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Abstract. Indistinguishability obfuscation (iO) has emerged as a sur-
prisingly powerful notion. Almost all known cryptographic primitives can
be constructed from general purpose iO and other minimalistic assump-
tions such as one-way functions. A major challenge in this direction of
research is to develop novel techniques for using iO since iO by itself
offers virtually no protection for secret information in the underlying
programs. When dealing with complex situations, often these techniques
have to consider an exponential number of hybrids (usually one per
input) in the security proof. This results in a sub-exponential loss in the
security reduction. Unfortunately, this scenario is becoming more and
more common and appears to be a fundamental barrier to many current
techniques.

A parallel research challenge is building obfuscation from simpler
assumptions. Unfortunately, it appears that such a construction would
likely incur an exponential loss in the security reduction. Thus, achiev-
ing any application of iO from simpler assumptions would also require a
sub-exponential loss, even if the iO-to-application security proof incurred
a polynomial loss. Functional encryption (FE) is known to be equivalent
to iO up to a sub-exponential loss in the FE-to-iO security reduction;
yet, unlike iO, FE can be achieved from simpler assumptions (namely,
specific multilinear map assumptions) with only a polynomial loss.

In the interest of basing applications on weaker assumptions, we there-
fore argue for using FE as the starting point, rather than iO, and restrict-
ing to reductions with only a polynomial loss. By significantly expanding
on ideas developed by Garg, Pandey, and Srinivasan (CRYPTO 2016),
we achieve the following early results in this line of study:

– We construct universal samplers based only on polynomially-secure
public-key FE . As an application of this result, we construct a
non-interactive multiparty key exchange (NIKE) protocol for an
unbounded number of users without a trusted setup. Prior to this
work, such constructions were only known from indistinguishability
obfuscation.
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– We also construct trapdoor one-way permutations (OWP) based on
polynomially-secure public-key FE . This improves upon the recent
result of Bitansky, Paneth, and Wichs (TCC 2016) which requires
iO of sub-exponential strength. We proceed in two steps, first giving
a construction requiring iO of polynomial strength, and then special-
izing the FE-to-iO conversion to our specific application.

Many of the techniques that have been developed for using iO, including
many of those based on the “punctured programming” approach, become
inapplicable when we insist on polynomial reductions to FE . As such,
our results above require many new ideas that will likely be useful for
future works on basing security on FE .

1 Introduction

Indistinguishability obfuscation (iO) [5,16] has emerged as a powerful cryp-
tographic primitive in the past few years. It has proven sufficient to con-
struct a plethora of cryptographic primitives, many of them for the first
time,[4,8,10,12,30]. Recently, iO also proved instrumental in proving the hard-
ness of complexity class PPAD [7].

A major challenge in this direction of research stems from the fact that iO
by itself is “too weak” to work with. The standard security of iO may not even
hide any secrets present in the underlying programs. Therefore, the crucial part
of most iO-based constructions lies in developing novel techniques for using iO
to obfuscate “programs with secrets”.

Despite its enormous power, we only know of a limited set of techniques for
working with iO. In complex situations, these techniques often run into what
we call the sub-exponential barrier. More specifically, the security proof of many
iO-based constructions end up considering an exponential number of hybrid
experiments in order to make just one change in the underlying obfuscation.
The goal is usually to eliminate all “troublesome” inputs, one at a time, that
may be affected by the change. There are often exponentially many such inputs,
resulting in a sub-exponential loss in the security reduction.

To make matters worse, a sub-exponential loss seems inherent to achiev-
ing iO from “simple” assumptions, such as those based on multilinear maps1.
Indeed, all known security proofs for iO relative to “simple” assumptions2 iterate
over all (exponentially-many) inputs anyway, and there are reasons to believe
that this loss may be necessary [18]3. Indeed, any reduction from iO to a sim-
ple assumption would need to work for equivalent programs, but should fail for
inequivalent programs (since inequivalent programs can be distinguished). Thus,

1 Here, we do not define “simple”. However, one can consider various notions of “sim-
plicity” or “niceness” for assumptions, such as falsifiable assumptions [28] or com-
plexity assumptions [22].

2 Here, we exclude über assumptions such as semantically secure graded encodings [29],
which encompass exponentially many distinct complexity assumptions.

3 We stress that this argument has not yet been formalized.
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such a reduction would seemingly need to decide if two programs compute equiv-
alent functions; assuming P �= NP, this in general cannot be done in polynomial
time. This exponential loss would then carry over to any application of iO, even
if the iO-to-application security reduction only incurred a polynomial loss. On
the other hand, this exponential loss does not seem inherent to the vast major-
ity of iO applications. This leaves us in an undesirable situation where the only
way we know to instantiate an application from “simple” assumptions requires
sub-exponential hardness assumptions, even though sub-exponential hardness is
not inherent to the application.

One application for which an exponential loss does not appear inherent is
Functional encryption (FE), and indeed starting from the work of Garg et
al. [17], it has been shown in [26,27] how to build FE from progressively sim-
pler assumptions on multilinear maps with only a polynomial loss. Therefore, to
bypass the difficulties above, we ask the following:

Can applications of iO be based instead on
FE with a polynomial security reduction?

There are two results that give us hope in this endeavor. First, it is known
that FE is actually equivalent to iO, except that the FE-to-iOreduction [3,9]
incurs an exponential loss. This hints at the possibility that, perhaps, specializing
the FE-to-iO-to-application reduction to particular applications can aleviate the
need for sub-exponential hardness.

Second and very recently, Garg et al. [19] took upon the issue of sub-
exponential loss in iO-based constructions in the context of PPAD hardness.
They developed techniques to eliminate the sub-exponential loss in the work of
Bitansky et al. [7] and reduced the hardness of PPAD to the hardness of standard,
polynomially-secure iO (and injective one-way functions). More importantly for
us, they also presented a new reduction which bases the hardness of PPAD on
standard polynomially-secure functional encryption, thus giving essentially the
first non-trivial instance of using FE to build applications with only a polynomial
loss.

This Work. Our goal is to develop techniques to break the sub-exponential
barrier in cryptographic constructions based on iOand FE . Towards this goal,
we build upon and significantly extend the techniques in [19]. Our techniques
are applicable, roughly, to any iO setting where the computation is changed on
just a polynomial number of points; on all other points, the exact same circuit
is used to compute the outputs. Notice that for such settings there exists an
efficient procedure for checking functional equivalence. This enables us to argue
indistinguishability based only on polynomial hardness assumptions. As it turns
out, for many applications of iO, the hybrid arguments involve circuits with
the above specified structure. In this work, we focus on two such applications:
trapdoor permutations and universal samplers.

We start with the construction of trapdoor permutations of Bitanksy et al.
[8] based on sub-exponentially secure iO. We improve their work by constructing
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trapdoor permutations based only on polynomially-secure iO (and one-way per-
mutations). We further extend our results and obtain a construction based on
standard, polynomial hard, functional encryption (instead of iO). Together with
the result of [17,26,27], this gives us trapdoor permutations based on simple
polynomial-hard assumptions on multilinear maps.

We then consider universal samplers, a notion put forward by Hofheinz et al.
[23]. It allows for a single trusted setup which can be used to sample common
parameters for any protocol. Hofheinz et al. construct universal samplers from
iO. They also show how to use them to construct multi-party non-interactive
key-exchange (NIKE) and broadcast encryption.

We consider the task of constructing universal samplers from the weaker
notion of only polynomially-secure functional encryption. As noted earlier, we
cannot use the generic reduction of [3,9] between FE and iO since it incurs
sub-exponential loss. Intuitively, a fresh approach that is not powerful enough
to imply iO is essential to obtaining a polynomial-time reduction for this task.

