitments Against Encapsulation Attacks. Finally, UC-
secure commitments against encapsulation attacks play a crucial role in our
UC-secure OT protocol in the encapsulation model. But, we note that the basic
commitment protocol of [8] is insecure in this stronger model, and therefore we
modify the protocol of [8] to achieve UC-security in this scenario. In a nutshell,
this is done by having the receiver send an additional PUF at the end of the
protocol, and forcing any malicious committer to query this additional PUF on
the committer’s input bit. We then show that even an encapsulating (malicious)
committer will have to carry out this step honestly in order to complete the
commit phase. Then, a simulator can extract the adversary’s committed value
by observing the queries of the malicious committer to this additional PUF. We
illustrate in detail, how prior constructions of UC-secure commitments fail in
the PUF encapsulation model in Sect. 7. Our UC-secure commitment protocol
in the encapsulated malicious (stateless) PUF model is also described in Sect. 7.

1.5 Organization

The rest of this paper is organized as follows. In Sect. 2, we discuss PUFs and
other preliminaries relevant to our protocols. In Sect. 3, we describe an improved
version of the protocol in [7], in the stateless PUF model. In Sects. 4 and 5, we
boost this protocol to obtain security in the bounded stateful PUF model. In
Sects. 6 and 7, we discuss protocols that are secure in the PUF encapsulation
model. In AppendixA, we discuss the formal modelling of our PUFs. The com-
plete models and proofs that could not be included in this version owing to space
restrictions, can be found in the full version of the paper.

2 Preliminaries

2.1 Physically Unclonable Functions

A PUF is a noisy physical source of randomness. The randomness property
comes from an uncontrollable manufacturing process. A PUF is evaluated with
a physical stimulus, called the challenge, and its physical output, called the
response, is measured. Since the processes involved are physical, the function
implemented by a PUF can not (necessarily) be modeled as a mathematical
function, neither can be considered computable in PPT. Moreover, the output
of a PUF is noisy, namely, querying a PUF twice with the same challenge,
could yield distinct responses within a small Hamming distance to each other.
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Moreover, the response need not be random-looking; rather, it is a string drawn
from a distribution with high min-entropy. Prior work has shown that, using
fuzzy extractors, one can eliminate the noisiness of the PUF and make its output
uniformly random. For simplicity, we assume this in the body of the paper and
give a detailed description in the full version.

A PUF-family is a pair of (not necessarily efficient) algorithms Sample and
Eval. Algorithm Sample abstracts the PUF fabrication process and works as
follows. On input the security parameter, it outputs a PUF-index id from the
PUF-family satisfying the security properties (that we define soon) according to
the security parameter. Algorithm Eval abstracts the PUF-evaluation process.
On input a challenge q, it evaluates the PUF on q and outputs the response a
of length rg, denoting the range. Without loss of generality, we assume that the
challenge space of a PUF is a full set of strings of a certain length.

Security of PUFs. Following [4], we consider only the two main security prop-
erties of PUFs: unclonability and unpredictability. Informally, unpredictability
means that the output of the PUF is statistically indistinguishable from a uni-
form random string. Formally, unpredictability is modeled via an entropy con-
dition on the PUF distribution. Namely, given that a PUF has been measured
on a polynomial number of challenges, the response of the PUF evaluated on a
new challenge still has a significant amount of entropy. For simplicity, a PUF is
unpredictable if its output on any given input appears uniformly random.

Informally, unclonability states that in a protocol consisting of several parties,
only the party in whose possession the PUF is, can evaluate the PUF. When a
party sends a PUF to a different party, it can no longer evaluate the PUF till
the time it gets the PUF back. Thus a party not in possession of a PUF cannot
predict the output of the PUF on an input for which it did not query the PUF,
unless it maliciously created the PUF. A formal definition of unclonability is
given in the full version of this paper.

A PUF can be modeled as an ideal functionality FPUF, which mimics the
behavior of the PUF in the real world. We formally define ideal functionalities
corresponding to honestly generated and various kinds of maliciously generated
PUFs in AppendixA. We summarize these here: the model for honestly gener-
ated PUFs and for malicious stateless/stateful PUFs has been explored in prior
work [7,27], and we introduce the model for encapsulated PUFs.

– An honestly generated PUF can be created according to a sampling algo-
rithm Samp, and evaluated honestly using an evaluation algorithm Eval. The
output of an honestly generated PUF is unpredictable even to the party that
created it, i.e., even the creator cannot predict the output of an honestly
generated PUF on any given input without querying the PUF on that input.

– A malicious stateless PUF, on the other hand, can be created by the
adversary substituting an Evalmal procedure of his choice for the honest Eval
procedure. Whenever a (honest) party in possession of this PUF evaluates
the PUF, it runs the stateless procedure Evalmal(c) instead of Eval(c) (and
cannot distinguish Evalmal(c) from Eval(c) unless they are distinguishable with
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black-box access to the PUF). The output of such a PUF cannot depend on
previous queries, moreover no adversary that creates the PUF but does not
possess it, can learn previous queries made to the PUF when it was not in its
possession. We adapt the definitions from [27], where Evalmal is a polynomial-
time algorithm with oracle access to Eval. This is done to model the fact that
the Evalmal algorithm can access an (honest) source of randomness Eval, and
can arbitrarily modify its output using any polynomial-time strategy.

– A malicious stateful PUF can be created by the adversary substituting a
stateful Evalmal procedure of his choice for the honest Eval procedure. When-
ever a party in possession of this PUF evaluates the PUF, it runs the stateful
procedure Evalmal(c) instead of Eval(c). Thus, the output of a stateful mali-
cious PUF can possibly depend on previous queries, moreover an adversary
that created a PUF can learn previous queries made to the PUF by query-
ing it, say, on a secret input. Evalmal is a polynomial-time stateful Turing
Machine with oracle access to Eval. Again, this is done to model the fact that
the Evalmal algorithm can access an (honest) source of randomness, Eval, and
arbitrarily modify its output using any polynomial-time strategy. Malicious
stateful PUFs can further be of two types:

• Bounded Stateful. Such a PUF can maintain a-priori bounded mem-
ory/state (which it may rewrite, as long as the total memory is bounded).

• Unbounded Stateful. Such a PUF can maintain unbounded memory/state.
– A malicious encapsulating PUF can possibly encapsulate other (honestly

generated) PUFs inside it4, without knowing the functionality of these inner
PUFs. Such a PUF PUFmal can make black-box calls to the inner PUFs, and
generate its outputs as a function of the output of the inner (honest) PUFs.
This is modeled by having the adversary substitute an Evalmal procedure of
his choice for the honest Eval procedure in the PUFmal that it creates, where
as usual Evalmal is a polynomial-time Turing Machine with oracle access to
Eval. Similar to the two previous bullets, this is done to model the fact that
the Evalmal algorithm can access an (honest) source of randomness, Eval, and
arbitrarily modify its output using any polynomial-time strategy.
In addition, Evalmal can also make oracle calls to polynomially many other
(honestly generated) procedures Eval1,Eval2, . . .EvalM that are contained in
PUFs PUF1,PUF2, . . .PUFM , for any a-priori unbounded M = poly(n). These
correspond to honestly generated PUFs that the adversary may be encap-
sulating within its own malicious PUF. Thus on some input c, the Evalmal

procedure may make oracle calls to Eval1,Eval2, . . .EvalM on polynomially
many inputs, and compute its output as a function of the outputs of the
Eval,Eval1,Eval2, . . .EvalM procedures. Of course, we ensure that the adver-
sary’s Evalmal procedure can make calls to some honestly generated procedure
Evali only if the adversary owns the PUF PUFi implementing the Evali proce-
dure when creating the encapsulating malicious PUF. Furthermore, when the

4 Since the adversary knows the code of maliciously generated PUFs, this model auto-
matically captures real-world scenarios where an adversary may be encapsulating
other malicious PUFs inside its own.
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adversary passes such a PUF to an honest party, the adversary “loses own-
ership” of PUFi and is no longer allowed to access the Evali procedure, this
is similar to the unclonability requirement. This is modeled by assigning an
owner to each PUF, and on passing an outer (encapsulating) PUF to an hon-
est party, the adversary must automatically pass all the inner (encapsulated)
honest PUFs. Whenever an honest party is in possession of such an adversar-
ial PUF PUFmal and evaluates it, it receives the output of Evalmal. When the
adversary is allowed to construct encapsulating PUFS, we restrict all PUFs
to be stateless. Therefore the model with encapsulating PUFs is incompara-
ble with the model with bounded-stateful malicious PUFs. Further details on
the modeling of malicious stateless PUFs that may encapsulate other stateless
PUFs, are provided in AppendixA.

To simplify notation, we write PUF ← Sample(1K), r = PUF(c) and assume
that PUF is a deterministic function with random output.

2.2 UC Secure Computation

The UC framework, introduced by [5] is a strong framework which gives security
guarantees even when protocols may be arbitrarily composed.

Commitments. A UC-secure commitment scheme UC-Com consists of the usual
commitment and decommitment algorithms, along with (straight-line) proce-
dures allowing the simulator to extract the committed value of the adversary
and to equivocate a value that the simulator committed to. We denote these
by (UC-Com.Commit, UC-Com.Decommit,UC-Com.Extract,UC-Com.Equivocate).
Damg̊ard and Scafuro [8] realized unconditional UC secure commitments using
stateless PUFs, in the malicious stateful PUF model.

OT. Ideal 2-choose-1 oblivious transfer (OT) is a two-party functionality that
takes two inputs m0,m1 from a sender and a bit b from a receiver. It outputs mb

to the receiver and ⊥ to the sender. We use Fot to denote this functionality. Given
UC oblivious transfer, it is possible to obtain UC secure two-party computation
of any functionality.

Formal definitions of these functionalities and background on prior results
are provided in the full version of this paper.

3 Unconditional UC Security with (Malicious) Stateless
PUFs

As a warm up, we start by considering malicious stateless PUFs as in [7] and we
strengthen their protocol in order to achieve security even when the simulator
does not have access to a malicious PUF that is in possession of the adversary
that created it.
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Construction. Let n denote the security parameter. The protocol Π1 in Fig. 2
UC-securely and unconditionally realizes 2-choose-1 OT in the malicious state-
less PUF model, between a sender S and receiver R, with the following
restrictions:

1. The random variables (x0, x1) are chosen by S independently of PUFs
5.

2. A (malicious) R returns to S the same PUF, PUFs that it received6.

We enforce these restrictions in this section only for simplicity and modularity
purposes. We remove them in Sects. 4 and 6 respectively.

Inputs: Sender S has private inputs (m0,m1) ∈ {0, 1}2n and Receiver R has
private input b ∈ {0, 1}.

1. Sender Message: S does the following:
– Generate a PUF PUFs : {0, 1}n 0, 1}n.

– Choose a pair of random strings (x0, x1)
$

0, 1}2n.
– Send PUFs and (t0, t1) = UC-Com.Commit(x0, x1) to R.

2. Receiver Message: R does the following:

– Choose a pair of random strings (c0, c1)
$

0, 1}2n.
– Compute r0 = PUFs(c0), r1 = PUFs(c1).

– Set c = cp and r = rp for p
$

{
{

{

{0, 1}.
– Store the pair (c, r) and send PUFs to S.

3. Sender Message:
– S sends (x0, x1) = UC-Com.Decommit(t0, t1) to R.

4. Receiver Message: R does the following:
– Abort if the decommitment does not verify correctly.
– Compute and send val = c ⊕ xb to S.

5. Sender Message:
– S computes S0 = m0 ⊕ PUFs(val ⊕ x0), S1 = m1 ⊕ PUFs(val ⊕ x1) and

sends (S0, S1) to R.

Outputs: S has no output. R outputs mb which is computed as (Sb ⊕ r).

Fig. 2. Protocol Π1 for 2-choose-1 OT in the malicious stateless PUF model.

Our protocol makes black-box use of a UC-commitment scheme, denoted
by the algorithms UC-Com.Commit and UC-Com.Decommit. We use UC-Com.
Commit(a, b) to denote a commitment to the concatenation of strings a and b.
5 This is fixed later by using coin-tossing to generate (x0, x1), see Sect. 4.
6 In Sect. 6, we consider an even stronger model where R may encapsulate PUFs

within a possibly malicious P̂UFs. P̂UFs externally forwards some queries to PUFs

and forwards the outputs to the evaluator, while possibly replacing some or all of
these outputs with other arbitrary values. We note that this covers the case where
the receiver generates P̂UFs malicious and independently of PUFs.
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UC-secure commitments can be unconditionally realized in the malicious state-
less PUF model [8]. Formally, we prove the following theorem:

Theorem 1. The protocol Π1 in Fig. 2 unconditionally UC-securely realizes Fot

in the malicious stateless PUF model.

This protocol is essentially the protocol of Dachman-Soled et al. [7], modified
to enable correct extraction of the sender’s input. The protocol as specified in [7],
even though private, does not allow for straight-line extraction of the sender’s
input messages, unless one is willing to make the strong assumption that the
simulator can make queries to a (malicious) PUF that an adversary created, even
when this malicious PUF is in the adversary’s possession (i.e., the adversary is
forced not to update nor to damage/destroy the PUF).

Our main modification is to have the sender commit to his values (x0, x1)
using a UC-secure commitment scheme. In this case, it is possible for the sim-
ulator to extract (x0, x1) in a straight-line manner from the commitment, and
therefore extract the sender’s input while it remains hidden from a real receiver.
The rest of the proof follows in the same manner as [7]; recall that we already
gave an overview in Sect. 1.4. The formal proofs of correctness and security can
be found in the full version of this paper.

4 UC-Security with (Bounded-Stateful Malicious) PUFs

Overview. A malicious stateful PUF can generate outputs as a function of its
previous input queries. For the (previous) protocol in Fig. 2, note that in Step
2, SimS makes two queries (c1, c2) to the PUF such that (c1 ⊕ c2) = (x1 ⊕ x2),
where (x1, x2) are the sender’s random messages. On the other hand, an honest
receiver makes two queries (c1, c2) to the PUF such that (c1 ⊕ c2) = rv, for an
independent random variable rv.

Therefore, when combined with the sender’s view, the joint distribution of
the evaluation queries made to the PUF by SimS , differs from the joint distrib-
ution of the evaluation queries made to the PUF by an honest receiver. Thus, a
malicious sender can distinguish the two worlds by having a malicious stateful
PUF compute a reply to c2 depending on the value of the previous challenge c1.
We will call these attacks of Type I. In this section, we will describe a protocol
secure against all possible attacks where a stateful PUF computes responses to
future queries as a function of prior queries.

A stateful PUF created by the sender can also record information about the
queries made by the receiver, and replay this information to a malicious sender
when he inputs a secret challenge. For PUFs with bounded state, we view these
as ‘leakage’ attacks, by considering all information recorded and replayed by a
PUF as leakage. We will call these attacks of Type II. We describe a protocol
secure against general bounded stateful PUFs (i.e., secure against attacks of
both Type I and Type II) in Sect. 5.
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Repeat the following protocol K times in parallel for fresh private inputs (mi
0,m

i
1)

of the sender and bi of the receiver for i ∈ [K].
Inputs: Sender S has private inputs (m0,m1) = (mi

0,m
i
1) ∈ {0, 1}2n and Re-

ceiver R has private input b = bi ∈ {0, 1}.

1. Sender Message: S does the following.
– Generate a PUF PUFs : {0, 1}n 0, 1}n.(Use the same PUF for all

the K parallel sessions).

– Choose a pair of random strings (x0, x1)
$

0, 1}2n.
– Send PUFs and (t0, t1) = UC-Com.Commit(x0, x1) to R.

2. Receiver Message: R does the following.

– Choose a pair of random strings (c0, c1)
$

0, 1}2n.
– Compute r0 = PUFs(c0), r1 = PUFs(c1).

– Set c = cp and r = rp for p
$

0, 1} and store the pair (c, r).

– Pick and send (x̂0, x̂1)
$

{

{

{

{
{0, 1}2n along with PUFs, to S.

3. Sender Message:
S sends (x0, x1) = UC-Com.Decommit(t0, t1) to R.

4. Receiver Message: If UC-Com.Decommit(t0, t1) does not verify, abort. Else,
compute and send val = c ⊕ xb⊕x̂b to S.

5. Sender Message: S does the following.
– Compute

S0 = m0 ⊕ PUFs(val ⊕ x0⊕x̂0) and S1 = m1 ⊕ PUFs(val ⊕ x1⊕x̂1).
– Send (S0, S1) to R.

Outputs: S has no output. R outputs mb which is computed as (Sb ⊕ r).

Fig. 3. Protocol ΠK for K 2-choose-1 OTs (with at most �-bounded leakage) in the
malicious stateful PUF model. The changes from the protocol in Fig. 2 are underlined.

Our Strategy. Let � denote a polynomial upper bound on the size of the memory
of any malicious PUF created by the sender S. Our strategy to obtain secure
oblivious transfer from any PUF with �-bounded state is as follows: We use (the
same) PUFs created by the sender, to execute K = Θ(�) oblivious transfers in
parallel. In our new protocol in Fig. 3, we carefully intersperse an additional
round of coin tossing with our basic protocol from Fig. 2, to obtain security
against attacks of Type I.

Specifically, we modify the protocol of Fig. 2 as follows: instead of having S
generate the random strings (x0, x1), we set the protocol up so that both S and
the receiver R generate XOR shares of (x0, x1). Furthermore, R generates his
shares only after obtaining the PUF and a commitment to sender shares from
S. In such a case, the PUF created by S must necessarily be independent of the
receiver shares and consequently, also independent of (x0, x1).

Recall from Sect. 3, that the simulator against a malicious sender succeeds if
it can obtain the output of the PUF to queries of the form (c, c ⊕ x0 ⊕ x1) for a
random c, whereas an honest receiver can only make queries of the form (c1, c2)
for randomly chosen (c1, c2). Since (x0, x1) appear to be distributed uniformly
at random to the PUF, the distributions of (c, c ⊕ x0 ⊕ x1) and (c1, c2) are
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also statistically indistinguishable to the PUF7. Therefore, the sender simulator
succeeds whenever the honest receiver does not abort and this suffices to prove
security against a malicious sender.

Finally, we note that the simulation strategy against a malicious receiver
remains similar to one of Sect. 3, even if the receiver has the ability to create
PUFs with unbounded state.

Construction. The protocol ΠK in Fig. 3 allows us to use an �-bounded state-
ful PUF to obtain K secure (but one-sided leaky) oblivious transfers, such that
a malicious sender can obtain at most � bits of additional universal leakage
on the joint distribution of the receiver’s choice input bits (b1, b2, . . . bK). Our
protocol makes black-box use of a UC-commitment scheme, denoted by the algo-
rithms UC-Com.Commit and UC-Com.Decommit8. UC-secure commitments can
be unconditionally realized in the malicious stateful PUF model [8].

Theorem 2. The protocol ΠK unconditionally UC-securely realizes K instances
of OT(F [⊗K]

ot ) in an �-bounded-stateful PUF model, except that a malicious
sender can obtain at most � bits of additional universal leakage on joint dis-
tribution of the receiver’s choice bits over all F [⊗K]

ot .

Correctness is immediate from inspection, and the complete proof of security
is in the full version of the paper.
7 We assume the simulator can control which simulator queries the adversary’s PUF

records (but an honest party cannot). Indeed, without our assumption, if a stateful
PUF recorded every simulator query, a malicious sender on getting back PUFs may
observe the correlation between queries (c, c′) recorded by the PUF when the sim-
ulator queried it, versus two random queries when an actual honest party queried
it. Ours is a natural assumption and obtaining secure OT remains extremely non-
trivial even with this assumption. We note that this requirement can be removed
using standard secret sharing along with cut-and-choose, but at the cost of a more
complicated protocol with a worse OT production rate. This protocol is described
in the full version of this paper.

8 The UC framework (and its variants) seemingly fail to capture the possibility of
transfer of physical devices like PUFs across different protocols, to the best of our
knowledge. Within our OT protocol, we invoke the ideal functionality for UC-secure
commitments. Thus, we would like to ensure that our UC-secure commitment scheme
composes with the rest of the protocol even if PUFs created in the commitment
scheme are used elsewhere in the OT protocol and vice versa. In our protocol, the
only situation where such an issue might arise, is if one of the parties in the main
OT protocol, later maliciously passes a PUF that it received from the honest party
during a commitment phase. This is avoided by requiring all parties to return the
PUFs to their original creator at the end of the decommitment phase. Note that this
does not violate security even if the PUFs are malicious and stateful. The creating
party, like in previous works [7,8] can probe a random point before sending the PUF,
and then check this point again on receiving the PUF, to ensure that they received
the correct PUF. Generic results attempting to model UC security in presence of
physical devices that can be transferred across different protocol executions have
been presented in [3,20].
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5 One-Sided Correlation Extractors with Malicious
Security

From Sect. 4, in the �-bounded stateful PUF model, we obtain K leaky oblivious
transfers, such that the sender can obtain � bits of universal leakage on the joint
distribution of the receiver’s choice bits over all K oblivious transfers.

Because OT is reversible [37], it suffices to consider a reversed version of the
above setting, i.e., where the receiver can obtain � bits of additional universal
leakage on the joint distribution of all the sender’s messages over all K oblivious
transfers. More formally, the leakage model we consider is as follows:

One-Sided Leakage Model for Correlation Extractors. Here, we begin by describ-
ing our leakage model for OT correlations formally, and then we define one-sided
correlation extractors for OT. Our leakage model is as follows:

1. K-OT Correlation Generation Phase: For i ∈ [K], the sender S obtains
(xi

0, x
i
1) ∈ {0, 1}2 and the receiver R gets (bi, xi

bi
).

2. Corruption and Leakage Phase: A malicious adversary corrupts the
receiver and sends a leakage function L : {0, 1}K → {0, 1}tR . It receives
L({(xi

0, x
i
1)}i∈[K]).

Let (X,Y ) be a random OT correlation (i.e., X = (x0, x1), Y = (r, xr), where
(x0, x1, r) are sampled uniformly at random.) We denote a tR-leaky version of
(X,Y )K described above as ((X,Y )K)[tR].

Definition 1 ((n, p, tR, ε) One-Sided Malicious OT-Extractor). An (n, p,
tR, ε) one-sided malicious OT-extractor is an interactive protocol between 2 par-
ties S and R with access to ((X,Y )n)[tR] described above. The protocol imple-
ments p independent copies of secure oblivious transfer instances with error ε.

In other words, we want the output oblivious transfer instances to satisfy the
standard ε-correctness and ε-privacy requirements for OT. In more detail, the
correctness requirement is that the receiver output is correct in all p instances
of OT with probability at least (1− ε). The privacy requirement is that in every
instance of the output OT protocol, a corrupt sender cannot output the receiver’s
choice bit, and a corrupt receiver cannot output the ‘other message’ of the sender
with probability more than 1

2 + ε.

Theorem 3 (Extracting a Single OT). There exists a (2�+2n+1, 1, �, 2−n)
one-sided OT extractor according to Definition 1.

Theorem 4 (High Production Rate). There exists a (2� + 2n, n
log2 n

, �,
1

n logn ) one-sided OT extractor according to Definition 1.

We prove these theorems by giving a construction and proof of security of
such extractors in the following sections. We will make use of strong seeded
extractors in our construction, and we define such extractors below.
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Definition 2 (Strong seeded extractors). A function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is called a strong seeded extractor for entropy k if for any
(n, k)-source X and an independent random variable Y that is uniform over
{0, 1}d, it holds that (Ext(X,Y ), Y ) ≈ (Um, Y ).

Here, Um is a random variable that is uniformly distributed over m bit strings
and is independent of Y , namely (Um, Y ) is a product distribution. In particular,
it is known [12,18,34] how to construct strong seeded extractors for any entropy
k = Ω(1) with seed length d = O(log n) and m = 0.99 k output bits.

Construction. In Fig. 4, we give the basic construction of an OT extractor that
securely obtains a single oblivious transfer from K = (2� + 2n) OTs, when a
receiver can obtain at most � bits of universal leakage from the joint distribution
of sender inputs over all the OTs.

Let E : {0, 1}K ×{0, 1}n {0, 1} be a strong randomness (K, 2−n)-extractor for
seed length d = O(n).
Inputs: Sender S has private inputs (x0, x1) ∈ {0, 1}2n and receiver R has
private input b ∈ {0, 1}.
Given: K = 2� + 2n OTs, such that a malicious receiver can obtain additional
� bits of leakage on the joint distribution of all sender inputs.

1. Invoking OT Correlations:

– For i ∈ [K], S picks inputs mi
0, m

i
1

$ {0, 1}.
– For i ∈ [K], S invokes the ith OT on input mi

0, m
i
1.

– For i ∈ [K], R invokes the ith OT on input (the same) choice bit b.
2. Sender Message:

– S picks random seed s
$ {0, 1}d for the strong seeded extractor

E , and computes M0 = E .Ext(m1
0||m2

0||m3
0 . . . mK

0 , s) and M1 =
E .Ext(m1

1||m2
1||m3

1 . . . mK
1 , s), where || denotes the concatenation oper-

ator.
– S sends y0 = M0 ⊕ x0, y1 = M1 ⊕ x1 to R, along with seed s.

3. Output: R computes xb = yb ⊕ E .Ext(m1
b ||m2

b ||m3
b . . . ||mK

b , s).

Fig. 4. (2� + 2n, 1, �, 2−n) one-sided malicious correlation extractor.

Correctness is immediate from inspection. Intuitively, the protocol is secure
against � bits of universal (joint) leakage because setting K = 2�+2n still leaves
n bits of high entropy even when the receiver can obtain 2� + n bits of leakage.
Moreover, with � bits of additional universal leakage over all pairs of sender
inputs (m1

0,m
1
1,m

2
0, m2

1, . . . m
K
0 ,mK

1 ), the strong seeded extractor extracts an
output that is statistically close to uniform, and this suffices to mask the sender
input.

The formal proof of security can be found in the full version of this paper.
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High Production Rate: It is possible to obtain an improved production rate
at the cost of higher simulation error. This follows using techniques developed
in prior work [17,36], and the details can be found in the full version.

6 UC Secure Computation in the Malicious Encapsulation
Model

Let us consider the stateless protocol described in Sect. 3. In this protocol, the
receiver must query PUFs that he obtained from the sender on a random chal-
lenge c, before returning PUFs to the sender. A malicious receiver cannot have
queried PUFs on both c and (c ⊕ x0 ⊕ x1), because (x0 ⊕ x1) is chosen by the
sender, independently and uniformly at random, and is revealed only after the
receiver has returned PUFs. If a malicious receiver was restricted to honestly
returning the PUF generated by the sender, by unpredictability of PUFs, the
output of PUFs on (c ⊕ x0 ⊕ x1) would be a completely unpredictable uniform
random variable from the point of view of the receiver, and this sufficed to prove
sender security.

However, if a malicious receiver had no such restriction, it could possibly
generate a malicious PUF P̂UF of his own and give it to the sender, in place of
the sender’s PUF that it was actually supposed to return. The output of P̂UF
would no longer remain unpredictable to the receiver and this would lead to a
total break of security. As already pointed out in [7], this can be fixed by having
the sender make “test queries” to the PUF he generates, before sending the PUF
to the receiver. Indeed, when P̂UF is generated by the receiver independently of
PUFs, the response of P̂UF on the sender’s random test query will not match
the response of PUFs and the sender will catch such a cheating receiver with
overwhelming probability.

However there could be a different attack: a malicious receiver can construct
P̂UF encapsulating PUFs, such that P̂UF redirects all test queries to PUFs (and
outputs the value output by PUFs on the evaluation query), whereas it mali-
ciously answers all protocol queries. In order to rule this out, we ensure that
the protocol queries (i.e., the input c that the receiver must query PUFs with)
are generated uniformly at random, by using coin-tossing, combined with cut-
and-choose tests to ensure that they are properly used. This is done carefully to
ensure that the test queries and protocol queries are identically distributed in
the view of P̂UF (and are revealed only after the receiver has sent P̂UF to the
sender).

This ensures that if a maliciously generated P̂UF correctly answers all test
queries, then with overwhelming probability it must necessarily have answered
at least one evaluation query correctly according to the output of PUFs. At this
point, an OT combiner is used to obtain one secure instance of OT.

Let the security parameter be n. The protocol in Fig. 5 UC-securely real-
izes 2-choose-1 OT in a stronger model, where a malicious party is allowed
to create malicious PUFs that encapsulate other honest PUFs (see Sect. 2.1).
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Inputs: Sender S has private inputs (m0,m1) ∈ {0, 1}2n and Receiver R has
private input b ∈ {0, 1}.

1. Coin Flip I: For i ∈ [n], R picks ci1
$ {0, 1}n, sends di =

UC-Com.Commit(ci1) to S. S chooses ci2
$ {0, 1}n, sends ci2 to R. R computes

ci = ci1 ⊕ ci2.
2. Sender Message: S generates PUFs : {0, 1}n {0, 1}n, and does:

– Test Queries: For each i ∈ [n], choose TQi
$ {0, 1}n and compute

TRi = PUFs(TQi). Store the pair (TQi,TRi).

– For each i ∈ [n], choose a pair of random strings (xi0, x
i
1)

$
0, 1}2n.

Compute (ti0, t
i
1) = UC-Com.Commit(xi0, x

i
1). Send (ti0, t

i
1) and PUFs to

R.
3. Receiver Message: For each i ∈ [n], choose a random string (ci0)

$

{

{0, 1}n

and obtain ri = PUFs(c
i), ri0 = PUFs(c

i
0). Abort if PUFs aborts, else send

PUFs to S. For i ∈ [n], pick and send (x̂i0, x̂
i
1)

$ {0, 1}2n.
4. Sender Message: S does the following.

– Verification of TQ: For each i ∈ [n], if TRi �= PUFs(TQi), abort.

– For each i ∈ [n], send (xi0, x
i
1) = UC-Com.Decommit(ti0, t

i
1) to R.

5. Receiver Message: Abort if UC-Com.Decommit(ti0, t
i
1) does not verify for

any i ∈ [n]. Else pick bi
$ {0, 1}, compute and send vali = ci ⊕ xibi ⊕ x̂ibi to

S.
6. Cut-and-choose:

– Coin Flip II: S picks rS
$

0, 1}2K , sends tS = UC-Com.Commit(rS).

R picks and sends rR
$

{
{0, 1}2K . S sends rS = UC-Com.Decommit(tS),

and (S, R) use (rS ⊕ rR) to pick a subset I of indices i ∈ [n], of size K
2

.
– For i ∈ [I], R sends ci1 = UC-Com.Decommit(di).
– Verification: S computes ci = ci1 ⊕ ci2 and checks if either vali = ci ⊕

xi0 ⊕ x̂i0 OR vali = ci ⊕ xi1 ⊕ x̂i1. If not, S aborts.
7. Receiver Message: For each i ∈ [n] \ I, R sends bci = bi ⊕ b to S.
8. Sender Message: S computes S0 = m0

⊕
i∈n\I PUFs(val

i ⊕ xibci ⊕ x̂ibci),

S1 = m1

⊕
i∈n\I PUFs(val

i ⊕ xi1−bci
⊕ x̂i1−bci

). S sends (S0, S1) to R.

Outputs: S has no output. R outputs mb := (Sb ⊕ r1 ⊕ . . . ⊕ rn).

Fig. 5. OT in the malicious stateless PUF model with encapsulation. We underline all
differences from the protocol in the stateless malicious PUF model.

We emphasize that our protocol does not require that honest parties must
have the capability to encapsulate PUFs, yet it is secure even when adversar-
ial parties can create encapsulated PUFs. The protocol uses a UC-commitment
scheme, secure in the malicious stateless encapsulated PUF model. We use Com
to denote the ideal functionality for such a scheme. We construct such a scheme
in Sect. 7.
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Though the commitment scheme we construct is UC-secure, it is not imme-
diately clear that it composes with the rest of the OT protocol for the same
reasons as were described in Sect. 4. Namely, the UC framework seemingly does
not capture the possibility of transfer of PUFs across sub-protocols, thus we
would like to ensure that our UC-commitment scheme composes with the rest
of the protocol even if PUFs created for the commitment scheme are used
elsewhere.

Like in Sect. 4, this can be resolved by requiring both parties to return PUFs
back to the respective creators at the end of the decommitment phase, and
the creators performing simple verification checks to ensure that the correct
PUF was returned. If any party fails to return the PUF, the other party aborts
the protocol. Therefore, parties cannot pass off PUFs used by some party in a
previous sub-protocol as a new PUF in a different sub-protocol.

Correctness

Claim. For all (m0,m1) ∈ {0, 1}2 and b ∈ {0, 1}, the output of R equals mb.

Proof. If b = 0, bci = bi for all i, and the receiver computes:

m′
0 = S0

⊕
i∈n\I ri = S0

⊕
i∈n\I PUFs(ci) = S0

⊕
i∈n\I PUFs(vali ⊕ xi

bi
)

= m0

⊕
i∈n\I PUFs(vali ⊕ xi

bci
)
⊕

i∈n\I PUFs(vali ⊕ xi
bi

) = m0.

If b = 1, 1 − bci = bi for all i, and the receiver computes:

m′
1 = S1

⊕
i∈n\I ri = S1

⊕
i∈n\I PUFs(ci) = S1

⊕
i∈n\I PUFs(vali ⊕ xi

bi
)

= m1

⊕
i∈n\I PUFs(vali ⊕ xi

1−bci
)
⊕

i∈n\I PUFs(vali ⊕ xi
bi

) = m1.

The formal proof of security can be found in the full version of the paper.

7 UC Commitments in the Malicious Encapsulation
Model

In this section we construct unconditional UC commitments using stateless
PUFs. The model we consider is incomparable with respect to the one of [8]
since in our model an adversary can encapsulate honest PUFs (see Sect. 2.1)
when creating malicious stateless encapsulated PUFs. Note that the protocol
does not require any honest party to have the ability to encapsulate PUFs, but
is secure against parties that do have this ability.

We note that it suffices to construct an extractable commitment scheme that
is secure against encapsulation. Indeed, given such a scheme, Damg̊ard and Sca-
furo [8] show that it is possible to compile the extractable commitment scheme
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using an additional ideal commitment scheme, to obtain a UC commitment
scheme that is secure in the malicious stateless PUF model. Since the compiler
of [8] does not require any additional PUFs at all, if the extractable commitment
and the ideal commitment are secure against encapsulation attacks, then so is
the resulting UC commitment.

Extractable Commitments. We describe how to construct an extractable bit
commitment scheme ExtCom = (ExtCom.Commit,ExtCom.Decommit,ExtCom.
Extract) that is secure in the malicious stateless PUFs model with encapsu-
lation. We start with the extractable commitment scheme of [8] that is secure
against malicious PUFs in the non-encapsulated setting. They crucially rely on
the fact that the initial PUF (let’s call it PUFr) sent by the receiver can not be
replaced by the committer (as that would be caught using a previously computed
test query). To perform extraction, the simulator against a malicious committer
observes the queries made by the committer to PUFr and extracts the commit-
ter’s bit. However, in the encapsulated setting, the malicious committer could
encapsulate the receiver’s PUF inside another PUF (let’s call it ̂PUFr) that,
for all but one query, answers with the output of PUFr. For the value that the
committer is actually required to query on, ̂PUFr responds with a maliciously
chosen value. Observe that in the protocol description, this query is chosen only
by the committer and hence this is an actual attack. Therefore, except with
negligible probability, all the receiver’s test queries will be answered by ̂PUFr

with the output of the receiver’s original PUF PUFr. On the other hand, since
the target query is no longer forwarded by ̂PUFr to the receiver’s original PUF,
the simulator does not get access to the target query and hence can not extract
the committer’s bit.

To overcome this issue, we develop a new technique that forces the malicious
committer to reveal the target query to the simulator (but not to the honest
receiver). After the committer returns ̂PUFr, the receiver creates a new PUF
(let’s call it PUFR). Now, using the commitment, the receiver queries PUFR on
two values, one of which is guaranteed to be the output of ̂PUFr on the target
query. The receiver stores these two outputs and sends PUFR to the committer.
The malicious committer now has to query PUFR with ̂PUFr’s output on his
target query and commit to the value that is given in output by PUFR (using an
ideal commitment scheme). In the decommitment phase, using the previously
stored values and the committer’s input bit, the receiver can verify that the
committer indeed queried PUFR on the correct value. Observe that since the
receiver has precomputed the desired output, the malicious committer will not
be able to produce an honest decommitment if he tampers with PUFR and
produces a different output. Therefore, the malicious committer must indeed
query PUFR and this can be observed by the simulator and used to extract the
committer’s bit. Our scheme is described in Fig. 6. We show that this scheme is
correct, statistically hiding, and extractable; and give further details in the full
version.
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Inputs: Committer C has private input b ∈ {0, 1} and receiver R has no input.
Commitment Phase:

1. Receiver Message: R does the following:
– Generate a PUF PUFr : {0, 1}3n 0, 1}3n.

– Test Queries : For each i ∈ [n], choose TQi
$

0, 1}3n, and compute
TRi = PUFr(TQi). Store the pair (TQi,TRi). Send PUFr to C.

2. Committer Message: C does the following:
– Generate a PUF PUFs : {0, 1}n 0, 1}3n.
– For each i ∈ [n], choose si ∈ {0, 1}n. Compute σsi = PUFs(si) and

σri = PUFr(σsi). Send PUFs,PUFr to R.
3. Receiver Message: R does the following:

– Verification : For each i ∈ [n], if TRi �= PUFr(TQi), abort.

– For each i ∈ [n], choose a random string ri
$

0, 1}3n and send ri to C.
4. Committer Message: C does the following: If b = 0, set ci = σsi for i ∈ [n],

else set ci = (σsi ⊕ ri) for i ∈ [n]. Send ci to R.
5. Receiver Message: R does the following:

– Generate a PUF PUFR : {0, 1}3n

{
{

{

{

{0, 1}3n.
– For i ∈ [n], set yi = PUFR(PUFr(ci)), zi = PUFR(PUFr(ci ⊕ ri)), send

PUFR to C.
6. Committer Message: For each i ∈ [n], C computes xi = PUFR(σri). C

computes and sends ti = IdealCom.Commit(xi) to R.

Decommitment Phase:

1. Committer Message: C does the following:
– Send b to R and for each i ∈ [n], send si, IdealCom.Decommit(xi) to R.

2. Receiver R does the following:
– For any i ∈ [n], if IdealCom.Decommit(xi) does not verify, output ⊥.
– If b = 0, ci = PUFs(si) and xi = yi for all i ∈ [n], output 0, else ⊥.
– If b = 1, ci = (PUFs(si)⊕ ri) and xi = zi for all i ∈ [n], output 1, else ⊥.

Fig. 6. Protocol for Extractable Commitment in the malicious stateless PUF model
with encapsulation.

Acknowledgements. We thank the anonymous reviewers for valuable comments, and
in particular for suggesting some important updates to our functionality for encapsu-
lated PUFs.

A Formal Models for PUFs

While we discuss the physical behaviour of PUFs, and their various properties
in detail in the full version of the paper, here, we describe the formal modelling
of various honest, malicious and encapsulating PUFs.

We model honest PUFs similar to prior work. The ideal functionality for
honest PUFs is described in Fig. 7. We assume that in situations where Pi is
required to send a message of the form (. . . , Pi, . . .), the ideal functionality checks
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FHPUF uses PUF family P = (Sample,Eval) with parameters (rg, dnoise, dmin, m). It runs
on input the security parameter 1K , with parties P = {P1, . . . , Pn} and adversary S.

– When a party P̂ ∈ P ∪ {S} writes (initPUF, sid, P̂ ) on the input tape of FHPUF,
FHPUF checks whether L already contains a tuple (sid, ∗, ∗, ∗, ∗):

• If this is the case, then turn into the waiting state.
• Else, draw id Samplemode(1

K) from the PUF family. Put (sid, id, P̂ , notrans)
in L and write (initializedPUF, sid) on the input tape of P̂ .

– When party Pi writes (evalPUF, sid, Pi, q) on FHPUF’s input tape, FHPUF checks if
there exists a tuple (sid, id, Pi, notrans) in L.

• If not, then turn into waiting state.
• Else, run a Evalmode(1

K , id, q). Write (responsePUF, sid, q, a) on Pi’s input
tape.

– When a party Pi sends (handoverPUF, sid, Pi, Pj) to FHPUF, check if there exists a
tuple (sid, ∗, Pi, notrans) in L.

• If not, then turn into waiting state.
• Else, modify the tuple (sid, id, Pi, notrans) to the updated tuple (sid, id, ⊥,

trans(Pj)). Write (invokePUF, sid, Pi, Pj) on Pi’s input tape.

– When the adversary sends (evalPUF, sid, Pi, q) to FHPUF, check if L contains a tuple
(sid, id, ⊥, trans(∗)).

• If not, then turn into waiting state.
• Else, run a Evalmode(1

K , id, q) and return (responsePUF, sid, q, a) to Pi.
– When the adversary sends (readyPUF, sid, Pi) to FHPUF, check if L contains the

tuple (sid, id, mode, ⊥, trans(Pj)).
• If not found, turn into the waiting state.
• Else, change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, Pi, notrans)

and write (handoverPUF, sid, Pi) on Pj ’s input tape and store the tuple
(receivedPUF, sid, Pi).

– When the adversary sends (receivedPUF, sid, Pi) to FHPUF, check if the tuple
(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else,
write this tuple to the input tape of Pi.

Fig. 7. The ideal functionality FHPUF for honest PUFs.

that the message is indeed coming from party Pi, if not the ideal functionality
FHPUF turns into waiting state.

Modeling Malicious PUFs. We model malicious PUFs as in [27]. Their ideal
functionality is parameterized by two PUF families in order to handle hon-
estly and maliciously generated PUFs: The honestly generated family is a pair
(Samplenormal,Evalnormal) and the malicious one is (Samplemal,Evalmal). Whenever
a party Pi initializes a PUF, then it specifies if it is an honest or a malicious PUF
by sending mode ∈ {nor,mal} to the functionality FPUF. The ideal functionality
then initialises the appropriate PUF family and it also stores a tag nor or mal
representing this family. Whenever the PUF is evaluated, the ideal functionality
uses the evaluation algorithm that corresponds to the tag.
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The handover procedure is identical to the original formulation of Brzuska
et al., where each PUF has a status flag ∈ {trans(R), notrans} that indicates
if a PUF is in transit or not. A PUF that is in transit can be queried by the
adversary. Thus, whenever a party Pi sends a PUF to Pj , then the status flag
is changed from notrans to trans and the attacker can evaluate the PUF. At
some point, the attacker sends readyPUF to the ideal functionality to indicate
that it is not querying the PUF anymore. The ideal functionality then hands the
PUF over to Pj and changes the status flag back to notrans. The party Pj may
evaluate the PUF. Finally, when the attacker sends the message receivedPUF to
the ideal functionality, then FPUF sends receivedPUF to Pi in order to notify Pi

that the handover is over. The ideal functionality for malicious PUFs is shown
in Fig. 8. We refer the reader to [27] for more details on the different properties
of malicious PUFs.

We additionally allow malicious PUFs to maintain poly(n) a-prior bounded
memory. This is done by allowing Evalmal to be a stateful procedure.

FMPUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters
(rg, dnoise, dmin, m), and P2 = (Samplemal,Evalmal). It runs on input the security pa-
rameter 1K , with parties P = {P1, . . . , Pn} and adversary S.

– When a party P̂ ∈ P∪{S} writes (initPUF, sid, mode, P̂ ) on the input tape of FMPUF,
where mode ∈ {normal, mal}, then FMPUF checks whether L already contains a
tuple (sid, ∗, ∗, ∗, ∗): If this is the case, then turn into the waiting state. Else,
draw id Samplemode(1

K) from the PUF family. Put (sid, id, mode, P̂ , notrans) in
L and write (initializedPUF, sid) on the input tape of P̂ .

– When party Pi ∈ P writes (evalPUF, sid, Pi, q) on FMPUF’s input tape, check if there
exists a tuple (sid, id, mode, Pi, notrans) in L. If not, then turn into waiting state.
Else, run a Evalmode(1

K , id, q). Write (responsePUF, sid, q, a) on Pi’s input tape.
– When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a tu-

ple (sid, ∗, ∗, Pi, notrans) in L. If not, then turn into waiting state. Else, modify the
tuple (sid, id, mode, Pi, notrans) to the updated tuple (sid, id, mode, ⊥, trans(Pj)).
Write (invokePUF, sid, Pi, Pj) on Pi’s input tape to indicate that a handover oc-
curred between Pi and Pj .

– When the adversary sends (evalPUF, sid, Pi, q) to FMPUF, check if L contains a
tuple (sid, id, mode, ⊥, trans(∗)) or (sid, id, mode, Pi, notrans). If not, then turn into
waiting state. Else, run a Evalmode(1

K , id, q) and return (responsePUF, sid, q, a)
to Pi.

– When the adversary sends (readyPUF, sid, Pi) to FMPUF, check if L contains the
tuple (sid, id, mode, ⊥, trans(Pj)). If not found, turn into the waiting state. Else,
change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans) and write
(handoverPUF, sid, Pi) on Pj ’s input tape and store the tuple (receivedPUF, sid, Pi).

– When the adversary sends (receivedPUF, sid, Pi) to FMPUF, check if the tuple
(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else,
write this tuple to the input tape of Pi.

Fig. 8. The ideal functionality FMPUF for malicious PUFs.
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FE-PUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters
(rg, dnoise, dmin, m), and P2 = (Samplemal,Evalmal). It runs on input the security pa-
rameter 1K , with parties P = {P1, . . . , Pn} and adversary S corrupting some parties.

– When a party Pi ∈ P ∪ {S} writes (initPUF, sid, mode, Pi) on the input tape of
FE-PUF, where mode ∈ {normal, mal}, then FE-PUF checks whether L already con-
tains a tuple (sid, id, ∗, ∗, ∗, ∗) for some id. If it does, turn to waiting state. Else,
draw id Samplemode(1

K) from the PUF family. Put (sid, id, mode, Pi, notrans) in
L and write (initializedPUF, sid) on the input tape of Pi. If any of the checks failed,
turn to waiting state.

– When the adversary Pi writes reassign(sid, sid′, Pi) on the input tape of FE-PUF,
check if there exists a tuple (sid, id, mode, Pi, notrans), and check that L does
not already contains a tuple (sid, id, ∗, ∗, ∗, ∗) for some id. If either of the con-
ditions are not met, turn to waiting state. Else, replace the first tuple with
(sid′, id, mode, Pi, notrans).

– When the adversary Pi writes (encapPUF, sid, sid
′, Pi) on the input tape of FE-PUF,

check if there exist tuples (sid, ∗, ∗, Pi, notrans) and (sid′, ∗, ∗, Pi, notrans). If such
tuples exist, set owner(sid) = sid′ a.

– When party Pi sends (handoverPUF, sid, Pi, Pj) to FE-PUF, check if there exists
a tuple (sid, ∗, ∗, Pi, notrans) in L. If not, then turn into waiting state. Else,
modify the tuple (sid, id, mode, Pi, notrans) to (sid, id, mode, ⊥, trans(Pj)). Write
(invokePUF, sid, Pi, Pj) on Pi’s input tape b.

– When a party Pi ∈ P ∪ {S} writes (evalPUF, sid, Pi, q) on FE-PUF’s input tape,
check if there exists a tuple (sid, id, mode, Pi, notrans) or (sid, id, mode, ⊥, trans(∗))
in L. If not, then turn into waiting state. Else, run a Evalmode(1

K , id, q). Write
(responsePUF, sid, q, a) on Pi’s input tape.

– The Evalmal procedure can either makes calls to Evalnormal, or can write
(evalPUF, sid∗, sid, q∗) on FE-PUF’s input tape. If Evalmal writes (evalPUF, sid∗, sid, q∗)
on FFE-PUF ’s input tape, check if owner(sid∗) = sid. If not, turn to wait-
ing state. Else, like the previous bullet, check if there exists a tuple
(sid∗, id, mode, Pi, notrans) or (sid∗, id, mode, ⊥, trans(∗)) in L. If not, then turn into
waiting state. Else, run a Evalmode(1

K , id, q) and return (responsePUF, sid∗, q, a)
as output to sid.

– When the adversary sends (readyPUF, sid, Pi) to FE-PUF, check if L
contains (sid, id, mode, ⊥, trans(Pj)). If not, turn into waiting state.
Else, change (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans), write
(handoverPUF, sid, Pi) on Pj ’s input tape and store (receivedPUF, sid, Pi).

– When the adversary sends (receivedPUF, sid, Pi) to FE-PUF, check if
(receivedPUF, sid, Pi) has been stored. If not, return to waiting state. Else,
write this tuple to the input tape of Pi.

a Intuitively, when a (malicious) party encapsulates a PUF, this sets the outer PUF
as owner of the inner PUF. Even the adversary can access the inner PUF via eval-
uation queries to outer PUF. This step permits multiple iterative encapsulations.

b Handover does not change the owner (outer PUF) of an (inner) encapsulated PUF.

Fig. 9. The ideal functionality FE-PUF for malicious PUFs that may encapsulate PUFs.
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Modeling Encapsulating PUFs. We model malicious PUFs that can encapsulate
functionalities as in [6,27]. This functionality formalizes the intuition that an
honest user can create a PUF implementing a random function, but an adversary
given the PUF can only observe its input/output characteristics.

FE-PUF models the PUF (sent by party Pi to party Pj) encapsulating some
functionality Mij . The changes from the previous definition [27] that we make
is that Mij is now an oracle machine (instead of a functionality) which can
make evaluation calls to other PUFs itself. The ideal functionality for malicious
PUFs that could possibly encapsulate honest PUFs, is described in Fig. 9. FE-PUF

models the following sequence of events: (1) a party Pi samples a random PUF
from the challenge space, (2) Pi then gives this PUF to another party Pj (the
receiver) who can use the PUF as a black-box implementing Mij , (3) On giving
Mij , Pi loses oracle access to all PUFs of which it was previously the owner but
which Mij has oracle access to. Figure 9 has the formal description of FE-PUF

based on such an algorithm Mij .
We assume that every PUF has a single calling procedure known as its owner.

This owner can either be a party, or another PUF (in the case of adversarially
generated PUFs). This models (refer to the first bullet in Fig. 9) the fact that
an adversary that receives a PUF implementing Mxy can either keep the PUF
to make calls later or incorporate the functionality of this PUF in a black-
box manner into another (maliciously created) PUF, but cannot do both. The
evaluation procedure for a malicious encapsulating outer PUF, carefully checks
that the outer PUF has ownership of inner PUFs (refer the second bullet in
Fig. 9), before allowing the malicious outer evaluation procedure oracle access
to any inner PUF. The handover operation (described in the third bullet in
Fig. 9) is similarly carefully modified to ensure that the party that receives an
encapsulated PUF can only access the inner PUF via evaluation queries to the
outer PUF. Each PUF is uniquely identified by an identifier known as id.

Finally, we note that our model may also allow an adversary to “dismount”
a PUF, i.e., separate out its inner component PUFs. For simplicity, we choose
to not formalize this requirement. Our protocols trivially remain secure in this
model since we never require the honest parties to hand over any “encap”-PUFs
back to the adversary, where an “encap”-PUF is a malicious PUF that may be
encapsulating honest PUFs.
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Abstract. A puncturable pseudorandom function (PRF) has a master
key k that enables one to evaluate the PRF at all points of the domain,
and has a punctured key kx that enables one to evaluate the PRF at
all points but one. The punctured key kx reveals no information about
the value of the PRF at the punctured point x. Punctured PRFs play
an important role in cryptography, especially in applications of indistin-
guishability obfuscation. However, in previous constructions, the punc-
tured key kx completely reveals the punctured point x: given kx it is
easy to determine x. A private puncturable PRF is one where kx reveals
nothing about x. This concept was defined by Boneh, Lewi, and Wu,
who showed the usefulness of private puncturing, and gave constructions
based on multilinear maps. The question is whether private puncturing
can be built from a standard (weaker) cryptographic assumption.

We construct the first privately puncturable PRF from standard lat-
tice assumptions, namely learning with errors (LWE) and 1 dimensional
short integer solutions (1D-SIS), which have connections to worst-case
hardness of general lattice problems. Our starting point is the (non-
private) PRF of Brakerski and Vaikuntanathan. We introduce a number
of new techniques to enhance this PRF, from which we obtain a privately
puncturable PRF. In addition, we also study the simulation based def-
inition of private constrained PRFs for general circuits, and show that
the definition is not satisfiable.

1 Introduction

A pseudorandom function (PRF) [GGM86] is a function F : K×X → Y that can
be computed by a deterministic polynomial time algorithm: on input (k, x) ∈
K×X the algorithm outputs F (k, x) ∈ Y. The PRF F is said to be a constrained
PRF [BW13,KPTZ13,BGI14] if one can derive constrained keys from the master
PRF key k. Each constrained key kg is associated with a predicate g : X → {0, 1},
and this kg enables one to evaluate F (k, x) for all x ∈ X for which g(x) = 1,
but at no other points of X . A constrained PRF is secure if given constrained
keys for predicates g1, . . . , gQ, of the adversary’s choosing, the adversary cannot
distinguish the PRF from a random function at points not covered by the given
keys, namely at points x where g1(x) = · · · = gQ(x) = 0. We review the precise
definition in Sect. 3.
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part I, LNCS 10210, pp. 415–445, 2017.
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The simplest constraint, called a puncturing constraint, is a constraint that
enables one to evaluate the PRF at all points except one. For x ∈ X we denote
by kx a punctured key that lets one evaluate the PRF at all points in X , except
for the punctured point x. Given the key kx, the adversary should be unable
to distinguish F (k, x) from a random element in Y. Puncturable PRFs have
found numerous applications in cryptography [BW13,KPTZ13,BGI14], most
notably in applications of indistinguishability obfuscation (iO) [SW14]. Note
that two punctured keys, punctured at two different points, enable the evalu-
ation of the PRF at all points in the domain X , and are therefore equivalent
to the master PRF key k. For this reason, for puncturing constraints, we are
primarily interested in settings where the adversary is limited to obtaining at
most a single punctured key, punctured at a point of its choice. At the punctured
point, the adversary should be unable to distinguish the value of the PRF from
random.

PRFs supporting puncturing constraints can be easily constructed from the
tree-based PRF of [GGM86], as discussed in [BW13,KPTZ13,BGI14]. Notice,
however, that a punctured key kx completely reveals what the point x is. An
adversary that is given kx can easily tell where the key was punctured.

Private Puncturing. Can we construct a PRF that can be punctured pri-
vately? The adversary should learn nothing about x from the punctured key kx.
More generally, Boneh, Lewi, and Wu [BLW17] define private constrained PRFs,
where a constrained key kg reveals nothing about the predicate g. They present
applications of private constraint PRFs to constructing software watermark-
ing [CHN+16], deniable encryption [CDNO97], searchable encryption, and more.
They also construct private constrained PRFs from powerful tools, such as mul-
tilinear maps and iO.

Several of the applications for private constraints in [BLW17] require only
private puncturing. Here we describe one such application, namely the connec-
tion to distributed point functions (DPF) [GI14,BGI15] and 2-server private
information retrieval (PIR) [CKGS98]. In a DPF, the key generation algorithm
is given a point x∗ ∈ X and outputs two keys k0 and k1. The two keys are equiv-
alent, except at the point x∗. More precisely, F (k0, x) = F (k1, x) for all key
x �= x∗ and F (k0, x∗) �= F (k1, x∗). A DPF is secure if given one of k0 or k1, the
adversary learns nothing about x∗. In [GI14] the authors show that DPFs give a
simple and efficient 2-server PIR scheme. They give an elegant DPF construction
from one-way functions.

A privately puncturable PRF is also a DPF: set k0 to be the master PRF
key k, and set the key k1 to be the punctured key kx∗ , punctured at x∗. The pri-
vacy property ensures that this is a secure DPF. However, there is an important
difference between a DPF and a privately puncturable PRF. DPF key genera-
tion takes the punctured point x∗ as input, and generates the two keys k0, k1.
In contrast, private puncturing works differently: one first generates the master
key k, and at some time later asks for a punctured key kx∗ at some point x∗.
That is, the punctured point is chosen adaptively after the master key is gen-
erated. This adaptive capability gives rise to a 2-server PIR scheme that has a
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surprising property: one of the servers can be offline. In particular, one of the
servers does its PIR computation before the PIR query is chosen, sends the result
to the client, and goes offline. Later, when the client chooses the PIR query, it
only talks to the second server.

Our Contribution. We construct the first privately puncturable PRF from
the learning with errors problem (LWE) [Reg09] and the one-dimensional short
integer solution problem (1D-SIS) [Ajt96,BV15], which are both related to worst-
case hardness of general lattice problems. We give a brief overview of the con-
struction here, and give a detailed overview in Sect. 2.

Our starting point is the elegant LWE-based PRF of Brakerski and Vaikun-
tanathan [BV15], which is a constrained PRF for general circuits, but is only
secure if at most one constrained key is published (publishing two constrained
keys reveals the master key). This PRF is not private because the constraint
is part of the constrained key and is available in the clear. As a first attempt,
we try to make this PRF private by embedding in the constrained key, an FHE
encryption of the constraint, along with an encryption of the FHE decryption key
(a similar structure is used in the predicate encryption scheme of [GVW15b]).
Now the constraint is hidden, but PRF evaluation requires an FHE decryption,
which is a problem. We fix this in a number of steps, as described in the next
section. To prove security, we introduce an additional randomizing component
as part of the FHE plaintext to embed an LWE instance in the challenge PRF
evaluation.

We prove security of our private puncturable PRF in the selective setting,
where the adversary commits ahead of time to the punctured point x where it
will be challenged. To obtain adaptive security, where the punctured point is
chosen adaptively, we use standard complexity leveraging [BB04].

In addition to our punctured PRF construction, we show in Sect. 6 that, for
general function constraints, a simulation based definition of privacy is impossi-
ble. This complements [BLW17] who show that a game-based definition of pri-
vacy is achievable assuming the existence of iO. To prove the impossibility, we
show that even for a single key, a simulation-secure privately constrained PRF for
general functions, implies a simulation secure functional encryption for general
functions, which was previously shown to be impossible [BSW11,AGVW13].

Finally, our work raises a number of interesting open problems. First, our
techniques work well to enable private puncturing, but do not seem to generalize
to arbitrary circuit constraints. It would be a significant achievement if one could
use LWE/SIS to construct a private constrained PRF for arbitrary circuits, even
in the single-key case. Also, can we construct an LWE/SIS-based adaptively
secure private puncturable PRF, without relying on complexity leveraging? We
discuss these questions in more detail in Sect. 7.

1.1 Related Work

PRFs from LWE. The first PRF construction from the learning with errors
assumption was given by Banerjee, Peikert, and Rosen in [BPR12]. Subsequent
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PRF constructions from LWE gave the first key-homomorphic PRFs [BLMR13,
BP14]. The constructions of [BV15,BFP+15] generalized the previous works to
the setting of constrained PRFs.

Constrained PRFs. The notion of constrained PRFs was first introduced in
three independent works [BW13,KPTZ13,BGI14] and since then, there have
been a number of constructions from different assumptions. We briefly survey
the state of the art. The standard GGM tree [GGM86] gives PRFs for simple
constraints such as prefix-fixing or puncturing [BW13,KPTZ13,BGI14]. Bilin-
ear maps give left/right constraints but in the random oracle model [BW13].
LWE gives general circuit constraints, but only when a single constrained key
is released [BV15]. Multilinear maps and indistinguishability obfuscation pro-
vide general circuit constraints, and even for constraints represented as Tur-
ing machines with unbounded inputs [BW13,BZ14,BFP+15,CRV14,AFP16,
DKW16], as well as constrained verifiable random functions [Fuc14]. Sev-
eral works explore how to achieve adaptive security [FKPR14,BV15,HKW15,
HKKW14].

Private constrained PRFs were introduced by Boneh, Lewi, and Wu
[BLW17]. They construct a privately constrained PRF for puncturing and bit-
fixing constraints from multilinear maps, and for circuit constraints using indis-
tinguishability obfuscation.

ABE and PE from LWE. The techniques used in this work build upon
a series of works in the area of attribute-based encryption [SW05] and pred-
icate encryption [BW07,KSW08] from LWE. These include constructions of
[ABB10,GVW15a,BGG+14,GV15,BV16,BCTW16], and predicate encryption
constructions of [AFV11,GMW15,GVW15b].1

Concurrent Work. In an independent and concurrent work, Canetti and
Chen [CC17] construct a single-key privately constrained PRF for general NC1

circuits from LWE. Their techniques are very different from the ones used in
this work as their construction relies on instances of the graph-induced multi-
linear maps construction by Gentry, Gorbunov, and Halevi [GGH15] that can
be reduced to LWE. They also analyze their construction with respect to a
simulation-based definition. We note that the simulation-based definition that
we consider in Sect. 6 is stronger than their definition and therefore, the impos-
sibility that we show does not apply to their construction.

2 Overview of the Main Construction

In this section, we provide a general overview of our main construction. The
complete construction and proof of security are provided in Sect. 5.1.

Recall that the LWE assumption states that for a uniform vector s ∈ Zn
q

and a matrix A ∈ Zn×m
q for an appropriately chosen n,m, q, it holds that

1 We note that LWE based predicate encryption constructions satisfy a weaker security
property often referred to as weak attribute-hiding than as is defined in [BW07,
KSW08].
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(A, sTA + eT ) is indistinguishable from uniform where e is sampled from an
appropriate low-norm error distribution. We present the outline ignoring the
precise generation or evolution of e and just refer to it as noise.

Embedding Circuits into Matrices. Our starting point is the single-key con-
strained PRF of [BV15], which builds upon the ABE construction of [BGG+14]
and the PRF of [BP14]. At a high level, the ABE of [BGG+14] encodes an
attribute vector x ∈ {0, 1}� as a vector

sT
(
A1 + x1 · G | · · · | A� + x� · G)

+ noise ∈ Zm�
q , (2.1)

for public matrices A1, . . . ,A� in Zn×m
q , a secret random vector s in Zn

q , and a
specific fixed “gadget matrix” G ∈ Zn×m

q . This encoding allows for fully homo-
morphic operations on the attributes, while keeping the noise small. In particular,
given x and a poly-size circuit f : {0, 1}� → {0, 1}, one can compute from (2.1),
the vector

sT
(
Af + f(x) · G)

+ noise ∈ Zm
q (2.2)

where the matrix Af depends only on the function f , and not on the underlying
attribute x. This implies a homomorphic operation on the matrices A1, . . . ,A�

defined as Evalpk(f,A1, . . . ,A�) → Af .
This homomorphic property leads to the following puncturable PRF. Let

eq(x∗,x) be the equality check circuit (represented as NAND gates) defined as
follows:

eq(x∗,x) =
{

1 if x∗ = x,
0 otherwise.

For x = (x1, . . . , x�) ∈ {0, 1}� define the PRF as:

PRFs(x) := �sT · Aeq�p ∈ Z
m
p where Aeq := Evalpk(eq,B1, . . . ,B�,Ax1 , . . . ,Ax�).

Here s ∈ Zn
q is the master secret key, and the matrices A0,A1,B1, . . . ,B� are

random public matrices in Zn×m
q chosen at setup. Note that Aeq is a function

of x. The operation �·�p is component-wise rounding that maps an element in
Zq to an element in Zp for an appropriately chosen p, where p < q.

Next, define the punctured key at the point x∗ = (x∗
1, . . . , x

∗
� ) ∈ {0, 1}� as:

kx∗ =
(
x∗, sT ·(A0+0·G | A1+1·G ∣∣ B1+x∗

1 ·G | · · · | B�+x∗
� ·G)

+noise
)
.

(2.3)
To use this key to evaluate the PRF at a point x ∈ {0, 1}�, the user homomor-
phically evaluates the equality check circuit eq(x∗,x), as in (2.2), to obtain the
vector sT

(
Aeq+eq(x∗,x)·G)

+noise. Rounding this vector gives the correct PRF
value whenever eq(x∗,x) = 0, namely x �= x∗, as required. A security argument
as in [BV15] proves that with some minor modifications, this PRF is a secure
(non-private) puncturable PRF, assuming that the LWE problem is hard.

FHE to Hide Puncture Point. The reason why the construction above is not
private is because to operate on the ABE encodings, one needs the description
of the attributes. Therefore, the punctured key must include the point x∗ in
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the clear, for the evaluator to run the equality check circuit on the punctured
key (2.3).

Our plan to get around this limitation is to first encrypt the attributes
(x∗

1, . . . , x
∗
� ) using a fully homomorphic encryption (FHE) scheme before embed-

ding it as the attributes. In particular, we define our punctured key to be

kx∗ =
(
ct, sT · (A0 + 0 · G | A1 + 1 · G ∣∣ B1 + ct1 · G | · · · | Bz + ctz · G∣∣ C1 + sk1 · G | · · · | Ct + skt · G)

+ noise
)
,

where ct ∈ Zz
q is an FHE encryption of the punctured point x∗, and sk ∈ Zt

q

is the FHE secret key. While it is not clear how to use this key to evaluate the
PRF, at least the punctured point x∗ is not exposed in the clear. One can show
that the components of kx∗ that embed the secret key sk do not leak information
about sk.

Now, given x ∈ {0, 1}�, one can now run the equality check operation inside
the FHE ciphertext, which gives the encrypted result of the equality check circuit.
The question is how the evaluator can extract this result from the ciphertext.
To do this, we take advantage of another property of the underlying ABE: to
homomorphically multiply two attributes, one requires knowledge of just one
of the attributes, not both. This means that even without the knowledge of
the FHE secret key sk, the evaluator can compute the inner product of sk and
ct. Recall that for lattice-based FHE schemes (e.g., [GSW13]), the decryption
operation is the rounding of the inner product of the ciphertext with the FHE
secret key. This technique was also used in the lattice-based predicate encryption
scheme of [GVW15b].

Rounding Away FHE Noise. The problem with the approach above is that
we cannot compute the full FHE decryption. We can only compute the first
decryption step, the inner product. The second step, rounding, cannot be done
while keeping the FHE decryption key secret. Computing just the inner product
produces the FHE plaintext, but offset by some small additive error term e ∈ Zq.
More specifically, the homomorphic evaluation of eq(x∗,x) followed by the inner
product with sk, results in the vector

sT
(
Afhe,eq +

(q

2
· eq(x∗,x) + e

)
· G

)
+ noise ∈ Zm

q ,

where Afhe,eq is the result of homomorphically computing the FHE equality test
circuit, along with the inner product with the secret key, on the public matrices.
Here e ∈ Zq is some offset term. Even when eq(x∗,x) = 0, the rounding of this
vector will not produce the correct evaluation due to this offset term e. More-
over, the term e contains information about the original plaintext and therefore,
to ensure private puncturing, we must somehow allow for correct computation
without revealing the actual value of e. Resolving this issue seems difficult. It is
precisely the reason why the predicate encryption scheme of [GVW15b] cannot
be converted to a fully-attribute hiding predicate encryption scheme (and there-
fore a full-fledged functional encryption scheme). However, in our context, the
problem of noisy decryption has an elegant solution.
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The idea is to “shorten” the vector (sT · e · G) so that it is absorbed into
noise, and disappears as we round to obtain the PRF value at x. Towards this
goal, we sample the secret vector s from the LWE noise distribution, which does
not change the hardness of LWE [ACPS09]. Next, we observe that although the
gadget matrix G is not a short matrix as a whole, it does contain a number of
short column vectors. For instance, a subset of the columns vectors of the gadget
matrix consist of elementary basis vectors ui ∈ Zn

q with the ith entry set to 1
and the rest set to 0. More precisely, for 1 ≤ i ≤ n, let the vector vi ∈ Zm

q be
an m dimensional basis vectors with its i · �log q − 1�th entry set to 1 and the
rest set to 0. Then, G · vi = ui.

With this observation, we can simply define the PRF with respect to these
short column positions in the gadget matrix. For instance, consider defining the
PRF with respect to the first column position as follows

PRFs(x) := �sT · Afhe,eq · v1�p ∈ Zp.

Since we are simply taking the first component of a pseudorandom vector, this
does not change the pseudorandomness property of the PRF (to adversaries
without a constrained key). However, for the evaluation with the punctured key,
this allows the FHE error term to be “merged” with noise

(
sT

(
Afhe,eq +

(q

2
· eq(x∗,x) + e

)
· G

)
+ noise

)
v1

= sTAfhe,eqv1 + sT
(q

2
· eq(x∗,x) + e

)
u1 + noise′

= sTAfhe,eqv1 +
(q

2
· eq(x∗,x) + e

)
〈s,u1〉 + noise′

= sTAfhe,eqv1 +
q

2
· eq(x∗,x) 〈s,u1〉 + e · 〈s,u1〉 + noise′︸ ︷︷ ︸

short

.

When eq(x∗,x) = 0, then the rounding of the vector above results in the correct
PRF evaluation since the final noise e · 〈s,u1〉+noise′ is small and will disappear
with the rounding.

Pseudorandomness at Punctured Point. The remaining problem is to make
the PRF evaluation at the punctured point look random to an adversary who
only holds a punctured key. Note that if the adversary evaluates the PRF at
the punctured point x∗ using its punctured key, the result is the correct PRF
output, but offset by the term ( q

2 +e) ·s1+noise′, which is clearly distinguishable
from random. To fix this, we make the following modifications. First, we include
a uniformly generated vector w = (w1, . . . , wn) ∈ Zn

q as part of the public
parameters. Then, we modify the FHE homomorphic operation such that after
evaluating the equality check circuit, we multiply the resulting message with
one of the wi’s such that decryption outputs wi · eq(x∗,x) + e, instead of q

2 ·
eq(x∗,x) + e. Then, we define the PRF evaluation as the vector

PRFs(x) =

⌊∑
i

sT · Afhe,eq,i · vi

⌉

p

.
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where v1, . . . ,vn ∈ Zm
q are elementary basis vectors such that G · vi = ui ∈ Zn

q .
Here, the matrix Afhe,eq,i represents the matrix encoding the equality check
circuit operation, followed by scalar multiplication by wi. Now, evaluating the
PRF with the punctured key at the punctured point results in the vector

∑
i

(
sT (Afhe,eq,i + (wi · eq(x∗,x) + e) · G) + noise)vi

=
∑

i

sTAfhe,eq,i · vi +
∑

i

sT (wi · eq(x∗,x) + ei)ui + noise′

=
∑

i

sTAfhe,eq,i · vi +
∑

i

(eq(x∗,x) + ei) 〈s, wi · ui〉 · +noise′.

=
∑

i

sTAfhe,eq,i · vi + eq(x∗,x) 〈s,w〉 + noise′′.

We note that when eq(x∗,x) = 1, then the offset term is a noisy inner product
on the secret vector s. This allows us to embed an LWE sample in the offset term
and show that the evaluation indeed looks uniformly random to an adversary
with a punctured key.

3 Preliminaries

Basic Notations. For an integer n, we write [n] to denote the set {1, . . . , n}. For

a finite set S, we write x
$← S to denote sampling x uniformly at random from

S. We use bold lowercase letters (e.g.,v,w) to denote column vectors and bold
uppercase letters (e.g.,A,B) to denote matrices. For a vector or matrix s,A, we
use sT ,BT to denote their transpose. We write λ for the security parameter. We
say that a function ε(λ) is negligible in λ, if ε(λ) = o(1/λc) for every c ∈ N, and
we write negl(λ) to denote a negligible function in λ. We say that an event occurs
with negligible probability if the probability of the event is negl(λ), and an event
occurs with overwhelming probability if its complement occurs with negligible
probability.

Rounding. For an integer p ≤ q, we define the modular “rounding” function

�·�p : Zq → Zp that maps x → �(p/q) · x�

and extend it coordinate-wise to matrices and vectors over Zq. Here, the opera-
tion �·� is the rounding operation over R.

Norm for Vectors and Matrices. Throughout this work, we will always use
the infinity norm for vectors and matrices. This means that for a vector x, the
norm ‖x‖ is the maximal absolute value of an element in x. Similarly, for a matrix
A, ‖A‖ is the maximal absolute value of any of its entries. If x is n-dimensional
and A is n × m, then

∥∥xTA
∥∥ ≤ n · ‖x‖ · ‖A‖.
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3.1 Private Constrained PRFs

We first review the definition of a pseudorandom function (PRF) [GGM86].

Definition 1 (Pseudorandom Function [GGM86]). Fix a security parame-
ter λ. A keyed function F : K × X → Y with keyspace K, domain X , and range
Y is pseudorandom if for all efficient algorithms A,
∣∣∣Pr

[
k

$← K : AF (k,·)(1λ) = 1
]∣∣∣−Pr

[
f

$← Funcs(X ,Y) : Af(·)(1λ) = 1
]
=negl(λ).

Sometimes, a PRF is defined more naturally with respect to a pair of algorithms
ΠPRF = (PRF.Setup,PRF.Eval) where PRF.Setup is a randomized algorithm that
samples the PRF key k in K and PRF.Eval computes the keyed function F (k, ·).

In a constrained PRF [BW13,KPTZ13,BGI14], an authority with a master
secret key msk for the PRF can create a restricted key skf associated with some
function f that allows one to evaluate the PRF only at inputs x ∈ X for which
f(x) = 0.2

Definition 2 (Constrained PRF [BW13,KPTZ13,BGI14]). A constrained
PRF consists of a tuple of algorithms ΠpPRF = (cPRF.Setup, cPRF.Constrain,
cPRF.ConstrainEval, cPRF.Eval) over domain X , range Y, and circuit class C is
defined as follows:

– cPRF.Setup(1λ) → msk: On input the security parameter λ, the setup algo-
rithm outputs the master secret key msk.

– cPRF.Constrain(msk, f) → skf : On input the master secret key msk, and a
circuit f ∈ C, the constrain algorithm outputs a constrained key skf .

– cPRF.ConstrainEval(sk, x) → y: On input a constrained key sk, and an input
x ∈ X , the puncture evaluation algorithm evaluates the PRF value y ∈ Y.

– cPRF.Eval(msk, x) → y: On input the master secret key msk and an input
x ∈ X , the evaluation algorithm evaluates the PRF value y ∈ Y.

Algorithms cPRF.Setup and cPRF.Constrain are randomized, while algorithms
cPRF.ConstrainEval and cPRF.Eval are always deterministic.

Correctness. A constrained PRF is correct if for all λ ∈ N, msk ← cPRF.Setup
(1λ), for every circuit C ∈ C, and input x ∈ X for which f(x) = 0, we have that

cPRF.ConstrainEval(cPRF.Constrain(msk, f), x) = cPRF.Eval(msk, x)

with overwhelming probability.

Security. We require two security properties for constrained PRFs: pseudoran-
domness and privacy. The first property states that given constrained PRF keys,
an adversary cannot distinguish the PRF evaluation at the points where it is
not allowed to compute, from a randomly sampled point from the range.
2 We adopt the convention that f(x) = 0 signifies the ability to evaluate the PRF.

This is opposite of the standard convention, and is done purely for convenience in
the technical section.
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Definition 3 (Pseudorandomness). Fix a security parameter λ. A con-
strained PRF scheme ΠcPRF = (cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval,
cPRF.Eval) is pseudorandom if for all PPT adversary A = (A1,A2), there is a
negligible function negl(λ) such that

AdvrandΠcPRF,A(λ) =
∣∣∣Pr[Expt(0)ΠcPRF,A(λ) = 1] − Pr[Expt(1)ΠcPRF,A(λ) = 1]

∣∣∣ ≤ negl(λ)

where for each b ∈ {0, 1} and λ ∈ Z, the experiment Expt(b)ΠcPRF,A(λ) is defined as
follows:

1. msk ← cPRF.Setup(1λ)
2. (x∗, state1) ← AcPRF.Constrain(msk,·),cPRF.Eval(msk,·)

1 (1λ)
3. y0 ← cPRF.Eval(msk, x∗)

4. y1
$← Y

5. b′ ← AcPRF.Constrain(msk,·),cPRF.Eval(msk,·)
2 (yb, state1)

6. Output b′

To prevent the adversary from trivially winning the game, we require that for
any query f that A makes to the cPRF.Constrain(msk, ·) oracle, it holds that
f(x∗) = 1, and for any query x that A makes to the cPRF.Eval(msk, ·) oracle, it
holds that x �= x∗.

The security games as defined above is the fully adaptive game. One can also
define a selective variant of the games above where the adversary commits to
the challenge point before the game starts. We do so in Definition 6 below.

Next, we require that a constrained key skf not leak information about the
constraint function f as in the setting of private constrained PRFs of [BLW17].

Definition 4 (Privacy). Fix a security parameter λ ∈ N. A constrained PRF
scheme ΠcPRF = (cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) is
private if for all PPT adversary A, there is a negligible function negl(λ) such
that

AdvprivΠcPRF,A(λ) =
∣∣∣Pr[Expt(0)ΠcPRF,A(λ) = 1] − Pr[Expt(1)ΠcPRF,A(λ) = 1]

∣∣∣ ≤ negl(λ)

where the experiments Expt
(b)
ΠcPRF,A are defined as follows:

1. msk ← cPRF.Setup(1λ).
2. b′ ← AcPRF.Constrainb(msk,·,·),cPRF.Eval(msk,·)(1λ).
3. Output b′

where the oracle cPRF.Constrainb(·, ·, ·) is defined as follows

– cPRF.Constrainb(msk, f0, f1): On input the master secret key msk, and a pair
of constraint functions f0, f1, outputs skf,b ← cPRF.Constrain(fb).
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In the experiment above, we require an extra admissibility condition on the adver-
sary to prevent it from trivially distinguishing the two experiments. For a circuit
f ∈ C, define the set S(f) ⊆ X where {x ∈ X : f(x) = 0}. Let d be the number of
queries that A makes to cPRF.Constrainb(msk, ·, ·) and let (f (i)

0 , f
(i)
1 ) for i ∈ [d]

denote the ith pair of circuits that the adversary submits to the constrain oracle.
Then we require that

1. For every query x that A makes to the evaluation oracle, f
(i)
0 (x) = f

(i)
1 (x).

2. For every pair of distinct indices i, j ∈ [d],

S
(
f
(i)
0

)
∩ S

(
f
(j)
0

)
= S

(
f
(i)
1

)
∩ S

(
f
(j)
1

)
.

Justification for the second admissibility condition is discussed in [BLW17,
Remark 2.11].

3.2 Private Puncturable PRFs

A puncturable PRF is a special case of constrained PRFs where one can only
request constained keys for point functions. That is, each constraining circuit
Cx∗ is associated with a point x∗ ∈ {0, 1}n, and Cx∗(x) = 0 if and only
if x �= x∗. Concretely, a puncturable PRF is specified by a tuple of algo-
rithms ΠpPRF = (pPRF.Setup, pPRF.Puncture, pPRF.PunctureEval, pPRF.Eval)
with identical syntax as regular constrained PRFs, with the exception that
the algorithm pPRF.Puncture takes in a point x to be punctured rather than a
circuit f .

In the context of private puncturing, we require without loss of generality,
that algorithm pPRF.Puncture be deterministic (see [BLW17, Remark 2.14]). If
it were randomized, it could be de-randomized by generating its random bits
using a PRF keyed by a part of msk, and given the point x as input.

We define a slightly weaker variant of correctness than as is defined above for
constrained PRF called computational functionality preserving as in the setting
of [BV15]. In words, this property states that it is computationally hard to find
a point x �= x∗ such that the result of the puncture evaluation differs from the
actual PRF evaluation. This is essentially a relaxation of the statistical notion
of correctness to the computational notion of correctness.

Definition 5 (Computational Functionality Preserving). Fix a security
parameter λ and let ΠpPRF = (pPRF.Setup, pPRF.Puncture, pPRF.PunctureEval,
pPRF.Eval) be a private-puncturable PRF scheme. For every adversary A = (A1,
A2), consider the following experiment where we choose msk ← pPRF.Setup(1λ),
(state, x∗) ← A1(1λ), and skx∗ ← pPRF.Puncture(msk, x∗). Then, the private-
puncturable PRF scheme ΠpPRF is computational functionality preserving if

Pr

⎡
⎣x ← ApPRF.Eval(msk,·)

2 (state, skx∗) :
x �= x∗∧

pPRF.Eval(msk, x) �=
pPRF.PunctureEval(skx∗ , x)

⎤
⎦ ≤ negl(λ)

for some negligible function negl.
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We next specialize the security definitions to the settings of puncturing con-
straints. For puncturable PRFs, the adversary in the pseudorandomness game is
limited to making at most one key query to pPRF.Puncture. If it made two key
queries, for two distinct punctures, it would be able to evaluate the PRF on all
points in the domain, and then cannot win the game. Therefore, we need only
consider two types of adversaries in the pseudorandomness game:

– an adversary that makes evaluation queries, but no key queries during the
game, and

– an adversary that makes exactly one key query.

The first adversary plays the regular PRF security game. A simple reduction
shows that selective security against an adversary of the second type implies
security against an adversary of the first type. Therefore, when defining (selec-
tive) security, it suffices to only consider (selective) adversaries of the second
type.

One technicality in defining pseudorandomness for puncturable PRFs that
satisfy a computational notion of correctness is that the adversary must also be
given access to an evaluation oracle. This is because given only a punctured key,
the adversary cannot efficiently detect whether a point in the domain evaluates
to the correct PRF evaluation with the punctured key without the evaluation
oracle. Therefore, we define the following pseudorandomness definition.

Definition 6. Fix a security parameter λ. A puncturable PRF scheme ΠpPRF

= (pPRF.Setup, pPRF.Puncture, pPRF.PunctureEval, pPRF.Eval) is selectively-
pseudorandom if for every PPT adversary A = (A1,A2), there exists a neg-
ligible function negl such that for msk ← pPRF.Setup(1λ), (x∗, state) ← A1(1λ),

skx∗ ← pPRF.Puncture(msk, x∗), u
$← Y, we have that

∣∣∣ Pr[ApPRF.Eval(msk,·)
2 (state, skx∗ , pPRF.Eval(msk, x∗)) = 1]

− Pr[ApPRF.Eval(msk,·)
2 (state, skx∗ , u) = 1]

∣∣∣ ≤ negl(λ) (3.1)

To prevent the adversary from trivially breaking the game, we require that the
adversary A cannot query the evaluation oracle on x∗.

We next define the notion of privacy for puncturable PRFs. Again, since
we rely on the computational notion of correctness, we provide the adversary
access to an honest evaluation oracle (except for at the challenge points). As in
the pseudorandomness game, we only consider selective adversaries that make
a single key query, although that results in a slightly weaker notion of privacy
than in Definition 4.3

3 We note that the admissibility condition in Definition 4 allows an adversary to make
two constrained key queries (see [BLW17] Remark 2.14). However, applications of pri-
vately puncturable PRFs require pseudorandomness property to be satisfied, which
can only be achieved in the single-key setting. Therefore, the restriction of privacy
to the single-key setting does not affect the applications of privately puncturable
PRFs.
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Definition 7. Fix a security parameter λ. A puncturable PRF scheme ΠpPRF

= (pPRF.Setup, pPRF.Puncture, pPRF.PunctureEval, pPRF.Eval) is selectively-
private if for every PPT adversary A = (A1,A2), there exists a negligible
function negl such that for msk ← pPRF.Setup(1λ), (x∗, state) ← A1(1λ),
skx∗ ← pPRF.Puncture(msk, x∗), sk0 ← pPRF.Puncture(msk,0), we have that
∣
∣
∣Pr[ApPRF.Eval(msk,·)

2 (state, skx∗) = 1] − Pr[ApPRF.Eval(msk,·)
2 (state, sk0) = 1]

∣
∣
∣ ≤ negl(λ).

To prevent the adversary from trivially winning the game, we require that the
adversary A cannot query the evaluation oracle on x∗ or 0.

Remarks. We note that a selectively-secure privately constrained PRF can be
shown to be fully secure generically through complexity leveraging. In particular,
the selectivity of the definition does not hurt the applicability of privacy as it
can be shown to be adaptively secure generically. Achieving adaptive security for
any kind of constrained PRFs without complexity leveraging (with polynomial
loss in the reduction) remains a challenging problem. For puncturable PRFs, for
instance, the only known adaptively secure constructions rely on the power of
indistinguishability obfuscation [HKW15,HKKW14].4

We also note that since constrained PRF is a symmetric-key notion, the
setup algorithm just returns the master secret key msk. However, one can also
consider dividing the setup into distinct parameter generation algorithm and
seed generation algorithm where the parameters can be generated once and
can be reused with multiple seeds for the PRF. In fact, for our construction in
Sect. 5.1, a large part of the master secret key component can be fixed once and
made public as parameters for the scheme. However, we maintain our current
definition for simplicity.

3.3 Fully-Homomorphic Encryption

Following the presentation of [GVW15b], we give a minimal definition of
fully homomorphic encryption (FHE) which is sufficient for this work. Tech-
nically, in this work, we use a leveled homomorphic encryption scheme
(LHE); however, we will still refer to it simply as FHE. A leveled homo-
morphic encryption scheme is a tuple of polynomial-time algorithms ΠHE =
(HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) defined as follows:

– HE.KeyGen(1λ, 1d, 1k) → sk: On input the security parameter λ, a depth bound
d, and a message length k, the key generation algorithm outputs a secret key sk.

– HE.Enc(sk, μ) → ct: On input a secret key sk and a message μ ∈ {0, 1}k, the
encryption algorithm outputs a ciphertext ct.

4 There are other adaptively secure constrained PRF constructions for prefix fixing
and bit-fixing constraints as in [FKPR14,Hof14]; however, they too either require
superpolynomial loss in the security parameter or rely on random oracles. The con-
struction of [BV15] achieves adaptive security for the challenge point, but is selective
with respect to the constraint.
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– HE.Eval(C, ct) → ct′: On input a circuit C : {0, 1}k → {0, 1} of depth d and a
ciphertext ct, the homomorphic evaluation algorithm outputs ciphertext ct′.

