
Jean-Sébastien Coron
Jesper Buus Nielsen (Eds.)

 123

LN
CS

 1
02

12

36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Paris, France, April 30 – May 4, 2017, Proceedings, Part III

Advances in Cryptology –
EUROCRYPT 2017



Lecture Notes in Computer Science 10212

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Jean-Sébastien Coron • Jesper Buus Nielsen (Eds.)

Advances in Cryptology –

EUROCRYPT 2017
36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Paris, France, April 30 – May 4, 2017
Proceedings, Part III

123



Editors
Jean-Sébastien Coron
University of Luxembourg
Luxembourg
Luxembourg

Jesper Buus Nielsen
Aarhus University
Aarhus
Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-56616-0 ISBN 978-3-319-56617-7 (eBook)
DOI 10.1007/978-3-319-56617-7

Library of Congress Control Number: 2017936355

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

Eurocrypt 2017, the 36th annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Paris, France, from April 30 to May
4, 2017. The conference was sponsored by the International Association for Crypto-
logic Research (IACR). Michel Abdalla (ENS, France) was responsible for the local
organization. He was supported by a local organizing team consisting of David
Pointcheval (ENS, France), Emmanuel Prouff (Morpho, France), Fabrice Benhamouda
(ENS, France), Pierre-Alain Dupoint (ENS, France), and Tancrède Lepoint (SRI
International). We are indebted to them for their support and smooth collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. Only the
invited talks spanned over both tracks.

We received a total of 264 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 56 Program Committee
members. Submissions co-authored by committee members were assigned to at least four
members. Committee members were allowed to submit at most one paper, or two if both
were co-authored. The reviewing process included a first-round notification followed by a
rebuttal for papers that made it to the second round. After extensive deliberations the
Program Committee accepted 67 papers. The revised versions of these papers are included
in these three-volume proceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the paper “Scrypt Is Max-
imally Memory-Hard” by Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin,
and Stefano Tessaro. The two runners-up to the award, “Computation of a 768-bit Prime
Field Discrete Logarithm,” by Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra,
Christine Priplata, and Colin Stahlke, and “Short Stickelberger Class Relations and
Application to Ideal-SVP,” by Ronald Cramer, Léo Ducas, and Benjamin Wesolowski,
received honorable mentions. All three papers received invitations for the Journal of
Cryptology.

The program also included invited talks by Gilles Barthe, titled “Automated
Proof for Cryptography,” and by Nigel Smart, titled “Living Between the Ideal and
Real Worlds.”

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions, especially rejections of very good papers that did not
find a slot in the sparse number of accepted papers, can be very disappointing. We
sincerely hope that your works eventually get the attention they deserve.

We are also indebted to the Program Committee members and all external reviewers
for their voluntary work, especially since the newly established and unified page limits
and the increasing number of submissions induce quite a workload. It has been an
honor to work with everyone. The committee’s work was tremendously simplified by
Shai Halevi’s submission software and his support, including running the service on
IACR servers.



Finally, we thank everyone else —speakers, session chairs, and rump session chairs
— for their contribution to the program of Eurocrypt 2017. We would also like to thank
Thales, NXP, Huawei, Microsoft Research, Rambus, ANSSI, IBM, Orange, Safran,
Oberthur Technologies, CryptoExperts, and CEA Tech for their generous support.

May 2017 Jean-Sébastien Coron
Jesper Buus Nielsen
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Abstract. Data-independent Memory Hard Functions (iMHFS) are
finding a growing number of applications in security; especially in the
domain of password hashing. An important property of a concrete iMHF
is specified by fixing a directed acyclic graph (DAG) Gn on n nodes. The
quality of that iMHF is then captured by the following two pebbling
complexities of Gn:
– The parallel cumulative pebbling complexity Π

‖
cc(Gn) must be as

high as possible (to ensure that the amortized cost of computing the
function on dedicated hardware is dominated by the cost of memory).

– The sequential space-time pebbling complexity Πst(Gn) should be

as close as possible to Π
‖
cc(Gn) (to ensure that using many cores in

parallel and amortizing over many instances does not give much of
an advantage).

In this paper we construct a family of DAGs with best possible parame-
ters in an asymptotic sense, i.e., where Π

‖
cc(Gn) = Ω(n2/ log(n)) (which

matches a known upper bound) and Πst(Gn) is within a constant factor

of Π
‖
cc(Gn).

Our analysis relies on a new connection between the pebbling com-
plexity of a DAG and its depth-robustness (DR) – a well studied com-

binatorial property. We show that high DR is sufficient for high Π
‖
cc.

Alwen and Blocki (CRYPTO’16) showed that high DR is necessary and

so, together, these results fully characterize DAGs with high Π
‖
cc in terms

of DR.
Complementing these results, we provide new upper and lower bounds

on the Π
‖
cc of several important candidate iMHFs from the literature. We

give the first lower bounds on the memory hardness of the Catena and
Balloon Hashing functions in a parallel model of computation and we
give the first lower bounds of any kind for (a version) of Argon2i.

Finally we describe a new class of pebbling attacks improving on
those of Alwen and Blocki (CRYPTO’16). By instantiating these attacks

we upperbound the Π
‖
cc of the Password Hashing Competition winner

Argon2i and one of the Balloon Hashing functions by O
(
n1.71

)
. We also

show an upper bound of O(n1.625) for the Catena functions and the two
remaining Balloon Hashing functions.

c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part III, LNCS 10212, pp. 3–32, 2017.
DOI: 10.1007/978-3-319-56617-7 1
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1 Introduction

Moderately Hard Functions. Functions which are “moderately” hard to compute
have found a variety of practical applications including password hashing, key-
derivation and for proofs of work. In the context of password hashing, the goal is
to minimize the damage done by a security breach where an adversary learns the
password file; Instead of storing (login, password) tuples in the clear, one picks
a random salt and stores a tuple (login, f(password, salt), salt), where f(.) is
a moderately hard function f(.). This comes at a price, the server verifying a
password must evaluate f(.), which thus cannot be too hard. On the other hand,
if a tuple (login, y, salt) is leaked, an adversary who tries to find the password by
a dictionary attack must evaluate f(.) for every attempt. A popular moderately
hard function is PBKDF2 (Password Based Key Derivation Function 2) [Kal00],
which basically just iterates a cryptographic hash function H several times (1024
is a typical value).

Unfortunately a moderately hard function like PBKDF2 offers much less pro-
tection against adversaries who can build customized hardware to evaluate the
underlying hash function than one would hope for. The reason is that the cost
of computing a hash function H like SHA256 or MD5 on an ASIC (Applica-
tion Specific Integrated Circuit) is orders of magnitude smaller than the cost of
computing H on traditional hardware [DGN03,NBF+15].
Memory-Bound and Memory-Hard Functions. [ABW03] recognized that cache-
misses are more egalitarian than computation, in the sense that they cost about
the same on different architectures. They propose “memory-bound” functions,
which are functions that will incur many expensive cache-misses. This idea was
further developed by [DGN03].

Along similar lines, Percival [Per09] observes that unlike computation, mem-
ory costs tend to be relatively stable across different architectures, and suggests
to use memory-hard functions (MHF) for password hashing. [Per09] also intro-
duced the scrypt MHF which has found a variety of applications in practice.
Very recently it has been proven to indeed offer optimal time/space trade-offs
in the random oracle model [ACP+17,ACK+16].

MHFs come in two flavours, data-dependent MHFs (dMHF) such as scrypt,
and data independent MHFs (iMHF). The former are potentially easier to con-
struct and allow for more extreme memory-hardness [ACP+17,AB16], but they
leave open the possibility of side-channel attacks [FLW13], thus iMHFs are
preferable when the inputs are sensitive, as in the case of password hashing.
We shortly discuss the state of the art for dMHFs at the end of this section.
iMHF as Graphs. An iMHF comes with an algorithm that computes the function
using a fixed memory access pattern. In particular the pattern is independent
of the input. Such functions can thus be described by a directed acyclic graph
(DAG) G, where each node v of the graph corresponds to some intermediate value
�v that appears during the computation of the function, and the edges capture
the computation: if �v is a function of previously computed values �i1 , . . . , �iδ

,
then the nodes i1, . . . , iδ are parents of v in G. For an iMHF F , we’ll denote
with G(F ) the underlying graph. For example G(PBKDF2) is simply a path.



Depth-Robust Graphs and Their Cumulative Memory Complexity 5

Graph Labeling Functions. Not only can an iMHF be captured by a graph as
just outlined, we will actually construct iMHFs by first specifying a graph, and
then defining a “labeling function” on top of it: Given a graph G with node set
V = [n] = {1, 2, . . . , n}, a hash function H : {0, 1}∗ → {0, 1}w and some input x,
define the labeling of the nodes of G as follows: a source (a node v with indegree
0) has label �v(x) = H(v, x), a node v with parents v1 < v2 < · · · < vδ has label
�v(x) = H(v, �v1(x), . . . , �vδ

(x)). For a DAG G with a unique sink s we define
the labeling function of G as fG(x) = �s(x). Note that using the convention from
the previous paragraph, we have G(fG) = G.

The Black Pebbling Game One of the main techniques for analyzing iMHF
is to use pebbling games played on graphs. First introduced by Hewitt and
Paterson [HP70] and Cook [Coo73] the (sequential) black pebbling game (and
its relatives) have been used to great effect in theoretical computer science.
Some early applications include space/time trade-offs for various computational
tasks such as matrix multiplication [Tom78], the FFT [SS78,Tom78], inte-
ger multiplication [SS79b] and solving linear recursions [Cha73,SS79a]. More
recently, pebbling games have been used for various cryptographic applications
including proofs of space [DFKP15,RD16], proofs of work [DNW05,MMV13],
leakage-resilient cryptography [DKW11a], garbled circuits [HJO+16], one-time
computable functions [DKW11b], adaptive security proofs [HJO+16,JW16]
and memory-hard functions [FLW13,AS15,AB16,AGK+16]. It’s also an active
research topic in proof complexity (cf. the survey on http://www.csc.kth.se/
∼jakobn/research/PebblingSurveyTMP.pdf).

The black pebbling game is played over a fixed directed acyclic graph (DAG)
G = (V,E) in rounds. The goal of the game is to pebble all sink nodes of
G (not necessarily simultaneously). Each round i ≥ 1 is characterized by its
pebbling configuration Pi ⊆ V which denotes the set of currently pebbled nodes.
Initially P0 = ∅, i.e., all nodes are unpebbled. Pi is derived from the previous
configuration Pi−1 according to two simple rules. (1) A node v may be pebbled
(added to Pi) if, in the previous configuration all of its parents were pebbled,
i.e., parents(v) ⊆ Pi−1. (2) A pebble can always be removed from Pi. In the
sequential version rule (1) may be applied at most once per round while in
the parallel version no such restriction applies. A sequence of configurations
P = (P0, P1, . . .) is a (sequential) pebbling of G if it adheres to these rules and
each sink node of G is contained in at least one configuration.

From a technical perspective, in this paper we investigate upper and lower
bounds on various pebbling complexities of graphs, as they can be related to the
cost of evaluating the “labeling function” fG (to be defined below) in various
computational models. In particular, let PG and P‖

G denote all valid sequential
and parallel pebblings of G, respectively. We are interested in the parallel cumu-
lative pebbling complexity of G, denoted Π

‖
cc(G), and the sequential space-time

complexity of G, denoted Πst(G), which are defined as

Π‖
cc(G) = min

(P1,...,Pt)∈P‖
G

t∑

i=1

|Pi| Πst(G) = min
(P1,...,Pt)∈PG

t · max
i

(|Pi|).

http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
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A main technical result of this paper is a family of graphs with high (in fact,
as we’ll discuss below, maximum possible) Π

‖
cc complexity, and where the Πst

complexity is not much higher than the Π
‖
cc complexity.1 Throughout, we’ll

denote with Gn the set of all DAGs on n nodes and with Gn,d ⊆ Gn the DAGs
where each node has indegree at most d.

Theorem 1. There exists a family of DAGs {Gn ∈ Gn,2}n∈N where

1. the parallel cumulative pebbling complexity is

Π‖
cc(Gn) ∈ Ω(n2/ log(n))

2. and where the sequential space-time complexity matches the parallel cumula-
tive pebbling complexity up to a constant

Πst(Gn) ∈ O(n2/ log(n)).

The lower bound on Π
‖
cc in item 1. above is basically optimal due to the following

bound from [AB16].2

Theorem 2 ([AB16, Theorem 8]). For any constant ε > 0 and sequence of
DAGs {Gn ∈ Gn,δn

}n∈N it holds that

Π‖
cc(Gn) = o

(
δnn2

log1−ε

)
.

In particular if δn = O(log1−ε) then Π
‖
cc(Gn) = o(n2), and

if δn = Θ(1) then Π‖
cc(Gn) = o(n2/ log1−ε(n)). (1)

Pebbling vs. Memory-Hardness. The reason to focus on the graph G = G(F )
underlying an iMHF F is that clean combinatorial properties of G – i.e., bounds
on the pebbling complexities – imply both upper and lower bounds on the cost of
evaluating F in various computational models. For upper bounds (i.e., attacks),
no further assumption on F are required to make the transition from pebbling to
computation cost. For lower bounds, we have to assume that there’s no “short-
cut” in computing F , and the only way is to follow the evaluation sequence
as given by G. Given the current state of complexity theory, where not even
superlinear lower bounds on evaluating any function in NP are known, we can-
not hope to exclude such shortcuts unconditionally. Instead, we assume that the

1 Note that Π
‖
cc(G) ≤ Πst(G) as parallelism can only help, and space-time complexity

(i.e., number of rounds times the size of the largest state) is always higher than
cumulative complexity (the sum of the sizes of all states).

2 The statement below is obtained from the result in [AB16] by treating the core-
memory ratio as a constant and observing that, trivially, at most n pebbles are on
G during a balloon phase and at most n pebbles are placed in one step during a
balloon phase.
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underlying hash function H is a random oracle and circuits are charged unit cost
for queries to the random oracle.

For our lower bounds, we must insist on G having constant indegree. The
reason is that in reality H must be instantiated with some cryptographic hash
function like SHA1, and the indegree corresponds to the input length on which H
is invoked. To evaluate H on long inputs, one would typically use some iterated
construction like Merkle-Damgard, and the assumption that H behaves like a
black-box that can only be queried once the entire input is known would be
simply wrong in this case.

As advocated in [AS15], bounds on Π
‖
cc(G) are a reasonable approximation

for the cost of evaluating fG in dedicated hardware, whereas a bound on Πst(G)
gives an upper bound on the cost of evaluating fG on a single processor machine.
The reason [AS15] consider cumulative complexity for lower and space-time com-
plexity for the upper bound is that when lower bounding the cost of evaluating fG

we do want to allow for amortization of the cost over arbitrary many instances,3

whereas for our upper bound we don’t want to make such an assumption. The
reason we consider parallel complexity for the lower and only sequential for the
upper bound is due to the fact that an adversary can put many (cheap) cores
computing H on dedicated hardware, whereas for the upper bound we only want
to consider a single processor machine.

If Π
‖
cc(G) is sufficiently larger than |V (G)| (in Theorem 1 it’s almost

quadratic), then the cost of evaluating fG in dedicated hardware is dominated by
the memory cost. As memory costs about the same on dedicated hardware and
general purpose processors, if our G additionally satisfies Π

‖
cc(G) ≈ Πst(C), then

we get a function fG whose evaluation on dedicated hardware is not much cheaper
than evaluating it on an off the shelf machine (like a single core x86 architecture).
This is exactly what the family from Theorem1 achieves. We elaborate on these
computational models and how they are related to pebbling in the full version.

On the positive side, previous to this work, the construction with the best
asymptotic bounds was due to [AS15] and achieved Π

‖
cc(Gn) ∈ Ω(n2/ log10(n)).

However the exponent 10 (and the complexity of the construction) makes this
construction uninteresting for practical purposes.

On the negative side [AB16,ACK+16,AB17] have broken many popular
iMHFs in a rather strong asymptotic sense. For example, in [AB16], the graph
underlying Argon2i-A [BDK16], the winner of the recent Password Hashing Com-
petition4, was shown to have Π

‖
cc complexity Õ(n1.75). For Catena [FLW13] the

3 Π
‖
cc satisfies a direct product property: pebbling k copies of G cost k times as much

as pebbling G, i.e., Π
‖
cc(G

k) = k · Π
‖
cc(G), but this is not true for Πst complexity.

4 The Argon2 specification [BDK16] has undergone several revisions all of which are
regularly referred to as “Argon2.” To avoid confusion we follow [AB17] and use
Argon2i-A [BDK15] to denote the version of Argon2i from the password hashing
competition [PHC] and we use Argon2i-B [BDKJ16] to refer the version of Argon2
that is currently being considered for standardization by the Cryptography Form
Research Group (CFRG) of the IRTF. We conjecture that the techniques introduced
in this paper could also be used to establish tighter bounds for Argon2i-B. However,
we leave this as an open challenge for future work.
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upper bound O(n5/3) is shown in [AB16]. In [AB17] these results were extended
to show that Argon2i-B [BDKJ16] has Π

‖
cc(G) = O

(
n1.8

)
. Moreover [AB17]

show that for random instances of these functions (which is how they are sup-
posed to be used in practice) the attacks actually have far lower Π

‖
cc than these

asymptotic analyses indicate.

A New Generic Attack and Its Applications. In this work we improve on the
attacks of [BK15,AS15,AB16] (Sect. 6). We give a new parallel pebbling strat-
egy for pebbling DAGs which lack a generalization of depth-robustness. Next we
investigate this property for the case of Argon2i-A, the three Balloon-Hashing
variants and both Catena variants to obtain new upper bounds on their respec-
tive Π

‖
cc. For example, we further improve the upper bound on Π

‖
cc for Argon2i-A

and the Single Buffer variant of Balloon-Hashing from Õ(n1.75) to O(n1.708).

New Security Proofs. Complementing these results, in Sect. 5, we give the first
security proofs for a variety of iMHFs. Hitherto the only MHF with a full security
proof in a parallel computational model was [AS15] which employed relatively
construction specific techniques. When restricted to sequential computation the
results of [LT82,AS15] show that Catena has Πst complexity Ω(n2). Similar
results are also shown for Argon2i-A and Balloon Hashing in [BCGS16].

In this work we introduce two new techniques for proving security of iMHFs.
In the case of Argon2i-A and Argon2i-B we analyze its depth-robustness to
show that its Π

‖
cc is at least Ω̃(n5/3). The second technique involves a new

combinatorial property called dispersion which we show to imply lower bounds
on the Π

‖
cc of a graph. We investigate the dispersion properties of the Catena

and Balloon Hashing variants to show their Π
‖
cc to be Ω̃(n1.5). Previously no

(non-trivial) lower bounds on Π
‖
cc were known for Argon2i-A, Catena or Balloon

Hashing. Interestingly, our results show that Argon2i-A and Argon2i-B have
better asymptotic security guarantees than Catena since Π

‖
cc = Ω(n5/3) for

Argon2i-A and Π
‖
cc = O(n13/8) for Catena.

While these lower bounds are significantly worse than what we might ideally
hope for in a secure iMHF (e.g., Π

‖
cc ≥ Ω(n2/ log(n))), we observe that, in

light of our new attacks in Sect. 6, they are nearly tight. Unfortunately, together
with the bounds on the sequential complexity of these algorithms our results do
highlight a large asymptotic gap between the memory needed when computing
the functions on parallel vs. sequential computational devices.

A table summarizing the asymptotic cumulative complexity of various iMHFs
can be found in Table 1.

Depth-Robust Graphs. The results in this work rely on a new connection
between the depth-robustness of a DAG and its Π

‖
cc complexity. A DAG

G is (e, d)-depth-robust if, after removing any subset of at most e nodes
there remains a directed path of length at least d. First investigated by
Erdös, Graham and Szemerédi [EGS75], several such graphs enjoying low inde-
gree and increasingly extreme depth-robustness have been constructed in the
past [EGS75,PR80,Sch82,Sch83,MMV13] mainly in the context of proving
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Table 1. Overview of the asymptotic cumulative complexity of various iMHF.

Algorithm Lowerbound Upperbound Appearing in

Argon2i-A Õ
(
n1.75

)
[AB16]

Argon2i-A Ω̃
(
n1.6̄
)

Õ
(
n1.708

)
This work

Argon2i-B O
(
n1.8
)

[AB17]

Argon2i-B Ω̃
(
n1.6̄
)

This work

Balloon-Hashing: Linear and
Double Buffer (DB)

O
(
n1.67

)
[AB16]

Balloon-Hashing: Linear and
Double Buffer (DB)

Ω̃
(
n1.5
)

Õ
(
n1.625

)
This work

Balloon-Hashing: Single Buffer (SB) Õ
(
n1.75

)
[AB16]

Balloon-Hashing: Single Buffer (SB) Ω̃
(
n1.6̄
)

Õ
(
n1.708

)
This work

Catena: Dragonfly O
(
n1.67

)
[AB16]

Catena: Dragonfly Ω̃
(
n1.5
)

Õ
(
n1.625

)
This work

Catena: Butterfly O
(
n1.67

)
[AB16]

Catena: Butterfly Ω̃
(
n1.5
)

o
(
n1.625

)
This work

[AS15] Ω
(

n2

log10 n

)
[AS15]

Theorem 1 Ω
(

n2

logn

)
This work

Arbitrary iMHF O
(

n2 log logn
logn

)
[AB16]

lower-bounds on circuit complexity and Turing machine time. Depth-robustness
has been used as a key tool in the construction of cryptographic objects like
proofs of sequential work [MMV13]. In fact depth-robust graphs were already
used as a building block in the construction of a high Π

‖
cc graph in [AS15].

Depth-Robustness and Π
‖
cc. While the flavour of the results in this work are

related to those of [AS15] the techniques are rather different. As mentioned
above already, they stem from a new tight connection between depth-robustness
and Π

‖
cc. A special case of this connection shows that if G is (e, d)-depth-robust,

then its Π
‖
cc can be lower bounded as

Π‖
cc(G) ≥ e · d.

This complements a result from [AB16], which gives a pebbling strategy that is
efficient for graphs of low depth-robustness. Thus a DAG has high Π

‖
cc if and

only if it is very depth-robust.
Moreover, we give a new tool for reducing the indegree of a DAG while not

reducing the Π
‖
cc of the resulting graph (in terms of its size). Together these

results directly have some interesting consequences

– The family of DAGs {Gn ∈ Gn,log(n)}n∈N from Erdös et al. [EGS75] have
optimally high Π

‖
cc(Gn) ∈ Ω(n2).
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– Using our indegree reduction we can turn the above family of log(n) inde-
gree into a family of indegree 2 DAGs {G′

n ∈ G(n,2)}n∈N with Π
‖
cc(G′

n) ∈
Ω(n2/ log(n)), which by Theorem 2 is optimal for constant indegree graphs.

Data-Dependent MHFs. One can naturally extend the Π
‖
cc notion also to

“dynamic” graphs – where some edges are only revealed as some nodes are
pebbled – in order to analyse data-dependent MHFs (dMHF) like scrypt. In
this model, [ACK+16] show that Π

‖
cc(scrypt) = Ω(n2/ log2(n)). Unfortunately

unlike for iMHFs, for dMHFs we do not have a proof that a lower bound on Π
‖
cc

implies roughly the same lower bound on the cumulative memory complexity
in the random oracle model.5 Recently a “direct” proof (i.e., avoiding pebbling
arguments) – showing that scrypt has optimal cumulative memory complexity
Ω(n2) – has been announced, note that this bound is better than what we can
hope to achieve for iMHFs (as stated in Theorem 2). Unfortunately, the tech-
niques that have now been developed to analyse dMHFs seem not to be useful
for the iMHF setting.

2 Pebbling Complexities and Depth-Robustness of
Graphs

We begin by fixing some common notation. We use the sets N = {0, 1, 2, . . .},
N

+ = {1, 2, . . .}, and N≥c = {c, c + 1, c + 2, . . .} for c ∈ N. Further, we also use
the sets [c] := {1, 2, . . . , c} and [b, c] = {b, b + 1, . . . , c} where b ∈ N with b ≤ c.
For a set of sets A = {B1, B2, . . . , Bz} we use the notation ||A|| :=

∑
i |Bi|.

2.1 Depth-Robust Graphs

We say that a directed acyclic graph (DAG) G = (V,E) has size n if |V | = n.
A node v ∈ V has indegree δ = indeg(v) if there exist δ incoming edges δ =
|(V × {v}) ∩ E|. More generally, we say that G has indegree δ = indeg(G) if the
maximum indegree of any node of G is δ. A node with indegree 0 is called a source
node and one with no outgoing edges is called a sink. We use parentsG(v) =
{u ∈ V : (u, v) ∈ E} to denote the parents of a node v ∈ V . In general,
we use ancestorsG(v) =

⋃
i≥1 parents

i
G(v) to denote the set of all ancestors of

v — here, parents2G(v) = parentsG (parentsG(v)) denotes the grandparents of v
and parentsi+1

G (v) = parentsG
(
parentsiG(v)

)
. When G is clear from context we

will simply write parents (ancestors). We denote the set of all sinks of G with
sinks(G) = {v ∈ V : �(v, u) ∈ E} — note that ancestors (sinks(G)) = V . We
often consider the set of all DAGs of equal size Gn = {G = (V,E) : |V | = n}
and often will bound the maximum indegree Gn,δ = {G ∈ Gn : indeg(G) ≤ δ}.

5 [ACK+16] introduces a combinatorial conjecture, which if true, means that lower

bounds on Π
‖
cc translate to cumulative memory complexity. At this point a strong

variant of the conjecture has already been refuted, the state of the conjecture is
updated in the eprint version [ACK+16] of the paper.
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For directed path p = (v1, v2, . . . , vz) in G its length is the number of nodes it
traverses length(p) := z. The depth d = depth(G) of DAG G is the length of the
longest directed path in G.

We will often consider graphs obtained from other graphs by removing sub-
sets of nodes. Therefore if S ⊂ V then we denote by G − S the DAG obtained
from G by removing nodes S and incident edges. The following is a central
definition to our work.

Definition 1 (Depth-Robustness). For n ∈ N and e, d ∈ [n] a DAG G =
(V,E) is (e, d)-depth-robust if

∀S ⊂ V |S| ≤ e ⇒ depth(G − S) ≥ d.

We will make use of the following lemma due to Erdös, Graham and Sze-
merédi [EGS75], who showed how to construct a family of log indegree DAGs
with extreme depth-robustness.

Theorem 3 ([EGS75]). For some fixed constants c1, c2, c3 > 0 there exists an
infinite family of DAGs {Gn ∈ Gn,c3 log(n)}∞

n=1 such that Gn is (c1n, c2n)-depth-
robust.

2.2 Graph Pebbling

We fix our notation for the parallel graph pebbling game following [AS15].

Definition 2 (Parallel/Sequential Graph Pebbling). Let G = (V,E) be a
DAG and let T ⊆ V be a target set of nodes to be pebbled. A pebbling config-
uration (of G) is a subset Pi ⊆ V . A legal parallel pebbling of T is a sequence
P = (P0, . . . , Pt) of pebbling configurations of G where P0 = ∅ and which sat-
isfies conditions 1 & 2 below. A sequential pebbling additionally must satisfy
condition 3.

1. At some step every target node is pebbled (though not necessarily
simultaneously).

∀x ∈ T ∃z ≤ t : x ∈ Pz.

2. Pebbles are added only when their predecessors already have a pebble at the
end of the previous step.

∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x) ⊆ Pi−1.

3. At most one pebble placed per step.

∀i ∈ [t] : |Pi \ Pi−1| ≤ 1.

We denote with PG,T and P‖
G,T the set of all legal sequential and parallel peb-

blings of G with target set T , respectively. Note that PG,T ⊆ P‖
G,T . We will be

mostly interested in the case where T = sinks(G) and then will simply write PG

and P‖
G.
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Definition 3 (Time/Space/Cumulative Pebbling Complexity). The
time, space, space-time and cumulative complexity of a pebbling P =
{P0, . . . , Pt} ∈ P‖

G are defined to be:

Πt(P ) = t Πs(P ) = max
i∈[t]

|Pi| Πst(P ) = Πt(P ) · Πs(P ) Πcc(P ) =
∑

i∈[t]

|Pi|.

For α ∈ {s, t, st, cc} and a target set T ⊆ V , the sequential and parallel pebbling
complexities of G are defined as

Πα(G,T ) = min
P∈PG,T

Πα(P ) and Π‖
α(G,T ) = min

P∈P‖
G,T

Πα(P ).

When T = sinks(G) we simplify notation and write Πα(G) and Π
‖
α(G).

It follows from the definition that for α ∈ {s, t, st, cc} and any G the parallel
pebbling complexity is always at most as high as the sequential, i.e., Πα(G) ≥
Π

‖
α(G), and cumulative complexity is at most as high as space-time complexity,

i.e., Πst(G) ≥ Πcc(G) and Π
‖
st(G) ≥ Π

‖
cc(G).

In this work we will consider constant in-degree DAGs {Gn ∈ Gn,Θ(1)}n∈N,
and will be interested in the complexities Πst(Gn) and Π

‖
cc(Gn) as these will

capture the cost of evaluating the labelling function derived from Gn on a single
processor machine (e.g. a x86 processor on password server) and amortized AT
complexity (which is a good measure for the cost of evaluating the function on
dedicated hardware), respectively.

Before we state our main theorem let us observe some simple facts. Every n-
node graph can be pebbled in n steps, and we cannot have more than n pebbles
on an n node graph, thus

∀Gn ∈ Gn : Π‖
cc(Gn) ≤ Πst(Gn) ≤ n2.

This upper bound is basically matched for the complete graph Kn = (V =
[n], E = {(i, j) : 1 ≤ i < j ≤ n}) as

n(n − 1)/2 ≤ Π‖
cc(Kn) ≤ Πst(Kn) ≤ n2.

Graph Kn has the desirable properties that its Πst is within a constant factor to
its Π

‖
cc complexity and that its Π

‖
cc complexity is maximally high. Unfortunately,

Kn has very high indegree, which makes it useless for our purpose to construct
memory-hard functions. The path Qn = (V = [n], E = {(i, i+1) : 1 ≤ i ≤ n−1})
on the other hand has indegree 1 and its Πst is even exactly as large as its Π

‖
cc

complexity. Unfortunately it has very low pebbling complexity

Π‖
cc(Qn) = Πst(Qn) = n

which means that in the labelling function we get from Qn (which is basically
PBKDF2 discussed in the introduction) the evaluation cost will not be dom-
inated by the memory cost even for large n. As stated in Theorem 1, in this
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paper we construct a family of graphs {Gn ∈ Gn,2}n∈N which satisfies all three
properties at once: (1) the graphs have indegree 2 (2) the parallel cumulative
pebbling complexity is Π

‖
cc(Gn) ∈ Ω(n2/ log(n)), which by Theorem 2 is opti-

mal for constant indegree graphs, and (3) Πst(Gn) is within a constant factor of
Π

‖
cc(Gn).

3 Depth-Robustness Implies High Π‖
cc

In this section we state and prove a theorem which lowerbounds the Π
‖
cc of a

given DAG G in terms of its depth robustness.

Theorem 4. Let G be an (e, d)-depth-robust DAG, then Π
‖
cc(G) > ed.

Proof. Let (P1, . . . , Pm) be a parallel pebbling of minimum complexity, i.e.,∑m
i=1 |Pi| = Π

‖
cc(G). For any d, we’ll show that there exists a set B of size

|B| ≤ Π
‖
cc(G)/d such that there’s no path of length d in G − B, or equivalently,

G is not (Π‖
cc(G)/d, d)-depth-robust, note that this implies the theorem.

For i ∈ [d] define Bi = Pi ∪Pi+d ∪Pi+2d . . .. We observe that by construction∑d−1
i=0 |Bi| ≤ ∑m

i=1 |Pi| = Π
‖
cc(G), so the size of the Bi’s is ≤ Π

‖
cc(G)/d on

average, and the smallest Bi has size at most this. Let B be the smallest Bi, as
just outlined |B| ≤ Π

‖
cc(G)/d.

It remains to show that G−B has no path of length d. For this consider any
path v1, . . . , vd of length d in G. Let j be minimal such that vd ∈ Pj (so vd is
pebbled for the first time in round j of the pebbling). It then must be the case
that vd−1 ∈ Pj−1 (as to pebble vd in round j there must have been a pebble
on vd−1 in round j − 1). In round j − 2 either the pebble on vd−1 was already
there, or there was a pebble on vd−2. This argument shows that each of the
pebbling configurations {Pj−d+1, . . . , Pj} must contain at least one node from
v1, . . . , vd. As B contains each dth pebbling configuration, B contains at least
one of these pebbling configurations {Pj−d+1, . . . , Pj}. Specifically we can find
j − d + 1 ≤ k ≤ j s.t Pk ⊆ B, thus the path v1, . . . , vd is not contained entirely
in G − B. ��

An immediate implication of Theorems 4 and 3 is that there is an infinite
family of DAGs with maximal Π

‖
cc(G) = Ω(n2) whose indegree scales with log n.

Note that this means that allowing indegree as small as O(log(n)) is sufficient
to get DAGs whose Π

‖
cc is within a constant factor of the n2 upper bound on

Π
‖
cc for any n node DAG. In the next section we will show how to reduce the

indegree to O(1) while only reducing Π
‖
cc(G) by a factor of O(log(n)).

Corollary 1 (of Theorems 4 and 3). For some constants c1, c2 > 0 there
exists an infinite family of DAGs {Gn,δ ∈ Gn,δ}∞

n=1 with δ ≤ c1 log(n) and
Π

‖
cc(G) ≥ c2n

2. This is optimal in the sense that for any family {δn ∈ [n]}∞
n=1

and {Jn ∈ Gn,δn
}∞

n=1 it holds that Π
‖
cc(Jn) ∈ O(n2). Moreover if δn =

o(log(n)/ log log(n)) then Π
‖
cc(Jn) = o(n2) = o(Π‖

cc(Gn)).
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Corollary 2 lower bounds the cost of pebbling a target set T given a starting
pebbling configuration S. In particular, if the ancestors of T in G − S induce an
(e, d)-depth-robust DAG then the pebbling cost is at least Π

‖
cc(G − S, T ) ≥ ed.

We will use Corollary 2 to lower bound Π
‖
cc for iMHFs like Argon2i and SB.

Corollary 2 (of Theorem 4). Given a DAG G = (V,E) and subsets S, T ⊂ V
such that S ∩ T = ∅ let G′ = G − (V \ ancestorsG−S(T )). If G′ is (e, d)-depth
robust then the cost of pebbling G − S with target set T is Π

‖
cc(G − S, T ) > ed.

Proof. Note that Π
‖
cc(G − S, T ) ≥ Π

‖
cc(G′) since we will need to pebble every

node in the set ancestorsG−S(T ) = V (G′) to reach the target set T in G − S.
By Theorem 4, we have Π

‖
cc(G′) > ed. ��

Corollary 3 states that it remains expensive to pebble any large enough set
of remaining nodes in a depth-robust graph even if we are permitted to first
remove an arbitrary node set of limited size. An application of Corollary 3 might
involve analysing the cost of pebbling stacks of depth-robust graphs. For example
if there are not enough pebbles on the graph at some point in time then there
must be some layers with few pebbles. If we can then show that many of the
nodes on those layers will eventually need to be (re)pebbled then we can use
this lemma to show that the remaining pebbling cost incurred by these layers is
large.

Corollary 3 (of Theorem 4). Let DAG G = (V,E) be (e, d)-depth-robust and
let S, T ⊂ V such that

|S| ≤ e and T ∩ S = ∅.

Then the cost of pebbling G − S with target set T is Π
‖
cc(G − S, T ) > (e −

|S|) (d − |ancestorsG−S(T )|).
Proof. Let G′ = G − (V − ancestorsG−S(T )) and observe that G′ is, at min-
imum, (e − |S|, d − |ancestorsG−S(T )|)-depth robust. By Corollary 2 we have
Π

‖
cc(G − S, T ) ≥ Π

‖
cc(G′) > (e − |S|) (d − |ancestorsG−S(T )|). ��

We remark that Theorem 4 is a special case of Corollary 3 by setting S = ∅
letting T = sinks(G). Recall that Π

‖
cc(G) is the parallel pebbling of minimal

cumulative cost when pebbling all sinks of G, this requires pebbling all nodes of
G at least once.

4 Indegree Reduction: Constant Indegree with Maximal
Π‖

cc

In this section we use the result from the previous section to show a new, more
efficient, degree-reduction lemma. We remark that Lemma 1 is similar to [AS15,
Lemma 9] in that both reductions replace high indegree nodes v in G with a path.
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However, we stress two key differences between the two results. First, our focus is
on reducing the indegree while preserving depth-robustness. By contrast, [AS15,
Lemma 9] focuses directly on preserving Π

‖
cc. Second, we note that the guarantee

of [AS15, Lemma 9] is weaker in that it yields a reduced indegree graph G′

whose size grows by a factor of indeg (n′ ≤ n × indeg) while Π
‖
cc can drop by

a factor of indeg—[AS15, Lemma 9] shows that Π
‖
cc(G′) ≥ Π‖

cc(G)
indeg−1 . By contrast,

setting γ = indeg in Lemma 1 yields a reduced indegree graph G′ whose size
grows by a factor of 2 × indeg (n′ ≤ 2n × indeg) and better depth-robustness
(e′, d′) = (e, d× indeg). In particular, when we apply Theorem4 the lower-bound
Π

‖
cc(G′) ≥ ed × indeg improves by a factor of indeg when compared with the

original graph G.

Lemma 1. Let G be a (e, d)-depth-robust DAG. For γ ∈ Z≥0 there exists a
(e, dγ)-depth-robust DAG G′ with

size(G′) ≤ (indeg(G) + γ) · size(G) , indeg(G′) = 2 and Πst(G
′) ≤ size(G′)2

γ
.

Proof. Fix a γ ∈ Z≥0 and let δ = indeg(G). We identify each node in V ′ with
an element of the set V × [δ + γ] and we write 〈v, j〉 ∈ V ′. For every node v ∈ V
with αv := indeg(v) ∈ [0, δ] we add the path pv = (〈v, 1〉, 〈v, 2〉, . . . , 〈v, αv + γ〉)
of length αv + γ. We call v the genesis node and pv its metanode. In particular
V ′ = ∪v∈V pv. Thus G has size at most (δ + γ)n.

Next we add the remaining edges. Intuitively, for the ith incoming edge (u, v)
of v we add an edge to G′ connecting the end of the metanode of u to the ith node
in the metanode of v. More precisely, for every v ∈ V , i ∈ [indeg(v)] and edge
(ui, v) ∈ E we add edge (〈ui, indeg(ui) + γ〉, 〈v, i〉) to E′. It follows immediately
that G′ has indegree (at most) 2.

Fix any node set S ⊂ V ′ of size |S| ≤ e. Then at most e metanodes can share
a node with S. For each such metanode remove its genesis node in G. As G is
(e, d)-depth-robust we are still left with a path p of length (at least) d in G. But
that means that after removing S from G′ there must remain a path p′ in G′

running through all the metanodes of p and |p′| ≥ |p|γ ≥ dγ. In other words G′

is (e, dγ)-depth-robust.
To see that Πst(G′) ≤ size(G′)2/γ we simply pebble G′ in topological order.

We note that we never need to keep more than one pebble on any metanode
pv = (〈v, 1〉, 〈v, 2〉, . . . , 〈v, αv + γ〉) with αv = indeg(v). Once we pebble the last
node 〈v, αv + γ〉 we can permanently discard any pebbles on the rest of pv since
〈v, αv + γ〉 is the only node with outgoing edges. ��
Proof of Theorem 1. Theorem 1 follows by applying Lemma1 to the family from
Theorem 3 with γ = indeg = log n. We get that for some fixed constants c1, c2 > 0
there exists an infinite family of indegree 2 DAGs {Gn ∈ Gn,2}∞

n=1 where Gn is
(c1n/ log n, c2n)-depth robust and Πst(Gn) ≤ O

(
n2/ log(n)

)
. By Theorem 4 then

Π
‖
cc(Gn) > (c1c2)n2/ log(n), which is basically optimal for constant indegree

DAGs by Theorem 2. ��
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5 Security Proofs of Candidate iMHFs

On the surface, in this and the next section we give both security proofs and
nearly optimal attacks for several of the most prominent iMHF proposals. That
is we show both lower and (relatively tight) upperbounds on their asymptotic
memory-hardness in the PROM. However, more conceptually, we also introduce
two new proof techniques for analysing the depth-robustness of DAGs as well as
a new very memory-efficient class of algorithms for pebbling a DAG improving
on the techniques used in [AB16]. Indeed for all candidates considered the attack
in the next section is almost optimal in light of the accompanying security proofs
in this section.

More specifically, in the first subsection we prove bounds for a class of random
graphs which generalize the Argon2i-A construction [BDK16] and the Single
Buffer (SB) variant of Balloon Hashing [BCGS16]. To prove the lowerbound we
use a simple and clean new technique for bounding the depth-robustness of a
random DAG. In particular, we show that a random DAG is almost certainly(
e, Ω̃

(
n2/e2

))
-depth robust for any e >

√
n. Combined with Theorem 4 we

could immediately obtain a lower bound of Ω̃
(
n1.5

)
. We can improve the lower

bound to Ω̃
(
n5/3

)
by introducing a stronger notion of depth-robustness that we

call block depth-robustness.
In the second subsection we prove bounds for a family of layered graphs which

generalize both of the Catena constructions [FLW13] as well as Linear (Lin) and
Double Buffer (DB) variants of Balloon Hashing [BCGS16]. In particular, we
introduce a new technique for proving lowerbounds on the cumulative pebbling
complexity of a graph without going through the notion of depth-robustness.
For example the (single layer) version of the Catena Dragonfly graph has the
worst possible depth-robustness of any graph of linear depth. This shows that
(in the lower but still non-trivial regimes of) cumulative complexity alternative
combinatorial structures exist besides depth-robustness that can also confer some
degree of pebbling complexity.

5.1 Lowerbounding the CC of Random DAGs

We begin by defining a (n, δ, w)-random DAG, the underlying DAGs upon which
Argon2i-A and SB are based. The memory window parameter w specifies the
intended memory usage and throughput of the iMHF—the cost of the näıve
pebbling algorithm is Π

‖
cc(N ) = wn. In particular, a t-pass Argon2i-A iMHF

is based on a (n, 2, n/t)-random DAG. Similarly, a t-pass Single-Buffer (SB)
iMHF [BCGS16] is based on a (n, 20, n/t)-random DAG. In this section we focus
on the t = 1-pass variants of the Argon2i-A and [BCGS16] iMHFs.

Definition 4 ((n, δ, w)-random DAG). Let n ∈ N, 1 < δ < n, and 1 ≤ w ≤ n
such that w divides n. An (n, δ, w)-random DAG is a randomly generated directed
acyclic (multi)graph with n nodes v1, . . . , vn (which we identify with the set [n]
according to there topological order) and with maximum in-degree δ for each
node. The graph has directed edges (vi, vi+1) for 1 ≤ i < n and random forward
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edges (vr(i,1), vi), . . . , (vr(i,δ−1), vi) for each node vi. Here, r(i, j) is independently
chosen uniformly at random from the set [max{0, i − w}, i − 1].

Theorem 5 states that for a (n, δ, n)-random DAG G such as Argon2i-A or
SB we almost certainly have Π

‖
cc(G) = Ω̃

(
n5/3

)
.

Theorem 5. Let G be a (n, δ, n)-random DAG then, except with probability
o
(
n−7

)
, we have

Π‖
cc(G) = Ω̃

(
n5/3

)
.

Security Lower Bound. To prove the lower bound we rely on a slightly stricter
notion of depth robustness. Given a node v let N(v, b) = {v − b + 1, . . . , v}
denote a segment of b consecutive nodes ending at v and given a set S ⊆ V (G)
let N(S, b) =

⋃
v∈S N(v, b). We say that a DAG G is (e, d, b)-block depth-robust

if for every set S ⊆ V (G) of size |S| ≤ e we have depth(G − N(S, b)) ≥ d. Notice
that when b = 1 (e, d, b)-block-depth robustness is equivalent to (e, d)-depth-
robustness. However, when b > 1 (e, d, b)-block-depth robustness is a strictly
stronger notion since the set N(S, b) may have size as large as |N(S, b)| = eb. 6

The proof of Theorem 5 relies on Lemma 2, which states that for any e ≥ √
n,

with high probability, a (n, 2, n)-random DAG G will be (e, d, b)-block depth-
robust with d = n2

e2polylog(n) and b = n/(20e). By contrast Lemma 9 states that

G will be (e, d)-reducible with d = Õ
(
n2/e2

)
.

Lemma 2. For any e ≥ √
n any δ ≥ 2 a (n, δ, n)-random DAG will be(

e,Ω
(

n2

e2 log(n)

)
, n
20e

)
-block depth robust except with negligible probability in n.

Setting e =
√

n in Lemma 2 and applying Theorem4 already implies that
Π

‖
cc(G) = Ω̃

(
n1.5

)
. To obtain the stronger bound in Theorem5 we rely on Corol-

lary 2 combined with a more sophisticated argument exploiting block depth-
robustness.

In more detail, let G be an (n, δ, n)-random DAG and let tj denote the first
time we place a pebble on node j. Observe that, since G contains all edges of
the form (j, j + 1) it must be that tj+i − tj ≥ i in any legal pebbling of G. We
will show that for any j > n/2 a legal pebbling must (almost certainly) incur a
cost of Ω̃

(
n4/3

)
between pebbling steps tj and tj+2k where k = Θ̃

(
n2/3

)
. That

is
∑tj+2k

t=tj
|Pt| = Ω̃

(
n4/3

)
for any legal pebbling of G. Thus,

∑tn

t=tn/2+1
|Pt| =

Ω̃
(
n4/3 n/2

k

)
= Ω̃

(
n5/3

)
. In the remaining discussion we set e = Ω̃

(
n2/3

)
,

d = Ω̃
(
n2/3

)
and b = Ω̃

(
n1/3

)
.

To show that
∑tj+2k

t=tj
|Pt| = Ω̃

(
n4/3

)
we consider two cases: we either have

|Pt| ≥ e/2 = Ω̃
(
n2/3

)
pebbles on the DAG during each round tj ≤ t ≤ tj+k, or

we do not. In the first case we trivially have
∑tj+2k

t=tj
|Pt| ≥ ke/2 = Ω̃

(
n4/3

)
.

6 In particular, (e, d, b ≥ 1)-block depth robustness implies (e, d)-depth robustness.
However, (e, d)-depth robustness only implies (e/b, d, b)-block depth robustness.
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The second case is the trickier one to handle. To address it we essentially
show that if, at some moment t′, few pebbles are left on G then between t′ and
tj+2k it must be that (in particular) a depth-robust sub-graph of G was pebbled
which we know requires a high pebbling cost. In more detail, suppose at some
moment t′ ∈ [tj , tj+k] only |Pt| < e/2 pebbles remain on G. Then we consider the
sub-graph H induced by the node set ancestorsG1−N(Pt′ ,b) ([j + k + 1, j + 2k]).
We observe that, on the one hand, H must be fully pebbled during the interval
[t′, tj+2k]. On the other hand, we observe that G1 = G − {n/2 + 1, . . . , n} is
a (n/2, δ, n/2)-random DAG and, hence, by Lemma2, G1 is (almost certainly)
(e, d, b)-block depth robust with e = Ω̃

(
n2/3

)
, d = Ω

(
n2/3

log(n)

)
and b = Ω̃

(
n1/3

)
.

By exploiting the block depth robustness of G1 we can show that H must itself
be

(
Ω̃

(
n2/3

)
, Ω̃

(
n2/3

))
-depth robust. But then by Corollary 2 we get that H

has cumulative complexity Ω̃(n4/3) and so have

tj+2k∑

t=tj+k+1

|Pt| ≥ Π‖
cc (G1 − Pt′ , [j + k + 1, j + 2k]) ≥ Ω̃

(
n4/3

)
.

The proofs of Lemma 2 and Theorem 5 can be found in the full version. We
now make a couple of observations about Lemma 2 and Theorem 5.

1. The lower bounds from Lemma 2 and Theorem 5 also apply to Argon2i-B.
An Argon2i-B DAG G is similar to an (n, δ, n)-random DAG except that
the randomly chosen forward edge (r(i), i) for each node i is not chosen
from the uniform distribution. However, these edges are still chosen inde-
pendently and for each pair j < i we still have Pr[r(i) = j] = Ω(1/i). These
are the only properties we used in the proofs of Lemma 2 and Theorem 5.
Thus, essentially the same analysis shows that (whp) an Argon2i-B DAG G

is
(
e,Ω

(
n2/e2

)
, n
20e

)
-block depth robust and that Π

‖
cc(G) = Ω̃

(
n5/3

)
.

2. The lower bound from Lemma 2 is tight up to polylogarithmic factors. In par-
ticular, a generalization of an argument of Alwen and Blocki [AB16] shows
that a (n, δ, n)-random DAG is

(
e, Ω̃

(
n2

e2

))
-reducible—see Lemma 9. How-

ever, this particular upper bound does not extend to Argon2i-B.
3. The lower bound from Theorem5 might be tight. Alwen and Blocki [AB16]

gave an attack A such that Π
‖
cc(A) = O

(
n1.75δ log n

)
for a (n, δ, t)-random

DAG. In the following section we reduce the gap of Õ
(
n1/12

)
further by devel-

oping an improved recursive version of the attack of Alwen and Blocki [AB16].
In particular, we show that for any ε > 0 we have Π

‖
cc(A) = o

(
n1+

√
1/2+ε

)
=

o
(
n1.708

)
. Our modified attack also improves the upper bound for other iMHF

candidates like Catena [FLW13].
4. Theorem 4 alone will not yield any meaningful lower bounds on the Π

‖
cc

of the Catena iMHFs [FLW13]. In particular, the results from Alwen and
Blocki [AB16] imply that for any t-pass variant of Catena the corresponding
DAG is (e, d)-reducible for ed ≥ nt (typically, t = O(polylog(n))). However,
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in the remainder of this section, we use an alternative techniques to prove
that Π

‖
cc(G) = Ω

(
n1.5

)
for the both Catena iMHFs and the Linear and DB

iMHFs of [BCGS16].

5.2 Lowerbounding Dispersed Graphs

In this section we define dispersed graphs and prove a lowerbound on their CC.
Next we show that several of the iMHF constructions from the literature are
based on such graphs. Thus we obtain proofs of security for each of these con-
structions (albeit for limited levels of security). In the subsequent section we give
an upperbound on the CC of these constructions showing that the lowerbounds
in this section are relatively tight.

Generic Dispersed Graphs. Intuitively a (g, k)-dispersed DAG is a DAG
ending with a path φ of length k which has widely dispersed dependencies. The
following definitions make this concept precise.

Definition 5 (Dependencies). Let G = (V,E) be a DAG and L ⊆ V . We say
that L has a (z, g)-dependency if there exist node disjoint paths p1, . . . , pz each
ending in L and with length (at least) g.

We are interested in graphs with long paths with many sets of such
dependencies.

Definition 6 (Dispersed Graph). Let g ≤ k be positive integers. A DAG G
is called (g, k)-dispersed if there exists a topological ordering of its nodes such
that the following holds. Let [k] denote the final k nodes in the ordering of G and
let Lj = [jg, (j + 1)g − 1] be the jth subinterval. Then ∀j ∈ [�k/g�] the interval
Lj has a (g, g)-dependency.

More generally, let ε ∈ (0, 1]. If each interval Lj only has an (εg, g)-
dependency then G is called (ε, g, k)-dispersed.

We show that many graphs in the literature consist of a stack of dispersed
graphs. Our lowerbound on the CC of a dispersed graph grows in the height of
this stack. The next definition precisely captures such stacks.

Definition 7 (Stacked Dispersed Graphs). A DAG G = (V,E) is called
(λ, ε, g, k)-dispersed if there exist λ ∈ N

+ disjoint subsets of nodes {Li ⊆ V },
each of size k with following two properties.

1. For each Li there is a path running through all nodes of Li.
2. Fix any topological ordering of G. For each i ∈ [λ] let Gi be the sub-graph

of G containing all nodes of G up to the last node of Li. Then Gi is an
(ε, g, k)-dispersed graph.

We denote the set of (λ, ε, g, k)-dispersed graphs by D
λ,k
ε,g .

We are now ready to state and prove the lowerbound on the CC of stacks of
dispersed graphs.
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Theorem 6.

G ∈ D
λ,k
ε,g ⇒ Π‖

cc(G) ≥ ελg

(
k

2
− g

)
.

Intuitively we sum the CC of pebbling the last k nodes Li of each sub-graph
Gi. For this we consider any adjacent intervals A of 2g nodes in Li. Let p be a
path in the (εg, g)-dependency of the second half of A. Either at least one pebble
is always kept on p while pebbling the first half of A (which takes time at least
g since a path runs through Li) or p must be fully pebbled in order to finish
pebbling interval A (which also takes time at least g). Either way pebbling A
requires an additional CC of g per path in the (εg, g)-dependency of the second
half of A. Since there are k/2g such interval pairs each with εg incoming paths
in their dependencies we get a total cost for that layer of kgε/2. So the cost for
all layer of G is at least λkgε/2. The details (for the more general case when g
doesn’t divide n) can be found in the full version.

The Graphs of iMHFs. We apply Theorem 6 to some important iMHFs from
the literature. For this we first describe the particular DAGs (or at least their
salient properties) underlying the iMHF candidates for which we prove lower-
bounds in this section. Then we state a theorem summarizing our lowerbounds
for these graphs. Finally we prove the theorem via a sequence of lemma; one per
iMHF being considered.

Catena Dragonfly. We begin with the Catena Dragonfly graph. We briefly recall
the properties of the DFGn

λ construction, relevant to our proof, summarized in
the following lemma which follows easily from the definition of DFGn

λ in [FLW13,
Definitions 8 & 9].

For this we describe the “bit-reversal” function (from which the underlying
bit-reversal graph derives its name). Let k ∈ N

+ such that c = log2 k is an
integer. On input x ∈ [k] the bit-reversal function br(·) : [k] → [k] returns y + 1
such that the binary representation of x − 1 using c bits is the reverse of the
binary representation of y using c bits.

Lemma 3 (Catena Dragonfly). Let λ, n ∈ N
+ be such that k = n/(λ+1) is a

power of 2. Let G = DFGn
λ be the Catena Bit Reversal graph. Then the following

holds:

1. G has n nodes.
2. Number them in topological order with the set [n] and ∀i ∈ [0, λ] let node set

Li = [1 + ik, (i + 1)k]. A path runs through all nodes in each set Li.
3. Node ki + x ∈ Li has an incoming edge from k(i − 1) + br(x) ∈ Li−1.

Catena Butterfly. Next describe the graph underlying the Catena Butterfly
graph. We summarize its key properties relevant to our proof in the follow-
ing lemma (which follows immediately by inspection of the Catena Butterfly
definition [FLW13, Def. 10 & 11]).
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Lemma 4 (Catena Butterfly Graph). Let λ, n ∈ N
+ such that n = n̄(λ(2c−

1) + 1) where n̄ = 2c for some c ∈ N
+. Then the Catena Butterfly Graph BFGn

λ

consists of a stack of λ sub-graphs such that the following holds.

1. The graph BFGn
λ has n nodes in total.

2. The graph BFGn
λ is built as a stack of λ sub-graphs {Gi}i∈[λ] each of which is

a superconcentrator7. In the unique topological ordering of BFGn
λ denote the

first and final n̄ nodes of each Gi as Li,0 and Li,1 respectively. Then there is
a path running through all nodes in each Li,1.

3. Moreover, for any i ∈ [λ] and subsets S ⊂ Li,0 and T ⊂ Li,1 with |S| = |T | =
h ≤ n̄ there exist h node disjoint paths p1, . . . , ph of length 2c from S to T .

Balloon Hashing Linear. Finally we describe the graph underlying both the Lin-
ear and DB construction [BCGS16]. The graph G = Linσ

τ is a pseudo-randomly
constructed τ -layered graph with indeg(G) = 21. It is defined as follows:

– G = (V,E) has n = στ nodes V = [n], and G contains a path 1, 2, . . . , n
running through V .

– For i ∈ [0, τ − 1] let Li = [iσ + 1, (i + 1)σ] denote the i’th layer. For each
node x ∈ Li, with i > 0, we select 20 nodes y1, . . . , y20 ∈ Li−1 (uniformly at
random) and add the directed edges (y1, x), . . . , (y20, x) to E.

5.3 The Lowerbounds

Now that we have our lowerbound for stacks of dispersed graphs it remains
to analyse for which parameters each of the above three graphs can be viewed
as being dispersed graphs. The results of this analysis are summarized in the
theorem bellow.

Theorem 7 (iMHF Constructions Based on Dispersed Graphs).

– If λ, n ∈ N
+ such that n = n̄(λ(2c − 1) + 1) where n̄ = 2c for some c ∈ N

+

then it holds that

BFGn
λ ∈ Gn,3 BFGn

λ ∈ D
λ,n̄

1,�√
n̄� Π‖

cc(BFG
n
λ) = Ω

(
n1.5

c
√

cλ

)
.

– If λ, n ∈ N
+ such that k = n/(λ + 1) is a power of 2 then it holds that

DFGn
λ ∈ Gn,2 DFGn

λ ∈ D
λ,k

1,�√
k� Π‖

cc(DFG
n
λ) = Ω

(
n1.5

√
λ

)
.

– If σ, τ ∈ N
+ such that n = σ ∗ τ then with high probability it holds that

Linσ
τ ∈ Gn,21 Linσ

τ ∈ D
τ−1,σ
0.25,

√
σ/2

Π‖
cc(Lin

σ
τ ) = Ω

(
n1.5

√
τ

)
.

7 A superconcentrator is a DAG with m inputs and outputs such that any subset of
s ∈ [m] inputs and outputs are connected by s node disjoint paths.
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The theorem is proven in the following three lemma bellow (one lemma per
graph). We begin with the graph for Catena Dragonfly.

Lemma 5. It holds that DFGn
λ ∈ D

λ,k

1,
√

k
where k = n

(λ+1) and Π
‖
cc(DFGn

λ) =

Ω
(

n1.5√
λ

)
.

Proof of Lemma 5. Let G = DFGn
λ and set k = n/(λ+1), c = log2 k and g =

√
k.

By construction c is an integer. For simplicity assume c is even and so g ∈ N
+.8

Number the nodes of G according to (the unique) topological order with the
set [0, n − 1]. It suffices to show that for all i ∈ [λ] the sub-graph Gi consisting
of nodes [(i + 1)k − 1] is (g, k)-dispersed (with probability ε = 1). If this holds
then Theorem 6 immediately implies that Π

‖
cc

(
DFGn

λ

)
= Ω

(
n1.5√

λ

)
.

Recall that G consists of layerls Li of length k. For each j ∈ [k/2g] let Li,j

be the jth interval of 2g nodes of Li. Let Ri,j be the second half of Li,j . We
will show that there are g node-disjoint paths each terminating in Ri,j whose
remaining nodes are all in layer Li−1. Let node set Sx = [s + y − (g − 2), s + y]
where y = br(x) and s = (i− 1)k. The next three properties follow immediately
from Lemma 3 and they imply the lemma.

– ∀x ∈ R it holds that Sx ⊂ Li−1.
– ∀x ∈ R there is a path of length g going through the nodes of Sx and ending

in x.
– ∀ distinct x, x′ ∈ R sets Sx and Sx′ are disjoint. ��
Next we turn to the Catena Dragonfly graph.

Lemma 6. Let λ, n ∈ N
+ such that n = n̄(λ(2c − 1) + 1) with n̄ = 2c for some

c ∈ N
+. It holds that BFGn

λ ∈ D
λ,n̄
1,g for g =

⌈√
n̄
⌉
and Π

‖
cc(BFGn

λ) = O
(

n1.5

c
√

cλ

)
.

Proof of Lemma 6. Let G = BFGn
λ and let G1, G2, . . . , Gλ be the sub-graphs

of G described in Lemma 4. We will show that each Gi is (g, n̄)-dispersed for
g =

⌊√
n̄
⌋
. Fix arbitrary i ∈ [λ] and L1 be the last n̄ nodes in the (the unique)

topological ordering of Gi. We identify the nodes in L1 with the set {1}×[n̄] such
that the second component follows their topological ordering. Let ḡ = �n̄/g� and
for each j ∈ [ḡ] let L1,j = {〈1, jg + x〉 : x ∈ [0, g − 1]}. We will show that L1,j

has a (g, g)-dependency.
Let L0 be the first n̄ nodes of Gi which we identify with the set {0} × [n̄]

(again with the second component respecting their topological ordering). Notice
that for n > 1 and g =

⌊√
n̄
⌋

it holds that g(g − 2c + 1) ≤ n. Thus the set
S = {〈0, i(g − 2c + 1)〉 : i ∈ [g]} is fully contained in L0. Property (3) of Lemma 4
implies there exist g node disjoint paths from S to L1,j of length 2c. In particular
L1,j has a (g, 2c)-dependency.

8 The odd case is identical but with messy but inconsequential rounding terms.
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We extend this to a (g, g)-dependency. Let path p, beginning at node 〈0, v〉 ∈
S, be a path in the (g, 2c)-dependency of L1,j . Prepend to p the path traversing

(〈0, v − (g − 2c − 1)〉, 〈0, v − (g − 2c − 2)〉, . . . , 〈0, v〉)

to obtain a new path p+ of length g. As this is a subinterval of L0 property
(2) of Lemma 4 implies this prefix path always exists. Moreover since any paths
p �= q in a (g, 2c)-dependency of L1,i are node disjoint they must, in particular,
also begin at distinct nodes 〈0, vp〉 �= 〈0, vq〉 in S. But by construction of S any
such pair of nodes is separated by g − 2c nodes. In particular paths p+ and q+

are also node disjoint and so by extending all paths in a (2c, g)-dependency we
obtain a (g, g)-dependency for L1,i. This concludes the first part of the lemma.

It remains to lowerbound Π
‖
cc(BFGn

λ) using Theorem 6.

Π‖
cc(BFG

n
λ) ≥ λg

(
k

2
− g

)
≥ λ

⌊√
n̄
⌋( n̄

2
−

⌊√
n̄
⌋)

= λ
√

n̄
( n̄

2
− √

n̄
)

− O(n̄) = Ω
(
λn̄1.5

)

= Ω

(
n1.5

c
√

cλ

)
.

��
Finally we prove a lowerbound for the Linear and DB variants of Balloon
Hashing.

Lemma 7. If σ, τ ∈ N
+ such that n = στ then with high probability it holds

that

Linσ
τ ∈ Gn,21 Linσ

τ ∈ D
τ−1,σ
0.25,

√
σ/2

Π‖
cc(Lin

σ
τ ) = Ω

(
n1.5

√
τ

)
.

Proof. (sketch) It suffices to show that Linσ
τ ∈ D

τ−1,σ
0.25,

√
σ/2

. By Theorem 6 it imme-
diately follows that

Π‖
cc(Lin

σ
τ ) ≥ (τ − 1)

√
σ/2

4
(
σ/2 − √

σ/2
)

= Ω

(
n1.5

√
τ

)
.

Fix any i ∈ [0, τ −1]. Consider layer Li and given set Sx = [x, x+
√

σ/2−1] ⊂ Li

denoting an interval of
√

σ/2 nodes in Li begining at node x. Without loss of
generality we suppose that each node in Sx only has one randomly chosen parent
in Li−1—adding additional edges can only improve dispersity. We partition Li−1

into
√

σ intervals of length
√

σ. We say that an interval [u, u +
√

σ − 1] ⊂ Li−1

is covered by Sx if there is exists edge (y, v) from the second half of the interval
to a node in Sx; that is if y ∈ [u +

√
σ/2, u +

√
σ − 1] and v ∈ Sx. In this case

the path (u, u + 1, . . . , y, v) has length ≥ √
σ/2 and this path will not intersect

the corresponding paths from any of the other (disjoint) intervals in Li−1 (recall
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that we are assuming that v ∈ Sx only has one parent in Li−1). The probability
that an interval [u, u +

√
σ − 1] ⊂ Li−1 is covered by Sx is at least

1 −
(

1 −
√

σ/2
σ

)√
σ

≈ 1 −
√

1/e .

Thus, in expectation we will have at least μ =
√

σ
(
1 − √

1/e
)

≥ 0.39 × √
σ

node disjoint paths of length
√

σ/2 ending in Sx. Standard concentration bounds
imply that we will have at least

√
σ/4 such paths with high probability. ��

6 New Memory-Efficient Evaluation Algorithm and
Applications

In this section we introduce a new generic parametrized pebbling algorithm for
DAGs (i.e. an evaluation algorithm for an arbitrary iMHF). We upperbound the
pebbling strategy’s cumulative pebbling complexity in terms of its parameters.
In particular we see that for graphs which are not depth-robust there exist
parameter settings for which the algorithm results in low CC pebbling strategies.
Next we instantiate the parameters to obtain attacks on the random graphs
defined in the previous section. By “attack” we mean that, for Argon2i-A and SB,
the algorithm has significantly less asymptotic memory-hardness in the PROM
than both that of their näıve algorithms, and even that of the attack in [AB16].
Review of [AB16]. In order to describe the results in this section we first review
the generic pebbling algorithm PGenPeb of [AB16] which produces a pebbling
P1, P2, . . . , Pn of G as follows. PGenPeb takes as input a node set S ⊂ V of size
|S| = e such that removing S reduces the depth of the DAG depth(G − S) ≤ d.
Intuitively, keeping pebbles on S compresses G in the sense that G can now
quickly be entirely (re)pebbled within d (parallel) steps. This is because when
S is already pebbled then no remaining unpebbled path has length greater than
d. Algorithm PGenPeb never removes pebbles from nodes in S and its goal is
to always pebble node i at time i so as to finish in n = size(G) steps.9 To
ensure that parents of node i are all pebbled at time i algorithm PGenPeb sorts
nodes in topological order and partitions them into consecutive intervals of g
nodes (where g ∈ [d, n] is another input parameter). Nodes in interval Ic =
[(c − 1)g + 1, cg] ∩ [n] ⊂ V are pebbled during “light phase” Λc which runs for
g time steps. To ensure that the result is a legal pebbling, PGenPeb guarantees
the following invariant I: just before light phase Λc begins (i.e. at time (c− 1)g)
we have Xcg = parents(Ic) ∩ [(c − 1)g] ⊂ P(c−1)g so that we begin Λc with all
of the necessary pebbles. Now, in phase Λc algorithm PGenPeb simply places a
pebble on node i ∈ Ic at time i.

Notice that for c = 1, X1 = ∅ and so I is trivially satisfied. Let c > 1.
Partition Xcg into X−

cg = Xcg ∩ [(c − 1)g − d + 1] and X+
cg = Xcg \ X−

cg. Since
X+

cg is pebbled in the final d steps of light phase Λc−1, PGenPeb can simply not

9 Formally, i ∈ Pi and S ∩ [i] ⊆ Pi for each i ≤ n.
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remove those until time step (c − 1)g. In order to ensure that X−
cg is pebbled at

that time PGenPeb also runs a “balloon phase” Bc−1 in parallel with the final d
steps of Λc−1.10 Intuitively in phase Bc−1 all nodes in [(c− 1)g] ⊆ V are quickly
“decompressed” by greedily re-pebbling everything possible in parallel. Recall
that pebbles are never removed from nodes in S. So at time j all of S ∩ [j] is
already pebbled. Therefore, at time (c − 1)g, there is no unpebbled path longer
than d nodes within the first [(c − 1)g] nodes and so Bc−1 can indeed entirely
(and legally) repebble those nodes (and so in particular X−

cg). Thus, together
with the nodes in X+

cg pebbled in the final d steps of Λc−1 it follows that I also
holds for Λc.

The runtime of PGenPeb is n. Thus the cost is at most Π
‖
cc(PGenPeb) ≤

en + δgn + �n/g�(dn) where δ = indeg(G). The en term upper bounds the cost
of always keeping pebbles on S, δgn bounds the cost of all light phases, and the
third term upper bounds the cost of all balloon phases — each balloon phase
costs at most dn and at most �n/g� balloon phases are run.

Notice that (for constant δ) we would like to set g ≤ e so that the second
term doesn’t dominate the first. Conversely, to keep the number of (expensive)
balloon phases at a minimum we also want g to be large. Therefore, as long as
e ≥ d, the asymptotically minimal complexity is obtained when g = e.

Recursive Attack: Intuition. Our new algorithm relies on the following key
insight. Algorithm PGenPeb can actually pebble, not just the sink with the above
complexity, but instead any target set T ⊆ V simultaneously.11 This more gen-
eral view allows us to recast the task of the balloon phase as such a pebbling
problem. The graph being pebbled is G′ = G − (S ∪ [(c − 1)g − d + 1]) and
the target set is X−

c . So instead of implementing balloon phases with an expen-
sive greedy pebbling strategy as in PGenPeb we can apply the same strategy
as (the generalized version of) PGenPeb recursively. This is the approach of the
new algorithm RGenPeb. (The complete pseudocode of RGenPeb can be found
in the full version. For this approach to work we need that not only is G (e, d)-
reducible via some set S but that there is also a set S′ of size e′ > e such that
depth(G − S′) = d′ < d. Only when these conditions can no longer be met do
we have to resort to greedy pebbling for the balloon phases. As we show below,
it turns out that RGenPeb leads to improved attacks compared to PGenPeb for
the DAGs underlying key iMHFs like Argon2i, Catena and Balloon Hashing.

Outline. The remainder of this section has the following structure. First,
in Lemma 8 we generalize the results of [AB16] to upperbound the CC of a
graph by the cost of pebbling all light phases plus the CC of the pebblings prob-
lems solved by balloon phases. Next we define a generalization of (e, d)-reducible
graphs called f -reducible graphs; namely graphs which are (f(d), d)-reducible for
all d ∈ [n]. This allows us to state the main theorem of this section. It considers
a certain class of functions f and upper bounds the complexity of RGenPeb on

10 Recall that g ≥ d so Λc−1 lasts long enough to accommodate Bc−1.
11 For example, in the final d steps of the execution one last balloon phase can be run

to (re)pebble all of G including T at no added cost to the asymptotic complexity.
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such f -reducible graphs using any number k levels of recursion. To apply the
theorem to the iMHFs from the literature we prove Lemma 9 which describes the
f -reducibility of their underlying DAGs. Thus we obtain the final corollary of the
section describing new upperbounds on those iMHFs. At the end of this section
we give a more detailed description of RGenPeb and the proof of Lemma8.

Generalizing [AB16]. In order to derive the new pebbling strategy we first gener-
alize the results of [AB16]. Given a DAG G = (V,E), node set T ⊆ V and integer
t we define P‖

G,T,t ⊆ P‖
G,T to be the set of all parallel pebblings (P1, . . . , Pz) of

G such that z ≤ t. Analogously we let Π
‖
cc(G,T, t) = min

P∈P‖
G,T,t

Π
‖
cc(P ).

We remark that if depth(G) = d then Π
‖
cc(G,T, d) ≤ dn since we can greedily

pebble G in topological order in time depth(G). Lemma 8 provides an alternative
upper bound on Π

‖
cc(G,T, 2d).

Lemma 8. Let G = (V,E) be a DAG of size n, indegree δ and depth(G) ≤ d0. If
G is (e1, d1)-reducible with parameters e1, d1 such that 2d1n ≤ e1d0 and d1 ≤ d0
then for any target set T ⊆ V we have

Π‖
cc(G,T, 2d0) ≤ (4δ + 4) e1d0 +

n

e1

⎛

⎝ max
T ′⊆V −S1|T ′|≤δ·e1

Π‖
cc (G − S1, T

′, 2d1)

⎞

⎠ ,

where S1 ⊆ V has size |S1| ≤ e1 such that depth (G − S1) ≤ d1.

To prove the lemma we first define the RGenPeb algorithm and argue the legality
of the pebbling it produces at the end of this section. Armed with this, it remains
only to upperbound the complexity of a call to RGenPeb in terms of the com-
plexity of the recursive call it makes. This involves a relatively straightforward
(but somewhat tedious) counting of the pebbles placed by RGenPeb, the details
of which can be found in the full version.

We observe that Lemma 8 generalizes the main result of [AB16] as that work
only considered the special case where balloon phases are implemented with
a greedy pebbling strategy. The advantage of the above formulation (and the
more general RGenPeb) is that now we can be apply the lemma (and algorithm)
recursively.

In order to apply this lemma repeatedly we will need graphs which are
reducible for a sequence of points parameters (e, d) satisfying the conditions
laid out in Lemma 8 relating consecutive parameters. To help characterize such
graphs we generalize the notion of reducibility as follows.

Definition 8. Let G = (V,E) be a DAG with n nodes and let f : N → N be a
function. We say that G is f-reducible if for every positive integer n ≥ d > 0
there exists a set S ⊆ V of |S| = f(d) nodes such that depth(G − S) ≤ d.

Next we state the main theorem of this section which, for a certain class of
natural functions f , upperbounds the CC of any f -reducible graph.
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Theorem 8. Let G be a f-reducible DAG on n nodes then if f(d) = Õ
(

n
db

)
for

some constant 0 < b ≤ 2/3 and let a = 1−2b+
√
1+4b2

2 . Then for any constant
ε > 0

Π‖
cc(G) ≤ O

(
n1+a+ε

)
.

The proof of Theorem 8 can be found in the full version. We briefly sketch
the intuition here. We define a sequence e1, e2, . . . and d1, d2, . . . such that G is
(ei, di)-reducible for each i, ei = nai+ε/3 and di = n

1−ai
b with

ai+1 = 1 +
(a − 1)(1 − ai)

b
, where a1 = a =

1 − 2b +
√

1 + 4b2

2
.

If b ≤ a we have ei+1di ≥ ndi+1 for every i so we can repeatedly invoke
Lemma 9 as many times as we desire. By exploiting several key properties of
the sequence {ai}∞

i=1 we can show that unrolling the recurrence k times yields a
pebbling with cost at most k (4δ + 2) n1+a+ε/3 + n1+a+ε/3dk. For any ε > 0 we
can select the constant k sufficiently large that dk ≤ nε/3. Thus, the pebbling
cost is o

(
n1+a+ε

)
.

Analysing Existing iMHFs. We can now turn to applying Theorem8 to iMHFs
from the literature. Lemma 9 below states that an (n, δ, n)-random DAGs and
λ-layered DAGs are f -reducible. In particular these are the types of DAGs under-
lying all of the iMHFs considered in the previous section.

Lemma 9. Let fb(d) = Õ
(

n
db

)
then

1. Let δ = O(polylog(n)) then a (n, δ, n)-random DAG is f0.5-reducible with high
probability.

2. The Catena DAGs DFGn
λ and BFGn

λ are both f1-reducible for λ =
O(polylog(n)).

3. The Balloon Hashing Linear (and the DB) graph Linσ
τ is f1-reducible for τ =

O(polylog(n)).

The proof generalizes the arguments used in [AB16] to first establish a particular
pair (e, d) for which the graphs are reducible. It can be found in the full version.

Together with Theorem 8 and Lemma 9 we now obtain the main application
of RGenPeb which is described in the following corollary upperbounding the
memory-hardness of each of the considered iMHFs.

Corollary 4. Let ε > 0 be any constant

1. Let δ = O(polylog(n)) then an (n, δ, n)-random DAG G has Π
‖
cc(G) =

O
(
n1+

√
1/2+ε

) ≈ O
(
n1.707+ε

)
.

2. Both Π
‖
cc

(
DFGn

λ

)
and Π

‖
cc (BFGn

λ) are in Õ
(
n

13
8

)
= Õ

(
n1.625

)
.

3. Π
‖
cc

(
Linσ

τ

)
= Õ

(
n

13
8

)
= Õ

(
n1.625

)
, where Linσ

τ has n = τσ nodes.
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We remark that Theorem 8 does not yield tighter bounds for Catena iMHFs
DFGn

λ or BFGn
λ or for Linσ

τ . Each DAG is indeed fb reducible for any b ≤ 2/3
(even for b ≤ 1), but for b ≤ 2/3 it follows that a = 1−2b+

√
1+4b2

2 ≥ 2/3.

Thus, Theorem 8 yields an attack with cost O
(
n

5
3+ε

)
, which does not improve

on the non-recursive PGenPeb attack in [AB16] as that has cost O
(
n

5
3

)
. How-

ever, we can set e1 = n5/8, e2 = n7/8 and exploit the fact that the DAGs are
(ei, di)-reducible with di = Õ(n/ei). Applying Lemma 8 twice we have Π

‖
cc(G) =

O
(
e1n + n

e1

(
e2d1 + n

e2
nd2

))
= O

(
n13/8 + n3/8+7/8d1 + n3/8+1/8+1d2

)
=

Õ
(
n

13
8

)
. Note that e2d1 = Õ

(
n10/8

)
> Õ

(
n9/8

)
= nd2 so it is legal to invoke

Lemma 8 for sufficiently large n.

The RGenPebAlgorithm. In the remainder of this section we sketch RGenPeb
algorithm and justify that it produces a legal pebbling. The analysis of its com-
plexity in terms of the complexity of its recursive call is contained in the proof
of Lemma 8. The final complexity of an execution requires unravelling the recur-
sive statement of Lemma 8 which is done in the proof of Theorem8.

In the following we will ignore rounding errors here as they are inconse-
quential for the asymptotic behaviour while adding needless complexity to the
exposition. For completeness we observe that if RGenPeb finishes a light phase
and there is not enough steps left to complete a full light phase then it can sim-
ply runs the next light phase as far as it can (and completely omits any further
balloon phases). This affects neither the legality of the resulting pebbling nor its
asymptotic complexity.

Algorithm RGenPeb takes input a DAG G = (V,E), sets S1 ⊆ S2 ⊆ . . . ⊆
Sk ⊆ V , integers d1, d2, . . . , dk and a target set T such that ∀i ∈ [k] : eidi−1 ≥ ndi

and di ≥ depth(G − Si) where n = |V |, ei = |Si| and d0 = depth(G). For this
RGenPeb makes use of an arbitrary partition of the nodes of G into 2d0 into sets
D1,D2, . . . , D2d0 such that the following properties hold:12

Topologically Ordered: ∀j ∈ [2d0 − 1] parents(Dj+1) ⊆ ⋃
y∈[j] Dy,

Maximum Size: ∀j ≤ 2d0 |Dj | ≤ n
d0

.

Intuitively, the set Dj is the set of nodes that will be pebbled by a light phase
in the jth step. So for PGenPeb we would simply have Dj = {j}.

At the top level of the recursion RGenPeb looks relatively similar to PGenPeb.
The goal is to pebble G0 = G with the target set T0 = sinks(G0) in at most 2d0
steps which is done by executing a sequence of light phases lasting m = e2d0/n
steps and balloon phases lasting 2d1 steps. The requirement that e2d0 ≥ 2d1n
ensures that m ≥ 2d1 so that we can complete each balloon phase in time for
the upcoming light phase. For t ∈ [2d0] let Ut =

⋃
j∈[t] Dj be all nodes pebbled

12 For example we can sort the nodes in topological order and divided them up into the
partition. Whenever a set is larger than n/d0 we insert a new set into the partition
with the overflow.
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by light phases up to step t. Then for c ∈ [2d0/m] the light phase Λc runs
during time interval Ic = [(c − 1)m + 1, cm] during which it will pebble nodes
Ucm \U(c−1)m. It never removes pebbles from S1 and, at each time step t it keeps
pebbles on parents(Ucm \ Ut) as it will still need those to finish the light phase.

As for PGenPeb the light phase Λ1 is trivially a legal pebbling. Let Xcm =
parents(Ucm+m \ Ucm+1) ∩ Ucm and X−

cm = (Xcm ∩ Ucm−2d1) \ S1 and X+
cm =

Xcm\X−
cm. To ensure that all pebbles placed by during light phase Λc+1 are done

so legally it suffices for RGenPeb to ensure that Xcm is fully pebbled at time cm.
This is done by balloon phase running in parallel to the final 2d1 steps of Λc; that
is during the interval [cm−2d1, cm]. The pebbling for the balloon phase may be
obtained by a recursive call to RGenPeb for the graph G′ = G−S−(V \Ucm−2d1))
(G′ is the DAG induced by nodes Ucm−2d1 − S) with target set X−

cm as well as
parameters S2 ⊆ S3 ⊆ . . . ⊆ Sk and d2, d3, . . . , dk (both lists now have length
k − 1 and clearly still satisfy the conditions on parameters stated above). If
RGenPeb is ever called with empty lists S̄ = ∅ and d̄ = ∅ (i.e., k = 0) then it
simply greedy pebbles G. The result of the recursive call is added to the final
2d1 steps of light phase Λc. Finally the pebbling is modified to never remove
pebbles from Xcm during the those final steps of Λc−1. Notice that each node
in X+

cm is either in S or is pebbled at some point during the final 2d1 steps of
Λc+1. Thus we are guaranteed that Xcm ⊆ P(c−1)m as desired.

To see why RGenPeb produces a legal pebbling it suffices to observe that
pebbles placed during light phases always have their parents already pebbled.
So if the recursive call returns a legal pebbling for the balloon phase then the final
result is also legal. But at the deepest level of the recursion RGenPeb resorts to
a greedy pebbling which is trivially legal. Thus, by induction, so is the pebbling
at the highest level of the recursion.

7 Open Questions

We conclude with several open questions for future research.

– We showed that for some constant c ≥ 0 we can find a DAG G on n nodes with
Π

‖
cc(G) ≥ cn2/ log(n) and indeg(G) = 2. While this result is asymptotically

optimal the constant terms are relevant for practical applications to iMHFs.
How big can this constant c be? Can we find explicit constructions of constant-
indegree, (c1n/ log(n), c2n)-depth robust DAGs that match these bounds?

– Provide tighter upper and lower bounds on Π
‖
cc(G) for Argon2i-B [BDKJ16],

the most recent version of Argon2i which was submitted to IRTF for
standardization.

– Another interesting direction concerns understanding the cumulative peb-
bling complexity of generic graphs. Given a graph G is it computationally
tractable to (approximately) compute Π

‖
cc(G)? An efficient approximation

algorithm for Π
‖
cc(G) would allow us to quickly analyze candidate iMHF con-

structions. Conversely, as many existing iMHF constructions are based on
fixed random graphs, [BDK16,BCGS16] showing that approximating such
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a graphs complexity is hard would provide evidence that an adversary will
likely not be able to leverage properties of the concrete instance to improve
their evaluation strategy for the iMHF. Indeed, it may turn out that the most
effective way to construct depth-robust graphs with good constants is via a
randomized construction.

Acknowledgments. The authors would like to thank Pierrick Gaudry for his careful
reading and many helpful suggestions. The first and third authors were supported by
the European Research Council, ERC consolidator grant (682815 - TOCNeT).

References

[AB16] Alwen, J., Blocki, J.: Efficiently computing data-independent memory-
hard functions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9815, pp. 241–271. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53008-5 9

[AB17] Alwen, J., Blocki, J.: Towards practical attacks on Argon2i and balloon
hashing. In: Proceedings of the 2nd IEEE European Symposium on Secu-
rity and Privacy (EuroS&P 2017). IEEE (2017, to appear). http://eprint.
iacr.org/2016/759

[ABW03] Abadi, M., Burrows, M., Wobber, T.: Moderately hard, memory-bound
functions. In: Proceedings of the Network and Distributed System Security
Symposium, NDSS, San Diego, California, USA (2003)

[ACK+16] Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro,
S.: On the complexity of RYPT and proofs of space in the parallel random
oracle model. In: Advances in Cryptology - EUROCRYPT 2016 - Vienna,
Austria, May 8–12, 2016, Part II, pp. 358–387 (2016). http://eprint.iacr.
org/2016/100

[ACP+17] Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: RYPT is Max-
imally Memory-Hard. In: Advances in Cryptology-EUROCRYPT 2017.
Springer (2017, to appear). http://eprint.iacr.org/2016/989

[AGK+16] Alwen, J., Gai, P., Kamath, C., Klein, K., Osang, G., Pietrzak, K., Reyzin,
L., Rolnek, M., Rybr. M.: On the memory-hardness of data-independent
password-hashing functions. Cryptology ePrint Archive, Report 2016/783
(2016). http://eprint.iacr.org/2016/783

[AS15] Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-
hard functions. In: Proceedings of the Eleventh Annual ACM Symposium
on Theory of Computing, STOC 2015 (2015). http://eprint.iacr.org/2014/
238

[BCGS16] Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: provably
space-hard hash functions with data-independent access patterns. Cryp-
tology ePrint Archive, Report 2016/027, Version: 20160601:225540 (2016).
http://eprint.iacr.org/

[BDK15] Biryukov, A., Dinu, D., Khovratovich, D.: Fast and tradeoff-resilient
memory-hard functions for cryptocurrencies and password hashing. Cryp-
tology ePrint Archive, Report 2015/430 (2015). http://eprint.iacr.org/
2015/430

[BDK16] Biryukov, A., Dinu, D., Khovratovich, D.: Argon2 password hash. Version
1.3 (2016). https://www.cryptolux.org/images/0/0d/Argon2.pdf

http://dx.doi.org/10.1007/978-3-662-53008-5_9
http://dx.doi.org/10.1007/978-3-662-53008-5_9
http://eprint.iacr.org/2016/759
http://eprint.iacr.org/2016/759
http://eprint.iacr.org/2016/100
http://eprint.iacr.org/2016/100
http://eprint.iacr.org/2016/989
http://eprint.iacr.org/2016/783
http://eprint.iacr.org/2014/238
http://eprint.iacr.org/2014/238
http://eprint.iacr.org/
http://eprint.iacr.org/2015/430
http://eprint.iacr.org/2015/430
https://www.cryptolux.org/images/0/0d/Argon2.pdf


Depth-Robust Graphs and Their Cumulative Memory Complexity 31

[BDKJ16] Biryukov, A., Dinu, D., Khovratovich, D., Josefsson, S.: The memory-hard
Argon2 password hash and proof-of-work function. Internet-Draft draft-
irtf-cfrg-argon2-00, Internet Engineering Task Force, March 2016

[BK15] Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard
functions. Cryptology ePrint Archive, Report 2015/227 (2015). http://
eprint.iacr.org/

[Cha73] Chandra, A.K.: Efficient compilation of linear recursive programs. In:
SWAT (FOCS), pp. 16–25. IEEE Computer Society (1973)

[Coo73] Cook, S.A.: An observation on time-storage trade off. In: Proceedings of
the Fifth Annual ACM Symposium on Theory of Computing, STOC 1973,
pp. 29–33. ACM, New York (1973)

[DFKP15] Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
585–605. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 29

[DGN03] Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fight-
ing spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–
444. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 25

[DKW11a] Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient
to space-bounded leakage. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 335–353. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 19

[DKW11b] Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing
functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 9

[DNW05] Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg
(2005). doi:10.1007/11535218 3

[EGS75] Paul, E., Graham, R.L., Szemeredi, E.: On sparse graphs with dense long
paths. Technical report, Stanford, CA, USA (1975)

[FLW13] Christian, F., Stefan, L., Jakob, W.: Catena: a memory-consuming pass-
word scrambler. IACR Cryptology ePrint Archive 2013, 525 (2013)

[HJO+16] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 149–178. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53015-3 6

[HP70] Hewitt, C.E. Paterson, M.S.: Comparative Schematology. In: Record of the
Project MAC Conference on Concurrent Systems and Parallel Computa-
tion, pp. 119–127. ACM, New York (1970)

[JW16] Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. Cryp-
tology ePrint Archive, Report 2016/814 (2016). http://eprint.iacr.org/
2016/814

[Kal00] Kaliski, B.: PKCS#5: password-based cryptography specification version
2.0 (2000)

[LT82] Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space
trade-offs in a pebble game. J. ACM 29(4), 1087–1130 (1982)

[MMV13] Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of
sequential work. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 373–388. ACM,
January 2013

[NBF+15] Narayanan, A., Bonneau, J., Felten, E.W., Miller, A., Goldfeder, S.: Bit-
coin and Cryptocurrency Technology (manuscript) (2015). Accessed 8 June
2015

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-48000-7_29
http://dx.doi.org/10.1007/978-3-540-45146-4_25
http://dx.doi.org/10.1007/978-3-642-22792-9_19
http://dx.doi.org/10.1007/978-3-642-22792-9_19
http://dx.doi.org/10.1007/978-3-642-19571-6_9
http://dx.doi.org/10.1007/11535218_3
http://dx.doi.org/10.1007/978-3-662-53015-3_6
http://eprint.iacr.org/2016/814
http://eprint.iacr.org/2016/814


32 J. Alwen et al.

[Per09] Percival, C.: Stronger key derivation via sequential memory-hard functions.
In: BSDCan 2009 (2009)

[PHC] Password hashing competition. https://password-hashing.net/
[PR80] Paul, W.J., Reischuk, R.: On alternation II. A graph theoretic approach

to determinism versus nondeterminism. Acta Inf. 14, 391–403 (1980)
[RD16] Ren, L., Devadas, S.: Proof of space from stacked bipartite graphs. Cryp-

tology ePrint Archive, Report 2016/333 (2016). http://eprint.iacr.org/
[Sch82] Schnitger, G.: A family of graphs with expensive depth reduction. Theor.

Comput. Sci. 18, 89–93 (1982)
[Sch83] Schnitger, G.: On depth-reduction and grates. In: 24th Annual Sympo-

sium on Foundations of Computer Science, Tucson, Arizona, USA, 7–9
November 1983, pp. 323–328. IEEE Computer Society (1983)

[SS78] Savage, J.E., Swamy, S.: Space-time trade-offs on the FFT algorithm. IEEE
Trans. Inf. Theory 24(5), 563–568 (1978)

[SS79a] Savage, J.E., Swamy, S.: Space-time tradeoffs for oblivious integer multi-
plication. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 498–504.
Springer, Heidelberg (1979). doi:10.1007/3-540-09510-1 40

[SS79b] Swamy, S., Savage, J.E.: Space-time tradeoffs for linear recursion. In: Aho,
A.V., Zilles, S.N., Rosen, B.K. (eds) POPL, pp. 135–142. ACM Press (1979)

[Tom78] Tompa, M.: Time-space tradeoffs for computing functions, using connectiv-
ity properties of their circuits. In: Proceedings of the Tenth Annual ACM
Symposium on Theory of Computing, STOC 1978, pp. 196–204. ACM,
New York (1978)

https://password-hashing.net/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-09510-1_40


Scrypt Is Maximally Memory-Hard
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Abstract. Memory-hard functions (MHFs) are hash algorithms whose
evaluation cost is dominated by memory cost. As memory, unlike compu-
tation, costs about the same across different platforms, MHFs cannot be
evaluated at significantly lower cost on dedicated hardware like ASICs.
MHFs have found widespread applications including password hashing,
key derivation, and proofs-of-work.

This paper focuses on scrypt, a simple candidate MHF designed by
Percival, and described in RFC 7914. It has been used within a number
of cryptocurrencies (e.g., Litecoin and Dogecoin) and has been an inspi-
ration for Argon2d, one of the winners of the recent password-hashing
competition. Despite its popularity, no rigorous lower bounds on its mem-
ory complexity are known.

We prove that scrypt is optimally memory-hard, i.e., its cumulative
memory complexity (cmc) in the parallel random oracle model is Ω(n2w),
where w and n are the output length and number of invocations of the
underlying hash function, respectively. High cmc is a strong security tar-
get for MHFs introduced by Alwen and Serbinenko (STOC ’15) which
implies high memory cost even for adversaries who can amortize the cost
over many evaluations and evaluate the underlying hash functions many
times in parallel. Our proof is the first showing optimal memory-hardness
for any MHF.

Our result improves both quantitatively and qualitatively upon the
recent work by Alwen et al. (EUROCRYPT ’16) who proved a weaker
lower bound of Ω(n2w/ log2 n) for a restricted class of adversaries.

Keywords: Scrypt · Memory-hard functions · Password hashing

1 Introduction

Several applications rely on so-called “moderately-hard tasks” that are not infea-
sible to solve, but whose cost is non-trivial. The cost can for example be the
hardware or electricity cost of computation as in proofs of work [13,14,18] or
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time-lock puzzles [23], the cost for disk storage space as in proofs of space [15],
the cost of “human attention” in captchas [24] or the cost of memory in memory-
bound [2,12] or memory-hard functions [8,20], the latter being the topic of this
work. Applications of such tasks include the prevention of spam [13], protection
against denial-of-service attacks [19], metering client access to web sites [16],
consensus protocols underlying decentralized cryptocurrencies [10] (knows as
blockchains) or password hashing [22], which we’ll discuss in more detail next.

In the setting of password hashing, a user’s password (plus a salt and perhaps
other system-dependent parameters) is the input to a moderately-hard function
f , and the resulting output is the password hash to be kept in a password file. The
hope is that even if the password file is compromised, a brute-force dictionary
attack remains costly as it would require an attacker to evaluate f on every
password guess. Traditional approaches for password hashing have focused on
iterating a hash function a certain number (typically a few thousands) of times,
as for instance in PBKDF2. An advantage for the honest user results from the
fact that he or she needs to compute f only once on the known password, while
an attacker is forced to compute f on a large number of passwords. However, this
advantage can be eroded, because in constrast to honest users, who typically use
general-purpose hardware, attackers may invest into special-purpose hardware
like ASICs (Application Specific Integrated Circuits) and recoup the investment
over multiple evaluations. Moreover, such special-purpose hardware may exploit
parallelism, pipelining, and amortization in ways that the honest user’s single
evaluation of f cannot. Consequently, the adversary’s cost per evaluation can be
several orders of magnitude lower than that for the honest user.

Memory-Hard Functions. To reduce the disparity between per-evaluation
costs of the honest user and a potential attacker, Percival [20] suggested mea-
suring cost by the amount of space used by the algorithm multiplied by the
amount of time. A memory-hard function (MHF), in Percival’s definition, is one
where this evaluation cost measure is high not only for the honest user’s sequen-
tial algorithm, but also no parallel algorithm can do much better. In particular,
if a parallel algorithm can cut the time to evaluate f by some factor, it must
come at the cost of increase in space by roughly the same factor. Since mem-
ory is inherently general-purpose, measuring cost in terms of space provides a
reasonably accurate comparison of resources used by different implementations.
We stress that memory hardness is a very different notion than that of memory-
bound functions proposed by Abadi, Burrows, Manasse, and Wobber [1,2], which
maximize the number of memory accesses at unpredictable locations so that the
inherent memory-access latency (resulting from frequent cache misses) imposes
a lower bound on the time needed to evaluate the function which is independent
from the actual CPU power. Memory hardness also does not guarantee that a
lot of memory will be required, because it allows trading memory for time.

Alwen and Serbinenko [8] observed that Percival’s notion of cost is not robust
to amortization: it may be that an algorithm uses a large amount of memory at
its peak, but a much smaller amount on average; pipelining multiple evaluations
(by multiple CPUs using shared memory) in such a way that peaks occur at
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different times can thus reduce the per-evaluation cost of f . They propose the
notion of cumulative memory complexity (abbreviated ccmem), which is robust
to amortization. It is defined as the sum of memory actually used at each point
in time (rather than the product of peak memory and time). We will use this
notion in our work. The ccmem of a function is defined as the lowest ccmem of all
algorithms that evaluate the function.

Best-Possible Hardness. Given the state of computational complexity the-
ory, where we cannot even prove superlinear lower bounds for problems in NP,
all ccmem lower-bound results so far necessarily make use of idealized models of
computation, like the random oracle model.

Many candidate memory-hard functions (including scrypt) can be viewed
as a mode of operation for an underlying building block like a cryptographic
hash-function h. Such MHFs come with an evaluation algorithm—which we’ll
call “the näıve algorithm”—which makes only sequential access to h. Note that
after t steps (each involving at most one query to h), even a näıve algorithm
which stores all t outputs it received from h : {0, 1}∗ → {0, 1}w will not use
more that O(t ·w) memory; therefore, if the näıve algorithm for an MHF fh runs
for n steps total, the ccmem of fh will be in O(n2 · w). Thus a lower bound on
the ccmem of Ω(n2 · w) is the best we can hope for in any model which captures
at least the näıve algorithm.

If the näıve algorithm has the feature that its memory access pattern
(addresses read and written) is independent of the input, the MHF is called data-
independent. A data-independent fh can be represented as a directed acyclic
graph, with a unique source corresponding to the input, a unique sink corre-
sponding to the final output, and the other nodes indicating intermediary values
where the value of a node is computed as a function of the nodes of its parents
(using one invocation of h). To derive meaningful bounds, we require that this
graph has constant in-degree, so computing an intermediate value takes constant
time. The evaluation of fh can now be cast as a graph pebbling problem [8]. Any
constant in-degree graph can be pebbled (in the so called parallel black pebbling
game) using “cumulative pebbling complexity” ccpeb = O(n2/ log n).1 As any
such pebbling implies an evaluation algorithm with ccmem ≈ ccpeb · w, we get an
O(w · n2/ log n) upper bound on ccmem for any data-indepedent MHF [3]. This
upper bound is matched by [4], who construct a data-independent function with
ccmem = Ω(w · n2/ log(n)) in the parallel random oracle model. This calls for
the question of whether the lower bound of Ω(w · n2) is achievable at all; the
above discussion shows that to achieve this lower bound, it will not be sufficient
to only consider data-independent MHFs.

The Scrypt MHF. Percival [20] proposed a candidate (data-dependent)
memory-hard function called scrypt.2 On input X, the scrypth function–where

1 Technically, the bound is marginally worse, O(n2/ log1−ε(n)) for any ε > 0.
2 In fact, what we discuss in the following is Percival’s ROMix construction,

which constitutes the core of the actual scrypt function. We use the two names
interchangeably.
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h is a cryptographic hash function modeled as a random oracle for the lower
bound proof – computes values X0,X1, . . . , Xn−1, S0, . . . , Sn as defined below,
and finally outputs Sn

– X0 = X and for i = 1, . . . , n − 1 : Xi = h(Xi−1)
– S0 = h(Xn−1) and for i = 1, . . . , n : Si = h(Si−1 ⊕ XSi−1 mod n)

Scrypt has found widespread popularity: it is used in proofs-of-work schemes
for cryptocurrencies (most notably Litecoin [10], but also Tenebrix or Dogecoin),
is described by an RFC [21], and has inspired the design of one of the Password-
hashing Competition’s [22] winners, Argon2d [9].

An intuitive explanation for why scrypt was conjectured to be memory-
hard is as follows. View the first portion of scrypt as an n-node line graph, with
nodes labeled by X0, . . . , Xn−1. To compute Si+1, an algorithm needs XSi mod n,
whose index (Si mod n) is random and unknown until Si is computed. If the
algorithm stores a subset of the X values of size p before Si is known, then
the label of a random node in the line graph will be on average n/(2p) steps
from a stored label, and will therefore take n/(2p) sequential evaluations of h to
compute, for a total memory · time cost of p · n/(2p) = n/2. Since there are n Si

values to compute, this strategy has ccmem of w · n · n/2 = 1
2wn2.

This simple argument, however, does not translate easily into a proof. The
two main challenges are as follows. First, in general an algorithm computing
scrypt is not restricted to just store labels of nodes, but can compute and
store arbitrary information. Surprisingly, f for which storing information other
than just labels provably decreases ccmem have been constructed in [5, Appendix
A]. Second, an algorithm is not compelled to keep all p labels in memory after
the index Si mod n is known. In fact, [8] show that if one is given the indices
Si mod n in advance, an evaluation algorithm exists which evaluates scrypth

with ccmem only O(w · n1.5), because knowing the future indices enables the
algorithm to keep or recompute the labels that will be needed in the near future,
and delete those that won’t.

Previous work on scrypt. Percival’s original paper [20] proposed an analy-
sis of scrypt, but his analysis is incorrect, as we point out in AppendixA, in
addition to not targeting ccmem. Recent progress toward proving that scrypt
is memory-hard was made by Alwen et al. [6]. They lower bound the ccmem of
scrypt by Ω(w ·n2/ log2 n), albeit only for a somewhat restricted class of adver-
saries (informally, adversaries who can store secret shares of labels, but not more
general functions). We’ll compare their work with ours in more detail below.