We present a new construction of universal samplers directly from FE . We
also consider the task of constructing multiparty NIKE for an unbounded number
of users based on FE . As detailed later, this turns out to be non-trivial even
given the work of Hofheinz et al. This is because the definitions presented in
[23] are not completely suitable to deal with an unbounded number of users.
To support unbounded number of users, we devise a new security notion for
universal samplers called interactive simulation. We present a construction of
universal samplers based on FE that achieves this notion and gives us multiparty
NIKE for unbounded number of users.

Remark 1. Our construction of TDP from FE is weaker in comparison to our
construction from iO (and the construction of Bitansky et al. in [8]). In partic-
ular, given the random coins used to sample the function and the trapdoor, the
output of the sampler is no longer pseudorandom. This property is important
for some applications of TDPs like the construction of OT.

An Overview of Our Approach. In the following sections, we present a detailed
overview of our approach of constructing Universal Samplers and NIKE for
unbounded number of parties. Our techniques used for constructing trapdoor
permutations are closely related to the techniques developed in proving PPAD-
hardness of Garg et al. [19]. However, constructing trapdoor permutations poses
additional challenges, namely the design of an efficient sampling algorithm that
samples a domain element. Solving this problem requires development of new
techniques and we elaborate them in the full version [20].

1.1 Universal Samplers and Multiparty Non-interactive Key
Exchange from FE

Multiparty Non-Interactive Key Exchange (multiparty NIKE) was one of the
early applications of multilinear maps and iO. In multiparty NIKE, n parties
simultaneously post a single message to a public bulletin board. Then they each
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read off the contents of the board, and are then able to derive a shared key K
which is hidden to any adversary that does not engage in the protocol, but is
able to see the contents of the public bulletin board.

Boneh and Silverberg [11] show that multilinear maps imply multiparty
NIKE. However, (1) their protocol requires an a priori bound on the num-
ber of users n, and (2) due to limitations with current multilinear map can-
didates [13,15], the protocol requires a trusted setup. The party that runs the
trusted setup can also learn the shared key k, even if that party does not engage
in the protocol.

Boneh and Zhandry [12] show how to use iO to remove the trusted setup.
Later, Ananth et al. [1] shows how to remove the bound on the number of
users by using the very strong differing inputs obfuscation. Khurana et al. [25]
further modify the Boneh-Zhandry protocol to get unbounded users with just iO.
In [12,25], iO is invoked on programs for which are guaranteed to be equivalent;
however it is computationally infeasible to actually verify this equivalence. Thus,
following the arguments of [18], it would appear that any reduction to a few
simple assumptions, no matter how specialized to the particular programs being
obfuscated, would need to incur an exponential loss. Hence, these approaches
do not seem suitable to achieving secure multiparty NIKE from polynomially
secure FE .

Universal Samplers. Instead, we follow an alternate approach given by Hofheinz
et al. [23] using universal samplers. A universal sampler is an algorithm that takes
as input the description of a sampling procedure (say, the sampling procedure
for the common parameters of some protocol) and outputs a sample from that
procedure (a set of parameters for that protocol). The algorithm is deterministic,
so that anyone running the protocol on a given sampling procedure gets the
same sampled parameters. Yet the generated parameters should be “as good
as” a freshly generated set of parameters. Therefore, the only set of common
parameters needed for all protocols is just a single universal sampler. When a
group of users wish to engage in a protocol involving a trusted setup, they can
each feed the setup procedure of that protocol into the universal sampler, and
use the output as the common parameters.

Unfortunately, defining a satisfactory notion of “as good as” above is non-
trivial. Hofheinz et al. give two definitions: a static definition which only remains
secure for a bounded number of generated parameters, as well as an adaptive
definition that is inherently tied to the random oracle model, but allows for
an unbounded number of generated parameters. They show how to use the
stronger definitions to realize primitives such as adaptively secure multiparty
non-interactive key exchange (NIKE) and broadcast encryption.

In this work, we focus on the standard model, and here we review the sta-
tic standard-model security definition for universal samplers. Fix some bound k
on the number of generated parameters. Intuitively, the k-time static security
definition says that up to k freshly generated parameters s1, . . . , sk for sam-
pling algorithms C1, . . . , Ck can be embedded into the universal sampler without
detection. Thus, if the sampler is used on any of the sampling algorithms Ci, the
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generated output will be the fresh sample si. Formally, there is a simulator Sim
that takes as input up to k sampler/sample pairs (Ci, si), and outputs a simu-
lated universal sampler Sampler, such that Sampler(Ci) = si. As long as the si are
fresh samples from Ci, the simulated universal sampler will be indistinguishable
from a honestly generated sampler.

Fortunately for us, the iO-based construction of [23] only invokes iO on
programs for which it is trivial to verify equivalence. Thus, there seems hope that
universal samplers can be based on simple assumptions without an exponential
loss. In particular, there is hope to base universal samplers on the polynomial
hardness of functional encryption.

Application to Multiparty NIKE. From the static definition above, it is straight-
forward to obtain a statically secure multiparty NIKE protocol analogous to the
adaptive protocol of Hofheinz et al. [23]. Each party simply publishes a public
key pki for a public key encryption scheme, and keeps the corresponding secret
key ski hidden. Then to generate the shared group key, all parties run Sampler
on the sampler Cpk1,...,pkn . Here, Cpk1,...,pkn is the randomized procedure that
generates a random string K, and encrypts K under each of the public keys
pk1, . . . , pkn, resulting in n ciphertexts c1, . . . , cn which it outputs. Then party
i decrypts ci using ski. The result is that all parties in the protocol learn K.

Meanwhile, an eavesdropper who does not know any of the secret keys will
only have the public keys, the sampler, and thus the ciphertexts ci outputted by
the sampler. The proof that the eavesdropper will not learn K is as follows. First,
we consider a hybrid experiment where K is generated uniformly at random,
and the universal sampler is simulated on sampler Cpk1,...,pkn , and sample s =
(c1, . . . , cn), where ci are fresh encryptions of K under each of the public keys
pki. 1-time static security of the universal sampler implies that this hybrid is
indistinguishable to the adversary from the real world. Next, we change each of
the ci to encrypt 0. Here, indistinguishability follows from the security of the
public key encryption scheme. In this final hybrid, the view of the adversary is
independent of the shared secret key K, and security follows.

Unbounded Multiparty NIKE. One limitation of the protocol above is that the
number of users must be a priori bounded. There are several reasons for this,
the most notable being that in order to simulate, the universal sampler must
be as large as the sample s = (c1, . . . , cn), which grows with n. Thus, once the
universal sampler is published, the number of users is capped. Unfortunately, the
only prior protocols for achieving an unbounded number of users, [1,25], seems
inherently tied to the Boneh-Zhandry approach, and it is not clear that their
techniques can be adapted to universal samplers.