– HE.Dec(sk, ct′) → μ′: On input a secret key sk and a ciphertext ct′, the decryp-
tion algorithm outputs a message μ′ ∈ {0, 1}.

Correctness. We require that for all λ, d, k, sk ← HE.KeyGen(1λ, 1d, 1k), μ ∈
{0, 1}k, and boolean circuits C : {0, 1}k → {0, 1} of depth at most d, we have
that

Pr [HE.Dec(sk,HE.Eval(C,HE.Enc(sk, μ))) = C(μ)] = 1

where the probability is taken over HE.Enc and HE.KeyGen.

Security. For security, we require standard semantic security. For any PPT
adversary A = (A1,A2), and for all d, k = poly(λ), there exists a negligible
function negl such that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

b = b′ :

sk ← HE.KeyGen(1λ, 1d, 1k);
μ ← A(1λ, 1d, 1k);

b
$← {0, 1};

ct0 ← HE.Enc(sk, 0|μ|);
ct1 ← HE.Enc(sk, μ);
b′ ← A(ctb)

⎤
⎥⎥⎥⎥⎥⎥⎦

− 1
2

≤ negl(λ)

4 LWE, SIS, Lattice FHE, and Matrix Embeddings

In this section, we present a brief background on the average case lattice problems
of the Learning with Errors problem (LWE) as well as the one-dimensional Short
Integer Solutions problem (1D-SIS). We also discuss the instantiations of FHE
from LWE and summarize the circuit matrix embedding technique of the lattice
ABE constructions.

Gaussian Distributions. We let DZm,σ to be the discrete Gaussian distribution
over Zm with parameter σ. For simplicity, we truncate the distribution, which
means that we replace the output by 0 whenever the norm ‖·‖ exceeds

√
m · σ.

The LWE Problem. Let n,m, q be positive integers and χ be some noise
distribution over Zq. In the LWE(n,m, q, χ) problem, the adversary’s goal is to
distinguish between the two distributions:

(A, sTA + eT ) and (A,uT )

where A $← Zn×m
q , s $← χn, e ← χm, and u $← Zm

q are uniformly sampled.

Connection to Worst-Case. Let B = B(n) ∈ N. A family of distributions
χ = {χn}n∈N is called B-bounded if

Pr[χ ∈ {−B,−B + 1 . . . , B − 1, B}] = 1.
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For certain B-bounded error distributions χ, including the discrete Gaussian
distributions5, the LWE(n,m, q, χ) problem is as hard as approximating certain
worst-case lattice problems such as GapSVP and SIVP on n-dimensional lattices
to within Õ(n · q/B) factor [Reg09,Pei09,ACPS09,MM11,MP12,BLP+13].

The Gadget Matrix. Let Ñ = n · �log q� and define the “gadget matrix” G =
g ⊗ In ∈ Zn×Ñ

q where g = (1, 2, 4, . . . , 2�log q�−1). We define the inverse function
G−1 : Zn×m

q → {0, 1}Ñ×m which expands each entry a ∈ Zq of the input matrix
into a column of size �log q� consisting of the bits of the binary representation
of a. To simplify the notation, we always assume that G has width m, which
we do so without loss of generality as we can always extend the width of G by
adding zero columns. We have the property that for any matrix A ∈ Zn×m

q , it
holds that G · G−1(A) = A.

The 1D-SIS Problem. Following the technique of [BV15], we use a variant
of the Short Integer Solution (SIS) problem of [Ajt96] called 1D-SIS problem to
show correctness and security for our scheme. Let m,β be positive integers and
let q be a product of n prime moduli p1 < p2 < . . . < pn, q =

∏
i∈[n] pi. Then,

in the 1D-SISm,q,β , the adversary is given a uniformly random vector v ∈ Zm
q

and its goal is to find z ∈ Zm such that ‖z‖ ≤ β and 〈v, z〉 = 0 mod q. For
m = O(n log q), p1 ≥ β · ω(

√
mn log n), the 1D-SIS-Rm,q,p,β problem is as hard

as approximating certain worst-case lattice problems such as GapSVP and SIVP
to within β · Õ(

√
mn) factor [Reg04,BV15].

For this work, we will use another variant called 1D-SIS-R that we define as
follows. Let m,β be positive integers. We let q = p·∏i∈[n] pi, where all p1 < p2 <
· · · < pn are all co-prime and co-prime with p as well. In the 1D-SIS-Rm,q,p,β

problem, the adversary is given a uniformly random vector v ∈ Zm
q and its goal is

to find a vector z ∈ Zm such that ‖z‖ ≤ β and 〈v, z〉 ∈ [−β, β]+(q/p)(Z+1/2).6

[BKM17, Appendix B] shows that 1D-SIS-Rm,q,p,β is as hard as 1D-SISm,q,β and
therefore, is as hard as certain worst-case lattice problems.

4.1 FHE from LWE

There are a number of FHE constructions from LWE [BV14a,BGV12,GSW13,
BV14b,ASP14,CM15,MW16,BP16,PS16]. For this work, we use the fact that
these constructions can support not just binary, but field operations.

Specifically, given an encryption of a message x ∈ {0, 1}�, a circuit C : {0, 1}�

→ {0, 1}, and any field element w ∈ Zq, one can homomorphically compute the
function

fC,w(x) = w · C(x) ∈ Zq

on the ciphertext. Here, we take advantage of the fact that the FHE homo-
morphic operations can support scalar multiplication by a field element without

5 By discrete Gaussian, we always mean the truncated discrete Gaussian.
6 The term (q/p)(Z + 1/2) is a slight abuse of notation when q/p is not even. In this

case, we mean (q/p) · (Z) + �(q/p) · (1/2)�.
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increasing the noise too much. Looking ahead, we will encrypt the punctured
point x∗, and homomorphically compute the equality predicate eqx(x∗) ={

1 x = x∗

0 otherwise on the ciphertext such that it decrypts to a random element

wγ ∈ Zq only if the evaluation of the PRF a point x equals to the punctured
point. This is simply evaluating the equality check circuit on the FHE ciphertext
and scaling the result by wγ .

We formally summarize the properties of FHE constructions from LWE
below.7

Theorem 1 (FHE from LWE). Fix a security parameter λ and depth bound
d = d(λ). Let n,m, q, χ be LWE parameters where χ is a B-bounded error dis-
tribution and q > B ·mO(d). Then, there is an FHE scheme ΠHE = (HE.KeyGen,
HE.Enc,HE.Eval,HE.Dec) for circuits of depth bound d, with the following
properties:

– HE.KeyGen outputs a secret key sk ∈ Zn
q

– HE.Enc takes in a message m ∈ {0, 1}k and outputs a ciphertext ct ∈ {0, 1}z

where z = poly(λ, d, log q, k).
– HE.Eval takes in a circuit fC,w and a ciphertext ct and outputs ciphertexts

ct′ ∈ {0, 1}n.
– For any boolean circuit C of depth d and scalar element w ∈ Zq,

HE.Eval(fC,w, ·) is computed by a boolean circuit of depth poly(d, log z).
– HE.Dec on input sk and ct, when C(m) = 1 we have that

t∑
i=1

sk[i] · ct[i] ∈ [w − E,w + E].

When C(m) = 0 we have

t∑
i=1

sk[i] · ct[i] ∈ [−E,E]

for some bound E = B · mO(d).
– Security relies on LWE(n,m, q, χ).

We note that in the predicate encryption construction of [GVW15b], the
result of [BV14b] is used, which applies the sequential homomorphic multipli-
cation of ciphertexts (through branching programs) to take advantage of the
asymmetric noise growth of FHE. This allows the final noise from the FHE
homomorphic operations to be bounded by poly(λ), but the depth of the FHE
evaluation grows polynomially in the bit length of the FHE modulus. In our con-
struction, this optimization is not needed because we will only be concerned with
the equality check circuit which is already only logarithmic in the depth of the
input length. Therefore, one can perform regular FHE homomorphic operations
with depth logarithmic in the bit length of the FHE modulus.
7 We slightly abuse the FHE syntax in Sect. 3.3.
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4.2 Matrix Embeddings

In the ABE construction of [BGG+14], Boneh et al. introduced a method to
embed circuits into LWE matrices and since then, the technique saw a num-
ber of applications in lattice-based constructions [BV15,GVW15b,GV15,BV16,
BCTW16].

We provide an overview of this technique since our proof of security will rely
on the specifics of this matrix encodings. Our, description will be informal, but
we formally describe the properties that we need for the proofs below. We refer
the readers to [BGG+14,GVW15b] for the formal treatment.

In the setting of [BGG+14], for the set of public matrix A1, . . .A�, we encode
a vector of field elements x ∈ Zt

q as an LWE sample as

axi
= sT (Ai + xi · G) + ei

for i = 1, . . . , 	 where s and ei’s are sampled according to the standard LWE
distribution. Then, given two encodings, axi

, axj
, we can add and multiply them

as follows:

axi+xj
= axi

+ axj

= sT (Ai + xi · G) + ei + sT (Aj + xj · G) + ej

= sT ([Ai + Aj ] + [xi + xj ] · G) + [ei + ej ]

= sT (A+,i,j + [xi + xj ] · G) + e+,i,j

axi×xj
= axi

· xj − axj
G−1(Ai)

= sT (xjAi + xixj · G) + xjej − sT (AjG−1(Ai) + xjAi) + ejG−1(Ai)

= sT ([−AjG−1(Ai)] + [xi · xj ] · G) + [xjei + ejG−1(Ai)

= sT (A×,i,j + [xi · xj ] · G) + e×,i,j

Correspondingly, we can define operations on the matrices

– A+,i,j = Ai + Aj

– A×,i,j = −AjG−1(Ai)

Using these operations, one can compute an arithmetic circuit F on the encod-
ings gate-by-gate. In particular, restricting x to be a binary string, we can com-
pute the NAND operation as

a¬(xi∧xj) = a1 − axi×xj

A¬(xi∧xj) = A∗ − A×,i,j

where a1 = sT (A∗ + G) + e∗ is a fixed encoding of 1.
We note that in the description above, to compute a single multiplication on

the encodings axi
, axj

, one must know one of xi or xj , but it is not required
to know both. This means that computing operations such as inner products on
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two vector attributes can be done without the knowledge of one of the vectors.
In particular, given the encodings of (x,w) ∈ {0, 1}z × Zt

q, and a pair (C,x)
where C : {0, 1}z → {0, 1}t and x ∈ {0, 1}z, one can derive an encoding of
(IP ◦ C)(x,w) = 〈C(x),w〉.
Theorem 2 [BGG+14,GVW15b]. Fix a security parameter λ, and lattice
parameters n,m, q, χ where χ is a B-bounded error distribution. Let C be a
depth-d Boolean circuit on z input bits. Let A1, . . . ,Az, Ã1, . . . , Ãt ∈ Zn×m

q ,
(x1,b1), . . . , (xz,bz) ∈ {0, 1} × Zm

q , and (w1, b̃1), . . . , (wt, b̃t) ∈ Zq × Zm
q such

that ∥∥bT
i − sT (Ai + xi · G)

∥∥ ≤ B for i = 1, . . . , z∥∥∥b̃T
j − sT (Ãj + wj · G)

∥∥∥ ≤ B for j = 1, . . . , t

for some s ∈ Zn
q . There exists the following pair of algorithms

– Evalpk((IP ◦ C),A1, . . . ,Az, Ã1, . . . , Ãt) → A(IP◦C): On input a circuit
(IP ◦ C) for C : {0, 1}z → {0, 1}t and z + t matrices A1, . . . ,Az, Ã1, . . . , Ãt,
outputs a matrix A(IP◦C).

– Evalct((IP ◦ C),b1, . . . ,bz, b̃1, . . . , b̃t,x) → b(IP◦C): On input a circuit
(IP ◦ C) for C : {0, 1}z → {0, 1}t, z + t vectors b1, . . . ,bz, b̃1, . . . , b̃t, and
length z string x, outputs a vector b(IP◦C)

such that for A(IP◦C) ← Evalpk((IP ◦ C),A1, . . . ,Az, Ã1, . . . , Ãt), and b(IP◦C) ←
Evalct((IP ◦ C),b1, . . . ,bz, b̃1, . . . , b̃t,x), we have that

∥∥∥bT
(IP◦C) − sT (A(IP◦C) + 〈C(x),w〉 · G)

∥∥∥ ≤ B · mO(d).

Moreover, b(IP◦C) is a “low-norm” linear function of b1, . . . ,bz, b̃1, . . . , b̃z. That
is, there are matrices R1, . . . ,Rz, R̃1, . . . , R̃t such that bT

(IP◦C) =
∑z

i=1 b
T
i Ri +∑t

j=1 b̃
T
j R̃j and ‖Ri‖ , ‖R̃j‖ ≤ mO(d).

5 Main Construction

In this section, we present our private puncturable PRF. We first give a formal
description of the construction followed by a sample instantiation of the para-
meters used in the construction. Then, we show correctness and security. We
conclude the section with some extensions.

5.1 Construction

Our construction uses a number of parameters and indices, which we list here
for reference:

– (n,m, q, χ) - LWE parameters
– 	 - length of the PRF input
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– p - rounding modulus
– z - size of FHE ciphertext (indexed by i)
– t - size FHE secret key (indexed by j)
– d′ - depth of the equality check circuit
– d - depth of the circuit that computes the FHE homomorphic operation of

equality check
– γ - index for the randomizers w1, . . . , wn

For γ ∈ [n] we use uγ to denote the n dimensional basis vector in Zn
q with γth

entry set to 1 and the rest set to 0. Also, for γ ∈ [n], we denote by vγ the m
dimensional basis vector in Zm

q with the γ · (�log q� − 1)th component set to 1
and the rest set to 0. By construction of G we have that G · vγ = uγ .

For the cleanest way to describe the construction, we slightly abuse nota-
tion and define the setup algorithm pPRF.Setup to also publish a set of public
parameters pp along with the master secret key msk. One can view pp as a
fixed set of parameters for the whole system that is available to each algorithms
pPRF.Puncture, pPRF.PunctureEval, pPRF.Eval, or it can be viewed as a compo-
nent included in both the master secret key msk and the punctured key skx∗ .

Fix a security parameter λ. We construct a privately puncturable
PRF ΠpPRF = (pPRF.Setup, pPRF.Puncture, pPRF.PunctureEval, pPRF.Eval) with
domain {0, 1}� and range Zp as follows:

– pPRF.Setup(1λ): On input the security parameter λ, the setup algorithm gen-
erates a set of uniformly random matrices in Zn×m

q :
• A0,A1 that will encode the input to the PRF
• B1, . . . ,Bz that will encode the FHE ciphertext
• C1, . . . ,Ct that will encode the FHE secret key

Then, it generates a secret vector s from the error distribution s ← χn, and
also samples a uniformly random vector w ∈ Zn

q . It sets

pp =
({Ab}b∈{0,1}, {Bi}i∈[z], {Cj}j∈[t], w

)
and msk = s

– pPRF.Eval(msk,x): On input the master secret key msk = s and the PRF
input x, the evaluation algorithm first computes

B̃γ ← Evalpk(Cγ ,B1, . . . ,Bz,Ax1 , . . . ,Ax�
,C1, . . . ,Ct)

where for γ ∈ [n] the circuit Cγ is defined as Cγ(·) = IP ◦HE.Eval(eqwγ
, ·) and

the equality check function eqwγ
is defined as:

eqwγ
(x∗,x) =

{
wγ if x = x∗

0 otherwise .

The algorithm outputs the following as the PRF value:
⎢⎢⎢⎣ ∑

γ∈[n]

〈
sT B̃γ ,vγ

〉⎤
⎥⎥⎥

p

∈ Zp.
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– pPRF.Puncture(msk,x∗): given msk and the point to be punctured x∗ =
(x∗

1, . . . , x
∗
� ) ∈ {0, 1}� as input, the puncturing algorithm generates an FHE

key he.sk ← HE.KeyGen(1λ, 1d′
, 1�) and encrypts x∗ as

he.ct ← HE.Enc
(
he.sk, (x∗

1, . . . , x
∗
� )

) ∈ Zz
q .

Then, it samples an error vector e ← χ2+z+t from the error distribution and
computes

ab = sT (Ab + b · G) + eT
1,b ∀b ∈ {0, 1}

bi = sT (Bi + he.cti · G) + eT
2,i ∀i ∈ [z]

cj = sT (Cj + he.skj · G) + eT
3,j ∀j ∈ [t].

It outputs the punctured key skx∗ =
({ab}b∈{0,1}, {bi}i∈[z], {cj}j∈[t], he.ct

)
.

– pPRF.PunctureEval(skx∗ ,x): On input a punctured key skx∗ =
({ab}b∈{0,1},

{bi}i∈[z], {cj}j∈[t], he.ct
)

and x ∈ {0, 1}�, the puncture evaluation algorithm
runs

b̃γ ← Evalct
(
Cγ , b1, . . . ,bz, ax1 , . . . ,ax�

, c1, . . . , ct, (he.ct,x)
)

for γ = 1, . . . , n. Here Cγ is the circuit defined as in algorithm pPRF.Eval. The
puncture evaluation algorithm then outputs the PRF value:⎢⎢⎢⎣ ∑

γ∈[n]

〈
b̃γ ,vγ

〉⎤
⎥⎥⎥

p

∈ Zp.

As discussed in Sect. 3.2, we can de-randomize algorithm pPRF.Puncture so that
it always returns the same output when run on the same input.

5.2 Parameters

The parameters can be instantiated such that breaking correctness or security
translates to solving worst-case lattice problems to 2Õ(n1/c) for some constant c.
We set the parameters to account for the noise of both (a) the FHE decryption
and (b) the homomorphic computation on the ABE encodings. The former will
be bounded largely by B · mO(d′) and the latter by B · mO(d). Here, d′ is the
depth of the equality check circuit and d is the depth of the FHE operation of the
equality check circuit. We want to set the modulus of the encodings q to be big
enough to account for these bounds. Furthermore, for the 1D-SIS-R assumption,
we need q to be the product of coprime moduli p1, . . . , pλ such that the smallest
of these primes exceeds these bounds.

Sample Instantiations. We first set the PRF input length 	 = poly(λ). The
depth of the equality check circuit is then d′ = O(log 	). We set n = λ2c. We
define q to be the product of λ coprime moduli p, p1, . . . , pλ where we set p =
poly(λ) and for each i ∈ [λ], pi = 2O(n1/2c) such that p1 < . . . < pλ. The
noise distribution χ is set to be the discrete Gaussian distribution DZ,

√
n. Then

the FHE ciphertext size z and the secret key size t is determined by q. Set
m = Θ(n log q). The depth of the FHE equality check circuit is d = poly(d′, log z).
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5.3 Correctness and Security

We now state the correctness and security theorems of the construction in
Sect. 5.1. The proofs of these theorems can be found in the full version [BKM17].

Theorem 3. The puncturable PRF from Sect. 5.1 with parameters instanti-
ated as in Sect. 5.2 satisfies the correctness property of Definition 5 assum-
ing the hardness of LWEn,m,q,χ and 1D-SIS-Rq,p,β,m′ for β = B · mÕ(d) and
m′ = m · (2 + z + t) + 1.

Theorem 4. The puncturable PRF from Sect. 5.1 with parameters instantiated
as in Sect. 5.2 is selectively-pseudorandom as defined in Definition 6 assuming
the hardness of LWEn,m′,q,χ and 1D-SIS-Rq,p,β,m′ for β = B · mÕ(d) and m′ =
m · (2 + z + t) + 1.

Theorem 5. Let ΠHE be a secure leveled homomorphic encryption scheme with
parameters instantiated as in Sect. 5.2. The puncturable PRF from Sect. 5.1 with
parameters instantiated as in Sect. 5.2 satisfies the security property of a private
puncturable PRF as defined in Definition 6 assuming the hardness of LWEn,m′,q,χ

and 1D-SIS-Rq,p,β,m′ for β = B · mÕ(d) and m′ = m · (2 + z + t) + 1.

5.4 Extentions

We conclude this section with some high-level discussion on extending our scheme
and how it relates to other lattice based PRF constructions.

Puncturing at Multiple Points. A private puncturable PRF can be com-
bined to support a single-key private k-puncturable PRF generically where a
constrained key can be punctured at k distinct points in the domain. One
way of doing this is to simply define the PRF to be the xor of k independent
instances of a 1-puncturable PRF. More precisely, let mski ← pPRF.Setup(1λ)
for i = 1, . . . , k. Then define the master secret key of the k-puncturable PRF to
be the collection of these master secret keys msk = (msk1, . . . ,mskk). We define
the evaluation of the PRF to be F (msk,x) = F (msk1,x) ⊕ . . . ⊕ F (mskk,x).
Then, to generate a punctured key at S = {x1, . . . ,xk}, we puncture each mski

at point xi, to get punctured key skxi
← pPRF.Puncture(mski,xi), and then set

skS = (skx1 , . . . , skxk
). It is easy to see that one can evaluate the PRF with the

punctured key only at a point x in the domain x /∈ S. It is also straightfor-
ward to show that pseudorandomness and privacy follow from the security of
the underlying 1-puncturable PRF.

Short Constrained Keys. In [BV15], Brakerski and Vaikuntanathan provide
a way to achieve succinct constrained keys for their single-key constrained PRF,
which also extends to our construction in Sect. 5.1. We provide a high level
overview of this method.

In the constrained PRF construction of [BV15], a constrained key consists
of the description of the constraint circuit along with the ABE encodings of
the constraint circuit. To get succinct constrained keys, one can encrypt the
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bit encodings for each possible bits using an encryption scheme and publish it
as part of the public parameters (just like in a garbling scheme). Then, as the
constrained key, one can provide the decryption keys corresponding to the bit
description of the constraint circuit. Now, using the attribute-based encryption
construction of [BGG+14], which has short decryption keys, one can provide the
ABE secret key that allows the decryption of the bits of the constraint circuit.

One difference with our construction is that we encode field elements in our
ABE encodings for the FHE key. However, the FHE key stays the same for any
punctured point. Therefore, we can garble just the bit positions corresponding
to the encryption of the point to be punctured and publish the rest of the
components in the clear. This allows the size of the public parameters to absorb
the size of the constrained key.

Key Homomomorphism. Our PRF construction has a similar structure as
the other lattice-based PRF constructions and therefore, the master secret key
(LWE vector) for which the PRF is defined can be added homomorphically from
the PRF evaluations. However, we note that in our construction, the PRF key
(secret vector) is from a short noise distribution χ. Although there are applica-
tions of key-homomorphic PRFs with short keys, for most applications of key-
homomorphic PRFs, one requires a perfect secret sharing of the PRF key, which
requires it to come from a uniform distribution over a finite group. We leave it as
an open problem to extend the construction to the setting of key-homomorphic
PRFs with uniform keys.

6 Impossibility of Simulation Based Privacy

In this section, we show that a simulation based privacy notion for constrained
PRFs for general circuit constraints is impossible. More precisely, we show that
even for the single-key setting where the adversary is given one single con-
strained key, a natural extension of the indistinguishability privacy definition
(Definition 4) to a simulation based privacy definition cannot be satisfied. We do
this rather indirectly by showing that a constrained PRF (for general circuits)
satisfying the simulation based privacy definition implies a simulation secure
functional encryption [SS10,BSW11,O’N10], which was shown to be impossible
in [BSW11,AGVW13].

6.1 Definition

We begin with the definition of a simulation based privacy notion for con-
strained PRFs. The simulation based privacy requires that any adversary given
a constrained key skf does not learn any more information about the constraint
other than what can be implied by comparing the output of the real evaluation
cPRF.Eval(msk, ·) and cPRF.ConstrainEval(skf , ·). The correctness and pseudo-
randomness properties stay the same as how it is defined in Sect. 3.
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Definition 8 (Sim-Privacy) Fix a security parameter λ ∈ N. A constrained
PRF scheme ΠcPRF = (cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.
Eval) is simulation-private for single-key if there exists a PPT simulator S =
(SEval,SConstrain) such that for all PPT adversary A, there exists a negligible func-
tion negl(λ) such that

AdvprivΠcPRF,A(λ) =
∣∣∣Pr[ExptREALΠcPRF,A(λ) = 1] − Pr[ExptRAND

ΠcPRF,A(λ) = 1]
∣∣∣ ≤ negl(λ)

where the experiments ExptREALΠcPRF,A(λ) and ExptRAND
ΠcPRF,A(λ) are defined as follows:

ExptREALΠcPRF,A(λ):

1. msk ← cPRF.Setup(1λ).
2. (f∗, state) ← AcPRF.Eval(msk,·)(1λ).
3. skf∗ ← cPRF.Constrain(msk, f∗).
4. b ← A(skf∗ , state).
5. Output b

ExptRAND
ΠcPRF,A(λ):

1. (f∗, state1) ← ASEval(·)(1λ).
2. skf∗ ← SConstrain().
3. b ← A(skf∗ , state1).
4. Output b.

Here, the algorithms SEval and SConstrain share common state and the algorithm
SConstrain is given the size |f | and oracle access to the following set of mappings

Cconstrain =
{

i �→ f∗(x(i)) : i ∈ [Q]
}

where Q represents the number of times A queries the evaluation oracles SEval.

In words, the security definition above requires that an adversary cannot dis-
tinguish whether it is interacting with a real constrained PRF or it is interacting
with a simulator that is not actually given the constraint f∗ except for output
of f∗ applied to each of the adversary’s queries to the evaluation oracle.

6.2 Functional Encryption

In this subsection, we define a simulation secure functional encryption for cir-
cuits. For simplicity, we consider functions with just binary outputs.

A (secret-key) functional encryption (FE) scheme is a tuple of algorithms
ΠFE = (FE.Setup,FE.KeyGen,FE.Encrypt,FE.Decrypt) defined over a message
space X , and a class of functions Fλ = {f : X → {0, 1}} with the following
properties:

– FE.Setup(1λ) → msk: On input the security parameter λ, the setup algorithm
outputs the master secret key msk.

– FE.KeyGen(msk, f) → skf : On input the master secret key msk and a circuit
f , the key generation algorithm outputs a secret key skf .

– FE.Encrypt(msk,x) → ct: On input the master secret key msk, and a message
x, the encryption algorithm outputs a ciphertext ct.

– FE.Decrypt(ct, skf ) → {0, 1}: On input a ciphertext ct and a secret key skf ,
the decryption algorithm outputs a bit y ∈ {0, 1}.
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Correctness. A functional encryption scheme ΠFE = (FE.Setup,FE.KeyGen,
FE.Encrypt,FE.Decrypt) is correct if for all λ ∈ N, msk ← FE.Setup(1λ), f ∈ F ,
and skf ← FE.KeyGen(msk, f), we have that

Pr[FE.Decrypt(skf ,FE.Encrypt(msk,x)) = f(x)] = 1 − negl(λ).

Security. For security, we require that any adversary given a secret key does
not learn any more information about an encrypted message other than what
can be deduced from an honest decryption.

Definition 9. Fix a security parameter λ ∈ N. A functional encryption scheme
ΠFE = (FE.Setup,FE.KeyGen,FE.Encrypt,FE.Decrypt) is simulation secure for
single-key if there exists a PPT simulator S = (SEncrypt,SKeyGen) such that for
all PPT adversary A, there exists a negligible function negl(λ) such that

AdvFEΠFE,A(λ) =
∣∣∣Pr[ExptREALΠFE,A(λ) = 1] − Pr[ExptRAND

ΠFE,A(λ) = 1]
∣∣∣ ≤ negl(λ)

where the experiments ExptREALΠFE,A(λ) and ExptRAND
ΠFE,A(λ) are defined as follows:

ExptREALΠFE,A(λ):

1. msk ← FE.Setup(1λ).
2. (f∗, state) ← AFE.Encrypt(msk,·)(1λ).
3. skf∗ ← FE.KeyGen(msk, f∗).
4. b ← A(skf∗ , state).
5. Output b

ExptRAND
ΠFE,A(λ):

1. (f∗, state) ← ASEncrypt()(1λ)
2. skf∗ ← SKeyGen(f∗).
3. b ← A(skf∗ , state).
4. Output b.

Here, the algorithms SEncrypt and SKeyGen share common state and the simulator
SKeyGen is given oracle access to the set of mappings Cmsg =

{
i �→ f∗(x(i)) :

i ∈ [Q]
}

where Q represents the number of queries that A makes to SEncrypt.

It was shown in [BSW11,AGVW13] that a functional encryption scheme
satisfying the security definition above is impossible to achieve.

6.3 FE from Constrained PRFs

In this subsection, we present our construction of functional encryption.
Fix a security parameter λ. Let ΠcPRF = (cPRF.Setup, cPRF.Constrain, cPRF.
ConstrainEval, cPRF.Eval) be a constrained PRF with domain {0, 1}λ+� and range
{0, 1}λ where 	 is the size of the message in the functional encryption scheme. We
also use an additional regular PRF, which we denote by Fk : {0, 1}λ → {0, 1}�.
We construct ΠFE = (FE.Setup,FE.KeyGen,FE.Encrypt,FE.Decrypt) as follows:

– FE.Setup(1λ): On input the security parameter λ, the setup algorithm first

samples a regular PRF key k $← {0, 1}λ. Then, it runs cprf.msk ←
cPRF.Setup(1λ) and sets msk = (cprf.msk,k).
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– FE.KeyGen(msk, f): On input the master secret key msk and a circuit f ,
the key generation algorithm generates a constrained PRF key skCf,k

←
cPRF.Constrain(cprf.msk, Cf,k) where the circuit Cf,k is defined as follows:

Cf,k(r,y) =
{

0 if f(Fk(r) ⊕ y) = 0
1 otherwise .

It outputs skf = skCf,k
.

– FE.Encrypt(msk,x): On input the master secret key msk, and a message x ∈
{0, 1}�, the encryption algorithm first samples encryption randomness r $←
{0, 1}λ and computes y = Fk(r) ⊕ x. Then, it returns

ct = (r,y, cPRF.Eval(cprf.msk, r‖y))

– FE.Decrypt(skf , ct): On input a secret key skf = skCf,k
and ct = (r,y, c̃t), the

decryption algorithm returns 0 if cPRF.ConstrainEval(skCf,k
, r‖y) = c̃t and 1

otherwise.

Correctness. To show correctness, we note that the decryption algorithm sim-
ply evaluates the PRF using the constrained key cPRF.Constrain(skCf,k

, r‖y) and
returns 0 if the result equals c̃t and 1 otherwise. Since c̃t is precisely the PRF
evaluation using the master secret key cPRF.Eval(cprf.msk, r‖y), the two evalu-
ations coincide if Cf,k(r,y) = 0. Also, if ΠcPRF satisfies the standard notion of
pseudorandomness as in Definition 3, the PRF evaluation using the master secret
key and the PRF evaluation using the constrained key differs with overwhelming
probability if the constraint is not satisfied Cf,k(r,y) = 1.

6.4 Security

In this section, we prove security of construction above.

Theorem 6. Let ΠcPRF = (cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval,
cPRF.Eval) be a constrained PRF scheme satisfying the security properties of
Definition 8. Also, let Fk be a secure PRF. Then, the functional encryption
scheme ΠFE constructed above satisfies the simulation based security notion of
Definition 9.

Proof. We proceed through a series of hybrid experiments where the first hybrid
H0 represents the real experiment ExptREALΠFE,A and the final hybrid H3 represents
the ideal simulation ExptRAND

ΠFE,A.

– Hybrid H0: This is the real experiment. The challenger runs the real setup
algorithm to generate msk. Then the adversary makes a number of encryption
queries and a key generation query which the challenger answers using its msk.
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– Hybrid H1: In this experiment, the challenger runs the simulator for the
constrained PRF to answer the adversary’s queries. More precisely, given a
constrained PRF simulator S = (SEval,SConstrain), the challenger first samples

a PRF key k $← {0, 1}λ as msk. Then for each encryption query x that the

adversary makes, the challenger samples r $← {0, 1}λ, computes y ← Fk(r)⊕x
and invokes the simulator to generate c̃t ← SEval(r‖y). It provides (r,y, c̃t) to
the adversary as the encryption of x. To answer the single key generation query
on f∗ from the adversary, the challenger invokes the simulator SConstrain() to
generate the key. For the set of mappings Cconstrain that are to be provided to
SConstrain, the challenger computes f∗(x(i)) itself and feeds it to the simulator.
By the assumption on the simulator S = (SEval,SConstrain), we have that the
hybrids H0 and H1 are indistinguishable to the adversary. We note that in
H1, the challenger does not actually use the PRF key k to generate the secret
keys.

– Hybrid H2: In this experiment, the challenger replaces Fk(·) with a random
function. Namely, to answer an encryption query x by the adversary, the
challenger ignores the message x and samples ỹ randomly ỹ $← {0, 1}�. It
then invokes c̃t ← SEval(r‖ỹ) and sets (r, ỹ, c̃t) as the encryption of x. The
rest of the experiment remains unchanged from H1.
Note that in both hybrid experiments H1 and H2, the challenger does not use
the PRF key k other than in evaluating the PRF Fk(·) to encrypt. Therefore,
by the PRF security of Fk(·), the two experiments are indistinguishable to the
adversary. We note that in H2, the challenger does not use any information
about the message xi other than providing the simulator SConstrain with the
values f∗(x(i)).

– Hybrid H3: This experiment represents the ideal experiment where the chal-
lenger corresponds to the simulator for the functional encryption game. The
simulator runs in exactly the same way as in the previous hybrid H2. Namely,
for each encryption query x that the adversary makes, it samples r $← {0, 1}λ,

y $← {0, 1}� and invokes c̃t ← SEval(r‖ỹ). It sets (r, ỹ, c̃t) as the encryption of
x. Note that to generate the ciphertext, it does not use any information about
x. For the single key query, the simulator invokes SConstrain(). For the set of
mappings Cconstrain that are to be provided to SConstrain, it uses its own oracle
Cmsg to provide the values f∗(x(i)).
It is easy to see that the distribution of the experiments H2 and H3 are
identical.

We have shown that the experiment H0, which corresponds to ExptREALΠFE,A and
the experiment H3, which corresponds to ExptRAND

ΠFE,A are indistinguishable. This
concludes the proof.

7 Conclusion and Open Problems

We constructed a privately puncturable PRF from worst-case lattice problems.
Prior constructions of privately puncturable PRFs required heavy tools such
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as multilinear maps or iO. This work provides the first privately puncturable
PRF from a standard assumption. We also showed that for general functions, a
natural simulation-based privacy definition for constrained PRFs is impossible
to achieve.

Our PRF builds on the construction of [BV15], which supports circuit con-
straints. However, our construction does not extend to more general constraints,
and it will be interesting to provide a private constrained PRF for a larger class
of circuit constraints. For private puncturing, it will be interesting to give more
constructions based on assumptions other than LWE.

Our construction satisfies the selective security game of private puncturable
PRFs, and we rely on complexity leveraging for adaptive security. Recently,
[HKW15] gave a way to achieve adaptively secure puncturable PRFs without
complexity leveraging. Can we extend the result to private puncturable PRFs?

Finally, private constrained PRFs have a number of interesting applications,
as explored here and in [BLW17]. It would be interesting to find further appli-
cations and relations to other cryptographic primitives.
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Abstract. Constraint-hiding constrained PRFs (CHCPRFs), initially
studied by Boneh, Lewi and Wu (PKC 2017), are constrained PRFs
where the constrained key hides the description of the constraint. Envi-
sioned with powerful applications such as searchable encryption, private-
detectable watermarking and symmetric deniable encryption, the only
known candidates of CHCPRFs are based on indistinguishability obfus-
cation or multilinear maps with strong security properties.

In this paper we construct CHCPRFs for all NC1 circuits from the
Learning with Errors assumption. The construction draws heavily from
the graph-induced multilinear maps by Gentry, Gorbunov and Halevi
(TCC 2015), as well as the existing lattice-based PRFs. In fact, our con-
struction can be viewed as an instance of the GGH15 approach where
security can be reduced to LWE.

We also show how to build from CHCPRFs reusable garbled circuits
(RGC), or equivalently private-key function-hiding functional encryp-
tions with 1-key security. This provides a different approach of construct-
ing RGC from that of Goldwasser et al. (STOC 2013).

1 Introduction

Constrained PRFs [15,16,39] are pseudorandom functions with a special mode
that outputs a constrained key defined by a predicate C. The constrained key
CKC preserves the functionality over the inputs x s.t. C(x) = 1, while leaving
the function values on inputs x s.t. C(x) = 0 pseudorandom. In the standard
formulation of constrained PRFs, the constrained key is not required to hide
the predicate C. In fact, many constructions of constrained PRFs do reveal the
constraint. A quintessential example is GGM’s puncturable PRF [33] where CK
explicitly reveals the punctured points.

The notion of constraint-hiding constrained PRF (CHCPRF), proposed by
Boneh, Lewi and Wu [12], makes the additional guarantee that the constraining
predicate C remains hidden, even given the constrained key. Such an additional
property allows the primitive to provide fairly natural constructions of search-
able encryption, watermarking, deniable encryption, and others. However, they
only propose candidates of CHCPRFs based on strong assumptions, like indistin-
guishability obfuscation (iO) or heuristic assumptions on candidate multilinear
maps (multilinear-DDH or subgroup elimination).
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part I, LNCS 10210, pp. 446–476, 2017.
DOI: 10.1007/978-3-319-56620-7 16
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This Work. We further investigate the notion of CHCPRF, propose construc-
tions based on standard cryptographic assumptions, and demonstrate more
applications.

We first propose an alternative, simulation-based definition for CHCPRF.
While for the cases addressed in our constructions the new style is (almost)
equivalent to the indistinguishability-based one from [12], the new formulation
provides a different viewpoint on the primitive.

Our main result is a construction of CHCPRF for all NC1 circuit constraints
based on the Learning with Errors (LWE) assumption [48]:

Theorem 1. Assuming the intractability of LWE, there are CHCPRFs with
1-key simulation-based security, for all constraints recognizable by NC1 circuits.

The construction combines the graph-induced multilinear maps by Gentry,
Gorbunov and Halevi [31], their candidate obfuscator, and the lattice-based
PRFs of [5,6,11,19]. At the heart of our technical contribution is identifying a
restricted (yet still powerful) variant of the GGH15 maps, whose security can be
reduced to LWE. This involves formulating new “LWE-hard” secret distributions
that handle the permutation matrices underlying Barrington’s construction.

In addition, we construct function-hiding private-key functional encryptions
(equivalently, reusable garbled circuits [34]) from CHCPRFs. This gives a con-
struction of reusable garbled circuits from LWE that is very different from that
of [34]:

Theorem 2. For a circuit class C, assuming 1-key simulation-based CHCPRFs
for constraints in C, and CPA secure private-key encryption whose decryption
circuit is in C, there exist 1-key secure reusable garbled circuits for C.

1.1 CHCPRFs, Functional Encryption and Obfuscation

We propose a simulation-based definitional approach for CHCPRF, and compare
this approach to the indistinguishability-based approach of Boneh et al. [12].

Defining CHCPRFs. A constrained PRF consists of three algorithms: Master
secret key generation, constrained key generation, and function evaluation. We
first note that in order to have hope to hide the constraint, the function evalu-
ation algorithm should return a random-looking value v even if evaluated on a
constrained input x, as opposed to returning ⊥ as in the standard formulation.
Furthermore, we require that the value of the original function on x remains
pseudorandom even given the constrained key and the value v.

The definition of CHCPRF is aimed at capturing three requirements: (1)
the constrained keys preserve functionality on inputs that do not match the
constraint; (2) the function values at constrained points remain pseudorandom
given the constrained key; (3) the constrained key does not reveal any informa-
tion on the constraining function.

Boneh et al. [12] give a number of indistinguishability-based definitions that
vary in strength, depending on the level of adaptivity of the adversary in choosing
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the constraints and evaluation points, as well as on the number of constrained
keys that the adversary is allowed to see. We take an alternative approach and
give a simulation-based definition. We also compare the definitions, and show
equivalence and derivations in a number of cases.

Here is a sketch of the non-adaptive single-key variant of our simulation-based
definition. The definition captures all three requirements via a single interaction:
We require that, for any polytime adversary, there exists a polytime simulator
such that the adversary can distinguish between the outcomes of the following
two experiments only with negligible probability:

– In the real experiment, the system first generates a master secret key K. The
adversary can then query a constraint circuit C and many inputs x(1), . . . , x(t).
In return, it obtains CKC , x(1), . . . , x(t), y(1), . . . , y(t), where CKC is a key con-
strained by C, and y(i) is the result of evaluating the original, unconstrained
function with key K at point x(i). (This is so regardless of whether x(i) meets
the constraint or not.)

– In the ideal experiment, the simulator samples a master secret key KS . Once
received a constraint query, the simulator obtains only the description length of
C and creates a simulated constrained key CKS . Once received input queries
x(1), . . . , x(t), the simulator also t indicator bits d(1), . . . , d(t) where the d(i)

denotes whether x(i) is in the constraint, and generates simulated values
y(1)S , . . . , y(t)S . If d(i) = 0, then the simulated y(i)S is uniformly random.
The output of the experiment is CKS , x(1), . . . , x(t), y(1)S , . . . , y(t)S .

Secret-Key Functional Encryption from Simulation-Based CHCPRFs. We sketch
our construction of functional encryption from CHCPRFs. Functional encryp-
tion [13] allows the evaluator, given a functional decryption key, to learn the
value of the function applied to encrypted data without learning anything else.
With CHCPRFs in hand, it is rather simple to construct a private-key func-
tional encryption scheme that is both function-private and input-private. Our
functional encryption scheme proceeds as follows:

– Key generation: The master key for the scheme is a key K for a CHCPRF,
and a key SK for a CPA-secure symmetric encryption scheme (Enc,Dec).

– Encrypt a message m: CT = (c, t), where c = EncSK(m), and t = CHCPRFK(c).
– Functional decryption key: The functional decryption key for a binary function

f is a constrained-key CKf̂ for the function f̂(c) = f(DecSK(c)). That is, f̂
has SK hardwired; it decrypts its input c and applies f to the plaintext.

– Functional decryption: Given ciphertext CT = (c, t) and the constrained
decryption key CKf̂ , output 1 if t = CHCPRFCKf̂

(c), 0 otherwise.

Correctness of decryption follows from the correctness and constrainability of
the CHCPRF, and secrecy follows from the constraint-hiding property.

This construction is conceptually different from the previous construction
[34]. In particular, the size of ciphertext (for 1-bit output) is the size of a sym-
metric encryption ciphertext plus the security parameter, independent of the
depth of the circuit.
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Two-Key CHCPRFs Imply Obfuscation. It is natural to consider an extension
of the CHCPRF definition to the case where the adversary may obtain mul-
tiple constrained keys derived from the same master key. Indeed in [12] some
applications of this extended notion are presented.

We observe that this extended notion in fact implies full fledged program obfus-
cation: To obfuscate a circuit C, choose a key K for a CHCPRF, and output
two constrained keys: The constrained key CK[C], and the constrained key CK[I],
where I is the circuit that always outputs 1. To evaluate C(x) check whether
CHCPRFCK[C](x) = CHCPRFCK[I](x).

Again, correctness of evaluation follows from the correctness and constrain-
ability of the CHCPRF. The level of security for the obfuscation depends on the
definition of CHCPRF in use. Specifically, the natural extension of the above
simulation-based definition to the two-key setting implies that the above simple
obfuscation method is VBB (which in turn means that the known impossibility
results for VBB obfuscation carry over to this variant of two-key CHCPRF).
The indistinguishability-based definition of [12] implies that the above obfusca-
tion method is IO.

1.2 Overview of Our Construction

Our construction of CHCPRFs draws heavily from the multilinear maps by
Gentry et al. [31], and the lattice-based PRFs of Banerjee et al. [5,6,11,19]. We
thus start with a brief review of the relevant parts of these works.

Recap GGH15. The GGH15 multilinear encoding is depicted by a DAG that
defines the rule of homomorphic operations and zero-testing. For our purpose it
is sufficient to consider the following special functionality (which corresponds to
a graph of � nodes and two parallel edges from node i to node i+1, see Fig. 1a):
We would like to encode 2�+1 secrets s01, s

1
1, . . . , s

0
� , s

1
� , sT over some finite group

G, in such a way that an evaluator who receives the encodings can test, for any
given x ∈ {0, 1}�, whether sT =

∏�
i=1 sxi

i , and at the same time the encodings
hide “everything else” about the secrets. (Indeed, “everything else” might have
different meanings in different contexts.)

To do that, GGH15 take the group G to actually be a ring Rq, where R
denotes the base ring (typical choices include R = Zn×n or R = Z[x]/(Φn(x)),
where n is a parameter related to the lattice dimension, and Φn is the nth

cyclotomic polynomial), and q is the modulus. The encoder then samples � + 1
hard Ajtai-type matrices {A1,A2, . . . ,A�,A�+1 ← R1×m

q } with trapdoors [2,
3,44], and associates each matrix with the corresponding node of the graph.
These matrices and their trapdoors are treated as (universal) public and secret
parameters, respectively. We refer to the indices 1 . . . � + 1 as levels.

The 2� secrets are associated with the 2� edges of the graph in the natural
way. Encoding a secret sb

i is done in two steps: First create an LWE sample
for the secret sb

i under the matrix Ai+1, namely Yb
i = sb

iAi+1 + Eb
i . Next,

sample a preimage Db
i of Yb

i under the matrix Ai, using the trapdoor of Ai.
That is, AiDb

i = Yb
i and Db

i is sampled from discrete Gaussian distribution of
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A4A3A2A1

s13

s03

s12

s02

s11

s01

(a) The normal mode (i.e. ∀x, C(x) = 1)

A4A3A2A1

s13

s03

t12

s02

s11

s01

(b) The bit-fixing constraint �0� (i.e. C(x) = 1 iff x2 = 0)

A5A4A3A2AJ

I ⊗ s14

Q−1 ⊗ s04

R−1 ⊗ s13

I ⊗ s03

I ⊗ s12

Q ⊗ s02

R ⊗ s11

I ⊗ s01

(c) The NC1 constraint for point x = 10 (i.e. C(x) = 0 iff x1 = 1 ∧ x2 = 0)

Fig. 1. Examples of the GGH15-based PRFs

small width. The encoder then lets Db
i be the encoding of sb

i . The encoding T

of sT , where sT =
∏�

i=1 sxi
i for some x ∈ {0, 1}�, is defined as T = F (x), where

F (x) = A1

∏�
i=1 D

xi
i . Finally, the values A1,D0

1,D
1
1, . . . ,D

0
� ,D

1
� , T are given to

the evaluator. To test a given x′ ∈ {0, 1}�, the evaluator computes F (x′) and
checks whether F (x′) − T is a matrix with small entries.

To see why this works out functionality-wise consider the following equation:

F (x) = A1

�∏
i=1

Dxi
i =

�∏
i=1

sxi
i A�+1 +

�∑
i=1

⎛
⎝i−1∏

j=1

sxi
i · Exi

i ·
�∏

k=i+1

Dxi
i

⎞
⎠

︸ ︷︷ ︸
Ex

(mod q).

(1)
Indeed, if the secrets sb

i are set with small norm, then the entire Ex term can
be viewed as a small error term, so the dominant factor,

∏�
i=1 sxi

i A�+1, will
be purely determined by the multiplicative relationship of the secrets. As for
security, observe that the encoding Db

i of each secret sb
i amounts to an LWE

encoding of sb
i , and furthermore the encoding of sx =

∏�
i=1 sxi

i is also in the
form of an LWE instance A�+1,

∏�
i=1 sxi

i A�+1 + Ex (mod q). Of course, being
in the form of LWE does not amount to a clear security property that is based
on LWE. We discuss this point further below.

The Power and Danger in the GGH15 Approach. The GGH15 encoding embeds
the plaintext s into the secret term of the LWE instance, unlike in other LWE-
based systems (e.g. Regev [48] or dual-Regev [32]) where the plaintext is asso-
ciated with the error term or the A matrix. While the graph structure and
trapdoor sampling mechanism enables homomorphic evaluations on the LWE
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secrets, analyzing the security becomes tricky. Unlike the traditional case where
the LWE secrets s are independent and random, here the LWE secrets, repre-
senting plaintexts, are taken from distributions that are potentially structured
or correlated with each other.

Such dependencies make it hard to prove security of the trapdoor sampling:
Recall that the encoding Di of some secret ŝi (possibly obtained from an eval-
uation over correlated secrets) is the preimage of Yi := ŝiAi+1 + E sampled
by the trapdoor of Ai. For instance, in the extreme case where ŝi = 0, then
the public encoding Di becomes a “weak trapdoor” of Ai, which endangers the
secrets encoded on the edges heading to Ai [31].

Consequently, to safely use the GGH15 encoding, one has to consider the
joint distribution of all the LWE secrets sb

i , and demonstrate that the trap-
door sampling algorithm remains secure even with respect to these secrets. We
demonstrate how to do that in a specific setting, by showing that there exists a
“simulated” way to sample the encodings without knowing the secrets or trap-
doors, and the resulting sample is indistinguishable from the real one.

LWE-Based PRFs. The example of the “subset product” type encoding may
remind the readers of the lattices-based pseudorandom functions [5,6,11,19].
Indeed, recall the basic construction of Banerjee et al. [6, Sect. 5.1]. For modulus
2 ≤ p < q chosen such that q/p is exponential in the input length �. The secret
keys of the PRF are exactly 2� LWE secrets s01, s

1
1, . . . , s

0
� , s

1
� and a uniform

matrix A over Rq. To evaluate, compute F (x) =
⌊∏�

i=1 sxi
i A

⌉
p

where �v�p

means multiplying v by p/q and rounding to the nearest integer. Rounding plays
a crucial role in the security proof, since it allows to add fresh small noise terms
without changing the functionality whp, hence one can inductively obtain fresh
LWE instances on any level.

Our Construction for Bit-Fixing Constraints. A bit-fixing constraint is specified
by a string c ∈ {0, 1, �}�, where 0 and 1 are the matching bits and � denotes the
wildcards. The constrain predicate C outputs 1 if the input matches c.

The combination of GGH15 and lattice-based PRFs inspires us to construct
CHCPRFs for bit-fixing constraints. In fact, after rounding F (x) in Eq. (1),
the functionality of �F (x)� is equivalent to (up to the rounding error) both
the BPR PRF [6, Sect. 5.1] and a variant of the PRF in [11, Sect. 5.1]. If we
take the 2� LWE secrets s01, s

1
1, . . . , s

0
� , s

1
� as master secret key, the encodings

A1,D0
1,D

1
1, . . . ,D

0
� ,D

1
� as the evaluation key in the normal mode. An intuitive

constraining algorithm is simply replacing the LWE secret of the constrained bit
with an independent random element t, and reproduce its encoding Dt. As an
example, Fig. 1a and b illustrate the normal mode and constrained mode of a
bit-fixing PRF.

We show that the key and the outputs from both the normal mode and
the constrained mode (both modes use trapdoor sampling) are indistinguishable
from an oblivious sampling procedure without using the trapdoors. The proof
proceeds level-by-level (from level � to level 1). Within each level i, there are
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two steps. The first step uses the computational hardness of LWE: observe that
the LWE samples associated on Ai+1 are with independent secrets, and Ai+1

is trapdoor-free in that hybrid distribution by induction, so the LWE samples
are indistinguishable from uniformly random. The second step uses a statistical
sampling lemma by Gentry, Peikert and Vaikuntanathan [32], which says the
preimage of uniform outputs can be sampled without using the trapdoor of Ai.
The proof strategy is first illustrated by Brakerski et al. where they construct
an evasive conjunction obfuscator from GGH15 [20].

We note that this construction and analysis imply that a variant of the PRF
from [11] also satisfies 1-key bit-fixing constraint hiding. Although the PRF from
[11] does not involve the trapdoor sampling procedure and is much simpler as
a bit-fixing CHCPRF, understanding the GGH15-based version is beneficial for
understanding the CHCPRF for NC1 coming next.

Embedding a General Constraint in the PRF Keys. We move on towards embed-
ding a general constraint in the key. Consider in particular the task of punctur-
ing the key at a single point without revealing the point, which is essential to
the applications like watermarking and deniable encryption mentioned in [12].
Indeed, even that simple function seems to require some new idea.

To preserve the graph structure while handling general constraints,
Barrington’s Theorem [8] comes into the picture. Recall that Barrington’s Theo-
rem converts any depth-d Boolean circuits into an oblivious branching program
of length z ≤ 4d composed of permutation matrices {Bb

i}b∈{0,1},i∈[z] of dimen-
sion w (by default w = 5). Evaluation is done via multiplying the matrices
selected by input bits, with the final output Iw×w or a w-cycle P recognizing 1
or 0 respectively.

To embed permutation matrices in the construction, we set the secret term

for the normal mode as Sb
i = Iw×w ⊗ sb

i =

⎡
⎢⎣

sb
i 0

. . .
0 sb

i

⎤
⎥⎦ (where ⊗ is the tensor

product operator); in the constrained mode as Sb
i = Bb

i ⊗ sb
i . This provides the

functionality of constraining all NC1 circuits. See Fig. 1c for an example of 2-bit
point constraint x1x2 ∈ {0, 1}2, where x1 controls the 1st and 3rd branches, x2

controls the 2nd and 4th branches, Q and R represent different w-cycles.
We then analyze whether the permutation matrix structures are hidden in

the constrained key, and whether the constrained outputs are pseudorandom.
The first observation is that the tensor product of a permutation matrix B
and any hard LWE secret distribution s forms a hard LWE distribution, i.e.
A, (B ⊗ s) ·A+E is indistinguishable from uniformly random. This means both
the secret and the permutation matrices are hidden in the constrained key.

Still, the rounded constrained output
⌊
(P ⊗ ∏�

i=1 sxi
i ) · Az+1

⌉
is a fixed

permutation of the original value. So the adversary can left-multiply P−1 to
obtain the original output. To randomize the constrained outputs, we adapt
the “bookend” idea from the GGH15 candidate obfuscator. That is, we multi-
ply the output on the left by a small random vector J ∈ R1×w. By a careful
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reduction to standard LWE, one can show that A,JA + E, J (P ⊗ 1R)A + E′

is indistinguishable from uniformly random.
With these two additional hard LWE distributions in the toolbox, we can base

NC1 CHCPRF on LWE via the same two-step proof strategy (i.e. LWE+GPV
in each level) used in the bit-fixing construction.

1.3 More on Related Work

More Background on Multilinear Maps and the Implication of this Work. The
notion of cryptographic multilinear maps was introduced by Boneh and Silverberg
[14]. Currently there are three main candidates [26,30,31], with a number of vari-
ants. However, what security properties hold for the candidates remains unclear.
In particular, none of the candidates is known to satisfy the multilinear DDH or
subgroup elimination assumptions that are sufficient for the CHCPRFs by Boneh
et al. [12] (see [24,25,30,37] for the attacks on these assumptions).

Note that even our result does not imply that GGH15 satisfies the traditional
assumptions like multilinear DDH, but at least it demonstrates a safe setting.
To what extent can the safe setting be generalized remains an open problem.
Indeed, a central task in the study of the existing candidate multilinear maps
is to identify settings where they can be used based on standard cryptographic
assumptions [36].

Relations to the GGH15 Candidate Program Obfuscator. Our construction for
NC1 constraints is strongly reminiscent of the candidate obfuscator from GGH15
[31, Sect. 5.2]. In particular, the “secrets” in the CHCPRF corresponds to the
“multiplicative bundling scalars” from the GGH15 obfuscator. Under the restric-
tion of releasing only 1 branch (either the functional branch or the dummy
branch), our result implies that the “scalars” and permutation matrices can be
hidden (without using additional safeguards such as the Kilian-type randomiza-
tion and padded randomness on the diagonal).

In contrast, the recent cryptanalysis of the GGH15 obfuscator [23] shows that
when releasing both the functional key and the dummy key, one can extract the
bundling scalars even if the obfuscator is equipped with all the safeguards.

It might be instructive to see where our reduction to LWE fail if one attempts
to apply our proof technique to the two-key setting. The point is that in this case,
the adversary obtains LWE samples Y,Y′ with correlated secrets; Therefore it
is not clear how to simulate the Gaussian samples of D conditioned on AD = Y
or of D′ conditioned on A′D′ = Y′, without knowing the trapdoors of A and A′.

1.4 Concurrent Work

In an independent work, Boneh, Kim and Montgomery [10] build CHCPRF from
LWE, for the special case of input puncturing constraints. Their construction is
very different from ours. In particular, their starting point is the (non-hiding)
constrained PRF by Brakerski and Vaikuntanathan [19].
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While they analyze their construction with respect to the indistinguishability-
based definition, they also consider a simulation-based definition that is signif-
icantly stronger than the one here. They show that it is impossible to realize
that definition for general functions. To do that, they use the same construction
of functional encryption from CHCPRFs as the one presented here.

2 Preliminaries

Notations and Terminology. Let R,Z,N be the set of real numbers, integers
and positive integers. The notation R is often used to denote some base ring.
The concrete choices of R are Zn×n (the integer matrices) and Z[x]/(xn + 1)
(where n is a power of 2). We denote R/(qR) by Rq. The rounding operation
�a�p : Zq → Zp is defined as multiplying a by p/q and rounding the result to the
nearest integer.

For n ∈ N, [n] := {1, . . . , n}. A vector in Rn is represented in column form,
and written as a bold lower-case letter, e.g. v. For a vector v, the ith component
of v will be denoted by vi. A matrix is written as a bold capital letter, e.g. A.
The ith column vector of A is denoted ai.

The length of a vector is the �p-norm ‖v‖p = (
∑

vp
i )1/p. The length of a

matrix is the norm of its longest column: ‖A‖p = maxi ‖ai‖p. By default we use
�2-norm unless explicitly mentioned. When a vector or matrix is called “small”
(or “short”), we refer to its norm (resp. length). The thresholds of “small” will be
precisely parameterized in the article and are not necessary negligible functions.

2.1 Matrix Branching Programs

Definition 1 (Matrix branching programs). A width-w, length-z matrix
branching program over �-bit inputs consists of an index-to-input map, a sequence
of pairs of matrices Bb

i , and a non-identity matrix P representing 0: BP = {ι :
[z] → [�], {Bb

i ∈ {0, 1}w×w}i∈[z],b∈{0,1}, P ∈ {0, 1}w×w \ {I}}. The program
computes the function fBP : {0, 1}� → {0, 1}, defined as

fBP(x) =

⎧⎪⎨
⎪⎩

1 if
∏

i∈[z]B
xι(i)
i = I

0 if
∏

i∈[z]B
xι(i)
i = P

⊥ elsewhere

A set of branching programs {BP} is called oblivious if all the programs in
the set have the same index-to-input map ι.

Theorem 3 (Barrington’s theorem [8]). For d ∈ N, and for any set of depth-
d fan-in-2 Boolean circuits {C}, there is an oblivious set of width-5 length-4d

branching programs {BP} with a index-to-input map ι, where each BP is com-
posed of permutation matrices {Bb

i ∈ {0, 1}5×5}i∈[z],b∈{0,1}, a 5-cycle P, and ι.
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2.2 Lattices

An n-dimensional lattice Λ is a discrete additive subgroup of Rn. Given n linearly
independent basis vectors B = {b1, . . . ,bn ∈ Rn}, the lattice generated by B is

Λ(B) = Λ(b1, . . . ,bn) = {
n∑

i=1

xi · bi, xi ∈ Z}. We have the quotient group Rn/Λ

of cosets c + Λ = {c + v,v ∈ Λ}, c ∈ Rn. Let B̃ denote the Gram-Schmidt
orthogonalization of B.

Gaussian on Lattices. For any σ > 0, define the Gaussian function on Rn

centered at c with parameter σ:

∀x ∈ Rn, ρσ,c(x) = e−π‖x−c‖2/σ2

For any c ∈ Rn, σ > 0, and n-dimensional lattice Λ, define the discrete
Gaussian distribution over Λ as:

∀x ∈ Λ, DΛ+c,σ(x) =
ρσ,c(x)
ρσ,c(Λ)

Lemma 1 [45,47]. Let B be a basis of an m-dimensional lattice Λ, and let
σ ≥ ‖B̃‖ · ω(log n), then Prx←DΛ,σ

[‖x‖ ≥ σ · √
m ∨ x = 0] ≤ negl(n).

Gentry, Peikert and Vaikuntanathan [32] show how to sample statistically
close to discrete Gaussian distribution in polynomial time for sufficiently large σ
(the algorithm is first proposed by Klein [40]). The sampler is upgraded in [18]
so that the output is distributed exactly as a discrete Gaussian.

Lemma 2 [18,32]. There is a p.p.t. algorithm that, given a basis B of an
n-dimensional lattice Λ(B), c ∈ Rn, σ ≥ ‖B̃‖ ·√ln(2n + 4)/π, outputs a sample
from DΛ+c,σ.

We then present the trapdoor sampling algorithm and the corollary of GPV
lemma in the general ring R.

Lemma 3 [2,3,44]. There is a p.p.t. algorithm TrapSam(R, 1n, 1m, q) that, given
the base ring R, modulus q ≥ 2, lattice dimension n, and width parameter m
(under the condition that m = Ω(log q) if R = Zn×n, m = Ω(n log q) if R =
Z[x]/(xn + 1)), outputs A ← U(R1×m

q ) with a trapdoor τ .

Lemma 4 [32]. There is a p.p.t. algorithm PreimgSam(A, τ,y, σ) that with all
but negligible probability over (A, τ) ← TrapSam(R, 1n, 1m, q), for sufficiently
large σ = Ω(

√
n log q), the following distributions are statistically close:

{A,x,y : y ← U(Rq),x ← PreimgSam(A, τ,y, σ)} ≈s {A,x,y : x ← γσ,y = Ax}
where γσ represents D1×n

Znm,σ if R = Zn×n; represents DRm,σ if R = Z[x]/(xn+1).

When the image is a matrix Y = [y1||...||y�], we abuse the notation for the
preimage sampling algorithm, use D ← PreimgSam(A, τ,Y, σ) to represent the
concatenation of � samples from di ← PreimgSam(A, τ,yi, σ)i∈[�].
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2.3 General Learning with Errors Problems

The learning with errors (LWE) problem, formalized by Regev [48], states that
solving noisy linear equations, in certain rings and for certain error distributions,
is as hard as solving some worst-case lattice problems. The two typical forms used
in cryptographic applications are (standard) LWE and RingLWE. The latter is
introduced by Lyubashevsky, Peikert and Regev [42].

We formulate them as the General learning with errors problems similar to
those of [17], with more flexibility in the secret distribution and the base ring.

Definition 2 (General learning with errors problem). The (decisional)
general learning with errors problem (GLWE) is parameterized by the base ring
R, dimension parameters k, �,m for samples, dimension parameter n for lattices,
modulus q, the secret distribution η over Rk×�, and the error distribution χ
over R�×m. The GLWER,k,�,m,n,q,η,χ problem is to distinguish the following two
distributions: (1) LWE samples s ← η, A ← U(R�×m

q ), E ← χk×m, output
(A, sA + E) ∈ (R�×m

q × Rk×m
q ); (2) uniform distributions U(R�×m

q × Rk×m
q ).

We define GLWER,k,�,m,n,q,η,χ-hardness for secret distributions. The sub-
scripts are dropped if they are clear from the context.

Definition 3. A secret distribution η is called GLWER,k,�,m,n,q,η,χ-hard if no
p.p.t. adversary distinguishes the two distributions in the GLWER,k,�,m,n,q,η,χ

problem with 1/2 plus non-negligible probability.

Here are the connections of decisional LWE/RingLWE to the worst-case lat-
tice problems, in the language of GLWE-hardness. For the LWE problem we
present the version where the secret is a square matrix.

Lemma 5 (LWE [18,46,48]). Let n be an integer, R = Zn×n. q be an integer
modulus, 0 < σ < q such that σ > 2

√
n. If there exists an efficient (possibly

quantum) algorithm that breaks GLWER,1,1,m,n,q,U(Rq),D
n×n
Z,σ

, then there exists an
efficient (possibly quantum) algorithm for approximating SIVP and GapSVP in
the �2 norm, in the worst case, to within Õ(nq/σ) factors.

Lemma 6 (RingLWE [29,41,42]). Let n be a power of 2, R = Z[x]/(xn + 1).
Let q be a prime integer s.t. q ≡ 1 (mod n). 0 < σ < q, σ > ω(

√
log(n)),

σ′ > n3/4m1/4σ. If there exists an efficient (possibly quantum) algorithm that
breaks GLWER,1,1,m,n,q,U(Rq),DR,σ′ , then there exists an polynomial time quantum
algorithm for solving SVP for ideal-lattices over R, in the worst case, to within
Õ(

√
nq/σ) factors.

For proper choices of parameters, error distributions of small norm can be
used as hard secret distribution (usually called Hermit-normal-form LWE).

Lemma 7 (HNF-LWE [4,18]). For R,m, n, q, σ chosen as was in Lemma 5,
GLWER,1,1,m′,n,q,Dn×n

Z,σ ,Dn×n
Z,σ

is as hard as GLWER,1,1,m,n,q,U(Rq),D
n×n
Z,σ

for m′ ≤
m − (16n + 4 log log q).

Lemma 8 (HNF-RingLWE [43]). For R,m, n, q, σ, σ′ chosen as in Lemma 6,
GLWER,1,1,m−1,n,q,DR,σ′ ,DR,σ′ is as hard as GLWER,1,1,m,n,q,U(Rq),DR,σ′ .
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Pseudorandom Functions Based on GLWE. We adapt theorems from the
PRF construction of Boneh, Lewi, Montgomery, and Raghunathan [11, The-
orems 4.3, 5.1]. The result was originally stated for LWE. We observe that it
holds for general rings under proper choices of parameter. A proof sketch is
described in [21].

Lemma 9 (Adapted from [11]). Let � ∈ N be the bit-length of the input.
m,n, q, p ∈ N, σ,B ∈ R s.t. 0 < σ < q, B ≥ σ

√
m, q/p > B�. η = U(Rq), γσ is

a distribution over Rm×m parameterized by σ, χσ is a distribution over R1×m

parameterized by σ. ‖γσ‖, ‖χσ‖ ≤ σ
√

m.
Consider the function f : {0, 1}� → R1×m

p , fU(x) =
⌊
U

∏�
i=1 D

xi
i

⌉
p
, where

U ← U(R1×m
q ) is the private parameter, {Db

i ← γσ}b∈{0,1},i∈[�] is the public
parameter.

If there is an efficient algorithm that given input A ← U(R1×m
q ), outputs

U ∈ R1×m
q ,D ∈ Rm×m that are statistically close to U(R1×m

q ) × γσ and UD =
A; then f is a PRF assuming the hardness of GLWER,1,1,m,n,q,η,χσ

.

3 GLWE-Hard Distributions: Extension Package

We prove GLWE-hardness for the following “structural” secret distributions.
They are used in the analysis of Construction 11.

Lemma 10. Fix a permutation matrix B ∈ {0, 1}w×w. If a secret distribution
η over R is GLWER,1,1,w2m,n,q,η,χ-hard, then the secret distribution B ⊗ η is
GLWERw×w,1,1,m,n,q,B⊗η,χw×w -hard.

Proof. For a permutation matrix B ∈ {0, 1}w×w, suppose there is a p.p.t. dis-
tinguisher between samples from

(B,A, (B ⊗ s)A + E), where A ← U(Rw×wm
q ), s ← η,E ← χw×wm

and samples from the uniform distribution (B, U(Rw×wm
q ), U(Rw×wm

q )), then we
build an attacker for GLWER,1,1,w2m,n,q,η,χ.

The attacker is given an GLWER,1,1,w2m,n,q,η,χ instance

(A′,Y′) = (A1||...||Aw,Y1||...||Yw), where Ai,Yi ∈ R1×wm, i ∈ [w].

It then rearranges the blocks as (U,V) ∈ Rw×wm × Rw×wm, where the ith

(blocked) row of U is Ai, the ith (blocked) row of V is Yi. The attacker then
sends (B,U, (B ⊗ 1R)V) to the distinguisher. Observe that (B,U, (B ⊗ 1R)V)
is from the B⊗ η secret distribution if (A′,Y′) is from the η secret distribution,
or from the uniform distribution if (A′,Y′) is from the uniform distribution.
Hence the attacker wins with the same probability as the distinguisher. ��
Lemma 11. Let w ∈ [2,∞) ∩ Z. Fix a permutation matrix C ∈ {0, 1}w×w that
represents a w-cycle. If a secret distribution η over R is GLWER,1,1,wm,n,q,η,χ-
hard, then (η1×w, η1×w×(C⊗1R)) is GLWER,2,w,m,n,q,(η1×w,η1×w×(C⊗1R)),χ-hard.
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Proof. Let H = [h1, h2, . . . , hw] where {hi ← η}i∈[w]. Let

H := {(Aj ,Yi,j = hiAj + Ei,j)|Aj ← U(R1×m
q ), hi ← η,Ei,j ← χ, i, j ∈ [w]}

be the rearranging of w independent GLWE samples from GLWER,1,1,wm,n,q,η,χ.
H is indistinguishable from the uniform distribution U := {(Aj ,Yi,j)|Aj ←
U(R1×m

q ),Yi,j ← U(R1×m
q ), i, j ∈ [w]} due to standard GLWE.

We show that if there is an attacker D′ that distinguishes

(A,HA + E,H (C ⊗ 1R)A + E′),

where E,E′ ← χ1×m from

U(Rw×m
q × R1×m

q × R1×m
q ),

then there is a distinguisher D for (a subset of) H and U .
To do so, we simulate the (η1×w, η1×w × (C ⊗ 1R)) samples from H or U

by setting A ∈ Rw×m where the jth row of A is Aj , Y :=
∑

j∈[w] Yj,j , and
Z :=

∑
j∈[w] Yζ(j),j , where ζ(j) : [w] → [w] outputs the row number of the

1-entry in the jth column of C. Note that being a w-cycle indicates that the
1-entries in C disjoint with the 1-entries in Iw×w. Observe that the sample
(A,Y,Z) is from the secret distribution (η1×w, η1×w × (C ⊗ 1R)) if transformed
from H, or from the uniform distribution if transformed from U . Hence the
distinguisher D′ wins with the same probability as the attacker D. ��

4 Constraint-Hiding Constrained PRFs

This section provides the definitions of constraint-hiding constrained PRFs.
We first recall the indistinguishability-based definition from [12], then give our
simulation-based definition, and discuss the relations among these two definitions
and program obfuscation.

4.1 The Indistinguishability-Based Definition

We first recall the indistinguishability-based definition for CHCPRF from [12].

Definition 4 (Indistinguishability-based CHCPRF [12]). Consider a
family of functions F = {Fλ}λ∈N where Fλ = {Fk : Dλ → Rλ}λ∈N, along
with a triple of efficient functions (Gen, Constrain, Eval). For a constraint family
C = {Cλ : Dλ → {0, 1}}λ∈N; the key generation algorithm Gen(1λ) generates the
master secret key MSK, the constraining algorithm Constrain(1λ,MSK, C) takes
the master secret key MSK, a constraint C, outputs the constrained key CK; the
evaluation algorithm Eval(k, x) takes a key k, an input x, outputs Fk(x).

We say that F is an indistinguishability-based CHCPRF for C if it
satisfies the following properties:
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Functionality Preservation Over Unconstrained Inputs. For input x ∈
Dλ s.t. C(x) = 1, Pr[Eval(MSK, x) = Eval(CK, x)] ≥ 1 − negl(λ), where the
probability is taken over the randomness in algorithms Gen and Constrain.

Pseudorandomness for Constrained Inputs. Consider the following exper-
iment between a challenger and an adversary. The adversary can ask 3 types of
oracle queries: constrained key oracle, evaluation oracle, and challenge oracle.
For b ∈ {0, 1}, the challenger responds to each oracle query in the following
manner:

– Constrained key oracle. Given a circuit C ∈ C, the challenger outputs a con-
strained key CK ← Constrain(1λ,MSK, C).

– Evaluation oracle. Given an input x ∈ Dλ, the challenger outputs y ←
Eval(MSK, x).

– Challenge oracle. Given an input xc ∈ Dλ, the challenger outputs y ←
Eval(MSK, xc) if b = 1; outputs y ← U(Rλ) if b = 0.

The queries from the adversary satisfy the conditions that C(xc) = 0, and xc is
not sent among evaluation queries. At the end of the experiment, the adversary
chooses b′ and wins if b′ = b. The scheme satisfies the pseudorandomness prop-
erty if the winning probability of any p.p.t. adversary is bounded by 1/2+negl(λ).

Indistinguishability-Based Constraint-Hiding. Consider the following exp-
eriment between a challenger and an adversary. The adversary can ask 2 types
of oracle queries: constrained key oracle or evaluation oracle. For b ∈ {0, 1}, the
challenger responds to each oracle query in the following manner:

– Constrained key oracle. Given a pair of circuits C0, C1 ∈ C, the challenger
outputs a constrained key for Cb: CK ← Constrain(1λ,MSK, Cb).

– Evaluation oracle. Given an input x ∈ Dλ, the challenger outputs y ←
Eval(MSK, x).

For a circuit C ∈ C, denote S(C) := {x ∈ Dλ : C(x) = 1}. Suppose the adversary
asks h pairs of circuit constraints {C

(g)
0 , C

(g)
1 }g∈[h], the queries are admissible

if (1) ∀i �= j ∈ [h], S(C(i)
0 ) ∩ S(C(j)

0 ) = S(C(i)
1 ) ∩ S(C(j)

1 ); (2) for all input
evaluation queries x, for all g ∈ [h], C

(g)
0 (x) = C

(g)
1 (x).

At the end of the experiment, the adversary chooses b′ and wins if b′ = b.
The scheme satisfies the constraint-hiding property if the winning probability of
any p.p.t. adversary is bounded by 1/2 + negl(λ).

4.2 The Simulation-Based Definition

Next we give the simulation-based definition. We first present a definition that
is central to the discussions and constructions in the paper, then mention its
variants.
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Definition 5 (Simulation-based CHCPRF). Consider a family of functions
F = {Fλ}λ∈N with the same syntax as in Definition 4. We say that F is
simulation-based CHCPRF for family C of circuits if for any polytime
stateful algorithm Adv, there is a polytime stateful algorithm Sim such that:

{Experiment REALAdv(1λ)}λ∈N ≈c {Experiment IDEALAdv,Sim(1λ)}λ∈N

The ideal and real experiments are defined as follows for adversaries Adv and
Sim. Both algorithms are stateful.

Experiment REALAdv(1
λ) Experiment IDEALAdv,Sim(1λ)

MSK ← Gen(1λ), Sim ← 1λ

Repeat : Repeat :

Adv → (x, dx); y = Eval(MSK, x) Adv → (x, dx); y = Sim(x, dx)

Adv ← y if dx = 0 then y = U(R);Adv ← y

Adv → C; Adv → C;

if dx �= C(x) for some x then Output ⊥ if dx �= C(x) for some x then Output ⊥
else Adv ← Constrain(MSK, C) else Adv ← Sim(1|C|)

Repeat : Repeat :

Adv → x; y = Eval(MSK, x) Adv → x; y = Sim(x, C(x))

Adv ← y if C(x) = 0 then y = U(R);Adv ← y

Adv → b; Output b Adv → b; Output b

That is, in the experiments the adversary can ask a single constraint query and
polynomially many input queries, in any order. For input queries x made before
the circuit query, Adv is expected to provide a bit bx indicating whether C(x) = 1.
In the real experiment Adv obtains the unconstrained function value at x. In the
ideal experiment Sim learns the indicator bit dx; if dx = 1 then Adv gets a value
generated by Sim, and if dx = 0 then Adv obtains a random value from the
range R of the function. Once Adv makes the constraint query C ∈ Cλ, both
experiments verify the consistency of the indicator bits dx for all the inputs x
queried by Adv so far. If any inconsistency is found then the experiment halts.
Next, in the real experiment Adv obtains the constrained key generated by the
constraining algorithm; in the ideal experiment Adv obtains a key generated by
Sim, whereas Sim is given only the size of C. The handling of input queries made
by Adv after the circuit query is similar to the ones before, with the exception
that the indicator bit dx is no longer needed and Sim obtains the value of C(x)
instead. The output of the experiment is the final output bit of Adv.

Remark 1. One may also consider a stronger definition than Definition 5 where
the adversary is not required to provide the indicator bits dx in the queries
prior to providing the constraint. However we note that this stronger definition
is unachievable if the number of input queries before the constraint query is
unbounded, due to an “incompressibility” argument similar to the one from [1].
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Remark 2. The simulation-based definition can also be generalized to the setting
where the adversary queries multiple constrained keys. That is, once received
each constrained key query, the simulator has to simulate a constrained key,
given only the size of the constraining circuit. We further discuss this strong
variant shortly.

4.3 Relations Among the Definitions

We discuss the relation among the definitions of CHCPRF and program
obfuscation.

Multiple-Key CHCPRFs Implies Obfuscation. We show that the simulation-based
CHCPRF for 2 keys implies virtual black-box obfuscation (VBB), which is impos-
sible to obtain for general functionalities [7,35]. For the indistinguishability-based
definition proposed in [12], achieving 2-key security implies indistinguishability
obfuscation [7].

Recall the definitions for VBB obfuscation (we present the strongest variant
in [7]) and indistinguishability obfuscation.

Definition 6 (Obfuscation [7,35]). A probabilistic algorithm O is an obfusca-
tor for a class of circuit C if the following conditions hold:

– (Preservation of the function) For all inputs x, Pr[C(x) = O(C(x))] > 1 −
negl(λ).

– (Polynomially slowdown) There is a polynomial p s.t. |O(C)| < p(|C|).
– (Strong virtual black-box obfuscation) For any p.p.t. adversary Adv, there is a

p.p.t. simulator Sim s.t. for all C, {Adv(1λ, O(C))} ≈c {SimC(1λ, |C|)}.
– (Indistinguishability obfuscation) For functionally equivalent circuits

C0, C1, O(C0) ≈c O(C1).

Construction 4 (Obfuscator from 2-key CHCPRFs). Given a CHCPRF,
we construct an obfuscator for C by create a constrained key CK[C], and a con-
strained key CK[I] where I is the circuit that always outputs 1. To evaluate C(x),
output 1 if CHCPRFCK[C](x) = CHCPRFCK[I](x), 0 otherwise.

Theorem 5. If 2-key simulation-secure CHCPRF exists for circuit class C, then
strong VBB obfuscation exists for circuit class C.

Proof. The simulator for the VBB obfuscator (does not have to make oracle
queries to C) runs the simulator for CHCPRF, produce simulated constraint
keys for CKS [C], CKS [I], which are indistinguishable from the real constrained
keys CK[C], CK[I] that are used to construct the obfuscator. ��
Corollary 1 [7,35]. There are circuit classes for which 2-key simulation-secure
CHCPRF does not exist.

Theorem 6. If 2-key indistinguishability-based CHCPRF exists for circuit class
C, then indistinguishability obfuscation exists for circuit class C.
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Proof. For a circuit C, the obfuscator outputs CK[C], CK[I]. For functionally
equivalent circuits C0 and C1, S(C0) ∩ S(I) = S(C1) ∩ S(I). By indistinguisha-
bility constraint-hiding, (CK[C0],CK[I]) ≈c (CK[C1],CK[I]). ��

Simulation and Indistinguishability-Based Definitions for CHCPRF. Next we
discuss the relation of the simulation and indistinguishability-based definitions
for CHCPRF, under 1-key security. The two definitions are equivalent in the
1-key setting, for the corresponding order of queries and adaptivity. Below we
state the theorems for the non-adaptive version of the definitions, then discuss
their generalizations to the adaptive setting.

We first show that the simulation based definition implies the indistinguisha-
bility based definition.

Theorem 7. If a CHCPRF satisfies the non-adaptive simulation-based defini-
tion, then it satisfies the non-adaptive indistinguishability-based definition.

The proof of this theorem is via a standard hybrid argument and we describe
the proof in [21]. The implication holds for the adaptive setting. In particular,
the standard simulation definition from Definition 5 implies Definition 4 where
the predicates on the input queries are committed; for the stronger simula-
tion definition discussed in Remark 1, it implies the fully adaptive variant of
Definition 4.

In the 1-key setting, the indistinguishability definition implies the simulation
based definition.

Theorem 8. If a CHCPRF satisfies 1-key non-adaptive indistinguishability-
based definition, it satisfies the 1-key non-adaptive simulation-based definition.

Proof. For a CHCPRF F that satisfies Definition 4 for one constrained key query,
we construct a simulator as per Definition 5. The simulator picks an all-1 circuit
CS = I such that I(x) = 1,∀x ∈ Dλ, and use the indistinguishability-secure
constraining algorithm to derive a constrained key CKS for CS . Once the simu-
lator obtains the inputs and the indicators {x(k), d(k)}k∈[t], if d(k) = 1, outputs
Eval(CKS , x(k)); if d(k) = 0, outputs y ← U(Rλ).

We first prove constraint-hiding. Suppose there is an adversary A′ that dis-
tinguishes the simulated distribution from the real distribution, we build an
adversary A that breaks the indistinguishability definition for F . A sends con-
strained circuit queries C0 = C and C1 = I, obtains CK[Cb]. Then A sends input
queries. For x(k) s.t. C(x(k)) = I(x(k)) = 1, the output is Eval(CK[Cb], x(k)); for
x(k) s.t. C(x(k)) �= I(x(k)), it is an inadmissible query so A samples an uniform
random output on its own. Then A forwards CK[Cb], inputs and outputs to A′.
The choice of A′ for the real or the simulated distribution corresponds to b = 0
or 1, hence the advantage of A is equivalent to A′.

The proof for pseudorandomness of constrained outputs is analogous. ��
The theorem extends to the setting where the input queries can be made after
the constraint query.
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5 The Constructions

In Sects. 5.1 and 5.2 we present the bit-fixing and NC1 CHCPRFs.

5.1 Bit-Fixing CHCPRFs

Definition 7 (Bit-fixing constraint [15]). A bit-fixing constraint is specified
by a string c ∈ {0, 1, �}�, where 0 and 1 are the fixing bits and � denotes the
wildcards. C(x) = 1 if the input matches c, namely ((x1 = c1)∨ (c1 = �))∧ . . .∧
((x� = c�) ∨ (c� = �)).

We start with a brief overview of the construction and then give the details.
For a PRF with �-bit input, the key-generation algorithm samples 2� secrets
from GLWE-hard distributions with small Euclidean norm {sb

i ← η}b∈{0,1},i∈[�],
places them in a chain of length � and width 2, and uses the GGH15 methodology
to encode the chain. The evaluation key consists of the resulting A1 matrix and
the D matrices {Db

i}b∈{0,1},i∈[�].
The evaluation algorithm selects the path according to the input, computes

the product of D matrices along the path
∏�

i=1 D
xi
i , then multiplies A1 on the

left. The unrounded version of the output A1

∏�
i=1 D

xi
i is close to

∏�
i=1 sxi

i A�+1,
where “close” hides the cumulated error terms. Finally, the resulting subset
product is rounded by p where 2 ≤ p < q, q/p > B with B being the maximum
error bound. Rounding is required for correctness and security.

Construction 9 (Bit-fixing CHCPRFs). We construct a function family
F = {f : {0, 1}� → R1×m

p } equipped with algorithms (Gen,Constrain,Eval) and a
set of vectors C = {c ∈ {0, 1, �}�}:
– Gen(1λ) takes the security parameter λ, samples parameters q, p, σ,m, A�+1 ←

U(Rm
q ), {(Ai, τi) ← TrapSam(R, 1n, 1m, q)}i∈[�]. Then, sample 2� indepen-

dent small secrets from GLWE-hard distributions {sb
i ← η}b∈{0,1},i∈[�]. Next,

encode the secrets as follows: first compute {Yb
i = sb

iAi+1 + Eb
i ,E

b
i ←

χm}i∈[�],b∈{0,1}, then sample {Db
i ← PreimgSam(Ai, τi,Yb

i , σ)}i∈[�],b∈{0,1} Set
MSK := ({Ai}i∈[1,�+1], {τi}i∈[�], {sb

i ,D
b
i}i∈[�],b∈{0,1}).

– Constrain(MSK, c) takes MSK and the bit-matching vector c, for i ∈ [�], if ci �=
� (i.e. specified as 0 or 1), replaces the original s1−ci

i by a fresh t1−ci
i ← η, then

updates the encodings on these secrets: Y1−ci
i = t1−ci

i Ai+1 +E′1−ci

i ,E′1−ci

i ←
χm, samples D1−ci

i ← PreimgSam(Ai, τi,Y1−ci
i , σ).

Set CK := (A1, {Db
i}i∈[�],b∈{0,1}).

– Eval(k, x) takes the key k = (A1, {Db
i}i∈[�],b∈{0,1}) and the input x, outputs⌊

A1

∏�
i=1 D

xi
i

⌉
p
.

Remark 3. We occasionally call i ∈ {1, 2, . . . , �} “levels”, from low to high.

Setting of Parameters. Parameters shall be set to ensure both correctness (i.e.
the preservation of functionality over unconstrained inputs) and security. Note
that the approximation factors of the underlying worst-case (general or ideal)
lattices problems are inherently exponential in �.
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Specifically, for R = Zn×n, set η = χ = Dn×n
Z,σ , γ = D1×nm

Znm,σ. The parameters
are set to satisfy m ≥ 2 log q due to Lemma 3; q/p > (σ · m)� due to Lemma 1
for the correctness of rounding; 0 < σ < q, σ = 2

√
n log q, nq/σ < 2λ1−ε

due
to Lemmas 4, 5, 7, and 9. An example setting of parameters: p = 2, ε = 1/2,
q = (32�n2 log n)�, λ = n = (log q)2.