Our Results. We give the first non-trivial unconditional lower bound on ccmem

for scrypth in the parallel random oracle model, and our bound already achieves
optimal ccmem of Ω(w · n2).

We’ll give the exact theorem statement and an overview of the proof in
Sect. 3. However, to appreciate the novelty of our results, we note that the only
existing proofs to lower bound ccmem of MHFs go through some kind of lower
bounds for pebbling.
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For data independent MHFs [8] there is an elegant argument (known as “ex
post facto”) stating that a lower bound on the cumulative complexity for the
parallel black pebbling game translates directly into a lower bound for ccmem.
Thus, the problem is reduced to a purely combinatorial problem of proving a
pebbling lower bound on the graph underlying the MHF.

For data dependent MHFs no such result, showing that pebbling lower bounds
imply ccmem lower bounds for general adversaries, is known.3 The lower bound
on ccmem for scrypt from [6] was also derived by first proving a lower bound
on the pebbling complexity, but for a more powerful pebbling adversary that
can use “entangled” pebbles. This lower bound then translated into a lower
bound for ccmem for a limited class of adversaries who, apart from labels, can
also store “secret shares” of labels. It was conjectured [6] that lower bounds for
this entangled pebbling game already imply lower bounds on ccmem for arbitrary
adversaries, and a combinatorial conjecture was stated which, if true, would
imply this. Unfortunately the strongest (and simplest) version of this conjecture
has already been refuted. A weaker version of the conjecture has been “weakly”
refuted, in the sense that, even if it was true, one would lose a factor of at least
log(n) by going from pebbling to memory lower bounds. (The current state of
the conjecture is available on the eprint version of the paper [5].)

In this work, in Sect. 5, we also prove an optimal Ω(n2) lower bound on
the parallel cumulative pebbling complexity for a game which abstracts the
evaluation of scrypt: we consider a path of length n, and an adversary must
pebble n randomly chosen nodes on this graph, where the ith challenge node is
only revealed once the node of challenge i − 1 is pebbled. This already gives an
optimal Ω(n2 ·w) lower bound on ccmem for scrypt for adversaries who are only
allowed to store entire labels, but not any functions thereof. This improves on the
Ω(n2/ log2(n)) lower bound from [6], who use a rather coarse potential argument
which roughly states that, for any challenge, either we pay a lot for pebbling the
next challenge node, or the “quality” of our pebbling configuration decreases. As
this quality cannot decrease too many times, at least every log(n)’th challenge
will cost n/ log(n) in cumulative complexity, giving the overall Ω(n2/ log2(n))
lower bound after n challenges. In this work we introduce a new technique for
analyzing the cumulative pebbling cost where—for every challenge—we take into
account the cumulative cost of the pebbling configurations before this challenge
is revealed. Both the potential argument from [6], as well as our new proof, rely
on the generalization of the fact that given a configuration with p pebbles, and
a random challenge, with good probability (say at least 1

2 ), an adversary also
needs also at least (roughly) n/p steps to pebble the challenge.

As discussed above, pebbling lower bounds are not known to directly imply
ccmem lower bounds for data dependent MHFs, so to prove our main result
in Sect. 6, we in some sense emulate our proof for the pebbling game directly
in the parallel random oracle model. However, there are two problems we will

3 A lower bound on the parallel cumulative pebbling complexity is only known to imply
a lower bound on ccmem for a very restricted class of adversaries who are allowed to
store only labels, but not any function thereof.
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need to overcome. The first is that the adversary’s state is not made of labels
(corresponding to pebbles), but could be any function thereof. Still, we will want
to show that in order to compute a challenge, an adversary storing any p ·w bits
of information about the random oracle, will need to take with good probability
(say at least 1

2 ) at least (roughly) n/p steps. We will show this using a careful
compression argument in Sect. 4. The second problem is the fact that in scrypt
the challenges are not randomly and externally generated, but come from the
random oracle.

2 Preliminaries

We review basic notation and concepts from the literature on memory-hard
functions. We will also define the scrypt function as needed further below.

The parallel-random oracle model. We first define the parallel random-
oracle model (pROM), essentially following the treatment from [8], with some
highlighted differences.

Concretely, we consider an oracle-aided deterministic4 algorithm A which
runs in rounds, starting with round 1. Let h denote an oracle with w-bit outputs.
It does not matter for our model whether oracle inputs are restricted in length,
but it will be simpler to assume a general upper bound (even very large) on the
length of its inputs to make the set of oracles finite.

In general, a state is a pair (τ, s) where data τ is a string and s is a tuple of
strings. In an execution, at the end of round i, algorithm A produces as output an
output state σ̄i = (τi,qi) where qi = [q1i , . . . , qzi

i ] is a tuple of queries to h. At the
begining of next round i + 1, algorithm A gets as input the corresponding input
state σi = (τi, h(qi)) where h(qi) = [h(q1i ), . . . , h(qzi

i )] is the tuple of responses
from h to the queries qi. In particular, since A is deterministic, for a given h the
input state σi+1 is a function of the input state σi.

The initial input state σ0 is normally empty with length 0 (though in the
proof we will also need to consider a non-empty initial input state); an input
X is given together with σ0 in the first round. We require that A eventually
terminates and denote its output by Ah(X).

Complexity measure. For a given execution the complexity measure we are
going to be concerned with is the sum of the bit-lengths of the input states.
To that make this precise we introduce the following notation. For a string x
we denote its bit-length by |x|. For state σ = (τ, s) where s = [s1, . . . , sz] we
denote the bit-length (or size) of σ by |σ| = |τ | +

∑z
j=1 |sj |. We can now define

the cumulative (memory) complexity of an execution of algorithm A on input X
using oracle h resulting in input states σ0, σ1, . . . as

ccmem(Ah(X)) =
∑

i≥0

|σi|.

4 Considering deterministic algorithms is without loss of generality as we can always
fix the randomness of A to some optimal value.



Scrypt Is Maximally Memory-Hard 39

We will assume without loss of generality that at each round, the query tuple
q contains at least one query, for otherwise A can proceed directly to the next
round where it issues a query, without increasing its cumulative complexity. In
particular, this implies |σi| ≥ w for i > 0.

Note that ccmem does not charge anything for computation or memory used
within each round itself. We are also allowing inputs to h to be arbitrary long
without extra memory cost—only the output length w is charged to the cumu-
lative complexity. This only makes our lower bound stronger. Note however that
this also means that ccmem gives a good upper bound only when computation is
dominated by the memory cost (as is the case for the näıve evaluation algorithm
of scrypth, which, aside from querying h sequentially, performs only a few trivial
computations, such as exlusive-ors and modular reductions).

The scrypt MHF. We will consider the scrypth function throughout this paper
(more specifically, we study its core, ROMix, as defined in [20]). Recall that for
a hash function h : {0, 1}∗ → {0, 1}w, scrypth on input X ∈ {0, 1}w and
parameter n ∈ N computes values X0,X1, . . . , Xn−1, S0, . . . , Sn and outputs Sn,
where

– X0 = X and for i = 1, . . . , n − 1 : Xi = h(Xi−1)
– S0 = h(Xn−1) and for i = 1, . . . , n : Si = h(Si−1 ⊕ XSi−1 mod n)

We will also define intermediate variables T0, . . . , Tn with T0 = Xn−1 and Ti =
Si−1 ⊕ XSi−1 mod n for 1 ≤ i ≤ n, so that Si = h(Ti).

Note that one may not want to restrict X to w bits. In this case, one can
replace X with h(X) in the above construction. For notational simplicity, we
will only analyze the w-bit input case in this paper, but the general analysis is
very similar.

Graph and pebbling preliminaries. For some of our partial results below, we
will adopt the graph-pebbling view on computing candidate MHFs, following [8].
A parallel black pebbling considers a direct acyclic graph G = (V,E). At each
time step t starting with t = 0, the adversary maintains a subset Pt of nodes
(“pebbles”). A node v is allowed (but not required) to get a pebble at time t if
there is a pebble on all of its predecessors (i.e., all v′ such that (v′, v) ∈ E), or
if there was a pebble on v itself at time t − 1. Formally, define pre(v) to be the
set of all predecessors of v, and for U ⊆ V , define U+ = {v ∈ V : pre(v) ⊆ U}.
Then, at time t > 0, the set Pt must be a subset of Pt−1 ∪ P+

t−1.
We define pi = |Pi| ≥ 1. The (parallel) cumulative pebbling complexity of a

sequence of pebbling configuration P0, P1, . . . , Pt is
∑t

i=0 pi. We remark that we
modify the pebbling rules slightly from [8] by not permitting the adversary to
put a pebble on the source for free: v0 is contained in P0 and cannot be added to
Pt if it is absent in Pt−1 (this change will simplify calculations, and only increase
the size of each set by 1).

Pebbling with challenges. Normally, the goal of pebbling games is to place
a pebble on the sink of the graph. Here, we are going to consider pebbling
games with Q challenges on a graph G = (V,E), where the adversary proceeds
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in rounds, and in each round i, it receives a random challenge ci ∈ V (usu-
ally uniform from a subset V ′ ⊆ V ), and the goal is to place a pebble on ci,
which enables the adversary to move to the next round (unless this was the last
challenge cQ, in which case the game terminates.) For instance, the core of the
evaluation of scrypt is captured by the line graph with vertices v0, . . . , vn−1

and edges (vi, vi+1) for i = 0, . . . , n− 2, and we will study this pebbling game in
detail below.

3 Main Result and Overview

In this section, we state our main result, and give a brief high-level overview of
the next sections.

Theorem 1 (Memory-hardness of Scrypt, main theorem). For any X ∈
{0, 1}w and n ≥ 2, if Ah(X,n) outputs Sn = scrypth(X,n) with probability χ,
where the probability is taken over the choice of the random oracle h, then with
probability (over the choice of h) at least χ − .08n6 · 2−w − 2−n/20,

ccmem(Ah(X)) >
1
25

· n2 · (w − 4 log n) .

We note that if w is large enough in terms of n (say, 4 log n ≤ w/2, which clearly
holds for typical values w = 256, n = 220), then ccmem(Ah(X)) is in Ω(n2w).
As discussed in the introduction, this is the best possible bound up to constant
factors, as already the (sequential) näıve algorithm for evaluating scrypth has
ccmem ∈ O(n2w). We discuss the constants following Theorem 5.

Proof outline. The proof consists of three parts outlined below. The first two
parts, in fact, will give rise to statements of independent interest, which will
then be combined into the proof of our main theorem.

– Section 4: Single-shot time complexity. To start with, we consider a pROM
game where the adversary Ah(X) starts its execution with input X and an
M -bit state σ0 that can depend arbitrarily on h and X. Then, Ah(X) is given
a random challenge j ∈ {0, . . . , n − 1} and must return Xj = hj(X).

Clearly, σ0 may contain Xj , and thus in the best case, A may answer very
quickly, but this should not be true for all challenges if M 
 nw. We will prove
a lower bound on the expected time complexity (in the pROM) of answering
such a challenge. We will show that with good probability (e.g., 1

2 ) over the
choice of j, Ah(X) needs at least (roughly) nw/M steps.

This validates in particular the intuition that the adversary in this game can-
not do much better than an adversary in the corresponding pebbling game
on the line graph with vertices v0, v1, . . . , vn−1, where the adversary gets to
choose an initial configuration with p = M/w pebbles, and is then asked to
put a pebble on vj for a random j ∈ {0, 1, . . . , n − 1}. Here, one can show
that at least n/p steps are needed with good probability. In fact, this pebbling
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game is equivalent to a variant of the above pROM game where the adversary
only stores random-oracle output labels, and thus our result shows that an
adversary cannot do much better than storing whole labels.

– Section 5: Multi-challenge cumulative pebbling complexity. In the above sce-
nario, we have only considered the time needed to answer a challenge. There is
no guarantee, a priori, that the cumulative complexity is also high: An optimal
adversary, for instance, stores p labels corresponding to equidistant pebbles,
and then computes the challenge from the closest label, dropping the remain-
der of the memory contents.

Here, for the randomized pebbling game with Q challenges on the line graph,
we will show a lower bound of Ω(nQ) on the cumulative pebbling complexity.
Our argument will use in particular a (generalization) of the above single-shot
trade-off theorem, i.e., the fact that whenever p pebbles are placed on the
line, at least n/p steps are needed with good probability to pebble a randomly
chosen node. We will use this to lower bound the cumulative complexity before
each particular challenge is answered. Our proof gives a substantial quantita-
tive improvement over the looser lower bound of [6].

– Section 6: ccmem of scrypt. Finally, we lower bound the cumulative memory
complexity of scrypth as stated in Theorem 1. Unfortunately, this does not fol-
low by a reduction from the pebbling lower bound directly. Indeed, as discussed
in the introduction (and as explained in [6]), unlike for data-independent
MHFs, for data-dependent MHFs like scrypt it is an open problem whether
one can translate lower bounds on the cumulative pebbling complexity to lower
bounds for cumulative memory complexity. Fortunately, however, through a
careful analysis, we will be able to employ the same arguments as in the proof
of Sect. 5 in the pROM directly.

In particular, we will use our result from Sect. 4 within an argument following
the lines to that of Sect. 5 in the pROM. One particularly delicate technical
issue we have to address is the fact that in scrypth the challenges are not sam-
pled randomly, but will depend on the random oracle h, which the adversary
can query. We will provide more intuition below in Sect. 6.

Remark 1. Note that in Theorem 1 above, the random oracle h is sampled uni-
formly after the input X is chosen arbitrarily. This is equivalent to saying that
X and h are independent. In practice this assumption is usually (nearly) satis-
fied. For example, when used in a blockchain, X will be the output of h on some
previous inputs, typically a hash of the last block and a public-key. This doesn’t
make X independent of h, but its distribution will be dense in the uniform dis-
tribution even conditioned on h, which is means it is very close to independent.
When used for password hashing, X = h(pwd, S) for a password pwd and a
random salt S. For a sufficiently long salt, this will make X as good as uniform
[11]. We defer more rigorous treatment of this issue to the full version of this
paper.
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4 Time Complexity of Answering a Single Challenge
in the Parallel Random Oracle Model

We prove the following theorem, and below discuss briefly how this result can
be extended beyond the setting of scrypt.

Fix positive integers n, u and w, a string X ∈ {0, 1}u, a finite domain D
that contains at least {X} ∪ {0, 1}w, and let R = {0, 1}w. Given a function
h : D → R, define Xi = hi(X). Let A be any oracle machine (in the parallel
random oracle model as defined in Sect. 2) that on any input and oracle makes at
most q − 1 total queries to its oracle. Suppose Ah(X, j) starts on input state σ0

with the goal of eventually querying Xj to h. Let tj be the number of the earliest
round in which Ah(X, j) queries Xj to h (with tj = ∞ if never). We show that A
cannot do much better than if it were doing the following in the corresponding
random challenge pebbling game on the line graph: initially placing p ≈ M/w
equidistant pebbles, and then pebbling the challenge from the closest pebble
preceding it.

Theorem 2 (Single-Challenge Time Lower Bound). There exists a set
of random oracles goodh such that Prh∈RD [h /∈ goodh] ≤ qn32−w, and for every
h ∈ goodh, the following holds: for every memory size M , and every input state
σ0 of length at most M bits,

Pr
j←{0,...,n−1}

[
tj >

n

2p

]
≥ 1

2
,

where the probability is taken over only the challenge j and p = �(M + 1)/(w −
2 log n − log q) + 1.

We will actually prove a slightly more general result: for any 0 ≤ prhard ≤ 1,

Pr
j←{0,...,n−1}

[
tj >

n(1 − prhard)
p

]
≥ prhard.

Proof. Recall that for each j, A performs tj rounds of the following process.
At round k read an input state containing oracle responses h(qk−1) (except for
k = 1, when A reads σ0). Then (after arbitrary computation) produce an output
state containing oracle queries qk. We count rounds starting from 1. Consider
the sequence of such tuples of queries and responses to and from h. If the first
appearance of Xi in this sequence is a query to h in round k (k > 0 is minimal
such that Xi ∈ qk), then we assign Xi position πij = k. If instead the first
appearance of Xi is a response from h to query Xi−1 made at round k (k > 0
is minimal such that Xi−1 ∈ qk), then we assign Xi position πij = k + 1/2. In
all other cases (i.e., if Xi does not appear, or appears only because of a hash
collision in response to some query that is not Xi−1), let πij = ∞.

Let “best position” correspond to the earliest time, over all j, that Xi appears
during the computation of Xj : βi := minj πij ; let “best challenge” bestchali be
argminjπij (if argmin returns a set, pick one element arbitrarily). Let i be “blue”
if βi is an integer (i.e., it was produced “out of the blue” by A as a query to h).
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Let B = {i s.t. i > 0 and i is blue} (that is, all the blue indices except X0).
In the rest of the proof, we will show that the size of B cannot exceed p − 1 (for
most h), where p, as defined in the theorem statement, is proportional to the
memory size M ; and that the amount of time to answer the challenge is at least
its distance from the preceding blue index. Thus, blue indices effectively act like
pebbles, and the bounds on the time to reach a random node in the line graph
by moving pebbles apply.

Claim 1. Given adversary A and input X, there exists a predictor algorithm P
(independent of h, but with oracle access to it) with the following property: for
every h, every M , and every length M input state σ0 of A, there exists a hint of
length |B|(2 log n + log q) such that given σ0 and the hint, P outputs every Xi

for i ∈ B without querying Xi−1 to h.
Moreover, if we want fewer elements, we can simply give a shorter hint: there

exists a predictor algorithm that similarly outputs p elements of B whenever
p ≤ |B|, given σ0 and an additional p(2 log n + log q)-bit hint.

Note that the inputs to P can vary in size; we assume that the encoding of
inputs is such that the size is unambiguous.

Proof. We will focus on the first sentence of the claim and address the second
sentence at the end.

P depends on input label X = X0 and algorithm A (which are independent of
h). P will get the state σ0 of A (which may depend on h) as input, and, for every
i ∈ B, a hint containing the challenge bestchali for which Xi appears earliest,
and the sequential order (among all the q − 1 queries A makes in answering
bestchali) of the first query to Xi (using the value q to indicate that this query
never occurs). This hint (which depends on h) will thus consist of a list of |B|
entries, each containing i ∈ B, bestchali, and log q bits identifying the query
number, for a total of |B|(2 log n + log q) bits.

P will build a table containing Xi for i ≥ 0 (initializing X0 = X). To do
so, P will run A on every challenge in parallel, one round at a time. After each
round k, P will obtain, from the output states of A, all the queries A makes
for all the challenges in round k. Then P will fill in some spots in its table and
provide answers to these queries as input states for round k + 1 by performing
the following three steps:

Step k. put any blue queries into its table (blue queries and their posi-
tions in the table can easily be recognized from the hint);

Step k+1/4. answer any query that can be answered using the table (i.e., any
query that matches Xi−1 in the table for some filled positions
i − 1 and i);

Step k+1/2. send remaining queries to h, return the answers to A, and fill in
any new spots in the table that can be filled in (i.e., for every
query that matches Xi−1 in the table for some filled-in position
i − 1, fill in position i with the answer to that query).
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Once every Xi for i ∈ B is in the table, P queries h to fill in the missing
positions in the table, and outputs the prediction that h(Xi−1) = Xi for i ∈ B.

To prove that P simulates h correctly to A, it suffices to show that the table
contains correct labels. This can be easily argued by induction on i. Assume all
the labels in the table are correct up to now. A new label Xi enters the table
either because it is marked as blue (and thus correct by the hint) or is obtained
as an answer from h to the query that P identified as Xi−1 using the table (which
is correct by inductive hypothesis).

The above also shows that P will not output an incorrect prediction. It
remains to show that P did not query to h the value Xi−1 for any i ∈ B. To
prove this, we first show that Xi is placed into the table no later than step βi of
P, by induction on βi. The base case is X0, which is in the table at step 0. If βi

is an integer, then i ∈ B and this is true because of step βi of P. If βi is not an
integer, then βi−1 < βi (because Xi−1 appears as a query at round �βi�), so at
the beginning of step βi of P, by the inductive hypothesis, position i − 1 in the
table will already contain Xi−1, and thus position i will get filed in when Xi−1

gets queried to h.
Note also that Xi cannot be placed into the table earlier than step βi, so it

is placed in the table exactly at step βi (as long as βi �= ∞, in which case it is
placed into the table at the end, when P fills in the missing positions).

Now suppose, for purposes of contradiction, that P queries h for some value
Xi−1 for some i ∈ B. That can happen only if at the end of some round k, Xi−1

is queried by A as part of the output state, but either Xi−1 or Xi are not in the
table at that time.

– If Xi−1 is not in the table at the beginning of step k + 1/2 of P, then βi−1 ≥
k + 1/2; but since Xi−1 is being queried at the end of round k, βi−1 ≤ k,
which is a contradiction.

– If Xi is not in the table at the beginning of step k +1/2 of P, then βi ≥ k +1
(because βi is an integer); but since Xi−1 appears as query in the output
state of round k, βi ≤ k + 1/2, which is also a contradiction.

Thus, P always achieves its goal.
For the second sentence of the claim, observe that we can simply give P the

hint for the p blue labels with the smallest β values. ��
In the next claim, we show that for every input to P, the algorithm P cannot

be correct for too many oracles h.

Claim 2. Fix an algorithm P and fix its input, a positive integer p, some domain
D, and range R. For h : D → R, call Ph successful if P with oracle access to h
outputs p distinct values x1, . . . , xp ∈ D and h(x1), . . . , h(xp) without querying h
on any of x1, . . . , xp. Then Prh∈RD [Ph is successful] ≤ |R|−p.

Proof. Instead of choosing h all at once, consider the equivalent view of choos-
ing answers to fresh queries of P uniformly at random, and then choosing the
remainder of the h uniformly at random after P produces its output. Since P does
not query x1, . . . , xp, the choices of h on those points will agree with y1, . . . , yp

with the probability at most |R|−p. ��
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Using the previous two claims, we now bound the number of random oracles
for which the size of the blue set is too large. Recall B is the blue set minus X0.

Claim 3. Given adversary A, there exists a set of random oracles goodh such
that Pr[h /∈ goodh] ≤ qn32−w, and for every h ∈ goodh, every M , and every
initial state σ0 of A of size at most M bits, |B| ≤ p − 1, where p = �(M +
1)/(w − 2 log n − log q) + 1.
Proof. The intuition is as follows: if for some h and some initial input state of
length M , |B| > p − 1, then either P successfully predicts the output of h on
p distinct inputs (by Claim1), or some of the values among X0, . . . , Xn−1 are
not distinct. We will define badh as the set of random oracles for which this can
happen, and then bound its size.

Let S be the size of the space of all possible random oracles h. There are at
most 1

2Sn22−w random oracles for which some of the values among X0, . . . , Xn−1

are not distinct; (suppose the first collision pair is i, j < n, thus Xi−1 �= Xj−1,
and the probability that Xi = Xj is 2−w; then the bound is given by taking
union bound over at most n2/2 pairs of (i, j).) Call this set of random oracles
colliding.

In the next paragraph, we will formally define the set predictable as the set
of random oracles for which P correctly predicts the output on p distinct inputs
given the M -bit input state of A and an additional p(2 log n+log q)-bit hint. We
will bound the size of predictable by bounding it for every possible memory state
of A and every possible hint, and then taking the union bound over all memory
states and hints.

Consider a particular input state of length M for A; recall that p = �(M +
1)/(w − 2 log n − log q) + 1. Assume 1 ≤ p ≤ n − 1 (otherwise, the statement of
Claim 3 is trivially true). Fix a particular value of the hint for P for predicting
p elements of B. (Recall that the hint was previously defined dependent on the
random oracle; we are now switching the order of events by fixing the hint first
and then seeing for how many random oracles this hint can work.) Since the
input to P is now fixed, there are most S2−pw random oracles for which it can
correctly output p distinct values without querying them, by Claim2. The set
predictable consists of all such random oracles, for every value of M such that
p ≤ n, every M -bit input state σ0, and every hint.

To count how many random oracles are in predictable, first fix p. Let Mp be
the largest input state length that gives this particular p. Take all input state
lengths that give this p, all possible input states of those lengths (there are
at most 2Mp + 2Mp−1 + · · · + 1 < 2Mp+1 of them), and all possible hints for
extracting p values (there are at most 2p(2 log n+log q) of them). This gives us at
most S2(Mp+1)+p(2 log n+log q−w) random oracles in predictable. Since (Mp + 1) ≤
(p − 1)(w − 2 log n − log q) by definition of p, this number does not exceed
S2(2 log n+log q−w) = Sn2q2−w. Now add up over all possible values of p (from 2
to n), to get |predictable| ≤ S(n − 1)n2q2−w.

Set badh = colliding ∪ predictable and let goodh be the complement of badh.

��
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Claim 4. For every i, 0 ≤ i < n, the value ti is at least 1 + i − j, where
j = max{a ≤ i | a is blue}.
Proof. If i is blue, we are done, since ti ≥ 1 simply because we start counting
rounds from 1.

We will first show that �βi−βj ≥ i−j. Fix a blue j and proceed by induction
on i such that i > j and there are no blue indices greater than j and less than i.

For the base case, suppose i = j+1. Recall that βi is not an integer because i
is not blue. Then βi−1 ≤ βi −1/2, because Xi−1 is present as the query to h that
produces response Xi in the sequence of queries that A makes when responding
to the challenge bestchali, and we are done. For the inductive case, it suffices to
show that βi−1 ≤ βi−1, which is true by the same argument as for the base case,
except that we add that βi−1 is also not an integer (since i − 1 is also not blue).

Therefore, �βi ≥ i − j + 1, because βj ≥ 1. We thus have πii = ti ≥ �βi ≥
i − j + 1. ��

The number of blue indices (namely, |B| + 1, because X0 is blue but not in
B) is at most p if h ∈ goodh. Since at most d indices are within distance d − 1
of any given blue index, and there are at most p blue indices, we can plug in
d = n(1 − prhard)/p to get

Pr
i

[
ti ≤ n(1 − prhard)

p

]
≤ 1 − prhard.

This concludes the proof of Theorem 2. ��
Generalizing to other graphs. In general, every single-source directed
acyclic graph G defines a (data-independent) function whose evaluation on input
X corresponds to labeling G as follows: The source is labeled with X, and the
label of every node is obtained by hashing the concatenation of the labels of
its predecessors. Rather than evaluating this function, one can instead consider
a game with challenges, where in each round, the adversary needs to compute
the label of a random challenge node from G. Theorem 2 above can be seen as
dealing with the special case where G is a line graph.

Theorem 2 can be generalized, roughly as follows. We replace log q with
log q + log d (where d is the degree of the graph), because identifying blue nodes
now requires both the query number and the position within the query. We
modify the proof of Claim 1 to account for the fact that the random oracle
query resulting in response Xi is not necessarily Xi−1, but a concatenation of
labels. The only conceptually significant change due to this generalization is in
Claim 4, whose generalized statement is as follows. For every node i, define the
“limiting depth of i” to be the length of a longest possible path that starts at
a blue node, goes through no other blue nodes, and ends at i. The generalized
version of Claim 4 states that the amount of time required to query Xi is at
least one plus the limiting depth of node i.

With this more general claim in place, it follows that

Pr
i

[ti > m] ≥ 1
2
,
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where m defined as follows. Let S denote set of blue nodes, and let mS denote
the median limiting depth of the nodes in G. We define m to be the minimum
mS over all S such that the origin is in S and |S| = p.

Of course, other statistical properties of the distribution of ti can also be
deduced from this claim if we use another measure instead of the median. Essen-
tially, the generalized theorem would show that the best the adversary can do
is place p pebbles on the graph and use parallel pebbling.

5 Cumulative Complexity of Answering Repeated
Challenges in the Parallel Pebbling Model

In the previous part, we showed that, in the parallel random oracle model, an
adversary with memory (input state) of size M cannot do much better when
answering a random challenge than placing p ≈ M/w pebbles on the graph and
pebbling. In this section, we prove a lower bound on the cumulative complexity
of repeated random challenges in the pebbling model. While the result in this
section does not directly apply to the random oracle model for reasons explained
in Sect. 5.1, all of the techniques are used in the proof of our main theorem in
Sect. 6.

The Single Challenge Pebbling Game. Consider now the pebbling game
for the line graph G consisting of nodes v0, . . . , vn−1 and edges (vi, vi+1) for
every 0 ≤ i < n. Recall that in this game, at each time step t starting with
t = 0, the adversary maintains a subset Pt of nodes (“pebbles”). If there is a
pebble on a node at time t − 1, its successor is allowed (but not required) to
get a pebble at time t. Formally, at time t > 0, the set Pt must be a subset of
Pt−1 ∪ {vi+1 : vi ∈ Pt−1}. Also recall that we modify the game of [8] slightly
by not permitting the adversary to put a pebble on the source for free: v0 is
contained in P0 and cannot be added to Pt if it is absent in Pt−1 (this change
simplifies calculations). Let pi = |Pi| ≥ 1.

We will say that the adversary answers a challenge chal (for 0 ≤ chal < n)
in t steps if t > 0 is the earliest time when vchal ∈ Pt−1 (note that a pebble
needs to be on vchal at time t − 1—think of time t as the step when the output
to the challenge is presented; this convention again simplifies calculations, and
intuitively corresponds to the scrypt evaluation, in which the “output” step
corresponds to querying Xchal ⊕ Si in order to advance to the next challenge).

It is easy to see that t is at least one plus the distance between chal and
the nearest predecessor of chal in P0. Therefore, for the same reason as in the
proof of Theorem 2 (because at most n/(2p0) challenges are within n/(2p0) − 1
distance to a particular node in P0 and there are p0 nodes in P0).

Pr
chal

[
t >

n

2p0

]
≥ 1

2
.
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More generally, the following is true for any 0 ≤ prhard ≤ 1:

Fact 3

Pr
chal

[
t >

c

p0

]
≥ prhard with c = n(1 − prhard).

Repeated Challenges Pebbling Game. We now consider repeated chal-
lenges. At time s1 = 0, the adversary receives a challenge c1, 0 ≤ c1 < n. The
adversary answers this challenge at the earliest moment s2 > s1 when Ps2−1

contains Xc1 ; after Ps2 is determined, the adversary receives the next challenge
c2, and so on, for Q challenges, until challenge cQ is answered at time sQ+1. We
are interested in the cumulative pebbling complexity ccpeb =

∑sQ+1
t=0 pt.

Note that the adversary can adaptively vary the number of pebbles used
throughout the game, while Fact 3 above addresses only the number of pebbles
used before a challenge is known. Nevertheless, we are able to show the following.

Theorem 4 (Cumulative pebbling complexity of repeated challenges
game). The cumulative pebbling complexity of the repeated challenges pebbling
game is with high probability Ω(nQ).

More precisely, suppose the adversary never has fewer than p0 pebbles. Then
for any ε > 0, with probability at least 1 − e−2ε2Q over the choice of the Q
challenges,

ccpeb ≥ p0 +
n

2
· Q ·

(
1
2

− ε

)
· ln 2.

More generally, we replace the condition that the adversary never has fewer than
p0 pebbles with the condition pt ≥ pmin for some pmin and every t ≥ 1, we need
to replace ln 2 with

ln

(
1 +

(
pmin

p0

) 1

Q( 1
2−ε)

)
.

This result improves [6, Theorem 1] by eliminating the log2 n factor from the
cumulative memory complexity of the pebbling game. In the full version [7], we
discuss the general case of pt ≥ pmin and show an attack showing that a bound
as the above is necessary (up to constant factors in the exponent).

Our approach is general enough to apply to space-time tradeoffs other than
inverse proportionality, to other graphs, and even to some other models of com-
putation that do not deal with pebbling. However, we will explain in Sect. 5.1
why it cannot be used without modification in the parallel random oracle model
and other models where space is measured in bits of memory.

Proof. Recall time starts at 0, pt denotes the number of pebbles at time t, and
si denotes the moment in time when challenge number i (with 1 ≤ i ≤ Q) is
issued. Let ti denote the amount of time needed to answer challenge number
i (thus, s1 = 0 and si+1 = si + ti; let sQ+1 = sQ + tQ). Let cc(t1, t2) denote∑t2

t=t1
pt.
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The Main Idea of the Proof. The difficulty in the proof is that we cannot
use ti to infer anything about the number of pebbles used during each step of
answering challenge i. All we know is that the number of pebbles has to be
inversely proportional to ti immediately before the challenge was issued—but
the adversary can then reduce the number of pebbles used once the challenge is
known (for, example by keeping pebbles only on v0 and on the predecessor of
the challenge).

The trick to overcome this difficulty is to consider how many pebbles the
adversary has to have in order to answer the next challenge not only immediately
before the challenge, but one step, two steps, three steps, etc., earlier.

Warm-Up: Starting with a Stronger Assumption. For a warm-up, consider
the case when the pebbles/time tradeoff is guaranteed (rather than probabilistic,
as in Fact 3): assume, for now, that in order to answer the next random challenge
in time t, it is necessary to have a state of size c/t right before the challenge is
issued. Now apply this stronger assumption not only to the moment s in time
when the challenge is issued, but also to a moment in time some j steps earlier.
The assumption implies that the number of pebbles needed at time s − j is at
least c/(j + t) (because the challenge was answered in j + t steps starting from
time s − j, which would be impossible with a lower number of pebbles even if
the challenge had been already known at time s − j).

We will use this bound for every challenge number i ≥ 2, and for every j = 0
to ti−1, i.e., during the entire time the previous challenge is being answered.
Thus, cumulative pebbling complexity during the time period of answering chal-
lenge i − 1 is at least

cc(si−1 + 1, si) ≥
ti−1−1∑

j=0

psi−j ≥ c

(
1
ti

+
1

ti + 1
+ · · · +

1
ti + ti−1 − 1

)

≥ c

∫ ti−1+ti

ti

dx

x
= c(ln(ti−1 + ti) − ln ti).

Then adding these up for each i between 2 and Q, we get the cumulative
pebbling complexity of

cc(1, sQ+1) ≥ c

Q∑

i=2

(ln(ti−1 + ti) − ln ti).

If all ti are equal (which is close to the minimum, as we will show below),
this becomes c(Q − 1) · ln 2.

Back to the Actual Assumption. The proof is made messier by the fact
that the bound in the assumption is not absolute. Moreover, the bound does not
give the number of pebbles in terms of running time, but rather running time
in terms of the number of pebbles (it makes no sense to talk probabilistically
of the number of pebbles, because the number of pebbles is determined by the
adversary before the challenge is chosen). To overcome this problem, we look at
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the number of pebbles at all times before si and see which one gives us the best
lower bound on ti.

Consider a point t ≤ si in time. We can apply Fact 3 to the size pt of the
set of pebbles Pt at time t, because the ith challenge is selected at random after
the adversary determines Pt. The ith challenge will be answered ti + (si − t)
steps after time t; thus, with probability at least prhard over the choice of the
ith challenge, ti + (si − t) > c/pt, i.e., ti > c/pt − (si − t). Let ri be a moment
in time that gives the best bound on ti:

ri = argmax
0≤t≤si

(
c

pt
− (si − t)

)
.

Call the ith challenge “hard” if ti + (si − ri) > c/pri
. We claim that if challenge

i is hard, then the same fact about the number of pebbles j steps before the
challenge as we used in the warm-up proof holds.

Claim 5. If challenge i is hard, then for any j, 0 ≤ j ≤ si, psi−j > c/(ti + j).

Proof. Indeed, let t = si −j. Then c/psi−j −j = c/pt −(si − t) ≤ c/pri
−(si −ri)

by the choice of ri. This value is less than ti by definition of a hard challenge.
Therefore, c/psi−j − j < ti and the result is obtained by rearranging the terms.

��
We now claim that with high probability, the number of hard challenges is

sufficiently high.

Claim 6. For any ε > 0, with probability at least 1−e−2ε2Q, the number of hard
challenges is at least H ≥ Q(prhard − ε).

Proof. The intuitive idea is to apply Hoeffding’s inequality [17], because chal-
lenges are independent. However, the hardness of challenges is not independent,
because it may be (for example) that one particular challenge causes the adver-
sary to slow down for every subsequent challenge. Fortunately, it can only be
“worse than independent” for the adversary. Specifically, for any fixing of the
first i − 1 challenges c1, . . . , ci−1, we can run the adversary up to time si; at
this point, time ri is well defined, and we can apply Fact 3 to ri to obtain that
Pr[ci is hard | c1, . . . , ci−1] ≥ prhard. This fact allows us to apply the slightly
generalized version of Hoeffiding’s inequality stated in Claim7 (setting Vi = 1 if
ci is hard and Vi = 0 otherwise) to get the desired result. ��
Claim 7 (Generalized Hoeffding’s inequality). IfV1, V2, . . . , VQ are binary
random variables such that for any i (0 ≤ i < Q) and any values of v1, v2, . . . , vi,
Pr[Vi+1 = 1 |V1 = v1, . . . , Vi = vi] ≥ ρ, then for any ε > 0, with probability at least
1 − e−2ε2Q,

∑Q
i=1 Vi ≥ Q(ρ − ε).

Proof. For 0 ≤ i < Q, define the binary random variable Fi+1 as follows: for
any fixing of v1, . . . , vi such that Pr[V1 = v1, . . . , Vi = vi] > 0, let Fi+1 = 1
with probability ρ/Pr[Vi+1 = 1 |V1 = v1, . . . , Vi = vi] and 0 otherwise, inde-
pendently of Vi+1, . . . , VQ. Let Wi+1 = Vi+1 · Fi+1. Note that Pr[Wi+1 = 1] = ρ
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regardless of the values of V1, . . . , Vi, and thus Wi+1 is independent of V1, . . . , Vi.
Since F1, . . . , Fi are correlated only with V1, . . . , Vi, we have that Wi+1 is inde-
pendent of (V1, . . . , Vi, F1, . . . , Fi), and thus independent of W1, . . . ,Wi. There-
fore, W1, . . . ,WQ are mutually independent (this standard fact can be shown by
induction on the number of variables), and thus

∑Q
i=1 Vi ≥ ∑Q

i=1 Wi ≥ Q(ρ − ε)
with probability at least 1 − e−2ε2Q by Hoeffding’s inequality. ��

Now assume H challenges are hard. What remains to show is a purely alge-
braic statement about the sum of pi values when H ≥ Q(prhard−ε) of challenges
satisfy Claim 5.

Claim 8. Let c be a real value. Let t1, . . . , tQ be integers, s1 = 0, and si =
si−1 + ti−1 for i = 2, . . . , Q + 1. Let p0, . . . , pQ be a sequence of real values with
pt > pmin for every t ≥ 1. Suppose further that there exist at least H distinct
indices i, with 1 ≤ i ≤ Q (called “hard indices”) such that for any 0 ≤ j ≤ si,
psi−j ≥ c/(ti + j). Then

sQ+1∑

i=1

pi ≥ c · H · ln

(
1 +

(
pmin

p0

) 1
H

)
.

Proof. Let i1 < i2 < · · · < iH be the hard indices. Recall the notation cc(i, j) =∑j
t=i pt. Then for k ≥ 2,

cc(sik−1 + 1, sik
) ≥ cc(sik

− tik−1 + 1, sik
) =

tik−1−1∑

j=0

psik
−j

≥
tik−1−1∑

j=0

c

tik
+ j

≥ c · (ln(tik−1 + tik
) − ln tik

),

(the last inequality follows by the same reasoning as in the warm-up). To bound
cc(1, Q+1), we will add up the pebbling complexity during these nonoverlapping
time periods for each k and find the minimum over all sets of values of tik

.
Unfortunately, the result will decrease as ti1 decreases and as tiH

increases, and
we have no bounds on these values. To get a better result, we will need to
consider special cases of k = 2 (to replace ti1 with c/p0) and k = H + 1 (to add
another term with tiH+1 = c/pmin).

For k = 2, we will bound cc(1, si2) by noticing that si2 ≥ ti1 + si1 ≥ c/p0
(where the second step follows by Claim 5 with j = si1), and therefore

cc(1, si2) ≥
si2−1∑

j=0

psi2−j ≥ c

si2−1∑

j=0

1
ti2 + j

≥ c

∫ si2+ti2

ti2

dx

x

= c(ln(si2 + ti2) − ln ti2) ≥ c · (ln(c/p0 + ti2) − ln ti2).
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For k = H + 1,

cc(siH
+ 1, sH+1) ≥ pmin · tiH

≥ c ·
(

1
c/pmin

tiH

)

≥ c ·
(

1
c/pmin

+ · · · +
1

c/pmin + tiH
− 1

)

≥ c · (ln(tih
+ c/pmin) − ln c/pmin).

Adding these up, we get

cc(0, si+1) = p0 + cc(1, si2) + cc(si2 + 1, si3) + . . .

+ cc(siH−1 + 1, siH
) + cc(siH

+ 1, siH+1)

≥ p0 + c ·
H∑

i=1

(ln(xi + xi+1) − ln xi+1),

where x1 = c/p0, x2 = ti2 , x3 = ti3 , . . . , xH = tiH
, and xH+1 = c/pmin.

To find the minimum of this function, observe that the first derivative with
respect to xi is 1

xi+xi−1
+ 1

xi+xi+1
− 1

xi
, which, assuming all the xis are positive, is

zero at xi = √
xi−1xi+1, is negative for xi <

√
xi−1xi+1, and is positive for xi >√

xi−1xi+1. Therefore, the minimum of this function occurs when each xi, for 2 ≤
i ≤ H, is equal to √

xi−1xi+1, or equivalently, when xi = c/(pi−1
minp

H−i+1
0 )1/H .

This setting of xi gives us ln(xi + xi+1) − ln xi+1 = ln(1 + (pmin/p0)1/H), which
gives the desired result. ��

Plugging in Q · (prhard − ε) for H and prhard = 1
2 concludes the proof of

Theorem 4. ��

5.1 Why This Proof Needs to be Modified for the Parallel Random
Oracle Model

The main idea of the proof above is to apply the space-time tradeoff of Fact 3
to every point in time before the challenge is known, arguing that delaying the
receipt of the challenge can only hurt the adversary. While this is true in the
pebbling game (via an easy formal reduction—because getting bits does not help
get pebbles), it’s not clear why this should be true in the parallel random oracle
game, where space is measured in bits rather than pebbles. A reduction from
the adversary A who does not know the challenge to an adversary B who does
would require B to store the challenge in memory, run A until the right moment
in time, and then give A the challenge. This reduction consumes memory of
B—for storing the challenge and keeping track of time. In other words, A can
save on memory by not knowing, and therefore not storing, the challenge. While
the amount of memory is small, it has to be accounted for, which makes the
formulas even messier. Things get even messier if A is not required to be 100%
correct, because, depending on the exact definition of the round game, B may
not know when to issue the challenge to A.

Nevertheless, this difficulty can be overcome when challenges come from the
random oracle, as they do in scrypt. We do so in the next section.
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6 Main Result: Memory Hardness of scrypt in the
Parallel Random Oracle Model

We are ready to restate our main theorem, which we now prove extending the
techniques from the two previous sections. We state it with a bit more detail
than Theorem 1.

Fix positive integers n ≥ 2 and w, a string X ∈ {0, 1}w, a finite domain D
that contains at least {0, 1}w, and let R = {0, 1}w.

Theorem 5. Let A be any oracle machine (in the parallel random oracle model
as defined in Sect. 2) with input X. Assume Ah(X) outputs Sh

n = scrypth(X)
correctly with probability χ, where the probability is taken over the choice of
h : D → R. Then for any ε > 0 and q ≥ 2, with probability (over the choice h)
at least χ− 2qn4 · 2−w − e−2ε2n one of the following two statements holds: either
Ah(X) makes more than q queries (and thus ccmem(Ahn) > qw by definition) or

ccmem(Ah(X)) ≥ ln 2
6

·
(

1
2

− ε

)
· n2 · (w − 2 log n − log q − 1) .

To get the statement of Theorem 1, we set ε = 1/7 and observe that then
e−2ε2n = 2− 2n

49 ln 2 < 2−n/20 and ln 2
6 ( 12 − 1

7 ) > 1
25 . We also plug in q = min(2, n2

25 )
(and therefore log q ≤ 2 log n − 1), thus removing the “either/or” clause (this
setting of q requires us to manually check that the probability statement is
correct when q > n2

25 , i.e., 2 ≤ n ≤ 7—a tedious process that we omit here).
The multiplicative constant of ln(2)(1/2 − ε)/6, which becomes 1/25 in The-

orem 1 (and can be as small as ≈ 1/18 if we use a smaller ε), is about 9–12 times
worse than the constant in the näıve scrypt algorithm described on p. 4, which
has ccmem of n2w/2. We describe approaches that may improve this gap to a
factor of only about 1/ ln 2 ≈ 1.44 in the full version [7]. We note that there is
also gap between w in the näıve algorithm and (w − 2 log n − log q − 1) in the
lowerbound, which matters for small w (as values of 20–30 for log n and log q
are reasonable).

The rest of this section is devoted to the proof of this theorem.

6.1 Outline of the Approach

Before proceeding with the proof, we justify our proof strategy by highlighting
the challenges of extending Theorems 2 and 4 to this setting. Theorem 2 applies
to a fixed random oracle h and a random challenge. In fact, the proof relies
crucially on the ability to try every challenge for a given oracle. However, in the
present proof, once the random oracle is fixed, so is every challenge. Moreover,
Theorem 4 crucially relies on the uniformity and independence of each challenge,
which is issued only when the previous challenge is answered. In contrast, here,
again, once the oracle is fixed, the challenges are fixed, as well. Even if we think of
the oracle as being lazily created in response to queries, the challenges implicitly
contained in the answers to these queries are not necessarily independent once
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we condition (as we need to in Theorem 2) on the oracle not being in badh. We
resolve these issues by working with multiple carefully chosen random oracles.

Recall our notation: X0 = X, X1 = h(X0), . . . , Xn−1 = h(Xn−2); T0 = Xn−1,
S0 = h(T0), and for i = 1, . . . , n, Ti = Si−1 ⊕ XSi−1 mod n and Si = h(Ti).
Because we will need to speak of different random oracles, we will use notation
Xh

i , T h
i , and Sh

i when the label values are being computed with respect to the
random oracle h (to avoid clutter, we will omit the superscript when the specific
instance of the random oracle is clear from the context). We will denote by Ah

the adversary running with oracle h. (To simplify notation, we will omit the fixed
argument X to the adversary A for the remainder of this section.)

Let changeModn(S, i) be the function that keeps the quotient �S/n� but
changes the remainder of S modulo n to i. Consider the following process of
choosing a random oracle (this process is described more precisely in the fol-
lowing section). Choose uniformly at random an oracle h0. Choose uniformly at
random challenges c1, . . . , cn, each between 0 and n−1. Let h1 be equal to h0 at
every point, except h1(T h0

0 ) = changeModn(Sh0
0 , c1). Similarly, let h2 be equal to

h1 at every point, except h2(T h1
1 ) = changeModn(Sh1

1 , c2), and so on, until hn,
which is our final random oracle.

This method of choosing hn is close to uniform, and yet explicitly embeds a
uniform random challenge. Unless some (rare) bad choices have been made, each
challenge has about a 1

2 probability of taking a long time to answer, by the same
reasoning as in Theorem2. And since the challenges are independent (explicitly
through the choices of ci values), we can use the same reasoning as in Theorem 4
to bound the cumulative complexity.

The main technical difficulty that remains is to define exactly what those bad
choices are and bound their probability without affecting the independence of
the challenges. In particular, there are nn possible challenge combinations, and
the probability that all of them yield random oracles that are acceptable (cause
no collisions and cannot be predicted) is not high enough. We have to proceed
more carefully.

The first insight is that if hk−1 is not predictable (i.e., a predictor P with a
short input cannot correctly extract many oracle values), and no oracle queries
up to Tk−1 collide, then Prck

[time between queries T hk

k−1 and T hk

k is high] ≥ 1
2 ,

by the same reasoning as in Theorem 2 (except predictor needs an extra log q
bits of hint to know when query Tk−1 occurs, so as to substitute the answer
to Tk−1 with changeModn(Sk−1, ck) for every possible ck). This allows us to
worry about only n random oracles avoiding collisions and the set predictable
(instead of worrying about nn random oracles) to ensure that the time between
consecutive challenges is likely to be high.

However, the reasoning in the previous paragraph bounds the time required
to answer the challenge ck only with respect to oracle hk. In order to reason about
A interacting with oracle hn, we observe that if for every k, Ah

k asks the queries
X0, . . . , Xn−1 = T0, T1, . . . , Tn in the correct order, then the computation of Ahn

is the same as the computation of Ahk until the kth challenge is answered—i.e.,
until Tk is queried. Thus, results about each of the oracles hk apply to hn.
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The rest of the work involves a careful probability analysis to argue that the
challenges c1, . . . , cn are almost independent even when conditioned on all the
bad events not happenning, and to bound the probability of these events.

6.2 The Detailed Proof

Recall that we assume that the adversary A is deterministic without loss of
generality (this fact will be used heavily throughout the proof). In particular,
the randomness of the experiment consists solely of the random oracle A is given
access to.

Following up on the above high-level overview, we now make precise the def-
inition of hk. Let h0 be a uniformly chosen random oracle. Let changeModn(S, i)
be a function that keeps the quotient �S/n� but changes the remainder of S
modulo n to i if possible: it views S as an integer in [0, 2w − 1], computes
S′ = �S/n� · n + i, and outputs S′ (viewed as a w-bit string) if S′ < 2w, and S
otherwise (which can happen only if n is not a power of 2, and even then is very
unlikely for a random S).

Definition 1. Let roundingProblemk be the set of all random oracles h for which
the value of at least one of Sh

0 , . . . , S
h
k is greater than �2w/n� · n − 1 (i.e., those

for which changeModn does not work on some S value up to Sk).

Definition 2. Let colliding∗
k be the set of all h which there is at least one colli-

sion among the values {X0,X
h
1 ,Xh

2 , . . . , Xh
n−2, T

h
0 , T h

1 , . . . , T h
k }. Let collidingk =

roundingProblemmin(k,n−1) ∪ colliding∗
k.

Definition 3. For every k (0 ≤ k < n), let hk+1 = hk if hk ∈ collidingk;
else, choose ck+1 uniformly at random between 0 and n − 1, let hk+1(T hk

k ) =
changeModn(Shk

k , ck+1), and let hk+1(x) = hk(x) for every x �= T hk

k . (Recall that
h0 is chosen uniformly.)

Note that this particular way of choosing hk+1 is designed to ensure that it is
uniform, as we argue in the full version.

The Single Challenge Argument. In the argument in Theorem2, the pre-
dictor issues different challenges to A. Here, the predictor will run A with dif-
ferent oracles. Specifically, given 1 ≤ k ≤ n and a particular oracle hk−1 �∈
collidingk−1, consider the n oracles hk,j for each 0 ≤ j < n, defined to be the
same as hk−1, except hk,j(T

hk−1
k−1 ) = changeModn(Shk−1

k−1 , j) (instead of S
hk−1
k−1 ).

Since hk−1 �∈ collidingk−1, T
hk−1
k−1 is not equal to X

hk−1
i for any 0 ≤ i < n − 1

and T
hk−1
i for any 0 ≤ i < k−1. Therefore (since hk−1 and hk,j differ only at the

point T
hk−1
k−1 ), we have X

hk−1
i = X

hk,j

i for every 0 ≤ i ≤ n − 1 and T
hk−1
i = T

hk,j

i

for any 0 ≤ i ≤ k − 1. In particular, the execution of A with oracle hk,j will
proceed identically for any j (and identically to the execution of Ahk−1) up to
the point when the query Tk−1 is first made (if ever). We will therefore omit the
superscript on Tk−1 for the remainder of this argument.
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The observation is that the moment Tk−1 is queried is the moment when the
predictor argument of Theorem2 can work, by having the predictor substitute
different answers to this query and run A on these different answers in parallel.
However, since Sect. 5 requires a time/memory tradeoff for every point in time
before the challenge is given, we will prove a more general result for any point
in time before Tk−1 is queried.

We number all the oracle queries that A makes across all rounds, sequentially.
We will only care about the first q oracle queries that A makes, for some q to be
set later (because if q is too large, then ccmem of A is automatically high). Note
that q here is analogous to q − 1 in Theorem 2.

Let sk > 0 be the round in which Tk−1 is first queried, i.e., contained in
qsk

. For an integer r ≤ sk, consider the output state σ̄r of Ahk−1 from round r.
Given σ̄r, consider n different continuations of that execution, one for each oracle
hk,j , 0 ≤ j < n. For each of these continuations, we let tj > 0 be the smallest
value such that such r+tj > sk and the query T

hk,j

k is contained in qr+tj
(if ever

before query number q + 1; else, set tj = ∞). We can thus define πij , βi, and
bestchali, blue nodes, and the set B the same way as in Theorem 2, by counting
the number of rounds after round r (instead of from 0) and substituting, as
appropriate “challenge j” with hk,j and “query Xj” with “query Xj or T

hk,j

k ”
(note that because hk−1 /∈ roundingProblemk−1, S

hk,j

k−1 mod n = j, and so T
hk,j

k =
Xj ⊕S

hk,j

k−1). (We stop the execution of A after q total queries in these definitions.)
We now show that, similarly to Claim 1, we can design a predictor algorithm

P that predicts every X
hk−1
i in B by interacting with hk−1 but not querying

it at the predecessors of points in B. The difference is that instead of running
Ahk−1 on σ0 and giving A different challenges j, P will run A with initial input
state σr, simulating different oracles hk,j (which differ from hk−1 on only one
point—namely, the output on input Tk−1). P gets, as input, σr and the same
hint as in Claim 1. P also needs an additional hint: an integer between 1 and q
indicating the sequential number (across all queries made in round r or later) of
the first time query Tk−1 occurs, in order to know when to reply with S

hk,j

k−1 =
changeModn(Shk−1

k−1 , j) instead of S
hk−1
k−1 itself. Note that this substitution will

require P to modify the input state σsk
. If sk > r, then P will not only be

able to answer with S
hk,j

k−1, but will also see the query Tk−1 itself as part of the
output state σ̄sk

, and will therefore be able to answer subsequent queries to
Tk−1 consistently. However, if sk = r, then we need to give Tk−1 to P to ensure
subsequent queries to Tk−1 are answered consistently. In order to do so without
lengthening the input of P, we note that in such a case we do not need S

hk−1
k−1

in σr (since P can obtain it by querying hk−1), and so we can take out S
hk−1
k−1

and replace it with Tk−1 (P will recognize that this happened by looking at the
additional hint that contains the query number for Tk−1 and noticing that it is
smaller than the number of queries zr in round r).

There is one more small modification: if Xj ∈ B and bestchalj = j, then in
order to correctly predict Xj itself (assuming Xj ∈ B), P will need one additional
bit of hint, indicating whether Xj is first queried by itself or as part of the “next
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round,” i.e., as part of the query T
hk,j

k = S
hk,j

k−1 ⊕ Xj (in which case P will need
to xor the query with S

hk,j

k−1, which P knows, having produced it when answering
the query Tk−1). Finally, note that log q bits suffice for the query number of Xi

on challenge bestchali, because it is not the same query number as Tk−1, because
hk−1 /∈ collidingk−1, so there are q−1 possibilities plus the possibility of “never”.

We thus need to give (in addition to σr) log q + |B|(1 + 2 log n + log q) bits
of hint to P, and P is guaranteed to be correct as long as hk−1 /∈ collidingk−1.

Suppose σr has mr bits. Claim 2 does not change. We modify Claim 3 as
follows. We replace p with a function pr of the memory size mr, defined as

pr = �(mr + 1 + log q)/(w − 2 log n − log q − 1) + 1 (1)

(note that it is almost the same as the definition of p, but accounts for the longer
hint). We now redefine predictable according to our new definition of P, pr, and
hint length.

Definition 4. The set predictable consists of all random oracles h for which
there exists an input state σr of size mr (such that 1 ≤ pr ≤ n − 1) and a hint
of length log q + pr(1 + 2 log n + log q), given which P can correctly output pr

distinct values from among Xh
1 , . . . , Xh

n−1 without querying them.

Finally, we replace badh with collidingk−1 ∪ predictable. As long as hk−1 /∈
collidingk−1 ∪ predictable, we are guaranteed that Prj [tj > n/(2pr)] ≥ 1/2, like
in Theorem 2.

The discussion above gives us the following lemma (analogous to Theorem2).

Lemma 1. Fix any k (1 ≤ k ≤ n). Assume hk−1 /∈ collidingk−1 ∪ predictable.
Let sk > 0 be the smallest value such that T

hk−1
k−1 is among the queries qsk

during
the computation of Ahk−1 . Let r ≤ sk and mr be the bit-length of the input state
σr of Ahk−1 in round r + 1. Let tk,j,r > 0 be such that the first time T

hk,j

k is
queried by Ahk,j after round sk is in round r + tk,j,r (let tk,j,r = ∞ if such a
query does not occur after round σk or does not occur among the first q queries,
or if T

hk−1
k−1 is never queried). Call j “hard” for time r if tk,j,r > n/(2pr), where

pr = �(mr + 1 + log q)/(w − 2 log n − log q − 1) + 1. We are guaranteed that

Pr
j

[j is hard for time r] ≥ 1
2
.

Hardness of Challenge ck. We continue with the assumptions of Lemma 1.
In order to get an analogue of Claim 5, we need to define what it means for
a challenge to be hard. Consider running Ahk . Let tk > 0 be such that T hk

k is
queried for the first time in round sk + tk (again, letting tk = ∞ if this query
does not occur among the first q queries). Find the round rk ≤ sk such that
bit-length mr of the input state σr in round rk +1 gives us the best bound on tk
using the equation of Lemma 1 (i.e., set rk = argmax0≤r≤sk

(n/(2pr) − (sk − r)),
where mr denotes the size of the state σr at the end of round r, and pr is the
function of mr defined by Eq. 1), and define ck to be “hard” if it is hard for
time rk.
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Definition 5. A challenge ck is hard if for rk = argmax0≤r≤sk
(n/(2pr)− (sk −

r)) we have tk,ck,rk
> n/(2pr), where sk, tk,j,r and pr are as defined in Lemma 1.

The Multiple Challenges Argument. So far, we considered hardness of
ck during the run of A with the oracle hk. We now need to address the actual
situation, in which A runs with hn. We need the following claim, which shows
that the actual situation is, most of the time, identical. Define wrongOrderk as the
set of all random oracles h for which the values {T h

0 , T h
1 , . . . , T h

k } are not queried
by Ah in the same order as they appear in the correct evaluation of scrypt
(when we look at first-time queries only, and only up to the first q queries).

Definition 6. wrongOrderk consists of all h for which there exist i1 and i2 such
that 0 ≤ i1 < i2 ≤ k and, in the run of Ah, query T h

i2
occurs, while query T h

i1

does not occur before query T h
i2

occurs.

Claim 9. If for every j (0 ≤ j ≤ n), hj /∈ collidingj ∪ wrongOrderj, then for
every k and i ≤ k, T hn

i = T hk
i , and the execution of Ahn is identical to the

execution of Ahk until the query Tk is first made, which (for 1 ≤ k ≤ n) happens
later than the moment when query T hn

k−1 = T hk

k−1 is first made.

Proof. To prove this claim, we will show, by induction, that for every j ≥ k and
i ≤ k, T hk

i = T
hj

i , and the execution of Ahj is identical to the execution of Ahk

until the query Tk is first made.
The base of induction (j = k) is simply a tautology.
The inductive step is as follows. Suppose the statement is true for some j ≥ k.

We will show it for j + 1. We already established that if hj �∈ collidingj , then
T

hj

i = T
hj+1
i for every i ≤ j, and is therefore equal to T hk

i by the inductive
hypothesis. Since hj and hj+1 differ only in their answer to the query T

hj

j =

T
hj+1
j , the execution of Ahj+1 proceeds identically to the execution of Ahj until

this query is first made. Since hj �∈ wrongOrderj , this moment is no earlier than
when the query Tk is made; therefore, until the point the query Tk is first made,
the execution of Ahj+1 proceeds identically to the execution of Ahj and thus (by
the inductive hypothesis) identically to the execution of Ahk .

The last part of the claim follows because hn �∈ wrongOrdern. ��
We therefore get the following analogue of Claim 5.

Claim 10. Given adversary A, assume for every k (0 ≤ k ≤ n), hk /∈ collidingk∪
wrongOrderk. Let c = n/2. If challenge i is hard (i.e., ti + (si − ri) > c/pri

),
then, during the run of Ahn , for any 0 ≤ j ≤ si, psi−j ≥ c/(ti + j).

Definition 7. Let E1 be the event that there are at least H ≥ n( 12 − ε) hard
challenges (as defined in Definition 5). Let E2 be the event that hk /∈ collidingk ∪
wrongOrderk (see Definitions 2 and 6) for every k, and Ahn queries T hn

n . Let Eq

be the event that Ahn makes no more than q total queries.
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Claim 11. If E1 ∩ E2 ∩ Eq, then
sn+1∑

r=1

pr ≥ ln 2 ·
(

1
2

− ε

)
· 1
2

· n2.

Proof. Since E2 holds, every query T0, . . . , Tn gets made, in the correct order.
Since Eq holds, all these queries happen no later than query q, thus ensuring
that Claim 10 applies and each tk is finite. Moreover, by definition of pr in Eq. 1,
pr ≥ 1 and p0 = 1. Therefore, we can apply Claim 8 to the execution of Ahn to
get the desired result. ��
Converting from

∑
pr to ccmem Now we need to convert from

∑
pr to

∑
mr.

Claim 12. For every r > 0,

mr ≥ pr · (w − 2 log n − log q − 1)/3.

Proof. By definition of pr, we have that

pr =
⌈

mr + 1 + log q

w − 2 log n − log q − 1
+ 1

⌉
≤ mr + 1 + log q

w − 2 log n − log q − 1
+ 2,

because the ceiling adds at most 1. Therefore,

(pr − 2) · (w − 2 log n − log q − 1) ≤ mr + 1 + log q,

(because we can assume (w − 2 log n − log q − 1) > 0 — otherwise, Theorem 5 is
trivially true) and thus

mr ≥ (pr − 2) · (w − 2 log n − log q − 1) − log q − 1 (2)
= pr · (w − 2 log n − log q − 1) − 2 · (w − 2 log n − log q − 1) − log q − 1
= pr · (w − 2 log n − log q − 1) − 2 · (w − 2 log n − 0.5 log q − 0.5). (3)

Since mr ≥ w (see our complexity measure definition in Sect. 2), mr ≥ w −
2 log n − 0.5 log q − 0.5 and therefore we can increase the left-hand side by 2 · mr

and the right-hand side by 2 · (w − 2 log n − 0.5 log q − 0.5) and the inequality
still holds; and therefore 3mr ≥ pr · (w − 2 log n − log q − 1). ��
Lemma 2. Assuming E1 ∩ E2 (see Definition 7), for any integer q, either Ahn

makes more than q queries (and thus ccmem(Ahn) > qw by definition) or

ccmem(Ahn(X)) ≥ ln 2
6

·
(

1
2

− ε

)
· n2 · (w − 2 log n − log q − 1) .

Proof. We observe that if Ahn makes no more than q queries, then E1 ∩ E2 ∩ Eq

hold, and we can combine Claims 11 and 12 to get

ccmem(Ahn(X)) =
sn+1∑

r=1

mr ≥ 1
3

·
sn+1∑

r=1

pr · (w − 2 log n − log q − 1)

≥ ln 2
3

·
(

1
2

− ε

)
· 1
2

· n2 · (w − 2 log n − log q − 1) .

This concludes the proof of Lemma 2. ��
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All that remains is to show a lower bound for the probability of (E1 ∩ E2 ∩
Eq) ∪ Ēq, and to argue that hn is uniform, because the statement we are trying
to prove is concerned with Ah for uniform h rather than with Ahn . The details
are deferred to the full version [7].
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A On Percival’s Proof

We note that Percival [20] claims a weaker result than the one in our main
theorem, similar in spirit to our single-shot trade-off theorem (Theorem 2 above),
in that it considers only a single random challenge, as well as an overall upper
bound on the size of the initial state. Also, the proof technique of [20] may, at
first, somewhat resemble the one used in Theorem 2, where multiple copies of the
adversary are run on all possible challenges. In contrast to both this work and
that of [6], however, Percival considers adversaries with only a limited amount
a parallelism.

Upon closer inspection, however, we have found serious problems with the
proof in [20]. In more detail, the proof considers an adversary running in two
stages. In the preprocessing stage the adversary gets input B and access to h and
must eventually output an arbitrary state (bit-string) σ. In the second phase n
copies of the adversary are run in parallel. For x ∈ [0, n − 1] the xth copy is
given challenge x, state σ and access to h. Its goal is to produce output hx(B).
The main issue with the proof stems from the fact that information about h
contained within σ is never explicitly handled. Let us be a bit more concrete.

The proof looks in particular at the set Ri of all i ∈ [n] of all values U
for which some copy of the adversary queries h(U) within the first i steps. Here,
some key aspects remain undefined. For instance, it is unclear whether the initial
time step in the second phase is 0 or 1, and consequently, there is also no clear
definition of the contents of the set R0. We briefly discuss now why, no matter
how we interpret R0, the technique does not imply the desired statement.

Suppose we assume that R0 is the set of queries to h made by the adversary
in this first step of the second stage. In particular, for all i, the set Ri contains
only queries to h made during the second phase of the execution. However this
creates a serious problem. At a (crucial) later step in the proof it is claimed that
if hx−1(B) /∈ Ri−1, then the probability that hx(B) is queried at the i-th step is



Scrypt Is Maximally Memory-Hard 61

the same as simply guessing hx(B) out of the blue (a highly unlikely event). But
this statement is now incorrect as it ignores potential information contained in
the state σ. For example σ may even contain hx(B) explicitly making it trivial
to query h at that point at any time i regardless of the contents of Ri−1.

Suppose instead that we assume the time of the second phase begins at 1 leav-
ing R0 open to interpretation. Setting R0 = ∅ leads to the exact same problem
as before. So instead, in an attempt to avoid this pitfall, we could let R0 be the
set of queries made during the pre-computation stage. Indeed, if hx−1(B) �∈ Ri

then that means hx−1(B) was not queried while σ was being prepared and so
(whp) σ contains no information about hx(B) avoiding the previous problem.
Yet here too we run into issues. Consider the following adversary A: In the pre-
processing stage A makes all queries hx(B) for x ∈ [0, n − 1] and then generates
some state σ (what this state really is, and how the adversary proceeds in the
second stage is somewhat irrelevant). In particular for this adversary, for all i
the set Ri already contains all relevant queries {hx(B) : x ∈ [0, n − 1]}. Most of
the remainder of the proof is concerned with upper bounding the expected size
of Ri. But in the case of A for each i we now have

∣∣Ri

∣∣ ≥ n which contradicts the
bounds shown in the proof. Worse, when plugging in this new upper bound into
the remaining calculations in the proof we would get that the expected runtime
of each instance of A in the second phase is at least 0; an uninteresting result.
Thus this too can not be the right interpretation. Unfortunately, we were unable
to come up with any reasonable interpretation which results in an interesting
statement being proven.

In conclusion, we note that the proof can be adapted to the randomized
pebbling setting, as considered in [6]. However, we note that for this setting, [6]
already contains a much simpler proof of such a single-shot trade-off theorem.
We also note that Theorem 2 confirms that Percival’s statement is in fact true,
although using a very different proof technique.
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Abstract. Recent results of Kaplan et al., building on work by Kuwakado
and Morii, have shown that a wide variety of classically-secure symmetric-
key cryptosystems can be completely broken by quantum chosen-plaintext
attacks (qCPA). In such an attack, the quantum adversary has the abil-
ity to query the cryptographic functionality in superposition. The vulnera-
ble cryptosystems include theEven-Mansour block cipher, the three-round
Feistel network, the Encrypted-CBC-MAC, and many others.

In this article, we study simple algebraic adaptations of such schemes
that replace (Z/2)n addition with operations over alternate finite
groups—such as Z/2n—and provide evidence that these adaptations are
qCPA-secure. These adaptations furthermore retain the classical security
properties and basic structural features enjoyed by the original schemes.

We establish security by treating the (quantum) hardness of the well-
studied Hidden Shift problem as a cryptographic assumption. We observe
that this problem has a number of attractive features in this crypto-
graphic context, including random self-reducibility, hardness amplifica-
tion, and—in many cases of interest—a reduction from the “search ver-
sion” to the “decisional version.” We then establish, under this assump-
tion, the qCPA-security of several such Hidden Shift adaptations of
symmetric-key constructions. We show that a Hidden Shift version of
the Even-Mansour block cipher yields a quantum-secure pseudorandom
function, and that a Hidden Shift version of the Encrypted CBC-MAC
yields a collision-resistant hash function. Finally, we observe that such
adaptations frustrate the direct Simon’s algorithm-based attacks in more
general circumstances, e.g., Feistel networks and slide attacks.

1 Introduction

The discovery of efficient quantum algorithms for algebraic problems with long-
standing roles in cryptography, like factoring and discrete logarithm [30], has
led to a systematic re-evaluation of cryptography in the presence of quantum
attacks. Such attacks can, for example, recover private keys directly from public
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part III, LNCS 10212, pp. 65–93, 2017.
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keys for many public-key cryptosystems of interest. A 2010 article of Kuwakado
and Morii [18] identified a new family of quantum attacks on certain generic con-
structions of private-key cryptosystems. While the attacks rely on similar quan-
tum algorithmic tools (that is, algorithms for the hidden subgroup problem),
they qualitatively differ in several other respects. Perhaps most notably, they
break reductions which are information-theoretically secure1 in the classical set-
ting. On the other hand, these attacks require a powerful “quantum CPA” setting
which permits the quantum adversary to make queries—in superposition—to the
relevant cryptosystem.

These quantum chosen-plaintext attacks (qCPA) have been generalized
and expanded to apply to a large family of classical symmetric-key con-
structions, including Feistel networks, Even-Mansour ciphers, Encrypted-CBC-
MACs, tweakable block ciphers, and others [14,18,19,29]. A unifying feature of
all these new attacks, however, is an application of Simon’s algorithm for recov-
ering “hidden shifts” in the group (Z/2)n. Specifically, the attacks exploit an
internal application of addition (mod 2) to construct an instance of a hidden
shift problem—solving the hidden shift problem then breaks the cryptographic
construction. As an illustrative example, consider two (independent) uniformly
random permutations P,Q : {0, 1}n → {0, 1}n and a uniformly random element
z of {0, 1}n. It is easy to see that no classical algorithm can distinguish the
function (x, y) �→ (P (x), Q(y)) from the function (x, y) �→ (P (x), P (y ⊕ z)) with
a polynomial number of queries; this observation directly motivates the clas-
sical Even-Mansour block-cipher construction. On the other hand, an efficient
quantum algorithm with oracle access to (x, y) �→ (P (x), P (y ⊕ z)) can apply
Simon’s algorithm to recover the “hidden shift” z efficiently; this clearly allows
the algorithm to distinguish the two cases above.

While these attacks threaten many classical private-key constructions,
they depend on an apparent peculiarity of the group (Z/2)n—the Hidden

Shift problem over (Z/2)n admits an efficient quantum algorithm. In con-
trast, Hidden Shift problems in general have resisted over 20 years of persistent
attention from the quantum algorithms community. Indeed, aside from Simon’s
polynomial-time algorithm for hidden shifts over (Z/2)n, generalizations to cer-
tain groups of constant exponent [10], and Kuperberg’s 2O(

√
log N) algorithm

for hidden shifts over Z/N [16], very little is known. This dearth of progress is
not for lack of motivation. In fact, it is well-known that efficient quantum algo-
rithms for Hidden Shift over Z/N would (via a well-known reduction from the
Hidden Subgroup Problem on DN ) yield efficient quantum attacks on impor-
tant public-key cryptosystems [26,27], including prime candidates for quantum
security and the eventual replacement of RSA in Internet cryptography [3]. Like-
wise, efficient algorithms for the symmetric group would yield polynomial-time
quantum algorithms for Graph Isomorphism, a longstanding challenge in the
area.

1 The adversary is permitted to query the oracle a polynomial number of times, but
may perform arbitrarily complex computations between queries.
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On the other hand, (Z/2)n group structure is rather incidental to the security
of typical symmetric-key constructions. For example, the classical Even-Mansour
construction defines a block cipher Ek1,k2(m) by the rule

Ek1,k2(m) = P (m ⊕ k1) ⊕ k2,

where P is a public random permutation and the secret key (k1, k2) is given by a
pair of independent elements drawn uniformly from (Z/2)n. The security proofs,
however, make no particular assumptions about group structure, and apply if
the ⊕ operation is replaced with an alternative group operation, e.g., + modulo
N or multiplication in F2n .

This state of affairs suggests the possibility of ruling out quantum attacks
by the simple expedient of adapting the underlying group in the construction.
Moreover, the apparently singular features of (Z/2)n in the quantum setting
suggest that quite mild adaptations may be sufficient. As mentioned above,
many classical security proofs are unaffected by this substitution; our primary
goal is to add security against quantum adversaries. Our approach is to reduce
well-studied Hidden Shift problems directly to the security of these symmetric-key
cryptosystems. Thus, efficient quantum chosen-plaintext attacks on these systems
would resolve long-standing open questions in quantum complexity theory.

1.1 Contributions

Hidden Shift as a Cryptographic Primitive. We propose the intractability
of the Hidden Shift problem as a fundamental assumption for establishing
quantum security of cryptographic schemes. In the general problem, we are given
two functions on some finite group G, and a promise that one is a shift of the
other; our task is to identify the shift. Our assumptions have the following form:

Assumption 1 (The G-Hidden Shift Assumption, informal). Let G =
{Gi | i ∈ I} be a family of finite groups indexed by a set I ⊂ {0, 1}∗. For all
polynomial-time quantum algorithms A,

E
f

[
min
s∈Gi

Pr
[Af,fs(i) = s

]] ≤ negl(|i|),

where fs(x) = f(sx), the expectation is taken over random choice of the function
f , the minimum is taken over all shifts s ∈ Gi, and the probability is taken over
internal randomness and measurements of A.

This assumption asserts that there is no quantum algorithm for Hidden

Shift (over G) in the worst-case over s, when function values are chosen ran-
domly. Note that the typical formulation in the quantum computing literature
is worst case over s and f ; on the other hand, known algorithmic approaches are
invariant under arbitrary relabeling of the value space of f . The “random-valued”
case thus seems satisfactory for our cryptographic purposes. (In fact, our results
can alternatively depend on the case where f is injective, rather than random.)
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See Sect. 3 below for further discussion and precise versions of Assumption 1. In
general, formulating such an assumption requires attention to the encoding of
the group. However, we will focus entirely on groups with conventional encod-
ings which directly provide for efficient group operations, inversion, generation
of random elements, etc. Specifically, we focus on the two following particular
variants:

Assumption 2 (The 2n-Cyclic Hidden Shift Assumption). This is the
Hidden Shift Assumption with the group family C2 = {Z/2n | n ≥ 0} where the
index consists of the number n written in unary.

Assumption 3 (The Symmetric Hidden Shift Assumption). This is the
Hidden Shift Assumption with the group family S = {Sn | n ≥ 0} where Sn

denotes the symmetric group on n symbols and the index consists of the number
n written in unary.

In both cases the size of the group is exponential in the length of the index.
We remark that the Hidden Shift problem has polynomial quantum query

complexity [7]—thus one cannot hope that Hidden-Shift-based schemes pos-
sess information-theoretic security in the quantum setting (as they do in the
classical setting); this motivates introduction of Hidden Shift intractability
assumptions.

To explore the hardness of Hidden Shift problems against quantum
polynomial-time (QPT) algorithms, we describe several reductions. First, we
prove that Hidden Shift is equivalent to a randomized version of the problem
where the shift s is random (Random Hidden Shift), and provide an ampli-
fication theorem which is useful in establishing security of schemes based on
Assumption 1.

Proposition (Amplification, informal). Assume there exists a QPT algo-
rithm which solves Random Hidden Shift for an inverse-polynomial fraction
of inputs. Then there exists a QPT algorithm for solving both Hidden Shift and
Random Hidden Shift for all but a negligible fraction of inputs.

We then show that, for many group families, Hidden Shift over the relevant
groups is equivalent to a decisional version of the problem. In the decisional
version, we are guaranteed that the two functions are either (i) both random
and independent, or (ii) one is random and the other is a shift; the goal is to
decide which is the case.

Theorem (Search and decision are equivalent, informal). Let G be the
group family C2 or the group family S (or a group family with an efficient
subgroup series). Then there exists a QPT algorithm for Random Hidden

Shift (with at most inverse-poly error) over G if and only if there exists a QPT
algorithm for Decisional Random Hidden Shift (with at most inverse-poly
error) over G.
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Finally, we provide some evidence that Hidden Shift over the family C2 is
as hard as Hidden Shift over general cyclic groups. Specifically, we show that
efficient algorithms for an approximate version of Hidden Shift over C2 give
rise to efficient algorithms for the same problem over C, the family of all cyclic
groups.

We also briefly discuss the connections between Hidden Shift, the assump-
tions above, and assumptions underlying certain candidates for quantum-secure
public-key cryptography [5,26]. For completeness, we recall known connections to
the Hidden Subgroup Problem. Both the Hidden Shift and Hidden Sub-

group Problem families have received significant attention from the quantum
algorithms community, and are believed to be quantumly hard with the excep-
tion of particular families of groups [5,12,21,22,26].

Quantum-Secure Symmetric-Key Cryptographic Schemes. With the
above results in hand, we describe a generic method for using Assumption 1
to “adapt” classically-secure schemes in order to remove vulnerabilities to quan-
tum chosen-plaintext attacks. The adaptation is simple: replace the underlying
(Z/2)n structure of the scheme with that of either C2 or S. This amounts to
replacing bitwise XOR with a new group operation. In the case of C2, the adap-
tation is particularly simple and efficient.

While our basic approach presumably applies in broad generality, we focus
on three emblematic examples: the Even-Mansour construction—both as a PRF
and as a block cipher—and the CBC-MAC construction. We focus throughout
on the group families C2 and S, though we also discuss some potential advantages
of other choices (see Sect. 3.2). Finally, we discuss related quantum attacks on
cryptographic constructions, including the 3-round Feistel cipher and quantum
slide attacks [14]. We remark that the Feistel cipher over groups other than
(Z/2)n has been considered before, in a purely classical setting [24].

Hidden Shift Even-Mansour. Following the prescription above, we define group
variants of the Even-Mansour cipher. We give a reduction from the worst-case
Hidden Shift problem to the natural distinguishability problem (i.e., distin-
guishing an Even-Mansour cipher from a random permutation). Thus, under the
Hidden Shift Assumption, the Even-Mansour construction is a quantum-query-
secure pseudorandom function (qPRF). In particular, key-recovery is compu-
tationally infeasible, even for a quantum adversary. We also provide (weaker)
reductions between Hidden Shift and the problem of breaking Even-Mansour
in the more challenging case where the adversary is provided access to both
the public permutation and its inverse (and likewise for the encryption map).
In any case, these adaptations frustrate the “Simon algorithm key recovery
attack” [14,19], as this would now require a subroutine for Hidden Shift in
the relevant group family. Moreover, one can also apply standard results (see,
e.g., [13]) to show that, over some groups, all bits of the key are as hard as the
entire key (and hence, by our reductions, as hard as Hidden Shift). We remark
that considering Z/2n structure to define an adaptation of Even-Mansour has
been considered before in the context of classical slide attacks [6].
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Hidden Shift CBC-MAC. Following our generic method for transforming
schemes, we define group variants of the Encrypted-CBC-MAC. We establish
that this primitive is collision-free against quantum adversaries. Specifically,
we show that any efficient quantum algorithm which discovers collisions in the
Hidden-Shift Encrypted-CBC-MAC with non-negligible probability would yield
an efficient worst-case quantum algorithm for Hidden Shift over the relevant
group family. As with Even-Mansour, this adaptation also immediately frustrates
the Simon’s algorithm collision-finding attacks [14,29].

Feistel Ciphers, Slide Attacks. We also define group variants of the well-known
Feistel cipher for constructing pseudorandom permutations from pseudorandom
functions. Our group variants frustrate Simon-style attacks [18]; a subroutine
for the more general Hidden Shift problem is now required. Finally, we also
address the exponential quantum speedup of certain classical slide attacks, as
described in [14]. We show how one can once again use Hidden Shift to secure
schemes vulnerable to these “quantum slide attacks.”

2 Preliminaries

Notation; Remarks on Finite Groups. For a finite group G and an element s ∈ G,
let Ls : G → G denote the permutation given by left multiplication by s, so
Ls : x �→ s · x. We discuss a number of constructions in the paper requiring
computation in finite groups and assume, throughout, that elements of the group
in question have an encoding that efficiently permits such natural operations
as product, inverse, selection of uniformly random group elements, etc. As our
discussion focuses either on specific groups—such as (Z/2)n or Z/N—where such
encoding issues are straightforward or, alternatively, generic groups in which we
assume such features by fiat, we routinely ignore these issues of encoding.

Classical and Quantum Algorithms. Throughout we use the abbreviation PPT
for “probabilistic polynomial time,” referring to an efficient classical algorithm,
and QPT for “quantum polynomial time,” referring to an efficient quantum algo-
rithm. Our convention is to denote algorithms of either kind with calligraphic
letters, e.g., A will typically denote an algorithm which models an adversary.
If f is a function, the notation Af stands for an algorithm (either classical
or quantum) with oracle access to the function f . A classical oracle is sim-
ply the black-box gate x �→ f(x); a quantum oracle is the unitary black-box
gate |x〉|y〉 �→ |x〉|y ⊕ f(x)〉. Unless stated otherwise, oracle QPT algorithms are
assumed to have quantum oracle access.

Quantum-Secure Pseudorandomness. We now set down a way of quantifying the
ability of a QPT adversary to distinguish between families of functions. Fix a
function family F ⊂ {h : {0, 1}m → {0, 1}�}, a function f : {0, 1}n × {0, 1}m

→ {0, 1}�, and define fk := f(k, ·). We say that f is an indexed subfamily of
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F if fk ∈ F for every k ∈ {0, 1}n. We will generally assume that m and �
are polynomial functions of n and treat n to be the complexity (or security)
parameter.

Definition 1. Let F be a function family, f an indexed subfamily, and D an
oracle QPT algorithm. The distinguishing advantage of D is the quantity

AdvD
F,f :=

∣∣∣∣ Pr
k∈R{0,1}n

[
Dfk(1n) = 1

]
− Pr

g∈RF

[
Dg(1n) = 1

]∣∣∣∣ .

Next, we define efficient indexed function families which are pseudorandom
against QPT adversaries. We emphasize that these function families are com-
puted by deterministic classical algorithms.

Definition 2. Let Fn be the family of all functions from m(n) bits to �(n) bits,
and f a efficiently computable, indexed subfamily of

⋃
n Fn (so that fk ∈ Fn for

|k| = n). We say that f is a quantum-secure pseudorandom function (qPRF ) if
AdvD

Fn,f ≤ negl(n) for all QPT D.

It is known how to construct qPRFs from standard assumptions (i.e., exis-
tence of quantum-secure one-way functions) [33].

The pseudorandom function property is not enough in certain applications,
e.g., in constructing block ciphers. It is then often useful to add the property that
each function in the family is a permutation, which can be inverted efficiently
(provided the index is known).

Definition 3. Let P be the family of all permutations, and f an efficiently com-
putable, indexed subfamily of P. We say that f is a quantum-secure pseudoran-
dom permutation (qPRP) if (i) f is a qPRF, (ii) each fk is a permutation, and
(iii) there is an efficient algorithm which, given k, computes the inverse f−1

k

of fk.

A recent result shows how to construct qPRPs from one-way functions [32].
Finding simpler constructions is an open problem. Two simple constructions
which are known to work classically, Even-Mansour and the 3-round Feistel, are
both broken by a simple attack based on Simon’s algorithm for Hidden Shift on
(Z/2)n. As we discuss in detail later, we conjecture that the adaptations of these
constructions to other group families are qPRPs.

We will also make frequent use of a result of Zhandry (Theorem 3.1 in [34])
which states that 2k-wise independent functions are indistinguishable from ran-
dom to quantum adversaries making no more than k queries.

Theorem 1. Let H be a 2k-wise independent family of functions with domain
X and range Y. Let D be a quantum algorithm making no more than k oracle
queries. Then

Pr
h∈RH

[
Dh(1n) = 1

]
= Pr

g∈RYX

[
Dg(1n) = 1

]
.
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Collision-Freeness. We will also need a (standard) definition of collision-
resistance against efficient quantum adversaries with oracle access.

Definition 4. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficiently-computable
function family defined for all (k, x) for which |x| = m(|k|) (for a polynomial
m). We say that f is collision-resistant if for all QPT A,

Pr
k∈R{0,1}n

[
Afk(1n) = (x, y) ∧ fk(x) = fk(y) ∧ x �= y

]
≤ negl(n).

3 Hidden Shift as a Cryptographic Primitive

We begin by discussing a few versions of the basic oracle promise problem related
to finding hidden shifts of functions on groups. In the problems below, the rele-
vant functions are given to the algorithm via black-box oracle access and we are
interested in the setting where the complexity of the algorithm (both number of
queries and running time) scales in poly(log |G|).

3.1 Hidden Shift Problems

Basic Definitions. We begin with the Hidden Shift problem. As traditionally
formulated in the quantum computing literature, the problem is the following:

Problem 1 (The traditional Hidden Shift problem). Let G be a group and V a
set. Given oracle access to an injective function f : G → V and an unknown
shift g = f ◦ Ls of f , find s.

It is convenient for us to parameterize this definition in terms of a specific
group family and fix the range of the oracles f and g. This yields our basic
asymptotic definition for the problem.

Problem 2 (Hidden Shift (HS)). Let G = {Gi | i ∈ I} be a family of groups
with index set I ⊂ {0, 1}∗ and let � : N → N be a polynomial. Then the Hidden

Shift problem over G (with length parameter �) is the following: given an index i
and oracle access to a pair of functions f, g : Gi → {0, 1}�(|i|) where g(x) = f(sx),
determine s ∈ Gi. We assume, throughout, that 2�(|i|)  |Gi|.

This generic formulation is more precise, but technically still awkward for
cryptographic purposes as it permits oracle access to completely arbitrary func-
tions f . To avoid this technical irritation, we focus on the performance of Hid-

den Shift algorithms over specific classes of functions f . Specifically, we either
assume f is random or that it is injective. When a Hidden Shift algorithm is
applied to solve problems in a typical computational setting, the actual functions
f, g are injective and given by efficient computations. We remark that established
algorithmic practice in this area ignores the actual function values altogether,
merely relying on the structure of the level sets of the function

Φ(x, b) =

{
f(x) if b = 0,

g(x) if b = 1.
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In particular, such structural conditions of f appear to be irrelevant to the suc-
cess of current quantum-algorithmic techniques for the problem. This motivates
the following notion of “success” for an algorithm.

Definition 5 (Completeness). Let A be an algorithm for the Hidden

Shift problem on G with length parameter �. Let f be a function defined on
all pairs (i, x) where x ∈ Gi so that f(i, x) ∈ {0, 1}�(|i|). Then we define the
completeness of A relative to f to be the quantity

1 − εf (i) � min
s∈Gi

Pr[Af,fs(i) = s].

The completeness of A relative to random functions is the average

1 − εR(i) � E
f

[
min
s∈Gi

Pr[Af,fs(i) = s]
]

= E
f
[1 − εf (i)],

where f(i, x) is drawn uniformly at random. Note that these notions are worst-
case in s, the shift.

Note that this definition does not specify how the algorithm should behave on
instances that are not hidden shifts. For simplicity, we assume that the algorithm
returns a value for s in any case, with no particular guarantee on s in the case
when the functions are not shifts of each other.

Our basic hardness assumption is the following:

Assumption 4 (The G-Hidden Shift Assumption; randomized). Let G =
{Gi | i ∈ I} be a family of finite groups indexed by a set I ⊂ {0, 1}∗ and � : N →
N be a length parameter. Then for all efficient algorithms A, 1−εR(i) = negl(|i|).

For completeness, we also record a version of the assumption for injective f .
In practice, our cryptographic constructions will rely only on the randomized
version.

Assumption 5 (The G-Hidden Shift Assumption; injective). Let G =
{Gi | i ∈ I} be a family of finite groups indexed by a set I ⊂ {0, 1}∗ and
� : N → N be a length parameter. Then for all efficient algorithms A there exists
an injective f (satisfying the criteria of Definition 5 above), so that 1 − εf (i) =
negl(|i|).

In preparation for establishing results on security amplification, we define
two additional variants of the Hidden Shift problem: a variant where both
the function and the shift are randomized, and a decisional variant. Our general
approach for constructing security proofs will be to reduce one of these variants
to the problem of breaking the relevant cryptographic scheme. As we will later
show, an efficient solution to either variant implies an efficient solution to both,
which in turn results in a violation of Assumption 4 above.
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Problem 3 (Random Hidden Shift (RHS)). Let G = {Gi | i ∈ I} be a
family of finite groups indexed by a set I ⊂ {0, 1}∗ and � : N → N be a length
parameter. Then the Random Hidden Shift problem over G is the Hidden

Shift problem where the input function f(i, x) is drawn uniformly and the shift
s is drawn (independently and uniformly) from Gi.

We define the completeness 1− ε(i) for a Random Hidden Shift algorithm
A analogously to Definition 5. Observe that a small error is unavoidable for any
algorithm, as there exist pairs of functions for which s is not uniquely defined.
We will also need a decisional version of the problem, defined as follows.

Problem 4 (Decisional Random Hidden Shift (DRHS)). Let G = {Gi | i ∈
I} be a family of finite groups indexed by a set I ⊂ {0, 1}∗ and � : N → N be
a length parameter. The Decisional Random Hidden Shift problem is the
following: Given i and oracle access to two functions f, g : Gi → {0, 1}�(|i|) with
the promise that either (i) both f and g are drawn independently at random, or
(ii) f is random and g = f ◦ Ls for some s ∈ G, decide which is the case.

We say that an algorithm for DRHS has completeness 1− ε(i) and soundness
δ(i) if the algorithm errs with probability no more than ε(i) in the case that the
functions are shifts and errs with probability no more than δ(i) in the case that
the functions are drawn independently.

Next, we briefly recall the definition of the (closely-related) Hidden Sub-

group Problem. The problem is primarily relevant in our context because of
its historical significance (and relationship to Hidden Shift); we will not use it
directly in any security reductions.

Problem 5 (Hidden Subgroup Problem (HSP)). Let G be a group and S a
set. Given a function f : G → S, and a promise that there exists H ≤ G such
that f is constant and distinct on the right cosets of H, output a complete set
of generators for H.

Some further details, including explicit reductions between HS and HSP, are
given in AppendixA.

Of interest are both classical and quantum algorithms for solving the various
versions of HS and HSP. The relevant metrics for such algorithms are the query
complexity (i.e., the number of times that the functions are queried, classically
or quantumly) as well as their time and space complexity. An algorithm is said
to be efficient if all three are polynomial in log |G|.

Hardness Results. Next, we establish several reductions between these prob-
lems. Roughly, these results show that the average-case and decisional versions
of the problem are as hard as the worst-case version.

Self-reducibility and Amplification. First, we show that (i) both HS and RHS are
random self-reducible, and (ii) an efficient solution to RHS implies an efficient
solution to HS.
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Proposition 1. Let G = {Gi | i ∈ I} be a family of finite groups indexed by a
set I ⊂ {0, 1}∗ and � : N → N be a length parameter. Assume there exists a QPT
A which solves Random Hidden Shift over G (with parameter �(|i|)) with
inverse-polynomial completeness. Then there exists a QPT A′ which satisfies all
of the following:

1. A′ solves Hidden Shift with random f with completeness 1 − negl(|i|);
2. A′ solves Hidden Shift for any injective f with completeness 1 − negl(|i|);
3. A′ solves Random Hidden Shift with completeness 1 − negl(|i|).
Proof. We are given oracles f, g and a promise that g = f ◦ Ls. For a particular
choice of n, there is an explicit (polynomial-size) bound k on the running time
of A. Let H be a 2k-wise independent function family which maps the range of
f to itself. The algorithm A′ will repeatedly execute the following subroutine.
First, an element h ∈ H and an element t ∈ Gi are selected independently and
uniformly at random. Then A is executed with oracles

f ′ := h ◦ f and g′ := h ◦ g ◦ Lt.

It’s easy to see that g′ = f ′ ◦ Lst. If A outputs a group element r, A′ checks if
g′(x) = f ′(rx) at a polynomial number of random values x. If the check succeeds,
A′ outputs rt−1 and terminates. If the check fails (or if A outputs garbage), we
say that the subroutine fails. The subroutine is repeated m times, each time with
a fresh h and t.

Continuing with our fixed choice of f and g, we now argue that A (when
used as above) cannot distinguish between (f ′, g′) and the case where f ′ is
uniformly random, and g′ is a uniformly random shift of f ′. First, the fact
that the shift is randomized is clear. Second, if f is injective, then f ′ is simply
h with permuted inputs, and is thus indistinguishable from random (by the
2k-wise independence of h and Theorem 1). Third, if f is random, then it is
indistinguishable from injective (by the collision bound of [35]), and we may
thus apply the same argument as in the injective case.

It now follows that, with inverse-polynomial probability ε (over the choice
of h and t), the instance (f ′, g′) is indistinguishable from an instance (ϕ,ϕst)
on which the subroutine succeeds with inverse-polynomial probability δ. After
m repetitions of the subroutine, A′ will correctly compute the shift r = st with
probability at least (1 − εδ)m ≈ e−εδm, as desired. ��

Decision Versus Search. Next, we consider the relationship between searching
for shifts (given the promise that one exists), and deciding if a shift exists or
not. Roughly speaking, we establish that the two problems are equivalent for
most group families of interest. We begin with a straightforward reduction from
DRHS to RHS.

Proposition 2. If there exists a QPT algorithm for Random Hidden

Shift on G with completeness 1 − ε(i), then there exists a QPT algorithm for
Decisional Random Hidden Shift on G with completeness 1 − ε(i), and
negligible soundness error.
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Proof. Let �(·) be the relevant length parameter. Consider an RHS algorithm for
G with completeness 1 − ε and the following adaptation to DRHS.

– Run the RHS algorithm.
– When the algorithm returns a purported shift s, check s for veracity with

a polynomial number of (classical) oracle queries to f and g (ensuring that
g(xi) = f(sxi) for k(n) distinct samples x1, . . . , xk(n)).

Observe that if f and g are indeed hidden shifts, this procedure will determine
that with probability 1 − ε. When f and g are unrelated random functions, the
“testing” portion of the algorithm will erroneously succeed with probability no
more than |G| · 2−k·�(|i|). Thus, under the assumption that |G| ≥ k(n), the
resulting DRHS algorithm has completeness 1 − ε and soundness |G| · 2−k·�(|i|).
For any nontrivial length function �, this soundness can be driven exponentially
close to zero by choosing k = log |G| + k′. ��

On the other hand, we are only aware of reductions from RHS to DRHS under
the additional assumption that G has a “dense” tower of subgroups. In that case,
an algorithmic approach of Fenner and Zhang [9] can be adapted to provide a
reduction. Both Sn and Z/2n have such towers.

Proposition 3. Let G be either the group family {Z/2n}, or the group fam-
ily {Sn}. If there exists a QPT algorithm for Decisional Random Hidden

Shift on G with at most inverse-polynomial completeness and soundness errors,
then there exists a QPT algorithm for Random Hidden Shift on G with neg-
ligible completeness error.

Proof. The proof adapts techniques of [9] to our probabilistic setting, and relies
on the fact that these group families have an efficient subgroup tower. Specif-
ically, each Gi possesses a subgroup series {1} = G(0) < G(1) < G(2) < · · · <
G(s) = Gi for which (i) uniformly random sampling and membership in G(t) can
be performed efficiently for all t, and (ii) for all t, there is an efficient algorithm
for producing a left transversal of G(t−1) in G(t). For Z/2n, the subgroup series
is {1} < Z/2 < Z/22 < Z/23 < · · · . For Sn (i.e., the group of permutations of
n letters), the subgroup series is {1} < S1 < S2 < S3 < · · · , where each step of
the series adds a new letter. We remark that such series can be efficiently com-
puted for general permutation groups using a strong generating set, which can
be efficiently computed from a presentation of the group in terms of generating
permutations [11].

We recursively define a RHS algorithm by considering the case of a group
G with a subgroup H of polynomial index with a known left transversal
A = {a1, . . . , ak} (so that G is the disjoint union of the aiH). Assume that
the DRHS algorithm for H has soundness δH and completeness 1 − εH . In this
case, the algorithm (for G) may proceed as follows:

1. For each α ∈ A, run the DRHS algorithm on the two functions f and ǧ : x �→
g(αx) restricted to the subgroup H.



Quantum-Secure Symmetric-Key Cryptography Based on Hidden Shifts 77

2. If exactly one of these recursive calls reports that the function f and x �→
g(αx) are hidden shifts, recursively apply the RHS algorithm to recover the
hidden shift s′ (so that f(x) = g(αs′x) for x ∈ H). Return the shift s = αs′.

3. Otherwise assert that the functions are unrelated random functions.

In the case that f and g are independent random functions, the algorithm above
errs with probability no more than [G : H]δH .

Consider instead the case that f : G → S is a random function and g(x) =
f(sx) for an element s ∈ G. Observe that if s−1 ∈ αiH, so that s−1 = αihs for an
element hs ∈ H, we have g(αihsx) = f(x). It follows that f and ǧ : x �→ g(αix)
are shifts of each other; in particular, this is true when restricted to the subgroup
H. Moreover, the hidden shift s can be determined directly from the hidden shift
between f and ǧ. Note that, as above, the probability that any of the recursive
calls to DRHS are answered incorrectly is no more than [G : H]δH + εH .

It remains to analyze the completeness of the resulting recursive RHS algo-
rithm: in the case of the subgroup chain above, let γt denote the completeness
of the resulting RHS algorithm on G(t+1) and note that

γt+1 ≤ [G(t+1) : G(t)]δG(t) + εG(t) + γt

and thus that the resulting error on G is no more than
∑

t

[G(t+1) : G(t)]δG(t) +
∑

t

εG(t) . (3.1)

As mentioned above, both the group families {Z/2n | n ≥ 0} and {Sn | n ≥ 0}
satisfy this subgroup chain property. ��

Remark. Note that the groups Z/N for general N are not treated by the results
above; indeed, when N is prime, there is no nontrivial tower of subgroups.
(Such groups do have other relevant self-reducibility and amplification proper-
ties [13].) We remark, however, that a generalization of the Hidden Shift prob-
lem which permits approximate equality results in a tight relationship between
Hidden Shift problems for different cyclic groups. In particular, consider the δ-
Approximate Hidden Shift problem given by two functions f, g : G → S with
the promise that there exists an element s ∈ G so that Prx[g(x) = f(sx)] ≥ 1−δ
(where x is chosen uniformly in G); the problem is to identify an element s′ ∈ G
with this property. Note that s′ may not be unique in this case.

In particular, consider an instance f, g : Z/n → V of a Hidden Shift

problem on a cyclic group Z/n. We wish to “lift” this instance to a group Z/m
for m  n in such a way that a solution to the Z/m instance yields a solution to
the Z/n instance. For a function φ : Z/n → V , define the function φ̂ : Z/m → V

by the rule φ̂(x) = φ(x mod n). Note, then, that Prx[f̂(x) = ĝ(ŝ + x)] ≥ 1 −
n/m for the shift ŝ = s; moreover, recovering any shift for the Z/m problem
which achieves equality with probability near 1 − n/m yields a solution to the
Z/n problem (by taking the answer modulo n, perhaps after correcting for the
m mod n overhang at the end of the Z/m oracle). Note that this function is not
injective.
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We remark that the Hidden Shift problem for non-injective Boolean
functions (i.e., with range Z/2) sometimes admits efficient algorithms (see,
e.g., [23,28]). Whether these techniques can be extended to the general setting
above is an interesting open problem.