In order to get around this issue, we change the sampling procedure Cpk1,...,pkn
fed into the universal sampler. Instead, we feed in circuits of the form Dpk,pk′ ,
which generate a new secret and public key (sk′′, pk′′), encrypt sk′′ under both
pk and pk′, and output both encryptions as well as the new public key pk′′. A
group of users with public keys pk1, . . . , pkn then generates the shared key in an
iterative fashion as follows. Run the universal sampler on Dpk1,pk2 , obtaining a
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new public key pk′
3, as well as encryptions of the corresponding secret key sk′

3

under both pk1, pk2. Notice that users 1 and 2 can both recover sk′
3 using their

secret keys. Then run the universal sampler on Dpk3,pk′
3
, obtaining a new public

key pk′
4 and encryptions of the corresponding secret key sk′

4. Notice that user
3 can recover sk′

4 by decrypting the appropriate ciphertext using sk3, and users
1 and 2 can recover sk′

4 by decrypting the other ciphertext using sk′
3. Continue

in this way until public key pk′
n+1 is generated, and all users 1 through n recover

the corresponding secret key sk′
n+1. Set sk′

n+1 to be the shared secret key.
For security, since an eavesdropper does not know any of the secret keys

and the ciphertexts are “as good as” fresh ciphertexts, he should not be able
to decrypt any of the ciphertexts in the procedure above. However, turning this
intuition into a security proof using the static notion of security is problematic.
The straightforward approach requires constructing a simulated Sampler where
the outputs on each of the circuits Dpki,pk

′
i

are fresh samples. Then, each of the
ciphertexts in the samples are replaced with encryptions of 0 (instead of the
correct secret decryption key). However, as there are n such circuits, a standard
incompressibility argument shows that Sampler must grow linearly in n. Thus
again, once the universal sampler is published, the number of users is capped.

Simulating at Fewer Points. To get around this issue, we devise a sequence of
hybrids where in each hybrid, we only need replace log n outputs of the sampler
with fresh samples. The core idea is the following. Say that a circuit Dpki,pk

′
i

has been “treated” if the public key pk′
i+1 outputted by the universal sampler

is freshly sampled and the corresponding ciphertexts are changed to encrypt 0
(instead of the secret key sk′

i+1). We observe that to switch circuit Dpki,pk
′
i

from
untreated to treated, circuit Dpki−1,pk′

i−1
needs to currently be treated so that

the view of the adversary is independent of the secret key sk′
i. However the status

of all the other circuits is irrelevant. Moreover, once we have treated Dpki,pk
′
i
,

we can potentially “untreat” Dpki−1,pk′
i−1

and reset its ciphertexts to the correct
values, assuming Dpki−2,pk′

i−2
is currently treated. Our goal is to start from no

treated circuits, and arrive at a hybrid where Dpkn,pk′
n

is treated, which implies
that the view of the adversary is independent of the shared secret skn+1.

This gives rise to an interesting algorithmic problem. The goal is to get a
pebble at position n, where the only valid moves are (1) placing or removing a
pebble at position 1, or (2) placing or removing a pebble at position i provided
there is currently a pebble at position i−1. We desire to get a pebble at position
n while minimizing the number of pebbles used at any time. The trivial solution
is to place a pebble at 1, then 2, and so on, requiring n pebbles. We show a
pebbling scheme that gets a pebble to position n using only ≈ log n pebbles by
removing certain pebbles as we go. Interestingly, the pebbling scheme is exactly
same as the one used in [6] in the context of reversible computation. The pebbling
scheme is also efficient: the number of moves is polynomial in n.

Using our pebbling algorithm, we derive a sequence of hybrids corresponding
to each move in the algorithm. Thus we show that the number of circuits that
need simulating can be taken to be ≈ log n.
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A New Universal Sampler Definition. Unfortunately, we run into a problem
when trying to base security on the basic static sampler definition of Hofheinz et
al. [23]. The issue stems from the fact that the simulator in the static definition
requires knowing all of the circuits Dpki,pk

′
i

up front. However, in our pebbling
approach, some of the pk′

i (and thus the Dpki,pk
′
i
) are determined by the sampler

Sampler - namely, all the pk′
i for which Dpki−1,pk′

i−1
is “untreated”. Thus we

encounter a circularity where we need to know Sampler to compute the circuit
Dpki,pk

′
i
, but we need Dpki,pk

′
i

in order to simulate the Sampler.
To get around this issue, we devise a new security notion for universal sam-

plers that allows for interactive simulation. That is, before the simulator outputs
Sampler, we are allowed to query it on various inputs, learning what the output
of the sampler will be on that input (called as the read query). Moreover, we are
allowed to feed circuit/sample pairs (C, s) (called as write query) interactively,
potentially after seeing some of the sample outputs, and the simulator will guar-
antee that the simulated Sampler will output s on C. For security, we require that
for a statically chosen query index i∗ and a circuit C∗ the simulator’s outputs
in the following two cases are computationally indistinguishable:

1. i∗th query is a read query on C∗.
2. i∗th query is a write query on (C∗, s∗) where s∗ is fresh sample from C∗.

This new definition allows us to avoid the circularity above and complete the
security proof for our NIKE protocol.

Construction. Before we describe our construction of universal samplers from
FE , we first describe a construction from iO that satisfies the above definition
of interactive simulation.

The universal sampler is an obfuscation of a circuit that has a puncturable
PRF key K hardwired in its description and on input C outputs C(;PRFK(C))
i.e. it uses the PRF key to generate the random coins. This is precisely the same
construction as given by Hofheinz et al. [23] for the static security case. To prove
that this construction satisfies the stronger definition of interactive simulation
we construct a simulator that works as follows. It first samples a fresh PRF key
K ′ and answers the read queries using it. At the end of the simulation, it outputs
an obfuscation of a circuit that has the PRF key K ′ as well as (Ci, si) for every
write query made by the adversary hardwired in its description. When run on
input C where C is one of the write queries, it outputs the corresponding s. On
other inputs, it outputs C(;PRFK′(C)).

The security is shown via a hybrid argument. The initial hybrid corresponds
to the output of the simulator when the challenge query (made at index i∗) is
a write query on (Ci∗ , si∗) where si∗ is a fresh random sample from Ci∗ . We
first change the obfuscated circuit to have the PRF key K ′ punctured at Ci∗ .
This is possible since the circuit does not use K ′ to compute the output on Ci∗ .
Relying on the security of puncturable PRF, we change si∗ from Ci∗(; r) where
r is random string to Ci∗(;PRFK′(Ci∗)). We then unpuncture the key K ′ and
finally remove Ci∗ , si∗ from the hardwired list.
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We adapt the above construction from iO to the FE setting using techniques
from [9,19]. Recall that the “obfuscated” universal sampler consists of � + 1
(� is the maximum size of the input circuit) function keys (where each func-
tion key computes a bit extension function) along with an initial ciphertext cφ

that encrypts the empty string φ and a prefix constrained PRF key K4. These
bit extension functions form a natural binary tree structure and “parsing” an
input circuit C corresponds to traveling along the path from the root to the
leaf labeled C. Each node x along the path from the root to C contains the
key K prefix constrained at x. The prefix constrained PRF key appearing at the
leaf C is precisely equal to the PRF value at C and we use this to generate a
“pseudorandom” sample from C.

We are now ready to describe the construction of our simulator. As in the iO
case, the simulator samples a random prefix constrained PRF key K ′ and uses
it to answer the read queries made by the adversary. Recall that for every write
query (Ci, si) the adversary makes, the simulator must ensure that the sampler
on Ci outputs si. The simulator accomplishes this by “tunneling” the underlying
binary tree along path Ci. To give a bit more details, the simulator “forces” the
function keys at every level i to output a precomputed value say Vi (instead of
the bit-extension) if the input to the function matches with a prefix of Ci. At
the leaf level, if the input matches Ci then the function outputs si. Illustration
of “tunneling” is given in Fig. 1. We now explain how this “tunneling” is done.

cφ

V1

c00 V2

V3

si

c011

c1

FE.Dec(FSK1, ·)

FE.Dec(FSK2, ·)

FE.Dec(FSK4, ·)

FE.Dec(FSK3, ·)

Fig. 1. Illustration of “tunneling” on Ci = 010 and κ = 3.