For R = Z[x]/(xn + 1), n being a power of 2, set η = χ = DR,σ, γ =
D1×m

Rm,σ. The parameters are set to satisfy m ≥ 2 · n log q due to Lemma 3; q/p >

(σ · n3/4m5/4)� due to Lemma 1 for the correctness of rounding; 0 < σ < q,
σ = 2

√
n log q, nq/σ < 2λ1−ε

due to Lemmas 4, 6, 8, and 9. An example setting
of parameters against the state-of-art ideal SVP algorithms [9,27,28]: p = 2,
ε = 0.5001, q = (70�n3 log n)�, λ = n = (log q)2.1.

Theorem 10. Assuming GLWER,1,1,m,n,q,η,χ, Construction 9 is a simulation-
secure bit-fixing CHCPRF.

Functionality Preservation on the Unconstrained Inputs. The constraining algo-
rithm does not change any secrets on the unconstrained paths. So the function-
ality is perfectly preserved.

Security Proof Overview. The aim is to capture two properties: (1) pseudoran-
domness on the constrained inputs (2) the constrained key is indistinguishable
from an obliviously sampled one.

We construct a simulator as follows: the simulator samples a key composed
of A matrices from uniform distribution and D matrices from discrete-Gaussian
distribution of small width. For the input-output pairs queried by the adversary,
if the functionality is preserved on that point, then the simulator, knowing the
input x, simply outputs the honest evaluation on the simulated key. If the input
is constrained, it means at some level i, the secret txi

i in the constrained key
is sampled independently from the original secret key sxi

i . Therefore the LWE
instance sxi

i Ai+1 +Exi
i , in the expression of the constrained output, provides an

fresh random mask U. The reduction moves from level � + 1 to level 1. At level
1, by the result of [11], the rounded output on x is pseudorandom if C(x) = 0.

Note that the evaluation algorithm only needs A1 but not the rest of the A
matrices. However, in the analysis we assume all the A matrices are public.

Proof. The simulator samples all the {Aj}j∈[1,�+1] matrices from random and
{Db

i}b∈{0,1},i∈[�] from γ, outputs the constrained key (A1, {Db
i}i∈[�],b∈{0,1}). To

respond the input queries, the simulator picks {y(k)}k∈[t] according to {d(k)}k∈[t]:
if d(k) = 1 (i.e. the functionality is preserved on the constraint key at x(k)), then

outputs y(k) =
⌊
A1

∏�
i=1 D

x
(k)
i

i

⌉
p

(the honest evaluation on the simulated key);

otherwise y(k) ← U(R1×m
p ).

The proof consists of two parts. The first part (Lemma 12) shows that the
real distribution is indistinguishable from a semi-simulated one, where all the D
matrices on the constrained key are sampled obliviously without knowing the
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constraint and the trapdoors of A matrices, and all the outputs are derived
from the simulated constrained key. The second part (Lemma13) argues that
the outputs are pseudorandom if they are in the constrained area.

In the first part, we define intermediate hybrid distributions {Hv}v∈[0,�]. H�

corresponds to the real constrained key and outputs, H0 corresponds to the
simulated constrained key and the semi-simulated outputs. The intermediate
simulator in Hv knows the partial constraint from level 1 to v, and the level
w(k) ∈ {v, . . . , �} where the input x(k) starts to deviate from the constraint
vector.

Descriptions of Hv, v ∈ [0, �]: The simulator in Hv

1. Samples {(Aj , τj) ← TrapSam(R, 1n, 1m, q)}j∈[v] with trapdoors, {Aj′ ←
U(Rm

q )}j′∈[v+1,�+1] from uniform;
2. Samples the GLWE secrets {sb

i ← η}b∈{0,1},i∈[v] below level v; then, with part
of the constraint vector c[v] in hand, for i ∈ [v], if ci �= �, samples t1−ci

i ← η;
3. For b ∈ {0, 1}, i ∈ [v], if tbi is sampled in the previous step, samples Yb

i :=
tbiAi+1 + E′b

i ; otherwise, Yb
i := sb

iAi+1 + Eb
i ,

4. Samples {Db
i ← PreimgSam(Ai, τi,Yb

i , σ)}b∈{0,1},i∈[v] as the constrained-
key below level v. Samples the rest of the D matrices obliviously {Db

i ←
γ}b∈{0,1},i∈[v+1,�].

5. To simulate the outputs, the simulator maintains a list U of U matrices
(to be specified) initiated empty. For k ∈ [t], if the constraint is known to
deviate in the path of x

(k)
[v+1,�] from level w(k) ∈ [v + 1, �], then compute

y(k) as
⌊∏v

i=1 s
x
(k)
i

i Ux
(k)
[v+1,w]

∏�
j=w(k) D

x
(k)
j

j

⌉
p

— here Ux
(k)
[v+1,w] is indexed by

x
(k)
[v+1,w]; if it is not in the list U , sample Ux

(k)
[v+1,w] ← U(Rm

q ), include it in
U ; otherwise, reuse the one in U . If x(k) has not deviated above level v, then

y(k) =
⌊∏v

i=1 s
x
(k)
i

i Av+1

∏�
j=v+1 D

x
(k)
j

j

⌉
p

.

Lemma 12. Hv ≈c Hv−1, for v ∈ {�, ..., 1}.
Proof. The difference of Hv and Hv−1 lies in the sampling of D0

v, D1
v and the

outputs {y(k)}. We first analyze the difference of the outputs between Hv and
Hv−1 by classifying the input queries into 3 cases:

1. For input x(k) that matches the partial constraint vector c[v,�], observe that
⌊
∏v−1

i=1 s
x
(k)
i

i Av

∏�
j=v D

x
(k)
j

j

⌉

p

=

⌊
∏v−1

i=1 s
x
(k)
i

i (sx
(k)
v

v Av+1 + Ex
(k)
v

v )
∏�

j=v+1 D
x
(k)
j

j

⌉

p

≈s

⌊∏v
i=1 s

x
(k)
i

i Av+1

∏�
j=v+1 D

x
(k)
j

j

⌉
p

, where ≈s is due to the small norm of

∏v−1
i=1 s

x
(k)
i

i Ex(k)
v

v
∏�

j=v+1 D
x
(k)
j

j . Hence the output is statistically close in Hv−1

and Hv.
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2. For the input x(k) that is preserving above level v but deviated at level v, the
fresh LWE secret t

x(k)
v

v sampled in the constrained key is independent from
the original key s

x(k)
v

v . So s
x(k)

v
v Av+1 +Ex(k)

v
v and t

x(k)
v

v Av+1 +E′x(k)
v

v are treated
as independent LWE instances w.r.t. Av+1.

3. For x(k) that has deviated above level v, the output can be written as

y(k) =

⎢⎢⎢⎣ v∏
i=1

s
x
(k)
i

i Ux
(k)
[v+1,w]

�∏
j=w(k)

D
x
(k)
j

j

⎤
⎥⎥⎥

p

≈s

⎢⎢⎢⎣v−1∏
i=1

s
x
(k)
i

i (sx(k)
v

v Ux
(k)
[v+1,w] + E′)

�∏
j=w(k)

D
x
(k)
j

j

⎤
⎥⎥⎥

p

,

(2)

where Ux
(k)
[v+1,w] is uniform by induction.

To summarize, there are less than 3(|U|+1) matrices that are GLWE samples in
Hv while uniform in Hv−1. The GLWE samples involves 3 independent secrets:
s0v, s1v and t1−cv

v if cv �= �. t1−cv
v is only masked by Av+1; {sb

v}b∈{0,1} are masked
by Av+1 (in the constrained key and the outputs of cases (1) and (2)) and the
uniform matrices in the list U (the outputs of case (3)); all the samples are
associated with independently sampled noises.

If there is an attacker A′ that distinguishes Hv and Hv−1 with non-negligible
probability ζ, we can build an attacker A who distinguishes (a subset among the
3(|U| + 1)) GLWE samples

{[Av+1,U1,U2, . . . ,U|U|], [s0v, s1v, t1−ci
v ]T · [Av+1,U1,U2, . . . ,U|U|] + Ẽ},

where Ẽ ← χ3×(|U|+1)m from

{U(R(|U|+1)m
q × R3×(|U|+1)m

q )}
To do so, once A obtains the samples, it places the samples under mask
Av+1 in the constrained key and the outputs of cases (1) and (2); places the
samples under masks U1, . . . ,U|U| in the outputs of cases (3). Then samples
{Aj}j∈[v] with trapdoors, GLWE secrets {sb

i ← η}b∈{0,1},i∈[v]. Then samples
{Db

i ← PreimgSam(Ai, τi,Yb
i , σ)}b∈{0,1},i∈[v] as the constrained-key below level

v. Samples the rest of the D matrices obliviously {Db
i ← γ}b∈{0,1},i∈[v+1,�].

With these matrices the attacker A is able to simulate the outputs, send
the outputs and constrained key to A′. If the samples are from GLWE, then it
corresponds to Hv; if the samples are uniform, then the matrices {Db

v}b∈{0,1}
sampled via {Db

v ← PreimgSam(Av, τv,Yb
v, σ)}b∈{0,1} are statistically close to

the obliviously sampled ones due to Lemma 4, so it is statistically close to Hv−1.
Hence A breaks GLWE with probability more than ζ/(3(t+1)), which contradicts
to Lemma 7. ��
Lemma 13. If C(x(k)) = 0, then the output y(k) in H0 is pseudorandom.
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Proof. A constrained output y(k) can be expressed as
⌊
Ux

(k)
[1,w]

∏�
j=w(k) D

x
(k)
j

j

⌉
p

,

where the secret U(k)

[1,w(k)]
is uniform; the public D matrices are sampled from

discrete-Gaussian distribution γ. By Lemma 9 y(k) is pseudorandom. ��
The proof completes by combining Lemmas 12 and 13. ��

5.2 Constraint-Hiding for NC1 Circuits

Next we present the CHCPRF for NC1 circuit constraints. For circuits of depth
d, use Barrington’s Theorem [8] to convert them into a set of oblivious branching
program {BP} with the same index-to-input map ι : [z] → [�], the same w-cycle P
that represents the 0 output (by default w = 5). Let {Bb

i ∈ {0, 1}w×w}i∈[z],b∈{0,1}
be the permutation matrices in each BP.

The master secret key for the CHCPRF consists of 2z secrets from GLWE-
hard distributions η over R with small Euclidean norm {sb

i ← η}b∈{0,1},i∈[z],
together with a vector J ∈ R1×w. To generate an evaluation key, in the normal
setting, let Sb

i := Iw×w ⊗ sb
i ∈ {0, 1}w×w ⊗R R; in the constrained setting for

a constraint recognized by BP, let Sb
i := Bb

i ⊗ sb
i ∈ {0, 1}w×w ⊗R R. For both

settings, places {Sb
i}b∈{0,1},i∈[z] in a chain of length z and width 2, places J on

the left end of the chain, and uses the GGH15 methodology to encode the chain.
The encoding of J is merged into A1 and denote the resultant matrix as AJ .
The evaluation key consists of AJ and the D matrices {Db

i}b∈{0,1},i∈[z].
To evaluate on x, output

⌊
AJ

∏z
i=1 D

xι(i)
i

⌉
p
. To elaborate the functionality,

for x s.t. C(x) = 1,
⌊
AJ

∏z
i=1 D

xι(i)
i

⌉
p

≈s

⌊
J(Iw×w ⊗ ∏z

i=1 s
xι(i)
i )Az+1

⌉
p
; for x

s.t. C(x) = 0,
⌊
AJ

∏z
i=1 D

xι(i)
i

⌉
p

≈s

⌊
J(P ⊗ ∏z

i=1 s
xι(i)
i )Az+1

⌉
p
. As a reminder,

the permutation matrix P that represent the w-cycle is not a secret to the
construction, so the use of the left-bookend J is essential for security.

Construction 11 (CHCPRFs for NC1 circuits). We construct a function
family F = {f : {0, 1}� → R1×wm

p } equipped with 3 algorithms (Gen,Constrain,
Eval), associated with a set of oblivious branching programs {BP} of length z
obtained by applying Lemma 3 on all the NC1 circuits.

– Gen(1λ) samples parameters q, p, σ,m, z (the length of branching programs),
{(Ai, τi) ← TrapSam(Rw×w, 1n, 1m, q)}i∈[z], Az+1 ← U(Rw×wm

q ). Samples 2z

independent small secrets from GLWE-hard distributions {sb
i ← η}b∈{0,1},i∈[z],

sets the secret matrices to be Sb
i = Iw×w ⊗ sb

i . Next, encode the secrets as
follows: first compute {Yb

i = Sb
iAi+1 + Eb

i ,E
b
i ← χw×wm}i∈[z],b∈{0,1}; then,

sample {Db
i ← PreimgSam(Ai, τi,Yb

i , σ)}i∈[z],b∈{0,1}. Additionally, sample a
small secret J ← η1×w as the left-bookend. Compute AJ := JA1 + EJ where
EJ ← χ1×wm.
Set MSK := ({Ai}i∈[1,z+1], {τi}i∈[z],AJ , {sb

i ,D
b
i}i∈[z],b∈{0,1}).
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– Constrain(MSK,BP) takes MSK, and a matrix branching program BP = {Bb
i ∈

Rw×w}i∈[z],b∈{0,1}. For i ∈ [z], b ∈ {0, 1}, compute Yb
i =

(
Bb

i ⊗ sb
i

)
Ai+1 +

E′b
i ,E

′b
i ← χw×wm, samples Db

i ← PreimgSam(Ai, τi,Yb
i , σ).

Set the constrained key CK := (AJ , {Db
i}i∈[z],b∈{0,1}).

– Eval(k, x) takes the input x and the key k = (AJ , {Db
i}i∈[z],b∈{0,1}), outputs⌊

AJ

∏z
i=1 D

xι(i)
i

⌉
p
.

Setting of Parameters. Settings of the distributions and their dimensions: For
R = Zn×n, set η = χ = Dn×n

Z,σ , γ = D1×nwm
Znwm,σ . For R = Z[x]/(xn + 1), n being a

power of 2, set η = χ = DR,σ, γ = D1×wm
Rwm,σ.

The restriction on the parameters are analogous to the settings in the bit-
fixing construction.

Theorem 12. Assuming GLWER,1,1,w2m,n,q,η,χ, Construction 11 is a simulation-
secure CHCPRF for NC1 constraints.

Proof Overview. The simulation algorithm and the overall proof strategy is sim-
ilar to the one for the bit-fixing constraints. Namely, we close the trapdoors for
A matrices from level z to level 1. Within each level v, there are several GLWE
instance associated with Av+1 whose trapdoor is closed in the previous hybrid.
The additional complexity comes from dealing with secrets with permutation
matrix structures. They are handled by the new GLWE packages from Sect. 3.

Proof. The simulator samples {Ai ← U(Rw×wm
q )}i∈[1,z+1], and {Db

i ←
γ}b∈{0,1},i∈[z]. It also samples J ← η1×w, computes AJ := JA1 + EJ where
EJ ← χ1×wm. Outputs the constrained key (AJ , {Db

i}i∈[z],b∈{0,1}). The simu-
lator responds the input queries by picking {y(k)}k∈[t] according to {d(k)}k∈[t]: if

d(k) = 1, then outputs y(k) =
⌊
AJ

∏z
i=1 D

x
(k)
i

i

⌉
p

; otherwise y(k) ← U(R1×wm
p ).

The proof consists of two parts. The first part (Lemma 14) shows that the
real distribution is indistinguishable from a semi-simulated one, where all the D
matrices on the constrained key are sampled without knowing the constraint and
trapdoors of A matrices, and all the outputs are expressed by these obliviously
sampled A and D matrices. The second part (Lemma 15) argues that the outputs
are pseudorandom if they are in the constrained area.

In the first part, we define intermediate hybrid distributions {Hv}v∈[0,z].
Hz corresponds to the real constrained key and output distributions, H0 cor-
responds to the simulated constrained key and the semi-simulated outputs.
The simulators in Hz,Hz−1, . . . ,H1 know the full description of the constraint
BP = {Bb

i}i∈[z],b∈{0,1}; the simulator in H0 only knows the indicators {d(k)}k∈[t].
Descriptions of Hv, v ∈ [0, z]: The simulator in Hv

1. Samples {(Aj , τj) ← TrapSam(Rw×w, 1n, 1m, q)}j∈[v] with trapdoors; samples
{Aj′ ← U(Rw×wm

q )}j′∈[v+1,z+1] uniformly random;



Constraint-Hiding Constrained PRFs for NC1 from LWE 469

2. Samples the GLWE secrets {sb
i ← η}b∈{0,1},i∈[v] below level v; and a bookend

vector J ← η1×w;
3. Samples Yb

i :=
(
Bb

i ⊗ sb
i

)
Ai+1 + E′b

i ; computes AJ := JA1 + EJ ;
4. Simulates {Db

i ← PreimgSam(Ai, τi,Yb
i , σ)}b∈{0,1},i∈[v] as the constrained-

key below level v. Samples the rest of the D matrices obliviously {Db
i ←

γ}b∈{0,1},i∈[v+1,z].
5. Simulates the outputs. For k ∈ [t], computes y(k) as

y(k) =

⎢⎢⎢⎢⎣J ×

⎛
⎜⎝
⎛
⎝ z∏

j=v+1

B
x
(k)
ι(j)

j

⎞
⎠

−1

⊗
v∏

i=1

s
x
(k)
ι(i)

i

⎞
⎟⎠ × Av+1

z∏
j=v+1

D
x
(k)
ι(j)

j

⎤
⎥⎥⎥⎥

p

(3)

Lemma 14. Hv ≈c Hv−1, for v ∈ [z].

Proof. The difference of Hv and Hv−1 lies in the sampling of D0
v,D1

v and the
outputs {y(k)}. We first examine the outputs. For k ∈ [t], we express the output
y(k), starting from the expression in Hv to the one in Hv−1:

y(k) =

⌊

J ×
((

z∏

j=v+1

B
x
(k)
ι(j)

j

)−1

⊗
v∏

i=1

s
x
(k)
ι(i)

i

)

× Av+1

z∏

j=v+1

D
x
(k)
ι(j)

j

⌉

p

=

⌊

J ×
((

z∏

j=v+1

B
x
(k)
ι(j)

j

)−1

⊗
v−1∏

i=1

s
x
(k)
ι(i)

i

)

×
(

Iw×w ⊗ s
x
(k)
ι(v)

v

)

Av+1

z∏

j=v+1

D
x
(k)
ι(j)

j

⌉

p

=

⌊

J ×
((

z∏

j=v+1

B
x
(k)
ι(j)

j

)−1

⊗
v−1∏

i=1

s
x
(k)
ι(i)

i

)

×
(

B
x
(k)
ι(v)

v ⊗ 1R

)−1

×
(

B
x
(k)
ι(v)

v ⊗ s
x
(k)
ι(v)

v

)

Av+1

z∏

j=v+1

D
x
(k)
ι(j)

j

⌉

p

≈s

⌊

J ×
((

z∏

j=v

B
x
(k)
ι(j)

j

)−1

⊗
v−1∏

i=1

s
x
(k)
ι(i)

i

)

×
[(

B
x
(k)
ι(v)

v ⊗ s
x
(k)
ι(v)

v

)

Av+1 + E′
]

z∏

j=v+1

D
x
(k)
ι(j)

j

⌉

p

=

⌊

J ×
((

z∏

j=v

B
x
(k)
ι(j)

j

)−1

⊗
v−1∏

i=1

s
x
(k)
ι(i)

i

)

× Y
x
(k)
ι(v)

v

z∏

j=v+1

D
x
(k)
ι(j)

j

⌉

p

=

⌊

J ×
((

z∏

j=v

B
x
(k)
ι(j)

j

)−1

⊗
v−1∏

i=1

s
x
(k)
ι(i)

i

)

× Av

z∏

j=v

D
x
(k)
ι(j)

j

⌉

p

(4)

where Y
x
(k)
ι(v)

v = AvD
x
(k)
ι(v)

v . The correctness of this equation is a routine check.
The implication is that the difference of Hv and Hv−1 fully lies in the sampling
of Y0

v,Y1
v (being GLWE samples in Hv or uniform in Hv−1) and their preimages

D0
v,D1

v sampled by the trapdoor of Av.
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Formally, suppose there is an attacker A′ that distinguishes Hv and Hv−1

with non-negligible probability ζ, we can build an attacker A who distinguishes:

Av+1, {Yb
v =

(
Bb

v ⊗ sb
v

)
Av+1 + Eb

v}b∈{0,1}

from
{U(Rw×wm

q × Rw×wm
q × Rw×wm

q )}
To do so, once A obtains the samples, it samples {Aj}j∈[v] with trapdoors, and pro-
duce the preimages {Db

v ← PreimgSam(Av, τv,Yb
v, σ)}b∈{0,1}. Then places Av+1,

Y0
v, Y1

v, D0
v, D1

v in the constrained key and the outputs. It further samples GLWE
secrets {sb

i ← η}b∈{0,1},i∈[v], {Db
i ← PreimgSam(Ai, τi,Yb

i , σ)}b∈{0,1},i∈[v] as
the constrained-key below level v. Samples the rest of the D matrices obliviously
{Db

i ← γ}b∈{0,1},i∈[v+1,z].
With these matrices the attacker A is able to simulate the rest of the outputs,

send the outputs and constrained key to A′. If the samples are from GLWE, then
it corresponds to Hv; if the samples are uniform, then the matrices {Db

v}b∈{0,1}
sampled via {Db

v ← PreimgSam(Av, τv,Yb
v, σ)}b∈{0,1} are statistically close to

the obliviously sampled ones due to Lemma 4, so it is statistically close to Hv−1.
Hence A breaks GLWE with probability more than ζ/2, which contradicts to
Lemma 10. ��
Lemma 15. If C(x(k)) = 0, then the output y(k) in H0 is pseudorandom.

Proof. Following Eq. 3, a constrained output y(k) in H0 can be expressed as:

y(k) =

⎢
⎢
⎢
⎣J × (P−1 ⊗ 1R

)× A1

z∏

j=1

D
x
(k)
ι(j)

j

⎤

⎥
⎥
⎥

p

≈s

⎢
⎢
⎢
⎣
(

J × (P−1 ⊗ 1R

)× A1 +E
)

z∏

j=1

D
x
(k)
ι(j)

j

⎤

⎥
⎥
⎥

p

(5)

For JA1 + EJ as part of the constrained key, J × (
P−1 ⊗ 1R

) × A1 + E as
part of the constrained output y(k), (JA1 + EJ ,J × (

P−1 ⊗ 1R

) × A1 + E) is
indistinguishable from U(R1×wm

q , R1×wm
q ) due to Lemma 11. This means each

constrained output y(k) is indistinguishable from
⌊
U

∏z
j=1 D

x
(k)
ι(j)

j

⌉
p

where U ←
U(R1×wm

q ). Hence y(k) is pseudorandom if C(x(k)) = 0 due to Lemma 9. ��
The proof completes by combining the Lemmas 14 and 15. ��

6 Private-Key Functional Encryption from CHCPRF

We construct private-key function-hiding functional encryptions for NC1 circuits
from (1) CHCPRFs for NC1; (2) semantic secure private-key encryption schemes
with decryption in NC1. The scheme satisfies 1-key simulation-based security.
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6.1 The Definition of Functional Encryption

Definition 8 (Function-hiding private-key functional encryption [34]).
A functional encryption scheme for a class of functions Cμ = {C : {0, 1}μ →
{0, 1}} is a tuple of p.p.t. algorithms (Setup,FSKGen,Enc,Dec) such that:

– Setup(1λ) takes as input the security parameter 1λ, outputs the master secret
key MSK.

– FSKGen(MSK, C) takes MSK and a function C ∈ Cμ, outputs a functional
decryption key FSKC .

– Enc(MSK,m) takes MSK and a message m ∈ {0, 1}μ, outputs a ciphertext
CTm.

– Dec(FSKC ,CTm) takes as input a ciphertext CTm and a functional decryption
key FSKC , outputs (in the clear) the result C(m) of applying the function on
the message.

We require that:

Correctness. For every message m ∈ {0, 1}μ and function C ∈ Cμ we have:

Pr

⎡
⎢⎢⎣b = C(m)

∣∣∣∣∣∣∣∣

MSK ← Setup(1λ)
FSKC ← FSKGen(MSK, C)
CTm ← Enc(MSK,m)

b ← Dec(FSKC ,CTm)

⎤
⎥⎥⎦ = 1 − negl(λ)

Security. We require that for all polytime, stateful algorithm Adv, there is a
polytime, stateful algorithm Sim such that:

{Experiment REALAdv(1λ)}λ∈N ≈c {Experiment IDEALAdv,Sim(1λ)}λ∈N

The real and ideal experiments of stateful algorithms Adv,Sim are as follow:

Experiment REALAdv(1
λ) Experiment IDEALAdv,Sim(1

λ)

MSK ← Gen(1λ), Sim ← 1λ

Repeat : Repeat :

Adv → (m, dm); Adv ← Enc(MSK,m); Adv → (m, dm); Adv ← Sim(1|m|, dm);

Adv → C; Adv → C;

if dm �= C(m)for some m then Output ⊥ if dm �= C(m)for some m then Output ⊥
else Adv ← FSKC = FSKGen(MSK, C); else Adv ← FSKS = Sim(1|C|);

Repeat : Repeat :

Adv → m; Adv ← Enc(MSK,m) Adv → m; Adv ← Sim(1|m|, C(m))

Adv → b; Output b Adv → b; Output b

That is, in the experiments Adv can ask for a single functional decryption key and
polynomially many input queries, in any order. For encryption queries m made
before the decryption key query, Adv is expected to provide a bit dx indicating
whether C(m) = 1. In the real experiment Adv obtains the encryption of m.
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In the ideal experiment Adv obtains a value generated by Sim, whereas Sim is
given only 1|m| and dm. Once Adv makes the functional key query for circuit
C ∈ Cλ, both experiments verify the consistency of the indicator bits dm for all
the encryption queries m made by Adv so far. If any inconsistency is found then
the experiment halts. Next, in the real experiment Adv obtains the constrained
key generated by the constraining algorithm; in the ideal experiment Adv obtains
a key generated by Sim, whereas Sim is given only the size of C. The handling
of encryption queries made by Adv after the circuit query is similar to the ones
before, with the exception that the indicator bit dm is no longer needed and Sim
obtains the value of C(m) instead. The output of the experiment is the final
output bit of Adv.

6.2 The Construction

Theorem 13. If there are 1-key secure constraint-hiding constraint PRFs for
constraint class C, and symmetric-key encryption schemes with decryption in
the class C, then there are 1-key secure private-key function-hiding functional
encryptions for function class C.

Corollary 2. Assuming the intractability of GLWE, there are 1-key secure
private-key function-hiding functional encryptions for NC1.

Construction 14. Given a CHCPRF (F.Gen,F.Constrain,F.Eval), a semantic
secure symmetric-key encryption scheme (Sym.Gen,Sym.Enc,Sym.Dec), we build
a private-key functional encryption FE as follows:

– FE.Setup(1λ) takes as input the security parameter 1λ, runs Sym.Gen(1λ) →
Sym.SK, F.Gen(1λ) → F.MSK, outputs the master secret key FE.MSK =
(Sym.SK,F.MSK).

– FE.Enc(FE.MSK,m) parses FE.MSK = (Sym.SK,F.MSK), computes Sym.CT
= Sym.Enc(m), Tag = F.Eval(F.MSK,Sym.CT). Outputs FE.CT = (Sym.CT,
Tag).

– FE.FSKGen(FE.MSK, C) parses FE.MSK = (Sym.SK,F.MSK), outputs the
functional decryption key FE.FSKC = F.Constrain(F.MSK, F [Sym.SK, C]),
where the functionality of F [Sym.SK, C](·) is:

• On input x, computes Sym.Dec(Sym.SK, x) → m ∈ {0, 1}μ ∩ ⊥;
• if m = ⊥, return 0; else, return C(m).

– FE.Dec(FE.FSKC ,FE.CT) parses FE.FSKC = F.CKF , FE.CT = (Sym.CT,Tag),
computes T = F.Eval(F.CKF ,Sym.CT). Outputs 1 if T = Tag, 0 if not.

Correctness. Correctness follows the correctness of Sym and F.

Proof. We build the FE simulator FE.Sim from the symmetric-key encryption
simulator Sym.Sim and CHCPRF simulator F.Sim:

1. Generates the simulated master secret-keys Sym.SKS and F.MSKS

2. Given a function-decryption key query (for function C), FE.Sim runs CKS ←
F.Sim1(1λ, 1|F [Sym.SK,C]|,F.MSKS), outputs CKS as FE.FSKS .
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3. Given a ciphertext query and the output bit C(m), FE.Sim runs Sym.CTS ←
Sym.Sim(1λ, 1|m|,Sym.SKS) and TagS ← FSim2(F.MSKS ,CKS ,Sym.CTS ,
C(m)), outputs (Sym.CTS ,TagS) as FE.CTS .

To show that the simulated outputs are indistinguishable from the real outputs,
consider an intermediate simulator FE.Sim′ which is the same to FE.Sim, except
that it uses the real Sym ciphertexts in the ciphertext queries. Observe that the
secret-key of Sym is not exposed in FE.Sim′ or FE.Sim, the output distributions
of FE.Sim′ and FE.Sim are indistinguishable following the security of Sym.

Next, assume there is a distinguisher D for the outputs of the real FE scheme
and FE.Sim′, we build an attacker A for the CHCPRF F. A samples a secret
key for Sym, sends a constrained circuit query, obtains the real CK if it is the
real distribution, or the simulated CKS if it is the simulated distribution; then
creates symmetric-key ciphertexts, sends as the input queries to the CHCPRF.
It obtains the real outputs if it is the real case, or the simulated outputs if it
is the simulated case. A treats the outputs as tags. A forwards the ciphertexts,
tags and FSK to D. D’s success probability transfers to the one for A. ��
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Abstract. We propose a new zero-knowledge protocol for proving
knowledge of short preimages under additively homomorphic functions
that map integer vectors to an Abelian group. The protocol achieves
amortized efficiency in that it only needs to send O(n) function values to
prove knowledge of n preimages. Furthermore we significantly improve
previous bounds on how short a secret we can extract from a dishonest
prover, namely our bound is a factor O(k) larger than the size of secret
used by the honest prover, where k is the statistical security parameter.
In the best previous result, the factor was O(klog kn).

Our protocol can be applied to give proofs of knowledge for plaintexts
in (Ring-)LWE-based cryptosystems, knowledge of preimages of homo-
morphic hash functions as well as knowledge of committed values in some
integer commitment schemes.

1 Introduction

Proofs of Knowledge. In a zero-knowledge protocol, a prover demonstrates
that some claim is true (and in some cases that he knows a proof) while giving
the verifier no other knowledge beyond the fact that the claim is true. Zero-
knowledge protocols are essential tools in cryptographic protocol design. For
instance, one needs zero-knowledge proofs of knowledge in multiparty computa-
tion to have a player demonstrate that he knows the input he is providing.

In this work, we will consider the problem of proving knowledge of a preimage
under a one-way functions f : Zr �→ G where G is an Abelian group (written
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additively in the following), and where furthermore the function is additively
homormorphic, i.e., f(a)+f(b) = f(a+b). We will call such functions ivOWF ’s
(for homomorphic One-Way Functions over Integer Vectors). This problem was
considered in several earlier works, in particular recently in [BDLN16], from
where we have borrowed most of the notation and basic definitions we use in the
following.

ivOWF turns out to be a very general notion. Examples of ivOWFs include:

– The encryption function of several (Ring-)LWE-based cryptosystems (such
as the one introduced in [BGV12] and used in the so-called SPDZ protocol
[DPSZ12]).

– The encryption function of any semi-homomorphic cryptosystem as defined in
[BDOZ11].

– The commitment function in commitment schemes for committing to integer
values (see, e.g., [DF02]).

– Hash functions based on lattice problems such as [GGH96,LMPR08], where
it is hard to find a short preimage.

We will look at the scenario where a prover P and a verifier V are given
y ∈ G and P holds a short preimage x of y, i.e., such that ||x || ≤ β for some
β. P wants to prove in zero-knowledge that he knows such an x . When f is an
encryption function and y is a ciphertext, this can be used to demonstrate that
the ciphertext decrypts and P knows the plaintext. When f is a commitment
function this can be used to show that one has committed to a number in a
certain interval.

A well-known, simple but inefficient solution is the following protocol π:

(1) P chooses r at random such that ||r || ≤ τ · β for some sufficiently large τ ,
the choice of which we return to below.

(2) P then sends a = f(r) to V.
(3) V sends a random challenge bit b.
(4) P responds with z = r + b · x .
(5) V checks that f(z ) = a + b · y and that ||z || ≤ τ · β.

If τ is sufficiently large, the distribution of z will be statistically independent
of x , and the protocol will be honest verifier statistical zero-knowledge1. On the
other hand, we can extract a preimage of y from a cheating prover who can
produce correct answers z 0, z 1 to b = 0, b = 1, namely f(z 1 − z 0) = y. Clearly,
we have ||z 1−z 0|| ≤ 2 ·τ ·β. We will refer to the factor 2τ as the soundness slack
of the protocol, because it measures the discrepancy between the interval used
by the honest prover and what we can force a dishonest prover to do. The value
of the soundness slack is important: if f is, e.g., an encryption function, then a
large soundness slack will force us to use larger parameters for the underlying

1 We will only be interested in honest verifier zero-knowledge here. In applications one
would get security for malicious verifiers by generating the challenge in a trusted way,
e.g., using a maliciously secure coin-flip protocol.
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cryptosystem to ensure that the ciphertext decrypts even if the input is in the
larger interval, and this will cost us in efficiency.

The naive protocol above requires an exponentially large slack to get zero-
knowledge, but using Lyubachevsky’s rejection sampling technique, the sound-
ness slack can made polynomial or even constant (at least in the random oracle
model, at the cost that even the honest prover may sometimes fail to execute
the protocol).

The obvious problem with the naive solution is that one needs to repeat the
protocol k times where k is the statistical security parameter, to get soundness
error probability 2−k. This means that one needs to generate Ω(k) auxiliary
f -values. We will refer to this as the overhead of the protocol and use it as a
measure of efficiency.

One wants, of course as small overhead and soundness slack as possible, but
as long as we only want to give a proof for a single f -value, we do not know how
to reduce the overhead dramatically in general. But if instead we want to give a
proof for k or more f -values, then we know how to reduce the amortised over-
head: Cramer and Damg̊ard ([CD09], see also full version in [CDK14]) show how
to get amortised overhead O(1), but unfortunately the soundness slack is 2Ω(k),
even if rejection sampling is used2. In [DKL+13] two protocols were suggested,
where one is only covertly secure. The other one can achieve polynomial sound-
ness slack with overhead Ω(k) and works only in the random oracle model3. This
was improved in [BDLN16]: a protocol was obtained (without random oracles)
that has O(1) overhead and quasi polynomial soundness slack (proportional to
n · (2k + 1)log(k)/2).

1.1 Contributions & Techniques

In this paper, we improve significantly the result from [BDLN16] and [DKL+13]:
we obtain O(1) overhead and soundness slack O(k). All results hold in the stan-
dard model (no random oracles are needed). As with any other protocol with
amortised efficiency, one needs to amortise over at least some number of instances
before the amortisation “kicks in”, i.e., n needs to be large enough in order to
achieve the amortized efficiency. Our most basic construction needs n to be
Θ(k2), and we later improve this to Θ(k3/2), still with the same overhead and
soundness slack.

2 In [CD09], the main result was first shown for functions dealing with finite rings
and groups, and then generalised to the integers. The result is optimal for the finite
case, while the integer case leaves room for improvement.

3 The protocol in [DKL+13] is actually stated as a proof of plaintext knowledge for
random ciphertexts, but generalizes to a protocol for ivOWFs. It actually offers a
tradeoff between soundness slack s and overhead in the sense that the overhead is
M · log(k), where M has to be chosen such that the error probability (1/s)M is
negligible. Thus to get exponentially small error probability in k as we do here, one
can choose s to be poly(k) and hence M will be Ω(k/ log k).
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Our protocol uses a high-level strategy similar to [BDLN16]:

(1) Do a cut-and-choose style protocol for the inputs y1, . . . , yn. This is a rela-
tively simple but imperfect proof of knowledge: It only guarantees that the
prover knows almost all preimages.

(2) Let the verifier assign each yi to one of several buckets.
(3) For each bucket, add all elements that landed in the bucket and do an imper-

fect proof of knowledge as in the first step, but now with all the bucket sums
as input.

The reason why one might hope this would work is as follows: as mentioned,
the first step will ensure that we can extract almost all of the required n preim-
ages, in fact we can extract all but k preimages (we assume throughout that
n � k). In the second step, since we only have k elements left that were “bad”
in the sense that we could not yet extract a preimage, then if we have many more
than k buckets and distribute them in buckets according to a carefully designed
strategy, we may hope that with overwhelming probability, all the bad elements
will be alone in one of those buckets for which we can extract a preimage of
the bucket sum. This seems plausible because we can extract almost all such
preimages. If indeed this happens, we can extract all remaining preimages by
linearity of f : each bad element can be written as a sum of elements for which
the extractor already knows a preimage.

Furthermore, the overall cost of doing the protocol would be O(n), and the
soundness slack will be limited by the maximal number of items in a bucket. In
fact, if each bucket contains O(k) elements, then the soundness slack is O(k) as
well. Our main technical contribution is a construction of a strategy for assign-
ment to buckets with properties as we just outlined. We explain more about the
intuition below.

In comparison, the protocol from [BDLN16] also plays a “balls and buckets”
game. The difference is that they use only O(k) buckets, but repeat the game
Ω(log k) times. This means that their extraction takes place in Ω(log k) stages,
which leads to the larger soundness slack. Also, they use a randomised strategy
for assignment to buckets. While this makes the protocol and analysis some-
what more complicated, the randomization seems critical to make the proof go
through: it makes essential use of the fact that the adversary does not know how
elements are distributed in buckets until after the “bad” elements from Step 1
have been fixed. It is therefore somewhat surprising that the problem can be
solved with a deterministic strategy, as we do here.

We also show a probabilistic strategy which is inferior to our deterministic
one in that it requires k3 input instances to work. On the other hand, it differs
from the deterministic strategy by being more flexible: if the number of instances
is less than k3, then the protocol will not remove all bad elements, but it will
reduce the number of bad elements significantly. We can therefore combine the
deterministic and probabilistic methods to get a protocol that works already for
k3/2 input instances, still with the same overhead and soundness slack.

Our protocol is honest verifier zero-knowledge and is sound in the sense of a
standard proof of knowledge, i.e., we extract the prover’s witness by rewinding.
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Nevertheless, the protocol can be readily used as a tool in a bigger protocol that
is intended to be UC secure against malicious adversaries. Such a construction
is already known from [DPSZ12].

We now explain how we arrive at our construction of the strategy for assigning
elements to buckets: We define the buckets via a bipartite graph. Consider a
finite, undirected, bipartite graph G = (L,R,E) without multi-edges, where
L denotes the set of vertices “on the left,” R those “on the right” and E the
set of edges. Write n = |L| and m = |R|. Each vertex w ∈ R on the right
gives a “bucket of vertices” N({w}) ⊂ L on the left, where N({w}) denotes the
neighborhood of w.

We say that the bipartite graph G has the (f1, f2)-strong unique neighbour
property if the following holds. For each set N1 ⊂ L with |N1| = f1, for each set
N2 ⊂ R with |N2| = f2, and for each i ∈ N1, there is w ∈ R \ N2 such that
N1 ∩ N({w}) = {i}. Note that this property is anti-monotonous in the sense
that if it holds for parameters (f1, f2) it also holds for parameters (f ′

1, f
′
2) with

f ′
1 ≤ f1 and f ′

2 ≤ f2.
With f1 corresponding to the failures in step 1 and f2 corresponding to

those in step 3, it should be clear that this property on (an infinite family of
bipartite graphs) G, together with the conditions that n = poly(k), m = O(n),
f1 = O(k), f2 = O(k) and the condition that the right-degrees in G are all
in O(k), is sufficient to pull off our claimed result. Of course, in addition, this
requires efficient construction of G. We propose two approaches satisfying each
of these requirements. The first one, based on a construction from universal hash
functions, achieves n = O(k2). A second approach, based on certain excellent
(nonconstant-degree) expander graphs achieves n = O(k3), but also achieves
a weaker (but still useful) “neighbour property” even if n is much smaller
than k3.

Notation

Throughout this work we will format vectors such as b in lower-case bold face
letters, whereas matrices such as B will be in upper case. We refer to the ith
position of vector b as b[i], let [r] := {1, . . . , r} and define for b ∈ Zr that
||b|| = maxi∈[r]{|b[i]|}. To sample a variable g uniformly at random from a set

G we use g
$←− G. Throughout this work we will let λ be a computational and k

be a statistical security parameter. Moreover, we use the standard definition for
polynomial and negligible functions and denote those as poly(·), negl(·).

2 Homomorphic OWFs and Zero-Knowledge Proofs

We first define a primitive called homomorphic one-way functions over integer
vectors. It is an extension of the standard definition of a OWF found in [KL14].

Let λ ∈ N be the security parameter, we consider a probabilistic polynomial
time algorithm Gen which on input 1λ outputs: an Abelian group G, natural
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numbers β, r, and a function f : Zr → G. Let A be any algorithm. Consider the
following game:

InvertA,Gen(λ):

(1) Run Gen(1λ) to get G, β, r and f .
(2) Choose x ∈ Zr, ||x || ≤ β and compute y = f(x ).
(3) On input (1λ, y,G, β, r, f) the algorithm A computes an x ′.
(4) Output 1 iff f(x ′) = y, ||x ′|| ≤ β, and 0 otherwise.

Definition 1 (Homomorphic OWF over Integer Vectors (ivOWF)).
The algorithm Gen producing functions of form f : Zr → G is called a homo-
morphic one-way function generator over the integers if the following conditions
hold:

(1) There exists a polynomial-time algorithm evalf such that evalf (x) = f(x)
for all x ∈ Zr.

(2) For all x,x′ ∈ Zr it holds that f(x) + f(x′) = f(x + x′).
(3) For every probabilistic polynomial-time algorithm A there exists a negligible

function negl(λ) such that

Pr[InvertA,Gen(λ) = 1] ≤ negl(λ)

In the following, we will abuse terminology slightly by referring to a fixed
function f : Zr → G as an ivOWF. As mentioned in the introduction, this
abstraction captures, among other primitives, lattice-based encryption schemes
such as [BGV12,GSW13,BV14] where the one-way property is implied by IND-
CPA and β is as large as the plaintext space. Moreover it also captures hash
functions such as [GGH96,LMPR08], where it is hard to find a preimage for all
sufficiently short vectors that have norm smaller than β.

2.1 Proving Knowledge of Preimage

We consider two parties, the prover P and the verifier V. P holds values
x 1, . . . ,xn ∈ Zr, both parties have values y1, . . . , yn ∈ G and P wants to prove
to V that yi = f(x i) and that x i is short, while giving away no extra knowledge
on the x i. More formally, the relation that we want to give a zero-knowledge
proof of knowledge for is

RKSP =
{

(G, β, v, w)
∣∣∣∣ v = (y1, . . . , yn) ∧ w = (x 1, . . . ,xn)∧

[
yi = f(x i) ∧ ||x i|| ≤ β

]
i∈[n]

}

However, like all other protocols for this type of relation, we will have to
live with a soundness slack τ as explained in the introduction. What this means
more precisely is that there must exist a knowledge extractor with properties
exactly as in the standard definition of knowledge soundness, but the extracted
values only have to satisfy [yi = f(x i) ∧ ||x i|| ≤ τ · β]i∈[n].
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3 Proofs of Preimage

3.1 Imperfect Proof of Knowledge

The first tool we need for our protocol is a subprotocol which we borrow from
[BDLN16], a so-called imperfect proof of knowledge. This protocol is proof of
knowledge for the above relation with a certain soundness slack, however, the
knowledge extractor is only required to extract almost all preimages. We note
that to show knowledge soundness later for our full protocol, Goldreich and
Bellare [BG93] have shown that it is sufficient to consider deterministic provers,
therefore we only need to consider deterministic provers in the following.

The idea for the protocol is that the prover constructs T = 3n auxiliary
values of form zi = f(r i) where r i is random and short. The verifier asks the
prover to open half the values (chosen at random) and aborts if the preimages
received are not correct and short. One can show that this means the prover
must know correct preimages of almost all the unopened values. The prover
must now reveal, for each yi in the input, a short preimage of the sum yi + zj

for some unopened zj . By the homomorphic property of f this clearly means we
can extract from the prover also a short preimage of most of the yi’s.

The reason one needs to have more than 2n auxiliary values is that the pro-
tocol makes use of Lyubashevsky’s rejection sampling technique [Lyu08,Lyu09],
where the prover is allowed to refuse to use some of the auxiliary values. This
allows for a small soundness slack while still maintaining the zero-knowledge
property. For technical reasons the use of rejection sampling means that the
prover should not send the auxiliary values zi in the clear at first but should
commit to them, otherwise we cannot show zero-knowledge.

The following theorem is proved in [BDLN16] (their Theorem 1):

Theorem 1. Let f be an ivOWF, k be a statistical security parameter, Assume
we are given Caux, a perfectly binding/computationally hiding commitment
scheme over G, τ = 100 · r and T = 3 · n, n ≥ max{10, k}. Then there exists a
protocol PImperfectProof with the following properties:

Efficiency: The protocol requires communication of at most T = 3n f-images
and preimages.

Completeness: If P,V are honest and run on an instance of RKSP, then the
protocol succeeds with probability at least 1 − negl(k).

Soundness: For every deterministic prover P̂ that succeeds to run the protocol
with probability p > 2−k+1 one can extract at least n − k values x′

i such that
f(x′

i) = yi and ||x′
i|| ≤ 2 · τ · β, in expected time O(poly(s) · k2/p) where s is

the size of the input to the protocol.
Zero-Knowledge: The protocol is computational honest-verifier zero-

knowledge.

In the following we will use PImperfectProof(v, w, T, τ, β) to denote an invo-
cation of the protocol from this theorem with inputs v = (y1, . . . , yn), w =
(x 1, . . . ,xn) and parameters τ, β.
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3.2 The Full Proof of Knowledge

The above imperfect protocol will be used as a building block. After executing
it with the (x i, yi) as input, we may assume that a preimage of most of the yi’s
(in fact, all but k) can be extracted from the prover.

The strategy for the last part of the protocol is as follows: each yi is assigned
to one of several buckets. Then, for each bucket, we add all elements that landed
in the bucket and have the prover demonstrate that he knows a preimage of the
sum. The observation (made in [BDLN16]) is that we can now extract a preimage
of every bad elements that is alone in a bucket. The question, however, is how we
distribute items in buckets to maximize our chance of extracting all the missing
preimages, and how many buckets we should use. One solution to this was given
in [BDLN16], but it requires repeating the experiment log k times before all bad
elements have been handled with good probability.

Here we propose a new strategy that achieves much better results: we need
just one repetition of the game and each bucket will contain only O(k) items
which gives us the soundness slack of O(k).

Before we can describe the protocol, we need to define a combinatorial object
we use in the protocol, namely a good set system:

Definition 2. A set system S with parameters n,m is a collection of m index
sets B1, . . . , Bm, where each Bj ⊂ [n], and [n] = {1, . . . , n}. Both n and m
depend on a security parameter k. The set system is good if the maximal size
of a set Bj is O(k), m is O(n) and if for every set N1 ⊂ [n] of size k, every
set N2 ⊂ [m] of size k and every i ∈ N1, there exists j ∈ [m] − N2 such that
Bj ∩ N1 = {i}.

The idea in the definition is that the buckets are defined by the sets {Bj}.
Then, if the set system is good, and if we can extract preimage sums over all
bucket except k, then we will be in business.

Procedure PCompleteProof

Let f be an ivOWF. P inputs w to the procedure and V inputs v. We assume that
good set system S = {B1, ..., Bm} is given with parameters n, m.

proof(v, w, β) :
(1) Let v = (y1, ..., yn), w = (x1, ..., xn). Run PImperfectProof(v, w, 3n, 100r, β). If

V in PImperfectProof aborts then abort, otherwise continue.
(2) For j = 1, . . . , m, both players compute γj =

∑
i∈Bj

vi and P also computes

δj =
∑

i∈Bj
xi. Let h be the maximal size of a bucket set Bj , and set

γ = (γ1, . . . , γm), δ = (δ1, . . . , δm).
(3) Run PImperfectProof(γ, δ, 3m, 100r, hβ). If V in PImperfectProof aborts then

abort, otherwise accept.

Fig. 1. A protocol to prove the relation RKSP
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Theorem 2. Let f be an ivOWF, k be a statistical security parameter, and β be
a given upper bound on the size of the honest prover’s secrets. If PCompleteProof

(Fig. 1) is executed using a good set system S, then it is an interactive honest-
verifier zero-knowledge proof of the relation RKSP with knowledge error 2−k+1.
More specifically, it has the following properties:

Efficiency: The protocol has overhead O(1).
Correctness: If P,V are honest then the protocol succeeds with probability at

least 1 − 2−O(k).
Soundness: For every deterministic prover P̂ that succeeds to run the protocol

with probability p > 2−k+1 one can extract n values x′
i such that f(x′

i) = yi

and ||x′
i|| ≤ O(k · r · β) except with negligible probability, in expected time

poly(s, k)/p, where s is the size of the input to the protocol.
Zero-Knowledge: The protocol is computational honest-verifier zero-

knowledge.

Proof. Efficiency is immediate from Theorem 1 and the fact that we use a good
set system, so that m is O(n). Note also that the verifier can specify the set
system for the prover using O(m · k · log n) bits. This will be dominated by the
communication of m preimages if a preimage is larger than k log n bits, which
will be the case for any realistic setting.

Correctness is immediate from correctness of PImperfectProof.
The extractor required for knowlege soundness will simply run the extractor

for PImperfectProof twice, corresponding to the 2 invocations of PImperfectProof.
Let N1 be the set of k preimages we fail to extract in the first invocation, and
let N2 be the set of bucket sums we fail to extract in the second invocation.
The properties of a good set system distribution now guarantee that no matter
what set N2 turns out to be, we can find, for each i ∈ N1, a set Bj where we
know a preimage of the sum over the bucket (j ∈ [m] − N2), and furthermore
Bj ∩N1 = {i}. Concretely, we know δj such that f(δj) =

∑
l∈Bj

yl and we know
preimages of all summands except for yi. By the homomorphic property of f
we can solve for a preimages of yi, and the size of the preimage found follows
immediately from Theorem 1 and the fact that buckets have size O(k).

Honest-verifier zero-knowledge follows immediately from Theorem 1. We do
the simulation by first invoking the simulator PImperfectProof with the input
parameters for the first step. We then sample according to D, compute the inout
parameters for the second invocation and run the simulator for PImperfectProof

again. �
To make this theorem be useful, we need of course that good set systems

exist. This is taken care of in the following theorem which we prove in the next
section.

Theorem 3. Good set systems exist with parameters n = m ∈ O(k2) and can
be constructed in time polynomial in k.
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This theorem implies that we need to have at least Ω(k2) instances to amor-
tise over to get an efficient protocol. Of course, for the applicability of the pro-
tocol it is better if one could make do with less. We now sketch how to get the
same overhead and soundness slack using only O(k3/2) inputs.

This is based on a weaker, but more flexible notion of set system, namely an
(k, d, s)-good set system:

Definition 3. A set system S with parameters n,m is a collection of m index
sets B1, . . . , Bm with each Bj ⊆ [n]. Both parameters n,m depend on a security
parameter k. We say a set system is (k, d, s)-good for N1 if m is O(n), the
maximal size of a set Bj is d and if N1 ⊆ [n] of size k satisfies the following: for
every set N2 ⊆ [m] of size k, there exists a subset T ⊆ N1 of size at least k − s
such that for every i ∈ T , there exists j ∈ [m] − N2 satisfying Bj ∩ N1 = {i}.

As before, the idea is that the system can be used to design a protocol based
on a balls-and-buckets game similar to the above, where the Bj ’s define the
buckets, and N1, N2 correspond to the subset of instances we fail to extract via
the weak zero-knowledge protocol. The final requirement now says that if the
system is good for N1, then we can extract witnesses for k − s of the remaining
bad items in N1 using the witnesses we have for the bucket sums.

While it seem like bad news that we will not be able to kill all the bad
items in N1, the point is that this relaxed requirement enables us to construct
such set systems with different parameters, in particular with much smaller n,m
compared to k that we can get for a regular set system. In particular we have
the following theorem which is proved in the next section.

Theorem 4. For any constant 0 < c < 1, there is a probabilistic polynomial
time algorithm for constructing set systems where m = n = O(k1+2c), such that
for any fixed N1 ⊆ [n] of size k, the resulting system is (k, kc, 5k1−c)-good for
N1 except with probability exponentially small in k.

In our protocol, we set c = 0.25, so we get that we can construct a set system
S1 = {A1, . . . , Am} with m = n = O(k1.5), such that for any fixed N1, it will be
(k, k0.25, 5k0.75)-good for N1, except with exponentially small probability. Note
that this property does not guarantee that the system will be good for every N1

simultaneously.
On the other hand, this property is guaranteed by the good set systems from

Theorem 3. It is easy to see that these are simultaneously (r, 2r, 0)-good for all N1

of size k. We are going to set r = 5k0.75. So we obtain a (5k0.75, 10k0.75, 0)-good
set system S2 = {B1, . . . , Bm} with m = n = O(k1.5).

Here follows an informal sketch of the protocol we can now construct for an
input consisting of n = O(k1.5) f -images y = (y1, . . . , yn):

(1) Both players compute bucket sums δ = (δ1, . . . , δm) of the yi’s according to
the set system S2.

(2) Run the imperfect zero-knowledge proof for both y and δ. Note that at this
point we cannot hope to extract all witnesses. This would require that only
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5k0.75 witnesses were left unknown by the imperfect proofs. But this is not
the case. Therefore we extend the protocol to reduce this number:

(3) The verifier constructs a set system S1 according to Theorem 4 with parame-
ters as defined above. Both players compute bucket sums u = (u1, . . . , um)
of the yi’s according to the set system S1. Moreover, the players compute
bucket sums ω = (ω1, . . . , ωm) of the δi’s according to the system S1.

(4) Run the imperfect zero-knowledge proof for u and ω.

We sketch the argument that this is sound as a proof of knowledge: after we
run the extractor for the first two imperfect proofs, we know witnesses for all yi

except for a set N1 and for all δi except for a set N ′
1. Now, we know that except

with negligible probability the set system S1 will be good for both N1 and N ′
1

(by a union bound). And we can run the knowledge extractor for the last two
imperfect proofs so we will get witnesses for all ui except a set N2 and for all ωi

except a set N ′
2. All these sets have size k.

Now, by Definition 3, and because we can assume that S1 is (k, k0.25, 5k0.75)-
good for both N1 and N ′

1, we can use the homomorphic property of f and
the known witnesses for y ,u in the usual way to reduce the set of unknown
witnesses for y (in N1) to a set M1 of size 5k0.75. Like wise, we can reduce the
set of unknown witnesses (in N ′

1) for δ to a set M2 of size 5k0.75.
Finally, we are in a position to use that S2 is a (5k0.75, 10k0.75, 0)-good set

system, where M1,M2 are the set of unknown witnesses. This will allow us to
extract all witnesses. Note that the set M1 is not fixed when S2 is constructed
but this is fine since S2 is simultaneously good for all sets of size 5k0.75.

We leave it to the reader to verify that this protocol has overhead O(1) and
soundness slack O(k).

4 Proof of Theorem3 and Theorem4

4.1 Definitions and Conventions

Let G = (L,R,E) be a finite, undirected bipartite graph. For simplicity we also
assume G has no multi-edges.4 Here, L denotes the set of vertices “on the left,”
R the set of vertices “on the right” and E the set of edges. A vertex v is said to
be adjacent to a vertex w if (v, w) ∈ E. An edge e ∈ E is incident to a vertex
v if there is a vertex w such that e = (v, w). Suppose S ⊂ L and T ⊂ R. The
neighborhood of S, denoted N(S), consists of all vertices adjacent to some vertex
in S. Note that

N(S) ⊂ R

since G is bipartite. If S = ∅ then N(S) = ∅. The neighborhood N(T ) ⊂ L of
T ⊂ R is defined similarly.

4 We do not necessarily require that each of L, R is nonempty. But, of course, if at
least one of them is, then also E = ∅.
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The unique neighbor set U(S) ⊂ R of the set S ⊂ L consists of all w ∈ R
such that

|N({w}) ∩ S| = 1,

i.e., it consists of all vertices “on the right” whose respective neighborhoods
have “a single vertex” intersection with S “on the left.” We make extensive use
of the following refinement that “prescribes” that intersection. For v ∈ S, the
set U(S, v) consists of all w ∈ R such that

N({w}) ∩ S = {v}.

Note that
U(S) ⊂ N(S),

and that
U(S, v) ⊂ N({v}).

Also note that, if v, v′ ∈ S and if v �= v′, then

U(S, v) ∩ U(S, v′) = ∅.

The corresponding notions for T ⊂ R may be defined similarly, but we will
not need any of these.

Let d, d′, f1, f ′
1, f

′
2, f2, f, f ′ be nonnegative integers.

We say that the graph G is d-left-bounded if, for each v ∈ L, it holds that
|N({v})| ≤ d. In other words, each of “the degrees on the left” is at most d. If
there is equality for each vertex, i.e., each of the degrees on the left equals d, we
say that the graph G is d-left-regular. Similarly for d′-right-bounded. The graph
G is (d, d′)-bi-bounded if it is d-left-bounded and d′-right-bounded. Finally, the
graph G is d-biregular if it is d-left-regular and d-right-regular.

Definition 4 (Unique Neighbor Property). The set S has the unique neigh-
bor property if it holds that U(S) �= ∅.
Definition 5 (Strong Unique Neighbor Property of a Set). The set S
has the strong unique neighbor property if, for each v ∈ S, we have U(S, v) �= ∅.
Definition 6 (f-Strong Unique Neighbor Property of a Set). The set S
has the f -strong unique neighbor property if, for each v ∈ S, we have |U(S, v)| > f .

Remark 1. The latter is equivalent to the requirement that, for an arbitrary
selection of f vertices from R, the set S has the strong unique neighbor property
in the bipartite subgraph G′ obtained from G by removing this selection of f
vertices from R and by removing their incident edges from E.

Remark 2. Unlike the unique neighbor property, the (f -)strong unique neighbor
property is anti-monotonous in the following sense. If S has the (f -)strong unique
neighbor property and if S′ ⊂ S (and if f ′ ≤ f), than S′ has the (f ′-)strong
unique neighbor property. This follows trivially by exploiting that fact that, by
definition, “intersection with S can be prescribed.”
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Definition 7 ((f1, f2)-Strong Unique Neighbor Property of a Graph G).
The bipartite graph G = (L,R,E) has the (f1, f2)-strong unique neighbor prop-
erty if each set S ⊂ L with |S| = f1 has the f2-strong unique neighbor property.

By an earlier remark, it follows that this property is anti-monotonous in the
sense that the (f1, f2)-strong unique neighbor property implies the (f ′

1, f
′
2)-strong

unique neighbor property if f ′
1 ≤ f1 and f ′

2 ≤ f2.
The unique neighbor property has been widely considered before and it has

many known applications. There are also several applications of an approximate
version of the strong unique neighbor property, namely where the property is
only guaranteed to hold for a given fraction of each set S.

The following lemma collects some immediate, useful consequences of the
definitions.

Lemma 1. Let G = (L,R,E) be a d′-right-bounded bipartite graph. Suppose
there are nonnegative integers f1, f2 and a cover of L consisting of sets S ⊂ L
such that |S| = f1 such that S has the f2-strong unique neighbor property. Then
each of the following holds.

(1) |R| ≥ N(S) ≥ f1(f2 + 1), for each S in the cover.
(2) For each v ∈ L, it holds that |N({v})| ≥ f2 + 1.
(3) d′ ≥ (f2 + 1) |L|

|R| if R �= ∅.

Proof. Fix an arbitrary v ∈ L. Let S ⊂ L be such that v ∈ S, |S| = f1 and S
has the f2-strong unique neighbor property. Such S exists by the cover condition.
Since we have U(S, v) ⊂ N({v}) in general and since we have |U(S, v)| ≥ f2 + 1
by the choice of S, the second claim follows. As to the third claim, we have

d′|R| ≥ |E| ≥ (f2 + 1)|L|,

where the inequality on the left follows by the definition of d′-right-boundedness
and where the inequality on the right follows from the second claim. As to the
first claim, since the sets U(S, v) ⊂ R with v ∈ S are pairwise disjoint in general
and since each of them satisfies |U(S, v)| ≥ f2 + 1 by the choice of S, we have
that

|R| ≥ |N(S)| ≥ f1(f2 + 1).

�
Of course, the lemma holds if the graph has the (f1, f2)-unique neighbor prop-

erty. But its actual formulation under the weaker cover condition is convenient
for a purpose later on.

4.2 Details of the Proof

We show the following theorem, which immediately implies Theorem3 by
the correspondence between bi-partite graphs and the balls-and-buckets game
explained in the introduction.
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Theorem 5. There is an effective construction that, for each k > 1, gives a
bipartite graph G = (L,R,E) such that

(1) |L| = |R| = ck2 where 4 < c < 16,
(2) G is d′-right-bounded with d′ = k
(3) G has the (f1, f2)-strong unique neighbor property with f1 = f2 = k.

Moreover, under our conditions that f1, f2 ∈ Ω(k) and that |R| = O(|L|), each
of the achieved parameters for |L| and d′ is asymptotically optimal.

To prove this theorem, we now show the claimed construction and provide
its analysis. The optimality claim is an immediate consequence of Lemma 1; by
substitution of the conditions (dictated by our application to Sigma-protocols),
we get |L| ∈ Ω(k2) and we get d′ ∈ Ω(k).

Now let H be a ρ-universal family of hash functions h : X → Y . Thus, for
each x, x′ ∈ X with x �= x′, the collision probability that h(x) = h(x′) is at most
ρ if h ∈ H is selected uniformly random.5

We define a bipartite graph G = (X,H × Y,E) as follows. For a pair

(x, (h, y)) ∈ X × (H × Y ) ,

we declare
(x, (h, y)) ∈ E if and only if h(x) = y.

We also define
d′ = max(h,y)∈H×Y |{h−1(y)}|,

the maximum preimage size. Thus, the graph G is d′-right-bounded. Note that
each of the degrees on the left equals |H|. Thus, the graph G is |H|-left-regular.

Before proceeding, we first argue why we may exclude the case ρ = 0. This
case arises if and only if each of the functions is injective. Now, even if some
h ∈ H is injective, this implies that |Y | ≥ |X|. So, under our condition that
|R| = O(|L|), it should be the case that |H| is constant. But this leads to
a contradiction. Namely, since G is |H|-left-regular, it follows that G is left-
bounded by a constant. But, by Lemma1, each of the left-degrees is greater
than f2 and f2 ∈ Ω(k) by our condition. So we assume ρ �= 0.

Lemma 2. Let S ⊂ X be nonempty. Then, for each x ∈ S, it holds that

(1 − ρ(|S| − 1)) |H| ≤ |U(S, x)| ≤ |H|
Proof. The inequality on the RHS follows from the facts that U(S, x) ⊂ N({x})
in general and that, by |H|-left-regularity of G, we have |N({x})| = |H|. As to the
inequality on the LHS, fix S. In the case that |S| = 1, we have U(S, x) = N({x})
and, once again by |H|-left-regularity, we have |N({x})| = |H|. So the inequality
follows. Now assume |S| > 1 and fix x ∈ S. Consider the neighborhood of x, i.e.,
the set

N({x}) = {(h, h(x)) : h ∈ H} ⊂ H × Y.

5 Note that ρ = 0 only if each h ∈ H is injective.
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It is clear at once that

|U(S, x)| = |{h ∈ H : for each x′ ∈ S \ {x}, it holds that h(x) �= h(x′)}|

Fixing x′ ∈ S\{x} for now, there are at most ρ|H| hash functions h such that
h(x) = h(x′), by definition of collision probability. Hence, the number of hash
functions h such that h(x) = h(x′) for some x′ ∈ S \{x} is at most ρ|H|(|S|−1).
In conclusion, the number of hash functions h such that h(x) �= h(x′) for each
x′ ∈ S \ {x} is at least (1 − ρ(|S| − 1)) |H| and the claim follows. �

Note that the lemma only gives a nontrivial result if |S| < 1 + 1/ρ.
Let p be a prime number with p ≥ 2k + 1. By Bertrand’s Postulate, there

exists such prime p with p < 4k. Now consider the family with

H = Fp,X = F2
p, Y = Fp

such that, for h ∈ Fp, the corresponding hash function is defined as

h : F2
p → Fp

(x0, x1) �→ x0h + x1.

One verifies directly that for this family we can take

ρ = 1/p and d′ = p.

Setting |S| = k, it follows by Lemma 2 that, for each x ∈ S, we have

|U(S, x)| ≥ (1 − (k − 1)/p)p = p − k + 1.

Therefore, |U(S, x)| > k if the prime p satisfies p ≥ 2k + 1. This concludes
the proof of Theorem 5.

4.3 Alternative Approaches and Generalization

An alternative constructive approach can be based on graphs G with “excellent
expansion,” a basic concept from the theory of expander graphs. We say that a
d-left-bounded graph G expands excellently on a set S ⊂ L if the neighborhood
N(S) ⊂ R of S satisfies

|N(S)| ≥ (1 − ε)d|S|
where ε is a nonnegative real number with

ε < 1/2.

Excellent expansion is well-known to imply the unique neighbor property. We
adapt the arguments so as to imply the (f1, f2)-strong unique neighbor property
instead, in certain parameter regimes. Then we discuss elementary construction
of suitable expander graphs. We elaborate below.
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The following lemma is well-known.

Lemma 3. Suppose G is d-left-bounded. If N(S) ≥ (1 − ε)d|S|, then

|U(S)| ≥ (1 − 2ε)d|S|.

Proof. Since G is d-left-bounded, there are at most d|S| edges “emanating”
from S and “arriving” at N(S). Write m1 for the number of vertices w ∈ N(S)
with |S ∩ N({w})| = 1. Then we have the obvious bound

m1 + 2(|N(S)| − m1) ≤ d|S|.

Therefore,
m1 ≥ 2|N(S)| − d|S|.

Since |N(S)| ≥ (1 − ε)d|S|, it follows that

m1 ≥ (1 − 2ε)d|S|,

as desired. �
Using a “greedy argument” the f -strong unique neighbor property for a set

is implied by a large unique neighbor set, as follows. Let δ be a real number with
0 < δ ≤ 1.

Lemma 4. Suppose that G is d-left-bounded (d > 0) and that S ⊂ L is non-
empty. Write |U(S)| ≥ (1 − δ)d|S|, where δ is a real number with 0 ≤ δ ≤ 1.
If

δ|S| < 1 − f

d
,

the set S has the f-strong unique neighbor property.

Proof. If |S| = 1, say S = {v}, then it follows at once that |U(S, v)| =
N({v})| > f and the claim follows. So now assume |S| > 1. Using a pigeon-
hole argument, we see that, if

(1 − δ)d|S| − f

|S| − 1
> d, (∗)

then the set S has the f -strong unique neighbor property. Indeed, consider the
subgraph G′ obtained by removing some f vertices from R and by removing
their incident edges from E. Towards a contradiction, suppose S does not have
the strong unique neighbor property in G′. Say it fails on some v ∈ S. Then the
inequality implies that there is some v′ ∈ S \ {v} with degree greater than d,
which contradicts the fact that, just as the graph G, its subgraph G′ is d-left-
bounded. The proof is finalized by observing that the inequality (∗) is equivalent
to the inequality δ|S| < 1 − f/d. �

By combining Lemmas 3 and 4 we get the following sufficient condition for
the f -strong unique neighbor property of a set S ⊂ L.
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Corollary 1. Suppose G is d-left-bounded (d > 0) and suppose S ⊂ L is non-
empty. If, for some nonnegative real number ε and for some nonnegative integer
f , it holds that

(1) N(S) ≥ (1 − ε)d|S| and
(2) 2ε|S| < 1 − f

d ,

then S has the f-strong unique neighbor property.

Remark 3. In order to satisfy the conditions, it is necessary that ε < 1/2i.e.,
expansion is excellent.

We now discuss constructions based on this excellent expansion approach.
Recall that, under the constraints that f1, f2 ∈ Ω(k) and that |R| = O(|L|),
we wish to minimize |L| (the size of the set of left-vertices) and d′ (the right-
degree). From the conditions in Corollary 1, we then have that 1/ε ∈ Ω(k) and
that d ∈ Ω(k).

Observe that the construction in Theorem5 gives excellent expansion for all
sets of size k. Namely, by Lemma 1, the size of the neighborhood of a set of size
k equals (p − k + 1)k, where p = c′k for some constant c′ > 2. Therefore, in this
case, ε = (1 − 1/k) · 1/c′ < 1/2 but 1/ε = c′k/(k − 1) ∈ O(1). In conclusion, the
result of Theorem 5 cannot also be obtained by application of Corollary 1, except
for less favorable parameter settings. Namely, it would require setting p super-
linear in k, thus rendering |L| super-quadratic. Furthermore, since d ∈ Ω(k),
excellent constant left-degree expander graphs [CRVW02] do not apply here.
A (well-known) variation on the greedy counting arguments above shows that
a combination of excellent expansion and constant left-degree does imply an
approximate version of the f -strong unique neighbor property, i.e., it holds for
a certain fraction of each S. But this notion is not sufficient for our present
purposes.

To illustrate this approach based on excellent expansion, we show a construc-
tion from random permutations instead. This is in contrast with the determin-
istic approach in Theorem5 where permutations had to be excluded. We use a
classical result by Bassalygo [Bas81] who showed a Monte Carlo construction of
bipartite graphs with excellent expansion. Basically, a (d, d)-bi-bounded bipartite
graph with |L| = |R| is constructed by “taking the union” of d random perfect
bipartite matchings (or, equivalently, permutations). In general, the probability
of success of this procedure is high but not exponentially close to 1. Therefore,
it is not sufficient for our purposes. However, choosing convenient parameters in
the procedure, one can show that each individual set S of size k has the required
expansion with probability of success exponentially (in k) close to 1. It is not
hard to see that this weaker “probabilistic, set-wise” property is sufficient for
our purposes as well. The downside, in addition to being Monte Carlo, is that |L|
here is cubic instead of quadratic. All in all, this leads to the following theorem.

Theorem 6. There is an efficient construction that, for each k ≥ 1, gives a
bipartite graph G = (L,R,E) such that
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(1) |L| ∈ O(k3) and |R| = |L|,
(2) G is O(k)-right-bounded,
(3) for each fixed set S ⊂ L with |S| = k, it holds that S has the k-strong unique

neighbor property, except with exponentially small (in k) probability.

Remark 4. Lemma 1 implies that such a probabilistic approach obeys the same
lower bounds that |L| ∈ Ω(k2) and d′ ∈ Ω(k) as in the deterministic case,
conditioned on f1, f2 ∈ Ω(k) and |R| = O(|L|). In a nutshell, there is a small
cover of L by sets S of size f1 such that, by a union-bound argument, each set
S in this cover has the f2-strong unique neighbor property, with probability still
extremely close to 1.

We will prove Theorem 6 by combining Corollary 1 with Proposition 1 below.
Suppose |L| = |R| = n. Write L = {v1, . . . , vn} and R = {w1, . . . , wn}. For a
permutation π on {1, . . . , n}, define E(π) ⊂ L × R as the set of edges

{(v1, wπ(1)), . . . , (vn, wπ(n))}.

Suppose 1 ≤ d ≤ n. For a d-vector Π = (π1, . . . , πd) of (not-necessarily
distinct) permutations on {1, . . . , n}, define the set

E(Π) =
d⋃

j=1

E(πj) ⊂ L × R

and define the bipartite graph

G(Π) = (L,R,E(Π)).

Note that G is a (d, d)-bi-bounded (undirected) bipartite graph (without
multi-edges). We have the following proposition.

Proposition 1. Let G = (L,R,E) be a random (d, d)-bi-bounded bipartite graph
with |L| = |R| = n as described above. Let α be a real number with 0 < α < 1.
Then, for any fixed set S ⊂ L with |S| = αn, it holds that

N(S) ≥ (d − 2)|S|,
except with probability

p′
S ≤

(
d2αe

2(1 − α)

)2αn

,

where e denotes Euler’s constant.

Proof. Choose the d permutations π1, . . . , πd sequentially. For convenience,
write S = {1, . . . , s}. For i = 1, . . . , s and j = 1, . . . , d, consider the random
variables

Xj
i ,

the image of i ∈ S under the permutation πj . We now think of these as “ordered”
X1

1 , . . . , X1
s ,X2

1 , . . . , X2
s , . . ., “increasing” from left to right.
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For given Xj
i , condition on all “prior” random variables in the ordering. The

probability that Xj
i is a repeat, i.e., it lands in what is N(S)-so-far is at most

d|S|
n − i + 1

≤ d|S|
n − |S| .

Here the denominator on the LHS is due to the fact that when choosing the
image of i, the i − 1 distinct images of 1, . . . , i − 1 are already taken. Hence,
the probability p′

S that the event |N(S)| ≤ (d − 2)|S| occurs is at most the
probability of the event that there are 2|S| repeats. By the union bound, the
latter probability is clearly at most

(
d|S|
2|S|

)(
d|S|

n − |S|
)2|S|

Therefore,6

p′
S ≤

(
d|S|
2|S|

)(
d|S|

n − |S|
)2|S|

≤
(

de

2

)2|S| (
d|S|

n − |S|
)2|S|

=
(

d2αe

2(1 − α)

)2αn

.

�
The proposition and its proof are adapted from the classical expander graph

construction due to Bassalygo [Bas81]. Our exposition follows (part of) the
proof of Theorem 4.4 in [Vad12]. The reason we do not apply the Bassalygo
result directly is that the success probability of the construction of an excel-
lent expander is high (i.e., constant) but still much too small for our purposes.
Fortunately, we can do with the slightly weaker requirement on G that, for any
fixed set S of precisely the dictated size, the probability that the set S does not
expand excellently is negligibly small. As this saves two applications of the union
bound, one to quantify over all sets S of the dictated size and one to quantify
over the subsets of size smaller than the dictated size, we get exponentially small
failure probability instead of constant.

Now let c1, c2 be arbitrary positive integers. Set

(1) f1 = c1k, f2 = c2k.
(2) d = c3k with c3 = c1 + c2 + 1.
(3) α = 1

d2e+1 .
(4) n = m = c1

α k = (d2e + 1)c1k = (c23ek
2 + 1)c1k = c1c

2
3ek

3 + c1k.

Then, for each fixed set S ⊂ L with |S| = f1, it holds that S has the f2-strong
unique neighbor property, except with exponentially small (in k) probability

p′ ≤
(

1
2

)2c1k

6 Note that
(
r
s

)s ≤ (r
s

) ≤ ( re
s

)s
.
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Namely, for each set S of size K = αn = c1k = f1, it holds that N(S) ≥
(d − 2)|S|. Note that ε = 2/d here. This means that the second condition for
the f2-strong unique neighbor property of sets of this size is f1 + f2 < d. This is
satisfied by definition. Efficiency of the construction is obvious. This concludes
the proof of Theorem6.

4.4 A Generalized Construction and Proof of Theorem 4

We now generalize the construction from Theorem 6 to get one where the number
of nodes can be much smaller compared to the size of the special set S at the
price that the unique neighbour property holds only in a weaker sense.

Recall that U(S, v) is the set of all w ∈ R such that

N({w}) ∩ S = {v}.

The set U(S) is the union of U(S, v) for all v ∈ S.

Definition 8 ((s, r)-Approximate Unique Neighbour Property of a
Set). Given a bipartite graph G = (L,R,E), the set S ⊆ L has (s, r)-
approximate unique neighbour property if there exists a subset S1 ⊆ S of size
s such that for any set T ⊆ R of size r, we have

|U(S, v) − T | > 0 ∀v ∈ S1.

We may ask whether such set exists. Our following lemma answers this
question.

Lemma 5. Suppose G = (L,R,E) is d-left-bounded. If U(S) ≥ (1−ε)d|S|, then
the set S has (s, r)-approximate unique neighbour property for s = (1−ε)|S|− r

d .

Proof. Let T ⊆ R of size r. Let T1 = U(S) − T and S1 ⊆ S be the set such that
for any v ∈ S1, N(v) ∩ T1 �= φ. Since deg(v) ≤ d, there are at least |T1|

d vertices
contained in S1. We are done.

Combining Lemmas 5 and 3, we get a sufficient condition for the unique
neighbour property of a set S ⊆ L.

Corollary 2. Suppose G is d-left-bounded. If N(S) ≥ (1 − ε)d|S|, then the set
S ⊆ L has (s, r)-approximate unique neighbour property for s = (1 − 2ε)|S| − r

d .

Now, if in Proposition 1, we set |S| = k, n = O(k1+2c), ε = 2
d and d = kc for

a constant 0 < c < 1, we can proceed in a way similar to the proof of Theorem6,
and get the following theorem, which immediately implies Theorem4.

Theorem 7. There is an efficient construction that, for each k ≥ 1 and for a
constant 0 < c < 1, gives a bipartite graph G = (L,R,E) such that

(1) |L| = |R| = O(k1+2c),
(2) G is O(kc)-right-bounded,
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(3) for each fixed set S ⊆ L with |S| = k, it holds that S has the (k − 5k1−c, k)-
approximate unique neighbour property, except with exponentially small
(in k) probability.
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Abstract. We describe a new succinct zero-knowledge argument pro-
tocol with the following properties. The prover commits to a large
data-set M , and can thereafter prove many statements of the form
∃w : Ri(M,w) = 1, where Ri is a public function. The protocol is
succinct in the sense that the cost for the verifier (in computation &
communication) does not depend on |M |, not even in any initialization
phase In each proof, the computation/communication cost for both the
prover and the verifier is proportional only to the running time of an
oblivious RAM program implementing Ri (in particular, this can be
sublinear in |M |). The only costs that scale with |M | are the computa-
tional costs of the prover in a one-time initial commitment to M .

Known sublinear zero-knowledge proofs either require an initializa-
tion phase where the work of the verifier is proportional to |M | and are
therefore sublinear only in an amortized sense, or require that the com-
putational cost for the prover is proportional to |M | upon each proof.

Our protocol uses efficient crypto primitives in a black-box way and
is UC-secure in the global, non-programmable random oracle, hence it
does not rely on any trusted setup assumption.

1 Introduction

A zero-knowledge proof (or argument) allows a prover to convince a verifier that
a statement ∃w : R(w) = 1 is true, without revealing anything about the witness
w. In this work we study the problem of zero-knowledge proofs concerning large
datasets. For example, suppose Alice holds a large collection of files, and wants
to prove that there is a file in her collection whose SHA3-hash equals some public
value.

Most techniques for zero-knowledge proofs are a poor fit for proving things
about large data, since they scale at least linearly with the size of the witness.
For realistically large data, it is necessary to adopt methods that have sublinear
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cost. There are several existing techniques for zero-knowledge proofs/arguments
that have sublinear cost:

PCP Techniques: Kilian [27] and Micali [30] were the first to describe proof
systems in which the verifier’s cost is sublinear. The technique makes use of
probabilistically checkable proofs (PCPs), which are proofs that can be ver-
ified by inspecting only a small (logarithmic) number of positions. Followup
work has focused on improving the performance of the underlying PCP systems
[4,6,9]. Besides the fact that constructing a PCP proof is still quite an inefficient
procedure, the main drawback of the PCP approach is that if the prover wants
to prove many statements about a single dataset M , he/she must expend effort
proportional to |M |, for each proof.

SNARKs: Succinct non-interactive arguments of knowledge (SNARKs)
[8,10,11,17] are the most succinct style of proof to-date. In the most efficient
SNARKs, the verifier only processes a constant number of group elements. Born
as a theoretically intriguing object that pushed the limit of proof length to the
extreme, SNARKs have won the attention of the practical community [7,8,13,33]
after an open-source library (libsnark [1]) was created, proving the concrete effi-
ciency of such approach and resulting in its use in real-world applications such
as Zerocash [5]. However, similar to the PCP approach, the main drawback of
SNARKs is that each proof requires work for the prover that is proportional
to the size of the dataset. Moreover, while SNARKs do require a trusted CRS,
they are not directly compatible with the UC-framework due to their use of non
black-box knowledge extraction (A recent work [28] put forward “snark-lifting”
techniques to upgrade SNARKS into UC-secure NIZK. This transformation how-
ever results in zero-knowledge proofs whose sizes are linear in the witness instead
of constant as in regular SNARKs).

Oblivious RAM: A recent trend in secure computation is to represent compu-
tations as RAM programs rather than boolean circuits [2,22,24]. This leads to
protocols whose cost depends on the running time of the RAM program (which
can be sublinear in the data size). Looking more closely, however, the RAM
program must be an oblivious RAM. An inherent feature of oblivious RAM pro-
grams is that there must be an initialization phase in which every bit of memory
is touched. In existing protocols, this initialization phase incurs linear cost for
all parties. Therefore, RAM-based protocols are sublinear only in an amortized
sense, as they incur an expensive setup phase with cost proportional to the
data size.

Our Results. We construct a zero-knowledge argument based on RAM programs,
with the following properties:

– A prover can commit to a large (private) dataset M , and then prove many
statements of the form ∃wi : Ri(M,wi) = 1, for public Ri.

– The phase in which the prover commits to M has |M | computation cost for
the prover. This is the only phase in which the prover’s effort is linear in
M , but this effort can be reused for many proofs. Unlike prior ZK proofs



Sublinear Zero-Knowledge Arguments for RAM Programs 503

based on RAM programs [24], the cost to the verifier (in communication &
computation) is constant in this initial phase. Unlike other approaches based
on PCPs & SNARKs, the expensive step for the prover can be reused for
many proofs about the same data.

– The communication/computation cost for both parties in each proof is pro-
portional to the running time of a (oblivious) RAM program implementing
Ri. In particular, if Ri is sublinear in |M |, then the verifier’s cost is sublinear.
In succinct proofs based on PCP/SNARKs, on the other hand, computation
cost for the prover is always proportional to |M |.

– The protocol is proven UC-secure based only on a global, non-programmable
random oracle. In particular, there are no trusted setup assumptions.

On Non-standard Assumptions. Our protocol uses a non-programmable random
oracle. We point out that if one wishes to achieve UC security in a succinct
protocol, then some non-standard-model assumption is required. In particular,
the simulator must be able to extract the dataset M of a corrupt prover during
the commitment phase. In the standard model, this would require the prover to
send at least |M | bits of data in the protocol.1

A global (in the sense of [12]), non-programmable random oracle is arguably
the mildest non-standard-model assumption. We point out that SNARKs
also use non-standard-model assumptions, such as the knowledge of exponent
assumptions (KEA), which are incompatible with the UC framework [28].

2 Our Techniques

Our goal is to construct ZK proofs where the overhead of the verifier does not
depend on |M |, not even in the initialization phase. Moreover we insist the
computational overhead for P when computing a proof is proportional only to
the running time of the RAM program representing R(M,w), and not on |M |.
The latter requirement immediately rules out any circuit-based approach, such
as PCP proof, or SNARKs where the relation R(M,w) is unrolled into a boolean
circuit of size at least |M |.

Towards achieving complexity that is proportional only to the running time
of R, the starting point is to represent R as a (oblivious) RAM program. An
oblivious RAM [31] is a RAM program whose access pattern (i.e., the set I of
memory addresses accessed, along with whether the accesses are reads or writes)
leaks nothing about the private intermediate values of the computation. The
transformation from an arbitrary RAM computation to an oblivious one incurs
a small polylogarithmic overhead in running time and in the size of the memory.
However, once the memory is in an ORAM-suitable format, it can be persistently
reused for many different ORAM computations.

Hu et al. [24] provide a ZK proof of knowledge protocol for RAM programs
that is sublinear in the amortized sense: the protocol has an initial setup phase
1 Work that pre-dates the UC security model avoids this problem by using a simulator

that rewinds the prover — a technique that is not possible in the UC model.
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in which both parties expend effort proportional to |M |. After this initialization
phase, each proof of the form “∃w : R(M,w) = 1” has cost (for both par-
ties) proportional only to the running time of R(M,w). There are other works
[2,15,16,18,29] that can be used to construct malicious-secure two-party com-
putation of general functionalities based on RAM programs. Compared to [24],
these other techniques are overkill for the special case of ZK functionalities. All
of these techniques result in sublinear performance only in the amortized sense
described above.

Our goal is to achieve similar functionality as [24] without expensive effort by
the verifier in the initialization phase. Looking more closely at the initialization
phase of [24], the two parties engage in a secure two-party protocol where they
jointly compute a shared representation of each block of M (specifically, a garbled
sharing, where the verifiers has values l0, l1 for each bit, while the prover learns
lb if the corresponding bit of M is b).

Towards removing the verifier’s initial overhead, a natural approach is to
remove the participation of V in the setup phase, and have P commit succinctly
to the memory using a Merkle Tree. Then later in the proof phase, P can prove
that the RAM program accepts when executed on the values stored within the
Merkle Tree.

Technical Challenge (Extraction): Unfortunately, this natural approach leads
to challenges in the UC model. Consider a malicious prover who convinces a
verifier of some statement. For UC security, there must exist a simulator that
can extract the (large) witness M . But since the main feature of this proof is that
the total communication is much shorter than |M |, it is information-theoretically
impossible for the simulator to extract M in the standard model.

Instead, we must settle for a non-standard-model assumption. We use the
global random oracle (gRO) of [12], which equips the UC model with a global,
non-programmable random oracle. Global here means that the same random
oracle is used by all the protocol executions that are run in the world, and
this framework was introduced precisely to model the real world practice of
instantiating the random oracle with a single, publicly known, hash function.