3.2 Selecting Hard Groups

Efficiently Solvable Cases. For some choices of underlying group G, some
of the above problems admit polynomial-time algorithms. A notable case is
the Hidden Subgroup Problem on G = Z, which can be solved efficiently
by Shor’s algorithm [30]. The HSP with arbitrary abelian G also admits a
polynomial-time algorithm [15]. The earliest and simplest example was Simon’s
algorithm [31], which efficiently solves the HSP in the case G = (Z/2)n and
H = {1, s} for unknown s, with only O(n) queries to the oracle. Due to the
fact that (Z/2)n

� Z/2 ∼= (Z/2)n+1, Simon’s algorithm also solves the Hidden

Shift problem on (Z/2)n. Additionally, Friedl et al. [10] have given efficient (or
quasi-polynomial) algorithms for hidden shifts over solvable groups of constant
exponent; for example, their techniques yield efficient algorithms for the groups
(Z/p)n (for constant p) and (S4)n.

Cyclic Groups. In contrast with the Hidden Subgroup Problem, the gen-
eral abelian Hidden Shift is believed to be hard. The only nontrivial algorithm
known is due to Kuperberg, who gave a subexponential-time algorithm for the
HSP on dihedral groups [16]. He also gave a generalization to the abelian Hidden

Shift problem, as follows.

Theorem 2 (Theorem 7.1 in [16]). The abelian Hidden Shift problem has a
quantum algorithm with time and query complexity 2O((log |G|)1/2), uniformly for
all finitely-generated abelian groups.

Regev and Kuperberg later improved the above algorithm (so it uses polynomial
quantum space, and gains various knobs for tuning complexity parameters), but
the time and query complexity remains the same [17,25].

There is also evidence connecting HSP on the dihedral group DN (and hence
also HS on Z/N) to other hard problems. Regev showed that, if there exists
an efficient quantum algorithm for the dihedral HSP which uses coset sampling
(the only nontrivial technique known), then there’s an efficient quantum algo-
rithm for poly(n)-unique-SVP [26]. This problem, in turn, is the basis of several
lattice-based cryptosystems. However, due to the costs incurred in the reduc-
tion, Kuperberg’s algorithm only yields exponential-time attacks. An efficient
solution to HS on Z/N could also be used to break a certain isogeny-based
cryptosystem [4].

We will focus particularly on the case Z/2n. This is the simplest group for
which all of our constructions and results apply. Moreover, basic computational
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tasks (encoding/decoding group elements as bitstrings, sampling uniformly ran-
dom group elements, performing basic group operations, etc.) all have straight-
forward and extremely efficient implementations over Z/2n. The existence of a
quantum attack with complexity 2O(

√
n) in this case will only become practically

relevant in the very long term, when the costs of quantum and classical compu-
tations become somewhat comparable. If such attacks are truly a concern, then
there are other natural group choices, as we discuss below.

Permutation Groups. In the search for quantum algorithms for HSP and HS,
arguably the most-studied group family is the family of symmetric groups Sn. It
is well-known that an algorithm for HSP over Sn �(Z/2) would yield a polynomial-
time quantum algorithm for Graph Isomorphism. As discussed in AppendixA,
this is precisely the case of HSP relevant to the Hidden Shift problem over Sn.

For these groups, the efforts of the quantum algorithms community have so
far amounted only to negative results. First, it was shown that the standard Shor-
type approach of computing with individual “coset states” cannot succeed [22].
In fact, entangled measurements over Ω(n log n) coset states are needed [12],
matching the information-theoretic upper bound [7]. Finally, the only nontrivial
technique for performing entangled measurements over multiple registers, the
so-called Kuperberg sieve, is doomed to fail as well [21].

While encoding, decoding, and computing over the symmetric groups is more
complicated and less efficient than the cyclic case, it is a well-understood subject
(see, e.g., [11]). When discussing these groups below, we will assume (without
explicit mention) an efficient solution to these problems.

Matrix Groups. Another relevant family of groups are the matrix groups
GL2(Fq) and SL2(Fq) over finite fields. These nonabelian groups exhibit many
structural features which are similar to the symmetric groups, such as high-
dimensional irreducible representations. Many of the negative results concerning
the symmetric groups also carry over to matrix groups [12,21].

Efficient encoding, decoding, and computation over finite fields Fq is stan-
dard. Given these ingredients, extending to matrix groups is not complicated. In
the case of GL2(Fq), we can encode an arbitrary pair (not both zero) (a, c) ∈ F

2
q

in the first column, and any pair (b, d) which is not a multiple of (a, c) in the
second column. For SL2(Fq), we simply have the additional constraint that d is
fixed to a−1(1 + bc) by the choices of a, b, c.

Product Groups. Arguably the simplest group family for which the negative
results of [12] apply, are certain n-fold product groups. These are groups of
the form Gn where G is a fixed, constant-size group (e.g., S5). This opens up
the possibility of simply replacing the XOR operation (i.e., Z/2 addition) with
composition in some other constant-size group (e.g., S5), and retaining the same
n-fold product structure.

Some care is needed, however, because there do exist nontrivial algorithms in
this case. When the base group G is solvable, then there are efficient algorithms
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for both HSP and Hidden Shift (see Theorem 4.17 in [10]). It is important to
note that this efficient algorithm applies even to some groups (e.g., (S4)n) for
which the negative results of [12] also apply. Nevertheless, solvability seems cru-
cial for [10], and choosing G = S5 for the base group gives a family for which no
nontrivial Hidden Shift algorithms are known. We remark that there is how-
ever a 2O(

√
n log n)-time algorithm for order-2 Hidden Subgroup Problems on

Gn based on Kuperberg’s sieve [1]; this suggests the possibility of subexponential
(i.e., 2O(nδ) for δ < 1) algorithms for Hidden Shift over these groups.

4 Hidden Shift Even-Mansour Ciphers

We now address the question of repairing classical symmetric-key schemes which
are vulnerable to Simon’s algorithm. We begin with the simplest construction,
the so-called Even-Mansour cipher [8].

4.1 Generalizing the Even-Mansour Scheme

The Standard Scheme. The Even-Mansour construction turns a publicly known,
random permutation P : {0, 1}n → {0, 1}n into a keyed, pseudorandom
permutation

EP
k1,k2

: {0, 1}n −→ {0, 1}n

x �−→ P (x ⊕ k1) ⊕ k2

where k1, k2 ∈ {0, 1}n, and ⊕ denotes bitwise XOR. This scheme is relevant in
two settings:

1. simply as a source of pseudorandomness; in this setting, oracle access to P is
provided to all parties.

2. as a block cipher; now oracle access to both P and P−1 is provided to all
parties. Access to P−1 is required for decryption. One can then ask if EP is a
PRP (adversary gets access to EP ), or a strong PRP (adversary gets access
to both EP and its inverse).

In all of these settings, Even-Mansour is known to be information-theoretically
secure against classical adversaries making at most polynomially-many
queries [8].

Quantum Chosen Plaintext Attacks on the Standard Scheme. The proofs of clas-
sical security of Even-Mansour carry over immediately to the setting of quan-
tum adversaries with only classical access to the relevant oracles. However, if
an adversary is granted quantum oracle access to the P and EP oracles, but no
access at all to the inverse oracles, then Even-Mansour is easily broken. This
attack was first described in [19]; a complete analysis is given in [14]. The attack
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is simple: First, one uses the quantum oracles for P and EP to create a quantum
oracle for P ⊕ EP , i.e., the function

f(x) = P (x) ⊕ P (x ⊕ k1) ⊕ k2.

One then runs Simon’s algorithm [31] on the function f . The claim is that,
with high probability, Simon’s algorithm will output k1. To see this, note that
f satisfies half of Simon’s promise, namely f(x ⊕ k1) = f(x). Moreover, if it
is classically secure, then it almost satisfies the entire promise. More precisely,
for any fixed P and random pair (x, y), either the probability of a collision
f(x) = f(y) is low enough for Simon’s algorithm to succeed, or there are so
many collisions that there exists a classical attack [14]. Once we have recovered
k1, we also immediately recover k2 with a classical query, since k2 = EP

k1,k2
(x)⊕

P (x ⊕ k1) for any x.

Hidden Shift Even-Mansour. To address the above attack, we propose simple
variants of the Even-Mansour scheme. The construction generalizes the stan-
dard Even-Mansour scheme in the manner described in Sect. 1. Each variant is
parameterized by a family of exponentially-large finite groups G. The general
construction is straightforward to describe. We begin with a public permutation
P : G → G, and from it construct a family of keyed permutations

EP
k1,k2

(x) = P (x · k1) · k2,

where k1, k2 are now uniformly random elements of G, and · denotes composition
in G. The formal definition, as a block cipher, follows.

Scheme 1 (Hidden Shift Even-Mansour block cipher). Let G be a family
of finite, exponentially large groups, satisfying the efficient encoding conditions
given in Sect. 3.2. The scheme consists of three polynomial-time algorithms, para-
meterized by a permutation P of the elements of a group G in G:

– KeyGen : N → G × G; on input |G|, outputs (k1, k2) ∈R G × G;
– EncP

k1,k2
: G → G; defined by m �→ P (m · k1) · k2;

– DecP
k1,k2

: G → G; defined by c �→ P−1(c · k−1
2 ) · k−1

1 .

For simplicity of notation, we set EP
k1,k2

:= EncP
k1,k2

. Note that DecP
k1,k2

=
(
EP

k1,k2

)−1. Correctness of the scheme is immediate; in the next section, we
present several arguments for its security in various settings. All of these argu-
ments are based on the conjectured hardness of certain Hidden Shift problems
over G.

4.2 Security Reductions

We consider two settings. In the first, the adversary is given oracle access to the
permutation P , and then asked to distinguish the Even-Mansour cipher EP

k1,k2

from a random permutation unrelated to P . In the second setting, the adversary
is given oracle access to P , P−1, as well as EP

k1,k2
and its inverse; the goal in

this case is to recover the key (k1, k2) (or some part thereof).
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Distinguishability from Random. We begin with the first setting described
above. We fix a group G, and let PG denote the family of all permutations of G.
Select a uniformly random P ∈ PG. The encryption map for the Hidden Shift
Even-Mansour scheme over G can be written as

EP
k1,k2

= Lk2 ◦ P ◦ Lk1 .

If we have oracle access to P , then this is clearly an efficiently computable sub-
family of PG, indexed by key-pairs. For pseudorandomness, the relevant problem
is then to distinguish EP from a random permutation which is unrelated to the
oracle P .

Problem 6 (Even-Mansour Distinguishability (EMD)). Given oracle access to
permutations P,Q ∈ PG and a promise that either (i) both P and Q are random,
or (ii) P is random and Q = EP

k1,k2
for random k1, k2, decide which is the case.

It is straightforward to connect this problem to the decisional version of
Random Hidden Shift, as follows.

Proposition 4. If there exists a QPT D for EMD on G, then there exists a
QPT algorithm for the DRHS problem on G, with soundness and completeness
at most negligibly different from those of D.

Proof. Let f, g be the two oracle functions for the DRHS problem over G. We
know that f is a random function from G to G, and we must decide if g is also
random, or simply a shift of f . We sample t1, t2 uniformly at random from G,
and provide D with oracles f (in place of P ), and g′ := Lt2 ◦ g ◦ Lt1 (in place
of EP ). We then simply output what D outputs. Note that (f, g) are uniformly
random permutations if and only if (f, g′) are. In addition, g = f ◦ Ls if and
only if g′ = Lt2 ◦ f ◦ Lst1 . It follows that the input distribution to D is as in
EMD, modulo the fact that the oracles in DRHS are random functions rather
than random permutations. The error resulting from this is at most negligible,
by the collision-finding bound of Zhandry [35]. ��
Next, we want to amplify the DRHS distinguisher, and then apply the reduction
from Hidden Shift given in Proposition 3. Combining this with Proposition 4,
we arrive at a complete security reduction.

Theorem 3. Let G be either the Z/2n group family or the Sn group family.
Under Assumption 4, the Hidden Shift Even-Mansour cipher over G is a
quantum-secure pseudorandom function.

Proof. Let G be either the Z/2n group family, or the Sn group family. If the
Even-Mansour cipher over G is not a qPRP, then by Definition 3, there exists
an algorithm DEMD for the EMD problem with total (i.e., completeness plus
soundness) error at most 1−1/s(n) for some polynomial s. To give the adversary
as much freedom as possible, we assume that the probability of selecting the
public permutation P is taken into account here; that is, DEMD need only succeed
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with inverse-polynomial probability over the choices of permutation P , keys
k1, k2, and its internal randomness.

By Proposition 4, we then also have a DRHS algorithm DDRHS with error at
most 1−1/s(n) (up to negligible terms). We can amplify this algorithm by means
of a 2k-wise independent hash function family H, where k is an upper bound on
the running time of DDRHS (for the given input size n and required error bound
1/s(n)). Given functions f, g for the DRHS problem on G, we select a random
function h ∈ H and a random group element t ∈ G. We then call DDRHS with
oracles

f ′ := h ◦ f and g′
t := h ◦ g ◦ Lt

Note that, to any efficient quantum algorithm, (i) f and g are random if and
only if f ′ and g′

t are, and (ii) g(x) = f(sx) if and only if g′
t(x) = f ′(stx). We

know that DDRHS will succeed with probability 1−1/s(n), except the probability
is now taken over the choice of t and h (rather than f and g). We repeat this
process with different random choices of h and t. A straightforward application
of a standard Chernoff bound shows that, after O(p(n)) runs, we will correctly
distinguish with 1 − negl(n) probability.

Finally, we apply Proposition 3, to get an algorithm for Random Hidden

Shift with negligible error; by Proposition 1, we get an equally strong algorithm
for Hidden Shift. ��

Key Recovery Attacks. We now consider partial or complete key recovery
attacks, in the setting where the adversary also gets oracle access to the inverses
of P and EP

k1,k2
. Note that, for the Even-Mansour cipher on any group G, know-

ing the first key k1 suffices to produce the second key k2, since

k2 = P (x · k1)−1EP
k1,k2

(x)

for every x ∈ G.
We remark that giving security reductions is now complicated by the fact that

Random Hidden Shift and its variants all become trivial if we are granted
even a partial ability to invert f or g; querying f−1 ◦ g on any input x produces
x·s−1, which immediately yields the shift s. However, we can still give a nontrivial
reduction, as follows.

Theorem 4. Consider the Even-Mansour cipher over G × G, for any group G.
Suppose there exists a QPT algorithm which, when granted oracle access to P ,
EPk1,k2 , and their inverses, outputs k1, k2. Then there exists an efficient quantum
algorithm for the Hidden Shift problem over G.

Proof. We are given oracle access to functions f, g : G → G and a promise
that there exists s ∈ G such that f(x) = g(x · s) for all x ∈ G. We define the
following oracles, which can be constructed from access to f and g. First, we
have permutations Pf , Pg : G × G → G × G defined by

Pf (x, y) = (x, y · f(x)) and Pg(x, y) = (x, y · g(x)).
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Now we sample keys k1 = (x1, y1), k2 = (x2, y2) from G × G and define the
function E := E

Pf

k1,k2
. To the key-recovery adversary A for Even-Mansour over

G×G, we provide the oracles E and E−1 for the encryption/decryption oracles,
and the oracles Pg and P−1

g for the public permutation oracles.
To see that we can recover the shift s from the output of A, we rewrite E in

terms of g, as follows:

E(x, y) = Pf (xx1, yy1) · (x2, y2)
= (xx1, yy1f(xx1)) · (x2, y2)

= (xx1s, yy1f(xx1)) · (s−1x2, y2)

= (xx1s, yy1g(xx1s)) · (s−1x2, y2)

= Pg(xx1s, yy1) · (s−1x2, y2).

After complete key recovery, A will output (x1s, y1) and (s−1x2, y2), from which
we easily deduce s. ��

Remark. The reduction above focuses on the problem of recovering the entire
key. Note that for certain groups, e.g., Z/p for prime p, predicting any bit of
the key with inverse-polynomial advantage is sufficient to recover the entire key
(see H̊astad and N̊aslund [13]). In such cases we may conclude that predicting
individual bits of the key is difficult.

5 Hidden Shift CBC-MACs

5.1 Generalizing the Encrypted-CBC-MAC Scheme

The Standard Scheme. The standard Encrypted-CBC-MAC construction
requires a pseudorandom permutation Ek : {0, 1}n → {0, 1}n. A message m
is subdivided into blocks m = m1||m2|| · · · ||ml, each of length n. The tag is then
computed by repeatedly encrypting-and-XORing the message blocks, terminat-
ing with one additional round of encryption with a different key. Specifically,
we set

CBC-MACk,k′ := Ek′(Ek(ml ⊕ Ek(· · · Ek(m2 ⊕ Ek(m1)) · · · ))).

This yields a secure MAC for variable-length messages.

Quantum Chosen Plaintext Attacks on the Standard Scheme. If we are granted
quantum CPA access to CBC-MACk,k′ , then there is a (Z/2)n-hidden-shift
attack, described below. This attack was described in [14]; another version of
the attack appears in [29]. Consider messages consisting of two blocks, and fix
the first block to be one of two distinct values α0 �= α1. We use the oracle for
CBC-MACk,k′ to construct an oracle for the function

f(b, x) := CBC-MACk,k′(αb||x) = Ek′(Ek(x ⊕ Ek(αb))).
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Note that f satisfies Simon’s promise, since

f(b ⊕ 1, x ⊕ Ek(α0) ⊕ Ek(α1)) = f(b, x)

for all b, x. We can thus run Simon’s algorithm to recover the string sk =
Ek(α0) ⊕ Ek(α1). Knowledge of sk enables us to find an exponential number
of collisions, since

CBC-MACk,k′(α0||x) = CBC-MACk,k′(α1||x ⊕ Ek(α0) ⊕ Ek(α1)).

In particular, this CBC-MAC does not satisfy the Boneh-Zhandry notion of a
secure MAC in the quantum world [2].

Hidden Shift CBC-MAC. We propose generalizing the Encrypted-CBC-MAC
construction above, by allowing the bitwise XOR operation to be replaced by
composition in some exponentially-large family of finite groups G. Each message
block is then identified with an element of G, and we view the pseudorandom
permutation Ek as a permutation of the group elements of G. We then define

CBC-MACG
k,k′ : G∗ −→ G

(m1, . . . ,ml) �−→ Ek′(Ek(ml · Ek(· · · Ek(m2 · Ek(m1)) · · · ))),
where · denotes the group operation in G.

Scheme 2 (Hidden Shift Encrypted-CBC-MAC). Let G be a family of
finite, exponentially large groups satisfying the efficient encoding conditions given
in Sect. 3.2. Let Ek : G → G be a quantum-secure pseudorandom permutation.
The scheme consists of three polynomial-time algorithms:

– KeyGen; on input |G|, outputs two keys k, k′ using key generation for E;
– Mack,k′ : m �−→ Ek′(Ek(ml · Ek(· · · Ek(m2 · Ek(m1)) · · · );
– Verk,k′ : (m, t) �→ accept if Mack,k′(m) = t, and reject otherwise.

We consider the security of this scheme in the next section.

5.2 Security Reduction

We now give a reduction from the Random Hidden Shift problem to collision-
finding in the above CBC-MAC.

Theorem 5. Let G be either the Z/2n group family or the Sn group family.
Under Assumption 4, the Hidden-Shift CBC-MAC over G is a collision-resistant
function.

Proof. For simplicity, we assume that the collision-finding adversary finds colli-
sions between equal-length messages. This is of course trivially true, for example,
if the MAC is used only for messages of some a priori fixed length.

Suppose we are given an instance of the Hidden Shift problem, i.e., a pair
of functions F0, F1 with the promise that F0 is random and F1 is a shift of F0.
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We have at our disposal a QPT A which finds collisions in the Hidden Shift
Encrypted-CBC-MAC. We assume without loss of generality that, whenever A
outputs a collision (c, c′), there is no pair of prefixes of (c, c′) that also give a
valid collision; indeed, we can easily build an A′ which, whenever such prefixes
exist, simply outputs the prefix collision instead.

We assume for the moment that the number of message blocks in c and c′

is the same number t. Since the number of blocks and the running time of A
are polynomial, we can simply guess t, and we will guess correctly with inverse-
polynomial probability. We run A with a modified oracle O which “inserts” our
hidden shift problem at stage t. This is defined as follows.

Let m be our input message, and l the number of blocks. If l < t, we simply
output the usual Encrypted-CBC-MAC of m. If l ≥ t, we first perform t − 1
rounds of the CBC procedure, computing a function

h(m) := Ek(mt−1 · Ek(· · · Ek(m2 · Ek(m1)) · · · ).
Note that h only depends on the first t−1 blocks of m. Next, we choose a random
bit b and compute Fb(m)(mt ·h(m)). We then finish the rest of the rounds of the
CBC procedure, outputting

O(m) := E′
k(Ek(ml · Ek(· · · Ek(Fb(m)(mt · h(m))) · · · ).

It’s not hard to see that the distribution that the adversary observes will be indis-
tinguishable from the usual Encrypted-CBC-MAC. Suppose a collision (m,m′)
is output. We set x1 = m1||m2|| · · · ||mt−1 and x2 = m′

1||m′
2|| · · · ||m′

t−1 and
y1 = mt and y2 = m′

t. The collision then means that

Fb(m)(y1 · h(x1)) = Fb(m′)(y2 · h(x2)).

Since m �= m′, with probability 1/2 we have b(m) �= b(m′). We repeat A until
we achieve inequality of these bits. We then have

F0(y1 · h(x1)) = F1(y2 · h(x2)) = F0(y2 · h(x2) · s)

and so the shift is simply s = y−1
2 h(x2)−1y1h(x1). ��

6 Thwarting the Simon Attack on Other Schemes

It is reasonable to conjecture that our transformation secures (classically secure)
symmetric-key schemes against quantum CPA, generically. So far, we have only
been able to give complete security reductions in the cases of the Even-Mansour
cipher and the Encrypted-CBC-MAC. For the case of all other schemes vulnera-
ble to the Simon algorithm attacks of [14,18,19], we can only say that the attack
is thwarted by passing from (Z/2)n to Z/2n or Sn. We now briefly outline two
cases of particular note. For further details, see AppendixB.

The first case is the Feistel network construction, which transforms random
functions into pseudorandom permutations. While the three-round Feistel cipher
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is known to be classically secure [20], no security proof is known in the quantum
CPA case, for any number of rounds. In [18], a quantum chosen-plaintext attack
is given for the three-round Feistel cipher, again based on Simon’s algorithm.
The attack is based on the observation that, if one fixes the first half of the input
to one of two fixed values α0 �= α1, then the output contains one of two functions
fα0 , fα1 , which are (Z/2)n-shifts of each other. However, if we instead replace
each bitwise XOR in the Feistel construction with addition modulo Z/2n, the
two functions become Z/2n-shifts, and the attack now requires a cyclic Hidden

Shift subroutine.
The second case is what [14] refer to as the “quantum slide attack,” which

uses Simon’s algorithm to give a linear-time quantum chosen-plaintext attack, an
exponential speedup over classical slide attacks. The attack works against ciphers
Ek,t(x) := k⊕(Rk)t(x) which consist of t rounds of a function Rk(x) := R(x⊕k).
In the attack, one simply observes that Ek,t(R(x)) is a shift of R(Ek,t(x)) by
the key k, and then applies Simon’s algorithm. To defeat this attack, we simply
work over Z/2n, setting Ek,t(x) := k+(Rk)t(x) and Rk(x) := R(x+k). It’s easy
to see that the same attack now requires a Hidden Shift subroutine for Z/2n.
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Majenz for helpful discussions. G.A. acknowledges financial support from the European
Research Council (ERC Grant Agreement 337603), the Danish Council for Independent
Research (Sapere Aude) and VILLUM FONDEN via the QMATH Centre of Excellence
(Grant 10059). A.R. acknowledges support from NSF grant IIS-1407205.

A Hidden Subgroups and Hidden Shifts

Basic Definitions. We now briefly discuss the Hidden Subgroup Problem,
which is closely related to Hidden Shift.

Problem 7 (Hidden Subgroup Problem (HSP)). Let G be a group and S a
set. Given a function f : G → S, and a promise that there exists H ≤ G such
that f is constant and distinct on the right cosets of H, output a complete set
of generators for H.

Another, equivalent formulation of the HSP promise on f is that for x �= y,
f(x) = f(y) iff x = h · y for h ∈ H. As before, one can also consider decision
versions of HSP (e.g., where one has to decide if f hides a trivial or nontrivial
subgroup) and promise versions where the function f is a random function sat-
isfying the constraint that f(hx) = x for all x ∈ G and h ∈ H. This last variant
is important for our purposes so we separately define it.

Problem 8 (Random Hidden Subgroup Problem (RHSP)). Let G be a
group and S a set. Given a function f : G → S chosen uniformly among all
functions for which f(x) = f(hx) for all x ∈ G and h ∈ H, output a complete
set of generators for H.
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Some Reductions. Traditionally, the Hidden Subgroup problem (HSP) has
played a prominent role in the literature, as it offers a simple framework to
which many other problems can be directly reduced. Indeed, there is a general
reduction from HS to HSP.

A Canonical Reduction from HS to HSP. Consider an instance of a Hidden

Shift problem over G given by the functions f0, f1 : G → S such that f0(x) =
f1(x · s). Recall that the wreath product K = G � Z/2 is the semi-direct product
(G × G) � Z/2, where the action of the nontrivial element of Z/2 on G × G is
the swap (a, b) �→ (b, a). Now define the function

ϕ : (G × G) � Z/2 −→ S × S

((x, y), b) �−→ (fb(x), fb⊕1(y)).

One then easily checks that the function ϕ is constant and distinct on the cosets
of the order-two subgroup of K generated by ((s, s−1), 1).

We remark that the reduction above can significantly “complicate” the under-
lying group. In particular, note that A � Z/2 is always non-abelian (unless the
action of 1 ∈ Z/2 = {0, 1} on A is trivial). Note that this reduction does not yield
a reduction from RHS to RHSP as the resulting HSP instance is not uniformly
random in the fully random case.

The Special Case of (Z/2)n; Reductions from RHS to RHSP. On (Z/2)n, the Hid-

den Shift problem can be reduced to the Random Hidden Subgroup Prob-

lem on (Z/2)n via a special reduction that exploits Z/2 structure. Specifically,
for a pair of injective functions f0, f1 : (Z/2)n → S (for which f0(x) = f1(x⊕s),)
construct the function f : (Z/2)n+1 → S so that

g(bx) = fb(x), for b ∈ Z/2 and x ∈ (Z/2)n.

Then observe that g hides the subgroup generated by 1s.
Note, furthermore, that if the fi are (independent) random functions, then

the same can be said of g; likewise, if f1 is a shift of the random function f0,
the function g is precisely a random function subject to the constraint that
g(x) = g(x ⊕ 1s); thus this reduces RHS to RHSP. In this RHS setting, it is
possible to develop an alternate reduction that more closely resembles the attacks
we discussed above. Specifically, given the functions f0, f1 : (Z/2)n → (Z/2)n

(so that S = (Z/2)n), consider the oracle g = f0 ⊕ f1. When f1(x) = f0(x ⊕ s),
note that this oracle satisfies the symmetry condition

[f0 ⊕ f1](x ⊕ s) = f0(x ⊕ s) ⊕ f1(x ⊕ s)
= f1(x ⊕ s ⊕ s) ⊕ f0(x) = f0(x) ⊕ f1(x) = [f0 ⊕ f1](x)

so that g = f0 ⊕ f1 is a random function subject to the constraint that g(x) =
g(x ⊕ s), as desired. If the functions fi are independent, the function g has the
uniform distribution. Thus this reduces RHS to RHSP.
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B Other Hidden Shift Constructions

B.1 Feistel Ciphers

The Standard Scheme. The Feistel cipher is a method for turning random func-
tions into pseudorandom permutations. The core ingredient is a one-round Feistel
cipher, which, for a function f : {0, 1}n → {0, 1}n, is given by

Ff : {0, 1}2n −→ {0, 1}2n

x||y �−→ y ⊕ f(x)||x.

The function f is called the “round function.” The multi-round version of the
Feistel cipher is defined by concatenating multiple one-round ciphers, each with
a different choice of round function. Of particular interest is the three-round
cipher, defined by

FR1,R2,R3(x||y) = FR3(FR2(FR1(x||y))).

A well-known result of Luby and Rackoff says that, if the Rj are ran-
dom and independent, then FR1,R2,R3 is indistinguishable from a random
permutation [20].

Quantum Chosen Plaintext Attacks on the Standard Scheme. Suppose we are
given quantum oracle access to a function F , and promised that F is either
a random permutation, or that F := FR1,R2,R3 for some unknown, random
functions Rj . The following attack was first shown in [18]; a thorough analysis
appears in [14]. We first fix two n-bit strings α0 �= α1. We then use the oracle
for F to build oracles f0, f1 defined by

fb(y) := F (αb||y)
∣∣2n

n+1
⊕ αb.

Here s|kj := sjsj+1 · · · sk. We then run Simon’s algorithm to see if there’s a shift
between f0 and f1. If a shift is produced, we output “Feistel.” Otherwise we
output “random.”

To see why the attack is successful, first note that if F is a random permu-
tation, then the fb are random functions. On the other hand, if F = FR1,R2,R3 ,
then one easily checks that fb(y) = R2(y ⊕ R1(αb)). We then have

f1(y) = f0(y ⊕ (R1(α0) ⊕ R1(α1)))

for all y. Since the Rj are random, one can check that there are not too many
other collisions [14]. It follows that Simon’s algorithm will output R1(α0) ⊕
R1(α1) with high probability.

Hidden Shift Feistel Cipher. For simplicity, we will work over the group Z/2n.
Our construction generalizes to other group families in a straightforward way.
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Given a function f : Z/2n → Z/2n, we define the one-round Feistel cipher using
round function f to be

Ff : Z/2n × Z/2n −→ Z/2n × Z/2n

(x, y) �−→ (y + f(x), x).

Since Z/2n × Z/2n ∼= Z/22n, we can then view Ff as a permutation on 2n-bit
strings. For multi-round ciphers, we define composition as before. In particular,
given three functions R1, R2, R3 on G, we get the three-round Feistel cipher

FR1,R2,R3 : Z/2n × Z/2n −→ Z/2n × Z/2n

(x, y) �−→ FR3(FR2(FR1(x, y))).

Next, we check that the attack of [18] now appears to require a subrou-
tine for the Hidden Shift problem over Z/2n, contrary to our Cyclic Hidden
Shift Assumption (Assumption 2). We are given a function F on Z/22n with the
promise that F is either random or a Feistel cipher FR1,R2,R3 as above. Proceed-
ing precisely as before, we pick two elements α0 �= α1 of Z/2n and build two
functions

fb(y) := F (αb, y)|2n
n+1 − αb.

If F is random, then clearly so are f0 and f1. But if F = FR1,R2,R3 then one
easily checks that

fb(y) = R2(y + R1(αb)),

from which it follows that

f1(y) = R2(y + R1(α1)) = R2(y + R1(α0) − R1(α0) + R1(α1)) = f0(y + s)

where we set s := R1(α1) − R1(α0). We are thus presented with a Hidden

Shift problem over the group Z/2n, which is hard according to Assumption 2.
The only known subroutine (analogous to Simon) that one could apply here
would be Kuperberg’s algorithm, which would find s in time 2Θ(

√
n) [16]. Defining

the Feistel network over other groups (such as Sn) would frustrate all nontrivial
quantum-algorithmic approaches, including the Kuperberg approach [21].

B.2 Protecting Against Quantum Slide Attacks

Quantum Slide Attack. Classically, slide attacks are a class of subexponential-
time attacks against ciphers which encrypt simply by repeatedly applying some
function Rk, with a fixed key k. Kaplan et al. [14] showed how Simon’s algorithm
can be used to give a polynomial-time “quantum slide attack” against ciphers
of the form

Ek,t := k ⊕ Rt
k(x) = k ⊕ (Rk ◦ Rk · · · ◦ Rk)(x),
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where Rk(x) = R(x ⊕ k), and R is a known permutation. As usual, the attack
requires quantum CPA access to Ek,t. The attack follows directly from the obser-
vation that the functions

fb(x) =

{
Ek,t(R(x)) ⊕ x if b = 0,

R(Ek,t(x)) ⊕ x if b = 1.

are shifts of each other by the key k, i.e., f0(x⊕k) = f1(x) for all x. This means
we can extract k with Simon’s algorithm.

Eliminating the Attack via Hidden Shifts. Following our established pattern, we
adapt schemes Ek,t to use modular addition over Z/2n instead of bitwise XOR.
Given a permutation R of {0, 1}n, we now set

Rk(x) := R(x + k) and Ek,t := k + Rt
k(x).

Proceeding with the attack as before, we now define

fb(x) =

{
Ek,t(R(x)) − x if b = 0,
R(Ek,t(x)) − x if b = 1.

We then check that

f0(x + k) = Ek,t(R(x + k)) − (x + k)

= k + Rt
k(R(x + k)) − x − k

= R(Ek,t(x)) − x

= f1(x).

Continuing as in the Simon attack would now require a solution to the Hidden

Shift problem over Z/2n.
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Abstract. Recent work on searchable symmetric encryption (SSE) has
focused on increasing its expressiveness. A notable example is the OXT
construction (Cash et al., CRYPTO ’13 ) which is the first SSE scheme to
support conjunctive keyword queries with sub-linear search complexity.
While OXT efficiently supports disjunctive and boolean queries that can
be expressed in searchable normal form, it can only handle arbitrary dis-
junctive and boolean queries in linear time. This motivates the problem
of designing expressive SSE schemes with worst-case sub-linear search;
that is, schemes that remain highly efficient for any keyword query.

In this work, we address this problem and propose non-interactive
highly efficient SSE schemes that handle arbitrary disjunctive and
boolean queries with worst-case sub-linear search and optimal communi-
cation complexity. Our main construction, called IEX, makes black-box
use of an underlying single keyword SSE scheme which we can instan-
tiate in various ways. Our first instantiation, IEX-2Lev, makes use of
the recent 2Lev construction (Cash et al., NDSS ’14 ) and is optimized
for search at the expense of storage overhead. Our second instantia-
tion, IEX-ZMF, relies on a new single keyword SSE scheme we introduce
called ZMF and is optimized for storage overhead at the expense of effi-
ciency (while still achieving asymptotically sub-linear search). Our ZMF
construction is the first adaptively-secure highly compact SSE scheme
and may be of independent interest. At a very high level, it can be
viewed as an encrypted version of a new Bloom filter variant we refer to
as a Matryoshka filter. In addition, we show how to extend IEX to be
dynamic and forward-secure. To evaluate the practicality of our schemes,
we designed and implemented a new encrypted search framework called
Clusion. Our experimental results demonstrate the practicality of IEX
and of its instantiations with respect to either search (for IEX-2Lev) and
storage overhead (for IEX-ZMF).

1 Introduction

A structured encryption (STE) scheme encrypts a data structure in such a way
that it can be privately queried. An STE scheme is secure if it reveals nothing
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about the structure and query beyond a well-specified and “reasonable” leakage
profile [13,15]. STE schemes come in two forms: response-revealing and response-
hiding. The former reveals the query response in plaintext whereas the latter does
not. An important special case of STE is searchable symmetric encryption (SSE)
which encrypts search structures such as inverted indexes [10,11,13,15,23,24] or
search trees [19,23]. Another example is graph encryption which encrypts vari-
ous kinds of graphs [13,27]. STE has received a lot of attention from Academia
and Industry due to: (1) its potential applications to cloud storage and data-
base security; and (2) the fact that, among a host of different encrypted search
solutions (e.g., property-preserving encryption, fully-homomorphic encryption,
oblivious RAM, functional encryption) it seems to provide the best tradeoffs
between security and efficiency.

In recent years, much of the work on STE has focused on supporting more
complex structures and queries. A notable example in the setting of SSE is the
work of Cash et al. which proposed the first SSE scheme to support conjunctive
queries in sub-linear time [11]. Their scheme, OXT, is also shown to support
disjunctive and even boolean queries. Faber et al. later showed how to extend
OXT to achieve even more complex queries including range, substring, wild-
card and phrase queries. Another example is the BlindSeer project from Pappas
et al. [30] and Fisch et al. [17] which present a solution that supports boolean
and range queries as well as stemming in sub-linear time.

Naive Solutions. Any boolean query φ(w1, . . . , wq), where w1, . . . , wq are key-
words and φ is a boolean formula, can be handled using a single-keyword SSE
scheme in a naive way. In the case of response-revealing schemes it suffices to
search for each keyword and have the server take the intersection and unions of
the result sets appropriately. The issue with this approach, of course, is that the
server learns more information than necessary: namely, it learns the result sets
DB(w1), . . . , DB(wq) whereas it should only learn the set DB(φ(w1, . . . , wq)).
For response-hiding schemes, one can search for each keyword and compute the
intersections and unions at the client. The problem with this approach is that the
parties communicate more information than necessary: namely, the server sends
elements within the intersections of the result sets multiple times. With this in
mind, any boolean SSE solution should improve on one of the naive approaches
depending on whether it is response-hiding or response-revealing.

Worst-Case Sub-linear Search Complexity. While OXT achieves sub-linear
search complexity for conjunctive queries, its extension to disjunctive and arbi-
trary boolean queries does not. More precisely, OXT remains sub-linear only for
queries in searchable normal form (SNF) which have the form w1∧φ(w2, . . . , wq),
where w1 through wq are keywords and φ is an arbitrary boolean formula. For
non-SNF queries, OXT requires linear time in the number of documents. This
motivates the following natural question: can we design SSE schemes that sup-
port arbitrary disjunctive and arbitrary boolean queries with sub-linear search
complexity? In other words, can we design solutions for these queries that are
efficient even in the worst-case?



96 S. Kamara and T. Moataz

1.1 Our Contributions and Techniques

In this work, we address this problem and propose efficient disjunctive and
boolean SSE schemes with worst-case sub-linear search complexity and opti-
mal communication overhead. Our schemes are non-interactive and, as far as
we know, the first to achieve optimal communication complexity. To do this we
make several contributions which we summarize below

Worst-Case Disjunctive Search. Our first solution, which we call IEX, is
a worst-case sub-linear disjunctive SSE scheme. While it leaks more than the
naive response-hiding solution, we stress that it achieves optimal communication
complexity which, for response-hiding schemes, is the main tradeoff we seek.
In addition, it leaks less than OXT (when used for disjunctive queries) while
achieving worst-case efficiency.

The underlying idea behind IEX’s design is best expressed in set-theoretic
terms where we view the result of a disjunctive query w1 ∨ · · · ∨ wq as the union
of the results of each individual term. More precisely, if we denote by DB(w) the
set of document identifiers that contain the query w, then DB(w1 ∨ · · · ∨ wq) =
DB(w1)∪· · ·∪DB(wq). Using the naive response-hiding approach, one could use a
single-keyword response-hiding scheme to query each keyword and compute the
union at the client but, as discussed above, this would incur poor communication
complexity. Our approach is different and, intuitively speaking, makes use of the
inclusion-exclusion principle as follows. Consider a three-term query w1∨w2∨w3.
Instead of searching for DB(w1), DB(w2), DB(w3) and computing the union, we
compute DB(w1) and remove from it

DB(w1) ∩ DB(w2) and DB(w1) ∩ DB(w3).

We then compute DB(w2) and remove from it DB(w2) ∩ DB(w3). Finally, we
take the union of the remaining sets and add DB(w3). It follows by the inclusion-
exclusion principle that this results in exactly DB(w1)∪DB(w2)∪DB(w3). If we
could somehow support the intersection and removal operations at the server,
then we could achieve optimal communication complexity. Note that this high-
level approach is “purely disjunctive” in the sense that it does not rely on trans-
forming the query into another form as done in OXT. The avoidance of SNF in
particular is what enables us to achieve worst-case efficiency.

We stress that the intuition provided thus far is only a very high-level con-
ceptual explanation of our approach and cannot be translated directly to work
on encrypted data. The challenge is that no SSE scheme we are aware of directly
supports the kind of set operations needed to implement this idea. Therefore, a
major part of our contribution is in designing and analyzing such a scheme.

Boolean Search. While IEX is naturally disjunctive, we show that it also sup-
ports boolean queries. Similarly to the disjunctive case, we explain our high-level
approach in set-theoretic terms. First, recall that any boolean query can be writ-
ten in conjunctive normal form (CNF) so it has the form Δ1 ∧ · · · ∧ Δ�, where
each Δi = wi,1 ∨ · · · ∨ wi,q is a disjunction. Given a response-hiding disjunc-
tive-search scheme like IEX, a naive approach for CNF queries is to execute
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disjunctive searches for each disjunction Δ1, . . . ,Δ� and have the client perform
the intersection of the results. This approach is problematic, however, because
it requires more communication than necessary. To avoid this we take the fol-
lowing alternative approach. We note that the result DB(Δ1 ∧ · · · ∧ Δ�) is a
subset of DB(Δ1) and that it can be computed by progressively keeping only the
identifiers in DB(Δ1) that are also included in DB(Δ2) through DB(Δ�). Again,
we stress that this description is only a high-level conceptual explanation of our
approach and requires more work to instantiate over encrypted data.

The IEX Structure. As mentioned above, a major challenge in this work is
the design of an encrypted structure that supports the set-theoretic operations
needed to implement the strategies discussed above. To achieve this, IEX makes
use of a more complex structure than the traditional encrypted inverted index.
In particular, IEX combines several instantiations of two kinds of structures:
dictionaries and multi-maps. A dictionary (i.e., a key-value store) maps labels
to values whereas a multi-map (i.e., an inverted index) maps labels to tuples
of values. More precisely, the IEX design consists of an encrypted global multi-
map that maps every keyword w to its document identifiers DB(w) and an
encrypted dictionary that maps every keyword to a local multi-map for w. The
local multi-map of a keyword w maps all the keywords v that co-occur with
w to the identifiers of the documents that contain both v and w. At a high-
level, with the encrypted global multi-map we can recover DB(w1). With the
encrypted dictionary, we can recover the encrypted local multi-map for keywords
w2 through w�. And, finally, by querying the (encrypted) local multi-map of a
keyword w with a keyword v, we can recover the identifiers of the documents
that contain both w and v. With these basic operations, we can then execute a
full disjunctive query as discussed above.

Instantiations. IEX is an abstract construction that makes black-box use of
encrypted multi-maps and dictionaries which, in turn, can be instantiated with
several concrete constructions, e.g., [10,13,15,23].1 While its asymptotic com-
plexity is not affected by how the building blocks are instantiated, its concrete
efficiency is so we consider this choice carefully—especially how the local multi-
maps are instantiated. We consider two instantiations. The first, IEX-2Lev, uses
the 2Lev construction of Cash et al. [10] to encrypt the multi-maps (local and
global). This particular instantiation is very efficient with respect to search time
but produces large encrypted structures (e.g., 9.8 GB for datasets of 34M key-
word/id pairs).

To address this we propose a second instantiation called IEX-ZMF which
trades off efficiency for compactness. In fact, we show that IEX-ZMF is an
order of magnitude more compact than IEX-2Lev (e.g., producing 0.9 GB EDBs
for datasets with 34M keyword/id pairs). This compactness is achieved by

1 Other constructions such as [11,24,28,32] could also be used but these are either
dynamic or conjunctive which is not needed for the IEX.
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encrypting IEX’s local multi-maps with a new construction called ZMF which
may be of independent interest and that we detail below.2

The ZMF Scheme. ZMF is a multi-map encryption scheme that is inspired
by and has similarities to the classic Z-IDX construction of Goh [19]. Its core
design as well as its security are very different, however. While Z-IDX produces
a collection of non-adaptively-secure fixed -size encrypted Bloom filters, ZMF
produces a collection of adaptively-secure variable-sized encrypted Bloom filters.
In addition, the hash functions used for each filter can all be derived from a
fixed set of hash functions (even though the filters store a different number of
elements). This last property is non-standard but is crucial for our approach to
be practical as it allows us to generate constant-size tokens that can be used
with every filter in the collection. We refer to such collections of Bloom filters
as matryoshka filters and, as far as we know, they have not been considered in
the past. As we detail in Sect. 7, encrypting matryoshka filters with adaptive
security is quite challenging. For this, we rely on the random oracle model and
on a non-standard use of online ciphers [4] which are streaming block ciphers
in the sense that every ciphertext block depends only on the previous plaintext
blocks. Note that like Z-IDX, ZMF has linear search time but we use it in our
IEX construction only to encrypt the local multi-maps which guarantees that
IEX-ZMF is still sub-linear.

Dynamism and Forward-Security. We extend IEX to be dynamic resulting
in a new scheme DIEX. An important security property for dynamic SSE schemes
is forward security which guarantees that updates to an encrypted structure
cannot be correlated with previous queries. Forward security was introduced
by Stefanov, Papamanthou and Shi [32] and recent work of Zhang, Katz and
Papamanthou [34] has shown that it mitigates certain injection attacks on SSE
schemes. One advantage of our DIEX construction is that it naturally inherits
the forward-security of its underlying encrypted multi-maps and dictionaries.
That is, if the underlying structures are forward-secure then so is DIEX.

Reduced Leakage. As we mentioned above, IEX leaks more than the naive
response-hiding solution while achieving optimal communication complexity. We
stress, however, that it leaks less than the naive response-revealing solution and
than OXT. As an example, consider that if OXT is used to search for two
conjunctions w = w1 ∧ w2 and w′ = w3 ∧ w2 which share a common term, the
server can recover the results for w′′ = w1 ∧w2 ∧w3. In the case of disjunctions,
OXT’s leakage is equivalent to the naive response-revealing solution.

Experiments. To evaluate the efficiency of IEX and its instantiations we
designed and built a new encrypted search framework called Clusion [22]. It
is written in Java and leverages the Apache Lucene search library [1]. It also
includes a Hadoop-based distributed parser and indexer we implemented to han-
dle massive datasets. Our experiments show that IEX—specifically our IEX-2Lev

2 Multi-map encryption schemes are equivalent to SSE schemes so ZMF is an adaptively-
secure compact SSE scheme with linear-time search.
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instantiation—is very efficient and even achieves faster search times than those
reported for a C++ implementation of OXT [11] on a comparable system. For
example, for conjunctive, disjunctive and boolean queries with selectivity on the
order of thousands, IEX-2Lev takes 12, 14.8 and 23.7 ms, respectively. For the
same conjunctive query, OXT is reported to take 200 ms on a comparable system.
Clearly, a C/C++ implementation of IEX would perform even better.

We also implemented IEX-ZMF to evaluate its efficiency and compactness.
In our experiments, it produced EDBs of size 198 MB and 0.9 GB from datasets
with 1.5M and 34M keyword/id pairs, respectively. This is highly compact in
comparison to IEX-2Lev which produced 1.6 GB, 9.8 GB EDBs for 1.5M and
34M keyword/id pairs, respectively. We also evaluated the efficiency of IEX-
ZMF and, as expected, its performance for setup, search and token size are
worse than IEX-2Lev. For example, for a dataset with 34M keyword/id pairs,
EDB setup takes 7.58 h to process compared to 31 mins for IEX-2Lev.

On a boolean query of the form (w ∨ x) ∧ (y ∨ z), where the disjunctions had
selectivity 2 K and 10 K, respectively, IEX-ZMF took 1610 ms whereas IEX-2Lev
took only 23.7 ms. As expected due to its high degree of compactness, IEX-ZMF
is slower than IEX-2Lev (this is the exact tradeoff we seek).

2 Related Work

SSE was first considered by Song, Wagner and Perrig [31]. Curtmola, Garay,
Kamara and Ostrovsky [15] introduced the notion of adaptive-security for SSE
and presented the first constructions that achieved optimal search time with
a space-efficient index. STE was introduced by Chase and Kamara [13] who
proposed constructions for two-dimensional arrays, graphs and web graphs.

In [19], Goh introduced the Z-IDX construction which has linear search com-
plexity and produces highly compact indexes due to its use of Bloom filters. Here,
we extract a general transformation implicitly used in the Z-IDX construction
and use it in part to construct our ZMF scheme. Kamara, Papamanthou and
Roeder gave the first optimal-time dynamic SSE scheme [24]. Cash et al. [11]
proposed OXT; the first optimal-time conjunctive keyword search scheme. Faber
et al. [16] extend OXT to handle range, substring, wildcard and phrase queries.
Pappas et al. [30] and Fisch et al. [17] present solutions based on garbled circuits
and Bloom filters that can support boolean formulas, ranges and stemming. In
[30], the authors show how to build the first worst-case sub-linear time boolean
encrypted search solution. Like Goh’s Z-IDX construction and our ZMF scheme,
the solution makes use of Bloom filters. In addition, it is the first adaptively-
secure construction based on Bloom filters. For a disjunctive query w, the scheme
has search complexity O(log(n)·C ·DB(w)), where n is the number of documents
and C is the cost of a 2-party secure function evaluation of a function that takes
as input a Bloom filter of size O(#W) (i.e., the number of unique keywords
in DB) and a q-term disjunctive query. We note that unlike IEX and OXT, it
does not achieve optimal communication complexity. Also, while its search is
sub-linear it involves multiple rounds of interactions.
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Ishai, Kushilevitz, Lu and Ostrovsky propose a two-server SSE scheme that
hides the access pattern and supports various complex queries including ranges,
stemming and substring [21]. Cash et al. [10] design several I/O-efficient SSE
schemes including the 2Lev construction which we use in one of our IEX instan-
tiations. Kurosawa and Ohtaki [26] designed the first UC secure SSE scheme.
Kurosawa [25] designed a linear-time construction that handles arbitrary boolean
queries while not disclosing the structure of the boolean query itself. Forward
Secrecy was first considered by Stefanov, Papamanthou and Shi [32]. In [9], Bost
introduced an efficient forward secure construction. In [12], Cash and Tessaro
give lower bounds on the locality of SSE by showing tradeoffs between locality,
space overhead and read efficiency. Recently, Asharov, Naor, Segev and Sha-
haf gave SSE constructions with optimal locality, optimal space overhead and
nearly-optimal read efficiency [3]. Encrypted search can also be achieved with
other primitives like property-preserving encryption [5,6], functional encryption
[7,8,29], oblivious RAM [20], full-homomorphic encryption [18] and multi-party
computation [33].

Online ciphers were introduced by Bellare, Boldyreva et al. [4], where they
propose several schemes including the HCB1 construction which we make use
of in our ZMF implementation. More efficient constructions were later proposed
by Andreeva et al. [2].

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and
the set of all finite binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n},
and 2[n] is the corresponding power set. We write x ← χ to represent an element
x being sampled from a distribution χ, and x

$← X to represent an element x
being sampled uniformly at random from a set X. The output x of an algorithm
A is denoted by x ← A. Given a sequence v of n elements, we refer to its ith
element as vi or v[i]. If S is a set then #S refers to its cardinality. If s is a
string then |s| refers to its bit length and si to its ith bit. s|n denotes the string
s padded with n − |s| 0’s and s|n represents the first n bits of s. Given strings s
and r, we refer to their concatenation as either 〈s, r〉 or s‖r. For an n-bit string
s and for all nonnegative d, we denote by s‖d the string 〈s|d

1 , · · · , s
|d
n 〉. In this

work, padding takes precedence over truncation; that is, s
‖d
|p = (s‖d)|p.

Data Types. An abstract data type is a collection of objects together with a
set of operations defined on those objects. Examples include sets, dictionaries
(also known as key-value stores or associative arrays) and graphs. The operations
associated with an abstract data type fall into one of two categories: query opera-
tions, which return information about the objects; and update operations, which
modify the objects. If the abstract data type supports only query operations it
is static, otherwise it is dynamic.
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Data Structures. A data structure for a given data type is a representa-
tion in some computational model3 of an object of the given type. Typically,
the representation is optimized to support the type’s query operation as effi-
ciently as possible. For data types that support multiple queries, the represen-
tation is often optimized to efficiently support as many queries as possible. As
a concrete example, the dictionary type can be represented using various data
structures depending on which queries one wants to support efficiently. Hash
tables support Get and Put in expected O(1) time whereas balanced binary
search trees support both operations in worst-case log(n) time. For ease of under-
standing and to match colloquial usage, we will sometimes blur the distinction
between data types and structures. So, for example, when referring to a dictio-
nary structure or a multi-map structure what we are referring to is an unspecified
instantiation of the dictionary or multi-map data type.

Basic Structures. We make use of several basic data types including arrays,
dictionaries and multi-maps which we recall here. An array A of capacity n stores
n items at locations 1 through n and supports read and write operations. We
write v = A[i] to denote reading the item at location i and A[i] = v the operation
of storing an item at location i. A dictionary DX of capacity n is a collection of
n label/value pairs {(�i, vi)}i≤n and supports Get and Put operations. We write
vi = DX[�i] to denote getting the value associated with label �i and DX[�i] = vi

to denote the operation of associating the value vi in DX with label �i. A multi-
map MM with capacity n is a collection of n label/tuple pairs {(�i, Vi)i}i≤n that
supports Get and Put operations. Similarly to dictionaries, we write Vi = MM[�i]
to denote getting the tuple associated with label �i and MM[�i] = Vi to denote
operation of associating the tuple Vi to label �i. We sometimes write MM−1[v]
to refer to the set of labels in MM associated with tuples that include the value
v. Multi-maps are the abstract data type instantiated by an inverted index. In
the encrypted search literature multi-maps are sometimes referred to as indexes,
databases or tuple-sets (T-sets) [10,11].

Document Collections. A document collection is a set of documents D =
(D1, . . . , Dn), each document consisting of a set of keywords from some universe
W. We assume the universe of keywords is totally ordered (e.g., using lexico-
graphic order) and denote by W[i] the ith keyword in W. We assume every
document has an identifier that is independent of its contents and denote it
id(Di). We assume the existence of an efficient indexing algorithm that takes as
input a data collection D and outputs a multi-map that maps every keyword w
in W to the identifiers of the documents that contain w. In previous work, this
multi-map is referred to as an inverted index or as a database. For consistency,
we refer to any multi-map derived in this way from a document collection as a
database and denote it DB. Given a keyword w, we denote by coDB(w) ⊆ W
the set of keywords in W that co-occur with w; that is, the keywords that are
contained in documents that contain w. When DB is clear from the context we
omit DB and write only co(w).

3 In this work, the underlying model will always be the word RAM.
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3.1 Cryptographic Primitives

Basic Cryptographic Primitives. A private-key encryption scheme is a set
of three polynomial-time algorithms SKE = (Gen,Enc,Dec) such that Gen is a
probabilistic algorithm that takes a security parameter k and returns a secret key
K; Enc is a probabilistic algorithm takes a key K and a message m and returns
a ciphertext c; Dec is a deterministic algorithm that takes a key K and a cipher-
text c and returns m if K was the key under which c was produced. Informally, a
private-key encryption scheme is secure against chosen-plaintext attacks (CPA)
if the ciphertexts it outputs do not reveal any partial information about the
plaintext even to an adversary that can adaptively query an encryption oracle.
We say a scheme is random-ciphertext-secure against chosen-plaintext attacks
(RCPA) if the ciphertexts it outputs are computationally indistinguishable from
random even to an adversary that can adaptively query an encryption oracle.4

In addition to encryption schemes, we also make use of pseudo-random functions
(PRF) and permutations (PRP), which are polynomial-time computable func-
tions that cannot be distinguished from random functions by any probabilistic
polynomial-time adversary.

Online Ciphers. An online cipher (OC) is a block cipher that can encrypt data
streams. In particular, with an OC the encryption of the ith block in a stream
depends only on the 1st through ith message blocks. OCs were introduced by
Bellare, Boldyreva, Knudsen and Namprempre [4]. More formally, we say that a
cipher OC : {0, 1}k ×{0, 1}n×B → {0, 1}n×B , where B > 1 is the block length, is
B-online if there exists a function X : {0, 1}k × {0, 1}n×B → {0, 1}B such that
for any m ∈ {0, 1}n×B ,

OCK(m) = OC1
K(m)‖ . . . ‖OCn

K(m),

where OCi
K(m) = X(K,m1, . . . ,mi) for all i ∈ [n] and where mi is the ith block

of m. OCs cannot be pseudo-random permutations (see [4] for a simple distin-
guisher) but can satisfy the weaker requirement of being computationally indis-
tinguishable from a random online permutation. An online permutation is simply
a permutation on a domain {0, 1}n×B whose ith block depends only on the first i
blocks of its input. We denote by OPermn,B the set of all online permutations over
{0, 1}n×B . Security for an online cipher OC : {0, 1}k × {0, 1}n×B → {0, 1}n×B

then holds if for all ppt adversaries A,
∣∣∣Pr

[
AOCK(·) = 1 : K

$← {0, 1}k
]

− Pr
[
Af(·) = 1 : f

$← OPermn,B

]∣∣∣ ≤ negl(k).

4 Definitions

Structured encryption schemes encrypt data structures in such a way that they
can be privately queried. There are several natural forms of structured encryp-
tion. The original definition of [13] considered schemes that encrypt both a
4 RCPA-secure encryption can be instantiated practically using either the standard

PRF-based private-key encryption scheme or, e.g., AES in counter mode.
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structure and a set of associated data items (e.g., documents, emails, user pro-
files etc.). In [14], the authors also describe structure-only schemes which only
encrypt structures. Another distinction can be made between interactive and
non-interactive schemes. Interactive schemes produce encrypted structures that
are queried through an interactive two-party protocol, whereas non-interactive
schemes produce structures that can be queried by sending a single message,
i.e., the token. One can also distinguish between response-hiding and response-
revealing schemes: the former reveal the response to queries whereas the latter
do not.

STE schemes are used as follows. During a setup phase, the client constructs
an encrypted data structure EDS under a key K. The client then sends EDS to
the server. During the query phase, the client constructs and sends a token tk
generated from its query q and the key K. The server then uses the token tk to
query EDS. If the scheme is response-revealing, it recovers a response r. On the
other hand, if the scheme is response-hiding it recovers a message that it returns
to the client who in turn decrypts it with a resolving algorithm.

Definition 1 (Structured encryption). A single-round response-hiding stru-
ctured encryption scheme ΣT = (Setup,Token,Query,Resolve) for data type T
consists of four polynomial-time algorithms that work as follows:

– (K,EDS) ← Setup(1k,DS): is a probabilistic algorithm that takes as input a
security parameter 1k and a structure DS of type T and outputs a secret key
K and an encrypted structure EDS.

– tk ← Token(K, q): is a (possibly) probabilistic algorithm that takes as input a
secret key K and a query q and returns a token tk.

– c ← Query(EDS, tk): is a (possibly) probabilistic algorithm that takes as input
an encrypted structure EDS and a token tk and outputs a message c.

– r ← Resolve(K, c): is a deterministic algorithm that takes as input a secret
key K and a message c and outputs a response r.

We say that a structured encryption scheme Σ is correct if for all k ∈ N, for
all poly(k)-size structures DS of type T , for all (K,EDS) output by Setup(1k,DS)
and all sequences of m = poly(k) queries q1, . . . , qm, for all tokens tki output by
Token(K, qi), for all messages c output by Query(EDS, tki), Resolve(K, c) returns
the correct response with all but negligible probability. The syntax of a response-
revealing STE scheme can be recovered by omitting the Resolve algorithm and
having Query output the response.

Security. The standard notion of security for STE guarantees that an encrypted
structure reveals no information about its underlying structure beyond the setup
leakage LS, and that the query algorithm reveals no information about the struc-
ture and the queries beyond the query leakage LQ. If this holds for non-adaptively
chosen operations then this is referred to as non-adaptive security. If, on the other
hand, the operations are chosen adaptively, this leads to the stronger notion of
adaptive security [15]. This notion of security was first formalized by Curtmola
et al. in the context of searchable encryption [15] and later generalized to struc-
tured encryption in [13].
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Definition 2 (Adaptive security [13,15]). Let ΣT = (Setup,Token,Query)
be a structured encryption scheme for type T and consider the following prob-
abilistic experiments where A is a stateful adversary, S is a stateful simulator,
LS and LQ are leakage profiles and z ∈ {0, 1}∗:

RealΣ,A(k): given z the adversary A outputs a structure DS of type T and
receives EDS from the challenger, where (K,EDS) ← Setup(1k,DS). The
adversary then adaptively chooses a polynomial number of queries q1, . . . ,
qm. For all i ∈ [m], the adversary receives tki ← Token(K, qi). Finally, A
outputs a bit b that is output by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS of type T which
it sends to the challenger. Given z and leakage LS(DS) from the challenger,
the simulator S returns an encrypted data structure EDS to A. The adversary
then adaptively chooses a polynomial number of operations q1, . . . , qm. For all
i ∈ [m], the simulator receives query leakage LQ(DS, qi) and returns a token
tki to A. Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-secure if for all ppt adversaries A, there
exists a ppt simulator S such that for all z ∈ {0, 1}∗,

|Pr [RealΣ,A(k) = 1 ] − Pr [ IdealΣ,A,S(k) = 1 ]| ≤ negl(k).

5 IEX: A Worst-Case Sub-linear Disjunctive SSE Scheme

Our main construction, IEX, makes black-box use of a dictionary encryption
scheme ΣDX = (Setup,Token,Get), a multi-map encryption scheme ΣMM =
(Setup,Token,Get), a pseudo-random function F , and of a private-key encryp-
tion scheme SKE = (Gen,Enc,Dec). The details of the scheme are provided in
Fig. 1. At a high-level, it works as follows.

Setup. The Setup algorithm takes as input a security parameter k and an index
DB. It makes use of two data structures: a dictionary DX and a global multi-map
MMg. MMg maps every keyword in w ∈ W to an encryption of the identifiers
in DB(w). We refer to these encryptions as tags and they are computed by
evaluating SKE.Enc using as coins the evaluation of F on keyword w and the
identifier. The global multi-map MMg is then encrypted using ΣMM, resulting in
EMMg.

For each keyword w ∈ W, the algorithm creates a local multi-map MMw,
that maps the keywords v ∈ co(w) to tags of identifiers in DB(v) ∩ DB(w).
Intuitively, the purpose of the local multi-map MMw is to quickly find out which
documents contain both w and v, for any v �= w. The local multi-maps MMw are
then encrypted with ΣMM. This results in encrypted multi-maps EMMw which
are then stored in the dictionary DX such that DX[w] = EMMw. In other words,
it stores label/value pairs (w,MMw) in DX. Finally, DX is encrypted with ΣDX,
resulting in an encrypted dictionary EDX. The output of Setup includes the
encrypted structures

(
EDX,EMMg

)
as well as their keys.
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There are several optimizations possible for Setup that we omit in our formal
description for ease of exposition. The first is that the encrypted local multi-maps
can be stored “by reference” in the encrypted dictionary EDX instead of “by
value”. More precisely, instead of storing the actual encrypted local multi-maps
EMMw in EDX one can just store a pointer to them. Another optimization is
that, depending on how ΣMM is designed, the keys for the local encrypted multi-
maps could all be generated from a single key using a PRF (with a counter).
This would reduce the size of K. This optimization can be easily applied to most
known encrypted multi-map schemes including the ones from [10,11,13,15,23].

Token. The Token algorithm takes as input a key and a vector of keywords w =
(w1, . . . , wq). For all i ∈ [q − 1] it creates a “sub-token” tki = (dtki, gtki, ltki+1,
. . . , ltkq) composed of a dictionary token dtki, a global token gtki for wi and,
for all keywords wi+1 through wq in the disjunction, a local token ltkj for wj ,
with i + 1 ≤ j ≤ q. Intuitively, the global token will allow the server to query
the encrypted global multi-map EMMg to recover tags of the ids in DB(wi).
The dictionary token for wi will then allow the server to query the encrypted
dictionary EDX to recover wi’s local multi-map EMMi. Finally, the local tokens
will allow the server to query wi’s encrypted local multi-map EMMi to recover
the tags of the ids of the documents that contain both wi and wi+1, wi and
wi+2, etc. As we will see next, this information will be enough for the server
to find the relevant documents. For the last keyword wq in the disjunction, the
algorithm only needs to create a global token.

Search. The Search algorithm takes as input EDB = (EDX,EMMg) and a token
tk = (tk1, . . . , tkq−1, gtkq). For each sub-token tki = (dtki, gtki, ltki+1, . . . , ltkq),
the server does the following. It first uses gtki to query the global multi-map
EMMg and recover a set of identifier tags Ti for DB(wi). It then uses dtki to
query the encrypted dictionary EDX to recover the local multi-map EMMi for
wi and uses ltki+1 to query EMMi to recover the tags T ′ for identifiers of the
documents that contain both wi and wi+1; that is, the tags for the set I ′ =
DB(wi) ∩ DB(wi+1). The server then removes T ′

i from Ti. It then repeats this
process for all local tokens ltki+2 to ltkq. Once it finishes processing all local
tokens in tki, it holds the set of tags for the set

DB
(
wi

) \
q−1⋃

j=i

(
DB

(
wi

) ⋂
DB

(
wj+1

))
. (1)

Once it finishes processing all the sub-tokens, the server holds tags T1 through
Tq−1. For gtkq, the server just queries the global multi-map to recover Tq. Finally,
it outputs the set

T =
q⋃

i=1

Ti. (2)
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Let F be a pseudo-random function, SKE = (Gen,Enc,Dec) be a private-key
encryption scheme, ΣDX = (Setup,Token,Get) be a dictionary encryption
scheme and ΣMM = (Setup,Token,Get) be a multi-map encryption scheme.
Consider the disjunctive SSE scheme IEX = (Setup,Token, Search) defined
as follows:

– Setup(1k,DB):

1. sample K1, K2
$← {0, 1}k;

2. initialize a dictionary DX and a multi-map MMg;
3. for all w ∈ W,

(a) for all id ∈ DB(w), let tagid := EncK1 id; FK2 id w ;
(b) set MMg[w] := tagid id∈DB(w)

;

(c) initialize a multi-map MMw of size #co(w);
(d) for all v ∈ co(w),

i. for all id ∈ DB(v) ∩ DB(w), let tagid :=
EncK1 id; FK2 id w ;

ii. set MMw[v] := tagid id∈DB(v)∩DB(w)
;

(e) compute (Kw,EMMw) ← ΣMM.Setup 1k,MMw ;
(f) set DX[w] := EMMw;

4. compute (Kg,EMMg) ← ΣMM.Setup(1k,MMg);
5. compute (Kd,EDX) ← ΣDX.Setup(1k,DX);
6. set K = Kg, Kd, {Kw}w∈W and EDB = (EMMg,EDX);
7. output (K,EDB).

– Token(K,w):
1. parse w as (w1, . . . , wq);
2. for all i ∈ [q − 1],

(a) compute gtki ← ΣMM.Token(Kg, wi);
(b) compute dtki ← ΣDX.Token(Kd, wi);
(c) for all i + 1 ≤ j ≤ #w, compute ltkj ← ΣMM.Token(Kwi , wj);
(d) set tki = dtki, gtki, ltki+1, . . . , ltk#w ;

3. compute gtkq ← ΣMM.Token(Kg, wq);
4. output tk = (tk1, . . . , tkq−1, gtkq).

– Search(EDB, tk):
1. parse EDB as (EMMg,EDX);
2. parse tk as (tk1, . . . , tkq−1, gtkq);
3. for all i ∈ [q − 1],

(a) parse tki as dtki, gtki, ltki+1, . . . , ltkq ;
(b) compute Ti ← ΣMM.Get(EMMg, gtki);
(c) compute EMMi ← ΣDX.Get(EDX, dtki);
(d) for all i + 1 ≤ j ≤ q,

i. compute T ← ΣMM.Get(EMMi, ltkj);
ii. set Ti = Ti \ T ;

4. compute Tq ← ΣMM.Get(EMMg, gtkq);
5. output i∈[q] Ti;

Fig. 1. Our disjunctive SSE scheme IEX.
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5.1 Correctness and Efficiency

We now analyze the correctness and efficiency of our construction. The correct-
ness of IEX follows from Eqs. (1) and (2) and from the inclusion-exclusion prin-
ciple. Given a disjunctive query w = (w1, . . . , wq), by Eq. (2), IEX.Search

(
EDB,

Token(K,w)
)

will output

T =
q⋃

i=1

Ti

=
( q−1⋃

i=1

Ti

)⋃
Tq

=

⎛

⎝
q−1⋃

i=1

⎛

⎝DB(wi) \
q−1⋃

j=i

(
DB(wi)

⋂
DB(wj+1)

)
⎞

⎠

⎞

⎠
⋃

DB(wq)

=

⎛

⎝
q−2⋃

i=1

⎛

⎝DB(wi) \
q−1⋃

j=i

(
DB(wi)

⋂
DB(wj+1)

)
⎞

⎠

⎞

⎠

⋃(
DB(wq−1) \

(
DB(wq−1)

⋂
DB(wq)

)) ⋃
DB(wq)

︸ ︷︷ ︸
U

(3)

where the first and third equalities hold by Eqs. (2) and (1), respectively. Note,
however, that U equals DB(wq−1)

⋃
DB(wq):

U = DB(wq−1)
⋂ (

DB(wq−1)
⋃

DB(wq)
)⋃

DB(wq)

=
(
DB(wq−1)

⋂
DB(wq−1)

) ⋃(
DB(wq−1)

⋂
DB(wq)

) ⋃
DB(wq)

=
(
DB(wq−1)

⋂
DB(wq)

) ⋃
DB(wq)

=
(
DB(wq−1)

⋃
DB(wq)

) ⋂(
DB(wq)

⋃
DB(wq)

)

= DB(wq−1)
⋃

DB(wq)

Repeating the same argument for q−2, q−3 and so on and plugging into Eq. (3),
we get that T =

⋃q
i=1 DB(wi).

Efficiency. The search complexity of IEX is O(q2 · M), where M =
maxi∈[q] #DB(wi) and q is the number of terms in the disjunction. Tokens are
of size O(q). We also note that unlike BXT and OXT [11], IEX tokens are
selectivity-independent in the sense that they do not depend on the size of the
result. The IEX storage complexity is,

O

(
strg

( ∑

w

#DB(w)
)

+
∑

w

strg

( ∑

v∈co(w)

#DB(v) ∩ DB(w)
))

,
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where strg is the storage complexity of the underlying encrypted multi-map
encryption scheme ΣMM.

A Storage Optimization. As we can see, the storage complexity of IEX can
be large, especially if the underlying encrypted multi-maps are. This is indeed
the case when they are instantiated with standard sub-linear constructions. We
observe, however, that we can tradeoff storage complexity (and setup time) for
the communication complexity of search as follows. When constructing a local
multi-map EMMw for a keyword w, we normally insert tags for the identifiers in
DB(w) ∩DB(v) for all v ∈ co(w). This is not necessary for correctness, however,
so we can omit some of the co-occurring keywords from w’s local multi-map.
The tradeoff is that this will increase the communication complexity of IEX’s
search operation and, in particular, make it non-optimal.

To do this, we suggest using the following approach to decide whether to add
a keyword v ∈ co(w) or not. Let p < 1 be a filtering parameter and let

Tw,v
def
=

#DB(v) ∩ DB(w)
max(#DB(w),#DB(v))

.

If Tw,v > p, then add v to EMMw otherwise do not. With this filtering in place,
the storage complexity of IEX is now

O

(
strg

(∑

w

#DB(w)
)

+
∑

w

strg

( ∑

v∈co(w)
Tw,v>p

#DB(v) ∩ DB(w)
))

.

In our experiments we set p = 0.2.

Remark. We note that when all the terms of the disjunctive query have selec-
tivity O(n), IEX has linear search complexity. This is, however, the best one can
do. On the other hand, the communication complexity of IEX remains optimal
independently of the selectivity of the terms. This similarly applies to OXT but
not to BlindSeer since it induces a logarithmic (multiplicative) overhead.

5.2 Security

The setup leakage of IEX consists of the setup leakage of its underlying building
blocks. In particular, this includes the setup leakage of the encrypted global
multi-map and of the encrypted dictionary. Assuming the use of standard
optimal-time multi-map and dictionary encryption schemes [10,13,15,23], this
reveals the size of the database DB as well as the total size of the local multi-
maps stored in the dictionary. The query leakage of IEX for a query w includes,
for each keyword wi ∈ W, the query leakage of the encrypted dictionary and
of the encrypted global multi-map. It also includes the query leakage of every
queried local multi-map as well as their setup leakage. Again if instantiated with
standard constructions, this will consist of the search and access patterns which,
respectively, capture whether or not the same query has been searched for and
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(in our case) the tags. Finally, the query leakage also includes the number of
documents containing DB(wi)

⋂
DB(wj+1), for all j ≥ i and i ∈ [q − 1].

We now give a precise description of IEX’s leakage profile and show that it
is adaptively-secure with respect to it. Its setup leakage is

Liex
S (DB) =

(
Ldx
S (DX),Lmm

S (MMg)
)

,

where Ldx
S (DX) and Lmm

S (MMg) are the setup leakages of the underlying dictio-
nary and multi-map encryption schemes, respectively. Its query leakage is

Liex
Q (DB,w) =

((
Ldx
Q

(
DX, wi

)
,Lmm

S (MMi),

Lmm
Q

(
MMg, wi

)
, . . . ,Lmm

Q

(
MMi, wq

)
,TagPati(DB,w)

)

i∈[q−1]

,

Lmm
Q

(
MMg, wq

)
,TagPatq(DB,w)

)
,

where, for all i ∈ [q],

TagPati(DB,w) =
((

fi

(
id

))

id∈DB(wi)∩DB(wi+1)

, . . . ,

(
fi

(
id

))

id∈DB(wi)∩DB(wq)

)
,

and fi is a random function from {0, 1}|id|+log#W to {0, 1}k.

Theorem 1. If ΣDX is adaptively
(Ldx

S ,Ldx
Q

)
-secure, ΣMM is adaptively(Lmm

S ,Lmm
Q

)
-secure, SKE is RCPA-secure and F is pseudo-random, then IEX

is (Liex
S ,Liex

Q )-secure.

The proof of Theorem1 is deferred to the full version of the paper.

6 Boolean Queries with IEX

While IEX is naturally disjunctive, it can also support boolean queries. The
boolean variant is similar to IEX in that it uses the same encrypted structures
(i.e., it has the same Setup algorithm) but different Token and Search algorithms.
We refer to the boolean variant of IEX as BIEX. We now provide an overview
of how BIEX works.

Overview of BIEX. Recall that any query can be written in conjunctive normal
form (CNF) so it has the form Δ1∧· · ·∧Δ�, where each Δi = wi,1∨· · ·∨wi,q is a
disjunction. Note that the result DB(Δ1 ∧· · ·∧Δ�) is the intersection of DB(Δ1)
through DB(Δ�). But this intersection does not have to be computed “directly”
by executing a naive intersection operation. A better alternative (from a leakage
point of view) is to compute the intersection by starting with DB(w1), keeping
only the subset of identifiers of DB(w1) that are also in DB(w2), then keeping
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only the subset of identifiers that are also in DB(w3) and so on. This alternative
approach requires only information about DB(w1) and the progressive subsets.
Moreover, it uses operations that are already supported by the IEX structures.

How we do this exactly, is best explained through a concrete example. Sup-
pose we have a CNF query with Δ1 = w1∨w2 and Δ2 = w3. The first step would
be to perform a disjunctive query for Δ1, resulting in tags for the identifiers in
DB(Δ1). In the second step, we want to filter out and keep the tags of identifiers
in DB(Δ1)∩DB(w3). To find these tags, it suffices to query the local multi-maps
of w1 and w2 on w3. In the first case, EMMw1 will return tags for DB(w1)∩DB(w3)
and in the second case EMMw2 will return tags for DB(w2) ∩ DB(w3). Finally,
we take the union of both of these intersections and perform a final intersection
with DB(Δ1). The final result equals DB(Δ1) ∩ DB(w3). Figure 2 describes this
process in more detail and for arbitrary boolean queries.

Correctness. To show correctness we need to show that, given a boolean query
in CNF form Δ1 ∧ · · · ∧ Δ� such that Δi = wi,1 ∨ · · · ∨ wi,q (for simplicity we
assume the disjunctions all have q terms), BIEX.Search outputs

⋂

i∈[�]

⋃

j∈[q]

DB(wi,j). (4)

Looking at the description of BIEX.Search in Fig. 2, one can see that every time
Step 4(d)i is invoked it outputs

⋃

j∈[q]

DB(wi,t) ∩ DB(w1,j),

for all t ∈ [q] and i ∈ [�]. Note that this stems from the fact that ΣMM.Get(EMMj ,
ltkt,i,j) outputs DB(wi,t) ∩ DB(w1,j) for every j ∈ [q].

Also, based on the correctness of IEX we know that the search for the first
disjunction will output

⋃
j∈[q] DB(w1,j) (with no redundant identifiers). So we

have the final result of the query

I� =
⋃

j∈[q]

DB(w1,j)
⋂( ⋃

j,l∈[q]

(
DB(w2,j) ∩ DB(w1,l)

))⋂ · · ·
( ⋃

j,l∈[q]

(
DB(w�,j) ∩ DB(w1,l)

))

︸ ︷︷ ︸
�−1 terms

(5)

On the other hand, note that for all i ∈ [�] we have by Morgan’s laws that

⋃

j∈[q]

DB(w1,j)
⋂ ⋃

j∈[q]

DB(wi,j) =
⋃

j∈[q]

DB(w1,j)
⋂ ⋃

j∈[q]

DB(w1,j)
⋂ ⋃

j∈[q]

DB(wi,j)

=
⋃

j∈[q]

DB(w1,j)
⋂( ⋃

j,l∈[q]

(
DB(wi,j) ∩ DB(w1,l)

))

That is, we can recursively apply the above result on Eq. (5) for all l ∈ [�] to
obtain Eq. (4).
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Efficiency. The storage complexity of BIEX is the same as IEX. Its search
complexity is

O

(
q2 ·

(
max
w∈Δ1

#DB(w) + � · #DB(Δ1)
))

.

The term q2 · maxw∈Δ1 #DB(w) is the time to search for the first disjunction
and the second term q2 · � · #DB(Δ1) is the total number of local multi-map
queries.

We can clearly see from the search complexity of BIEX that we can achieve
better efficiency if the selectivity of the first disjunction is as small as possible.
In practice, therefore, the first disjunction should be the one with the smallest
selectivity; similarly to how the first keyword is chosen in OXT. Note that if
the first disjunction in the CNF form of the boolean query matches the entire
database then the search complexity of BIEX will be linear while the optimal
complexity might be sub-linear (the communication complexity of BIEX will
remain optimal, however). It is not obvious to us how to improve this without
pre-computing every possible query as it seems almost inherent to the query
itself. With this in mind, it follows that BIEX has a sub-linear worst-case search
complexity when the first disjunction’s selectivity is sub-linear.

The communication complexity of BIEX is optimal since the final set I� does
not contain any redundant identifiers. Finally, note that it is non-interactive and
token size is independent of the query’s selectivity.

Security. The setup leakage of BIEX is the same as IEX’s. Its query leakage
includes the query leakage of IEX on the first disjunction and the query leakage
of the encrypted local multi-maps when queried on all the terms of disjunctions
Δ2, . . . ,Δ�. Finally, it also includes the number of documents that match the
terms of the first disjunction and the terms of remaining disjunctions.

We now give a precise description of the leakage profile of BIEX and show
that it is adaptively-secure with respect to it. The setup leakage is

Liexb
S (DB) = Liex

S (DB),

where Liex
S (DB) is the setup leakages of IEX. Given a CNF query Δ1 ∧ · · · ∧ Δ�,

the query leakage is

Liexb
Q

(
DB,

�∧

i=1

Δi

)
=

(
Liex
Q

(
DB,Δ1

)
,

(
Lmm
Q

(
MMi, wl,1

)
, · · · ,Lmm

Q

(
MMi, wl,q

)
,

TagPati,l

(
DB,

�∧

i=1

Δi

))

i∈[q]
l∈[2,··· ,�]

)
.

where,

TagPati,l

(
DB,

�∧

i=1

Δi

)
=

((
fi(id)

)

DB(w1,i)∩DB(wl,1)

, . . . ,

(
fi(id)

)

DB(w1,i)∩DB(wl,q)

)

and fi is a random function from {0, 1}n+log#W to {0, 1}k.
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Let IEX = (Setup,Token, Search) be the IEX scheme described in Figure
1 and let ΣDX = (Setup,Token,Get) and ΣMM = (Setup,Token,Get) be
its underlying dictionary and multi-map encryption schemes, respectively.
Consider the boolean SSE encryption scheme BIEX = (Setup,Token, Search)
defined as follows:

– Setup(1k,DB): output (K,EDB) ← IEX.Setup(1k,DB).
– Token(K,w):

1. parse K as (Kg, Kd, {Kw}w∈W);

2. parse w as Δ1 · · · Δ where for all i ∈ [ ], Δi =

wi,1 · · · wi,d ;

3. compute tk1 ← IEX.TokenK(Δ1);
4. for all 2 ≤ i ≤ and all j ∈ [q],

(a) for all 1 ≤ s ≤ q, compute ltks,i,j ← ΣMM.Token(Kw1,s , wi,j);
(b) set tki,j = ltk1,i,j , . . . , ltkq,i,j ;
(c) set tki = tki,1, . . . , tki,q ;

5. output tk = (tk1, . . . , tk ).
– Search(EDB, tk):

1. parse EDB as (EMMg,EDX);
2. parse tk as (tk1, . . . , tk );
3. compute I1 ← IEX.Search(EDB, tk1);
4. for all 2 ≤ i ≤ ,

• instantiate an empty set Ii;
• parse tki = tki,1, . . . , tki,q ;
• for j ∈ [q],

(a) get dtkj from tk1;
(b) compute EMMj ← ΣDX.Get(EDX, dtkj);
(c) parse tki,j = ltk1,i,j , . . . , ltkq,i,j ;
(d) for s ∈ [q],

i. compute I ← ΣMM.Get(EMMj , ltks,i,j);
ii. compute Ii = Ii Ii−1 I ;

5. output I ;

Fig. 2. The scheme BIEX.

Theorem 2. If ΣDX is adaptively
(Ldx

S ,Ldx
Q

)
-semantically secure and ΣMM

is adaptively
(Lmm

S ,Lmm
Q

)
-secure, then BIEX is adaptively (Liexb

S ,Liexb
Q )-secure.

The proof of Theorem2 is similar (at a high-level) to the proof of Theorem1.

7 ZMF: A Compact and Adaptively-Secure SSE Scheme

The main limitation of IEX is its storage complexity of

O

(
strgg

(
MMg

)
+

∑

w

strg�

(
MMw

))
,
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where strgg and strg� are the storage complexity of the global and local EMMs,
respectively. If the latter are instantiated with standard sub-linear-time con-
structions such as [10,11,15,24], we have

O

( ∑

w

#DB(w) +
∑

w

∑

v∈co(w)

#DB(v) ∩ DB(w)
)

, (6)

which does not compare favorably to standard single-keyword search solutions
which require only O

( ∑
w #DB(w)

)
, or to the OXT construction of [11] which

requires

O

( ∑

w

#DB(w) + log
(

1
ε

)
·
∑

w

#DB(w)
)

when XSet is instantiated with a Bloom filter with a false positive rate of ε. In
particular, note that the second term in the asymptotic expression above hides
a constant of 1, which makes OXT reasonably compact.

Our Approach. The main storage inefficiency in IEX comes from the local
EMMs which contribute the second term in Eq. (6). Ideally, we could improve
things if we could use more compact local EMMs. Unfortunately, all known sub-
linear constructions require O(

∑
w #DB(w)) storage. We observe, however, that

for local EMMs sub-linear search is not necessary since in practice the number
of label/tuple pairs they store is small in comparison to the total number of
documents n. So, for our purposes, a linear-time construction would work as
long as it was compact. In [19], Goh proposed a very compact construction
called Z-IDX based on Bloom filters. Specifically, it needs only

O

(
log

(
1
ε

)
·
∑

v∈V

#MM−1[v]
)

bits of storage, where V is the value space of the multi-map and ε is the false
positive rate. If we could encrypt the local EMMs of IEX with Z-IDX, the
former’s storage would be

O

(∑

w

#DB(w) + log
(

1
ε

)
·
∑

w

#co(w)
)

,

which is much more competitive with OXT (note that the second term here
also has a constant of 1). Unfortunately, this approach does not work because
Z-IDX is not adaptively secure. Nevertheless, we show how to construct a highly
compact scheme that is. In the following, we first recall how Z-IDX works.

Goh’s ZIDX Scheme. Like any SSE scheme, Z-IDX can be viewed as a STE
scheme and, in particular, as a multi-map encryption scheme. Conceptually,
we observe that Z-IDX can be abstracted into two parts: (1) a compiler that
transforms an underlying set encryption scheme into a multi-map encryption
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Let ΣSET = (Gen,Enc,Token,Test) be a multi-structure set encryp-
tion scheme and consider the multi-map encryption scheme ΣMM =
(Setup,Token,Get) defined as follows:

– Setup(1k,MM):
1. compute K ← Gen(1k);
2. let V be the range of MM;
3. for all v ∈ V,

(a) let Sv = MM−1(v);
(b) compute ESETv ← ΣSET.Enc(K, Sv);

4. output EMM = (ESETv)v∈V.
– Token( ): output tk ← ΣSET.Token( )
– Get(EMM, tk):

1. let I = ∅;
2. for all v ∈ V,

(a) if ΣSET.Test(ESETv, tk) outputs 1, set I = I ∪ {v};
3. output I.

Fig. 3. The Z-IDX transformation.

scheme; and (2) a concrete set encryption scheme based on Bloom filters and
PRFs. We refer to the former as the Z-IDX transformation and describe it in
detail in Fig. 3. Given a set encryption scheme ΣSET, it produces a multi-map
encryption scheme ΣMM that works as follows. The ΣMM.Setup algorithm takes as
input a multi-map MM that maps labels to tuples of values from V. It creates #V
sets (Sv)v∈V such that Sv holds the labels in MM that map to v. It then encrypts
each set Sv with ΣSET resulting in an encrypted set ESETv. The encrypted multi-
map EMM is simply the collection of encrypted sets (ESETv)v∈V. A ΣMM token
for a label � is a ΣSET token for � and ΣMM.Get uses the token to test each set
in EMM = (ESETv)v∈V and outputs v if the test succeeds.

Note that for ΣMM to work, ΣSET must satisfy a stronger STE form than
what is described in Definition 1. In particular, it must be what we call multi-
structure in the sense that the tokens produced with a key K can be used
to query all the structures encrypted under K. We provide formal syntax and
security definitions of multi-structure STE schemes in the full version of the
paper. The main difference between standard and multi-structure STE schemes
are that in the latter the Setup algorithm is replaced with a key generation
algorithm Gen(1k) that takes as input a security parameter and outputs a secret
key K; and an encryption algorithm Enc(K,DS) that takes as input a secret key
K and a data structure DS and outputs an encrypted structure EDS.

Adaptive Security. From our abstract perspective, the reason Z-IDX is not
adaptively-secure is because the Z-IDX transformation is (implicitly) applied to
a set encryption scheme that is not adaptively-secure. We show in Theorem 3
below, however, that if the transformation is applied to an adaptively-secure set
encryption scheme then the result is adaptively-secure as well. More precisely,
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we show that if the set encryption scheme is adaptively (Lset
S ,Lset

Q )-secure then
the Z-IDX transformation yields a multi-map encryption scheme with the fol-
lowing leakage profile:

Lmm
S (MM) =

((Lset
S

(
MM−1[v]

))
v∈V

,#V
)

,

and

Lmm
Q (MM, q) = Lset

Q

((
MM−1[v]

)
v∈V

, q
)

.

Theorem 3. If ΣSET is adaptively (Lset
S ,Lset

Q )-secure then the scheme ΣMM that
results from applying the Z-IDX transformation to it is adaptively (Lmm

S ,Lmm
Q )-

secure.

Due to space constraints, the proof of Theorem3 will appear in the full version
of the paper.

7.1 An Adaptively-Secure and Multi-structure Set Encryption
Scheme

In this Section, we construct an adaptively-secure, highly-compact and multi-
structure set encryption scheme. Then, by applying the Z-IDX transformation to
it we get an adaptively-secure and highly-compact multi-map encryption scheme
which we then use in IEX.

Adaptive Security. The main difficulty in designing adaptively-secure
encrypted structures is supporting equivocation during simulation. Roughly
speaking, the issue is that during the Ideal(k) experiment the simulator first
needs to simulate an encrypted structure for the adversary and later needs to
be able to simulate tokens that work correctly with the simulated structure
produced in the first step. The challenge in supporting equivocation is that at
the time the encrypted structure is simulated, the simulator has no information
about the adversary’s queries so it is not clear how to simulate the structure
in a way that will work correctly at query time. So to handle equivocation,
the construction needs to be carefully designed and, typically, needs expensive
cryptographic primitives. Fortunately, as first shown by Chase and Kamara [13],
in the setting of symmetric STE, equivocation can be achieved very efficiently
based only on XOR and PRF operations.

Our Base Scheme. One possible way to design an encrypted Bloom filter is
as follows. Let U be a universe of elements. Given a set S ⊆ U, insert the value
FK(a), for all a ∈ S, in a standard Bloom filter, where F is a pseudo-random
function. The token for an element a ∈ U is tk = FK(a) and the Bloom filter
can be queried by doing a standard Bloom filter test on tk.

The main problems with this construction are that: (1) it reveals information
about the size of S; and (2) it is not adaptively-secure. To achieve adaptive
security, we can encrypt the Bloom filter by XORing each of its bits with a
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pad generated from another pseudo-random function G. This encryption step
both hides the size of S and allows for equivocation. Now the token tk for an
element a ∈ U includes FK1(a) and the pads for locations H1(FK1(a)) through
Hλ(FK1(a)), where (H1, . . . , Hλ) are the hash functions used for the Bloom filter.

For this to work, however, the pads have to be designed carefully. More
precisely, correctness requires that the pads only depend on the locations that
they mask otherwise two (or more) elements a1 and a2 that collide under one
of the hash functions will produce different masks for the same location. To get
such location-dependent pads we compute them as GK2(�), where � is the �th bit
of the filter. Now, a token for element a is set to

tk =
(

FK1(a), GK2

(
H1

(
FK1(a)

))
, . . . , GK2

(
Hλ

(
FK1(a)

)))
.

The base construction described so far is compact and adaptively-secure but not
multi-structure.

Reusability. Recall that a multi-structure STE scheme can produce multiple
encrypted structures (EDS1, . . . ,EDSn) under a single key K in such a way that
a single (constant-size) token tk can be used to query all the structures generated
under key K. So to make our base scheme multi-structure, the pads have to be
filter-dependent in addition to being location-dependent so that different pads
are used for different filters even if they mask the same location. We do this
by setting the pads to be the output of a random oracle applied to the pair
(GK2(�), id) where id is the identifier of the filter. The purpose of the random
oracle here is twofold. First, it enables the extraction of n (random) pads from
pairs (GK2(�), id1) through (GK2(�), idn) without relying on n secret keys. This,
in turn, means the tokens can be of size independent of n. Second, it allows the
simulator to equivocate on the pads while, again, keeping the tokens independent
of n.

While the base scheme is now compact, adaptively-secure and multi-
structure, it produces very large tokens. The problem is that if two sets S1 and
S2 have different sizes, then the parameters of their Bloom filters (i.e., the array
sizes, number of hash functions and hash function ranges) have to be different.
The consequence is that in our encrypted set scheme, we will need different sets
of hash functions for each filter which, in turn, means the tokens will have to
include multiple pads for every filter.

Matryoshka Filters. We solve this problem as follows. Instead of encrypting a
set of standard Bloom filters as in our base construction, we encrypt a new filter-
based structure we refer to as matryoshka filters (MF).5 MFs are essentially a
set of nested Bloom filters of varying sizes whose hash functions are all derived
from a fixed set of hash functions. More precisely, consider a sequence of sets
S1, . . . , Sn ⊆ U not necessarily of the same size. We assume for simplicity that
the sets have size a multiple of 2. For some false negative rate 2−λ, choose λ

5 The term matryoshka here refers to Russian nested dolls which are called matryoshka
dolls.
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independent and ideal random hash functions (H1, . . . , Hλ) from U to [(λ/ ln 2) ·
maxi #Si]. We refer to these functions as the maximal hash functions and to
their associated filter as the maximal filter. For every set Si, construct a Bloom
filter of size [�(λ/ ln 2) · #Si�] with hash functions (Hi

1, . . . , H
i
h) where, for all

j ∈ [λ], Hi
j(a) = Hj(a)‖pi

with pi = �log
(
(λ/ ln 2)·#Si

)�. We refer to these hash
functions as the derived functions and to their associated filters as the derived
filters. Note that if the maximal hash functions are ideal random functions then
so are the derived functions so the standard Bloom filter analysis holds.

Encrypting Matryoshka Filters. As mentioned above, our final solution con-
sists of adapting our base scheme to encrypt matryoshka filters instead of stan-
dard Bloom filters. In other words, we XOR each bit of each matryoshka filter
with location- and filter-dependent pads. The main difference with the base
scheme is that here the pads also need to be nested; that is, given a pad for the
maximal filter we need to be able to construct the pads for the derived filters.
To support this, we make use of the properties of online ciphers; namely, that
given an n-bit string s and a B-online cipher OC, the following equality holds:

OCK

(
s

‖B
|p×B

)
= OCK

(
s‖B

)

|p×B

, (7)

where p < n. This can be derived as follows. From the correctness property of
online ciphers, we have

OCK

(
s

‖B
|p×B

)
= OC1

K

(
s

‖B
|p×B

)
‖ · · · ‖OCp

K

(
s

‖B
|p×B

)

= X

(
K, s

‖B
|B

)
‖ · · · ‖X

(
K, s

‖B
|p×B

)
,

and

OCK

(
s‖B

)
= OC1

K

(
s‖B

)
‖ · · · ‖OCn

K

(
s‖B

)

= X

(
K, s

‖B
|B

)
‖ · · · ‖X

(
K, s

‖B
|n×B

)
,

for some function X. It follows then that

OCK

(
s‖B

)

|p×B

= X

(
K, s

‖B
|B

)
‖ · · · ‖X

(
K, s

‖B
|p×B

)

= OCK

(
s

‖B
|p×B

)
.

Now, to encrypt the �th bit of a matryoshka filter, we use a pad constructed as

R

(
OCK

(
�
‖B
|p×B

)
, id(S)

)
,
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where R is a random oracle and id(S) is the identifier of the filter. Note that the
pad is both filter- and location-dependent. In addition, if the server is provided
the value OCK

(
�‖B

)
for the maximal filter, it follows by Eq. (7) that it can derive

the above pad as

R

(
OCK

(
�‖B

)
|p×B

, id(S)
)

.

The detailed description of our set encryption scheme is given in Fig. 4. In the
Theorem below we show that it is adaptively-secure with the following leakage
profile:

Lest
S (S) = #S and Lset

Q

(
S1, . . . , Sn, q

)
=

(
b1, . . . , bn,SP(q)

)
,

where SP is the search pattern; that is, if and when two queries are the same.
More formally, if t queries have been made, SP(q) outputs a t-bit string with a
1 at location i if q is equal to the ith query.

Theorem 4. If OC is secure, then the multi-structure set encryption scheme
described in Fig. 4 is adaptively (Lset

S ,Lset
Q )-secure in the random oracle model.

The proof of Theorem4 is in the full version of the paper.

7.2 The ZMF Multi-map Encryption Scheme

By applying the Z-IDX transformation to our multi-structure set encryption
scheme from Fig. 4, we get a new adaptively-secure multi-map encryption scheme
we call ZMF. We state its security formally in the following Corollary of Theo-
rems 3 and 4. Its leakage profile is,

Lzmf
S (MM) =

((
#MM−1[v]

)

v∈V

,#V

)
and Lzmf

Q (MM, q) =

(
b1, . . . , b#V, SP(q)

)

where bi is 1 if q ∈ MM−1[vi] and 0 otherwise, and vi is the ith value in V.

Corollary 1. The ZMF multi-map encryption scheme which results from
applying the Z-IDX transformation to the set encryption scheme of Fig. 4 is
(Lzmf

S ,Lzmf
Q )-adaptively secure.

8 DIEX: A Dynamic SSE Scheme

We describe our dynamic SSE construction DIEX. As far as we know, it is the
first adaptively-secure dynamic SSE scheme that is forward-secure and supports
Boolean search queries in sub-linear time. In particular, it supports the addition,
deletion and editing of files. In the full version of the paper, we recall the syntax
and security definitions for dynamic STE.
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Let F be a pseudo-random function family, H : {0, 1}∗ → [σ] be a family
of hash functions modeled as random oracles where σ is a public upper
bound, and R : {0, 1}∗ → {0, 1} be a random oracle. Let OC : {0, 1}g(k) ×
{0, 1}γ×B → {0, 1}γ×B a B-online cipher with γ = log σ blocks. Let ε ∈
[0, 1] be a false positive rate that is hardcoded in each algorithm. Set
λ = log(1/ε) and set H1, . . . ,Hλ ← H. Consider the set encryption scheme
Σ = (Gen,Enc,Token,Test) defined as follows:

– Gen(1k):

1. sample K1
$← {0, 1}k and K2

$← {0, 1}g(k);
2. output K = (K1, K2);

– Enc(K, S):
1. let A be a binary array of size m = λ · #S/ ln 2 initialized to all

0’s;
2. for all items a ∈ S and all i ∈ [λ],

(a) compute T = FK1(a);
(b) compute = Hi T ;

(c) compute s = OCK2
B

| log m×B ;

(d) set A | log m = 1 ⊕ R s, id(S) ;
3. for all i ∈ [m] such that A[i] = 0,

(a) compute s = OCK2 i
B

| log m×B ;

(b) set A i = 0 ⊕ R s, id(S) ;
4. set ESET = A;
5. output ESET.

– Token(K, a):
1. compute T = FK1(a);
2. for all i ∈ [λ],

(a) compute = Hi(T );
(b) compute si = OCK2

B ;
3. output tk = T, s1, . . . , sλ .

– Test(ESET, tk):
1. parse tk as (T, s1, . . . , sλ);
2. parse ESET as A;
3. set m = |A|;
4. for all i ∈ [λ],

(a) compute bi = A Hi(T )| log m ⊕ R si | log m×B
, id(ESET) ;

5. if, for all i ∈ [λ], bi = 1 output 1, otherwise output 0.

Fig. 4. An adaptively-secure multi-structure set encryption scheme.

Overview. As a starting point, we describe a dynamic version of IEX that is
not forward-secure. For this, we make two changes to our static construction.
First, we replace the encrypted dictionary EDX and the global encrypted multi-
map EMMg with a dynamic encrypted dictionary EDX+ and a dynamic global
encrypted multi-map EMM+

g . The encrypted local multi-maps remain static.
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Second, we require that these new structures be response-hiding. We provide a
high level description of our construction which is described in detail in Fig. 5.

The DIEX.Setup algorithm is the same as the IEX.Setup with the exception
that it uses a dynamic encrypted dictionary and a dynamic encrypted multi-
map and outputs state information st. The DIEX.Tokensr algorithm is similar
to IEX.Token with the exception that it is stateful. Here, the state is just used
to generate tokens for the underlying dynamic dictionary and global multi-map
encrypted structures. The DIEX.Tokenup algorithm works as follows. It takes as
inputs the key K, the state st and an update u = (op, id,Wid) that consists of
an operation op ∈ {edit+, edit−}, the document identifier id being edited and a
set of keywords Wid to add or delete based on op. We have the following cases:

– if u = (edit+, id,Wid), the client will update the global multi-map EMMg with
pairs (w, tagid) for all w ∈ Wid. Here, tagid := EncK1

(
id;FK2

(
id‖w

))
as in

IEX. This is done by generating update tokens (utkw
g )w∈Wid

for EMMg using
ΣMM.Tokenup. For all w ∈ Wid, the client generates a new local multi-map
MMw that maps all v ∈ Wid \ {w} to tagid. It encrypts all these local multi-
maps (MMw)w∈Wid

with ΣDX.Setup, resulting in (EMMw)w∈Wid
and creates

update tokens (utkw
d )w∈Wid

for EDX. The algorithm outputs an update token

utk =
(
op,

(
utkw

d

)
w∈Wid

,
(
utkw

g

)
w∈Wid

)
,

and st = (std, stg), where the former is the state maintained by ΣDX and the
latter is the state maintained by ΣMM.