4 [19] used the term prefix-punctured PRF to denote the same primitive. We use the
term prefix constrained PRF as we feel that this name is more appropriate. This was
also suggested by an anonymous Eurocrypt reviewer.
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At a high level, the “tunneling” is achieved by triggering a hidden “trapdoor”
thread in the function keys using techniques illustrated in [2,19]. This technique
proceeds by first encrypting a set of precomputed values under a symmetric key
sk and hardwires them in the description of bit-extension function in each level.
The symmetric key sk is encrypted in the initial ciphertext cφ along with the
empty string and the prefix constrained PRF key. The trapdoor thread (that is
triggered only along the write query paths) uses this secret key sk to decrypt
the hardcoded ciphertext and outputs the appropriate pre-computed value.

To complete the security proof, we want to show that we can indistinguish-
ably “tunnel” the binary tree along a new path C∗

i and output s∗
i which is a

fresh random sample from C∗
i at the leaf. Recall that in the construction of Garg

et al. in [19] a single secret key sk is used to for computing the encryptions of
pre-computed values along multiple paths. But having a single secret key does
not allow us to “tunnel” along a new path C∗

i as this secret key already appears
in the initial ciphertext cφ. Hence, we cannot rely on the semantic security of
symmetric key encryption to augument the pre-computed values to include val-
ues along the new path C∗

i . In order to get around this issue, we use multiple
secret keys: one for each write query5 which enables us to “tunnel” along a new
path C∗

i .

2 Preliminaries

κ denotes the security parameter. A function μ(·) : N → R
+ is said to be neg-

ligible if for all polynomials poly(·), μ(k) < 1
poly(k) for large enough k. We will

use PPT to denote Probabilistic Polynomial Time algorithm. We denote [k] to
be the set {1, · · · , k}. We will use negl(·) to denote an unspecified negligible
function and poly(·) to denote an unspecified polynomial. We denote the iden-
tity polynomial by I(·) i.e. I(x) = x. All adversarial functions are modeled as
polynomial sized circuits. We assume that all cryptographic algorithms take the
security parameter in unary as input and would not explicitly mention it in all
cases. We assume without loss of generality that the length of the random tape
used by all cryptographic algorithms is κ.

A binary string x ∈ {0, 1}k is represented as x1 · · · xk. x1 is the most sig-
nificant (or the highest order bit) and xk is the least significant (or the lowest
order bit). The i-bit prefix x1 · · · xi of the binary string x is denoted by x[i]. We
denote |x| to be the length of the binary string x ∈ {0, 1}∗. We use x‖y to denote
concatenation of binary strings x and y. We say that a binary string y is a prefix
of x if and only if there exists a string z ∈ {0, 1}∗ such that x = y‖z.

We assume the reader’s familiarity with standard cryptographic primitives
like injective pseudorandom generator, puncturable pseudorandom functions,
indistinguishability obfuscation, functional encryption, symmetric and public
5 In the security definition, the number of write queries that an adversary could make

is apriori bounded. On the otherhand, the adversary could make an unbounded
number of read queries. Thus, we can fix the number of secret keys to be sampled
at the time of setup.
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key encryption. Below, we give the definition of Prefix Constrained Pseudo-
random Function [19].

Prefix Constrained Pseudorandom Function. A PCPRF is a tuple of algorithms
(KeyGenPCPRF ,PrefixCons) with the following syntax. KeyGenPCPRF takes the
security parameter (encoded in unary) and descriptions of two polynomials pin

and pout as input and outputs a PCPRF key S ∈ {0, 1}κ. PrefixCons is a deter-
ministic algorithm and has two modes of operation:

1. Normal Mode: In the normal mode, PrefixCons takes a PCPRF key S and
a string y ∈ ∪pin(κ)

k=0 {0, 1}k and outputs a prefix constrained key Sy ∈ {0, 1}κ

if |y| < pin(κ); else outputs Sy ∈ {0, 1}pout(κ). We assume that Sy contains
implicit information about |y|.

2. Repeated Constraining Mode: In the repeated constraining mode,
PrefixCons takes a prefix constrained key Sy and a string z ∈ ∪pin(κ)

k=0 {0, 1}k

as input and works as follows. If |y| + |z| > pin(κ), it outputs ⊥; else if
|y| + |z| < pin(κ), it outputs the prefix constrained key Sy‖z ∈ {0, 1}κ; else it
outputs Sy‖z ∈ {0, 1}pout(κ).

Henceforth, unless it is not directly evident from the context, we will not
explicitly mention if PrefixCons is in the normal mode or in the repeated con-
straining mode. We note that there is no explicit evaluation procedure for
PCPRF and the output of PCPRF on an input x ∈ {0, 1}pin(κ) is given by
PrefixCons(S, x) ∈ {0, 1}pout(κ).

We now give the formal definition of PCPRF.

Definition 1. A prefix constrained pseudorandom function PCPRF is a tuple
of PPT algorithms (KeyGenPCPRF ,PrefixCons) satisfying the following proper-
ties:

– Functionality is preserved under repeated constraining: For all κ, poly-
nomials pin(·), pout(·) and for all x ∈ ∪k∈[pin(κ)]{0, 1}k, y, z ∈ {0, 1}∗ s.t.
x = y‖z,

Pr[PrefixCons(PrefixCons(S, y), z) = PrefixCons(S, x)] = 1

where S ← KeyGenPCPRF (1κ, pin(·), pout(·)).
– Pseudorandomness at constrained prefix: For all κ, polynomials

pin(·), pout(·), for all x ∈ ∪k∈[pin(κ)]{0, 1}k, and for all poly sized adversaries A

|Pr[A(PrefixCons(S, x),Keys) = 1] − Pr[A(U�,Keys) = 1]| ≤ negl(κ)

where S ← KeyGenPCPRF (1κ, pin(·), pout(·)), � = |PrefixCons(S, x)| and
Keys = {PrefixCons(S, x[i−1]‖(1 − xi))}i∈[|x|].

The above properties are satisfied by the construction of the pseudorandom
function in [21].

Notation. For a key Si (indexed by i), we will use Si,y to denote PrefixCons(Si, y).
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3 TDP from IO in Poly Loss

We consider trapdoor permutation with pseudorandom sampling which is a
weakened notion than the traditional uniform sampling. We refer the reader
to [8] for a formal definition.

3.1 Construction of Trapdoor Permutations

In this section, we give a construction of trapdoor permutations and prove the
one-wayness assuming the existence polynomially hard iO, puncturable pseudo-
random function PRF and injective PRG (used only in the proof).

Theorem 1. Assuming the existence of one-way permutations and indistin-
guishablity obfuscation against polytime adversaries there exists a trapdoor per-
mutation with pseudorandom sampling.

Our Construction. Our construction uses the following primitives:

1. An indistinguishability Obfuscator iO.
2. A puncturable pseudorandom function PRF = (KeyGenPRF ,PRF,Punc).
3. A length doubling pseudorandom generator PRG : {0, 1}κ/2 → {0, 1}κ.
4. Additionally, in the proof of security, we use a length doubling injective

pseudorandom generator InjPRG : [2κ/4] → [2κ/2].

The formal description of our construction appears in Fig. 2.
Due to lack of space we give the proof of security in the full version of our

paper [20].

– KeyGen(1κ):
1. Sample {Si}i∈[κ] ← KeyGenPRF (1κ). For all i ∈ [κ], Si is a seed for a PRF

mapping i bits to κ bits. That is, PRFSi : {0, 1}i → {0, 1}κ.
2. The public key is given by iO(FS1,··· ,Sκ) where FS1,··· ,Sκ is described in

Figure 3 and the secret key is given by S1, · · · , Sκ.
– TDPPK : Run the obfuscated circuit iO(FS1,··· ,Sκ) on the given input

(x, σ1, · · · , σκ).
– TDP−1

SK : The Inverter IS1,··· ,Sκ is described in Figure 3.
– SampGen(SK): The sampler is given by iO(XS1,··· ,Sκ) where XS1,··· ,Sκ is

described in Figure 3.
– Samp: Run the circuit iO(XS1,··· ,Sκ) on the given randomness r.