A non-programmable random oracle allows the simulator to observe the
queries made by an adversary. Suppose such an oracle is used as the hash func-
tion for the Merkle tree. Then the simulator can use its ability to observe an
adversary’s oracle queries to reconstruct the entire contents of the Merkle tree
from just the root alone.

Now that the Merkle tree is constructed with a random oracle as its hash
function, authenticating a value to the Merkle tree is a computation that involves
the random oracle. Hence, we cannot use a standard ZK proof to prove a state-
ment that mentions the logic of authenticating values in the Merkle tree. Any
Merkle-tree authentication has to take place “in the open.” Consequently, the
leaves of the Merkle tree need to be revealed “in the open” for each authenti-
cation. Therefore, the leaves of the Merkle tree must not contain actual blocks
of the witness, but commitments to those blocks (more specifically, UC commit-
ments so the simulator can further extract the RAM program’s memory).
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Another challenge for extraction comes from the fact that the Merkle tree
contains only an ORAM-ready encoding of the logical data M . A simulator can
extract the contents of the Merkle tree, but must provide the corresponding
logical data M to the ideal functionality. We therefore require an ORAM scheme
with the following nonstandard extractability property: Namely, there should be
a way to extract, from any (possibly malicious) ORAM-encoded initial memory,
corresponding logical data M that “explains” the ORAM-encoded memory. We
formally define this property and show that a simple modification of the Path
ORAM construction [36] achieves it.

Consistency Across Multiple ORAM Executions. An oblivious RAM program
necessarily performs both physical reads and writes, even if the underlying logi-
cal RAM operations are read-only. This means that each proof about the contents
of M modifies M . Now that the verifier has no influence on the Merkle-tree com-
mitment of M , we need a mechanism to ensure that the Merkle-tree commitment
to M remains consistent across many executions of ORAM programs.

Additionally, an ORAM also requires a persistent client state, shared between
different program executions. However, in our setting it suffices to simply con-
sider a distinguished block of memory — say, M [0] — as the storage for the
ORAM client state.

To manage the modifications made by RAM program executions, we have
the prover present commitments to both the initial value and final value of each
memory block accessed by the program. The prover (A) proves that the values
inside these commitments are consistent with the execution of the program; (B)
authenticates the commitments of initial values to the current Merkle tree; (C)
updates the Merkle tree to contain the commitments to the updated values. In
this way, the verifier can be convinced that RAM program accepts, and that the
Merkle tree always encodes the most up-to-date version of the memory M .

In more detail, the protocol proceeds as follows. In the initialization phase,
the prover processes M to make it an ORAM memory. She commits individually
to each block of M and places these commitments in a Merkle tree. She sends
the root of the Merkle tree to the verifier.

Then (repeatedly) to prove R(M) = 1 for an oblivious RAM program R, the
parties do the following:

1. The prover runs R in her head. Let I be the set of blocks that were accessed
in this execution. Let M [I] denote the initial values in M at those positions,
and let M ′[I] denote the values in those positions after R has terminated.

2. The prover sends I to the verifier, which leaks no information if the RAM
program is oblivious.

3. The prover sends the commitments to the M [I] blocks which are stored in
the Merkle tree. She authenticates each of them to the root of the Merkle
tree.

4. The prover generates commitments to the blocks of M ′[I] and sends them to
the verifier. She gives authenticated updates to the Merkle tree to replace the
previous M [I] commitments with these new ones.
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5. The prover then proves in zero-knowledge that the access pattern I, the values
inside the commitments to M [I], and the values inside the commitments to
M ′[I] are consistent with an accepting execution of R (i.e., R indeed generates
access pattern I and accepts when M [I] contains the values within the com-
mitments that the prover has shown/authenticated). Importantly, the witness
to this proof consists of only the openings of the commitments to M [I] and
M ′[I] and not the entire contents of M . We can instantiate this proof using
any traditional (linear-time) ZK proof protocol.

Note that the cost to the prover is linear in |M | in the initialization phase,
although the communication cost is constant. The cost to both parties for each
proof depends only on the running time of R. Also, all Merkle-tree authentica-
tions are “in the open,” so the approach is compatible with a random-oracle-
based Merkle tree.

Note that ORAM computations inherently make read/write access to their
memory, even if their logical computation is a read-only computation. Hence our
protocol has no choice but to deal with reads and writes by the program R. As
a side effect, our protocol can be used without modification to provably perform
read/write computations on a dataset.

Technical Challenge (Black-Box Use of Commitments): Since our construction
will already use the global random oracle model, we would like to avoid any
further setup assumptions. This means that the UC commitments in our scheme
will use the random oracle.

At the same time, the last step of our outline requires a zero-knowledge
proof about the contents of a commitment scheme. We therefore need a method
to prove statements about the contents of commitments in a way that treats the
commitment scheme in a black-box way.

Towards this, we borrow well-known techniques from previous work on black-
box (succinct) zero-knowledge protocol [23,25,32]. Abstractly, suppose we want
to commit to a value m and prove that the committed value satisfies f(m) = 1.
A black-box commitment to m will consist of UC-secure commitments to the
components of (e1, . . . , en), where (e1, . . . , en) ← Code(m) is an encoding of
m in an error correcting code. The prover uses (e1, . . . , en) as a witness in a
standard ZK proof that f(Decode(e1, . . . , en)) = 1. The statement being proven
does not mention commitments at all. However, we show how to modify the ZK
proof so that it reveals to the verifier a random subset of the ei components
as a side-effect. The verifier can then ask the prover to open the corresponding
ei-commitments to prove that they match.

Suppose the error-correcting encoding has high minimum distance. Then in
order to cheat successfully, the prover must provide a witness to the ZK proof
with many ei values that don’t match the corresponding commitments. But,
conditioned on the fact that enough ei’s are revealed, this would lead to a high
chance of getting caught. Hence the prover is bound to use a witness in the ZK
proof that coincides with the contents of the commitment.
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We note that each black-box commitment is used in at most two proofs — one
when that block of memory is written and another when that block of memory
is read. This fact allows us to choose a coding scheme for which no information
about m is revealed by seeing two random subsets of ei’s.

In summary it suffices to construct a modified ZK proof protocol that reveals
a random subset of the ei witness components. We show two instantiations:

– In the “MPC in the head” approach of [25], the prover commits to views of an
imagined MPC interaction, and opens some subset of them. For example, the
computation of f(Decode(e1, . . . , en)) may be expressed as a virtual 3-party
computation where each simulated party has an additive share of the ei’s.
The prover commits to views of these parties and the verifier asks for some of
them to be opened, and checks for consistency.
We modify the protocol so that the prover commits not only to each virtual
party’s view, but also commits individually to each virtual party’s share of
each ei. A random subset of these can also be opened (for all virtual par-
ties), and the verifier can check them for consistency. Intuitively, the ei’s
that are fully revealed are bound to the ZK proof. That is, the prover can-
not deny that these ei values were the ones actually used in the computation
f(Decode(e1, . . . , en)).

– The ZK protocol of Jawurek et al. [26] is based on garbled circuits. In fact,
their protocol is presented as a 2PC protocol for the special class of functions
that take input from just one party (and gives a single bit of output). This
special class captures zero-knowledge, since we can express a ZK proof as an
evaluation of the function fx(w) = R(x,w) for an NP-relation R, public x,
and private input w from the prover. In other words, ZK is a 2PC in which
the verifier has no input.
We show that their protocol extends in a very natural way to the case of 2PC
for functions of the form f(x, y) = (y, g(x, y)) — i.e., functions where both
parties have input but one party’s input is made public. Then in addition to
proving that f(Decode(e1, . . . , en)) = 1, we can let the verifier have input that
chooses a public, random subset of ei’s to reveal. As above, the prover cannot
deny that these are the ei values that were actually used in the computation
of f(Decode(e1, . . . , en)) = 1.

Technical Challenge (Non-interactive UC-Commitments in the gRO): In the
above outline, we assume that the commitment scheme used in the construc-
tion is instantiated with a UC-secure commitment scheme in the gRO model.
For our application we crucially need a UC-commitment with non-interactive
commitment phase, meaning that a committer can compute a commitment
without having to interact with the verifier. To see why this is crucial, recall that
in the Setup phase the prover needs to commit to each block of the memory M
using a UC-commitment. If the commitment procedure was interactive, then the
verifier (who is the receiver of the commitment) will need to participate. This
would lead to a linear (in |M |) effort required for the verifier.



508 P. Mohassel et al.

Unfortunately, known UC-commitments in the gRO model [12] are interac-
tive2. Therefore, as an additional contribution, in this work we design a new
commitment scheme that is UC-secure in the gRO and has non-interactive com-
mitment and decommitment. Our new commitment scheme is described in Fig. 5.

Optimal Complexity by Combining ORAM and PCP. It is possible to achieve
optimal complexity (i.e., polylog|M | for V and O(T ) for P , where T is the
program’s running time) by combining ORAM and PCP-based ZK proofs as
follows. Upon each proof, P runs the ORAM in his head and succinctly commits
to the ORAM states (using Merkle Tree, for example). Then P proves that the
committed ORAM states are correct and consistent with the committed memory
M , using PCP-based ZK. The use of PCP guarantees that V only reads a few
positions of the proof, while the use of ORAM bounds the work of P to O(T ).
Unfortunately, this approach requires a non-black-box use of the hash function,
and as such it is not compatible with the use of random oracles, and does not
yield itself to efficient implementation.

Note that plugging in the black-box succinct ZK proof developed in [23]
would not give the desired complexity. Very roughly, this is because proving
consistency of T committed positions using [23]’s techniques, requires to open
at least T paths.

3 Preliminaries

3.1 The gRO model

This global random oracle model was introduced by Canetti et al. in [12] to
model the fact that in real world random oracles are typically replaced with a
single, publicly known, hash function (e.g., SHA-2) which is globally used by all
protocols running in the world. The main advantage of adopting gRO, besides
being consistent with the real world practice of using a global hash function, is
that we are not assuming any trusted setup assumption. In order to be global, the
gRO must be non programmable. This means that the power of the simulator
lies exclusively in his ability to observe the queries made by an adversary to
gRO. Therefore, when modeling a functionality in the gRO model, [12] provides
a mechanism that allows the simulator for a session sid to obtain all queries to
gRO that start with sid.

The global random oracle functionality GgRO of [12] is depicted Fig. 1. GgRO

has the property that “leaks” to an adversary (the simulator) all the illegitimate
queries3. The reader is referred to [12] for further details on the gRO model.

2 Several techniques exist that construct equivocal commitments from an extractable
commitment, and could be potentially adopted in the gRO model. Unfortunately, all
such techniques require interaction.

3 In each session sid, an illegitimate query to GgRO is a query that was made with an
index sid′ �= sid.
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3.2 Ideal Functionalities

We require a commitment functionality Ftcom for the gRO model; we defer details
to the full version.

The main difference with the usual commitment functionality is that in Ftcom,
the simulator of session sid, requests the set Qsid of queries starting with prefix
sid submitted to GgRO.

Our final protocol realizes the zero-knowledge functionality described in
Fig. 2. It captures proving recurring statements about a large memory M where
M can be updated throughout the process. This functionality consists of two
phases: in the Setup phase, the prover sends a dataset M , for a session sid. This
is a one-time phase, and all subsequent proofs will be computed by Fzk over the
committed dataset M . In the Proof phase, P simply sends the relation Rl that
he wishes to run over the data M , and possibly a witness w. A relation can be
seen as a RAM program that takes in input (M,w). The evaluation of the RAM
program can cause M to be updated.

Our main protocol can be seen as a way to reduce Fzk (succinct ZK of
RAM execution) to a series of smaller zero-knowledge proofs about circuits. The
functionality FC1,C2

check (Fig. 3) captures a variant of ZK proofs for boolean circuits
that we require. In particular, while in standard ZK only the prover has input
(the witness), in this generalization the verifier also has input, but its input
will be revealed to the prover by the end of the proof. Later we show how to
instantiate this functionality using either the garbled-circuit-based protocol of
[26] or the MPC-in-the-head approach of [19,25].

3.3 Encoding Scheme

A pair of polynomial time algorithms (Code,Decode) is an encoding scheme with
parameters (d, t, κ) if it satisfies the following properties.

– The output of Code is a vector of length κ.
– Completeness. For all messages m, m = Decode(Code(m)).
– Minimum distance: For any m �= m′, the two codewords Code(m) and
Code(m′) are different in at least d indices.

– Error correction: For any m, and any codeword C that is different from
Code(m) in at most d/2 positions, m ← Decode(C).

– t-Hiding. For any m, any subset of 2t indices of Code(m) information-
theoretically hide m.

Let s ∈ N denote the statistical security parameter. We observe that we
can use Reed-Solomon codes to obtain an encoding satisfying the above prop-
erties with κ = 4s, d = 2s, and t = s. To encode a message m from a finite
field F, we generate a random polynomial P of degree 2s over F such that
P (0) = m. The codeword is the evaluation of P at κ = 4s different points i.e.
C = (P (1), . . . , P (4s)). To decode a message, we use the well-known decoding
algorithm of Berlekamp and Welch for Reed-Solomon codes.
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Fig. 1. GgRO

Fig. 2. Fzk

Fig. 3. FC1,C2
check

Hiding follows from the security of Shamir’s Secret Sharing: any t = 2s points
on a polynomial of degree 2s do not leak any information about the secret P (0).
Minimum distance d = 2s follows from the observation that if two encodings
agree in more than 2s points, then they must in fact be the same polynomial
and hence encode the same value. Error correction follows from the Berlekamp-
Welch decoding algorithm, which can efficiently correct errors up to half the
minimum distance.
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3.4 Oblivious RAM Programs

Oblivious RAM (ORAM) programs were first introduced by Goldreich and
Ostrovsky [21]. ORAM provides a wrapper that encodes a logical dataset as a
physical dataset, and translates each logical memory access into a series of phys-
ical memory accesses so that the physical memory access pattern leaks nothing
about the underlying logical access pattern.

Syntactically, let Π be a RAM program that operates on memory M and also
takes an additional auxiliary input w. We write (M ′, z) ← Π(M,w) to denote
that when Π runs on memory M and input w, it modifies the memory to result
in M ′ and outputs z.

We use M to represent the logical memory of a RAM program and M̂ to
indicate the physical memory array in Oblivious RAM program. We consider all
memory to be split into blocks, where M [i] denotes the ith block of M .

An Oblivious RAM (wrapper) consists of algorithms (RamInit,RamEval) with
the following meaning:

– RamInit takes a security parameter and logical memory M as input, and out-
puts a physical memory M̂ and state st.

– RamEval takes a (plain) RAM program Π, auxiliary input w, and state st

as input, and outputs an updated memory M̂ ′, updated state st, and RAM
output z.

In general these algorithms are randomized. When we wish to explicitly refer to
specific randomness used in these algorithms, we write it as an additional explicit
argument ω. When we omit this extra argument, it means the randomness is
chosen uniformly.

Definition 1. Let (RamInit,RamEval) be an ORAM scheme. For all M and
sequences of RAM programs Π1, . . . , Πn and auxiliary inputs w1, . . . , wn, and
all random tapes ω0, . . . , ωn, define the following values:

– RealOutput(M,Π1, . . . , Πn, w1, . . . , wn):
Set M0 = M . Then for i ∈ [n], do (Mi, zi) = Πi(Mi−1, wi). Return
(z1, . . . , zn).

– OblivOutput(M,Π1, . . . , Πn, w1, . . . , wn, ω0, . . . , ωn):

Set (M̂0, st0) = RamInit(1k,M ;ω0). Then for i ∈ [n], do (M̂i, sti, z
′
i) =

RamEval(Πi, M̂i−1, sti−1, wi;ωi). Return (z′
1, . . . , z

′
n).

The ORAM scheme is correct if RealOutput(M,Π1, . . . , Πn, w1, . . . , wn) and
OblivOutput(M,Π1, . . . , Πn, w1, . . . , wn, ω0, . . . , ωn) agree with overwhelming
probability over choice of random ωi.

The ORAM scheme is sound if for all ω0, . . . , ωn, the vectors RealOutput
(M,Π1, . . . , Πn, w1, . . . , wn) and OblivOutput(M,Π1, . . . , Πn, w1, . . . , wn, ω0,
. . . , ωn) disagree only in positions where the latter vector contains ⊥.
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In our protocol, we allow the adversary to choose the randomness to the ORAM
construction. The soundness property guarantees that the adversary cannot use
this ability to falsify the output of the RAM program. At worst, the adversary
can influence the probability that the RAM program aborts.

In our protocol, the simulator for a corrupt prover can extract only the
ORAM-initialized memory M̂ . However, the simulator must give the logical
memory M to the ideal functionality. For this reason, we require an ORAM
construction that is extractable in the following sense:

Definition 2. An ORAM scheme (RamInit,RamEval) is extractable if there is
a function RamExtract with the following property. For all (possibly maliciously
generated) (M̂, st), all M and sequences of RAM programs Π1, . . . , Πn and aux-
iliary inputs w1, . . . , wn define the following:

– Set M0 ← RamExtract(M̂, st). Then for i ∈ [n], do (Mi, zi) = Πi(Mi−1, wi).
Return (z1, . . . , zn).

– Set (M̂0, st0) = (M̂, st). Then for i ∈ [n], do (M̂i, sti, z
′
i) =

RamEval(Πi, M̂i−1, sti−1, wi). Return (z′
1, . . . , z

′
n).

Then with overwhelming probability z′
i ∈ {zi,⊥} for each i.

In other words, RamExtract produces a plain RAM memory that “explains” the
effect of (M̂, st). The only exception is that a malicious M̂, st could cause the
ORAM construction to abort more frequently than a plain RAM program.

Let AccessPattern(Π, M̂,w, st;ω) denote the access pattern describing the
accesses to physical memory made by RamEval(Π, M̂,w, st;ω). The access pat-
tern is a sequence of tuples of the form (read, id) or (write, id), where id is a
block index in M̂ .

Definition 3. We say that a scheme (RamInit,RamEval) is secure if there exists
an efficent S such that, for all M,Π, and w, the following two distributions are
indistinguishable:

– Run S(1k, |M |,Π, |w|).
– Run (M̂, st) ← RamInit(1k,M), then return AccessPattern(Π, M̂,w, st).

In other words, the access pattern leaks no information about M or w.

Note that the output of AccessPattern contains only the memory locations and
not the contents of memory. Hence, we do not require the ORAM construc-
tion to encrypt/decrypt memory contents — they will be protected via other
mechanisms in our protocol.

Our definitions of soundness and extractability are non-standard. We discuss
how to modify existing ORAM constructions to achieve these definitions in the
full version.
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3.5 Trapdoor Commitment

We construct UC commitments from trapdoor commitments with the follow-
ing properties: (a) the trapdoor is used only to compute the decommitment,
(b) knowledge of the trapdoor allows to equivocate any previously computed
commitment (as long as the state z is known). Such a commitment scheme can
be based on Pedersen’s perfectly hiding commitment scheme [35]. Details and
formal definitions for this instantiation are given in the full version.

4 Succinct Zero-Knowledge Proof for RAM Programs

4.1 Protocol Description

Overview. The protocol consists of two phases: a (one-time) setup phase, and a
proof phase.

In the setup phase the prover commits to the ORAM memory M̂ in a black-
box friendly manner. That is, for each memory location M̂ [i], P first computes an
encoding of M̂ [i] resulting in shares (xi,1, . . . , xi,κ), then it commits to each share
xi,j independently, obtaining commitments Ni = (cxi,1, . . . , cxi,κ). Committing
to each share independently will allows the prover to later selectively open a
subset of t shares. Ni is then placed in the i-th leaf of the Merkle Tree. Similarly,
P will also commit to the ORAM state st used to computed M̂ , by committing
to its shares (s1, . . . , sκ). At the end of the setup phase, the verifier receives the
root of the Merkle Tree, and the commitments to the encoding of the initial
ORAM state.

In the l-th proof phase, the prover first runs the ORAM program correspond-
ing to relation Rl in her head. From this, she will obtain the access pattern I,
the updated contents of memory, and the final ORAM state st′.

P will then commit to this information, using again the black-box friendly
commitment outlined above. The verifier at this point receives the set of positions
I as well as commitments to all the encodings. Then, to prove consistency of
such computation in a black-box manner, P will invoke the Fcheck functionality
(Fig. 3) that does the following:

1. Decode the shares received in input and reconstruct initial ORAM state st,
initial memory blocks {M̂ [i]} read by the ORAM computatation, the final
ORAM state st′ and the updated value {M̂ [i]} of any memory blocks accessed
during the ORAM computation.

2. Run the ORAM evaluation on input st and the given initial memory block.
Check that the program indeed generates access pattern I, updates the mem-
ory to the values provided, and outputs the updated state provided.

3. If the check above is successful, then output a subset of t shares from each
encoding received in input.

This invocation of Fcheck is described in greater detail below. It checks only that
the encodings provided by P lead to an accepting computation. As it is, this does
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not prove anything about whether this computation is consistent with the initial
memory committed in the setup phase, and with the previous proofs. To glue
such encodings to the values that P has committed outside the functionality,
we have P open also to a subset of t commitments. In this way, the verifier
can be convinced that the values that made the Fcheck functionality accept are
consistent with the ones committed by P .

Notation. We use upper case letters to denote vectors, while we use lower case
letters to denote a string. For example, notation Z = (z1, . . . , zn) means that
vector Z has components z1, . . . , zn. Notation Z[i] denotes the ith component
of vector Z and is equivalent to value zi. We use bold upper case to denote a
collection of vectors. For example, S = {S1, S2, . . .}.

Moreover, in the protocol, we shall use notation Xi to denote the value of
memory block i before the proof is computed, while we use notation Yi to denote
the value of memory block i after the proof. Similarly we used notation S, S′ to
denote the encoding of a pre-proof and post-proof ORAM state, respectively.

Let UCCom = (Gen,Com,Dec,Ver) be a UC-secure commitment scheme that
has non-interactive commitment and the decommitment phase. In Sect. 5 we give
an instantiation of such a scheme in the gRO model. Let (Code,Decode) be an
encoding scheme with parameters (d, t, κ). Let (RamInit,RamEval) be a secure
ORAM scheme. Our (stateful) ZK protocol Π= (Π.Setup,Π.Proof) is described
in Figs. 4 and 5.

Fig. 4. Setup phase
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a

Fig. 5. Proof phase

The FC1,C2

check Circuits

ORAM Components: Let I be an ORAM memory access sequence. We define
read(I) = {i | (read, i) ∈ I},write(I) = {i | (write, i) ∈ I}, and access(I) =
read(I) ∪ write(I); i.e., the indices of blocks that are read/write/accessed in I.
If S = {s1, . . . , sn} is a set of memory-block indices, then we define M [S] =
(M [s1], . . . ,M [sn]).
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Next, we describe the exact check circuits C1 and C2 we need for our main
protocol. The check circuit C2,I(r) is straightforward. Given bit string r, it
returns 1 if rγ = 1 in at most t locations.

Given an ORAM access pattern I, we let the witness W consist of the aux-
iliary input w and a collection of encodings of: the initial ORAM state S, the
final ORAM state S′, the input memory blocks X = (X1, . . . , X|read(I)|), and
the output/resulting memory blocks Y = (Y1, . . . , Y|access(I)|). The check circuit
C1,I(W) is defined as follows:

C1,I(w,S, S′,X,Y):
st := Decode(S)
simulate RamEval(Π, M̂, st, w) in the following way:

whenever a block i of M̂ is accessed:
if i �∈ access(I) then return 0
else if the access is a read: take Decode(Xi) as the result of the access
else if the access is (write, v), set M̂ ′[i] = v

if the above simulation of RamEval does not return 1, then return 0
if the above simulation does not result in access pattern I, then return 0
if the above simulation results in ORAM state st′ �= Decode(S′) then return 0
for i ∈ access(I): if M̂ ′[i] �= Decode(Yi) then return 0
return 1

4.2 Instantiation Fcheck

Instantiating FC
check using JKO Protocol. JKO refers to a zero-knowledge

protocol of Jawurek et al. [26]. The protocol is based on garbled circuits and is
quite efficient, requiring only a single garbled circuit to be sent.

We first give an overview of the JKO protocol. Abstractly, suppose the prover
would like to prove knowledge of a witness w such that R(w) = 1, where R is a
public function/circuit.

1. The verifier generates a garbled circuit implementing R. The parties then
perform instances of oblivious transfer, where the verifier acts as receiver.
The verifier sends the garbled inputs for the garbled circuit, and the prover
picks up a garbled input encoding the witness w.

2. The verifier sends the garbled circuit and the prover evaluates it, resulting in
a garbled output. Since R has a single output bit, this is a single wire label
(the wire label encoding output “true”, if the prover is honest). The prover
commits to this garbled output.

3. The verifier opens the garbled circuit so the prover can check that it was
garbled correctly. In the JKO protocol, this is done using committed OT in
step (1). The verifier “opens” its inputs to these OTs, revealing the entire set
of garbled inputs. This is enough for the prover to verify the correctness of
the garbled circuit.
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4. If the prover is satisfied that the circuit was garbled correctly, then she opens
her commitment to the garbled output.

5. The verifier accepts the proof if the prover’s commitment is opened to the
“true” output wire label of the garbled circuit.

The protocol is zero-knowledge because a simulator can extract the entire
set of garbled inputs from the OTs in step (1). Then the simulator can compute
the “true” output wire label and commit to it instep (2).

The protocol is sound due to the authenticity property of the garbled circuit.
Namely, given a garbled input encoding w and the garbled circuit, it should
be hard to guess an output wire label other than the one encoding truth value
R(w). (See [3] for the formal definition) This authenticity property holds in step
(2) when the prover must commit to the output wire label. After step (3), the
prover can compute any garbled output for the garbled circuit, but the prover
has already committed to the garbled output at that point.

Importantly, the prover is the only party with private input to the garbled
circuit. But the prover plays the role of garbled circuit evaluator. Hence, the
protocol does not use the traditional privacy security property of garbled circuits.
This is also the reason that the same garbled circuit can be both evaluated and
checked. Doing this in a more general 2PC is problematic since opening/checking
a circuit would reveal the secrets of the garbled circuit’s generator. In this case,
that party is the verifier and has no secrets to reveal.

Modifications. With some minor modifications, the JKO protocol can be used
to efficiently instantiate the FC1,C2

check functionality. The main differences are:

– The computation gives more than a single bit output.
– The computation takes input from the verifier (r) as well as the prover. We

are able to handle this in the JKO protocol paradigm because r is eventually
made public to the prover.

The modified JKO protocol proceeds as follows.

1. The verifier generates a garbled circuit computing the function C̃(W) =
[if C2(r) then C1(W, r) else ⊥]. The parties perform a committed OT for
each input bit, in which the prover obtains garbled input encoding W.

2. The verifier sends the garbled circuit and the prover evaluates it, resulting in
a garbled encoding of the (many-bit) output z = C̃(W). The prover commits
to the garbled output.

3. The verifier opens the committed OTs, revealing all garbled inputs. The ver-
ifier also sends r at this point. The prover can check whether the garbled
circuit was generated correctly.

4. The prover, if satisfied, opens the commitment to the garbled output and
sends the plain output z = C̃(W). The prover outputs (r, sid).

5. The verifier outputs (z, sid) if the commitment is opened to the valid garbled
encoding of z.
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Lemma 4. The modified JKO protocol above is a UC-secure realization of
FC1,C2

check , in the committed-OT + commitment hybrid model, if the underlying
garbling scheme satisfies the authenticity property.

Instantiating FC1,C2

check using IKOS. IKOS refers to the general approach intro-
duced in [25] for obtaining ZK proofs in the commitment-hybrid model for arbi-
trary NP statements, given any generic MPC protocol. Recently, Giacomelli et.
al [19] explored and implemented a concrete instantiation of the IKOS approach
based on the GMW protocol [20] among three parties. Their optimized con-
struction is only slightly less efficient than the JKO protocol [26] but instead
has the advantage of being a public-coin Σ protocol that can be efficiently made
a non-interactive Zero-knowledge proof using the Fiat-Shamir transform.

We first recall the IKOS approach and show how we can modify it to real-
ize the FC1,C2

check functionality for any circuits C1, C2. As mentioned above, the
main ingredient is a Σ protocol with special soundness and honest-verifier Zero-
knowledge property:

The prover has an input W and wants to prove that C1(W) = 1 where C1 can
be any public circuit. Let Π be a t-private n-party MPC protocol with perfect
correctness. The protocol proceeds as follows.

– Prover generates n random values Wi such that W =
⊕n

i=1 Wi.
– Prover runs (on its own) the n-party MPC Π for computing C1(

⊕
i Wi) where

party Pi’s input is Wi, and obtains the view vi = ViewPi
(W) for all i ∈ [n].

– Prover commits to v1, . . . , vn.
– Verifier chooses a random subset E ⊂ [n] where |E| = t, and sends E to

prover.
– Prover opens the commitment to ve for all e ∈ E.
– Verifier checks that:

• For all e ∈ E, ve yields the output 1 for Pe.
• For all e, e′ ∈ E, the view of Pe and Pe′ (ve and v′

e) are consistent.
• If any of the checks fail it rejects. Else it accepts.

The above protocol has a soundness probability that is a function of n and t.
But this probability can be easily amplified by repeating the protocol multiple
times in parallel for different runs of Π and using different random challenges E
each time. This parallel version remains a Σ protocol as desired.

We need to enhance the above protocol to also take a random string r sat-
isfying C2(r) for a circuit C2 as Verifier’s input and reveal those locations in
the witness W[i] where ri = 1. The above Σ protocol can be easily extended to
handle this case. We simply have the verifier send r along with E to the Prover.
Prover checks that C2(r) = 1 and if the case, it opens commitments W[i] for all
i where ri = 1. This is in addition to the views it opens to achieve soundness.

1. Prover generates n random values Wi such that W =
⊕n

i=1 Wi.
2. Prover runs (on its own) the n-party MPC Π for computing C1(

⊕
i Wi)

where party Pi’s input is Wi, and obtains the view vi = ViewPi
(W) for all

i ∈ [n].
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3. Prover commits to W1[j], . . . ,Wn[j] for all j ∈ [|W|] and v1, . . . , vn.
4. Verifier chooses a random subset E ⊂ [n] where |E| = t, and sends E and its

input r to the prover.
5. Prover aborts if C2(r) �= 1. Else it opens commitment to Wi[j] for all i ∈ [n]

and all j where rj = 1.
6. Prover also opens the commitment to ve for all e ∈ E and to We[j] for all

j ∈ [|W|].
7. Verifier checks that:

(a) For all e ∈ E, the opened We and ve are consistent, i.e. We is correctly
embedded in ve.

(b) For all e ∈ E, ve yields the output 1 for Pe.
(c) For all e, e′ ∈ E, the view of Pe and Pe′ (ve and v′

e) are consistent.
(d) If any of the checks fail it rejects. Else it accepts.

The above protocol is a public-coin, honest-verifier protocol. We can trans-
form it into a zero-knowledge protocol by letting the verifier commit to his
random challenge before the prover sends the first message.

Lemma 5. The modified IKOS protocol above is a secure realization of
the FC1,C2

check functionality, when the commitments are instantiated with UC
commitments.

5 A New UC-Commitment in the gRO Model

In [12], Canetti et al. show a UC commitment scheme that is secure in the
gRO model. Such a commitment scheme is based on trapdoor commitments
(e.g., Pedersen’s Commitment). The main idea is to have the receiver choose
parameters (pk, sk) of a trapdoor commitment, have the sender commit using
pk, and later, in the decommitment phase, before revealing the opening, have
the receiver reveal the trapdoor sk (this is done in such a way that despite
revealing sk, binding is still preserved). This trick allows to achieve equivocability
without programming the RO. On the other hand, this trick has the fundamental
drawback of requiring that each commitment is computed under a fresh public
key pk. (To see why, note that if more than one commitment is computed under
the same public key, then binding holds only if all such commitments are opened
at the same time.). This is highly problematic in our setting, where the prover
commits to each element of the memory, as the verifier would need to provide
as many public keys as the size of the memory.

Therefore, we design a new commitment scheme in the gRO model that sat-
isfies the crucial property that the receiver can send one public key pk at the
beginning, and the sender can re-use it for all subsequent commitments.

The idea behind our new scheme is fairly simple. The receiver R will pick two
public keys (pk0, pk1) for a trapdoor commitment scheme. Additionally, R com-
putes a non-interactive witness indistinguishable proof of knowledge (NIWI) π,
proving knowledge of one of the secret keys skb. R then sets the parameters of the
commitment as pk = (pk0, pk1, π). NIWI proofs of knowledge can be constructed
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from any Σ-protocol in the gRO model using the transformation of [14,34].
A self-contained description of this technique is deferred to the full version. For
concrete efficiency, one can instantiate the trapdoor commitment with Peder-
sen’s commitment. In this case the public keys are of the form pk0 = g0, h

trap0

and pk1 = g1, h
trap1 , and proving knowledge of the secret key skb corresponds to

simply prove knowledge of the exponent trapb. The parameters pk so generated
are used for all subsequent commitments.

To commit to a message m, S first splits m as m0,m1 s.t. m = m0 ⊕ m1.
Then S computes commitments C0 and C1 to m0 and m1 as follows.

First, commit to mb, i.e., cb
msg = TCom(pkb,mb) using the trapdoor com-

mitment scheme. Then, S queries gRO with the opening of cb
msg, and receives

an answer ab
C . At this point, S commits to the answer ab

C using again TCom,
resulting in commitment cb

ro. The commitment Cb will then consist of the pair
Cb = (cb

msg, c
b
ro). Intuitively, the commitment is extractable in the gRO model

since S is forced to commit to the answer of gRO, and hence the extractor
can simply extract the decommitments by observing the queries to gRO, and
checking that there exists at least a query q that corresponds to a valid opening
of cb

msg.
In the decommitment phase S simply opens the two commitments, and R

checks that cb
ro is indeed the commitment of the answer of gRO, on input the

decommitment of cb
msg. Note that the receiver R does not reveal any trapdoor (as

she already proved knowledge of one of them), and therefore the same pk can be
used again for a new commitment. To equivocate, the simulator simply extracts
the trapdoor skb from NIWI proof π (recall that π is straight-line extractable in
the gRO model), and uses it to equivocate commitments cb

msg, c
b
ro.

We describe the protocol in more details below. Further details proving
knowledge of a Pedersen commitment trapdoor are given in the full version.

Protocol UCCom. A New UC Commitment in the gRO Model. Let sid
denote the session identifier.

Setup Phase 〈Gen(C(1λ), R(1λ)〉.
– R computes (pk0, sk0) ← TCGen(1λ), and (pk1, sk1) ← TCGen(1λ). R com-

putes a NIWI proof of knowledge π for proving knowledge of skd for a random
bit d. R sends pk = (pk0, pk1, π) to C.

– If π is accepting, C records parameters pk0, pk1.

i-th Commitment Phase Com(sid, i,m): C randomly picks m0,m1 such that
m = m0 ⊕ m1. Then for each mb:

– Commit to mb: (cb
msg, d

b
msg) ← TCom(pk,mb).

– Query gRO on input (sid, i,S‖mb‖db
msg‖sb), where sb $← {0, 1}λ. Let aC be the

answer of gRO.
– Commit to ab

C : (cb
ro, d

b
ro) ← TCom(pk, aC). Set Cb = (cb

msg, c
b
ro).

Send C = [C0, C1] to R.



Sublinear Zero-Knowledge Arguments for RAM Programs 521

i-th Decommitment Phase: Dec(state)

– S sends D = [mb, db
msg, d

b
ro, a

b
C , sb] to R for each b ∈ {0, 1}.

– Ver(pk,D). The receiver R accepts m as the decommitted value iff all of
the following verifications succeed: (a) (b) TRec(cb

ro, a
b
C , db

ro) = 1, (c) ab
C =

gRO(sid,C‖mb‖db
msg‖sb), (d) TRec(cb

msg, mb, db
msg) = 1.

Theorem 6. Assume that (TCGen,TVer,TCom, TRec, TEquiv) is a Trapdoor
commitment scheme, that on-line extractable NIWI proof of knowledge exist
in the gRO model, then UCCom is UC-secure commitment scheme in the gRO
model.

Proof (Sketch).

Case R∗ is Corrupted. We show that there exists a simulator, that for conve-
nience we call SimCom, that is able to equivocate any commitment. The strategy
of SimCom is to first extract the trapdoor of skb for some bit b from the NIWI
π, then use the tradpoor skb to appropriately equivocate the commitment Cb.
The key point is that, because m = m0 ⊕ m1, equivocating one share mb will be
sufficient to open to any message m. The completed description of the simulator
SimCom is provided below.

Simulator SimCom
To generate a simulated commitment under parameters pk and sid:

– Parse pk as pk0, pk1, π. Extract skb from π (for some b ∈ {0, 1}) running
the extractor associated to the NIWI protocol, and by observing queries
to gRO for session sid. If the extractor fails, output Abort and halt.

– Compute cb̄
msg, d

b̄
msg = TCom(pkb̄,mb̄), where mb̄ is a random string.

– Query gRO and obtain: ab̄
C = gRO(sid,C‖mb̄‖db̄

msg‖sb̄).
– Compute cb̄

ro, d
b̄
ro = TCom(pkb̄, ab̄

C).
– Compute cb

msg, c
b
ro as commitments to 0.

To equivocate the simulated commitment to a value m:

– Compute mb = m ⊕ mb̄. Compute db
msg = TEquiv(skb, cmsg,m

b).
– Query gRO and obtain: ab

C = gRO(sid,C‖mb‖db
msg‖sb). Compute db

ro =
TEquiv(skb, cb

ro, a
b
C).

– Output (de
msg, d

e
ro, s

e) for e = 0, 1.

Indistinguishability. The difference between the transcript generated by SimCom
and an honest S is in the fact that SimCom equivocates the commitments using
the trapdoor extracted form pk, and that SimCom will abort if such trapdoor is
not extracted. Indistinguishability then follows from the extractability property
of π (which holds unconditionally in the gRO model) and due to the trapdoor
property of the underlying trapdoor commitment scheme.

Case S∗ is Corrupted. We show that there exists a simulator, that we denote
by SimExt, that is able to extract the messages m0,m1 already in the com-
mitment phase, by just observing the queries made to GgRO (with SID sid).
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The extraction procedure follows identically the extraction procedure of the
simulator shown in [12]. We describe SimExt in details below.
SimExt(sid, pk, C = [C0, Cb]).

– Parse pk = pk0, pk1, π. If π is not accepting halt. Else, parse Cb = cb
msg, c

b
ro for

b = 0, 1. Let Qsid be the list of queries made to gRO by any party.
– For b = 0, 1. If there exists a query q of the form q = sid‖‘C’‖mb‖db

msg‖sb

such that TRec(cb
msg,m

b, db
msg) = 1, the record mb, otherwise set mb = ⊥. Set

m = m0 ⊕ m1.
– Send (commit, sid, ‘C’, ‘R’,m′) to Ftcom.
– Decommitment phase: If the openings is not accepting, halt. Else, let m∗ be

the valid messages obtained from the decommitment. If m∗ = m, it sends the
message (decommit, sid, ‘C’, ‘R’) to the trusted party. Otherwise, if m∗ �= m,
then output Abort and halt.

Indistinguishability. The indistinguishability of the output of SimExt follows from
the witness indistinguishability property of the proof system, and the biding
property of the trapdoor commitment.

Due to the WI of π, any S∗ cannot extract secret key skb used by R. Thus,
if SimExt fails in extracting the correct opening, it must be that S∗ is breaking
the binding of commitment scheme. In such a case we can build an adversary A
that can use S∗ and the queries made by S∗ to gRO to extract two openings for
commitment cb̄

msg, c
b̄
ro.

6 Security Proof

Theorem 7. If UCCom = (Gen,Com,Dec,Ver) is a UC-secure com-
mitment scheme, with non-interactive commitment and decommitment
phase, (Code,Decode) is an encoding scheme with parameters (d, t, κ),
(RamInit,RamEval, Soram) is a secure ORAM scheme, then protocol Π =
(Π.Setup,Π.Proof) (Figs. 4 and 5), securely realizes Fzk functionality (Fig. 2).

Proof. The proof follows from Lemma9 and Lemma 8.

6.1 Case P is Corrupted

Lemma 8. If UCCom is UC-secure in the gRO model, (Code,Decode) is a
encoding scheme with parameters (d, t, κ), (RamInit,RamEval, Soram) is a secure
ORAM scheme. Then, protocol Π = (Π.Setup,Π.Proof) in Fig. 5 and Fig. 4
securely realizes Fzk in the FC1,C2

check (resp., FC
check) hybrid model, in presence of

malicious PPT prover P ∗.

Proof. The proof consists in two step. We first describe a simulator Sim for the
malicious P ∗. Then, we prove that the output of the simulator is indistinguish-
able from the output of the real execution.
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Simulator Intuition. At high level, the simulator Sim proceeds in two steps. In
the setup phase, Sim extracts the value committed in the nodes of the Merkle
Tree. Recall that a leaf Ni of the tree is just a concatenation of commitments of
shares of the memory block M̂ [i] (indeed, Ni = CXi= (cxi,1, . . . , cxi,κ)). Sim is
able to extract all commitments in CXi by observing the queries made to gRO
that are consistent with the published root h. Moreover, given such commit-
ments, Sim is able to further extract the shares by exploiting the extractability
property of UCCom (which, in turns, uses the observability of gRO.) Therefore,
by the end of the setup phase, Sim has extracted shares for each block i ∈ [m],
and reconstructed “its view” of the memory, that we denote by M̂�, as well as
the initial ORAM state st. Given M̂�, Sim will then be able to determine the
memory M�, by running extractor RamExtract(M̂, st), and sends it to the ideal
functionality Fzk.

In the proof phase, the goal of the simulator Sim is to continuously monitor
that each computation (each proof) is consistent with the memory M� initially
sent to Fzk. Intuitively, the computation is consistent if the memory values
input by P ∗ in each successful execution of Fcheck (which are represented in
encoded form Xi = [xi,1, . . . , xi,κ]), are “consistent” with the memory M� that
Sim has computed by extracting from the commitments; or more precisely, with
the encoding of the block memory extracted so far.

Upon the first proof, the simulator will check that the shares of M [i] sub-
mitted to Fcheck agree with the shares for block M�[i] extracted in the setup
phase. Here agree means that they decode to the same values. (Note that we do
not require that all shares agree with the ones that were extracted by Sim, but
we required that enough shares agree so that they decode to the same value).

After the first proof, P ∗ will also send commitments to the updated version
of the blocks j touched during the computation. (Precisely, the shares of each
block). As in Setup phase, Sim will extract these new blocks and update his view
of M� accordingly. In the next proof then, Sim will check consistency just as in
the first proof, but consistency is checked against the newly extracted blocks.

In each proof, when checking consistency, two things can go wrong. Case 1.
(Binding/extraction failure) When decommitting to the partial encodings (Step
3 of Fig. 5), P ∗ correctly opens values that are different from the ones previously
extracted by Sim. If this happens, that P ∗ either has broken the extractability
property of UCCom or has found a collision in the output of gRO. Thus, due to
the security of UCCom, this events happens with negligible probability.

Case 2. (Encoding failure) Assume that the t shares extracted by Sim corre-
spond to the t shares decommitment by P ∗, but that among the κ−t shares that
were not open, there are at least d shares that are different. This means that
the values decoded by Fcheck are inconsistent with the values that are decoded
from the extracted shares, which means that the computation in the protocol
is taking a path that is inconsistent with the path dictated by the M� initially
submitted by Sim.

We argue that this events also happen with negligible probability. Indeed,
due to the security of Fcheck we know that the position γ that P ∗ will need to
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decommit are unpredictable to P ∗. Thus, the probability that P ∗ is able to open
t consistent shares, while committing to d bad shares is bounded by: (1 − d

κ )t

which is negligible.

The Algorithm Sim. We now provide a more precise description of the simulator
Sim. Notation. We use notation X� to denote the fact that this is the “guess”
that Sim has on the value X after extracting from the commitment of CX.
During the proof phase, Sim will keep checking if this guess is consistent with
the actual values that P ∗ is giving in input to Fcheck.

Let SimExt be the extractor associated to UCCom and outlined in Sect. 5

Setup Phase. Run SimExt for the generation algorithm Gen. Upon receiving
commitments: CS = (cs1, . . . , csκ) and root h from P .

1. (Extract Commitments at the Leaves of Merkle Tree) For each query
made by P ∗ to gRO (sid, i‖l, P, C), set CX�

i [l] = C iff sid′ = sid and the
outputs of gRO along the paths to i are consistent with the root h. This is
done by obtaining the list of queries Q|sid from GgRO. At the end of this phase,
Sim has collected commitments CX�

i [i] that need to be extracted.
2. (Extract Shares.) Invoke extractor SimExt on input (sid, pk, CX�

i [l]) for all
i ∈ [m] and l ∈ [κ]. Let X�

i = (x�
i,1, . . . , x

�
i,κ) denote the openings extracted by

SimExt. Similarly, invoke SimExt on input (sid, pk, CS[l]) with for l ∈ [κ] and
obtain shares s�

1, . . . , s
�
κ for the initial state. Note that the extracted values

could be ⊥. Record all such values.
3. (Decode memory blocks M̂�[i]) For each i ∈ m, run bi =

Decode(x�
i,1, . . . , x

�
i,κ). If Decode aborts, then mark bi = ⊥. Set block memory:

M̂�[i] = bi. Similarly, set st = Decode(s1, . . . , sκ.
4. Determine the real memory M� as follows: M� = RamExtract(M̂, st). Send

(sid, INIT,M�) to Fzk.

l -proof. Input to this phase: (Public Input) Statement Rl, x. Private input
for Sim. For each memory block i, Sim has recorded the most updated shares
extracted: X�

i = [x�
i,1, . . . , x

�
i,κ]. The first time X�

i are simply the ones extracted
in the setup phase. In the l sub-sequent proof, X�

i is set to the values extracted
from the transcript of the l − 1 proof. Similarly, Sim has recorded the extracted
encodings of the ORAM state S� = [s�

1, . . . , s
�
κ].

1. Upon receiving commitments CYi (∀i ∈ access(I)); CS′, and new root h
′
.

Run SimExt on inputs (sid, pk, CYi) and obtain encoding Y �
i , and on input

(sid, CS′) to obtain the encoding of the ORAM state S′�.
2. Invoke SimFcheck

. If SimFcheck
aborts, then abort and output Fcheck

failure!!. If SimFcheck
halts, then halt.

Else, obtain P ∗’s inputs to Fcheck: W = (w S, S′, X,Y). Recall that
X = {X1, . . . , X|read(I)|} and Y = {Y1, . . . , Y|access(I)|}, where Xi, Yj are
encodings of blocks in position i and j. Sim records the above values as
comparison values for later.
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3. Upon receiving decommitments DXi[γ], and authentication paths πi

for i ∈ read(I); DYj [γ] for j ∈ access(I) and DS[γ], DS′[γ]. Let
Xi[γ],Xj [γ], S[γ], S′[γ] the value obtained from the decommitment.
Perform the verification step as an honest verifier V (Step. 3 of Fig. 5). If any
check fails, alt and output the transcript obtained so far. Else, perform the
following consistency checks.
(a) Check consistency of the commitments stored in the Merkle

tree. If there is exists an i s.t., the commitment CX�
i extracted in

Π.Setup phase, is different from the commitment CXi opened in the proof
phase (with accepting authentication path πi), then abort and output
Collision Failure!!!.

(b) Check binding/extraction. Check that, for all i ∈ read(I), all γ s.t.
rγ = 1 Xi[γ] = X�

i [γ], and for all j ∈ access(I) Yi[γ] = Y �
i [γ], and

S[γ] = S�[γ], S′[γ] = S′[γ]. If not, abort and output Binding Failure!!.
(c) Check correct decoding. Check that, for all i ∈ read(I), Decode(X�

i ) =
Decode(Xi); that for all j ∈ access(I), Decode(Y �

i ) = Decode(Yi), and
that Decode(S�) = Decode(S), Decode(S′) �= Decode(S′�). If any of this
check fails, abort and output Decoding Failure!!.

4. Send (PROVE, sid,Rl, w) to Fzk.
5. Update extracted memory and extracted state. For each i ∈ access(I):

Set X�
i = Y �

i , and S� = S′�.4

Indistinguishability Proof. The proof is by hybrids arguments. As outlined
at the beginning of the section, the crux of the proof is to show that the memory
M� extracted by Sim in Π.Setup, is consistent with all the proofs subsequently
provided by P ∗. In other words, upon each proof, the updates performed to the
memory in the real transcript are consistent with the updates that Fzk performs
on the memory M� sent by Sim in the ideal world.

Recall that, for each proof, Sim continuosly check that the memory blocks
used in Fcheck are consistent with the memory blocks committed (and extracted
by Sim). If this consistency is not verified, then Sim will declare failure and abort.

Intuitively, proving that the simulation is succesfull corresponds to prove that
the probability that Sim declares failure is negligible. Assuming secure implemen-
tation of Fcheck, the above follows directly from the (on-line) extractability of
UCCom, the collision resistance of gRO and the d-distance property of the encod-
ing scheme. We now proceed with the description of the hybrid arguments.

H0 (Real world). This is the real world experiment. Here Sim runs just like an
honest verifier. It outputs the transcript obtained from the executions.

H1 (Extracting witness from Fcheck). In this hybrid experiment Sim deviates
from the algorithm of the verifier V in the following way. In the proof phase, Sim

4 Recall that we use notation Xi to denote the in “initial version” of block i (before
the proof was computed) while we use notation Yi to denote the version of block i
after the proof. Similarly, S denotes the initial ORAM state (pre-proof), while S′

denotes the ORAM state obtained after the proof has been computed.
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obtain the witness W used by P ∗ in Fcheck, and it aborts if it fails in obtain-
ing such inputs. Due to the security of Fcheck H1 and H0 are computationally
indistinguishable.

H2 (Extracting the leaves of the Merkle Tree). In this hybrid Sim uses
to observability of gRO to obtain commitments CX�

i [l] for i ∈ [m], l ∈ [κ], and
it aborts if an (accepting) path πi, revealed by P ∗ in the proof phase, lead
to a commitment CXi[l] �= CX�

i [l]. This corresponds to the event Collision
Failure!!!. Due to the collision resistance property of gRO, probability of event
Collision Failure!!! is negligible, and hence, the transcript generated in H1

and H2 are statistically close.

H3 (Extracting openings from commitments). In this hybrid Sim invokes
SimExt to extract the opening from all commitments. The difference between
H3 and H2 is that in H3 Sim aborts every time event Binding Failure!!
occurs, which is negligible under the assumption that UCCom is an extractable
commitment.

H4 (Decoding from extracted shares). In this hybrid Sim determines each
memory block M̂�[i] by running Decode algorithm on the extracted shares X�

i .
That is, M̂�[i]=Decode(X�

i ).
Moreover, it checks that all the extracted encodings (i.e., Yi, S, S′) decodes

to the same values used in Fcheck (Step (c) in the algorithm Sim). In this hybrid
Sim aborts everytime events Decoding Failure!! happen.

Hence, to prove that experiment H3 and H4 are statistically indistinguish-
able, it is sufficient to prove that: Pr[Event DecodingFailure!!] = negl(κ). As
we argued in the high-level overview, event Decoding Failure!!happens with
probability (1 − d

κ )t, which is negligible in κ for t = 1/2κ.

H5 (Submit to Fzk the extracted memory M̂�) Ideal World. In this hybrid
Sim plays in the ideal world, using the memory M̂� extracted in the Setup phase.

We have proved that the value extracted by Sim are consistent with the values
sent in input to Fcheck. (Indeed, we have proved that all the failure events happen
with negligible probability). Due to the security of Fcheck it follows that each
proof l, is the a correct computation given the input blocks and the input ORAM
state5. Due to the above arguments we know that the value sent to Fcheck are
consistent with the memory blocks and ORAM state extracted so far. Putting
the two things together, we have that any accepting proof is computed on values
that are consistent with the committed values (extracted by Sim), which in turn
are generated from the first version of the memory M̂� extracted by Sim. This
experiment corresponds to the description of the simulator Sim, proving the
lemma.

5 Here we are also using crucially the fact that choosing a bad ORAM state does not
effect the correctness of the ORAM computation, but it can only effect the security
guarantees for the prover.
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6.2 Case V is corrupted

Lemma 9. If UCCom is an equivocal commitment scheme in the gRO
model, (Code,Decode) is an encoding scheme with parameters (d, 2k, κ),
(RamInit, RamEval, Soram) is a secure ORAM scheme. Then, protocol Π =
(Π.Setup,Π.Proof) in Fig. 5 and Fig. 4 securely realizes Fzk in the FC1,C2

check (resp.,
FC

check) hybrid model, in presence of malicious PPT verifier V ∗.

Proof Intuition. At high-level, assuming the Fcheck is securely implemented, the
transcript of the verifier simply consists of a set of commitments, and partial
encodings for each block memory touched in the computation and the ORAM
state. Due to the hiding (in fact equivocability) properties of the commitments
as well as the 2k hiding property of the encodings, it follows that by looking at
< 2t shares, V ∗ cannot distinguish the correct values of the memory/state from
commitments to 0. Moreover, due to the security of ORAM, the access pattern
I disclosed upon each proof, does not reveal any additional information about
the memory/ORAM state.

Following this intuition, the simulator for V ∗ follows a simple procedure. It
computes all commitments so that they are equivocal (i.e., it runs procedure
SimCom guaranteed by the security property of commitment scheme UCCom).
Upon each proof, Sim will run Soram to obtain the access pattern I, and the
simulator SimFcheck

to compute the transcript of Fcheck, and to obtain the partial
encodings that V ∗ is expected to see. Finally, Sim will simply equivocate the
commitments that must be opened, so that they actually open to the correct
partial encodings. The precise description of the simulator Sim is provided below.

The Algorithm Sim.

Setup Phase. Compute all commitments using algorithm SimCom(sid, pk,
com, ·). Compute Merkle tree correctly.

l-proof. Upon receiving (PROVE, sid,Rl, 1) from Fzk.

1. Run ORAM simulator S(1λ, |M̂ |) and obtain I.
2. Run SimCom to obtain commitments CYi for all i ∈ access(I) and commit-

ments CS′. Update the root of the Merkle Tree accordingly.
3. Run SimFcheck

to obtain the transcript for Fcheck and obtain the partial encod-
ings: Xi[γ], Yj [γ] for i ∈ read(I) and j ∈ access(I); S[γ], S′[γ], where γ is such
that rγ = 1, where r is the verifier’s input to Fcheck.

4. Equivocate commitments.
– For each i ∈ read(I), compute DXi[γ] ← SimCom(sid, pk, equiv, CXi[γ],

Xi[γ]) Moreover, retrieve path π in the tree.
– For each j ∈ access(I), compute DYi[γ] ← SimCom(sid, pk, equiv,

CYi[γ], Yi[γ]).
– Compute DS[γ] ← SimCom(sid, pk, equiv, DS[γ], DS[γ]),

DS′[γ] ← SimCom(sid, pk, equiv,DS′[γ],DS′[γ]).
5. Send decommitments to V ∗.
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Indistinguishability Proof. The proof is by hybrid arguments. We will move
from an experiment where Sim computes the transcript for V ∗ using real input
M and following the algorithm run by P (hybrid H0), to an hybrid where Sim
has not input at all (hybrid H3).

H0. This is the real world experiment. Sim gets in input M and simply follows
the algorithm of P (Figs. 4 and 5).

H1 (Compute Equivocal Commitments using SimCom). In this hybrid Sim
computes commitments using procedure SimCom(sid, pk, com, ·), which requires
no inputs, and decommit using SimCom(pk, equiv, · · · ), using the correct encod-
ings computed from M̂ . The difference between H1 and H2 is only in the way
commitments are computed. Due to the equivocability property of the commit-
ment scheme (in the gRO) model, it follows that H1 and H2 are statistically
indistinguishable. Note that at this point Sim still uses real values for M̂ to
compute the shares that will be later committed, and some of which will be
opened.

H2 (Run SimFcheck
). In this hybrid argument Sim computes the transcript of

Fcheck by running simulator SimFcheck
, and decommit to the share given in out-

put by Fcheck. Note that Fcheck will output t encodings for each block memory
and state. Note also that, if a block memory was accessed in a previous exe-
cution, then t shares of the encodings have been already revealed. For example
the encoding of the final state S′[1], . . . , S′[κ], which is the output state in an
execution �, will the the encoding used as initial state in proof �+1. This means
that for each encoding, the adversary R∗ collects 2k partials encodings. Due to
the security of ΠFcheck

, and to the 2k hiding property of the encoding scheme,
hybrids H2 and H1 are computationally indistinguishable.

H3 (Use ORAM simulator Soram). In this hybrid Sim will replace executions
of RamInit and RamEval with Soram. This is possible because the actual values
computed by RamInit and RamEval are not used anywhere at this point. Due
to the statistical security of (RamInit,RamEval, Soram) hybrids H3 and H4 are
statistically instinguishable. Note that in this experiment the actual memory
M is not used anywhere. This experiment corresponds to the description of the
simulator Sim, proving the lemma.
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Abstract. In this paper, we provide a necessary clarification of the good
security properties that can be obtained from parallel implementations
of masking schemes. For this purpose, we first argue that (i) the probing
model is not straightforward to interpret, since it more naturally captures
the intuitions of serial implementations, and (ii) the noisy leakage model
is not always convenient, e.g. when combined with formal methods for the
verification of cryptographic implementations. Therefore we introduce a
new model, the bounded moment model, that formalizes a weaker notion
of security order frequently used in the side-channel literature. Interest-
ingly, we prove that probing security for a serial implementation implies
bounded moment security for its parallel counterpart. This result there-
fore enables an accurate understanding of the links between formal secu-
rity analyses of masking schemes and experimental security evaluations
based on the estimation of statistical moments. Besides its consolidat-
ing nature, our work also brings useful technical contributions. First,
we describe and analyze refreshing and multiplication algorithms that
are well suited for parallel implementations and improve security against
multivariate side-channel attacks. Second, we show that simple refreshing
algorithms (with linear complexity) that are not secure in the continu-
ous probing model are secure in the continuous bounded moment model.
Eventually, we discuss the independent leakage assumption required for
masking to deliver its security promises, and its specificities related to
the serial or parallel nature of an implementation.

1 Introduction

The masking countermeasure is currently the most investigated solution to
improve security against power-analysis attacks [26]. It has been analyzed the-
oretically in the so-called probing and noisy leakage models [42,53], and based
on a large number of case studies, with various statistical tools (e.g. [16,60] for

c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part I, LNCS 10210, pp. 535–566, 2017.
DOI: 10.1007/978-3-319-56620-7 19



536 G. Barthe et al.

non-profiled and profiled attacks, respectively). Very briefly summarized, state-
of-the-art masking schemes are currently divided in two main trends: on the
one hand, software-oriented masking, following the initial work of Prouff and
Rivain [56]; on the other hand hardware-oriented masking (or threshold imple-
mentations) following the inital work of Nikova, Rijmen and Schläffer [50].

At CRYPTO 2015, Reparaz et al. highlighted interesting connections between
the circuit constructions in these two lines of works [55]. Looking at these links,
a concrete difference remains between software- and hardware-oriented masking
schemes. Namely, the (analyses of the) first ones usually assume a serial manip-
ulation of the shares while the (implementations of the) second ones encourage
their parallel manipulation.1 Unfortunately, the probing leakage model, that has
led to an accurate understanding of the security guarantees of software-oriented
masking schemes [31], is not directly interpretable in the parallel setting. Intu-
itively, this is because the parallel manipulation of the shares reveals information
on all of them, e.g. via their sum, but observing sums of wires is not permitted
in the probing model. As will be clear in the following, this does not limit the
concrete relevance of the probing model. Yet, it reveals a gap between the level
of theoretical understanding of serial and parallel masked implementations.

1.1 Our Contribution

Starting from the observation that parallelism is a key difference between soft-
ware and hardware-oriented masking, we introduce a new model – the bounded
moment model – that allows rigorous reasoning and efficient analyses of paral-
lel masked implementations. In summary, the bounded moment model can be
seen as the formal counterpart to the notion of security against higher-order
attacks [54,63], just as the noisy leakage model [53] is the formal counterpart to
information theoretic leakage metrics such as introduced in [59]. It allows us to
extend the consolidating work of [55] and to obtain the following results:

– First, we exhibit a natural connection between the probing model and the
bounded moment model. More precisely, we prove that security in the probing
model for a serial implementation implies security in the bounded moment
model for the corresponding parallel implementation.

– Next, we propose regular refreshing and multiplication algorithms suitable
for parallel implementations. Thanks to parallelism, these algorithms can be
implemented in linear time, with the same memory requirements as a serial
implementation (since masking requires to store all the shares anyway). Note
that the refreshing algorithm is particularly appealing for combination with
key-homomorphic primitives (e.g. inner product based [36]), since it allows
them to be masked with linear (time and randomness) complexity. As for
the multiplication algorithm, its linear execution time also provides improved
security against multivariate (aka horizontal) side-channel attacks [17].

1 This division between hardware and software is admittedly oversimplifying in view
of the improved capabilities of modern microprocessors to take advantage of paral-
lelism. So the following results in fact also apply to parallel software computing.
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– Third, we exhibit the concrete separation between the probing model and
the bounded moment model. For this purpose, we provide simple examples
from the literature on leakage squeezing and low-entropy masking schemes
showing that (for linear leakage funtions) it is possible to have a larger security
order in the bounded moment model than in the probing model [25,41]. More
importantly, we show that our simple refreshing algorithm is insecure in the
probing model against adversaries taking advantage of continuous leakage,
while it remains secure against such (practically relevant) adversaries in the
bounded moment model. This brings a theoretical foundation to the useful
observation that simple refreshing schemes that are sometimes considered in
practice (e.g. adding shares that sum to zero) do not lead to devastating
attacks when used to refresh an immutable secret state (e.g. a block cipher
key), despite their lack of security in the continuous probing model. Note that
the latter result is also of interest for serial implementations.

– Finally, we illustrate our results with selected case studies, and take advantage
of them to discuss the assumption of independent leakages in side-channel
attacks (together with its underlying physical intuitions).

1.2 Related Work

Serial Masking and Formal Methods. The conceptual simplicity of the
probing model makes it an attractive target for automated verification. Recog-
nizing the close similarities between information-flow policies and security in the
probing model, Moss, Oswald, Page and Turnstall [49] build a masking compiler
that takes as input an unprotected program and outputs an equivalent program
that resists first-order DPA. Their compiler performs a type-based analysis of
the input program and iteratively transforms the program when encountering
a typing error. Aiming for increased generality, Bayrak, Regazzoni, Novo and
Ienne [18] propose a SMT-based method for analyzing statistical independence
between secret inputs and intermediate computations, still in the context of first-
order DPA. In a series of papers starting with [38], Eldib, Wang and Schaumont
develop more powerful SMT-based methods for synthesizing masked implemen-
tations or analyzing the security of existing masked implementations. Their app-
roach is based on a logical characterization of security at arbitrary orders in the
probing model. In order to avoid the “state explosion” problem, which results
from looking at higher-orders and from the logical encoding of security in the
probing model, they exploit elaborate methods that support incremental verifica-
tion, even for relatively small orders. A follow-up by Eldib and Wang [37] extends
this idea to synthesize masked implementations fully automatically. Leveraging
the connection between probabilistic information flow policies and relational pro-
gram logics, Barthe, Beläıd, Dupressoir, Fouque, Grégoire and Strub [13] intro-
duce another approach based on a domain-specific logic for proving security in
the probing model. Like Eldib, Wang and Schaumont, their method applies to
higher orders. Interestingly, it achieves practicality at orders up to four for mul-
tiplications and S-boxes. In a complementary line of work, Beläıd, Benhamouda,
Passelegue, Prouff, Thillard and Vergnaud [19] develop an automated tool for
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finding probing attacks on implementations and use it to discover optimal (in
randomness complexity) implementations of multiplication at order 2, 3, and 4
(with 2, 4, and 5 random bits). They also propose a multiplication for arbitrary
orders, requiring d2

4 + d bits of randomness to achieve security at order d.
All these works focus on the usual definition of security in the probing

model. In contrast, Barthe, Beläıd, Dupressoir, Fouque and Grégoire introduce a
stronger notion of security, called strong non-interference (or SNI), which enables
compositional verification of higher-order masking schemes [14], and leads to
much improved capabilities to analyze large circuits (i.e. full algorithms, typi-
cally). Similar to several other security notions for the probing model, strong
non-interference is qualitative, in the sense that a program is either secure or
insecure. Leaving the realm of qualitative notions, Eldib, Wang, Taha, and
Schaumont [39] consider a quantitative relaxation of the usual definition of (prob-
ing) security, and adapt their tools to measure the quantitative masking strength
of an implementation. Their definition is specialized to first-order moments, but
the connections with the bounded moment model are evident, and it would be
interesting to explore generalizations of their work to our new model.

Threshold and Parallel Implementations. The inital motivation of Nikova,
Rijmen and Schläffer was the observation that secure implementations of mask-
ing in hardware are challenging, due to the risk of glitches recombining the
shares [45]. Their main idea to prevent this issue is to add a condition of non-
completeness to the masked computations (i.e. ensure that any combinatorial
circuit never takes all shares as input). Many different works have confirmed the
practical relevance of this additional requirement, making it the de facto stan-
dard for hardware masking (see [20–22,48,52] for a few examples). Our following
results are particularly relevant to threshold implementations since (i) in view
of their hardware specialization, they encourage a parallel manipulation of the
shares, (ii) most of their security evaluations so far were based on the estimation
of statistical moments that we formalize with the bounded moment model, and
(iii) their higher-order implementations suggested in [55] and recently analyzed
in [28] exploit the simple refreshing scheme that we study in Sect. 8.2.

Noisy Leakage Model. Note that the noisy leakage model in [53] also provides
a natural way to capture parallel implementations (and in fact a more general
one: see Fig. 7 in conclusions). Yet, this model is not always convenient when
exploiting the aforementioned formal methods. Indeed, these tools benefit greatly
from the simplicity of the probing model in order to analyze complex implemen-
tations, and hardly allow the manipulation of noisy leakages. In this respect,
the bounded moment model can be seen as a useful intermediate (i.e. bounded
moment security can be efficiently verified with formal methods, although its
verification naturally remains slower than probing security).

Eventually, we believe it is fundamentally interesting to clarify the connec-
tions between the mainstream (probing and) noisy leakage model(s) and con-
crete evaluation strategies based on the estimation of statistical moments. In
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this respect, it is the fact that bounded moment security requires a weaker inde-
pendence condition than probing security that enables us to prove the simple
refreshing of Sect. 8.2, which is particularly useful in practice, especially com-
pared to previous solutions for efficient refreshing algorithms such as [9]. Here
as well, directly dealing with noisy leakages would be more complex.

2 Background

In this section, we introduce our leakage setting for serial and parallel imple-
mentations. Note that for readability, we keep the description of our serial and
parallel computing models informal, and defer their definition to Sect. 5.

2.1 Serial Implementations

We start from the description of leakage traces in [32], where y is an n-bit
sensitive value manipulated by a leaking device. Typically, it could be the output
of an S-box computation such that y = S(x ⊕ k) with n-bit plaintext and key
words x and k. Let y1, y2, . . . , yd be the d shares representing y in a Boolean
masking scheme (i.e. y = y1⊕y2⊕. . .⊕yd). In a side-channel attack, the adversary
is provided with some information (or leakage) on each share. Concretely, the
type of information provided highly depends on the type of implementation
considered. For example, in a serial implementation, we typically have that each
share is manipulated during a different “cycle” c so that the number of cycles in
the implementation equals the number of shares, as in Fig. 1(a). The leakage in
each cycle then takes the form of a random variable Lc that is the output of a
leakage function Lc, which takes yc and a noise variable Rc as arguments:

Lc = Lc(yc,Rc) , with 1 ≤ c ≤ d . (1)

That is, each subtrace Lc is a vector, the elements of which represent time
samples. When accessing a single sample τ , we use the notation Lτ

c = Lτ
c (yc,Rc).

From this general setup, a number of assumptions are frequently used in the
literature on side-channel cryptanalysis. We consider the following two (also
considered in [32]). First, we assume that the leakage vectors Lc are independent
random variables. This a strict requirement for masking proofs to hold and will
be specifically discussed in Sect. 9. Second, and for convenience only, we assume
that the leakage functions are made of a deterministic part Gc(yc) and additive
noise Rc so that Lc = Lc(yc,Rc) ≈ Gc(yc) + Rc. Note that the + symbol here
denotes the addition in R (while ⊕ denotes a bitwise XOR).

2.2 Parallel Implementations

We now generalize the previous serial implementation to the parallel setting. In
this case, the main difference is that several shares can be manipulated in the
same cycle. For example, the right part of Fig. 1 shows the leakage corresponding



540 G. Barthe et al.

Fig. 1. Leakage trace of d-shared secret.

to a fully parallel implementation where all the shares are manipulated in a sin-
gle cycle. As a result, we have a single leakage vector L1 = L(y1, y2 . . . , yd,R1).
More generally, we will consider N -cycle parallel implementations such that for
each cycle c (1 ≤ c ≤ N), we define the set of shares that are manipulated during
the cycle as Yc, and the number of shares in a set Yc as nc. This means that
a masked implementation requires at least that the union of these sets equals
{y1, y2, . . . , yd}, i.e. all the shares need to be manipulated at least once. This
model of computation is a generalization of the previous one since the serial
implementation in the left part of the figure is simply captured with the case
N = d and, for every c, nc = 1. As previously mentioned, the highly parallel
implementation in the right part of the figure is captured with the case N = 1 and
n1 = d. For simplicity, we refer to this case as the parallel implementation case
in the following. Any intermediate solution mixing serial and parallel computing
(e.g. 2 shares per cycle, 3 shares per cycle, . . . ) can be captured by our model.
Concretely, the impact of parallel computation is reflected both by a reduced
number of cycles and by an increased instantaneous power consumption, illus-
trated with the higher amplitude of the curves in Fig. 1(b). A simple abstraction
to reflect this larger power consumption is the following linear model:

Lc = α1
c · G1

c (Yc(1)) + α2
c · G2

c (Yc(2)) + . . . + αnc
c · Gnc

c (Yc(nc)) + Rc. (2)

with all αj
c’s ∈ R. Contrary to the additive noise assumption that is only used

for convenience and not needed for masking proofs, this linear model is a critical
ingredient of our analysis of parallel implementations, since it is needed to main-
tain the independent leakage assumption. As for other physical issues that could
break this assumption, we assume Eq. (2) holds in the next sections and discuss
its possible limitations in Sect. 9. Yet, we already note that a general contra-
diction of this hypothesis would imply that any (e.g. threshold) implementation
manipulating its shares in parallel should be insecure.
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3 Security Models

3.1 Probing Security and Noisy Leakage

We first recall two important models for analyzing masking countermeasures.
First, the conceptually simple t-probing and ε-probing (or random probing)

models were introduced in [42]. In the former, the adversary obtains t interme-
diate values of the computation (e.g. can probe t wires if we compute in binary
fields). In the latter, he rather obtains each of these intermediate values with
probability ε, and gets ⊥ with probability 1 − ε (where ⊥ means no knowledge).
Using a Chernoff-bound, it is easy to show that security in the t-probing model
reduces to security in the ε-probing model for certain values of ε.

Second, the noisy leakage model describes many realistic side-channel attacks
where an adversary obtains each intermediate value perturbed with a “δ-noisy”
leakage function [53]. A leakage function L is called δ-noisy if for a uniformly
random variable Y we have SD(Y ;Y |LY ) ≤ δ, with SD the statistical distance.
It was shown in [32] that an equivalent condition is that the leakage is not too
informative, where informativity is measured with the standard notion of mutual
information MI(Y ;LY ). In contrast with the ε-probing model, the adversary
obtains noisy leakage for each intermediate variable. For example, in the context
of masking, he obtains L(Yi,Ri) for all the shares Yi, which is reflective of actual
implementations where the adversary can potentially observe the leakage of all
these shares, since they are all present in leakage traces (as in Fig. 1).

Recently, Duc et al. showed that security against probing attacks implies
security against noisy leakages [31]. This result leads to the natural strategy
of proving security in the (simpler) probing model while stating security levels
based on the concrete information leakage evaluations (as discussed in [32]).

3.2 The Bounded Moment Model

Motivation. In practice, the probing model is perfectly suited to proving the
security of the serial implementations from Sect. 2.1. This is because it ensures
that an adversary needs to observe d shares with his probes to recover secret
information. Since in a serial implementation, every share is manipulated in a
different clock cycle, it leads to a simple analogy between the number of probes
and the number of cycles exploited in the leakage traces. By contrast, this sim-
ple analogy no longer holds for parallel implementations, where all the shares
manipulated during a given cycle can leak concurrently. Typically, assuming that
an adversary can only observe a single share with each probe is counter-intuitive
in this case. For example, it would be natural to allow that he can observe the
output of Eq. (2) with one probe, which corresponds to a single cycle in Fig. 1(b)
and already contains information about all the shares (if nc = d).

As mentioned in introduction, the noisy leakage model provides a natural
solution to deal with the leakages of parallel implementations. Indeed, nothing
prevents the output of Eq. (2) from leaking only a limited amount of information
if a large enough noise is considered. Yet, directly dealing with noisy leakages is
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sometimes inconvenient for the analysis of masked implementations, e.g. when
it comes to verification with the formal methods listed in Sect. 1.2. In view of
their increasing popularity in embedded security evaluation, this creates a strong
incentive to come up with an alternative model allowing both the construction
of proofs for parallel implementations and their efficient evaluation with formal
methods. Interestingly, we will show in Sect. 5 that security in this alternative
model is implied by probing security. It confirms the relevance of the aforemen-
tioned strategy of first proving security in the probing model, and then stating
security levels based on concrete information leakage evaluations.

Definition. Intuitively, the main limitation of the noisy leakage model in the
context of formal methods is that it involves the (expensive) manipulation of
complete leakage distributions. In this respect, one natural simplification that
fits to a definition of “order” used in the practical side-channel literature is to
relate security to the smallest key-dependent statistical moment in the leakage
distributions. Concretely, the rationale behind this definition is that the secu-
rity of a masked implementation comes from the need to estimate higher-order
statistical moments, a task that becomes exponentially difficult in the number
of shares if their leakages are independent and sufficiently noisy (see the dis-
cussion in [32]). Interestingly, such a definition directly captures the parallel
implementation setting, as can easily be illustrated with an example. Say we
have a single-bit sensitive value Y that is split in d = 2 shares, and that an
adversary is able to observe a leakage function where the deterministic part is
the Hamming weight function and the noise is normally distributed. Then, the
(bivariate) leakage distribution for a serial implementation, where the adversary
can observe the leakage of the two shares separately, is shown in the upper part
of Fig. 2. And the (univariate) leakage distribution for a parallel implementation,
where the adversary can only observe the sum of the leakages of the two shares,
is shown in the lower part of the figure. In both cases, the first-order moment
(i.e. the mean) of the leakage distributions is independent of Y .
In order to define our security model, we therefore need the following definition.

Definition 1 (Mixed moment at orders o1, o2, . . . , or). Let {Xi}r
i=1 be a set

of r random variables. The mixed moment at orders o1, o2, . . . , or of {Xi}r
i=1 is:

E(Xo1
1 × Xo2

2 × . . . × Xor
r ),

where E denotes the expectation operator and × denotes the multiplication in
R. For simplicity, we denote the integer o =

∑
i oi as the order of this mixed

moment. We further say that a mixed moment at order o is m-variate (or has
dimension m) if there are exactly m non-zero coefficients oi.

This directly leads to our defintion of security in the bounded moment model.

Definition 2 (Security in the bounded moment model). Let {Lc}N
c=1 be

the leakage vectors corresponding to an N -cycle cryptographic implementation
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Fig. 2. Leakage distributions of a single-bit 2-shared secret.

manipulating a secret variable Y . This implementation is secure at order o if all
the mixed moments of order up to o of {Lc}N

c=1 are independent of Y .2

Say for example that we have a sensitive value Y that is split in d = 3 shares,
for which we leak the same noisy Hamming weights as in Fig. 2. In the case of a
(fully) parallel implementation, we have only one leakage sample L1 and security
at order 2 requires that E(L1) and E(L2

1) are independent of Y . In the case of
a serial implementation, we have three samples L1, L2, L3 and must show that
E(L1), E(L2), E(L3), E(L2

1), E(L2
2), E(L2

3), E(L1×L2), E(L1×L3) and E(L2×L3)
are independent of Y . Note that the only difference between this example and
concrete implementations is that in the latter case, each cycle would correspond
to a leakage vector Lc rather than a single (univariate) sample Lc.

Note also that this definition allows us to clarify a long standing discus-
sion within the cryptographic hardware community about the right definition of
security order. That is, the first definitions for secure masking (namely “perfect
masking at order o” in [24] and “masking at order o” in [30]) were special-
ized to serial implementations, and required that any tuple of o intermediate
variables is independent of any sensitive variable in an implementation. For clar-
ity, we will now call this (strong) independence condition “security at order o
in the probing model”. However, due to its specialization to serial implemen-
tation, this definition also leaves a confusion about whether its generalization
to parallel implementations should relate to the smallest dimensionality of a

2 This definition justifies why we use raw moments rather than central or standardized
ones. Indeed, to establish security at order o, we require moments of orders less than
o to be independent of Y . Thus centralization (i.e. removing the mean) or normal-
ization by the standard deviation only add terms known to be independent of Y .
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key-dependent leakage distribution (i.e. m in our definition) or the smallest
order of a key-dependent moment in these distributions (i.e. o in our defini-
tion). Concretely, m ≥ o in the case of a serial implementation, but only the
second solution generalizes to parallel implementations, since for such imple-
mentations the dimensionality can be as low as 1 independent of the number of
shares. Hence, we adopt this solution in the rest of the paper and will call this
(weaker) independence condition “security at order o in the bounded moment
model”.

4 Additional Features and Discussions

4.1 Experimental Model Validation

Quite naturally, the introduction of a new leakage model should come with empir-
ical validation that it reasonably matches the peculiarities of actual implemen-
tations and their evaluation. Conveniently, in the case of the bounded moment
model, we do nothing else than formalizing evaluation approaches that are
already deployed in the literature. This is witnessed by attacks based on the
estimation of statistical moments, e.g. exploiting the popular difference-of-means
and correlation distinguishers [33,47,57]. Such tools have been applied to vari-
ous protected implementations, including threshold ones [21,22,48,52] and other
masking schemes or designs running in recent high-frequency devices [11,12,44].
In all these cases, security at order o was claimed if the lowest key-dependent
statistical moment of the leakage distribution was found to be of order o + 1.

4.2 Dimensionality Reduction

One important property of Definition 2 is that it captures security based on
the statistical order of the key-dependent moments of a leakage distribution.
This means that the dimensionality of the leakage vectors does not affect the
security order in the bounded moment model. Therefore, it also implies that
such a security definition is not affected by linear dimensionality reductions.
This simple observation is formalized by the following definition and lemma.

Definition 3 (Linear dimensionality reduction). Let L = [L1, L2, . . . , LM ]
denote an M -sample leakage vector and {αi}m

i=1 denote M -element vectors in
R. We say that L′ = [L′

1, L
′
2, . . . , L

′
m] is a linearly reduced leakage vector if each

of its (projected) samples L′
i corresponds to a scalar product 〈L;αi〉.

Lemma 1. Let {Lc}N
c=1 be the leakage vectors corresponding to an N -cycle

cryptographic implementation manipulating a secret variable Y . If this imple-
mentation is secure at order o in the bounded moment model, then any imple-
mentation with linearly reduced leakages of {Lc}N

c=1 is secure at order o.

Proof. Since the samples of L′ are linear combinations of the samples of L, we
need the expectation of any polynomial of degree up to o of the samples of L′ to
be independent of Y . This directly derives from Definition 2 which guarantees
that the expectation of any monomial of degree up to o is independent of Y . 
�
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Typical examples of linear dimensionality reductions are PCA [10] and LDA [58].
Note that while linearly combining leakage samples does not affect bounded
moment security, it can be used to reduce the noise of the samples implied in
a higher-order moment computation, and therefore can impact security in the
noisy leakage model. This is in fact exactly the goal of the bounded moment
model. Namely, it aims at simplifying security evaluations by splitting the tasks
of evaluating the leakages’ deterministic part (captured by their moments) and
probabilistic part (aka noise). Concrete security against side-channel attacks is
ensured by two ingredients: a high security order and sufficient noise.

4.3 Abstract Implementation Settings

In the following, we exploit our model in order to study the impact of par-
allelism in general terms. For this purpose, we follow the usual description of
masked implementations as a sequence of leaking operations. Furthermore, and
in order to first abstract away physical specificities, we consider so-called (noise-
less) “abstract implementations”, simplifying Eq. (2) into:

Lc = α1 · G1 (Yc(1)) + α2 · G2 (Yc(2)) + . . . + αnc
· Gnc (Yc(nc)) . (3)

Such simplifications allow analyzing masked implementations independent of
their concrete instantiation in order to detect algorithmic flaws. Note that having
Rc �= 0 cannot change conclusions regarding the security order of an implementa-
tion (in the bounded moment model), which is the only metric we consider in this
paper. Indeed, this order only depends on the smallest key-dependent moment of
the leakage distribution, which is independent of the additive noise. By contrast,
the variance of Rc affects the concrete information leakage of an implementation.
We recall that algorithmically sound masked implementations do not mandato-
rily lead to physically secure implementations (e.g. because of the independence
issues discussed in Sect. 9 or a too low noise). Yet, and as mentioned in Sect. 3.2,
testing the security of abstract implementations of masking schemes (in the
probing or bounded moment models) is a useful preliminary, before performing
expensive evaluations of concrete implementations.

5 Serial Security Implies Parallel Security

We now provide our first result in the bounded moment model. Namely, we
establish an intuitive reduction between security of parallel implementations in
the bounded moment model and security of serial implementations in the probing
model. For this purpose, we also formalize our serial and parallel computation
models. One useful and practical consequence of the reduction is that one can
adapt existing tools for proving security in the bounded moment model, either
by implementing a program transformation that turns parallel implementations
into serial ones, or by adapting these tools to parallel implementations.
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Intuition. In order to provide some intuition for the reduction, recall that the
leakage samples of an abstract parallel implementation are of the form:

Lc = Zc(1) + Zc(2) + . . . + Zc(nc),

with Zc(i) = αi · Gi(Zc(i)), and that the bounded moments are of the form:

E(Lo1
1 × Lo2

2 × . . . × Lor
r ).

Therefore, by linearity of the expectation, mixed moments at order d are inde-
pendent of secrets provided all quantities of the form:

E ((Z1(1))o1,1 × . . . × (Z1(n1))o1,n1 × (Zr(1))or,1 × . . . × (Zr(nr))or,nr ) , (4)

are independent of secrets, for all o1,1, . . . or,nr
whose sum is bounded by o. Note

that there are at most o pairs (i, j) such that oi,j �= 0. Let (i1, n1) . . . (ik, nk)
with k ≤ o be an enumeration of these pairs. Therefore, in order to establish
that Eq. (4) is independent of the secrets, it is sufficient to show that the tuple
〈Zi1(n1), . . . ,Zik(nk)〉 is independent of these secrets. This in fact corresponds
exactly to proving security in the probing model at order o.

Formalization. The theoretical setting for formalizing the reduction is a simple
parallel programming language in which programs are sequences of basic instruc-
tions (note that adding for loops poses no further difficulty). A basic instruction
is either a parallel assignment:

〈a1, . . . , an〉 := 〈e1, . . . , en〉,

where e1, . . . , en are expressions built from variables, constants, and operators,
or a parallel sampling:

〈a1, . . . , an〉 ← 〈μ1, . . . , μn〉,

where μ1, . . . , μn are distributions. Despite its simplicity, this formalism is suf-
ficient to analyse notions used for reasoning about threshold implementations,
for instance non-completeness. More importantly, one can also define the notion
of leakage associated to the execution of a program. Formally, an execution of
a program c of length � is a sequence of states s0 . . . s�, where s0 is the initial
state and the state si+1 is obtained from the state si as follows:

– If the ith-instruction is a parallel assignment, 〈a1, . . . , an〉 := 〈e1, . . . , en〉 by
evaluating the expressions e1 . . . en in state si, leading to values v1 . . . vn, and
updating state si by assigning values v1 . . . vn to variables a1 . . . an;

– if the ith-instruction is a parallel sampling, 〈a1, . . . , an〉 ← 〈μ1, . . . , μn〉 by
sampling values v1 . . . vn from distributions μ1 . . . μn, and updating the state
si by assigning the values v1 . . . vn to the variables a1 . . . an.

By assigning to each execution a probability (formally, this is the product of
the probabilities of each random sampling), one obtains for every program c
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of length � a sequence of distributions over states σ0σ1 . . . σ�, where σ0 is the
distribution �s0 . The leakage of a program is then a sequence L1 . . . L�, defined
by computing for each i the sum of the values held by the variables assigned by
the ith instruction, that is a1 + . . . + an for parallel assignments (or samplings).
The mixed moments at order o then simply follow Definition 1. As for the serial
programming language, instructions are either assignments a := e or sampling
a ← μ. The semantics of a program are defined similarly to the parallel case.
Order o security of a serial program in the probing model amounts to show that
each o-tuple of intermediate values is independent of the secret.