– if u = (edit−, id,Wid), the client only updates EMMg. Specifically, it removes
all pairs (w, tagid) for w ∈ Wid. This can be done by computing tags as above
and generating update tokens (utkw

g )w∈Wid
using ΣMM.Tokenup. The algorithm

outputs the update token

utk =
(
op, (utkw

g )w∈Wid

)
,

and st = stg where stg is the state maintained by ΣMM.

The Update algorithm takes as input EDB and an update token utk and
outputs EDB′. If op = edit+, it uses the sub-tokens in utk to update EMMg and
EDX. If op = edit−, it only updates EMMg. The Search algorithm is the same
as IEX.Search. Recall that we do not update the local multi-maps already in
EDX. This is not necessary to for correctness because, during search, the server
will take the intersection of the tags returned from the global multi-map EMMg

and from the appropriate local multi-maps. However, because EMMg is properly
updated, the intersection operation will filter out the old/stale tags from the
local multi-map.

Forward Security. We note that DIEX is forward secure if its underlying
structures are. Specifically, if ΣMM and ΣDX are forward secure then so is DIEX.
This is easy to see from the fact the DIEX tokens only consist of ΣDX and ΣMM
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Let Σ+
DX = (Setup,Tokensr,Get,Tokenup,Update) and Σ+

MM = (Setup,
Tokensr,Get,Tokenup,Update) be dynamic dictionary and multi-map en-
cryption schemes, respectively. Let IEX+ = (Setup+,Token+, Search+)
be the IEX scheme described in Fig. 1 with ΣMM and ΣDX replaced
with Σ+

MM and Σ+
DX, respectively, and let ΣMM = (Setup,Token,Query)

be the static multi-map encryption scheme used to encrypt the local
multi-maps. Consider the dynamic disjunctive SSE scheme DIEX =
(Setup,Tokensr, Search,Tokenup,Update) defined as follows:

– Setup(1k,DB): output (K, st,EDB) ← IEX+.Setup(1k,DB);
– Tokensr(K,w): output tk ← IEX+.Token(K, st,w);
– Tokenup(K, st, u)

1. parse u as (op, id, Wid) and st as (stg, std)
2. if op = edit+,

(a) for all w ∈ Wid,
i. let tagid := EncK1 id; FK2 id w ;
ii. compute (utkw

g , stg) ← Σ+
MM.Tokenup(K, stg, (op, w, tagid));

iii. initialize a multi-map MMw of size #Wid;
iv. for all v ∈ Wid \ {w}, set MMw[v] = tagid;
v. compute (Kw,EMMw) ← ΣMM.Setup 1k,MMw ;
vi. compute (utkw

d , std) ← Σ+
MM.Tokenup(K, std, (op, w,EMMw));

(b) output utk = op, (utkw
d )w∈Wid , (utk

w
g )w∈Wid ;

3. if op = edit−,
(a) for all w ∈ Wid

i. let tagid := EncK1 id; FK2 id w ;
ii. compute (utkw

g , stg) ← Σ+
MM.Tokenup(K, stg, (op, Wid, tagid));

(b) output utk = op, (utkw
g )w∈Wid) and the updated state st =

(stg, std);
– Update(EDB, utk)

1. parse utk as op, (utki)i∈[#tk]) and EDB = (EDX,EMMg);
2. if op = edit−, then for all i ∈ [#utk] compute EMMg ←

Σ+
MM.Update(EMMg, utki, op);

3. if op = edit+, then for all i ∈ [#utk/2], compute
EMMg ← Σ+

MM.Update(EMMg, utki, op) and EDX ←
Σ+

DX.Update(EDX, utki+#utk/2+1, op);
4. output EDB = (EDX,EMMg);

– Search(EDB, utk): output i∈[q] Ti ← IEX+.Search(EDB, tk).

Fig. 5. The scheme DIEX.

tokens so if the former can be simulated from the security parameter, then the
latter can. Due to space constraints, the definition of forward security is differed
to the full version of the paper. As a possible instantiation of a forward secure
multi-map and dictionary encryption scheme, one can use the Sophos scheme of
Bost [9].

Efficiency. The efficiency of DIEX depends on the underlying multi-map
and dictionary encryption schemes. Using optimal constructions, the search
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complexity of DIEX is the same as IEX; that is, O(q2 · M), where M =
maxi∈[q] #DB(wi) and q is the number of terms in the disjunction.

Security. We show that DIEX is adaptively secure with respect to the following
well-defined leakage profile. The setup and query leakages are the same as IEX
so we only describe the update leakage. For an update u = (edit+, id,Wid),

LU

(
DB, u

)
=

(
Lmm
U

(
MMg, (op, w, id)

)
,Ldx

U

(
DX, (op, w, id)

)
,Lmm

S

(
MMw

))

w∈Wid

.

If u = (edit−, id,Wid): Ldiex
U

(
DB, u

)
=

(
Lmm
U

(
MMg, (op, w, id)

))

w∈Wid

.

Theorem 5. If ΣDX is adaptively
(Ldx

S ,Ldx
Q ,Ldx

U

)
-semantically secure and

ΣMM is adaptively
(Lmm

S ,Lmm
Q ,Lmm

U

)
-secure, then DIEX is adaptively

(Ldiex
S ,Ldiex

Q ,Ldiex
U )-secure.

We defer the proof to the final version of this work.

9 Empirical Evaluation

To evaluate the practicality of our schemes, we designed and built an open
source encrypted search framework called Clusion [22]. Due to space limitations,
however, we defer the empirical analysis of our constructions to the full version of
this work. There, we evaluate IEX-2Lev and IEX-ZMF which are instantiations
of IEX with 2Lev and ZMF, respectively. We also evaluate our Boolean scheme
BIEX. Our experiments report setup time, search time, storage and token size
for all our constructions.
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Abstract. In this work, we introduce patchable indistinguishability
obfuscation: our notion adapts the notion of indistinguishability obfus-
cation (iO) to a very general setting where obfuscated software evolves
over time. We model this broadly by considering software patches P as
arbitrary Turing Machines that take as input the description of a Turing
Machine M , and output a new Turing Machine description M ′ = P (M).
Thus, a short patch P can cause changes everywhere in the description of
M and can even cause the description length of the machine to increase
by an arbitrary polynomial amount. We further considermulti-program
patchable indistinguishability obfuscation where a patch is applied not
just to a single machine M , but to an unbounded set of machines
M1, . . . ,Mn to yield P (M1), . . . , P (Mn).

We consider both single-program and multi-program patchable indis-
tinguishability obfuscation in a setting where there are an unbounded
number of patches that can be adaptively chosen by an adversary. We
show that sub-exponentially secure iO for circuits and sub-exponentially
secure re-randomizable encryption schemes (Re-randomizable encryp-
tion schemes can be instantiated under standard assumptions such as
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DDH, LWE.) imply single-program patchable indistinguishability obfus-
cation; and we show that sub-exponentially secure iO for circuits and
sub-exponentially secure DDH imply multi-program patchable indistin-
guishability obfuscation.

At the our heart of results is a new notion of splittable iO that allows
us to transform any iO scheme into a patchable one. Finally, we exhibit
some simple applications of patchable indistinguishability obfuscation,
to demonstrate how these concepts can be applied.

1 Introduction

Program obfuscation is the process of making a program “unintelligible” to any
polynomial-time entity while preserving its functionality. A formal study of pro-
gram obfuscation was initiated more than a decade ago in the works of [10,41]. In
the recent years, this research area has seen renewed activity with the emergence
of candidate constructions [30] for a type of general-purpose program obfusca-
tion called indistinguishability obfuscation. This notion has proven to be both
extremely useful and the most plausible of existing notions of program obfusca-
tion.

A major limitation of existing notions of program obfuscation is that they
only consider “static” programs that do not change with time. In reality, however,
programs are rarely changeless. We typically alter programs over time, with
patches (a.k.a updates) causing the programs to grow and vary, in response to
demands for greater or new functionality. Can program obfuscation be adapted
to deal with this reality? Specifically, can we obfuscate programs that evolve over
time? The central intellectual and theoretical focus of this work is to answer this
question.

Obfuscation for Evolving Software. A trivial solution to obfuscating evolv-
ing software would be to simply apply the obfuscator afresh to each updated
version of a particular program. For example, to modify an obfuscation of a pro-
gram M , the obfuscator may simply release a fresh obfuscation of M ′ where M ′

is the patched version of M . Note, however, that in this solution, the total com-
munication complexity is at least |M | + |M ′|. In particular, this is the case even
if the difference between the programs M and M ′ can be described in the form of
a small patch P . In contrast, if M was not obfuscated, then we could modify it
by simply communicating the patch P to a user, yielding a total communication
complexity of only |M | + |P |. Our goal is to develop a mechanism for program
obfuscation that approximately preserves this communication complexity.

A bit more precisely, we define a notion of patchable obfuscation where,
informally, there are four algorithms:

• Obf(M ; r) taking as input a program M , and outputting an obfuscated
program 〈M〉, using randomness r.

• GenPatch(P ; r, r′) taking as input a patch P , and outputting an encoded
patch 〈P 〉, using a combination of the original randomness r and new
randomness r′.
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• AppPatch (〈M〉, 〈P 〉) taking as input an obfuscated program 〈M〉 and a patch
encoding 〈P 〉, and outputting an obfuscated patched program 〈M ′ = P (M)〉.

• Eval (〈M〉, x), taking as input an obfuscated program 〈M〉 and an input x,
and outputting the value y = M(x).

The key efficiency requirement is that the size of a patch encoding should
not depend on the size of the original program M . Specifically, we want that
|〈P 〉| = poly(|P |, λ), where λ is the security parameter.

Beyond this basic efficiency requirement, we also discuss some other impor-
tant considerations w.r.t. patchable obfuscation.

I. No restriction on patches: An important consideration for patchable
obfuscation is the class of patches that we wish to allow. Clearly, the larger the
class of patches that we can support, the larger the potential application pool.

To maximize the applicability of our notion, we allow for arbitrary patches.
Specifically, we model a patch P as a Turing machine that takes as input a
program M (also modeled as a TM) and outputs a new program M ′. We allow
for the unpatched program to grow in size after patching. That is, M ′ may be
arbitrarily bigger than M .

II. Multiple patches: Another consideration is the number of patches that
we wish to allow. In reality, it may be difficult to anticipate in advance how
many times a program may need to be patched. Thus, we allow for an unlimited
number of patches.

Specifically, we consider two modes of patching:

• Sequential patching: Here, given an obfuscated program 〈M0〉 and a sequence
of patch encodings 〈P1〉, . . . , 〈Pn〉, one can apply the patches one-by-one, in
order, to obtain 〈M1〉, . . . , 〈Mn〉 s.t. Mi = Pi(Mi−1).

• Parallel patching: Here, given an obfuscated program 〈M0〉 and a sequence of
patch encodings 〈P1〉, . . . , 〈Pn〉, one can apply each patch to 〈M〉, in parallel,
to obtain 〈M1〉, . . . , 〈Mn〉 s.t. Mi = Pi(M0).

While sequential patching seems to better capture patching of programs in
reality, as we discuss later, parallel patching also enables interesting applications
of patchable obfuscation. Thus, we consider both patching modes in this work.

III. Support for multiple programs: So far, we have only discussed patch-
ing for a single obfuscated program. Now consider the case where an authority
wishes to patch multiple obfuscated programs 〈M1〉, . . . , 〈Mn〉. Such a situation
often arises in practice where, for example, the programs M1, . . . ,Mn may cor-
respond to different copies of the same core program M that are individualized
to different users.

One approach to address this scenario would be to release a separate patch for
every obfuscated program. In this case, however, the communication complexity
grows linearly with the number of obfuscated programs and may quickly become
prohibitive. Instead, we would like to build patchable obfuscation where the
obfuscator can release one patch that can be applied to all of the obfuscated
programs. We refer to this notion as multi-program patchable obfuscation.
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How to Define Security? Of course, we must define security for patchable
obfuscation. The natural direction is to start with a “base” notion of obfuscation
(without patching) and extend it to the setting of patching. Our goal in this
work is to obtain general positive results for patchable obfuscation. With this
viewpoint, we identify indistinguishability obfuscation (iO) [10] as a natural
choice for the base notion. Indeed, over the last few years, several general-purpose
candidate constructions, (for example: [9,22,30]) for iO have been proposed, and
no impossibility results are known. Furthermore, it was shown by [39] that iO is,
in fact, “best-possible” obfuscation. iO has already enabled a long sequence of
exciting applications (see e.g., [18,28,30,51]) and its patchable analogue can be
expected to find even more applications. Finally, we stress that while the security
of iO remains an area of intense study, there are several known iO candidates
and even universal iO candidates under well-studied assumptions [3].

In contrast, powerful (base) notions such as virtual black-box obfuscation [10]
and differing-inputs obfuscation [1,10,20] have been shown to be impossible to
realize for general functions [10,13,15,31,36]. This, in turn, means that patchable
analogues of these notions are also impossible, in general. The notion of virtual
grey-box obfuscation [14,16] is impossible for general Turing Machines but seems
to circumvent general impossibility results for circuits; however, it has found
rather limited applicability so far.

In light of the above, in this work, we focus on patching in the context of iO.
We do believe that the study of patchable obfuscation for other base obfuscation
notions (e.g., obfuscation in weaker adversarial models such as virtual black-
box obfuscation in hardware token model [34,38,40] or generic model [9,22]) is
interesting, and we leave this study to future work. We remark that many of the
ideas that we develop in this work should be more widely applicable to other
notions of obfuscation, and are not intrinsically tied to iO. As such, we envision
these ideas to be portable to other notions of patchable obfuscation.

Patchable Indistinguishability Obfuscation. We develop a notion of patch-
able indistinguishability obfuscation (pa-iO) that naturally extends the standard
notion of iO to the setting of patching. Let us explain our notion for the single-
program case, for sequential and parallel patches.

• Sequential patches: Recall that iO security dictates that given two equivalent
programs M0 and M1, obfuscations of M0 and M1 are computationally indis-
tinguishable. In single-program pa-iO for sequential patches, we require that
given two equivalent programs M0

0 and M0
1 and a sequence of patch pairs

(P 1
0 , P 1

1 ), . . . , (Pn
0 , Pn

1 ) such that for every “level” i ∈ [n], the patched pro-
grams M i

0 = P i
0(M

i−1
0 ) and M i

1 = P i
1(M

i−1
1 ) are also equivalent, it should

be hard to distinguish the tuples (〈M0
0 〉, {〈P i

0〉}n
i=1) and (〈M0

1 〉, {〈P i
1〉}n

i=1).
Intuitively, the equivalence requirement at every patch level i rules out the
trivial attack of using a splitting input for the patched programs M i

0 and M i
1

to distinguish the tuples.
• Parallel patches: Single-program pa-iO for parallel patches is defined similarly

to above, except that here we require equivalence for the patched programs
M i

0 = P i
0(M

0
0 ) and M i

1 = P i
1(M

0
1 ) at every (parallel) “branch” i ∈ [n].
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A few remarks are in order: (1) It is easy to see that these definitions ensure
patch hiding, which is crucial for some of the applications discussed later. (2)
Our definitions naturally extend to multi-program pa-iO where we start with
multiple pairs of programs and equivalence is required for every pair at every
level/branch. (3) We, in fact, consider adaptive security, where the adversary can
make the patch queries in an adaptive fashion. See Sect. 2 for further details.

Implications of pa-iO. We view pa-iO as a powerful primitive that is likely to
have several applications in the future. To see the power of pa-iO, it is instructive
to first compare it with iO. While iO exists if P=NP,1 we show that multi-
program pa-iO for parallel patches implies secret-key functional encryption (FE)
[19,49,50]. The construction is remarkably simple: let Mf,x be an input-less
machine that simply outputs f(x). We construct an FE scheme as follows:

• A secret key for a function f is computed as 〈Mf,⊥〉, i.e., an obfuscation of
Mf,x where x = ⊥.

• Encryption of a message m corresponds to generating an encoding 〈Pm〉 for a
patch Pm that modifies Mf,⊥ to Mf,m.

• Decryption simply corresponds to applying the patch encoding 〈Pm〉 on
〈Mf,⊥〉 to obtain 〈Mf,m〉 and then evaluating it to obtain f(m).

Correctness and security of the construction follow in a straightforward man-
ner from the correctness and security of pa-iO.2 As we discuss later, the above
basic idea can, in fact, be easily extended to multi-input functional encryption
[35], yielding new results.

Alternate Viewpoint: Obfuscation with Private Homomorphism.
Another way of looking at our notion of pa-iO is as a form of iO that supports
a kind of semi-private homomorphism: the generation of the patch encoding is
private – requiring secret information that was used to obfuscate the original
program – although the application of the patch encoding is public. Note that
unlike encryption, for the security of obfuscation it is critical that this homomor-
phism is semi-private – if an adversary was allowed to use public information to
arbitrarily modify the program underlying an obfuscation, this would trivially
allow the adversary to break the security of the original obfuscated program.
On the other hand, our notion of pa-iO and the notion of fully homomorphic
encryption [33] share a similarity in that they both require a form of compactness
for the notions to be non-trivial.

1 Assuming NP �= co-RP, it was shown that iO implies one-way functions [43,48].
2 An observant reader may notice that in the above construction, it is not important

whether the size of a patch encoding depends on the size of an unpatched machine
Mf,⊥ or not. However, it is important that the size of the patch encoding is inde-
pendent of the number of obfuscated machines that it can be applied to – a property
guaranteed by multi-program pa-iO.
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1.1 Our Results

We state our results below.

I. Patchable Indistinguishability Obfuscation. In this work, we formalize
the notion of patchable indistinguishability obfuscation. We focus on the setting
where programs to be obfuscated and patched are described as Turing Machines.

Multi-program pa-iO: Our main result is a construction of a multi-program pa-iO
scheme from sub-exponentially secure iO and sub-exponentially secure DDH.

Theorem 1 (Multi-program pa-iO: Sequential patches). Assuming the
existence of sub-exponentially secure iO for circuits, sub-exponentially secure
DDH, there exists an adaptively secure multi-program pa-iO scheme with
unbounded sequential patches, for Turing Machines where the running time of the
patch generation algorithm for a patch P is bounded by poly(λ, |P |, �), where λ is
a security parameter and � is a bound on the input size to the patched program.

Note that the runtime efficiency of the patch generation algorithm in the
above theorem implies the necessary size efficiency for a patch encoding, namely,
the size of the encoding of a patch P is bounded by poly(λ, |P |, �).
Single-Program pa-iO: We obtain the above result in two steps. Our first, and
key step is to construct a single-program pa-iO scheme for TMs which achieves
the desired size efficiency for patches but requires a large state (proportional to
the size of the TM being updated) as well as a large patch generation time.

Theorem 2 (Single-program pa-iO: Sequential patches). Assuming the
existence of sub-exponentially secure iO for circuits and sub-exponentially secure
re-randomizable encryption schemes, there exists an adaptively secure single-
program pa-iO scheme with unbounded sequential patches, for Turing Machines
where the size of the obfuscation of a patch P is bounded by poly(λ, |P |, �), where
λ is a security parameter and � is a bound on the input size to the patched
program.

Main Tool: Splittable iO: The main tool in our construction of single-program
is an intermediate notion between iO and patchable iO, that we refer to as
splittable iO. Very roughly, splittable iO allows us to reduce the problem of
building patchable iO to the problem of building a patchable “encoding” scheme,
a seemingly simpler problem. Very roughly, an obfuscation of M w.r.t. splittable
iO consists of two parts: an encoding of M w.r.t. a patchable encoding scheme,
and some auxiliary information z computed on the encoding as well as the secret
key used to encode M . We place suitable efficiency and security requirements
on the auxiliary information so as to allow us to transfer the patching property
of the encoding scheme to the setting of iO. We refer the reader to the technical
overview section for further details on this notion.

From Single-Program to Multi-program pa-iO: Next, we devise a generic trans-
formation from any such single-program pa-iO scheme to a multi-program pa-iO
scheme with the aforementioned efficient patch generation property.
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Theorem 3 (Single-program to Multi-program pa-iO). Assuming the
existence of a succinct garbled TM scheme with persistent memory and a compact
secret-key functional encryption scheme for general circuits, there exists a gen-
eral transformation from any single-program pa-iO scheme to a multi-program
pa-iO scheme for TMs with efficient patch generation.

In particular, when the underlying primitives are all adaptively secure, then
the resulting multi-program pa-iO scheme is also adaptively secure. An adap-
tively secure succinct garbled TM scheme with persistent memory is known from
the works of [2,24] based on sub-exponentially secure iO and DDH assumption,
while a compact secret-key functional encryption scheme is known from iO for
general circuits.

For the theorems above, we stress that we place no restrictions on the patches.
A patch P can be an arbitrary Turing Machine that takes the original program
description M as input, and outputs an arbitrary Turing Machine description
M ′ = P (M) that can differ in arbitrary ways from M . In particular, the descrip-
tion size of P (M) can be any unbounded polynomial in the security parameter,
and thus the program size can grow by arbitrary polynomial factors. Furthermore
any unbounded polynomial number of patches can be applied sequentially, and
the adversary can specify these patches adaptively given all obfuscated programs
and patches constructed earlier.

Parallel Patching: We can obtain a similar result for multi-program pa-iO in the
context of parallel patches. This result follows the same approach as the case
of sequential patches. The first step is to obtain single-program pa-iO scheme
with unbounded parallel patches and the second step is to obtain multi-program
pa-iO from single-program pa-iO. The construction of single-program pa-iO
with parallel patches will be identical to the one in the sequential patch setting.
The transformation from single-program pa-iO to multi-program pa-iO is, how-
ever, different from the sequential setting to enable this transformation. Instead
of using garbled TM scheme with persistent memory, we instead employ func-
tional encryption for TMs [7,37] scheme. Since the techniques employed in the
parallel patch setting are similar to the sequential patch setting, we omit the
transformation. We have the following theorem.

Theorem 4 (Multi-program pa-iO: Parallel patches). Assuming the exis-
tence of sub-exponentially secure iO for circuits, sub-exponentially secure DDH,
there exists an adaptively secure multi-program pa-iO scheme with unbounded
parallel patches, for Turing Machines where the running time of the patch gen-
eration algorithm for a patch P is bounded by poly(λ, |P |, �), where λ is a security
parameter and � is a bound on the input size to the patched program.

II. Applications of pa-iO. We view pa-iO, and especially multi-program pa-iO
as a powerful primitive that is likely to have several applications in the future.
As initial evidence of this, we demonstrate implications of pa-iO to functional
encryption and iO for TMs. In our eyes, the main appeal of these implications
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is their remarkable simplicity that highlights the potential of pa-iO as a replace-
ment for iO in cryptographic applications.

Multi-input FE for Unbounded Arity Functions: We first show that multi-
program pa-iO for parallel updates implies secret-key multi-input functional
encryption (MIFE) [4,21,35] for unbounded arity functions. This implication
follows from a straightforward extension of the pa-iO to (single-input) FE impli-
cation discussed earlier.

Theorem 5 (Unbounded-Arity MIFE). Adaptively secure multi-program
pa-iO with unbounded parallel updates implies secret-key MIFE for unbounded
arity functions with security against pre-ciphertext key queries.

Combining the above with Theorem4, we obtain secret-key MIFE for
unbounded arity functions from sub-exponentially secure iO for circuits, sub-
exponentially secure DDH. Previously, this result was only known [8] from a
knowledge assumption, namely public-coin differing-input obfuscation [42] and
one-way functions.

FE for TMs with Unbounded Length Inputs: The following implication follows as
a simple corollary of Theorem 5.

Theorem 6 (Unbounded-Input FE). Adaptively secure multi-program
pa-iO implies secret-key functional encryption for TMs with unbounded input
length with security against pre-ciphertext key queries.

A construction of FE for TMs with unbounded input was recently given by [7]
based on iO. We emphasize that our construction from multi-program pa-iO is
extremely simple, in contrast to the involved construction of [7].

We now discuss implications of pa-iO to iO for TMs. We first recall that all
recent progress on achieving iO for TMs/RAMs [17,25–27,44] from iO for cir-
cuits has required a polynomial bound � to be placed on the input length to
the obfuscated Turing Machine. We share this need for a polynomial bound �
on the input size, and the size of our obfuscated patches do grow with this
bound. Indeed, if we could remove this restriction, then we would show how to
bootstrap iO for circuits to iO for Turing Machines without any input length
restriction from iO for circuits – this remains a major open question. Achieving
iO for Turing Machines without any input length restriction currently requires
strong assumption such as output-compressing randomized encodings [45] or
knowledge-type assumptions such as public-coin diO [1,20,42]. We do not know
how to achieve these objects using only iO for circuits.

iO for TMs with Unbounded Length Inputs: So far, in our definition of pa-iO,
we have only considered “single-use” patches. More accurately, in our definition
of single-program (resp., multi-program) pa-iO for sequential patching, the ith

patch Pi can only be applied to the updated machine (resp., machines) at level
i − 1. As we discuss now, such “single-use” patches are, in fact, inherent given
the current state of art in iO for TMs.
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In particular, is not difficult to see that single-program pa-iO with reusable
patches (i.e., where a patch P is not tied to any “level” and can be applied an
arbitrary number of times, to any machine) in fact, implies iO for TMs with
unbounded length inputs. The construction is extremely simple: let Mx be a
family of (input-less) machines parameterized by strings x of arbitrary length,
where every machine simply outputs M(x). Obfuscation of a TM M consists of
an obfuscation of a machine M⊥ w.r.t. the pa-iO scheme along with encodings
of two reusable patches P0 and P1. Patch P0 is such that it updates any machine
Mx to Mx‖0 while P1 updates any machine Mx to Mx‖1.

To evaluate the above obfuscation on any input x = x1, . . . , x� for an arbi-
trary �, a user can transform obfuscation of M⊥ to Mx by applying the patches
Px1 , . . . , Pxn

and then execute Mx to obtain M(x). The correctness of the con-
struction is easy to verify.

While we do not consider security for reusable patches in this work, we view
the above as a potential new template for building iO for TMs with unbounded
length inputs.

1.2 Technical Overview

We now give an overview of the main technical ideas in our constructions. We
start by building a general template for building pa-iO, and then discuss our
ideas for implementing this template.

1.2.1 A Template for pa-iO
In this section, we devise a general template for building pa-iO starting from
any non-patchable obfuscation scheme. We keep the discussion in this section to
a high-level, focusing on issues directly related to patching, and largely ignoring
implementation issues that may arise due to the specific properties of the under-
lying non-patchable obfuscation scheme. For simplicity, in this section, we advise
the reader to think of the non-patchable obfuscation scheme as general-purpose
virtual-black-box obfuscation. Later, in Sect. 1.2, we discuss the additional chal-
lenges that arise in implementing our template when the non-patchable obfus-
cation scheme is iO, and our solutions for the same.

Let us start with the weaker goal of building single-program pa-iO where the
authority issues a single obfuscated program that can then be patched multiple
times, in a sequential order. Our initial idea towards achieving this goal is to
identify an encoding scheme that supports patching and then combine it with a
non-patchable obfuscation scheme to build a pa-iO scheme. Intuitively, we say
that an encoding scheme is patchable if given an encoding of a machine M and
an encoding of a patch P , it is possible to derive an encoding of M ′ = P (M).
The hope here is that the patching property of the encoding scheme can be
translated into patching property for obfuscation.

A natural candidate for a patchable encoding scheme is fully homomorphic
encryption (FHE). Indeed, given an encryption (i.e., encoding) of a machine M
and an encryption of a patch P , one can obtain an encryption of the patched
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machine M ′ = P (M) by homomorphically evaluating the function f(M,P ) =
P (M). Starting with FHE and any non-patchable obfuscation scheme, we can
build an initial template for pa-iO as follows: to obfuscate M , first encrypt M
using FHE and then provide an obfuscation of the FHE decryption circuit that
has the FHE decryption key hardcoded into it. Evaluation on an input x can be
done as follows: first use FHE evaluation to transform encryption of M into an
encryption of M(x), and then use the obfuscated decryption circuit to obtain
M(x). To patch the obfuscated program, we can simply patch the encryption of
M in the manner as described above.

While this solution seems to offer the functionality of patching, it does not
offer any security. Specifically, in the above template, an adversary can choose
an arbitrary patch P ∗ on its own and then use FHE evaluation of the function
fP ∗(M) = P ∗(M) to transform encryption of M into an encryption of P ∗(M). If
this patch P ∗ is such that for two equivalent machines M0 and M1, P ∗(M0) and
P ∗(M1) are not equivalent, then the adversary can easily break the security of
pa-iO. Indeed, the security of pa-iO prevents an adversary from creating patches
on its own, while the above template does not place this restriction in any way.
In particular, we need to crucially use the fact that patch generation is a secret
key operation.

Towards that end, we modify the above template such that an evaluator
can only apply authenticated patches. The obfuscation of M consists of an FHE
encryption of M as before but the obfuscated FHE decryption circuit now takes
as input old encryption Enc(M), updated encryption Enc(M ′), encrypted patch
Enc(P ), a signature σ on Enc(P ) and an input x. It checks if the signature is
valid and also if Enc(M ′) is obtained by updating Enc(M) using P . If the check
passes, then it decrypts Enc(M ′) and evaluates M ′ on x. During the patching
phase, the authority sends both Enc(P ) and the signature σ. This signature now
prevents a user from applying “invalid” patches to the obfuscation; however, we
note that in the context of iO, this authentication will need to be done in a
much more careful manner, as we elaborate below.

Enforcing Ordered Executions of Patches. While the above template does
not seem to suffer from any immediate issues when we consider a single patch,
unfortunately, its security breaks down when we consider the setting of mul-
tiple patches. Indeed, in the above template, given (say) two patch encodings
(Enc(P1), σ1), (Enc(P2), σ2), an adversary may first apply the second patch
and then the first patch, which may break the equivalence requirement on the
patched machines in the security definition of pa-iO. In fact, an adversary can
also repeatedly apply the same patch multiple times in the above template,
which may also break the equivalence requirement on the patched machines in
the security definition of pa-iO. Indeed, the definition of pa-iO requires that the
patch encodings can only be applied in order, namely, the ith patch encoding
can only be applied to the (i − 1)th patched obfuscation, once.

Towards this, we introduce a mechanism to force a user to apply the patches
in order. We begin by observing that instead of authenticating the encrypted
patch in the above template, if we instead authenticate the encrypted patched
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machine, then we can enforce ordered executions of patches. That is, suppose
we want to update the machine M using patch P , the authority first computes
Enc(P ) and then updates Enc(M) using Enc(P ) to obtain Enc(M ′). It then
signs Enc(M ′) and sends the signature3 σ and the encrypted patch Enc(P ) to
the user. The user now updates Enc(M) using Enc(P ) to obtain Enc(M ′). To
evaluate the patched obfuscation on an input x, it inputs (Enc(M ′), σ, x) to the
obfuscated FHE decryption circuit that first checks for validity of the signature
and then decrypts Enc(M ′) followed by computation of M ′(x), as before. Cru-
cially, by shifting the authentication to the updated encrypted machine instead of
encrypted patch, we are now able to prevent the “out-of-order patching” attacks
(as well as “repeated patching” attacks) by an adversary discussed above.

A disadvantage of the above solution is that it requires the authority to
maintain large state. In particular, at any time, the authority must remember
the last patched machine Mi−1 in order to generate a valid encoding for the ith

patch Pi. Furthermore, the patch encoding generation time now depends on the
size of the machine Mi−1. While this loss in efficiency may be acceptable for the
setting of single-program pa-iO, it unfortunately becomes a significant barrier
for the setting of multi-program pa-iO. Indeed, in the multi-program setting, the
number of obfuscated programs are not a priori bounded; as such, if we were to
extend the above template to this case, then the authority’s state size becomes
unbounded! (This is because the authority would need to maintain a separate
state for every obfuscated program.)

Compressing the State of Authority. In order to resolve this issue we intro-
duce the next idea: “delegating” the state of the authority to the user. That is,
the authority now maintains the state at the user’s end. Implementing this idea
introduces several issues: not only should the state be encrypted at the user’s
end but it should also be possible to repeatedly update and also compute on this
(updated) encrypted state. To address these issues, we turn to a cryptographic
primitive called garbled RAMs with persistent memory. This notion allows for
encoding a database and repeatedly update this encoding and compute on the
updated encodings. The updating and computation operations are enabled by
using encodings of RAM programs which are issued by the authority. Using this
primitive, we propose a solution template.

– To obfuscate M , the authority computes: (i) Enc(M) and a signature upon
it. (ii) An obfuscation of the FHE decryption circuit (as before) that takes
an input x, Enc(M) and a signature σ, and outputs M(x) if the signature is

valid. (iii) A database encoding ˜Enc(M) of Enc(M). It then sends ˜Enc(M),
Enc(M), σ and the obfuscated decryption circuit to the user.

– To evaluate the obfuscation on an input x, the user inputs (x,Enc(M), σ) to
the obfuscated decryption circuit to recover the output M(x).

3 For this discussion, let us assume that we have a signature scheme where the size of
the signature is independent of the length of the message. We will revisit this later
when we discuss implementation issues.
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– To compute a patch encoding of P , the authority first computes Enc(P ) (as
before) and then computes a garbled RAM encoding T̃ of a RAM machine T
that has Enc(P ) hardcoded in it. The machine T uses FHE evaluation over
Enc(M) (in the database encoding) and Enc(P ) to compute Enc(M ′) and
additionally computes signature σ′ over Enc(M)′. It outputs σ′ in the clear.
The user, upon receiving the patch encoding, first computes Enc(M ′) using

Enc(P ). It then updates the database encoding ˜Enc(M) using T̃ . The result

is an updated database encoding ˜Enc(M ′) and the signature σ′ on Enc(M ′).
The user can now evaluate the updated machine on any input in the same
manner as before.

Some remarks are in order: first, from an efficiency viewpoint, we need the gar-
bled RAM scheme to be succinct where the size of RAM machine encoding is
independent of its running time. This is because we are applying the above idea
on a single-program pa-iO scheme where the patch generation time depends on
the size of the machine being updated. Second, in order to argue security in
the setting of adaptively chosen patches, we need the garbled RAM scheme to
satisfy adaptive security as well. Such a garbled RAM scheme (with persistent
memory) was recently constructed in the independent works of [2,24].

Finally, we note that while the above idea successfully compresses the state
size of the authority, it still does not suffice for the multi-program setting. This
is because in the above solution, when extended to the multi-program case, the
authority would need to maintain some small state, namely, the garbling key,
for every obfuscated machine, which still leads to a state of unbounded size. We
address this problem by developing a generic transformation from any single-
program pa-iO scheme with small state (or alternatively, a stateless scheme)
into a multi-program pa-iO scheme by using a compact secret-key functional
encryption scheme for general circuits. We defer the discussion of this transfor-
mation to the next section.

1.2.2 Implementation

Issues Related to Indistinguishability Obfuscation. While the above tem-
plate seems promising, several issues arise when we have to implement it only
assuming indistinguishability obfuscation for circuits. For starters, the above
template requires an obfuscation scheme for Turing machines with unbounded
length inputs. This is because, the size of the encrypted machine M can grow
arbitrarily over a sequence of updates and thus the input to the obfuscated cir-
cuit cannot be a priori bounded. We currently know how to realize this only
based on strong knowledge-type assumptions [1,20,42]. Another technical issue
is that standard signature schemes are not “compatible” with iO and more gen-
erally, using iO restricts the type of cryptographic primitives that we can use.
These challenges were encountered in many recent works [17,26,44] whose main
goal was reducing the problem of constructing iO for Turing machines, where
the length of inputs to be evaluated are a priori bounded, to the problem of con-
structing iO for circuits. We build upon the primitives and notions introduced
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in the work of [44] to address these challenges. We recall the Turing machine
randomized encodings4 construction by [44].

The core idea in the randomized encodings construction of Koppula et al. [44]
is to leverage an obfuscated circuit to perform step-by-step computation of the
machine M that is encoded. In more detail, a randomized encoding of (M,x) con-
sists of: (a) input tape initialized with an encoding of M and, (b) an obfuscated
circuit Cx that performs “step-by-step” computation of a machine Ux(·). Here,
Ux(·) is a universal TM that takes as input machine M and outputs M(x). By
step-by-step computation, we mean that the circuit Cx takes as input time step i,
encoded symbol and partial information about the current state in an encrypted
form and produces a new encoded symbol and state, again in encrypted form,
by executing the transition function of Ux. This enables the size of the circuit
Cx to be independent of the length of M .

To see how the randomized encodings construction might be useful to our
setting, note that we could potentially encode the machine M using a patchable
encoding scheme that will allow us to patch M . Furthermore, we can allow the
machine size to arbitrarily grow, over a sequence of updates, since the size of the
circuit Cx is independent of the machine size M . However, the main issue is that
their approach is tied to just a single computation M(x) whereas we require that
M be reused on multiple inputs. They propose an approach to achieve reusability
by using another layer of obfuscation, with M hardwired in it, that produces
fresh encodings of M for every computation. This is highly problematic for us,
since patching M would now correspond to patching the underlying obfuscated
circuit.

We need to make the randomized encodings construction of KLW reusable
while preserving the underlying encoding of M . A recent work of Ananth et
al. [5], proposed in a different context of building iO with constant overhead,
achieves this goal. In more detail, they showed how to achieve iO for TMs, with
a priori bound in the input length, such that an obfuscation of M proceeds in
two phases: (a) M is encoded using a suitable encoding scheme and, (b) an
obfuscation of a circuit that takes as input x and produces an encoding of x.
The evaluation of the obfuscation on an input x proceeds by first obtaining an
encoding of x (using the obfuscated circuit) and then decoding this using the
encoding of M to recover M(x).

While their work offers a starting point for building patchable iO, we still need
to address several issues that specifically arise in the context of patching. For
instance, their work only considers the setting when the adversary is given one
obfuscated machine whereas in our setting she also receives additionally, patches
that share some common randomness with the obfuscated machine. We need to
argue that the security holds even with this additional information. Instead of
directly digging into the details of [5] to apply it in the context of patching, we
undertake a more modular approach. First, we propose an intermediate primitive

4 A randomized encoding of (M,x) satisfies two properties: (a) it only reveals M(x)
and, (b) the size of the encoding is polynomial only in the length of M , x and security
parameter.



140 P. Ananth et al.

called splittable iO and show that it suffices for building single-program patchable
iO. We then show that splittable iO can be implemented assuming only iO for
circuits by using the framework of [5]. We describe this primitive in detail next.

Splittable iO: Intermediate Notion Between iO and Patchable iO.
A splittable iO scheme is a strengthening of iO and is associated with respect
to a patchable encoding scheme. A patchable encoding scheme consists of algo-
rithms: Setup, Encode and Decode. Setup generates a secret key sk that will be
used by Encode procedure to obtain an encoding of M , Esk(M). Decode recovers
the Turing machine M from the encoding Esk(M) using the secret key sk. Addi-
tionally, it is associated with two algorithms: patch generation algorithm, used
to generate secure patches and patch application algorithm, that enables apply-
ing secure patches on encodings of TMs. The security property requires that the
encodings and patches hide the underlying TMs and patches, respectively.

We start with a oversimplified template of splittable iO and make suitable
modifications later. An obfuscation of M , with respect to splittable iO, consists
of two parts: (Esk(M), auxM ), where (i) Esk(M) is a patchable encoding of M
computed using secret key sk, (ii) auxM computed as a function of an additional
PPT algorithm AuxGen, on (sk, Esk(M)).

Armed with the notion of splittable iO, we show how to construct single-
program patchable iO. At first glance, it seems that splittable iO already allows
for patching: indeed, since M is encoded with respect to a patchable encoding
scheme, we can use the patching algorithm to update this encoding. However,
this does not work because the obfuscation also contains auxM that is tied to
encoding of M . Indeed, this is necessary for the security of obfuscation to hold.
So if the encoding of M is updated, it is necessary to also update auxM . A
naive way of achieving this is to issue a fresh auxM every time the encoding
is patched. That is, initially the user is issued an encoding of M , Esk(M) and
auxiliary information auxM . During the patching phase, a secure version of patch
P with respect to the patchable encoding scheme is issued. Along with this, a
fresh auxM ′ is issued, which is generated by first patching Esk(M) using P̃ ,
secure patch of P , and then executing AuxGen on input (sk, Esk(M ′)).

However this raises the question of efficiency: the patch size now grows with
the size of auxM ′ . This can be taken care of imposing an efficiency constraint on
splittable iO: we require that the size of aux be a polynomial in security para-
meter and specifically, independent of the size of the machine obfuscated. The
next issue is correctness: why should the patched obfuscated machine be correct?
for instance: AuxGen could abort on input patched encodings. To take care of
this issue, we impose an additional property on splittable iO: the correctness of
the obfuscated machine should hold irrespective of whether fresh encodings or
patched encodings of the machine are fed to AuxGen.

Finally, we move on to proving the security of patchable iO. A first attempt
is to use the security of the underlying patchable encoding scheme to argue this.
However, it is unclear why the security of encoding scheme is guaranteed at all
given that aux contains information about the secret key of the encoding scheme.
If we additionally impose aux to hide the secret key, we can then hope to invoke
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the security of patchable encoding scheme to argue the security of patchable iO.
A natural approach of formalizing this is to use a simulation-based argument
– there exists a simulator that can simulate the aux even without knowing the
secret key. But this would mean that aux will not able to decode any information
about the encoding of M . In order to maintain correctness of the obfuscation of
M , we need to hardwire all possible outputs which is clearly infeasible. Instead
we use an indistinguishability-based definition: instead of having one encoding
of M , we will consider a pair of encodings of M . That is, obfuscation of M
consists of (Esk0(M), Esk1(M)), computed with respect to secret keys sk0, sk1.
In addition, it consists of aux generated using AuxGen(sk0, Esk0(M), Esk1(M)).
Now, we impose a security property that says that aux generated using sk0 is
computationally indistinguishable from aux generated using sk1.

We summarize the (informal) definition of splittable iO below. The formal
definition can be found in Sect. 3.2. In addition to the properties of any iO
scheme, a splittable iO scheme has the following properties.

1. Splittable Property: An obfuscation of M can be performed in two steps: the
first step is encoding M twice using two secret keys sk0 and sk1 of a patch-
able encoding scheme. The second step is generation of aux by computing
AuxGen on input (sk0, Esk0(M), Esk1(M)), where Esk0(M) and Esk1(M) are
two encodings of M and sk0 is the secret key used to encode Esk0(M).

2. Correctness of AuxGen: The correctness of obfuscation of M holds irrespective
of whether AuxGen is executed on fresh encodings of M or whether it is
executed on encodings of M obtained as a result of patching. This will be
used to argue the correctness of the resulting patchable iO scheme.

3. Efficiency of aux: We require that the size of aux is a polynomial in λ and
in particular, independent of the size of the machine obfuscated. This will be
used to argue the patch size efficiency of patchable iO.

4. Indistinguishability of aux: We require that it is computationally hard to
distinguish aux generated using secret key sk0 from aux generated using sk1.
This property will be helpful to argue security of patchable iO.

Going from Single-Program to Multi-program Patchable Obfuscation.
In the solution sketched above, every time the authority has to generate a patch,
she has to spend time proportional to the size of the obfuscated machine. In par-
ticular, recall that one of the steps in the generation of secure patch is computing
auxM : this step involves first patching the old encoding Esk(M) and then execut-
ing AuxGen. We will use the trick described earlier to solve the problem: we del-
egate the state of the authority as well as the computation of the secure patches
to the user. This can be implemented by using a suitable garbling scheme that
works in the persistent memory setting. Once this mechanism is implemented,
the authority is only required to store the garbling key.

While this is a viable solution in the single-program setting, this is unde-
sirable when the authority is issuing multiple obfuscated programs. She has to
store the garbling keys corresponding to all the machines in this case. The storage
space of the authority thus puts a bound on the number of obfuscated machines
it can issue.
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To overcome this difficulty, we employ another idea for delegating responsi-
bility to the user! The garbling key of every user is maintained at her own storage
space in an encrypted form. The computation of the garbled program encodings
are then delegated to every user. This mechanism is implemented by using a
functional encryption scheme. Every user along with the obfuscated machine,
garbled encoding of state, also contains an FE encryption of the garbling key.
During the patching phase, the authority sends a FE key containing patch P ,
that takes as input a garbling key and produces a garbled encoding of P with
respect to this garbling key. To carry this out, we only require a secret-key FE
scheme for circuits.

Putting it Together: A Framework for (Multi-program) Patchable
Obfuscation. Putting all the components together, we construct a multi-
program patchable iO in the following steps:

1. The first step involves formalizing the notion of splittable iO. This is shown
in Sect. 3.

2. Next, we show how to obtain single-program patchable iO from splittable iO.
This is shown in Sect. 4. The resulting single-program patchable iO scheme
is statefull, i.e., the authority is required to maintain a large state.

3. We show how to overcome this problem by giving a transformation from any
statefull to a stateless single-program patchable iO scheme. This is presented
in the full version.

4. In the next step, we give a transformation from single-program to multi-
program patchable iO. This is presented in the full version.

5. In the last step, we instantiate splittable iO using the framework of [5]. This
is presented in the full version.

1.3 Related Work: Incremental Cryptography

The area of incremental cryptography was pioneered by Bellare et al. [11].
Subsequently, this concept of incremental updates has been studied for vari-
ous standard primitives such as encryption schemes, signature schemes and so
on [12,23,29,46,47]. We remark that none of these works handled the setting of
arbitrary updates.

In a concurrent and independent work, [32] consider a related notion called
incremental obfuscation. In incremental obfuscation, individual bits of an exist-
ing obfuscated program can be updated one-by-one. While their work shares
much in spirit with our work, there are several important differences that we
describe below.

Our work focuses on support for arbitrary, adaptively chosen patches that
may potentially increase the size of the program(s) being patched, and we
consider both single-program and multi-program setting. In contrast, their
work considers the single-program setting where bit-wise, non-adaptively chosen
patches can be applied such that the size of the circuit being patched remains
unchanged. Our main efficiency requirement is that the size of the secure patches
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(or more strongly, the time to generate the secure patches) is independent of the
size of the program. In contrast, their work considers the stronger runtime effi-
ciency requirement where the time to apply the secure patch is also independent
of the size of the circuit.

2 Patchable iO: Definitions and Implications

In this section, we present the formal definitions of patchable indistinguishability
obfuscation (pa-iO) in the single program and multi program setting.

2.1 Definition: Single-Program pa-iO
In this section, we present a formal definition of single-program patchable indis-
tinguishability obfuscation, denoted as pa-iOsp. We start by presenting the syn-
tax, and then proceed to give a security definition for sequential updates.

Syntax. A pa-iOsp scheme, defined for a class of Turing machines M
with an associated family of patches P and update algorithm Update,
consists of a tuple of probabilistic polynomial-time algorithms pa-iOsp =
(Setup,Obf,GenPatch,AppPatch,Eval) which are defined below.

– Setup, Setup(1λ): It takes as input the security parameter λ and outputs the
secret key SK.

– Obfuscate, Obf(SK,M): It takes as input the secret key SK and a TM
M ∈ M. It outputs an obfuscated TM 〈M〉 along with state st.

– (Stateful) Patch Generation, GenPatch(SK, P, st): It takes as input the
secret key SK, a description of a patch P ∈ P, and state st. It outputs a patch
encoding 〈P 〉 along with the updated state st′.

– Applying Patch, AppPatch
(
〈M〉, 〈P 〉

)
: It takes as input an obfuscated TM

〈M〉 and a patch encoding 〈P 〉. It outputs an updated obfuscation 〈M ′〉.
– Evaluation, Eval

(
〈M〉, x

)
: It takes as input an obfuscated TM 〈M〉 and an

input x. It outputs a value y.

Efficiency. We define two efficiency properties:

– Patch Size Efficiency: For every patch P ∈ P, we require that the size of
the patch encoding |〈P 〉| is a fixed polynomial in (|P |, λ), where (〈P 〉, st′) ←
GenPatch(SK, P, st).

– Patch Generation Efficiency: For every patch P ∈ P, we require that the
running time of GenPatch(SK, P, st) to be a fixed polynomial in (|P |, λ). The
length of st could depend on the size of the obfuscated machine its associated
with and we require that the running time of GenPatch to be independent
of |st|.
It is easy to see that the second property implies the first property. Our first

construction of pa-iOsp only satisfies the first property. In the full version, we
describe a modified construction that also achieves the second property.
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Correctness for Sequential Patches. At a high level, the correctness property
states that executing Update on a TM M and a patch P is equivalent to executing
AppPatch on the obfuscation of M and a secure patch of P . In fact we require
that this holds even if there are multiple patches that are applied sequentially.

For any TM M0 ∈ M, L > 0, sequence of patches P1, . . . , PL ∈ P, consider
two processes:

– Obfuscate-then-Update: Compute the following: (a) SK ← Setup(1λ),
(b)

(
〈M0〉, st0

)
← Obf(SK,M0), (c)

(
〈Pi〉, sti

)
← GenPatch(SK, Pi, sti−1),

(d) 〈Mi〉 ← AppPatch
(
〈Mi−1〉, 〈Pi〉

)
.

– Update: Mi ← Update(Mi−1, Pi).

We require that for all x ∈ {0, 1}∗, every i ∈ [L], Eval
(
〈Mi〉, x

)
= Mi(x).

Remark 1. For the case of parallel patching, we require that 〈Mi〉 ←
AppPatch

(
〈M0〉, 〈Pi〉

)
is a valid obfuscation of machine Mi. We emphasize that

for the case of parallel patching, the patches are applied only on the original
machine.

Adaptive Security for Sequential Patches. We next give an indistinguishability
(IND)-style definition for modeling the security of an pa-iOsp scheme for the
case of sequential patches. In an IND-security definition, we consider a security
game between the challenger and the adversary. In this game, the adversary
sends two machines (M0

0 ,M0
1 ) to the challenger and in response receives an

obfuscation 〈M0
b 〉, where b is the challenge bit chosen randomly by the challenger.

Then the adversary submits patch queries, adaptively, to the challenger in a
series of phases. In each phase, the adversary chooses a pair of patches (P i

0, P
i
1)

and in return gets the patch encoding 〈P i
b 〉. The patch queries of the adversary

are restricted in the following manner: suppose
(
(P 1

0 , P 1
1 ), . . . , (PL

0 , PL
1 )

)
is a

sequence of adaptive patch queries made by the adversary. We require that
the machine M i

0 is functionally equivalent with M i
1, for every i ∈ [L], where

M i
0 ← Update(M i−1

0 , P i
0) (resp., M i

1 ← Update(M i−1
1 , P i

1)). At the end of the
game, the adversary attempts to guess the bit b. If the adversary’s guess is the
same as b only with probability negligibly close to 1/2, then we say that the
scheme is secure. Henceforth, we use the term adaptive security to refer to this
notion. We proceed to formally defining this notion.

The experiment for the adaptive security definition is formulated below. Let
A be any PPT adversary.

Expt
pa-iOsp

A (1λ, b):

1. A sends (M0
0 ,M0

1 ) to the challenger.
2. Challenger executes the setup algorithm to obtain SK ← Setup(1λ). It then

sends 〈M0
b 〉 ← Obf(SK,M0

b ) to A.
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3. Repeat the following steps for i ∈ {1, . . . , L}, where L is chosen by A.
– A sends (P i

0, P
i
1) to the challenger.

– Challenger checks if M i
0 ≡ M i

1, where M i
0 ← Update(M i−1

0 , P i
0) and

M i
1 ← Update(M i−1

1 , P i
1).

– Challenger computes 〈P i
b 〉 ← GenPatch(SK, P i

b ) and sends 〈P i
b 〉 to A.

4. A outputs the bit b′.

Definition 1 (Adaptive Security). A single-program patchable indistin-
guishability obfuscation scheme pa-iOsp is said to be adaptively secure against
sequential updates if for any PPT adversary A, there exists a negligible function
negl(·) s.t.

∣∣∣Pr
[
1 ← Expt

pa-iOsp

A (1λ, 1)
]

− Pr
[
1 ← Expt

pa-iOsp

A (1λ, 0)
]∣∣∣ ≤ negl(λ)

Remark 2. For the case of parallel patching, the same security is defined with
the only difference being that it is required that the machine M i

0 is functionally
equivalent to M i

1, where M i
b is obtained by patching M0

b (the original machine)
using Pi.

2.2 Definition: Multi-program pa-iO
We now present a formal definition of multi-program pa-iO, denoted as pa-iOmp.
Informally speaking, pa-iOmp allows an authority to obfuscate an arbitrary num-
ber of programs in such a way that it is possible to later issue a patch encoding
that can be used to update all the obfuscated programs at once. The authority
who issues the obfuscated programs stores just a “short” information about all
the obfuscated programs issued that enables it to produce a single patch that
can act on all these programs. In particular, the size of the storage space of
the authority is independent of the joint size of all these programs.5 This is
in contrast to the single-program setting described above, where the authority
maintains state and this state can be as big as the program whose obfuscation
is issued. There is another difference between both the settings: in the single-
program setting, if we were to relax the size of the secure patch to be propor-
tional to the size of the updated program then achieving a feasibility result is
straightforward – the secure patch will just be the obfuscation of the updated
program. Hence the primary goal is to reduce the size of the patch. However,
in the multi-program setting, even if we relax the size of the secure patch to be
proportional to the size of any of the updated programs, achieving a feasibility
result is already non-trivial. As mentioned earlier, the authority does not have
enough space to store all the updated programs and hence the above näıve solu-
tion, of sending a fresh obfuscation of the updated program, does not work. As
we will see later we not only give a feasibility result in this setting but we also

5 The reason why the authority can’t store all the programs is because it is a
machine that has a priori bounded memory and yet has the capability to produce
an unbounded number of obfuscated programs.
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achieve a solution with optimal efficiency where the size of the secure patches
depend only on the size of their original patches and in particular, independent
of the size of any obfuscated programs issued.

Syntax. A pa-iOmp scheme, defined for a class of Turing machines M and a family
of patches P, consists of a tuple of probabilistic polynomial-time algorithms
pa-iOmp = (Setup,Obf,GenPatch,AppPatch,Eval) which are defined below. We
denote the update algorithm associated with (M,P) to be Update.

– Setup, Setup(1λ): It takes as input the security parameter λ and outputs the
secret key SK.

– Obfuscate, Obf(SK,M): It takes as input the secret key SK and a TM M ∈ M
id. It outputs an obfuscated TM 〈M〉.

– (Stateless) Patch Generation, GenPatch(SK, P ): It takes as input the
secret key SK and a description of a patch P ∈ P. It outputs a patch encoding
〈P 〉.

– Applying Patch, AppPatch
(
〈M〉, 〈P 〉

)
: It takes as input an obfuscated TM

〈M〉 and a patch encoding 〈P 〉. It outputs an updated obfuscation 〈M ′〉.
– Evaluation, Eval

(
〈M〉, x

)
: It takes as input an obfuscated TM 〈M〉 and an

input x. It outputs a value y.

Efficiency. Similar to pa-iOsp, we define two efficiency properties for pa-iOmp:

– Patch Size Efficiency: For every patch P ∈ P, we require that the size of
the patch encoding |〈P 〉| is a fixed polynomial in (|P |, λ), where (〈P 〉, st′) ←
GenPatch(SK, P, st).

– Patch Generation Efficiency: For every patch P ∈ P, we require that the
running time of GenPatch(SK, P, ) to be a fixed polynomial in (|P |, λ).

It is easy to see that the second property implies the first property. Our con-
struction of pa-iOmp presented in the full version achieves both of the properties.

Correctness for Sequential Patches. For every Q,L > 0, any sequence of TMs
M01 , . . . ,M

Q
0 ∈ M, sequence of patches P1, . . . , PL ∈ P, consider the following

two processes. For every j ∈ {1, . . . , Q}, i ∈ {1, . . . , L}, we have:

– Obfuscate-then-Update: Compute the following: (a) SK ← Setup(1λ),
(b) 〈M j

0 〉 ← Obf(SK,M j
0 ), (c) 〈Pi〉 ← GenPatch(SK, Pi), (d) 〈M j

i 〉 ←
AppPatch

(
〈M j

i−1〉, 〈Pi〉
)
.

– Update: M j
i ← Update(M j

i−1, Pi).

We require that ∀x ∈ {0, 1}∗, ∀j ∈ [Q], ∀i ∈ [L], we have Eval
(
〈M j

i 〉, x
)

=

M j
i (x).
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Adaptive Security for Sequential Patches. We next give indistinguishability
(IND)-style definitions for modeling the security of a patchable obfuscation
scheme. As in the case of single-program patchable obfuscation, the definition is
based on a game between the challenger and the adversary. The adversary makes
TM queries and patch queries to the challenger. One important distinction is
that in this setting, the adversary can make multiple TM queries whereas in the
case of single-program obfuscation, it makes just one TM query. We describe the
experiment below.

Expt
pa-iOmp

A (1λ, b):

1. A submits a sequence of TM pairs
(
(M1

0,0,M
1
0,1), . . . , (M

Q
0,0,M

Q
0,1)

)
.

2. Challenger executes the setup algorithm to obtain SK ← Setup(1λ). For every
j ∈ [Q], it computes 〈M j

0,b〉 ← Obf(SK,M j
0,b) and sends

{
〈M j

0,b〉
}

j∈[Q]
to the

adversary.
3. Repeat the following steps for i ∈ {1, . . . , L}, where L(λ) is chosen by A:

– A sends (P i
0, P

i
1) to the challenger.

– Challenger computes 〈P i
b 〉 ← GenPatch(SK, P i

b ). It sends 〈P i
b 〉 to A.

4. For every i ∈ {1, . . . , L}, every j ∈ {1, . . . , Q}, the challenger checks if M j
i,0 ≡

M j
i,1, where M j

i,0 ← Update(M j
i−1,0, P

i
0) and M j

i,1 ← Update(M j
i−1,1, P

i
1).

If check fails then the challenger aborts the experiment.
5. A outputs the bit b′.

Definition 2. (Adaptive security). A multi-program patchable obfuscation
scheme pa-iOmp is said to be adaptively secure if for any PPT adversary A,
there exists a negligible function negl(·) s.t.

∣∣∣Pr
[
0 ← Expt

pa-iOmp

A (1λ, 0)
]

− Pr
[
0 ← Expt

pa-iOmp

A (1λ, 1)
]∣∣∣ ≤ negl(λ)

Remark 3. For the case of parallel patching, the correctness and security can be
similarly defined.

3 Splittable iO

We describe the notion of splittable iO next. This notion will be associated with
a patchable encoding scheme. We define patchable encoding scheme first.

3.1 Patchable Encoding Scheme

A patchable encoding scheme is an encoding scheme associated with a class of
Turing machines. This scheme allows for updating an encoding of a machine
M using an encoding of a patch P to obtain an encoding of another machine
M ′, where M ′ ← Update(M,P ). The secret key, used in the computation of the
encodings, is generated using algorithm Gen. Turing machines are encoded using
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Encode and the patches are encoded using GenPatch. Algorithm AppPatch is used
to apply update the encoding of machine M using encoding of patch P . Finally,
Decode is used to decode an encoding of M using the secret key produced by
Gen.
Syntax. A patchable encoding scheme is described by the algorithms UE =
(Gen,Encode,GenPatch,AppPatch,Decode) which are defined below. We denote
by M, the class of Turing machines it is associated with. We further denote the
update algorithm associated with M to be Update.

– sk ← Gen(1λ): On input λ, it produces the secret key sk.
– Esk(M) ← Encode(sk,M): On input secret key sk, Turing machine M , it

produces an encoding of M , namely Esk(M), with respect to sk.
– P̃ ← GenPatch(sk, P ): On input secret key sk, patch P , it produces a secure

patch P̃ .
– Esk(M ′) ← AppPatch

(
Esk(M), P̃

)
: On input encoding Esk(M), secure patch

P̃ , it produces the updated encoding Esk(M).
– M ← Decode(sk, Esk(M)): On input secret key sk, machine encoding Esk(M),

it produces the machine M .

Efficiency. We require that the size of the secure patches is a (a priori fixed)
polynomial in the security parameter and the size of the underlying patch. That
is, |P̃ | = poly(λ, |P |), where P̃ ← GenPatch(sk, P ).

Correctness of Sequential Updating. Consider M ∈ M and a sequence of patches
P1, . . . , PL. We consider the following two processes:

– Encode-then-Update: Compute the following: (a) sk ← Gen(1λ); (b)
Esk(M1) ← Encode(sk,M); (c) For every i ∈ [L], P̃i ← GenPatch(sk, Pi);
(d) Esk(Mi+1) ← AppPatch

(
Esk(Mi), P̃i

)
.

– Update: For every i ∈ [L], Mi+1 ← Update(Mi, Pi) with M1 = M .

We require that Decode(sk, Esk(ML)) = ML.

Security. We require any patchable encoding scheme to satisfy the following.

Definition 3. A patchable encoding scheme, UE = (Gen,Encode,GenPatch,
AppPatch,Decode) is said to be secure if the following holds: Consider the
game between a challenger and an adversary. The adversary submits machines
(M1

0 ,M1
1 ) . . . , (MQ

0 ,MQ
1 ) ∈ M to the challenger. In return, the adversary

receives {Esk(M j
b )}j∈[Q], where b ∈ {0, 1} is picked at random. The adversary

can then make patch queries (P i
0, P

i
1), for every i ∈ [L], adaptively. In return

it receives P̃ i
b . The probability that the adversary outputs b is negligibly close to

1/2.

We can correspondingly define an encoding scheme supporting parallel patches.
In the full version, we present an instantiation of the above primitive using

fully homomorphic encryption.
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3.2 Definition of Splittable iO

We define the notion of splittable iO next. A splittable iO is an indistinguishabil-
ity obfuscation scheme, satisfying additional properties. The model of computa-
tion is Turing machines and we work in succinct iO setting [17,26,44]. Although
the algorithms associated with succinct iO take the input length bound as input,
we omit this in the description below. For simplicity, set the input length bound
to be λ. Our results can easily be extended to the case when the input bound is
an arbitrary polynomial in λ and our parameter sizes would blow accordingly.

Firstly, we require that the obfuscation of M proceeds in two steps: in the first
step, M is encoded (twice) using the underlying patchable encoding scheme UE.
This is done by generating the setup of UE twice and encoding M using both
these secret keys sk0 and sk1. Call the two encodings Esk0(M) and Esk1(M).
The second step involves generation of auxiliary information as a function of the
encodings Esk0(M) and Esk1(M) and one of the secret keys. This is enabled via an
additional algorithm AuxGen. This requirement on the structure of the obfuscate
algorithm is termed as splittable property. The second property we require is
correctness of AuxGen – this says that the correctness of the obfuscated machine
should not be affected by whether the two encodings (part of the obfuscated
machine) fed to AuxGen are freshly computed or if they are obtained as a result of
patching. The third property, which is efficiency of aux, states that the auxiliary
information produced by AuxGen should be a fixed polynomial in λ. Finally,
we have the indistinguishability of aux property that states that the auxiliary
information obtained by AuxGen on input two encodings Esk0(M) and Esk1(M)
and secret key sk0 is indistinguishability the output of AuxGen on input Esk0(M),
Esk1(M) and secret key sk1.

Definition 4 (Splittable iO). A splittable iO scheme, denoted by siO =
(Obf,Eval) for a class of Turing machines M, is an indistinguishability obfus-
cation scheme that is associated with a patchable encoding scheme UE =
(Gen,Encode,GenPatch,AppPatch,Decode) and satisfies the following properties:

– Splittable Property: Obf consists of Gen,Encode and an additional PPT
algorithm AuxGen. On input (1λ,M) it proceeds in the following three phases:
1. Encoding of M using UE: (a) sk0 ← Gen(1λ); sk1 ← Gen(1λ).

(b) Esk0(M) ← Encode(sk0,M); Esk1(M) ← Encode(sk1,M)
2. Generation of aux: aux ← AuxGen (sk0, Esk0(M), Esk1(M))

Output 〈M〉 = (Esk0(M), Esk1(M), aux). The secret state associated with this
execution is set to be (sk0, sk1).

– Correctness of AuxGen: Let M ∈ M and let P1, . . . , PL be a sequence of
patches. Let Mi be the ith updated machine, Mi ← Update(Mi−1, P ), for every
i ∈ [L], where M0 = M .
Consider the following process:

• Let sk0, sk1 be such that sk0 ← UE.Gen(1λ), sk1 ← UE.Gen(1λ).
• Let Esk0(M) ← UE.Encode(sk0,M) and Esk1(M) ← UE.Encode(sk0,M).
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• Consider the ith updated encodings, Esk0(Mi) ← UE.AppPatch
(Esk0(Mi−1),UE.GenPatch(sk0, Pi)) and Esk1(Mi) ← UE.AppPatch
(Esk1(Mi−1),UE.GenPatch(sk1, Pi)).

• Let aux ← AuxGen(sk0, Esk0(ML), Esk1(ML)) and set 〈ML〉 =
(Esk0(ML), Esk1(ML), aux).

For every x, we have Eval(〈ML〉, x) = ML(x).

– Efficiency of aux: There exists a polynomial p such that the following holds.
Let (Esk0(M), Esk1(M), aux) ← Obf(1λ,M) for M ∈ M. Then, |aux| = p(λ).

– Indistinguishability of aux: Consider M0,M1 ∈ M such that M0(x) =
M1(x) for every x ∈ {0, 1}∗. Suppose E0, E1, sk0, sk1 are such that M0 ←
Decode(sk0, E0) and M1 ← Decode(sk1, E1). We have,

{E0, E1, sk0, sk1, aux0} ≈c {E0, E1, sk0, sk1, aux1} ,

where auxb ← AuxGen(skb, E0, E1) for b ∈ {0, 1}.
An instantiation of splittable iO is presented in the full version.
We note that the above definition can be extended to the parallel patches

setting if the underlying patchable encoding scheme supports parallel patches.

4 Splittable iO to Single-Program pa-iO
We give a generic transformation from splittable iO to single-program patchable
iO.

Construction. The main tool we use in our construction is a splittable iO
scheme siO = (siO.Obf, siO.Eval) associated with the updatable encoding scheme
UE = (Gen,Encode,GenPatch,AppPatch,Decode). We construct a single-program
patchable obfuscation scheme pa-iO below.

Setup,Setup(1λ): It outputs SK = ⊥.

Obfuscate,Obf(SK,M): It takes as input the secret key SK = ⊥ and a TM
M ∈ M. The obfuscation of M is essentially the obfuscation of M with
respect to siO. That is, it executes the obfuscate algorithm of siO on M ;
(Esk0(M), Esk1(M), aux) ← siO.Obf(1λ,M). Denote (Esk0(M), Esk1(M), aux) by
〈M〉. Let the state associated with this execution be (sk0, sk1) (refer to Splittable
Property in Definition 4).

It outputs the obfuscated TM 〈M〉. The state is set to be st =
(sk0, sk1, Esk0(M), Esk1(M)). That is, the state consists of the two secret keys
and the patchable encodings of M with respect to sk0 and sk1.

Secure Patch Generation,GenPatch(SK, P, st): It takes as input the secret
key SK = ⊥, a description of a patch P ∈ P and state st =
(sk0, sk1, Esk0(M), Esk1(M)). Then,

– It computes the secure patches, P̃ 0 ← UE.GenPatch(sk0, P ) and P̃ 1 ←
UE.GenPatch(sk1, P ).
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– It applies the secure patches on the encodings, Esk0(M
′) ← UE.AppPatch

(Esk0(M), P̃ 0) and Esk1(M
′) ← UE.AppPatch(Esk1(M), P̃ 1).

– It then executes AuxGen algorithm of siO. It computes aux′ ←
AuxGen(sk0, Esk0(M0), Esk1(M1)).

It outputs a secure patch 〈P 〉 = (P̃ 0, P̃ 1, aux′). It updates the state to be
st′ = (sk0, sk1, Esk0(M

′), Esk1(M
′)).

Note: It suffices to just include the encodings (P̃ 0, P̃ 1) (and not the updated
encodings Esk0(M

′), Esk1(M
′)) as part of secure patch because anyone hav-

ing the original pair of encodings (Esk0(M), Esk1(M)) can now recompute the
(Esk0(M

′), Esk1(M
′)) by using just (P̃ 0, P̃ 1).

Applying Patch,AppPatch (〈M〉, 〈P 〉): It takes as input an obfuscated TM

〈M〉 = (Esk0(M), Esk1(M), aux) and a secure patch 〈P 〉 = (P̃ 0, P̃ 1, aux′).

– It applies the secure patches on the encodings, Esk0(M
′) ← UE.AppPatch

(Esk0(M), P̃ 0) and Esk1(M
′) ← UE.AppPatch(Esk1(M), P̃ 1).

– It replaces aux with aux′ which is sent as part of the patch.

It outputs an updated obfuscation 〈M ′〉 = (Esk0(M
′), Esk1(M

′), aux′).

Evaluation,Eval (〈M〉, x): It takes as input an obfuscated TM 〈M〉 and an input
x. It executes the evaluation algorithm of siO; y ← siO.Eval(〈M〉, x). Output y.

Efficiency. We claim that the size of the secure patch solely depends on the size
of the patch and the security parameter. In particular, it is independent of the
size of the machine.

Consider a patch P . Let the output of GenPatch(SK, P, st) be 〈P 〉 =
(P̃ 0, P̃ 1, aux′). From the efficiency of the underlying patchable encoding scheme,
|(P̃ 0, P̃ 1)| = poly(λ, |P |). From the efficiency of the underlying spittable iO
scheme, |aux′| = poly(λ).

Remark 4. The secure patch generation time in the above scheme is proportional
to the size of the obfuscated machine. This is in general undesirable and we show
how to deal with this issue in the full version.

Correctness of Sequential Updating. Consider a TM M0 ∈ M and a sequence of
patches P1, . . . , PL ∈ P. Consider the following two processes generated using
the above scheme. For every i ∈ {1, . . . , L}, we have:

– Obfuscate-then-Update: Compute the following: (a) SK ← Setup(1λ),
(b) (〈M0〉, st0) ← Obf(SK,M0), (c) (〈Pi〉, sti) ← GenPatch(SK, Pi, sti−1),
(d) 〈Mi〉 ← AppPatch

(
〈Mi−1〉, 〈Pi〉

)
.

– Update: Mi ← Update(Mi−1, Pi).

We have the following claim.
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Claim. For every x, we have Eval(〈ML〉, x) = ML(x).

Proof. Let 〈M0〉 = (E0
0 , E0

1 , aux0), st = (sk0, sk1, E0
0 , E0

1) and 〈ML〉 =
(EL

0 , EL
1 , auxL). Note that E0 is the output of an execution of Encode(sk0,M0)

and aux0 is the output of AuxGen(sk0, E0
0 , E0

1). From the correctness of patchable
encoding scheme, we have Decode(SK0, E

L
0 ) = ML. Using this fact along with the

correctness of AuxGen property of siO, we get that the output of Eval(〈ML〉, x)
to be ML(x).

Security of Sequential Updating. We prove,

Theorem 7. pa-iO satisfies security of sequential updating property.

A formal proof for the above theorem can be found in the full version.
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Abstract. Indistinguishability obfuscation (iO) has emerged as a sur-
prisingly powerful notion. Almost all known cryptographic primitives can
be constructed from general purpose iO and other minimalistic assump-
tions such as one-way functions. A major challenge in this direction of
research is to develop novel techniques for using iO since iO by itself
offers virtually no protection for secret information in the underlying
programs. When dealing with complex situations, often these techniques
have to consider an exponential number of hybrids (usually one per
input) in the security proof. This results in a sub-exponential loss in the
security reduction. Unfortunately, this scenario is becoming more and
more common and appears to be a fundamental barrier to many current
techniques.

A parallel research challenge is building obfuscation from simpler
assumptions. Unfortunately, it appears that such a construction would
likely incur an exponential loss in the security reduction. Thus, achiev-
ing any application of iO from simpler assumptions would also require a
sub-exponential loss, even if the iO-to-application security proof incurred
a polynomial loss. Functional encryption (FE) is known to be equivalent
to iO up to a sub-exponential loss in the FE-to-iO security reduction;
yet, unlike iO, FE can be achieved from simpler assumptions (namely,
specific multilinear map assumptions) with only a polynomial loss.

In the interest of basing applications on weaker assumptions, we there-
fore argue for using FE as the starting point, rather than iO, and restrict-
ing to reductions with only a polynomial loss. By significantly expanding
on ideas developed by Garg, Pandey, and Srinivasan (CRYPTO 2016),
we achieve the following early results in this line of study:

– We construct universal samplers based only on polynomially-secure
public-key FE . As an application of this result, we construct a
non-interactive multiparty key exchange (NIKE) protocol for an
unbounded number of users without a trusted setup. Prior to this
work, such constructions were only known from indistinguishability
obfuscation.
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– We also construct trapdoor one-way permutations (OWP) based on
polynomially-secure public-key FE . This improves upon the recent
result of Bitansky, Paneth, and Wichs (TCC 2016) which requires
iO of sub-exponential strength. We proceed in two steps, first giving
a construction requiring iO of polynomial strength, and then special-
izing the FE-to-iO conversion to our specific application.

Many of the techniques that have been developed for using iO, including
many of those based on the “punctured programming” approach, become
inapplicable when we insist on polynomial reductions to FE . As such,
our results above require many new ideas that will likely be useful for
future works on basing security on FE .

1 Introduction

Indistinguishability obfuscation (iO) [5,16] has emerged as a powerful cryp-
tographic primitive in the past few years. It has proven sufficient to con-
struct a plethora of cryptographic primitives, many of them for the first
time,[4,8,10,12,30]. Recently, iO also proved instrumental in proving the hard-
ness of complexity class PPAD [7].

A major challenge in this direction of research stems from the fact that iO
by itself is “too weak” to work with. The standard security of iO may not even
hide any secrets present in the underlying programs. Therefore, the crucial part
of most iO-based constructions lies in developing novel techniques for using iO
to obfuscate “programs with secrets”.

Despite its enormous power, we only know of a limited set of techniques for
working with iO. In complex situations, these techniques often run into what
we call the sub-exponential barrier. More specifically, the security proof of many
iO-based constructions end up considering an exponential number of hybrid
experiments in order to make just one change in the underlying obfuscation.
The goal is usually to eliminate all “troublesome” inputs, one at a time, that
may be affected by the change. There are often exponentially many such inputs,
resulting in a sub-exponential loss in the security reduction.

To make matters worse, a sub-exponential loss seems inherent to achiev-
ing iO from “simple” assumptions, such as those based on multilinear maps1.
Indeed, all known security proofs for iO relative to “simple” assumptions2 iterate
over all (exponentially-many) inputs anyway, and there are reasons to believe
that this loss may be necessary [18]3. Indeed, any reduction from iO to a sim-
ple assumption would need to work for equivalent programs, but should fail for
inequivalent programs (since inequivalent programs can be distinguished). Thus,

1 Here, we do not define “simple”. However, one can consider various notions of “sim-
plicity” or “niceness” for assumptions, such as falsifiable assumptions [28] or com-
plexity assumptions [22].

2 Here, we exclude über assumptions such as semantically secure graded encodings [29],
which encompass exponentially many distinct complexity assumptions.

3 We stress that this argument has not yet been formalized.
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such a reduction would seemingly need to decide if two programs compute equiv-
alent functions; assuming P �= NP, this in general cannot be done in polynomial
time. This exponential loss would then carry over to any application of iO, even
if the iO-to-application security reduction only incurred a polynomial loss. On
the other hand, this exponential loss does not seem inherent to the vast major-
ity of iO applications. This leaves us in an undesirable situation where the only
way we know to instantiate an application from “simple” assumptions requires
sub-exponential hardness assumptions, even though sub-exponential hardness is
not inherent to the application.

One application for which an exponential loss does not appear inherent is
Functional encryption (FE), and indeed starting from the work of Garg et
al. [17], it has been shown in [26,27] how to build FE from progressively sim-
pler assumptions on multilinear maps with only a polynomial loss. Therefore, to
bypass the difficulties above, we ask the following:

Can applications of iO be based instead on
FE with a polynomial security reduction?

There are two results that give us hope in this endeavor. First, it is known
that FE is actually equivalent to iO, except that the FE-to-iOreduction [3,9]
incurs an exponential loss. This hints at the possibility that, perhaps, specializing
the FE-to-iO-to-application reduction to particular applications can aleviate the
need for sub-exponential hardness.

Second and very recently, Garg et al. [19] took upon the issue of sub-
exponential loss in iO-based constructions in the context of PPAD hardness.
They developed techniques to eliminate the sub-exponential loss in the work of
Bitansky et al. [7] and reduced the hardness of PPAD to the hardness of standard,
polynomially-secure iO (and injective one-way functions). More importantly for
us, they also presented a new reduction which bases the hardness of PPAD on
standard polynomially-secure functional encryption, thus giving essentially the
first non-trivial instance of using FE to build applications with only a polynomial
loss.

This Work. Our goal is to develop techniques to break the sub-exponential
barrier in cryptographic constructions based on iOand FE . Towards this goal,
we build upon and significantly extend the techniques in [19]. Our techniques
are applicable, roughly, to any iO setting where the computation is changed on
just a polynomial number of points; on all other points, the exact same circuit
is used to compute the outputs. Notice that for such settings there exists an
efficient procedure for checking functional equivalence. This enables us to argue
indistinguishability based only on polynomial hardness assumptions. As it turns
out, for many applications of iO, the hybrid arguments involve circuits with
the above specified structure. In this work, we focus on two such applications:
trapdoor permutations and universal samplers.

We start with the construction of trapdoor permutations of Bitanksy et al.
[8] based on sub-exponentially secure iO. We improve their work by constructing
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trapdoor permutations based only on polynomially-secure iO (and one-way per-
mutations). We further extend our results and obtain a construction based on
standard, polynomial hard, functional encryption (instead of iO). Together with
the result of [17,26,27], this gives us trapdoor permutations based on simple
polynomial-hard assumptions on multilinear maps.

We then consider universal samplers, a notion put forward by Hofheinz et al.
[23]. It allows for a single trusted setup which can be used to sample common
parameters for any protocol. Hofheinz et al. construct universal samplers from
iO. They also show how to use them to construct multi-party non-interactive
key-exchange (NIKE) and broadcast encryption.

We consider the task of constructing universal samplers from the weaker
notion of only polynomially-secure functional encryption. As noted earlier, we
cannot use the generic reduction of [3,9] between FE and iO since it incurs
sub-exponential loss. Intuitively, a fresh approach that is not powerful enough
to imply iO is essential to obtaining a polynomial-time reduction for this task.

We present a new construction of universal samplers directly from FE . We
also consider the task of constructing multiparty NIKE for an unbounded number
of users based on FE . As detailed later, this turns out to be non-trivial even
given the work of Hofheinz et al. This is because the definitions presented in
[23] are not completely suitable to deal with an unbounded number of users.
To support unbounded number of users, we devise a new security notion for
universal samplers called interactive simulation. We present a construction of
universal samplers based on FE that achieves this notion and gives us multiparty
NIKE for unbounded number of users.

Remark 1. Our construction of TDP from FE is weaker in comparison to our
construction from iO (and the construction of Bitansky et al. in [8]). In partic-
ular, given the random coins used to sample the function and the trapdoor, the
output of the sampler is no longer pseudorandom. This property is important
for some applications of TDPs like the construction of OT.

An Overview of Our Approach. In the following sections, we present a detailed
overview of our approach of constructing Universal Samplers and NIKE for
unbounded number of parties. Our techniques used for constructing trapdoor
permutations are closely related to the techniques developed in proving PPAD-
hardness of Garg et al. [19]. However, constructing trapdoor permutations poses
additional challenges, namely the design of an efficient sampling algorithm that
samples a domain element. Solving this problem requires development of new
techniques and we elaborate them in the full version [20].

1.1 Universal Samplers and Multiparty Non-interactive Key
Exchange from FE

Multiparty Non-Interactive Key Exchange (multiparty NIKE) was one of the
early applications of multilinear maps and iO. In multiparty NIKE, n parties
simultaneously post a single message to a public bulletin board. Then they each
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read off the contents of the board, and are then able to derive a shared key K
which is hidden to any adversary that does not engage in the protocol, but is
able to see the contents of the public bulletin board.

Boneh and Silverberg [11] show that multilinear maps imply multiparty
NIKE. However, (1) their protocol requires an a priori bound on the num-
ber of users n, and (2) due to limitations with current multilinear map can-
didates [13,15], the protocol requires a trusted setup. The party that runs the
trusted setup can also learn the shared key k, even if that party does not engage
in the protocol.

Boneh and Zhandry [12] show how to use iO to remove the trusted setup.
Later, Ananth et al. [1] shows how to remove the bound on the number of
users by using the very strong differing inputs obfuscation. Khurana et al. [25]
further modify the Boneh-Zhandry protocol to get unbounded users with just iO.
In [12,25], iO is invoked on programs for which are guaranteed to be equivalent;
however it is computationally infeasible to actually verify this equivalence. Thus,
following the arguments of [18], it would appear that any reduction to a few
simple assumptions, no matter how specialized to the particular programs being
obfuscated, would need to incur an exponential loss. Hence, these approaches
do not seem suitable to achieving secure multiparty NIKE from polynomially
secure FE .

Universal Samplers. Instead, we follow an alternate approach given by Hofheinz
et al. [23] using universal samplers. A universal sampler is an algorithm that takes
as input the description of a sampling procedure (say, the sampling procedure
for the common parameters of some protocol) and outputs a sample from that
procedure (a set of parameters for that protocol). The algorithm is deterministic,
so that anyone running the protocol on a given sampling procedure gets the
same sampled parameters. Yet the generated parameters should be “as good
as” a freshly generated set of parameters. Therefore, the only set of common
parameters needed for all protocols is just a single universal sampler. When a
group of users wish to engage in a protocol involving a trusted setup, they can
each feed the setup procedure of that protocol into the universal sampler, and
use the output as the common parameters.

Unfortunately, defining a satisfactory notion of “as good as” above is non-
trivial. Hofheinz et al. give two definitions: a static definition which only remains
secure for a bounded number of generated parameters, as well as an adaptive
definition that is inherently tied to the random oracle model, but allows for
an unbounded number of generated parameters. They show how to use the
stronger definitions to realize primitives such as adaptively secure multiparty
non-interactive key exchange (NIKE) and broadcast encryption.

In this work, we focus on the standard model, and here we review the sta-
tic standard-model security definition for universal samplers. Fix some bound k
on the number of generated parameters. Intuitively, the k-time static security
definition says that up to k freshly generated parameters s1, . . . , sk for sam-
pling algorithms C1, . . . , Ck can be embedded into the universal sampler without
detection. Thus, if the sampler is used on any of the sampling algorithms Ci, the
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generated output will be the fresh sample si. Formally, there is a simulator Sim
that takes as input up to k sampler/sample pairs (Ci, si), and outputs a simu-
lated universal sampler Sampler, such that Sampler(Ci) = si. As long as the si are
fresh samples from Ci, the simulated universal sampler will be indistinguishable
from a honestly generated sampler.

Fortunately for us, the iO-based construction of [23] only invokes iO on
programs for which it is trivial to verify equivalence. Thus, there seems hope that
universal samplers can be based on simple assumptions without an exponential
loss. In particular, there is hope to base universal samplers on the polynomial
hardness of functional encryption.

Application to Multiparty NIKE. From the static definition above, it is straight-
forward to obtain a statically secure multiparty NIKE protocol analogous to the
adaptive protocol of Hofheinz et al. [23]. Each party simply publishes a public
key pki for a public key encryption scheme, and keeps the corresponding secret
key ski hidden. Then to generate the shared group key, all parties run Sampler
on the sampler Cpk1,...,pkn . Here, Cpk1,...,pkn is the randomized procedure that
generates a random string K, and encrypts K under each of the public keys
pk1, . . . , pkn, resulting in n ciphertexts c1, . . . , cn which it outputs. Then party
i decrypts ci using ski. The result is that all parties in the protocol learn K.

Meanwhile, an eavesdropper who does not know any of the secret keys will
only have the public keys, the sampler, and thus the ciphertexts ci outputted by
the sampler. The proof that the eavesdropper will not learn K is as follows. First,
we consider a hybrid experiment where K is generated uniformly at random,
and the universal sampler is simulated on sampler Cpk1,...,pkn , and sample s =
(c1, . . . , cn), where ci are fresh encryptions of K under each of the public keys
pki. 1-time static security of the universal sampler implies that this hybrid is
indistinguishable to the adversary from the real world. Next, we change each of
the ci to encrypt 0. Here, indistinguishability follows from the security of the
public key encryption scheme. In this final hybrid, the view of the adversary is
independent of the shared secret key K, and security follows.

Unbounded Multiparty NIKE. One limitation of the protocol above is that the
number of users must be a priori bounded. There are several reasons for this,
the most notable being that in order to simulate, the universal sampler must
be as large as the sample s = (c1, . . . , cn), which grows with n. Thus, once the
universal sampler is published, the number of users is capped. Unfortunately, the
only prior protocols for achieving an unbounded number of users, [1,25], seems
inherently tied to the Boneh-Zhandry approach, and it is not clear that their
techniques can be adapted to universal samplers.

In order to get around this issue, we change the sampling procedure Cpk1,...,pkn
fed into the universal sampler. Instead, we feed in circuits of the form Dpk,pk′ ,
which generate a new secret and public key (sk′′, pk′′), encrypt sk′′ under both
pk and pk′, and output both encryptions as well as the new public key pk′′. A
group of users with public keys pk1, . . . , pkn then generates the shared key in an
iterative fashion as follows. Run the universal sampler on Dpk1,pk2 , obtaining a
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new public key pk′
3, as well as encryptions of the corresponding secret key sk′

3

under both pk1, pk2. Notice that users 1 and 2 can both recover sk′
3 using their

secret keys. Then run the universal sampler on Dpk3,pk′
3
, obtaining a new public

key pk′
4 and encryptions of the corresponding secret key sk′

4. Notice that user
3 can recover sk′

4 by decrypting the appropriate ciphertext using sk3, and users
1 and 2 can recover sk′

4 by decrypting the other ciphertext using sk′
3. Continue

in this way until public key pk′
n+1 is generated, and all users 1 through n recover

the corresponding secret key sk′
n+1. Set sk′

n+1 to be the shared secret key.
For security, since an eavesdropper does not know any of the secret keys

and the ciphertexts are “as good as” fresh ciphertexts, he should not be able
to decrypt any of the ciphertexts in the procedure above. However, turning this
intuition into a security proof using the static notion of security is problematic.
The straightforward approach requires constructing a simulated Sampler where
the outputs on each of the circuits Dpki,pk

′
i

are fresh samples. Then, each of the
ciphertexts in the samples are replaced with encryptions of 0 (instead of the
correct secret decryption key). However, as there are n such circuits, a standard
incompressibility argument shows that Sampler must grow linearly in n. Thus
again, once the universal sampler is published, the number of users is capped.

Simulating at Fewer Points. To get around this issue, we devise a sequence of
hybrids where in each hybrid, we only need replace log n outputs of the sampler
with fresh samples. The core idea is the following. Say that a circuit Dpki,pk

′
i

has been “treated” if the public key pk′
i+1 outputted by the universal sampler

is freshly sampled and the corresponding ciphertexts are changed to encrypt 0
(instead of the secret key sk′

i+1). We observe that to switch circuit Dpki,pk
′
i

from
untreated to treated, circuit Dpki−1,pk′

i−1
needs to currently be treated so that

the view of the adversary is independent of the secret key sk′
i. However the status

of all the other circuits is irrelevant. Moreover, once we have treated Dpki,pk
′
i
,

we can potentially “untreat” Dpki−1,pk′
i−1

and reset its ciphertexts to the correct
values, assuming Dpki−2,pk′

i−2
is currently treated. Our goal is to start from no

treated circuits, and arrive at a hybrid where Dpkn,pk′
n

is treated, which implies
that the view of the adversary is independent of the shared secret skn+1.

This gives rise to an interesting algorithmic problem. The goal is to get a
pebble at position n, where the only valid moves are (1) placing or removing a
pebble at position 1, or (2) placing or removing a pebble at position i provided
there is currently a pebble at position i−1. We desire to get a pebble at position
n while minimizing the number of pebbles used at any time. The trivial solution
is to place a pebble at 1, then 2, and so on, requiring n pebbles. We show a
pebbling scheme that gets a pebble to position n using only ≈ log n pebbles by
removing certain pebbles as we go. Interestingly, the pebbling scheme is exactly
same as the one used in [6] in the context of reversible computation. The pebbling
scheme is also efficient: the number of moves is polynomial in n.

Using our pebbling algorithm, we derive a sequence of hybrids corresponding
to each move in the algorithm. Thus we show that the number of circuits that
need simulating can be taken to be ≈ log n.
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A New Universal Sampler Definition. Unfortunately, we run into a problem
when trying to base security on the basic static sampler definition of Hofheinz et
al. [23]. The issue stems from the fact that the simulator in the static definition
requires knowing all of the circuits Dpki,pk

′
i

up front. However, in our pebbling
approach, some of the pk′

i (and thus the Dpki,pk
′
i
) are determined by the sampler

Sampler - namely, all the pk′
i for which Dpki−1,pk′

i−1
is “untreated”. Thus we

encounter a circularity where we need to know Sampler to compute the circuit
Dpki,pk

′
i
, but we need Dpki,pk

′
i

in order to simulate the Sampler.
To get around this issue, we devise a new security notion for universal sam-

plers that allows for interactive simulation. That is, before the simulator outputs
Sampler, we are allowed to query it on various inputs, learning what the output
of the sampler will be on that input (called as the read query). Moreover, we are
allowed to feed circuit/sample pairs (C, s) (called as write query) interactively,
potentially after seeing some of the sample outputs, and the simulator will guar-
antee that the simulated Sampler will output s on C. For security, we require that
for a statically chosen query index i∗ and a circuit C∗ the simulator’s outputs
in the following two cases are computationally indistinguishable:

1. i∗th query is a read query on C∗.
2. i∗th query is a write query on (C∗, s∗) where s∗ is fresh sample from C∗.

This new definition allows us to avoid the circularity above and complete the
security proof for our NIKE protocol.

Construction. Before we describe our construction of universal samplers from
FE , we first describe a construction from iO that satisfies the above definition
of interactive simulation.

The universal sampler is an obfuscation of a circuit that has a puncturable
PRF key K hardwired in its description and on input C outputs C(;PRFK(C))
i.e. it uses the PRF key to generate the random coins. This is precisely the same
construction as given by Hofheinz et al. [23] for the static security case. To prove
that this construction satisfies the stronger definition of interactive simulation
we construct a simulator that works as follows. It first samples a fresh PRF key
K ′ and answers the read queries using it. At the end of the simulation, it outputs
an obfuscation of a circuit that has the PRF key K ′ as well as (Ci, si) for every
write query made by the adversary hardwired in its description. When run on
input C where C is one of the write queries, it outputs the corresponding s. On
other inputs, it outputs C(;PRFK′(C)).

The security is shown via a hybrid argument. The initial hybrid corresponds
to the output of the simulator when the challenge query (made at index i∗) is
a write query on (Ci∗ , si∗) where si∗ is a fresh random sample from Ci∗ . We
first change the obfuscated circuit to have the PRF key K ′ punctured at Ci∗ .
This is possible since the circuit does not use K ′ to compute the output on Ci∗ .
Relying on the security of puncturable PRF, we change si∗ from Ci∗(; r) where
r is random string to Ci∗(;PRFK′(Ci∗)). We then unpuncture the key K ′ and
finally remove Ci∗ , si∗ from the hardwired list.
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We adapt the above construction from iO to the FE setting using techniques
from [9,19]. Recall that the “obfuscated” universal sampler consists of � + 1
(� is the maximum size of the input circuit) function keys (where each func-
tion key computes a bit extension function) along with an initial ciphertext cφ

that encrypts the empty string φ and a prefix constrained PRF key K4. These
bit extension functions form a natural binary tree structure and “parsing” an
input circuit C corresponds to traveling along the path from the root to the
leaf labeled C. Each node x along the path from the root to C contains the
key K prefix constrained at x. The prefix constrained PRF key appearing at the
leaf C is precisely equal to the PRF value at C and we use this to generate a
“pseudorandom” sample from C.

We are now ready to describe the construction of our simulator. As in the iO
case, the simulator samples a random prefix constrained PRF key K ′ and uses
it to answer the read queries made by the adversary. Recall that for every write
query (Ci, si) the adversary makes, the simulator must ensure that the sampler
on Ci outputs si. The simulator accomplishes this by “tunneling” the underlying
binary tree along path Ci. To give a bit more details, the simulator “forces” the
function keys at every level i to output a precomputed value say Vi (instead of
the bit-extension) if the input to the function matches with a prefix of Ci. At
the leaf level, if the input matches Ci then the function outputs si. Illustration
of “tunneling” is given in Fig. 1. We now explain how this “tunneling” is done.

cφ

V1

c00 V2

V3

si

c011

c1

FE.Dec(FSK1, ·)

FE.Dec(FSK2, ·)

FE.Dec(FSK4, ·)

FE.Dec(FSK3, ·)

Fig. 1. Illustration of “tunneling” on Ci = 010 and κ = 3.

4 [19] used the term prefix-punctured PRF to denote the same primitive. We use the
term prefix constrained PRF as we feel that this name is more appropriate. This was
also suggested by an anonymous Eurocrypt reviewer.
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At a high level, the “tunneling” is achieved by triggering a hidden “trapdoor”
thread in the function keys using techniques illustrated in [2,19]. This technique
proceeds by first encrypting a set of precomputed values under a symmetric key
sk and hardwires them in the description of bit-extension function in each level.
The symmetric key sk is encrypted in the initial ciphertext cφ along with the
empty string and the prefix constrained PRF key. The trapdoor thread (that is
triggered only along the write query paths) uses this secret key sk to decrypt
the hardcoded ciphertext and outputs the appropriate pre-computed value.

To complete the security proof, we want to show that we can indistinguish-
ably “tunnel” the binary tree along a new path C∗

i and output s∗
i which is a

fresh random sample from C∗
i at the leaf. Recall that in the construction of Garg

et al. in [19] a single secret key sk is used to for computing the encryptions of
pre-computed values along multiple paths. But having a single secret key does
not allow us to “tunnel” along a new path C∗

i as this secret key already appears
in the initial ciphertext cφ. Hence, we cannot rely on the semantic security of
symmetric key encryption to augument the pre-computed values to include val-
ues along the new path C∗

i . In order to get around this issue, we use multiple
secret keys: one for each write query5 which enables us to “tunnel” along a new
path C∗

i .

2 Preliminaries

κ denotes the security parameter. A function μ(·) : N → R
+ is said to be neg-

ligible if for all polynomials poly(·), μ(k) < 1
poly(k) for large enough k. We will

use PPT to denote Probabilistic Polynomial Time algorithm. We denote [k] to
be the set {1, · · · , k}. We will use negl(·) to denote an unspecified negligible
function and poly(·) to denote an unspecified polynomial. We denote the iden-
tity polynomial by I(·) i.e. I(x) = x. All adversarial functions are modeled as
polynomial sized circuits. We assume that all cryptographic algorithms take the
security parameter in unary as input and would not explicitly mention it in all
cases. We assume without loss of generality that the length of the random tape
used by all cryptographic algorithms is κ.

A binary string x ∈ {0, 1}k is represented as x1 · · · xk. x1 is the most sig-
nificant (or the highest order bit) and xk is the least significant (or the lowest
order bit). The i-bit prefix x1 · · · xi of the binary string x is denoted by x[i]. We
denote |x| to be the length of the binary string x ∈ {0, 1}∗. We use x‖y to denote
concatenation of binary strings x and y. We say that a binary string y is a prefix
of x if and only if there exists a string z ∈ {0, 1}∗ such that x = y‖z.

We assume the reader’s familiarity with standard cryptographic primitives
like injective pseudorandom generator, puncturable pseudorandom functions,
indistinguishability obfuscation, functional encryption, symmetric and public
5 In the security definition, the number of write queries that an adversary could make

is apriori bounded. On the otherhand, the adversary could make an unbounded
number of read queries. Thus, we can fix the number of secret keys to be sampled
at the time of setup.



166 S. Garg et al.

key encryption. Below, we give the definition of Prefix Constrained Pseudo-
random Function [19].

Prefix Constrained Pseudorandom Function. A PCPRF is a tuple of algorithms
(KeyGenPCPRF ,PrefixCons) with the following syntax. KeyGenPCPRF takes the
security parameter (encoded in unary) and descriptions of two polynomials pin

and pout as input and outputs a PCPRF key S ∈ {0, 1}κ. PrefixCons is a deter-
ministic algorithm and has two modes of operation:

1. Normal Mode: In the normal mode, PrefixCons takes a PCPRF key S and
a string y ∈ ∪pin(κ)

k=0 {0, 1}k and outputs a prefix constrained key Sy ∈ {0, 1}κ

if |y| < pin(κ); else outputs Sy ∈ {0, 1}pout(κ). We assume that Sy contains
implicit information about |y|.

2. Repeated Constraining Mode: In the repeated constraining mode,
PrefixCons takes a prefix constrained key Sy and a string z ∈ ∪pin(κ)

k=0 {0, 1}k

as input and works as follows. If |y| + |z| > pin(κ), it outputs ⊥; else if
|y| + |z| < pin(κ), it outputs the prefix constrained key Sy‖z ∈ {0, 1}κ; else it
outputs Sy‖z ∈ {0, 1}pout(κ).

Henceforth, unless it is not directly evident from the context, we will not
explicitly mention if PrefixCons is in the normal mode or in the repeated con-
straining mode. We note that there is no explicit evaluation procedure for
PCPRF and the output of PCPRF on an input x ∈ {0, 1}pin(κ) is given by
PrefixCons(S, x) ∈ {0, 1}pout(κ).

We now give the formal definition of PCPRF.

Definition 1. A prefix constrained pseudorandom function PCPRF is a tuple
of PPT algorithms (KeyGenPCPRF ,PrefixCons) satisfying the following proper-
ties:

– Functionality is preserved under repeated constraining: For all κ, poly-
nomials pin(·), pout(·) and for all x ∈ ∪k∈[pin(κ)]{0, 1}k, y, z ∈ {0, 1}∗ s.t.
x = y‖z,

Pr[PrefixCons(PrefixCons(S, y), z) = PrefixCons(S, x)] = 1

where S ← KeyGenPCPRF (1κ, pin(·), pout(·)).
– Pseudorandomness at constrained prefix: For all κ, polynomials

pin(·), pout(·), for all x ∈ ∪k∈[pin(κ)]{0, 1}k, and for all poly sized adversaries A
|Pr[A(PrefixCons(S, x),Keys) = 1] − Pr[A(U�,Keys) = 1]| ≤ negl(κ)

where S ← KeyGenPCPRF (1κ, pin(·), pout(·)), � = |PrefixCons(S, x)| and
Keys = {PrefixCons(S, x[i−1]‖(1 − xi))}i∈[|x|].

The above properties are satisfied by the construction of the pseudorandom
function in [21].

Notation. For a key Si (indexed by i), we will use Si,y to denote PrefixCons(Si, y).
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3 TDP from IO in Poly Loss

We consider trapdoor permutation with pseudorandom sampling which is a
weakened notion than the traditional uniform sampling. We refer the reader
to [8] for a formal definition.

3.1 Construction of Trapdoor Permutations

In this section, we give a construction of trapdoor permutations and prove the
one-wayness assuming the existence polynomially hard iO, puncturable pseudo-
random function PRF and injective PRG (used only in the proof).

Theorem 1. Assuming the existence of one-way permutations and indistin-
guishablity obfuscation against polytime adversaries there exists a trapdoor per-
mutation with pseudorandom sampling.