Fig. 2. Construction of trapdoor permutation
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FS1,··· ,Sκ

Input: (i, σ1, · · · , σκ)
Constants: S1, · · · , Sκ

1. For all j ∈ [κ], check if σj = PRFSj (i[j]).
2. If any of the above checks fail, output ⊥.
3. Else, for all j ∈ [κ] compute σj = PRFSj ((i + 1)[j]) where i + 1 is computed

modulo 2κ.
4. Output (i + 1, σ1, · · · , σκ).

Padding: The circuit would be padded to size p(κ) where p(·) is a polynomial
that would be specified later.

XS1,··· ,Sκ

Input: r ∈ {0, 1}κ/2

Constants: S1, · · · , Sκ

1. Compute i = PRG(r).
2. For every j ∈ [κ], compute σj = PRFSj (i[j]).
3. Output (i, σ1, σ2, · · · , σκ).

Padding: The circuit would be padded to size q(κ) where q(·) is a polynomial
that would be specified later.

IS1,··· ,Sκ

Input: (i, σ1, · · · , σκ)
Constants: S1, · · · , Sκ

1. Check whether for all j ∈ [κ], σj = PRFSj (i[j]).
2. If any of the checks fail, output ⊥.
3. Else, for all j ∈ [κ] compute σj = PRFSj ((i − 1)[j]) where i − 1 is computed

modulo 2κ.
4. Output (i − 1, σ1, σ2, · · · , σκ).

Fig. 3. Public key, sampler and the inverter for the trapdoor permutations

4 Trapdoor Permutation from FE

We start by defining a weaker (with respect to pseudorandom sampling) notion
of trapdoor permutation.

Definition 2. An efficiently computable family of functions:

T DP = {TDPPK : DPK → DPK and PK ∈ {0, 1}poly(κ)}
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1. (PK, SK) ← KeyGen(1κ).
2. Samp ← SampGen(SK)

3. if(b = 0), x
$← DPK .

4. else, x ← Samp.
5. Output A(PK, Samp, x)

Fig. 4. ExpA,b,wPRS

over the domain DPK with associated (probabilistic) (KeyGen,SampGen) algo-
rithms is a weakly samplable trapdoor permutation if it satisfies:

– Trapdoor Invertibility: For any (PK,SK) ← KeyGen(1κ), TDPPK is a per-
mutation over DPK . For any y ∈ DPK , TDP−1

SK(y) is efficiently computable
given the trapdoor SK.

– Weak Pseudorandom Sampling: For any (PK,SK) ← KeyGen(1κ) and
Samp ← SampGen(SK), Samp(·) samples pseudo random points in the domain
DPK . Formally, for any polysized distinguisher A,

∣
∣Pr

[

ExpA,0,wPRS = 1
]

− Pr
[

ExpA,1,wPRS = 1
]∣
∣ ≤ negl(κ)

where ExpA,b,wPRS is described in Fig. 4.
– One-wayness: For all poly sized adversaries A,

Pr

⎡

⎣A(PK,Samp, TDPPK(x)) = x

∣
∣
∣
∣
∣

(PK,SK) ← KeyGen(1κ)
Samp ← SampGen(SK)
x ← Samp

⎤

⎦ ≤ negl(κ)

Remark 2. The requirement of pseudorandom sampling considered in Bitanksy
et al.’s work [8] is stronger than the one considered here in sense that they require
the pseudorandomness property to hold even when given the random coins used
by KeyGen and the SampGen algorithms. We do not achieve the stronger notion
in this work. In particular, given the random coins used in SampGen the sampler’s
output is no longer pseudorandom. Therefore, our trapdoor permutations can be
only used in applications where an honest party runs the KeyGen and SampGen
algorithm. It cannot be used for example to achieve receiver privacy in EGL
Oblivious Transfer protocol [14].

In this section, we construct trapdoor permutation satisfying the Definition 2
from polynomially hard public key functional encryption, prefix puncturable
pseudorandom function, left half injective pseudorandom generator, strong ran-
domness extractor and public key encryption with random public keys.

Theorem 2. Assuming the existence of one-way permutations, single-key, selec-
tive secure, public key functional encryption and public key encryption with
(pseudo) random public keys, there exists a weakly samplable trapdoor permu-
tation.
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We now recall the special key structure [19] which forms a crucial part of our
construction of trapdoor permutation.

Notation. We treat 1i + 1 as 0i and φ + 1 as φ. Let LeftInjPRG be a left half
injective pseudorandom generator. Let τ be the size of public key output by
PK.KeyGen(1κ). Below, for every i ∈ [κ + τ ], Si ← KeyGenPCPRF (1κ.Ci(·), I(·))
where Ci(κ) = i and I(κ) = κ. Recall Si,x denotes a prefix constrained PRF key
Si constrained at a prefix x.

Special Key Structure.

Ux =
⋃

i∈[τ+κ]

Ui
x Ui

x =

{

{Si,x[i]} if |x| > i

{Si,x} otherwise

Vx =
⋃

i∈[τ+κ]

Vi
x Vi

x =

⎧

⎪⎨

⎪⎩

{Si,x[i] , Si,x[i]+1} if |x| > i and x = x[i]‖1|x|−i

{Si,x, Si,(x+1)‖0i−|x|} if |x| ≤ i

∅ if |x| > i and x �= x[i]‖1|x|−i

Wx =
⋃

i∈[τ+κ]

Wi
x Wi

x =

{

{LeftInjPRG0(Si,x[i])} if |x| ≥ i

∅ otherwise

For the empty string x = φ, these sets can be initialized as follows.

Uφ =
⋃

i∈[τ+κ]

Ui
φ Ui

φ = {Si}

Vφ =
⋃

i∈[τ+κ]

Vi
φ Vi

φ = {Si}

Wφ =
⋃

i∈[τ+κ]

Wi
φ Wi

φ = ∅

Jumping ahead, the set of keys in Ux would be used by the sampler to
generate the set of associated signatures on the sampled point. The set Wx (called
as the vestigial set in [19]) is used to check the validity of input i.e. checking
whether the input belongs to the domain. The set Vx is used to generate the
associated signatures on the “next” point as defined by the permutation.

Our Construction. The construction of weakly samplable trapdoor permutation
uses the following primitives:

1. A single-key, selective secure public key functional encryption scheme FE .
2. A prefix constrained pseudorandom function PCPRF .
3. An injective length doubling pseudorandom generator InjPRG : {0, 1}κ/8 →

{0, 1}κ/4

4. A length doubling Left half injective pseudorandom generator LeftInjPRG :
{0, 1}κ → {0, 1}2κ

In the construction, we denote SK.Encsk1,··· ,skn
(m) to be SK.Encskn

(SK.Encskn−1(· · · SK.Encsk1(m))). The formal description our construction
appears in Fig. 5.
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Setting rand(·) We set rand(κ) to be the maximum number of random bits needed
to generate τ + κ encryptions under γ1, · · · , γκ as well as τ + κ + 1 encryptions
under the public keys pk.

Due to shortage of space, we defer the proof of Theorem 2 to the full version
of the paper [20].

5 Universal Samplers

Intuitively, a universal sampler, defined by Hofheinz et al. [23] is a box that takes
as input the description of a sampling procedure, and outputs a fresh-looking
sample according to the sampling procedure. The difficulty is that we want the
box to be public code, and that every user, when they run the sampler on a
particular procedure, gets the same result. Moreover, we want the sample to
appear as if it were a fresh random sample.