Without loss of generality, we can assume that parallel programs are written
in static single assignment form, meaning that variables: (i) appear on the left
hand side of an assignment or a sampling only once in the text of a program;
(ii) are defined before use (i.e. they occur on the left of an assignment or a
sampling before they are used on the right of an assignment); (iii) do not occur
simultaneously on the left and right hand sides of an assignment. Under such
assumption, any serialization that transforms parallel assignments or parallel
samplings into sequences of assignments or samplings preserve the semantics
of programs. For instance, the left to right serialization transforms the parallel
instructions 〈a1, . . . , an〉 := 〈e1, . . . , en〉 and 〈a1, . . . , an〉 ← 〈μ1, . . . , μn〉 into
a1 := e1; . . . ; an := en and a1 ← μ1; . . . ; an ← μn respectively.

Reduction Theorem. We can now state the reduction formally:

Theorem 1. A parallel implementation is secure at order o in the bounded
moment model if its serialization is secure at order o in the probing model.

Proof. Assume that a parallel implementation is insecure in the bounded
moment model but its serialization is secure in the probing model. Therefore,
there exists a mixed moment:

E(Lo1
1 × Lo2

2 × . . . × Lor
r ),

that is dependent of the secrets. By definition of leakage vector, and properties of
expectation, there exist program variables a1, . . . , ak, with k ≤ o, and o′

1, . . . , o
′
k

with
∑

i oi ≤ o such that:

E(ao′
1

1 × a
o′
2

2 × . . . × aok

k )

is dependent of secrets, contradicting the fact (due to security of serialization in
the probing model) that the tuple 〈a1, . . . , ak〉 is independent of secrets. 
�
Note that concretely, this theorem suggests the possibility of efficient “combined
security evaluations”, starting with the use of the formal verification tools to test
probing security, and following with additional tests in the (weaker) bounded
moment model in case of negative results (see the examples in Sect. 8).

Interestingly, it also backs up a result already used in [21] (Theorem 1),
where the parallel nature of the implementations was not specifically discussed
but typically corresponds to the experimental case study in this paper.
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6 Parallel Algorithms

In this section, we describe regular and parallelizable algorithms for secure (addi-
tively) masked computations. For this purpose, we denote a vector of d shares
as a = [a1, a2, . . . , ad], the rotation of this vector by q positions as rot(a, q), and
the bitwise addition (XOR) and multiplication (AND) operations between two
vectors as a ⊕ b and a · b. For concreteness, our analyses focus on computations
in GF(2), but their generalization to larger fields is straightforward.

6.1 Parallel Refreshing

As a starting point, we exhibit a very simple refreshing algorithm that has con-
stant time in the parallel implementation setting and only requires d bits of fresh
uniform randomness. This refreshing is given in Algorithm1 and an example of
abstract

Algorithm 1. Parallel refreshing algorithm.
Input: Shares a satisfying

⊕
i ai = a, uniformly random vector r.

Output: Refreshed shares b satisfying
⊕

i bi = a.

b = a ⊕ r ⊕ rot(r, 1);
return b.

Fig. 3. Abstract implementation of a 3-share refreshing. (Color figure online)

6.2 Parallel Multiplication

Next, we consider the more challenging case of parallel multiplication with the
similar goal of producing a simple and systematic way to manipulate the shares
and fresh randomness used in the masked computations. For this purpose, our
starting observation is that existing secure (serial) multiplications such as [42]
(that we will mimic) essentially work in two steps: first a product phase that
computes a d2-element matrix containing the pairwise multiplications of all the
shares, second a compressing phase that reduces this d2-element matrix to a d-
element one (using fresh randomness). As a result, and given the share vectors a
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Fig. 4. Abstract implementation of a 3-share multiplication. (Color figure online)

and b of two sensitive values a and b, it is at least possible to perform each pair
of cross products ai · bj ’s and aj · bi’s with XOR and rotation operations, and
without refreshing. By contrast, the direct products ai·bj have to be separated by
fresh randomness (since otherwise it could lead to the manipulation of sensitive
values during the compression phase, e.g. (ai · bi) ⊕ (ai · bj) = ai · (bi ⊕ bj).
A similar reasoning holds with the uniform randomness used between the XORs
of the compression phase. Namely, every fresh vector can be used twice (in its
original form and rotated by one) without leaking additional information.

This rationale suggests a simple multiplication algorithm that has linear time
complexity in the parallel implementation setting and requires

⌈
d−1
4

⌉
random

vectors of d bits (it can be viewed as an adaptation of the algorithms in [19]).
We first highlight it based on its abstract implementation in Fig. 4, which starts
with the loading and rotation of the input shares (gray cycles), then performs
the product phase (red cycles) and finally compresses its output by combining
the addition of fresh randomness (blue cycles) and accumulation (orange cycles).
In general, such an implementation runs in < 5d cycles for d shares, with slight
variations depending on the value of d. For d mod 4 = 3 (as in Fig. 4) it is
“complete” (i.e. ends with two accumulation cycles and one refreshing). But for
d mod 4 = 0 it ends with a single accumulation cycle, for d mod 4 = 1 it ends
with two accumulation cycles and for d mod 4 = 2 it ends with an accumulation
cycle and a refrehing. An accurate description is given in [15], Algorithm 3.

Impact for Multivariate (Aka Horizontal) Attacks. In simplified terms,
the security proofs for masked implementations in [31,32] state that the data
complexity of a side-channel attack can be bounded by 1

MI(Yi,LYi
)d

, with d the
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number of shares and MI(Yi,LYi
) the information leakage of each share Yi

(assumed identical ∀i’s for simplicity – we take the worst case otherwise), if
MI(Yi,LYi

) ≤ 1
d (where the d factor is due to the computation of the partial

products in the multiplication algorithm of [42]). In a recent work, Batistello
et al. [17] showed that the manipulation of the shares in masked implemen-
tations can be exploited concretely thanks to efficient multivariate/horizontal
attacks (either via combination of shares’ tuples corresponding to the same sen-
sitive variable, or via averaging of shares appearing multiple times). Interestingly,
while multivariate/horizontal attacks are also possible in our parallel case, the
number of leakage samples that parallel implementations provide to the side-
channel adversary is reduced (roughly by a factor d), which also mitigates the
impact of such attacks.

7 Case Studies

By Theorem 1, security in the bounded moment model of a parallel implemen-
tation can be established from security of its serialization in the probing model.
Therefore, it is possible to use existing formal methods to test the security of
parallel implementations, by first pre-processing them into a serial ones, and
feeding the resulting serial programs into a verification tool. In this section, we
report on the successful automated analysis of several parallel implementations,
including the parallel refreshing and multiplication presented in the previous
section, and serial composition of parallel S-boxes. Note that, due to the algo-
rithmic complexity of the verification task, we only establish security at small
orders. However, we also note that, although our main design constraint was for
our algorithms to be easily implementable in parallel, the use of automated tools
– as opposed to manual analyses – to verify their security has yielded algorithms
that match or improve on the state-of-the-art in their randomness requirements
at these orders. All experiments reported in this section are based on the current
version of the tool of [13]. This version supports automated verification of two
properties: the usual notion of probing security, and a strictly stronger notion,
recently introduced in [14] under the name strong non-interference (SNI), which
is better suited to the compositional verification of large circuits.

7.1 Parallel Refreshing

We first consider the parallel refreshing algorithm from the previous section.

Theorem 2 (Security of Algorithm 1). The refreshing in Algorithm1 is
secure at order d − 1 in the bounded moment model for all d ≤ 7.

By Theorem 1, it is sufficient to prove (d − 1)-probing security to get security at
order d − 1 in the bounded moment model. We do so using the tool by Barthe
et al. [13] for each order d ≤ 7. Table 1 shows the verification time for each proof.

In addition, we consider the problem of how to construct a SNI mask refresh-
ing gadget that behaves as well with respect to our parallel computation model.
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Table 1. Probing and bounded moment security of Algorithm 1.

d (d − 1)-b.m Time (s)

3 ✓ 1

4 ✓ 1

5 ✓ 2

6 ✓ 20

7 ✓ 420

We rely on the current version of the tool from Barthe et al. [13], which sup-
ports the verification of strong non-interference properties. Table 2 reports the
verification results for some number of mask refreshing algorithms, constructed
simply by iterating Algorithm1 (denoted Rd). We denote with Rn

d the algorithm
that iterates Rd n times. Table 2 also shows the randomness requirements both
for our algorithm and for the only other known SNI mask refreshing gadget,
based on Ishai, Sahai and Wagner’s multiplication algorithm [42].

Table 2. SNI secure variants of Algorithm 1.

Alg. d (d − 1)-SNI # rand. bits Time (s)

Our alg. [42]

Rd 3 ✓ 3 3 1

Rd 4 ✓ 4 6 1

Rd 5 ✗ 5 10 1

R2
d 5 ✓ 10 10 1

R2
d 6 ✓ 12 15 1

R2
d 7 ✓ 14 21 1

R2
d 8 ✗ 16 28 1

R3
d 8 ✓ 24 28 4

R3
d 9 ✓ 27 36 36

R3
d 10 ✓ 30 45 288

R4
d 11 ✓ 40 55 3045

These experiments show that, for small masking orders, there exist regu-
lar mask refreshing gadgets that are easily parallelizable, suitable for the con-
struction of secure circuits by composition, and that have small randomness
requirements. This fact is particularly useful when viewed through the lens of
Theorem 1. Indeed, SNI gadgets are instrumental in easily proving probing secu-
rity for large circuits [14], which Theorem 1 then lifts to the bounded moment
model and parallel implementations. We conjecture that iterating the simple
mask refreshing gadget from Algorithm1 �(d − 1)/3� times always yields a
(d − 1)-SNI mask refreshing algorithm over d shares. The resulting algorithm
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is easily parallelizable and requires �(d − 1)/3� · d bits of randomness (mar-
ginally improving on the d · (d − 1)/2 bits of randomness from the ISW-based
mask refreshing). We leave a proof of strong non-interference for all d’s as future
work.

7.2 Parallel Multiplication

We now consider the parallel multiplication algorithm from the previous section
(specified in Algorithm 3 in [15]), and prove its security for small orders.

Theorem 3 (Security of Algorithm3 in [15]). The multiplication in Algo-
rithm 3 in [15] is secure at order d − 1 in the bounded moment model for all
d ≤ 7.

By Theorem 1, it is sufficient to prove (d − 1)-probing security to get security at
order d − 1 in the bounded moment model. We do so using the tool by Barthe
et al. [13] for each d ≤ 7. Table 3 shows the verification time for each instance.

Table 3. Probing and bounded moment security of Algorithm 3 in [15].

d (d − 1)-b.m # rand. bits time (s)

our alg [19]

3 ✓ 3 2 1

4 ✓ 4 4 1

5 ✓ 5 5 2

6 ✓ 12 11 17

7 ✓ 14 15 480

We also show a comparison of the randomness requirement of our algorithm
and those of Beläı et al. [19]. Note that we sometimes need one additional ran-
dom bit compared to the algorithm of Beläıd et al. [19]. This is due to our
parallelization constraint: instead of sampling uniform sharings of 0, we only
allow ourselves to sample uniformly random vectors and to rotate them.

As before, we now investigate some combinations of Algorithms 1 and 3 in [15]
in the hope of identifying regular and easily parallelizable SNI multiplication
algorithms. The results of the experiments are shown in Table 4, where �d is
Algorithm 3 in [15], specialized to d shares. In addition to showing whether
or not the algorithm considered is SNI, the table shows verification times and
compares the randomness requirements of our algorithm with that of the mul-
tiplication algorithm by Ishai, Sahai and Wagner, which is the best known SNI
multiplication algorithm in terms of randomness. As with the original tool by
Barthe et al. [13], the verification task is constrained to security orders o ≤ 8
for circuits involving single multiplications due to the exponential nature of the
problem it tackles.

We conjecture that the combination of our multiplication algorithm with a
single refreshing is SNI for any d. This is intuitively justified by the fact our
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Table 4. SNI security for variants of Algorithm 3 in [15].

Algorithm d (d − 1)-SNI # rand. bits Time (s)

Our alg. [42]

�d 3 ✓ 3 3 1

�d d ≥ 4 ✗ d(d − 1)/4 d(d − 1)/2 -

Rd ◦ �d 4 ✓ 8 6 1

Rd ◦ �d 5 ✓ 10 10 1

Rd ◦ �d 6 ✓ 18 15 39

Rd ◦ �d 7 ✓ 21 21 2647

Rd ◦ �d 8 ✓ 24 28 166535

multiplication algorithm includes a number of “half refreshings”, which must be
combined with a final refreshing for the d’s such that it ends with an accumula-
tion step. We leave the proof of this conjecture as an open problem.

7.3 S-Boxes and Feistel Networks

In order to better investigate the effects on the security of larger circuits of reduc-
ing the randomness requirements of the multiplication and refreshing algorithms,
we now consider small S-boxes, shown in Fig. 5, and their iterations.

Figure 5(a) describes a simple 3-bit S-box similar to the “Class 13” S-box
of Ullrich et al. [62]. Figure 5(b) describes a 4-bit S-box constructed by apply-
ing a Feistel construction to a 2-bit function. Table 5 shows verification results
for iterations of these circuits for several small orders, exhibiting some inter-
esting compositional properties for these orders. sbox3 denotes the circuit from
Fig. 5(a), sbox4 denotes the circuit from Fig. 5(b), and sboxr4 denotes the circuit

(a) 3-bit S-box (sbox3) (b) 4-bit S-box (sbox4)

Fig. 5. Examples of elementary circuits.
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Table 5. Probing and bounded moment security of small S-boxes.

d = 3 d = 4
Algorithm 2-b.m. time (s)

sbox3 1
sbox23 1

sbox4 1
sbox24 1
sbox34 714

sboxr34 1
sboxr44 3
sboxr54 7
sboxr64 12

Algorithm 3-b.m. time (s)

sbox3 13
sbox23 322

sbox4 2
sbox24 67

from Fig. 5(b), modified so that the upper output of its inner transformation is
refreshed. As before, integer exponents denote sequential iteration.

We note that, although there is no evidence that iterating sbox4 longer yields
insecure circuits, obtaining convincing security results for more than 3 iterations
using automated tools seems unfeasible without relying on compositional princi-
ples. In particular, inserting a single mask refreshing operation per Feistel round
greatly speeds up the verification of large iterations of the 4-bit S-box from
Fig. 5(b). This highlights possible interactions between tools oriented towards
the verification of small optimized circuits for particular values of d [13,18,38]
and tools geared towards the more efficient but less precise verification of large
circuits [14]. The ability to make our algorithms SNI allows us to directly take
advantage of this “randomness complexity vs. verification time” tradeoff.

8 Separation Results

The previous sections illustrated that the reduction from security in the bounded
moment model for parallel implementations to security in the probing model for
their corresponding serialized implementations gives solutions to a number of
technical challenges in the design of secure masking schemes. We now ques-
tion whether the weaker condition required for security in the bounded moment
model allows some implementations to be secure in this model and not in the
probing model. We answer this question positively, starting with somewhat spe-
cialized but illustrative examples, and then putting forward a practically relevant
separation between these models in the context of continuous leakages.

8.1 Specialized Encodings and Masking Schemes

Starting Example. Let us imagine a 2-cycle parallel implementation manipu-
lating two shares in each cycle. In the first cycle, the same random bit r is loaded
twice, giving rise to a state (r, r). In the second cycle, a shared sensitive value
a is loaded twice, giving rise to a state (a ⊕ r, a ⊕ r). Clearly, in the probing
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model two probes (on r and a⊕ r) are sufficient to learn a. But for an adversary
observing the abstract leakages of this parallel implementations (i.e. the arith-
metic sum for each cycle), and for a particular type of leakage function such that
αj

i = 1 and Gj
i = Id in Eq. (2), the first cycle will only reveal r + r while the

second cycle will reveal a constant 1. So no combinations of these leakages can
be used to recover a. An even simpler example would be the parallel manipu-
lation of a and a which trivially does not leak any information if their values
are just summed. Such implementations are known under the name “dual-rail
pre-charged” implementations in the literature [61]. Their main problem is that
they require much stronger physical assumptions than masked implementations.
That is, the leakages on the shares a and a do not only need to be independent
but identical, which turns our to be much harder to achieve in practice [27].

Leakage Squeezing and Low Entropy Masking Schemes. Interestingly,
the literature provides additional examples of countermeasures where the secu-
rity order is larger in the bounded moment model than in the probing model.
In particular, leakage squeezing and low entropy masking schemes exploit spe-
cial types of encodings such that the lowest key-dependent statistical moment
of their leakage distributions is larger than the number of shares, if the leakage
function’s deterministic part is linear [25,41], i.e. if Gj

i = Id in Eq. (2). Note that
this requirement should not be confused with the global linearity requirement of
Eq. (2). That is, what masking generally requires to be secure is that the different
shares are combined linearly (i.e. that Eq. (2) is a first-degree polynomial of the
Gj

i (Yi(j))’s). Leakage squeezing and low entropy masking schemes additionally
require that the (local) Gj

i functions are linear.
The previous examples show that in theory, there exist leakage functions

such that the security order in the bounded moment model is higher than the
security order in the probing model, which is sufficient to prove separation.
Yet, as previously mentioned, in practice the identical (resp. linear) leakage
assumption required for dual-rail pre-charged implementations (resp. leakage
squeezing and low entropy masking schemes) is extremely hard to fulfill (resp.
has not been thoroughly studied yet). So this is not a general separation for any
implementation. We next present such a more general separation.

8.2 The Continuous Leakage Separation

A Continuous Probing Attack Against the Refreshing of Algorithm1.
Up to this point of the paper, our analyses have considered “one-shot” attacks
and security. Yet, in practice, the most realistic leakage models consider adver-
saries who can continuously observe several executions of the target algorithms.
Indeed, this typically corresponds to the standard DPA setting where sen-
stive information is extracted by combining observations from many successive
runs [43]. Such a setting is reflected in the continuous t-probing model of Ishai,
Sahai and Wagner [42], where the adversary can learn t intermediate values pro-
duced during the computation of each execution of the algorithm. It implies that
over time the adversary may learn much more information than just the t values
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– and in particular more than d, the number of shares. To be concrete, in a
continuous attack that runs for q executions the adversary can learn up to tq
intermediate values, evenly distributed between the executions of the algorithm.

Designing strong mask refreshing schemes that achieve security in the con-
tinuous t-probing model is a non-trivial task. In this section, we show that
Algorithm 1 can be broken for any number of shares d, if the refreshing is
repeated consecutively for d times and in each execution the adversary can learn
up to 3 intermediate values. To explain the attack, we first generalize this algo-
rithm to d executions, with a

(0)
1 , . . . , a

(0)
d the initial encoding of some secret bit

a, as given in Algorithm 3 in [15]. The lemma below gives the attack. Similar
attacks are used in [35] for the inner product masking in the bounded leakage
model.

Algorithm 2. d-times execution of the parallel refreshing algorithm.

Input: Shares a(0) satisfying
⊕

i a
(0)
i = a and

d random vectors r(i).
Output: Refreshed shares a(d) satisfying

⊕
i a

(d)
i = a.

for i = 1 to d do
a(i) = a(i−1) ⊕ r(i) ⊕ rot(r(i), 1);

end for
return a(d).

Lemma 2. Let a be a uniformly chosen secret bit, d ∈ N a number of shares
and consider Algorithm2. In each iteration of the for loop there exists a set of 3
probes such that after d iterations the secret a can be learned.

Proof. We show that, if the adversary can probe 3 intermediate values in each
iteration of the parallel refreshing for d iterations, then he can recover the secret
bit a. The proof is by induction, where we show that, after learning the values of
his 3 probes in the ith iteration, the adversary knows the sum of the first i shares
of a, that is Ai

1 :=
⊕i

j=1 a
(i)
j . Since Ad

1 :=
⊕d

j=1 a
(d)
j = a, after d iterations, the

adversary thus knows the value of a. In the first iteration, a single probe on
share a

(1)
1 is sufficient to learn A1

1 := a
(1)
1 . We now prove the inductive step. Let

1 < � ≤ d. Suppose after the (�−1)th execution, we know: A�−1
1 :=

⊕�−1
j=1 a

(�−1)
j .

In the �th iteration, the adversary probes r
(�)
d , r

(�)
�−1 and a

(�)
� , allowing him to

compute A�
1 using the following equalities:

A�
1 =

�⊕
j=1

a
(�)
j = a

(�)
� ⊕

�−1⊕
j=1

a
(�)
j = a

(�)
� ⊕

�−1⊕
j=1

a
(�−1)
j ⊕ r

(�)
j ⊕ r

(�)
j−1

= a
(�)
� ⊕ r

(�)
d ⊕ r

(�)
�−1 ⊕

�−1⊕
j=1

a
(�−1)
j = a

(�)
� ⊕ r

(�)
d ⊕ r

(�)
�−1 ⊕ A�−1

1 ,
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where we use the convention that for any j we have r
(j))
0 = r

(j))
d . Since all values

after the last equality either are known from the previous round or have been
learned in the current round the above concludes the proof. 
�

Continuous Security of Algorithm1 in the Bounded Moment Model.
The previous attack crucially relies on the fact that the adversary can move
his probes adaptively between different iterations, i.e. in the ith execution he
must learn different values than in the (i − 1)th execution. This implies that in
practice he would need to exploit jointly ≈ 3d different time samples from the
power trace. We now show that such an attack is not possible in the (continuous)
bounded moment model. The only difference between the continuous bounded
moment model and the one-shot bounded moment model is that the first offers
more choice for combining leakages as there are q-times more cycles. More pre-
cisely, the natural extension of bounded moment security towards a continuous
setting requires that the expectation of any oth-degree polynomial of leakage
samples among the q leakage vectors that can be observed by the adversary is
independent of any sensitive variable Y ∈ {0, 1} that is produced during the q
executions of the implementation. Thanks to Lemma 1, we know that a sufficient
condition for this condition to hold is that the expectation of all the monomials
is independent of Y . So concretely, we only need that for any tuple of o possible
clock cycles c1, c2 . . . , co ∈ [1, qN ], we have:

Pr[Y = 0] = Pr[Y = 0|E[Lc1 × Lc2 × . . . × Lco ]],
Pr[Y = 1] = Pr[Y = 1|E[Lc1 × Lc2 × . . . × Lco ]].

In the one-shot bounded moment model c1, c2 . . . , co would only run in [1, N ].
Our following separation result additionally needs a specialization to stateless
primitives. By stateless, we mean primitives such as block ciphers that only need
to maintain a constant secret key in memory from one execution to the other.

Theorem 4. The implementation of a stateless primitive where the secret key
is refreshed using Algorithm1 is secure at order o in the continuous bounded
moment model if it is secure at order o in the one-shot probing model.

Proof (sketch). We consider an algorithm for which a single execution takes
N cycles which is repeated q times. We can view the q-times execution of the
algorithm as a computation running for qN cycles. Since we are only interested
in protecting stateless primitives, individual executions are only connected via
their refreshed key. Hence, the q-times execution of the N -cycle implementation
can be viewed as a circuit consisting of q refreshings of the secret key using
Algorithm 1, where each refreshed key is used as input for the stateless masked
implementation. If we show that this “inflated” circuit is secure against an adver-
sary placing up to o probes in these qN cycles (in total and not per execution
as in the continuous probing model), the result follows by Theorem1.

For this purpose, we first observe that o probes just in the part belonging to
the q-times refreshing do not allow the adversary to learn the masked secret key.
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This follows from the fact that probing o values in a one-shot execution of the
refreshing (Algorithm 1) does not allow the adversary to learn this masked secret
key. More precisely, any such probes in the refreshing can be directly translated
into probes on the initial encoding (and giving the appropriate randomness of the
refreshing to the adversary for free). This means that any probe in the refreshing
part allows to learn at most a single share of the masked secret key going into
the stateless masked implementation. Moreover, we know by assumption that a
single-shot execution of the implementation is o-probing secure. This implies that
even after o probes inside the masked implementation there still must exist one
share of the masked state of which these probes are independent. More generally,
placing o− i probes in the masked implementation must imply that these probes
are independent of at least i + 1 shares of the masked state, since otherwise
the remaining i probes can be placed at the unknown input shares to get a
correlation with the masked secret key. As a result, we can also reveal all of the
shares of the input encoding except for these i + 1 shares that are independent.
Therefore, by simply adding up the probes, we get that even placing o probes
inside of the inflated circuit maintains security. 
�

Note that the above argument with the inflated circuit and the special use
of the refreshing fails to work when we consider stateful primitives. In such a
setting, the refreshing may interact with other parts of the circuit. Hence, we
would need a stronger (composable) refreshing to achieve security in this case,
in order to deal with the fact that Algorithm1 could then appear at arbitrary
positions in the computation. As already mentioned, the security condition of
the bounded moment model is significantly weaker than in the probing model,
which is what allows us to reach this positive result. Intuitively, security in the
probing model requires that, given a certain number of probes, no information is
leaked. By contrast, security in the bounded moment model only requires that
this information is hard to exploit, which is captured by the fact that the lowest
informative statistical moment in the leakage distribution observed by the adver-
sary is bounded. This model nicely captures the reality of concrete side-channel
attacks, where all the points of a leakage traces (as in Fig. 1) are available to
this adversary, and we want to ensure that he will at least have to estimate a
higher-order moment of this leakage distribution in order to extract sensitive
information (a task that is exponentially hard in o if the distribution is suffi-
ciently noisy). We believe this last result is particularly relevant for cryptographic
engineers, since it clarifies a long standing gap between the theory and practice
of masking schemes regarding the need of complex refreshing schemes. Namely,
we are able to show that simple refreshing schemes such as in Sect. 6.1 indeed
bring sufficient security against concrete higher-order side-channel attacks.

Note also that it is an interesting open problem to investigate the security of
our simple refreshing scheme in the continuous noisy leakage model. Intuitively,
extending the attack of Lemma 2 to this setting seems difficult. Take the second
step for example: we have learned A1

1 and want to learn A2
1 with three noisy

probes. If the noise is such that we do not learn A2
1 exactly, then observing

again three probes with an independent noise will not help much (since we
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cannot easily combine the information on the fresh A2
1, and would need to collect

information on all d shares to accumulate information on the constant secret). As
for Theorem 1 in Sect. 5, we can anyway note that the bounded moment model
allows obtaining much easier connections to the (more theoretical) probing model
than the (more general but more involved) noisy leakage model.

9 Independence Issues

Before concluding, we discuss one important advantage of threshold implemen-
tation for hardware (parallel) implementations, namely their better resistance
against glitches. We take advantage of and generalize this discussion to clarify
the different independence issues that can affect leaking implementations, and
detail how they can be addressed in order to obtain actual implementations that
deliver the security levels guaranteed by masking security proofs.

Implementation Defaults. As a starting point, we reproduce a standard
example of threshold implementation, in Fig. 6(a), which corresponds to the
secure execution of a small Boolean function f(x), where both the function
and the inputs/outputs are shared in three pieces. In this figure, the (light and
dark) gray rectangles correspond to registers, and the blue circles correspond to
combinatorial circuits. From this example, we can list three different types of
non-independence issues that can occur in practice:

(a) Threshold implementation. (b) 3-bit partial product.

Fig. 6. Independence issues and threshold implementations. (Color figure online)
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1. Computational re-combining (or glitches). In this first case, transient inter-
mediate computations are such that the combinatorial part of the circuit
re-combines the shares. This effect has been frequently observed in the liter-
ature under the name “glitches”, and has been exploited to break (i.e. reduce
the security order) of many hardware implementations (e.g. [46]).

2. Memory re-combining (or transitions). In this second case, non independence
comes from register re-use and the fact that actual leakage may be propor-
tional to the transition between the register states. For example, this would
happen in Fig. 6(a), if registers x1 and y1 (which depends on x2, x3) are the
same. This effect has been frequently observed in the literature too, under the
name “distance-based” or “transition-based” leakages, and has been exploited
to break software implementations (e.g. [11,29]).

3. Routing re-combining (or coupling). In this final case, the re-combining is
based on the physical proximity of the wires. The leakage function would
then be proportional to some function of these wires. Such effects, known
under the name “coupling”, could break the additive model of Eq. (2) in case
of complex (e.g. quadratic) function. To the best of our knowledge, they have
not yet been exploited in a concrete (published) attack.

Glitches, Threshold Implementations and Non-completeness. One
important contribution of threshold implementations is to introduce a sound
algorithmic way to deal with glitches. For this purpose, they require their
implementations to satisfy the “non-completeness” property, which requires
(at order o) that any combination of up to o component functions fi must be
independent of at least one input share [21]. Interestingly, and as depicted in
Fig. 6(b), this property is inherently satisfied by our parallel multiplication algo-
rithm, which is in line with the previous observations in [55] and the standard
method to synthesize threshold implementations, which is based on a decompo-
sition in quadratic functions [23]. Note that threshold implementations crucially
rely on the separation of the non-complete fi functions by registers. So in order
to obtain both efficient and glitch-free implementations of Algorithm 3 in [15],
it is typically advisable to implement it in larger fields (e.g. by extending our
multiplication algorithm in GF(28) as for the AES) or to exploit parallelism via
bitslicing [40].

Transition-Based Leakage. Various design solutions exist for this purpose.
The straighforward one is simply to ensure that all the registers in the implemen-
tation are different, or to double the order of the masking scheme [11]. But this is
of course suboptimal (since not all transitions are leaking sensitive information).
So a better solution is to include transition-based leakages in the evaluation of
masked implementations, a task which also benefits from the tools in [13].

Couplings. This last effect being essentially physical, there are no algorith-
mic/software methods to prevent it. Couplings are especially critical in the con-
text of parallel implementation since the non-linearity they imply may break
the the independent leakage assumption. (By contrast, in serial implementa-
tions this assumption is rather fulfilled by manipulating the shares at different
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cycles). So the fact that routing-based recombinations do not occur in paral-
lel masked implementations is essentially an assumption that all designers have
to make. In this respect, we note that experimental results of attacks against
threshold implementations where several shares are manipulated in parallel (e.g.
the ones listed in Sect. 4.1) suggest that this assumption is indeed well respected
for current technologies. Yet, we also note that the risk of couplings increases
with technology scaling [51]. Hence, in the latter case it is anyway a good design
strategy to manipulate shares in larger fields, or to ensure a sufficient physical
distance between them if masking is implemented in a bitslice fashion.

10 Open Problems

These results lead to two important tracks for further research.
First, the bounded moment model that we introduce can be seen as an inter-

mediate path between the conceptually simple probing model and the practically
relevant noisy leakage model. As discussed in Sect. 8 (and illustrated in Fig. 7),
the bounded moment leakage model is strictly weaker than the probing model.
Hence, it would be interesting to investigate whether bounded moment security
implies noisy leakage security for certain classes of leakage functions. Clearly,
this cannot hold in general since there exist different distributions with identical
moments. Yet, and in view of the efficiency gains provided by moment-based
security evaluations, it is an interesting open problem to identify the contexts in
which this approach is sufficient, i.e. to find out when a leakage distribution is
well enough represented by its moments. Building on and formalizing the results
in [34] is an interesting direction for this purpose.

Fig. 7. Reductions between leakage security models.

Second, whenever discovering a bias in a masked implementation, our tools
not only output the computation leading to this bias, but also its (possibly
small) amplitude. Hence, the bounded moment model has great potential to
extend the quantitative analysis in [39] (so far limited to first-order leakages) to
the higher-order case. Relying on the fact that the biases may be quantitatively
hard to exploit could lead to further reductions of the randomness requirements
in masked implementations, e.g. by combining the evaluation of these biases with
tools to analyze non-independent leakages introduced in [32] (Sect. 4.2).
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Abstract. Higher-order masking is widely accepted as a sound counter-
measure to protect implementations of blockciphers against side-channel
attacks. The main issue while designing such a countermeasure is to deal
with the nonlinear parts of the cipher i.e. the so-called s-boxes. The pre-
vailing approach to tackle this issue consists in applying the Ishai-Sahai-
Wagner (ISW) scheme from CRYPTO 2003 to some polynomial repre-
sentation of the s-box. Several efficient constructions have been proposed
that follow this approach, but higher-order masking is still considered as
a costly (impractical) countermeasure. In this paper, we investigate effi-
cient higher-order masking techniques by conducting a case study on
ARM architectures (the most widespread architecture in embedded sys-
tems). We follow a bottom-up approach by first investigating the imple-
mentation of the base field multiplication at the assembly level. Then we
describe optimized low-level implementations of the ISW scheme and its
variant (CPRR) due to Coron et al. (FSE 2013) [14]. Finally we present
improved state-of-the-art polynomial decomposition methods for s-boxes
with custom parameters and various implementation-level optimizations.
We also investigate an alternative to these methods which is based on
bitslicing at the s-box level. We describe new masked bitslice imple-
mentations of the AES and PRESENT ciphers. These implementations
happen to be significantly faster than (optimized) state-of-the-art poly-
nomial methods. In particular, our bitslice AES masked at order 10 runs
in 0.48 megacycles, which makes 8ms in presence of a 60MHz clock
frequency.

1 Introduction

Since their introduction in the late 1990’s, side-channel attacks have been con-
sidered as a serious threat against cryptographic implementations. Among the
existing protection strategies, one of the most widely used relies on applying
secret sharing at the implementation level, which is known as (higher-order)
masking. This strategy achieves provable security in the so-called probing secu-
rity model [24] and noisy leakage model [17,32], which makes it a prevailing way
to get secure implementations against side-channel attacks.
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Higher-Order Masking. Higher-order masking consists in sharing each
internal variable x of a cryptographic computation into d random variables
x1, x2, . . . , xd, called the shares and satisfying x1 + x2 + · · · + xd = x for some
group operation +, such that any set of d − 1 shares is randomly distributed
and independent of x. In this paper, we will consider the prevailing Boolean
masking which is based on the bitwise addition of the shares. It has been for-
mally demonstrated that in the noisy leakage model, where the attacker gets
noisy information on each share, the complexity of recovering information on x
grows exponentially with the number of shares [12,32]. This number d, called
the masking order, is hence a sound security parameter for the resistance of a
masked implementation.

When dth-order masking is involved to protect a blockcipher, a so-called
dth-order masking scheme must be designed to enable computation on masked
data. To be sound, a dth order masking scheme must satisfy the two following
properties: (i) completeness, at the end of the encryption/decryption, the sum
of the d shares must give the expected result; (ii) probing security, every tuple of
d−1 or less intermediate variables must be independent of any sensitive variable.

Most blockcipher structures are composed of one or several linear trans-
formation(s), and a non-linear function, called the s-box (where the linearity
is considered w.r.t. the bitwise addition). Computing a linear transformation
x �→ �(x) in the masking world can be done in O(d) complexity by applying � to
each share independently. This clearly maintains the probing security and the
completeness holds by linearity since we have �(x1) + �(x2) + · · · + �(xd) = �(x).
On the other hand, the non-linear operations (such as s-boxes) are more tricky
to compute on the shares while ensuring completeness and probing security.

Masked S-boxes. In [24], Ishai, Sahai, and Wagner tackled this issue by intro-
ducing the first generic higher-order masking scheme for the multiplication over
F2 in complexity O(d2). The here-called ISW scheme was later used by Rivain
and Prouff to design an efficient masked implementation of AES [34]. Several
works then followed to improve this approach and to extend it to other SPN
blockciphers [10,14,15,26]. The principle of these methods consists in represent-
ing an n-bit s-box as a polynomial

∑
i ai x

i in F2n [x]/(x2n −x), whose evaluation
is then expressed as a sequence of linear functions (e.g. squaring, additions, mul-
tiplications by constant coefficients) and nonlinear multiplications over F2n . The
former are simply masked in complexity O(d) (thanks to their linearity), whereas
the latter are secured using ISW in complexity O(d2). The total complexity is
hence mainly impacted by the number of nonlinear multiplications involved in
the underlying polynomial evaluation. This observation led to a series of pub-
lications aiming at conceiving polynomial evaluation methods with the least
possible nonlinear multiplications [10,15,35]. The so-called CRV method, due to
Coron et al. [15], is currently the best known generic method with respect to
this criteria.

Recently, an alternative to previous ISW-based polynomial methods was pro-
posed by Carlet, Prouff, Rivain and Roche in [11]. They introduce a so-called
algebraic decomposition method that can express an s-box in terms of polynomi-
als of low algebraic degree. They also show that a variant of ISW due to Coron
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Prouff, Rivain and Roche [14] can efficiently be used to secure the computation
of any quadratic function. By combining the here-called CPRR scheme together
with their algebraic decomposition method, Carlet et al. obtain an efficient alter-
native to existing ISW-based masking schemes. In particular, their technique is
argued to beat the CRV method based on the assumption that an efficiency
gap exists between an ISW multiplication and a CPRR evaluation. However, no
optimized implementation is provided to back up this assumption.

Despite these advances, higher-order masking still implies strong performance
overheads on protected implementations, and it is often believed to be impracti-
cal beyond small orders. On the other hand, most published works on the subject
focus on theoretical aspects without investigating optimized low-level implemen-
tations. This raises the following question: how fast can higher-order masking be
in software?

Our Contribution. In this paper, we investigate this question and present a
case study on ARM (v7) architectures, which are today the most widespread in
embedded systems (privileged targets of side-channel attacks). We provide an
extensive and fair comparison between the different methods of the state of the
art and a benchmarking on optimized implementations of higher-order masked
blockciphers. For such purpose, we follow a bottom-up approach and start by
investigating the efficient implementation of the base-field multiplication, which
is the core elementary operation of the ISW-based masking schemes. We propose
several implementations strategies leading to different time-memory trade-offs.
We then investigate the two main building blocks of existing masking schemes,
namely the ISW and CPRR schemes. We optimize the implementation of these
schemes and we describe parallelized versions that achieve significant gains in
performances. From these results, we propose fine-tuned variants of the CRV and
algebraic decomposition methods, which allows us to compare them in a practical
and optimized implementation context. We also investigate efficient polynomial
methods for the specific s-boxes of two important blockciphers, namely AES and
PRESENT.

As an additional contribution, we put forward an alternative strategy to
polynomial methods which consists in applying bitslicing at the s-box level.
More precisely, the s-box computations within a blockcipher round are bitsliced
so that the core nonlinear operation is not a field multiplication anymore (nor
a quadratic polynomial) but a bitwise logical AND between two m-bit registers
(where m is the number of s-box computations). This allows us to translate com-
pact hardware implementations of the AES and PRESENT s-boxes into efficient
masked implementations in software. This approach has been previously used to
design blockciphers well suited for masking [21] but, to the best of our knowledge,
has never been used to derive efficient higher-order masked implementations of
existing standard blockciphers such as AES or PRESENT. We further provide
implementation results for full blockciphers and discuss the security aspects of
our implementations.

Our results clearly demonstrate the superiority of the bitslicing approach (at
least on 32-bit ARM architectures). Our masked bitslice implementations of AES
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and PRESENT are significantly faster than state-of-the-art polynomial methods
with fine-tuned low-level implementations. In particular, an encryption masked
at the order 10 only takes a few milliseconds with a 60 MHz clock frequency
(specifically 8 ms for AES and 5 ms for PRESENT).

Other Related Works. Our work focuses on the optimized implementation
of polynomial methods for efficient higher-order masking of s-boxes and block-
ciphers, as well as on the bitslice alternative. All these schemes are based on
Boolean masking with the ISW construction (or the CPRR variant) for the core
non-linear operation (which is either the field multiplication or the bitwise logi-
cal AND). Further masking techniques exist with additional features that should
be adverted here.

Genelle, Prouff and Quisquater suggest mixing Boolean masking and multi-
plicative masking [19]. This approach is especially effective for blockciphers with
inversion-based s-boxes such as AES. Prouff and Roche turn classic constructions
from multi-party computation into a higher-order masking scheme resilient to
glitches [33]. A software implementation study comparing these two schemes and
classical polynomial methods for AES has been published in [23]. Compared to
this previous work, our approach is to go deeper in the optimization (at the
assembly level) and we further investigate generic methods (i.e. methods that
apply to any s-box and not only to AES). Another worth-mentioning line of
works is the field of threshold implementations [29,30] in which the principle of
threshold cryptography is applied to get secure hardware masking in the presence
of glitches (see for instance [6,28,31]). Most of threshold implementations target
first-order security but recent works discuss the extension to higher orders [5].
It should be noted that in the context of hardware implementations, the occur-
rence of glitches prevents the straight use of classic ISW-based Boolean masking
schemes (as considered in the present work). Threshold implementations and the
Prouff-Roche scheme are therefore the main solutions for (higher-order) masking
in hardware. On the other hand, these schemes are not competitive for the soft-
ware context (due to limited masking orders and/or to an increased complexity)
and they are consequently out of the scope of our study.

Finally, we would like to mention that subsequently to the first version of this
work, and motivated by the high performances of our bitslice implementations
of AES and PRESENT, we have extended the bitslice higher-order masking
approach to any s-box by proposing a generic decomposition method in [20].
New blockcipher designs with efficient masked bitslice implementation have also
been recently proposed in [25].

Paper Organization. The next section provides some preliminaries about
ARM architectures (Sect. 2). We then investigate the base field multiplication
(Sect. 3) and the ISW and CPRR schemes (Sect. 4). Afterward, we study polyno-
mial methods for s-boxes (Sect. 5) and we introduce our masked bitslice imple-
mentations of the AES and PRESENT s-boxes (Sect. 6). Eventually, we describe
our implementations of the full ciphers (Sect. 7). The security aspects of our
implementations are further discussed in the full version of the paper.
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Source Code and Performances. For the sake of illustration, the perfor-
mances of our implementations are mostly displaid on graphics in the present
version. Exact performance figures (in terms of clock cycles, code size and RNG
consumption) are provided in the full version of the paper (available on IACR
ePrint). The source code of our implementations is also available on GitHub.

2 Preliminaries on ARM Architectures

Most ARM cores are RISC processors composed of sixteen 32-bit registers,
labeled R0, R1, . . . , R15. Registers R0 to R12 are known as variable registers
and are available for computation.1 The three last registers are usually reserved
for special purposes: R13 is used as the stack pointer (SP), R14 is the link register
(LR) storing the return address during a function call, and R15 is the program
counter (PC). The link register R14 can also be used as additional variable register
by saving the return address on the stack (at the cost of push/pop instructions).
The gain of having a bigger register pool must be balanced with the saving
overhead, but this trick enables some improvements in many cases.

In ARM v7, most of the instructions can be split into the following three
classes: data instructions, memory instructions, and branching instructions. The
data instructions are the arithmetic and bitwise operations, each taking one clock
cycle (except for the multiplication which takes two clock cycles). The memory
instructions are the load and store (from and to the RAM) which require 3 clock
cycles, or their variants for multiple loads or stores (n + 2 clock cycles). The
last class of instructions is the class of branching instructions used for loops,
conditional statements and function calls. These instructions take 3 or 4 clock
cycles.

One important specificity of the ARM assembly is the barrel shifter allowing
any data instruction to shift one of its operands at no extra cost in terms of
clock cycles. Four kinds of shifting are supported: the logical shift left (LSL), the
logical shift right (LSR), the arithmetic shift right (ASR), and the rotate-right
(ROR). All these shifting operations are parameterized by a shift length in [[1, 32]]
(except for the logical shift left LSL which lies in [[0, 31]]). The latter can also be
relative by using a register but in that case the instruction takes an additional
clock cycle.

Eventually, we assume that our target architecture includes a fast True Ran-
dom Number Generator (TRNG), that frequently fills a register with a fresh
32-bit random strings (e.g. every 10 clock cycles). The TRNG register can then
be read at the cost of a single load instruction.2

1 Note that some conventions exist for the first four registers R0–R3, also called argu-
ment registers, and serving to store the arguments and the result of a function at
call and return respectively.

2 This is provided that the TRNG address is already in a register. Otherwise one must
first load the TRNG address, before reading the random value. Our code ensures a
gap of at least 10 clock cycles between two readings of the TRNG.
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3 Base Field Multiplication

In this section, we focus on the efficient implementation of the multiplication
over F2n where n is small (typically n ∈ [[4, 10]]). The fastest method consists in
using a precomputed table mapping the 22n possible pairs of operands (a, b) to
the output product a · b.

In the context of embedded systems, one is usually constrained on the code
size and spending several kilobytes for (one table in) a cryptographic library
might be prohibitive. That is why we investigate hereafter several alternative
solutions with different time-memory trade-offs. Specifically, we look at the clas-
sical binary algorithm and exp-log multiplication methods. We also describe a
tabulated version of Karatsuba multiplication, and another table-based method:
the half-table multiplication. The obtained implementations are compared in
terms of clock cycles, register usage, and code size (where the latter is mainly
impacted by precomputed tables).

In the rest of this section, the two multiplication operands in F2n will be
denoted a and b. These elements can be seen as polynomials a(x) =

∑n−1
i=0 aix

i

and b(x) =
∑n−1

i=0 bix
i over F2[x]/p(x) where the ai’s and the bi’s are binary

coefficients and where p is a degree-n irreducible polynomial over F2[x]. In our
implementations, these polynomials are simply represented as n-bit strings a =
(an−1, . . . , a0)2 or equivalently a =

∑n−1
i=0 ai 2i (and similarly for b).

3.1 Binary Multiplication

The binary multiplication algorithm is the most basic way to perform a multi-
plication on a binary field. It consists in evaluating the following formula:

a(x) · b(x) =
( · · · ((bn−1a(x)x + bn−2a(x)

)
x + bn−3a(x)

) · · · )x + b0a(x), (1)

by iterating over the bits of b. A formal description is given in Algorithm1.

Algorithm 1. Binary multiplication algorithm
Input: a(x), b(x) ∈ F2[x]/p(x)
Output: a(x) · b(x) ∈ F2[x]/p(x)
1. r(x) ← 0
2. for i = n − 1 down to 0 do
3. r(x) ← x · r(x) mod p(x)
4. if bi = 1 then r(x) ← r(x) + a(x)
5. end for
6. return r(x) mod p(x)

The reduction modulo p(x) can be done either inside the loop (at Step 3 in
each iteration) or at the end of the loop (at Step 6). If the reduction is done
inside the loop, the degree of x · r(x) is at most n in each iteration. So we have

x · r(x) mod p(x) =
{

x · r(x) − p(x) if rn−1 = 1
x · r(x) otherwise (2)
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The reduction then consists in subtracting p(x) to x ·r(x) if and only if rn−1 = 1
and doing nothing otherwise. In practice, the multiplication by x simply consists
in left-shifting the bits of r and the subtraction of p is a simple XOR. The tricky
part is to conditionally perform the latter XOR with respect to the bit rn−1 as
we aim to a branch-free code. This is achieved using the arithmetic right shift3

instruction (sometimes called signed shift) to compute (r � 1) ⊕ (rn−1 × p) by
putting rn−1 at the sign bit position, which can be done in 3 ARM instructions
(3 clock cycles) as follows:

LSL $tmp , $res , #(32-n) ;; tmp = r_{n-1}

AND $tmp , $mod , $tmp , ASR #32 ;; tmp = p & (tmp ASR 32)

EOR $res , $tmp , $res , LSL #1 ;; r = (r_{n-1} * p)^(r << 1)

Step 4 consists in conditionally adding a to r whenever bi equals 1. Namely,
we have to compute r⊕ (bi ×a). In order to multiply a by bi, we use the rotation
instruction to put bi in the sign bit and the arithmetic shift instruction to fill a
register with bi. The latter register is then used to mask a with a bitwise AND
instruction. The overall Step 4 is performed in 3 ARM instructions (3 clock
cycles) as follows:

ROR $opB , #31 ;; b_i = sign(opB)

AND $tmp , $opA , #opB , ASR #32 ;; tmp = a & (tmp ASR 32)

EOR $res , $tmp ;; r = r^(a * b_i)

Variant. If the reduction is done at the end of the loop, Step 3 then becomes
a simple left shift, which can be done together with Step 4 in 3 instructions (3
clock cycles) as follows:

ROR $opB , #31 ;; b_i = sign(opB)

AND $tmp , $opA , $opB , ASR #32 ;; tmp = a & (tmp ASR 32)

EOR $res , $tmp , $res , LSL #1 ;; r = (a * b_i)^(r << 1)

The reduction must then be done at the end of the loop (Step 6), where we
have r(x) = a(x) · b(x) which can be of degree up to 2n−2. Let rh and r� be the
polynomials of degree at most n−2 and n−1 such that r(x) = rh(x) ·xn +r�(x).
Since we have r(x) mod p(x) = (rh(x) · xn mod p(x)) + r�(x), we only need
to reduce the high-degree part rh(x) · xn. This can be done by tabulating the
function mapping the n − 1 coefficients of rh(x) to the n − 2 coefficients of
rh(x)·xn mod p(x). The overall final reduction then simply consists in computing
T [r � n] ⊕ (r ∧ (2n − 1)), where T is the corresponding precomputed table.

3 This instruction performs a logical right-shift but instead of filling the vacant bits
with 0, it fills these bits with the leftmost bit operand (i.e. the sign bit).
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3.2 Exp-Log Multiplication

Let g ∈ F2n be a generator of the multiplicative group F∗
2n . We shall denote by

expg the exponential function defined over [[0, 2n − 1]] as expg(�) = g�, and by
logg the discrete logarithm function defined over F∗

2n as logg = exp−1
g . Assume

that these functions can be tabulated (which is usually the case for small values
of n). The multiplication between field elements a and b can then be efficiently
computed as

a · b =
{

expg(logg(a) + logg(b) mod 2n − 1) if a 	= 0 and b 	= 0
0 otherwise (3)

Le us denote t = logg(a) + logg(b). We have t ∈ [[0, 2n+1 − 2]] giving

t mod 2n − 1 =
{

t − 2n + 1 if tn = 1
t otherwise (4)

where tn is the most significant bit in the binary expansion t =
∑n

i=0 ti 2i, which
can be rewritten as t mod 2n − 1 = (t + tn) ∧ (2n − 1). This equation can be
evaluated with 2 ARM instructions4 (2 clock cycles) as follows:

ADD $tmp , $tmp , LSR #n ;;tmp = tmp + tmp >>n

AND $tmp , #(2^n-1) ;;tmp = tmp & (2^n-1)

Variant. Here again, a time-memory trade-off is possible: the expg table can
be doubled in order to handle a (n + 1)-bit input and to perform the reduction.
This simply amounts to consider that expg is defined over [[0, 2n+1 − 2]] rather
than over [[0, 2n − 1]].

Zero-Testing. The most tricky part of the exp-log multiplication is to manage
the case where a or b equals 0 while avoiding any conditional branch. Once again
we can use the arithmetic right-shift instruction to propagate the sign bit and
use it as a mask. The test of zero can then be done with 4 ARM instructions (4
clock cycles) as follows:

RSB $tmp , $opA , #0 ;; tmp = 0 - a

AND $tmp , $opB , $tmp , ASR #32 ;; tmp = b & (tmp ASR 32)

RSB $tmp , #0 ;; tmp = 0 - tmp

AND $res , $tmp , ASR #32 ;; r = r & (tmp ASR 32)

4 Note that for n > 8, the constant 2n−1 does not lie in the range of constants enabled
by ARM (i.e. rotated 8-bit values). In that case, one can use the BIC instruction to
perform a logical AND where the second argument is complemented. The constant
to be used is then 2n which well belongs to ARM constants whatever the value of n.
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3.3 Karatsuba Multiplication

The Karatsuba method is based on the following equation:

a · b = (ah + a�)(bh + b�)x
n
2 + ah bh (xn + x

n
2 ) + a� b� (x

n
2 + 1) mod p(x) (5)

where ah, a�, bh, b� are the n
2 -degree polynomials such that a(x) = ah x

n
2 +a� and

b(x) = bh x
n
2 + b�. The above equation can be efficiently evaluated by tabulating

the following functions:

(ah + a�, bh + b�) �→ (ah + a�)(bh + b�)x
n
2 mod p(x),

(ah, bh) �→ ah bh (xn + x
n
2 ) mod p(x),

(a�, b�) �→ a� b� (x
n
2 + 1) mod p(x).

We hence obtain a way to compute the multiplication with 3 look-ups and a few
XORs based on 3 tables of 2n elements.

In practice, the most tricky part is to get the three pairs (ah||bh), (a�||b�)
and (ah +a�||bh + b�) to index the table with the least instructions possible. The
last pair is a simple addition of the two first ones. The computation of the two
first pairs from the operands a ≡ (ah||a�) and b ≡ (bh||b�) can then be seen as
the transposition of a 2 × 2 matrix. This can be done with 4 ARM instructions
(4 clock cycles) as follows:

EOR $tmp0 , $opA , $opB , LSR #(n/2) ;; tmp0 = [a_h|a_l^b_h]

EOR $tmp1 , $opB , $tmp0 , LSL #(n/2) ;; tmp1 = [a_h|a_l|b_l]

BIC $tmp1 , #(2^n*(2^(n/2) -1)) ;; tmp1 = [a_l|b_l]

EOR $tmp0 , $tmp1 , LSR #(n/2) ;; tmp0 = [a_h|b_h]

3.4 Half-Table Multiplication

The half-table multiplication can be seen as a trade-off between the Karatsuba
method and the full-table method. While Karatsuba involves 3 look-ups in three
2n-sized tables and the full-table method involves 1 look-up in a 22n-sized table,
the half-table method involves 2 look-ups in two 2

3n
2 -sized tables. It is based on

the following equation:

a · b = bh x
n
2 (ah x

n
2 + a�) + b� (ah x

n
2 + a�) mod p(x), (6)

which can be efficiently evaluated by tabulating the functions:

(ah, a�, bh) �→ bh x
n
2 (ah x

n
2 + a�) mod p(x),

(ah, a�, b�) �→ b� (ah x
n
2 + a�) mod p(x).

Once again, the barrel shifter is useful to get the input triplets efficiently.
Each look-up can be done with two ARM instructions (for a total of 8 clock
cycles) as follows:
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EOR $tmp ,$opB ,$opA ,LSL#n ;;tmp=[a_h|a_l|b_h|b_l]

LDRB $res ,[$tab1 ,$tmp ,LSR#(n/2) ;;res=T1[a_h|a_l|b_h]

EOR $tmp ,$opA ,$opB ,LSL#(32-n/2) ;;tmp=[b_l |0..| a_h|a_l]

LDRB $tmp ,[$tab2 ,$tmp ,ROR#(32-n/2)] ;;tmp=T2[a_h|a_l|b_l]

3.5 Performances

The obtained performances are summarized in Table 1 in terms of clock cycles,
register usage, and code size. For clock cycles, the number in brackets indicates
instructions that need to be done only once when multiple calls to the multi-
plication are performed (as in the secure multiplication procedure described in
the next section). These are initialization instructions such as loading a table
address in a register. For n > 8, elements take two bytes to be stored (assuming
n ≤ 16) which implies an overhead in clock cycles and a doubling of the table
size. For most methods, the clock cycles and register usage are constant w.r.t.
n ≥ 8, whereas the code size depends on n. For the sake of illustration, we there-
fore additionally display the code size (and corresponding LUT sizes) in Fig. 1
for several values of n.

Table 1. Multiplication performances.

bin mult v1 bin mult v2 exp-log v1 exp-log v2 kara. half-tab full-tab

clock cycles (n ≤ 8) 10n + 3 (+3) 7n + 3 (+3) 18 (+2) 16 (+2) 19 (+2) 10 (+3) 4 (+3)

clock cycles (n > 8) 10n + 4 (+3) 7n + 15 (+3) 35 (+2) 31 (+2) 38 (+2) n/a n/a

registers 5 5 5 (+1) 5 (+1) 6 (+1) 5 (+1) 5

code size (n ≤ 8) 52 2n−1 + 48 2n+1 + 48 3 · 2n + 40 3 · 2n + 42 2
3n
2 +1 + 24 22n + 12

Fig. 1. Full code size (left graph) and LUT size (right table) w.r.t. n.

We observe that all the methods provide different time-memory trade-offs
except for Karatsuba which is beaten by the exp-log method (v1) both in terms
of clock cycles and code size. The latter method shall then always be preferred
to the former (at least on our architecture). As expected, the full-table method
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is by far the fastest way to compute a field multiplication, followed by the half-
table method. However, depending on the value of n, these methods might be too
consuming in terms of code size due to their large precomputed tables. On the
other hand, the binary multiplication (even the improved version) has very poor
performances in terms of clock cycles and it should only be used for extreme cases
where the code size is very constrained. We consider that the exp-log method v2
(i.e. with doubled exp-table) is a good compromise between code size an speed
whenever the full-table and half-table methods are not affordable (which might
be the case for e.g. n ≥ 8). In the following, we shall therefore focus our study on
secure implementations using the exp-log (v2), half-table or full-table method
for the base field multiplication.

4 Secure Multiplications and Quadratic Evaluations

We have seen several approaches to efficiently implement the base-field multipli-
cation. We now investigate the secure multiplication in the masking world where
the two operands a, b ∈ F2n are represented as random d-sharings (a1, a2, . . . , ad)
and (b1, b2, . . . , bd). We also address the secure evaluation of a function f of alge-
braic degree 2 over F2n (called quadratic function in the following). Specifically,
we focus on the scheme proposed by Ishai, Sahai, and Wagner (ISW scheme) for
the secure multiplication [24], and its extension by Coron, Prouff, Rivain and
Roche (CPRR scheme) to secure any quadratic function [11,14].

4.1 Algorithms

ISW Multiplication. From two d-sharings (a1, a2, . . . , ad) and (b1, b2, . . . , bd),
the ISW scheme computes an output d-sharing (c1, c2, . . . , cd) as follows:

1. for every 1 ≤ i < j ≤ d, sample a random value ri,j over F2n ;
2. for every 1 ≤ i < j ≤ d, compute rj,i = (ri,j + ai · bj) + aj · bi;
3. for every 1 ≤ i ≤ d, compute ci = ai · bi +

∑
j �=i ri,j .

One can check that the output (c1, c2, . . . , cd) is well a d-sharing of the product
c = a · b. We indeed have

∑
i ci =

∑
i,j ai · bj = (

∑
i ai)(

∑
j bj) since every

random value ri,j appears exactly twice in the sum and hence vanishes.

Mask Refreshing. The ISW multiplication was originally proved probing
secure at the order t = (d − 1)/2� (and not d − 1 as one would expect with
masking order d). The security proof was later made tight under the condition
that the input d-sharings are based on independent randomness [34]. In some
situations, this independence property is not satisfied. For instance, one might
have to multiply two values a and b where a = �(b) for some linear operation
�. In that case, the shares of a are usually derived as ai = �(bi), which clearly
breaches the required independence of input shares. To deal with this issue, one
must refresh the sharing of a. However, one must be careful doing so since a
bad refreshing procedure might introduce a flaw [14]. A sound method for mask-
refreshing consists in applying an ISW multiplication between the sharing of a
and the tuple (1, 0, 0, . . . , 0) [2,17]. This gives the following procedure:
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1. for every 1 ≤ i < j ≤ d, randomly sample ri,j over F2n and set rj,i = ri,j ;
2. for every 1 ≤ i ≤ d, compute a′

i = ai +
∑

j �=i ri,j .

It is not hard to see that the output sharing (a′
1, a

′
2, . . . , a

′
d) well encodes a. One

might think that such a refreshing implies a strong overhead in performances
(almost as performing two multiplications) but this is still better than doubling
the number of shares (which roughly quadruples the multiplication time). More-
over, we show hereafter that the implementation of such a refreshing procedure
can be very efficient in practice compared to the ISW multiplication.

CPRR Evaluation. The CPRR scheme was initially proposed in [14] as a
variant of ISW to securely compute multiplications of the form x �→ x · �(x)
where � is linear, without requiring refreshing. It was then shown in [11] that
this scheme (in a slightly modified version) could actually be used to securely
evaluate any quadratic function f over F2n . The method is based on the following
equation

f(x1 + x2 + · · · + xd) =
∑

1≤i<j≤d

f(xi + xj + si,j) + f(xj + si,j) + f(xi + si,j) + f(si,j)

+
d∑

i=1

f(xi) + (d + 1 mod 2) · f(0) (7)

which holds for every (xi)i ∈ (F2n)d, every (si,j)1≤i<j≤d ∈ (F2n)d(d−1)/2, and
every quadratic function f over F2n .

From a d-sharing (x1, x2, . . . , xd), the CPRR scheme computes an output
d-sharing (y1, y2, . . . , yd) as follows:

1. for every 1 ≤ i < j ≤ d, sample two random values ri,j and si,j over F2n ,
2. for every 1 ≤ i < j ≤ d, compute rj,i = ri,j + f(xi + si,j) + f(xj + si,j) +

f((xi + si,j) + xj) + f(si,j),
3. for every 1 ≤ i ≤ d, compute yi = f(xi) +

∑
j �=i ri,j ,

4. if d is even, set y1 = y1 + f(0).

According to (7), we then have
∑d

i=1 yi = f
( ∑d

i=1 xi), which shows that the
output sharing (y1, y2, . . . , yd) well encodes y = f(x).

In [11,14] it is argued that in the gap where the field multiplication cannot
be fully tabulated (22n elements is too much) while a function f : F2n → F2n

can be tabulated (2n elements fit), the CPRR scheme is (likely to be) more
efficient than the ISW scheme. This is because it essentially replaces (costly) field
multiplications by simple look-ups. We present in the next section the results of
our study for our optimized ARM implementations.

4.2 Implementations and Performances

For both schemes we use the approach suggested in [13] that directly accumulates
each intermediate result ri,j in the output share ci so that the memory cost is
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Fig. 2. Timings of ISW and CPRR schemes.

O(d) instead of O(d2) when the ri,j ’s are stored. Detailed algorithms can be
found in the appendix. The ARM implementation of these algorithms is rather
straightforward and it does not make use of any particular trick.

As argued in Sect. 3.5, we consider three variants for the base field multipli-
cation in the ISW scheme, namely the full-table method, the half-table method
and the exp-log method (with doubled exp table). The obtained ISW variants are
labeled ISW-FT, ISW-HT and ISW-EL in the following. The obtained perfor-
mances are illustrated in Fig. 2 with respect to d. Note that we did not consider
ISW-FT for n > 8 since the precomputed tables are too huge.

These results show that CPRR indeed outperforms ISW whenever the field
multiplication cannot be fully tabulated. Even the half-table method (which
is more consuming in code-size) is slower than CPRR. For n ≤ 8, a CPRR
evaluation asymptotically costs 1.16 ISW-FT, 0.88 ISW-HT, and 0.75 ISW-EL.

4.3 Parallelization

Both ISW and CPRR schemes work on n-bit variables, each of them occupy-
ing a full 32-bit register. Since in most practical scenarios, we have n ∈ [[4, 8]],
this situation is clearly suboptimal in terms of register usage, and presumably
suboptimal in terms of timings. A natural idea to improve this situation is to
use parallelization. A register can simultaneously store m := 32/n� values,
we can hence try to perform m ISW/CPRR computations in parallel (which
would in turn enable to perform m s-box computations in parallel). Specifically,
each input shares is replaced by m input shares packed into a 32-bit value. The
ISW (resp. CPRR) algorithm load packed values, and perform the computation
on each unpacked n-bit chunk one-by-one. Using such a strategy allows us to
save multiple load and store instructions, which are among the most expensive
instructions of ARM assembly (3 clock cycles). Specifically, we can replace m
load instructions by a single one for the shares ai, bj in ISW (resp. xi, xj in
CPRR) and the random values ri,j , si,j (read from the TRNG), we can replace
m store instructions by a single one for the output shares, and we can replace
m XOR instructions by a single one for some of the addition involved in ISW
(resp. CPRR). On the other hand, we get an overhead for the extraction of the
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n-bit chunks from the packed 32-bit values. But each of these extractions takes a
single clock cycle (thanks to the barrel shifter), which is rather small compared
to the gain in load and store instructions.

We implemented parallel versions of ISW and CPRR for n = 4 and n = 8.
For the former case, we can perform m = 8 evaluations in parallel, whereas for
the later case we can perform m = 4 evaluations in parallel. For n = 4, we
only implemented the full-table multiplication for ISW, since we consider that
a 256-byte table in code is always affordable. For n = 8 on the other hand, we
did not implement the full-table, since we consider that a 64-KB table in code
would be to much in most practical scenarios. Figures 3 and 4 give the obtained
performances in terms of clock cycles.

Fig. 3. Timings of (parallel) ISW and
CPRR schemes for n = 8.

Fig. 4. Timings of (parallel) ISW and
CPRR schemes for n = 4.

These results show the important gain obtained by using parallelism. For
ISW, we get an asymptotic gain around 30% for 4 parallel evaluations (n = 8)
compared to 4 serial evaluations, and we get a 58% asymptotic gain for 8 parallel
evaluations (n = 4) compared to 8 serial evaluations. For CPRR, the gain is
around 50% (timings are divided by 2) in both cases (n = 8 and n = 4). We
also observe that the efficiency order keeps unchanged with parallelism, that is:
ISW-FT > CPRR > ISW-HT > ISW-EL.

Remark 1. Note that using parallelization in our implementations does not com-
promise the probing security. Indeed, we pack several bytes/nibbles within one
word of the cipher state but we never pack (part of) different shares of the
same variable together. The probing security proofs hence apply similarly to the
parallel implementations.5

5 Putting several shares of the same variable in a single register would induce a security
flaw in the probing model where full registers can be probed. For this reason, we
avoid doing so and we stress that parallelization does not result in such an undesired
result. However, it should be noted that in some other relevant security models, such
as the single-bit probing model or the bounded moment leakage model [3], this would
not be an issue anyway.
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4.4 Mask-Refreshing Implementation

The ISW-based mask refreshing is pretty similar to an ISW multiplication, but
it is actually much faster since it involves no field multiplications and fewer
additions (most terms being multiplied by 0). It simply consists in processing:

for i = 1 .. d : for j = i + 1 .. d : r ← $; ai ← ai + r; aj ← aj + r;

A straightforward implementation of this process is almost 3 times faster than
the fastest ISW multiplication, namely the full-table one (see Fig. 5).

We can actually do much better. Compared to a standard ISW implemen-
tation, the registers of the field multiplication are all available and can hence
be used in order to save several loads and stores. Indeed, the straightforward
implementation performs d − i + 1 loads and stores for every i ∈ [[1, d]], specifi-
cally 1 load-store for ai and d − i for the aj ’s. Since we have some registers left,
we can actually pool the aj ’s loads and stores for several ai’s. To do so, we load
several shares ai, ai+1, . . . , ai+k with the LDM instruction (which has a cost of
k + 2 instead of 3k) and process the refreshing between them. Then, for every
j ∈ [[i+k +1, d]], we load aj , performs the refreshing between aj and each of the
ai, ai+1, . . . , ai+k, and store aj back. Afterwards, the shares ai, ai+1, . . . , ai+k are
stored back with the STM instruction (which has a cost of k + 2 instead of 3k).
This allows us to load (and store) the aj only once for the k shares instead of
k times, and to take advantage of the LDM and STM instructions. In practice, we
could deal with up to k = 8 shares at the same time, meaning that for d ≤ 8
all the shares could be loaded and stored an single time using LDM and STM
instructions.

Fig. 5. Timings of mask refreshing.

The performances of our implementations of the ISW-based mask refreshing
are plotted in Fig. 5. Our optimized refreshing is up to 3 times faster than the
straightforward implementation and roughly 10 times faster that the full-table-
based ISW multiplication.
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5 Polynomial Methods for S-boxes

This section addresses the efficient implementation of polynomial methods for
s-boxes based on ISW and CPRR schemes. We first investigate the two best
known generic methods, namely the CRV method [15], and the algebraic decom-
position method [11], for which we propose some improvements. We then look
at specific methods for the AES and PRESENT s-boxes, and finally provide
extensive comparison of our implementation results.

5.1 CRV Method

The CRV method was proposed by Coron, Roy and Vivek in [15]. Before recalling
its principle, let us introduce the notion of cyclotomic class. For a given integer n,
the cyclotomic class of α ∈ [[0, 2n−2]] is defined as Cα = {α·2i mod 2n−1; i ∈ N}.
We have the following properties: (i) cyclotomic classes are equivalence classes
partitioning [[0, 2n − 2]], and (ii) a cyclotomic class has at most n elements. In
the following, we denote by xL the set of monomials {xα;α ∈ L} for some set
L ⊆ [[0, 2n − 1]].

The CRV method consists in representing an s-box S(x) over F2n [x]/(x2n −x)
as

S(x) =
t−1∑
i=1

pi(x) · qi(x) + pt(x), (8)

where pi(x) and qi(x) are polynomials with monomials in xL for some set L =
Cα1=0∪Cα2=1∪Cα3 ∪. . .∪Cα�

such that for every i ≥ 3, αi = αj +αk mod 2n−1
for some j, k < i (or more generally αi = 2w · αj + αk mod 2n − 1 with k ∈
[[0, n − 1]]). Such polynomials can be written as:

pi(x) =
�∑

j=2

li,j(xαj ) + ci,0 and qi(x) =
�∑

j=2

l′i,j(x
αj ) + c′

i,0, (9)

where the li,j , l
′
i,j are linearized polynomials over F2n [x]/(x2n − x) and where

the ci,0, c
′
i,0 are constants in F2n .

In [15], the authors explain how to find such a representation. In a nutshell,
one randomly picks the qi’s and search for pi’s satisfying (8). This amounts to
solve a linear system with 2n equations and t · |L| unknowns (the coefficients of
the pi’s). Note that when the choice of the classes and the qi’s leads to a solvable
system, then it can be used with any s-box (since the s-box is the target vector
of the linear system). We then have two necessary (non sufficient) conditions for
such a system to be solvable: (1) the set L of cyclotomic classes is such that
t · |L| ≥ 2n, (2) all the monomials can be reached by multiplying two monomials
from xL, that is {xi · xj mod (x2n − x); i, j ∈ L} = x[[0,2n−1]]. For the sake of
efficiency, the authors of [15] impose an additional constraint for the choice of the
classes: (3) every class (but C0 = {0}) have the maximal cardinality of n. Under
this additional constraint, condition (1) amounts to the following inequality:
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t · (
1 + n · (� − 1)) ≥ 2n. Minimizing the number of nonlinear multiplications

while satisfying this constraint leads to parameters t ≈ √
2n/n and � ≈ √

2n/n.
Based on the above representation, the s-box can be evaluated using (� −

2) + (t − 1) nonlinear multiplications (plus some linear operations). In a first
phase, one generates the monomials corresponding to the cyclotomic classes in
L. Each xαi can be obtained by multiplying two previous xαj and xαk (where
xαj might be squared w times if necessary). In the masking world, each of these
multiplications is performed with a call to ISW. The polynomials pi(x) and qi(x)
can then be computed according to (9). In practice the linearized polynomials
are tabulated so that at masked computation, applying a li,j simply consists
in performing a look-up on each share of the corresponding xαj . In the second
phase, one simply evaluates (8), which takes t − 1 nonlinear multiplications
plus some additions. We recall that in the masking world, linear operation such
as additions or linearized polynomial evaluations can be applied on each share
independently yielding a O(d) complexity, whereas nonlinear multiplications are
computed by calling ISW with a O(d2) complexity. The performances of the
CRV method is hence dominated by the � + t − 3 calls to ISW.

Mask Refreshing. As explained in Sect. 4.1, one must be careful while compos-
ing ISW multiplications with linear operations. In the case of the CRV method,
ISW multiplications are involved on sharings of values qi(x) and pi(x) which
are linearly computed from the sharings of the xαj (see (9)). This contradicts
the independence requirement for the input sharings of an ISW multiplication,
and this might presumably induce a flaw as the one described in [14]. In order
to avoid such a flaw in our masked implementation of CRV, we systematically
refreshed one of the input sharings, namely the sharing of qi(x). As shown in
Sect. 4.4, the overhead implied by such a refreshing is manageable.

Improving CRV with CPRR. As suggested in [11], CRV can be improved
by using CPRR evaluations instead of ISW multiplications in the first phase of
CRV, whenever CPRR is faster than ISW (i.e. when full-table multiplication
cannot be afforded). Instead of multiplying two previously computed powers
xαj and xαk , the new power xαi is derived by applying the quadratic function
x �→ x2w+1 for some w ∈ [[1, n − 1]]. In the masking world, securely evaluating
such a function can be done with a call to CPRR. The new chain of cyclotomic
classes Cα1=0 ∪ Cα2=1 ∪ Cα3 ∪ . . . ∪ Cα�

must then satisfy αi = (2w + 1)αj for
some j < i and w ∈ [[1, n − 1]].

We have implemented the search of such chains of cyclotomic classes satisfy-
ing conditions (1), (2) and (3). We could validate that for every n ∈ [[4, 10]] and
for the parameters (�, t) given in [15], we always find such a chain leading to a
solvable system. For the sake of code compactness, we also tried to minimize the
number of CPRR exponents 2w + 1 used in these chains (since in practice each
function x �→ x2w+1 is tabulated). For n ∈ {4, 6, 7} a single CPRR exponent
(either 3 or 5) is sufficient to get a satisfying chain (i.e. a chain of cyclotomic
class fulfilling the above conditions and leading to a solvable system). For the
other values of n, we could prove that a single CPRR exponent does not suffice
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to get a satisfying chain. We could then find satisfying chains for n = 5 and
n = 8 using 2 CPRR exponents (specifically 3 and 5). For n > 8, we tried all the
pairs and triplets of possible CPRR exponents without success, we could only
find a satisfying chain using the 4 CPRR exponents 3, 5, 9 and 17.

Optimizing CRV Parameters. We can still improve CRV by optimizing the
parameters (�, t) depending on the ratio θ = CCPRR

CISW
, where CCPRR and CISW

denote the costs of ISW and CPRR respectively. The cost of the CRV method
satisfies

CCRV = (� − 2) CCPRR + (t − 1) CISW =
(
(� − 2) · θ + t − 1)

)
CISW

≥
(
(� − 2) · θ +

⌈
2n

(� − 1) · n + 1

⌉
− 1

)
CISW

where the inequality holds from conditions (1) and (3) above. This lower bound
ensures that the system contains enough unknowns to be solvable. In practice,
it was observed in [15] that this is a sufficient condition most of the time to get
a solvable system (and our experiments corroborate this fact). Our optimized
version of CRV hence consists in using the parameter � minimizing the above
lower bound and the corresponding t =

⌈
2n

(�−1)·n+1

⌉
as parameters for given

bit-length n and cost ratio θ.
It can be checked (see full version) that a ratio slightly lower than 1 implies a

change of optimal parameters for all values of n except 4 and 9. In other words, as
soon as CPRR is slightly faster than ISW, using a higher � (i.e. more cyclotomic
classes) and therefore a lower t is a sound trade. For our implementations of ISW
and CPRR (see Sect. 4), we obtained a ratio θ greater than 1 only when ISW is
based on the full-table multiplication. In that case, no gain can be obtain from
using CPRR in the first phase of CRV, and one should use the original CRV
parameters. On the other hand, we obtained θ-ratios of 0.88 and 0.75 for half-
table-based ISW and exp-log-based ISW respectively. For the parallel versions,
these ratios become 0.69 (half-table ISW) and 0.58 (exp-log ISW). For such
ratios, the optimal parameter � is greater than in the original CRV method (see
full version for details).

For n ∈ {6, 8, 10}, we checked whether we could find satisfying CPRR-based
chains of cyclotomic classes, for the obtained optimal parameters. For n = 6, the
optimal parameters are (�, t) = (5, 3) (giving 3 CPRR plus 2 ISW) which are actu-
ally the original CRV parameters. We could find a satisfying chain for these para-
meters. For n = 8, the optimal parameters are (�, t) = (9, 4) (giving 7 CPRR plus
3 ISW). For these parameters we could not find any satisfying chain. We therefore
used the second best set of parameters that is (�, t) = (8, 5) (giving 6 CPRR plus
4 ISW) for which we could find a satisfying chain. For n = 10, the optimal para-
meters are (�, t) = (14, 8) (giving 12 CPRR plus 7 ISW). For these parameters we
could neither find any satisfying chain. So once again, we used the second best set
of parameters, that is (�, t) = (13, 9) (giving 11 CPRR plus 8 ISW) and for which
we could find a satisfying chain. All the obtained satisfying CPRR-based chains of
cyclotomic classes are provided in the full version of the paper.
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Table 2. Performances of CRV original version and improved version (with and without
optimized parameters).

Original CRV [15] CRV with CPRR [11] Optimized CRV with CPPR
#
ISW

#
CPRR

Clock cycles #
ISW

#
CPRR

Clock cycles Ratio #
ISW

#
CPRR

Clock cycles Ratio

n = 6
(HT)

5 0 142.5 d2 + O(d) 2 3 132 d2 + O(d) 93% 2 3 132 d2 + O(d) 93%

n = 6
(EL)

5 0 167.5 d2 + O(d) 2 3 142 d2 + O(d) 85% 2 3 142 d2 + O(d) 85%

n = 8
(HT)

10 0 285 d2 + O(d) 5 5 267.5 d2 + O(d) 94% 4 6 264 d2 + O(d) 93%

n = 8
(EL)

10 0 335 d2 + O(d) 5 5 292.5 d2 + O(d) 87% 4 6 284 d2 + O(d) 85%

n = 10
(EL)

19 0 997.5 d2 + O(d) 10 9 858 d2 + O(d) 86% 8 11 827 d2 + O(d) 83%

n = 8
(HT) //4

10 0 775 d2 + O(d) 5 5 657.5 d2 + O(d) 85% 4 6 634 d2 + O(d) 82%

n = 8
(EL) //4

10 0 935 d2 + O(d) 5 5 737.5 d2 + O(d) 79% 4 6 698 d2 + O(d) 75%

Table 2 compares the performances of the original CRV method and the
improved versions for our implementation of ISW (half-table and exp-log vari-
ants) and CPRR.6 For the improved methods, we give the ratio of asymptotic
performances with respect to the original version. This ratio ranks between 79%
and 94% for the improved version and between 75% and 93% for the improved
version with optimized parameters.

5.2 Algebraic Decomposition Method

The algebraic decomposition method was recently proposed by Carlet, Prouff,
Rivain and Roche in [11]. It consists in using a basis of polynomials (g1, g2,
. . . , gr) that are constructed by composing polynomials fi as follows

{
g1(x) = f1(x)
gi(x) = fi

(
gi−1(x)

) (10)

The fi’s are of given algebraic degree s. In our context, we consider the algebraic
decomposition method for s = 2, where the fi’s are (algebraically) quadratic
polynomials. The method then consists in representing an s-box S(x) over
F2n [x]/(x2n − x) as

S(x) =
t∑

i=1

pi

(
qi(x)

)
+

r∑
i=1

�i

(
gi(x)

)
+ �0(x), (11)

with

qi(x) =
r∑

j=1

�i,j

(
gj(x)

)
+ �i,0(x), (12)

where the pi’s are quadratic polynomials over F2n [x]/(x2n − x), and where the
�i’s and the �i,j ’s are linearized polynomials over F2n [x]/(x2n − x).
6 We only count the calls to ISW and CPRR since other operations are similar in the

three variants and have linear complexity in d.
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As explain in [11], such a representation can be obtained by randomly picking
some fi’s and some �i,j ’s (which fixes the qi’s) and then search for pi’s and �i’s
satisfying (11). As for the CRV method, this amounts to solve a linear system
with 2n equations where the unknowns are the coefficients of the pi’s and the
�i’s. Without loss of generality, we can assume that only �0 has a constant
terms. In that case, each pi is composed of 1

2n(n + 1) monomials, and each
�i is composed of n monomials (plus a constant term for �0). This makes a total
of 1

2 n (n+1) · t+n · r +1 unknown coefficients. In order to get a solvable system
we hence have the following condition: (1) 1

2 n (n+1) · t+n ·r+1 ≥ 2n. A second
condition is (2) 2r+1 ≥ n, otherwise there exists some s-box with algebraic degree
greater than 2r+1 that cannot be achieved with the above decomposition i.e. the
obtained system is not solvable for every target S.

Based on the above representation, the s-box can be evaluated using r + t
evaluations of quadratic polynomials (the fi’s and the qi’s). In the masking
world, this is done thanks to CPRR evaluations. The rest of the computation
are additions and (tabulated) linearized polynomials which are applied to each
share independently with a complexity linear in d. The cost of the algebraic
decomposition method is then dominated by the r + t calls to CPRR.

We implemented the search of sound algebraic decompositions for n ∈ [[4, 10]].
Once again, we looked for full rank systems i.e. systems that would work with
any target s-box. For each value of n, we set r to the smallest integer satisfying
condition (2) i.e. r ≥ log2(n) − 1, and then we looked for a t starting from the
lower bound t ≥ 2(2n−rn−1)

n(n+1) (obtained from condition (1)) and incrementing until
a solvable system can be found. We then increment r and reiterate the process
with t starting from the lower bound, and so on. For n ≤ 8, we found the same
parameters as those reported in [11]. For n = 9 and n = 10 (these cases were
not considered in [11]), the best parameters we obtained were (r, t) = (3, 14) and
(r, t) = (4, 22) respectively.

Saving Linear Terms. In our experiments, we realized that the linear terms
�i

(
gi(x)

)
could always be avoided in (11). Namely, for the best known para-

meters (r, t) for every n ∈ [[4, 10]], we could always find a decomposition
S(x) =

∑t
i=1 pi

(
qi(x)

)
hence saving r + 1 linearized polynomials. This is not

surprising if we compare the number of degrees of freedom brought by the pi’s
in the linear system (i.e. 1

2 n (n + 1) · t) to those brought by the �i’s (i.e. n · r).
More details are given in the full version of the paper.

5.3 Specific Methods for AES and PRESENT

Rivain-Prouff (RP) Method for AES. Many works have proposed masking
schemes for the AES s-box and most of them are based on its peculiar algebraic
structure. It is the composition of the inverse function x �→ x254 over F28 and
an affine function: S(x) = Aff(x254). The affine function being straightforward
to mask with linear complexity, the main issue is to design an efficient masking
scheme for the inverse function.
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In [34], Rivain and Prouff introduced the approach of using an efficient addi-
tion chain for the inverse function that can be implemented with a minimal
number of ISW multiplications. They show that the exponentiation to the 254
can be performed with 4 nonlinear multiplications plus some (linear) squarings,
resulting in a scheme with 4 ISW multiplications. In [14], Coron et al. propose
a variant where two of these multiplications are replaced CPRR evaluations (of
the functions x �→ x3 and x �→ x5).7 This was further improved by Grosso et al.
in [22] who proposed the following addition chain leading to 3 CPRR evaluations
and one ISW multiplications: x254 = (x2 · ((x5)5)5)2. This addition chain has the
advantage of requiring a single function x �→ x5 for the CPRR evaluation (hence
a single LUT for masked implementation). Moreover it can be easily checked by
exhaustive search that no addition chain exists that trades the last ISW mul-
tiplication for a CPRR evaluation. We therefore chose to use the Grosso et al.
addition chain for our implementation of the RP method.

Kim-Hong-Lim (KHL) Method for AES. This method was proposed in
[26] as an improvement of the RP scheme. The main idea is to use the tower
field representation of the AES s-box [36] in order to descend from F28 to F24

where the multiplications can be fully tabulated. Let δ denote the isomorphism
mapping F28 to (F24)2 with F28 ≡ F24 [x]/p(x), and let γ ∈ F28 and λ ∈ F24 such
that p(x) = x2 + x + λ and p(γ) = 0. The tower field method for the AES s-box
works as follows:

1 ahγ + al = δ(x), ah, al ∈ F24 4 a′
h = d′ aj ∈ F24

2 d = λa2
h + al · (ah + al) ∈ F24 5 a′

l = d′(ah + al) ∈ F24

3. d′ = d14 ∈ F24 6. S(x) = Aff(δ−1(a′
hγ + a′

l)) ∈ F28

At the third step, the exponentiation to the 14 can be performed as d14 =
(d3)4 · d2 leading to one CPRR evaluation (for d �→ d3) and one ISW multipli-
cation (plus some linear squarings).8 This gives a total of 4 ISW multiplications
and one CPRR evaluation for the masked AES implementation.

F◦G Method for PRESENT. As a 4-bit s-box, the PRESENT s-box can be
efficiently secured with the CRV method using only 2 (full table) ISW multiplica-
tions. The algebraic decomposition method would give a less efficient implemen-
tation with 3 CPRR evaluations. Another possible approach is to use the fact
that the PRESENT s-box can be expressed as the composition of two quadratic
functions S(x) = F ◦ G(x). This representation was put forward by Poschmann
et al. in [31] to design an efficient threshold implementation of PRESENT. In our

7 The original version of the RP scheme [34] actually involved a weak mask refreshing
procedure which was exploited in [14] to exhibit a flaw in the s-box processing.
The CPRR variant of ISW was originally meant to patch this flaw but the authors
observed that using their scheme can also improve the performances. The security
of the obtained variant of the RP scheme was recently verified up to masking order
4 using program verification techniques [2].

8 The authors of [26] suggest to perform d3 = d2 ·d with a full tabulated multiplication
but this would actually imply a flaw as described in [14]. That is why we use a CPRR
evaluation for this multiplication.
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context, this representation can be used to get a masked s-box evaluation based
on 2 CPRR evaluations. Note that this method is asymptotically slower than
CRV with 2 full-table ISW multiplications. However, due to additional linear
operations in CRV, F ◦ G might actually be better for small values of d.

5.4 Implementations and Performances

We have implemented the CRV method and the algebraic decomposition method
for the two most representative values of n = 4 and n = 8. For n = 4, we used
the full-table multiplication for ISW (256-byte table), and for n = 8 we used the
half-table multiplication (8-KB table) and the exp-log multiplication (0.75-KB
table). Based on our analysis of Sect. 5.1, we used the original CRV method for
n = 4 (i.e. (�, t) = (3, 2) with 2 ISW multiplications), and we used the improved
CRV method with optimized parameters for n = 8 (i.e. (�, t) = (8, 5) with 6
CPRR evaluations and 4 ISW multiplications). We further implemented parallel
versions of these methods, which mainly consisted in replacing calls to ISW
and CPRR by calls to their parallel versions (see Sect. 4.3), and replacing linear
operations by their parallel counterparts.