Our Construction. Our construction uses the following primitives:

1. An indistinguishability Obfuscator iO.
2. A puncturable pseudorandom function PRF = (KeyGenPRF ,PRF,Punc).
3. A length doubling pseudorandom generator PRG : {0, 1}κ/2 → {0, 1}κ.
4. Additionally, in the proof of security, we use a length doubling injective

pseudorandom generator InjPRG : [2κ/4] → [2κ/2].

The formal description of our construction appears in Fig. 2.
Due to lack of space we give the proof of security in the full version of our

paper [20].

– KeyGen(1κ):
1. Sample {Si}i∈[κ] ← KeyGenPRF (1κ). For all i ∈ [κ], Si is a seed for a PRF

mapping i bits to κ bits. That is, PRFSi : {0, 1}i → {0, 1}κ.
2. The public key is given by iO(FS1,··· ,Sκ) where FS1,··· ,Sκ is described in

Figure 3 and the secret key is given by S1, · · · , Sκ.
– TDPPK : Run the obfuscated circuit iO(FS1,··· ,Sκ) on the given input

(x, σ1, · · · , σκ).
– TDP−1

SK : The Inverter IS1,··· ,Sκ is described in Figure 3.
– SampGen(SK): The sampler is given by iO(XS1,··· ,Sκ) where XS1,··· ,Sκ is

described in Figure 3.
– Samp: Run the circuit iO(XS1,··· ,Sκ) on the given randomness r.

Fig. 2. Construction of trapdoor permutation
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FS1,··· ,Sκ

Input: (i, σ1, · · · , σκ)
Constants: S1, · · · , Sκ

1. For all j ∈ [κ], check if σj = PRFSj (i[j]).
2. If any of the above checks fail, output ⊥.
3. Else, for all j ∈ [κ] compute σj = PRFSj ((i + 1)[j]) where i + 1 is computed

modulo 2κ.
4. Output (i + 1, σ1, · · · , σκ).

Padding: The circuit would be padded to size p(κ) where p(·) is a polynomial
that would be specified later.

XS1,··· ,Sκ

Input: r ∈ {0, 1}κ/2

Constants: S1, · · · , Sκ

1. Compute i = PRG(r).
2. For every j ∈ [κ], compute σj = PRFSj (i[j]).
3. Output (i, σ1, σ2, · · · , σκ).

Padding: The circuit would be padded to size q(κ) where q(·) is a polynomial
that would be specified later.

IS1,··· ,Sκ

Input: (i, σ1, · · · , σκ)
Constants: S1, · · · , Sκ

1. Check whether for all j ∈ [κ], σj = PRFSj (i[j]).
2. If any of the checks fail, output ⊥.
3. Else, for all j ∈ [κ] compute σj = PRFSj ((i − 1)[j]) where i − 1 is computed

modulo 2κ.
4. Output (i − 1, σ1, σ2, · · · , σκ).

Fig. 3. Public key, sampler and the inverter for the trapdoor permutations

4 Trapdoor Permutation from FE

We start by defining a weaker (with respect to pseudorandom sampling) notion
of trapdoor permutation.

Definition 2. An efficiently computable family of functions:

T DP = {TDPPK : DPK → DPK and PK ∈ {0, 1}poly(κ)}
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1. (PK, SK) ← KeyGen(1κ).
2. Samp ← SampGen(SK)

3. if(b = 0), x
$← DPK .

4. else, x ← Samp.
5. Output A(PK, Samp, x)

Fig. 4. ExpA,b,wPRS

over the domain DPK with associated (probabilistic) (KeyGen,SampGen) algo-
rithms is a weakly samplable trapdoor permutation if it satisfies:

– Trapdoor Invertibility: For any (PK,SK) ← KeyGen(1κ), TDPPK is a per-
mutation over DPK . For any y ∈ DPK , TDP−1

SK(y) is efficiently computable
given the trapdoor SK.

– Weak Pseudorandom Sampling: For any (PK,SK) ← KeyGen(1κ) and
Samp ← SampGen(SK), Samp(·) samples pseudo random points in the domain
DPK . Formally, for any polysized distinguisher A,

∣∣Pr
[
ExpA,0,wPRS = 1

] − Pr
[
ExpA,1,wPRS = 1

]∣∣ ≤ negl(κ)

where ExpA,b,wPRS is described in Fig. 4.
– One-wayness: For all poly sized adversaries A,

Pr

⎡

⎣A(PK,Samp, TDPPK(x)) = x

∣∣∣∣∣

(PK,SK) ← KeyGen(1κ)
Samp ← SampGen(SK)
x ← Samp

⎤

⎦ ≤ negl(κ)

Remark 2. The requirement of pseudorandom sampling considered in Bitanksy
et al.’s work [8] is stronger than the one considered here in sense that they require
the pseudorandomness property to hold even when given the random coins used
by KeyGen and the SampGen algorithms. We do not achieve the stronger notion
in this work. In particular, given the random coins used in SampGen the sampler’s
output is no longer pseudorandom. Therefore, our trapdoor permutations can be
only used in applications where an honest party runs the KeyGen and SampGen
algorithm. It cannot be used for example to achieve receiver privacy in EGL
Oblivious Transfer protocol [14].

In this section, we construct trapdoor permutation satisfying the Definition 2
from polynomially hard public key functional encryption, prefix puncturable
pseudorandom function, left half injective pseudorandom generator, strong ran-
domness extractor and public key encryption with random public keys.

Theorem 2. Assuming the existence of one-way permutations, single-key, selec-
tive secure, public key functional encryption and public key encryption with
(pseudo) random public keys, there exists a weakly samplable trapdoor permu-
tation.
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We now recall the special key structure [19] which forms a crucial part of our
construction of trapdoor permutation.

Notation. We treat 1i + 1 as 0i and φ + 1 as φ. Let LeftInjPRG be a left half
injective pseudorandom generator. Let τ be the size of public key output by
PK.KeyGen(1κ). Below, for every i ∈ [κ + τ ], Si ← KeyGenPCPRF (1κ.Ci(·), I(·))
where Ci(κ) = i and I(κ) = κ. Recall Si,x denotes a prefix constrained PRF key
Si constrained at a prefix x.

Special Key Structure.

Ux =
⋃

i∈[τ+κ]

Ui
x Ui

x =

{
{Si,x[i]} if |x| > i

{Si,x} otherwise

Vx =
⋃

i∈[τ+κ]

Vi
x Vi

x =

⎧
⎪⎨

⎪⎩

{Si,x[i] , Si,x[i]+1} if |x| > i and x = x[i]‖1|x|−i

{Si,x, Si,(x+1)‖0i−|x|} if |x| ≤ i

∅ if |x| > i and x �= x[i]‖1|x|−i

Wx =
⋃

i∈[τ+κ]

Wi
x Wi

x =

{
{LeftInjPRG0(Si,x[i])} if |x| ≥ i

∅ otherwise

For the empty string x = φ, these sets can be initialized as follows.

Uφ =
⋃

i∈[τ+κ]

Ui
φ Ui

φ = {Si}

Vφ =
⋃

i∈[τ+κ]

Vi
φ Vi

φ = {Si}

Wφ =
⋃

i∈[τ+κ]

Wi
φ Wi

φ = ∅

Jumping ahead, the set of keys in Ux would be used by the sampler to
generate the set of associated signatures on the sampled point. The set Wx (called
as the vestigial set in [19]) is used to check the validity of input i.e. checking
whether the input belongs to the domain. The set Vx is used to generate the
associated signatures on the “next” point as defined by the permutation.

Our Construction. The construction of weakly samplable trapdoor permutation
uses the following primitives:

1. A single-key, selective secure public key functional encryption scheme FE .
2. A prefix constrained pseudorandom function PCPRF .
3. An injective length doubling pseudorandom generator InjPRG : {0, 1}κ/8 →

{0, 1}κ/4

4. A length doubling Left half injective pseudorandom generator LeftInjPRG :
{0, 1}κ → {0, 1}2κ

In the construction, we denote SK.Encsk1,··· ,skn
(m) to be SK.Encskn

(SK.Encskn−1(· · · SK.Encsk1(m))). The formal description our construction
appears in Fig. 5.
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Setting rand(·) We set rand(κ) to be the maximum number of random bits needed
to generate τ + κ encryptions under γ1, · · · , γκ as well as τ + κ + 1 encryptions
under the public keys pk.

Due to shortage of space, we defer the proof of Theorem 2 to the full version
of the paper [20].

5 Universal Samplers

Intuitively, a universal sampler, defined by Hofheinz et al. [23] is a box that takes
as input the description of a sampling procedure, and outputs a fresh-looking
sample according to the sampling procedure. The difficulty is that we want the
box to be public code, and that every user, when they run the sampler on a
particular procedure, gets the same result. Moreover, we want the sample to
appear as if it were a fresh random sample.

5.1 Definition

A Universal Sampler consists of an algorithm Setup that takes as input a security
parameter κ (encoded in unary) and a size bound �(·), random tape size r(·) and
an output size t(·). It outputs a program Sampler. Sampler takes as input a circuit
of size at most �(κ), uses r(κ) bits of randomness and outputs an t(κ)-bit string.

Intuitively, Sampler(C) will be a pseudorandom sample from C: Sampler(C) =
C(s) for some s pseudorandomly chosen based on C. We will actually not for-
malize a standalone correctness requirement, but instead correctness will follow
from our security notion.

For security, we ask that the sample output by Sampler(C) actually looks
like a fresh random sample from C. Unfortunately, formalizing this requirement
is tricky. Hofheinz et al. [23] defined two notions: the first is a “static” and
“bounded” security notion, while the second stronger notion is “adaptive” and
“unbounded”. The latter definition requires random oracles, so it is unfortu-
nately uninstantiable in the standard model. We will provide a third definition
which strikes some middle ground between the two, and is still instantiable in
the standard model.

Definition 3. A Universal Sampler given by Setup is n-time statically secure
with interactive simulation if there exists an efficient randomized simulator Sim
such that the following hold.

– Sim takes as input κ (encoded in unary) and three polynomials �(·), r(·), t(·)
(for ease of notation, we denote � = �(κ), r = r(κ) and t = t(κ)), and ulti-
mately will output a simulated sampler Sampler. However, before doing so, Sim
provides the following interface for additional input:

• Read queries: here the user submits an input circuit C of size at most �,
that uses r bits of randomness and has output length t. Sim will respond
with a sample s that will ultimately be the output of the simulated sampler
on C. Sim supports an unbounded number of Read queries.
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- KeyGen(1κ):
1. For each i ∈ [τ + κ], sample Si ← KeyGenPCPRF (1κ, Ci(·), I(·)) where

Ci(κ) = i and I(κ) = κ. Sample K ← KeyGenPCPRF (1κ, quad(·), rand(·))
where quad(κ) = 2(κ + τ) + 1. For every i ∈ [τ + κ], initialize Vi

φ := Si,
Vφ = i∈[τ+κ] V

i
φ and Wφ = ∅.

2. Let Extw : {0, 1}τ+κ → {0, 1}κ/8 be a (κ/4, negl(κ)) strong randomness

extractor with seed length q(κ). Sample a seed w
$← {0, 1}q(κ) for the

extractor Ext.
3. Sample (PK1

i ,MSK1
i ) ← FE.Setup(1κ) for all i ∈ [τ + κ + 1].

4. Sample sk1 ← SK.KeyGen(1κ) where |sk1| = p(κ) and let Π1 ←
SK.Encsk1(π1) and Λ1 ← SK.Encsk1(λ1) where π1 = 0 1(κ) and λ1 =

0 1(κ). Here, 1(·) and 1(·) are appropriate length functions specified later.

5. Sample v
$← {0, 1}κ/4.

6. For each i ∈ [τ + κ], generate FSK1
i ← FE.KeyGen(MSK1

i , F
1
i,PK1

i+1,Π1
)

and FSK1
τ+κ+1 ← FE.KeyGen(MSK1

τ+κ+1, G
1
v,Λ1,w), where F 1

i,PK1
i+1,Π1

and

G1
v,Λ1,w are circuits described in Figure 6.

7. Let c1φ = FE.EncPK1(φ,Vφ,Wφ, Kφ, 0p(κ), 0).
8. The Public Key PK is given by ({FSK1

i }i∈[τ+κ+1], c
1
φ) and the secret key

SK is given by (S1, · · · , Sτ+κ).
- TDPPK : The evaluation algorithm takes as input (x, σ1, . . . , στ+κ) and out-

puts (x + 1, σ1, . . . , στ+κ) if the associated signatures σ1, . . . , στ+κ are valid.
It proceeds as follows:
1. For i ∈ [τ + κ], compute c1x[i−1] 0, c

1
x[i−1] 1 := FE.Dec(FSK1

i , c
1
x[i−1]

).

2. Obtain dx = ((ψ1, . . . , ψτ+κ), (βj , . . . , βτ+κ)) as output of
FE.Dec(FSK1

τ+κ+1, c
1
x). that

f(x) is the smallest k such that x = x[k] 1τ+κ−k.
3. Output ⊥ if LeftInjPRG0(σi) = ψi for any i ∈ [τ + κ].
4. For each i ∈ [j − 1], set σi = σi.
5. For each i ∈ {j, . . . , τ + κ}, set γi = LeftInjPRG1(σi) and σi

as SK.Decγj ,...,γτ+κ(βi), iteratively decrypting βi encrypted under
γj , . . . , γτ+κ.

6. Output (x + 1, σ1, · · · , στ+κ).

Here, j = f(x) where f(x) is the smallest k 

Fig. 5. Construction of TDP from FE

• Set queries: here the user submits in input circuit C of size at most �,
that uses r bits of randomness with output length t, as well as a sample
s of length t. Sim will record (C, s), and set the output of the simulated
sampler on C to be s. Sim supports up to n Set queries. We require that
there is no overlap between circuits C in Read and Set queries, and that
all Set queries are for distinct circuits.

• Finish query: here, the user submits nothing, and Sim closes its interfaces,
terminates, and outputs a sampler Sampler.
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– TDP−1
SK : The inversion algorithm on input (x, σ1, · · · , στ+κ) checks for all

i ∈ [τ + κ] if σi = Si,x[i] and if so it outputs (x − 1, σ1, · · · , στ+κ) where x − 1

is computed modulo 2τ+κ and for all i ∈ [τ + κ] σi = Si,(x−1)[i]
.

– SampGen(SK) :
1. Choose K ← KeyGenPCPRF (1κ, 2υ(·) + 1, rand(·)) and K ←

KeyGenPCPRF (1κ, υ(·), I(·)) where υ(κ) = τ . Initialize Ui
φ := Si and

Uφ = i∈[τ+κ] U
i
φ.

2. For every i ∈ [τ + 1], choose (PK2
i ,MSK2

i ) ← FE.Setup(1κ).
3. Sample sk2 ← SK.KeyGen(1κ) where |sk2| = p(κ) and set Π2 ←

SK.Encsk2(π2) and Λ2 ← SK.Encsk2(λ2) where π2 = 0 2(κ) and λ2 =

0 2(κ). Here 2(·) and 2(·) are appropriate length functions specified later.
4. For each i ∈ [τ ], generate FSK2

i ← FE.KeyGen(MSK2
i , F

2
i,PK2

i+1,Π2
) and

FSK2
τ+1 ← FE.KeyGen(MSK2

τ+1, G
2
Λ2) where F 2

i,PK2
i+1,Π2

, G2
Λ2 are de-

scribed in Figure 7.
5. Let c2φ ← FE.EncPK2

1
(φ, Uφ, K, K, 0p(κ), 0).

6. The sampler circuit has {FSK2
i }i∈[τ+1] and c2φ hardwired in its description

and works as described below.
- Samp: The sampler takes pk where (pk, sk) ← PK.KeyGen(1κ). It proceeds as

follows:
1. For i ∈ [τ ], compute c2pk[i−1] 0, c

2
pk[i−1] 1 := FE.Dec(FSK2

i , c
2
pk[i−1]

).

2. Obtain (pk, hpk) = (pk, (pk, ρ, ρ1, · · · , ρτ+κ)) as output of
FE.Dec(FSK2

τ+1, c
2
pk).

3. Compute Kpk := PK.Decsk(ρ) and σi := PK.Decsk(ρi) for all i ∈ [τ + κ]
4. Output (pk Kpk, σ1, · · · , στ+κ).

Fig. 5. (continued)

Sim must be capable of taking the queries above in any order.
– Correctness. Sampler is consistent with any queries made. That is, if a Read

query was made on C and the response was s, then Sampler(C) = s. Similarly,
if a Set query was made on (C, s), then Sampler(C) = s.

– Indistinguishability from honest generation. Roughly, this requirement
says that in the absence of any Write queries, and honest and simulated sam-
pler are indistinguishable. More precisely, the advantage of any polynomial-
time algorithm A is negligible in the following experiment:

• The challenger flips a random bit b. If b = 0, the challenger
runs Sampler ← Setup(1κ, �, r, t). If b = 1, the challenger initiates
Sim(1κ, �, r, t).

• A is allowed to make Read queries on arbitrary circuits C of size at most
�, using r bits of randomness and output length t. If b = 0, the challenger
runs s ← Sampler(C) and responds with s. If b = 1, the challenger for-
wards C to Sim as a Read query, and when Sim responds with s, the
challenger forwards s to A.
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F 1
i,PK1

i+1,Π1

Hardcoded Values: i,PK1
i+1, Π1.

Input: (x ∈ {0, 1}i−1, Vx,Wx, Kx, sk, mode)

1. If (mode = 0)

(a) Output FE.EncPK1
i+1

(x 0,Vx 0,Wx 0, Kx 0, sk,mode; Kx 0) and

FE.EncPK1
i+1

(x 1,Vx 1,Wx 1, Kx 1, sk,mode; Kx 1), where for b ∈ {0, 1},

Kx b = PrefixCons(Kx, b 0) and Kx b = PrefixCons(Kx, b 1) and
(Vx 0,Wx 0), (Vx 1,Wx 1) are computed using the efficient procedure
from the Computability Lemma [20]

2. Else, compute π1 ← SK.Decsk1(Π1) and parse π1 as a set of tuples of the form
(z, c1z). Recover (x||0, c1x 0) and (x 1, c1x 1) from π1. Output c1x 0 and c1x 1.

G1
v,Λ1,w

Hardcoded Values: v, Λ1, w
Input: x ∈ {0, 1}τ+κ,Vx,Wx, Kx, sk1,mode

1. If (InjPRG(Extw(x)) = v) then output ⊥.
2. If mode = 0, ( that f(x) is the

j such that x = x[j] 1τ+κ−j .)
(a) For each i ∈ [τ + κ], set ψi = LeftInjPRG0(Si,x[i]) (obtained from Wi

x for

i ≤ j and from Vi
x for i > j).

(b) For each i ∈ {j, . . . , τ + κ} set γi = LeftInjPRG1(Si,x[i]) and βi =
SK.Encγj ,··· ,γτ+κ(Si,x[i]+1), encrypting Si,x[i]+1 under γj , . . . γτ+κ using

PrefixCons(Kx, 0) as the random tape. In the above, Si,x[i] and Si,x[i]+1

are obtained from V i
x for all i ∈ [j, τ + κ].

(c) Output ((ψ1, . . . , ψτ+κ), (βj , . . . , βτ+κ))
3. Else, recover (x, dx) from SK.Decsk1(Λ1) and output dx.

Below, j = f(x) where f(x) is the smallest k
smallest

Fig. 6. Circuits for simulating public key.

• Finally, A sends a Finish query. If b = 0, the challenger then sends
Sampler to A. If b = 1, the challenger sends a Finish query to Sim, gets
Sampler from Sim, and forwards Sampler to A.

• A then tries to guess b. The advantage of A is the advantage A has in
guessing b.

– Pseudorandomness of samples. Roughly, this requirement says that, in the
simulated sampler, if an additional Set query is performed on (C, s) where s
is a fresh sample from C, then the simulated sampler is indistinguishable from
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F 2
i,PK2

i+1,Π2

Hardcoded Values: i,PK2
i+1, Π2.

Input: (x ∈ {0, 1}i−1, Ux, Kx, Kx, sk2, mode)

1. If (mode = 0),
(a) Output FE.EncPK2

i+1
(x 0,Ux 0, Kx 0, Kx 0, sk,mode; K x 0) and

FE.EncPK2
i+1

(x 1,Ux 1, Kx 1, Kx 1, sk,mode; K x 1), where for b ∈ {0, 1},

Kx b = PrefixCons(Kx, b 0) and K x b = PrefixCons(Kx, b 1) and
Ux 0 and Ux 1 are computed as described in Computability Lemma
[20].

2. Else recover (x||0, c2x 0) and (x 1, c2x 1) from SK.Decsk2(Π2) and output c2x 0

and c2x 1.

G2
Λ2

Hardcoded Values: Λ2

Input: pk ∈ {0, 1}κ,Upk, Kpk, Kpk, sk2,mode

1. If mode = 0,
(a) For all i ∈ [τ + κ], compute σi := Si,(pk Kpk)[i]

from Upk.

(b) Compute ρ ← PK.Encpk(Kpk) and ρi ← PK.Encpk(σi) for all i ∈ [τ + κ]
using PrefixCons(Kpk, 0) as the random tape.

(c) Output (pk, (pk, ρ, ρ1, · · · , ρτ+κ)).
2. Else, recover (pk, hpk) from SK.Decsk2(Λ2) and output hpk.

Fig. 7. Circuits for simulating sampler

the case where the Set query was not performed. More precisely, the advantage
of any polynomial-time algorithm B is negligible in the following experiment:

• The challenger flips a random bit b. It then initiates Sim(1κ, �, r, t).
• B first makes a Challenge query on circuit C∗ of size at most �, using

r bits of randomness and output length t, as well as an integer i∗.
• B is allowed to make arbitrary Read and Set queries, as long as the

number of Set queries is at most n−1, and the queries are all on distinct
circuits that are different from C∗. The Read and Set queries can occur
in any order; the only restriction is that the Challenge query comes
before all Read and Set queries.

• After i∗ − 1 Read and Set queries, the challenger does the following:
∗ If b = 0, the challenger makes a Read query to Sim, and forwards
the response s∗ to B.
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∗ If b = 1, the challenger computes a fresh random sample s∗ ←
C∗(r), and makes a Set query to Sim on (C∗, s∗). Then it gives s∗

to B.
Thus the i∗th query made to Sim is on circuit C∗, and the only difference
between b = 0 and b = 1 is whether the output of the simulated sampler
will be a pseudorandom sample or a fresh random sample from C∗.

• B is allowed to continue making arbitrary Read and Set queries, as long
as the number of Set queries is at most n − 1 and the queries are all on
distinct circuits that are different from C∗.

• Finally B makes a Finish query, at which point the challenger makes a
Finish query to Sim. It obtained a simulated sampler Sampler, which it
then gives to B.

• B then tries to guess b. The advantage of B is the advantage B has in
guessing b.

5.2 Construction from FE

In this section, we will construct Universal Samplers that satisfies Definition 3
from polynomially hard, compact Functional Encryption and Prefix Constrained
Pseudorandom Function (which is implied by Functional Encryption).

Theorem 3. Assuming the existence of selective secure, single key, compact
public key functional encryption there exists an Universal Sampler scheme sat-
isfying Definition 3.

Our Construction. The formal description our construction appears in Fig. 8.
Due to lack of space, we give the proof of security in the full version of the

paper [20].

6 Multiparty Non-interactive Key Exchange

In this section, we build multiparty non-interactive key exchange for an
unbounded number of users. Moreover, in constrast to the original multilinear
map protocols [15], our protocol has no trusted setup.

6.1 Definition

A multiparty key exchange protocol consists of:

– Publish(κ) takes as input the security parameter and outputs a user secret sv
and public value pv. pv is posted to the bulletin board.

– KeyGen({pvj}j∈S , svi, i) takes as input the public values of a set S of users,
plus one of the user’s secrets svi. It outputs a group key k ∈ K.
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Setup

- Input: 1κ and three polynomials (·), r(·), t(·).
- Sampled Ingredients:

1. Sample S ← KeyGenPCPRF (1κ (·), r(·)) and K ←
KeyGenPCPRF (1κ, rand(·), I(·)) where rand(κ) = 2 (κ) and I(κ) = κ. For
ease of notation, we denote = (κ) and r = r(κ).

2. For every i ∈ [ + 1], sample (PKi,MSKi) ← FE.Setup(1κ) .
3. For every j ∈ [n], sample skj ← SK.KeyGen(1κ). Let |skj | = p(κ). For

i ∈ [ + 1] and j ∈ [n], let Πj
i ← SK.Encskj (π

j
i ) where πj

i = 0len(κ) . Here
len(·) is an appropriate length function that would be specified later. For
all i ∈ [ + 1], let Πi = {Πj

i }j∈[n].
- Functional encryption ciphertext and keys to simulate obfuscation
of Setup:
1. For each i ∈ [ ], generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Πi) and

FSK +1 ← FE.KeyGen(MSK +1, GΠ +1), where Fi,PKi+1,Πi and GΠ +1 are
circuits described in Figure 9.

2. For every j ∈ [n], Zj = (j, ⊥). Let Z := {Zj}j∈[n].
3. Let cφ = FE.EncPK1(φ, S, K, Z, 0).
4. Output (cφ, {FSKi}i∈[ +1]) as the sampler.

Evaluating the Sampler

- Input: Circuit C of size (padded with dummy symbols if its size is less than
) using r bits of randomness and output length t and the sampler given by

(cφ, {FSKi}i∈[ +1]).
- Evaluation:

1. For i ∈ [ ], compute cC[i−1] 0, cC[i−1] 1 := FE.Dec(FSKi, cC[i−1]).

2. Compute dC as output of FE.Dec(FSK +1, cC).
3. Output dC .

Fig. 8. Setup and evaluating the sampler

For correctness, we require that all users generate the same key:

KeyGen({pvj}j∈S , svi, i) = KeyGen({pvj}j∈S , svi′ , i′)

for all (svj , pvj) ← Publish(κ) and i, i′ ∈ S. For security, we have the follow-
ing:

Definition 4. A non-interactive multiparty key exchange protocol is statically
secure if the following distributions are indistinguishable for any polynomial-sized
set S:

{pvj}j∈S , k where (svj , pvj)←Publish(κ)∀j ∈S, k←KeyGen({pvj}j∈S , s1, 1) and

{pvj}j∈S , k where (svj , pvj) ← Publish(κ)∀j ∈ G, k ← K
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Fi,PKi+1,Πi

Hardcoded Values: i, PKi+1, Πi.
Input: C ∈ {0, 1}i−1, SC , KC , Z, mode

1. If (mode = 0),
(a) Output FE.EncPKi+1(C 0, SC 0, KC 0, Z,mode; K C 0) and

FE.EncPKi+1(C 1, SC 1, KC 1, Z,mode; K C 1), where for b ∈ {0, 1},
KC b = PrefixCons(KC , b 0) and K C b = PrefixCons(KC , b 1) and
SC b := PrefixCons(SC , b).

2. Else,
(a) Let j∗ be the minimum value of j ∈ [n] such that Zj+1 = (j + 1, ⊥).

(b) Let πj∗
i ← SK.Decskj∗ (Πj∗

i ) where πj∗
i is a collection of elements of

the form (C , ·, ·) for C ∈ {0, 1}i−1. Recover (C, (C b, cC b), (C (1 −
b), cC (1−b))) (if there are more than one value of (C, ·, ·), select the lexi-

cographically first such value) from πj∗
i and output (cC 0, cC 1).

GΠ +1

Hardcoded Values: Π +1

Input: C ∈ {0, 1} , SC , KC , sk,mode

1. If mode = 0, output C(SC).
2. Else, let j∗ be the minimum value of j ∈ [n] such that Zj+1 = (j + 1, ⊥).

Recover (C, dC) from SK.Decskj∗ (Πj∗
i ) and output dC .

Fig. 9. Circuits for simulating public key.

Notice that our syntax does not allow a trusted setup, as the original con-
structions based on multilinear maps [11,13,15] require. Boneh and Zhandry [12]
give the first multiparty key exchange protocol without trusted setup, based on
obfuscation. A construction of obfuscation from a finite set of assumptions with
polynomial security appears implausible due to an argument of [18]. Notice as
well that our syntax does not allow the key generation to depend on the number
of users who wish to share a group key. To date, prior key exchange protocols
satisfying this property relied on strong knowledge variants of obfuscation [1].
Recently Khurana, Rao and Sahai in [25] constructed a key exchange protocol
supporting unbounded number of users based on indistinguishability obfuscation
and a tool called as somewhere statistically binding hash functions [24]. Here,
we get an unbounded protocol based on functiona encryption only, and without
using complexity leveraging.
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6.2 Construction

Our construction will use the universal samplers built in Sect. 5, as well as any
public key encryption scheme.

– Publish(κ). Run (sk, pk) ← PK.KeyGen(κ). Also run the universal sampler
setup algorithm Sampler ← Setup(κ, �, t) where output size � and circuit size
bound t will be decided later. Output pv = (pk,Sampler) as the public value
and keep sv = sk as the secret value.

– KeyGen({(pkj ,Samplerj)}j∈S , ski, i). Interpret S as the set [1, n] for n = |S|,
choosing some canonical ordering for the users in S (say, the lexicographic
order of their public values). Define Sampler = Sampler1.
Define Cpk,pk′ for two public keys pk, pk′ to be the circuit that samples a
random (sk′′, pk′′) ← PK.KeyGen(κ), then encrypts sk′′ under both pk and
pk′, obtaining encryptions c and c′ respectively, and then outputs (pk′′, c, c′).
Let Dpk,pk′ be a similar circuit that samples a uniformly random string sk′′ in
the key space of PKE , encrypts sk′′ to get c, c′ as before, and outputs (0, c, c′)
where 0 is a string of zeros with the same length as a public key for PKE . Let
� the length of (pk′′, c, c′) and let t be the size of Cpk,pk′ (which we will assume
is at least as large as Dpk,pk′).
Next, define pk′

2 = pk1, and recursively define (pk′
j+1, cj , c

′
j) =

Sampler(Cpkj ,pk′
j
) for j = 2, . . . , n − 1. Define sk′

j+1 to be the secret key cor-
responding to pk′

j+1, which is also the secret key encrypted in cj , c
′
j . Finally,

define (0, cn, c′
n) = Sampler(Dpkn,pk′

n
), and define sk′

n+1 to be the secret key
encrypted in cn, c′

n.
First, it is straightforward that given {pkj}j∈[n] and Sampler, it is possible to
compute pk′

j , cj , c
′
j for all k ∈ [2, n]. Thus anyone, including an eavesdropper,

can compute these values.
Next, we claim that if additionally given secret keys skj or sk′

j , it is possible to
compute sk′

j+1. Indeed, sk′
j+1 can be computed by decrypting cj (using skj) or

decrypting c′
j (using sk′

j). By iterating, it is possible to compute sk′
k for every

k > j. This implies that all users in [n] can compute skn+1.

Security. We now argue that any eavesdropper cannot learn any information
about sk. Our theorem is the following:

Theorem 4. If PKE is a secure public key encryption scheme and Setup is a
m-time statically secure universal sampler with interactive simulation, the the
construction above is a statically secure NIKE for up to 2m users. In particular,
by setting m = κ, the scheme is secure for an unbounded number of users.

Due to lack of space, we give the proof of Theorem 4 in the full version of the
paper [20].
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Abstract. In this paper, a new tool searching for impossible differentials
is presented. Our tool can detect any contradiction between input and
output differences. It can also take into account the property inside the
S-box when its size is small e.g. 4 bits. This is natural for ciphers with bit-
wise diffusion like PRESENT, while finding such impossible differentials
for ciphers with word-wise diffusion is novel. In addition, several tech-
niques are proposed to evaluate 8-bit S-box. The tool improves the num-
ber of rounds of impossible differentials from the previous best results for
Midori128, Lilliput, and Minalpher. The tool also finds new impossible
differentials for ARIA and MIBS. We manually verify the impossibility
of the searched results, which reveals new structural properties of those
designs. The tool can be implemented by slightly modifying the pre-
vious differential search tool using Mixed Integer Linear Programming
(MILP). This motivates us to discuss the usage of our tool particular for
the design process. With this tool, the maximum number of rounds of
impossible differentials can be proven under reasonable assumptions and
the tool is applied to various concrete designs.

Keywords: Symmetric-key · Impossible differential · Mixed integer
linear programming · Midori · Lilliput · Minalpher · ARIA · MIBS

1 Introduction

Designing symmetric-key primitives becomes more and more complicated to
simultaneously satisfy various goals such as security against many notions, effi-
ciency in high-end software, low-implementation cost in hardware, and so on.

A popular design approach is substitution-permutation network (SPN), in
which a state is composed of small words, and is updated by iteratively applying
a round function consisting of a non-linear layer and a linear layer. In the non-
linear layer, the state is updated by looking up a word-wise precomputed table
called S-box. In the linear layer, the state is mixed with some linear operations.

A lot of designs were proposed in the last decade. It is now necessary for the
community to carefully but quickly evaluate their security. Automated evalua-
tion tools are useful to evaluate various designs in short term. Regarding the
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part III, LNCS 10212, pp. 185–215, 2017.
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differential cryptanalysis and linear cryptanalysis, automated tools have been
well-developed. In particular, evaluating the lower bound of the number of active
S-boxes with mixed-integer-linear programming (MILP) is becoming popular in
the design of SPN primitives [1]. Meanwhile, automated tools for other cryptana-
lytic approaches are not as sophisticated as differential and linear cryptanalysis.

Impossible differential cryptanalysis [2,3] is one of the most major and effec-
tive cryptanalytic approaches. In short, for a target keyed cipher EK , it exploits
a pair of input and output differences (Δi,Δo) that cannot be connected for
any K. Namely, two input values x, x′ satisfying x ⊕ x′ = Δi never satisfy
EK(x) ⊕ EK(x′) = Δo.

Such (Δi,Δo) are detected by the miss-in-the-middle approach [4]. The first
automated search attempt was done in [3] with a technique called shrink. It
shrinks the word size to 3 bits and finds impossible differentials of the global
structure of the cipher by exhaustively testing all possible differences and values.
The shrink technique is useful when the cipher consists of small number of words
with big word size, e.g. 4 words of 32 bits in Skipjack, while the recent design
trend is using many words with small word size, e.g. 16 words of 8 bits in AES.

Kim et al. [5] presented the automated tool called U-method. Suppose that
one wants to examine if (Δi,Δo) is impossible. First it propagates Δi in forwards
(with F ) by rf rounds, and checks if the difference of each word is known active,
active, inactive, or unknown. Then, it propagates Δo in backwards (with F−1)
by rb rounds and checks the same information. Finally, it finds contradiction in
the middle, detecting that (Δi,Δo) is impossible for rf + rb rounds.

Several researches extended the U-method, e.g. UID-method by Luo et
al. [6,7] or some extension by Wu and Wang [8]. Those detect more compli-
cated contradiction than the U-method. Although some advancement was made,
usability of the previous tools is limited as explained below.

– To be as generic as possible, the recent tools consider complicated differential
impact through the linear layer, which requires more sensitive implementation.
Even with this effort, only particular contradictions can be analyzed.

– Most of the previous tools cannot take into account differential property inside
the S-box. Several analysis against a particular S-box in a particular primitive
may analyze its differential property [9,10], however such an analysis cannot
be extended to a generic tool.

– Most of the previous tools for impossible differential cryptanalysis cannot be
used to evaluate other cryptanalytic approaches, e.g. differential and linear
cryptanalysis. Derbez and Fouque proposed a tool for the meet-in-the-middle
attack that can also be used for impossible differential cryptanalysis [11]. How-
ever, it cannot find better impossible pairs compared to [5,6,8].

Our Contributions. In this paper, we propose a new automated tool to find
impossible differentials. Our tool is based on the previous MILP-based tools for
(standard) differential cryptanalysis, which models S-boxes in bitwise [12–14].

In the differential search with MILP, the attacker describes possible differen-
tial propagation patterns in a round function by using linear inequalities. Then,
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the attacker runs a solver for MILP, which returns the minimum number of
active S-boxes under the given propagation patterns. In this research, to exam-
ine the impossibility of (Δi,Δo), we simply add constraints to fix the input and
output differences to (Δi,Δo). Due to the added constraints, the lower bound of
the number of active S-boxes usually increases. In some case, (Δi,Δo) cannot be
satisfied, thus the MILP solver returns an error code implying that no solution
exists. In other words, Δi and Δo are impossible pairs.

We then iterate this test to examine multiple pairs of (Δi,Δo) e.g. all pairs
with 1 active word both in input and output. We note that, for all existing
ciphers, the longest impossible differentials have only 1 active word in both
input and output. Thus, it is reasonable to conjecture that if such impossible
differentials do not exist, any impossible differentials do not.

Our tool leads to stronger cryptanalytic results than the previous tools owing
to the following advantages.
Analyzing inside S-boxes: The previous differential-bound search using MILP

[12] can model the possible differential propagation patterns in the differential
distribution table (DDT) of the S-box. Our tool inherits this advantage. Thus
impossible differentials taking into account DDT can be found.

Arbitrary Contradiction: The MILP solver automatically judges whether or
not the solution exists. Thus, the attacker does not have to predict the mech-
anism of contradiction in advance, which significantly increases the versatility
of the tool.

Multi-purpose Tool: We convert the previous MILP-based differential search
into impossible differential search by just adding constraints to fix input and
output differences. Thus only with a single tool, security against differential
cryptanalysis and impossible differential cryptanalysis can be evaluated. This
feature is especially useful for future primitive designers who need to evaluate
both cryptanalyses.

Arbitrary S-box Mode: MILP requires too many inequalities to represent
differential propagations in DDT of 8-bit S-boxes. Thus, the tool is infeasible
for 8-bit S-boxes in a straightforward manner. Here, we introduce an arbitrary
S-box where impossible differentials for the arbitrary S-box are always valid
for arbitrary S-box choice. The arbitrary S-box can be described efficiently,
which enables us to evaluate 8-bit S-boxes. We note that previous work on
MILP based tool aimed to model DDT precisely. One can see the catchphrase
“MILP whose feasible region is exactly the set of all valid differential” in
[13,15], while modeling 8-bit S-box precisely is infeasible. Our approach is
opposite of previous work, which describes DDT only roughly but can be
executed in practice.

Quick Search for Truncated Impossible Differential: A single pair of input
and output differences can be impossible for more rounds than truncated
differentials. Meanwhile, evaluating all the pairs is infeasible and the search
range is often limited to single-active word. Here we present a technique to
make the tool more efficient only by aiming truncated impossible differentials,
which can be implemented only by changing the constraints of input and
output differences.
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Table 1. Application results. ‘KR’ denotes ‘key recovery.’

Target Ref #Rounds Search mode Goal Remarks

Prev. Ours

Midori128 [16] 6 7 Specific S-box Characteristic

Lilliput [17] 8 9 Specific S-box Characteristic

Minalpher [18] 6.5 7.5 Arbitrary S-box Truncated Large state

ARIA [19] 4 4 Arbitrary S-box Truncated 8-bit S-box, improve KR

MIBS [20] 8 8 Specific S-box Characteristic New impossible differentials

Note that running time of our tool for a single pair of input and output differ-
ences is significantly shorter than the differential search. This can be explained
that the solver can stop only by detecting one characteristic. In the previous dif-
ferential bound search, the bottleneck of the tool is increasing the lower bound.
Finding some upper bound (some solution of the system) is usually fast.

We apply the proposed tool to various designs. The results improving the
existing impossible differentials are summarized in Table 1. Although one of
the advantages of the tool is that the attacker can detect impossible differ-
entials without analyzing contradicting reasons, we manually analyze why the
detected (Δi,Δo) is impossible. The manual verification not only demonstrates
the correctness of the tool, but also reveals the structural properties of the tar-
get designs that have not been known before. We believe that the contradicting
reasons analyzed in this paper for Midori128, Lilliput, and Minalpher lead to
new understanding about their designs.

Our automated tool is useful to test many design choices during the design
process of new primitives. Thus, we also discuss the usage of the tool for the
design. For example, when the tool finds several impossible pairs of (Δi,Δo),
the designers may want to patch the design to avoid such (Δi,Δo). By using
the arbitrary S-box mode, we can easily check whether (Δi,Δo) is dependent on
the S-box. If it is dependent on the S-box, it may be prevented by replacing the
S-box. If it is independent, it needs to modify the linear layer to prevent it.

Moreover, because it catches any contradiction, the tool provides a certain
level of provable security about the existence of impossible differentials with rea-
sonable assumptions and reasonable search range. In details, provable security
can be discussed when a single word is active in the input and output differ-
ences, and we can set two-level of the assumption; (1) S-box is public and each
subkey is chosen independently and uniformly at random and (2) keyed S-box
is used and for each key the S-box is chosen uniformly at random. We apply the
tool to various designs to prove the maximum number of rounds of impossible
differentials. Finally, we propose an optimal pick technique which dramatically
reduces the execution time only when the tool is used for obtaining the proof.

Paper Outline. Notations and related work are introduced in Sect. 2. Frame-
work of our tool is introduced in Sect. 3. Application on various designs improving
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previous impossible differentials are shown in Sect. 4. A technique to reduce the
search complexity is explained in Sect. 5. Advantages of our tool in the design
process are explained in Sect. 6. Our research is partially overlapped with [21].
The relationship between [21] and this paper is explained in AppendixA.

2 Related Work

2.1 Terminologies in Impossible Differential Cryptanalysis

– We call a pair of input and output differences (Δi,Δo) that cannot be con-
nected an impossible differential characteristic or impossible characteristic.

– We call a pair of a closed set of input differences and a closed set of output
differences in which any pair cannot be connected as a truncated impossible
differential.

– When we do not distinguish the above two, we call it impossible differential.

2.2 Differential Search with Mixed Integer Linear Programming

Here we explain an automated tool for differential cryptanalysis, not impossible
differential cryptanalysis, which will be a base of our tool.

Mouha et al. [1] showed that the problem to search for the minimum num-
ber of active S-boxes can be modeled with mixed integer linear programming
(MILP). The approach is now very popular for designing a new primitive. For
example, resistance against differential and linear cryptanalysis of Skinny [22]
recently proposed at CRYPTO 2016 was evaluated by MILP.

The approach by Mouha et al. [1] is effective for evaluating word-oriented
ciphers, while several ciphers are not word-oriented. For example, PRESENT
[23] applies 4-bit S-box, then the bit-permutation moves four bits from a single
S-box to four different S-boxes. In order to apply MILP to such a structure, Sun
et al. [12] developed a method to model all possible differential propagations bit
by bit even for the S-box.

Modeling Differential Propagations with MILP. We explain how to model
valid differential propagations of PRESENT in bitwise. Note that one round of
PRESENT consists of subkey addition, S-box applications, and bit-permutation.

At first, binary variables to represent whether the bits are active or inac-
tive are defined for all rounds; x0, x1, . . . , x63 are for 64 bits in the plaintext,
x64, x65, . . . , x127 are for 64 bits after round 1, x128, x129, . . . , x191 are for 64 bits
after round 2, and so on. Each variable takes ‘1’ if the bit has the difference, and
takes ‘0’ otherwise. Then, the constraint to ensure at least 1 active bit is added,
which can be written as ‘x0 +x1 + · · ·+x63 ≥ 1.’ Finally, constraints to be valid
differential propagations are added. Here, the bit-permutation only changes the
order of variables and subkey addition can be ignored because it does not change
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the difference. The following denotes the variables involved in the first round, in
which a 64-bit plaintext difference x0, . . . , x63 are updated to x64, . . . , x127.
⎡

⎢⎢⎢⎢⎢⎢⎣

x0, x1, x2, x3

x4, x5, x6, x7

x8, x9, x10, x11

x12, x13, x14, x15

· · ·
x60, x61, x62, x63

⎤

⎥⎥⎥⎥⎥⎥⎦

S-box−→

⎡

⎢⎢⎢⎢⎢⎢⎣

x64, x68, x72, x76

x80, x84, x88, x92

x96, x100, x104, x108

x112, x116, x120, x124

· · ·
x115, x119, x123, x127

⎤

⎥⎥⎥⎥⎥⎥⎦

BitPerm−→

⎡

⎢⎢⎢⎢⎢⎢⎣

x64, x65, x66, x67

x68, x69, x70, x71

x72, x73, x74, x75

x76, x77, x78, x79

· · ·
x124, x125, x126, x127

⎤

⎥⎥⎥⎥⎥⎥⎦

The most difficult part is describing all possible propagation patterns for 16
S-boxes, e.g. x0, x1, x2, x3 −→ x64, x68, x72, x76, with a system of linear inequal-
ities. Sun et al. [12] showed two approaches to solve the problem.

Fact 1. Linear inequalities to constrain input and output variables of the S-box
only to valid patterns can be generated by using either the computation tool called
SageMath or several logical operations.

How to use SageMath is well explained in [12] and more details of logical com-
putations can be seen in [14]. We rely on Fact 1 about the description of S-box,
and the choice of SageMath and logical operations does not impact to our tool.
Meanwhile, the following limitation of those approaches should be noted.

Fact 2. Both of SageMath and the logical operations can be used only when the
S-box size is small.

In our computational environment, both methods are feasible for S-boxes of size
five bits or less. No method is known to model bigger S-box, e.g. 8-bit S-box.

MILP returns a solution of the system optimizing a given objective function.
In differential cryptanalysis, the attacker’s goal is minimizing the number of
active S-boxes, which can be defined as “Minimize

∑
i(x4i∨x4i+1∨x4i+2∨x4i+3).”

The system can be solved by the MILP solver to find the optimal solution.
We use Gurobi Optimizer [24] as the MILP solver.

3 Composite Framework for Differential and Impossible
Differential Searches

We begin with explaining the basic concept of our impossible differential search
tool, which has been independently discovered by Cui et al. and their paper
was posted on Cryptology ePrint Archive prior to our paper [21]. Comparison
between [21] and this work will be explained in AppendixA.

The tool adds several constraints to the previous differential bound search for
fixing an input and output difference to a specific pair (Δi,Δo). Due to those
additional constraints, the MILP solver may not be able to find the solution,
thus returns some error code indicating that the system is infeasible, which tells
that (Δi,Δo) is an impossible differential characteristic.
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Algorithm 1. Generating System of Inequalities in Previous Differential Search
Require: number of rounds r, system of inequalities for S-boxes and linear layer
Ensure: system of inequalities
1: Write an objective function.A
2: Write constraints ensuring at least 1 active bit in input.B
3: for round = 1 to r do
4: Write constraints for the S-boxes.C
5: Write constraints for the linear layer.
6: end for

Example 1. Let p0, p1, . . . , pb−1 and c0, c1, . . . , cb−1 be variables that represent
active/inactive of plaintext bits and ciphertext bits, respectively, where b is the
block size. To test if (Δi,Δo) = (0x1, 0x1) is impossible, the MILP solver should
run with the following constraints added.

p0 = 1, p1 = 0, c2 = 0, . . . , pb−1 = 0,

c0 = 1, c1 = 0, c2 = 0, . . . , cb−1 = 0.

We then iterate this test to examine multiple pairs of (Δi,Δo) e.g. all pairs with
1 active word both in input and output.

3.1 Composite Framework

A remarkable advantage of our tool is that users can switch differential-bound
search and impossible-differential search very easily. This helps primitive design-
ers, generally required to evaluate the resistance against both of differential and
impossible differential cryptanalyses. Here we introduce our framework to gen-
erate system of inequalities depending on the target to evaluate.

Most of the symmetric-key primitives can be described as an iteration of the
round function consisting of the non-linear and linear layers. We explain our tool
by following this structure. Our tool focuses on the primitive whose non-linear
layer is the parallel application of S-boxes. The tool relies on the previous MILP-
based differential search that models differential propagations through S-box in
bitwise [12–14]. Here, we recall how a system of inequalities is generated.

First, the number of rounds, r, is fixed. Then, an objective function, e.g. min-
imizing the number of active S-boxes, is defined. It also constrains the system so
that at least one S-box is activated. The remaining is writing constraints for the
valid differential propagations through the S-boxes and linear layer for r rounds,
which can be done with [12–14]. The procedure is summarized in Algorithm1.
Underlines in Algorithm 1 will be later referred by Algorithm2.

We slightly modify Algorithm1 so that impossible differentials can be eval-
uated with several techniques. The goal of the tool can be either the differential
bound (DB) or the impossibility of the given input and output differences (ID),
which can be specified in the parameter “GOAL”. For converting DB to ID, the
users need to modify only two parts; make the objective function empty and
specify input and output differences.
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Algorithm 2. Generating System of Inequalities in Composite Framework
Require: number of rounds r, system of inequalities for S-boxes and linear layer,
GOAL ∈ {DB, ID}, MODE ∈ {SPECIFIC, ARBITRARY}, and OBJECT ∈
{TRUNCATED,CHARACTERISTIC}
Ensure: system of inequalities

/* Lines 1–5 correspond to A in Alg. 1. */
1: if GOAL = DB then
2: Write an objective function.
3: else if GOAL = ID then
4: Leave an objective function empty.
5: end if

/* Lines 6–14 correspond to B in Alg. 1. */
6: if GOAL = DB then
7: Write constraints ensuring at least 1 active bit in input.
8: else if GOAL = ID then
9: if OBJECT = CHARACTERISTIC then

10: Fully specify active or inactive for each input and output bit.
11: else if OBJECT = TRUNCATED then
12: Specify input and output difference in a truncated level.
13: end if
14: end if

15: for round = 1 to r do

/* Lines 16–20 correspond to C in Alg. 1. */
16: if TARGET = ID and MODE = ARBITRARY then
17: Write constraints for the differentially ideal S-box.
18: else
19: Write constraints for the S-boxes as in specification.
20: end if

21: Write constraints for the linear layer.
22: end for

For impossible differentials, the users can further choose several search modes
specified in the parameter “MODE”. To be more precise, the S-boxes can be fixed
to particular ones (SPECIFIC) or can be treated as general ones (ARBITRARY).

The users can also choose which of truncated differential (TRUNCATED) or
a single impossible differential characteristic (CHARACTERISTIC) is searched
as a parameter “OBJECT”.

The updated framework to generate the system of inequalities for each
setting is given in Algorithm2. Note that the basic idea in [21] corresponds
to “GOAL = ID”, “MODE = SPECIFIC”, and “OBJECT = CHARACTERIS
TIC.” In the following sections, we will discuss the purpose of each search mode.

Hereafter, we explain details of impossible differential search (“GOAL = ID”).
We first explain how to search impossible differential characteristics
(“OBJECT = CHARACTERISTIC”) with the specific S-box mode and the
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arbitrary S-box mode in Sects. 3.2 and 3.3, respectively. We then explain the case
of truncated impossible differential (“OBJECT = TRUNCATED”) in Sect. 3.4.

3.2 Specific S-Box Mode for Impossible Characteristic

In the specific S-box mode, the users derive the differential distribution table
(DDT) from the actual S-boxes, and construct the MILP model to describe all
valid differential propagations by using the existing method [12–14]. Then dif-
ferences in all input and output bits are constrained to the target pair. The
analysis is iterated for various input and output differences chosen from a rea-
sonable subset, i.e. only one word is active.

The specific S-box mode can maximize the number of rounds of impossible
differentials. Thus the attackers may prefer to choose this mode.

Impact of Key Schedule. The tool does not take into account the key sched-
ule, thus we need a careful discussion about the impact of its omission.

The search by MILP describes a system of inequalities for the entire rounds
by iterating a system of one-round differential propagation. Thus all valid prop-
agations for one round are also valid in the evaluation of multiple rounds inde-
pendently of the propagation in neighboring rounds and subkey values. This is
true only if all subkeys are independent and chosen uniformly at random, which
is not true in practical designs with a particular key schedule.

In summary, what the MILP simulates is the worst-case scenario (for the
attackers). Namely, even if some differential propagations cannot occur for mul-
tiple rounds, the tool regards it possible, which leads to the following observation.

Observation 1. Impossible differential characteristics found in the specific S-
box mode are always impossible independently of the choice of key schedule.

3.3 Arbitrary S-Box Mode for Impossible Characteristic

In the arbitrary S-box mode, we assume an imaginary S-box in which any non-
zero input difference can be propagated to any non-zero output difference. Then,
a set of valid differential propagations of any bijective S-box can be a subset of
the one in the arbitrary S-box.

Valid differential propagations of the n-bit arbitrary S-box can be described
only by 2n inequalities. Let i0, i1, . . . , in−1 and o0, o1, . . . , on−1 be binary vari-
ables to represent whether input and output bits are active or inactive, respec-
tively. We write the constraints such that if input (resp. output) is 0, each output
bit (resp. input bit) is 0, namely

i0 + i1 + · · · + in−1 − o0 ≥ 0, o0 + o1 + · · · + on−1 − i0 ≥ 0,

i0 + i1 + · · · + in−1 − o1 ≥ 0, o0 + o1 + · · · + on−1 − i1 ≥ 0,

· · · · · ·
i0 + i1 + · · · + in−1 − on−1 ≥ 0, o0 + o1 + · · · + on−1 − in−1 ≥ 0.
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The advantage of the arbitrary S-box compared to the specific S-box is effi-
ciency owing to a small number of constrains to describe differential propaga-
tions. The arbitrary S-box mode is useful in the following two cases.

8-bit S-boxes: There is no known method to describe differential propagations
of 8-bit S-boxes in MILP. Here by using the arbitrary S-box, the tool can be
applied to 8-bit S-boxes.

Large Block Size: Even if the S-box size is small, say 4 bits, it is computa-
tionally hard to evaluate a large block size, say 256 bits. Again the arbitrary
S-box enables analysis.

Note that, differently from the specific S-box mode, the analysis can no longer
exploit properties inside the S-box. However, the analysis can still exploit another
advantage that the tool catches any contradiction, and this advantage is often
big enough to find new impossible differential characteristics. Actually, we found
new characteristics of ARIA (8-bit S-boxes) [19] and of Minalpher (4-bit S-box,
256-bit block) [18], which will be explained in Sect. 4.

Similarly to Sect. 3.2, MILP simulates the worst-case scenario. Namely, even
if some differential propagations cannot occur for some specific S-box, the tool
regards it possible.

Observation 2. Impossible differential characteristics found in the arbitrary
S-box mode are always impossible independently of the choice of S-box and key
schedule.

3.4 Searching for Truncated Impossible Differential

The tool for a single characteristic can be extended to truncated differentials
by simply running the tool for multiple pairs of input and output differences.
However, this approach easily becomes computational infeasible when the num-
ber of active words is more than 1. Actually, searching for two active words is
already too heavy. Let n and c be the number of S-boxes per round and the
size of each S-box, respectively. Then, the number of pairs of input and output
differences with 1-active word is

(
n · (2c − 1)

)2, which is O(n2 · 22c), while one
with two active words is

((
n
2

) · (22c − 1)
)2, which is O(n4 · 24c). Generally for d

input active words and d′ output active words, the number of pairs to test is
given by

O(nd+d′ · 2(d+d′)c). (1)

With n = 16 and c = 4, which is a popular choice for lightweight ciphers, we
need to evaluate 216 pairs for single-active word (d = d′ = 1) while 232 pairs for
2-active words (d = d′ = 2).

Here, we show a technique to make the tool more efficient only by aiming
truncated impossible differentials in both of the specific S-box and the arbitrary
S-box modes. Let i0, i1, . . . , in−1 and o0, o1, . . . , on−1 be variables to represent
whether n input and n output bits in the truncated position are active or inactive.
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Then, we write the following constraint (along with constraints fixing the other
bits to 0):

i0 + i1 + · · · + in−1 ≥ 1, o0 + o1 + · · · + on−1 ≥ 1.

Note that if there exists at least one solution satisfying the constraints, the tool
returns that the system is feasible. Hence, the truncated impossible differential
search is less accurate than the impossible characteristic search, while execution
time is significantly reduced. Compared to Eq. (1), 1 inequality is enough for
each active word position. Thus the number of pairs to test is given by

O(nd+d′
), (2)

which enables to evaluate multiple active words differences. Actually, we searched
for truncated impossible differentials on ARIA [19] with this technique. Then,
we found new truncated impossible differentials with d = 2 active input words
and d′ = 5 output active words, which will be explained in Sect. 4.3.

4 Applications from Cryptanalysis Aspect

4.1 Midori128

Midori is a low energy block cipher designed by Banik et al. in 2015 [16]. Midori
provides two different block lengths; Midori64 and Midori128 have 64-bit and
128-bit block lengths, respectively. Both ciphers accept 128-bit secret key.

Specification. Midori128 uses the SPN structure with AES-like state. The state
is arranged in a 4 × 4 matrix as

S =

⎛

⎜⎜⎝

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⎞

⎟⎟⎠ . (3)

The bit length of every cell si is 8 bits.
The round function consists of SubCell, ShuffleCell, MixColumn, and

KeyAdd. In SubCell, 8-bit S-boxes SSb0, SSb1, SSb2, and SSb3 are used and
si ← SSbi mod 4(si) where 0 ≤ i ≤ 15. Four 8-bit S-boxes SSbi are constructed
by 4-bit S-box Sb1, where Sb1 is defined as follows.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
Sb1(x) 1 0 5 3 E 2 F 7 D A 9 B C 8 4 6

Then, SSbi are constructed as SSbi = p−1
i ◦ (Sb1‖Sb1) ◦ pi, where

two Sb1 are applied to top and bottom halves in (Sb1‖Sb1). Note that
SSbi is involution, and we later show that impossible differentials are
improved by exploiting this property. Figure 1 shows the specification
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Fig. 1. SSb0, SSb1, SSb2, and SSb3

of SSbi. In ShuffleCell, each cell is permuted as (s0, s1, . . . , s15) ←
(s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8). In MixColumns, the
following multiplication

⎛

⎜⎜⎝

si

si+1

si+2

si+3

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

si

si+1

si+2

si+3

⎞

⎟⎟⎠

is applied for i = 0, 4, 8, 12. In KeyAdd, the i-th n-bit round key is XORed with
a state. The number of rounds of Midori128 is 20. Moreover, only SubCell is
applied in the final round function.

Previous Cryptanalysis. Several third-party cryptanalyses have been pro-
posed, and the full-round Midori64 was broken by the invariant subspace
attack [25] and nonlinear invariant attack [26] under the weak-key setting. On
the other hand, there are no cryptanalysis against full-round Midori128. Regard-
ing the impossible differential attack on Midori128, the designers found 6-round
impossible differentials such that only one cell is active in the input and out-
put [16]. Then, Zhen et al. found 6-round impossible differentials that are advan-
tageous for the key recovery but the number of rounds is not increased [27].

Configurations for the Tool. The block size of Midori128 is 128 bits and
the S-boxes size is 8 bits. However, since the 8-bit S-boxes are represented as
concatenation of two 4-bit S-boxes, we can regard that there are thirty-two 4-bit
S-boxes in each round. The search space for impossible differential characteristics
is large, hence we run our tool in the arbitrary S-box mode.

When the arbitrary S-box mode is chosen for Midori, it is sufficient to evaluate
truncated impossible differentials rather than impossible differential character-
istics. This is because, for any choice of the differential value of the active nibble
in the plaintext, the set of possible output differences of the active S-box in the
first round is identical. In other words, when (Δi,Δo) is an impossible differen-
tial characteristic, for any other 1-nibble difference Δ′

i in the same active nibble
position, (Δ′

i,Δo) becomes impossible.
We limit the input and output differences to 1 active nibble. The number of

such input differences is 32, and we have the same number of output differences.
In the end, we run MILP for 32∗32 = 1024 pairs of input and output differences.
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Table 2. 7-round truncated impossible differentials against Midori128

ID ΔP ΔC Remarks

001T (0α100, 0000, 0000, 0000) (0β100, 0000, 0000, 0000) Manually verified

002T (0β100, 0000, 0000, 0000) (0α100, 0000, 0000, 0000) Manually verified

003T (0000, α0000, 0000, 0000) (0000, β0000, 0000, 0000)

004T (0000, β0000, 0000, 0000) (0000, α0000, 0000, 0000)

005T (0000, 0α100, 0000, 0000) (0000, 0β100, 0000, 0000)

006T (0000, 0β100, 0000, 0000) (0000, 0α100, 0000, 0000)

007T (0000, 0000, α0000, 0000) (0000, 0000, β0000, 0000)

008T (0000, 0000, β0000, 0000) (0000, 0000, α0000, 0000)

009T (0000, 0000, 0α100, 0000) (0000, 0000, 0β100, 0000)

010T (0000, 0000, 0β100, 0000) (0000, 0000, 0α100, 0000)

011T (0000, 0000, 0000, α0000) (0000, 0000, 0000, β0000)

012T (0000, 0000, 0000, β0000) (0000, 0000, 0000, α0000)

List of 7-Round Truncated Impossible Differentials. We ran our tool
with the above configuration. The tool required about 0.03 seconds per pair and
it took about 0.5 min to test 1024 pairs.

As a result, our tool found 12 truncated impossible differentials for 7 rounds,
which improves the previous best result by 1 round. We list 12 truncated impos-
sible differentials in Table 2. Note that αi is active in 4 bits where the active
bits go to top four bits after pi is applied, while βi is active in 4 bits where the
active bits go to bottom four bits after pi is applied. Every truncated impossible
differential consists of 152 = 225 impossible differential characteristics.

Manual Verification of ID001T and ID002T. Although one of the major
advantages of the tool is that the attacker does not have to analyze the reason
of contradiction, we would like to verify the reason. The analysis reveals a new
structural property of Midori128 exploiting the involution of SSbi, which seems
to be useful for future analysis. We first prove ID001T.

Theorem 1. The input difference (0α100, 0000, 0000, 0000) cannot propagate to
the output difference (0β100, 0000, 0000, 0000) after 7 rounds of Midori128, where
only top four bits of p1(α1) and bottom four bits of p1(β1) are active.

Proof. In Fig. 2, the input difference is propagated in forwards by 3.5 rounds,
and the output difference is propagated in backwards by 3 rounds.

Let us focus on the forward propagation. From the definition, the differential
form of α1 is (∗, ∗, 0, 0, 0, 0, ∗, ∗) thus p1(α1) = (∗, ∗, ∗, ∗, 0, 0, 0, 0), where ∗ and 0
are active and inactive, respectively. In SubCell in the first round, SSb1(α1) =
p−1
1 ◦ (Sb1‖Sb1) ◦ p1(α1) is computed. (Sb1‖Sb1) preserves that only top 4 bits

are active, and active bit positions go back to αi after the application of p−1
1 .

The position of the active byte moves from s1 to s7 by ShuffleCell, then is
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Fig. 2. 7-round truncated impossible differential of Midori128; ID001T

diffused to s4, s5, and s6 by MixColumns. S-boxes are applied in the second round
again, but SSb0 and SSb2 do not preserve the form of α1 due to the different bit
permutations p0 and p2. Therefore, only s5 preserves the differential form of α1.
Similar analysis is continued during the 3.5-round forward propagation.

The differential form of β1 is (0, 0, ∗, ∗, ∗, ∗, 0, 0). With the same reason as
α1, the differential form of β1 is preserved after the computation of SSb−1

1 (β1),
and 1 byte preserves the difference β1 after 3 round decryption.

On one hand, from the forward 3.5-round propagation, only top half of p1(s5)
is active and bottom half is inactive. On the other hand, from the 3-round back-
ward propagation, only bottom half of p1(s5) is active and top half is inactive.
This is a contradiction, therefore ID001T is manually verified. ��
ID002T can be proved by exchanging the position of α1 and β1 of ID001T. Note
that all impossible differentials found by our tool have the similar structure.
Therefore, we expect that ID003T–ID012T can be verified similarly.

4.2 LILLIPUT

Lilliput is a lightweight block cipher designed by Berger et al. in 2015 [17]
in which the block size and the key size are 64 bits and 80 bits, respectively.
Lilliput adopts an extended generalized Feistel network (EGFN) [28].

Specification. A 64-bit plaintext is loaded to a 64-bit state X0, which is divided
into sixteen 4-bit nibbles, X0

15‖X0
14‖ · · · ‖X0

0 . The round function, RF , takes as
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Table 3. S-box in Lilliput (hex)

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 4 8 7 1 9 3 2 E 0 B 6 F A 5 D C

Table 4. Nibble permutation (decimal)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(x) 13 9 14 8 10 11 12 15 4 5 3 1 2 6 0 7

input a previous state Xj and a 32-bit subkey SKj � SKj
7‖SKj

6‖ · · · SKj
0 and

updates the state to Xj+1 with three operations F , L, and P.

Non-linear layer F : Copy the right half of the state, XOR the subkey, apply
an S-box to each nibble, finally XOR the results to the left half of the state.
Namely, Xj

8+i ← Xj
8+i ⊕S(Xj

7−i ⊕SKj
i ), i = 0, 1, . . . , 7, where S(·) is a 4-bit

S-box defined in Table 3.
Linear layer L: Update the left half of the state with several XORs.

Xj
15 ← Xj

15 ⊕ Xj
7 ⊕ Xj

6 ⊕ Xj
5 ⊕ Xj

4 ⊕ Xj
3 ⊕ Xj

2 ⊕ Xj
1 ,

Xj
15−i ← Xj

15−i ⊕ Xj
7 for i = 1, 2, . . . , 6.

Permutation layer P: Permute nibble positions with π defined in Table 4.

The round function is iterated 30 times in which the permutation π is omitted in
the last round. Because we are discussing distinguishers in which several rounds
will be added for the key recovery, we do not omit the last permutation. The
illustration of the round function can be seen in Fig. 3.

Previous Impossible Differential. The designers searched for truncated
impossible differentials with U-method [5] and found two 8-round trun-
cated impossible differentials, e.g. the input difference (0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0,
0, 0, 0, 0, 0) is incompatible with the output difference (0, 0, 0, β, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0). We stress that the designers searched for them independently
of the S-box choice.

Configurations for the Tool. Because both of the block size and the S-box size
are small in Lilliput, we run our tool in the specific S-box mode to maximize
the number of rounds of the distinguisher. In our experiment, we limited the
input and output differences to only 1 active nibble.

Considering the Feistel network, having an active nibble in the left half of the
input and in the right half of the output can maximize the number of rounds.
The number of such input differences is 8 ∗ 15 = 120, where 8 is for the active
nibble position and 15 is for non-zero difference in the active nibble. The number
of output differences is the same. In the end, we run MILP for 120∗120 = 14400
pairs of input and output differences.

List of 9-Round Impossible Differential Characteristics. We ran our tool
with the above configuration. The tool required about 0.2 seconds per pair and
it took about 1 h to test 14400 pairs.
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Table 5. 9-round impossible differential characteristics against Lilliput

ID (ΔL0, ΔR0) (ΔL9, ΔR9) Remarks

001–015 (0000000α, 00000000) (00000000, 00000α00) Manually verified

016–030 (000000α0, 00000000) (00000000, 00α00000)

031–045 (000000α0, 00000000) (00000000, 0000000α)

· · · · · · · · · · · ·
181–195 (000α0000, 00000000) (00000000, 0000000α)

196 (00000020, 00000000) (00000000, 00000200) Manually verified

197 (00000030, 00000000) (00000000, 00000300) Manually verified

198 (00000080, 00000000) (00000000, 00000800) Manually verified

199 (00000090, 00000000) (00000000, 00000900) Manually verified

200 (000000e0, 00000000) (00000000, 00000e00) Manually verified

201 (000000f0, 00000000) (00000000, 00000f00) Manually verified

202 (00007000, 00000000) (00000000, 00000700)

203 (0000e000, 00000000) (00000000, 00000e00)

204–216 (000β0000, 00000000) (00000000, 000000β0) Manually verified

217 (00010000, 00000000) (00000000, 00000050)

As a result, we found 217 impossible differential characteristics for 9 rounds,
which improves the previous best result by 1 round. We list a part of 217 impos-
sible characteristics in Table 5. Note that α in the impossible characteristics with
ID 001 to 195 can be any non-zero value but must be the same between input
and output. β in ID 204 to 216 can be 1,2,3,4,5,6,7,8,9,10,11,14, or 15.

Manual Verification of ID196 to ID201. Because some of detected impos-
sible characteristics exploit the property of DDT, the analysis is completely
different from the previous truncated impossible differentials. Verifying ID001–
ID015 is relatively simple (but cannot be detected by the previous tools), which
actually does not use the property inside the S-box.1 Due to the page limita-
tion, we omit the proof of ID001–ID015. We expect ID016–ID195 can be proven
similarly.

ID196–ID201 essentially exploit the differential property of the S-box. Here,
we explain the details of the contradicting reasons of ID196–ID201.

Theorem 2. The input difference (000000α0, 00000000) cannot propagate to the
output difference (00000000, 00000α00) after 9 rounds of Lilliput, where α ∈
{2, 3, 8, 9, e, f}.

Proof. In Fig. 3, the input (resp. output) difference is propagated in forwards
(resp. backwards) by 4 rounds. We first focus on the forward propagation.
1 We realized this fact only after we finished manual verification. The tool outputs a

list of 217 pairs, and at that time we had no clue about the contradicting reason.
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Fig. 3. 9-round impossible differential characteristic of Lilliput; ID196–201 (Color
figure online)

– In the second round, we denote by β the output difference of the active S-box.
Note that β may or may not be equal to α.

– In the third round, we further introduce γ and δ for the output difference
from the S-boxes. In Fig. 3, we denote by αβ and αδ abbreviations of α ⊕ β
and α⊕δ respectively. Note that α⊕β and α⊕δ may or may not be non-zero.

– In the forth round, difference is unknown in many nibbles, denoted by ‘?’.

We do the same for the last 4 rounds and detect the contradiction in the middle.

1. We focus on X4
8 ⊕S(X4

7 ) = X5
4 in the fifth round, in which ΔX4

8 = ΔX5
4 = α,

which eventually leads to ΔX4
7 = 0 (red lines in Fig. 3).

2. We then focus on X4
11 ⊕ S(X4

4 ) ⊕ X4
7 = X5

1 , in which ΔX4
11 = ΔX5

1 = α and
ΔX4

7 = 0. Hence, ΔX4
4 = 0. Similarly, ΔX4

2 = 0 (blue in Fig. 3).
3. We focus on X3

8 ⊕ S(X3
7 ) = X4

4 in the fourth round, in which ΔX3
8 = β and

ΔX4
4 = 0. Hence ΔS(X3

7 ) must be β while ΔX3
7 = α ⊕ β (green in Fig. 3).

Considering that β is originally defined as an output difference of the S-box
whose input difference is α, we have the following necessary condition for this
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9-round characteristic to be possible.

∃β, x, y :
{

S(x) ⊕ S(x ⊕ α) = β
S(y) ⊕ S(y ⊕ α ⊕ β) = β

(4)

Whether this condition is satisfied or not depends on the S-box, especially on
its DDT.

When α = 9, β can be 3, 7, 8, 9, c, e, f for the first equation in (4). Then,
(α⊕β, β) can be computed as (a, 3), (e, 7), (1, 8), (0, 9), (5, c), (7, e), (6, f). The
second equation in (4) constrains that one of them must be a valid propa-
gation. From DDT in Table 5, all of them cannot occur, which proves that
the 9-round characteristic in Fig. 3 is impossible when α = 9. Note that the
condition (4) can be satisfied when α �= 0, 9.

4. We then further focus on X3
12 ⊕ S(X3

3 ) ⊕ X3
7 = X4

2 in the fourth round.
ΔX3

12 = ΔX4
2 = 0 and ΔX3

7 = α ⊕ β, which derives ΔS(X3
3 ) = α ⊕ β.

Meanwhile, ΔX3
3 = α (yellow in Fig. 3). Thus besides (4), we obtain the

following necessary condition.

∃z : S(z) ⊕ S(z ⊕ α) = α ⊕ β (5)

To avoid redundancy, we omit listing all candidates, but from DDT conditions
(4) and (5) cannot be satisfied simultaneously when α ∈ {2, 3, e, f}.

5. To prove the case α = 8, we further proceed the analysis. Because it requires
too much details, we omit the proof in this paper.

With the above argument, Theorem2 is proven. ��
Remarks. We would like to emphasize once again that the advantage of our tool
is that we can obtain a list of all impossible differential characteristics without
considering the contradicting reason. We also manually verified ID204 to ID216,
while we could not catch the contradicting reason for ID202, ID203, and ID217
by hand. In particular, ID217 is the only pair that the difference of active nibbles
in the input and output are different. We leave their verification open.

4.3 ARIA

ARIA is a 128-bit block cipher and provides three secret-key lengths: 128, 192,
and 256 bits [19]. ARIA is standardized by Korean Agency for Technology and
Standards (KATS) and is described by RFC5794 and RFC6209. ARIA uses
Substitution-Permutation Network (SPN) structure, and the state is represented
by 16 bytes. The round function consists of Substitution layer SL and Diffusion
layer DL. We refer to [19] for its detailed specification.

Previous Cryptanalysis. Wu et al. proposed a truncated impossible differen-
tial on 4.5-round ARIA ((DL ◦ SL)4 ◦ DL) as

(0, 0, 0, a, a, 0, a, 0, a, a, 0, 0, 0, a, a, 0) �4.5R−−−→ (0, h, 0, 0, 0, 0, 0, 0, h, h, h, 0, 0, 0, h, 0),
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where a and h denote any non-zero difference. Based on it, they attacked 6-round
ARIA (SL ◦ (DL ◦ SL)5) [29]. Then, Li et al. showed new truncated impossible
differentials on 4.5-round ARIA and the data-time tradeoff for the attack on 6-
round ARIA [30]. One of Li’s truncated impossible differentials improved Wu’s by
reducing the number of active output bytes to 4 from 5, implying that the number
of involved subkeys is less, and the time complexity is improved. However, the
data complexity is greater than the time complexity. The total complexity is not
very improved. Another Li’s truncated impossible differential is

(0, b, 0, a ⊕ b, a ⊕ b, 0, a, 0, a, a ⊕ b, b, 0, 0, a, a ⊕ b, b)

�4.5R−−−→ (0, h, 0, 0, 0, h, 0, 0, 0, 0, 0, 0, h, 0, h, 0),

where a, b, and h denote any non-zero difference. This contributes to reducing
the data complexity because the number of independent non-zero differences
increases. Unfortunately, the number of involved subkeys increases to 14, and
the time complexity is greater than the data complexity. In the end, the total
complexity is not very improved.

Configurations for the Tool. Since the S-boxes size of ARIA is 8 bits, we
run our tool in the arbitrary S-box mode. Similar to Midori128, we only execute
truncated impossible differential search. Our goal is to improve Li’s truncated
impossible differentials. Namely, we search for 4.5-round truncated impossible
differentials, where input and output differences take 3 independent differences
and the number of involved subkey is reduced from 14. To search such truncated
impossible differentials efficiently, our tool searches for truncated impossible dif-
ferentials for 3.5 rounds (SL ◦ (DL ◦ SL)3), where every active byte can take
any difference. Then, found truncated differentials are trivially extended to 4.5
rounds by applying DL to the beginning and end. Finally, we evaluate the num-
ber of input and output differences.

4.5-Round Truncated Impossible Differentials. We ran our tool with the
above configuration. As a result, we found a truncated impossible differential as

(a, 0, 0, 0, 0, 0, 0, a, 0, a, 0, a, a, 0, a, 0) DL−−→ (0, a, 0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

�3.5R−−−→ (h, g, 0, 0, 0, 0, 0, h ⊕ g, 0, h ⊕ g, 0, g, 0, 0, 0, 0)
DL−−→ (h ⊕ g, 0, 0, 0, h ⊕ g, h, h, 0, 0, h, 0, 0, 0, g, 0, g)

where a, h, and g are non-zero differences. The number of involved subkeys is 13,
and it decreases by one byte from that of Li’s truncated impossible differentials.
It implies that we can improve the time complexity of their key recovery attack.

4.4 Minalpher

Minalpher is an authenticated encryption scheme designed by Sasaki et al. in
2015 [18]. Minalpher uses 256-bit core permutation called Minalpher-P, which
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Table 6. 7.5-round truncated impossible differentials of Minalpher-P

ID ΔP ΔC Remarks

0001T A[0][0] A[0][2] Manually verified

0002T A[0][0] A[0][3]

0003T A[0][0] A[0][4]

0004T A[0][0] A[0][5]

...
...

...

1152T B[3][7] B[3][7]

is based on Substitution-Permutation Network (SPN) structure using 4-bit S-
boxes. We refer to [18] for its detailed specification.

Previous Cryptanalysis. The designers found 6.5-round truncated impossi-
ble differentials by using the U-method by Kim et al. These are the longest
impossible differentials discovered by the U-method.

Configurations for the Tool. While the S-boxes size is 4 bits, the block size,
i.e., 256 bits, is very large. Therefore, we run our tool in the arbitrary S-box
mode aiming truncated impossible differentials with 1 active nibble in the input
and output differences. The number of such differences is 64 for both of input
and output. In the end, we run MILP for 64 ∗ 64 = 4096 pairs.

List of 7.5-Round Truncated Impossible Differentials. The tool required
about a few seconds per pair. As a result, our experiment found 1152 trun-
cated impossible differentials for 7.5 rounds, which improves the previous best
truncated impossible differentials by 1 round. Table 6 shows several examples.
Column ΔP shows the position of the active nibble in plaintext, and column ΔC
shows the position of the active nibble in ciphertext. Every truncated impossible
differential consists of 152 = 225 impossible differential characteristics.

4.5 MIBS

MIBS is a lightweight block cipher designed by Izadi et al. in 2009 [20]. The block
length is 64, and it provides two key lengths: 64- and 80-bit secret key. We refer
to [20] for its detailed specification.

Previous Cryptanalysis. Bay et al. found two 8-round truncated impossible
differentials [31]. Then, Wu and Wang found four additional 8-round truncated
impossible differentials [8].
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Table 7. 8-round impossible differential characteristics against MIBS

ID ΔP ΔC Remarks

001T (00000000, 000000α0) (0000β000, 00000000) Bay

002T (00000000, 0000α000) (000000β0, 00000000) Wu

003T (00000000, 00α00000) (0000000β, 00000000) Bay

004T (00000000, 0000000α) (00β00000, 00000000) Wu

005T (00000000, 00α00000) (0000β000, 00000000) Wu

006T (00000000, 0000α000) (00β00000, 00000000) Wu

001–120 (00000000, 000γ0000) (00000ε00, 00000000)

121–240 (00000000, 00000ε00) (000γ0000, 00000000)

Configurations for the Tool. The block size of MIBS is 64 bits and the
S-boxes size is 4 bits. Therefore, we run our tool in the specific S-box mode
to maximize the number of rounds of the distinguisher. In our experiment, we
limited the input and output differences to only 1 active nibble.

Considering the Feistel network, the number of differences we need to test
is exactly the same as the case of Lilliput in Sect. 4.2. Thus we run MILP for
120 × 120 = 14400 pairs of input and output differences.

List of 8-Round Impossible Differential Characteristics. The tool
required about 7.7 seconds per pair using single core and it took about 30 h
to test 14400 pairs.

Our tool found six 8-round truncated impossible differentials, which are the
same as results by Wu’s method. However, our method additionally found 2×120
impossible differential characteristics, which are not nibble-oriented truncated
impossible differentials. We list all impossible differentials in Table 7, where α
and β are any non-zero value. ID001–ID240 are impossible differential charac-
teristics that our tool newly found. If the differences (γ, ε) takes differences that
are shown by x in Table 8, the pairs of input and output differences is impossible
differential characteristics.

5 Differential Possibility Equivalence Technique

In Sect. 4.1, we searched for all truncated impossible differentials with one active
nibble. However, since ShuffleCell and MixColumn in Midori128 are byte-wise
operations, we should search for all impossible characteristics with one active
byte if possible. Moreover, the search in Sect 4.1 never exploited the property of
Sb1 because the tool was run in the arbitrary S-box mode. This section explains
how to run the tool in the specific S-box mode in a feasible time.

As described in Sect. 3.4, the number of all pairs with d input active words
and d′ output active words is O(nd+d′

2(d+d′)c), where n and c are the number of
S-boxes per round and the size of each S-box, respectively. If we want to evaluate
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Table 8. Pairs of impossible differences found by our tool for MIBS

γ ε

1 2 3 4 5 6 7 8 9 a b c d e f

1 x x x 0 x x 0 0 0 x 0 0 x 0 x

2 0 x 0 x x x 0 x x 0 0 0 x x 0

3 x 0 x x 0 0 0 x x x 0 0 0 x x

4 x x 0 x 0 0 0 0 0 x x x x x 0

5 x 0 0 0 x x 0 x x x x x 0 0 0

6 x 0 x x 0 x x 0 x 0 x 0 x 0 0

7 0 0 0 0 0 x x x 0 x x 0 x x x

8 x x x 0 x 0 x x 0 0 x 0 0 x 0

9 0 x x 0 0 x x 0 x x 0 x 0 x 0

a 0 x 0 x x 0 x 0 x x x 0 0 0 x

b x 0 0 0 x 0 x 0 x 0 0 x x x x

c 0 0 x x x 0 x x 0 x 0 x x 0 0

d 0 0 x x x x 0 0 0 0 x x 0 x x

e 0 x x 0 0 0 0 x x 0 x x x 0 x

f x x 0 x 0 x x x 0 0 0 x 0 0 x

S

S

S

S

S

S

0

0

0

0

0

0

o

0

0

o

R rounds

c c

Fig. 4. Differential possibility equivalence technique

all impossible differential characteristics on Midori128 with 1 byte active, our tool
has to execute 162 × 2552 ≈ 224 MILP instances. Then, it takes about 200 days
to complete all instances even if an MILP instance is solved within one second.
Therefore, we need an efficient method to evaluate all instances.

5.1 Procedure of Differential Possibility Equivalence Technique

The differential possibility equivalence technique reduces the number of MILP
instances that our tool has to solve.2 Figure 4 shows the outline of the technique.
2 The motivation of the differential possibility equivalence technique is quite different

from truncated impossible differential. The truncated impossible search overlooks
impossible characteristics only with one possible characteristic in the truncated set.
When the number of impossible characteristics is small, truncated impossible differ-
ential search is not useful.
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Table 9. 7-round impossible differential characteristics against Midori128

ID ΔP ΔC

Position Value Position Value

001 s1 0x04 s8 0x43

002 s1 0x0C s8 0x43

Assuming that we search for impossible differential characteristics in which the
first words of plaintexts and ciphertexts are active, we want to evaluate (2c −1)2

pairs of input and output differences. First, we solve one MILP instance and
obtain that (Δi → Δ′

i → Δ′
o → Δo) is possible differential characteristic for one

tuple of (Δi,Δ
′
i,Δ

′
o,Δo). Next, we evaluate a set I whose elements are all Δ such

that Δ → Δ′
i is possible. Similarly, we evaluate a set O whose elements are all Δ

such that Δ′
o → Δ is possible. Then, pairs in (I ×O) are possible characteristics

via (Δ′
i,Δ

′
o), we thus do not need to evaluate them using MILP. We note that

some MILP solvers have API for programming languages, e.g. Gurobi Optimizer
supports API for C-language. Thus, adding such auxiliary codes is easily done.
Since the numbers of elements in I and O are 2c/2 on average, we can efficiently
reduce the number of MILP instances that our tool has to solve.

We estimate the effectiveness of differential possibility equivalence technique.

Theorem 3. Let n and c be the number of S-boxes per round and the size of
each S-box, respectively. Our tool aims to find impossible differential with d input
active words and d′ output active words. Then, the number of trials that we have
to solve MILP instances is 2d+d′

((d + d′) loge(2c − 1) + O(1)) on average.

Due to the page limitation, we omit the proof of Theorem3. Accurately, we can
more efficiently collect N input and output differences than the estimation by
Theorem 3 because every trial can always choose a pair without duplication. On
the other hand, this error is not serious because N ′ differences are evaluated in
the same time in one trial.

We searched for impossible differential characteristics with one active byte
on Midori128 by using the differential possibility equivalence technique. In our
experiment, this technique reduces the number of MILP instances that our tool
has to solve from 224 to 546865 ≈ 219. As a result, we found two new impossible
differential characteristics, which are shown in Table 9. The total time that our
tool evaluates all impossible differential characteristics with one active byte is
about 24 days in single core.

6 Applications from Design Aspect

6.1 Design Tool Using Specific S-Box Mode

Let us discuss using the tool for the design process of new primitives. Attack
tools can always be used to evaluate how many rounds are attacked after the
design is completed. Here we want to discuss a more interactive process. In many
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SPN-based designs, the designers evaluate many candidates with MILP and pick
up the best choice. For example, the designers of Midori chose an almost-MDS
matrix for MixColumn, and tested all parameters for ShuffleCell. Similarly, the
designers of Skinny tested all light non-MDS matrices for MixColumns and the
designers of Minalpher tested all parameters of a ShiftRows-like operation.

To run our tool in the specific S-box mode, S-boxes must be fixed in advance.
This situation occurs when the choice of S-boxes has a high priority in the design.
For example, Midori [16] chose the S-box with the lowest depth, and FIDES [32]
and PICARO [33] chose the S-box that can be masked easily.

In our tool, all the components but for key schedule are simulated. Therefore,
when we assume that subkeys are XORed to all words of the state before S-boxes,
the tool can provide a certain level of proof, which is detailed below.

Observation 3. Suppose that the tool does not find any impossible differential
characteristic for r rounds after testing all paired input and output differences
in a certain subset in the specific S-box mode. Then, the number of rounds of the
longest impossible differential satisfying those input and output differences is at
most r − 1 by assuming that all subkeys are independent and chosen uniformly
at random.

Proof. Suppose that the tool can find specific differential propagations for given
input and output differences. We now assume subkeys are XORed to all words
of the state. Therefore, the output difference of any S-box are computed as

Δo = S(x ⊕ sk) ⊕ S(x ⊕ sk ⊕ Δi),

where Δi and Δo denote the input and output difference, respectively. The
tool does not evaluate the value of x, but we now assume that all subkeys are
independent and chosen uniformly at random. Since Δo can take all possible
output differences in DDT, the differential propagations that the tool finds are
always valid in this assumption. ��
If we can verify that all input and output differences with one active word
are possible in the specific S-box mode, we say that the cipher is secure
against impossible differential with one active word under the subkey uniform
assumption.

Remarks About Proof in [21]. Cui et al. claimed that the tool can be used
to prove the longest impossible differentials under the condition that input and
output differences belong to the tested subset. After evaluating several ciphers,
they claimed that “we proof that the longest impossible differentials for LBlock,
TWINE and Piccolo ciphers are really 14, 14 and 7 rounds respectively.” Unfor-
tunately, Cui et al. are misinterpreting what the tool does.

In the evaluation with MILP, all valid propagations for one round are also
valid in the evaluation of multiple rounds irrespectively of the propagation in
neighboring rounds and subkey values. This is true only if all subkeys are inde-
pendent and chosen uniformly at random. Therefore, even if no impossible dif-
ferential is found for r rounds by MILP, it cannot ensure the non-existence for
r rounds for real ciphers with particular key schedule.
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6.2 Design Tool Using Arbitrary S-Box Mode

The arbitrary S-box mode is also useful for the design tool. When we run our
tool in the specific S-box mode for the design tool, S-boxes must be fixed in
advance. Meanwhile, if the choice of the linear layer has a higher priority, we
would like to recommend the arbitrary S-box mode. The arbitrary S-box mode
have two advantages: it can be executed before S-boxes are not specified and is
generally more efficient than the specific S-box mode. In addition, the arbitrary
S-box mode leads to several benefit to the designers.

Evaluating Linear Layer: The designers often test many choices of the S-
boxes and of the linear layer. Because exhaustively testing all combinations is
infeasible, the designers need to evaluate them independently. The arbitrary
S-box mode finds impossible differential characteristics that are independent
from the choice of the S-box, which makes possible to evaluate the security of
the linear layer. In addition, the arbitrary S-box mode enables the designers
to proceed the design of S-boxes and the design linear layer in parallel, which
can shorten the design period.

Distinguishing Contradicting Reasoning: When impossible differentials are
found for some rounds, the designers may prefer to patch the design or
choose other design candidates. Then it is convenient for the designer to know
whether the detected differentials can be prevented by changing S-boxes or
not. In the arbitrary S-box mode, the contradiction is clearly caused by the
linear layer.

Actually, impossible differential characteristics ID001–ID195 of Lilliput can be
found by both the specific and arbitrary S-box modes, but the others ID196–
ID217 can be found only by the specific S-box mode. Thus, we can immediately
know ID001–ID195 are impossible differential characteristics independent of the
choice of the S-box and cannot be prevented by replacing the S-box.

Similarly to Sect. 6.1, the fact that no impossible differential is found gives a
certain level of security proof as follows.

Observation 4. Suppose that the tool does not find any impossible differential
characteristic for r rounds after testing all paired input and output differences
in a certain subset in the arbitrary S-box mode. Then, the number of rounds of
the longest impossible differential satisfying those input and output differences is
at most r − 1 by assuming that all S-boxes are keyed bijective S-boxes that are
independent and chosen uniformly at random.

If we can verify that all pairs of input and output differences with one active
word are possible in the arbitrary S-box mode, we say that the cipher is secure
against impossible differential with one active word under the keyed (uniform)
bijective S-boxes assumption.

6.3 Optimal Pick Technique; Application to MIBS

When ciphers have heavy diffusion layer, MILP solver requires too much time to
verify whether or not a given pair of input and output differences is possible. For
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example, suppose that we evaluate resistance of MIBS against 9-round impossible
differential. As discussed in Sect. 4.5, we need to test 14400 pairs of input and
output differences. However, the tool could not finish the evaluation of 1 pair
even after a couple of hours. Proving the security of 9-round MIBS with the
direct application of our tool is infeasible.

Optimal Pick Technique. We propose an optimal pick technique, which dra-
matically reduces the computation time to prove the resistance against impossi-
ble differentials, i.e. to prove the existence of differential characteristic. Suppose
that we are given a pair of input and output differences. The optimal pick tech-
nique well works when there are many differential characteristics satisfying a
pair of given input and output differences. The intuition of this technique is
as follows. We partially constrain the difference of the state in a middle round
as well as the input and output differences. Suppose that our aim is to prove
the resistance against r-rounds impossible differentials, and we expect that the
proof is possible. Let Xi−1 be a difference of the input of the i-th round. Our tool
constrains a pair of input and output differences (X0,Xr), and additional b bits
of X�r/2�, where b is heuristically chosen. In our experiments, these additional
constraints often reduce the execution time of the MILP solver. To prove the
resistance against impossible differential, it is sufficient to find only one char-
acteristic satisfying the constraint. Therefore, if the solver takes too long for a
choice of constrained b bits, we give up searching for the b bits, and test another
b bits by expecting that the new b bits are easy to compute.

In application to 9-round MIBS, for pairs of input and output differences
(X0,X9) we used the optimal pick technique with the following strategy.

– Four nibbles in X4 are additionally constrained (b = 16).
– For all 216 choices of additional constraints, we evaluate whether or not it is

possible to satisfy (X0,X4,X9). If the execution time reaches 10 s, we stop
the evaluation and proceed the next additional constraints.

– Once we find an additional constraint X4 satisfying the input and output
differences (X0,X9), we return that the pair (X0,X9) is possible.

The second strategy is the essence of the optimal pick technique. The execution
time of the MILP solver becomes too long for some choice of X4, and the second
strategy allows us to escape from the unlucky choice. As a result, we successfully
proved that there is no 9-round impossible differential characteristics with one
active nibble under the subkey uniform assumption. Note that the optimal pick
technique only can be used for the proving approach, i.e. it cannot be used to
find impossible differential characteristics because we terminate the MILP search
when the execution time reaches 10 s.

6.4 List of Evaluated Designs

We proved the maximal number of rounds of impossible differential character-
istics for many designs. Besides the already discussed five designs, we evalu-
ated SIMON [34], TWINE [35], LBlock [36], Piccolo [37], RECTANGLE [10],
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Table 10. Provable security against impossible differentials

Target #Rounds Assumption Remarks

Midori128 8 Subkey uniform 1 active byte

8 Keyed bijective 4-bit S-boxes 1 active byte

7 Keyed bijective 8-bit S-boxes 1 active byte

Lilliput 10 Subkey uniform 1 active nibble

Minalpher 9.5 Keyed bijective S-boxes 1 active nibble

ARIA 5 Keyed bijective S-boxes 1 active byte

MIBS 9 Subkey uniform 1 active nibble

SIMON 12 Subkey uniform 1 active bit

TWINE 15 Subkey uniform 1 active nibble

LBlock 15 Subkey uniform 1 active nibble

Piccolo 8 Subkey uniform 1 active nibble

RECTANGLE 9 Subkey uniform 1 active nibble

Skinny-64 12 Subkey uniform 1 active nibble

Midori64 7 Subkey uniform 1 active nibble

CLEFIA 10 Keyed bijective 8-bit S-boxes 1 active byte

Skinny [22], Midori64 [16], and CLEFIA [38] as shown in Table 10. We confirmed
that there are no impossible differential characteristics within the parameters
of input and output differences in Remark column. For example, if we regard
SSbi in Midori128 as keyed 8-bit bijective S-boxes, we proved that there are no
7-round impossible differential characteristics with 1 active byte. However, if we
exploit the structure of SSbi and regard Sb1 as keyed 4-bit bijective S-boxes, 7-
round impossible characteristics can be found as explained in Sect. 4.1. In such
an assumption, we proved that there are no 8-round impossible differential char-
acteristics with 1 active byte. Moreover, 8 rounds are also secure in the subkey
uniform assumption.

A Relationship Between [21] and This Paper

Cui et al. [21] have recently posted their work to Cryptology ePrint Archive
(received by ePrint Archive at 11 July 2016) presenting that impossible differen-
tials can be searched with MILP. Although we have independently reached the
same idea and used it to evaluate a lot of designs, the work by Cui et al. became
the first article to report the impossible differential search tool based on MILP.

Though the basic idea of the tool is the same, two papers extend the basic
idea to quite different directions. The main focus of [21] seems to be the extension
to the ARX structure and zero-correlation cryptanalysis, which is not covered by
our work. Meanwhile, we are focusing on the impossible differential cryptanalysis
much deeper, and trying to extend the structure that can be evaluated by the
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tool. Therefore, we obtained new results even for 8-bit S-boxes, in which [21] left
application to 8-bit S-box open.

Another difference is enthusiasm for the application to practical designs.
Considering the number of applications, [21] seems to focus on the theoretical
aspects, while we are trying to evaluate more and more targets and the usage of
the tool for designing new primitives is another main focus.

Advantages of [21] Over Our Work.

– By converting differential evaluation to linear evaluation, the tool is extended
to zero-correlation approximations.

– By borrowing the idea by Fu et al. about MILP on the ARX structure [39],
the tool is extended to the impossible differentials for the ARX structure.

– By applying the basic idea to PRESENT, new impossible differentials are
recovered while the number of attacked rounds is not improved.

– By applying the extended tool to ARX, new impossible differentials and
new zero-correlation approximations are discovered against HIGHT, which
improves the previous best results by 1 round.

Advantages of Our Work Over [21].

– The arbitrary S-box mode to apply the tool to 8-bit S-box.
– Focusing on the property of the tool that it can catch any contradiction, which

leads to find improvement of impossible differential using 8-bit S-box.
– More applications are examined and we improved the previous best results in

several applications.
– Analyzing the contradicting reasons for the detected pairs and revealed the

new structural properties that may be used in future analysis.
– More precise arguments for provable security.
– The differential possibility equivalence technique for the efficient search.
– The optimal pick technique for the efficient proof.
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Abstract. In this paper, we focus on collision attacks against Keccak

hash function family and some of its variants. Following the framework
developed by Dinur et al. at FSE 2012 where 4-round collisions were
found by combining 3-round differential trails and 1-round connectors, we
extend the connectors one round further hence achieve collision attacks
for up to 5 rounds. The extension is possible thanks to the large degree of
freedom of the wide internal state. By linearization of all S-boxes of the
first round, the problem of finding solutions of 2-round connectors are
converted to that of solving a system of linear equations. However, due
to the quick freedom reduction from the linearization, the system has
solution only when the 3-round differential trails satisfy some additional
conditions. We develop a dedicated differential trail search strategy and
find such special differentials indeed exist. As a result, the first practical
collision attack against 5-round SHAKE128 and two 5-round instances of
the Keccak collision challenges are found with real examples. We also
give the first results against 5-round Keccak-224 and 6-round Keccak

collision challenges. It is remarked that the work here is still far from
threatening the security of the full 24-round Keccak family.

Keywords: Keccak · SHA-3 · Hash function · Linearization · Differential

1 Introduction

The Keccak [3,5] family of hash functions has attracted intensive cryptanalysis
since its submission to the SHA-3 competition in 2008 [1,9–11,13,14,16,17,19].
In 2012, the National Institute of Standards and Technology of the U.S. selected
Keccak as the winner of the SHA-3 competition. The SHA-3 family consists of four

K. Qiao and M. Liu—This work was done while the authors were visiting Nanyang
Technological University.

c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part III, LNCS 10212, pp. 216–243, 2017.
DOI: 10.1007/978-3-319-56617-7 8



New Collision Attacks on Round-Reduced Keccak 217

cryptographic hash functions of fixed digest sizes and two eXtendable-Output
Functions (XOFs) named SHAKE128 and SHAKE256, each of which is based on an
instance of the Keccak algorithms [18]. Keccak[r, c, d] applies sponge construction
with bitrate r and capacity c to generate d bit digests from arbitrary length mes-
sages where d = 224, 256, 384, 512 in the official SHA-3 versions and d = 160, 80
in the Keccak Crunchy Crypto Collision and Pre-image Contest [2]. Depending
on the size of the internal state in r + c bits from the set {200, 400, 800, 1600},
each of the challenge versions contains 4 variants. SHAKE128 and SHAKE256 gen-
erate digests that can be extended to any desired length. The suffixes “128”
and “256” indicate the security strengths against generic attacks that these two
functions support.

In this paper, we focus on collision attacks against the Keccak family, i.e., to
find two different messages such that their hash digests are the same. The best
previous practical collision attacks on Keccak family are on Keccak-224 and
Keccak-256 reduced to 4 rounds found by Dinur et al. [10] in 2012 and later
furnished in the journal version [12]. After this, theoretical results improved to
5-round Keccak-256 [11]. However, the number of practically attacked rounds
remains at 4. To promote cryptanalysis against Keccak, the Keccak design team
proposed smaller variants in the Keccak challenge [2] with 160 digest size for
collision attack and 80 digest size for preimage attack with each of the 4 sizes of
internal states reduced to from 1 to 12 rounds. The ideal security levels of both
are set to be 280 unit computations for collision and preimages, respectively.
This is a level much lower than that of the main 4 instances of SHA-3, but still
beyond the reach of current computation resource one may have. The current
best solutions of collision challenges are instances reduced up to 4 rounds by
Dinur et al. [10] and Mendel et al. [17]. Theoretical results were found by Dinur
et al. [11] against Keccak-256 with complexities 2115 using generalized internal
differentials. To the best of our knowledge, this remains as the only results on
collision attack against Keccak reduced to 5 or more rounds up to date.

Our Contribution. We develop an algebraic and differential hybrid method
to launch collision attacks on Keccak family and practically find collisions of
5-round SHAKE128 and two 5-round instances of the Keccak collision challenges.
Theoretical results, with complexities below the birthday bound, against 5-round
Keccak-224 and 6-round Keccak collision challenges are also achieved.

These results follow a crucial observation that, the Keccak S-box can be re-
expressed as linear transformations, when the input is restricted to some affine
subspaces. It was already noted by Daemen et al. [3,8] and Dinur et al. [10] that
when the input and output differences are fixed, the solution set of the Keccak

S-box contains affine subspaces of dimension up to 3. In this paper, we show the
maximum subspaces allowing linearization of S-box is of dimension 2. Further-
more, all affine subspaces of dimension up to 2 allow S-box linearization, and for
those of dimension 3, six 2-dimensional affine subspaces out of it could allow the
linearization. With this property in mind, we enforce linearization of all S-boxes
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in the first round, under which the first round function of the Keccak permuta-
tion is transformed into a linear one. Combining with an invertion method of the
S-box layer of the second round, we convert the problem of finding two-round
connectors into that of solving a system of linear equations. Solving the equation
once will produce sufficiently many solutions so that at least one of them will
follow the differential trails in the following 3 rounds or more.