5.1 Definition

A Universal Sampler consists of an algorithm Setup that takes as input a security
parameter κ (encoded in unary) and a size bound �(·), random tape size r(·) and
an output size t(·). It outputs a program Sampler. Sampler takes as input a circuit
of size at most �(κ), uses r(κ) bits of randomness and outputs an t(κ)-bit string.

Intuitively, Sampler(C) will be a pseudorandom sample from C: Sampler(C) =
C(s) for some s pseudorandomly chosen based on C. We will actually not for-
malize a standalone correctness requirement, but instead correctness will follow
from our security notion.

For security, we ask that the sample output by Sampler(C) actually looks
like a fresh random sample from C. Unfortunately, formalizing this requirement
is tricky. Hofheinz et al. [23] defined two notions: the first is a “static” and
“bounded” security notion, while the second stronger notion is “adaptive” and
“unbounded”. The latter definition requires random oracles, so it is unfortu-
nately uninstantiable in the standard model. We will provide a third definition
which strikes some middle ground between the two, and is still instantiable in
the standard model.

Definition 3. A Universal Sampler given by Setup is n-time statically secure
with interactive simulation if there exists an efficient randomized simulator Sim
such that the following hold.

– Sim takes as input κ (encoded in unary) and three polynomials �(·), r(·), t(·)
(for ease of notation, we denote � = �(κ), r = r(κ) and t = t(κ)), and ulti-
mately will output a simulated sampler Sampler. However, before doing so, Sim
provides the following interface for additional input:

• Read queries: here the user submits an input circuit C of size at most �,
that uses r bits of randomness and has output length t. Sim will respond
with a sample s that will ultimately be the output of the simulated sampler
on C. Sim supports an unbounded number of Read queries.
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- KeyGen(1κ):
1. For each i ∈ [τ + κ], sample Si ← KeyGenPCPRF (1κ, Ci(·), I(·)) where

Ci(κ) = i and I(κ) = κ. Sample K ← KeyGenPCPRF (1κ, quad(·), rand(·))
where quad(κ) = 2(κ + τ) + 1. For every i ∈ [τ + κ], initialize Vi

φ := Si,
Vφ = i∈[τ+κ] V

i
φ and Wφ = ∅.

2. Let Extw : {0, 1}τ+κ → {0, 1}κ/8 be a (κ/4, negl(κ)) strong randomness

extractor with seed length q(κ). Sample a seed w
$← {0, 1}q(κ) for the

extractor Ext.
3. Sample (PK1

i ,MSK1
i ) ← FE.Setup(1κ) for all i ∈ [τ + κ + 1].

4. Sample sk1 ← SK.KeyGen(1κ) where |sk1| = p(κ) and let Π1 ←
SK.Encsk1(π1) and Λ1 ← SK.Encsk1(λ1) where π1 = 0 1(κ) and λ1 =

0 1(κ). Here, 1(·) and 1(·) are appropriate length functions specified later.

5. Sample v
$← {0, 1}κ/4.

6. For each i ∈ [τ + κ], generate FSK1
i ← FE.KeyGen(MSK1

i , F
1
i,PK1

i+1,Π1
)

and FSK1
τ+κ+1 ← FE.KeyGen(MSK1

τ+κ+1, G
1
v,Λ1,w), where F 1

i,PK1
i+1,Π1

and

G1
v,Λ1,w are circuits described in Figure 6.

7. Let c1φ = FE.EncPK1(φ,Vφ,Wφ, Kφ, 0p(κ), 0).
8. The Public Key PK is given by ({FSK1

i }i∈[τ+κ+1], c
1
φ) and the secret key

SK is given by (S1, · · · , Sτ+κ).
- TDPPK : The evaluation algorithm takes as input (x, σ1, . . . , στ+κ) and out-

puts (x + 1, σ1, . . . , στ+κ) if the associated signatures σ1, . . . , στ+κ are valid.
It proceeds as follows:
1. For i ∈ [τ + κ], compute c1x[i−1] 0, c

1
x[i−1] 1 := FE.Dec(FSK1

i , c
1
x[i−1]

).

2. Obtain dx = ((ψ1, . . . , ψτ+κ), (βj , . . . , βτ+κ)) as output of
FE.Dec(FSK1

τ+κ+1, c
1
x). that

f(x) is the smallest k such that x = x[k] 1τ+κ−k.
3. Output ⊥ if LeftInjPRG0(σi) = ψi for any i ∈ [τ + κ].
4. For each i ∈ [j − 1], set σi = σi.
5. For each i ∈ {j, . . . , τ + κ}, set γi = LeftInjPRG1(σi) and σi

as SK.Decγj ,...,γτ+κ(βi), iteratively decrypting βi encrypted under
γj , . . . , γτ+κ.

6. Output (x + 1, σ1, · · · , στ+κ).

Here, j = f(x) where f(x) is the smallest k 

Fig. 5. Construction of TDP from FE

• Set queries: here the user submits in input circuit C of size at most �,
that uses r bits of randomness with output length t, as well as a sample
s of length t. Sim will record (C, s), and set the output of the simulated
sampler on C to be s. Sim supports up to n Set queries. We require that
there is no overlap between circuits C in Read and Set queries, and that
all Set queries are for distinct circuits.

• Finish query: here, the user submits nothing, and Sim closes its interfaces,
terminates, and outputs a sampler Sampler.
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– TDP−1
SK : The inversion algorithm on input (x, σ1, · · · , στ+κ) checks for all

i ∈ [τ + κ] if σi = Si,x[i] and if so it outputs (x − 1, σ1, · · · , στ+κ) where x − 1

is computed modulo 2τ+κ and for all i ∈ [τ + κ] σi = Si,(x−1)[i]
.

– SampGen(SK) :
1. Choose K ← KeyGenPCPRF (1κ, 2υ(·) + 1, rand(·)) and K ←

KeyGenPCPRF (1κ, υ(·), I(·)) where υ(κ) = τ . Initialize Ui
φ := Si and

Uφ = i∈[τ+κ] U
i
φ.

2. For every i ∈ [τ + 1], choose (PK2
i ,MSK2

i ) ← FE.Setup(1κ).
3. Sample sk2 ← SK.KeyGen(1κ) where |sk2| = p(κ) and set Π2 ←

SK.Encsk2(π2) and Λ2 ← SK.Encsk2(λ2) where π2 = 0 2(κ) and λ2 =

0 2(κ). Here 2(·) and 2(·) are appropriate length functions specified later.
4. For each i ∈ [τ ], generate FSK2

i ← FE.KeyGen(MSK2
i , F

2
i,PK2

i+1,Π2
) and

FSK2
τ+1 ← FE.KeyGen(MSK2

τ+1, G
2
Λ2) where F 2

i,PK2
i+1,Π2

, G2
Λ2 are de-

scribed in Figure 7.
5. Let c2φ ← FE.EncPK2

1
(φ, Uφ, K, K, 0p(κ), 0).

6. The sampler circuit has {FSK2
i }i∈[τ+1] and c2φ hardwired in its description

and works as described below.
- Samp: The sampler takes pk where (pk, sk) ← PK.KeyGen(1κ). It proceeds as

follows:
1. For i ∈ [τ ], compute c2pk[i−1] 0, c

2
pk[i−1] 1 := FE.Dec(FSK2

i , c
2
pk[i−1]

).

2. Obtain (pk, hpk) = (pk, (pk, ρ, ρ1, · · · , ρτ+κ)) as output of
FE.Dec(FSK2

τ+1, c
2
pk).

3. Compute Kpk := PK.Decsk(ρ) and σi := PK.Decsk(ρi) for all i ∈ [τ + κ]
4. Output (pk Kpk, σ1, · · · , στ+κ).

Fig. 5. (continued)

Sim must be capable of taking the queries above in any order.
– Correctness. Sampler is consistent with any queries made. That is, if a Read

query was made on C and the response was s, then Sampler(C) = s. Similarly,
if a Set query was made on (C, s), then Sampler(C) = s.