We also implemented the specific methods described in Sect. 5.3 for the AES
and PRESENT s-boxes, as well as their parallel counterparts. Specifically, we
implemented the F ◦ G method for PRESENT and the RP and KHL methods
for AES. The RP method was implemented with both the half-table and the
exp-log methods for the ISW multiplication. For the KHL method, the ISW
multiplications and the CPRR evaluation are performed on 4-bit values. It was
then possible to perform 8 evaluations in parallel. Specifically, we first apply the
isomorphism δ on 8 s-box inputs to obtain 8 pairs (ah, al). The ah values are
grouped in one register and the al values are then grouped in a second register.
The KHL method can then be processed in a 8-parallel version relying on the
parallel ISW and CPRR procedures for n = 4.

Our implementation results (in terms of clock cycles) are depicted in Figs. 6
and 7 for n = 4 (with the F ◦ G method as a particular case), in Figs. 8 and 9
for n = 8, and in Figs. 10 and 11 for the AES s-box.

Fig. 6. Timings for one s-box (n = 4). Fig. 7. Timings for 8 s-boxes (n = 4).
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Fig. 8. Timings for one s-box (n = 8). Fig. 9. Timings for 4 s-boxes (n = 8).

Fig. 10. Timings for one AES s-box. Fig. 11. Timings for 8 AES s-boxes.

We observe that the CRV method is clearly better than the algebraic decom-
position method for n = 4 in both the serial and parallel case. This is not
surprising since the former involves 2 calls to ISW-FT against 3 calls to CPRR
for the latter. For n = 8, CRV is only slightly better than the algebraic decompo-
sition, which is due to the use of CPRR and optimized parameters, as explained
in Sect. 5.1. On the other hand, the parallel implementation of the algebraic
decomposition method becomes better than CRV which is due to the efficiency
of the CPRR parallelization.

Regarding the specific case of PRESENT, we see that the F ◦ G method is
actually better than CRV for d ∈ [[2, 10]] thought it is asymptotically slower. It
can be checked (see full version) that CRV becomes faster only after d ≥ 38.
In parallel, F ◦ G is also faster than CRV until d ≥ 11. This shows that the
F ◦G method offers a valuable alternative to the CRV method for PRESENT in
practice. Note that many 4-bit s-boxes have a similar decomposition (see [6] for
an extensive analysis), so this method could be applied to further blockciphers.

For the AES, we observe that the RP method is better than KHL, which
means that the gain obtained by using full-table multiplications does not com-
pensate the overhead implied by the additional multiplication required in KHL
compared to RP. We also see that the two versions of RP are very closed, which
is not surprising since the difference regards a single multiplication (the other
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ones relying on CPRR). Using ISW-HT might not be interesting in this con-
text given the memory overhead. For the parallel versions, KHL becomes better
since it can perform 8 evaluations simultaneously, whereas RP is bounded to a
parallelization degree of 4. This shows that though the field descent from F28 to
F24 might be nice for full tabulation, it is mostly interesting for increasing the
parallelization degree.

Eventually as a final and global observation, we clearly see that using par-
allelism enables significant improvements. The timings of parallel versions rank
between 40% and 60% of the corresponding serial versions. In the next section,
we push the parallelization one step further, namely we investigate bitslicing for
higher-order masking implementations.

6 Bitslice Methods for S-boxes

In this section, we focus on the secure implementation of AES and PRESENT s-
boxes using bitslice. Bitslice is an implementation strategy initially proposed by
Biham in [4]. It consists in performing several parallel evaluations of a Boolean
circuit in software where the logic gates can be replaced by instructions working
on registers of several bits. As nicely explained in [27], “in the bitslice implemen-
tation one software logical instruction corresponds to simultaneous execution of
m hardware logical gates, where m is a register size [...] Hence bitslice can be
efficient when the entire hardware complexity of a target cipher is small and an
underlying processor has many long registers.”

In the context of higher-order masking, bitslice can be used at the s-box
level to perform several secure s-box computations in parallel. One then need a
compact Boolean representation of the s-box, and more importantly a represen-
tation with the least possible nonlinear gates. These nonlinear gates can then be
securely evaluated in parallel using the ISW scheme as detailed hereafter. Such
an approach was applied in [21] to design blockciphers with efficient masked
computations. To the best of our knowledge, it has never been applied to get
fast implementations of classical blockciphers such as AES or PRESENT. Also
note that a bitsliced implementation of AES masked at first and second orders
was described in [1] and used as a case study for practical side-channel attacks
on a ARM Cortex-A8 processor running at 1 GHz.

6.1 ISW Logical AND

The ISW scheme can be easily adapted to secure a bitwise logical AND between
two m-bit registers. From two d-sharings (a1, a2, . . . , ad) and (b1, b2, . . . , bd) of
two m-bit strings a, b ∈ {0, 1}m, the ISW scheme computes an output d-sharing
(c1, c2, . . . , cd) of c = a ∧ b as follows:

1. for every 1 ≤ i < j ≤ d, sample an m-bit random value ri,j ,
2. for every 1 ≤ i < j ≤ d, compute rj,i = (ri,j ⊕ ai ∧ bj) ⊕ aj ∧ bi,
3. for every 1 ≤ i ≤ d, compute ci = ai ∧ bi ⊕ ⊕

j �=i ri,j .
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On the ARM architecture considered in this paper, registers are of size m =
32 bits. We can hence perform 32 secure logical AND in parallel. Moreover a
logical AND is a single instruction of 1 clock cycle in ARM so we expect the
above ISW logical AND to be faster than the ISW field multiplications. The
detailed performances of our ISW-AND implementation are provided in the full
version. We observe that the ISW-AND is indeed faster than the fastest ISW
field multiplication (i.e. ISW-FT). Moreover it does not require any precomputed
table and is hence lighter in code than the ISW field multiplications (except for
the binary multiplication which is very slow).

6.2 Secure Bitslice AES S-box

For the AES s-box, we based our work on the compact representation proposed
by Boyar et al. in [8]. Their circuit is obtained by applying logic minimization
techniques to the tower-field representation of Canright [9]. It involves 115 logic
gates including 32 logical AND. The circuit is composed of three parts: the top
linear transformation involving 23 XOR gates and mapping the 8 s-box input
bits x0, x1, . . . , x7 to 23 new bits x7, y1, y2, . . . , y21; the middle non-linear trans-
formation involving 30 XOR gates and 32 AND gates and mapping the previous
23 bits to 18 new bits z0, z1, . . . , z17; and the bottom linear transformation involv-
ing 26 XOR gates and 4 XNOR gates and mapping the 18 previous bits to the
8 s-box output bits s0, s1, . . . , s7. In particular, this circuit improves the usual
count of 34 AND gates involved in previous tower-field representations of the
AES s-box.

Using this circuit, we can perform the 16 s-box computations of an AES
round in parallel. That is, instead of having 8 input bits mapped to 8 output
bits, we have 8 (shared) input 16-bit words X0,X1, . . . , X7 mapped to 8 (shared)
output 16-bit words S1, S2, . . . , S8. Each word Xi (resp. Si) contains the ith bits
input bit (resp. output bit) of the 16 s-boxes. Each XOR gate and AND gate
of the original circuit is then replaced by the corresponding (shared) bitwise
instruction between two 16-bit words.

Parallelizing AND Gates. For our masked bitslice implementation, a sound
complexity unit is one call to the ISW-AND since this is the only nonlinear oper-
ation, i.e. the only operation with quadratic complexity in d (compared to other
operations that are linear in d). In a straightforward bitslice implementation of
the considered circuit, we would then have a complexity of 32 ISW-AND. This
is suboptimal since each of these ISW-AND is applied to 16-bit words whereas it
can operates on 32-bit words. Our main optimization is hence to group together
pairs of ISW-AND in order to replace them by a single ISW-AND with fully
filled input registers. This optimization hence requires to be able to group AND
gates by pair that can be computed in parallel. To do so, we reordered the gates
in the middle non-linear transformation of the Boyar et al. circuit, while keeping
the computation consistent. We were able to fully parallelize the AND gates,
hence dropping our bitslice complexity from 32 down to 16 ISW-AND. We thus
get a parallel computation of the 16 AES s-boxes of one round with a complexity
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of 16 ISW-AND, that is one single ISW-AND per s-box. Since an ISW-AND is
(significantly) faster than any ISW multiplication, our masked bitslice imple-
mentation breaks through the barrier of one ISW field multiplication per s-box.
Our reordered version of the Boyar et al. circuit is provided in the full version
of the paper.

Mask Refreshing. As for the CRV method, our bitslice AES s-box makes
calls to ISW with input sharings that might be linearly related. In order to
avoid any flaw, we systematically refreshed one of the input sharings in our
masked implementation. Here again, the implied overhead is mitigated (between
5% and 10%).

6.3 Secure Bitslice PRESENT S-box

For our masked bitslice implementation of the PRESENT s-box, we used the
compact representation given by Courtois et al. in [16], which was obtained
from Boyar et al. ’s logic minimization techniques improved by involving OR
gates. This circuit is composed of 4 nonlinear gates (2 AND and 2 OR) and 9
linear gates (8 XOR and 1 XNOR).

PRESENT has 16 parallel s-box computations per round, as AES. We hence
get a bitslice implementation with 16-bit words that we want to group for the
calls to ISW-AND. However for the chosen circuit, we could not fully parallelize
the nonlinear gates because of the dependency between three of them. We could
however group the two OR gates after a slight reordering of the operations. We
hence obtain a masked bitslice implementation computing the 16 PRESENT s-
boxes in parallel with 3 calls to ISW-AND. Our reordered version of the circuit is
depicted in the full version of the paper. For the sake of security, we also refresh
one of the two input sharings in the 3 calls to ISW-AND. As for the bitslice AES
s-box, the implied overhead is manageable.

6.4 Implementation and Performances

Figures 12 and 13 plot the performances obtained for our masked bitslice imple-
mentations of the AES and PRESENT s-boxes. For comparison, we also recall
the performances of the fastest polynomial methods for AES and PRESENT
(i.e. parallel versions of KHL and F ◦ G) as well as the fastest generic methods
for n = 8 and n = 4 (i.e. parallel versions of the algebraic decomposition method
for n = 8 and CRV for n = 4).

These results clearly demonstrate the superiority of the bitslicing approach.
Our masked bitslice implementations of the AES and PRESENT s-boxes are
significantly faster than state-of-the art polynomial methods finely tuned at the
assembly level.

7 Cipher Implementations

This section finally describes masked implementations of the full PRESENT
and AES blockciphers. These blockciphers are so-called substitution-permutation
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Fig. 12. Timings for 16 AES s-boxes. Fig. 13. Timings for 16 PRESENT s-
boxes.

networks, where each round is composed of a key addition layer, a nonlinear layer
and a linear diffusion layer. For both blockciphers, the nonlinear layer consists in
the parallel application of 16 s-boxes. The AES works on a 128-bit state (which
divides into sixteen 8-bit s-box inputs) whereas PRESENT works on a 64-bit
state (which divides into sixteen 4-bit s-box inputs). For detailed specifications
of these blockciphers, the reader is referred to [7,18]. For both blockciphers, we
follow two implementation strategies: the standard one (with parallel polynomial
methods for s-boxes) and the bitslice one (with bitslice s-box masking).

For the sake of efficiency, we assume that the key is already expanded, and
for the sake of security we assume that each round key is stored in (non-volatile)
memory under a shared form. In other words, we do not perform a masked key
schedule. Our implementations start by masking the input plaintext with d − 1
random m-bit strings (where m is the blockcipher bit-size) and store the d result-
ing shares in memory. These d shares then compose the sharing of the blockcipher
state that is updated by the masked computation of each round. When all the
rounds have been processed, the output ciphertext is recovered by adding all
the output shares of the state. For the bitslice implementations, the translation
from standard to bitslice representation is performed before the initial masking
so that it is done only once. Similarly, the translation back from the bitslice to
the standard representation is performed a single time after unmasking.

The secure s-box implementations are done as described in previous sections.
It hence remains to deal with the key addition and the linear layers. These steps
are applied to each share of the state independently. The key-addition step simply
consists in adding each share of the round key to one share of the state. The
linear layer implementations are described in the full version of the paper.

7.1 Performances

In our standard implementation of AES, we used the parallel versions of KHL
and RP (with ISW-EL) for the s-box. For the standard implementation of PRE-
SENT, we used the parallel versions of the F ◦G method and of the CRV method.
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Table 3. Performances of masked blockciphers implementation.

Clock cycles Code (KB) Random (bytes)

Bitslice AES 3280 d2 + 14075 d+ 12192 7.5 640d(d+ 1)

Standard AES (KHL //) 7640 d2 + 6229 d+ 6311 4.8 560d(d+ 1)

Standard (AES RP-HT //) 9580 d2 + 5129 d+ 7621 12.4 400d(d+ 1)

Standard (AES RP-EL //) 10301 d2 + 6561 d+ 7633 4.1 400d(d+ 1)

Bitslice PRESENT 1906.5 d2 + 10972.5 d+ 7712 2.2 372d(d+ 1)

Standard PRESENT (F ◦ G //) 11656 d2 + 341 d+ 9081 1.9 496d(d+ 1)

Standard PRESENT (CRV //) 9145 d2 + 45911 d+ 11098 2.6 248d(d+ 1)

Fig. 14. Timings of masked AES. Fig. 15. Timings of masked PRE-
SENT.

The obtained performances are summarized in Table 3. The timings are further
plotted in Figs. 14 and 15 for illustration.

These results clearly confirm the superiority of the bitslice implementations
in our context. The bitslice AES implementation asymptotically takes 38% of the
timings of the standard AES implementation using the best parallel polynomial
method for the s-box (namely KHL). This ratio reaches 18% for PRESENT
(compared to the F ◦G method). It is also interesting to observe that PRESENT
is slower than AES for standard masked implementations whereas it is faster for
masked bitslice implementations. In the latter case, a PRESENT computation
asymptotically amounts to 0.58 AES computation. This ratio directly results
from the number of calls to ISW-AND which is 10 × 16 = 160 for AES (16 per
round) and 31 × 3 = 93 for PRESENT (3 per round).

Table 4. Timings for masked bitslice AES and PRESENT with a 60MHz clock.

d = 2 d = 3 d = 4 d = 5 d = 10

Bitslice AES 0.89 ms 1.39 ms 1.99 ms 2.7 ms 8.01 ms

Bitslice PRESENT 0.62 ms 0.96 ms 1.35 ms 1.82 ms 5.13 ms
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In order to illustrate the obtained performances in practice, Table 4 gives the
corresponding timings in milliseconds for a clock frequency of 60 MHz. For a
masking order of 10, our bitslice implementations only take a few milliseconds.
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Abstract. We present a multi-input functional encryption scheme
(MIFE) for the inner product functionality based on the k-Lin assump-
tion in prime-order bilinear groups. Our construction works for any poly-
nomial number of encryption slots and achieves adaptive security against
unbounded collusion, while relying on standard polynomial hardness
assumptions. Prior to this work, we did not even have a candidate for
3-slot MIFE for inner products in the generic bilinear group model. Our
work is also the first MIFE scheme for a non-trivial functionality based
on standard cryptographic assumptions, as well as the first to achieve
polynomial security loss for a super-constant number of slots under falsi-
fiable assumptions. Prior works required stronger non-standard assump-
tions such as indistinguishability obfuscation or multi-linear maps.

1 Introduction

In a functional encryption (FE) scheme [11,25], an authority can generate
restricted decryption keys that allow users to learn specific functions of the
encrypted messages and nothing else. That is, each FE decryption key skf is
associated with a function f and decrypting a ciphertext Enc(x) with skf results
in f(x). Multi-input functional encryption (MIFE) introduced by Goldwasser
et al. [19] is a generalization of functional encryption to the setting of multi-input
functions. A MIFE scheme has several encryption slots and each decryption key
skf for a multi-input function f decrypts jointly ciphertexts Enc(x1), . . . ,Enc(xn)
for all slots to obtain f(x1, . . . , xn) without revealing anything more about the
encrypted messages. The MIFE functionality provides the capability to encrypt
independently messages for different slots. This facilitates scenarios where infor-
mation, which will be processed jointly during decryption, becomes available
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at different points of time or is provided by different parties. MIFE has many
applications related to computation and data-mining over encrypted data coming
from multiple sources, which include examples such as executing search queries
over encrypted data, processing encrypted streaming data, non-interactive dif-
ferentially private data releases, multi-client delegation of computation, order-
revealing encryption [10,19]. The security requirement for FE and MIFE is that
the decryption keys are resilient to collusion attacks, namely any group of users
holding different decryption keys learns nothing about the underlying messages
beyond what each of them could individually learn.

We now have several constructions of MIFE schemes, which can be broadly
classified as follows: (i) feasibility results for general circuits [5,6,12,19], and (ii)
constructions for specific functionalities, notably comparison, which corresponds
to order-revealing encryption [10]. Unfortunately, all of these constructions rely
on indistinguishability obfuscation, single-input FE for circuits, or multi-linear
maps [15,16], which we do not know how to instantiate under standard and
well-understood cryptographic assumptions.1

1.1 Our Contributions

In this work, we present a multi-input functional encryption scheme (MIFE) for
the inner product functionality based on the k-Lin assumption in prime-order
bilinear groups. This is the first MIFE scheme for a non-trivial functionality
based on standard cryptographic assumptions with polynomial security loss, and
for any polynomial number of slots and secure against unbounded collusions.

Concretely, the functionality we consider is that of “bounded-norm” multi-
input inner product: each function is specified by a collection of n vectors
y1, . . . ,yn, takes as input n vectors x1, . . . ,xn, and outputs

fy1,...,yn
(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉.

We require that the x1, . . . ,xn,y1, . . . ,yn have bounded norm, and inner
product is computed over the integers. The functionality is a natural generaliza-
tion of single-input inner product functionality introduced by Abdalla et. al [1],
and studied in [1,2,4,7,13], and captures several useful computations arising
in the context of data-mining. A summary of our results and prior works on
single-input inner product is shown in Fig. 1.

Prior Approaches. Prior constructions of MIFE schemes in [10] requires (at
least) nm-linear maps for n slots with m-bit inputs as they encode each input bit
for each slot into a fresh level of a multi-linear map. In addition, there is typically
a security loss that is exponential in n due to the combinatorial explosion arising
from combining different ciphertexts across the slots. In the case of inner product,

1 In this paper, we refer only to unbounded collusions (i.e. the adversary can request
for any number of secret keys). See [12,20,21,24] for results on bounded collusions.
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Fig. 1. Summary of constructions from cyclic or bilinear groups. We have 8 security
notions xx-yy-zzz where xx ∈ {one, many} refers to the number of challenge ciphertexts;
yy ∈ {SEL, AD} refers to encryption queries are selectively or adaptively chosen; zzz
∈ {IND, SIM} refers to indistinguishability vs simulation-based security.

one can hope to reduce the multi-linearity to n by exploiting linearity as in the
single-input FE; indeed, this was achieved in two independent works [22,23]2

showing how to realize a two-slot MIFE for inner product over bilinear groups.
We stress that our result is substantially stronger: we show how to realize n-
slot MIFE for inner product for any polynomial n over bilinear groups under
standard assumptions, while in addition avoiding the exponential security loss.
In particular, we deviate from the prior approaches of encoding each slot into a
fresh level of a multi-linear map. We stress that prior to this work, we do not
even have a candidate for 3-slot MIFE for inner product in the generic bilinear
group model.

A Public-Key Scheme. Our first observation is that we can build a public-
key MIFE for inner product by running n independent copies of a single-input
FE for inner product. Combined with existing instantiations of the latter in [1],
this immediately yields a public-key MIFE for inner product under the standard
DDH in cyclic groups.

In a bit more detail, we recall the DDH-based public-key single-input FE
scheme from [1]:3

mpk := [w], ctx = ([s], [x + ws]), sky := 〈w,y〉

Decryption computes [〈x,y〉] = [x + ws]�y · [s]−〈w,y〉 and then recovers 〈x,y〉
by computing the discrete log.

2 This work is independent of both works.
3 Here, we use the implicit representation notation for group elements, using [s] to

denote gs and [w] to denote gw, etc.
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Our public-key MIFE scheme is as follows:

mpk := ([w1], . . . , [wn]),
ctxi

:= ([si], [xi + wisi]),
sky1,...,yn

:= (〈w1,y1〉, . . . , 〈wn,yn〉)

We note that the encryption of xi uses fresh randomness si; to decrypt, we
need to know each 〈wi,yi〉, and not just 〈w1,y1〉+ · · ·+ 〈wn,yn〉. In particular,
an adversary can easily recover each [〈xi,yi〉], whereas the ideal functionality
should only leak the sum

∑n
i=1〈xi,yi〉. In the public-key setting, it is easy to see

that 〈xi,yi〉 is in fact inherent leakage from the ideal functionality. Concretely,
an adversary can always pad an encryption of xi in the i’th slot with encryptions
of 0’s in the remaining n − 1 slots and then decrypt.

Our Main Scheme. The bulk of this work lies in constructing a multi-input
FE for inner product in the private-key setting, where we can no longer afford
to leak 〈xi,yi〉. We modify the previous scheme by introducing additional reran-
domization into each slot with the use of bilinear groups as follows:

msk := ([w1]1, [v1]1, [z1]1, . . . , [wn]1, [vn]1, [zn]1),

ctxi
:= ([si]1, [xi + wisi]1, [zi + visi]1),

sky1,...,yn
:= ([〈w1,y1〉 + v1r]2, . . . , [〈wn,yn〉 + vnr]2,
[r]2, [(z1 + · · · + zn)r]T )

The ciphertext ctxi
can be viewed as encrypting xi‖zi using the single-input

FE, where z1, . . . , zn are part of msk. In addition, we provide a single-input FE
key for yi‖r in the secret key, where a fresh r is sampled for each key. Decryption
proceeds as follows: first compute

[〈xi,yi〉 + zir]T = e([xi + wisi]�1, [yi]2)

· e([zi + visi]�1, [r]2) · e([si], [〈wi,yi〉 + vir]2)−1

and then

[
n∑

i=1

〈xi,yi〉]T = [(z1 + · · · + zn)r]−1
T ·

n∏
i=1

[〈xi,yi〉 + zir]T .

The intuition underlying security is that by the DDH assumption [zir]T is
pseudorandom and helps mask the leakage about 〈xi,yi〉 in [〈xi,yi〉 + zir]T ; in
particular,

[〈x1,y1〉 + z1r]T , . . . , [〈xn,yn〉 + znr]T , [(z1 + · · · + zn)r]T

constitutes a computational secret-sharing of [〈x1,y1〉 + · · · + 〈xn,yn〉]T , even
upon reusing z1, . . . , zn as long as we pick a fresh r. In addition, sharing the
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same exponent r across n elements in the secret key helps prevent mix-and-
match attacks across secret keys.

Our main technical result is that a variant of the private-key MIFE scheme
we just described selective indistinguishability-based security under the k-Lin
assumption in bilinear groups; a straight-forward extension of an impossibility
in [3,11] rules out simulation-based security. Our final scheme as described in
Fig. 6 remains quite simple and achieves good concrete efficiency. We focus on
selective security in this overview, and explain at the end the additional ideas
needed to achieve adaptive security.

Overview of Security Proof. There are two main challenges in the security
proof: (i) avoiding leakage beyond the ideal functionality, (ii) avoiding super-
polynomial hardness assumptions. Our proof proceeds in two steps: first, we
establish security with a single challenge ciphertext per slot, and from which we
bootstrap to achieve security with multiple challenge ciphertexts per slot. We
will address the first challenge in the first step and the second challenge in the
second. For notation simplicity, we focus on the setting with n = 2 slots and a
single key query y1‖y2.

Step 1. To prove indistinguishability-based security, we want to switch encryp-
tions x0

1,x
0
2 to encryptions of x1

1,x
1
2. Here, the leakage from the ideal function-

ality imposes the restriction that

〈x0
1,y1〉 + 〈x0

2,y2〉 = 〈x1
1,y1〉 + 〈x1

2,y2〉

and this is the only restriction we can work with. The natural proof strategy
is to introduce an intermediate hybrid that generates encryptions of x1

1,x
0
2.

However, to move from encryptions x0
1,x

0
2 to this hybrid, we would require

that 〈x0
1‖x0

2,y1‖y2〉 = 〈x1
1‖x0

2,y1‖y2〉, which implies the extraneous restriction
〈x0

1,y1〉 = 〈x1
1,y1〉. (Indeed, the single-input inner product scheme in [7] imposes

extraneous restrictions to overcome similar difficulties in the function-hiding
setting.)

To overcome this challenge, we rely on a single-input FE that achieves
simulation-based security, which allows us to avoid the intermediate hybrid. See
Theorem 1 and Remark 4 for further details.

Step 2. Next, we consider the more general setting with Q1 challenge ciphertexts
in the first slot and Q2 in the second, but still a single key query. We achieve
security loss O(Q1 + Q2) for two slots, and more generally, O(Q1 + · · · + Qn)
—as opposed to Q1Q2 · · · Qn corresponding to all possible combinations of the
challenge ciphertexts— for n slots.

Our first observation is that we can bound the leakage from the ideal func-
tionality by O(Q1 + Q2) relations (the trivial bound being Q1 · Q2). Denote the
j’th ciphertext query in the i’th slot by xj,b

i , where b is the challenge bit. By
decrypting the encryptions of x2,b

1 ,x1,b
2 and x1,b

1 ,x1,b
2 and substracting the two,
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the adversary learns 〈x2,b
1 −x1,b

1 ,y1〉 and more generally, 〈xj,b
i −x1,b

i ,yi〉. Indeed,
these are essentially the only constraints we need to work with, namely:

〈x1,0
1 ,y1〉 + 〈x1,0

2 ,y2〉 = 〈x1,1
1 ,y1〉 + 〈x1,1

2 ,y2〉
〈xj,0

i − x1,0
i ,yi〉 = 〈xj,1

i − x1,1
i ,yi〉, j = 2, . . . , Qi, i = 1, 2

Next, we need to translate the bound on the constraints to a O(Q1 +Q2) bound
on the security loss in the security reduction. We will switch from encryptions
of xj,0

i to those of xj,1
i as follows: we write xj,0

i = x1,0
i + (xj,0

i − x1,0
i ).

We can switch the first terms in the sums from x1,0
i to x1,1

i using security for
a single challenge ciphertext, and then switch xj,0

i −x1,0
i to xj,1

i −x1,1
i by relying

on security of the underlying single-input FE and the fact that 〈xj,0
i −x1,0

i ,yi〉 =
〈xj,1

i −x1,1
i ,yi〉. Here, we will require that the underlying single-input FE satisfies

a malleability property, namely given Δ, we can maul an encryption of x into
that of x+Δ. Note that this does not violate security because given 〈x,y〉,y,Δ,
we can efficiently compute 〈x + Δ,y〉. See Theorem 2 for further details.

Extension to Adaptive Security. The previous argument for selective secu-
rity requires to embed the challenge into the setup parameters. To circumvent
this issue, we use a two-step strategy for the adaptive security proof of MIFE.
The first step uses an adaptive argument (this is essentially the argument used
for the selective case, but applied to parameters that are picked at setup time),
while the second step uses a selective argument, with perfect security. Thus, we
can use complexity leveraging without incurring an exponential security loss,
since the exponential term is multiplied by a zero term. The idea of using com-
plexity leveraging to deduce adaptive security from selective security when the
security is perfect, already appears in [27, Remark 1].

Theoretical Perspective. The focus of this work is on obtaining constructions
for a specific class of functions with good concrete efficiency. Nonetheless, we
believe that our results do shed some new insights into general feasibility results
for MIFE:

– First, our results are indicative of further qualitative differences between MIFE
in the public-key and the private-key settings. Indeed, we already know that
the security guarantees are quite different due to additional inherent leakages
in the public-key setting. In the case of order-revealing encryption [10], the
differences are sufficient to enable positive results in the private-key setting,
while completely ruling out any construction in the public-key setting. Our
results hint at a different distinction, where the private-key setting seems to
require qualitative stronger assumptions than in the public-key setting, namely
the use of pairings.

– Next, our results provide the first evidence supporting the intuition that
MIFE requires qualitatively stronger assumptions than FE, but not too much
stronger. Concretely, for the inner product FE, we have existing positive
results under the DDH assumption in pairing-free groups. Prior to this work,
it was not clear if we could extend the positive results to MIFE for n-ary inner
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product under the same assumptions, or if n-ary inner product would already
require the same complex assumptions as MIFE for circuits. Our results sug-
gest a rather different picture, namely that going from single-input to multi-
input should require no more than an extra level of multi-linearity, even for
restricted functionalities. The situation is somewhat different for general cir-
cuits, where we now know that going from single-input to multi-input incurs
no more than a quantitative loss in the underlying assumptions [5,12].

– Finally, we presented the first MIFE for a non-trivial functionality that poly-
nomial security loss for a super-constant number of slots under falsifiable
assumptions. Recall that indistinguishability obfuscation and generic multi-
linear maps are not falsifiable, whereas the constructions based on single-input
FE in [5,8,12] incur a security loss which is exponential in the number of slots.
Indeed, there is a reason why prior works relied on non-falsifiable assumptions
or super-polynomial security loss. Suppose an adversary makes Q0 key queries,
and Q1, . . . , Qn ciphertext queries for the n slots. By combining the cipher-
texts and keys in different ways, the adversary can learn Q0Q1 · · · Qn different
decryptions. When n is super-constant, the winning condition in the secu-
rity game may not be efficiently checkable in polynomial-time, hence the need
for either a non-falsifiable assumption or a super-polynomial security loss.
To overcome this difficulty, we show that for inner product, we can exploit
linearity to succinctly characterize the Q0Q1 · · · Qn constraints by roughly
Q0 · (Q1 + · · · Qn) constraints.

1.2 Discussion

Beyond Inner Product? Our constructions and techniques may seem a-priori
largely tailored to the inner product functionality and properties of bilinear
groups. We clarify here that our high-level approach (which builds upon [9,27])
may be applicable beyond inner product, namely:

i. start with a multi-input FE that is only secure for a single ciphertext per
slot and one secret key, building upon a single-input FE whose security is
simulation-based for a single ciphertext (in our case, this corresponds to
introducing the additional z1, . . . , zn to hide the intermediate computation
〈xi,yi〉);

ii. achieve security for a single ciphertext per slot and multiple secret keys, by
injecting additional randomness to the secret keys to prevent mix-and-match
attacks (for this, we replaced z1, . . . , zn with z1r, . . . , znr, r in the exponent);

iii. “bootstrap” to multiple ciphertexts per slot, where we also showed how to
avoid incurring an exponential security loss.

In particular, using simulation-based security for i. helped us avoid additional
leakage beyond what is allowed by the ideal functionality.

Additional Related Work. Goldwasser et al. [19] showed that both two-input
public-key MIFE as well as n-input private-key MIFE for circuits already implies
indistinguishability obfuscation for circuits.
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There have also been several works that proposed constructions for private-
key multi-input functional encryption. The work of Boneh et al. [10] constructs
a single-key MIFE in the private key setting, which is based on multilinear maps
and is proven secure in the idealized generic multilinear map model. Two other
papers explore the question how to construct multi-input functional encryp-
tion starting from the single input variant. In their work [5] Ananth and Jain
demonstrate how to obtain selectively secure MIFE in the private key setting
starting from any general-purpose public key functional encryption. In an inde-
pendent work, Brakerski et al. [12] reduce the construction of private key MIFE
to general-purpose private key (single input) functional encryption. The resulting
scheme achieves selective security when the starting private key FE is selectively
secure. Additionally in the case when the MIFE takes any constant number of
inputs, adaptive security for the private key FE suffices to obtain adaptive secu-
rity for the MIFE construction as well. The constructions in that work provide
also function hiding properties for the MIFE encryption scheme.

While this line of work reduces MIFE to single-input FE for general-purpose
constructions, the only known instantiations of construction for public and pri-
vate key functional encryption with unbounded number of keys require either
indistinguishability obfuscation [16] or multilinear maps with non-standard
assumptions [17]. We stress that the transformations from single-input to MIFE
in [5,12] are not applicable in the case of inner product since these transfor-
mations require that the single-input FE for complex functionalities related to
computing a PRF, which is not captured by the simple inner functionality.

Open Problems. One natural open problem is to eliminate the use of pairings
in MIFE for inner product; we think such a result would be quite surprising
though. Another open problem is to achieve function privacy, as considered in
the setting of single-input inner product functional encryption in [7,13]. Note
that these latter results require pairings. Our first guess is that it would be
possible to achieve private-key, function-hiding MIFE for inner product under
the k-Lin assumption in bilinear groups.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at ran-
dom from a finite set S. By PPT, we denote a probabilistic polynomial-time
algorithm. Throughout, we use 1λ as the security parameter. We use lower case
boldface to denote (column) vectors and upper case boldface to denote matrices.

Cryptographic Assumptions. We follow the notation and algebraic frame-
work for Diffie-Hellman-like assumptions in [14]. We fix a pairing group PG :=
(G1, G2, GT ) with e : G1 × G2 → GT of prime order q, where q is a prime of
Θ(λ) bits. We use the implicit representation notation for group elements: for
fixed generators g1 and g2 of G1 and G2, respectively, and for a matrix M over
Zq, we define [M]1 := gM1 and [M]2 := gM2 , where exponentiation is carried out
component-wise.
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We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH)
Assumption [14].

Definition 1 (Matrix Distribution). Let k, � ∈ N, with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z

�×k
q of full rank k in polynomial

time. We write Dk := Dk+1,k.

Without loss of generality, we assume the first k rows of A ←R D�,k form an
invertible matrix. The D�,k-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A ←R D�,k, w ←R Z

k
q and

u ←R Z

�
q.

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let
Dk be a matrix distribution. We say that the Dk-Matrix Diffie-Hellman (Dk-
MDDH) Assumption holds relative to PG in Gs for s ∈ {1, 2}, if for all PPT
adversaries A, there exists a negligible function Adv such that:

AdvDk-mddh
Gs,A (λ) := |Pr[A(PG, [A]s, [Aw]s) = 1] − Pr[A(PG, [A]s, [u]s) = 1]|

= negl(λ),

where the probability is taken over A ←R Dk,w ←R Z

k
q ,u ←R Z

k+1
q .

For each k ≥ 1, [14] specifies distributions Lk, SCk, Ck (and others) over Z

(k+1)×k
q

such that the corresponding Dk-MDDH assumptions are generically secure in
bilinear groups and form a hierarchy of increasingly weaker assumptions. Lk-
MDDH is the well known k-Linear Assumption k-Lin with 1-Lin = DDH. In
this work we are mostly interested in the uniform matrix distribution U�,k.

Definition 3 (Uniform Distribution). Let �, k ∈ N, with � > k. We denote
by U�,k the uniform distribution over all full-rank � × k matrices over Zq. Let
Uk := Uk+1,k.

Let Q ≥ 1. For W ←R Z

k×Q
q ,U ←R Z

(k+1)×Q
q , we consider the Q-fold U�,k-

MDDH Assumption which consists in distinguishing the distributions ([A],
[AW]) from ([A], [U]). That is, a challenge for the Q-fold U�,k-MDDH Assump-
tion consists of Q independent challenges of the U�,k-MDDH Assumption (with
the same A but different randomness w). We recall in Lemma 1 the random
self reducibility of the Q-fold U�,k-MDDH assumption, namely, the fact that it
reduces to the 1-fold Uk assumption.

Lemma 1 (Uk-MDDH ⇒ Q-fold U�,k-MDDH [14,18]). Let �, k ∈ N

∗, with
� > k, and s ∈ {1, 2}. For any PPT adversary A, there exists a PPT adversary
B such that

Adv
Q-U�,k-mddh
Gs,A (λ) ≤ AdvUk-mddh

Gs,B (λ) +
1

q − 1
,

where Adv
Q-U�,k-mddh
Gs,A (λ) := |Pr[A(PG, [A]s, [AW]s) = 1]−Pr[A(PG, [A], [U]) =

1]| and the probability is taken over A ←R U�,k,W ←R Z

k×Q
q ,U ←R Z

(k+1)×Q
q .
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Among all possible matrix distributions Dk, the uniform matrix distribution Uk

is the hardest possible instance, so in particular k-Lin ⇒ Uk-MDDH, as stated
in Lemma 2.

Lemma 2 (Dk-MDDH ⇒ Uk-MDDH, [14]). Let Dk be a matrix distribu-
tion. For any PPT adversary A, there exists a PPT adversary B such that
AdvUk-mddh

Gs,B (λ) ≤ AdvDk-mddh
Gs,A (λ).

3 Definitions for Multi-input Functional Encryption

We recall the definitions for multi-input functional encryption from [19]. We
focus here on the private-key setting, which allows us to simplify the definitions.

Definition 4 (Multi-input Function Encryption). Let {Fn}n∈N be an
ensemble where each Fn is a family of n-ary functions. A function f ∈ Fn

is defined as follows f : X1 × . . . × Xn → Y. A multi-input functional encryption
scheme MIFE for F consists of the following algorithms:

– Setup(1λ,Fn): on input the security parameter λ and a description of Fn ∈ F ,
outputs a master public key mpk4 and a master secret key msk. All of the
remaining algorithms get mpk as part of its input.

– Enc(msk, i, xi): on input the master secret key msk, i ∈ [n], and a message xi ∈
Xi, outputs a ciphertext ct. We assume that each ciphertext has an associated
index i, which denotes what slot this ciphertext can be used for. If n = 1, we
omit the input i.

– KeyGen(msk, f): on input the master secret key msk and a function f ∈ Fn,
outputs a decryption key skf .

– Dec(skf , f, ct1, . . . , ctn): on input a decryption key skf for function f and n
ciphertexts, outputs a string y ∈ Y.

The scheme MIFE is correct if for all f ∈ F and all xi ∈ Xi for 1 ≤ i ≤ n,
we have

Pr

⎡
⎢⎣

(mpk,msk) ← Setup(1λ, n);
skf ← KeyGen(msk, f);

Dec(skf , f,Enc(msk, 1, x1), . . . ,Enc(msk, n, xn)) = f(x1, . . . , xn)

⎤
⎥⎦

= 1,

where the probability is taken over the coins of Setup, KeyGen and Enc.

3.1 Security Notions

Following [3], we may consider 8 security notions xx-yy-zzz where xx ∈ {one,
many} refers to the number of challenge ciphertexts; yy ∈ {SEL, AD} refers
4 We note that in the private key setting of MIFE, we can make mpk part of msk,

but we allow for a separate master public key for better clarity in our proofs. In
constructions where we do not need mpk we omit it.
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to encryption queries are selectively or adaptively chosen; zzz ∈ {IND, SIM}
refers to indistinguishability vs simulation-based security. We have the following
trivial relations: many ⇒ one, AD ⇒ SEL, and the following standard relations:
SIM ⇒ IND, and one-yy-IND ⇒ many-yy-IND, the latter in the public-key
setting. Here, we focus on {one,many}-SEL-IND and one-SEL-SIM, which are
the notions most relevant to our positive results.

Definition 5 (xx-SEL-IND-secure MIFE). For every multi-input func-
tional encryption MIFE := (Setup,Enc,KeyGen,Dec) for F , every security
parameter λ, every stateful adversary A, and every xx ∈ {one,many}, the advan-
tage of A is defined as

AdvMIFE,SEL−IND(λ,A) =
∣∣∣ Pr

[
SEL − INDMIFE

0 (1λ,A) = 1
]

− Pr
[
SEL − INDMIFE(1λ,A) = 1

] ∣∣∣
where the experiments are defined as follows:

Experiment xx-SEL-INDMIFE
β (1λ, A): Experiment xx-SEL-INDMIFE(1λ, A):

β ←R {0, 1}
{xb

i}i∈[n],j∈[Qi],b∈{0,1} ← A(1λ, Fn) {xb
i}i∈[n],j∈[Qi],b∈{0,1} ← A(1λ, Fn)

(mpk,msk) ← Setup(1λ, Fn) (mpk,msk) ← Setup(1λ, Fn)

ctji ← Enc(msk, i, xj,β
i ) ∀i ∈ [n], j ∈ [Qi] ctji ← Enc(msk, i, xj,β

i ) ∀i ∈ [n], j ∈ [Qi]

β′ ← AKeyGen(msk,·) (mpk, (ctji )i∈[n],j∈[Qi]

)
β′ ← AKeyGen(msk,·) (mpk, (ctji )i∈[n],j∈[Qi]

)

Output: β′ Output: 1 if β′ = β, 0 otherwise.

where A only makes queries f to KeyGen(msk, ·) satisfying

f(xj1,0
1 , . . . , xj1,0

n ) = f(xj1,1
1 , . . . , xj1,1

n )

for all j1, . . . , j1 ∈ [Q1] × · · · × [Qn]. For xx = one, we require additionally that
the adversary A only sends one challenge per slot, i.e. for all i ∈ [n], Qi = 1.

The private key multi-input functional encryption MIFE is xx-SEL-IND-
secure if for every PPT adversary A, there exists a negligible function negl such
that for all λ ∈ N: AdvMIFE,xx-SEL-IND

A (λ) = negl(λ).

Remark 1 (winning condition). Note that the winning condition is in general not
efficiently checkable because of the combinatorial explosion in the restriction on
the queries.

Next, we present the simulation-based security definition for MIFE, in the setting
with a single challenge ciphertext per slot.

Definition 6 (one-SEL-SIM-secure FE). A single-input functional encryp-
tion FE for function F is one-SEL-SIM-secure if there exists a PPT simulator5

(˜Setup, ˜Encrypt, ˜KeyGen) such that for every PPT adversary A and every λ ∈ N,
the following two distributions are computationally indistinguishable:

5 That is, ˜Setup, ˜Encrypt, ˜KeyGen correspond respectively to the simulated Setup,Enc,
KeyGen.
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Experiment REALFE(1λ,A): Experiment IDEALFE(1λ,A):
x ← A(1λ,F) x ← A(1λ,F)
(mpk,msk) ← Setup(1λ,F) (m̃pk, m̃sk) ← ˜Setup(1λ,F)
ct ← Enc(msk, x) ct ← ˜Encrypt(m̃sk)
α ← AKeyGen(msk,·)(mpk, ct) α ← AO(·)(m̃pk, ct)
Output: α Output: α

The oracle O(·) in the above ideal experiment has access to an oracle that pro-
vides the value 〈x,y〉, for each y ∈ Z

m
p queried to O(·). Then, O(·) returns

˜KeyGen(m̃sk,y, 〈x,y〉).
Namely, for every stateful adversary A,we define

AdvFE,one-SEL-SIM (λ,A) =∣∣∣∣Pr
[
REALFE(1λ,A) = 1

] − Pr
[

˜IDEAL
FE

(1λ,A) = 1
]∣∣∣∣ ,

and we require that for every PPT A, there exists a negligible function negl such
that for all λ ∈ N, AdvFE,one-SEL-SIM (λ,A) = negl(λ).

Zero vs Multiple Queries in Private-Key Setting. It is convenient in our
proof of security to assume that Q1, . . . , Qn ≥ 1, that is, there is at least one
ciphertext for each encryption slot, which is where the technical bulk of the
work lies as we would need to reason about leakage from the ideal function-
ality. In the setting where some Qi = 0, the ideal functionality leaks nothing,
and here, we can easily achieve semantic security for all of the messages being
encrypted in the private key MIFE setting, via the following simple generic
transformation.

Lemma 3. Let (Setup,Enc,KeyGen,Dec) be a private key MIFE construction
for n-input functions in the class Fn, which satisfies any xx-yy-zzz MIFE secu-
rity definition when the adversary receives at least one ciphertext for each encryp-
tion slot. Let (GenSE,EncSE,DecSE) be symmetric key encryption. The private key
MIFE scheme (Setup′,Enc′,KeyGen′,Dec′) described in Fig. 2 satisfies xx-yy-zzz
security without any restrictions on the ciphertext challenge sets.

Proof (Sketch). We consider two cases:

– Case 1: there exists some i ∈ [n] for which Qi = 0. Here, ki and thus K
is perfectly hidden from the adversary. Then, security follows readily from
semantic security of (GenSE,EncSE,DecSE).

– Case 2: for all i, Qi ≥ 1. Here, security follows immediately from that of
(Setup,Enc,KeyGen,Dec). ��
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Fig. 2. Compiler from private-key MIFE with xx-yy-zzz security when |Qi| > 0 for all
i to private-key MIFE with xx-yy-zzz security

3.2 Inner Product Functionality

Multi-input Inner Product. We construct a multi-input functional encryption
that supports the class of multi-input bounded-norm inner product functions,
which is defined as Fm,B

n = {fy1,...,yn
: (Zm)n → Z} where

fy1,...,yn
(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉.

We require that the norm of the inner product of any two vector components
from function and input 〈x,y〉 is bounded by B. This bound will determine the
parameters of the bilinear map groups that we will be using in our constructions;
in particular, we will choose a target group that has order q  n ·B. To simplify
naming conventions, we will omit “bounded-norm” for the rest of the paper,
but we will always refer to a multi-input inner-product functionality with this
property.

Remark on Leakage. Let (xj,0
i ,xj,1

i )i∈[n],j∈[Qi] be the ciphertext queries, and
y1‖ · · · ‖yn be a secret key query. For all slots i ∈ [n], all j ∈ [Qi], and all bits
b ∈ {0, 1}, the adversary can learn 〈xj,b

i − xj,b
i ,yi〉 via the ideal functionality. In
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the IND security game, this means the adversary is restricted to queries satisfying
〈xj,0

i − x1,0
i ,yi〉 = 〈xj,1

i − x1,1
i ,yi〉. In the hybrid, we want to avoid additional

constraints such as

〈xj,0
i − x1,0

i ,yi〉 = 〈xj,0
i − x1,1

i ,yi〉 = 〈xj,1
i − x1,0

i ,yi〉 = 〈xj,1
i − x1,1

i ,yi〉

4 Private-Key MIFE for Inner Product

In this section, we present a private-key MIFE for inner product that achieves
many-SEL-IND security. We use a pairing group (G1, G2, GT ) with e : G1×G2 →
GT of prime order q, where q is a prime of Θ(λ) bits. Our construction relies on
the k-Lin Assumption in G1 and in G2 and is shown in Fig. 6.

We present our construction in two steps: first, in Sect. 4.1, we show how
to construct a selectively-secure MIFE scheme starting from a single-input one-
SEL-SIM scheme that satisfies some additional structural properties. Then, we
show how to instantiate the underlying single-input scheme (cf. Fig. 7) and we
present a self-contained description of the scheme in Fig. 6. We refer the reader
to Sect. 1.1 for an overview of the construction.

4.1 Selectively-Secure, Multi-input Scheme from Single-Input
Scheme

Main Construction. We build a private key multi-input FE (Setup′,Enc′,
KeyGen′,Dec′) for the class Fm,B

n , starting from a private key one-SEL-SIM
secure, single-input FE (Setup,Enc,KeyGen,Dec) for the class Fm+k,B

1 . We
present our construction in Fig. 3.

Correctness. Correctness follows readily from the correctness of the underlying
scheme and the equation:

〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉 = (
n∑

i=1

〈xi‖zi,yi‖r〉) − 〈z1 + · · · + zn, r〉

Finally, we use the fact that 〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉 mod q = 〈x1‖ · · · ‖xn,
y1‖ · · · ‖yn〉, since for all slots i ∈ [n], we have 〈xi,yi〉 ≤ B, and q > Bn.

Additional Requirements. The construction and the analysis requires that
(Setup,Enc,KeyGen,Dec) satisfies the following structural properties:

– The scheme can be instantiated over G1, where the ciphertext is a vector [c]1
over G1 and the secret key is a vector di over Zq.

– Enc is linearly homomorphic and public-key. More specifically, we only require
that, given mpk,Enc(msk,x),x′, we can generate a fresh random encryption
of x + x′, i.e. Enc(msk,x + x′).

– For correctness, Dec should be linear in its inputs (d,y) and c, so that
Dec([d]2, [y]2, [c]1) = [Dec(d,y, c)]T ∈ GT can be computed using a pairing.
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Fig. 3. Multi-input functional encryption scheme (Setup′,Enc′,KeyGen′,Dec′) for the
class Fm,B

n . (Setup,Enc,KeyGen,Dec) refers to the single-input functional encryption
scheme for the class Fm+k,B

1 .

– For an efficient MIFE decryption, Dec must work without any restriction on
the norm of the output as long as the output is in the exponent.

– Let (˜Setup, Ẽnc, ˜KeyGen) be the stateful simulator for the one-SEL-SIM
security of the single-input inner-product FE scheme. We require that
˜KeyGen(m̃sk, ·, ·) is linear in its inputs (y, a), so that we can compute
˜KeyGen(m̃sk, [y]2, [a]2) = [ ˜KeyGen(m̃sk,y, a)]2. This property is used in the

proof of Lemma 5.

Remark 2 (notation). We use subscripts and superscripts for indexing over mul-
tiple copies, and never for indexing over positions or exponentiation. Concretely,
the j’th ciphertext query in slot i is xj

i .

Security. Theorem 1 and Theorem 2 below, together with the fact that one-
SEL-SIM security implies one-SEL-IND security, which itself implies many-SEL-
IND security for a public-key FE, such as (Setup,Enc,KeyGen) used in the con-
struction presented in Fig. 3, implies the many-SEL-IND security of the MIFE
(Setup′,Enc′,KeyGen′).

Theorem 1 (one-SEL-IND Security of MIFE). Suppose the single-input
FE (Setup,Enc,KeyGen,Dec) is one-SEL-SIM secure, and that the Dk-MDDH
assumption holds in G2. Then, the multi-input FE (Setup′,Enc′,KeyGen′,Dec′)
is one-SEL-IND-secure.
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Fig. 4. Gamei for i ∈ {0, . . . , 3} for the proof of Theorem 1.

That is, we show that our multi-input FE is selectively secure when there is
only a single challenge ciphertext.

Proof (of Theorem 1). We proceed via a series of Gamei for i ∈ {0, . . . , 3},
described in Fig. 4. Let A be a PPT adversary, and λ ∈ N be the security
parameter.

Game0: is the experiment one-SEL-INDMIFE (see Definition 5).
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Game1: we replace (Setup,KeyGen,Enc) by the efficient simulator (˜Setup,
˜KeyGen, Ẽnc), using the one-SEL-SIM security of FE , via a hybrid argument

across all slots i ∈ [n] (cf Lemma 4).

Lemma 4 (Game0 to Game1). There exists a PPT adversary B1 such that

Adv0(A) − Adv1(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B1).

Fig. 5. Description of (Setup′,Enc′,KeyGen′) defining game 0.� for the proof of
Lemma 4.

Proof. In Game1, we replace (Setup,Enc,KeyGen) by (˜Setup, Ẽnc, ˜KeyGen), which
is a PPT simulator whose existence is ensured by the one-SEL-SIM security of
(Setup,KeyGen,Enc) (see Definition 6). A complete description of Games0 and
Game1 is given in Fig. 4.

We use a hybrid argument, which involves hybrid Game0.� for � ∈ {0, . . . , n},
defined in Fig. 5, and we use Adv0,�(λ,A) to denote Pr[Game0.�(λ,A) = 1], where
the probability is taken over the random coins of A and Game0.�. Notice that
Game0 and Game1 are identical to Game0.0 and Game0.n, respectively. For any
� ∈ [n], we build a PPT adversary B0.� such that

Adv0.�−1(A) − Adv0.�(A) ≤ AdvFE,one-SEL-SIM (1λ,B0.�).
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– Simulation of mpk : First, B0.� receives the challenge {xb
i}i∈[n],b∈{0,1}

from A. Then, it picks β ←R {0, 1}, zi ←R Z

k
q for all i ∈ [n], and sends

xβ
� ‖z� to the experiment it is interacting with, which is either REALFE or

˜IDEAL
FE

. Then, B0.� receives mpk′
�, and a ciphertext ct, which are either

of the form mpk′
� := mpk�, where (msk�,mpk�) ← Setup(1λ,Fm+k,B

1 ), and
ct := Enc(msk�,x

β
� ‖z�) if B3.� is interacting with the experiment REALFE ;

or of the form mpk′
� := m̃pk�, where (m̃sk�, m̃pk�) ← ˜Setup(1λ,Fm+k,B

1 ),

ct := Ẽnc(m̃sk�) if B3.� is interacting with the experiment ˜IDEAL
FE

. It sam-
ples (m̃pki, m̃ski) ← ˜Setup(1λ,Fm+k,B

1 ) for i = 1, . . . , � − 1, (mpki,mski) ←
Setup(1λ,Fm+k,B

1 ) for i = �+1, . . . , n, and returns mpk := (m̃pk1, . . . , m̃pk�−1,
mpk′

�,mpk�+1, . . . ,mpkn) to A.
– Simulation of cti : B0.� computes cti := Enc(mski,x

β
i ‖zi) for all i < �

(note that B0.� can do so since it knows mski, xβ
i , and zi), and computes

cti := Ẽnc(m̃ski) for all i > � (again, B0.� can do so since it knows m̃ski).
Finally, B0.� sets ct� := ct and returns {cti}i∈[n] to A.

– Simulation of KeyGen′(msk , ·) : For each query y1‖ . . . ‖yn that A makes
to KeyGen′(msk, ·), B0.� picks r ←R Z

k
q , and computes di ← ˜KeyGen(m̃ski,

yi‖r, 〈xβ
i ‖zi,yi‖r〉) for i = 1, . . . , � − 1, di ← KeyGen(mski,yi‖r) for i =

� + 1, . . . , n. Then it computes d� by querying the oracle it has access to,
which is KeyGen(msk, ·) in the experiment REALFE , or O(·) in the experiment
IDEALFE , on input y�‖r. Then, it computes z := 〈z1 + · · · + zn, r〉 and it
returns sky1‖···‖yn

:=
({[di]2}i∈[n], [r]2, [z]T

)
.

Finally, B0.� outputs 1 if A outputs 1, 0 otherwise. It is clear that when B0.�

interacts with the experiment REALFE , it simulates the Game 0, whereas it
simulates the Game 1 when it interacts with IDEALFE . Therefore,

AdvFE,one-SEL-SIM (λ, 1λ,B0.�)

=
∣∣Pr

[
REALFE(1λ,B0.�) = 1

] − Pr
[
IDEALFE(1λ,B0.�) = 1

]∣∣
= |Adv0.�−1(A) − Adv0.�(A)|

Summing up for all � ∈ [n], we obtain the lemma. ��

Game2: we replace the values 〈zi, r〉 used by KeyGen′(msk, ·) to z̃i ←R Zq, for
all slots i ∈ [n], using the Dk-MDDH assumption in G2 (cf Lemma 5).

Lemma 5 (Game1 to Game2). There exists a PPT adversary B2 such that:

Adv1(A) − Adv2(A) ≤ AdvUk-mddh
G2,B2

(λ) +
1

q − 1
.

Proof. Here, we switch {[r]2, [〈zi, r〉]2}i∈[n] used by KeyGen(msk, ·) to {[r]2,
[z̃i]2}i∈[n], where for all i ∈ [n], zi ←R Z

k
q , z̃1, . . . , z̃n ←R Zp and r ←R Z

k
q .
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This is justified by the fact that [r�‖〈z1, r〉‖ · · · ‖〈zn, r〉]2 ∈ G

1×(k+n)
2 is iden-

tically distributed to [r�U�]2 where U ←R Uk+n,k (wlog. we assume that the
upper k rows of U are full rank), which is indistinguishable from a uniformly
random vector over G

1×(k+n)
2 , that is, of the form: [r‖z̃1‖ · · · ‖z̃n]2, according to

the Uk+n,k-MDDH assumption. To do the switch simultaneously for all calls to
KeyGen, that is, to switch {[rj ]2, [〈zi, rj〉]2}i∈[n],j∈[Q0] to {[rj ]2, [z̃

j
i ]2}i∈[n],j∈[Q0],

where Q0 denotes the number of calls to KeyGen(msk, ·), and for all i ∈ [n],
zi ←R Z

k
q , z̃j

1, . . . , z̃
j
n ←R Zp and for all j ∈ [Q0], rj ←R Z

k
q , we use the Q0-

fold Uk+n,k-MDDH assumption. Namely, we build a PPT adversary B′
2 such

that Adv1(A)−Adv2(A) ≤ Adv
n-fold UQ0,k-mddh

G2,B′
2

(λ). This, together with Lemma1
(Uk-MDDH ⇒ n-fold UQ0,k-MDDH), implies the lemma.

– Simulation of mpk : Upon receiving an Q0-fold Uk+n,k-MDDH challenge
(
PG, [U]2 ∈ G

(k+n)×k
2 ,

[
h1‖ · · · ‖hQ0

]
2

∈ G

(k+n)×Q0
2

)
,

and the challenge {xb
i}i∈[n],b∈{0,1} from A, B′

1 picks β ←R {0, 1}, sam-

ples (m̃pki, m̃ski) ← ˜Setup(1λ,Fm+k,B
1 ) for i ∈ [n], and returns mpk :=

(m̃pk1, . . . , m̃pkn) to A.
– Simulation of cti : B′

2 computes cti := Ẽnc(m̃ski) for all i ∈ [n], which it
can do since it knows m̃ski, and returns {cti}i∈[n] to A.

– Simulation of KeyGen′(msk , ·) : On the j’th query y1‖ · · · ‖yn of A
to KeyGen′, B′

2 sets [rj ]2 := [hj ]2, where hj ∈ Z

k
q denotes the k-upper

components of hj ∈ Z

k+n
q , and for each i ∈ [n], computes [di]2 :=

[ ˜KeyGen(m̃ski,yi‖rj , 〈xβ
i ,yi〉 + hj

k+i)]2, where hj
k+i denotes the k + i’th coor-

dinate of the vector hj ∈ Z

k+n
p . Here we rely on the fact that ˜KeyGen(m̃sk, ·, ·)

is linear in its inputs (y, a), so that we can compute ˜KeyGen(m̃sk, [y]2, [a]2) =
[ ˜KeyGen(m̃sk,y, a)]2. Note that when

[
h1‖ · · · ‖hQ0

]
2

is a real MDDH chal-
lenge, B′

2 simulate Game1, whereas it simulates Game2 when
[
h1‖ · · · ‖hQ0

]
2

is uniformly random over G

(k+n)×Q0
1 . ��

Game3: here the values di for i ∈ [n], and z, computed by KeyGen′(msk, ·), are

of the form: di ← ˜KeyGen
(
m̃ski,yi‖r, z̃i

)
, and z := z̃1+ · · ·+ z̃n− ∑

i〈xβ
i ,yi〉 .

In Lemma 6, we prove that Game3 and Game2 are perfectly indistinguishable,
using a statistical argument that crucially relies on the fact that Game3 and
Game2 are selective. In Lemma 7, we prove that no adversary can win Game3,
using the restriction on the queries to KeyGen′(msk, ·) and the challenge {xb

i}i∈[n]

imposed by the ideal functionality.

Lemma 6 (Game2 to Game3). Adv2(A) = Adv3(A).
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Proof. Here, we use the fact that for all y1‖ · · · ‖yn ∈ (Zm
q )n, for all {xb

i ∈
Z

m
q }i∈[n],b∈{0,1}, all β ∈ {0, 1}, the following are identically distributed: {z̃i}i∈[n]

and {z̃i − 〈xβ
i ,yi〉 }i∈[n], where z̃i ←R Zq for all i ∈ [n].

For each query y1‖ · · · ‖yn, KeyGen′(msk,y1‖ · · · ‖yn) picks values z̃i ←R

Zq for i ∈ [n] that are independent of y1‖ · · · ‖yn and the challenge {xb
i ∈

Z

m
q }i∈[n],b∈{0,1} (note that here we crucially rely on the fact the Game2 and

Game3 are selective), therefore, using the previous fact, we can switch z̃i to z̃i −
〈xβ

i ,yi〉 without changing the distribution of the game. This way, KeyGen′(msk,

y1‖ · · · ‖yn) computes di ← ˜KeyGen(m̃ski,yi‖r, z̃i) for all i ∈ [n], and z :=
z̃1 + . . . + z̃n − ∑n

i=1〈xβ
i ,yi〉, as in Game3. ��

Lemma 7 (Game3). Adv3(A) = 0.

Proof. We use the fact that for all i ∈ [n], the query (i,x0
i ,x

1
i ) to Enc′ (recall that

there can be at most one query per slot i ∈ [n]), and for all queries y1‖ · · · ‖yn

to KeyGen′, by definition of the security game, we have:
n∑

i=1

〈x0
i ,yi〉 =

n∑
i=1

〈x1
i ,yi〉.

Therefore, for each call to KeyGen(msk, ·), the value z, which is of the form
z :=

∑
i z̃i − ∑

i〈xβ
i ,yi〉, is independent of β. Since the challenge ciphertext and

the public key are also independent of β, we have Adv3(A) = 0. ��
Summing up, we proved that for all security parameter λ ∈ N and all PPT

adversaries A, the following holds.

– In Lemma 4, we show that there exists a PPT adversary B1 such that
Adv0(A) − Adv1(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B1).

– In Lemma 5, we show that there exists a PPT adversary B2 such that
Adv1(A) − Adv2(A) ≤ AdvUk-mddh

G2,B2
(λ) + 1

q−1 .
– In Lemma 6, we show that Adv2(A) = Adv3(A).
– In Lemma 7, we show that Adv3(A) = 0.

Putting everything together, we obtain:

Adv0(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B0) + AdvUk-mddh
G2,B2

(λ) +
1

q − 1
.

By Definition 6, Adv0(A) = AdvMIFE,one-SEL-IND(1λ,A). Therefore, by the
one-SEL-SIM security of (Setup,Enc,KeyGen) and the Dk-MDDH assumption
in G2, AdvMIFE,one-SEL-IND(1λ,A) is a negligible function of λ. ��
Remark 3 (decryption capabilities). As a sanity check, we note that the simu-
lated secret keys will correctly decrypt a simulated ciphertext. However, unlike
schemes proven secure via the standard dual system encryption methodology
[26], a simulated secret key will incorrectly decrypt a normal ciphertext. This is
not a problem because we are in the private-key setting, so a distinguisher will
not be able to generate normal ciphertexts by itself.
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Remark 4 (why a naive argument is inadequate). We cannot afford to do a naive
hybrid argument across the n slots for the challenge ciphertext as it would intro-
duce extraneous restrictions on the adversary’s queries. Concretely, suppose we
want to use a hybrid argument to switch from encryptions of x0

1,x
0
2 in game 0

to those of x1
1,x

1
2 in game 2 with an intermediate hybrid that uses encryptions

of x1
1,x

0
2 in Game1. To move from game 0 to game 1, the adversary’s query

y1‖y2 must satisfy 〈x0
1‖x0

2,y1‖y2〉 = 〈x1
1‖x0

2,y1‖y2〉, which implies the extrane-
ous restriction 〈x0

1,y1〉 = 〈x1
2,y1〉.

As described in the proof above, we overcome the limitation by using
simulation-based security. Note that what essentially happens in the first
slot in our proof is as follows (for k = 1, that is, DDH): we switch from
Enc(msk1,x0

1‖z1) to Enc(msk1,x1
1‖z1) while giving out a secret key which con-

tains KeyGen(msk1,y1‖r1), [r1]2. Observe that

〈x0
1‖z1,y1‖r1〉 = 〈x0

1,y1〉 + z1r
1, 〈x1

1‖z1,y1‖r1〉 = 〈x1
1,y1〉 + z1r

1

may not be equal, since we want to avoid the extraneous restriction 〈x0
1,y1〉 =

〈x1
2,y1〉. This means that one-SEL-IND security does not provide any guarantee

that the ciphertexts are indistinguishable. However, one-SEL-SIM security does
provide such a guarantee, because

([〈x0
1,y1〉 + z1r

1]2, [r1]2) ≈c ([〈x1
1,y1〉 + z1r

1]2, [r1]2)

via the DDH assumption in G2. Since the outcomes of the decryption are com-
putationally indistinguishable, the output of the simulated ciphertext would also
be computationally indistinguishable.

Theorem 2 (many-SEL-IND Security of MIFE). Suppose the single-input
FE (Setup,Enc,KeyGen,Dec) is many-SEL-IND-secure and the multi-input FE
(Setup′,Enc′,KeyGen′,Dec′) is one-SEL-IND-secure. Then, the multi-input FE
(Setup′,Enc′,KeyGen′,Dec′) is many-SEL-IND-secure.

That is, we show that our multi-input FE is selectively secure in the setting
with multiple challenge ciphertexts (and since our multi-input FE is a private
key scheme, one-SEL-IND security does not immediately imply many-SEL-IND
security).

Proof Overview.

– We first switch encryptions of x1,0
1 , . . . ,x1,0

n to those of x1,1
1 , . . . ,x1,1

n in a
“single shot”, and for the remaining ciphertexts, we switch from an encryption
of xj,0

i = (xj,0
i −x1,0

i )+x1,0
i to that of (xj,0

i −x1,0
i )+x1,1

i . This basically follows
from the setting where there is only a single ciphertext in each slot.

– Then, we apply a hybrid argument across the slots to switch from encryptions
of (x2,0

i − x1,0
i ) + x1,1

i , . . . , (xQi,0
i − x1,0

i ) + x1,1
i to those of (x2,1

i − x1,1
i ) +

x1,1
i , . . . , (xQi,1

i − x1,1
i ) + x1,1

i .
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As described earlier, to carry out the latter hybrid argument, the queries
must satisfy the constraint

〈(xj,0
i − x1,0

i ) + x1,1
i ,yi〉 = 〈(xj,1

i − x1,1
i ) + x1,1

i ,yi〉
⇐⇒ 〈xj,0

i − x1,0
i ,yi〉 = 〈xj,1

i − x1,1
i ,yi〉

where the latter is already imposed by the ideal functionality.
We defer to the full version of this paper for the complete proof.

5 Achieving Adaptive Security

In this section, we show that the multi-input FE in Fig. 7 is many-AD-IND
secure. Roughly speaking, xx-AD-IND security, where xx ∈ {many, one}, is
defined as xx-SEL-IND security (see Definition 5), except that the adversary
does not have to commit to its challenge beforehand, and queries secret keys
adaptively. See the full version of this paper for the formal definition of xx-AD-
IND security.

Theorem 3. Suppose the Dk-MDDH assumption holds in G1 and G2. Then,
the multi-input FE in Fig. 6 is many-AD-IND-secure.

Fig. 6. Our private-key MIFE scheme for the class Fm,B
n (self-contained description).

The scheme is many-AD-IND-secure under the Dk-MDDH assumption in G1 and G2.
We use e([X]1, [Y]2) to denote [X�Y]T .
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Proof Overview. The security proof proceeds in three steps:

– First, we show that the MIFE in Fig. 6 is one-AD-IND secure, that is, it is
adaptively secure when there is only a single challenge ciphertext. To achieve
adaptive security, we borrow the techniques used in the selective security proof,
using complexity leveraging to obtain adaptive security. Note that in our case,
we can afford the exponential security loss from complexity leveraging, since
this is used in the proof in combination with perfect indistinguishability, there-
fore, the exponential term is multiplied by a zero term.

– Then, we show that the generic construction of MIFE in Fig. 3 is many-AD-
IND secure, if the underlying single-input FE is many-AD-IND secure, and
the MIFE is one-AD-IND secure.

– Finally, we show that the single-input scheme in Fig. 7 is many-AD-IND.

Putting everything together, we obtain many-AD-IND security of the MIFE in
Fig. 6. We defer to the full version of this paper for a complete proof, and for
the definition of one-AD-IND and many-AD-IND security.

A One-SEL-SIM, Many-AD-IND Secure Scheme
for Single-Input Inner Products

In Fig. 7, we describe the scheme for Single-Input Inner Products from [28], which
is essentially the same as those in [2,4], extended explicitly to the Dk-MDDH
assumption. In the full version of this paper, we recall the proof of one-SEL-
SIM-security from [28] and we prove its many-AD-IND security. Moreover, note
that the scheme is public key, linearly homomorphic, and satisfies additional
requirements for the construction in Fig. 3.

Fig. 7. A one-SEL-SIM scheme for single-input inner product Fm,B
1 [28].

Theorem 4 (one-SEL-SIM, many-AD-IND Security of FE). If the Dk-
MDDH assumption holds in G, then the single-input FE in Fig. 7 is one-SEL-
SIM secure (see Definition 6), and many-AD-IND secure.

We defer to the full version of this paper for the complete proof. We provide
the description of the simulator for the proof of one-SEL-SIM security from [28],
in Fig. 8.
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Fig. 8. Simulator (˜Setup, ˜KeyGen, Ẽnc) from [28] for the one-SEL-SIM security of the
single-input scheme for inner product Fm,B

1 in Fig. 7
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Abstract. Wee (TCC’14) and Attrapadung (Eurocrypt’14) introduced
predicate and pair encodings, respectively, as a simple way to construct
and analyze attribute-based encryption schemes, or more generally predi-
cate encryption. However, many schemes do not satisfy the simple infor-
mation theoretic property proposed in those works, and thus require
much more complicated analysis. In this paper, we propose a new sim-
ple property for pair encodings called symbolic security. Proofs that pair
encodings satisfy this property are concise and easy to verify. We show
that this property is inherently tied to the security of predicate encryp-
tion schemes by arguing that any scheme which is not trivially broken
must satisfy it. Then we use this property to discuss several ways to con-
vert between pair encodings to obtain encryption schemes with different
properties like small ciphertexts or keys. Finally, we show that any pair
encoding satisfying our new property can be used to construct a fully
secure predicate encryption scheme. The resulting schemes are secure
under a new q-type assumption which we show follows from several of
the assumptions used to construct such schemes in previous work.

1 Introduction

Traditional public key encryption allows an encryptor to use a public key to
encrypt a message so that the owner of the corresponding secret key can decrypt.
In 2005, Sahai and Waters [35] introduced the concept of attribute-based encryp-
tion, in which who can decrypt is determined by some more complex attributes
of the decryptor and the message. Of course this is only meaningful if there is
some party that can determine the attributes of the decryption, thus the basic
model assumes a trusted party who publishes parameters used in encryption,
and who issues decryption keys to users based on their attributes; given such a
key, a user should be able to decrypt any ciphertext which is compatible with his
attributes. The initial result considered a simple threshold functionality: every
ciphertext was encrypted with a set of attributes, and a user could decrypt if
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they possessed sufficiently many of those attributes. This was then generalized to
key-policy ABE [22], in which the user’s key specifies a policy determining what
attributes must be present in the ciphertext in order for that user to be able to
decrypt, and ciphertext-policy ABE [10], which is the natural opposite in that
the user’s key corresponds to a list of attributes and ciphertexts are encrypted
with a policy which determines which attributes the user must have to decrypt.

Since then the field of ABE has grown dramatically. There has been work
which extends the type of policies that can be considered, for example to non-
monotone formulas [32], or even regular languages [38]. There has also been work
which improves the efficiency of ABE in various dimensions, for example con-
sidering schemes with very short (e.g. constant size) ciphertexts or keys [7,41],
or schemes with very short parameters (again constant-size) which still support
attributes from an unbounded space [29,31,33]. There has been work on dis-
tributing the job of the authority across multiple entities [14,28], on updating
ciphertexts [34], or hiding the key and/or ciphertext attributes [11,12,25,36],
and many other interesting directions.1

One weakness in much of the early work is that the schemes presented were
only shown to satisfy a weak notion of security called selective security. Selective
security essentially only guarantees security for an adversary who chooses which
type of ciphertext to attack (i.e. the attributes/policy for the ciphertext) without
seeing the system parameters, any ciphertexts, or any decryption keys. Thus it
was a major breakthrough when Waters introduced the dual-system encryption
technique [37], paving the way for schemes which satisfied the natural definition,
in which the adversary may choose what type of ciphertext to attack adaptively
based on any of the other information it sees while interacting with the system.
Since then there has been a lot of work focused on obtaining the results above
under this more natural security definition, which is usually referred to as full
security.

One of the main downsides of this process, however, is that while most of the
original constructions were simple and intuitive, many of these new constructions
are significantly more complex. Also many of the first fully secure schemes relied
on composite-order pairing groups, which while conceptually simpler are not
really usable in practice [23]. The effort to move these results to be based on
standard prime-order pairing groups has added even more complexity [18,24,27].
As a result, the intuition for the resulting constructions is often difficult to follow,
and the security analysis for these schemes is much more involved, so much so
that even verifying the security proof is often very time consuming.

Two recent works by Wee and Attrapadung [2,40] set out to simplify the
process of designing and analyzing fully secure ABE schemes. They proposed a

1 There has also been a very interesting line of work which uses indistinguishability
obfuscation or multi-linear maps to construct ABE for circuits [19,20], and a lot
of progress on building ABE schemes from lattices [13,21], although achieving the
natural full security notion there still requires complexity leveraging. Here, we focus
on pairing based constructions as to date they provide the best efficiency and security
guarantees.
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simple building block, called a predicate/pair encoding, which essentially con-
siders what happens in the exponent of a single key and a single ciphertext.
They proposed an information theoretic security property, which considers the
distributions of these values, again only considering a single key and ciphertext,
and showed that from any pair encoding scheme which satisfies this property
one can construct a fully secure ABE scheme. The initial works proposed only
composite-order group schemes; later works [1,4,15] have updated these results
to prime-order groups.

These results led to very simple, intuitive, and easy to analyze constructions
for several basic types of ABE schemes, that worked in efficient prime order
groups, and were based on simple assumptions like DLIN or SXDH. However,
there are many types of ABE schemes for which we do not know how to construct
this type of pair encoding. And in fact there are many types of ABE which we
do not know how to construct under simple assumptions using any approach,
like ABE with short ciphertexts, or with large universe, or where an attribute
can be used any number of times in a policy, etc.

To address this problem, Attrapadung [2] also proposed a different security
notion for pair encodings, and showed that under this notion one could construct
pair encodings for many more types of ABEs, and that this notion was suffi-
cient to produce secure constructions under more complex q-type assumptions.
However, proving that a pair encoding scheme satisfies the new security notion
is again a challenging task. This property involves elements in bilinear groups
rather than just the exponent, and it is no longer information-theoretic, so that
it must be proved via reduction to a different q-type assumption for every encod-
ing. These reductions are very complex, and again verifying the security becomes
a matter of studying several pages of proof (9 pages for predicate encryption for
regular languages, for instance), providing relatively little intuition for why the
scheme is secure.

1.1 Our Contributions

Our goal in this work is to simplify the process of designing and analyzing
ABE schemes for those types of ABEs which we only know how to construct
from q-type assumptions. Towards this, we introduce a very different kind of
security property for pair encodings that completely does away with any kind of
distributions, and show that it is a very powerful and natural property through
a series of results. We believe it provides a new perspective for looking at the
security of predicate encryption schemes.

A pair encoding scheme, as defined by Attrapadung [2], gives a way to encode
the two inputs x and y to a predicate into polynomials of a simple structure. These
polynomials have three types of variables: common variables shared by the encod-
ings of x and y, and variables specific to the encoding of x and to that of y.

A New Property for Pair Encodings. We present a new security property
for pair encodings that essentially requires one to describe a mapping from the
variables in the encoding to matrices and vectors. Once a mapping is specified,
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verifying that the property holds is just a matter of checking if the polynomials
in the encoding evaluate to 0 when the variables are substituted.2 Thus veri-
fication is much easier compared to any property known before, since they all
require checking whether certain distributions are (pefectly, statistically or com-
putationally) indistinguishable. We call our new property the symbolic property
(Sym-Prop) since verification only involves symbolic manipulation.

We show how to convert any pair encoding that satisfies Sym-Prop into a fully
secure encryption scheme whose security is based on a fixed q-type assumption
that we call q-ratio. We use the generic transformation from Agrawal and Chase
[1], henceforth called Gen-Trans, for this purpose. Gen-Trans takes an encod-
ing scheme satisfying a certain information-theoretic property and produces an
encryption scheme in dual system groups [16], which can then be instantiated
in composite-order groups under subgroup decision assumptions or prime-order
groups under the k-linear assumption.

We show that the security of Gen-Trans can also be argued when the pair
encoding satisfies a very different security property, the symbolic property. The
main novelty in our proof, and the crucial difference from AC16, is in how the
form of master secret key is changed: while AC16 uses an information-theoretic
property, we use Sym-Prop in conjunction with a new assumption called q-ratiodsg
on dual system groups.3 At a very high level, the terms that cannot be generated
from q-ratiodsg are exactly the ones that go to zero due to Sym-Prop. Thus we are
able to embed q-ratiodsg successfully into the reduction. Interestingly, however,
as we will discuss below, Sym-Prop is not just an artifact of our proof strategy
but seems to be inherently linked to the fundamental security of the resulting
predicate encryption schemes.

An added advantage of borrowing AC16’s transformation is that when a pair
encoding is used in a way that can be shown to be information-theoretically
secure, then the encryption scheme obtained through Gen-Trans is fully secure
under a standard assumption. We show a useful application of this feature below.

We also show that the q-ratio assumption is in fact implied by several other
q-type assumptions used to construct ABE schemes, in particular those used in
the Lewko-Waters ABE [30] and Attrapadung’s fully secure predicate encryption
for regular languages [2]. This assumption is also simpler to describe than either
[30] or [2] and we believe that this approach better captures the intuition for
why these schemes are secure.

Analysis of Pair Encodings. We show that Sym-Prop holds for several pair
encoding schemes, both new and old: multi-use CP-ABE, short ciphertext CP-
ABE, large universe KP-ABE, short ciphertext KP-ABE, and predicate encryp-
tion for regular languages.

First, we present a new pair encoding Πre-use for CP-ABE that allows an
attribute to be used any number of times in a policy. An interesting feature of

2 The trivial case is ruled out because we also require that the vectors corresponding
to two special variables, in the encoding of x and y respectively, are not orthogonal.

3 q-ratiodsg is very similar to q-ratio. We show that Chen and Wee’s instantiations of
dual system groups satisfy q-ratiodsg if the underlying bilinear maps satisfy q-ratio.
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Πre-use is that if no attribute is used more than once, then it collapses to the
one-use scheme of [2], which is information-theoretically secure. So if we get
an encryption scheme ES when Gen-Trans is applied on Πre-use, then ES is fully
secure under a standard assumption as long as it is used to encrypt policies where
attributes are not repeated. If a policy with multiple use of attributes needs to be
encrypted, then ES still fully hides the payload but under a q-type assumption.
As far as we know, no multi-use scheme with this feature was known before. For
instance, the Lewko-Waters’ scheme [30] uses an assumption whose size scales
with that of the access policy in the challenge ciphertext. So even if no attribute
is used more than once, security still relies on a q-type assumption.4

For short ciphertext CP-ABE, we show that the pair encoding of Agrawal
and Chase [1] satisfies Sym-Prop. This means that the encryption scheme that
comes out after applying Gen-Trans is fully secure, not just selectively secure as
they proved it (since we use the same transformation as them), under a q-type
assumption. Note that it was not known earlier whether there exists a fully-secure
CP-ABE scheme with constant-size ciphertexts under any kind of assumption
on bi-linear maps. In fact, we can generically build an encryption scheme with
constant-size ciphertexts for any predicate P from any pair encoding for P that
satisfies Sym-Prop as discussed in more detail below.

The last three encodings we analyze are borrowed from the work of Attra-
padung [2] with slight simplification. Previously, we only knew how to analyze
them using the much more complex computational security property in [2]. Our
analysis of these schemes is considerably simpler: for comparison, the proof of
computational security for the regular languages pair encoding required 9 full
pages, while our proof of symbolic security only takes 2.5 llncs pages. Our proofs
can be seen as extracting, abstracting and somewhat simplifying the key ideas
behind Attrapadung’s security analysis, so that they can be very easily verified,
and more easily applied to future schemes.

Symbolic Property Inherent in a Secure Scheme. While there are several
security properties for encoding schemes that allow one to check if they can
be used to build some type of encryption scheme, is there a property that an
encoding scheme should not satisfy? A natural one that comes to mind is that
correctness holds for an x and y that make a predicate false. In other words,
there exists a way to combine the polynomials in the encoding to recover the
blinding factor for the message even when the predicate is false. We call a pair
encoding scheme that satisfies this property trivially broken.

Building an encryption scheme from a pair encoding scheme seems to require
at least that the pair encoding not be trivially broken, but there is no general
result that shows some type of security for a scheme that only provides such
a minimal guarantee. In Sect. 4, we give the first result of this kind: Any pair
encoding scheme that is not trivially broken satisfies our symbolic property.

4 There are other ABE schemes that get much more than attribute re-use, like large
universe or short keys, based on q-type assumptions [2], but proving them secure
under a standard assumption when re-use does not happen would be even more
difficult.
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This result has several interesting broad implications. Suppose we have an
encoding Π that we do not know to be secure. We apply Gen-Trans on it to get
an encryption scheme ES. For this scheme to not be completely broken, there
should not be a way to trivially combine some ciphertext and key to recover the
message when the predicate is false. Now an interesting fact about our generic
transformation Gen-Trans is that it preserves the structure of pair encodings, so
that if there is way to combine the polynomials to recover the blinding factor,
then the ciphertext and key coming out of Gen-Trans can be combined to recover
the message. Therefore, if ES is not completely broken, Π is not broken either.
This further implies that Π satisfies Sym-Prop and ES is fully secure under
q-ratio. Thus we arrive at a very interesting conclusion: Either ES is broken in
an obvious way or it is fully secure under q-ratio. Hence, Sym-Prop seems to be
inherently linked to the fundamental security of encryption schemes, and is not
just an artifact of our proof strategy.

We can take this line of argument even further. Suppose there is a generic
transformation that preserves the structure of pair encodings in the sense
described above. And suppose that when an encoding scheme satisfying a cer-
tain property X is given as input, it generates an encryption scheme that is not
obviously broken, for example a selectively secure scheme. Then every encoding
that satisfies X will also satisfy our symbolic property, and hence will lead to
a fully secure encryption scheme through Gen-Trans! In this paper, we do not
formalize the exact requirements a generic transformation should satisfy for such
a general result to hold, leaving it as an interesting exercise for future work.

We conclude with an alternate way of proving symbolic security in case find-
ing a mapping from an encoding’s variables to matrices/vectors seems difficult:
show that for all x and y for which the predicate is false, the blinding factor
cannot be recovered from the encoding’s polynomials.

New Generic Conversions. Thanks to the simplicity of our new symbolic
property, we are able to show several useful transformations of pair encodings
that preserve security. Specifically,

1. Dual conversion. Any secure pair encoding for a predicate can be transformed
into a secure encoding scheme for the dual predicate (where the role of key
and ciphertext are switched).

2. Compact ciphertexts. Any secure pair encoding can be converted into one
that has a constant number of variables and polynomials in the ciphertext
encoding. Thus, after applying Gen-Trans to the latter encoding, one gets
encryption schemes with constant-size ciphertexts.

3. Compact keys. Analogous to above, any secure pair encoding can be converted
into one that has a constant number of variables and polynomials in the key
encoding, leading to encryption schemes with constant-size keys.5

This demonstrates the power and versatility of the new symbolic property. In
contrast, only the first type of transformation is known for the security properties
of Attrapadung [2,8], and none is known for Wee [40] or Chen et al. [15].
5 This transformation and the one above requires some bound on the number of vari-

ables and polynomials in the respective encoding.
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More New Schemes. Apart from the new scheme for unbounded attribute-
reuse and showing that the constant-size ciphertext CP-ABE of [1] is fully secure,
our generic conversions for pair encodings help us arrive at schemes that were
not known before:

– As mentioned before, we show that the regular language pair encoding from
[2] satisfies our symbolic property. Here keys are associated with regular lan-
guages, expressed as deterministic finite automata (DFA), and ciphertexts
are associated with strings of any length from an alphabet set. One can first
apply the dual conversion transformation to get an encoding scheme where
ciphertexts and keys are associated with DFAs and strings, respectively. Then
applying our compact ciphertext transformation to this encoding, and using
the resulting pair encoding in Gen-Trans, one gets an encryption scheme for
regular languages with constant sized ciphertexts (but with an upper bound
on the size of DFAs).

– Similarly, applying our compact ciphertext/key transformation to Attra-
padung’s pair encodings for doubly spatial encryption (DSE) yields new encod-
ing schemes, that then lead to encryption schemes with constant size cipher-
text and keys, respectively. The only previous work on short ciphertext DSE
[5] relied on a more complex series of transformations in which one type of
predicate family (e.g. CP-ABE) is embedded inside another (e.g. DSE), and
resulted in more expensive encodings.

1.2 Overview of Symbolic Security

This section provides a high-level informal treatment of pair encodings and the
symbolic property with the goal of building some intuition about these concepts.
Please refer to Sect. 3 for a formal presentation.

Pair Encodings. The pair encoding framework focuses on the exponent space
of an encryption scheme. Suppose there is a predicate P that takes two inputs
x and y. We want to encode x into a ciphertext and y into a key. An encryption
scheme for P generally has terms like gb1 , gb2 , . . . and a special one of the form
e(g, g)α in the public parameters (b1, b2, . . . and α are chosen randomly). α plays
the role of the master secret key. To encrypt a message m along with attribute
x, some random numbers s0, s1, s2, . . . are chosen and new terms are created by
raising g, or some common term like gbj , to some si, and then taking a linear
combination of these terms, where the terms and combination used depend on
x. So, if we look at the exponent of any group element output by the encryption
algorithm, it is usually a polynomial of the form s1 + λ1s2b3 + . . . where λ1

is a constant that depends on x. Finally, m is hidden inside the ciphertext by
blinding it with a re-randomization of e(g, g)α, say e(g, g)αs0 .

Similarly, the exponents of group elements in any key are of the form r1 +
μr2b1+. . ., where r1, r2, . . . is fresh randomness chosen for this key. We could also
have expressions that contain α because key generation involves the master secret
key. Thus there are three different types of variables involved in a pair encoding:
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the common variables b1, b2, . . ., the ciphertext encoding variables s0, s1, s2, . . .,
and the key encoding variables α, r1, r2, . . ..