A side effect of linearization of all S-boxes is quick reduction of freedom
degrees, which in turn decides the existence of such two-round connectors. To
solve this problem, we aim to find differential trails, which impose least possible
conditions to the two-round connectors. We design a dedicated search strategy
to find suitable differential trails of up to 4 rounds. Implementation confirmed
the correctness of this idea, and found real examples of collisions for 5-round
SHAKE128 and two instances of challenge versions.

We list our results together with the related previous work in Table 1. Note,
the algorithm for building 2-round connectors is heuristic and there is no theo-
retical bound for the solving time. However, it applies to our attacked instances
within practical time, so we indicate the real time cost instead of complexities
here. Experiments are run on a server with 32 cores of AMD processors.

Table 1. Collision attack results and comparison

Target [r, c, d] nr Searching
complexity

Searching
time

Solving
time2

Reference

SHAKE128 5 239 30 m 25 m Sect. 6.2

Keccak[1440,160,160] 5 240 2.48 h 9.6 s Sect. 6.1

6 270.24 N.A.1 1 h Sect. 6.4

Keccak[640,160,160] 5 235 2.67 h 30 m Sect. 6.3

Keccak-224 4 224 2–3 m [10]

212 0.3 s 2 m 15 s Sect. 6.6

5 2101 N.A. N.A. Sect. 6.5

Keccak-256 4 224 15–30 m [10]

212 0.28 s 7 m Sect. 6.6
1 N.A.: Not Available.
2 There is no theoretical estimate for the solving time of the heuristic algorithms used

here.

Organization. The rest of the paper is organized as follows. In Sects. 2 and 3,
notations and a brief description of Keccak family are given. In Sect. 4, we give
a detailed description of the algebraic methods to achieve 2-round connectors.
In Sect. 5, we give the dedicated search strategies for differential trails. Then the
experimental results are presented in Sect. 6. We conclude the paper in Sect. 7.
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2 Notations

We summarize the majority of notations to be used in this paper here.

c Capacity of a sponge function
r Rate of a sponge function
b Width of a Keccak permutation in bits, b = r + c
d Length of the digest of a hash function
nr Number of rounds
θ, ρ, π, χ, ι The five step mappings that comprise a round, a sub-

script i denotes the operation at i-th round, e.g., θi

denotes the θ layer at i-th round for i = 0, 1, 2, · · ·
L composition of θ, ρ, π
L−1 Inverse of L
RC Round constant for a round of Keccak-f permutation
S(·) 5-bit S-box operating on each row of Keccak state
Ri(·) Keccak permutation reduced to the first i rounds
δin 5-bit input difference of an S-box,
δout 5-bit output difference of an S-box
DDT Differential distribution table
αi Input difference of the i-th round function, i =

0, 1, 2, · · ·
βi Input difference of χ in the i-th round, i = 0, 1, 2, · · ·
wi Weight of the i-th round, i = 0, 1, 2, · · ·
m1||m2 Concatenation of strings m1 and m2

x Bit value vector before χ in the first round
y Bit value vector after the first round
z Bit value vector before χ in the second round

3 Description of Keccak

In this section, we give a brief description of Keccak family of hash functions.
Keccak family applies sponge construction which processes messages in two
phases—absorbing phase and squeezing phase, as shown in Fig. 1. The message
is firstly padded by appending a bit string of 10∗1, where 0∗ represents a shortest
string of 0’s so that the length of padded message is multiple of r. We denote
the original message by M and the padded message by M = M ||10∗1. The b-bit
internal state is initialized to be all 0’s. In absorbing phase, the padded message
is split into blocks of r-bits and each message block is XORed into the first r bits
of current internal state, followed by the application of the fixed permutation
to the entire b-bit state. This is repeated until all message blocks are processed.
In the squeezing phase, the first r bits of the state are returned as output, then
the permutation is applied and another r bits are outputted until all d output
bits are produced. When restricted to the case of b = 1600 and c = 2d, the four
official instances of Keccak family are denoted by Keccak-224/256/384/512
respectively for d = 224, 256, 384, 512. SHAKE128 and SHAKE256 are defined from



220 K. Qiao et al.

two instances of Keccak with the capacity c being 256 and 512, respectively,
and the additional appending of a four-bit suffix 1111 to the original message M
before applying the Keccak padding. Without further specifications, we presume
the digest sizes are 256 and 512 for SHAKE128 and SHAKE256, respectively. We use
M to denote the padded message for SHAKE as well. Instances of Keccak chal-
lenges will be denoted as Keccak[r, c, nr, d], where the parameters are explicitly
indicated for the rate, capacity, number of rounds the permutation is reduced
to, and bit size of the digest, respectively.

Fig. 1. Sponge construction [4].

The Keccak permutation function in SHA-3 consists of 24 rounds of five layers
operating on the 1600-bit state that can be represented as 5 × 5 64-bit lanes. In
general 2l is used to denote the bit length of lanes. If A denotes a 5-by-5-by-2l

array of bits that represents the state, then its indices are the integer triples
(i, j, k) for which 0 ≤ i < 5, 0 ≤ j < 5, and 0 ≤ k < 2l. The bit that corresponds
to (i, j, k) is denoted by A[i, j, k]. Names for single-dimensional sub-arrays and
two-dimensional ones are defined by the Keccak designers: A[·][j][k] is called
a row, A[i][·][k] is a column, and A[i][j][·] is a lane; A[i][·][·] is called a sheet,
A[·][j][·] is a plane, and A[·][·][k] is a slice.

The five layers in each round of the permutation are given below:

θ : A[i][j][k] ← A[i][j][k] +
4∑

j′=0

A[i − 1][j′][k] +
4∑

j′=0

A[i + 1][j′][k − 1]

ρ : A[i][j][k] ← A[i][j][k + T (i, j)],where T (i, j) is a predefined constant

π : A[i][j][k] ← A[i′][j′][k],where
(

i
j

)
=

(
0 1
2 3

)
·
(

i′

j′

)
.

χ : A[i][j][k] ← A[i][j][k] + ((¬A[i + 1][j][k]) ∧ A[i + 2][j][k]),
ι : A ← A + RC[ir], where RC[ir] is the round constants.
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It is interesting to note that the size of permutation can be reduced to one of
{25, 50, 100, 200, 400, 800} by choosing 2l = 1, 2, 4, 8, 16, 32, respectively for the
size of the lanes. In such cases, the round functions are defined exactly in the
same way except the rotation constants of the ρ operation are now in modulo
the respective 2l instead of 64 in the original 1600-bit full permutation. These
size-reduced permutations are not used in the SHA-3 instances, but in the Keccak
challenges.

The first three layers are linear mappings and we denote their composition
by L � θ ◦ ρ ◦ π. The only non-linear layer of the permutation is χ, which
can be seen as a S-box layer that applies 5-bit substitution to 320 rows of the
state. We use S(x) to denote the substitution of a 5-bit input value x. The
difference distribution table of the S-box is denoted by DDT, where DDT(δin, δout)
represents the size of the set {x : S(x)+S(x+δin) = δout}. We denote the Keccak
permutation reduced to the first i rounds as Ri (note the round functions are
identical up to a difference of constant addition in ι and we will omit ι as it has
little impact on our differential collision attack), i.e., Ri(M) is the state after i
rounds processing of the padded message M .

4 Overview of Our Collision Attack

In this section, we give an overview of our collision attacks, followed by the
details of the algebraic methods to achieve two-round connectors. Without fur-
ther specification, we assume in this paper the length of the messages used are
of one block after padding. To fulfil the Keccak padding rule, one needs to fix
the last bit of the padded message to be “1”, hence the first r − 1 bits of the
state are under the full control of the attacker through the message bits, and the
last c bits of the state are fixed to zeros as in the IV specified by Keccak. When
applied to SHAKE, there are r−6 free bits under control, by setting the last 6 bits
of the padded message to be all 1’s so it is compatible with the specific SHAKE
padding rule.

Following the framework by Dinur et al. [10], as well as many other collision
attacks utilizing differential trails, our collision attacks consist of two parts,
i.e., a high probability differential trail and a connector linking the differential
trail with the initial value, as depicted in Fig. 2. Let ΔSI and ΔSO denote the
input and output differences of the differential trail, respectively. Dinur et al.
explored a method, which they call “target difference algorithm”, to find message
pairs (M,M ′) such that the output difference after one round permutation is
ΔSI , formally R1(M ||0c) + R1(M ′||0c) = ΔSI . In what follows, we show an
algebraic method to extend this connector to two rounds, i.e., a new target
difference algorithm to find (M,M ′) such that R2(M ||0c) + R2(M ′||0c) = ΔSI .
The differential trail is then fulfilled probabilistically with many such message
pairs, collision can be produced if the first d bits of ΔSO are 0. As we are aiming
at low complexity attacks, finding solutions of connectors should be practical
so that this part will not dominate the overall complexities of collision finding.
Details of the differential trail search will be discussed in Sect. 5.
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Overall, the constraints of the two-round connectors are that the last c + 1
(or c + 6) bits of the initial state are fixed, and the output difference after two
rounds is given and fixed (this is determined by the differential trail to be used),
we are to utilize the degree of freedom from the first r − 1 (or r − 6) bits of the
initial state to find solutions efficiently. We will start with some observations on
the Keccak S-box, then move to the details of solution finding algorithm.

r

c

ΔSO

d

ΔSI

diff diff

value value

3-round differential

2-round connector

Fig. 2. Overview of 5-round collision attack

4.1 S-Box Linearization and Affine Subspaces

The key observation is that internal state is much larger than the digest size,
providing large number of freedom degrees to attackers. One can choose some
subsets of the available spaces with special properties to achieve fast enumer-
ations. In case of Keccak, we are to choose the subsets which are linear with
respective to the S-box, i.e., the expression of S-box can be re-written as linear
transformation when the input is restricted to such subsets. It is obvious to note
the S-box is non-linear when the entire 25 input space is considered. However,
affine subspaces of size up to 4, as to be shown below, could be found so that the
S-box can be linearized. Note that the S-box is the only nonlinear part of the
Keccak round function. Hence, the entire round function becomes linear when
restricted to such subspaces. Formally, we define

Definition 1 (Linearizable affine subspace). Linearizable affine subspaces
are affine input subspaces on which S-box substitution is equivalent to a linear
transformation. If V is a linearizable affine subspace of an S-box operation S(·),
∀x ∈ V, S(x) = A · x + b, where A is a matrix and b is a constant vector.

For example, when input is restricted to the subset {00000, 00001, 00100,
00101} ({00, 01, 04, 05} in hex), the corresponding output set of the Keccak S-
box is {00000, 01001, 00101, 01100}({00, 09, 05, 0C} in hex), and the expression
of the S-box can be re-written as linear transformation:
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y =

⎛

⎜⎜⎜⎜⎝

1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
· x (1)

where x and y are bit vector representation of input and output values of the
Keccak S-box with the last bit on top. By rotation symmetry, four more lin-
earizable affine subspaces can be deduced from one.

Exhaustive search for the linearizable affine subspaces of the Keccak S-box
shows:

Observation 1. Out of the entire 5-dimensional input space,

a. there are totally 80 2-dimensional linearizable affine subspaces, as listed in
Table 5 in AppendixA.

b. there does not exist any linearizable affine subspace with dimension 3 or more.

For completeness, any 1-dimensional subspace is automatically linearizable
affine subspace.

Since the affine subspaces are to be used together with differential trails, we
are interested in those linearizable affine subspaces with fixed input and output
differences, which is more relevant with the differential distribution table (DDT)
of S-boxes. Referring to the DDT of Keccak S-box postponed to AppendixB, we
observe:

Observation 2. Given a 5-bit input difference δin and a 5-bit output difference
δout such that DDT(δin, δout) �= 0, denote the value solution set V = {x : S(x) +
S(x + δin) = δout} and S(V ) = {S(x) : x ∈ V }, we have

a. if DDT(δin, δout) = 2 or 4, then V is a linearizable affine subspace.
b. if DDT(δin, δout) = 8, then there are six 2-dimensional subsets Wi ⊂ V, i =

0, 1, · · · , 5 such that Wi(i = 0, 1, · · · , 5) are linearizable affine subspaces.

It is interesting to note the 2-dimensional linearizable affine subspaces
obtained from analysis of DDT cover all the 80 cases in Observation 1. It is
already noted in [15] there is one-to-one correspondence between linearizable
affine subspaces and entries with value 2 or 4 in DDT. As for the DDT entries
of value 8, we will leave the 6 choices of 2-dimensional linearizable affine sub-
spaces for later usage. As an example, the 3-dimensional affine subspace cor-
responding to DDT(01, 01), i.e., with both input and output differences being
01, is {10, 11, 14, 15, 18, 19, 1C, 1D} and the six 2-dimensional linearizable affine
subspaces from it are

{10, 11, 14, 15},

{10, 11, 18, 19},

{10, 11, 1C, 1D},

{14, 15, 18, 19},

{14, 15, 1C, 1D},

{18, 19, 1C, 1D}.

(2)
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When projected to the whole Keccak state, direct product of affine subspaces
of each individual S-box form affine subspaces of the entire state with larger
dimensions. In other words, when all the S-boxes in the round function are
linearized, the entire round function becomes linear. This will be the way we are
to handle the S-box layer of the first round of the 2-round connector.

4.2 A Connector Covering Two Rounds

The core idea of our two-round connector is to convert the problem to solving a
system of linear equations. Two rounds of Keccak permutation can be expressed
as χ1◦L1◦χ0◦L0 (omitting the ι). With the χ0 layer linearized by the techniques
discussed above, i.e., given the input and output differences of χ, the first three
operations L1◦χ0◦L0 become linear. We will give details of the method how input
and output differences of χ0 are selected later. Now, we show how the χ1 can be
inverted by adding more constraints of linear equations. In our attack setting,
the output difference of χ1 is given as ΔSI—input difference of the 3-round
differential trail. It is not necessary that all S-boxes of the χ1 layer are active,
i.e., with a non-zero difference. Here only active S-boxes are concerned, and
each of them is inverted by randomly choosing an input difference with non-zero
number of solutions, we call it compatible input difference. Formally, given the
output difference δout, compatible input differences are {δin : DDT(δin, δout) �= 0}.
As noted previously [3,8,10], for any pair of (δin, δout), the solution set V =
{x : S(x) + S(x + δin) = δout} forms an affine subspace. In other words, V
can be deduced from the set {0, 1}5 by setting up i constraints that turn to be
binary linear equations, when the size of solution set V is 25−i. For example,
corresponding to DDT(03, 02) is the 2-dimensional affine subspace {14, 17, 1C, 1F}
which can be formulated by the following three linear equations:

⎛

⎝
0 0 1 0 0
1 1 0 0 0
0 0 0 0 1

⎞

⎠ · x =

⎛

⎝
1
0
1

⎞

⎠ . (3)

It is important to note, under the i linear constraints or set V , there is a bijective
relation between δin and δout, i.e., given one the other can be deduced determin-
istically. Hence, each active S-box in χ1 layer is inverted by a choice of compatible
input difference together with the corresponding i linear constraints on the input
values. Once input difference and linear constraints for all active S-boxes of χ1

are enforced and fulfilled, solutions of 2-round connector are found. Note a com-
patible input difference of χ1 is a choice of β1, and α1 can be uniquely determined
by the relation α1 = L−1(β1). In the remaining part of this subsection, more
details on implementation of this idea are given.

As depicted in Fig. 3, the variables of our equation system are the bit values
before the first χ layer denoted by vector x. y and z are bit vectors of intermediate
values for further interpretation where y represents the output after the first χ
layer and z the bits before the second χ layer. The main task is to derive all
constraints on differences and affine subspaces to that on the variables x. Now,
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suppose β1 and β0 (details will be given in Sect. 4.4) are fixed, and ΔSI (aka.
α2) is given, we show how the system of equations could be set up. With the
input difference β1 and output difference ΔSI of χ1, all the linear constraints on
the input affine subspaces of the active S-boxes can be derived and stored as

G · z = m,

where G is a block-diagonal matrix in which each diagonal block together with
corresponding constants in m formulates the constraints of one active S-box.
Similar procedure is done for input affine subspaces of the first round, except that
the input is restricted to linearizable affine subspaces for all S-boxes regardless
whether or not the S-box is active so that χ0 layer can be replaced by a linear
transformation χL. We denote the constraints by

A · x = t. (4)

Then x and y can be linked by

χL · x + χC = y,

where χC denotes the constant offsets for the affine subspaces. Furthermore, the
two equation systems can be linked by

L · (y + RC[0]) = z,

where RC[0] denotes the round constant of the first round. Note, only active
S-boxes of the second round are concerned, i.e., only part of bits of z are known,
hence the same applies to y, and we use y′ to denote the known bits of y for
later. Overall, the constraints on z can be derived to that on x as

G · L · (χL · x + χC + RC[0]) = m. (5)

Note an additional constraint x needs to fulfil is that the last c + 1 (or c + 6)
bits of initial state are pre-fixed, which can be derived as

L−1(x) = CA, (6)

where CA denotes the preset values for bits of the inner state and padding bits.
We use EM to denote the equation systems (4), (5) and (6), solutions fulfilling
EM will be solutions of 2-round connectors.

Algorithm for Building Two-Round Connectors. We use the basic lin-
earization procedure to generate the equations for confining x to a smaller sub-
space suitable for linearization of the first χ layer and use the main linearization
procedure to generate the final equations to bypass the second χ layer. One of
the inputs of the basic procedure is the equation system EM on x values, other
inputs include the input and output differences of the first S-box layer β0, α1

and y′.
The Basic Linearization Procedure.

Inputs: EM , β0, α1, y
′.

Outputs: updated EM , χL, χC .
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1. Initialize a matrix χL and a vector χC .
2. Iterate on each bit of y′, calculate the index of the bit in S-box level, say the

j-th bit of the i-th S-box in the first round. Then for the i-th S-box in the
first round:
(a) If the i-th S-box has not been processed in this procedure before, then:

(i) If it is non-active, randomly choose a linearizable 2-dimensional sub-
space, check whether the 3 equations specifying this 2-dimensional
affine subspace is consistent with the current EM .
If so, add them to EM and update χL and χC with the j-th line of
the matrix which specifies the affine linear transformation. Continue
to next bit of y′ in step 2.
Otherwise, try another linearizable 2-dimensional subspace. If all lin-
earizable 2-dimensional subspaces have been tried and no consistent
equations exist, output “No Solution in basic procedure”.

(ii) Otherwise it is active: find its input and output differences from β0

and α1, i.e., δin, δout.
Case 1. When DDT(δin, δout) = 8, randomly choose one of the six lineariz-

able 2-dimensional subspaces and the corresponding equation to
specialize this 2-dimensional subspace (the other two of the three
equations to formulate the 2-dimentional subspace have already
been indicated in EM after choosing β0 procedure).
If current EM is consistent with this linear equation, add it to
EM and update χL and χC with the j-th line of the matrix which
specifies the linear map from the 2-dimensional subspace to the
output 2-dimensional subspace of S-box. Continue to next bit of
y′ in step 2.
Otherwise, try another randomly chosen 2-dimensional lineariz-
able subspace. If all six 2-dimensional linearizable subspaces have
been chosen and no consistent equation exist, output “No Solu-
tion in basic procedure”.

Case 2. When DDT(δin, δout) = 2 or 4, update χL and χC with the j-th
line of the matrix which specifies the affine linear transformation
of the input 1 or 2-dimensional subspace to the output 1 or 2-
dimensional subspace of S-box. Continue to next bit of y′ in step 2.

(b) Otherwise, if the i-th S-box has already been processed in this procedure:
update χL and χC with the j-th line of the matrix which specifies the
affine linear transformation of the predefined linearizable subspace to the
output subspace of S-box.

3. Output the current equations system EM as well as χL and χC such that
χL · x + χC = y′.

The inputs to the Main procedure are β0, α1, β1, α2(ΔSI) and EM we get
after choosing β0.
The Main Linearization Procedure.

Input: EM , β0, α1, β1, α2.
Output: Updated EM .
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1. Using β1 and α2, initialize a coefficient matrix G and a constant vector m
that specify the linear equations to constrain the input bits of the second
S-box layer for deriving the equation G · z = m.

2. Derive the L into the matrix format for L · (y + RC[0]) = z.
3. Initialize a counter to 0.
4. Execute the basic linear procedure with indexes of know bits y′ in y and

EM , β0 and α1. If the procedure succeeds, it will return the matrix specifying
the linearization of the first S-box layer such that χL · x + χC = y′, then
continue to Step 6. Otherwise, go to step 5.

5. Increment the counter. If the counter’s value is equal to a preset threshold
T1, output “Failed”. Otherwise, go to step 4.

6. Test whether the equation system (5) is consistent with EM . If so, add the
new system to EM and output final EM . Otherwise, go to step 5.

Note that the algorithms do not succeed all the time. To overcome this prob-
lem, from the input difference ΔSI of a 3-round differential trail, we repeat
random picks of compatible input differences β1 until the main procedure suc-
ceeds. As the number of active S-boxes in α2 is large enough (range from tens to
hundreds in our experiments), there are enough different cases for β1 resulting
in high final success probability. An interesting point is that the invertion from
α2 to β1 does not need to maintain high probability because this transition is
covered in our two-round connector. Besides, the unconstrained number of active
S-boxes of an input difference allows more freedom in searching of the most suit-
able three round differential trails. We will describe the searching strategies in
Sect. 5. Finally, exhaustive search of solution for the following 3-round differen-
tial trails can be performed from the solution space of EM .

4.3 Analysis of Degree of Freedom

The degree of freedom of solution space of final EM is a key factor on success
of our method. A solution space with degree of freedom larger than the weight
of the 3-round differential trail is possible to suggest a message pair with colli-
sion digest. After the linearization of the first round, the degree of freedom is
∑ b

5−1
i=0 DF

(1)
i in which DF

(1)
i is the degree of freedom of 5-bit input space of the

i-th S-box in the first round. The value is assigned for DF
(1)
i according to rules

in Table 2.
The constraints on the initial state reduce (c + p) degree of freedom where c

is the capacity and p is due to the padding rule. We have p = 1 for Keccak and
p = 6 for SHAKE. Another decrease on degree of freedom is due to the constraints
on the input values of the S-box layer in the second round. The definition of DF(2)i ,
the degree of freedom of 5-bit input values to S-boxes in the second round, is

DF
(2)
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, DDT(δin, δout) = 2,
2, DDT(δin, δout) = 4,
3, DDT(δin, δout) = 8,
5, DDT(δin, δout) = 0,

(7)
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Table 2. Rules for value assignment for DF1i .

DF
(1)
i

∗ Non-active DDT(δin, δout) = 2 DDT(δin, δout) = 4 DDT(δin, δout) = 8

Involved in y′ 2 1 2 2

Not involved in y′ 5 1 2 3

∗ The value of DF
(1)
i is based on whether the i-th S-box is involved in y′ and the value

DDT(δin, δout) where δin and δout are the input and output differences of the i-th S-box

in the first round.

where δin and δout are the input and output differences of the i-th S-box in
the second round. For the i-th S-box in the second round, we add (5 − DF

(2)
i )

equations to EM and suppose to deduce the degree of freedom by this amount.
The degree of freedom of the final EM is estimated as

DF =

b
5−1∑

i=0

DF
(1)
i − (c + p) −

b
5−1∑

i=0

(5 − DF
(2)
i ). (8)

Large DF benefits our search for collisions in rounds beyond the second round.

4.4 How to Choose β0

So far we have not given details on how β0 can be selected. We follow Dinur
et al.’s work [10] in a more general way to uniquely determine β0, the differ-
ence before χ layer in the first round. The algorithm is called “target difference
algorithm” and consists of difference phase and value phase.

Given ΔSI , we have randomly chosen a compatible input difference β1. We
then build two equation systems EΔ and EM accordingly. EΔ is on differences
of the message pairs and EM is on values of one message. The initialization of
EΔ should abide by (1) the constraints implied by padding rules that the last
c+1 difference bits of initial state equal to 0, and (2) the input difference bits of
nonactive S-boxes in the first round equal to 0. The initialization of EM should
abide by the padding rules that the last c + p value bits equal to 1p||0c. We set
p = 1 for Keccak and p = 6 for SHAKE. These rules are easy to be implemented
as the variable vector x is an invertible linear mapping of the initial vector.
Therefore, in the initialization period, we equate the corresponding bits to their
enforced values in EΔ and EM .

For EΔ, we add additional equations to enforce that α1 is possibly deduced
from β0. Though the obvious way is to equate the 5 input difference bits to a
specific value for each active S-box in β0, this will restricts the solution space
significantly. As suggested in [10], we chose one of the 2-dimensional affine subsets
of input differences instead of a specific value for each active S-box. This is based
on the fact that given any nonzero 5-bit output difference to a Keccak S-box,
the set of possible input differences contains at least five 2-dimensional affine
subspaces. After a consistent EΔ system has been constructed, the solution space
is an affine subspace of candidates for β0. Then we continue to maintain EΔ by
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iteratively add the additional 2 equations to uniquely specify each 5-bit input
difference for the active S-boxes. For all active S-boxes, once the specific input
differences is determined, we add equations to EM system to enforce every active
5-bit of x (input bits to active S-box) to an affine subspace corresponding to the
uniquely determined δin and δout. In this way, we always find a compatible β0

from α1 fulfilling the constraints from the c + p bits of padding and pre-set bits
of capacities.

5 Search for Differential Trails

In this section, we elaborate on our searching algorithms for finding differential
trails of Keccak. Our ideas greatly benefit from previous works of searching dif-
ferential trails for Keccak [9,14,19]. We start by recalling several properties of the
operations in the round function, followed by our considerations in finding differ-
ential trails. Then, we describe our searching algorithms which provide differen-
tial trails for practical collision attacks against Keccak[1440, 160, 5, 160], 5-round
SHAKE128 and Keccak[640, 160, 5, 160] respectively, and trails for theoretical col-
lision attack against 5-round Keccak-224 and Keccak[1440, 160, 6, 160].

5.1 Properties of θ, ρ, π, ι and χ

θ, ρ, π, ι are linear operations while χ acts as the parallel application of 5-bit
nonlinear S-boxes on the rows of the state. Since ι adds a round constant and
has no essential effect on difference, we ignore it in this section. Additionally, ρ
and π do not change the number of active bits in a differential trail, but only
positions. Therefore, θ and χ are the crucial parts for differential analysis.

To describe the properties of θ, we take definitions from [3]. The column
parity (or parity for short) P (A) of a value (or difference) A is defined as the
parity of the columns of A, i.e. P (A)[i][k] = ΣjA[i][j][k]. A column is even, if
its parity is 0, otherwise it is odd. A state is in CP-kernel if all its columns are
even.

θ adds a pattern to the state, and this pattern is called the θ-effect. The
θ-effect of a state A is E(A)[i][k] = P (A)[i − 1][k] + P (A)[i + 1][k − 1]. So θ
depends only on column parities. The θ-gap is defined as the Hamming weight
of the θ-effect divided by two. Note that if the θ-gap is g, after applying θ there
are 10g bits flipped. Given a state A in CP-kernel, the θ-gap is zero and hence
the Hamming weight of A remains after θ. Another interesting property is that
θ−1 diffuses much faster than θ. More exactly, a single bit difference can be
propagated to about half state bits through θ−1.

Given an input difference to χ, all possible output differences occur with
the same probability. On the contrary, given an output difference to χ, it is not
the same case, but the highest probability of all possible input differences is
determined. Moreover, for one-bit differences, each S-box of χ acts as identity
with probability 2−2.
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5.2 Representation of Trails and Their Weights

As in previous sections, we denote the differences before and after i-th round by
αi and αi+1, respectively. Let βi = L(αi). Therefore an n-round differential trail
starting from 0-th round is of the following form

α0
L−→ β0

χ−→ α1
L−→ · · · αn−1

L−→ βn−1
χ−→ αn.

For the sake of simplicity, a trail can also be represented with only βi’s or αi’s.
The weight of a differential β → α over a function f with domain {0, 1}b is

defined as
w(β → α) = b − log2|{x : f(x) ⊕ f(x ⊕ β) = α}|.

In other words, the weight of a differential β → α is equal to −log2Pr(β → α). If
Pr(β → α) > 0, we say α and β are compatible, otherwise the weight of β → α
is undefined.

We denote the weight of i-th round differential by wi where i starts from 0,
and thus the weight of a trail is the sum of the weights of round differentials
that constitute the trail. In addition, we use #AS(α) to represent the number
of active S-boxes in a state difference α. According to the properties of χ, given
βi the weight of (βi → αi+1) is determined; also, given βi the minimum reverse
weight of (βi−1 → L−1(βi)) is fixed.

As in [3], n−1 consecutive βi’s, say (β1, · · · , βn−1) is called an n-round trail

core which defines a set of n-round trails α0
L−→ β0

χ−→ α1
L−→ β1 · · · L−→ βn−1

χ−→
αn where the first round is of the minimal weight determined by α1 = L−1(β1),
and αn is compatible with βn−1. The first step of mount collision attacks against
n-round Keccak is to find good (n − 1)-round trail cores.

5.3 Requirements for Differential Trails

Good trail cores are those satisfying all the requirements which we will explain
as follows. The first requirement is that the difference of the output is zero, i.e.
αd

nr
= 0 (we denote output digest difference after nr rounds with αd

nr
). The

second requirement relates to the freedom degree budget.
With the definition of weight, Eq. (8) can be represented in an alternative

way

DF =
b/5−1∑

i=0

DF
(1)
i − (c + p) − w1. (9)

The first term of the formula depends on the number of S-boxes that need to be
linearized and its corresponding DDT entry as depicted in Table 2. Empirically,
when all S-boxes are active and linearized in the first round it is more possible
to get a consistent equation system. Therefore, we heuristically set b

5 × 2 as a
threshold for the first term in (9), and denote a threshold of the first two terms
in (9) for further search conditions by

TDF =
b

5
× 2 − (c + p).
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To mount collision attacks against Keccak[r, c, nr, d] with methods described in
Sect. 4, it is necessary that

TDF > w1 + · · · + wnr−2 + wd
nr−1 (10)

where wd
nr−1 is the part of wnr−1 that relates to the digest1. The trail searching

phase is performed to provide ΔSI for the connector building algorithm. How-
ever, the sufficient conditions for a good trail core is restrained by solving results
of the connector, i.e. the number of freedom degrees of the solution space of EM .
So we take (10) as a heuristic condition for searching good trail cores which are
promising for collision attacks.

Thirdly, the collision attack should be practical. Note that after we obtain a
subspace of message pairs making it sure to bypass the first two rounds, the com-
plexity for searching a collision is 2w2+···+wd

nr−1 . To make our attacks practical,
we restrict w2 + · · · + wd

nr−1 to be small enough, say 48.
We summarize the requirements for differential trails as follows and list TDFs

for different versions of Keccak[r, c, nr, d] in Table 3.

(1) αd
nr

= 0, i.e. the difference of output must be zero.
(2) TDF > w1 + · · · + wd

nr−1, i.e. the degree of freedom must be sufficient;
(3) w2 + · · · + wd

nr−1 ≤ 48, the complexity for finding a collision should be low.

Table 3. TDFs of different versions of Keccak[r, c, nr, d].

Keccak[r, c, nr, d] TDF Remarks

Keccak[1440, 160, 5, 160] 479 Challenge

Keccak[1344, 256, 5, 256] 378 SHAKE128

Keccak[ 640, 160, 5, 160] 159 Challenge

Keccak[1440, 160, 6, 160] 479 Challenge

Keccak[1152, 448, 5, 224] 191 Keccak-224
∗ ‘Challenge’ means that version is included in Kec-
cak Crunchy Crypto Collision and Pre-image Con-
test [2].

5.4 Searching Strategies

Searching From Light β3’s. Our initial goal is to find collisions for 5-round
Keccak. To facilitate a 5-round collision of Keccak, we need to find 4-round dif-
ferential trails satisfying the three requirements mentioned previously. However
it is difficult to meet all of them simultaneously even though each of them can
be fulfilled easily.
1 Suppose all the equations are independent. In later parts we will show these equations

are not necessarily independent.
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We explain as follows. Since we aim for practical attacks, w2 + w3 + wd
4

must be small enough, say 48. That is to say, the last three rounds of the trail
must be light and sparse. When we restrict a 3-round trail to be lightweight and
extend it backwards for one round, we almost always unfortunately get a heavy
state α2 (usually #AS(α2) > 120) whose weight may exceeds the TDF. We take
Keccak-224 as an example. The TDF of Keccak-224 is 191, which indicates
#AS(α2) < 92 as the least weight for an S-box is 2. For a lightweight 3-round
trail, it satisfies Requirement (1) occasionally. The greater d is, the less trails
satisfy Requirement (1).

With these requirements in mind, we search for 4-round differential trail cores
from light middle state differences β3’s. From light β3’s we search forwards and
backwards, and check whether Requirement (1) and (2) are satisfied respectively;
once these two requirements are satisfied, we compute the weight w2 + w3 + wd

4

for brute force, hoping it is small enough for practical attacks.

α3, α4 in CP-kernel. The designers of Keccak show in [3] that it is not possible
to construct 3-round low weight differential trails which stay in CP-kernel. How-
ever, 2-round differential trails in CP-kernel are possible, as studied in [9,14,19].

We restrict α3 in CP-kernel. If ρ−1 ◦ π−1(β3) is outside the CP-kernel and
sparse, say 8 active bits, the active bits of α3 = L−1(β3) will increase due to
the strong diffusion of θ−1 and the sparseness of β3. When #AS(α3) > 10, the
complexity for searching backwards for one β3 is greater than 231.7 which is too
time-consuming. We had better also confine α4 to the CP-kernel. If not, the
requirement αd

nr
= 0 may not be satisfied. As can be seen from the lightest

3-round trail for Keccak-f [1600] [14], even though the θ-gap is only one, after
θ the difference bits are diffused among the state making a 224-bit collision
impossible (a 160-bit collision is still possible). So our starting point is special
β3’s which makes sure α3 = L−1(β3) lies in CP-kernel, and for which there exists
a compatible α4 in CP-kernel. Fortunately, such kind of β3’s can be obtained
with KeccakTools [6].

Steps for Searching 4-Round Differential Trails. We sketch below our
steps for finding 4-round differential trail cores for Keccak and provide a descrip-
tion in more detail in AppendixC. To mount collision attacks on 6-round Keccak,
5-round differential trail cores are needed. In this case, we just extend our for-
ward extension for one more round.

1. Using KeccakTools, find special β3’s with a low Hamming weight, say 8.
2. For every β3 obtained, traverse all possible α4 using a tree structure, compute

β4 = L(α4) and test whether there exists a compatible α5 where αd
5 = 0. If

so, keep this β3 and record its forward extension, otherwise discard it.
3. For remaining β3’s, also using a tree structure traverse all possible β2 which

is compatible with L−1(β3)’s, compute #AS(α2) from β2. If #AS(α2) is
small enough, say below 110, check whether this trail core (β2, β3, β4) under
consideration is sufficient for collision attacks.
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Fig. 3. Collision attacks on 5-round Keccak.

5.5 Searching Results

Some of the best differential trail cores we obtained are listed in Table 4. As
can be seen that Trail cores No. 1–3 are all suitable for collision attacks against
Keccak[1440,160,5,160], and Trail cores No. 1 and 2 for SHAKE128. Trail core
No. 4 is sufficiently good for collision attacks against Keccak[640, 160, 5, 160].
However, to mount collision attacks on Keccak-224, all the first three trail
cores are not good enough. Fortunately, a doubled version of Trail core No.
4 can make our two-round attack possible because 85 × 2 = 170 < 191. For
Keccak[1440, 160, 6, 160], we also find a trail core ripe for collision attacks except
that Requirement (3) is not satisfied. Details of these differential trail cores are
provided in AppendixD.

Table 4. Differential trail cores for Keccak[r, c, nr, d].

No r + c #AS(α2-β2-β3-β
d
4 ) w1-w2-w3-w

d
4 d

1 1600 102-8-8-2 240-19-16-4 256

2 1600 88-8-7-0 195-21-15-0 256

3 1600 85-9-10-2 190-25-20-3 224

4 800 38-8-8-0 85-20-16-0 160

No. r + c #AS(α2-β2-β3-β4-β
d
5 ) w1-w2-w3-w4-w

d
5 d

5 1600 145-6-6-10-14 340-15-12-22-23 160

6 Experiments and Results

In this section, we employ 4-round (5-round) trail cores to mount collision attacks
against 5-round (6-round) Keccak[r, c, nr, d]. Our attack consists of two main
stages:
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– Connecting stage. Find a subspace of messages bypassing the first two rounds.
– Brute-force searching stage. Find a colliding pair from this subspace by brute

force.

In the first stage, with α2 fixed by the trail core, we choose compatible β1 where
α1 = L−1(β1) and all the S-boxes in α1 are active. In order to save freedom
degrees, we also restrict that β1 → α2 should be of least weight. When β1

is chosen, we run the two-round connector. If a certain number of failures is
reached, we select another β1 until a solution is found, i.e. a subspace of message
pairs definitely reaching to α2 is obtained. If the number freedom degrees of this
subspace is large enough, the first stage succeeds. Once the first stage succeeds,
we move on to the second stage for finding a colliding message pair.

6.1 Collision Attack of Keccak[1440,160,5,160]

We apply Trail core No. 2 to the collision attack of 5-round Keccak[1440,
160, 5, 160]. In this case, we choose compatible β1s randomly. After solving the
two-round problem in 9.6 s, the degree of freedom is 162, which is enough for
collision search of the remaining 3 rounds with probability 2−40. The searching
time for the collision is 2.48 h. We give one example of collisions in Table 10, with
which we solve a challenge of Keccak Crunchy Crypto Collision and Pre-image
Contest [2].

6.2 Collision Attack of 5-Round SHAKE128

We apply Trail core No. 1 to the collision attack of 5-round SHAKE1282. As the
capacity of SHAKE128 is much larger than that of Keccak[1440, 160, 5, 160], which
means about 100 more freedom degrees are needed, we just choose compatible
β1s where β1 → α2 is of least weight. We also follow this rule in later collision
attacks. After solving the two-round problem with 25 min, the degree of freedom
is 94 and the search for 3-round collision with probability 2−39 costs half an
hour. We give an instance of collision in Table 11.

6.3 Collision Attack of Keccak[640,160,5,160]

We apply Trail core No. 5 to the collision attack of Keccak[640, 160, 5, 160].
The methods used in this case are similar to those of 5-round SHAKE128. The
first stage succeeds in 30 min. The second stage takes 2 h 40 min to find a col-
lision which happens with probability 2−35. An example of collision is provide
in Table 12, with which we solve another challenge of Keccak Crunchy Crypto
Collision and Pre-image Contest [2].

2 We also utilized Trail core No. 2, but Trail core No. 1 produces a colliding pair in a
relatively shorter time.
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6.4 Collision Attack of Keccak[1440,160,6,160]

We found four trail cores for which there exist zero 160-bit output differences.
The one with the best probability is Trail core No. 5 which is displayed in Table 9.
From β4 there are 24 trails to zero αd

6. Taking all these trails into consideration,
we get a complexity of 267.24–270.24 for the second stage. If we let #AS(α2)
(w2) be the smallest, the complexity for the second stage is 270.24 (267.24). In
the experiments, we let #AS(α2) be the smallest. In one hour our two-round
algorithm returns a subspace of messages with freedom degree 135, and in 20 min
we get a message pair shown in Table 13 that follows the first four rounds of the
differential trail, which demonstrates that in time complexity of 270.24 a collision
for 6-round Keccak[1440, 160, 6, 160] will be found with great confidence.

6.5 Collision Attack of 5-Round Keccak-224

For the collision attack of 5-round Keccak-224, all the 4-round trail cores we
found for Keccak-f [1600] are not good enough, i.e. the weight of the trail cores
exceeds TDF too much and even w2 > TDF. However, our two-round connector
is still likely to work. For one hand, from Trail core No. 4 for Keccak-f [800]
we can construct a 4-round trail core for Keccak-f [1600] with weight pattern
(170-40-32-0) which makes our two-round connector possible. From the other, as
the capacity increases, it is probable that equations added in connecting phase
are not always mutually independent, which means the assumption of freedom
degrees of our connector may be less than TDF. The applicability of our connector
in this case is verified with experiments. With Trail core No. 4, the two round
connector returns a subspace of messages of freedom degree 11 and 2 or 3 for
Trail core No. 3. Since the message subspaces derived are too small to mount
collision attacks against 5-round Keccak-224, we turn to two-block messages.
Once we get c bits from the first block, we set corresponding c bit constants in
EM to the value we obtained and then solve the system to find a subspace of
messages for the second block. Now the attack proceeds in the following way.

– Connecting stage.
• Use the two-round connector to find a message subspace with freedom

degree s as large as possible, hoping that t = (c+p)+rank(EM n E(c,p))−
rank(EM ) is as small as possible.

– Brute-force searching stage.
• Choose the first message randomly and compute the c-bit value for the

second block. Replace the corresponding c bit constants in EM and check
whether it is still consistent. If it is consistent, we obtain another subspace
with size 2s.

• Search for collision with the subspace.
• Repeat until we find a two-block collision.

In our experiment, using Trail core No. 3 the connector returns a message
subspace with freedom degree s = 2, and t = 55. Then the complexity for find a
two-block collision is 255+(48−2) = 2101.
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6.6 Re-launch 4-Round Collision Attacks of Keccak-224 and
Keccak-256

Though the 4-round collisions of Keccak-224 and Keccak-256 have already
been found [10], we use our method to optimize the complexity. We start from the
same 2-round differential trail in Dinur et al.’s work [10] and build a two-round
connector. The time spent on building and solving the two-round connectors is
2 min 15 s for Keccak-224 and 7 min for Keccak-256. Then the complexity for
brute forth searching is reduced to 212 and cost 0.325 s and 0.28 s respectively
which outperforms 224 on-line complexity in [10]. Besides, it is pointed out in [10]
that even though they got subsets with more than 230 message pairs from their
target difference algorithm, they were not able to find collisions within some of
these subsets. The reason was suspected to be the incomplete diffusion within the
first two rounds and the closely related message pairs within a subset. While in
our algorithm, we did not encounter such a problem. In other words, we always
find collisions from the subsets deduced from the two-round connector. Thus
once we succeed in the 2-round connector building phase with a large enough
subset, we never need to repeat it.

7 Conclusion

In conclusion, we observed that the Keccak S-box can be re-expressed as linear
transformations under some restricted input subspaces. With this property, we
linearized all S-boxes of the first round, and extended the existing connector by
one round. Implementations confirmed our idea, and found us real examples of
5-round SHAKE128, and two instances of Keccak challenges. Theoretical results
on 5-round Keccak-224 and a 6-round Keccak challenge version are projected.

It is noted that the algorithm for solving the two-round connectors are heuris-
tic, further work includes finding the theoretical bounds of this algorithm and
factors deciding the complexities for possible improvements. Note, any relax-
ation on the restrictions of ΔSI might lead us to better differential trails in the
searching phase.
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A 2-Dimentional Linearizable Affine Subspaces of Keccak

S-box

There are totally 80 2-dimensional linearizable affine subspaces for Keccak S-box
as listed in Table 5.
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Table 5. Linearizable affine subspaces of Keccak S-box

{0, 1, 4, 5} {2, 3, 6, 7} {0, 1, 8, 9} {4, 5, 8, 9} {0, 2, 8, A}
{1, 2, 9, A} {0, 3, 8, B} {1, 3, 9, B} {2, 3, A, B} {6, 7, A, B}
{0, 1, C, D} {4, 5, C, D} {8, 9, C, D} {4, 6, C, E} {5, 6, D, E}
{4, 7, C, F} {5, 7, D, F} {2, 3, E, F} {6, 7, E, F} {A, B, E, F}
{0, 2, 10, 12} {8, A, 10, 12} {1, 3, 11, 13} {9, B, 11, 13} {0, 4, 10, 14}
{1, 5, 10, 14} {2, 4, 12, 14} {0, 4, 11, 15} {1, 5, 11, 15} {3, 5, 13, 15}
{10, 11, 14, 15} {0, 6, 10, 16} {2, 6, 12, 16} {3, 7, 12, 16} {4, 6, 14, 16}
{C, E, 14, 16} {1, 7, 11, 17} {2, 6, 13, 17} {3, 7, 13, 17} {5, 7, 15, 17}
{D, F, 15, 17} {12, 13, 16, 17} {10, 11, 18, 19} {14, 15, 18, 19} {0, 2, 18, 1A}
{8, A, 18, 1A} {10, 12, 18, 1A} {11, 12, 19, 1A} {10, 13, 18, 1B} {1, 3, 19, 1B}
{9, B, 19, 1B} {11, 13, 19, 1B} {12, 13, 1A, 1B} {16, 17, 1A, 1B} {8, C, 18, 1C}
{9, D, 18, 1C} {A, C, 1A, 1C} {8, C, 19, 1D} {9, D, 19, 1D} {B, D, 1B, 1D}
{10, 11, 1C, 1D} {14, 15, 1C, 1D} {18, 19, 1C, 1D} {8, E, 18, 1E} {A, E, 1A, 1E}
{B, F, 1A, 1E} {4, 6, 1C, 1E} {C, E, 1C, 1E} {14, 16, 1C, 1E} {15, 16, 1D, 1E}
{9, F, 19, 1F} {A, E, 1B, 1F} {B, F, 1B, 1F} {14, 17, 1C, 1F} {5, 7, 1D, 1F}
{D, F, 1D, 1F} {15, 17, 1D, 1F} {12, 13, 1E, 1F} {16, 17, 1E, 1F} {1A, 1B, 1E, 1F}

B Differential Distribution Table of Keccak S-box [14]

C Steps for Finding Differential Trials

In this section, we describe more at length about the steps for finding differential
trails.

1. Generate β3s each of which makes sure α3 = L−1(β3) lies in CP-kernel, and
for each β3 there exists a compatible α4 in CP-kernel using TrailCoreInKer-
nelAtC of KeccakTools [6] where the parameter aMaxWeight is set to be 52.
As a result, 503 such β3s are obtained.

2. For every β3 obtained, if #AS(β3) < 16 we traverse all possible α4 using a tree
structure, compute β4 = L(α4) and test whether there exists a compatible α5

where αd
5 = 0. If so, keep this β3 and record its forward extension, otherwise

discard it. For d = 224, 351 β3s are left while 495 β3s are left for d = 160.
3. For remaining β3s, we also use a tree structure to search backwards. For each

β3 compute α3 = L−1(β3). If #AS(α3) < 10, traverse all possible β2s which is
compatible with α3, compute #AS(α2) from β2. If #AS(α2) is small enough,
say below 110, check whether this trail core (β2, β3, β4) under consideration
is sufficient for collision attacks.

Parameters and conditions in our algorithm can be changed and we just set
them as described for the sake of practicality. For example, in the third step
if #AS(α3) � 10, it costs too much time for one β3 (� 231.7). For each β3,
the backward search costs more time than the forward search because of the
property of χ. Since the corresponding α3 has the same number of active bits
with β3, the numbers of active S-boxes are the same for both extension. Further,
active bits are rather sparse in both α3 and β3, and the active S-boxes in them
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Table 6. The differential distribution table of the χ when viewed as S-box. The first
bit of a row is viewed as the least significant bit. Given input difference Δin and
output difference Δout the number in the table shows the size of the solution set
{v | χ(v) + χ(v + Δin) = Δout}. Differences are in hex number.

are almost all with one active bit. Note that given a one-bit input difference of
an S-box, there are only 4 possible output difference, while there are 9 possible
input differences given an one-bit output difference. This is the reason why the
backward search is more time-consuming.

To find a 5-round trail core for Keccak[1440, 160, 6, 160], we adapt the sec-
ond step as follows.

2. We first extend forwards from β3 for one round using KeccakFTrailExtension
of KeccakTools [6] with weight up to 36. Then for β4 of each trail core,
if #AS(β4) < 16, traverse all possible α5, compute β5 = L(α5) and test
whether there exists a compatible α6 where αd

6 = 0. If so, we keep the β3 and
record the three-round trail core (β3, β4, β5), otherwise we discard the β3.

In the end four trail cores remain. In order to reduce the weight, we take
multiple trails from β4 to α5 into consideration and the trail core in Table 9 is
the best among the four trail cores.

D Differential Trails

In this section, we give details of differential trails of Keccak mentioned in Sect. 5.
Actually we present trail cores. For example, a 4-round tail core (β2, β3, β4)
consisting three state differences represents a set of 4-round differential trails

α1
L−→ β1

χ−→ α2
L−→ β2

χ−→ α3
L−→ β3

χ−→ α4
L−→ β4

χ−→ α5
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where α5 is compatible with β4 and β1 → α2 is of the least weight determined
by β2. In our collision attacks of 5-round Keccak, 4-round trail cores are needed.
In this section, we not only present trail cores used in collision attacks, but also
two 5-round trail cores we found.

Each state difference is represented with a matrix of 5×5 lanes, ordered from
left to right, where ‘|’ is used as a separator between lanes; each lane is given in
hexadecimal using the little-endian format and ‘0’ is replaced with ‘-’ (Tables 7,
8 and 9).

Table 7. Trail core No. 1–3 used in the collision attacks
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E Collisions for Keccak[r, c, nr, d]

In this section, we give instances of collisions against Keccak[1440, 160, 5, 160],
5-round SHAKE128 and Keccak[640, 160, 5, 160] respectively. Note that we
denote two colliding messages with M1,M2. For 5-round Keccak-224 and
Keccak [1440, 160, 6, 160], we are unable to find collisions for them because of
the limitation of computation power. However, we can demonstrate the sound-
ness of our method by providing instances of massage pairs that follow first 4
rounds of the trail of Keccak[1440, 160, 6, 160] and first 2 rounds of the trail of
5-round Keccak-224.

Table 8. Trail core No. 4, used in the collision attack of Keccak[640, 160, 5, 160] and
its doubled version can be used in the collision attack of Keccak-224. β4 has two
choices.

Table 9. Trail cores No. 5, used in the collision attack of Keccak[1440, 160, 6, 160].
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Table 10. Collision for Keccak[1440, 160, 5, 160]

Table 11. Collision for 5-round SHAKE128

Table 12. Collision for Keccak[640, 160, 5, 160].

Table 13. Collision attack of Keccak[1440, 160, 6, 160]. From a message space of free-
dom degree 135 which definitely leads to β2 of Trail core No. 5, we present a pair of
messages following the first 4 rounds. To find a collision of Keccak[1440, 160, 6, 160],
it costs a time complexity of 270.24
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Table 14. Collision attack of 5-round Keccak-224. From a message space of freedom
degree 2 which definitely leads to β2 of Trail core No. 3, we present a pair of messages
following the first 2 rounds. To find a collision of 5-round Keccak-224, it costs a time
complexity of 2101.
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Abstract. Succinct non-interactive arguments (SNARGs) enable veri-
fying NP computations with substantially lower complexity than that
required for classical NP verification. In this work, we give the first
lattice-based SNARG candidate with quasi-optimal succinctness (where
the argument size is quasilinear in the security parameter). Further
extension of our methods yields the first SNARG (from any assump-
tion) that is quasi-optimal in terms of both prover overhead (polylog-
arithmic in the security parameter) as well as succinctness. Moreover,
because our constructions are lattice-based, they plausibly resist quan-
tum attacks. Central to our construction is a new notion of linear-only
vector encryption which is a generalization of the notion of linear-only
encryption introduced by Bitansky et al. (TCC 2013). We conjecture
that variants of Regev encryption satisfy our new linear-only definition.
Then, together with new information-theoretic approaches for building
statistically-sound linear PCPs over small finite fields, we obtain the first
quasi-optimal SNARGs.

We then show a surprising connection between our new lattice-based
SNARGs and the concrete efficiency of program obfuscation. All existing
obfuscation candidates currently rely on multilinear maps. Among the
constructions that make black-box use of the multilinear map, obfuscat-
ing a circuit of even moderate depth (say, 100) requires a multilinear map
with multilinearity degree in excess of 2100. In this work, we show that
an ideal obfuscation of both the decryption function in a fully homomor-
phic encryption scheme and a variant of the verification algorithm of our
new lattice-based SNARG yields a general-purpose obfuscator for all cir-
cuits. Finally, we give some concrete estimates needed to obfuscate this
“obfuscation-complete” primitive. We estimate that at 80-bits of secu-
rity, a (black-box) multilinear map with ≈ 212 levels of multilinearity
suffices. This is over 280 times more efficient than existing candidates,
and thus, represents an important milestone towards implementable pro-
gram obfuscation for all circuits.
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1 Introduction

Interactive proofs systems [49] are fundamental to modern cryptography and
complexity theory. In this work, we consider computationally sound proof sys-
tems for NP languages, also known as argument systems. An argument system
is succinct if its communication complexity is polylogarithmic in the running
time of the NP verifier for the language. Notably, the size of the argument is
polylogarithmic in the size of the NP witness.

Kilian [53] gave the first succinct four-round interactive argument system for
NP based on collision-resistant hash functions and probabilistically-checkable
proofs (PCPs). Subsequently, Micali [63] showed how to convert Killian’s four-
round argument into a single-round argument for NP by applying the Fiat-
Shamir heuristic [38]. Micali’s “computationally-sound proofs” (CS proofs) is
the first candidate construction of a succinct non-interactive argument (i.e., a
“SNARG” [46]) in the random oracle model. In the standard model, single-round
argument systems are impossible for sufficiently hard languages, so we consider
the weaker goal of two-message succinct argument systems where the verifier’s
initial message is generated independently of the statement being proven. This
message is often referred to as the common reference string (CRS).

In this work, we are interested in minimizing the prover complexity and
proof length of SNARGs. Concretely, for a security parameter λ, we measure the
asymptotic cost of achieving soundness against provers of circuit size 2λ with
negl(λ) error. We say that a SNARG has quasi-optimal succinctness if its proof
length is Õ(λ) and that it is quasi-optimal if in addition, the SNARG prover’s
running time is larger than that of a classical prover by only a polylogarithmic
factor (in λ and the running time). In this paper, we construct the first SNARG
that is quasi-optimal in this sense. The soundness of our SNARG is based on
a new plausible intractability assumption, which is in the spirit of assumptions
on which previous SNARGs were based (see Sect. 1.2). Moreover, based on a
stronger variant of the assumption, we get a SNARK [15] (i.e., a SNARG of
knowledge) with similar complexity (see Remark 4.9). All previous SNARGs,
including heuristic ones, were suboptimal in at least one of the two measures
by a factor of Ω(λ). For a detailed comparison with previous approaches, see
Table 1.

We give two SNARG constructions: one with quasi-optimal succinctness
based on standard lattices, and another that is quasi-optimal based on ideal
lattices over polynomial rings. Because all of our SNARGs are lattice-based,
they plausibly resist known quantum attacks. All existing SNARGs with quasi-
optimal succinctness rely, at the minimum, on number-theoretic assumptions
such as the hardness of discrete log. Thus, they are vulnerable to quantum
attacks [72,73].

Application to Efficient Obfuscation. Independently of their asymptotic effi-
ciency, our SNARGs can also be used to significantly improve the concrete effi-
ciency of program obfuscation. Program obfuscation is the task of making code
unintelligible such that the obfuscated program reveals nothing more about the
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implementation details beyond its functionality. The theory of program obfusca-
tion was first formalized by Barak et al. [12]. In their work, they introduced the
natural notion of virtual black-box (VBB) obfuscation, and moreover, showed
that VBB obfuscation for all circuits is impossible in the standard model. In
the same work, Barak et al. also introduced the weaker notion of indistinguisha-
bility obfuscation (iO); subsequently, Garg et al. [41] gave the first candidate
construction of iO for general circuits based on multilinear maps [24,33,39,43].

Since the breakthrough result of Garg et al., there has been a flurry of works
showcasing the power of iO [19,25,40,41,69]. However, in spite of the numer-
ous constructions and optimizations that have been developed in the last few
years [5,7,10,11,30,74], concrete instantiations of program obfuscation remain
purely theoretical. Even obfuscating a relatively simple function such as the
AES block cipher requires multilinear maps capable of supporting unimaginable
levels of multilinearity (� 2100 [74]). In this work, we show that our new lattice-
based SNARG constructions can be combined with existing lattice-based fully
homomorphic encryption schemes (FHE) to obtain an “obfuscation-complete”
primitive1 with significantly better concrete efficiency. Targeting 80 bits of secu-
rity, we show that we can instantiate our obfuscation-complete primitive over a
composite-order multilinear map supporting ≈ 212 levels of multilinearity. The
number of multilinear map encodings in the description of the obfuscated pro-
gram is ≈ 244. While the levels of multilinearity required is still beyond what
we can efficiently realize using existing composite-order multilinear map candi-
dates [33], future multilinear map candidates with better efficiency as well as
further optimizations to the components that underlie our transformation will
bring our constructions closer to reality. Concretely, our results are many orders
of magnitude more efficient than existing constructions (that make black-box use
of the underlying multilinear map), and thus, represent an important stepping
stone towards implementable obfuscation.

Non-black-box Alternatives. Nearly all obfuscation constructions [5,7,10,11,30,
74] rely on the underlying multilinear map as a black-box. Recently, several
works [4,57–59] gave the first candidate constructions of iO based on constant-
degree multilinear maps (by going through the functional encryption route intro-
duced in [3,20]). Even more impressively, the most recent constructions by
Lin [58] as well as Ananth and Sahai [4] only require a degree-5 multilinear
map, which is certainly implementable [56]. However, this reduction in multilin-
earity comes at the cost of a non-black-box construction. Notably, their construc-
tion requires a gate-by-gate transformation to be applied to a Boolean circuit
1 An “obfuscation-complete” primitive is a function whose ideal obfuscation (e.g.,

using tamper-proof hardware) can be used for obfuscating arbitrary functions. While
we do not provide a provably secure instantiation of this primitive using iO, it can be
heuristically instantiated using existing iO candidates. Moreover, our obfuscation-
complete primitive has the appealing property that it needs to be invoked exactly
once regardless of the function being obfuscated. This is in contrast to alternative
constructions [6,50] where the obfuscated primitive needs to be invoked for each gate
in the circuit or each step of a Turing machine evaluation.
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description of the encoding function of the underlying multilinear map. While
further investigation of non-black-box approaches is certainly warranted, due to
the complexity of existing multilinear map constructions [33,39], this approach
faces major hurdles with regards to implementability. In this work, we focus on
constructions that use the multilinear map in a black-box manner.

1.1 Background

Constructing SNARGs. Gentry and Wichs [46] showed that no SNARG (for
a sufficiently difficult language) can be proven secure under any “falsifiable”
assumption [65]. Consequently, all existing SNARG constructions for NP in
the standard model (with a CRS) have relied on non-falsifiable assumptions
such as knowledge-of-exponent assumptions [14,35,42,51,61,64], extractable
collision-resistant hashing [15,36], homomorphic encryption with a homomor-
phism extraction property [17] and linear-only encryption [18].

Designated-Verifier Arguments. Typically, in a non-interactive argument sys-
tem, the arguments can be verified by anyone. Such systems are said to be
“publicly verifiable.” In some applications (notably, bootstrapping certain types
of obfuscation), it suffices to consider a relaxation where the setup algorithm for
the argument system also outputs a secret verification state which is needed for
proof verification. Soundness holds provided that the prover does not know the
secret verification state. These systems are said to be designated verifier. A key
question that arises in the design and analysis of designated verifier arguments
is whether the same common reference string can be reused for multiple proofs.
Formally, this “multi-theorem” setting is captured by requiring soundness to hold
even against a prover that makes adaptive queries to a proof verification oracle.
If the prover can choose its queries in a way that induces noticeable correlations
between the outputs of the verification oracle and the secret verification state,
then the adversary can potentially compromise the soundness of the scheme.
Thus, special care is needed to construct designated-verifier argument systems
in the multi-theorem setting.

SNARGs from Linear-Only Encryption. Bitansky et al. [18] introduced a generic
compiler for building SNARGs in the “preprocessing” model based on a notion
called “linear-only” encryption. In the preprocessing model, the setup algorithm
that constructs the CRS can run in time that depends polynomially on a time
bound T of the computations that will be verified. The resulting scheme can
then be used to verify computations that run in time at most T . The compiler
of [18] can be decomposed into an information-theoretic transformation and a
cryptographic transformation, which we outline here:

– First, they restrict the interactive proof model to only consider “affine-
bounded” provers. An affine-bounded prover is only able to compute affine
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functions (over a ring) of the verifier’s queries.2 Bitansky et al. give several con-
structions of succinct two-message interactive proofs in this restricted model
by applying a generic transformation to existing “linear PCP” constructions.

– Next, they introduce a new cryptographic primitive called linear-only encryp-
tion, which is a (public-key) encryption scheme that only supports linear
homomorphisms on ciphertexts. Bitansky et al. show that combining a linear-
only encryption scheme with the affine-restricted interactive proofs from the
previous step suffices to construct a designated-verifier SNARG in the pre-
processing model. The construction is quite natural: the CRS for the SNARG
system is a linear-only encryption of what would be the verifier’s first mes-
sage. The prover then homomorphically computes its response to the verifier’s
encrypted queries. The linear-only property of the encryption scheme con-
strains the prover to only using affine strategies. This ensures soundness for
the SNARG. To check a proof, the verifier decrypts the prover’s responses
and applies the decision algorithm for the underlying two-message proof sys-
tem. Bitansky et al. give several candidate instantiations for their linear-
only encryption scheme based on Paillier encryption [66] as well as bilinear
maps [22,52].

Linear PCPs. Like [18], our SNARG constructions rely on linear PCPs (LPCPs).
A LPCP of length m over a finite field F is an oracle computing a linear function
π : Fm → F. On any query q ∈ F

m, the LPCP oracle responds with q�π. More
generally, if � queries are made to the LPCP oracle, the � queries can be packed
into the columns of a query matrix Q ∈ F

m×�. The response of the LPCP oracle
can then be written as Q�π. We provide more details in Sect. 3.

1.2 Our Results: New Constructions of Preprocessing SNARGs

In this section, we summarize our main results on constructing preprocessing
SNARGs based on a more advanced form of linear-only encryption. Our results
extend the framework introduced by Bitansky et al. [18].

New Compiler for Preprocessing SNARGs. The preprocessing SNARGs we con-
struct in this work enjoy several advantages over those of [18]. We enumerate
some of them below:

– Direct construction of SNARGs from linear PCPs. Our compiler gives
a direct compilation from linear PCPs over a finite field F into a preprocess-
ing SNARG. In contrast, the compiler in [18] first constructs a two-message
linear interactive proof from a linear PCP by introducing an additional lin-
ear consistency check. The additional consistency check not only increases
the communication complexity of their construction, but also introduces a

2 Bitansky et al. [18] refer to this as “linear-only,” even though the prover is allowed
to compute affine functions. To be consistent with their naming conventions, we will
primarily write “linear-only” to refer to “affine-only”.
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soundness error O(1/ |F|). As a result, their construction only provides sound-
ness when working over a large field (that is, when |F| is super-polynomial
in the security parameter). By using a direct compilation of linear PCPs into
SNARGs, we avoid both of these problems. Our construction does not require
any additional consistency checks and moreover, it preserves the soundness
of the underlying linear PCP. Thus, as long as the underlying linear PCP
is statistically sound, applying our compiler yields a computationally sound
argument (even if |F| is small).

– Constructing linear PCPs with strong soundness. As noted in the pre-
vious section, constructing multi-theorem designated-verifier SNARGs can be
quite challenging. In [18], this is handled at the information-theoretic level
(by constructing interactive proof systems satisfying a notion of “strong” or
“reusable” soundness) and at the cryptographic level (by introducing strength-
ened definitions of linear-only encryption). A key limitation in their approach
is that the information-theoretic construction of two-round interactive proof
systems again requires LPCPs over super-polynomial-sized fields. This is a
significant barrier to applying their compiler to natural LPCP constructions
over small finite fields (which are critical to our approach for bootstrapping
obfuscation). In this work, we show how to apply soundness amplification
to standard LPCPs with constant soundness error against linearly-bounded
provers (and which do not necessarily satisfy strong soundness) to obtain
strong, statistically-sound LPCPs against affine-bounded provers. Coupled
with our direct compilation of LPCPs to preprocessing SNARGs, we obtain
multi-theorem designated-verifier SNARGs.

We describe our construction of strong statistically sound LPCPs against
affine provers from LPCPs with constant soundness error against linear
provers in Sect. 3. Applying our transformation to linear PCPs based on the
Walsh-Hadamard code [9] as well as those based on quadratic-span programs
(QSPs) [42], we obtain two LPCPs with strong statistical soundness against
affine provers over polynomial-size fields.

From Linear PCPs to Preprocessing SNARGs. The primary tool we use con-
struction of preprocessing SNARGs from linear PCPs is a new cryptographic
primitive we call linear-only vector encryption. A vector encryption scheme is an
encryption scheme where the plaintexts are vectors of ring (or field) elements.
Next, we extend the notion of linear-only encryption [18] to the context of vec-
tor encryption. We say that a vector encryption scheme is linear-only if the only
homomorphisms it supports is addition (and scalar multiplication) of vectors.

Our new notion of linear-only vector encryption gives an immediate method
of compiling an �-query linear PCP (over a finite field F) into a designated-
verifier SNARG. The construction works as follows. In a �-query linear PCP
over F, the verifier’s query can be written as a matrix Q ∈ F

m×� where m is the
query length of the LPCP. The LPCP oracle’s response is Q�π where π ∈ F

m is
the proof. To compile this LPCP into a preprocessing SNARG, we use a linear-
only vector encryption scheme with plaintext space F

�. The setup algorithm
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takes the verifier’s query matrix Q (which is independent of the statement being
proved) and encrypts each row of Q using the vector encryption scheme. The key
observation is that the product Q�π is a linear combination of the rows of Q.
Thus, the prover can homomorphically compute an encryption of Q�π. To check
the proof, the verifier decrypts to obtain the prover’s responses and then invokes
the decision algorithm for the underlying LPCP. Soundness is ensured by the
linear-only property of the underlying vector encryption scheme. The advantage
of linear-only vector encryption (as opposed to standard linear-only encryption)
is that the prover is constrained to evaluating a single linear function on all of
the query vectors simultaneously. This insight enables us to remove the extra
consistency check introduced in [18], and thus, avoids the soundness penalty
O(1/ |F|) incurred by the consistency check.3 Consequently, we can instantiate
our transformation with statistically-sound linear PCPs over any finite field F.
We describe our construction in Sect. 4.

New Lattice-Based SNARG Candidates. We then conjecture that the Regev-
based [68] encryption scheme of Peikert et al. [67] is a secret-key linear-only
vector encryption scheme over Zp where p is a prime whose bit-length is polyno-
mial in the security parameter λ. Then, applying our generic compiler from
LPCPs to SNARGs (Construction 4.5) to our new LPCP constructions over
polynomial-size fields Zp, we obtain a lattice-based construction of a designated-
verifier SNARG (for Boolean circuit satisfiability) in the preprocessing model.4

Specifically, starting with a QSP-based LPCP [42], we obtain a SNARG with
quasi-optimal succinctness. As discussed above, this is the first such SNARG that
can plausibly resist quantum attacks. We note here that a direct instantiation of
the construction in [18] with a Regev-based candidate for linear-only encryption
yields a SNARG that is suboptimal in both prover complexity and proof length
(Remark 4.13). Thus, for Boolean circuit satisfiability, using lattice-based linear-
only vector encryption provides some concrete advantages over vanilla linear-only
encryption.

Quasi-Optimal SNARGs. In the full version of this paper, we further extend
our techniques to obtain the first instantiation of a quasi-optimal SNARG for
Boolean circuit satisfiability—that is, a SNARG where the prover complexity is
Õ(s) and the argument size is Õ(λ), where s is the size of the Boolean circuit
and λ is a security parameter guaranteeing soundness against 2λ-size provers

3 This is the main difference between our approach and that taken in [18]. By making
the stronger assumption of linear-only vector encryption, we avoid the need for an
extra consistency check, thus allowing for a direct compilation from linear PCPs to
SNARGs. In contrast, [18] relies on the weaker assumption of linear-only encryption,
but requires an extra step of first constructing a two-message linear interactive proof
(incorporating the consistency check) from the linear PCP.

4 While it would be preferable to obtain a construction based on the hardness of
standard lattice assumptions like learning with errors (LWE) [68], the separation
results of Gentry and Wichs [46] suggest that stronger, non-falsifiable assumptions
may be necessary to construct SNARGs.
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with negl(λ) error. All previous constructions with quasi-optimal succinctness
(including our lattice-based candidate described above) achieved at best prover
complexity Õ(sλ). We refer to Table 1 for a detailed comparison. Our construc-
tion relies on a new information-theoretic construction of a linear PCP operat-
ing over rings. In conjunction with a linear-only vector encryption scheme where
the underlying message space is a ring, we can apply our compiler to obtain
a SNARG. To achieve quasi-optimality, we require that the ciphertext expan-
sion factor of the underlying vector encryption scheme be polylogarithmic. Using
Regev-based vector encryption based on the ring learning with errors (RLWE)
problem [62] and conjecturing that it satisfies our linear-only requirements, we
obtain the first quasi-optimal SNARG construction. We leave open the ques-
tion of realizing a stronger notion of quasi-optimality, where the soundness error
(against 2λ-size provers) is 2−λ rather than negl(λ).

1.3 Our Results: Concrete Efficiency of Bootstrapping Obfuscation

In spite of the numerous optimizations and simplifications that have been pro-
posed for indistinguishability obfuscation (iO) and VBB obfuscation (in a generic
model), obfuscating even relatively simple functions like AES remains pro-
hibitively expensive. In this section, we describe how the combination of our
new lattice-based SNARG candidate and fully homomorphic encryption (FHE)
allows us to obtain VBB obfuscation for all circuits (in a generic model) with
concrete parameters that are significantly closer to being implementable. Our
construction is over 280 times more efficient than existing constructions.

Background. The earliest candidates of iO and VBB obfuscation operated
on matrix branching programs [11,30,41], which together with multilinear
maps [33,39,43], yielded obfuscation for NC1 (via Barrington’s theorem [13]).5

The primary source of inefficiency in these branching-program-based obfuscation
candidates is the enormous overhead incurred when converting NC1 circuits to
an equivalent branching program representation. While subsequent work [5,10]
has provided significant asymptotic improvements for representing NC1 circuits
as matrix branching programs, the levels of multilinearity required to obfuscate
a computation of depth d still grows exponentially in d. Thus, obfuscating even a
simple function like AES, which has a circuit of relatively low depth (≈ 100), still
requires a multilinear map capable of supporting � 2100 levels of multilinearity
and a similarly astronomical number of encodings. This is completely infeasible.

Zimmerman [74] as well as Applebaum and Brakerski [7] showed how to
directly obfuscate circuits. While their constructions do not incur the exponen-
tial overhead of converting NC1 circuits to matrix branching programs, due to the
noise growth in existing multilinear map candidates, the level of multilinearity

5 Garg et al. [41] as well as Brakerski and Rothblum [30] show how to combine obfus-
cation for NC1 together with fully homomorphic encryption (FHE) and low-depth
checkable proofs to bootstrap iO and VBB obfuscation from NC1 to P/poly.
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required again grows exponentially in the depth of the circuit d. However, the num-
ber of multilinear map encodings is substantially smaller with these candidates. In
the case of VBB obfuscation of AES, Zimmerman estimates that the obfuscation
would contain ≈ 217 encodings of a multilinear map capable of supporting � 2100

levels of multilinearity. Despite the more modest number of encodings required,
the degree of multilinearity required remains prohibitively large.

Revisiting the Branching-Program Based Obfuscation. In this work, we revisit the
branching-program-based constructions of obfuscation. However, rather than fol-
low the traditional paradigm of taking a Boolean circuit, converting it to a matrix
branching program via Barrington’s theorem, and then obfuscating the result-
ing branching program, we take the more direct approach of using the matrix
branching program to compute simple functions over Zq (for polynomial-sized
q). The key observation is that the additive group Zq embeds into the symmetric
group Sq of q × q permutation matrices. This technique was previously used by
Alperin-Sheriff and Peikert [2] for improving the efficiency of bootstrapping for
FHE. While the functions that can be evaluated in this way are limited, they
are expressive enough to include both the decryption function for lattice-based
FHE [2,27,28,31,37,45] and the verification algorithm of our new lattice-based
SNARG. Using a variant of the bootstrapping theorem in [30], VBB obfuscation
of these two functionalities suffice for VBB obfuscation of all circuits.

We remark here that Applebaum [6] described a simpler approach for boot-
strapping VBB obfuscation of all circuits based on obfuscating a pseudorandom
function (PRF) in conjunction with randomized encodings. While this approach
is conceptually simpler, it is unclear whether this yields a scheme with con-
crete efficiency. One problem is that we currently do not have any candidate
PRFs that are amenable to existing obfuscation candidates. Constructing an
“obfuscation-friendly” PRF remains an important open problem. Perhaps more
significantly, this approach requires invoking the obfuscated program multiple
times (a constant number of times per gate in the circuit, or per step of the
computation in the case of Turing machines [55]). In contrast, in this work, we
focus on building an “obfuscation-complete” primitive such that a single call to
the obfuscated program suffices for program evaluation.

Computing in Zq via Matrix Branching Programs. By leveraging the power of
bootstrapping, it suffices to obfuscate a program that performs FHE decryption
and SNARG verification. Using FHE schemes based on standard lattices [2,27,
28,31,37,45] and our new lattice-based SNARG, both computations effectively
reduce to computing rounded inner products over Zq—that is, functions where
we first compute the inner product 〈x,y〉 of two vectors x and y in Z

�
p and then

reduce the result modulo a smaller value p. In our setting, one of the vectors y
is embedded within the obfuscated program. We briefly describe the technique
here. Our presentation is adapted from [2], who use this technique to improve
the efficiency of FHE bootstrapping.

The key idea is to embed the group Zq in the symmetric group Sq. The
embedding is quite straightforward. A group element y ∈ Zq is represented by
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the basis vector ey ∈ {0, 1}q (i.e., the vector with a single 1 in the yth position).
Addition by an element x ∈ Zq corresponds to multiplying by a permutation
matrix that implements a cyclic rotation by x positions. Specifically, to imple-
ment the function fx(y) = x + y where x, y ∈ Zq, we define the permutation
matrix Bx ∈ {0, 1}q×q where Bxey = ex+y mod q for all y ∈ [q]. Then, to com-
pute fx on an input y, we simply take the q-by-q permutation matrix Bx and
multiply it with the basis vector ey representing the input. Scalar multiplica-
tion can be implemented by repeated additions. Finally, modular reduction with
respect to p can be implemented via multiplication by a p-by-q matrix where the
ith row sums the entries of the q-dimensional indicator vector corresponding to
those values in Zq that reduce to i modulo p. As long as q is small, this method
gives an efficient way to compute simple functions over Zq.

Optimizing the SNARG Construction. While computing a single rounded inner
product suffices for FHE decryption, it is not sufficient for SNARG verification.
We introduce a series of additional optimizations to make our SNARG verification
algorithm more branching-program-friendly and minimize the concrete parame-
ters needed to obfuscate the functionality. These optimizations are described in
detail in the full version. We highlight the most significant ones here:

– Modulus switching. Recall that the SNARG verifier has to first decrypt
a proof (encrypted under the linear-only vector encryption scheme) before
applying the underlying LPCP decision procedure. While decryption in this
case does consist of evaluating a rounded inner product, the size of the under-
lying field scales quadratically in the running time of the computation being
verified.6 As a result, the width of the branching programs needed to imple-
ment the SNARG verification scales quadratically in the running time of the
computation, which can quickly grow out of hand. However, since the cipher-
texts in question are essentially LWE ciphertexts, we can apply the modulus
switching trick that has featured in many FHE constructions [28,31,37]. With
modulus switching, after the prover homomorphically computes its response
(a ciphertext vector over a large ring), the prover rescales each component
of the ciphertext to be defined with respect to a much smaller modulus (one
that grows polylogarithmically with the running time of the computation).
The actual decryption then operates on the rescaled ciphertext, which can be
implemented as a (relatively) small branching program.

– Strengthening the linear-only assumption. To further reduce the over-
head of the SNARG verification, we also consider strengthened definitions of
(secret-key) linear-only vector encryption. In particular, we conjecture that our
candidate lattice-based vector encryption scheme only supports a restricted set
of affine homomorphisms. This allows us to use LPCPs with simpler and more
branching-program-friendly verification procedures. We introduce the defini-
tion and state our conjecture in the full version. We note that when considering
the public-key notion of linear-only encryption [18], one cannot restrict the set

6 This is fine from the SNARG perspective since the number of bits in the proof is
still growing logarithmically in the running time of the computation.
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of affine homomorphisms available to the adversary. By definition, the adver-
sary can compute arbitrary linear functions on the ciphertexts, and moreover,
it can also encrypt values of its choosing and linearly combine those values with
the ciphertexts. This allows the adversary to realize arbitrary affine functions
in the public-key setting. However, in the secret-key setting, the adversary does
not have the flexibility of constructing arbitrary ciphertexts of its own, and so,
it is plausible that the encryption scheme only permits more limited homomor-
phisms. Our techniques here are not specific to our particular SNARG instan-
tiation, and thus, may be useful in optimizing other SNARG constructions (at
the expense of making stronger linear-only assumptions).

– Parallelization via CRT. Unlike FHE decryption, the SNARG verification
algorithm requires computing a matrix-vector product of the form Ax, where
the matrix A ∈ Z

m×�
q is embedded inside the program and x ∈ Z

�
q is part of the

input. The verification algorithm then applies an (independent) test to each of
the components of Ax. Verification succeeds if and only if each of the under-
lying tests pass. While a matrix-vector product can be computed by iterating
the algorithm for computing an inner product m times and performing the m
checks sequentially, this increases the length of the branching program by a
factor of m. A key observation here is that since the components of Ax are
processed independently of one another, this computation can be performed
in parallel if we consider matrix branching programs over composite-order
rings. Then, each of the rows of A can be embedded in the different sub-rings
according to the Chinese Remainder Theorem (CRT). Assuming the under-
lying multilinear map is composite-order, this method can potentially yield a
factor m reduction in the length of the branching program. Indeed, using the
CLT multilinear map [33], the plaintext space naturally decomposes into suffi-
ciently many sub-rings, thus allowing us to take advantage of parallelism with
essentially no extra cost. A similar technique of leveraging CRT to parallelize
computations was also used in [2] to improve the concrete efficiency of FHE
bootstrapping.

A Concrete Obfuscation Construction. In the full version, we describe our
methodology for instantiating the building blocks for our obfuscation-complete
primitive (for VBB obfuscation). Our parameter estimates show that targeting
λ = 80 bits of security, implementing FHE decryption together with SNARG
verification can be done with a branching program (over composite-order rings7

of length 4150 and size ≈ 244. While publishing 244 encodings of a multilinear
map capable of supporting 4150 levels of multilinearity is likely beyond the scope
of existing candidates, further optimizations to the underlying multilinear map
as well as to the different components of our pipeline can lead to a realizable
construction. Compared to previous candidates which require � 2100 levels of
multilinearity, our construction is over 280 times more efficient.
7 To minimize the degree of multilinearity required, we require a composite-order ring

that splits into ≈ 200 sub-rings. Instantiating our construction with the composite-
order CLT multilinear map [33], the plaintext ring already supports the requisite
number of sub-rings, so using CRT for parallelization does not incur any overhead.
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2 Preliminaries

We begin by defining the notation that we use throughout this paper. For an
integer n, we write [n] to denote the set of integers {1, . . . , n}. For a positive
integer p, we write Zp to denote the ring of integers modulo p. We typically use
bold uppercase letters (e.g., A, B) to denote matrices and bold lowercase letters
(e.g., u,v) to denote vectors.

For a finite set S, we write x
r←− S to denote that x is drawn uniformly

at random from S. For a distribution D, we write x ← D to denote a sample
from D. Unless otherwise noted, we write λ to denote a computational security
parameter and κ to denote a statistical security parameter. We say a function
f(λ) is negligible in λ if f(λ) = o(1/λc) for all c ∈ N. We write f(λ) = negl(λ)
to denote that f is a negligible function in λ and f(λ) = poly(λ) to denote that
f is a polynomial in λ. We say an algorithm is efficient if it runs in probabilistic
polynomial time. For two families of distributions D1 and D2, we write D1

c≈ D2 if
the two distributions are computationally indistinguishable (that is, if no efficient
algorithm is able to distinguish D1 from D2, except with negligible probability).
We will also use the Schwartz-Zippel lemma [71,75]:

Lemma 2.1 (Schwartz-Zippel Lemma [71,75]). Let p be a prime and let
f ∈ Zp[x1, . . . , xn] be a multivariate polynomial of total degree d, not identically
zero. Then,

Pr[α1, . . . , αn
r←− Zp : f(α1, . . . , αn) = 0] ≤ d

p
.

In the full version, we also review the standard definitions of succinct non-
interactive arguments (SNARGs).

3 Linear PCPs

We begin by reviewing the definition of linear probabilistically checkable proofs
(LPCPs). In an LPCP system for a binary relation R over a finite field F, the
proof consists of a vector π ∈ F

m and the PCP oracle is restricted to computing
a linear function on the verifier’s query vector. Specifically, on input a query
matrix Q ∈ F

m×�, the PCP oracle responds with y = Q�π ∈ F
�. We now give

a formal definition adapted from [18].

Definition 3.1 (Linear PCPs [18]). Let R be a binary relation, F be a finite
field, PLPCP be a deterministic prover algorithm, and VLPCP be a probabilistic
oracle verification algorithm. Then, (PLPCP, VLPCP) is a �-query linear PCP for
R over F with soundness error ε and query length m if it satisfies the following
requirements:

– Syntax: For a vector π ∈ F
m, the verification algorithm V π

LPCP =
(QLPCP,DLPCP) consists of an input-oblivious probabilistic query algorithm
QLPCP and a deterministic decision algorithm DLPCP. The query algorithm
QLPCP generates a query matrix Q ∈ F

m×� (independently of the statement
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x) and some state information st. The decision algorithm DLPCP takes the
statement x, the state st, and the response vector y = Q�π ∈ F

� and either
“accepts” or “rejects.”

– Completeness: For every (x,w) ∈ R, the output of PLPCP(x,w) is a vector
π ∈ F

m such that V π
LPCP(x) accepts with probability 1.

– Soundness: For all x where (x,w) /∈ R for all w and for all vectors π∗ ∈ F
m,

the probability that V π∗
LPCP(x) accepts is at most ε.

We say that (PLPCP, VLPCP) is statistically sound if ε(κ) = negl(κ), where κ is a
statistical security parameter.

Soundness Against Affine Provers. In Definition 3.1, we have only required
soundness to hold against provers that employ a linear strategy, and not an
affine strategy. Our construction of SNARGs (Sect. 4), will require the stronger
property that soundness holds against provers using an affine strategy—that is,
a strategy which can be described by a tuple Π = (π,b) where π ∈ F

m rep-
resents a linear function and b ∈ F

� represents an affine shift. Then, on input
a query matrix Q ∈ F

m×�, the response vector is constructed by evaluating the
affine relation y = Q�π + b. We now define this stronger notion of soundness
against an affine prover.

Definition 3.2 (Soundness Against Affine Provers). Let R be a relation
and F be a finite field. A linear PCP (PLPCP, VLPCP) is a �-query linear PCP
for R over F with soundness error ε against affine provers if it satisfies the
requirements in Definition 3.1 with the following modifications:

– Syntax: For any affine function Π = (π,b), the verification algorithm V Π
LPCP

is still specified by a tuple (QLPCP,DLPCP). Algorithms QLPCP,DLPCP are the
same as in Definition 3.1, except that the response vector y computed by the
PCP oracle is an affine function y = Q�π + b ∈ F

� of the query matrix Q
rather than a linear function.

– Soundness against affine provers: For all x where (x,w) /∈ R for all w,
and for all affine functions Π∗ = (π∗,b∗) where π∗ ∈ F

m and b∗ ∈ F
�, the

probability that V Π∗
LPCP(x) accepts is at most ε.

Algebraic Complexity. There are many ways one can measure the complexity of a
linear PCP system such as the number of queries or the number of field elements
in the verifier’s queries. Another important metric also considered in [18] is the
algebraic complexity of the verifier. In particular, the verifier’s query algorithm
QLPCP and decision algorithm DLPCP can both be viewed as multivariate polyno-
mials (equivalently, arithmetic circuits) over the finite field F. We say that the
query algorithm QLPCP has degree dQ if the output of QLPCP can be computed by
a collection of multivariate polynomials of maximum degree dQ in the verifier’s
choice of randomness. Similarly, we say that the decision algorithm DLPCP has
degree dD if the output of DLPCP can be computed by a multivariate polynomial
of maximum degree dD in the prover’s response and the verification state.
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Strong Soundness. In this work, we focus on constructing designated-verifier
SNARGs. An important consideration that arises in the design of designated-
verifier SNARGs is whether the same reference string σ can be reused across
many proofs. This notion is formally captured by stipulating that the SNARG
system remains sound even if the prover has access to a proof-verification ora-
cle. While this property naturally follows from soundness if the SNARG sys-
tem is publicly-verifiable, the same is not true in the designated-verifier setting.
Specifically, in the designated-verifier setting, soundness is potentially compro-
mised if the responses of the proof-verification oracle is correlated with the veri-
fier’s secrets. Thus, to construct a multi-theorem designated-verifier SNARG, we
require linear PCPs with a stronger soundness property, which we state below.

Definition 3.3 Strong Soundness [18]). A �-query LPCP (PLPCP, VLPCP) with
soundness error ε satisfies strong soundness if for every input x and every proof
π∗ ∈ F

m, either V π∗
LPCP(x) accepts with probability 1 or with probability at most ε.

Roughly speaking, in an LPCP that satisfies strong soundness, every LPCP
prover either causes the LPCP verifier to accept with probability 1 or with
bounded probability. This prevents correlation attacks where a malicious prover
is able to submit (potentially malformed) proofs to the verifier and seeing
responses that are correlated with the verifier’s secrets. We can define an anal-
ogous notion of strong soundness against affine provers.

3.1 Constructing Linear PCPs with Strong Soundness

A natural first question is whether linear PCPs with strong soundness against
affine provers exist. Bitansky et al. [18] give two constructions of algebraic LPCPs
for Boolean circuit satisfaction problems: one from the Hadamard-based PCP
of Arora et al. [9], and another from the quadratic span programs (QSPs) of
Gennaro et al. [42]. In both cases, the linear PCP is defined over a finite field
F and the soundness error scales inversely with |F|. Thus, the LPCP is statisti-
cally sound only if |F| is superpolynomial in the (statistical) security parameter.
However, when we apply our LPCP-based SNARGs to bootstrap obfuscation,
the size of the obfuscated program grows polynomially in |F|, and so we require
LPCPs with statistical soundness over small (polynomially-sized) fields.

In this section, we show that starting from any LPCP with constant sound-
ness error against linear provers, we can generically obtain an LPCP that is
statistically sound against affine provers. Our generic transformation consists of
two steps. The first is a standard soundness amplification step where the veri-
fier makes κ sets of independently generated queries (of the underlying LPCP
scheme) to the PCP oracle, where κ is a statistical security parameter. The
verifier accepts only if the prover’s responses to all κ sets of queries are valid.
Since the queries are independently generated, each of the κ sets of responses
(for a false statement) is accepted with probability at most ε (where ε is propor-
tional to 1/ |F|). Thus, an honest verifier only accepts with probability at most
εκ = negl(κ).
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However, this basic construction does not achieve strong soundness against
affine provers. For instance, a malicious LPCP prover using an affine strategy
could selectively corrupt the responses to exactly one set of queries (by applying
an affine shift to its response for a single set of queries). When this selective
corruption is applied to a well-formed proof and the verifier’s decision algorithm
has low algebraic complexity, then the verifier will accept with some noticeable
probability less than 1, which is sufficient to break strong soundness. To address
this problem, the verifier first applies a (secret) random linear shift to its queries
before submitting them to the PCP oracle. This ensures that any prover using
an affine strategy with a non-zero offset will corrupt its responses to every set of
queries, and the proof will be rejected with overwhelming probability. We now
describe our generic construction in more detail.

Construction 3.4 (Statistically Sound Linear PCPs over Small Fields).
Fix a statistical security parameter κ. Let R be a binary relation, F be a
finite field, and

(
P

(weak)
LPCP , V

(weak)
LPCP

)
be an �-query linear PCP for R, where

V
(weak)
LPCP =

(
Q

(weak)
LPCP ,D

(weak)
LPCP

)
. Define the (κ�)-query linear PCP (PLPCP, VLPCP)

where VLPCP = (QLPCP,DLPCP) as follows:

– Prover’s Algorithm PLPCP: On input (x,w), output P
(weak)
LPCP (x,w).

– Verifier’s Query Algorithm QLPCP: The query algorithm invokes Q
(weak)
LPCP

a total of κ times to obtain (independent) query matrices Q1, . . . ,Qκ ∈ F
m×�

and state information st1, . . . , stκ. It constructs the concatenated matrix Q =
[Q1|Q2| · · · |Qκ] ∈ F

m×κ�. Finally, it chooses a random matrix Y r←− F
κ�×κ�

and outputs the queries Q′ = QY and state st = (st1, . . . , stκ,Y′) where
Y′ = (Y�)−1.

– Verifier’s Decision Algorithm DLPCP: On input the statement x, the
prover’s response vector a′ ∈ F

κ� and the state st = (st1, . . . , stκ,Y′), the
verifier’s decision algorithm computes a = Y′a′ ∈ F

κ�. Next, it writes
a� = [a�

1 |a�
2 | · · · |a�

κ ] where each ai ∈ F
� for i ∈ [κ]. Then, for each i ∈ [κ],

the verifier runs D
(weak)
LPCP (x,ai, sti) and accepts if D

(weak)
LPCP accepts for all κ

instances. It rejects otherwise.

Theorem 3.5. Fix a statistical security parameter κ. Let R be a binary relation,
F be a finite field, and (P (weak)

LPCP , V
(weak)
LPCP ) be a strongly-sound �-query linear PCP

for R with constant soundness error ε ∈ [0, 1) against linear provers. If |F| > dD,
where dD is the degree of the verifier’s decision algorithm D

(weak)
LPCP , then the linear

PCP (PLPCP, VLPCP) from Construction 3.4 is a (κ�)-query linear PCP for R with
strong statistical soundness against affine provers.

Proof. Completeness follows immediately from completeness of the underlying
LPCP system, so it suffices to check that the linear PCP is statistically sound
against affine provers. Take any statement x, and consider an affine prover strat-
egy Π∗ = (π∗,b∗), where π∗ ∈ F

m and b∗ ∈ F
κ�. We consider two cases:
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– Suppose b∗ 
= 0κ�. Then, the decision algorithm DLPCP starts by computing

a = Y′a′ = Y′(Y�Q�π∗ + b∗) = Q�π∗ + Y′b∗ ∈ F
κ�.

Next, the verifier invokes the decision algorithm D
(weak)
LPCP for the underlying

LPCP on the components of a. By assumption, D
(weak)
LPCP is a polynomial of

maximum degree dD in the components of the prover’s response a, and by
extension, in the components of the matrix Y′. Since b∗ is non-zero, this is a
non-zero polynomial in the Y′. Since Y′ is sampled uniformly at random (and
independently of Q,π∗,b∗), by the Schwartz-Zippel lemma, D

(weak)
LPCP (x,ai, sti)

accepts with probability at most dD/ |F| for each i ∈ [κ]. Thus, the verifier
rejects with probability at least 1 − (dD/ |F|)κ = 1 − negl(κ) since |F| > dD.

– Suppose b∗ = 0κ�. Then, the prover’s strategy is a linear function π∗. Since
the underlying PCP satisfies strong soundness against linear provers, it follows
that D

(weak)
LPCP (ai, sti) either accepts with probability 1 or with probability at

most ε. In the former case, DLPCP also accepts with probability 1. In the
latter case, because the verifier constructs the κ queries to the underlying
LPCP independently, DLPCP accepts with probability at most εκ = negl(κ).
We conclude that the proof system (PLPCP, VLPCP) satisfies strong soundness
against affine provers. ��

Remark 3.6 (Efficiency of Transformation). Construction 3.4 incurs a κ over-
head in the number of queries made to the PCP oracle and a quadratic over-
head in the algebraic complexity of the verifier’s decision algorithm. Specifi-
cally, the degree of the verifier’s decision algorithm in Construction 3.4 is d2D,
where dD is the degree of the verifier’s decision algorithm in the underlying
LPCP. The quadratic factor arises from undoing the linear shift in the prover’s
responses before applying the decision algorithm of the underlying LPCP. In
many existing LPCP systems, the verifier’s decision algorithm has low algebraic
complexity (e.g., dD = 2 for both the Hadamard-based LPCP [9] as well as
the QSP-based LPCP [42]), so the verifier’s algebraic complexity only increases
modestly. However, the increase in degree means that we can no longer leverage
pairing-based linear-only one-way encodings [18] to construct publicly-verifiable
SNARGs (since these techniques only apply when the algebraic complexity of
the verifier’s decision algorithm is exactly 2). No such limitations apply in the
designated-verifier setting.

Remark 3.7 (Comparison with [18, Lemma C.3]). Bitansky et al. [18,
Lemma C.3] previously showed that any algebraic LPCP over a finite field
F with soundness error ε is also strongly sound with soundness error ε′ =
max

{
ε,

dQdD

|F|
}

. For sufficiently large fields F (e.g., when |F| is superpolyno-
mial), statistical soundness implies strong statistical soundness. However, when
|F| is polynomial, then their lemma is insufficient to argue strong statistical
soundness of the underlying LPCP. In contrast, using our construction (Con-
struction 3.4), any LPCP with just constant soundness against linear provers
can be used to construct an algebraic LPCP with strong statistical soundness
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against affine provers (at the cost of increasing the query complexity and the
verifier’s algebraic complexity).

Concrete Instantiations. Applying Construction 3.4 to the algebraic LPCPs for
Boolean circuit satisfaction of Bitansky et al. [18], we obtain statistically sound
LPCPs for Boolean circuit satisfaction over small finite fields. In the following,
fix a (statistical) security parameter κ and let C be a Boolean circuit of size s.

– Starting from the Hadamard-based PCP of Arora et al. [9] over a finite field
F, there exists a 3-query LPCP with strong soundness error 2/ |F|. The alge-
braic complexity of the decision algorithm for this PCP is dD = 2. Applying
Construction 3.4 and working over any finite field where |F| > 2, we obtain a
(3κ)-query LPCP with strong statistical soundness against affine provers and
where queries have length O(s2).

– Starting from the quadratic span programs of Gennaro et al. [42], there exists a
3-query LPCP over any (sufficiently large) finite field F with strong soundness
error O(s/ |F|). The algebraic complexity of the decision algorithm for this
PCP is dD = 2. Applying Construction 3.4 and working over a sufficiently
large finite field of size |F| = Õ(s), we obtain a (3κ)-query LPCP with strong
statistical soundness against affine provers where queries have length O(s).

4 SNARGs from Linear-Only Vector Encryption

In this section, we introduce the notion of a linear-only vector encryption scheme.
We then show how linear-only vector encryption can be directly combined with
the linear PCPs from Sect. 3 to obtain multi-theorem designated-verifier pre-
processing SNARGs in the standard model. We conclude by describing a candi-
date instantiation of our linear-only vector encryption scheme using the LWE-
based encryption scheme of Peikert et al. [67]. In the full version of this paper,
we also show how using linear-only vector encryption over polynomial rings, our
techniques can be further extended to obtain the first quasi-optimal SNARG
from any assumption (namely, a SNARG that is quasi-optimal in both the prover
complexity and the proof length). Our notion of linear-only vector encryption
is a direct generalization of the notion of linear-only encryption first introduced
by Bitansky et al. [18].

4.1 Vector Encryption and Linear Targeted Malleability

A vector encryption scheme is an encryption scheme where the message space
is a vector of ring elements. In this section, we take Zp as the underlying ring
and Z

�
p as the message space (for some dimension �). In the full version, we also

consider vector encryption schemes where the ring R is a polynomial ring and
the message space is R�. We introduce the basic schema below:

Definition 4.1 (Vector Encryption Scheme over Z
�
p). A secret-key vector

encryption scheme over Z
�
p consists of a tuple of algorithms Πenc = (Setup,

Encrypt,Decrypt) with the following properties:
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– Setup(1λ, 1�) → sk: The setup algorithm takes as input the security parameter
λ and the dimension � of the message space and outputs the secret key sk.

– Encrypt(sk,v) → ct: The encryption algorithm takes as input the secret key sk
and a message vector v ∈ Z

�
p and outputs a ciphertext ct.

– Decrypt(sk, ct) → Z
�
p ∪{⊥}: The decryption algorithm takes as input the secret

key sk and a ciphertext ct and either outputs a message vector v ∈ Z
�
p or a

special symbol ⊥ (to denote an invalid ciphertext).

We can define the usual notions of correctness and semantic security [48] for a
vector encryption scheme. Next, we say that a vector encryption scheme over Z�

p

is additively homomorphic if given encryptions ct1, ct2 of two vectors v1,v2 ∈
Z

�
p, respectively, there is a public operation8 that allows one to compute an

encryption ct12 of the (component-wise) sum v1 +v2 ∈ Z
�
p. Note that additively

homomorphic vector encryption can be constructed directly from any additively
homomorphic encryption scheme by simply encrypting each component of the
vector separately. However, when leveraging vector encryption to build efficient
SNARGs, we require that our encryption scheme satisfies a more restrictive
homomorphism property. We define this now.

A vector encryption scheme satisfies linear targeted malleability [23] if the only
homomorphic operations the adversary can perform on ciphertexts is evaluate
affine functions on the underlying plaintext vectors. We now state our definition
more precisely. Note that our definition is a vector generalization of the “weaker”
notion of linear-only encryption introduced by Bitansky et al. [18]. This notion
already suffices for constructing a designated-verifier SNARG.

Definition 4.2 (Linear Targeted Malleability [23, adapted]). Fix a security
parameter λ. A (secret-key) vector encryption scheme Πvenc = (Setup,Encrypt,
Decrypt) for a message space Z

�
p satisfies linear targeted malleability if for all

efficient adversaries A and plaintext generation algorithms M (on input 1�,
algorithm M outputs vectors in Z

�
p), there exists a (possibly computationally

unbounded) simulator S such that for any auxiliary input z ∈ {0, 1}poly(λ), the
following two distributions are computationally indistinguishable:

Real Distribution:

1. sk ← Setup(1λ, 1�)
2. (s,v1, . . . ,vm) ← M(1�)
3. cti ← Encrypt(sk,vi) for all i ∈ [m]
4. ct′ ← A({cti}i∈[m] ; z) where

Decrypt(sk, ct′) 
= ⊥
5. Output(

{vi}i∈[m] , s,Decrypt(sk, ct
′)

)

Ideal Distribution:

1. (s,v1, . . . ,vm) ← M(1�)
2. (π,b) ← S(z) where π ∈ Z

m
p ,

b ∈ Z
�
p

3. v′ ← [v1|v2| · · · |vm] · π + b

4. Output
(
{vi}i∈[m] , s,v

′
i

)

8 In principle, homomorphic evaluation might require additional public parameters to
be published by the setup algorithm. For simplicity of presentation, we will assume
that no additional parameters are required, but all of our notions extend to the
setting where the setup algorithm outputs a public evaluation key.
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Remark 4.3 (Multiple Ciphertexts). Similar to [18,23], we can also define a vari-
ant of linear targeted malleability where the adversary is allowed to output mul-
tiple ciphertexts ct′1, . . . , ct

′
m. In this case, the simulator should output an affine

function (Π,B) where Π ∈ Z
m×m
p and B ∈ Z

�×m
p that “explains” the cipher-

texts ct′1, . . . , ct
′
m. However, the simple variant we have defined above where the

adversary just outputs a single ciphertext is sufficient for our construction.