– Indistinguishability from honest generation. Roughly, this requirement
says that in the absence of any Write queries, and honest and simulated sam-
pler are indistinguishable. More precisely, the advantage of any polynomial-
time algorithm A is negligible in the following experiment:

• The challenger flips a random bit b. If b = 0, the challenger
runs Sampler ← Setup(1κ, �, r, t). If b = 1, the challenger initiates
Sim(1κ, �, r, t).

• A is allowed to make Read queries on arbitrary circuits C of size at most
�, using r bits of randomness and output length t. If b = 0, the challenger
runs s ← Sampler(C) and responds with s. If b = 1, the challenger for-
wards C to Sim as a Read query, and when Sim responds with s, the
challenger forwards s to A.
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F 1
i,PK1

i+1,Π1

Hardcoded Values: i,PK1
i+1, Π1.

Input: (x ∈ {0, 1}i−1, Vx,Wx, Kx, sk, mode)

1. If (mode = 0)

(a) Output FE.EncPK1
i+1

(x 0,Vx 0,Wx 0, Kx 0, sk,mode; Kx 0) and

FE.EncPK1
i+1

(x 1,Vx 1,Wx 1, Kx 1, sk,mode; Kx 1), where for b ∈ {0, 1},

Kx b = PrefixCons(Kx, b 0) and Kx b = PrefixCons(Kx, b 1) and
(Vx 0,Wx 0), (Vx 1,Wx 1) are computed using the efficient procedure
from the Computability Lemma [20]

2. Else, compute π1 ← SK.Decsk1(Π1) and parse π1 as a set of tuples of the form
(z, c1z). Recover (x||0, c1x 0) and (x 1, c1x 1) from π1. Output c1x 0 and c1x 1.

G1
v,Λ1,w

Hardcoded Values: v, Λ1, w
Input: x ∈ {0, 1}τ+κ,Vx,Wx, Kx, sk1,mode

1. If (InjPRG(Extw(x)) = v) then output ⊥.
2. If mode = 0, ( that f(x) is the

j such that x = x[j] 1τ+κ−j .)
(a) For each i ∈ [τ + κ], set ψi = LeftInjPRG0(Si,x[i]) (obtained from Wi

x for

i ≤ j and from Vi
x for i > j).

(b) For each i ∈ {j, . . . , τ + κ} set γi = LeftInjPRG1(Si,x[i]) and βi =
SK.Encγj ,··· ,γτ+κ(Si,x[i]+1), encrypting Si,x[i]+1 under γj , . . . γτ+κ using

PrefixCons(Kx, 0) as the random tape. In the above, Si,x[i] and Si,x[i]+1

are obtained from V i
x for all i ∈ [j, τ + κ].

(c) Output ((ψ1, . . . , ψτ+κ), (βj , . . . , βτ+κ))
3. Else, recover (x, dx) from SK.Decsk1(Λ1) and output dx.

Below, j = f(x) where f(x) is the smallest k
smallest

Fig. 6. Circuits for simulating public key.

• Finally, A sends a Finish query. If b = 0, the challenger then sends
Sampler to A. If b = 1, the challenger sends a Finish query to Sim, gets
Sampler from Sim, and forwards Sampler to A.

• A then tries to guess b. The advantage of A is the advantage A has in
guessing b.

– Pseudorandomness of samples. Roughly, this requirement says that, in the
simulated sampler, if an additional Set query is performed on (C, s) where s
is a fresh sample from C, then the simulated sampler is indistinguishable from
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F 2
i,PK2

i+1,Π2

Hardcoded Values: i,PK2
i+1, Π2.

Input: (x ∈ {0, 1}i−1, Ux, Kx, Kx, sk2, mode)

1. If (mode = 0),
(a) Output FE.EncPK2

i+1
(x 0,Ux 0, Kx 0, Kx 0, sk,mode; K x 0) and

FE.EncPK2
i+1

(x 1,Ux 1, Kx 1, Kx 1, sk,mode; K x 1), where for b ∈ {0, 1},

Kx b = PrefixCons(Kx, b 0) and K x b = PrefixCons(Kx, b 1) and
Ux 0 and Ux 1 are computed as described in Computability Lemma
[20].

2. Else recover (x||0, c2x 0) and (x 1, c2x 1) from SK.Decsk2(Π2) and output c2x 0

and c2x 1.

G2
Λ2

Hardcoded Values: Λ2

Input: pk ∈ {0, 1}κ,Upk, Kpk, Kpk, sk2,mode

1. If mode = 0,
(a) For all i ∈ [τ + κ], compute σi := Si,(pk Kpk)[i]

from Upk.

(b) Compute ρ ← PK.Encpk(Kpk) and ρi ← PK.Encpk(σi) for all i ∈ [τ + κ]
using PrefixCons(Kpk, 0) as the random tape.

(c) Output (pk, (pk, ρ, ρ1, · · · , ρτ+κ)).
2. Else, recover (pk, hpk) from SK.Decsk2(Λ2) and output hpk.

Fig. 7. Circuits for simulating sampler

the case where the Set query was not performed. More precisely, the advantage
of any polynomial-time algorithm B is negligible in the following experiment:

• The challenger flips a random bit b. It then initiates Sim(1κ, �, r, t).
• B first makes a Challenge query on circuit C∗ of size at most �, using

r bits of randomness and output length t, as well as an integer i∗.
• B is allowed to make arbitrary Read and Set queries, as long as the

number of Set queries is at most n−1, and the queries are all on distinct
circuits that are different from C∗. The Read and Set queries can occur
in any order; the only restriction is that the Challenge query comes
before all Read and Set queries.

• After i∗ − 1 Read and Set queries, the challenger does the following:
∗ If b = 0, the challenger makes a Read query to Sim, and forwards
the response s∗ to B.
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∗ If b = 1, the challenger computes a fresh random sample s∗ ←
C∗(r), and makes a Set query to Sim on (C∗, s∗). Then it gives s∗

to B.
Thus the i∗th query made to Sim is on circuit C∗, and the only difference
between b = 0 and b = 1 is whether the output of the simulated sampler
will be a pseudorandom sample or a fresh random sample from C∗.

• B is allowed to continue making arbitrary Read and Set queries, as long
as the number of Set queries is at most n − 1 and the queries are all on
distinct circuits that are different from C∗.

• Finally B makes a Finish query, at which point the challenger makes a
Finish query to Sim. It obtained a simulated sampler Sampler, which it
then gives to B.

• B then tries to guess b. The advantage of B is the advantage B has in
guessing b.

5.2 Construction from FE

In this section, we will construct Universal Samplers that satisfies Definition 3
from polynomially hard, compact Functional Encryption and Prefix Constrained
Pseudorandom Function (which is implied by Functional Encryption).

Theorem 3. Assuming the existence of selective secure, single key, compact
public key functional encryption there exists an Universal Sampler scheme sat-
isfying Definition 3.

Our Construction. The formal description our construction appears in Fig. 8.
Due to lack of space, we give the proof of security in the full version of the

paper [20].

6 Multiparty Non-interactive Key Exchange

In this section, we build multiparty non-interactive key exchange for an
unbounded number of users. Moreover, in constrast to the original multilinear
map protocols [15], our protocol has no trusted setup.

6.1 Definition

A multiparty key exchange protocol consists of:

– Publish(κ) takes as input the security parameter and outputs a user secret sv
and public value pv. pv is posted to the bulletin board.