Overall, it can be seen that if we focus on the exponent space of an encryption
scheme, we need to deal with polynomials of a special form only. If P (x, y) = 1,
then it should be possible to combine the ciphertext and key polynomials so that
αs0 can be recovered, and then used to unblind the message. The pair encod-
ing framework just abstracts out such similarities between predicate encryption
schemes in a formal way.

Security Properties and Transformation. Many security properties have
been proposed in the literature for pair encodings, and a more restricted struc-
ture called predicate encodings [1,2,15,40]. The main contribution of these
papers is to give a generic transformation from any pair encoding that satis-
fies their respective property into a fully secure predicate encryption scheme
in composite or prime order groups (or a higher level abstraction called dual-
system groups [16]). Proving that a pair encoding scheme satisfies a certain
property is significantly easier, especially if the property is information-theoretic,
than directly proving security of an encryption scheme. This is not surprising
because there are no bi-linear maps, hardness assumptions, or sophisticated dual-
encryption techniques involved in this process. Furthermore, verifying security
of any number of encryption schemes designed through the pair encoding frame-
work reduces to checking that the respective pair encodings are secure—a much
easier task—and that the generic transformation is correct—a one-time effort.
Needless to say, this saves a huge amount of work.

A Concrete Example: Unbounded Attribute Re-use. Suppose we want
to design an ABE scheme that puts no restriction on the number of times an
attribute can be used in an access policy. We know that a linear secret sharing
scheme is the standard way to present a policy. It consists of a matrix A of size
m × k and a mapping π from its rows to the universe of attributes. A value
γ can be secret-shared through A by creating m shares, one for each row. If a
user has a set of attributes S, then she gets shares for all the rows that map
to some attribute in S through π. If S satisfies (A, π), then those shares can
be combined to recover γ; otherwise, γ is information-theoretically hidden. In
nearly all fully secure ABE schemes, the mapping π is assumed to be injective
or one-to-one (this is called the one-use restriction), but we want to build an
ABE scheme that supports any π whatsoever. In particular, the size of public
parameters should not affect how many times an attribute can be used in a
policy. (Any such scheme will likely rely on a q-type assumption [30].6)

6 In a recent work, Kowalczyk and Lewko [26] proposed a new technique to boost
the entropy of a small set of (unpublished) semi-functional parameters. Using this
idea, they propose a new KP-ABE scheme where the number of group elements in
the public parameters grows only logarithmically in the bound on the number of
attribute-uses in a policy, but note that the number of times an attribute can be
reused is still affected. Furthermore, the size of ciphertexts scales with the maximum
number of times an attribute can be re-used.
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For a row i of A, suppose ρ(i) denotes which occurrence of π(i) this is.
(If an attribute y is attached to the second and fifth rows, then ρ(2) = 1 and
ρ(5) = 2.) We now present a new pair encoding Πre-use for unbounded re-use by
adapting the one-use scheme of [2]. (Some minor elements of the encoding have
been suppressed for simplicity; see the full version for a full description.)

EncCt((A, π)) → s0, s1, . . . , sd, {ai(s0b′, ŝ2, . . . , ŝk)T + sρ(i)bπ(i)}i=1,...,m

EncKey(S) → r, α + rb′, {rby}y∈S

Here ai is the ith row of A and d is the maximum number of times any attribute
appears in it. A nice feature of Πre-use is that if no attribute is used more than
once (i.e. d = 1), then the scheme collapses to that of [2], and one can show that
α is information-theoretically hidden, or that Πre-use is perfectly secure.

If attributes are used multiple times, so that the ciphertext encoding has
several variables s1, . . . , sd, then α might be revealed to an unbounded adversary.
Thus we need to find out if Πre-use satisfies a different type of property for
which a generic transformation is known. One possibility is the computational
double selective master-key hiding property due to Attrapadung, but then the
advantages of an abstraction like pair encoding are more or less lost: we will
have to work at the level of bi-linear maps instead of simple polynomials, and
find a suitable q-type assumption(s) under which the property can be shown to
hold.

The Symbolic Property. Our new symbolic property (Sym-Prop) can be very
useful in such cases. It provides a new, clean way of reasoning about security
of pair encodings: instead of arguing that one distribution is indistinguishable
from another, whether information-theoretically or computationally, one needs
to discover a mapping from the variables involved in an encoding to matrices and
vectors, such that when the latter is substituted for the former in any cipher-
text/key encoding polynomial, the zero vector is obtained. Indeed, one needs
to invest some effort in order to find the right matrices and vectors that will
make the polynomials go to zero, but once such a discovery is made, verifying
the property is just a matter of doing some simple linear algebra.

Recall that a pair encoding scheme for a predicate P that takes two
inputs x and y, consists of three different types of variables: common variables
b1, b2, . . ., ciphertext encoding variables s0, s1, s2, . . ., and key encoding variables
α, r1, r2, . . .. Sym-Prop is defined w.r.t. three (deterministic) algorithms, EncB,
EncS and EncR. Among them, EncB generates matrices for the common vari-
ables; EncS and EncR generate vectors for ciphertext encoding and key encoding
variables, respectively. The inputs to these three algorithms depend on what
type of symbolic property we want to prove. For the selective version, the three
algorithms get x as input, while EncR also gets y; and for the co-selective version,
they all get y as input, while EncS also gets x. This is in line with the selec-
tive and co-selective security notions for encryption schemes. In the former, all
key queries come after the challenge ciphertext, while in the latter, they come
beforehand. A pair encoding scheme satisfies Sym-Prop if it satisfies both the
selective and co-selective variants.
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The trivial case where all the matrices and vectors output by the three algo-
rithms are simply zero is ruled out because we also require that the vectors
corresponding to two special variables, s0 in the encoding of x and α in the
encoding of y, are not orthogonal.

Proving the Symbolic Property for Πre-use. To prove Sym-Prop for the multi-
use encoding scheme Πre-use defined above, we need to define the outputs of the
three algorithms EncB, EncS and EncR (in other words, a mapping from the
variables in Πre-use to vectors and matrices) in both the selective and co-selective
settings. Towards this, we make use of a simple combinatorial fact that is often
used in arguing security of ABE schemes. If a set of attributes S does not satisfy
an access policy (A, π), then there exists a vector w = (w1, . . . , wk) s.t. w1 = 1
and ai is orthogonal to w for all i such that π(i) ∈ S. Note that w can be
computed only by an algorithm that knows both (A, π) and S.

We also need some simple notation to describe the mapping. Let Ei,j be an
k × d matrix with 1 at the (i, j)-th position and 0 everywhere else. Also, let ei

be the ith d-length unit vector and ej be the jth k-length unit vector. Here is
the mapping for the selective version:

by : −
d∑

�=1

k∑
j=1

aσ(y,�),jEj,�, b′ : E1,1,

s0 : e1, s� : e�, ŝj : ej , α : e1, r : −
k∑

j=1

wjej ,

where σ(y, 	) is the index of the row in A which has the 	-th occurrence of y.
Further, if Ei,j , ei and ej carry the meaning as above, except that their dimen-
sions are 1 × T , T and 1 respectively, then the mapping for the co-selective
version is:

by : 0 for y ∈ S and − E1,y otherwise, b′ : E1,1,

s0 : w1e1, s� :
∑

i:ρ(i)=�

aiwTeπ(i), ŝj : wje1, α : e1, r : −e1.

We encourage the reader to verify that the polynomials in Πre-use (except the
simples ones s0, s1, . . . , sd, r) go to zero when the two mappings described above
are applied. (Vectors output by EncS (resp. EncR) are multiplied to the right
(resp. left) of matrices output by EncB.) All it takes are simple observations like
Ei,j · eTj′ gives a non-zero vector if and only if j = j′, and that w is orthogonal
to every row in A that maps to an attribute in S. (See the full version for a
formal proof.) One can consider the two mappings to be a short certificate of the
security of Πre-use.

How to Find a Mapping? Indeed, as pointed out earlier, finding an appro-
priate mapping is not a trivial task. Nevertheless, Sym-Prop is still the right
property for arguing security of pair encodings for the following reasons:
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– If finding the right mapping is difficult for Sym-Prop, then finding a proof for
the computational property of Attrapadung [2] is several times more difficult.
A typical proof of the symbolic property is 1–2 pages while computational
property proofs could go up to 10 pages (see the encoding for regular lan-
guages, for instance). A central issue with computational properties is finding
an appropriate q-type assumption under which it holds, which may be very
difficult for a complex predicate. Our approach can be seen as extracting out
the real challenging part of designing Attrapadung’s computational proofs.

– Verification of Sym-Prop involves doing simple linear algebra, arguably a much
simpler task than checking indistinguishability of distributions, and certainly
a much simpler task than verifying a long computational reduction.

– The certificate for the symbolic security of Πre-use bears many similarities with
those of other encodings that we will describe later in the paper. Thus proving
Sym-Prop for a new encoding scheme is not as difficult as it might seem at
first. Furthermore, modifying a short proof of the symbolic property is much
easier than a long proof of a computational property.

– Recall our result that if an encoding scheme is not trivially broken then it
satisfies Sym-Prop. This gives an alternate way of showing that Sym-Prop
holds, by proving that the scheme is not broken.

1.3 Outline of the Paper

In Sect. 2 we define relevant notation and review the standard definition of predi-
cate encryption. In Sect. 3 we define pair encoding schemes and our new symbolic
property formally. Section 5 first reviews the notion of dual system groups, then
shows how to build encryption schemes from any pair encoding by using them.
This conversion is a two-step process: first we augment an encoding so that it
satisfies a few extra properties (Sect. 5.1); next we apply the transformation from
Agrawal and Chase [1] (Sect. 5.4). A proof of security of the resulting encryption
scheme is provided in Sect. 7.

Section 6 gives generic transformations that can be used to reduce the number
of variables and/or polynomials in an encoding, which can then be used to
get encryption schemes with constant-size ciphertexts/keys. We also provide a
transformation from any encoding for a predicate to an encoding for the dual
predicate. However, due to space constraints, most of the details are available in
the full version only. The full version also provides several examples to illustrate
how symbolic property can substantially simplifying the analysis of encoding
schemes.

2 Preliminaries

We use λ to denote the security parameter. A negligible function is denoted
by negl. We use bold letters to denote matrices and vectors, with the former
in uppercase and the latter in lowercase. The operator · applied to two vectors
computes their entry-wise product and 〈, 〉 gives the inner-product. For a vector
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u, we use ui to denote its ith element, and for a matrix M, Mi,j denotes the
element in the ith row and jth column. When we write gu for a vector u =
(u1, . . . , un), we mean the vector (gu1 , . . . , gun). gM for a matrix M should be
interpreted in a similar way. The default interpretation of a vector should be as
a row vector.

For two matrices U and V of dimension n × m1 and n × m2 respectively, let
U ◦ V denote the column-wise join of U and V of dimension n × (m1 + m2),
i.e., U◦V has the matrix U as the first m1 columns and V as the remaining m2

columns. We also refer to this operation as appending V to U. (The notation
easily extends to vectors because we represent them as row matrices.) If we
want to join matrices row-wise instead, we could take their transpose, apply a
column-wise join, and then take the transpose of the resultant matrix.

We use x ←R S, for a set S, to denote that x has been drawn uniformly at
random from it. The set of integers a, a + 1, . . . , b is compactly represented as
[a, b]. If a = 1, then we just use [b], and if a = 0, then [b]+.

Let ZN denote the set of integers {0, 1, 2, . . . , N}. Let GN (m) denote the set
of all vectors of length m with every element in ZN . Similarly, let GN (m1,m2)
denote the set of all matrices of size m1 × m2 that have all the elements in ZN .

Bilinear Pairings. We use the standard definition of pairing friendly groups
from literature. A mapping e from a pair of groups (G,H) to a target group GT

is bilinear if there is linearity in both the first and second inputs, i.e. e(ga, hb) =
e(g, h)ab for every g ∈ G, h ∈ H and a, b ∈ Z. We require e to be non-degenerate
and efficiently computable. The identity element of a group G is denoted by 1G.

Let GroupGen be an algorithm that on input the security parameter λ outputs
(N,G,H,GT , g, h, e) where N = Θ(λ); G, H and GT are (multiplicative) cyclic
groups of order N ; g, h are generators of G, H, respectively; and e : G ×H → GT

is a bilinear map. In this paper our focus will be on prime-order groups because
they perform much better in practice.

Predicate Family. We borrow the notation of predicate family from Attra-
padung [2]. It is given by P = {Pκ}κ∈Nc for some constant c, where Pκ maps an
x ∈ Xκ and a y ∈ Yκ to either 0 or 1. The first entry of κ is a number N ∈ N that
is supposed to specify the size of a domain; rest of the entries are collectively
referred to as par, i.e. κ = (N, par).

2.1 Predicate Encryption

An encryption scheme for a predicate family P = {Pκ}κ∈Nc over a mes-
sage space M = {Mλ}λ∈N consists of a tuple of four PPT algorithms
(Setup,Encrypt,KeyGen, Decrypt) that satisfy a correctness condition. These
algorithms behave as follows.

– Setup(1λ, par). On input 1λ and par, Setup outputs a master public key mpk
and a master secret key msk. The output of Setup is assumed to also define a
natural number N , and κ is set to (N, par).
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– Encrypt(mpk, x,m). On input mpk, x ∈ Xκ and m ∈ Mλ, Encrypt outputs a
ciphertext ct.

– KeyGen(msk, y). On input msk and y ∈ Yκ, KeyGen outputs a secret key sk.
– Decrypt(mpk, sk,ct). On input mpk, a secret key sk and a ciphertext ct,
Decrypt outputs a message m′ ∈ Mλ or ⊥.

Correctness. For all par, m ∈ Mλ, x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(mpk,msk) ← Setup(1λ);
Decrypt(mpk,KeyGen(msk, y),Encrypt(mpk, x)) 	= Pκ(x, y)] ≤ negl(λ),

where the probability is over the random coin tosses of Setup, Encrypt and KeyGen
(Decrypt can be assumed to be deterministic without loss of generality).

Security. Consider the following game IND-CPAb
A (λ, par) between a challenger

Chal and an adversary A for b ∈ {0, 1} when both are given inputs 1λ and par:

1. Setup Phase: Chal runs Setup(1λ, par) to obtain mpk and msk. It gives mpk
to A.

2. Query Phase: A requests a key by sending y ∈ Yκ to Chal, and obtains
sk ← KeyGen(msk, y) in response. This step can be repeated any number of
times.

3. Challenge Phase: A sends two messages m0,m1 ∈ Mλ and an x	 ∈ Xκ to
Chal, and gets ct ← Encrypt(mpk, x,mb) as the challenge ciphertext.

4. Query Phase: This is identical to step 2.
5. Output. A outputs a bit.

The output of the experiment is the bit that A outputs at the end. It is
required that for all y queried in steps 2 and 4, Pκ(x	, y) = 0.

Definition 2.1. An encryption scheme is adaptively or fully secure if for all par
and PPT adversary A,

|Pr[IND-CPA0
A(λ, par) = 1] − Pr[IND-CPA1

A(λ, par) = 1]| ≤ negl(λ), (1)

where the probabilities are taken over the coin tosses of A and Chal. It is semi-
adaptively secure if (1) is satisfied with respect to a modified version of IND-CPA
where the second step is omitted [17,39]. Further, it is co-selectively secure if (1)
holds when the fourth step is removed from the IND-CPA game [6].

3 Pair Encoding Schemes

The notion of pair encoding schemes (PES) was introduced by Attrapadung [2],
and later refined independently by Agrawal and Chase [1] and Attrapadung [4]
himself in an identical way. As observed in the latter works, all pair encodings
proposed originally in [2] satisfy the additional constraints in the refined versions.

We present here a more structured definition of pair encoding schemes so that
the reader can easily see the different components involved. In the full version
we describe the original formulation as well, and argue why our definition does
not lose any generality.
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3.1 Definition

A PES for a predicate family Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par),
where par specifies some parameters, is given by four deterministic polynomial-
time algorithms as described below.

– Param(par) → n. When given par as input, Param outputs n ∈ N that specifies
the number of common variables, which we denote by b := (b1, . . . , bn).

– EncCt(x,N) → (w1, w2, c(s, ŝ,b)). On input N ∈ N and x ∈ X(N,par), EncCt
outputs a vector of polynomials c = (c1, . . . , cw3) in non-lone variables s =
(s0, s1, . . . , sw1) and lone variables ŝ = (ŝ1, . . . , ŝw2). (The variables ŝ1, . . . , ŝw2

never appear in the form ŝzbj , and are hence called lone.) For 	 ∈ [w3], where
η�,z, η�,i,j ∈ ZN , the 	th polynomial is given by

∑
z∈[w2]

η�,z ŝz +
∑

i∈[w1]
+,

j∈[n]

η�,i,jsibj .

– EncKey(y,N) → (m1,m2,k(r, r̂,b)). On input N ∈ N and y ∈ Y(N,par),
EncKey outputs a vector of polynomials k = (k1, . . . , km3) in non-lone vari-
ables r = (r1, . . . , rm1) and lone variables r̂ = (α, r̂1, . . . , r̂m2). For t ∈ [m3],
where φt, φt,z′ , φt,i′,j ∈ ZN the tth polynomial is given by

φtα +
∑

z′∈[m2]

φt,z′ r̂z′ +
∑

i′∈[m1],
j∈[n]

φt,i′,jri′bj .

– Pair(x, y,N) → (E,E). On input N , and both x and y, Pair outputs two
matrices E and E of size (w1 + 1) × m3 and w3 × m1, respectively.

Observe that the output of EncKey is analogous to that of EncCt, except in
how the special variables α and s0 are treated in the respective case. While α is
lone variable, i.e. it never appears in conjunction with a common variable, s0 is
not. See the full version for several concrete examples of pair encodings and the
different types of variables involved.

Correctness. A PES is correct if for every κ = (N, par), x ∈ Xκ and y ∈ Yκ

such that Pκ(x, y) = 1, the following holds symbolically

sEkT + cErT =
∑

i∈[w1]
+,

t∈[m3]

siEi,tkt +
∑

�∈[w3],
i′∈[m1]

c�E�,i′ri′ = αs0.

The matrix E takes a linear combination of the products of non-lone variables
output by EncCt and polynomials output by EncKey. (Its rows are numbered
from 0 to w1.) Analogously, E takes a linear combination of the products of
polynomials output by EncCt and non-lone variables output by EncKey. Below
we use ct-enc and key-enc as a shorthand for polynomials and variables output
by EncCt (ciphertext-encoding) and EncKey (key-encoding), respectively.
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3.2 Symbolic Property

We introduce a new symbolic property for pair encoding schemes that signif-
icantly simplifies their analysis for even complex predicates. We get the best
of two worlds: not only is our symbolic property very clean to describe (like
information-theoretic properties), it can also capture all the predicates that have
been previously captured by any computational property. Further, the property
does not involve dealing with any kind of distribution.

We now formally define the property. We use a : b below to denote that a
variable a is substituted by a matrix/vector b.

Definition 3.1 (Symbolic property). A pair encoding scheme Γ = (Param,
EncCt,EncKey,Pair) for a predicate family Pκ : Xκ × Yκ → {0, 1} satisfies
(d1, d2)-selective symbolic property7 for positive integers d1 and d2 if there exist
three deterministic polynomial-time algorithms EncB, EncS, EncR such that for
all κ = (N, par), x ∈ Xκ, y ∈ Yκ with Pκ(x, y) = 0,

– EncB(x) → B1, . . . ,Bn ∈ GN (d1, d2);
– EncS(x) → s0, . . . , sw1 ∈ GN (d2), ŝ1, . . . , ŝw2 ∈ GN (d1);
– EncR(x, y) → r1, . . . , rm1 ∈ GN (d1), a, r̂1, . . . , r̂m2 ∈ GN (d2);

such that 〈s0,a〉 	= 0, and if we substitute

ŝz : ŝTz sibj : BjsTi α : a r̂z′ : r̂z′ ri′bj : ri′Bj

for z ∈ [w2], i ∈ [w1]+, j ∈ [n], z′ ∈ [m2] and i′ ∈ [m1] in all the polynomials
output by EncCt and EncKey on input x and y, respectively, they evaluate to 0.

Similarly we say a pair encoding scheme satisfies (d1, d2)-co-selective sym-
bolic security property if there exist EncB,EncR,EncS that satisfy the above prop-
erties but where EncB and EncR depend only on y, and EncS depends on both x
and y. Finally, a scheme satisfies (d1, d2)-symbolic property if it satisfies both
(d′

1, d
′
2)-selective and (d′′

1 , d′′
2)-co-selective properties for some d′

1, d
′′
1 ≤ d1 and

d′
2, d

′′
2 ≤ d2.

We use Sym-Prop as a shorthand for symbolic property. It is easy to see that
if a scheme satisfies (d1, d2)-selective Sym-Prop then it also satisfies (d′

1, d
′
2) for

any d′
1 ≥ d1 and d′

2 ≥ d2. Just append d′
1 − d1 rows of zeroes and d′

2 − d2
columns of zeroes to the Bj matrices, d′

2 − d2 zeroes to the si vectors, d′
1 − d1

zeroes to the ŝz vectors, d′
1 − d1 zeroes to the ri′ vectors, and d′

2 − d2 zeroes to
the r̂z′ vectors. A similar claim can also be made about co-selective Sym-Prop.
Thus if a PES satisfies (d1, d2)-Sym-Prop then it also satisfies selective and co-
selective properties with the same parameters, as well as (d′

1, d
′
2)-Sym-Prop for

any d′
1 ≥ d1 and d′

2 ≥ d2.
Lastly, if a PES Γ satisfies Sym-Prop for a predicate family Pκ, we say that

Γ is symbolically secure for Pκ, or simply that Γ is symbolically secure if the
predicate family is clear from context.

7 d1, d2 could depend on κ but we leave this implicit for simplicity of presentation.
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4 Obtaining Symbolic Security Generically

In this section, we prove an interesting and useful result. If a pair encoding
scheme in not trivially broken in the sense that for any x, y that do not satisfy the
predicate, there does not exist a way to directly recover αs0 from the encoding
polynomials (note that for correctness we require exactly this, but when the
predicate is true), then the scheme satisfies the symbolic property.

Definition 4.1 (Trivially broken scheme). A pair encoding scheme Γ =
(Param,EncCt,EncKey,Pair) for a predicate family Pκ : Xκ × Yκ → {0, 1} is
trivially broken if for a κ = (N, par), x ∈ Xκ, y ∈ Yκ that satisfy Pκ(x, y) = 0,
there exists a matrix E such that (s, c)E(r,k)T = αs0, where c is the vector of
polynomials output by EncCt(x,N) in variables s = (s0, . . .), ŝ, b, and k is the
vector of polynomials output by EncKey(y,N) in variables r, r̂ = (α, . . .), b.

Theorem 4.2. If a pair encoding scheme is not trivially broken then it satisfies
the symbolic property.

Proof. If a scheme Γ is not trivially broken, then for all x and y for which
the predicate evaluates to false, the ct-enc non-lone variables s = (s0, . . . , sw1)
and polynomials c = (c1, . . . , cw3) cannot be paired with the key-enc non-lone
variables r = (r1, . . . , rm1) and polynomials k = (k1, . . . , km3) to recover αs0.
We know that the former have monomials of the form s0, . . . , sw1 , ŝ1, . . . , ŝw2 ,
s0b1, . . . , s0bn, . . ., sw1b1, . . . , sw1bn, so a total of w2 +(n+1)(w1 +1). Similarly,
the total number of distinct monomials in the latter is m2 + 1 + (n + 1)m1

(because α is a lone variable as opposed to s0). Let us denote the two quantities
above by varc and vark respectively.

Define a matrix Δ over ZN with (w1 + w3 + 1)(m1 + m3) rows and varcvark
columns. A row is associated with the product of a ct-enc non-lone variable
or polynomial with a key-enc non-lone variable or polynomial. Each column
represents a unique monomial that can be obtained by multiplying a ct-enc
monomial with a key-enc monomial, with the first column representing αs0. The
(i, j)th entry in this matrix is the coefficient of the monomial associated with
the jth column in the product polynomial attached with the ith row. Since Γ is
not broken, we know that the rows in Δ cannot be linearly combined to get the
vector (1, 0, . . . , 0).

Note that it is enough to work with any subset of rows because they cannot be
combined to get (1, 0, . . . , 0) either. Thus, for the rest of the proof, we consider
only those rows of Δ that multiply a ct-enc non-lone variable with a key-enc
polynomial and vice versa (and only those columns which have monomials that
can be obtained from multiplying such polynomials). Let n1 denote the number
of rows now.

Since rows in Δ cannot be linearly combined to get (1, 0, . . . , 0), the first
column of Δ, say col, can be written as a linear combination of the other columns.
Because if not, one can show that there exists a vector v = (v1, . . . , vn1) that is
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orthogonal to all the columns except the first one8. We can then combine the
rows of Δ using v1/ 〈col,v〉 , . . . , vn1/ 〈col,v〉 to get (1, 0, . . . , 0)—a contradiction.

Let Q denote the set of monomials associated with the columns of Δ. These
columns can be linearly combined to get the zero vector, without zeroing out
col, which corresponds to αs0. Let λq be the factor that multiplies the column
associated with the monomial q ∈ Q in one such linear combination. Note that
λαs0 	= 0.

Our first goal is to show that Γ satisfies the selective symbolic property.
So we need to define matrices and vectors for various variables in the encoding
such that all the polynomials evaluate to the zero vector. Towards this, pick any
non-lone key-enc variable ri′ for i′ ∈ [m1] and consider the sub-matrix Δ′ of Δ
that consists of rows which are attached with the product of ri′ with a ct-enc
polynomial and columns which are associated with the product of ri′ and a
ct-enc monomial. (Note that it does not matter which non-lone key-enc variable
we consider; the sub-matrix obtained in each case will be exactly the same.)
Recall that a ct-enc polynomial c� is given by

∑
z∈[w2]

η�,z ŝz +
∑

i∈[w1]
+,j∈[n]

η�,i,jsibj

for 	 ∈ [w3]. So more formally, rows in Δ′ are associated with (c�, ri′), and
columns are associated with monomials ŝzri′ , sibjri′ , where the range of i, j, z
is as described above. For simplicity in the following, assume that the columns
are ordered as ŝ1, . . . , ŝw2 , s0b1, . . . , s0, bn, . . ., sw1b1, . . . , sw1bn and the rows are
ordered as (c1, ri′), . . . , (cw3 , ri′), so that the lth row of Δ′ is (η�,1, . . . , η�,w2 ,
η�,0,1, . . . , η�,0,n, . . ., η�,w1,1, . . . , η�,w1,n).

Let T be the kernel of Δ′, i.e. the set of all vectors v such that Δ′v = 0. Let
v1,v2, . . . ,vd1 be a basis of T and write vp as (vp,1, . . . , vp,w2 , vp,0,1, . . . , vp,0,n,
. . ., vp,w1,1, . . . , vp,w1,n) for p ∈ [d1]. (We discuss the special case of Δ′’s kernel
being empty later on.) Therefore, we have that for any 	 ∈ [w3] and p ∈ [d1],

∑
z

η�,zvp,z +
∑
i,j

η�,i,jvp,i,j (2)

is equal to 0. Let uz = (v1,z, . . . , vd1,z) and ui,j = (v1,i,j , . . . , vd1,i,j) for z ∈ [w2],
i ∈ [w1]+, j ∈ [n].

We now define matrices B1, . . . ,Bn and vectors s0, . . . , sw1 , ŝ1, . . . , ŝw2 as fol-
lows. Bj has d1 rows and d2 = w1 + 1 columns with the (i + 1)th column being
uT

i,j for i = [w1]+. Vector si is set to ei+1 for i = [w1]+, where ei denotes the ith
unit vector of size d2, and ŝz is set to uz for z ∈ [w2]. These matrices and vectors
depend only on v1,v2, . . . ,vd1 , which in turn depends on Δ′ only. The entries in

8 The claim is similar to one made in the case of linear secret sharing schemes where
we say that if a set of attributes does not satisfy a policy, i.e. the associated set
of rows cannot be linearly combined to get a certain vector v, then one can find a
vector orthogonal to all those rows but not to v. See, for instance, [9, Claim 2] for
a formal proof.
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Δ′ are the coefficients of the monomials obtained by multiplying ri′ with various
ct-enc polynomials. Hence, they only depend on x and, in particular, not on y.
Further, it is easy to observe that all the operations involved in computing Bj ,
si, ŝz are efficient. Thus, one can define two deterministic polynomial time algo-
rithms EncB and EncS that on input x only, output B1, . . . ,Bn and s0, . . . , sw1 ,
ŝ1, . . . , ŝw2 respectively.

We need to verify that if we substitute ŝz with ŝTz and sibj with BjsTi in
any ct-enc polynomial c�, then we get an all zeroes vector. On performing such
a substitution, we have
∑

z

η�,zu
T
z +

∑

i,j

η�,i,j(u
T
0,j , . . . ,u

T
w1,j)e

T
i+1 =

∑

z

η�,zu
T
z +

∑

i,j

η�,i,ju
T
i,j

The pth element in the column vector above is given by (2), which is equal to 0
for any p.

In the special case where Δ′’s kernel is empty, B1, . . . ,Bn are all set to
d1 × d2 matrices with zero entries; ŝ1, . . . , ŝw2 are set to the zero vector of size
d1; s1, . . . , sw1 are set to the zero vector of size d2; and s0 is set to (1, 0, . . . , 0). It
is easy to see that all ct-enc polynomials still evaluate to zero upon substitution.

We also need to make sure that with the appropriate choice of vectors for the
key-enc variables, all the key-enc polynomials also evaluate to the zero vector.
Recall that such polynomials are given by

kt = φtα +
∑

z′∈[m2]

φt,z′ r̂z′ +
∑

i′∈[m1],
j∈[n]

φt,i′,jri′bj

for t ∈ [m3]. When they are multiplied with a non-lone ct-enc variable si, we get
the monomials αsi, sir̂z′ , siri′bj for i ∈ [w1]+ and i′, j, z′ as above.

Recall that the columns of Δ can be linearly combined using {λq}q∈Q to get
the zero vector. Going back to the product of ri′ with c�, we can say that∑

z

η�,zλŝzri′ +
∑
i,j

η�,i,jλsibjri′ = 0

irrespective of what 	 and i′ are because only the entries in the columns associ-
ated with monomials ŝzri′ , sibjri′ are non-zero. Hence, the vector wi′ given by
(λŝ1ri′ , . . . , λŝw2ri′ , λs0b1ri′ , . . . , λs0bnri′ , . . ., λsw1b1ri′ , . . ., λsw1bnri′ ) lies in the
kernel of Δ′. (Recall that no matter what key-enc non-lone variable is chosen,
one always gets the same Δ′.) In other words, there exists a vector ri′ of size d1
such that [vT

1 , . . . ,vT
d1

]rTi′ = wi′ . Now the transpose of ri′Bj is given by
⎡
⎢⎣

u0,j

...
uw1,j

⎤
⎥⎦ rTi′ =

⎡
⎢⎣

v1,0,j . . . vd1,0,j

...
...

...
v1,w1,j . . . vd1,w1,j

⎤
⎥⎦ rTi′ =

⎡
⎢⎣

λs0bjri′
...

λsw1bjri′

⎤
⎥⎦

for every j ∈ [n]. In the special case where Δ′’s kernel is empty, set ri′ to be the
zero vector of size d1. The relation ri′Bj = (λs0bjri′ , . . . , λsw1bjri′ ) for all j still
holds because wi′ must be zero.
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Define the remaining vectors as follows: a is set to be [λαs0 , . . . , λαsw1
] and

r̂z′ to be [λs0r̂z′ , . . . , λsw1 r̂z′ ] for z′ ∈ [m2]. (Note that the first element of a is
not zero.) When we substitute α with a, r̂z′ with r̂z′ and ri′bj with ri′Bj in kt

for t ∈ [m3], we get

φt[λαs0 , . . . , λαsw1
] +

∑
z′

φt,z′ [λs0r̂z′ , . . . , λsw1 r̂z′ ]

+
∑
i′,j

φt,i′,j [λs0bjri′ , . . . , λsw1bjri′ ].

The ith element of this sum is given by

φtλαsi
+

∑
z′

φt,z′λsir̂z′ +
∑
i′,j

φt,i′,jλsiri′ bj

for i ∈ [w1]+. It is easy to see that the above quantity is zero when we consider
the row in Δ attached with the product sikt.

One can define a deterministic polynomial time algorithm EncR that on input
x and y, computes how the columns of Δ can be combined to get the zero vector,
and then uses this information to define a, r̂z′ , ri′ as shown above.

The proof for the co-selective symbolic property is analogous to the proof
above, so we skip the details. �

5 Predicate Encryption from Pair Encodings

In this section, we describe how any pair encoding scheme for a predicate can
be transformed into an encryption scheme for the same predicate in dual system
groups (DSG), introduced by Chen and Wee [16], and later used and improved
by several works [1,4,15]. This transformation is a two-step process: first we
augment an encoding so that it satisfies a few extra properties (Sect. 5.1)9; next
we apply the transformation from Agrawal and Chase [1] (Sect. 5.4).

5.1 Augmenting Pair Encodings

We need the matrices and vectors involved in the symbolic property to have
some extra features, so that we can prove the security of the derived predicate
encryption scheme from our q-ratio assumption. Towards this, we show how any
pair encoding scheme that satisfies Sym-Prop can be transformed into another
scheme that satisfies a more constrained version of this property, with only a
few additional variables and polynomials.

We note that, although they are presented monolithically, many of the pair
encodings introduced by Attrapadung [2] can be viewed as the result of applying
a very similar augmentation to simpler underlying encodings. Thus, our results
also help explain the structure of those previous encodings.
9 This step need not be applied if the properties are already satisfied.
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Recall that the algorithms of symbolic security output a for α, B1, . . . ,Bn

for common variables, s0, . . . , sw1 for non-lone ct-enc variables, and r1, . . . , rm1

for key-enc non-lone variables. Let bj denote the first column of Bj and si,1 the
first element of si.

Definition 5.1 (Enhanced symbolic property). A pair encoding scheme
satisfies (d1, d2)-Sym-Prop	 for a predicate Pκ if it satisfies selective and co-
selective (d1, d2)-Sym-Prop for Pκ but under the following constraints for both

1. a is set to (1, 0, . . . , 0).
2. In every ct-enc polynomial, if sibj is replaced by

– sTi bj then we get a matrix with non-zero elements in the first row only;
– si,1Bj then we get a matrix with non-zero elements in the first column only.

(The lone variables are replaced by the zero vector.)
3. In every key-enc polynomial, if we replace ri′bj with bT

j ri′ , then we get a
diagonal matrix. (The lone variables, once again, are replaced by the zero
vector.)

4. The set of vectors {s0, . . . , sw1} is linearly independent, and so is the set
{r1, . . . , rm1}.
We convert any pair encoding that satisfies Sym-Prop into one that satisfies

Sym-Prop	 in three steps. First we show that with only one additional key-enc
non-lone variable, an additional common variable, and an extra ct-enc polyno-
mial, we can get an encoding scheme for which the vector a corresponding to
α can be set to (1, 0, . . . , 0) (in proving that Sym-Prop holds). Next, with two
extra common variables, and an additional variable and a polynomial each in the
ciphertext and key encoding, one can satisfy the second and third properties from
above. Finally, a simple observation can be used to satisfy the fourth property
as well. More formally, we prove the following theorem in the full version.

Theorem 5.2 (Augmentation). Suppose a PES for a predicate family Pκ :
Xκ×Yκ → {0, 1} outputs n on input par, (w1, w2, c) on input x ∈ Xκ, (m1,m2,k)
on input y ∈ Yκ and satisfies (d1, d2)-Sym-Prop, then there exists another
PES for Pκ that outputs n + 3 on input par, (w1 + 1, w2, c) on input x and
(m1 + 2,m2,k) on input y, where |c| = |c| + 2 and |k| = |k| + 1, and satisfies
(max(d1, d2−1)+M1+1, d2+W1+2)-Sym-Prop	, where M1 and W1 are bounds
on the number of key-enc and ct-enc non-lone variables, respectively.10

The extra constraints of Sym-Prop	 give rise to some nice combinatorial facts.
Please refer to the full version for details.

10 As we will see later, when a pair encoding scheme is transformed into a predicate
encryption scheme, the parameters of Sym-Prop� have no effect on the construction.
They only affect the size of assumption on which the security of encryption scheme
is based.
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5.2 Dual System Groups

Dual system groups (DSG) were introduced by Chen and Wee [16] and gen-
eralized by Agrawal and Chase [1]. The latter work also shows that the two
instantiations of DSG – in composite-order groups under the subgroup decision
assumption and in prime-order groups under the decisional linear assumption –
given by Chen and Wee satisfy the generalized definition as well. Here we give a
brief informal description of dual system groups. See the full version or existing
work [1] for a formal definition.

Dual system groups are parameterized by a security parameter λ and a num-
ber n. They have a SampP algorithm that on input 1λ and 1n, outputs public
parameters pp and secret parameters sp. The parameter pp contains a triple
of groups (G,H,GT ) and a non-degenerate bilinear map e : G × H → GT , a
homomorphism μ from H to GT , along with some additional parameters used
by SampG, SampH. Given pp, we know the exponent of group H and how to
sample uniformly from it; let N = exp(H). It is required that N is a product
of distinct primes of Θ(λ) bits. The secret parameters sp contain h̃ ∈ H (where
h̃ 	= 1H) along with additional parameters used by SampG and SampH.

A dual system group has several sampling algorithms: SampGT algorithm
takes an element in the image of μ and outputs another element from GT . SampG
and SampH take pp as input and output a vector of n + 1 elements from G and
H respectively. SampG and SampH take both pp and sp as inputs and output a
vector of n + 1 elements from G and H respectively. These two algorithms are
used in security proofs only. SampG0 and SampH0 denote the first element of
SampG and SampH respectively.

A dual system group is correct if it satisfies the following two properties for
all pp.

– Projective: For all h ∈ H and coin tosses σ, SampGT(μ(h);σ) = e(SampG0

(pp;σ), h), where SampG0 is an algorithm that outputs only the first element
of SampG.

– Associative: If (g0, g1, . . . , gn) and (h0, h1, . . . , hn) are samples from
SampG(pp) and SampH(pp) respectively, then for all i ∈ [1, n], e(g0, hi) =
e(gi, h0).

Dual system groups have a number of interesting security properties as well
that makes them very useful for building encryption schemes, see the full version
for details. We additionally require that there exists a way to sample the set-
up parameters so that one not only gets pp and sp, but also some trapdoor
information td that can be used to generate samples from SampG and SampH
given only the first element. We formalize this property and show that both
instantiations of Chen and Wee [16] satisfy them in the full version. The new
sampling algorithm will be denoted by SampP∗ below.

5.3 New Computational Assumption

We introduce a new assumption, called q-ratiodsg, on dual system groups para-
meterized by positive integers d1 and d2.
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Definition 5.3 ((d1, d2)-q-ratiodsg assumption). Consider the following dis-
tribution on a dual system group’s elements:

dsg-par := (pp, sp, td) ← SampP∗(1λ, 1n);

ĝ ← SampG0(pp, sp); ĥ ← SampH0(pp, sp)

u0, u1, . . . , ud2 , v1, . . . , vd1 ←R Z∗
N ;

DG := {ĝui}i∈[d2]+ ∪
{

ĝ
ui

ujvk

}
i,j∈[d2],i �=j,k∈[d1]

;

DH := {ĥvi}i∈[d1] ∪
{

ĥ
vi

vjuk

}
i,j∈[d1],i �=j,k∈[d2]

;

T0 := ĥ1/u0 ; T1 ←R H.

We say that the (d1, d2)-q-ratiodsg assumption holds if for any PPT algorithm A,

Adv
qrdsg
A (λ) :=

∣∣Pr[A(1λ, dsg-par,DG,DH, T0) = 1]

− Pr[A(1λ, dsg-par,DG,DH, T1) = 1]
∣∣

is negligible in λ.

Note that u0 is present in exactly one of the terms in DG and not at all in DH.
We also define a similar assumption on bilinear maps.

Definition 5.4 ((d1, d2)-q-ratio assumption). Consider the following distrib-
ution:

par := (N,G,H,GT , g, h, e) ← GroupGen(1λ)

ĝ ←R G; ĥ ←R H; u0, u1, . . . , ud2 , v1, . . . , vd1 ←R Z∗
N ;

DG := {ĝui}i∈[d2]+ ∪
{

ĝ
ui

ujvk

}
i,j∈[d2],i �=j,k∈[d1]

;

DH := {ĥvi}i∈[d1] ∪
{

ĥ
vi

vjuk

}
i,j∈[d1],i �=j,k∈[d2]

;

T0 := ĥ1/u0 ; T1 ←R H.

We say that the (d1, d2)-q-ratio assumption holds if for any PPT algorithm A,

AdvqrA(λ) :=
∣∣Pr[A(1λ, par,DG ,DH, T0) = 1]

− Pr[A(1λ, par,DG ,DH, T1) = 1]
∣∣

is negligible in λ.

In this paper our focus is on constructions in prime-order groups because they
are much more practical, so we will consider the q-ratio assumption on prime-
order bilinear maps only. We show that this assumption is implied by the assump-
tions proposed by Lewko, Waters [30] and Attrapadung [2] in the full version. We
also show that Chen and Wee’s prime order DSG construction [16] (along with
the new sampling algorithms we introduce) satisfies the q-ratiodsg assumption if
the underlying group satisfies the q-ratio assumption. Thus we have,
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Lemma 5.5. A dual system group with a bilinear map e : G × H → GT that
satisfies the (d1, d2)-q-ratiodsg assumption can be instantiated in a prime-order
bilinear map e′ : G × H → GT that satisfies the (d1, d2)-q-ratio and k-linear
assumptions. Further, an element of G and H is represented using k+1 elements
of G and H, respectively. (An element of GT is represented by just one from GT ).

5.4 Encryption Scheme

In this section, we show how to obtain an encryption scheme from a pair encoding
using the sampling algorithms of dual system groups. Our transformation is
based on the one given by Agrawal and Chase [1], and is referred to as Gen-Trans.
If a PES ΓP is defined by the tuple of algorithms (Param,EncCt,EncKey,Pair) for
a predicate family P = {Pκ}κ∈Nc , then the algorithms for ΠP := Gen-Trans(ΓP )
are given as follows.

– Setup(1λ, par): First the pair encoding algorithm Param(par) is run to obtain
n, and then the dual system group algorithm SampP(1λ, 1n) is run to get pp,
sp. A randomly chosen element from H is designated to be the master secret
key msk. Master public key mpk is set to be (pp, μ(msk)). Further, N and
κ are set to exp(H) and (N, par), respectively (where the exponent of H is a
part of pp).

– Encrypt(mpk, x,msg): On input x ∈ Xκ and msg ∈ GT , EncCt(x,N) is run
to obtain w1, w2 and polynomials (c1, . . . , cw3). For i′ ∈ [w1 + w2]+, draw a
sample (gi′,0, . . . , gi′,n) from SampG using pp. Recall that the 	th polynomial
is given by ∑

z∈[w2]

η�,z ŝz +
∑

i∈[w1]
+,j∈[n]

η�,i,jsibj .

Set cti to be gi,0 for i ∈ [w1]+ and c̃t� to be∏
z∈[w2]

g
η�,z

w1+z,0 ·
∏

i∈[w1]
+,j∈[n]

g
η�,i,j

i,j

for 	 ∈ [w3]. Also, let ct	 = msg · SampGT(μ(msk);σ) where σ denotes
the coin tosses used in drawing the first sample from SampG. Output ct :=
(ct0, . . . ,ctw1 , c̃t1, . . . , c̃tw3 ,ct

	).

– KeyGen(mpk,msk, y): On input y ∈ Yκ, EncKey(y,N) is run to obtain m1,
m2 and polynomials (k1, k2, . . . , km3). For i ∈ [m1 + m2], draw a sample
(hi,0, . . . , hi,n) from SampH using pp. Recall the tth polynomial is given by

φtα +
∑

z′∈[m2]

φt,z′ r̂z′ +
∑

i′∈[m1],j∈[n]

φt,i′,jri′bj .

Set ski′ to be hi′,0 for i′ ∈ [m1] and s̃kt to be

mskφt ·
∏

z′∈[m2]

h
φt,z′
m1+z′,0 ·

∏
i′∈[m1],j∈[n]

h
φt,i′,j

i′,j

for t ∈ [m3]. Output sk := (sk1, . . . , skm1 , s̃k1, . . . , s̃km3).
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– Decrypt(mpk, sky,ctx): On input sky and ctx, Pair(x, y,N) is run to obtain
matrices E and E. Output

ct	 ·
⎛
⎝ ∏

i∈[w1]
+,t∈[m3]

e(cti, s̃kt)Ei,t ·
∏

�∈[w3],i
′∈[m1]

e(c̃t�, ski′)E�,i′

⎞
⎠

−1

.

One can use the projective and associative property of DSG to show that
the predicate encryption scheme defined above is correct (see [1] for details).
We defer a proof of security for ΠP to Sect. 7, and conclude with the following
remark.

Remark 5.6 (Size of ciphertexts and keys). Ciphertexts have w1+w3+1 elements
from G and an element from GT ; keys have m1+m3 elements from H. So the size
of these objects depends only on the number of non-lone variables and polyno-
mials. Moreover, there is a one-to-one mapping between variables/polynomials
and ciphertext/key elements. Thus if we can reduce the size of an encoding, we
will immediately get an equivalent reduction in the size of ciphertexts or keys.

6 Transformations on Pair Encodings

In this section we present several useful transformations on pair encodings that
preserve symbolic property. The first class of transformations help in reducing
the size of ciphertexts and keys, and the second one provides a way to develop
schemes for dual predicates (where the role of the two inputs to a predicate is
reversed).

Compact Encoding Schemes. We show how pair encoding schemes can be made
compact by reducing the number of ct-enc and/or key-enc polynomials and/or
variables to a constant in a generic way. Importantly, we show that if the
encoding scheme we start with satisfies the symbolic property, then so does the
transformed scheme. As a result, building encryption schemes with constant-size
ciphertexts or keys, for instance, becomes a very simple process.

Our first transformation converts any encoding scheme Γ ′ to another scheme
Γ where the number of ct-enc variables is just one. Naturally, we need to assume
a bound on the total number of ct-enc variables for this transformation to work.
If W1+1 and W2 are bounds on the number of non-lone and lone ct-enc variables,
respectively, and the number of common variables in Γ ′ is n, then Γ has (W1+1)
n + W2 common variables, 1 ct-enc non-lone variable and 0 lone variables. The
number of lone key-enc variables and polynomials increases by a multiplicative
factor of W1 + 1.

Our second transformation brings down the number of ct-enc polynomials to
just one. Once again the transformation is fully generic, as long as there is a
bound W3 on the number of polynomials. In this case, the number of common
variables increases by a multiplicative factor of W3 + 1, the number of non-lone
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key-enc variables by a multiplicative factor of W3, and the number of key-enc
polynomials by an additive factor of m1W

2
3 n.

When the two transformations above are applied one after the other, we
obtain an encoding scheme with just one non-lone variable and one polynomial
in the ciphertext encoding. After augmenting the scheme as per Theorem5.2
which adds a non-lone variable and two polynomials, we can convert the result-
ing encoding scheme into a predicate encryption scheme by using the generic
mechanism of Sect. 5.4. This encryption scheme will have exactly 5 dual system’s
source group elements in any ciphertext, a number which would only double if
the instantiation from Lemma 5.5 is used under the SXDH (1-linear) assumption.

One can also reduce the number of key-enc variables and polynomials in
a manner analogous to how the corresponding quantities are reduced in the
ciphertext encoding, at the cost of increasing the number of common variables
and ct-enc variables and polynomials. If there is a bound on both the number of
variables and polynomials in the key encoding, then one can obtain an encod-
ing scheme with just one of each. This will result in encryption schemes with
constant-size key.

Finally, we remark that one can also mix-and-match. For instance, first the
number of ct-enc variables can be reduced to one, and then we can do the same
for key-enc variables, resulting in a scheme with just one variable each in the
ciphertext and key encodings at the cost of more polynomials in both. (This
might be interesting, for example, because it produces a pair encoding of the form
used in [15].) Note that when the ciphertext variable reduction transformation is
applied, no lone variables are left in the ciphertext encoding (the only remaining
variable is a non-lone variable). Hence, the key variable reduction transformation
does not affect the number of ct-enc variables.

See the full version for a formal treatment of the two transformations
described above.

Dual Predicates. The dual predicate for a family P ′
κ : Yκ × Xκ → {0, 1} is given

by Pκ : Xκ × Yκ → {0, 1} where Pκ(x, y) = P ′
κ(y, x) for all κ, x ∈ Xκ, y ∈ Yκ.

For example, CP-ABE and KP-ABE are duals of each other. In the full version
we show that Attrapadung’s dual scheme conversion [3, Sect. 8.1] mechanism
preserves symbolic property too.

7 Security of Predicate Encryption Scheme

In this section we show that the transformation Gen-Trans leads to a secure
encryption scheme if the underlying encoding satisfies the (enhanced) symbolic
property. More formally, we have:

Theorem 7.1. If a pair encoding scheme ΓP satisfies (d1, d2)-Sym-Prop	 for
a predicate family Pκ, then the scheme Gen-Trans(ΓP ) defined in Sect. 5.4 is a
fully secure predicate encryption scheme for Pκ in dual system groups under the
(d1, d2 − 1)-q-ratiodsg assumption.
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When the above theorem is combined with Theorem 5.2 and Lemma 5.5, we
get the following corollary:

Corollary 7.2. If a pair encoding scheme satisfies (d1, d2)-Sym-Prop for a pred-
icate family then there exists a fully secure predicate encryption scheme for that
family in prime-order bilinear maps under the (max(d1, d2 − 1) + M1 + 1, d2 +
W1 + 1)-q-ratio and k-linear assumptions, where M1 and W1 are bounds on the
number of key-enc and ct-enc non-lone variables, respectively, in the encoding.

The rest of this section is devoted to the proof of Theorem 7.1. We fol-
low the same general outline as in other papers that use dual system groups
[1,15,16]. The design of hybrids in our proof is closer to [15,16] rather than [1].
In particular, our hybrid structure is simpler because, unlike [1], we don’t add
noise to individual samples in every key. However, since we have adopted the
generic transformation from [1], the indistinguishability between several hybrids
follows from that of corresponding hybrids in [1]. (We briefly review these hybrids
and the properties they follow from below—for full proofs see [1].) The main nov-
elty in our proof, and the crucial difference from [1], is how the form of master
secret key is changed: in [1] relaxed perfect security is used for this purpose, but
we use the symbolic property in conjunction with the q-ratiodsg assumption.

We first define auxiliary algorithms for encryption and key generation. Below
we use gi,0 (resp. hi,0) to denote the first element of gi (resp. hi). Also w and m
denote w1 + w2 and m1 + m2, respectively.

– Encrypt(pp, x,msg; (g′
0,g

′
1, . . . ,g

′
w),msk): This algorithm is same as Encrypt

except that it uses g′
i ∈ Gn+1 instead of the samples gi from SampG, and sets

ct	 to msg · e(g′
0,0,msk).

– KeyGen(pp,msk, y; (h′
1, . . . ,h

′
m)): This algorithm is same as KeyGen except

that it uses h′
i ∈ Hn+1 instead of the samples hi from SampH.

Using the algorithms described above, we define alternate forms for the
ciphertext, master secret key, and secret keys.

– Semi-functional master secret key is defined to be msk := msk · h̃μ where
μ ←R ZN .

– Semi-functional ciphertext is given by Encrypt(pp, x,m;G · Ĝ,msk), where
G · Ĝ is defined as follows: sample g1, . . . ,gw from SampG and ĝ1, . . . , ĝw

from SampG (which also requires sp); set G and G′ to be the vector of vectors
(g1, . . . ,gw) and (ĝ1, . . . , ĝw), respectively; and denote (g1 · ĝ1, . . . ,gw · ĝw)
by G · Ĝ.

– Ext-semi-functional ciphertext is given by Encrypt(pp, x,m;G · Ĝ · Ĝ′,msk),
where G, Ĝ are as above, and Ĝ′ is defined to be (ĝ′

1, . . . , ĝ
′
w), where ĝ′

i =
(1, ĝγ1

i,0, . . . , ĝ
γn

i,0) for i ∈ [w] and γ1, . . . , γn ←R ZN . (Here these γ1, . . . , γn will
be chosen once and used in both ciphertext and key components.)

– Table 1 lists the different types of keys we need and the inputs that should
to be passed to KeyGen (besides pp and y) in order to generate them.
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Table 1. Six types of keys.

Type of key Inputs to KeyGen (besides pp and y)

Normal msk; (h1, . . . ,hm)

Pseudo-normal msk; (h1 · ĥ1, . . . ,hm · ĥm)

Ext-pseudo-normal msk; (h1 · ĥ1 · ĥ′
1, . . . ,hm · ĥm · ĥ′

m)

Ext-pseudo-semi-functional msk; (h1 · ĥ1 · ĥ′
1, . . . ,hm · ĥm · ĥ′

m)

Pseudo-semi-functional msk; (h1 · ĥ1, . . . ,hm · ĥm)

Semi-functional msk; (h1, . . . ,hm)

Table 2. An outline of the proof structure.

Hybrid Difference from previous Properties required

Hyb0 - -

Hyb1 ct semi-func Left subgroup ind

...
...

...

Hyb2,ϕ−1,5 ϕ − 1 keys semi-func -

Hyb2,ϕ,1 ϕth key pseudo-norm Right subgroup ind

Hyb2,ϕ,2 ct ext-semi-func, ϕth key
ext-pseudo-norm

Parameter hiding

Hyb2,ϕ,3 ϕth key ext-pseudo-semi-func Non-degeneracy, Sym-Prop�,
q-ratiodsg assumption

Hyb2,ϕ,4 ct semi-func, ϕth key
pseudo-semi-func

Parameter-hiding

Hyb2,ϕ,5 ϕth key semi-func Right subgroup ind

...
...

...

Hyb2,ξ,5 All keys semi-func -

Hyb3 ct semi-func encryption of
random msg

Projective, orthogonality,
non-degeneracy

In the table, h1, . . . ,hm are samples from SampH; ĥ1, . . . , ĥm are samples
from SampH (which also requires sp); and ĥ′

i = (1, ĥγ1
i,0, . . . , ĥ

γn

i,0) for i ∈ [m],
where γ1, . . . , γn are the values described above for the ext-semi-functional
ciphertext.

Let ξ denote the number of key queries made by the adversary. In Table 2, we
give an outline of the proof-structure with the first column stating the various
hybrids we have (ϕ ∈ [ξ]), second column describes the way in which a hybrid
differs from the one in the previous row, and the third column lists the proper-
ties we need to show indistinguishability from the previous one. To prevent the
table from overflowing, we use some shorthands like ct for ciphertext, func for
functional, norm for normal, msg for message, and ind for indistinguishability.
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Also, Hyb0 is the game IND-CPAb
A(λ, par) which is formally defined in Sect. 2.1.

See the full version for a more formal description of the hybrids.
Our main concern here is the indistinguishability of hybrids Hyb2,ϕ,2 and

Hyb2,ϕ,3 when the ϕth key changes from ext-pseudo-normal to ext-pseudo semi-
functional, while the ciphertext stays ext-semi-functional. (Indistinguishability
of the rest of the hybrids follows from [1] as noted earlier.) We prove the following
lemma in the full version.

Lemma 7.3. For any PPT adversary A, there exists a PPT adversary B such
that the advantage of A in distinguishing Hyb2,ϕ,2 and Hyb2,ϕ,3 is at most the
advantage of B in the q-ratiodsg assumption plus some negligible quantity in the
security parameter.
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Abstract. We introduce the twisted µ4-normal form for elliptic curves,
deriving in particular addition algorithms with complexity 9M + 2S
and doubling algorithms with complexity 2M + 5S + 2m over a binary
field. Every ordinary elliptic curve over a finite field of characteristic 2
is isomorphic to one in this family. This improvement to the addition
algorithm, applicable to a larger class of curves, is comparable to the
7M + 2S achieved for the µ4-normal form, and replaces the previously
best known complexity of 13M + 3S on López-Dahab models applica-
ble to these twisted curves. The derived doubling algorithm is essentially
optimal, without any assumption of special cases. We show moreover that
the Montgomery scalar multiplication with point recovery carries over
to the twisted models, giving symmetric scalar multiplication adapted to
protect against side channel attacks, with a cost of 4M+4S+1mt+2mc

per bit. In characteristic different from 2, we establish a linear isomor-
phism with the twisted Edwards model over the base field. This work, in
complement to the introduction of µ4-normal form, fills the lacuna in the
body of work on efficient arithmetic on elliptic curves over binary fields,
explained by this common framework for elliptic curves in µ4-normal
form over a field of any characteristic. The improvements are analo-
gous to those which the Edwards and twisted Edwards models achieved
for elliptic curves over finite fields of odd characteristic and extend µ4-
normal form to cover the binary NIST curves.

1 Introduction

Let E be an elliptic curve with given embedding in Pr and identity O. The
addition morphism μ : E × E → E is uniquely defined by the pair (E,O)
but the homogeneous polynomial maps which determine μ are not unique. Let
x = (X0, . . . , Xr) and y = (Y0, . . . , Yr) be the coordinate functions on the first
and second factors, respectively. We recall that an addition law (cf. [13]) is a
bihomogenous polynomial map s = (p0(x, y), . . . , pr(x, y)) which determines μ
outside of the common zero locus p0(x, y) = · · · = pr(x, y) = 0. Such polynomial
addition laws play an important role in cryptography since they provide a means
of carrying out addition on E without inversion in the base field.

In this work we generalize the algorithmic analysis of the µ4-normal form
to include twists. The principal improvements are for binary curves, but we are
able to establish these results for a family which has good reduction and efficient
arithmetic over any field k, and in fact any ring. We adopt the notation M and S
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part I, LNCS 10210, pp. 659–678, 2017.
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for the complexity of multiplication and squaring in k, and m for multiplication
by a fixed constant that depends (polynomially) only on curve constants.

In Sect. 2 we introduce a hierarchy of curves in µ4-normal form, according
to the additional 4-level structure parametrized. In referring to these families
of curves, we give special attention to the so-called split and semisplit variants,
while using the generic term µ4-normal form to refer to any of the families. In
particular their isomorphisms and addition laws are developed. In the specializa-
tion to finite fields of characteristic 2, by extracting square roots, we note that
any of the families can be put in split µ4-normal form, and the distinction is only
one of symmetries and optimization of the arithmetic. In Sect. 3, we generalize
this hierarchy to quadratic twists, which, in order to hold in characteristic 2
are defined in terms of Artin–Schreier extensions. The next two sections deal
with algorithms for these families of curves over binary fields, particularly, their
addition laws in Sect. 4 and their doubling algorithms in Sect. 6. These establish
the main complexity results of this work — an improvement of the best known
addition algorithms on NIST curves to 9M + 2S coupled with a doubling algo-
rithm of 2M + 5S + 2m. These improvements are summarized in the following
table of complexities (see Sect. 8 for details).

Curve model Doubling Addition % NIST

Lambda coordinates 3M + 4S + 1m 11M + 2S 100% ✓

Binary Edwards (d1 = d2) 2M + 5S + 2m 16M + 1S + 4m 50% ✗

López-Dahab (a2 = 0) 2M + 5S + 1m 14M + 3S 50% ✗

López-Dahab (a2 = 1) 2M + 4S + 2m 13M + 3S 50% ✓

Twisted µ4-normal form 2M + 5S + 2m 9M + 2S 100% ✓

µ4-normal form 2M + 5S + 2m 7M + 2S 50% ✗

To complete the picture, we prove in Sect. 7 that the Montgomery endomor-
phism and resulting complexity, as described in Kohel [10] carry over to the
twisted families, which allows for an elementary and relatively efficient symmet-
ric algorithm for scalar multiplication which is well-adapted to protecting against
side-channel attacks. While the most efficient arithmetic is achieved for curves
for which the curve coefficients are constructed such that the constant multipli-
cations are negligible, these extensions to twists provide efficient algorithms for
backward compatibility with binary NIST curves.

2 The µ4-normal Form

In this section we recall the definition and construction of the family of elliptic
curves in (split) µ4-normal form. The notion of a canonical model of level n was
introduced in Kohel [8] as an elliptic curve C/k in Pn−1 with subgroup scheme
G ∼= µn (a k-rational subgroup of the n-torsion subgroup C[n] whose points



Twisted µ4–Normal Form for Elliptic Curves 661

split in k[ζn], where ζn is an n-th root of unity in k̄) such that for P = (x0 : x1 :
· · · : xn−1) a generator S of G acts by P + S = (x0 : ζ1nx1 : · · · : ζn−1

n xn−1). If,
in addition, there exists a rational n-torsion point T such that C[n] = 〈S, T 〉,
we say that the model is split and impose the condition that T acts by a cyclic
coordinate permutation. Construction of the special cases n = 4 and n = 5 were
treated as examples in Kohel [8], and the present work is concerned with a more
in depth study of the former.

The Edwards curve x2 + y2 = 1 + dx2y2 (see Edwards [6] and Berstein-
Lange [2]) in P3 (by (1 : x : y : xy) as the elliptic curve

X2
1 + X2

2 = X2
0 + dX2

3 , X0X3 = X1X2,

with identity O = (1 : 0 : 1 : 0). Such a model was studied by Hisil et al. [7],
as extended Edwards coordinates, and admits the fastest known arithmetic on
such curves. The twist by a, in extended coordinates, is the twisted Edwards
curve (cf. Bernstein et al. [5] and Hisil et al. [7])

aX2
1 + X2

2 = X2
0 + adX2

3 , X0X3 = X1X2

with parameters (a, ad). For the special case (a, ad) = (−1,−16r), the change of
variables

(X0 : X1 : X2 : X3) �→ (X0,X1 + X2, 4X3,−X1 + X2).

has image the canonical model of level 4 above. The normalization to have
good reduction at 2 (by setting d = 16r and the coefficient of X3) as well
as the following refined hierarchy of curves appears in Kohel [9], and the sub-
sequent article [10] treated only the properties of this hierarchy over fields of
characteristic 2.

Definition 1. An elliptic curve in µ4-normal form is a genus one curve in the
family

X2
0 − rX2

2 = X1X3, X2
1 − X2

3 = X0X2

with base point O = (1 : 1 : 0 : 1). An elliptic curve in semisplit µ4 -normal form
is a genus one curve in the family

X2
0 − X2

2 = X1X3, X2
1 − X2

3 = sX0X2,

with identity O = (1 : 1 : 0 : 1), and an elliptic curve is in split µ4 -normal form
if it takes the form

X2
0 − X2

2 = c2X1X3, X2
1 − X2

3 = c2X0X2.

with identity O = (c : 1 : 0 : 1).

Setting s = c4, the transformation

(X0 : X1 : X2 : X3) �→ (X0 : cX1 : cX2 : X3)
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maps the split µ4-normal form to semisplit µ4-normal form with parameter s,
and setting r = 1/s2, the transformation

(X0 : X1 : X2 : X3) �→ (X0 : X1 : sX2 : X3)

maps the semisplit µ4-normal form to µ4-normal form with parameter r. The
names for the µ4-normal forms of a curve C/k in P3, recognize the existence of
µ4 as a k-rational subgroup scheme of C[4], and secondly, its role as defining
the embedding class of C in P3, namely it is cut out by the hyperplane X2 = 0
in P3.

Lemma 2. Let C be a curve in µ4-normal form, semi-split µ4-normal form, or
split µ4-normal form, with identity (e, 1, 0, 1). For any extension containing a
square root i of −1, the point S = (e : i : 0 : −i) is a point of order 4 acting by
the coordinate scaling (x0 : x1 : x2 : x3) �→ (x0 : ix1 : −x2 : −ix3). In particular,

{(e : 1 : 0 : 1), (e : i : 0 : −i), (e : −1 : 0 : −1), (e : i : 0 : −i)},

is a subgroup of C[4] ⊆ C(k̄).

The semisplit µ4-normal form with square parameter s = t2 admits a
4-torsion point (1 : t : 1 : 0) acting by scaled coordinate permutation. After
a further quadratic extension t = c2, the split µ4-normal form admits the con-
stant group scheme Z/4Z acting by signed coordinate permutation.

Lemma 3. Let C/k be an elliptic curve in split µ4-normal form with identity
O = (c : 1 : 0 : 1). Then T = (1 : c : 1 : 0) is a point in C[4], and translation by
T induces the signed coordinate permutation

(x0 : x1 : x2 : x3) �−→ (x3 : x0 : x1 : −x2)

on C.

This gives the structure of a group C[4] ∼= µ4 × Z/4Z, whose generators S
and T are induced by the matrix actions

A(S) =

⎛
⎜⎜⎝

1 0 0 0
0 i 0 0
0 0 1 0
0 0 0 −i

⎞
⎟⎟⎠ and A(T ) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 −1
1 0 0 0

⎞
⎟⎟⎠

on C such that A(S)A(T ) = iA(T )A(S). We can now state the structure of
addition laws for the split µ4-normal form and its relation to the torsion action
described above.

Theorem 4. Let C be an elliptic curve in split µ4-normal form:

X2
0 − X2

2 = c2 X1X3, X2
1 − X2

3 = c2 X0X2, O = (c : 1 : 0 : 1),
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and set Ujk = XjYk. A complete basis of addition laws of bidegree (2, 2) is given
by:

s0 = (U2
13 − U2

31, c(U13U20 − U31U02), U2
20 − U2

02, c(U20U31 − U13U02)),
s1 = (c(U03U10 + U21U32), U2

10 − U2
32, c(U03U32 + U10U21), U2

03 − U2
21),

s2 = (U2
00 − U2

22, c(U00U11 − U22U33), U2
11 − U2

33, c(U00U33 − U11U22)),
s3 = (c(U01U30 + U12U23), U2

01 − U2
23, c(U01U12 + U23U30), U2

30 − U2
12).

The exceptional divisor of the addition law s� is
∑3

k=0 ΔkS+�T , where S and
T are the 4-torsion points (c : i : 0 : −i) and (1 : c : 1 : 0), and the divisors∑3

k=0(kS +�T ) are determined by X�+2 = 0. In particular, any pair of the above
addition laws provides a complete system of addition laws.

Proof. This appears as Theorem 44 of Kohel [8] for the µ4-normal form, subject
to the scalar renormalizations indicated above. The exceptional divisor is a sum
of four curves of the form ΔP by Theorem 10 of Kohel [8], and the points P can
be determined by intersection with H = C×{O} using Corollary 11 of Kohel [8].
Taking the particular case s2, we substitute (Y0, Y1, Y2, Y3) = (c, 1, 0, 1) to obtain
(U00, U11, U22, U33) = (cX0,X1, 0,X3), and hence

(U2
00 − U2

22, U00U11 − U22U33, U2
11 − U2

33, U00U33 − U22U11),

which equals

(c2X2
0 , cX0X1,X

2
1 − X2

3 , cX0X3) = (c2X2
0 , cX0X1, c

2X0X2, cX0X3).

These coordinate functions cut out the divisor X0 = 0 with support on the
points kS + 2T , 0 ≤ k < 4, where 2T = (0 : −1 : −c : 1). The final statement
follows since the exceptional divisors are disjoint. 	


The above basis of addition laws can be generated by any one of the four,
by means of signed coordinate permutation on input and output determined by
the action of the 4-torsion group. Denote translation by S and T by σ and τ,
respectively, given by the coordinate scalings and permutations

σ(X0 : X1 : X2 : X3) = (X0 : iX1 : −X2 : −iX3),
τ(X0 : X1 : X2 : X3) = (X3 : X0 : X1 : −X2),

as noted above. The set {s0, s1, s2, s3} forms a basis of eigenvectors for the action
of σ. More precisely for all (j, k, �), we have

s� = (−1)j+k+�σ−j−k ◦ s� ◦ (σj × σk).

Then τ, which projectively commutes with σ, acts by a scaled coordinate per-
mutation

s�−j−k = τ−j−k ◦ s� ◦ (τj × τk),

consistent with the action on the exceptional divisors (see Lemma 31 of
Kohel [8]).

Consequently, the complexity of evaluation of any of these addition laws is
computationally equivalent, since they differ only by a signed coordinate permu-
tation on input and output.
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Corollary 5. Let C be an elliptic curve in split µ4-normal form. There exist
algorithms for addition with complexity 9M+ 2m over any ring, 8M+ 2m over
a ring in which 2 is a unit, and 7M + 2S + 2m over a ring of characteristic 2.

Proof. We determine the complexity of an algorithm for the evaluation of the
addition law s2:

(Z0, Z1, Z2, Z3) = (U2
00−U2

22, c(U00U11−U22U33), U2
11−U2

33, c(U00U33−U11U22)),

recalling that each of the given addition laws in the basis has equivalent evalu-
ation. Over a general ring, we make use of the equalities:

Z0 = U2
00 − U2

22 = (U00 − U22)(U00 + U22),
Z2 = U2

11 − U2
33 = (U11 − U33)(U11 + U33),

and

Z1 + Z3 = c(U00U11 − U22U33) + c(U00U33 − U22U11) = c(U00 − U22)(U11 + U33),
Z1 − Z3 = c(U00U11 − U22U33) − c(U00U33 − U22U11) = c(U00 + U22)(U11 − U33),

using 1M + 1m each for their evaluation.

– Evaluate Ujj = XjYj , for 1 ≤ j ≤ 4, with 4M.
– Evaluate (Z0, Z2) = (U2

00 − U2
22, U2

11 − U2
33) with 2M.

– Evaluate A = c(U00 − U22)(U11 + U33) using 1M + 1m.
– Compute Z1 = c(U00U11 − U22U33) and set Z3 = A − Z1 with 2M + 1m.

This yields the desired complexity 9M+2m over any ring. If 2 is a unit (and
assuming a negligible cost of multiplying by 2), we replace the last line with two
steps:

– Evaluate B = c(U00 + U22)(U11 − U33) using 1M + 1m.
– Compute (2Z1, 2Z3) = (A + B,A − B) and scale (Z0, Z2) by 2,

which gives a complexity of 8M+2m. This yields an algorithm essentially equiv-
alent to that Hisil et al. [7] under the linear isomorphism with the −1-twist of
Edwards normal form. Finally if the characteristic is 2, the result 7M+2S+2m
of Kohel [10] is obtained by replacing 2M by 2S for the evaluation of (Z0, Z2)
in the generic algorithm. 	


Before considering the twisted forms, we determine the base complexity of
doubling for the split µ4-normal form.

Corollary 6. Let C be an elliptic curve in split µ4-normal form. There exist
algorithms for doubling with complexity 5M + 4S + 2m over any ring, 4M +
4S + 2m over a ring in which 2 is a unit, and 2M + 5S + 7m over a ring of
characteristic 2.
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Proof. The specialization of the addition law s2 to the diagonal gives the forms
for doubling

(X4
0 − X4

2 , c(X2
0X2

1 − X2
2X2

3 ), X4
1 − X4

3 , c(X2
0X2

3 − X2
1X2

2 )).

which we can evaluate as follows:

– Evaluate X2
j , for 1 ≤ j ≤ 4, with 4S.

– Evaluate (Z0, Z2) = (X4
0 − X4

2 , X4
1 − X4

3 ) with 2M.
– Evaluate A = c(X2

0 − X2
2 )(X2

1 + X2
3 ) using 1M + 1m.

– Compute Z1 = c(X2
0X2

1 − X2
2X2

3 ) and set Z3 = A − Z1 with 2M + 1m.

This gives the result of 5M+4S+2m over any ring. As above, when 2 is a unit,
we replace the last line with the two steps:

– Evaluate B = c(X2
0 + X2

2 )(X2
1 − X2

3 ) using 1M + 1m.
– Compute (2Z1, 2Z3) = (A + B,A − B) and scale (Z0, Z2) by 2.

This reduces the complexity by 1M. In characteristic 2, the general algorithm
specializes to 3M + 6S + 2m, but Kohel [10] provides an algorithm with better
complexity of 2M + 5S + 7m (reduced by 5m on the semisplit model). 	


In the next section, we introduce the twists of these µ4-normal forms, and
derive efficient algorithms for their arithmetic.

3 Twisted Normal Forms

A quadratic twist of an elliptic curve is determined by a non-rational isomor-
phism defined over a quadratic extension k[α]/k. In odd characteristic one can
take an extension defined by α2 = a, but in characteristic 2, the general form of
a quadratic extension is k[ω]/k where ω2 − ω = a for some a in k. The normal
forms defined above both impose the existence of a k-rational point of order 4.

Over a finite field of characteristic 2, the existence of a 4-torsion point is a
weaker constraint than for odd characteristic, since if E/k is an ordinary elliptic
curve over a finite field of characteristic 2, there necessarily exists a 2-torsion
point. Moreover, if E does not admit a k-rational 4-torsion point and |k| > 2,
then its quadratic twist does.

We recall that for an elliptic curve in Weierstrass form,

E : Y 2Z + (a1X + a3Z)Y Z = X3 + a2X
2Z + a4XZ2 + a6Z

3,

the quadratic twist by k[ω]/k is given by

Et : Y 2Z +(a1X +a3Z)Y Z = X3 +a2X
2Z +a4XZ2 +a6Z

3 +a(a1X +a3Z)2Z,

with isomorphism τ(X : Y : Z) = (X : −Y − ω(a1X + a3Z) : Z), which satisfies
τσ = −τ , where σ is the nontrivial automorphism of k[ω]/k. The objective here
is to describe the quadratic twists in the case of the normal forms defined above.
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With a view towards cryptography, the binary NIST curves are of the form
y2 + xy = x3 + ax2 + b, with a = 1 and group order 2n, whose quadratic twist
is the curve with a = 0 which admits a point of order 4. While the latter admits
an isomorphism to a curve in µ4-normal form, to describe the others, we must
represent them as quadratic twists.

The Twisted µ4-normal Form

In what follows we let k[ω]/k be the quadratic extension given by ω2−ω = a, and
set ω = 1−ω and δ = ω−ω. In order to have the widest possible applicability, we
describe the quadratic twists with respect to any ring or field k. The discriminant
of the extension is D = δ2 = 1+4a. When 2 is invertible we can speak of a twist
by D, but in general we refer to a as the twisting parameter. While admitting
general rings, all formulas hold over a field of characteristic 2, and we investigate
optimizations in this case.

Theorem 7. Let C/k be an elliptic curve in µ4-normal form, semisplit µ4-
normal form, or split µ4-normal form, given respectively by

X2
0 − r X2

2 = X1X3, X2
1 − X2

3 = X0X2, O = (1 : 1 : 0 : 1),
X2

0 − X2
2 = X1X3, X2

1 − X2
3 = sX0X2, O = (1 : 1 : 0 : 1),

X2
0 − X2

2 = c2 X1X3, X2
1 − X2

3 = c2 X0X2, O = (c : 1 : 0 : 1).

The quadratic twist Ct of C by k[ω], where ω2 − ω = a, is given by

X2
0 − Dr X2

2 = X1X3 − a(X1 − X3)2, X2
1 − X2

3 = X0X2,
X2

0 − DX2
2 = X1X3 − a(X1 − X3)2, X2

1 − X2
3 = sX0X2,

X2
0 − DX2

2 = c2(X1X3 − a(X1 − X3)2), X2
1 − X2

3 = c2X0X2,

with identities O = (1 : 1 : 0 : 1), O = (1 : 1 : 0 : 1) and O = (c : 1 : 0 : 1),
respectively. In each case, the twisting isomorphism τ : C → Ct is given by

(X0 : X1 : X2 : X3) �−→ (δX0 : ωX1 − ωX3 : X2 : ωX3 − ωX1),

with inverse sending (X0 : X1 : X2 : X3) to (X0 : ωX1+ωX3 : δX2 : ωX1+ωX3).

Proof. Since the inverse morphism is [−1](X0 : X1 : X2 : X3) = (X0 : X3 :
−X2 : X1), the twisting morphism satisfies τσ = [−1]◦τ where σ is the nontrivial
automorphism of k[ω]/k. Consequently, the image Ct is a twist of C. The form
of the inverse is obtained by matrix inversion. 	

Remark. In characteristic 2 we have D = δ = 1, and the twisted split µ4-
normal form is X2

0 + X2
2 = c2(X1X3 + a(X1 + X3)2), X2

1 + X2
3 = c2X0X2, with

associated twisting morphism

(X0 : X1 : X2 : X3) �−→ (X0 : ωX1 + ωX3 : X2 : ωX1 + ωX3).

Over a field of characteristic different from 2, we have an isomorphism with the
twisted Edwards normal form.
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Theorem 8. Let Ct be an elliptic curve in twisted µ4-normal form

X2
0 − DrX2

2 = X1X3 − a(X1 − X3)2, X2
1 − X2

3 = X0X2,

with parameters (r, a) over a field of characteristic different from 2. Then Ct is
isomorphic to the twisted Edwards curve

X2
0 − 16DrX2

3 = −DX2
1 + X2

2

with parameters (−D,−16Dr), via the isomorphism Ct → E:

(X0 : X1 : X2 : X3) �−→ (4X0 : 2(X1 − X3) : 2(X1 + X3) : X2),

and inverse

(X0 : X1 : X2 : X3) �−→ (X0 : X1 + X2 : 4X3 : −X1 + X2).

Proof. The linear transformation is the compositum of the above linear trans-
formations with the morphism (X0 : X1 : X2 : X3) �−→ (δX0 : X1 : δX2 : X3)
from the Edwards curve to its twist. 	

For completeness we provide an isomorphic model in Weierstrass form:

Theorem 9. Let Ct be an elliptic curve in twisted split µ4-normal form with
parameters (r, a). Then Ct is isomorphic to the elliptic curve

y2 + xy = x3 + (a − 8Dr)x2 + 2D2r(8r − 3)x − D3r(1 − 4r)

in Weierstrass form, where D = 4a + 1. The isomorphism is given by the map
which sends (X0 : X1 : X2 : X3) to

(
D

(
U0 − 4r(U0 + U2)

)
: D

(
U1 − 2r(8U1 + 2U0 − U2)

)
: U2 − 2U0)

)
,

where (U0, U1, U2, U3) = (X1 − X3,X0 + X3,X2,X1 + X3).

Proof. A symbolic verification is carried out by the Echidna code [11] imple-
mented in Magma [14]. 	

Specializing to characteristic 2, we obtain the following corollary.

Corollary 10. Let Ct be a binary elliptic curve in twisted µ4-normal form

X2
0 + bX2

2 = X1X3 + aX0X2, X2
1 + X2

3 = X0X2,

with parameters (r, a) = (b, a). Then Ct is isomorphic to the elliptic curve

y2 + xy = x3 + ax2 + b,

in Weierstrass form via the map (X0 : X1 : X2 : X3) �→ (X1+X3 : X0+X1 : X2).
On affine points (x, y) the inverse is (x, y) �−→ (x2 : x2 + y : 1 : x2 + y + x).
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Proof. By the previous theorem, since D = 1 in characteristic 2, the Weierstrass
model simplifies to y2 + xy = x3 + ax2 + b, and the map to

(X0 : X1 : X2 : X3) �−→ (U0 : U1 : U2) = (X1 + X3 : X0 + X1 : X2) .

The given map on affine points is easily seen to be a birational inverse, valid for
X2 = 1, in view of the relation (X1 + X3)2 = X0X2, well-defined outside the
identity. Consequently, it extends uniquely to an isomorphism. 	


As a consequence of this theorem, any ordinary binary curve (with j =1/b �=0)
can be put in twisted µ4-normal form, via the map on affine points:

(x, y) �−→ (x2 : x2 + y : 1 : x2 + y + x).

In particular all algorithms of this work (over binary fields) are applicable to
the binary NIST curves, which permits backward compatibility and improved
performance.

4 Addition Algorithms

We now consider the addition laws for twisted split µ4-normal form. In the appli-
cation to prime finite fields of odd characteristic p (see below for considerations
in characteristic 2), under the GRH, Lagarias, Montgomery and Odlyzko [12]
prove a generalization of the result of Ankeny [1], under which we can conclude
that the least quadratic nonresidue D ≡ 1 mod 4 is in O(log2(p)), and the aver-
age value of D is O(1). Consequently, for a curve over a finite prime field, one
can find small twisting parameters for constructing the quadratic twist. With
this in mind, we ignore all multiplications by constants a and D = 4a + 1.

Theorem 11. Let Ct be an elliptic curve in twisted split µ4-normal form:

X2
0 − DX2

2 = c2(X1X3 − a(X1 − X3)2), X2
1 − X2

3 = c2X0X2.

over a ring in which 2 is a unit. The projections π1 : Ct → P1, with coordinates
(X,Z), given by

π1((X0 : X1 : X2 : X3)) =
{
(cX0 : X1 + X3), (X1 − X3 : cX2)

}
,

and π2 : Ct → P1, with coordinates (Y,W ), given by

π2((X0 : X1 : X2 : X3)) =
{
(cX0 : X1 − X3), (X1 + X3 : cX2)

}
,

determine an isomorphism π1 × π2 with its image:

((c2/2)2X2 − Z2)W 2 = D((c2/2)2Z2 − X2)Y 2

in P1 × P1, with inverse

σ((X : Z), (Y : W )) = (2XY : c(XW + ZY ) : 2ZW : c(ZY − XW )).
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Proof. The morphisms σ and π1 × π2 determine isomorphisms of P1 × P1 with
the surface X2

1 − X2
3 = c2X0X2 in P3, and substitution in the first equation for

Ct yields the above hypersurface in P1 × P1. 	

The twisted split µ4-normal form has 2-torsion subgroup generated by Q =

(−c : 1 : 0 : 1) and R = (0 : −1 : c : 1), with Q + R = (0 : −1 : −c : 1). Over any
extension containing a square root ε of −D, the point S = (c : −ε : 0 : ε) is a
point of order 4 such that 2S = Q.

Theorem 12. Let Ct be an elliptic curve in twisted split µ4-normal form over a
ring in which 2 is a unit. The projections π1 and π2 determine two-dimensional
spaces of bilinear addition law projections:

π1 ◦ μ(x, y) =
{
s0 = (U13 − U31 : U20 − U02),
s2 = (U00 + DU22 : U11 + U33 + 2aV13),

π2 ◦ μ(x, y) =
{
s1 = (U13 + U31 − 2aV13 : U02 + U20),
s3 = (U00 − DU22 : U11 − U33),

where Uk� = XkY� and Vk� = (Xk −X�)(Yk −Y�). The exceptional divisors of the
sj are of the form ΔTj

+ ΔTj+Q, where T0 = O, T1 = S + R, T2 = R, T3 = S.

Proof. The existence and dimensions of the spaces of bilinear addition law pro-
jections, as well as the form of the exceptional divisors, follows from Theorem 26
and Corollary 27 of Kohel [8], observing for j in {0, 2} that Tj + (Tj + Q) = Q
and for j in {1, 3} that Tj + (Tj + Q) = O. The correctness of the forms can be
verified symbolically, and the pairs {Tj , Tj + Q} determined by the substitution
(Y0, Y1, Y2, Y3) = (c, 1, 0, 1), as in Corollary 11 of Kohel [8]. In particular, for s0,
we obtain the tuple (U13 − U31, U20 − U02) = (X1 − X3, cX2), which vanishes
on {O,Q} = {(c : 1 : 0 : 1), (−c : 1 : 0 : 1)}, hence the exceptional divisor is
ΔO + ΔQ. 	


Composing the addition law projections of Theorem12 with the isomor-
phism of Theorem 11, and dividing by 2, we obtain for the pair (s0, s1) the
tuple (Z0, Z1, Z2, Z3) with

Z0 = (U13 − U31)(U13 + U31 − 2aV13), Z1 + Z3 =−c(U02 − U20)(U13 + U31 + 2aV13),
Z2 =−(U02 − U20)(U02 + U20), Z1 − Z3 =−c(U13 − U31)(U02 + U20),

and for the pair (s2, s3) the tuple (Z0, Z1, Z2, Z3) with

Z0 = (U00 + DU22)(U00 −DU22), Z1 + Z3 = c (U11 + U33 + 2aV13)(U00 −DU22),
Z2 = (U11 + U33 + 2aV13)(U11 − U33), Z1 − Z3 = c(U00 + DU22)(U11 − U33).

The former have efficient evaluations over a ring in which 2 is a unit, yielding
(2Z0, 2Z1, 2Z2, 2Z3), and otherwise we deduce expressions for (Z1, Z3):

Z1 = c((U02U13 − U02U31) − a(U02 − U20)W13),
Z3 = c((U02U31 − U20U13) − a(U02 − U20)W13),
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with W13 = 2(U13 + U31) − V13, and

Z1 = c(U00U11 − DU22U33) − a(U00 − DU22)W13),
Z3 = c(U00U33 − DU22U11) − a(U00 − DU22)W13),

with W13 = 2(U11 + U33) − V13, respectively. We note that these expressions
remain valid over any ring despite the fact that they were derived via the fac-
torization through the curve in P1 × P1 which is singular in characteristic 2.

Before evaluating their complexity, we explain the obvious symmetry of the
above equations. Let τ be the translation-by-R automorphism of Ct sending
(X0 : X1 : X2 : X3) to

(X2 : −X3 − 2a(X1 + X3) : −DX0 : X1 + 2a(X1 + X3)),

and denote also τ for the induced automorphism

τ((X : Z), (Y : W )) = ((Z : X), (−W : DY ))

of its image in P1 × P1. Then for each (i, j) in (Z/2Z)2, the tuple of morphisms
(τi × τj , τk) such that k = i + j acts on the set of tuples (s, s′) of addition law
projections:

(τi × τj , τk) · (s, s′) = τk ◦(s ◦ (τi × τj), s′ ◦ (τi × τj)).