Remark 4.4 (Auxiliary Input Distributions). In Definition 4.2, the simulator is
required to succeed for all auxiliary inputs z ∈ {0, 1}poly(λ). This requirement is
quite strong since z can be used to encode difficult cryptographic problems that
the simulator needs to solve in order to correctly simulate the output distribu-
tion [16]. However, many of these pathological auxiliary input distributions are
not problematic for Definition 4.2, since the simulator is allowed to be computa-
tionally unbounded. In other cases where we require the simulator to be efficient
(e.g., to obtain succinct arguments of knowledge via Remark 4.9), we note that
Definition 4.2 can be relaxed to only consider “benign” auxiliary input distribu-
tions for which the definition plausibly holds. For instance, for the multi-theorem
SNARK construction described in the full version, it suffices that the auxiliary
information is a uniformly random string.

Construction 4.5 (SNARG from Linear-Only Vector Encryption). Fix
a prime p (so the ring Zp is a field), and let C = {Ck}k∈N

be a family of
arithmetic circuits over Zp.9 Let RC be the relation associated with C. Let
(PLPCP, VLPCP) be an �-query input-oblivious linear PCP for C. Let Πvenc =
(Setup,Encrypt,Decrypt) be a secret-key vector encryption scheme for Z

�
p. Our

single-theorem, designated-verifier SNARG ΠSNARG = (Setup,Prove,Verify) in
the preprocessing model for RC is defined as follows:

– Setup(1λ, 1k) → (σ, τ): On input the security parameter λ and the circuit
family parameter k, the setup algorithm first invokes the query algorithm
QLPCP for the LPCP to obtain a query matrix Q ∈ Z

m×�
p and some state

information st. Next, it generates a secret key for the vector encryption scheme
sk ← Setup(1λ, 1�). Then, it encrypts each row (an element of Z�

p) of the query
matrix Q. More specifically, for i ∈ [m], let qi ∈ Z

�
p be the ith row of Q. Then,

the setup algorithm computes ciphertexts cti ← Encrypt(sk,qi). Finally, the
setup algorithm outputs the common reference string σ = (ct1, . . . , ctm) and
the verification state τ = (sk, st).

– Prove(σ,x,w): On input a common reference string σ = (ct1, . . . , ctm), a state-
ment x, and a witness w, the prover invokes the prover algorithm PLPCP for
the LPCP to obtain a vector π ∈ Z

m
p . Viewing ct1, . . . , ctm as vector encryp-

tions of the rows of a query matrix Q ∈ Z
m×�
p , the prover uses the linear

homomorphic properties of Πvenc to homomorphically compute an encryption
of the matrix vector product Q�π. In particular, the prover homomorphically

9 While we describe a SNARG for arithmetic circuit satisfiability (over Zp), the prob-
lem of Boolean circuit satisfiability easily reduces to arithmetic circuit satisfiability
with only constant overhead [18, Claim A.2].
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computes the sum ct′ =
∑

i∈[m] πi · cti. The prover outputs the ciphertext ct′

as its proof.
– Verify(τ,x, π): On input the (secret) verification state τ = (sk, st), the state-

ment x, and the proof π = ct′, the verifier decrypts the proof ct′ using the
secret key sk to obtain the prover’s responses a ← Decrypt(sk, ct′). If a = ⊥,
the verifier stops and outputs 0. Otherwise, it invokes the verification decision
algorithm DLPCP on the statement x, the responses a, and the LPCP verifi-
cation state st to decide whether the proof is valid or not. The verification
algorithm echoes the output of the decision algorithm.

Theorem 4.6 [18, Lemma 6.3]. Let (PLPCP, VLPCP) be a linear PCP that is sta-
tistically sound against affine provers, and let Πvenc = (Setup,Encrypt,Decrypt)
be a vector encryption scheme with linear targeted malleability. Then, applying
Construction 4.5 to (PLPCP, VLPCP) and Πvenc yields a (non-adaptive) designated-
verifier SNARG in the preprocessing model.

Proof. Our proof is similar to the proof of [18, Lemma 6.3]. Let P ∗ be a malicious
prover that convinces the verifier of some false statement x /∈ LC with non-
negligible probability ε(λ), where LC is the language associated with C. Since
Πenc satisfies linear targeted malleability (Definition 4.2), there exists a simulator
S such that the following distributions are computationally indistinguishable:

Real Distribution:

1. sk ← Setup(1λ, 1�)
2. (st,Q) ← QLPCP where Q ∈ Z

m×�
p

3. cti ← Encrypt(sk,qi) where qi is the
ith row of Q for i ∈ [m]

4. ct′ ← P ∗(ct1, . . . , ctq;x) such that
Decrypt(sk, ct′) �= ⊥

5. a ← Decrypt(sk, ct′) ∈ Z
�
p

6. Output (Q, st,a)

Ideal Distribution:

1. (st,Q) ← QLPCP where Q ∈ Z
m×�
p

2. (π,b) ← S(x) where π ∈ Z
m
p and

b ∈ Z
�
p

3. â ← Q�π + b
1. Output (Q, st, â)

By assumption, P ∗ convinces an honest verifier with probability ε = ε(λ),
or equivalently, in the real distribution, DLPCP(x, st,a) = 1 with probability at
least ε. Since DLPCP is efficiently computable, computational indistinguishability
of the real and ideal experiments means that DLPCP(x, st, â) = 1 with probability
at least ε−negl(λ). However, in the ideal distribution, the affine function (π,b) is
generated independently of the verifier’s queries Q and state st. By an averaging
argument, this means that there must exist some affine function (π∗,b∗) such
that with probability at least ε − negl(λ) taken over the randomness of QLPCP,
the verifier’s decision algorithm DLPCP on input x /∈ LC , st, and Q�π∗ + b∗

accepts. But this contradicts statistical soundness (against affine provers) of the
underlying linear PCP. ��
Remark 4.7 (Adaptivity). In Theorem 4.6, we showed that instantiating Con-
struction 4.5 with a vector encryption scheme with linear targeted malleability
and a linear PCP yields a non-adaptive SNARG in the preprocessing model.
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The same construction can be shown to satisfy adaptive soundness for proving
efficiently decidable statements. As noted in [18, Remark 6.5], we can relax Def-
inition 4.2 and allow the adversary to additionally output an arbitrary string
in the real distribution which the simulator must produce in the ideal distrib-
ution. Invoking Construction 4.5 with an encryption scheme that satisfies this
strengthened linear targeted malleability definition yields a SNARG with adap-
tive soundness for the case of verifying deterministic polynomial-time compu-
tations. Note that the proof system necessary to bootstrap obfuscation is used
to verify correctness of a polynomial-time computation (i.e., FHE evaluation),
so adaptivity for this restricted class of statements is sufficient for our primary
application.

Remark 4.8 (Multi-theorem SNARGs). Our basic notion of linear targeted
malleability for vector encryption only suffices to construct a single-theorem
SNARG. While the same construction can be shown secure for an adversary that
is allowed to make any constant number of queries to a proof verification oracle,
we are not able to prove that the construction is secure against a prover who
makes polynomially many queries to the proof verification oracle. In the full ver-
sion, we present an analog of the strengthened version of linear-only encryption
from [18, Appendix C] that suffices for constructing a multi-theorem SNARG.
Combined with a linear PCP that is strongly sound against affine provers, Con-
struction 4.5 can then be applied to obtain a multi-theorem, designated-verifier
SNARG. This raises the question of whether the same construction using the
weaker notion of linear targeted malleability also suffices when the underlying
linear PCP satisfies strong soundness. While we do not know how to prove secu-
rity from this weaker definition, we also do not know of any attacks. This is
especially interesting because at the information-theoretic level, the underly-
ing linear PCP satisfies strong soundness, which intuitively would suggest that
the responses the malicious prover obtains from querying the proof verification
oracle are uncorrelated with the verifier’s state (strong soundness states that
for any proof, either the verifier accepts with probability 1 or with negligible
probability).

Remark 4.9 (Arguments of Knowledge). Theorem 4.6 shows that instantiating
Construction 4.5 with a linear PCP with soundness against affine provers and
a vector encryption scheme with linear targeted malleability suffices for a
SNARG. In fact, the same construction yields a SNARK (that is, a succinct
non-interactive argument of knowledge) if the soundness property of the under-
lying LPCP is replaced with a corresponding knowledge property,10 and the
vector encryption scheme satisfies a variant of linear targeted malleability (Defin-
ition 4.2) where the simulator is required to be efficient (i.e., polynomially-sized).
For more details, we refer to [18, Lemma 6.3, Remark 6.4].

10 Roughly, the knowledge property states that there exists an extractor such that for
every affine strategy Π∗ that convinces the verifier of some statement x with high
probability, the extractor outputs a witness w such that (x,w) ∈ R. The Hadamard
LPCP from [9] also satisfies this stronger knowledge property.
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4.2 A Candidate Linear-Only Vector Encryption Scheme

The core building block in our new SNARG construction is a vector encryption
scheme for Z

�
p that plausible satisfies our notion of linear targeted malleability

(Definition 4.2). In particular, we conjecture that the Regev-based encryption
scheme [68] due to Peikert et al. [67, Sect. 7.2] satisfies our required properties.
Before describing the scheme, we review some notation as well as the learn-
ing with errors (LWE) assumption which is essential (though not sufficient) for
arguing security of the vector encryption scheme.

Notation. For x ∈ Z and a positive odd integer q, we write [x]q to denote the value
x mod q, with values in the interval (−q/2, q/2]. For a lattice Λ and a positive real
value σ > 0, we write DΛ,σ to denote the discrete Gaussian distribution over Λ
with standard deviation σ. In particular, DΛ,σ assigns a probability proportional
to exp(−π ‖x‖2 /σ2) to each element x ∈ Λ.

Learning with Errors. The learning with errors problem [68] is parameterized
by a dimension n ≥ 1, an integer modulus q ≥ 2 and an error distribution χ
over the integers Z. In this work, the noise distribution is always the discrete
Gaussian distribution χ = DZ,σ. For s ∈ Z

n
q , the LWE distribution As,m,χ over

Z
m×n
q ×Z

n
q is specified by choosing a uniformly random matrix A r←− Z

m×n
q and

error e ← χn and outputting the pair (A,As + e) ∈ Z
m×n
q × Z

m
q . The learning

with errors assumption LWEn,q,χ (parameterized by parameters n, q, χ) states
that for all m = poly(n), the LWE distribution As,m,χ for a randomly sampled
s r←− Z

n
q is computationally indistinguishable from the uniform distribution over

Z
m×n
q × Z

m
q .

The PVW Encryption Scheme. We now review the encryption scheme due to
Peikert et al. [67, Sect. 7.2]. To slightly simplify the notation, we describe the
scheme where the message is embedded in the least significant bits of the plain-
text. Note that when the modulus q is odd, this choice of “most significant bit”
and “least significant bit” encoding makes no difference and the encodings are
completely interchangeable [1, Appendix A]. In our setting, it suffices to just con-
sider the secret-key setting. Let Z�

p be the plaintext space. The vector encryption
scheme Πvenc = (Setup,Encrypt,Decrypt) in [67] is defined as follows:

– Setup(1λ, 1�): Choose Ā r←− Z
n×m
q , S̄ r←− Z

n×�
q , and Ē ← χ�×m, where n =

n(λ), m = m(λ), and q = q(λ) are polynomials in the security parameter.
Define the matrices A ∈ Z

(n+�)×m
q and S ∈ Z

(n+�)×�
q as follows:

A =
[

Ā
S̄�Ā + pĒ

]
S =

[−S̄
I�

]
,

where I� ∈ Z
�×�
q is the �-by-� identity matrix. Output the secret key sk =

(A,S).
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– Encrypt(sk,v): To encrypt a vector v ∈ Z
�
p, choose r r←− {0, 1}m and output

the ciphertext c ∈ Z
n+�
q where

c = Ar +
[
0n

v

]
.

– Decrypt(sk, c): Compute and output [[S�c]q]p.

Remark 4.10 (Low-Norm Secret Keys). For some of our applications (namely,
those that leverage modulus switching), it is advantageous to sample the LWE
secret s ∈ Z

n
q from a low-norm distribution. Previously, Applebaum et al. [8] and

Brakerski et al. [29] showed that the LWE variant where the secret key s ← χn

is sampled from the error distribution is still hard under the standard LWE
assumption. In the same work, Brakerski et al. also showed that LWE instances
with binary secrets (i.e., s ∈ {0, 1}n) is as hard as standard LWE (with slightly
larger parameters). Sampling the secret keys from a binary distribution has been
used to achieve significant concrete performance gains in several implementations
of lattice-based cryptosystems [37,44].

Correctness. Correctness of the encryption scheme follows as in [67]. In the
full version of this paper, we provide the concrete bounds on the parameters
under which correctness holds. This analysis will prove useful for estimating the
concrete parameters needed to instantiate our candidate obfuscation scheme in
Sect. 5.

Additive Homomorphism. Like Regev encryption, the scheme is additively homo-
morphic and supports scalar multiplication. Since the error is additive, to com-
pute a linear combination of ξ ciphertexts (where the coefficients for the linear
combination are drawn from Zp), we need to scale the modulus q by a factor ξp
for correctness to hold. In the full version, we show that this encryption scheme
supports modulus switching, and thus, it is possible to work with a smaller mod-
ulus during decryption. However, this optimization is not necessary when using
the vector encryption scheme to construct a SNARG (via Construction 4.5). It
becomes important when we combine the SNARG with other tools to obtain
more efficient bootstrapping of obfuscation for all circuits (Sect. 5).

Semantic Security. Security of this construction follows fairly naturally from
the LWE assumption. We state the main theorem here, but refer readers to [67,
Sect. 7.2.1] for the formal analysis.

Theorem 4.11 (Semantic Security [67]). Fix a security parameter λ and
let n, q = poly(λ). Let χ = DZ,σ be a discrete Gaussian distribution with
standard deviation σ = σ(λ). Then, if m ≥ 3(n + �) log q, and assuming the
LWEn,q,χ assumption holds, then the vector encryption scheme Πvenc is seman-
tically secure.
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4.3 Our Lattice-Based SNARG Candidate

We now state our concrete conjecture on the vector encryption scheme Πvenc

from Sect. 4.2 that yields the first lattice-based candidate of a designated-verifier,
preprocessing SNARG with quasi-optimal succinctness.

Conjecture 4.12. The PVW vector encryption scheme Πvenc from Sect. 4.2 sat-
isfies linear targeted malleability (Definition 4.2).

Under Conjecture 4.12, we can apply Construction 4.5 in conjunction with alge-
braic LPCPs to obtain designated-verifier SNARGs in the preprocessing model
(Theorem 4.6). To conclude, we give an asymptotic characterization of the
complexity of our lattice-based SNARG system, and compare against existing
SNARG candidates for Boolean circuit satisfiability. Let λ be a security parame-
ter, and let C be a Boolean circuit of size s = s(λ). We describe the parameters
needed to achieve 2−λ soundness against provers of size 2λ.

– Prover complexity. In Construction 4.5, the prover performs m homomor-
phic operations on the encrypted vectors, where m is the length of the under-
lying linear PCP. When instantiating the vector encryption scheme Πvenc over
the plaintext space Z

�
p where p = poly(λ), the ciphertexts consist of vectors of

dimension O(λ+�) over a ring of size q = poly(λ).11 Homomorphic operations
on ciphertexts corresponds to scalar multiplication (by values from Zp) and
vector additions. Since all operations are performed over a polynomial-sized
domain, all of the basic arithmetic operations can be performed in polylog(λ)
time. Thus, as long as the underlying LPCP operates over a polynomial-sized
field, the prover’s overhead is Õ(m(λ + �)).

If the underlying LPCP is instantiated with the Arora et al. [9] PCP based
on the Walsh-Hadamard code, then m = O(s2) and � = O(λ). The over-
all prover complexity in this case is thus Õ(λs2). If the underlying LPCP is
instead instantiated with one based on the QSPs of Gennaro et al. [42], then
m = Õ(s) and � = O(λ). The overall prover complexity in this case is Õ(λs).

– Proof length. Proofs in Construction 4.5 consist of a single ciphertext of
the vector encryption scheme, which has length Õ(λ + �). Thus, both of our
candidate instantiations of the LPCP (based on the Hadamard code and on
QSPs) yield proofs of size Õ(λ).

– Verifier complexity. In Construction 4.5, the verifier first invokes the decryp-
tion algorithm of the underlying vector encryption scheme and then applies the
verification procedure for the underlying linear PCP. Decryption consists of
a rounded matrix-vector product over a polynomial-sized ring, which requires

11 More precisely, the ciphertexts are actually vectors of dimension n+�, where n is the
dimension of the lattice in the LWE problem. Currently, the most effective algorithms
for solving LWE rely either on BKW-style [21,54] or BKZ-based attacks [32,70].
Based on our current understanding [26,32,54,60], the best-known algorithms for
LWE all require time 2Ω(n/ logc n) for some constant c. Thus, in terms of a concrete
security parameter λ, we set the lattice dimension to be n = Õ(λ).
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Õ(λ(λ+�)) operations. In both of our candidate LPCP constructions, the ver-
ifier’s decision algorithm runs in time O(n), where n is the length of the state-
ment. Moreover, the decision algorithm for the underlying LPCP is applied
O(λ) times for soundness amplification. Thus, the overall complexity of the
verifier for both of our candidate instantiations is Õ(λ2 + λn).

Note that we can generically reduce the verifier complexity to Õ(λ2 +n) by
first applying a collision-resistant hash function to the statement and having
the prover argue that it knows a preimage to the hash function and that the
preimage is in the language. After applying this transformation, the length
of the statement is simple the output length of of a collision-resistant hash
function, namely O(λ).

Remark 4.13 (Comparison with [18]). An alternative route to obtaining a lattice-
based SNARG is to directly instantiate [18] with Regev-based encryption. How-
ever, to achieve soundness error 2−λ, Bitansky et al. [18] require a LPCP
(and consequently, an additively homomorphic encryption) over a field of size
2λ. Instantiating the construction in [18] with Regev-based encryption over a
plaintext space of size 2λ, the resulting SNARGs have length Õ(λ2) and the
prover complexity is Õ(sλ2). Another possibility is to instantiate [18] with
Regev-based encryption over a polynomial-size field (thus incurring 1/poly(λ)-
soundness error) and perform parallel repetition at the SNARG level to amplify
the soundness. But this method suffers from the same drawback as above. While
each individual SNARG instance (over a polynomial-size field) is quasi-optimally
succinct, the size of the overall proof is still Õ(λ2) and the prover’s complex-
ity remains at Õ(sλ2). This is a factor λ worse than using linear-only vector
encryption over a polynomial-size field. We provide a concrete comparison in
Table 1.

In Table 1, we compare our new lattice-based SNARG constructions to exist-
ing constructions for Boolean circuit satisfiability (the same results apply for
arithmetic circuit satisfiability over polynomial-size fields). Amongst SNARGs
with quasi-optimal succinctness (proof size Õ(λ)), Construction 4.5 instantiated
with a QSP-based LPCP achieves the same prover efficiency as the current
state-of-the-art (GGPR [42] and BCIOP [18]). However, in contrast to current
schemes, our construction is lattice-based, and thus, plausibly resists quantum
attacks. One limitation is that our new constructions are designated-verifier,
while existing constructions are publicly verifiable. We stress here though that a
common limitation of designated-verifier SNARGs—that the common reference
string cannot be reused for multiple proofs [15,34,47]—does not apply to our
construction. As noted by [18], this limitation can be circumvented by SNARG
constructions relying on algebraic PCPs such as ours. We show in the full version
that a variant of our construction (with the same asymptotic complexity) gives
a multi-theorem designated-verifier SNARG in the preprocessing model.

Remark 4.14 (Arithmetic Circuit Satisfiability over Large Fields). Construc-
tion 4.5 also applies to arithmetic circuit satisfiability over large finite fields (say,
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Table 1. Asymptotic performance of different SNARG systems for Boolean circuit
satisfiability. Here, s is the size of the circuit and λ is a security parameter guaranteeing
negl(λ) soundness error against provers of size 2λ. (Some of the schemes can achieve
2−λ soundness error with the same complexity.) All of the schemes can be converted
into an argument of knowledge (i.e., a SNARK)—in some cases, this requires a stronger
cryptographic assumption.

Construction Type∗ Prover
complexity

Proof
size

Assumption

CS proofs [63] PV Õ(s + λ2) Õ(λ2) Random oracle

Groth [51] PV Õ(s2λ + sλ2) Õ(λ) Knowledge of
exponentGGPR [42] PV Õ(sλ) Õ(λ)

BCIOP [18]† (Paillier) DV Õ(sλ3) Õ(λ3) Linear-only
encryptionBCIOP [18]† (Pairing) PV Õ(sλ) Õ(λ)

BCIOP [18]† (Regev)‡ DV Õ(sλ2) Õ(λ2)

Construction 4.5§ (Hadamard LPCP) DV Õ(s2λ) Õ(λ) Linear-only
vector enc.Construction 4.5§ (QSP-based LPCP) DV Õ(sλ) Õ(λ)

Construction 4.5 (RLWE-based)¶ DV Õ(s) Õ(λ) Linear-only
vector enc.

∗We write “PV” to denote public verifiability and “DV” for designated verifiability.
†Instantiated using a LPCP based on QSPs.
‡Based on a direct instantiation of [18] using Regev-based encryption (Remark 4.13).
§Instantiated with the PVW [67] encryption scheme from Sect. 4.2.
¶Instantiated with the RLWE-based vector encryption scheme described in the full
version. This construction is the first which is quasi-optimal with respect to both prover
complexity and proof size.

Zp where p = 2λ). However, if the size of the plaintext space for the vector
encryption scheme Πvenc from Sect. 4.2 is 2λ, then the bit-length of the cipher-
texts becomes Õ(λ2) bits. Consequently, the proof system is no longer quasi-
optimally succinct. In contrast, the QSP-based constructions [18,42] remain
quasi-optimally succinct for arithmetic circuit satisfiability over large fields.

Quasi-Optimal SNARG. In the full version of this paper, we also show how vector
encryption over polynomial rings that satisfy linear targeted malleability can be
leveraged to obtain the first SNARG construction that achieves quasi-optimal
prover complexity as well as quasi-optimal succinctness. Our construction makes
use of a new information-theoretic construction of LPCPs over rings.

5 Concrete Efficiency of Bootstrapping VBB Obfuscation

Due to space limitations, we defer our results on the concrete efficiency of boot-
strapping obfuscation to the full version, and give an outline of our main results
here. We start by describing how matrix branching programs can be used to per-
form simple computations over Zq. In particular, we show how we can implement
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FHE decryption and SNARG verification as a matrix branching program. Then,
we introduce a series of algorithmic as well as heuristic optimizations to improve
the concrete efficiency of the candidate obfuscator. We conclude by giving an
estimate of the parameters needed to instantiate our obfuscation candidate.

To summarize, after applying our optimizations, implementing FHE decryp-
tion together with SNARG verification can be done with a branching program
(over composite-order rings) of length 4150 and size ≈ 244 (at a security level
of λ = 80). While publishing 244 encodings of a multilinear map capable of
supporting 4150 levels of multilinearity is likely beyond the scope of existing
candidates, further optimizations to the underlying multilinear map as well as
to the different components of our pipeline can plausibly lead to a realizable
construction. Thus, our construction represents an important milestone towards
the ultimate goal of implementable program obfuscation.
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Abstract. We describe new cryptanalytic attacks on the candidate
branching program obfuscator proposed by Garg, Gentry, Halevi,
Raykova, Sahai and Waters (GGHRSW) using the GGH13 graded encod-
ing, and its variant using the GGH15 graded encoding as specified
by Gentry, Gorbunov and Halevi. All our attacks require very specific
structure of the branching programs being obfuscated, which in partic-
ular must have some input-partitioning property. Common to all our
attacks are techniques to extract information about the “multiplicative
bundling” scalars that are used in the GGHRSW construction.

For GGHRSW over GGH13, we show how to recover the ideal gener-
ating the plaintext space when the branching program has input parti-
tioning. Combined with the information that we extract about the “mul-
tiplicative bundling” scalars, we get a distinguishing attack by an exten-
sion of the annihilation attack of Miles, Sahai and Zhandry. Alternatively,
once we have the ideal we can solve the principle-ideal problem (PIP) in
classical subexponential time or quantum polynomial time, hence obtain-
ing a total break.

For the variant over GGH15, we show how to use the left-kernel
technique of Coron, Lee, Lepoint and Tibouchi to recover ratios of the
bundling scalars. Once we have the ratios of the scalar products, we can
use factoring and PIP solvers (in classical subexponential time or quan-
tum polynomial time) to find the scalars themselves, then run mixed-
input attacks to break the obfuscation.

Keywords: Cryptanalysis · Graded-encoding · Obfuscation

1 Introduction

General-purpose code obfuscation is an amazingly powerful technique, making
it possible to hide secrets in arbitrary running software. The first plausible con-
struction of a secure general-purpose obfuscation, described three years ago by
Garg, Gentry, Halevi, Raykova, Sahai and Waters [22] (hereafter GGHRSW),
opened up a new direction of research that transformed our thinking about
what can and cannot be done in cryptography. The GGHRSW construction
c© International Association for Cryptologic Research 2017
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consists of a “core component” for obfuscating branching programs, and a boot-
strapping procedure that uses the core component—in conjunction with homo-
morphic encryption and some proofs—to obfuscate arbitrary code (modeled as
a binary circuit). Many different constructions were proposed since then e.g.,
[3,4,6–8,11,12,23,24,27,31,32,34,37,39], most of which only modify the “core
component” for branching programs, then use the GGHRSW bootstrapping to
obfuscate circuits.

All known obfuscation constructions rely crucially on the underlying tool of
graded encoding schemes, for which there are (essentially) only three candidate
constructions: one due to Garg, Gentry and Halevi [21] (GGH13), another due
to Coron, Lepoint and Tibouchi [19] (CLT13), and the third due to Gentry,
Gorbunov and Halevi [26] (GGH15). However, the security properties of these
encoding schemes are poorly understood, and therefore the same holds for the
obfuscation constructions that use them.

Known Attacks. The original publications of GGH13, CLT13 and GGH15 sur-
vey several number theoretical and algebraic attacks. For the GGH13 encoding
scheme—that relies on the difficulty of the NTRU problem and the principle
ideal problem (PIP) in certain number fields—we recently saw some advances in
attacking these underlying problem [2,9,10,14,20], that may affect the choice of
parameters.

The most serious attacks on all three encoding schemes are the so-called
“zeroizing attacks”: when encodings of zero are easy to find, some secrets can be
extracted by linear algebraic techniques. The most devastating zeroizing attack is
found by Cheon, Han, Lee, Ryu and Stehl? [13] against CLT13—when the encod-
ings of zero form certain combinations, one can extract all the secret parameters.
The attack is extended by Coron et al. [16, Sect. 3.4], breaking the GGHRSW
branching-program obfuscator when instantiated using CLT13 encodings and
used to obfuscate branching programs with certain input-partitioning features.

Applying zeroizing attacks to construction based on GGH13 and GGH15
appears somewhat harder, especially in the context of obfuscation. Nonethe-
less, Miles, Sahai and Zhandry recently introduced “annihilation attack” against
many GGH13-based branching-program obfuscators, for specific types of branch-
ing programs [35]. Interestingly, these attacks do not apply to the GGHRSW
construction, due to the presence of some random entries in the encoded matri-
ces. Moreover, it was shown in [24] that such random entries (in conjunction with
other techniques) provably eliminates all known variants of zeroizing attacks.

To the best of our knowledge, no polynomial time attacks (either classical
or quantum) were known before the current work on the GGHRSW obfusca-
tor using GGH13 encoding, nor were there any attacks on any GGH15-based
branching-program obfuscators.

This Work. We describe new attacks on the GGHRSW branching-program
obfuscator, when using GGH13 and GGH15 encodings. The attacks that we
describe in this work require the underlying branching programs to satisfy
some input-partitioning features, similar to the attack on the CLT variant [16,
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Sect. 3.4]. Roughly, the indexes of the branching program can be partitioned into
two or three consecutive intervals, each contains “sufficiently many” input bits
that do not appear in the other intervals.

A common thread in our attacks is that they focus on the “multiplicative
bundling” scalars that are used in the GGHRSW construction (as protection
against “mixed-input attacks”). We show that some information about these
scalars can be extracted using zeroizing techniques, if the underlying branching
program satisfy certain input-partitioning features. We are not able to fully
recover these scalars, and hence cannot quite mount mixed-input attacks, but
we can still use the extracted information in weaker attacks.

For the GGH13-based candidates, we first apply a variant of the attacks due
to Cheon et al. and Coron et al. [13,17] to recover a basis of the ideal 〈g〉 that
defines the plaintext space, as well as some representatives of the scalars, then
use the recovered information in a distinguishing attack, using an extension of
the annihilation attack of Miles et al. [35]. Alternatively, once we have a basis for
〈g〉 we can solve PIP (in classical subexponential time or quantum polynomial
time), resulting in a total break.

For the GGH15-based candidates, we recover some rational expressions in the
bundling scalars using techniques from [17] (among others), then we can use fac-
toring and PIP solvers (in classical subexponential time or quantum polynomial
time) to recover the bundling scalars themselves from the rational expressions,
then mount mixed-input attacks.

Applicability and Extensions of Our Attacks. We stress that all our attacks rely
crucially on the input-partitioning of the branching program (in order to use the
techniques of Cheon et al. or those of Coron et al.) In particular they do not
seem to apply to “dual input” branching programs as used in many branching-
program obfuscators. Also, our GGH13 attacks cannot be used against schemes
that were proven secure in the “Weak Multilinear Map” model of Garg et al.
[24], since our first step of recovering 〈g〉 fits in that model. However, some of
our techniques do not seem to quite fit in that model (in particular Step II of the
attack, see Sect. 3.2), so they should serve as a cautionary tale about relying too
much on proofs of security in such idealized models. Also, the “immunization”
techniques against GGH13 annihilation attack from [24] by themselves do not
prevent our new attack if the branching programs are input-partitioning (see
Sect. 3.5), it is only in combination with the “dual input” technique that they
provide protection.

Finally, our techniques can potentially be combined with the recent tech-
niques of Apon et al. and Coron et al. [5,18], to attack also some non-input-
partitioned obfuscators. This seems a promising direction for future work.

2 Preliminaries

For a positive integer n, let [n] = {1, 2, . . . , n}. Let Φn be the nth cyclotomic
polynomial. The typical ring used in the paper R := Z[x]/ 〈Φn(x)〉, and the
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fractional field of Rn: Kn := Q[x]/ 〈Φn(x)〉. Below we denote matrices by bold-
face uppercase letter (e.g., A,B, . . .).

2.1 Matrix Branching Programs

We consider oblivious matrix branching programs (as usual in the obfuscation
literature). Such a branching program consists of a sequence of steps, where each
step is associated with an index of some input bit and we have two matrices
associated with each step. To evaluate such a branching program over some
input string, we choose one of the two matrices from each step, depending on
the value of the corresponding input bit, then multiply all these matrices in
order, and compare the result to the identity matrix.

Definition 1. A dimension-w, length-h branching program over �-bit inputs
consists of an index-to-input map and a sequence of pairs of 0–1 matrices,

B =
{
ι : [h] → [�], {Bi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}

}
.

This branching program is computing the function fB : {0, 1}� → {0, 1}, defined
as

fB(x) =

{
0 if

∏
i∈[h] Bi,xι(i) = I

1 if
∏

i∈[h] Bi,xι(i) �= I

where the matrix product is carried over some implicitly set ring that includes
0,1 (e.g., the ring Rn from above).

Input Partitioning. We say (somewhat informally) that a branching pro-
gram B is input-partitioned if its set of steps can be partitioned into two or
more consecutive intervals [h] = H1||H2|| . . ., such that for each interval there
are “sufficiently many” input bits that control only steps in that interval and
nowhere else. We sometime say that B is 2-partitioned or 3-partitioned if it can
be broken to 2 or 3 intervals, respectively, and the number of bits that are unique
to each interval will vary among the different attacks that we describe (and will
typically be polylogarithmic).

When considering input-partitioned program B, we will often consider its
evaluation on inputs that differ in bits that only affect steps in one of the inter-
vals. A simple (but important) observation that underlies most of our techniques
is the following:

Lemma 1. Let B be a branching program as per Definition 1 which is input-
partitioned, [h] = H1||H2, and let x, x′ ∈ {0, 1}� be two zeros of fB that differ
only in bits that are mapped to steps in H1. Namely, fB(x) = fB(x′) = 0,
and for all i /∈ H1 we have xι(i) = x′

ι(i). Then the product of the matrices
corresponding to H1 yields the same result in the evaluation of B on x and x′,
that is

∏
i∈H1

Bi,xι(i) =
∏

i∈H1
Bi,x′

ι(i)
.

Similarly, if x, x′ are two zeros of fB that differ only in bits that are mapped
to steps in H2, then

∏
i∈H2

Bi,xι(i) =
∏

i∈H2
Bi,x′

ι(i)
.
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Proof. For the first statement, denote B :=
∏

i∈H1
Bi,xι(i) , B′ :=

∏
i∈H1

Bi,x′
ι(i)

,
and C :=

∏
i∈H2

Bi,xι(i) =
∏

i∈H2
Bi,x′

ι(i)
, where the last equality follows since

xι(i) = x′
ι(i) whenever i ∈ H2. Since fB(x) = fB(x′) = 0 then B×C = B′×C = I,

and as B,B′,C are square matrices then C must be invertible and B = B′ =
C−1. The proof of the “similarly” statement is analogous.

2.2 Overview of the GGHRSW Branching-Program Obfuscator

We briefly review the candidate branching program obfuscator of Garg et al.
[22] and its GGH15-based variant from [26, Sect. 5.2]. The GGHRSW branching-
program obfuscator applies several different randomization steps to the under-
lying branching program, and then encodes the resulting randomized matrices,
using either GGH13 or GGH15.

We defer the description of the GGH13 and GGH15 encoding schemes them-
selves to the corresponding attack sections, but just note that these schemes
let us encode matrices in a way that allows checking whether certain degree-h
polynomial expressions in these matrices evaluate to zero.

We also recall that these constructions are supposed to implement indis-
tinguishability obfuscation. In the context of branching programs, this means
that if two programs have the same length h and same input mapping function
ι : [h] → [�] and they compute the same function, then their obfuscations should
be indistinguishable. Correspondingly when attacking these constructions we
need to show two such equivalent programs for which we are able to distinguish
the obfuscated versions.

Below we let B =
{
ι : [h] → [�], {Bi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}

}
be the

branching program to be obfuscated. The obfuscation process consists of the
following steps:

0. Dummy branch. The construction begins by introducing a “dummy
branch”, which is just a length-h branching program with the same input
mapping function ι : [h] → [�], but consisting of only identity matrices of
the same dimension as the Bi,b’s. (In particular the “dummy branch” com-
putes the all-zero function.) We refer to the original branching program as
the “functional branch”, and apply the same randomization/encoding trans-
formations to both branches.

1. Random diagonal entries and bookends. Next every matrix in each of
the branches (all are w × w 0–1 matrices) is embedded inside a higher-
dimension randomized matrix. Specifically, for each i ∈ [h], b ∈ {0, 1} we
consider the matrices

B̃i,b :=
[
Vi,b

Bi,b

]
and B̃′

i,b :=
[
V′

i,b

I

]
, (1)

where Vi,b and V′
i,b are “random diagonal matrices.” In the GGHRSW con-

struction from [22], these are 2(h + 3)-by-2(h + 3) diagonal matrices with
the diagonal entries chosen uniformly at random from the plaintext space,
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whereas in the GGH15-based variant from [26] they are diagonal 2-by-2 matri-
ces with “random small entries” that are drawn from some Gaussian distri-
bution over Rn. Below we denote the dimension of these random matrices
as 2m-by-2m (so we have m = h + 3 for the original GGHRSW and m = 1
for the GGH15-based variant). When the analysis requires fine grained struc-
ture of the padded matrices, we further split the notation for each m-by-m
blocks and denote the whole as diag (Ui,b,Vi,b) and diag (U′

i,b,V′
i,b). The

construction also chooses four “bookend” vectors J,J′,L,L′ ∈ R2m+w, of the
form:

J,J′ ∈ [
0m, $m, $w

]
, L,L′ ∈ [

$m, 0m, $w
]T (2)

where the $’s stand for uniformly random elements from the plaintext space
for the original GGH13-based construction, and for “small random” elements
drawn from some Gaussian distribution for the GGH15-based candidate.
They satisfy JL = J′L′.

2. Killian-style randomization and bundling scalars. Next the construc-
tion chooses invertible matrices {Ki,K′

i ∈ R
(2m+w)×(2m+w)
n }i∈[h] and also

scalars {αi,b, α
′
i,b}i∈[h],b∈{0,1}. The scalars are chosen under the constraint

that for any input bit j ∈ [�], we have
∏

ι(i)=j

αi,0 =
∏

ι(i)=j

α′
i,0 and

∏

ι(i)=j

αi,1 =
∏

ι(i)=j

α′
i,1.

Below we sometime use the notations βj,b :=
∏

ι(i)=j αi,b

(
=

∏
ι(i)=j α′

i,b

)
.

As before, here too the scalars and matrices are chosen at random from the
plaintext space in the GGH13-based construction, and drawn from an appro-
priate Gaussian distribution with small parameters in the GGH15-based solu-
tion. Let us also denote K0 = K′

0 = I.
3. Encoding. Denote the randomized matrices by

Si,b := αi,bK−1
i−1B̃i,bKi and S′

i,b := α′
i,bK

′−1
i−1

˜B′
i,bK′

i. (3)

The obfuscation of the branching program B consists of encoding of all the
matrices Si,b and S′

i,b and also of the bookends J,J′,L,L′.

To evaluate the obfuscated branching program on some input x, we use the
operations and zero-test capabilities of the underlying encoding scheme to check
that J

(∏
i∈[h] Si,b

)
L − J′(∏

i∈[h] S
′
i,b

)
L′ = 0.

Branching Program with Input Partitioning. Let X||Y||Z = [h] be a 3-
partition of the branching program steps. In the attacks we use honest evaluation
of the branching program on many inputs of the form u(i,j,k) = x(i)y(j)z(k),
where all the bits that only affect steps in X are in the x(i) part, all the bits
that only affect steps in Y are in the y(j) part, all the bits that only affect steps
in Z are in the z(k) part, and all the other bits are fixed. This notation does not
mean that the bits of x(i), y(j), z(k) appear in this order in u(i,j,k), but it does
mean that u(i,j,k) and u(i′,j,k) can only differ in bits that affect steps in X , and
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similarly u(i,j,k) and u(i,j′,k) only differ in bits that affect steps in Y and u(i,j,k)

and u(i,j,k′) only differ in bits that affect steps in Z.
For such an input u = xyz, we denote by Sx the plaintext product matrix

of functional branch in the X interval, by Sy the plaintext product matrix of
functional branch in the the Y interval, and by Sz the plaintext product matrix
of the functional branch in the Z interval (including the bookends). We similarly
denote by S′

x, S′
y, S′

z, the plaintext product matrix of the dummy branch. Namely

Sx := J · (
∏

i∈X Si,uι(i)), Sy :=
∏

i∈Y Si,uι(i) , Sz := (
∏

i∈Z Si,uι(i)) · L,
S′

x := J′ · (
∏

i∈X S′
i,uι(i)

), S′
y :=

∏
i∈Y S′

i,uι(i)
, S′

z := (
∏

i∈Z S′
i,uι(i)

) · L′, (4)

with products over the plaintext space. In some cases we only need 2-partition
of the program, so we suppress the Sy, S′

y parts.
When we have multiple inputs of the form u(i,j,k) = x(i)y(j)z(k) that are all

zeros of the function, then by Lemma 1 the parts of the plaintext matrices that
come from the product of the branching program matrices must be the same for
the different x(i)’s (and similarly for the different y(j)’s and z(k)’s). We denote
these matrices simply by Bx, By, and Bz, independently of i, j, k. Namely we
have:

Sx(i) = αx(i) J × diag(Ux(i) ,Vx(i) ,Bx) × Ky;
S′

x(i) = α′
x(i) J′ × diag(U′

x(i) ,V′
x(i) , I) × K′

y

Sy(j) = αy(j)K−1
y × diag(Uy(j) ,Vy(j) ,By) × Kz;

S′
y(j) = α′

y(j)K′
y

−1 × diag(U′
y(j) ,V′

y(j) , I) × K′
z;

Sz(k) = αz(k)K−1
z × diag(Uz(k) ,Vz(k) ,Bz) × L;

S′
z(k) = α′

z(k)K′
z
−1 × diag(U′

z(k) ,V′
z(k) , I) × L′

(5)

where the scalars αx(i) , αy(j) , etc. are just the product of all the αi,b’s in
the corresponding (partial) branch. Moreover, we observe that all the ratios
of αx(i)/α′

x(i) , i = 1, 2, . . . (and similarly for the αy(j) and αz(k)) must also be
equal.

Lemma 2. With the notations above, we have α′
x(1)/αx(1) = α′

x(2)/αx(2) = . . .
and similarly α′

y(1)/αy(1) = α′
y(2)/αy(2) = . . . and α′

z(1)/αz(1) = α′
z(2)/αz(2) = . . ..

Proof. To prove the statement for the αx(i) ’s consider an input bit t ∈ [�] that
affect some steps in X . That bit either only affects steps in X or it affects steps in
both X and in Y,Z. In the former case, by construction we have

∏
ι(i′)=t αi′,b =∏

ι(i′)=t α′
i′,b (for b = 0, 1), so this input bit’s contribution to the ratio α′

x(i)/αx(i)

is 1 (for all i). In the latter case, this input bit has the same value (0 or 1) for
all the inputs x(i), so it contributes the same factor to the ratio α′

x(i)/αx(i) for
all i. The proof for the αy(j) and αz(k) is the same.

3 Cryptanalysis of the GGH13-Based Candidate

The GGH13 Encoding Scheme. The core secret parameter in the GGH13 encod-
ing scheme is a small g ∈ Rn (sampled from small Gaussian distribution), such



Cryptanalyses of Candidate Branching Program Obfuscators 285

that the inverse g−1 ∈ K is also small. Let I = 〈g〉 = gRn be the ideal generated
by g in Rn, the plaintext space of the GGH13 scheme is the quotient ring Rn/I,
and we typically choose g so that this plaintext space is isomorphic to some prime
field Fp. Other parameters of the scheme are an integer modulus q � p and the
multi-linearity degree k (which are public), and a random secret denominator
z ∈ Rn/qRn (which is kept secret). Plaintext elements are encoded relative to
levels between 0 and k.

The encoding of s ∈ Rn/I at level 0 is a short representative of the coset
of the ideal shifted by s, i.e. c ∈ s + I, ‖c‖ 	 q. To encode at level i, compute
c/zi (mod q). (There is also an “asymmetric mode” of GGH13, in which there
are many different denominators zi.) The public zero-test parameter is pzt =
η · zk/g, with ‖η‖ ≤ q1/2.1 Additions and multiplications are simply adding and
multiplying the encodings in Rn/qRn, with the restrictions that correctness only
holds when adding on the same level, or multiplying below the maximum level k.
To zero-test, multiply the (potential) top-level encoding c/zk by pzt (modulo q).
If c encodes zero then c ∈ I, hence c = c′ · g, and therefore c · pzt = ηc′, which
is small since both η and c′ are much smaller than q.

Attacking the GGH13-Based Obfuscator. When using GGH13 as the underlying
encoding scheme in the GGHRSW obfuscator, we denote the encoding of the
plaintext matrices Si,b, S′

i,b by

Ci,b = (Si,b + g · Ei,b)/z, and C′
i,b = (S′

i,b + g · E′
i,b)/z.

We also denote the encoding of the bookends by

J̃ = (J+g·EJ )/z, L̃ = (L+g·EL)/z, J̃′ = (J′+g·E′
J ′)/z, and L̃′ = (L′+g·E′

L′)/z,

where all the calculations are modulo q.
We first recover the ideal 〈g〉 adapting the zeroing attack techniques of Cheon,

Han, Lee, Ryu and Stehlé [13] and Coron, Lee, Lepoint and Tibouchi [17]. This
part requires 2-partitioning of the branching program. Once we have a basis
of 〈g〉, sub-exponential time classical algorithms [9] and polynomial-time quan-
tum algorithms [10] are known to recover a short generator of 〈g〉 [20], thus
breaking GGH13 completely [21, Sect. 6.3.3].

Alternatively, using a basis of 〈g〉 we can proceed with the zeroing attack
modulo 〈g〉 to recover (some representation of) products of the bundling scalars.
Then we can execute a simplified variant of the annihilation attack by Miles,
Sahai and Zhandry [35]. This yields a classical polynomial time attack, and
requires 3-partitioning of the branching program. We now proceed to describe
the attack in more details.

Some More Notations. Consider a 3-partitioned branching program with the
partitioning X||Y||Z = [h]. We use the same notation as in Eq. (4) for the

1 The scalar η is denoted h in [21], but we are already using h for the length of the
branching program.
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plaintext matrices, and also denote Cx,Cy,Cz and C′
x,C′

y,C′
z for the encoded

matrices. Namely

Cx := J̃ · (
∏

i∈X Ci,uι(i)), Cy :=
∏

i∈Y Ci,uι(i) , Cz := (
∏

i∈Z Ci,uι(i)) · L̃,

C′
x := J̃′ · (

∏
i∈X C′

i,uι(i)
), C′

y :=
∏

i∈Y C′
i,uι(i)

, C′
z := (

∏
i∈Z C′

i,uι(i)
) · L̃′,

with products over Rn/qRn. As before, when we only need 2-partition we ignore
the Cy’s. With these notations, for any u = xyz we can multiply, subtract, and
zero-test to get

w := pzt(CxCyCz − C′
xC

′
yC

′
z) (6)

=
η

g
· [Sx + gEx, −(S′

x + gE′
x)]

[
Sy + gEy, 0
0, S′

y + gE′
y

] [
Sz + gEz

S′
z + gE′

z

]
(mod q)

(or the without the middle matrix if we only use 2-partitioning). Moreover, if u
is a zero of the function then the final zero-tested value is an encoding of zero,
and hence Eq. 6 holds not only modulo q but also over the base ring Rn.

3.1 Step I: Recovering 〈g〉
Our first task is to recover (a basis for) the plaintext-space ideal I = 〈g〉. To that
end, we will construct two matrices M,N which are both full rank over Rn (whp),
but (after canceling some common factors) the determinant of M is divisible by
a higher power of g than the determinant of N. Computing M × N−1 over the
field of fractions Kn and multiplying by the common denominator, we get an
integral matrix whose determinant is divisible by g. Repeating this process many
times and taking the common denominator of all the resulting determinants we
obtain whp a basis for the ideal 〈g〉.

Let X||Z = [h] be a 2-partition of the branching program steps, where we
have sufficiently many input bits that only affect steps in the X interval and suf-
ficiently many other input bits that only affect steps in the Z interval. (Denote
these input bits by Jx, Jz ⊂ [�], respectively.) Moreover, we can fix all the remain-
ing input bits in such a way that for sufficiently many choices x(i) ∈ {0, 1}|Jx|,
z(j) ∈ {0, 1}|Jz| we get an input which is a zero of the function.

Finally, we assume that there are two distinguished input bits j1, j2 ∈ Jx

that we can set arbitrarily. Namely, for all the other choices of input bits as
above, we can set these two bits to 00,01,10, and 11 and all four combinations
will yield a zero of the function.

With these assumptions, let us denote by w
(i,j)
00 the zero-tested value which

was obtained by honest evaluation of the obfuscated program on the input
x
(i)
00 z(j) with the two distinguished bits set to 00, and similarly w

(i,j)
01 , w

(i,j)
10 ,

w
(i,j)
11 with these bits set to 01, 10, 11, respectively. Note that:

– For every fixed i, j, the four inputs whose evaluation yields the scalars w
(i,j)
00 ,

w
(i,j)
01 , w

(i,j)
10 , and w

(i,j)
11 differ only in the values of the distinguished input bit;
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– For every a ∈ {00, 01, 10, 11} and every fixed j, the inputs whose evaluation
yields the different {w

(i,j)
a }i only differ in bits that affect the X interval of

steps (but not the distinguished j1, j2); and
– For every a ∈ {00, 01, 10, 11} and every fixed i, the inputs whose evaluation

yields the different {w
(i,j)
a }j only differ in bits that affect the Z interval of

steps.

Using Eq. (6), we have for all i, j and a ∈ {00, 01, 10, 11},

w(i,j)
a := pzt

(
C

x
(i)
a

Cz(j) − C′
x
(i)
a

C′
z(j)

)
(7)

=
η

g
· [(S

x
(i)
a

+ gE
x
(i)
a

)(Sz(j) + gEz(j)) − (S′
x
(i)
a

+ gE′
x
(i)
a

)(S′
z(j) + gE′

z(j))
]

=
η

g
· [S

x
(i)
a

+ gE
x
(i)
a

, (−S′
x
(i)
a

− gE′
x
(i)
a

)
] [Sz(j) + gEz(j)

S′
z(j) + gE′

z(j)

]

with Eq. (7) holding over the base ring Rn. Fixing a ∈ {00, 01, 10, 11} and letting
i, j range over sufficiently many inputs, we get the matrices

Wa :=[w(i,j)
a ]i,j = XaZ

:=
η

g

⎡

⎣
. . .

S
x
(i)
a

+ gE
x
(i)
a

, (−S′
x
(i)
a

− gE′
x
(i)
a

)
. . .

⎤

⎦
[ · · · , Sz(j) + gEz(j) , · · ·

· · · , S′
z(j) + gE′

z(j) , · · ·
] (8)

Specifically we choose as many different x(i)’s and z(j)’s to make Xa and Z
square matrices (of dimension 2ρ, where ρ = 2m + w).

The two matrices M,N that we consider in this part of the attack are

M =
[
W00 W01

W10 W11

]
= η

g ·
[
X00 X01

X10 X11
l

]
×

[
Z

Z

]
,

N =
[
W00 0
0 W11

]
= η

g ·
[
X00 0
0 X11

]
×

[
Z

Z

] (9)

These matrices will have full rank over the base ring Rn whp due to the
“random” error matrices E in the X’s and Z. However, we show now that whp,
the determinant of M (after disregarding the common factor η

g ) is divisible by
a higher power of g than that of N.

To see that, recall that the matrices Sx from Eq. (8) are the plaintext matrices
of the GGHRSW constructions as per Eq. (5), and in particular they include
the scalars βj1,b, βj2,b for the two distinguished input bits j1, j2. To somewhat
simplify notations we use below βb := βj1,b and β′

b = βj2,b. Specifically for any
index i we have

S
x
(i)
00

= β0β
′
0 · γ(i) · J × diag(U(i)

00 ,V(i)
00 ,Bx) × Kz

= β0β
′
0 · γ(i) · [0,v(i)

00 ,b
] × Kz (mod I)

S′
x
(i)
00

= δ · β0β
′
0 · γ(i) · J′ × diag(U′(i)

00 ,V′(i)
00 , I) × K′

z

= δ · β0β
′
0 · γ(i) · [0,v′(i)

00 ,b′] × K′
z (mod I),

(10)
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where above we used δ := α
x
(i)
στ

/α′
x
(i)
στ

(which by Lemma 2 is independent of i or

the two bits σ, τ), and γ(i) is some scalar that depends on i but not on these two
bits. We use similar notations for S

x
(i)
01

, S
x
(i)
10

, S
x
(i)
11

. For any two bits σ, τ , each
row i of Xστ (mod I) has the form [S

x
(i)
στ

| − S′
x
(i)
στ

], so we can write

Xστ =
(
βσβ′

τ · X + Δστ

) × diag(Kz,K′
z) (mod I) (11)

where diag(Kz,K′
z) is invertible, X is some fixed matrix independent of σ, τ ,

and where Δστ has only few non-zero columns (i.e., the ones corresponding to
v(i)

στ and v′(i)
στ from Eq. (10)). Denoting by n the number of non-zero columns in

the Δ’s, we have (over Rn/I)

rank

(
β0β

′
0X + Δ00 β0β

′
1X + Δ01

β1β
′
0X + Δ10 β1β

′
1X + Δ11

)
≤ 2n + rank

(
β0β

′
0X β0β

′
1X

β1β
′
0X β1β

′
1X

)

= 2n + rank(X),

because β0β
′
0 · β1β

′
1 − β0β

′
1 · β1β

′
0 = 0. On the other hand, we have

rank

(
β0β

′
0X + Δ00 0
0 β1β

′
1X + Δ11

)
(whp)
= 2n + 2 · rank(X).

Since it has lower rank modulo I, then (at least heuristically2) the determinant

of
[
X00 X01

X10 X11

]
is divisible by a higher power of g than that of

[
X00 0
0 X11

]
.

Computing MN−1 over K, the common factor η/g drops out, and we are
left with a fractional matrix such that

det(MN−1) = det
(

X00 X01

X10 X11

)
/det

(
X00 0
0 X11

)
=

a multiple of g

some denominator
,

where the denominator is not divisible by g. Multiplying by the denominator we
thus get a multiple of g, as needed. Repeating this process several times with
different distinguished indexes j1, j2, we can take the GCD and whp get a basis
for some power It of the ideal I.

Finally, when I is a prime ideal then it is easy to find I from It: The norm
of It is norm(I)r, and p = norm(I) is a prime integer, and we can find p from pt

(by exhaustive search over t). The Kummer-Dedekind theorem let us compute
all the ideals of norm p in K, and one of these ideals is I.

2 Having rank(A) > rank(B) (mod g) does not always mean that det(B) is divisible
by a higher power of g than det(A), since A could have one eigenvalue which is

divisible by a high power of g, e.g., consider A =

[
g5 0
0 1

]
and B =

[
g 0
0 g

]
. For our

“random matrices”, however, this is unlikely, as confirmed by our experiments.
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3.2 Step II: Recovering Some Representatives of the Bundling
Scalars

For this step we need the branching program to be 3-partitioned. Recall that
Eq. (6) holds over R if the input u = x(i)y(b)z(j) is a zero of the function. Let i,
j ranging over 2ρ inputs, and for b ∈ {0, 1}, we get the matrices:

Wb := XYbZ

:=
η

g

⎡

⎣
. . .

Sx(i) + gEx(i) ,−(S′
x(i) + gE′

x(i))
. . .

⎤

⎦

+ ·
[
Sy(b) + gEy(b) , 0

0, S′
y(b) + gE′

y(b)

]
·
[ · · · , Sz(j) + gEz(j) , · · ·

· · · , S′
z(j) + gE′

z(j) , · · ·
]

(12)

where X, Y1, Y0, Z ∈ R2ρ×2ρ are full-rank w.h.p. due to the contribution of E
terms from different paths.

We then compute the characteristic polynomial χ of W1W−1
0 ∈ K2ρ×2ρ,

which is equal to the characteristic polynomial of Y1Y−1
0 . Considering Y1Y−1

0

modulo I we have:

Y1Y−1
0 =

[
Sy(1) + gEy(1) , 0

0, S′
y(1) + gE′

y(1)

] [
Sy(0) + gEy(0) , 0

0, S′
y(0) + gE′

y(0)

]−1

=
[
Sy(1) , 0

0, S′
y(1)

] [
Sy(0) , 0

0, S′
y(0)

]−1

(mod I) (13)

Expanding the “functional term” of Y1Y−1
0 (mod I), i.e. Sy(1)S−1

y(0) , we have:

Sy(1)S−1
y(0) =αy(1)K−1

x

⎡

⎣
Uy(1) , 0, 0

0, Vy(1) , 0
0, 0, By(1)

⎤

⎦Kz

×
⎛

⎝αy(0)K−1
x

⎡

⎣
Uy(0) , 0, 0

0, Vy(0) , 0
0, 0, By(0)

⎤

⎦Kz

⎞

⎠
−1

=
αy(1)

αy(0)
· K−1

x

⎡

⎢⎣
Uy(1)U−1

y(0) , 0, 0
0, Vy(1)V−1

y(0) , 0,

0, 0, By(1)B−1
y(0)

⎤

⎥⎦Kx

(14)

By Lemma 1, By(1)B−1
y(0) = Iw×w, so αy(1)/αy(0) ∈ K is an eigenvalue of Sy(1)S−1

y(0)

with multiplicity at least the dimensions of the B’s (i.e., at least w).3 Similarly
α′

y(1)/α′
y(0) is an eigenvalue of S′

y(1)S′−1
y(0) of multiplicity at least w, and by

Lemma 2 we have α′
y(1)/α′

y(0) = αy(1)/αy(0) . Hence αy(1)α−1
y(0) is the eigenvalue

3 We remark that this step of finding (the multiplicity of) an eigenvalue does not seem
to fit in the “Weak Multilinear Map” model of Garg et al. [24].
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of Y1Y−1
0 (mod I) of multiplicity at least 2w. Given a basis of I, we can solve

the characteristic polynomial χW1W
−1
0

(mod I) and obtain eigenvalues in K.
The eigenvalue of multiplicity 2w is αy(1)α−1

y(0) .

3.3 Step III: Annihilation Attack

The annihilation attacks described by Miles, Sahai and Zhandry [35] do not
extend to break GGH13-based branching program obfuscators with the padded
random diagonal entries. We show that with the knowledge of the ratios of scalars
(even if their representations are big), this attack can be extended to handle the
random diagonal entries. We begin with a brief overview of the attacks from [35].

Given many level-0 encodings {ci = si + ei · g}i, any degree-d expression in
them can be written as

c = r0 + r1 · g1 + r2 · g2 + . . . + rd · gd (mod q).

If that expression is encoded at level d, then multiplying it by the zero-test
parameter yields x = pzt · c/zd = h(r0g−1 + r1 + r2g + . . . rdg

d−1) (mod q)
(which is small if r0 = 0 and likely large when r0 �= 0).

An annihilation attack consists of collecting and zero-testing many encod-
ings with r0 = 0, getting the corresponding x(1), x(2), . . ., then applying some
carefully-selected polynomial to these x(i)’es and examining the result. Specifi-
cally, Miles et al. observed that it is possible to check whether or not the terms
that depends only on the r1 values vanish in the resulting polynomial. They also
observed that these r1 values can be expressed as very structured expressions in
the encoded secret and the error terms,

r1 = e1s2...sd + s1e2s3...sd + ... + s1s2...ed.

Using these observation, Miles et al. described in [35] a particular polynomial in
the x(i)’s that can be used to distinguish the obfuscation of equivalent branching
programs (under some contemporary obfuscators).

Introducing Our Running Example. To help describe our attack, we show below
how it can be used to distinguish between GGHRSW obfuscation of two specific
branching programs that compute the constant zero function. For this attack we
need the branching programs to be 3-partitioned with intervals X||Y||Z = [h],
and we need to have two distinguished input bit positions j1, j2 that only control
steps in the Y interval but not X or Z. In addition, we require that bit j1 controls
at least two steps (denoted u,w) in the Y interval, and that bit j2 controls (at
least) one step in between u and w (denoted v). That is, we need u, v, w ∈ Y
with u < v < w, such that ι(u) = ι(w) = j1, ι(v) = j2, and jj does not control
any steps before u or after w. As before, we shorten our notations somewhat and
denote the relevant products of the bundling constants by

β0 :=
∏

ι(i)=j1

αi,0, β1 :=
∏

ι(i)=j1

αi,1, β′
0 :=

∏

ι(i)=j2

αi,0, β′
1 :=

∏

ι(i)=j2

αi,1.
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The two branching programs in our running example will have the identity
matrix for both 0 and 1 in all the steps except for the two steps u,w controlled
by y1, and the zero matrices will be the identity also for these two steps. For the
1 matrices in these two steps, in one program they too will be the identity, and in
the other program those two matrices are a permutation matrix and its inverse
(denoted P,P−1). The two programs B and B′ are illustrated in Example 1.

Example 1. Two programs that compute the constant-zero function:

B = 0 : I . . . I I I I I . . . I
1 : I . . . I I I I I . . . I

B′ = 0 : I . . . I I I I I . . . I
1 : I . . . I P I P−1 I . . . I

Steps : X u v w Z
input bits : ∗ . . . ∗ j1 j2 j1 ∗ . . . ∗

(15)

The Attack. Recall that the GGHRSW obfuscator embeds the branching-
program matrices Bi,b (and the identity for the dummy branch) into higher-
dimension randomized matrices

B̃i,b :=
[
Vi,b

Bi,b

]
and B̃′

i,b :=
[
V′

i,b

I

]
,

where Vi,b,V′
i,b are random diagonal matrices. The B̃’s are multiplied by the

bundling scalars and Kilian randomization matrices, and then encoded to get

Ci,b = αb
iK

−1
i−1B̃i,bKi + g · Ei,b = αb

iK
−1
i−1(B̃i,b + g · Fi,b)Ki (mod q) (16)

where K−1
i−1 is the inverse of Ki−1 modulo 〈g〉, and Fi,b is the matrix satisfying

αb
iK

−1
i−1FKi = E (mod q). (We ignore the denominator z in these notations,

since it gets canceled when we apply zero-test.)
From Step II above we can obtain (some representatives of) the ratios β1/β0

and β′
1/β′

0. Namely, we can compute four scalars ν0, ν1, γ00, γ11 ∈ R such that

ν1
ν0

=
β′
1

β′
0

(mod I), and
γ11
γ00

=
β1β

′
1

β0β′
0

(mod I). (17)

(Note that we chose notations that resemble their meaning: The scalars ν0, ν1
relate to the step v in the program, and γ00, γ11 relate to the product of all
relevant steps in the y interval.) Consider some values x(i) ∈ {0, 1}|Jx| for the bits
that control steps in the X interval, τ, σ for the two distinguished bits that control
steps in the Y interval, and z(j) ∈ {0, 1}|Jz| for the bits that control steps in the
Z interval (all other bits are fixed). The resulting input is u

(i,j)
στ := x(i)στz(j),

and it is a zero of the function. Also let Eval(u(i,j)
στ ) be the scalar obtained by
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evaluating the obfuscated branching program on this input:

Eval(u) :=
η

g

⎛

⎝J(
∏

k∈[h]

Ck,uι(k))L − J′(
∏

k∈[h]

C′
k,uι(k))L

′

⎞

⎠

=
η

g

⎛

⎝
∏

k∈[h]

αk,uι(k)JL −
∏

k∈[h]

α′
k,uι(k)J

′L′ + g · r1(u) + g2 · r2(u) + . . .

⎞

⎠

(18)
where if u is a zero of the function then by construction we have

∏

k∈[h]

αk,uι(k)JL −
∏

k∈[h]

α′
k,uι(k)J

′L′ = 0.

In our attack, we choose many different x(i)’s and z(j)’s and for each i, j we
compute

ai,j := Eval(x(i)11z(j)) · γ00 · ν1ν0 − Eval(x(i)10z(j)) · γ00 · ν1ν1

− Eval(x(i)01z(j)) · γ11 · ν0ν0 + Eval(x(i)00z(j)) · γ11 · ν0ν1,
(19)

where all the operations are carried out in the base ring R. Using sufficiently
many x(i)’s and z(j)’s we get a matrix A = [ai,j ]i,j , and we check if this matrix
has full rank modulo I. We guess that the branching program is B′ if A has full
rank, and otherwise we guess that it is B.

3.4 Analysis

The Matrix H. We begin by considering the interval Y of the functional branch
only. If Y consisted of only the steps u, v, w, then for any two bits σ, τ ∈ {0, 1},
the matrix that we get in the functional branch when evaluating on input with
uj1 = σ and uj2 = τ (namely Cστ :=

∏
i∈Y Ci,uι(i)) has the form

Cστ =βσβ′
τ · K−1

u−1 ×
(

:=B̃στ
Y

︷ ︸︸ ︷
B̃u,σB̃v,τ B̃w,σ +g · (B̃u,σB̃v,τ (

:=F̃w,σ
︷ ︸︸ ︷
Fw,σ + E′

vB̃w,σ)

+ B̃u,σ(

:=F̃v,τ
︷ ︸︸ ︷
Fv,τ + E′

uB̃v,τ )B̃w,σ +

:=F̃u,σ
︷︸︸︷
Fu,σ B̃v,τ B̃w,σ

)
+ g2 · Eτ,σ

)
× Kw

=βσβ′
τ · K−1

u−1 × (B̃στ
Y + g · F̃στ

Y + g2 · Eτσ
Y
)× Kw

(20)

with equality modulo q, where K,K−1’es are the Kilian randomization matrices,
and Eτσ

Y is some error matrix. (In the last line we have F̃στ
Y denoting the coeffi-

cient of g in the Y interval.) If there are more steps in the interval Y then we get
the same form, except the matrices B̃, F̃ are not single-step matrices but rather
a product of a few steps, and we have an extra scalar factor α′ (independent of
the bits σ, τ) that comes from the bundling factors in the fixed steps in Y.
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The coefficient of g in Eq. (20) is

F̃στ
Y := B̃u,σB̃v,τ F̃w,σ + B̃u,σF̃v,τ B̃w,σ + F̃u,σB̃v,τ B̃w,σ.

Let

H := F̃11
Y − F̃10

Y − F̃01
Y + F̃00

Y (21)

=
(
B̃u,1B̃v,1F̃w,1 + B̃u,1F̃v,1B̃w,1 + F̃u,1B̃v,1B̃w,1

)

− (
B̃u,1B̃v,0F̃w,1 + B̃u,1F̃v,0B̃w,1 + F̃u,1B̃v,0B̃w,1

)

− (
B̃u,0B̃v,1F̃w,0 + B̃u,0F̃v,1B̃w,0 + F̃u,0B̃v,1B̃w,0

)

+
(
B̃u,0B̃v,0F̃w,0 + B̃u,0F̃v,0B̃w,0 + F̃u,0B̃v,0B̃w,0

)
.

The crux of the analysis is to show that H has a block of zeros when evalu-
ating the program B (that has the identity matrices everywhere), but whp not
when evaluating the branching program B′ (that has P and P−1).

When evaluating B, all the Bi,b matrices are the w × w identity I, which
are then embedded in the lower-right quadrant of the higher-dimension B̃i,b’s
with the diagonal random Vb

i ’s in the upper-left quadrant. Below we also use
the notation Vστ

ii′ := Vσ
i ×Vτ

i′ for the product of two of these diagonal matrices.
We analyze separately the terms B̃B̃F̃, B̃F̃B̃, and F̃B̃B̃, in order to establish
that in this case the lower-right quadrant of H (that correspond to these identity

matrices) is 0, i.e. H ∈
[∗ ∗

∗ 0w×w

]
.

(a) F̃B̃B̃:

F̃1
uB̃

1
vB̃

1
w − F̃1

uB̃
0
vB̃

1
w − F̃0

uB̃
1
vB̃

0
w + F̃0

uB̃
0
vB̃

0
w

=F̃1
u ×

([
V11

vw 0
0 I

]
−

[
V01

vw 0
0 I

])
− F̃0

u ×
([

V10
vw 0
0 I

]
−

[
V00

vw 0
0 I

])

=F̃1
u ×

[
V11

vw − V01
vw 0

0 0

]
− F̃0

u ×
[
V10

vw − V00
vw 0

0 0

]

∈ [∗(2m+w)×2m, 0(2m+w)×w
]

(22)

(b) B̃B̃F̃:

B̃1
uB̃

1
vF̃

1
w − B̃1

uB̃
0
vF̃

1
w − B̃0

uB̃
1
vF̃

0
w + B̃0

uB̃
0
vF̃

0
w

=
[
V11

uv − V10
uv 0

0 0

]
× F̃1

w −
[
V01

uv − V00
uv 0

0 0

]
× F̃0

w ∈
[∗2m×(2m+w)

0w×(2m+w)

] (23)

(c) The most interesting term is B̃F̃B̃:

B̃1
uF̃

1
vB̃

1
w − B̃1

uF̃
0
vB̃

1
w − B̃0

uF̃
1
vB̃

0
w + B̃0

uF̃
0
vB̃

0
w

=

[ ∗ ∗
∗ I F̃1

v(LR) I

]
−
[ ∗ ∗

∗ I F̃0
v(LR) I

]
−
[ ∗ ∗

∗ I F̃1
v(LR) I

]
+

[ ∗ ∗
∗ I F̃0

v(LR) I

]

∈
[ ∗2m×2m, ∗2m×w

∗w×2m, 0w×w

]
(24)
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where the subscript F̃(LR) denotes the lower-right quadrant (of dimension
w × w) in the corresponding matrix.

Adding Eqs. (22), (24) and (23), we get H ∈
[∗ ∗

∗ 0w×w

]
, as needed.

When evaluating B′, the form of the terms B̃F̃B̃ changes: Instead of Eq. (24),
in the lower-right quadrant we now get H(LR) = F̃1

v(LR) − F̃0
v(LR) −P(F̃1

v(LR) −
F̃0

v(LR))P
−1, which is unlikely to be the zero matrix.

The same analysis can be applied to the dummy branch, where we can define
the matrix H′ in the same way. In the dummy branch, however, the lower-right
quadrant of H′ is always zero, in both B and B′ (since the dummy branch always
consists of identity matrices, regardless of what the program is).

The Matrix A. We now proceed to incorporate the X ,Z intervals (including
the bookends) and analyze the matrix A = [ai,j ]i,j . For any fixed i, j, let us
denote the product of the X interval matrices in the two branches (including the

bookend) by α
(i)
x · J(B̃(i)

X + g · F̃(i)
X ) and α′(i)

x · J′(B̃′(i)X + g · F̃′(i)X ), respectively.
Similarly for the Z interval we denote the products in the two branches by
α
(j)
z (B̃(j)

Z + g · F̃(j)
Z )L and α′(j)

z (B̃′(j)Z + g · F̃′(j)Z )L′, respectively.
By construction—for the case where the Y interval includes just the steps

u, v, w—we have α
(i)
x α

(j)
z = α′(i)

x α′(j)
z , and we denote this product by α(i,j). (In

the more general case we have the same equality, except it includes also the
constants αy, α′

y due to the fixed steps in the Y interval.) With these notations,
we have

Eval
(
x(i)στz(j)

)

= α(i,j)βσβ′
τ · η

g

(
J
(
B̃(i)

X + g · F̃(i)
X

)(
B̃στ

Y + g · F̃στ
Y

)(
B̃(j)

Z + g · F̃(j)
Z

)
L

− J′(B̃′(i)X + g · F̃′(i)X
)(

B̃′στ

Y + g · F̃′στ

Y
)(

B̃′(j)Z + g · F̃′(j)Z
)
L′

)
(25)

= α(i,j)βσβ′
τ · η

(
J
(
B̃(i)

X B̃στ
Y F̃(j)

Z + B̃(i)
X F̃στ

Y B̃(j)
Z + F̃(i)

X B̃στ
Y B̃(j)

Z
)
L

− J′
(
B̃′(i)X B̃′στ

Y F̃′(j)Z + B̃′(i)X F̃′στ

Y B̃′(j)Z + F̃′(i)X B̃′στ

Y B̃′(j)Z
)
L′

)
(mod I)

where the last equality follows since x(i)στz(j) is a zero of the function, and
hence the “free term” without any factor of g is equal to zero. Using Eq. (26)
we can re-write ai,j as

ai,j = α(i,j)β1β
′
1η

( · · · )γ00ν1ν0 − α(i,j)β1β
′
0η

( · · · )γ00ν1ν1
− α(i,j)β0β

′
1η

( · · · )γ11ν0ν0 + α(i,j)β0β
′
0η

( · · · )γ11ν0ν1 (mod I)

where the (· · · )’s refer to the parenthesized expression from Eq. (26) relative to
the appropriate bits σ, τ . This is where we use the ratios that we recovered in
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Step II, by definition we have that

β1β
′
1 · γ00ν1ν0 = β1β

′
0 · γ00ν1ν1 = β0β

′
1 · γ11ν0ν0 = β0β

′
0 · γ11ν0ν1 (mod I),

so the four terms above (with i, j fixed) all have the same scalar multiple. More-
over that scalar is bilinear in i, j, so we just fold it into the matrices correspond-
ing to x(i), z(j) and ignore it from now on. Thus we can further re-write the
expression for ai,j as

ai,j =J
(
B̃(i)

X
(
B̃11

Y − B̃10
Y − B̃01

Y + B̃00
Y
)
F̃(j)

Z

+ B̃(i)
X

=H︷ ︸︸ ︷(
F̃11

Y − F̃10
Y − F̃01

Y + F̃00
Y
)
B̃(j)

Z

+ F̃(i)
X

(
B̃11

Y − B̃10
Y − B̃01

Y + B̃00
Y
)
B̃(j)

Z

)
L

− J′
(
B̃′(i)X

(
B̃′11Y − B̃′10Y − B̃′01Y + B̃′00Y

)
F̃′(j)Z

+ B̃′(i)X

=H′
︷ ︸︸ ︷(
F̃′11Y − F̃′10Y − F̃′01Y + F̃′00Y

)
B̃′(j)Z

+ F̃′(i)X
(
B̃′11Y − B̃′10Y − B̃′01Y + B̃′00Y

)
B̃′(j)Z

)
L′ (mod I)

(26)

Next, we denote:

B̃Δ
Y := B̃11

Y − B̃10
Y − B̃01

Y + B̃00
Y , B̃′ΔY := B̃′11Y − B̃′10Y − B̃′01Y + B̃′00Y

xi := JB̃(i)
X , zj := B̃(j)

Z L, x′
i := J′B̃′(i)X , z′

j := B̃′(j)Z L′,

ei := JF̃(i)
X , fj := F̃(j)

Z L, e′
i := J′F̃′(i)X , f ′

j := F̃′(j)Z L′

and so we can write

ai,j = xiB̃
Δ
Y fj + xiHzj + eiB̃

Δ
Y zj︸ ︷︷ ︸

:=di,j

−x′
iB̃′ΔY f ′

j + x′
iH

′z′
j + e′

iB̃′ΔY z′
j︸ ︷︷ ︸

:=d′
i,j

(mod I). (27)

Denoting D = [di,j ]i,j and D′ = [d′
i,j ]i,j , we have A = D − D′, and so the

rank of A is at most rank(D) + rank(D′). Recalling the structure of the various
components again, we note that they contain many zeros. In particular for the
program B we have xi,x′

i ∈ (0m ∗m ∗w), zj , z′
j ∈ (∗m 0m ∗w)t, and also

B̃Δ
Y , B̃′ΔY ∈

⎛

⎝
∗m×m, 0m×m, 0m×w

0m×m, ∗m×m, 0m×w

0w×m, 0w×m, 0w×w

⎞

⎠ , H,H′ ∈
⎛

⎝
∗m×m, ∗m×m, ∗m×w

∗m×m, ∗m×m, ∗m×w

∗w×m, ∗w×m, 0w×w

⎞

⎠ ,

and for B′ we have almost the same thing except that H can be arbitrary. Our
goal is to detect this difference in the form of H given sufficiently many ai,j ’s. Let
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us analyze first only the term from the functional branch, D = [di,j ]i,j , where
we pick ζ ≥ 2m + 1 different i’s and j’s.

D = XB̃Δ
Y F + XHZ + EB̃Δ

Y Z

=
[
0 X2 X3

]
⎡

⎣
B̃1,1 0 0

0 B̃2,2 0
0 0 0

⎤

⎦

⎡

⎣
F1

F2

F3

⎤

⎦+
[
0 X2 X3

]
⎡

⎣
H1,1 H1,2 H1,3

H2,1 H2,2 H2,3

H3,1 H3,2 0

⎤

⎦

⎡

⎣
Z1

0
Z3

⎤

⎦

+
[
E1 E2 E3

]
⎡

⎣
B̃1,1 0 0

0 B̃2,2 0
0 0 0

⎤

⎦

⎡

⎣
Z1

0
Z3

⎤

⎦

(28)

where {B̃k,�,Hk,�}k,�∈[3] are blocks of B̃Δ
Y , H with dimensions [m|m|w] ×

[m|m|w]. {Xk,Ek}k∈[3] are blocks of X, E with dimensions ζ × [m|m|w].
{Z�,F�}�∈[3] are blocks of Z, F with dimensions [m|m|w] × ζ.

Observe that many of the blocks in Eq. (28) do not contribute to the result,
since they are only multiplied by zeros in the adjacent matrices. For example,
E3 in the last term above does not contribute to the evaluation since the entries
in the 3rd blocked rows of B̃Δ

Y are all zeros. We can therefore treat these blocks
as if they were zeros themselves, so we get

D =
[
0 X2 0

]
⎡

⎣
0 0 0
0 B̃2,2 0
0 0 0

⎤

⎦

⎡

⎣
0
F2

0

⎤

⎦ +
[
0 X2 X3

]
⎡

⎣
0 0 0

H2,1 0 H2,3

H3,1 0 0

⎤

⎦

⎡

⎣
Z1

0
Z3

⎤

⎦

+
[
E1 0 0

]
⎡

⎣
B̃1,1 0 0

0 0 0
0 0 0

⎤

⎦

⎡

⎣
Z1

0
0

⎤

⎦

(29)

From there we get

D = X2B̃2,2F2 +
[
X2H2,1 + X3H3,1 0 X2H2,3

]
⎡

⎣
Z1

0
Z3

⎤

⎦ + E1B̃1,1Z1

= X2B̃2,2F2 + (X2H2,1 + X3H3,1)Z1 + X2H2,3Z3 + E1B̃1,1Z1

= X2(B̃2,2F2 + H2,3Z3) + (X2H2,1 + X3H3,1 + E1B̃1,1)Z1

(30)

The ranks of block matrices X2 and Z1 are upper-bounded by m, which
means D is the sum of two matrices of rank m, hence the maximum rank is 2m.

For B′, the rank of D is 2m + 1 whp. To see the difference in the analysis, in
Eq. (29) the potential H3,3 block is non-zero, so whp D is not decomposable to
the sum of 2 matrices of rank m like for B.

The analysis of D′ for both B and B′ is analogous to the analysis of D in B,
i.e. in both cases the rank of D′ is at most 2m. So we are able to distinguish B
and B′ by obtaining A = [ai,j ]i,j from picking ζ ≥ 4m + 1 different i’s and j’s,
and computing the rank of A.
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3.5 Discussions of Recent Immunizations

Recently Garg et al. [24] (merged from two similar proposals [25,36]) propose
immunization mechanisms against the annihilation attack. The common feature
of the immunizations is to pad random 2m-by-2m matrices instead of entries on
the diagonal (i.e. change the matrices Vi,b and V′

i,b in Eq. (1) from diagonal
to fully random), so as to encode a pseudorandom function in the noises. The
difference of the two proposals lies in the ways to instantiate the paradigm.

We observe that the immunizations do not stop the attack if the branching
program is input-partitioning. The observation does not contradict the proofs of
security in the weakened idealized model from [24], since they require dual-input
branching programs (which are not input-partitioning).

Below we briefly describe the two immunizations. In the immunization pro-
posed by Miles, Sahai and Zhandry [36], the bookend vectors are changed to

J,J′ ∈ [
02m, $w

]
, L,L′ ∈ [

$2m, $w
]T (31)

These changes do not affect the algorithms and analyses in Steps I and II. In
Step III, the analysis of the matrix H in Eq. (21) remains the same. The analysis
of the rank of D in Eq. (28) changes slightly. For program B in Example 1,

D = XB̃
Δ
Y F + XHZ + EB̃

Δ
Y Z

=
[
0 X2

] [ B̃1,1 0

0 0

] [
F1

F2

]
+
[
0 X2

] [H1,1 H1,2

H2,1 0

] [
Z1

Z2

]
+
[
E1 E2

] [ B̃1,1 0

0 0

] [
Z1

Z2

]

= 0 + X2H2,1Z1 + E1B̃1,1Z1 = (X2H2,1 + E1B̃1,1)Z1

(32)

where {B̃k,�,Hk,�}k,�∈[2] are blocks of B̃Δ
Y , H with dimensions [2m|w] × [2m|w].

{Xk,Ek}k∈[2] are blocks of X, E with dimensions ζ × [2m|w]. {Z�,F�}�∈[2] are
blocks of Z, F with dimensions [2m|w]×ζ. The rank of D is thus upper-bounded
by 2m. For program B′, the potential non-zero H2,2 contributes to an additional
term X2H2,2Z2. So the same algorithm from Sect. 3.3 distinguishes B and B′.

More changes are made in the immunization proposed by Garg, Mukherjee
and Srinivasan [25]. The plaintext space is set to be R/J where J =

〈
g2

〉
. The

encoding of s ∈ R/J is a short representative of the coset s + J. The zero-test
parameter remains the same: pzt = ηzκ/g. The bookend vectors are changed to

J,J′ :=
[
g · J1,J2

]
,
[
g · J′

1,J′
2

] ∈ [
g · $2m, $w

]

L,L′ :=
[
L1,L2

]T
,
[
L′

1,L′
2

]T ∈ [
$2m, $w

]T
.

(33)

where J2L2 = J′
2L′

2. An honest evaluation analogous to Eq. (18) can be
expressed as

Eval(u) :=
η

g

⎛

⎝J(
∏

k∈[h]

Ck,uι(k))L − J′(
∏

k∈[h]

C′
k,uι(k))L

′

⎞

⎠ (34)

=
η

g

⎛

⎝
∏

k∈[h]

αk,uι(k)J2L2 −
∏

k∈[h]

α′
k,uι(k)J

′
2L′

2 + g · r1(u) + g2 · r2(u) + . . .

⎞

⎠
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where if u is a zero of the function then
∏

k∈[h]

αk,uι(k)J2L2 −
∏

k∈[h]

α′
k,uι(k)J

′
2L′

2 = 0.

The immunization changes the coefficient of g1 into

r1 =

⎛

⎝J1

∏

k∈[h]

Vk,uι(k)L1 − J′
1

∏

k∈[h]

V′
k,uι(k)L

′
1

⎞

⎠,

and pushes all the information about the secrets up to the coefficients of higher
order terms. This is the rationale of Garg, Mukherjee and Srinivasan’s [25] immu-
nization against annihilation attacks.

Still, for branching programs with input-partitioning, these immunizations
do not affect the algorithms and the analyses in Steps I and II, except that we
obtain a basis of

〈
g2

〉
and (possibly big) representatives of scalars α in the coset

α +
〈
g2

〉
. In Step III, we analyze H and A modulo J instead of modulo I. The

feature of H remains the same. To A, the expression of each ai,j from Eq. (27)
shall be modified to (the following expression still contains coefficients of g2 that
will be removed later)

ai,j =
η

g

(
xiB̃Δ

Y zj + g2 ·
(
xiB̃Δ

Y fj + xiHzj + eiB̃Δ
Y zj

))

︸ ︷︷ ︸
:=di,j

(35)

− η

g

(
x′

iB̃′ΔY z′
j + g2

(
x′

iB̃′ΔY f ′
j + x′

iH
′z′

j + e′
iB̃′ΔY z′

j

))

︸ ︷︷ ︸
:=d′

i,j

(mod J ).

Examining the functional component D for B, with the same blocked dimen-
sions as Eq. (32):

D =
η

g

(
XB̃Δ

Y Z + g2 ·
(
XB̃Δ

Y F + XHZ + EB̃Δ
Y Z

))

=
η

g

[
gX1 X2

] [ B̃1,1 0
0 0

] [
Z1

Z2

]
+ ηg

([
gX1 X2

] [ B̃1,1 0
0 0

] [
F1

F2

]

+
[
gX1 X2

] [H1,1 H1,2

H2,1 0

] [
Z1

Z2

]
+

[
E1 E2

] [ B̃1,1 0
0 0

] [
Z1

Z2

])

= ηX1B̃1,1Z1 + ηg(X2H2,1 + E1B̃1,1)Z1 + ηg2(. . .)

= η
(
X1B̃1,1 + g(X2H2,1 + E1B̃1,1)

)
Z1 (mod J ).

(36)

The rest of the analysis is analogous. The rank of A modulo J distinguishes B
and B′.
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4 Cryptanalysis of the GGH15-Based Candidate

4.1 The GGH15 Encoding Scheme

We use here notations similar to [29] for “GGH15 with safeguards”. The encoding
scheme from [26] is parametrized by a directed graph G = (V,E) (with a single
sink) and some integer parameters k, n, r, q (with r � k). Its plaintext space
are matrices S ∈ Rk×k (whose entries must be much smaller than q), and the
encodings themselves are matrices D ∈ (Rn/qRn)r×r, and both plaintext and
encoding matrices are associated with edges (or paths) in the graph.

For each vertex u in the graph we choose a random matrix Au ∈ Rk×r
n

together with some trapdoor information τu [1,28,33], and another random
invertible matrix Pu ∈ (Rn/qRn)r×r. For the source s and sink t we choose
random small “bookend vectors” Js and Lt and publish the two transformed
vectors J̃s := Js ·As ·P−1

s (mod q) and L̃t := Pt ·Lt, to be used for zero-testing.
To encode a matrix S ∈ Rk×k w.r.t. a path (u � v), sample a low-norm error

matrix E ∈ Rk×r
n , use the trapdoor τu to sample a small solution D to AuD =

SAv+E (mod q), and finally output the encoding matrix C := PuDP−1
v mod q.

This scheme supports adding encoded matrices relative to the same path,
and multiplying matrices relative to consecutive paths (with the result being
defined relative to the concatenation of the two paths). The encoding invariant
is that an encoding C of plaintext matrix S relative to the path u � v satisfies
Au · (P−1

u CPv) = SAv + E (mod q) where S,E and D := P−1
u CPv mod q all

have norm much smaller than q. The encoding scheme also supports a zero-test
of encoding C relative to a path s � t, by checking that J̃sCL̃t is small, which
holds when S = 0 since J̃sCL̃t = JsAsP−1

s ·C ·PtLt = Js(SAs +E)Lt = JsELt

(mod q).
Consider two consecutive paths s � u and u � t and two encoding matrices

C1,C2, encoding S1,S2 relative to these two paths, respectively. Then C1C2 is
an encoding of S1,S2 relative to s � t, which means that As · (P−1

s C1C2Pt) =
S1S2At +E′ (mod q), but we can say more about the structure of the resulting
noise E′. Specifically, it is not hard to verify that (after zero-testing) we have

J̃sC1C2L̃t = Js(S1S2At + S1E2 + E1D2︸ ︷︷ ︸
E′

)Lt

= Js · [S1|E1]
[
S2At + E2

D2

]
· Lt (mod q), (37)

where Js,Lt are the bookend vectors, E1,E2 are the error matrices correspond-
ing to the encoding C1,C2 respectively, and D2 = P−1

u C2Pt (all of which have
low norm). Similarly, if we have three intervals s � u, u � v and u � t and three
encoding matrices C1,C2,C3 for S1,S2,S3 relative to these paths, respectively,
then

J̃sC1C2C3L̃t = Js · [S1,E1]
[
S2, E2

0, D2

] [
S3At + E3

D3

]
· Lt (mod q). (38)
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The GGHRSW Obfuscator Over GGH15. When using the GGH15 encod-
ing scheme in the context of the GGHRSW obfuscator, we use a simple graph
with two parallel chains leading to a sink. One minor technical issue to reconcile
is that the plaintext space of GGH15 consists of only k × k matrices, while the
GGHRSW construction needs to also encode the bookend vectors J,L,J′,L′.
This is best handled by combining these bookends with the GGH15 bookends
Js,Lt from above. Namely we choose the bookends as matrices rather than vec-
tors (but still keep the same structure for the rows/columns of these matrices),
and then these matrices will be multiplied by the GGH15 bookends Js,Lt during
zero-test, resulting in vectors J,L,J′,L′ with the same structure as in Eq. (2).

Another technical issue is that the GGH15 plaintext matrices must be small,
whereas the GGHRSW construction requires that we multiply the plaintext
matrices by the Kilian randomization matrices K,K−1. Gentry et al. describe
in [26, Sect. 5.2.1] a method for choosing “random matrices” where both K,K−1

are small, but in fact a closer look at the error terms that we get reveals that
the construction will still work even if only K−1 was small but K was not (as
long as as we set K0 = I). We stress that the structure of K plays no role in our
attacks, so in the rest of the manuscript we ignore this issue.

4.2 Overview of Our Attacks on the GGH15-Based Obfuscator

The main ingredient in our attack on the GGH15-based branching-program
obfuscator is a method to recover some information about the scalars αi,b (and
α′

i,b) that are used in this construction. Specifically, we use a zeroing technique
adapted from the work of Coron, Lee, Lepoint and Tibouchi [17], to recover the
ratios of (the products of) these αi,b’s for some equivalent subbranches, as we
describe in Sect. 4.3 below. (Setting up the CLLT-style system of equations relies
on the input-partitioning feature of underlying branching program.)

This step is completely algebraic, and hence the ratios that we recover do
not give us a small representation of these scalars. Namely, while we learn the
ratio β/γ for some small β, γ (each of them is a product of some α’s), we do not
recover the small β, γ themselves.

One way to mount a full attack to the obfuscator is to directly use factoring
and principle-ideal-problem solvers to recover the αi,b’s from the known ratio
β/γ. Once the bundling scalars αi,b are known, we can mount an input-mixing
attack to break the obfuscation. This yields classical sub-exponential time or
quantum polynomial time attacks.

4.3 Step I: Recovering Ratios of the Bundling Scalars

Step I.1: Accumulating CLLT-Style Equations. Let X||Z = [h] be a 2-partition
of the branching program steps. Below we use honest evaluation of the branching
program on many inputs of the form u(i,j) = x(i)z(j), where all the bits that only
affect steps in X are in the x(i) part, all the bits that only affect steps in Z are in
the z(j) part, and all the other bits are fixed. This notation does not mean that
all the bits of x(i) must come before all the bits of z(j) in u(i,j), but it does mean
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that u(i,j) and u(i,j′) can only differ in bits that affect steps in Z, and similarly
u(i,j) and u(i′,j) can only differ in bits that affect steps in X .

For such an input u = xz, we denote by Sx the plaintext product matrix of
functional branch in the the X interval and by Sz the plaintext product matrix
of the functional branch in the Z interval (including the bookends), and similarly
for encodings Cx,Cz and for the dummy branch. That is, we denote

Sx := J · (
∏

i∈X Si,uι(i)), Sz := (
∏

i∈Z
Si,uι(i)) · L,

S′
x := J′ · (

∏
i∈X S′

i,uι(i)), S′
z := (

∏

i∈Z
S′

i,uι(i)) · L′,

Cx := J̃ · (
∏

i∈X Ci,uι(i)), Cz := (
∏

i∈Z
Ci,uι(i)) · L̃,

C′
x := J̃′ · (

∏
i∈X C′

i,uι(i)), C′
z := (

∏

i∈Z
C′

i,uι(i)) · L̃′

with the encoding arithmetic modulo q. We also denote by Ex,Ez,E′
x,E′

z the
error matrices in Cx,Cz,C′

x,C′
z and

Dx := CxPv, D′
x := C′

xPv′ , Dz := P−1
v Cz and D′

z := P−1
v′ C′

z

(where v, v′ are the vertices between X ,Z on the functional and dummy
branches).

Following Eq. (37) above, the honest evaluation of branching program on
input u = xz yields the element

w := CxCz − C′
xC′

z = [Sx,Ex,−S′
x,−E′

x]

⎡

⎢⎢⎣

SzAt + Ez

Dz

S′
zAt + E′

z

D′
z

⎤

⎥⎥⎦ (mod q). (39)

If u = xz is a zero of the function, then by construction we have SxSz = S′
xS

′
z =

βJL for some scalar β, and in this case Eq. (39) holds over the base ring Rn,
not just modulo q.

We begin the attack by collecting many instances of Eq. (39) for many x(i)’s
and z(j)’s for which u(i,j) = x(i)z(j) is a zero, and put the corresponding w
elements in a matrix. This yields the matrix equation:

W := XZ :=

⎡

⎢⎢⎢⎢⎣

Sx(1) , Ex(1) , −S′
x(1) , −E′

x(1)

. . . , . . . , . . . , . . .
Sx(i) , Ex(i) , −S′

x(i) , −E′
x(i)

. . . , . . . , . . . , . . .
Sx(k) , Ex(k) , −S′

x(k) , −E′
x(k)

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

. . . , Sz(j)At + Ez(j) , . . .

. . . , Dz(j) , . . .

. . . , S′
z(j)At + E′

z(j) , . . .
. . . , D′

z(j) , . . .

⎤

⎥⎥⎦ .

(40)
Since all the inputs are zeros of the function, then Eq. (40) holds not only
modulo q but also over the base ring Rn. As discussed in [29, Sect. 5.2], the
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matrix Z is inherently non-full-rank when considered modulo q, but will have
full rank over Rn with high probability (since the Ez’s are random and the Dz’s
are chosen at random in some cosets after the Ez’s are fixed). Taking sufficiently
many z(j)’s, we can therefore ensure that the left kernel of Z is trivial, i.e.,
consisting of only the all-zero vector.4 On the other hand, by using enough x(i)’s
we can ensure that the left-kernel of W (and therefore of X) is non-trivial. The
thrust of our attack will consist of collecting many vectors in this left-kernel,
and using them to recover information about (ratios of) the αi,b’s.

Step I.2: Computing the Left-Kernel of W. The CLLT-type attack computes
the left-kernel (abbreviated as kernel in the rest of this paper) of W, i.e. vectors
p over Rn s.t. pW = 0. Since Z has full rank, then such vector p must also be
in the kernel of X, so it is orthogonal to all its columns. In our attack we only
use the fact that these vectors p are orthogonal to the S’s parts of X, namely
we denote

Q :=

⎡

⎢⎢⎢⎢⎣

Sx(1) , −S′
x(1)

. . . , . . .
Sx(i) , −S′

x(i)

. . . , . . .
Sx(k) , −S′

x(k)

⎤

⎥⎥⎥⎥⎦
(41)

and use the fact that every vector in the kernel of X must be in particular also in
the kernel of Q. We next recall the structure of Sx(i) ,S′

x(i) from Eq. (3), namely
we have

Sx(i) = αx(i)J × diag(ux(i) , vx(i) ,Bx(i)) × Kz;
S′

x(i) = α′
x(i)J′ × diag(u′

x(i) , v
′
x(i) , I) × K′

z

(42)

where Bx(i) is the product of the branching-program matrices Bi,b over the
interval X , ux(i) , vx(i) , u′

x(i) , v
′
x(i) are the random diagonal entries, αx(i) , α′

x(i) are
the products of the α’s on both the functional and dummy branches, and Kz,K′

z

are the Kilian randomization matrix at the beginning of the Z interval on the
two branches.

Importantly, since all the x(i)z(j)’s are zeros of the function, then by Lemma 1
all the Bx(i) ’s must be equal. We denote that matrix simply by B, namely we
have Sx(i) = αx(i)J × diag(ux(i) , vx(i) ,B) × Kz for all i. Moreover, all the ratios
of αx(i)/α′

x(i) , i ∈ [k] must also be equal due to Lemma 2, and below we denote
that ratio by δ.

We can therefore re-write Eq. (5) as follows:

∀i ∈ [k], [Sx(i) ,−S′
x(i) ] (43)

= αx(i) [J × diag(ux(i) , vx(i) ,B) × Kz,−δJ′ × diag(u′
x(i) , v

′
x(i) , I) × K′

z]

= αx(i) · [ 0, ṽx(i) ,b︸ ︷︷ ︸
J×diag(u

x(i) ,v
x(i) ,B)

, 0, ṽ′
x(i) ,b′

︸ ︷︷ ︸
J′×diag(u′

x(i) ,v′
x(i) ,I)

] × K̃z︸︷︷︸
an invertible matrix

4 With typical parameters it is sufficient to use only four different z(j)’s for that
purpose.
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(recall that by design, the first columns of J and J′ are zero to erase the u and u′

terms on the diagonal). The only x(i)-sensitive terms are αx(i) , ṽx(i) , and ṽ′
x(i) ,

and thus the rank of Q is exactly 3. The Kernel of Q therefore has dimension
k − 3, and it is contained in the ((k − 1)-dimensional) space spanned by the vec-
tors [αx(2) ,−αx(1) , 0, . . . , 0], [αx(3) , 0,−αx(1) , . . . , 0], . . . [αx(k) , 0, 0, . . . ,−αx(1) ]. In
other words, every vector p = [p1, p2, . . . , pk] in this kernel must in particular
satisfy the condition

∑
i piαx(i) = 0.

Of course, the kernel of X (which is the linear space that our attack can
recover) is only a subspace of the kernel of Q, and hence it has an even
lower dimension. However, the difference in dimension between kernel(Q) and
kernel(X) is bounded by the dimensions of the error matrices Ex(i) ,E′

x(i) , which
is independent of the number of x(i)’s. Namely, the number of columns in
Ex(i) ,E′

x(i) together is only 2r, hence the dimension of kernel(X) is at least
dim(kernel(Q)) − 2r = k − 3 − 2r, where k is the number of x(i)’s. If we have
enough zeros of the branching-program, then we can take k to be much much
larger than 2r + 3.

Step I.3: Extracting the Ratios. The kernel of W (or equivalently of X) is a
subspace of dimension at least k − (2r + 3), all of which is orthogonal to the
vector of αx(i) ’s. However, we do not have enough equations to recover the αx(i) ’s
themselves, since there are k of them and we only have k − (2r + 3) equations.
Here we take advantage of the fact that the αx(i) ’s are not really k independent
variables, rather each αx(i) ’s is obtained as a subset product of the αi,b’s that
are used in the construction.

Specifically, let Jx ⊂ [�] be set of input bits that only affect steps of the
branching program in the interval X , and for any just input bit j ∈ Jx let us
denote βj,0 =

∏
ι(i′)=j αi′,0 and βj,1 =

∏
ι(i′)=j αi′,1. Also, recalling that all the

input bits outside Jx are fixed, we denote by β0 the product of the αi′,b scalars
that are used in all the steps that are not controlled by bits in Jx. Then every
αx(i) can be written as a subset product

αx(i) = β0 ·
∏

j,b

βj,b
e(i,j,b)

where the exponents e(i, j, b) are all in {0, 1}. This implies in particular that the
number of αx(i) is at most 22|Jx|.

Consider now what happens if we take all the products of two equations
from the kernel. This will give us a set of at least (k − 2r − 3)2 equations in
the product variables γi1,i2 = αx(i1) · αx(i2) . But the γi1,i2 are perhaps not all
distinct: each of them can be written as a product γi1,i2 = β2

0 ·∏j,b βj,b
e(i1,i2,j,b)

with the exponents in {0, 1, 2}, so the total number of distinct γi1,i2 is at most
32|Jx| (which is smaller than (22|Jx|)2).

More generally, we can take products of upto c of our equations, and this
will give us at least (k −2r −3)c equations, but the number of variables will still
be upper-bounded by (c + 1)2|Jx|. If for some constant c we get (k − 2r − 3)c >
(c + 1)2|Jx|, then we have more equations than variables (which heuristically
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should still be linearly independent5) and we can solve the system and recover
all the products γi1,i2,...,ic

.
For example, in the extreme case where every setting of the input bits in Jx

yields a zero of the function, we can collect as many as k = 2|Jx| equations from
the kernel. If in addition |Jx| > 1+log(2r+3) then k > 2 · (2r+3) and therefore
k − 2r − 3 > k/2 = 2|Jx|−1. In this case taking c = 7 is sufficient to get more
equations than variables, since

(k − 2r − 3)c = (k − 2r − 3)7 > 27(|Jx|−1) > 26|Jx| = 82|Jx| = (c + 1)2|Jx|

as needed. We note that in this extreme case, we can get more equations than
variables already when multiplying pairs of equations (i.e. let c = 2) from the
kernel if we are careful about which pairs to multiply.

Once we have all the γ’s, we can divide them by each other to get ratios
of smaller products of the βj,b’s from above (which are in turn products of the
αi′,b’s from the construction). In particular we can get ratios of individual β’s,
of the form βj,b/βj′,b′ , but we cannot get any better granularity. In particular
we cannot separate the different αi′,b that are multiplied to form the βj,b’s.