– KeyGen({pvj}j∈S , svi, i) takes as input the public values of a set S of users,
plus one of the user’s secrets svi. It outputs a group key k ∈ K.
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Setup

- Input: 1κ and three polynomials (·), r(·), t(·).
- Sampled Ingredients:

1. Sample S ← KeyGenPCPRF (1κ (·), r(·)) and K ←
KeyGenPCPRF (1κ, rand(·), I(·)) where rand(κ) = 2 (κ) and I(κ) = κ. For
ease of notation, we denote = (κ) and r = r(κ).

2. For every i ∈ [ + 1], sample (PKi,MSKi) ← FE.Setup(1κ) .
3. For every j ∈ [n], sample skj ← SK.KeyGen(1κ). Let |skj | = p(κ). For

i ∈ [ + 1] and j ∈ [n], let Πj
i ← SK.Encskj (π

j
i ) where πj

i = 0len(κ) . Here
len(·) is an appropriate length function that would be specified later. For
all i ∈ [ + 1], let Πi = {Πj

i }j∈[n].
- Functional encryption ciphertext and keys to simulate obfuscation
of Setup:
1. For each i ∈ [ ], generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Πi) and

FSK +1 ← FE.KeyGen(MSK +1, GΠ +1), where Fi,PKi+1,Πi and GΠ +1 are
circuits described in Figure 9.

2. For every j ∈ [n], Zj = (j, ⊥). Let Z := {Zj}j∈[n].
3. Let cφ = FE.EncPK1(φ, S, K, Z, 0).
4. Output (cφ, {FSKi}i∈[ +1]) as the sampler.

Evaluating the Sampler

- Input: Circuit C of size (padded with dummy symbols if its size is less than
) using r bits of randomness and output length t and the sampler given by

(cφ, {FSKi}i∈[ +1]).
- Evaluation:

1. For i ∈ [ ], compute cC[i−1] 0, cC[i−1] 1 := FE.Dec(FSKi, cC[i−1]).

2. Compute dC as output of FE.Dec(FSK +1, cC).
3. Output dC .

Fig. 8. Setup and evaluating the sampler

For correctness, we require that all users generate the same key:

KeyGen({pvj}j∈S , svi, i) = KeyGen({pvj}j∈S , svi′ , i′)

for all (svj , pvj) ← Publish(κ) and i, i′ ∈ S. For security, we have the follow-
ing:

Definition 4. A non-interactive multiparty key exchange protocol is statically
secure if the following distributions are indistinguishable for any polynomial-sized
set S:

{pvj}j∈S , k where (svj , pvj)←Publish(κ)∀j ∈S, k←KeyGen({pvj}j∈S , s1, 1) and

{pvj}j∈S , k where (svj , pvj) ← Publish(κ)∀j ∈ G, k ← K
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Fi,PKi+1,Πi

Hardcoded Values: i, PKi+1, Πi.
Input: C ∈ {0, 1}i−1, SC , KC , Z, mode

1. If (mode = 0),
(a) Output FE.EncPKi+1(C 0, SC 0, KC 0, Z,mode; K C 0) and

FE.EncPKi+1(C 1, SC 1, KC 1, Z,mode; K C 1), where for b ∈ {0, 1},
KC b = PrefixCons(KC , b 0) and K C b = PrefixCons(KC , b 1) and
SC b := PrefixCons(SC , b).

2. Else,
(a) Let j∗ be the minimum value of j ∈ [n] such that Zj+1 = (j + 1, ⊥).

(b) Let πj∗
i ← SK.Decskj∗ (Πj∗

i ) where πj∗
i is a collection of elements of

the form (C , ·, ·) for C ∈ {0, 1}i−1. Recover (C, (C b, cC b), (C (1 −
b), cC (1−b))) (if there are more than one value of (C, ·, ·), select the lexi-

cographically first such value) from πj∗
i and output (cC 0, cC 1).

GΠ +1

Hardcoded Values: Π +1

Input: C ∈ {0, 1} , SC , KC , sk,mode

1. If mode = 0, output C(SC).
2. Else, let j∗ be the minimum value of j ∈ [n] such that Zj+1 = (j + 1, ⊥).

Recover (C, dC) from SK.Decskj∗ (Πj∗
i ) and output dC .

Fig. 9. Circuits for simulating public key.

Notice that our syntax does not allow a trusted setup, as the original con-
structions based on multilinear maps [11,13,15] require. Boneh and Zhandry [12]
give the first multiparty key exchange protocol without trusted setup, based on
obfuscation. A construction of obfuscation from a finite set of assumptions with
polynomial security appears implausible due to an argument of [18]. Notice as
well that our syntax does not allow the key generation to depend on the number
of users who wish to share a group key. To date, prior key exchange protocols
satisfying this property relied on strong knowledge variants of obfuscation [1].
Recently Khurana, Rao and Sahai in [25] constructed a key exchange protocol
supporting unbounded number of users based on indistinguishability obfuscation
and a tool called as somewhere statistically binding hash functions [24]. Here,
we get an unbounded protocol based on functiona encryption only, and without
using complexity leveraging.
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6.2 Construction

Our construction will use the universal samplers built in Sect. 5, as well as any
public key encryption scheme.

– Publish(κ). Run (sk, pk) ← PK.KeyGen(κ). Also run the universal sampler
setup algorithm Sampler ← Setup(κ, �, t) where output size � and circuit size
bound t will be decided later. Output pv = (pk,Sampler) as the public value
and keep sv = sk as the secret value.

– KeyGen({(pkj ,Samplerj)}j∈S , ski, i). Interpret S as the set [1, n] for n = |S|,
choosing some canonical ordering for the users in S (say, the lexicographic
order of their public values). Define Sampler = Sampler1.
Define Cpk,pk′ for two public keys pk, pk′ to be the circuit that samples a
random (sk′′, pk′′) ← PK.KeyGen(κ), then encrypts sk′′ under both pk and
pk′, obtaining encryptions c and c′ respectively, and then outputs (pk′′, c, c′).
Let Dpk,pk′ be a similar circuit that samples a uniformly random string sk′′ in
the key space of PKE , encrypts sk′′ to get c, c′ as before, and outputs (0, c, c′)
where 0 is a string of zeros with the same length as a public key for PKE . Let
� the length of (pk′′, c, c′) and let t be the size of Cpk,pk′ (which we will assume
is at least as large as Dpk,pk′).
Next, define pk′

2 = pk1, and recursively define (pk′
j+1, cj , c

′
j) =

Sampler(Cpkj ,pk′
j
) for j = 2, . . . , n − 1. Define sk′

j+1 to be the secret key cor-
responding to pk′

j+1, which is also the secret key encrypted in cj , c
′
j . Finally,

define (0, cn, c′
n) = Sampler(Dpkn,pk′

n
), and define sk′

n+1 to be the secret key
encrypted in cn, c′

n.
First, it is straightforward that given {pkj}j∈[n] and Sampler, it is possible to
compute pk′

j , cj , c
′
j for all k ∈ [2, n]. Thus anyone, including an eavesdropper,

can compute these values.
Next, we claim that if additionally given secret keys skj or sk′

j , it is possible to
compute sk′

j+1. Indeed, sk′
j+1 can be computed by decrypting cj (using skj) or

decrypting c′
j (using sk′

j). By iterating, it is possible to compute sk′
k for every

k > j. This implies that all users in [n] can compute skn+1.

Security. We now argue that any eavesdropper cannot learn any information
about sk. Our theorem is the following:

Theorem 4. If PKE is a secure public key encryption scheme and Setup is a
m-time statically secure universal sampler with interactive simulation, the the
construction above is a statically secure NIKE for up to 2m users. In particular,
by setting m = κ, the scheme is secure for an unbounded number of users.

Due to lack of space, we give the proof of Theorem 4 in the full version of the
paper [20].
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