Lemma 13. Let Ct be an elliptic curve in split µ4-normal form. The tuples
of addition law projections (s0, s1) and (s2, s3) are eigenvectors for the action of
(τ × τ, 1) and are exchanged, up to scalars, by the action of (τ ×1, τ) and (1×τ, τ).

Proof. Since an addition law (projection) is uniquely determined by its excep-
tional divisor, up to scalars, the lemma follows from the action of (τi × τj , τk) on
the exceptional divisors given by Lemma 31 of Kohel [8], and can be established
directly by substitution. 	

Corollary 14. Let Ct be an elliptic curve in twisted split µ4-normal form.
There exists an algorithm for addition with complexity 11M + 2m over any
ring, and an algorithm with complexity 9M + 2m over a ring in which 2 is a
unit.

Proof. Considering the product determined by the pair (s2, s3), the evaluation
of the expressions

Z0 = (U00 − DU22)(U00 + DU22),
Z2 = (U11 − U33)(U11 + U33 + 2aV13),

requires 4M for the Uii plus 1M for V13 if a �= 0, then 2M for the evaluation
of Z0 and Z2. Setting W13 = 2(U11 + U33) − V13, a direct evaluation of the
expressions

Z1 = c((U00U11 − DU22U33) − a(U00 − DU22)W13),
Z3 = c((U00U33 − DU22U11) − a(U00 − DU22)W13),
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requires an additional 4M + 2m, saving 1M with the relation

(U00 − DU22)(U11 + U33) = (U00U11 − DU22U33) + (U00U33 − DU22U11),

for a complexity of 11M + 2m. If 2 is a unit, we may instead compute

Z1 + Z3 = c (U00 − DU22)(U11 + U33 + 2aV13),
Z1 − Z3 = c (U00 + DU22)(U11 − U33).

and return (2Z0, 2Z1, 2Z2, 2Z3) using 2M+ 2m, for a total cost of 9M+ 2m. 	

Corollary 15. Let Ct be an elliptic curve in twisted split µ4-normal form.
There exists an algorithm for doubling with complexity 6M + 5S + 2m over
any ring, and an algorithm with complexity 4M+ 5S+ 2m over a ring in which
2 is a unit.

Proof. The specialization to Xi = Yi gives:

Z0 = (X2
0 − DX2

2 )(X2
0 + DX2

2 ),
Z2 = (X2

1 − X2
3 )(X2

1 + X2
3 + 2a(X1 + X3)2).

The evaluation of X2
i costs 4S plus 1S for (X1 + X3)2 if a �= 0, rather than

4M + 1M. Setting W13 = 2(X2
1 + X2

3 ) − (X1 + X3)2 [= (X1 − X3)2], a direct
evaluation of the expressions

Z1 = c((X2
0X2

1 − DX2
2X2

3 ) − a(X2
0 − DX2

2 )W13),
Z3 = c((X2

0X2
3 − DX2

2X2
1 ) − a(X2

0 − DX2
2 )W13),

requires an additional 4M + 2m, as above, for a complexity of 6M + 5S + 2m.
If 2 is a unit, we compute

Z1 + Z3 = c (X2
0 − DX2

2 )(X2
1 + X2

3 + 2a(X1 + X3)2),
Z1 − Z3 = c (X2

0 + DX2
2 )(X2

1 − X2
3 ).

using 2M + 2m, which gives 4M + 5S + 2m. 	

In the next section we explore efficient algorithms for evaluation of the addi-

tion laws and doubling forms in characteristic 2.

5 Binary Addition Algorithms

Suppose that k is a finite field of characteristic 2. The Artin-Schreier extension
k[ω]/k over which we twist is determined by the additive properties of a, and
half of all elements of k determine the same field (up to isomorphism) and hence
an isomorphic twist. For instance, if k/F2 is an odd degree extension, we may
take a = 1. As above, we assume that that multiplication by a is negligible in
our complexity analyses.
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Theorem 16. Let Ct be an elliptic curve in twisted split µ4-normal form:

X2
0 + X2

2 = c2(X1X3 + a(X1 + X3)2), X2
1 + X2

3 = c2X0X2,

over a field of characteristic 2. A complete system of addition laws is given by
the two maps s0 and s2,

(
(U13 + U31)2, c(U02U31 + U20U13 + aF ), (U02 + U20)2, c(U02U13 + U20U31 + aF )

)
,(

(U00 + U22)2, c(U00U11 + U22U33 + aG), (U11 + U33)2, c(U00U33 + U11U22 + aG)
)
,

respectively, where Ujk = XjYk and

F = (X1 + X3)(Y1 + Y3)(U02 + U20) and G = (X1 + X3)(Y1 + Y3)(U00 + U22).

The respective exceptional divisors are 4ΔO and 4ΔS where S = (1 : c : 1 : 0) is
a 2-torsion point.

Proof. The addition laws s0 and s2 are the conjugate addition laws of Theorem4
(as can be verified symbolically)1 and, equivalently, are described by the reduc-
tion at 2 of the addition laws derived from the tuples of addition law projections
(s0, s1) and (s2, s3) of Theorem 12. Since the points O and S are fixed rational
points of the twisting morphism, the exceptional divisors are of the same form.
As the exceptional divisors are disjoint, the pair of addition laws form a complete
set. 	

Remark. Recall that the addition laws s1 and s3 on the split µ4-normal form
have exceptional divisors 4ΔT and 4Δ−T in characteristic 2 (since S = O).
Consequently their conjugation by the twisting morphism yields a conjugate
pair over k[ω], since the twisted curve does not admit a k-rational 4-torsion
point T . There exist linear combinations of these twisted addition laws which
extend the set {s0, s2} to a basis over k (of the space of dimension four), but
they do not have such an elegant form as s0 and s2.

Corollary 17. Let Ct be an elliptic curve in twisted split µ4-normal form over
a field of characteristic 2. There exists an algorithm for addition with complexity
9M + 2S + 2m.

Proof. Since the addition laws differ from the split µ4-normal form only by the
term aF (or aG), it suffices to determine the complexity of its evaluation. Having
determined (U02, U20) (or (U00, U22)), we require an additional 2M, which gives
the complexity bound. 	


For the µ4-normal form the addition law, after coefficient scaling, we find
that the addition law with exceptional divisor 4ΔO takes the form

((U13 + U31)2, U02U31 + U20U13 + aF, (U20 + U02)2, U02U13 + U20U31 + aG),

and in particular does not involve multiplication by constants (other than a
which we may take in {0, 1} in cryptographic applications). This gives the fol-
lowing complexity result.
1 As is verified by the implementation in Echidna [11] written in Magma [14].
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Corollary 18. Let Ct be an elliptic curve in twisted µ4-normal form over a
field of characteristic 2. There exists an algorithm for addition outside of the
diagonal ΔO with complexity 9M + 2S.

6 Binary Doubling Algorithms

We recall the hypothesis that multiplication by a is negligible. In the crypto-
graphic context (e.g. in application to the binary NIST curves), we may assume
a = 1 (or a = 0 for the untwisted forms).

Corollary 19. Let Ct be an elliptic curve in twisted split µ4-normal form. The
doubling map is uniquely determined by

((X0 + X2)4 : c((X0X3 + X1X2)2 + a(X0 + X2)2(X1 + X3)2) :
(X1 + X3)4 : c((X0X1 + X2X3)2 + a(X0 + X2)2(X1 + X3)2) )

Proof. This follows from specializing Xj = Yj in the form s2 of Theorem 16. 	

We note that in cryptographic applications we may assume that a = 0

(untwisted form), giving

((X0 + X2)4 : c(X0X3 + X2X1)2 : (X1 + X3)4 : c(X0X1 + X2X3)2),

and otherwise a = 1, in which case we have

((X0 + X2)4 : c(X0X1 + X2X3)2 : (X1 + X3)4 : c(X0X3 + X2X1)2).

It is clear that the evaluation of doubling on the twisted and untwisted normal
forms is identical. This is true also for the case of general a, up to the computation
of (X0 + X2)2(X1 + X3)2. We nevertheless give an algorithm which improves
upon the number of constant multiplications reported in Kohel [10], in terms of
polynomials in u = c−1. With this notation, we note that the defining equations
of the curve are:

X1X3 = u2(X0 + X2)2,
X0X2 = u2(X1 + X3)2.

These relations are important, since they permit us to replace any instances of
the multiplications on the left with the squarings on the right. As a consequence,
we have

X0X1 + X2X3 = (X0 + X3)(X2 + X1) + X0X2 + X1X3

= (X0 + X3)(X2 + X1) + u2((X0 + X2)2 + (X1 + X3)2)
X0X3 + X2X1 = (X0 + X1)(X2 + X3) + X0X2 + X1X3

= (X0 + X1)(X2 + X3) + u2((X0 + X2)2 + (X1 + X3)2).

Moreover these forms are linearly dependent with (X0 + X2)(X1 + X3)

(X0X1 + X2X3) + (X0X3 + X2X1) = (X0 + X2)(X1 + X3),
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so that two multiplications are sufficient for the determination of these three
forms. Putting this together, it suffices to evaluate the tuple

(u(X0 + X2)4, (X0X1 + X2X3)2, u(X1 + X3)4, (X0X3 + X2X1)2),

for which we obtain the following complexity for doubling.

Corollary 20. Let Ct be a curve in twisted split µ4-normal form. There exists
an algorithm for doubling with complexity 2M + 5S + 3mu.

Using the semisplit µ4-normal form, the complexity of 2M + 5S + 2mu of
Kohel [10], saving one constant multiplication, carries over to the corresponding
twisted semisplit µ4-normal form (referred to as nonsplit). By a similar argu-
ment the same complexity, 2M+ 5S+ 2mu, is obtained for the µ4-normal form
of this article.

7 Montgomery Endomorphisms of Kummer Products

We recall certain results of Kohel [10] concerning the Montgomery endomorphism
with application to scalar multiplication on products of Kummer curves. We
define the Montgomery endomorphism to be the map ϕ : C × C → C × C given
by (Q,R) �→ (2Q,Q + R). With a view to scalar multiplication, this induces

((n + 1)P, nP ) �−→ ((2n + 2)P, (2n + 1)P ),

and
(nP, (n + 1)P ) �−→ (2nP, (2n + 1)P ).

By exchanging the order of the coordinates on input and output, an algo-
rithm for the Montgomery endomorphism computes ((2n + 2)P, (2n + 1)P ) or
((2n+1)P, 2nP ) from the input point ((n+1)P, nP ). This allows us to construct
a symmetric algorithm for the scalar multiple kP of P via a Montgomery ladder

((ni + 1)P, niP ) �−→ ((ni+1 + 1)P, ni+1P ) =
{

((2ni + 1)P, 2niP ), or
((2ni + 2)P, (2ni + 1)P ).

It is noted that the Montgomery endomorphism sends each of the curves

ΔP = {(Q,Q − P ) | Q ∈ C(k̄)}, and Δ−P = {(Q,Q − P ) | Q ∈ C(k̄)},

to itself, and exchange of coordinates induces ΔP → Δ−P .
We now assume that C is a curve in split µ4-normal form, and define the

Kummer curve K (C) = C/{±1} ∼= P1, equipped with map

π((X0 : X1 : X2 : X3) =
{

(cX0 : X1 + X3),
(X1 − X3 : cX2).

This determines a curve K (ΔP ) as the image of ΔP in K (C) × K (C).
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Lemma 21. For any point P of C, the Montgomery-oriented curve K (ΔP )
equals K (Δ−P ).

Proof. It suffices to note that (Q,Q − P ) ∈ K (ΔP )(k̄) is also a point of
K (Δ−P ):

(Q,Q − P ) = (−Q,−Q + P ) = (−Q,−Q − (−P )) ∈ K (Δ−P ),

hence K (ΔP ) ⊆ K (Δ−P ) and by symmetry K (Δ−P ) ⊆ K (ΔP ).

We conclude, moreover, that K (ΔP ) is well-defined by a point on the
Kummer curve.

Lemma 22. The Montgomery-oriented curve K (ΔP ) depends only on π(P ).

Proof. The dependence only on π(P ) is a consequence of the previous lemmas,
which we make explicit here. Let P = (s0 : s1 : s2 : s3) and π(P ) = (t0 : t1). By
Theorem 24 of Kohel [10], the curve K (ΔP ) takes the form,

s0(U0V1 + U1V0)2 + s2(U0V0 + U1V1)2 = c(s1 + s3)U0U1V0V1,

but then (s0 : s1 + s3 : s2) = (t20 : c t0t1, t
2
1) in P2, hence

t20(U0V1 + U1V0)2 + t21(U0V0 + U1V1)2 = c2t0t1U0U1V0V1.

which shows that the curve depends only on π(P ).

We note similarly that the Kummer curve K (C) = K (Ct) is independent
of the quadratic twist, in the sense that any twisting isomorphism τ : C → Ct

over k̄ induces a unique isomorphism K (C) → K (Ct). One can verify directly
the twisting isomorphism τ of Theorem 7 induces the identity on the Kummer
curves with their given projections. We thus identify K (C) = K (Ct), and
denote π : C → K (C) and πt : Ct → K (C) the respective covers of the
Kummer curve.

Theorem 23. Let C be a curve in split µ4-normal form and Ct be a quadratic
twist over the field k. If P ∈ Ct(k̄) and Q ∈ C(k̄) such that πt(P ) = π(Q), then
K (ΔP ) = K (ΔQ).

It follows that we can evaluate the Montgomery endomorphism on K (ΔP ),
for P ∈ Ct(k), and π(P ) = (t0 : t1), using the same algorithm and with the same
complexity as in Kohel [10]. We recall the complexity result here, assuming a
normalisation t0 = 1 or t1 = 1.

Corollary 24. The Montgomery endomorphism on K (ΔP ) can be computed
with 4M + 5S + 1mt + 1mc or with 4M + 4S + 1mt + 2mc.

By the same argument, the same Theorem 24 of Kohel [10] provides the
necessary map for point recovery in terms of the input point P = (s0 : s1 : s2 : s3)
of Ct(k).
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Theorem 25. Let Ct be an elliptic curve in twisted split µ4-normal form with
rational point P = (s0 : s1 : s2 : s3). If P is not a 2-torsion point, the morphism
λ : C → K (ΔP ) is an isomorphism, and defined by

π1 ◦ λ(X0 : X1 : X2 : X3) =
{

(cX0 : X1 + X3),
(X1 + X3 : cX2),

π2 ◦ λ(X0 : X1 : X2 : X3) =
{

(s0X0 + s2X2 : s1X1 + s3X3),
(s3X1 + s1X3 : s2X0 + s0X2),

with inverse λ−1((U0 : U1), (V0 : V1)) equal to

⎧⎨
⎩

((s1 + s3)U2
0V0 : (s0U2

0 + s2U2
1 )V1 + cs1U0U1V0 : (s1 + s3)U2

1V0 : (s0U2
0 + s2U2

1 )V1 + cs3U0U1V0),

((s1 + s3)U2
0V1 : (s2U2

0 + s0U2
1 )V0 + cs3U0U1V1 : (s1 + s3)U2

1V1 : (s2U2
0 + s0U2

1 )V0 + cs1U0U1V1).

This allows for the application of the Montgomery endomorphism to scalar
multiplication on Ct. Using the best results of the present work, the complexity
is comparable to a double and add algorithm with window of width 4.

8 Conclusion

Elliptic curves in the twisted µ4-normal form of this article (including split
and semisplit variants) provide models for curves which, on the one hand,
are isomorphic to twisted Edwards curves with efficient arithmetic over non-
binary fields, and, on the other, have good reduction and efficient arithmetic in
characteristic 2.

Taking the best reported algorithms from the EFD [4], we conclude with a
tabular comparison of the previously best known complexity results for doubling
and addition algorithms on projective curves (see Table 1). We include the pro-
jective lambda model (a singular quartic model in P2), which despite the extra
cost of doubling, admits a slightly better algorithm for addition than López-
Dahab (see [15]). Binary Edwards curves [3], like the twisted µ4-normal form of
this work, cover all ordinary curves, but the best complexity result we give here
is for d1 = d2 which has a rational 4-torsion point (corresponding to the trivial
twist, for which the µ4-normal form gives better performance). Similarly, the
López-Dahab model with a2 = 0 admits a rational 4-torsion point, hence covers
the same classes, but the fastest arithmetic is achieved on the quadratic twists
with a2 = 1, which manage to save one squaring S for doubling relative to the
present work, at the loss of generality (one must vary the weighted projective
space according to the twist, a2 = 0 or a2 = 1) and with a large penalty for
the cost of addition. The results stated here concern the twisted µ4-normal form
which minimize the constant multiplications. In the final columns, we indicate
the fractions of ordinary curves covered by the model (assuming a binary field
of odd degree), and whether the family includes the NIST curves.
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Table 1. Table of binary doubling and addition algorithm complexities.

Curve model Doubling Addition % NIST

Lambda coordinates 3M + 4S + 1m 11M + 2S 100% ✓

Binary Edwards (d1 = d2) 2M + 5S + 2m 16M + 1S + 4m 50% ✗

López-Dahab (a2 = 0) 2M + 5S + 1m 14M + 3S 50% ✗

López-Dahab (a2 = 1) 2M + 4S + 2m 13M + 3S 50% ✓

Twisted µ4-normal form 2M + 5S + 2m 9M + 2S 100% ✓

µ4-normal form 2M + 5S + 2m 7M + 2S 50% ✗

All curves can be represented in lambda coordinates or in µ4-normal form.
However by considering the two cases a2 ∈ {0, 1}, as for the López-Dahab mod-
els, the twists of the µ4-normal form with a2 = 0 give the faster µ4-normal
form and only when a2 = 1 does one need the twisted model with its reduced
complexity.

By consideration of twists, we are able to describe a uniform family of
curves which capture nearly optimal known doubling performance of binary
curves (up to 1S), while vastly improving the performance of addition algo-
rithms applicable to all binary curves. By means of a trivial encoding in twisted
µ4-normal form (see Corollary 10), this brings efficient arithmetic of these µ4-
normal forms to binary NIST curves.
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1 Introduction

In their February 2016 report on post-quantum cryptography [6], the United
States National Institute of Standards and Technology (NIST) stated that “It
seems improbable that any of the currently known [public-key] algorithms can
serve as a drop-in replacement for what is in use today,” citing that one major
challenge is that quantum resistant algorithms have larger key sizes than the
algorithms they will replace. While this statement is certainly applicable to
many of the lattice- and code-based schemes (e.g., LWE encryption [24] and the
McEliece cryptosystem [19]), Jao and De Feo’s 2011 supersingular isogeny Diffie-
Hellman (SIDH) proposal [15] is one post-quantum candidate that could serve as
a drop-in replacement to existing Internet protocols. Not only are high-security
SIDH public keys smaller than their lattice- and code-based counterparts, they
are even smaller than some of the traditional (i.e., finite field) Diffie-Hellman
public keys.

SIDH Public-Key Compression. The public keys defined in the original
SIDH papers [8,15] take the form

PK = (E,P,Q),

where E/Fp2 : y2 = x3 + ax + b is a supersingular elliptic curve, p = nAnB ± 1
is a large prime, the cardinality of E is #E(Fp2) = (p ∓ 1) = (nAnB)2, and
depending on whether the public key corresponds to Alice or Bob, the points
P and Q either both lie in E(Fp2)[nA], or both lie in E(Fp2)[nB ]. Since P and
Q can both be transmitted via their x-coordinates (together with a sign bit
that determines the correct y-coordinate), and the curve can be transmitted by
sending the two Fp2 elements a and b, the original SIDH public keys essentially
consist of four Fp2 elements, and so are around 8 log p bits in size.

A recent paper by Azarderakhsh, Jao, Kalach, Koziel and Leonardi [2] showed
that it is possible to compress the size of SIDH public keys to around 4 log p bits
as follows. Firstly, to send the supersingular curve E, they pointed out that one
can send the j-invariant j(E) ∈ Fp2 rather than (a, b) ∈ F2

p2 , and showed how
to recover a and b (uniquely, up to isomorphism) from j(E) on the other side.
Secondly, for n ∈ {nA, nB}, they showed that since E(Fp2)[n] ∼= Zn × Zn, an
element in E(Fp2)[n] can instead be transmitted by sending two scalars (α, β) ∈
Zn × Zn that determine its representation with respect to a basis of the torsion
subgroup. This requires that Alice and Bob have a way of arriving at the same
basis for E(Fp2)[n]. Following [2], we note that it is possible to decompose points
into their Zn ×Zn representation since for well-chosen SIDH parameters, n = �e

is always smooth, which means that discrete logarithms in order n groups can be
solved in polynomial time using the Pohlig-Hellman algorithm [23]. Given that
such SIDH parameters have nA ≈ nB (see [15]), it follows that n ≈ √

p and that
sending elements of E(Fp2)[n] as two elements of Zn (instead of an element in
Fp2) cuts the bandwidth required to send torsion points in half.
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Although passing back and forth between (a, b) and j(E) to (de)compress the
curve is relatively inexpensive, the compression of the points P and Q requires
three computationally intensive steps:

– Step 1 – Constructing the n-torsion basis. During both compression and
decompression, Alice and Bob must, on input of the curve E, use a deter-
ministic method to generate the same two-dimensional basis {R1, R2} ∈
E(Fp2)[n]. The method used in [2] involves systematically sampling candi-
date points R ∈ E(Fp2), performing cofactor multiplication by h to move into
E(Fp2)[n], and then testing whether or not [h]R has “full” order n (and, if not,
restarting).

– Step 2 – Pairing computations. After computing a basis {R1, R2} of the group
E(Fp2)[n], the task is to decompose the point P (and identically, Q) as P =
[αP ]R1 +[βP ]R2 and determine (αP , βP ). While this could be done by solving
a two-dimensional discrete logarithm problem (DLP) directly on the curve,
Azarderakhsh et al. [2] use a number of Weil pairing computations to transform
these instances into one-dimensional finite field DLPs in μn ⊂ F∗

p2 .
– Step 3 – Solving discrete logarithms in μn. The last step is to repeatedly use

the Pohlig-Hellman algorithm [23] to solve DLPs in μn, and to output the four
scalars αP , βP , αQ and βQ in Zn.

Each one of these steps presents a significant performance drawback for SIDH
public-key compression. Subsequently, Azarderakhsh et al. report that, at inter-
esting levels of security, each party’s individual compression latency is more than
a factor of ten times the latency of a full round of uncompressed key exchange
[2, Sect. 5].

Our Contributions. We present a range of new algorithmic improvements
that decrease the total runtime of SIDH compression and decompression by an
order of magnitude, bringing its performance close to that of a single round of
SIDH key exchange. We believe that this makes it possible to consider public-key
compression a default choice for SIDH, and it can further widen the gap between
the key sizes resulting from practical SIDH key exchange implementations and
their code- and lattice-based counterparts.

We provide a brief overview of our main improvements with respect to the
three compression steps described above. All known implementations of SIDH
(e.g., [1,7,8]) currently choose nA = �eA

A = 2eA and nB = �eB

B = 3eB for sim-
plicity and efficiency reasons, so we focus on � ∈ {2, 3} below; however, unless
specified otherwise, we note that all of our improvements will readily apply to
other values of �.

– Step 1 – Constructing the n-torsion basis. We make use of some results aris-
ing from explicit 2- and 3-descent of elliptic curves to avoid the need for
the expensive cofactor multiplication that tests the order of points. These
results characterize the images of the multiplication-by-2 and multiplication-
by-3 maps on E, and allow us to quickly generate points that are elements
of E(Fp2) \ [2]E(Fp2) and E(Fp2) \ [3]E(Fp2). Therefore, we no longer need
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to check the order of (possibly multiple!) points using a full-length scalar
multiplication by nAnB , but instead are guaranteed that one half-length cofac-
tor multiplication produces a point of the correct order. For our purposes, pro-
ducing points in E \ [2]E is as easy as generating elliptic curve points whose
x-coordinates are non-square (this is classical, e.g., [14, Chap. 1 (Sect. 4), The-
orem 4.1]). On the other hand, to efficiently produce points in E \ [3]E, we
make use of the analogous characteristic described in more recent work on
explicit 3-descent by Schaefer and Stoll [26]. Combined with a tailored version
of the Elligator 2 encoding [5] for efficiently generating points on E, this app-
roach gives rise to highly efficient n-torsion basis generation. This is described
in detail in Sect. 3.

– Step 2 – Pairing computations. We apply a number of optimizations from the
literature on elliptic curve pairings in order to significantly speed up the run-
time of all pairing computations. Rather than using the Weil pairing (as was
done in [2]), we use the more efficient Tate pairing [4,10]. We organize the
five pairing computations that are required during compression in such a way
that only two Miller functions are necessary. Unlike all of the prior work done
on optimized pairing computation, the pairings used in SIDH compression
cannot take advantage of torsion subgroups that lie in subfields, which means
that fast explicit formulas for point operations and Miller line computations
are crucial to achieving a fast implementation. Subsequently, we derive new
and fast inversion-free explicit formulas for computing pairings on supersingu-
lar curves, specific to the scenario of SIDH compression. Following the Miller
loops, we compute all five final exponentiations by exploiting a fast combi-
nation of Frobenius operations together with either fast repeated cyclotomic
squarings (from [31]) or our new formulas for enhanced cyclotomic cubing
operations. The pairing optimizations are described in Sect. 4.

– Step 3 – Solving discrete logarithms in μn. All computations during the Pohlig-
Hellman phase take place in the subgroup μn of the multiplicative group
Gp+1 ⊂ F∗

p2 of order p + 1, where we take advantage of the fast cyclotomic
squarings and cubings mentioned above, as well as the fact that Fp2 inver-
sions are simply conjugations, so come almost for free (see Sect. 5.1). On top
of this fast arithmetic, we build an improved version of the Pohlig-Hellman
algorithm that exploits windowing methods to solve the discrete logarithm
instances with lower asymptotic complexity than the original algorithm. For
the concrete parameters, the new algorithm is approximately 14× (resp. 10×)
faster in μ2372 (resp. μ3239), while having very low memory requirements (see
Tables 1 and 2). This is all described in more detail in Sect. 5.

– Improved compression. By normalizing the representation of P and Q in Z4
n,

we are able to further compress this part of the public key representation
into Z3

n. Subsequently, our public keys are around 7
2 log p bits, rather than the

4 log p bits achieved in [2]. To the best of our knowledge, this is as far as SIDH
public keys can be compressed in practice. This is explained in Sect. 6.1.

– Decompression. The decompression algorithm – which involves only the first
of the three steps above and a double-scalar multiplication – is also acceler-
ated in this work. In particular, on top of the faster torsion basis generation,
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we show that the double-scalar multiplications can be absorbed into the shared
secret computation. This makes them essentially free of cost. This is described
in Sect. 6.2.

The combination of the three main improvements mentioned above, along
with a number of further optimizations described in the rest of this paper, yields
enhanced compression software that is an order of magnitude faster than the
initial software benchmarked in [2].

The Compression Software. We wrote the new suite of algorithms in plain C
and incorporated the compression software into the SIDH library recently made
available by Costello, Longa and Naehrig [7]; their software uses a curve with
log p = 751 that currently offers around 192 bits of classical security and 128
bits of quantum security. The public keys in their uncompressed software were
6 log p = 564 bytes, while the compressed public keys resulting from our software
are 7

2 log p = 330 bytes. The software described in this paper can be found in the
latest release of the SIDH library (version 2.0) at https://www.microsoft.com/
en-us/research/project/sidh-library/.

Although our software is significantly faster than the previous compression
benchmarks given by Azarderakhsh et al. [2], we believe that the most mean-
ingful benchmarks we can present are those that compare the latency of our
optimized SIDH compression to the latency of the state-of-the-art key genera-
tion and shared secret computations in [7]. This gives the reader (and the PQ
audience at large) an idea of the cost of public-key compression when both the
raw SIDH key exchange and the optional compression are optimized to a similar
level. We emphasize that although the SIDH key exchange software from [7] tar-
geted one isogeny class at one particular security level, and therefore so does our
compression software, all of our improvements apply identically to curves used
for SIDH at other security levels, especially if the chosen isogeny degrees remain
(powers of) 2 and 3. Moreover, we expect that the relative cost of compressed
SIDH to uncompressed SIDH will stay roughly consistent across different secu-
rity levels, and that our targeted benchmarks therefore give a good gauge on the
current state-of-the-art.

It is important to note that, unlike the SIDH software from [7] that uses
private keys and computes shared secrets, by definition our public-key compres-
sion software only operates on public data1. Thus, while we call several of their
constant-time functions when appropriate, none of our functions need to run in
constant-time.

Remark 1 (Ephemeral SIDH). A recent paper by Galbraith, Petit, Shani and
Ti [11] gives, among other results, a realistic and serious attack on instantia-
tions of SIDH that reuse static private/public key pairs. Although direct public-
key validation in the context of isogeny-based cryptography is currently non-
trivial, there are methods of indirect public-key validation (see, e.g., [11,17]) that
1 There is a minor caveat here in that we absorb part of the decompression into the

shared secret computation, which uses the constant-time software from [7] – see
Sect. 6.

https://www.microsoft.com/en-us/research/project/sidh-library/
https://www.microsoft.com/en-us/research/project/sidh-library/
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mirror the same technique proposed by Peikert [22, Sect. 5–6] in the context of
lattice-based cryptography, which is itself a slight modification of the well-known
Fujisaki-Okamoto transform [9]. At present, the software from [7] only supports
secure ephemeral SIDH key exchange, and does not yet include sufficient (direct
or indirect) validation that allows the secure use of static keys. Thus, since our
software was written around that of [7], we note that it too is only written for the
target application of ephemeral SIDH key exchange. In this case attackers are
not incentivized to tamper with public keys, so we can safely assume through-
out this paper that all public keys are well-formed. Nevertheless, we note that
the updated key exchange protocols in [9,11,17,22] still send values that can
be compressed using our algorithms. On a related note, we also point out that
our algorithms readily apply to the other isogeny-based cryptosystems described
in [8] for which the compression techniques were detailed in [2]. In all of these
other scenarios, however, the overall performance ratios and relative bandwidth
savings offered by our compression algorithms are likely to differ from those we
report for ephemeral SIDH.

Remark 2 (Trading speed for simplicity and space). Since the compression code
in our software library only runs on public data, and therefore need not run in
constant-time, we use a variable-time algorithm for field inversions (a variant
of the extended binary GCD algorithm [16]) that runs faster than the typical
exponentiation method (via Fermat’s little theorem). Although inversions are
used sparingly in our code and are not the bottleneck of the overall compression
runtime, we opted to add a single variable-time algorithm in this case. How-
ever, during the design of our software library, we made several decisions in the
name of simplicity that inevitably hampered the performance of the compression
algorithms.

One such performance sacrifice is made during the computation of the tor-
sion basis points in Sect. 3, where tests of quadratic and cubic residuosity are
performed using field exponentiations. Here we could use significantly faster,
but more complicated algorithms that take advantage of the classic quadratic
and cubic reciprocity identities. Such algorithms require intermediate reductions
modulo many variable integers, and a reasonably optimized generic reduction
routine would increase the code complexity significantly. These tests are also used
sparingly and are not the bottleneck of public-key compression, and in this case,
we deemed the benefits of optimizing them to be outweighed by their complex-
ity. A second and perhaps the most significant performance sacrifice made in our
software is during the Pohlig-Hellman computations, where our windowed ver-
sion of the algorithm currently fixes small window sizes in the name of choosing
moderate space requirements. If larger storage is permitted, then Sutherland’s
analysis of an optimized version of the Pohlig-Hellman algorithm [32] shows that
this phase could be sped up significantly (see Sect. 5). But again, the motivation
to push the limits of the Pohlig-Hellman phase is stunted by the prior (pair-
ing computation) phase being the bottleneck of the overall compression routine.
Finally, we note that the probabilistic components of the torsion basis generation
phase (see Sect. 3) lend themselves to an amended definition of the compressed
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public keys, where the compressor can send a few extra bits or bytes in their
public key to make for a faster and deterministic decompression. For simplicity
(and again due to this phase not being the bottleneck of compression), we leave
this more complicated adaptation to future consideration.

2 Preliminaries

Here we restrict only to the background that is necessary to understand this
paper, i.e., only what is needed to define SIDH public keys. We refer to the
extended paper by De Feo, Jao and Plût [8] for a background on the SIDH
key exchange computations, and for the rationale behind the parameters given
below.

SIDH Public Keys. Let p = nAnB ± 1 be a large prime and E/Fp2 be a
supersingular curve of cardinality #E(Fp2) = (p∓1)2 = (nAnB)2. Let nA = �eA

A

and nB = �eB

B . Henceforth we shall assume that �A = 2 and �B = 3, which
is the well-justified choice made in all known implementations to date [1,7,8];
however, unless specified otherwise, we note that the optimizations in this paper
will readily apply to other reasonable choices of �A and �B . When the discussion
is identical irrespective of �A or �B , we will often just use �; similarly, we will
often just use n when the discussion applies to both nA and nB . In general,
E/Fp2 is specified using the short Weierstrass model E/Fp2 : y2 = x3 + ax + b,
so is defined by the two Fp2 elements a and b.

During one round of SIDH key exchange, Alice computes her public key as
the image EA of her secret degree-nA isogeny φA on a fixed public curve E0,
for example E0/Fp2 : y2 = x3 + x, along with the images of φA on the two
public points PB and QB of order nB , i.e., the points φA(PB) and φA(QB). Bob
performs the analogous computation applying his secret degree-nB isogeny φB

to E0 to produce the image curve EB and to produce the images of the public
points PA and QA, both of order nA. In both cases, the public keys are of the
form PK = (E,P,Q), where E/Fp2 is a supersingular elliptic curve transmitted
as two Fp2 elements, and P and Q are points on E that are each transmitted
as one Fp2 element corresponding to the x-coordinate, along with a single bit
that specifies the choice of the corresponding y-coordinate. Subsequently, typical
SIDH public keys are specified by 4 Fp2 elements (and two sign bits), and are
therefore around 8 log p bits in length.

General SIDH Compression. We now recall the main ideas behind the SIDH
public key compression recently presented by Azarderakhsh, Jao, Kalach, Koziel
and Leonardi [2]. Their first idea involves transmitting the j-invariant j(E) ∈ Fp2

of E, rather than the two curve coefficients, and recomputing a and b from j(E)
on the other side. However, since �A = 2 and therefore 4 | #E, all curves in the
isogeny class can also be written in Montgomery form as E/Fp2 : By2 = x3 +
Ax2+x; moreover, since j(E) is independent of B, the implementation described
in [7] performs all computations and transmissions ignoring the Montgomery B
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coefficient. Although the Weierstrass curve compression in [2] applies in general,
the presence of �A = 2 in our case allows for the much simpler method of curve
compression that simply transmits the coefficient A ∈ Fp2 of E in Montgomery
form.

The second idea from [2], which is the main focus of this paper, is to trans-
mit each of the two points P,Q ∈ E(Fp2)[n] as their two-dimensional scalar
decomposition with respect to a fixed basis {R1, R2} of E(Fp2)[n]. Both of these
decompositions are in Z2

n, requiring 2 log n bits each. But n ≈ √
p (see [8]), so

2 log n ≈ log p is around half the size of the 2 log p bits needed to transmit a
coordinate in Fp2 . Of course, the curve in each public key is different, so there
is no public basis that can be fixed once-and-for-all, and moreover, to transmit
such a basis is as expensive as transmitting the points P and Q in the first place.
The whole idea therefore firstly relies on Alice and Bob being able to, on input
of a given curve E, arrive at the same basis {R1, R2} for E(Fp2)[n]. In [2] it
is proposed to try successive points that result from the use of a deterministic
pseudo-random number generator, checking the order of the points each time
until two points of exact order n are found. In Sect. 3 we present alternative
algorithms that deterministically compute a basis much more efficiently.

Assuming that Alice or Bob have computed the basis {R1, R2} for E(Fp2)[n],
the idea is to now write P = [αP ]R1 + [βP ]R2 and Q = [αQ]R1 + [βQ]R2,
and to solve these equations for (αP , βP , αQ, βQ) ∈ Z4

n. To compute αP and
βP , Azarderakhsh et al. [2] propose first using the Weil pairing e : E(Fp2)[n] ×
E(Fp2)[n] → μn to set up the two discrete logarithm instances that arise from the
three pairings e0 = e(R1, R2), e(R1, P ) = eβP

0 , and e(R2, Q) = e−αP
0 ; computing

αQ and βQ then requires two additional pairings, since e0 can be reused. In Sect. 4
we exploit the fact that these five Weil pairings can be replaced by the much
more efficient Tate pairing, and we give an optimized algorithm that computes
them all simultaneously.

To finalize compression, it remains to use the Pohlig-Hellman algorithm [23]
to solve the four DLP instances in μn. In Sect. 5 we present an efficient version
of the Pohlig-Hellman algorithm that exploits windowing methods to solve the
discrete logarithm instances with lower complexity than the original algorithm.
In Sect. 6 we show that one of the four scalars in Zn need not be transmitted,
since it is always possible to normalize the tuple (αP , βP , αQ, βQ) by dividing
three of the elements by a determinstically chosen invertible one. The public key
is then transmitted as 3 scalars in Zn and the curve coefficient A ∈ Fp2 .

SIDH Decompression. The first task of the recipient of a compressed pub-
lic key is to compute the basis {R1, R2} in the same way as was done during
compression. Once the recipient has computed the basis {R1, R2}, two double-
scalar multiplications can be used to recover P and Q. In Sect. 6.2, we show that
these double-scalar multiplications can be ommitted by absorbing these scalars
into the secret SIDH scalars used for shared secret computations. This further
enhances the decompression phase.
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Concrete Parameters. As mentioned above, we illustrate our techniques by
basing our compression software on the SIDH library recently presented in [7].
This library was built using a specific supersingular isogeny class defined by
p = nAnB − 1, with nA = �eA

A = 2372 and nB = �eB

B = 3239, chosen such that all
curves in this isogeny class have order (nAnB)2. In what follows we will assume
that our parameters correspond to this curve, but reiterate that these techniques
will be equally as applicable for any supersingular isogeny class with �A = 2 and
�B = 3.

3 Constructing Torsion Bases

For a given A ∈ Fp2 corresponding to a supersingular curve E/Fp2 : y2 = x3 +
Ax2 + x with #E(Fp2) = (nAnB)2, the goal of this section is to produce a
basis for E(Fp2)[n] (with n ∈ {nA, nB}) as efficiently as possible. This amounts
to computing two order n points R1 and R2 whose Weil pairing en(R1, R2) has
exact order n. Checking the order of the Weil pairing either comes for free during
subsequent computations, or requires the amendments discussed in Remark 3
at the end of this section. Thus, for now our goal is simplified to efficiently
computing points of order n ∈ {nA, nB} in E(Fp2).

Let {n, n′} = {nA, nB}, write n = �e and n′ = �′e′
, and let O be the identity

in E(Fp2). The typical process of computing a point of exact order n is to start
by computing R ∈ E(Fp2) and multiplying by the cofactor n′ to compute the
candidate output R̃ = [n′]R. Note that the order of R̃ divides n, but might not
be n. Thus, we multiply R̃ by �e−1, and if [�e−1]R̃ 	= O, we output R̃, otherwise
we must pick a new R and restart.

In this section we use explicit results arising from 2- and 3-descent to show
that the cofactor multiplications by n′ and by �e−1 can be ommitted by making
use of elementary functions involving points of order 2 and 3 to check whether
points are (respectively) in E \ [2]E or E \ [3]E. In both cases this guarantees
that the subsequent multiplication by n′ produces a point of exact order n,
avoiding the need to perform full cofactor multiplications to check order prior
to the pairing computation, and avoiding the need to restart the process if the
full cofactor multiplication process above fails to output a point of the correct
order (which happens regularly in practice). This yields much faster algorithms
for basis generation than those that are used in [2].

We discuss the 2e-torsion basis generation in Sect. 3.2 and the 3e-torsion
basis generation in Sect. 3.3. We start in Sect. 3.1 by describing some arithmetic
ingredients.

3.1 Square Roots, Cube Roots, and Elligator 2

In this section we briefly describe the computation of square roots and that
of testing cubic residuosity in Fp2 , as well as our tailoring of the Elligator 2
method [5] for efficiently producing points in E(Fp2).
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Computing Square Roots and Checking Cubic Residuosity in Fp2 .
Square roots in Fp2 are most efficiently computed via two square roots in the
base field Fp. Since p ≡ 3 mod 4, write Fp2 = Fp(i) with i2+1 = 0. Following [27,
Sect. 3.3], we use the simple identity

√
a + b · i = ± (α + β · i) , (1)

where α =
√

(a ± √
a2 + b2)/2 and β = b/(2α); here a, b, α, β ∈ Fp. Both of

(a +
√

a2 + b2)/2 and (a − √
a2 + b2)/2 will not necessarily be square, so we

make the correct choice by assuming that z = (a +
√

a2 + b2)/2 is square and
setting α = z(p+1)/4; if α2 = z, we output a square root as ±(α + βi), otherwise
we can output a square root as ±(β − αi).

In Sect. 3.3 we will need to efficiently test whether elements v ∈ Fp2 are cubic
residues or not. This amounts to checking whether v(p2−1)/3 = 1 or not, which we
do by first computing v′ = vp−1 = vp/v via one application of Frobenius (i.e., Fp2

conjugation) and one Fp2 inversion. We then compute v′(p+1)/3 as a sequence of
eA = 372 repeated squarings followed by eB −1 = 238 repeated cubings. Both of
these squaring and cubing operations are in the order p+1 cyclotomic subgroup
of F∗

p2 , so can take advantage of the fast operations described in Sect. 5.1.

Elligator 2. The näıve approach to obtaining points in E(Fp2) is to sequen-
tially test candidate x-coordinates in Fp2 until f(x) = x3 + Ax2 + x is square.
Each of these tests requires at least one exponentiation in Fp, and a further
one (to obtain the corresponding y) if f(x) is a square. The Elligator 2 con-
struction deterministically produces points in E(Fp2) using essentially the same
operations, so given that the näıve method can fail (and waste exponentiations),
Elligator 2 performs significantly faster on average.

The idea behind Elligator 2 is to let u be any non-square in Fp2 , and for any
r ∈ Fp2 , write

v = − A

1 + ur2
and v′ =

A

1 + ur2
− A. (2)

Then either v is an x-coordinate of a point in E(Fp2), or else v′ is [5]; this is
because f(v) and f(v′) differ by the non-square factor ur2.

In our implementation we fix u = i+4 as a system parameter and precompute
a public table consisting of the values −1/(1 + ur2) ∈ Fp2 where r2 ranges from
1 to 10. This table is fixed once-and-for-all and can be used (by any party) to
efficiently generate torsion bases as A varies over the isogeny class. Note that
the size of the table here is overkill, we very rarely need to use more than 3 or
4 table values to produce basis points of the correct exact order.

The key to optimizing the Elligator 2 construction (see [5, Sect. 5.5]) is to
be able to efficiently modify the square root computation in the case that f(v)
is non-square, to produce

√
f(v′). This update is less obvious for our field than

in the case of prime fields, but nevertheless achieves the same result. Referring
back to (1), we note that whether or not a+ b · i is a square in Fp2 is determined
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solely by whether or not a2 + b2 is a square in Fp [27, Sect. 3.3]. Thus, if this
check deems that a + bi is non-square, we multiply it by ur2 = (i + 4)r2 to yield
a square, and this is equivalent to updating (a, b) = (r(4a − b), r(a + 4b)), which
is trivial in the implementation.

3.2 Generating a Torsion Basis for E(Fp2)[2eA ]

The above discussion showed how to efficiently generate candidate points R in
E(Fp2). In this subsection we show how to efficiently check that R is in E \ [2]E,
which guarantees that [3eB ]R is a point of exact order 2eA , and can subsequently
be used as a basis element.

Since the supersingular curves E/Fp2 : y2 = x(x2 + Ax + 1) in our isogeny
class have a full rational 2-torsion, we can always write them as E/Fp2 : y2 =
x(x − γ)(x − δ). A classic result (cf. [14, Chap. 1 (Sect. 4), Theorem 4.1]) says
that, in our case, any point R = (xR, yR) in E(Fp2) is in [2]E(Fp2), i.e., is the
result of doubling another point, if and only if xR, xR − γ and xR − δ are all
squares in Fp2 . This means that we do not need to find the roots δ and γ of
x2 + Ax + 1 to test for squareness, since we want the xR such that at least
one of xR, xR − γ and xR − δ are a non-square. We found it most efficient to
simply ignore the latter two terms and reject any xR that is square, since the
first non-square xR we find corresponds to a point R such that [3eB ]R has exact
order 2eA , and further testing square values of xR is both expensive and often
results in the rejection of R anyway.

In light of the above, we note that for the 2-torsion basis generation, the
Elligator approach is not as useful as it is in the next subsection. The reason
here is that we want to only try points with a non-square x-coordinate, and
there is no exploitable relationship between the squareness of v and v′ in (2)
(such a relation only exists between f(v) and f(v′)). Thus, the best approach
here is to simply proceed by trying candidate v’s as consecutive elements of a list
L = [u, 2u, 3u, . . . ] of non-squares in Fp2 until (v3+Av2+v) is square; recall from
above that this check is performed efficiently using one exponentiation in Fp.

To summarize the computation of a basis {R1, R2} for E(Fp2)[2eA ], we com-
pute R1 by letting v be the first element in L where (v3 +Av2 +v) is square. We
do not compute the square root of (v3 + Av2 + v), but rather use eB repeated
x-only tripling operations starting from v to compute xR1 . We then compute yR1

as the square root of x3
R1

+ Ax2
R1

+ xR1 . Note that either choice of square root
is fine, so long as Alice and Bob take the same one. The point R2 is found iden-
tically, i.e., using the second element in L that corresponds to an x-coordinate
of a point on E(Fp2), followed by eB x-only tripling operations to arrive at xR2 ,
and the square root computation to recover yR2 . Note that the points R1 and R2

need not be normalized before their input into the pairing computation; as we
will see in Sect. 4, the doubling-only and tripling-only pairings do not ever per-
form additions with the original input points, so the input points are essentially
forgotten after the first iteration.
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3.3 Generating a Torsion Basis for E(Fp2)[3eB ]

The theorem used in the previous subsection was a special case of more general
theory that characterizes the action of multiplication-by-m on E. We refer to
Silverman’s chapter [29, Chap. X] and to [26] for the deeper discussion in the
general case, but in this work we make use of the explicit results derived in the
case of m = 3 by Schaefer and Stoll [26], stating only what is needed for our
purposes.

Let P3 = (xP3 , yP3) be any point of order 3 in E(Fp2) (recall that the entire
3-torsion is rational here), and let gP3(x, y) = y − (λx + μ) be the usual tangent
function to E at P3. For any other point R ∈ E(Fp2), the result we use from [26]
states that R ∈ [3]E if and only if gP3(R) is in (Fp2)3 (i.e., is a cube) for all of
the 3-torsion points2 P3.

Again, since we do not want points in [3]E, but rather points in E \ [3]E, we
do not need to test that R gives a cube for all of the gP3(R), we simply want to
compute an R where any one of the gP3(R) is not a cube. In this case the test
involves both coordinates of R, so we make use of Elligator 2 as it is described
in Sect. 3.1 to produce candidate points R ∈ E(Fp2).

Unlike the previous case, where the 2-torsion point (0, 0) is common to all
curves in the isogeny class, in this case it is computing a 3-torsion point P3 that
is the most difficult computation. We attempted to derive an efficient algorithm
that finds xP3 as any root of the (quartic) 3-division polynomial Φ3(A, x), but
this solution involved several exponentiations in both Fp2 and Fp, and was also
hampered by the lack of an efficient enough analogue of (1) in the case of cube
roots3. We found that a much faster solution was to compute the initial 3-torsion
point via an x-only cofactor multiplication: we use the first step of Elligator 2 to
produce an x-coordinate xR, compute xR̃ = x[2eA ]R via eA repeated doublings,
and then apply k repeated triplings until the result of a tripling is (X : Z) ∈ P1

with Z = 0, which corresponds to the point O, at which point we can set out
xP3 , the x-coordinate of a 3-torsion point P3, as the last input to the tripling
function. Moreover, if the number of triplings required to produce Z = 0 was
k = eB , then it must be that R̃ is a point of exact order 3eB . If this is the case,
we can use a square root to recover yR̃ from xR̃, and we already have one of our
two basis points.

At this stage we either need to find one more point of order 3eB , or two. In
either case we use the full Elligator routine to obtain candidate points R exactly
as described in Sect. 3.1, use our point P3 (together with our efficient test of
cubic residuosity above) to test whether gP3(R) = yR − (λxR +μ) is a cube, and
if it is not, we output ±[2eA ]R as a basis point; this is computed via a sequence
of x-only doublings and one square root to recover y[2eA ]R at the end. On the
other hand, if gP3(R) is a cube, then R ∈ [3]E, so we discard it and proceed to
generate the next R via the tailored version of Elligator 2 above.
2 The astute reader can return to Sect. 3.2 and see that this is indeed a natural ana-

logue of [14, Chap. 1 (Sect. 4), Theorem 4.1].
3 A common subroutine when finding roots of quartics involve solving the so-called
depressed cubic.
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We highlight the significant speed advantage that is obtained by the use of
the result of Schaefer and Stoll [26]. Testing that points are in E\[3]E by cofactor
multiplication requires eA point doubling operations and eB point tripling oper-
ations, while the same test using the explicit results from 3-descent require one
field exponentiation that tests cubic residuosity. Moreover, this exponentiation
only involves almost-for-free Frobenius operations and fast cyclotomic squaring
and cubing operations (again, see Sect. 5.1).

Remark 3 (Checking the order of the Weil pairing). As mentioned at the begin-
ning of this section, until now we have simplified the discussion to focus on
generating two points R1 and R2 of exact order n. However, this does not mean
that {R1, R2} is a basis for E(Fp2)[n]; this is the case if and only if the Weil
pairing en(R1, R2) has full order n. Although the Weil pairing will have order n
with high probability for random R1 and R2, the probability is not so high that
we do not encounter it in practice. Thus, baked into our software is a check that
this is indeed the case, and if not, an appropriate backtracking mechanism that
generates a new R2. We note that, following [7, Sect. 9] and [11, Sect. 2.5], check-
ing whether or not the Weil pairing en(R1, R2) has full order is much easier than
computing it, and can be done by comparing the values [n/�]R1 and [n/�]R2.

4 The Tate Pairing Computation

Given the basis points R1 and R2 resulting from the previous section, and the
two points P and Q in the (otherwise uncompressed) public key, we now have
four points of exact order n. As outlined in Sect. 2, the next step is to compute
the following five pairings to transfer the discrete logarithms to the multiplicative
group μn ⊂ F∗

p2 :

e0 := e(R1, R2) = fn,R1(R2)(p
2−1)/n

e1 := e(R1, P ) = fn,R1(P )(p
2−1)/n

e2 := e(R1, Q) = fn,R1(Q)(p
2−1)/n

e3 := e(R2, P ) = fn,R2(P )(p
2−1)/n

e4 := e(R2, Q) = fn,R2(Q)(p
2−1)/n.

As promised in Sect. 1, the above pairings are already defined by the order
n reduced Tate pairing e : E(Fp2)[n] × E(Fp2)/nE(Fp2) �→ μn, rather than the
Weil pairing that was used in [2]. The rationale behind this choice is clear: the
lack of special (subfield) groups inside the n-torsion means that many of the
tricks used in the pairing literature cannot be exploited in the traditional sense.
For example, there does not seem to be a straight-forward way to shorten the
Miller loop by using efficiently computable maps arising from Frobenius (see,
e.g., [3,12,13]), our denominators lie in Fp2 so cannot be eliminated [4], and,
while distortion maps exist on all supersingular curves [33], finding efficiently
computable and therefore useful maps seems hard for random curves in the
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isogeny class. The upshot is that the Miller loop is far more expensive than the
final exponentiation in our case, and organizing the Tate pairings in the above
manner allows us to get away with the computation of only two Miller functions,
rather than the four that were needed in the case of the Weil pairing [2].

In the case of ordinary pairings over curves with a larger embedding degree4,
the elliptic curve operations during the Miller loop take place in a much smaller
field than the extension field; in the Tate pairing the point operations take place
in the base field, while in the loop-shortened ate pairing [13] (and its variants)
they take place in a small-degree subfield. Thus, in those cases the elliptic curve
arithmetic has only a minor influence on the overall runtime of the pairing.

In our scenario, however, we are stuck with elliptic curve points that have
both coordinates in the full extension field. This means that the Miller line
function computations are the bottleneck of the pairing computations (and, as
it turns out, this is the main bottleneck of the whole compression routine). The
main point of this section is to present optimized explicit formulas in this case;
this is done in Sect. 4.1. In Sect. 4.2 we discuss how to compute the five pairings
in parallel and detail how to compute the final exponentiations efficiently.

4.1 Optimized Miller Functions

We now present explicit formulas for the point operations and line computa-
tions in Miller’s algorithm [20]. In the case of the order-2eA Tate pairings inside
E(Fp2)[2eA ], we only need the doubling-and-line computations, since no addi-
tions are needed. In the case of the order-3eB Tate pairings inside E(Fp2)[3eB ],
we investigated two options: the first option computes the pairing in the usual
“double-and-add” fashion, reusing the doubling-and-line formulas with addition-
and-line formulas, while the second uses a simple sequence of eB tripling-and-
parabola operations. The latter option proved to offer much better performance
and is arguably more simple than the double-and-add approach5.

We tried several coordinate systems in order to lower the overall number
of field operations in both pairings, and after a close inspection of the explicit
formulas in both the doubling-and-line and tripling-and-parabola operations, we
opted to use the coordinate tuple (X2 : XZ : Z2 : Y Z) to represent intermediate
projective points P = (X : Y : Z) ∈ P2 in E(Fp2). Note that all points in our
routines for which we use this representation satisfy XY Z 	= 0, as their orders
are strictly larger than 2. This ensures that the formulas presented below do not
contain exceptional cases6.

4 This has long been the preferred choice of curve in the pairing-based cryptography
literature.

5 An earlier version of this article claimed that the performance was favourable in
the former case, but further optimization in the tripling-and-parabola scenario since
proved this option to be significantly faster.

6 The input into the final iteration in the doubling-only pairing is a point of order 2,
but (as is well-known in the pairing literature) this last iterate is handled differently
than all of the prior ones.
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Doubling-and-Line Operations. The doubling step in Miller’s algorithm
takes as input the tuple (U1, U2, U3, U4) = (X2,XZ,Z2, Y Z) correspond-
ing to the point P = (X : Y : Z) ∈ P2 in E(Fp2), and outputs the tuple
(V1, V2, V3, V4) = (X2

2 : X2Z2 : Z2
2 : Y2Z2) corresponding to the point [2]P =

(X2 : Y2 : Z2) ∈ P2, as well as the 5 coefficients in the Miller line function
l/v = (lx ·x+ ly ·y+ l0)/(vxx+v0) with divisor 2(P )−([2]P )−(O) in Fq[x, y](E).
The explicit formulas are given as:

lx = 4U3
4 + 2U2U4(U1 − U3),

ly = 4U2U
2
4 ,

l0 = 2U1U4(U1 − U3),

vx = 4U2U
2
4 ,

v0 = U2(U1 − U3)2,

together with

V1 = (U1 − U3)4,

V2 = 4U2
4 (U1 − U3)2,

V3 = 16U4
4 ,

V4 = 2U4(U1 − U3)((U1 − U3)2 + 2U2(4U2 + A(U1 + U3))).

The above point doubling-and-line function computation can be computed in
9M+5S+7a+1s. The subsequent evaluation of the line function at the second
argument of a pairing, the squaring that follows, and the absorption of the
squared line function into the running paired value costs 5M + 2S + 1a + 2s.

Tripling-and-Parabola Operations. The tripling-and-parabola operation
has as input the tuple (U1, U2, U3, U4) = (X2,XZ,Z2, Y Z) corresponding to the
point P = (X : Y : Z) ∈ P2 in E(Fp2), and outputs the tuple (V1, V2, V3, V4) =
(X2

3 : X3Z3 : Z2
3 : Y3Z3) corresponding to the point [3]P = (X3 : Y3 : Z3) ∈ P2,

as well as the 6 coefficients in the Miller parabola function l/v = (ly · y + lx,2 ·
x2 + lx,1x+ lx,0)/(vxx+v0) with divisor 3(P )− ([3]P )−2(O) in Fq[x, y](E). The
explicit formulas are given as:

ly = 8U3
4 ,

lx,2 = U3(3U2
1 + 4U1AU2 + 6U1U3 − U2

3 ),

lx,1 = 2U2(3U2
1 + 2U1U3 + 3U2

3 + 6U1AU2 + 4A2U2
2 + 6AU2U3),

lx,0 = U1(−U2
1 + 6U1U3 + 3U2

3 + 4AU2U3),

vx = 8U3U
3
4 (3U2

1 + 4U1AU2 + 6U1U3 − U2
3 )4,

v0 = −8U2U
3
4 (3U2

1 + 4U1AU2+6U1U3 − U2
3 )2(U2

1 − 6U1U3 − 3U2
3 − 4AU2U3)2,
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together with

V1 = 8U3
4U1(−U2

1 + 6U1U3 + 3U2
3 + 4AU2U3)4,

V2 = 8U2U
3
4 (3U2

1 + 4U1AU2 + 6U1U3 − U2
3 )2(U2

1 − 6U1U3 − 3U2
3 − 4AU2U3)2,

V3 = 8U3U
3
4 (3U2

1 + 4U1AU2 + 6U1U3 − U2
3 )4,

V4 = −8U3(3U2
1 + 4U1AU2 + 6U1U3 − U2

3 )U1(−U2
1 + 6U1U3 + 3U2

3 + 4AU2U3)

· (
16U1U3A

2U2
2 + 28U2

1AU2U3 + 28U1U
2
3AU2 + 4U3

3AU2 + 4U3
1AU2

+ 6U2
1U2

3 + 28U3
1U3 + U4

3 + 28U1U
3
3 + U4

1

)
(U3 + U1 + AU2)2.

The above point tripling-and-parabola function computation can be computed
in 19M + 6S + 15a + 6s. The subsequent evaluation of the line function at the
second argument of a pairing, the cubing that follows, and the absorption of the
cubed line function into the running paired value costs 10M + 2S + 4a.

Remark 4 (No irrelevant factors). It is common in the pairing literature to abuse
notation and define the order-n Tate pairing as en(P,Q) = fP (Q)(p

k−1)/n, where
k is the embedding degree (in our case k = 2), and fP has divisor (fP ) =
n(P ) − n(O) in Fpk [x, y](E). This is due to an early result of Barreto, Kim,
Lynn and Scott [4, Theorem 1], who showed that the actual definition of the
Tate pairing, i.e., en(P,Q) = fP (DQ)(p

k−1)/n where DQ is a divisor equivalent
to (Q)−(O), could be relaxed in practical cases of interest by replacing the divisor
DQ with the point Q. This is due to the fact that the evaluation of fP at O in
such scenarios typically lies in a proper subfield of F∗

pk , so becomes an irrelevant
factor under the exponentiation to the power of (pk −1)/n. In our case, however,
this is generally not the case because the coefficients in our Miller functions lie
in the full extension field F∗

p2 . Subsequently, our derivation of explicit formulas
replaces Q with the divisor DQ = (Q) − (O), and if the evaluation of the Miller
functions at O is ill-defined, we instead evaluate them at the divisor (Q+T )−(T )
that is linearly equivalent to DQ, where we fixed T = (0, 0) as the (universal)
point of order 2. If Q = (xQ, yQ), then Q + T = (1/xQ,−yQ/x2

Q), so evaluating
the Miller functions at the translated point amounts to a permutation of the
coefficients, and evaluating the Miller functions at T = (0, 0) simply leaves a
quotient of the constant terms. These modifications are already reflected in the
operation counts quoted above.

Remark 5. In the same vein as Remark 2, there is another possible speed
improvement within the pairing computation that is not currently exploited in
our library. Recall that during the generation of the torsion bases described in
Sect. 3, the candidate basis point R is multiplied by the cofactor n ∈ {nA, nB}
to check whether it has the correct (full) order, and if so, R is kept and stored as
one of the two basis points. Following the idea of Scott [27, Sect. 9], the interme-
diate multiples of R (and partial information about the corresponding Miller line
functions) that are computed in this cofactor multiplication could be stored in
anticipation for the subsequent pairing computation, should R indeed be one of
the two basis points. Another alternative here would be to immediately compute
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the pairings using the first two candidate basis points and to absorb the point
order checks inside the pairing computations, but given the overhead incurred if
either or both of these order checks fails, this could end up being too wasteful
(on average).

4.2 Parallel Pairing Computation and the Final Exponentiation

In order to solve the discrete logarithms in the subgroup μn of n-th roots of
unity in F∗

p2 , we compute the five pairings e0 := e(R1, R2), e1 := e(R1, P ),
e2 := e(R1, Q), e3 := e(R2, P ), and e4 := e(R2, Q). The first argument of all
these pairings is either R1 or R2, i.e., all are of the form fn,Ri

(S)(p
2−1)/n for

i ∈ {1, 2} and S ∈ {R2, P,Q}. This means that the only Miller functions we
need are fn,R1 and fn,R2 , and we get away with computing only those two
functions for the five pairing values. The two functions are evaluated at the
points R2, P,Q during the Miller loop to obtain the desired combinations. It
therefore makes sense to accumulate all five Miller values simultaneously.

Computing the pairings simultaneously also becomes advantageous when it
is time to perform inversions. Since we cannot eliminate denominators due to
the lack of a subfield group, we employ the classic way of storing numerators and
denominators separately to delay all inversions until the very end of the Miller
loop. At this point, we have ten values (five numerators and five denominators),
all of which we invert using Montgomery’s inversion sharing trick [21] at the total
cost of one inversion and 30 Fp2 multiplications. The five inverted denominators
are then multiplied by the corresponding numerators to give the five unreduced
paired values. The reason we not only invert the denominators, but also the
numerators, is because these inverses are needed in the easy part of the final
exponentiation.

The final exponentiation is an exponentiation to the power (p2 − 1)/n =
(p − 1)p+1

n . The so-called easy part, i.e., raising to the power p − 1, is done by
one application of the Frobenius automorphism and one inversion. The Frobenius
is simply a conjugation in Fp2 , and the inversion is actually a multiplication since
we had already computed all required inverses as above. The so-called hard part
of the final exponentiation has exponent (p + 1)/n and needs to be done with
regular exponentiation techniques.

A nice advantage that makes the hard part quite a little easier is the fact
that after a field element a = a0 +a1 · i ∈ Fp2 has been raised to the power p−1,
it has order p + 1, which means it satisfies 1 = ap · a = a2

0 + a2
1. This equation

can be used to deduce more efficient squaring and cubing formulas that speed
up this final part of the pairing computation (see Sect. 5.1 for further details).

Finally, in the specific setting of SIDH, where p = nAnB − 1, we have that
(p + 1)/nA = nB and (p + 1)/nB = nA. When nA and nB are powers of 2
and 3, respectively, the hard part of the final exponentiation consists of only
squarings or only cubings, respectively. These are done with the particularly
efficient formulas described in Sect. 5.1 below.
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5 Efficient Pohlig-Hellman in µ�e

In this section, we describe how we optimize the Pohlig-Hellman [23] algorithm
to compute discrete logarithms in the context of public-key compression for
supersingular-isogeny-based cryptosystems, and we show that we are able to
improve on the quadratic complexity described in [23]. A similar result has
already been presented in the more general context of finite abelian p-groups
by Sutherland [32]. However, our software employs a different optimization of
Pohlig-Hellman, by choosing small memory consumption over a more efficient
computation, which affects parameter choices. We emphasize that there are dif-
ferent time-memory trade-offs that could be chosen, possibly speeding up the
Pohlig-Hellman computation by another factor of two (see Remark 2).

Following the previous sections, the two-dimensional discrete logarithm prob-
lems have been reduced to four discrete logarithm problems in the multiplicative
group μ�e ⊂ F∗

p2 of �e-th roots of unity, where �, e ∈ Z are positive integers and
� is a (small) prime. Before elaborating on the details of the windowed Pohlig-
Hellman algorithm, we note that the condition �e | p+1 makes various operations
in μ�e more efficient than their generic counterpart in F∗

p2 .

5.1 Arithmetic in the Cyclotomic Subgroup

Efficient arithmetic in μ�e can make use of the fact that μ�e is a subgroup of the
multiplicative group Gp+1 ⊂ F∗

p2 of order p+1. Various subgroup cryptosystems
based on the hardness of the discrete logarithm problem have been proposed
in the literature [18,30], which can be interpreted in the general framework
of torus-based cryptography [25]. The following observations for speeding up
divisions and squarings in Gp+1 have been described by Stam and Lenstra [31,
Sect. 3.23 and Lemma 3.24].

Division in µ�e . Let p ≡ 3 (mod 4) and Fp2 = Fp(i), i2 = −1. For any a =
a0 +a1 · i ∈ Gp+1, a0, a1 ∈ Fp, we have that a ·ap = ap+1 = 1, and therefore, the
inverse a−1 = ap = a0 −a1 · i. This means that inversion in μ�e can be computed
almost for free by conjugation, i.e., a single negation in Fp, and thus divisions
become as efficient as multiplications in μ�e .

Squaring in µ�e . The square of a = a0 + a1 · i can be computed as a2 =
(2a2

0 − 1) + ((a0 + a1)2 − 1) · i by essentially two base field squarings. In the case
where such squarings are faster than multiplications, this yields a speed-up over
generic squaring in Fp2 .

Cubing in µ�e . As far as we know, a cubing formula in Gp+1 has not been
considered in the literature before. We make the simple observation that a3 can
be computed as a3 = (a0 + a1 · i)3 = a0(4a2

0 − 3) + a1(4a2
0 − 1) · i, which needs

only one squaring and two multiplications in Fp, and is significantly faster than
a näıve computation via a squaring and a multiplication in μ�e .



Efficient Compression of SIDH Public Keys 697

5.2 Pohlig-Hellman

We now discuss the Pohlig-Hellman algorithm as presented in [23] for the group
μ�e . Let r, g ∈ μ�e be such that r = gα for some α ∈ Z. Given r and g, the goal
is to determine the unknown scalar α. Denote α as

α =
e−1∑
i=0

αi�
i (αi ∈ {0, . . . , � − 1}).

Now define s = g�e−1
, which is an element of order �, and let r0 = r. Finally,

define
gi = g�i (0 ≤ i ≤ e − 1)

and
ri =

ri−1

g
αi−1
i−1

(1 ≤ i ≤ e − 1).

A straightforward computation then shows that for all 0 ≤ i ≤ e − 1,

r�e−(i+1)

i = sαi . (3)

As proven in [23], this allows to inductively recover all αi, by solving the discrete
logarithms of Eq. (3) in the group 〈s〉 of order �. This can be done by precom-
puting a table containing all elements of 〈s〉. Alternatively, if � is not small
enough, one can improve the efficiency by applying the Baby-Step Giant-Step
algorithm [28], at the cost of some more precomputation. For small � the com-
putation has complexity O(e2), while precomputing and storing the gi requires
O(e) memory.

5.3 Windowed Pohlig-Hellman

The original version of the Pohlig-Hellman algorithm reduces a single discrete
logarithm in the large group μ�e to e discrete logarithms in the small group
μ�. In this section we consider an intermediate version, by reducing the discrete
logarithm in μ�e to e

w discrete logarithms in μ�w . Let r, g, α as in the previous
section, and let w ∈ Z be such that w | e. Note that it is not necessary for e
to be divisible by w. If it is not, we replace e by e − (e (mod w)), and compute
the discrete logarithm for the final e (mod w) bits at the end. However the
assumption w | e improves the readability of the arguments with little impact
on the results, so we focus on this case here. Write

α =

e
w −1∑
i=0

αi�
wi (αi ∈ {0, . . . , �w − 1}),

define s = g�e−w

, which is an element of order �w, and let r0 = r. Let

gi = g�wi

(0 ≤ i ≤ e

w
− 1)
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and
ri =

ri−1

g
αi−1
i−1

(1 ≤ i ≤ e

w
− 1). (4)

A analogous computation to the one in [23] proves that

r�e−w(i+1)

i = sαi (0 ≤ i ≤ e

w
− 1). (5)

Hence we inductively obtain αi for all 0 ≤ i ≤ e
w − 1, and thereby α. To solve

the discrete logarithm in the smaller subgroup μ�w , we consider two strategies
as follows.

Baby-Step Giant-Step in 〈s〉. As before, for small � and w we can compute
a table containing all �w elements of 〈s〉, making the discrete logarithms in (5)
trivial to solve. As explained in [28], the Baby-Step Giant-Step algorithm allows
us to make a trade-off between the size of the precomputed table and the com-
putational cost. That is, given some v ≤ w, we can compute discrete logarithms
in 〈s〉 with computational complexity O(�v) and O(�w−v) memory. Note that
the computational complexity grows exponentially with v, whereas the mem-
ory requirement grows exponentially with w − v. This means that if we want
to make w larger, we need to grow v as well, as otherwise the table-size will
increase. Therefore in order to obtain an efficient and compact algorithm, we
must seemingly limit ourselves to small w. We overcome this limitation in the
next section.

Pohlig-Hellman in 〈s〉. We observe that 〈s〉 has order �w, which is again
smooth. This allows us to solve the discrete logarithms in 〈s〉 by using the original
Pohlig-Hellman algorithm of Sect. 5.2. However, we can also choose to solve the
discrete logarithm in 〈s〉 with a second windowed Pohlig-Hellman algorithm.
Note the recursion that occurs, and we can ask what the optimal depth of this
recursion is. We further investigate this question in Sect. 5.4.

5.4 The Complexity of Nested Pohlig-Hellman

We estimate the cost of an execution of the nested Pohlig-Hellman algorithm by
looking at the cost of doing the computations in (4) and (5). Let Fn (n ≥ 0)
denote the cost of an n-times nested Pohlig-Hellman algorithm, and set F−1 = 0.
Let w0, w1, . . . , wn, wn+1 be the window sizes, and set w0 = e, wn+1 = 1 (note
that n = 0 corresponds to the original Pohlig-Hellman algorithm). Again, assume
that wn | wn−1 | · · · | w1 | e, which is merely for ease of exposition. The first
iteration has window size w1, which means that the cost of the exponentiations
in (5) is

⎛
⎝

e
w1

−1∑
i=0

w1i

⎞
⎠L =

1
2
w1

(
e

w1
− 1

)
e

w1
L =

1
2
e

(
e

w1
− 1

)
L,
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where L denotes the cost of an exponentiation by �. The exponentiations in (4)
are performed with a scalar of size log αi ≈ w1 log �, which on average costs
1
2w1 log �M + w1 log �S. On average, to do all e

w1
of them then costs

1
2
e log �M + e log �S.

We emphasize that for small wi and � this is a somewhat crude estimation,
yet it is enough to get a good feeling for how to choose our parameters (i.e.,
window sizes). We choose to ignore the divisions, since there are only a few (see
Remark 6) and, as we showed in Sect. 5.1, they can essentially be done at the
small cost of a multiplication. We also ignore the cost of the precomputation for
the g�wi

, which is small as well (see Remark 7). To complete the algorithm, we
have to finish the remaining e

w1
(n − 1)-times nested Pohlig-Hellman routines.

In other words, we have shown that

Fn ≈ 1
2
e

(
e

w1
− 1

)
L +

1
2
e log �M + e log �S +

e

w1
Fn−1.

Now, by using analogous arguments on Fn−1, and induction on n, we can show
that

Fn ≈ 1
2
e

(
e

w1
+ . . . +

wn−1

wn
+ wn − n

)
L +

n + 1
2

e log �M + (n + 1)e log �S.

(6)
To compute the optimal choice of (w1, . . . , wn), we compute the derivatives,

∂Fn

∂wi
=

1
2
e

(
1

wi+1
− wi−1

w2
i

)
L (1 ≤ i ≤ n)

and simultaneously equate them to zero to obtain the equations

wi =
√

wi−1wi+1 (1 ≤ i ≤ n).

From this we can straightforwardly compute that the optimal choice is

(w1, . . . , wn) =
(
e

n
n+1 , e

n−1
n+1 , . . . , e

2
n+1 , e

1
n+1

)
. (7)

Plugging this back into the Eq. (6), we conclude that

Fn ≈ 1
2
e (n + 1)

(
e

1
n+1 − 1

)
L +

n + 1
2

e log �M + (n + 1)e log �S.

Observe that F0 ≈ 1
2e2, agreeing with the complexity described in [23]. However,

as n grows, the complexity of the nested Pohlig-Hellman algorithm goes from
quadratic to linear in e, giving a significant improvement.
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Remark 6. We observe that for every two consecutive windows wi and wi+1, we
need less than wi

wi+1
divisions for (4). Breaking the full computation down, it is

easy to show that the total number of divisions is less than

e

w1
+

e

w1

(
w1

w2
+

w1

w2

(
· · · +

wn−2

wn−1

(
wn−1

wn
+

wn−1

wn
wn

)))
,

which can be rewritten as

e

(
1
w1

+
1
w2

+ . . . +
1

wn
+

wn

wn−1

)
.

Now we note that wi+1 | wi, while wi+1 	= wi, for all 0 ≤ i ≤ n. As wn+1 = 1, it
follows that wn+1−i ≥ 2i for all 0 ≤ i ≤ n. Therefore

e

(
1
w1

+
1
w2

+ . . . +
1

wn
+

wn

wn−1

)
≤ e

(
1
2n

+
1

2n−1
+ . . . +

1
2

+ 1
)

< 2e.

Remark 7. As every table element is of the form g�i , where i is an integer such
that 0 ≤ i ≤ e − 1, we conclude that we need at most (e − 1)L to pre-compute
all tables.

5.5 Discrete Logarithms in µ2372

For this section we fix � = 2 and e = 372. In this case L is the cost of a squaring,
i.e., L = S. To validate the approach, we present estimates for the costs of
the discrete logarithm computations in μ2372 through a Magma implementation.
In this implementation we count every multiplication, squaring and division
operation; on the other hand, some of these were ignored for the estimation of
Fn above. The results are shown in Table 1 for 0 ≤ n ≤ 4, choosing the window
sizes as computed in (7). The improved efficiency as well as the significantly
smaller table sizes are clear, and we observe that in the group μ2372 it is optimal
to choose n = 3.

Table 1. Estimations of Fn in µ2372 via a Magma implementation. Here m and s are
the cost of multiplications and squarings in Fp, while M = 3 ·m and S = 2 · s are the
cost of multiplications and squarings in Fp2 . The costs are averaged over 100 executions
of the algorithm.

# Windows Fp2 Fp Table size

n w1 w2 w3 w4 M S m s Fp2

0 – – – – 372 69 378 1 116 138 756 375

1 19 – – – 375 7 445 1 125 14 891 43

2 51 7 – – 643 4 437 1 931 8 847 25

3 84 21 5 – 716 3 826 2 150 7 652 25

4 114 35 11 3 1 065 3 917 3 197 7 835 27
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Table 2. Estimations of Fn in µ3239 via a Magma implementation. Here m and s
are the cost of multiplications and squarings in Fp, while M = 3 · m, S = 2 · s and
C = m+2 · s are the cost of multiplications, squarings and cubings in Fp2 respectively.
The costs are averaged over 100 executions of the algorithm.

# Windows Fp2 Fp Table size

n w1 w2 w3 w4 M S C m s Fp2

0 – – – – 239 78 28 680 58 077 28 837 242

1 15 – – – 349 341 3 646 8 340 4 328 35

2 39 6 – – 612 660 2 192 6 220 3 512 22

3 61 15 3 – 656 836 1 676 5 320 3 349 17

4 79 26 8 3 954 1 252 1 427 5 717 3 932 16

5.6 Discrete Logarithms in µ3239

We now fix � = 3 and e = 239 and present estimates for the costs of the discrete
logarithm computations in μ3239 . Here L is now the cost of a cubing in μ3239 .
As explained in Sect. 5.1, this is done at the cost of one multiplication and two
squarings in Fp. As shown in Table 2, the optimal case in μ3239 is also n = 3.

6 Final Compression and Decompression

In this section we explain how to further compress a public key PK from Fp2 ×Z4
n

to Fp2 × Z2 × Z3
n. Moreover, we also show how to merge the key decompression

with one of the operations of the SIDH scheme, making much of the decompres-
sion essentially free of cost. For ease of notation we follow the scheme described
in [7], but everything that follows in this section generalizes naturally to the
theory as originally described in [8].

6.1 Final Compression

Using the techniques explained in all previous sections, we can compress a triple
(EA, P,Q) ∈ F3

p2 to a tuple (A,αP , βP , αQ, βQ) ∈ Fp2 × Z4
n such that

(P,Q) = (αP R1 + βP R2, αQR1 + βQR2) ,

where {R1, R2} is a basis of EA[n]. As described in [7], the goal is to compute 〈P+
�mQ〉, for � ∈ {2, 3} and a secret key m. Again, we note that the original proposal
expects to compute 〈n1P +n2Q〉, for secret key (n1, n2), but we emphasize that
all that follows can be generalized to this case.

Now, since P is an element of order n, either αP ∈ Z∗
n or βP ∈ Z∗

n. It
immediately follows that

〈P + �mQ〉 =

{
〈α−1

P P + �mα−1
P Q〉 if αP ∈ Z∗

n

〈β−1
P P + �mβ−1

P Q〉 if βP ∈ Z∗
n

.



702 C. Costello et al.

Hence, to compute 〈P + �mQ〉, we do not necessarily have to recompute (P,Q).
Instead, we can compute(

α−1
P P, α−1

P Q
)

=
(
R1 + α−1

P βP R2, α
−1
P αQR1 + α−1

P βQR2

)
or (

β−1
P P, β−1

P Q
)

=
(
β−1

P αP R1 + R2, β
−1
P αQR1 + β−1

P βQR2

)
.

Note that in both cases we have normalized one of the scalars. We conclude that
we can compress the public key to PK ∈ Fp2 × Z2 × Z3

n, where

PK =

{(
A, 0, α−1

P βP , α−1
P αQ, α−1

P βQ

)
if αP ∈ Z∗

n(
A, 1, β−1

P αP , β−1
P αQ, β−1

P βQ

)
if βP ∈ Z∗

n

.

6.2 Decompression

Let
(
A, b, α̃P , α̃Q, β̃Q

)
∈ Fp2 × Z2 × Z3

n be a compressed public key. Note that,
by the construction of the compression, there exists a γ ∈ Z∗

n such that

(
γ−1P, γ−1Q

)
=

⎧⎨
⎩

(
R1 + α̃P R2, α̃QR1 + β̃QR2

)
if b = 0,(

α̃P R1 + R2, α̃QR1 + β̃QR2

)
if b = 1.

(8)

The näıve strategy, analogous to the one originally explained in [2], would
be to generate the basis {R1, R2} of EA[n], use the public key to compute(
γ−1P, γ−1Q

)
via (8), and finally compute

〈P + �mQ〉 = 〈γ−1P + �mγ−1Q〉,
where m ∈ Zn is the secret key. The cost is approximately a 1-dimensional and
a 2-dimensional scalar multiplication on EA, while the final 1-dimensional scalar
multiplication is part of the SIDH scheme.

Instead, we use (8) to observe that

〈P + �mQ〉 = 〈γ−1P + �mγ−1Q〉

=

⎧⎨
⎩

〈(1 + �mα̃Q) R1 +
(
α̃P + �mβ̃Q

)
R2〉 if b = 0,

〈(α̃P + �mα̃Q) R1 +
(
1 + �mβ̃Q

)
R2〉 if b = 1.

Thus, since 1 + �mα̃Q, 1 + �mβ̃Q ∈ Z∗
n (recall that n = �e), we conclude that

〈P + �mQ〉 =

⎧⎨
⎩

〈R1 + (1 + �mα̃Q)−1
(
α̃P + �mβ̃Q

)
R2〉 if b = 0,

〈
(
1 + �mβ̃Q

)−1

(α̃P + �mα̃Q) R1 + R2〉 if b = 1.

Decompressing in this way costs only a handful of field operations in Fp2 in addi-
tion to a 1-dimensional scalar multiplication on EA. Since the scalar multiplica-
tion is already part of the SIDH scheme, this makes the cost of decompression
essentially the cost of generating {R1, R2}. This is done exactly as explained in
Sect. 3.
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7 Implementation Details

To evaluate the performance of the new compression and decompression, we
implemented the proposed algorithms in plain C and wrapped them around
the SIDH software from [7]. This library supports a supersingular isogeny class
defined over p = 2372 · 3239 − 1, which contains curves of order (2372 · 3239)2.
These parameters target 128 bits of post-quantum security.

Table 3 summarizes the results after benchmarking the software with the
clang compiler v3.8.0 on a 3.4 GHz Intel Core i7-4770 Haswell processor running
Ubuntu 14.04 LTS with TurboBoost turned off. The details in the table include
the size of compressed and uncompressed public keys, the performance of Alice’s
and Bob’s key exchange computations using compression, the performance of
the proposed compression and decompression routines, and the total costs of
SIDH key exchange with and without the use of compression. These results are
compared with those from the prior work by Azarderakhsh et al. [2], which uses
a supersingular isogeny class defined over p = 2387 · 3242 − 1.

Table 3. Comparison of SIDH key exchange and public key compression implemen-
tations targeting the 128-bit post-quantum and 192-bit classical security level. Bench-
marks for our implementation were done on a 3.4 GHz Intel Core i7-4770 Haswell
processor running Ubuntu 14.04 LTS with TurboBoost disabled. Results for [2],
obtained on a 4.0 GHz Intel Core i7-4790K Haswell processor, were scaled from seconds
to cycles using the CPU frequency; the use of TurboBoost is not specified in [2]. The
performance results, expressed in millions of clock cycles, were rounded to the nearest
106 cycles.

Implementation This work Prior work [2]

Public key (bytes) Uncompressed 564 768

Compressed 328 (Alice) 385

330 (Bob)

Cycles (cc ×106) Alice’s keygen + shared key 80 NA

Alice’s compression 109 6,081

Alice’s decompression 42 539

Bob’s keygen + shared key 92 NA

Bob’s compression 112 7,747

Bob’s decompression 34 493

Total (no compression) 192 535

Total (compression) 469 15,395

As can be seen in Table 3, the new algorithms for compression and decom-
pression are significantly faster than those from [2]: compression is up to 66
times faster, while decompression is up to 15 times faster. Similarly, the full key
exchange with compressed public keys can be performed about 30 times faster.
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Even though part of these speedups can indeed be attributed to the efficiency of
the original SIDH library, this only represents a very small fraction of the per-
formance difference (note that the original key exchange from the SIDH library
is only 2.8 times faster than the corresponding result from [2]).

Our experimental results show that the use of compressed public keys intro-
duces a factor-2.4 slowdown to SIDH. However, the use of compact keys (in this
case, of 330 bytes) can now be considered practical; e.g., one round of SIDH key
exchange is computed in only 150 ms on the targeted platform.

Acknowledgements. We thank Drew Sutherland for his helpful discussions concern-
ing the optimization of the Pohlig-Hellman algorithm, and the anonymous Eurocrypt
reviewers for their useful comments.
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14. Husemöller, D.: Elliptic Curves. Graduate Texts in Mathematics, vol. 111.
Springer, Heidelberg (2004)

15. Jao, D., Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071,
pp. 19–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25405-5 2

16. Kaliski Jr., B.S.: The Montgomery inverse and its applications. IEEE Trans. Com-
put. 44(8), 1064–1065 (1995)

17. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Failure
is not an option: standardization issues for post-quantum key agreement. In: Talk
at NIST Workshop on Cybersecurity in a Post-Quantum World, April 2015. http://
www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm

18. Lenstra, A.K., Verheul, E.R.: The XTR public key system. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000). doi:10.
1007/3-540-44598-6 1

19. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Cod-
ing Thv 4244, 114–116 (1978)

20. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–
261 (2004)

21. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

22. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). doi:10.1007/
978-3-319-11659-4 12

23. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24(1), 106–110
(1978)

24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp.
84–93. ACM (2005)

25. Rubin, K., Silverberg, A.: Torus-based cryptography. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 349–365. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45146-4 21

26. Schaefer, E., Stoll, M.: How to do a p-descent on an elliptic curve. Trans. Am.
Math. Soc. 356(3), 1209–1231 (2004)

27. Scott, M.: Implementing cryptographic pairings. In: Takagi, T., Okamoto, E.,
Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 177–196.
Springer, Heidelberg (2007)

28. Shanks, D.: Class number, a theory of factorization, and genera. In: Proceedings
of the Symposium in Pure Mathematics, vol. 20, pp. 415–440 (1971)

29. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-
ics, 2nd edn. Springer, Heidelberg (2009)

http://dx.doi.org/10.1007/978-3-662-53887-6_3
http://dx.doi.org/10.1007/978-3-662-53887-6_3
http://dx.doi.org/10.1007/978-3-540-85538-5_2
http://dx.doi.org/10.1007/978-3-540-85538-5_2
http://dx.doi.org/10.1007/978-3-642-25405-5_2
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://dx.doi.org/10.1007/3-540-44598-6_1
http://dx.doi.org/10.1007/3-540-44598-6_1
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-540-45146-4_21
http://dx.doi.org/10.1007/978-3-540-45146-4_21


706 C. Costello et al.

30. Smith, P., Skinner, C.: A public-key cryptosystem and a digital signature system
based on the Lucas function analogue to discrete logarithms. In: Pieprzyk, J.,
Safavi-Naini, R. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 355–364. Springer,
Heidelberg (1995). doi:10.1007/BFb0000447

31. Stam, M., Lenstra, A.K.: Efficient subgroup exponentiation in quadratic and sixth
degree extensions. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS,
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