4.4 Step II: Attacking the Obfuscator

If we have a quantum computer, or we are willing to run a classical
subexponential-time attack, we can implement a factoring oracle and a principal-
ideal-problem solver, using [9,10,20,30,38]. Together, these solvers make it pos-
sible to recover (some of) the small scalars αi,b, αi′,b′ from the ratios βj,b/βj′,b′ .
Once we have these αi,b’s, we can use them in mixed-input attacks on the obfus-
cator. Namely, in some steps that are controlled by the j’th input bit we take
the 0 matrix, and in some other steps we take the 1 matrix, and this lets us (at
least) check if these two matrices are the same.

In GGH15 (following GGHRSW), the small bundling scalars αi,b and α′
i,b

s.t.
∏

αi,b =
∏

α′
i,b are chosen by first generating a set of random small ζk’s,

let each αi,b be a product of one or two of these ζk’s, so that each of the prod-
uct

∏
αi,b,

∏
α′

i,b correspond to the same subset of ζk’s. A factoring oracle will
recover the ideals generated by all the ζk’s that happen to be prime (which
happens with noticeable probability). Then a PIP solver will find the small ζk’s
themselves.6 As each αi,b is a product of very few of the ζk’s, we would get some
of the αi,b’s by trying all singletons and pairs of the ζk’s.
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applied to factors of the non-prime ζk’s (since those are unlikely to be principal
and/or very small).
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Abstract. We propose an information-theoretically secure encryption
scheme for classical messages with quantum ciphertexts that offers detec-
tion of eavesdropping attacks, and re-usability of the key in case no eaves-
dropping took place: the entire key can be securely re-used for encrypt-
ing new messages as long as no attack is detected. This is known to be
impossible for fully classical schemes, where there is no way to detect
plain eavesdropping attacks.

This particular application of quantum techniques to cryptography
was originally proposed by Bennett, Brassard and Breidbart in 1982,
even before proposing quantum-key-distribution, and a simple candidate
scheme was suggested but no rigorous security analysis was given. The
idea was picked up again in 2005, when Damg̊ard, Pedersen and Salvail
suggested a new scheme for the same task, but now with a rigorous secu-
rity analysis. However, their scheme is much more demanding in terms of
quantum capabilities: it requires the users to have a quantum computer.

In contrast, and like the original scheme by Bennett et al., our new
scheme requires from the honest users merely to prepare and measure
single BB84 qubits. As such, we not only show the first provably-secure
scheme that is within reach of current technology, but we also confirm
Bennett et al.’s original intuition that a scheme in the spirit of their
original construction is indeed secure.

1 Introduction

Background. Classical information-theoretic encryption (like the one-time
pad) and authentication (like Carter-Wegman authentication) have the serious
downside that the key can be re-used only a small number of times, e.g. only once
in case of the one-time pad for encryption or a strongly universal2 hash function
for authentication. This is inherent since by simply observing the communica-
tion, an eavesdropper Eve inevitably learns a substantial amount of information
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on the key. Furthermore, there is no way for the communicating parties, Alice
and Bob, to know whether Eve is present and has observed the communication
or not, so they have to assume the worst.

This situation changes radically when we move to the quantum setting and
let the ciphertext (or authentication tag) be a quantum state: then, by the fun-
damental properties of quantum mechanics, an Eve that observes the communi-
cated state inevitably changes it, and so it is potentially possible for the receiver
Bob to detect this, and, vice versa, to conclude that the key is still secure and
thus can be safely re-used in case everything looks as it is supposed to be.

This idea of key re-usability by means of a quantum ciphertext goes back to
a manuscript titled “Quantum Cryptography II: How to re-use a one-time pad
safely even if P = NP” by Bennett, Brassard and Breidbart written in 1982.
However, their paper was originally not published, and the idea was put aside
after two of the authors discovered what then became known as BB84 quantum-
key-distribution [2].1 Only much later in 2005, this idea was picked up again by
Damg̊ard, Pedersen and Salvail in [5] (and its full version in [6]), where they
proposed a new such encryption scheme and gave a rigorous security proof — in
contrast, Bennett et al.’s original reasoning was very informal and hand-wavy.

The original scheme by Bennett et al. is simple and natural: you one-time-pad
encrypt the message, add some redundancy by encoding the ciphertext using an
error correction (or detection) code, and encode the result bit-wise into what we
nowadays call BB84 qubits. The scheme by Damg̊ard et al. is more involved; in
particular, the actual quantum encoding is not done by means of single qubits,
but by means of states that form a set of mutually unbiased bases in a Hilbert
space of large dimension. This in particular means that their scheme requires a
quantum computer to produce the quantum ciphertexts and to decrypt them.

Our Results. We are interested in the question of whether one can combine
the simplicity of the originally proposed encryption scheme by Bennett et al.
with a rigorous security analysis as offered by Damg̊ard et al. for their scheme;
in particular, whether there is a provably secure scheme that is within reach of
being implementable with current technology — and we answer the question in
the affirmative.

We start with the somewhat simpler problem of finding an authentication
scheme that allows to re-use the key in case no attack is detected, and we show
a very simple solution. In order to authenticate a (classical) message msg, we en-
code a random bit string x ∈ {0, 1}n into BB84 qubits Hθ|x〉, where θ ∈ {0, 1}n

is part of the shared secret key, and we compute a tag t = MAC(k,msg‖x) of the
message concatenated with x, where MAC is a classical information-theoretic
one-time message authentication code, and its key k is the other part of the
shared secret key. The qubits Hθ|x〉 and the classical tag t are then sent along
with msg, and the receiver verifies correctness of the received message in the
obvious way by measuring the qubits to obtain x and checking t.

1 A freshly typeset version of the original manuscript was then published more than
30 years later in [3].
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One-time security of the scheme is obvious, and the intuition for key-recycling
is as follows. Since Eve does not know θ, she has a certain minimal amount
of uncertainty in x, so that, if MAC has suitable extractor-like properties, the
tag t is (almost) random and independent of k and θ, and thus gives away no
information on k and θ. Furthermore, if Eve tries to gain information on k and θ
by measuring some qubits, she disturbs these qubits and is likely to be detected.
A subtle issue is that if Eve measures only very few qubits then she has a good
chance of not being detected, while still learning a little bit on θ by the fact
that she has not been detected. However, as long as her uncertainty in θ is large
enough this should not help her (much), and the more information on θ she tries
to collect this way the more likely it is that she gets caught.

We show that the above intuition is correct. Formally, we prove that as long
as the receiver Bob accepts the authenticated message, the key-pair (k, θ) can
be safely re-used, and if Bob rejects, it is good enough to simply refresh θ. Our
proof is based on techniques introduced in [19] and extensions thereof.

Extending our authentication scheme to an encryption scheme is intuitively
quite easy: we simply extract a one-time-pad key from x, using a strong extractor
(with some additional properties) with a seed that is also part of the shared secret
key. Similarly to above, we can prove that as long as the receiver Bob accepts,
the key can be safely re-used, and if Bob rejects it is good enough to refresh θ.

In our scheme, the description length2 of θ is m+3λ, where m is the length of
the encrypted message msg and λ is the security parameter (so that the scheme
fails with probability at most 2−λ). Thus, with respect to the number of fresh
random bits that are needed for the key refreshing, i.e. for updating the key in
case Bob rejects, our encryption scheme is comparable to the scheme by Damg̊ard
et al.3 and optimal in terms of the dependency on the message length m.

Our schemes can be made noise robust in order to deal with a (slightly)
noisy quantum communication; the generic solution proposed in [5,6] of using
a quantum error correction code is not an option for us as it would require a
quantum computer for en- and decoding. Unfortunately, using straightforward
error correction techniques, like sending along the syndrome of x with respect to
a suitable error correcting code, renders our proofs invalid beyond an easy fix,
though it is unclear whether the scheme actually becomes insecure. However,
we can deal with the issue by means of using error correction “without leaking
partial information”, as introduced by Dodis and Smith [8] and extended to the
quantum setting by Fehr and Schaffner [9]. Doing error correction in a more
standard way, which would offer more freedom in choosing the error correction
code and allow for a larger amount of noise, remains an interesting open problem.

Encryption with Key Recycling vs QKD. A possible objection against the
idea of encryption with key recycling is that one might just as well use QKD

2 In our scheme, θ is not uniformly random in {0, 1}n but is chosen to be a code word,
as such, its description length is smaller than its physical bit length, and given by
the dimension of the code.

3 Their scheme needs m+� fresh random bits for key refreshing, where � is a parameter
in their construction, and their scheme fails with probability approximately 2−�/2.
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to produce a new key, rather than re-using the old one. However, there are
subtle advantages of using encryption with key recycling instead. For instance,
encryption with key recycling is (almost) non-interactive and requires only 1 bit
of authenticated feedback: “accept” or “reject”, that can be provided offline, i.e.,
after the communication of the private message, as long as it is done before the
scheme is re-used. This opens the possibility to provide the feedback by means
of a different channel, like by confirming over the phone. In contrast, for QKD, a
large amount of data needs to be authenticated online and in both directions. If
no physically authenticated channel is available, then the authenticated feedback
can actually be done very easily: Alice appends a random token to the message
she communicates to Bob in encrypted form, and Bob confirms that no attack
is detected by returning the token back to Alice — in plain — and in case he
detected an attack, he sends a reject message instead.4 Furthermore, encryption
with key recycling has the potential to be more efficient than QKD in terms of
communication. Even though this is not the case for our scheme, there is certainly
potential, because no sifting takes place and hence there is no need to throw
out a fraction of the quantum communication. Altogether, on a stable quantum
network for instance, encryption with key-recycling would be the preferred choice
over QKD. Last but not least, given that the re-usability of a one-time-pad-
like encryption key was one of the very first proposed applications of quantum
cryptography — even before QKD — we feel that giving a satisfactory answer
should be of intellectual interest.

Related Work. Besides the work of Brassard et al. and of Damg̊ard et al., who
focus on encrypting classical messages, there is a line of work, like [11,13,15],
that considers key recycling in the context of authentication and/or encryption
of quantum messages. However, common to almost all this work is that only part
of the key can be re-used if no attack is detected, or a new but shorter key can be
extracted. The only exceptions we know of are the two recent works by Garg et al.
[10] and by Portmann [16], which consider and analyze authentication schemes
for quantum messages that do offer re-usability of the entire key in case no
attack is detected. However, these schemes are based on techniques (like unitary
designs) that require the honest users to perform quantum computations also
when restricting to classical messages. Actually, [16] states it as an explicit open
problem to “find a prepare-and-measure scheme to encrypt and authenticate a
classical message in a quantum state, so that all of the key may be recycled if
it is successfully authenticated”. On the other hand, their schemes offer security
against superposition attacks, where the adversary may trick the sender into
authenticating a superposition of classical messages; this is something we do not
consider here — as a matter of fact, it would be somewhat unnatural for us since
such superposition attacks require the sender (wittingly or unwittingly) to hold
a quantum computer, which is exactly what we want to avoid.

4 Of course, when Bob sends back the token to confirm, Eve can easily replace it by
the reject message and so prevent Alice and Bob from finding agreement, but this is
something that Eve can always achieve by “altering the last message”, also in QKD.



Quantum Authentication and Encryption with Key Recycling 315

2 Preliminaries

2.1 Basic Concepts of Quantum Information Theory

We assume basic familiarity; we merely fix notation and terminology here.

Quantum states. The state of a quantum system with state space H is specified
by a state vector |ϕ〉 ∈ H in case of a pure state, or, more generally in case of
a mixed state, by a density matrix ρ acting on H. The set of density matrices
acting on H is denoted D(H). We typically identify different quantum systems
by means of labels A,B etc., and we write ρA for the state of system A and HA

for its state space, etc. The joint state of a bipartite system AB is given by a
density matrix ρAB in D(HA ⊗HB); it is then understood that ρA and ρB are the
respective reduced density matrices ρA = trB(ρAB) and ρB = trA(ρAB).

We also consider states that consist of a classical and a quantum part. For-
mally, ρXE ∈ D(HX ⊗ HE) is called a cq-state (for classical-quantum), if it is of
the form

ρXE =
∑

x∈X
PX(x)|x〉〈x| ⊗ ρx

E,

where PX : X → [0, 1] is a probability distribution, {|x〉}x∈X is a fixed orthonor-
mal basis of HX , and ρx

E ∈ D(HE). Throughout, we will slightly abuse notation
and express this by writing ρXE ∈ D(X ⊗ HE).

In the context of such a cq-state ρXE, an event Λ is specified by means of
a decomposition ρXE = P [Λ] · ρXE|Λ + P [¬Λ] · ρXE|¬Λ with P [Λ], P [¬Λ] ≥ 0
and ρXE|Λ, ρXE|¬Λ ∈ D(X ⊗HE). Associated to such an event Λ is the indicator
random variable 1Λ, i.e., the cq-state ρX1ΛE ∈ D(X ⊗{0, 1}⊗HE), defined in the
obvious way. Note that, for any cq-state ρXE and any x ∈ X , the event X =x is
naturally defined and ρXE|X=x = |x〉〈x| ⊗ ρx

E and ρE|X=x = ρx
E.

If a state ρX is purely classical, meaning that ρX =
∑

x PX(x)|x〉〈x| and
expressed as ρX ∈ D(X ), we may refer to standard probability notation so that
probabilities like P [X =x] are well understood. Finally, we write μX for the fully
mixed state μX = 1

|X |
∑

x |x〉〈x| = 1
|X | IX ∈ D(X ).

General quantum operations. Operations on quantum systems are de-
scribed by CPTP maps. To emphasize that a CPTP map Q : D(HA) → D(HA′)
acts on density matrices in D(HA), we sometimes write QA, and we say that it
“acts on A”. Also, we may write QA→A′ in order to be explicit about the range
too. If Q is a CPTP map acting on A, we often abuse notation and simply write
QA(ρAB) or ρQ(A)B for

(QA⊗idB
)
(ρAB), where idB is the identity map on D(HB).

In line with our notation for cq-states, Q : D(X ⊗HE) → D(X ′ ⊗HE′) is used
to express that Q maps any cq-state ρXE ∈ D(X ⊗ HE) to a cq-state Q(ρX′E)
in D(X ′ ⊗ HE′). We say that a CPTP map Q : D(X ⊗ HE) → D(X ⊗ HE′) is
“controlled by X and acts on E ” if on a cq-state ρXE ∈ D(X ⊗ HE) it acts as

Q(ρXE) =
∑

x

PX(x)|x〉〈x| ⊗ Qx(ρx
E)
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with “conditional” CPTP maps Qx : D(HE) → D(HE′). Note that in this case we
write QXE→E′ rather than QXE→XE′ , as it is understood that Q keeps X alive.
For concreteness, we require that such a Q is of the form Q =

∑
x P|x〉〈x| ⊗ Qx

where P|x〉〈x|(ρ) = |x〉〈x| ρ |x〉〈x| for any ρ ∈ D(HX).5 As such, Q is fully specified
by means of the conditional CPTP maps Qx. Finally, for any function f : X → Y,
we say that Q : D(X ⊗ HE) → D(X ⊗ HE′) is “controlled by f(X)” if it is
controlled by X, but Qx = Qx′

for any x, x′ ∈ X with f(x) = f(x′).

Markov-chain states. Let ρXY E ∈ D(X ⊗Y⊗HE) be a cq-state with two clas-
sical subsystems X and Y . Following [7], we define ρX↔Y ↔E to be the “Markov-
chain state”

ρX↔Y ↔E :=
∑

x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E

with ρy
E =

∑
x PX|Y (x|y) ρx,y

E . If the state ρXY E is clear from the context we
write X ↔ Y ↔ E to express that ρXY E = ρX↔Y ↔E. It is an easy exercise
to verify that the Markov-chain condition X ↔ Y ↔ E holds if and only if
ρXY E = QY∅→E(ρXY ) for a CPTP map QY∅→E : D(Y) → D(Y ⊗ HE) that is
controlled by Y and acts on the “empty” system ∅, i.e., the conditional maps
act as Qy

∅→E : D(C) → D(HE).

Quantum measurements. We model a measurement of a quantum system A
with outcome in X by means of a CPTP map M : D(HA) → D(X ) that acts as

M(ρ) =
∑

x∈X
tr(Exρ)|x〉〈x|,

where {|x〉}x∈X is a fixed basis, and {Ex}x∈X forms a POVM, i.e., a family of
positive-semidefinite operators that add up to the identity matrix IX . A mea-
surement M : D(Z ⊗ HA) → D(Z ⊗ X ) is said to be a “measurement of A
controlled by Z” if it is controlled by Z and acts on A as a CPTP map. It is
easy to see that in this case the conditional CPTP maps Mz : D(HA) → D(X )
are measurements too, referred to as “conditional measurements”.

Note that whenever M : D(HZ ⊗HA) → D(X ) is an arbitrary measurement
of Z and A that is applied to a cq-state ρZA ∈ D(Z ⊗ HA), we may assume
that M first “produces a copy of Z”, and thus we may assume without loss of
generality that M : D(Z ⊗ HA) → D(Z ⊗ X ) is controlled by Z.

For a given n ∈ N, Mbb84

ΘA→X denotes the BB84 measurement of an n-qubit
system A controlled by Θ. Formally, for every θ ∈ {0, 1}n the corresponding
conditional measurement is specified by the POVM {Hθ|x〉〈x|Hθ} with x ranging
over {0, 1}n. Here, H is the Hadamard matrix, and Hθ|x〉 is a short hand for
Hθ1 |x1〉 ⊗ · · · ⊗ Hθn |xn〉 ∈ HA = (C2)⊗n, where {|0〉, |1〉} is the computational
basis of the qubit system C

2.

Trace Distance. We capture the distance between two states ρ, σ ∈ D(H) in
terms of their trace distance δ(ρ, σ) := 1

2‖ρ − σ‖1, where ‖K‖1 := tr
(√

K†K
)

is
the trace norm of an arbitrary operator K. If the states ρA and ρA′ are clear

5 This means that the system X is actually measured (in the fixed basis {|x〉}x∈X ).
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from context, we may write δ(A,A′) instead of δ(ρA, ρA′). Also, for any cq-state
ρXE in D(X ⊗ HE), we write δ(X,UX |E) as a short hand for δ(ρXE, μX ⊗ ρE).
Obviously, δ(X,UX |E) captures how far away X is from uniformly random on
X when given the quantum system E.

It is well known that the trace distance is monotone under CPTP maps, and
it is easy to see that if two cq-states ρXE, σXE ∈ D(X ⊗ HE) coincide on their
classical subsystems, meaning that ρX = σX , then δ(ρXE, σXE) decomposes into
δ(ρXE, σXE) =

∑
x PX(x) δ(ρx

E, σx
E).

2.2 The Guessing Probability

An important concept in the technical analysis of our scheme(s) is the following
notion of guessing probability, which is strongly related to the (conditional) min-
entropy as introduced by Renner [17], but turns out to be more convenient to
work with for our purpose. Let ρXE ∈ D(X ⊗ HE) be a cq-state.

Definition 1. The guessing probability of X given E is

Guess(X|E) := max
M

P [M(E)=X],

where the maximum is over all measurements M : D(HE) → D(X ) of E with
outcome in X .6

Note that if Λ is an event, then Guess(X|E, Λ) is naturally defined by means of
applying the above to the “conditional state” ρXE|Λ ∈ D(X ⊗ HE).

We will make use of the following elementary properties of the guessing prob-
ability. In all the statements, it is understood that ρXE ∈ D(X ⊗HE), respectively
ρXZE ∈ D(X ⊗ Z ⊗ HE) in Property 2.

Property 1. Guess(X|Q(E)) ≤ Guess(X|E) for any CPTP map Q acting on E.

Property 2. Guess(X|ZE) =
∑

z PZ(z)Guess(X|E, Z =z).

Property 3. Guess(X|E, Λ) ≤ Guess(X|E)/P [Λ] for any event Λ.

Note that Property 2 implies that Guess(X|E, Λ) ≤ Guess(X|1ΛE)/P [Λ], but the
statement of Property 3 is stronger since Guess(X|E) ≤ Guess(X|1ΛE).

Proof (of Property 3). It holds that7 P [Λ] · ρXE|Λ ≤ ρXE, and hence that for any
measurement M on E

P [Λ] · P [M(E)=X|Λ] ≤ P [M(E)=X] ≤ Guess(X|E),

which implies the claim. �
6 By our conventions, the probability P [M(E)=X] is to be understood as P [X ′ =X]

for the (purely classical) state ρXX′ = ρXM(E) = (idX ⊗ M)(ρXE) ∈ D(X ⊗ X ).
7 Here and throughout, for operators K and L, the inequality K ≤ L means that

L − K is positive-semidefinite.
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Property 4. There exists σE ∈ D(HE) so that

ρXE ≤ Guess(X|E) · IX ⊗ σE = Guess(X|E) · |X | · μX ⊗ σE.

Proof. The claim follows from Renner’s original definition of the conditional
min-entropy as

H∞(X|E) := max
σE

max
λ

{λ | ρXE ≤ 2−λ · IX ⊗ σE}

and the identity H∞(X|E) = − log Guess(X|E), as shown in [12]. �

3 Enabling Tools

In this section, we introduce and discuss the main technical tools for the construc-
tions and analyses of our key-recycling authentication and encryption schemes.

3.1 On Guessing the Outcome of Quantum Measurements

We consider different “guessing games”, where one or two players need to guess
the outcome of a quantum measurement. The bounds are derived by means of
the techniques of [19].

Two-player guessing. Here, we consider a game where two parties, Bob and
Charlie, need to simultaneously and without communication guess the outcome
of BB84 measurements performed by Alice (on n qubits prepared by Bob and
Charlie), when given the bases that Alice chose. This is very similar to the
monogamy game introduced and studied in [19], but in the version we consider
here, the sequence of bases is not chosen from {0, 1}n but from a code C ⊂ {0, 1}n

with minimal distance d. It is useful to think of d to be much larger than log |C|,
i.e., the dimension of the code in case of a linear code. The following shows that
in case of a uniformly random choice of the bases in C, Bob and Charlie cannot
do much better than to agree on a guess for the bases and to give Alice qubits
in those bases.

Proposition 1. Let HA be a n-qubit system, and let HB and HC be arbitrary
quantum systems. Consider a state ρΘABC = μC ⊗ρABC ∈ D(C ⊗HA ⊗HB ⊗HC),
and let

ρΘXX′X′′ = NΘC→X′′ ◦ NΘB→X′ ◦ Mbb84

ΘA→X

(
ρΘABC

)

where Mbb84

ΘA→X is the BB84-measurement of the system A (controlled by Θ),
and NΘB→X′ and NΘC→X′′ are arbitrary (possibly different) measurements of
the respective systems B and C, both controlled by Θ. Then, it holds that

P [X ′ =X ∧ X ′′ =X] ≤ 1
|C| +

1
2d/2

.
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Proof. The proof uses the techniques from [19]. By Naimark’s theorem, we may
assume without loss of generality that the conditional measurements N θ

B→X′ and
N θ

C→X′′ are specified by families {P θ
x}x and {Qθ

x}x of projections. Then, defining
for every θ ∈ C the projection Πθ =

∑
x Hθ|x〉〈x|Hθ ⊗ P θ

x ⊗ Qθ
x, we see that

P [X ′ =X ∧ X ′′ =X] ≤ 1
|C|

∥∥∥∥
∑

θ

Πθ

∥∥∥∥ ≤ 1
|C|

∑

δ

max
θ

∥∥ΠθΠθ⊕δ
∥∥,

where ‖ · ‖ refers to the standard operator norm, and the second inequality is by
Lemma 2.2 in [19]. For any θ, θ′ ∈ C, bounding Πθ and Πθ′

by

Πθ ≤ Γ θ :=
∑

x

Hθ|x〉〈x|Hθ ⊗ P θ
x ⊗ I

and
Πθ′ ≤ Δθ′

:=
∑

x

Hθ′ |x〉〈x|Hθ′ ⊗ I ⊗ Qθ′
x ,

it is shown in [19] (in the proof of Theorem 3.4) that

∥∥ΠθΠθ′∥∥ ≤ ∥∥Γ θΔθ′∥∥ ≤ 1
2dH(θ,θ′)/2 ≤ 1

2d/2

where the last inequality holds unless θ = θ′, from which the claim follows. �
Remark 1. If we restrict HB to be a n-qubit system too, and replace the (arbi-
trary) measurement NΘB by a BB84 measurement Mbb84

ΘB, i.e., “Bob measures
correctly”, then we get

P [X ′ =X ∧ X ′′ =X] ≤ 1
|C| +

1
2d

.

Two-player guessing with quantum side information. Now, we consider
a version of the game where Alice’s choice for the bases is not uniformly random,
and, additionally, Bob and Charlie may hold some quantum side information on
Alice’s choice at the time when they can prepare the initial state (for Alice, Bob
and Charlie).

Corollary 1. Let HA be a n-qubit system, and let HB,HC and HE be arbitrary
quantum systems. Consider a state ρΘE ∈ D(C ⊗ HE), and let

ρΘABC = QE→ABC

(
ρΘE

) ∈ D(C ⊗ HA ⊗ HB ⊗ HC)

where QE→ABC is a CPTP map acting on E (only), and let

ρΘXX′X′′ = NΘC→X′′ ◦ NΘB→X′ ◦ Mbb84

ΘA→X

(
ρΘABC

)

as in Proposition 1 above. Then, it holds that

P [X ′ =X ∧ X ′′ =X] ≤ Guess(Θ|E) +
Guess(Θ|E) · |C|

2d/2
.
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Proof. By Proposition 1, the claim holds as P [X ′ =X ∧X ′′ =X] ≤ 1/|C|+1/2d/2

for the special case where ρΘE is of the form ρΘE = μC ⊗ σE. Furthermore, by
Property 4 we know that an arbitrary ρΘE ∈ D(C ⊗ HE) is bounded by

ρΘE ≤ Guess(Θ|E) · |C| · μC ⊗ σE.

Therefore, since the composed map

D(C ⊗ HE) → D({0, 1}), ρΘE �→ ρΘABC �→ ρXX′X′′ �→ ρ1X=X′∧X=X′′

is still a CPTP map, it holds that for arbitrary ρΘE ∈ D(C ⊗ HE)

P [X ′ =X ∧ X ′′ =X] ≤ Guess(Θ|E) · |C| ·
(

1
|C| +

1
2d/2

)
,

which proves the claim. �
Remark 2. Similarly to the remark above, the bound relaxes to

P [X ′ =X ∧ X ′′ =X] ≤ Guess(Θ|E) +
Guess(Θ|E) · |C|

2d
,

when “Bob measure correctly”.

Single-player guessing (with quantum side information). Corollary 1
immediately gives us control also over a slightly different game, where only one
party needs to guess Alice’s measurement outcome, but here he is not given the
bases. Indeed, any strategy here gives a strategy for the above simultaneous-
guessing game, simply by “pre-measuring” B, and having Bob and Charlie each
keep a copy of the measurement outcome.

Corollary 2. Let HA be a n-qubit system, and let HB and HE be arbitrary
quantum systems. Consider a state ρΘE ∈ D(C ⊗ HE) and let

ρΘAB = QE→AB

(
ρΘE

) ∈ D(C ⊗ HA ⊗ HB)

where QE→AB is a CPTP map acting on E, and let

ρΘXX′′ = NB→X′′ ◦ Mbb84

ΘA→X

(
ρΘAB

)

where NB→X′′ is an arbitrary measurement of B (with no access to Θ). Then, it
holds that

P [X ′′ =X] ≤ Guess(Θ|E) +
Guess(Θ|E) · |C|

2d/2
.

In other words, for the state ρΘXB = Mbb84

ΘA→X(ρΘAB) we have that

Guess(X|B) ≤ Guess(Θ|E) +
Guess(Θ|E) · |C|

2d/2
.

Remark 3. If we restrict the side information E to be classical then, using slightly
different techniques, we can improve the bounds from Corollaries 1 and 2 to

Guess(Θ|E) +
1

2d/2
.

Whether this improved bound also holds in case of quantum side information is
an open question.
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3.2 Hash Functions with Message-Independence and Key-Privacy

The goal of key-recycling is to be able to re-use a cryptographic key. For this to be
possible, it is necessary— actually, not necessary but sufficient — that a key stays
secure, i.e., that the primitive that uses the key does not reveal anything on the
key, or only very little. We introduce here a general notion that captures this, i.e.,
that ensures that the key stays secure as long as there is enough uncertainty in
the message the primitive is applied to — in our construction(s), this uncertainty
will then be derived from the quantum part.

Consider a keyed hash function H : K × X → Y with key space K, message
space X , and range Y. We define the following properties on such a hash function.

Definition 2. We say that H is message-independent if for a uniformly random
key K in K, the distribution of the hash value Y = H(K,x) is independent of
the message x ∈ X . And, we say that H is uniform if it is message-independent
and Y = H(K,x) is uniformly random on Y.

Thus, message-independence simply ensures that if the key is uniformly random
and independent of the message, then the hash of the message is independent
of the message too. The key-privacy property below on the other hand ensures
that for any adversary that has arbitrary but limited information on the message
and the hash value — but no direct information on the key — has (almost) no
information on the key.

Definition 3. We say that H offers ν-key-privacy if for any state ρKXY E in
D(K ⊗X ⊗Y ⊗HE) with the properties that ρKX = μK ⊗ ρX , Y = H(K,X) and
K ↔ XY ↔ E, it holds that

δ(K,UK|Y E) ≤ ν

2

√
Guess(X|Y E) · |Y|.

We say that H offers ideal key-privacy if it offers 1-key-privacy.

Remark 4. Note that if H is message-independent then for X,Y and E as above
in Definition 3, we have that Guess(X|Y E) = Guess(X|E).

Not so surprisingly, the joint notion of uniformity and key-privacy is closely
related to that of a strong extractor [14]. Indeed, if H is uniform and offers key-
privacy then it is a strong extractor: for ρKXE = μK⊗ρXE and Y = H(K,X), the
condition on ρKXY E in Definition 3 is satisfied, and thus we have the promised
bound on δ(ρKY E, μK ⊗ρY E) = δ(ρKY E, μK ⊗μY ⊗ρE), where the equality is due
to uniformity. As such, [18] shows that the required bound on δ(K,UK|Y E) is the
best one can hope for. On the other hand, the following shows that from every
strong extractor we can easily construct a hash function that offers uniformity
and key-privacy.

Proposition 2. Let Ext : K × X → Y be a strong extractor, meaning that for
ρKXE = μK ⊗ ρXE ∈ D(K ⊗ X ⊗ HE) and for Y computed as Y = Ext(K,X) it
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holds that δ(ρKY E, μK ⊗ ρY E) ≤ ν
2

√
Guess(X|E) · |Y|. Furthermore, we assume

that the range Y forms a group. Then, the keyed hash function8

H : (K × Y) × X → Y, (k‖k′, x) �→ Ext(k, x) + k′

with key space K × Y satisfies uniformity and ν-key-privacy.

Proof. Uniformity is clear. For key-privacy, consider a state ρKXY E with the
properties as in Definition 3. We fix an arbitrary y ∈ Y and condition on Y = y.
Conditioning on X = x as well for an arbitrary x ∈ X , the key (K,K ′) is
uniformly distributed subject to H(K,x)+K ′ = y. In other words, K is uniformly
random in K, and K ′ = y − H(K,x). Therefore, making use of the Markov-
chain property, conditioning on Y = y only, K is uniformly random in K and
independent of X and E, and K ′ = y−H(K,X). Thus, by the extractor property,
δ(ρK′KE|Y =y, μY ⊗μK⊗ρE|Y =y) ≤ ν

2

√
Guess(X|E, Y =y) · |Y|. The claim follows

by averaging over y, and applying Jensen’s inequality and Property 2. �
The following technical result will be useful.

Lemma 1. Let H : K × X → Y be a keyed hash function that satisfies message-
independence. Furthermore, let ρKXY E be a state with the properties as in Defi-
nition 3. Then

Guess(X|KY E) ≤ Guess(X|Y E) · |Y|.
Proof. Note that the Markov-chain property K ↔ XY ↔ E can be understood
in that E is obtained by acting on XY only: E = Q(XY ). For the purpose of the
argument, we extend the state ρXKY E to a state ρXKK′Y Y ′EE′ as follows. We
choose a uniformly random and independent K ′ in K, and set Y ′ = H(K ′,X)
and E′ = Q(XY ′). Note that ρXKY E coincides with ρXK′Y ′E′ . Therefore,

Guess(X|Y E) = Guess(X|Y ′E′) = Guess(X|KY ′E′),

where the second equality is by the independence of K. Furthermore, by Prop-
erty 3, we have that

Guess(X|KY ′E′) ≥ P [Y =Y ′] Guess(X|KY ′E′, Y =Y ′)
= P [Y =Y ′] Guess(X|KY E, Y =Y ′).

Finally, by the message-independence of H, it holds that Y ′ is independent of
KXY E (and with the same distribution as Y ), and therefore P [Y =Y ′] ≥ 1/|Y|
and Guess(X|KY E, Y = Y ′) = Guess(X|KY E). Altogether, this gives us the
bound Guess(X|KY E) ≤ Guess(X|Y E) · |Y|, which concludes the proof. �
Equipped with Lemma1, we can now show the following composition results.

8 Here, and similarly in other occasions, k‖k′ is simply a synonym for the element
(k, k′) in the Cartesian product of, here, K and Y, and is mainly used to smoothen
notation and avoid expressions like

(
(k, k′), x

)
.
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Proposition 3 (Parallel Composition). Consider two keyed hash functions
H1 : K1 × X → Y1 and H2 : K2 × X → Y2 with the same message space X , and

H : (K1 × K2) × X → Y1 × Y2, (k1‖k2, x) �→ (
H1(k1, x),H2(k2, x)

)

with key space K = K1 × K2 and range Y = Y1 × Y2. If H1 and H2 are both
message-independent (or uniform) and respectively offer ν1- and ν2-key privacy,
then H is message-independent (or uniform) and offers (ν1 + ν2)-key privacy.

Proof. That message-independence/uniformity is preserved is clear. To argue
key-privacy, assume that we have ρK1K2X = ρK1 ⊗ ρK2 ⊗ ρX , Y1 = H1(K1,X)
and Y2 = H(K2,X), and K1K2 ↔ XY1Y2 ↔ E. We need to bound the distance
of K1K2 from uniform when given Y1Y1E, which we can decompose into

δ(K1K2, UK1UK2 |Y1Y1E) ≤ δ(K1, UK1 |Y1Y2E) + δ(K2, UK2 |K1Y1Y2E).

The above conditions on ρK1K2XY1Y2E imply that K1 ↔ XY1 ↔ K2Y2E holds,
and thus also K1 ↔ XY1 ↔ Y2E. Indeed, K1K2 ↔ XY1Y2 ↔ E implies that also
K1 ↔ XY1K2Y2 ↔ E, which together with K1 ↔ XY1 ↔ K2Y2 (which holds
by choice of K2 and Y2) implies that K1 ↔ XY1 ↔ K2Y2E. Therefore, by the
key-privacy property of H1, setting E1 = Y2E, we see that

δ(K1, UK1 |Y1Y2E) ≤ ν1
2

√
Guess(X|Y1Y2E) · |Y1|.

Similarly, K2 ↔ XY2 ↔ K1Y1E, and so by the key-privacy property of H2,
setting E2 = K1Y1E, we conclude that

δ(K2, UK2 |K1Y1Y2E) ≤ ν2
2

√
Guess(X|Y2K1Y1E) · |Y2|

≤ ν2
2

√
Guess(X|Y2Y1E) · |Y1| · |Y2|,

which proves the claim. �
Proposition 4 (“Sequarallel” Composition). Consider two keyed hash fun-
ctions H1 : K1 × X → Y1 and H2 : K2 × (X ⊗ Y1) → Y2 with message spaces as
specified, and

H : (K1 × K2) × X → Y1 × Y2 , (k1‖k2, x) �→ (
H1(k1, x),H2(k2, x‖H1(k1, x))

)

with key space K = K1 × K2 and range Y = Y1 × Y2. If H1 and H2 are both
message-independent (or uniform) and respectively offer ν1- and ν2-key privacy,
then H is message-independent (or uniform) and offers (ν1 + ν2)-key privacy.

Proof. The proof goes along the same lines as the proof of Proposition 3, except
that in the reasoning for the bound on δ(K2, UK2 |K1Y1E), we append Y1 to X,
with the consequence that we get a bound that is in terms of Guess(XY1|Y2Y1E),
but this obviously coincides with Guess(X|Y2Y1E), and thus we end up with the
same bound. �



324 S. Fehr and L. Salvail

4 Message Authentication with Key-Recycling

We first consider the problem of message authentication with key-recycling. It
turns out that — at least with our approach — this is the actual challenging prob-
lem, and extending to (authenticated) encryption is then quite easy.

4.1 The Semantics

We quickly specify the semantics of a quantum authentication code (or scheme)
with key-recycling.9

Definition 4. A quantum authentication code (with key recycling) QMAC with
message space MSG and key space KEY is made up of the following compo-
nents: (1) A CPTP map Auth that is controlled by a message msg ∈ MSG and
a key key ∈ KEY, and that acts on an empty system and outputs a quantum
authentication tag (with a fixed state space), (2) a measurement Verify that is
controlled by msg ∈ MSG and key ∈ KEY, and that acts on a quantum authen-
tication tag and outputs a decision bit d ∈ {0, 1}, and (3) a randomized function
Refresh : KEY → KEY.

We will often identify an authentication code, formalized as above, with the
obvious authenticated-message-transmission protocol πQMAC(msg), where Alice
and Bob start with a shared key key ∈ KEY, and Alice sends the message msg
along with its quantum authentication tag prepared by means of Auth to Bob
over a channel that is controlled by the adversary Eve, and, upon reception of the
(possibly modified) message and tag, Bob verifies correctness using Verify and
accordingly accepts or rejects. If he rejects, then Alice and Bob replace key by
key′ := Refresh(key).10 Note that, for any message msg ∈ MSG and any strategy
for Eve on how to interfere with the communication, the protocol πQMAC(msg)
induces a CPTP map Exe[πQMAC(msg)] : D(KEY ⊗ HE) → D(KEY ⊗ HE′) that
describes the evolution of the shared key key and Eve’s local system as a result
of the execution of πQMAC(msg).

Our goal will be to show that, for our construction given below, and for
any behavior of Eve, the CPTP map Exe[πQMAC(msg)] maps a key about which
Eve has little information into a (possibly updated) key about which Eve still
has little information — what it means here to “have little information” needs
to be specified, but it will in particular imply that it still allows Bob to detect
a modification of the message. This then ensures re-usability of the quantum
authentication code — with the same key as long as Bob accepts the incoming
messages, and with the updated key in case he rejects.
9 Our definition is tailored to our goal that the key can be re-used unchanged in case

the message is accepted by the recipient, Bob, and only needs to be refreshed in
case he rejects. In the literature, key-recycling sometimes comes with two refresh
procedures, one for the case Bob rejects and one for the case he accepts.

10 Obviously, this requires Alice and Bob to exchange fresh randomness, i.e., the ran-
domness for executing Refresh, in a reliable and private way; how this is done is not
relevant here.
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4.2 The Scheme

Let MSG be an arbitrary non-empty finite set. We are going to construct a quan-
tum message authentication code QMAC with message space MSG. To this end,
let MAC : K× (MSG ×{0, 1}n) → T be a classical one-time message authentica-
tion code with a message space MSG ×{0, 1}n for some n ∈ N. We require MAC
to be secure in the standard sense, meaning a modified message will be detected
except with small probability εMAC. Additionally, we require MAC to satisfy
message-independence and ideal key-privacy, as discussed in Sect. 3.2. Actu-
ally, it is sufficient if MAC( · ,msg‖ · ), i.e., the hash function K × {0, 1}n → T ,
(k, x) �→ MAC(k,msg‖x) obtained by fixing msg, satisfies message-independence
and ideal key-privacy for any msg ∈ MSG. Assuming that MSG consists of
bit strings of fixed size so that MSG × {0, 1}n = {0, 1}N for some N ∈ N,
the canonical message authentication codes MAC :

(
F

	×N
2 × F

	
2

) × F
N
2 → F

	
2,

(A‖b, x) �→ Ax+b and MAC :
(
F2N ×F

	
2

)×F2N → F
	
2, (a‖b, x) �→ trunc(a ·x)+b,

where trunc : F2N → F
	
2 is an arbitrary surjective F2-linear map, are suitable

choices; this follows directly from Proposition 2. Finally, let C ⊂ {0, 1}n be a
code with large minimal distance d.

Then, our quantum message authentication code QMAC has a key space
KEY = K × C, where for a key k‖θ ∈ K × C we refer to k as the “MAC key” and
to θ as the “basis key”, and QMAC works as described in Fig. 1.

QMAC.Auth(k‖θ, msg): Choose a uniformly random x ∈ {0, 1}n and output n
qubits B◦ in state Hθ|x〉 and the classical tag t = MAC(k, msg‖x).

QMAC.Verify(k‖θ, msg, t): Measure the qubits B◦ in bases θ to obtain x′ (supposed
to be x), check that t = MAC(k, msg‖x′), and output 0 or 1 accordingly.

QMAC.Refresh(k‖θ): Choose a uniformly random θ′ ∈ C and output k‖θ′.

Fig. 1. The quantum message authentication code MAC.

It is clear that as long as the MAC key k is “secure enough”, the classical
MAC takes care of an Eve that tries to modify the message msg, and it ensures
that such an attack is detected by Bob, except with small probability. What is
non-trivial to argue is that the MAC key (together with the basis key) indeed
stays “secure enough” over multiple executions of πQMAC(msg); this is what we
show below.

4.3 Analysis

We consider an execution of the authenticated-message-transmission protocol
πQMAC(msg) for a fixed message msg. Let ρKΘE ∈ D(K ⊗ C ⊗ HE) be the joint
state before the execution, consisting of the MAC key K, the basis key Θ, and
Eve’s local quantum system E. The joint state Exe[πQMAC(msg)](ρKΘE) after the
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execution is given by ρKΘ′TDC ∈ D(K ⊗ C ⊗ T ⊗ {0, 1} ⊗ HC), where Θ′ is the
(possibly) updated basis key, T is the classical tag, D is Bob’s decision to accept
or reject, and C is Eve’s new quantum system. Eve’s complete information after
the execution of the scheme is thus given by E′ = TDC.

Recall that TDC is obtained as follows from KΘE. Alice prepares BB84-
qubits B◦ for uniformly random bits X and with bases determined by Θ, and
she computes the tag T := MAC(K,msg‖X). Then, Eve acts on B◦E (in a way
that may depend on T ) and keeps one part, C, of the resulting state, and Bob
measures the other part, B, to obtain X ′ and checks with the (possibly modified)
tag T to decide on D.

Note that by a standard reasoning, we can think of the BB84 qubits B◦ not as
being prepared by first choosing the classical bits X and then “encoding” them
into qubits with the prescribed bases Θ, but by first preparing n EPR pairs Φ+

AB◦
and then measuring the qubits in A in the prescribed bases to obtain X, i.e.,
ρKΘXB◦E = Mbb84

ΘA→X

(
Φ+
AB◦ ⊗ ρKΘE

)
.

The following captures the main security property of the scheme.

Theorem 1. If the state before the execution of πQMAC(msg) is of the form
ρKΘE = μK ⊗ ρΘE, then for any Eve the state ρKΘ′E′ = Exe[πQMAC(msg)](ρKΘE)
after the execution satisfies

Guess(Θ′|E′) ≤ Guess(Θ|E) +
1
|C|

and

δ(K,UK|Θ′E′) ≤ 2εMAC +
√

2
2

√

Guess(Θ|E)
(

1 +
|C|
2d/2

)
|T |.

This means that if before the execution of πQMAC(msg), it holds that Eve’s guess-
ing probability on Θ is small and K looks perfectly random to her (even when
given Θ), then after the execution, Eve’s guessing probability on (the possibly
refreshed) Θ′ is still small and K still looks almost perfectly random to her. As
such, we may then consider a hypothetical refreshing of K that has almost no
impact, but which brings us back to the position to apply Theorem1 again, and
hence allows us to re-apply this “preservation of security” for the next execution,
and so on. This in particular allows us to conclude that in an arbitrary sequence
of executions, the MAC key K stays almost perfectly random for Eve, and thus
any tampering with an authenticated message will be detected by Bob except
with small probability by the security of MAC (see Sect. 4.4 for more details).

Remark 5. For simplicity, in Theorem1 and in the remainder of this work, we
assume the message msg to be arbitrary but fixed. However, it is not hard to see
that we may also allow msg to be obtained by means of a measurement, applied
to Eve’s system E before the execution of πQMAC(msg), i.e., Eve can choose
it. The bounds of Theorem 1 then hold on average over the measured msg. This
follows directly from Property 2 for the bound the guessing probability, and from
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a similar decomposition property for the trace distance, together with Jensen’s
inequality for the bound on the trace distance. We emphasize however, that
we do assume msg, even when provided by Eve, to be classical, i.e., we do not
consider so-called superposition attacks.

The formal proof of Theorem1 is given below; the intuition is as follows. For
the bound on the guessing probability of the (possibly updated) basis key, we
have that in case Bob rejects and so the basis key is re-sampled from C, Eve
has obviously guessing probability 1/|C|. In case Bob accepts, the fact that Bob
accepts may increase Eve’s guessing probability. For instance, Eve may measure
one qubit in, say, the computational basis, and forward the correspondingly col-
lapsed qubit to Bob; if Bob then accepts it is more likely that this qubit had
been prepared in the computational basis by Alice, giving Eve some (new) infor-
mation on the basis key. However, the resulting increase in guessing probability
is inverse proportional to the probability that Bob actually accepts, so that this
advantage is “canceled out” by the possibility that Bob will not accept. For the
bound on the “freshness” of K (given the basis key Θ′), by key privacy it is
sufficient to argue that Eve has small guessing probability for X. In case Bob
rejects, the (refreshed) basis key is useless to her for guessing X, and so the task
of guessing X reduces to winning the game considered in Corollary 2. Similarly,
the case where Bob accepts fits into the game in Corollary 1. In both cases, we
get that the guessing probability of X essentially coincides with Guess(Θ|E).

Proof. For the first claim, we simply observe that

Guess(Θ′|TDC) =
1∑

d=0

PD(d)Guess(Θ′|TC,D=d) (by Property 2)

= PD(0)
1
|C| + PD(1)Guess(Θ|TC,D=1)

≤ PD(0)
1
|C| + Guess(Θ|TC) (by Property 3)

≤ 1
|C| + Guess(Θ|TB◦E) (by Property 1)

=
1
|C| + Guess(Θ|B◦E) (by Definition 2)

=
1
|C| + Guess(Θ|E).

where the second equality holds because Θ′ is freshly chosen in case Bob rejects
and Θ′ = Θ in case he accepts, and the final equality holds because of the fact
that ρB◦ΘE = trX ◦ Mbb84

ΘA→X

(
Φ+
AB◦ ⊗ ρΘE

)
= trA

(
Φ+
AB◦

) ⊗ ρΘE = μB◦ ⊗ ρΘE.
For the second claim, consider D̃ and Θ̃′ as follows. D̃ is 1 if X = X ′ and Eve

has not modified the tag T nor the message msg, and D̃ is 0 otherwise (i.e., D̃ is
an “ideal version” of Bob’s decision), and Θ̃′ is freshly chosen if and only D̃ = 0.
The states of KΘ′TDC and KΘ̃′TD̃C are identical except for when D = 1 but
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X �= X ′ or Eve has modified T or msg, which happens with probability at most
εMAC by the security of MAC, and thus the two states are εMAC-close. Therefore,
δ(K,UK|Θ′TDC) ≤ δ(K,UK|Θ̃′TD̃C) + 2εMAC, and so it suffices to analyze the
state of KΘ̃′TD̃C. Furthermore, we may assume that Eve’s state C contains the
information of whether she modified T or msg, so that D̃ can be computed from
1X=X′ when given C, and thus δ(K,UK|Θ̃′D̃TC) ≤ δ(K,UK|Θ̃′ 1X=X′D̃TC) =
δ(K,UK|Θ̃′ 1X=X′TC).

Now, since K is random and independent of XΘB◦E, T is computed as
T = MAC(K,msg|X), and Θ̃ 1X=X′C is obtained by acting on T and XΘB◦E
only (and not on K), we see that the conditions required in Definition 3 are
satisfied. Therefore, by the key-privacy of MAC, and recalling Remark 4,

δ(K,UK|TΘ̃′ 1X=X′C) ≤ 1
2

√
Guess(X|Θ̃′ 1X=X′C) |T |.

Furthermore, by Property 2, and noting that Θ̃′ is freshly chosen when X �=X ′

and equal to Θ otherwise,

Guess(X|Θ̃′ 1X=X′C) = P [X �=X ′] Guess(X|C,X �=X ′)
+ P [X =X ′] Guess(X|ΘC,X =X ′).

For the first term, we see that

P [X �=X ′] Guess(X|C,X �=X ′) ≤ Guess(X|C) (by Property 3)
≤ Guess(X|TB◦E) (by Property 1)
≤ Guess(X|B◦E) (by Definition 2)

≤ Guess(Θ|E)
(
1 + |C|

2d/2

)
,

where the final inequality follows from Corollary 2 by recalling that ρΘXB◦E =
Mbb84

ΘA→X

(
Φ+
AB◦ ⊗ρΘE

)
. Similarly, writing X ′′ for the measurement outcome when

measuring C using an optimal measurement NΘC (controlled by Θ), we obtain

P [X =X ′] Guess(X|ΘC,X =X ′) ≤ P [X =X ′]P [X =X ′′|X =X ′]

≤ P [X =X ′ ∧ X =X ′′]

≤ Guess(Θ|E)
(
1 + |C|

2d/2

)
,

where the final inequality follows from Corollary 1 by observing that, using uni-
formity of MAC (Definition 2) in the second equality,

ρΘXXX′′ = NΘC→X′′ ◦ Mbb84

ΘB→X′ ◦ QTB◦E→BC

(
ρΘXTB◦E

)

= NΘC→X′′ ◦ Mbb84

ΘB→X ◦ QTB◦E→BC

(
ρΘXB◦E ⊗ ρT

)

= NΘC→X′′ ◦ Mbb84

ΘB→X′ ◦ QTB◦E→BC ◦ Mbb84

ΘA→X

(
Φ+
AB◦ ⊗ ρΘE ⊗ ρT

)

= NΘC→X′′ ◦ Mbb84

ΘB→X′ ◦ Mbb84

ΘA→X ◦ QTB◦E→BC

(
Φ+
AB◦ ⊗ ρΘE ⊗ ρT

)

= NΘC→X′′ ◦ Mbb84

ΘB→X′ ◦ Mbb84

ΘA→X ◦ Q′
E→ABC

(
ρΘE

)

where Q′
E→ABC is the CPTP map Q′

E→ABC(σE) = QTB◦E→BC(Φ+
AB◦ ⊗ σE ⊗ ρT ).

Collecting the terms gives the claimed bound. �
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4.4 Re-usability of QMAC

We formally argue here that Theorem1, which analyses a single usage of QMAC,
implies re-usability. The reason why this is not completely trivial is that after one
execution of πQMAC, the MAC key K is not perfectly secure anymore but “only”
almost-perfectly secure, so that Theorem 1 cannot be directly applied anymore
for a second execution. However, taking care of this is quite straightforward.

Formally, we have the following result regarding the re-usability of QMAC.

Proposition 5. If Alice and Bob start off with a uniformly random key, then
for a sequence πQMAC(msg1), πQMAC(msg2), . . . of sequential executions of protocol
πQMAC, and for any strategy for Eve and any i ∈ N, the probability εi that Eve
modifies msgi in the execution of πQMAC(msgi) yet Bob accepts is bounded by

εi ≤ (2i − 1) · εMAC +
√

2
2

∑

j<i

√
j

|C|
(

1 +
|C|
2d/2

)
|T |.

Proof. In case i = 1, the statement reduces to εi ≤ εMAC, which holds by con-
struction of QMAC. To argue the general case, let ρK1Θ1E1 , ρK2Θ2E2 , . . . describe
the evolution of the MAC key and the basis key and Eve’s information on them,
given that we start with a perfect key ρK0Θ0E0 = μK⊗μC ⊗ρE0 . Formally, ρKiΘiEi

is inductively defined as ρKiΘiEi
= Exe[πQMAC(msgi)](ρKi−1Θi−1Ei−1). For the

sake of the argument, we also consider ρ̃K1Θ1E1 , ρ̃K2Θ2E2 , . . . obtained by means
of setting ρ̃K0Θ0E0 = ρK0Θ0E0 and ρ̃KiΘiEi

= Exe[πQMAC(msgi)](μK ⊗ ρ̃Θi−1Ei−1),
i.e., the evolution of the keys and Eve’s information in a hypothetical setting
where the MAC key is refreshed before every new execution. For these latter
states ρ̃KiΘiEi

, we can inductively apply Theorem 1 and conclude that

Guess(Θi|Ei) ≤ i + 1
|C|

and

δ(ρ̃KiΘiEi
, μK ⊗ ρ̃ΘiEi

) ≤ δi := 2εMAC +
√

2
2

√
i

|C|
(

1 +
|C|
2d/2

)
|T |

for any i ∈ N. But now, for the original states ρK1Θ1E1 , ρK2Θ2E2 , . . ., from the
triangle inequality we obtain that

δ(ρKiΘiEi
, μK ⊗ ρ̃ΘiEi

) ≤ δ(ρKiΘiEi
, ρ̃KiΘiEi

) + δ(ρ̃KiΘiEi
, μK ⊗ ρ̃ΘiEi

)

≤ δ(ρKi−1Θi−1Ei−1 , μK ⊗ ρ̃Θi−1Ei−1) + δi

≤
∑

j≤i

δj ,

where the last inequality is by induction (where the base case i = 0 is trivially
satisfied). It now follows by basic properties of the trace distance that we have
εi+1 ≤ εMAC +

∑
j≤i δj . This proves the claim. �
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4.5 Choosing the Parameters

Let λ ∈ N be the security parameter. Consider a MAC with εMAC = 2−λ and
|T | = 2λ. This can for instance be achieved with the constructions suggested in
Sect. 4.2. Also, consider a code C with |C| = 23λ and d = 6λ, so that |C|/2d/2 = 1.
The description of the basis key θ thus requires 3λ bits, and, by Singleton bound,
it is necessary that n ≥ 9λ − 1. Then, the bound in Proposition 5 becomes

εi+1 ≤ (2i + 1) · 2−λ +
∑

j≤i

√
2

2

√
j

23λ

(
1 +

23λ

23λ

)
2λ =

(
2i + 1 +

∑

j≤i

√
j
)
2−λ.

Hence, the error probability increases at most as
(
i
√

i + 2i + 1
)
2−λ with the

number i of executions.

5 Extensions and Variations

We show how to modify our scheme QMAC as to offer encryption as well, i.e., to
produce an authenticated encryption of msg, and how to deal with noise in the
quantum communication; we start with the latter since this is more cumbersome.
At the end of the section, we show how to tweak our schemes so as to be able
to authenticate and/or encrypt quantum messages as well, and we discuss some
variations.

5.1 Dealing with Noise

In order to deal with noise in the quantum communication, we introduce the
following primitive. We consider a keyed hash function SS : L × {0, 1}n → S
that has the property that given the key �, the secure sketch s = SS(�, x) of
the message x, and a “noisy version” x′ of x, i.e., such that dH(x, x′) ≤ ϕ · n
for some given noise parameter ϕ < 1

2 , the original message x can be recovered
except with probability εSS. Additionally, we want SS to satisfy the message-
independence and ideal key-privacy properties from Definitions 2 and 3. Such
constructions exist for small enough ϕ > 0, as discussed in Appendix B, based
on techniques by Dodis and Smith [8].

Then, the key for our noise-tolerant quantum message authentication code
QMAC∗ consists of a (initially) uniformly random MAC key k ∈ K for MAC, an
(initially) uniformly random secure-sketch key � ∈ L for SS, and an (initially)
random and independent basis key θ, chosen from the code C ⊂ {0, 1}n, and the
scheme works as described in Fig. 2.

Theorem 2. If the state before the execution of πQMAC∗(msg) is of the form
ρKΘE = μK ⊗ρΘE, then for any Eve the state ρKΘ′E′ = Exe[πQMAC∗(msg)](ρKΘE)
after the execution satisfies

Guess(Θ′|E′) ≤ Guess(Θ|E) +
1
|C|
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and

δ(KL,UK×L|Θ′E′) ≤ 2εMAC+SS +

√

Guess(Θ|E)
(

2+
|C|
2d/2

+
|C| · 2h(ϕ)n

2d

)
|T ||S|

where εMAC+SS = εMAC + εSS.

QMAC∗.Auth(k‖�‖θ, msg): Choose a uniformly random x ∈ {0, 1}n and output n
qubits B◦ in state Hθ|x〉 together with the secure sketch s = SS(�, x) and the
tag t = MAC(k, msg‖x‖s).

QMAC∗.Verify(k‖�‖θ, msg, t): Measure the qubits B◦ in bases θ to obtain x′, recover
(what is supposed to be) x using the secure sketch s, and check the tag t. If
this check fails or dH(x, x′) > ϕ · n then output 0, else 1.

QMAC∗.Refresh(k‖�‖θ): Choose uniformly random θ′ ∈ C and output k‖�‖θ′.

Fig. 2. The noise-tolerant quantum message authentication code MAC∗.

Proof. The proof of the first statement, i.e., the bound on Guess(Θ′|E′) is exactly
like in the proof of Theorem1, with the only exception that in the one expression
where the tag T appears (i.e. in the expression obtained by using Property 1),
now S appears as well (along with T ); but like T , it disappears again in the next
step due to message-independence.

For the bound on δ(KL,UK×L|Θ′E′) we follow closely the proof of Theorem1
but with the following modifications.

1. The key K is replaced by the key pair (K,L), and the tag T by the tag-
secure-sketch pair (T, S), and we observe that we can understand (T, S) to
be the hash of the input X under key (K,L) with respect to a hash func-
tion that satisfies message-independent and (almost) key-privacy. Indeed, this
composed hash function can be understood as being obtained by means of
Proposition 4. As such, whenever we argue by means of message-independence
(Definition 2) or key-privacy (Definition 3) in the proof of Theorem 1, we can
still do so, except that we need to adjust the bound on the uniformity of the
key to the new — and now composite — hash function.

2. The auxiliary random variable D̃, and correspondingly Θ̃′, is defined in a
slightly different way: D̃ is 1 if X ≈ϕ X ′ and Eve has not modified the tag
T , the secure-sketch S, nor the message msg. The “real” state with D and
Θ′ is then (εMAC + εSS)-close to the modified one with D̃ and Θ̃′ instead.
Correspondingly, the decomposition of the distance to be bounded is then
done with respect to the indicated random variable 1X≈ϕX′ instead of 1X=X′ .
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3. When bounding the probability P [X ≈ϕ X ′ ∧ X =X ′′], we refer to the game
analyzed in Corollary 3 in AppendixA, which applies to the situation here
where some slack is given for Bob’s guess.

The claimed bound is then obtained by adjusting terms according to the above
changes: update the bounds obtained by applying Definition 3 to the updated
bound

√
Guess(X| · · · ) |T | |S|, obtained by means of Proposition 4, and inserting

the 2h(ϕ)n blow-up when using Corollary 3 instead of Corollary 1, but making use
of the observation in Remark 6. �

In essence, compared to the case with no noise, we have an additional loss due
to the |S| term, whereas we can neglect the term with 2h(ϕ)n for small enough ϕ.
To compensate for this additional loss, we need to have ς = log |S| additional
bits of entropy in Θ, i.e., we need to choose C with |C| = 23λ+ς and d = 6λ + 2ς.
By Singleton bound, this requires n ≥ 9λ+3ς−1, and thus puts a bound ς < n/3
on the size of the secure sketch, and thus limits the noise parameter ϕ.11

5.2 Adding Encryption

Adding encryption now works pretty straightforwardly. Concretely, our quantum
encryption scheme with key recycling QENC∗ is obtained by means of the follow-
ing modifications to QMAC∗. Alice and Bob extract additional randomness from
x using an extractor that offers message-independence and key-privacy, and use
the extracted randomness as one-time-pad key to en-/decrypt msg. Finally, the
resulting ciphertext c is authenticated along with x and s; this is in order to
offer authenticity as well and can be omitted if privacy is the only concern.

Security can be proven along the same lines as Theorem1, respectively The-
orem 2 for the noise-tolerant version, and Proposition 5: we simply observe by
means of Propositions 3 and 4 that the composition of computing the triple c,
s and t = MAC(k, x‖c‖s) from x constitutes a keyed hash function that offers
message-independence and key-privacy, and then we can argue exactly as above
to show that the (possibly refreshed) key stays secure over many executions.
Also, given that the key is secure before an execution, we can control the min-
entropy in X as in the proof of Theorem 2 and argue almost-perfect security of
the extracted one-time-pad key, implying privacy of the communicated message.

In order to accommodate for the additional entropy that is necessary to
extract this one-time-pad key, which is reflected in the adjusted range of the
composed keyed hash function, we now have to choose C with |C| = 23λ+ς+m

and d = 6λ+2ς +2m, where m = log |MSG|; this requires n ≥ 9λ+3ς +3m− 1
by Singleton bound.

11 We recall that, when using a δ-biased family of codes to construct the secure sketch
SS, as discussed in the Appendix B, then ς does not correspond exactly to the size
of the syndrome given by the code, but is determined by the parameter δ, and is
actually somewhat larger than the size of the syndrome.



Quantum Authentication and Encryption with Key Recycling 333

5.3 Optimality of the Key Recycling

Our aim was, like in [5,6], to minimize the number of fresh random bits needed
for the key refreshing. In our constructions, where the key is refreshed simply
by choosing a new basis key θ, this number is obviously given by the number of
bits needed to represent θ, i.e., in the above encryption scheme QENC∗, it is

log |C| = 3λ + ς + m.

This is close to optimal for large messages and assuming almost no noise, so
that m � λ, ς. Indeed, assuming that Eve knows the encrypted message, i.e., we
consider a known-plaintext attack, it is not hard to see that for any scheme that
offers (almost) perfect privacy of the message, by simply keeping everything
that is communicated from Alice to Bob, in particular by keeping all qubits
that Alice communicates (which will most likely trigger Bob to reject), Eve can
always learn (almost) m bits of Shannon information on the key. As such, it
is obviously necessary that the key is updated with (almost) m fresh bits of
randomness in case Bob rejects, since otherwise Eve will soon have accumulated
too much information on the key.

Note that [5,6] offers a rigorously proven bound (of roughly m) on the number
of fresh bits necessary for key refreshing. However, their notion of key refreshing
is stronger than what we require: they require that the refreshed key is close to
random and independent of Eve, whereas we merely require that the refreshed
key is “secure enough” as to ensure security of the primitive, i.e., authenticity
in QMAC or QMAC∗, and privacy (and authenticity) in QENC∗. Indeed, in our
construction we do not require that the basis key is close to random, only that
it is hard to guess. However, the above informal argument shows that the bound
still applies.

Similarly, one can argue that in any message authentication scheme with error
probability 2−λ, by keeping everything Eve can obtain λ bits of information on
the key. Thus, in case of almost no noise, our scheme QMAC∗ is optimal up to
the factor 3.

In our constructions, the number of fresh random bits needed for the key
refreshing increases with larger noise. In particular in QMAC∗, ς will soon be the
dominating term in case we increase the noise level. We point out that it is not
clear whether such a dependency is necessary, as we briefly mention in Sect. 6.

5.4 Supporting Quantum Messages

The approach in Sect. 5.2 of extracting a (one-time pad) key also gives us the
means to authenticate and/or encrypt quantum messages: we simply use the
extracted key as quantum-one-time-pad key [1], or as key for a quantum message
authentication code [4]. However, when considering arbitrary quantum messages,
honest users anyway need a quantum computer, so one might just as well use
the scheme by Damg̊ard et al. to communicate a secret key and use this key
for a quantum-one-time-pad or for quantum message authentication, or resort
to [10,16], which additionally offer security against superposition attacks.
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5.5 Variations

We briefly mention a few simple variations of our schemes. The first variation is
as follows. In QMAC, instead of choosing x uniformly at random and computing
the tag t as t = MAC(k,msg‖x), we can consider a fixed tag t◦ ∈ T , and choose
x uniformly at random subject to MAC(k,msg‖x) = t◦. Since t◦ is fixed, it
does not have to be sent along. In case the classical MAC, as a keyed hash
function, is of the form as in Proposition 2, meaning that the tag is one-time-
pad encrypted (which in particular holds for the canonical examples suggested
in Sect. 4.2), then Theorem 1 and Proposition 5 still hold. Indeed, if MAC is of
this form then the concrete choice of t◦ is irrelevant for security: if Theorem1
would fail for one particular choice of t◦ then it would fail for any choice, and
thus also for a randomly chosen tag, which would then contradict Theorem1 for
the original QMAC. Similarly, in QMAC∗ and QENC∗ we can fix the tag t and the
secure sketch s (and ciphertext c), and choose x subject to the corresponding
restrictions.

A second variation is to choose the basis key θ not as a code word, but
uniformly random from {0, 1}n. As a consequence, the bounds on the games
analyzed in Sect. 3.1 change — indeed, the game analyzed in Proposition 1 then
becomes the monogamy-of-entanglement game considered and analyzed in [19] —
and therefore we get different bounds in Theorem1, but conceptually everything
should still work out. Our goal was to minimize the number of fresh random
bits needed for the key refreshing, which corresponds to the number of bits
necessary to describe θ; this allows us to compare our work with [5,6] and show
that our encryption scheme performs (almost) as good as theirs in this respect.
And with this goal in mind, it makes sense to choose θ as a codeword: it gives
the same guessing probability for x but asks for less entropy in θ. Choosing θ
uniformly random from {0, 1}n seems to be the preferred choice for minimizing
the quantum communication instead, which would be a very valid objective too.

As an interesting side remark, we observe that with the above variations, our
constructions can be understood as following the design principle of the scheme
originally proposed by Bennett et al. of encrypting and adding redundancy to
the message, and encoding the result into BB84 qubits.

Finally, a last variation we mention is to use the six-state encoding instead of
the BB84 encoding. Since the three bases of the six-state encoding have the same
so-called maximal overlap, the bounds in Sect. 3.1 carry over unchanged, but we
get more freedom in choosing the code C in {0, 1, 2}n so that fewer qubits need
to be communicated for the same amount of entropy in x. Also, when choosing
the bases uniformly at random in {0, 1, 2}n, as in the variation above, we get a
slightly larger entropy for x when using the six-state encoding.

6 Conclusion, and Open Problems

We reconsider one of the very first problems that was posed in the context of
quantum cryptography, even before QKD, and we give the first solution that
offers a rigorous security proof and does not require any sophisticated quantum
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computing capabilities from the honest users. However, our solution is not the
end of the story yet. An intriguing open problem is whether it is possible to do
the error correction in a more straightforward way, by just sending the syndrome
of x with respect to a fixed suitable code, rather than relying on the techniques
from [8]. In return, the scheme would be simpler, it could take care of more
noise — Dodis and Smith are not explicit about the amount of noise their codes
can correct but it appears to be rather low — and, potentially, the number of
fresh random bits needed for key refreshing might not grow with the amount of
noise. Annoyingly, it looks like our scheme should still be secure when doing the
error correction in the straightforward way, but our proof technique does not
work anymore, and there seems to be no direct fix.

From a practical perspective, it would be interesting to see to what extent it
is possible to optimize the quantum communication rather than the key refresh-
ing, e.g., by using BB84 qubits with fully random and independent bases, and
whether is it possible to beat QKD in terms of quantum communication.

Acknowledgments. The authors would like to thank Ivan Damg̊ard and Christian
Schaffner for interesting discussions related to this work, and Christopher Portmann
for comments on an earlier version of the paper.

Appendix

A Yet Another (Version of the) Guessing Game

We consider a variant of the guessing game from Sect. 3.1 where Bob and Charlie
need to guess Alice’s measurement outcome. In the variation considered here,
we give some slack to Bob in that it is good enough if his guess is close enough
(in Hamming distance) to Alice’s measurement outcome, and Charlie is given
some (deterministic) classical side information on Alice’s measurement outcome
before he has to announce his guess.12 We show that, if the minimal distance d
of the code C is large enough, this does not help Bob and Charlie significantly.
This is in line with the intuition that, for large enough d, the optimal strategy
for Bob and Charlie is to pre-guess Alice’s choice of bases.

Proposition 6. Let HA be a n-qubit system, and let HB and HC be arbitrary
quantum systems. Also, let 0 ≤ ϕ ≤ 1

2 be a parameter and f : {0, 1}n → Y a
function. Consider a state ρΘABC = μC ⊗ ρABC ∈ D(C ⊗HA ⊗HB ⊗HC), and let

ρΘXX′X′′ = NΘf(X)C→X′′ ◦ NΘB→X′ ◦ Mbb84

ΘA→X

(
ρΘABC

)

where NΘB→X′ is an arbitrary measurement of system B controlled by Θ, and
NΘf(X)C→X′′ is an arbitrary measurement of system C controlled by Θ and f(X).

12 Taking care of such side information, given to Charlie, on Alice’s measurement out-
come is not needed for our application, but we get it almost for free.
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Then, it holds that

P [X ′ ≈ε X ∧ X ′′ =X] ≤ 1
|C| +

2h(ϕ)n · |Y|
2d/2

,

where h is the binary entropy function.

Proof. Here, we can write

P [X ′ ≈ε X ∧ X ′′ =X] =
1
|C|

∥∥∥∥
∑

θ

Π̃θ

∥∥∥∥ ≤ 1
|C|

∑

δ

max
θ

∥∥Π̃θΠ̃θ⊕δ
∥∥

for projectors

Π̃θ =
∑

x

Hθ|x〉〈x|Hθ ⊗
( ∑

e∈Bn
ϕ

P θ
x⊕e

)
⊗ Qθ,f(x)

x ,

where Bn
ϕ ⊂ {0, 1}n denotes the set of stings with Hamming weight at most ϕn.

For any θ �= θ′ ∈ C, we can upper bound Π̃θ and Π̃θ′
by

Π̃θ ≤ Γ̃ θ :=
∑

x

Hθ|x〉〈x|Hθ ⊗
( ∑

e∈Bn
ϕ

P θ
x⊕e

)
⊗ I =

∑

e∈Bn
ϕ

Γ θ
e

and

Π̃θ′ ≤ Δ̃θ′
:=

∑

x

Hθ′ |x〉〈x|Hθ′ ⊗ I ⊗
( ∑

y∈Y
Qθ′,y

x

)
=

∑

y∈Y
Δθ′

y

respectively, where Γ θ
e and Δθ′

y are like Γ θ and Δθ′
, as defined in the proof of

Proposition 1, for certain concrete choices of the POVM’s {P θ
x}x and {Qθ′

x }x

that depend on e and y, respectively. As such, we get that

∥∥Π̃θΠ̃θ′∥∥ ≤ ∥∥Γ̃ θΔ̃θ′∥∥ ≤
∑

e,y

∥∥Γ θ
e Δθ′

y

∥∥ ≤ |Bn
ϕ| · |Y|
2d/2

≤ 2h(ϕ)n · |Y|
2d/2

.

Since we still have that
∥∥Π̃θΠ̃θ

∥∥ =
∥∥Π̃θ

∥∥ = 1, the claim follows. �
By means of the techniques from Sect. 3.1, we can extend the result to the

case where Bob and Charlie have a-priori quantum side information on Alice’s
choice of bases.

Corollary 3. Let HA be a n-qubit system, and let HB,HC and HE be arbitrary
quantum systems. Also, let 0 ≤ ϕ ≤ 1

2 be a parameter and f : {0, 1}n → Y a
function. Consider a state ρΘE ∈ D(C ⊗ HE), and let

ρΘABC = QE→ABC

(
ρΘE

) ∈ D(C ⊗ HA ⊗ HB ⊗ HC)

where QE→ABC is a CPTP map acting on E, and let

ρΘXX′X′′ = NΘf(X)C→X′′ ◦ NΘB→X′ ◦ Mbb84

ΘA→X

(
ρΘABC

)
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as in Proposition 6 above. Then, it holds that

P [X ′ ≈ε X ∧ X ′′ =X] ≤ Guess(Θ|E) +
Guess(Θ|E) · |C| · 2h(ϕ)n · |Y|

2d/2
.

Remark 6. In line with the remarks in Sect. 3.1, if Bob “measures correctly” but
is still given some slack, and, say, Charlie is given no side information on Alice’s
outcome, the bound relaxes to

P [X ′ ≈ε X ∧ X ′′ =X] ≤ Guess(Θ|E) +
Guess(Θ|E) · |C| · 2h(ϕ)n

2d
.

B On the Existence of Suitable Secure Sketches

In [8, Lemma 5], Dodis and Smith show that for any constant 0 < λ < 1,
there exists an explicitly constructible family of binary linear codes {Ci}i∈I in
{0, 1}n with dimension k that efficiently correct a constant fraction of errors and
have square bias δ2 ≤ 2−λn. Their Lemma 4 then shows that the keyed hash
function Ext : I × {0, 1}n → SYN = {0, 1}n−k, (i, x) �→ syni(x) is a strong
extractor, where syni(x) is the syndrome with respect to the code Ci. More
precisely, the generalization of their result to quantum side information by Fehr
and Schaffner [9] shows that if ρIXE = μI ⊗ ρXE ∈ D(I ⊗ X ⊗ HE) then

δ(ρExt(I,X)IE, μSYN ⊗ ρI ⊗ ρE) ≤ 1
2

√
Guess(X|E) δ2 2n.

It follows from Proposition 2 that the secure sketch

SS : L × {0, 1}n → SYN , (i‖b, x) �→ syni(x) + b

where L := I × SYN , offers uniformity and ν-key-privacy with parameter ν =
δ2n/2/

√|SYN | = δ2k.
Dodis and Smith are not explicit about the size n − k of the syndrome in

their construction, but looking at the details, we see that n − k ≤ log(δ2 2n).
As such, by artificially extending the range SYN = {0, 1}n−k of SS to a set
S = {0, 1}ς of bit strings of size ς := log(δ2 2n), and re-defining SS to map
(i‖b, x) to syni(x) + b padded with sufficiently many 0’s, we get that the secure
sketch SS : L×{0, 1}n → S is message-independent and offers ideal key-privacy.13

13 Alternatively, we could simply stick to SS : L × {0, 1}n → SYN but carry along the
non-ideal parameter ν; however, we feel that this additional parameter would make
things more cumbersome — but of course would lead to the same end result.
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Abstract. We show that a family of quantum authentication protocols
introduced in [Barnum et al., FOCS 2002] can be used to construct a
secure quantum channel and additionally recycle all of the secret key if
the message is successfully authenticated, and recycle part of the key if
tampering is detected. We give a full security proof that constructs the
secure channel given only insecure noisy channels and a shared secret key.
We also prove that the number of recycled key bits is optimal for this
family of protocols, i.e., there exists an adversarial strategy to obtain all
non-recycled bits. Previous works recycled less key and only gave partial
security proofs, since they did not consider all possible distinguishers
(environments) that may be used to distinguish the real setting from the
ideal secure quantum channel and secret key resource.

1 Introduction

1.1 Reusing a One-Time Pad

A one-time pad can famously be used only once [31], i.e., a secret key as long as
the message is needed to encrypt it with information-theoretic security. But this
does not hold anymore if the honest players can use quantum technologies to
communicate. A quantum key distribution (QKD) protocol [5,30] allows players
to expand an initial short secret key, and thus encrypt messages that are longer
than the length of the original key. Instead of first expanding a key, and then
using it for encryption, one can also swap the order if the initial key is long
enough: one first encrypts a message, then recycles the key. This is possible due
to the same physical principles as QKD: quantum states cannot be cloned, so if
the receiver holds the exact cipher that was sent, the adversary cannot have a
copy, and thus does not have any information about the key either, so it may
be reused. This requires the receiver to verify the authenticity of the message
received, and if this process fails, a net key loss occurs—the same happens in
QKD: if an adversary tampers with the communication, the players have to
abort and also lose some of the initial secret key.

1.2 Quantum Authentication and Key Recycling

Some ideas for recycling encryption keys using quantum ciphers were already
proposed in 1982 [6]. Many years later, Damg̊ard et al. [13] (see also [14,18])
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part III, LNCS 10212, pp. 339–368, 2017.
DOI: 10.1007/978-3-319-56617-7 12
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showed how to encrypt a classical message in a quantum state and recycle the
key. At roughly the same time, the first protocol for authenticating quantum
messages was proposed by Barnum et al. [3], who also proved that quantum
authentication necessarily encrypts the message as well. Gottesman [20] then
showed that after the message is successfully authenticated by the receiver, the
key can be leaked to the adversary without compromising the confidentiality of
the message. And Oppenheim and Horodecki [25] adapted the protocol of [3]
to recycle key. But the security definitions in these initial works on quantum
authentication have a major flaw: they do not consider the possibility that an
adversary may hold a purification of the quantum message that is encrypted.
This was corrected by Hayden, Leung and Mayers [21], who give a composable
security definition for quantum authentication with key recycling. They then
show that the family of protocols from [3] are secure, and prove that one can
recycle part of the key if the message is accepted.

The security proof from [21] does however not consider all possible environ-
ments. Starting in works by Simmons in the 80’s and then Stinson in the 90’s
(see, for example, [33–36]) the classical literature on authentication studies two
types of attacks: substitution attacks—where the adversary obtains a valid pair
of message and cipher1 and attempts to substitute the cipher with one that will
decode to a different message—and impersonation attacks—where the adver-
sary directly sends a forged cipher to the receiver, without knowledge of a valid
message-cipher pair. To the best of our knowledge, there is no proof showing
that security against impersonation attacks follows from security against sub-
stitution attacks, hence the literature analyzes both attacks separately.2 This is
particularly important in the case of composable security, which aims to prove
the security of the protocol when used in any arbitrary environment, therefore
also in an environment that first sends a forged cipher to the receiver, learns
wether it is accepted or rejected, then provides a message to the sender to be
authenticated, and finally obtains the cipher for this message. This is all the
more crucial when key recycling is involved, since the receiver will already recy-
cle (part of) the key upon receiving the forged cipher, which is immediately
given to the environment. The work of Hayden et al. [21] only considers envi-
ronments that perform substitution attacks—i.e., first provide the sender with a
message, then change the cipher, and finally learn the outcome of the authenti-
cation as well as receive the recycled key. Hence they do not provide a complete

1 Here we use the term cipher to refer to the authenticated message, which is often a
pair of the original message and a tag or message authentication code (MAC), but
not necessarily.

2 In fact, one can construct examples where the probability of a successful imper-
sonation attack is higher than the probability of a successful substitution attack.
This can occur, because any valid cipher generated by the adversary is considered a
successful impersonation attack, whereas only a cipher that decrypts to a different
message is considered a successful substitution attack.
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composable security proof of quantum authentication, which prevents the pro-
tocol from being composed in an arbitrary environment.3

More recently, alternative security definitions for quantum authentication
have been proposed, both without [9,17] and with [19] key recycling (see also [2]).
These still only consider substitution attacks, and furthermore, they are, strictly
speaking, not composable. While it is possible to prove that these definitions
imply security in a composable framework (if one restricts the environment to
substitution attacks), the precise way in which the error ε carries over to the
framework has not been worked out in any of these papers. If two protocols
with composable errors ε and δ are run jointly (e.g., one is a subroutine of
the other), the error of the composed protocol is bounded by the sum of the
individual errors, ε + δ. If a security definition does not provide a bound on the
composable error, then one cannot evaluate the new error after composition.4

For example, quantum authentication with key recycling requires a backwards
classical authentic channel, so that the receiver may tell the sender that the
message was accepted, and allow her to recycle the key. The error of the complete
protocol is thus the sum of errors of the quantum authentication and classical
authentication protocols. Definitions such as those of [9,17,19] are not sufficient
to directly obtain a bound on the error of such a composed protocol.

In the other direction, it is immediate that if a protocol is ε-secure accord-
ing to the composable definition used in this work, then it is secure according
to [9,17,19] with the same error ε. More precisely, proving that the quantum
authentication scheme constructs a secure channel is sufficient to satisfy [9,17]—
i.e., the ideal functionality is a secure channel which only allows the adversary to
decide if the message is delivered, but does not leak any information about the
message to the adversary except its length (confidentiality), nor does it allow the
adversary to modify the message (authenticity). And proving that the scheme
constructs a secure channel that additionally generates fresh secret key is suffi-
cient to satisfy the definition of total authentication from [19]. Garg et al. [19]
also propose a definition of total authentication with key leakage, which can be
captured in a composable framework by a secure channel that generates fresh
key and leaks some of it to the adversary. This is however a somewhat unnat-
ural ideal functionality, since it requires a deterministic leakage function, which
may be unknown or not exist, e.g., the bits leaked can depend on the adver-
sary’s behavior—this is the case for the trap code [8,9], which we discuss further
in Sect. 4. The next natural step for players in such a situation is to extract a
secret key from the partially leaked key, and thus the more natural ideal func-
tionality is what one obtains after this privacy amplification step [7,29]: a secure

3 For example, QKD can be broken if the underlying authentication scheme is vulner-
able to impersonation attacks, because Eve could trick Alice into believing that the
quantum states have been received by Bob so that she releases the basis information.

4 In an asymptotic setting, one generally does not care about the exact error, as long
as it is negligible. But for any (finite) implementation, the exact value is crucial,
since without it, it is impossible to set the parameters accordingly, e.g., how many
qubits should one send to get an error ε ≤ 10−18.
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channel that generates fresh secret key, but where the key generated may be
shorter than the key consumed. The ideal functionality used in the current work
provides this flexibility: the amount of fresh key generated is a parameter which
may be chosen so as to produce less key than consumed, the same amount, or
even more.5 Hence, with one security definition, we encompass all these different
cases—no key recycling, partial key recycling, total key recycling, and even a
net gain of secret key. Furthermore, having all these notions captured by ideal
functionalities makes for a particularly simple comparison between the quite
technical definitions appearing in [9,17,19].

1.3 Contributions

In this work we use the Abstract Cryptography (AC) framework [23] to model
the composable security of quantum authentication with key recycling. AC views
cryptography as a resource theory: a protocol constructs a (strong) resource given
some (weak) resources. For example, the quantum authentication protocols that
we analyze construct two resources: a secure quantum channel—a channel that
provides both confidentiality and authenticity—and a secret key resource that
shares a fresh key between both players. In order to construct these resources,
we require shared secret key, an insecure (noiseless) quantum channel and a
backwards authentic classical channel. These are all resources, that may in turn
be constructed from weaker resources, e.g., the classical authentic channel can
be constructed from a shared secret key and an insecure channel, and noiseless
channels are constructed from noisy channels. Due to this constructive aspect of
the framework, it is also called constructive cryptography in the literature [22,24].

Although this approach is quite different from the Universal Composability
(UC) framework [10,11], in the setting considered in this work—with one dishon-
est player and where recipients are denoted by classical strings6—the two frame-
works are essentially equivalent and the same results could have been derived with
a quantum version of UC [37]. In UC, the constructed resource would be called ideal
functionality, and the resources used in the construction are setup assumptions.

We thus first formally define the ideal resources constructed by the quantum
authentication protocol with key recycling—the secure channel and key resource
mentioned in this introduction—as well as the resources required by this con-
struction. We then prove that a family of quantum authentication protocols pro-
posed by Barnum et al. [3] satisfy this construction, i.e., no distinguisher (called
environment in UC) can distinguish the real system from the ideal resources
and simulator except with an advantage ε that is exponentially small in the
security parameter. This proof considers all distinguishers allowed by quantum
mechanics, including those that perform impersonation attacks.
5 One may obtain more key than consumed by using the constructed secure channel

to share secret key between the players. We use this technique to compensate for
key lost in a classical authentication subroutine, that cannot be recycled.

6 In a more general setting, a message may be in a superposition of “sent” and “not sent”
or a superposition of “sent to Alice” and “sent to Bob”, which cannot be modeled in
UC, but is captured in AC [28].
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We show that in the case where the message is accepted, every bit of key
may be recycled. And if the message is rejected, one may recycle all the key
except the bits used to one-time pad the cipher.7 We prove that this is optimal
for the family of protocols considered, i.e., an adversary may obtain all non-
recycled bits of key. This improves on previous results, which recycled less key
and only considered a subset of possible environments. More specifically, Hayden
et al. [21], while also analyzing protocols from [3], only recycle part of the key
in case of an accept, and lose all the key in case of a reject. Garg et al. [19]
propose a new protocol, which they prove can recycle all of the key in the case
of an accept, but do not consider key recycling in the case of a reject either.
The protocols we analyze are also more key efficient than that of [19]. We give
two instances which need Θ(m + log 1/ε) bits of initial secret key, instead of the
Θ((m + log 1/ε)2) required by [19], where m is the length of the message and ε
is the error. Independently from this work, Alagic and Majenz [2] proved that
one of the instances analyzed here satisfies the weaker security definition of [19].

Note that the family of protocols for which we provide a security proof is a
subset of the (larger) family introduced in [3]. More precisely, Barnum et al. [3]
define quantum authentication protocols by composing a quantum one-time pad
and what they call a purity testing code—which, with high probability, will detect
any noise that may modify the encoded message—whereas we require a stricter
notion, a strong purity testing code—which, with high probability, will detect any
noise. This restriction on the family of protocols is necessary to recycle all the
key. In fact, there exists a quantum authentication scheme, the trap code [8,9],
which is a member of the larger class from [3] but not the stricter class analyzed
here, and which leaks part of the key to the adversary, even upon a successful
authentication of the message—this example is discussed in Sect. 4.

We then give two explicit instantiations of this family of quantum authentica-
tion protocols. The first is the construction used in [3], which requires an initial
key of length 2m + 2n, where m is the length of the message and n is the secu-
rity parameter, and has error ε ≤ 2−n/2+1

√
2m/n + 2. The second is an explicit

unitary 2-design [15,16] discovered by Chau [12], which requires 5m + 4n bits
of initial key8 and has error ε ≤ 2−n/2+1. Both constructions have a net loss of
2m+n bits of key if the message fails authentication. Since several other explicit
quantum authentication protocols proposed in the literature are instances of this
family of schemes, our security proof is a proof for these protocols as well—this
is discussed further in Sect. 4.

In the full version of this paper [27], we additionally show how to construct
the resources used by the protocol from nothing but insecure noisy channels and
shared secret key, and calculate the joint error of the composed protocols. We

7 Key recycling in the case of a rejected message is not related to any quantum
advantage. A protocol does not leak more information about the key than (twice)
the length of the cipher, so the rest may be reused. The same holds for classical
authentication [26].

8 The complete design would require 5m+5n bits of key, but we show that some of the
unitaries are redundant when used for quantum authentication and can be dropped.
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also show how to compensate for the bits of key lost in the construction of the
backwards authentic channel, so that the composed protocol still has a zero net
key consumption if no adversary jumbles the communication. Finally, the full
version [27] also contains a security proof of quantum without key recycling,
which is valid for weak purity testing codes and achieves an optimal error.

1.4 Structure of This Paper

In Sect. 2 we give a brief introduction to the main concepts of AC, which are nec-
essary to understand the notion of cryptographic construction and corresponding
security defintion. In Sect. 3 we then define the resources constructed and used
by a quantum authentication scheme with key recycling. We introduce the fam-
ily of protocols from [3] that we analyze in this work, and then prove that they
construct the corresponding ideal resources. We also prove that the number of
recycled bits is optimal. Finally, in Sect. 4 we discuss the relation between some
quantum authentication schemes that have appeared in the literature and those
analyzed here, as well as some open problems.

2 Constructive Cryptography

As already mentioned in Sect. 1.3, the AC framework [23] models cryptography
as a resource theory. In this section we give a brief overview of how these con-
structive statements are formalized. We illustrate this with an example taken
from [26], namely authentication of classical messages with message authentica-
tion codes (MAC). An expanded version of this introduction to AC is provided
in the full version of this paper [27].

In an n player setting, a resource is an object with n interfaces, that allows
every player to input messages and receive other messages at her interface. The
objects depicted in Fig. 1 are examples of resources. The insecure channel in
Fig. 1a allows Alice to input a message at her interface on the left and allows
Bob to receive a message at his interface on the right. Eve can intercept Alice’s
message and insert a message of her choosing at her interface. The authentic
channel resource depicted in Fig. 1b also allows Alice to send a message and Bob
to receive a message, but Eve’s interface is more limited than for the insecure
channel: she can only decide if Bob receives the message or not, but not tamper
with the message being sent. The key resource drawn in Fig. 1c provides each
player with a secret key when requested. If two resources K and C are both avail-
able to the players, we write K‖C for the resource resulting from their parallel
composition—this is to be understood as the resources being merged into one:
the interfaces belonging to player i are simultaneously accessible to her as one
new interface, which we depict in Fig. 1d. In the full version of this work [27] we
provide a more detailed description of the resources from Fig. 1 along a discussion
of how to model them mathematically.

Converters capture operations that a player might perform locally at her
interface. For example, if the players share a key resource and an insecure chan-
nel, Alice might decide to append a MAC to her message. This is modeled as
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Insecure channel C

boBecilA

Eve

(a) An insecure channel from Alice (on
the left) to Bob (on the right) allows
Eve (below) to intercept the message
and insert a message of her own.

Authentic channel A

boBecilA

Eve

0, 1

(b) An authentic channel from Alice
(on the left) to Bob (on the right) al-
lows Eve (below) to receive a copy of
the message and choose whether Bob
receives it or an error symbol.

key

Secret key K
req. req.

k k

(c) A secret key resource distributes a
perfectly uniform key k to the players
when they send a request req.

Insecure channel C

key

Secret key K
req. req.

k k

Composed resource K C

(d) If two resources K and C are avail-
able to the players, we denote the com-
position of the two as the new resource
K C.

Fig. 1. Some examples of resources. The insecure channel on the top left could trans-
mit either classical or quantum messages. The authentic channel on the top right is
necessarily classical, since it clones the message.

a converter πauth
A that obtains the message x at the outside interface, obtains

a key at the inside interface from a key resource K and sends (x, hk(x)) on the
insecure channel C, where hk is taken from a family of strongly 2-universal hash
functions [36,39]. We illustrate this in Fig. 2. Converters are always drawn with
rounded corners. If a converter αi is connected to the i interface of a resource
R, we write αiR or Rαi for the new resource obtained by connecting the two.9

A protocol is then defined by a set of converters, one for every honest player.
Another type of converter that we need is a filter. The resources illustrated
in Fig. 1 depict a setting with an adversary that has some control over these
resources. For a cryptographic protocol to be useful it is not sufficient to pro-
vide guarantees on what happens when an adversary is present, one also has

9 In this work we adopt the convention of writing converters at the A and B inter-
faces on the left and converters at the E interface on the right, though there is no
mathematical difference between αiR and Rαi.
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y :=
hk(x)

πauth
A

y
?
=
hk(x )

πauth
B

key

Secret key K

Insecure channel C

k k

req. req.

x x , ⊥

(x, y) (x , y )

Fig. 2. The real system for a MAC protocol. Alice authenticates her message by
appending a MAC to it. Bob checks if the MAC is correct and either accepts or rejects
the message.

to provide a guarantee on what happens when no adversary is present, e.g., if
no adversary tampers with the message on the insecure channel, then Bob will
receive the message that Alice sent. We model this setting by covering the adver-
sarial interface with a filter that emulates an honest behavior. In Fig. 3 we draw
an insecure and an authentic channel with filters �E and ♦E that transmit the
message to Bob. In the case of the insecure channel, one may want to model an
honest noisy channel when no adversary is present. This is done by having the
filter �E add some noise to the message. A dishonest player removes this and has
access to a noiseless channel as in Fig. 1a.

We use the term filtered resource to refer to a pair of a resource R and a filter
�E , and often write R� = (R, �E). Such an object can be thought of as having
two modes: it is characterized by the resource R�E when no adversary is present
and by the resource R when the adversary is present.

The final object that is required by the AC framework to define the notion of
construction and prove that it is composable, is a (pseudo-)metric defined on the
space of resources that measures how close two resources are. In the following,
we use a distinguisher based metric, i.e., the maximum advantage a distinguisher
has in guessing whether it is interacting with resource R or S, which we write
d(R, S). More specifically, let D be a distinguisher, and le D[R] and D[S] be the
binary random variables corresponding to D’s output when connected to R and
S, respectively. Then the distinguishing advantage between R and S is defined
as

d(R, S) := sup
D

|Pr [D[R] = 0] − Pr [D[S] = 0]|.

Since we study information-theoretic security in this work, the supremum is
taken over the set of all possible distinguishers allowed by quantum mechanics.
This is discussed further in the full version of this work [27].

We are now ready to define the security of a cryptographic protocol. We do
so in the three player setting, for honest Alice and Bob, and dishonest Eve. Thus,
in the following, all resources have three interfaces, denoted A, B and E, and
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Insecure channel C

E

(a) When no adversary is present, Al-
ice’s message is delivered to Bob. In
the case of a noisy channel, this noise
is introduced by the filter E .

Authentic channel A

♦E

0

(b) When no adversary is present, Bob
receives the message sent by Alice.

Fig. 3. Channels with filters. The two channels from Fig. 1a and b are represented
with filters on Eve’s interface emulating an honest behavior, i.e., when no adversary is
present.

a protocol is then given by a pair of converters (πA, πB) for the honest players.
We refer to [23] for the general case, when arbitrary players can be dishonest.

Definition 1 (Cryptographic security [23]). Let πAB = (πA, πB) be a pro-
tocol and R� = (R, �) and S♦ = (S,♦) denote two filtered resources. We say
that πAB constructs S♦ from R� within ε, which we write R�

π,ε−−→ S♦, if the two
following conditions hold:

(i) We have

d(πABR�E , S♦E) ≤ ε.

(ii) There exists a converter10 σE—which we call simulator—such that

d(πABR, SσE) ≤ ε.

If it is clear from the context what filtered resources R� and S♦ are meant, we
simply say that πAB is ε-secure.

The first of these two conditions measures how close the constructed resource
is to the ideal resource in the case where no malicious player is intervening,
which is often called correctness in the literature. The second condition captures
security in the presence of an adversary. For example, to prove that the MAC
protocol πauth

AB constructs an authentic channel A♦ from a (noiseless) insecure
channel C� and a secret key K within ε, we need to prove that the real system
(with filters) πauth

AB (K‖C�E) cannot be distinguished from the ideal system A♦E

with advantage greater than ε, and we need to find a converter σauth
E such that

the real system (without filters) πauth
AB (K‖C) cannot be distinguished from the

10 For a protocol with information-theoretic security to be composable with a proto-
col that has computational security, one additionally requires the simulator to be
efficient.



348 C. Portmann

Authentic channel A

σauth
E

x

x

x,⊥

0, 1

y = hk(x) (x, y)
?
=

(x , y )

(x, y) (x , y )

key

Fig. 4. The ideal system with simulator for a MAC protocol. The simulator σauth
E

picks its own key and generates the MAC. If the value input by Eve is different from
the output at her interface (or is input before an output is generated), the simulator
prevents Bob from getting Alice’s message.

ideal system Aσauth
E with advantage greater than ε. For the MAC protocol,

correctness is satisfied with error 0 and the simulator σauth
E drawn in Fig. 4

satisfies the second requirement if the family of hash functions {hk}k is ε-almost
strongly 2-universal [26].

Remark 2. The protocols and simulators discussed in this work are all efficient.
The protocols we consider are either trivially efficient or taken from other work,
in which case we refer to these other works for proofs of efficiency. The efficiency
of the simulator used to prove the security of quantum authentication has been
analyzed in [9]. All other simulators used in the security proofs run the corre-
sponding honest protocols, and are thus efficient because the protocols are. We
therefore do not discuss efficiency any further in this work.

3 Quantum Authentication

We start with some technical preliminaries in Sect. 3.1, where we introduce
(strong) purity testing codes, which are a key component of the family of quantum
authentication protocols of [3]. In Sect. 3.2 we give a constructive view of quan-
tum authentication with key recycling: we define the resources that such a proto-
col is expected to construct, as well as the resources that are required to achieve
this. In Sect. 3.3 we describe the family of protocols that we analyze in this work,
along with a variant in which the order of the encryption and encoding opera-
tions has been swapped, which we prove to be equivalent. In Sect. 3.4 we give a
security proof for the family of quantum authentication protocols defined earlier.
And in Sect. 3.5 we show that the number of recycled key bits is optimal. Finally,
in Sect. 3.6 we give two explicit constructions of purity testing codes and get the
exact parameters of the quantum authentication protocols with these codes.
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3.1 Technical Preliminaries

Pauli Operators. To denote a Pauli operator on n qubits we write either Px,z

or P�, where x and z are n-bit strings indicating in which positions bit and phase
flips occur, and 	 = (x, z) is the concatenation of x and z, which is used when
we do not need to distinguish between x and z. Two Pauli operators Pj and P�

with j = (x, z) and 	 = (x′, z′) commute (anti-commute) if the symplectic inner
product

(j, 	)Sp := x · z′ − z · x′ (1)

is 0 (is 1),where x · z is the scalar product of the vectors and the arithmetic is
done modulo 2. Hence, for any Pj and P�

PjP� = (−1)(j,�)SpP�Pj .

We use several times the following equality

∑

j∈{0,1}n

(−1)(j,�)Sp =

{
2n if 	 = 0,

0 otherwise,
(2)

where 	 = 0 means that all bits of the string 	 are 0.

Purity Testing Code. An error correcting code (ECC) that encodes an m
qubit message in a m+n qubit code word is generally defined by an isomorphism
from C2m

to C2m+n

. In this work we define an ECC by a unitary U : C2m+n →
C2m+n

. The code word for a state |ψ〉 is obtained by appending a n qubit state
|0〉 to the message, and applying U , i.e., the encoding of |ψ〉 is U(|ψ〉 ⊗ |0〉). We
do not need to use the decoding properties of ECCs in this work, we only use
the them to detect errors, i.e., given a state |ϕ〉 ∈ C2m+n

, we apply the inverse
unitary U† and measure the last n qubits to see if they are |0〉 or not.

The first property we require of our codes, is that they map any Pauli error
P� into another Pauli error P�′ , i.e.,

U†P�U = eiθ�P�′ , (3)

for some global phase eiθ� . This is always the case for any U that can be imple-
mented with Clifford operators. In particular, all stabilizer codes have this prop-
erty, which are used in [3] to define purity testing codes. Note that the mapping
from 	 to 	′ defined by (3) is a permutation on the set of indices 	 ∈ {0, 1}2m+2n

that depends only on the choice of code.
A code will detect an error P� if P�′ = Px,z ⊗ Ps,z′ for s �= 0, where Px,z acts

on the first m qubits and Ps,z′ on the last n. Measuring these last qubits would
yield the syndrome s, since Ps,z′ flips the bits in the positions corresponding to
the bits of s. And an error P� will act trivially on the message if P�′ = P0,0⊗Ps,z.
In particular, if P�′ = P0,0 ⊗ P0,z, then this error will not be detected, but not
change the message either.
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For a code indexed by a key k, we denote by Pk the set of Pauli errors
that are not detected by this code, and by Qk ⊂ Pk we denote the undetected
errors which act trivially on the message. A purity testing code is a set of codes
{Uk}k∈K such that when a code Uk is selected uniformly at random, it will detect
with high probability all Pauli errors which act non-trivially on the message.

Definition 3 (Purity testing code [3]). A purity testing code with error ε is
a set of codes {Uk}k∈K, such that for all Pauli operators P�,

|{k ∈ K : P� ∈ Pk \ Qk}|
|K| ≤ ε.

As mentioned in Sect. 1.3, we use a stricter definition of purity testing code
in this work. We require that all non-identity Paulis get detected with high
probability, even those that act trivially on the message. Intuitively, the reason
for this is that, with the original definition of purity testing, if the adversary
introduces some noise P�, by learning whether the message was accepted or
not, she will learn whether that error acts trivially on the message or not, and
thus learn something about the ECC used. This means that the adversary learns
something about the key used to choose the ECC, and hence it cannot be recycled
in its entirety.11

Definition 4 (Strong purity testing code). A strong purity testing code with
error ε is a set of codes {Uk}k∈K, such that for all non-identity Pauli operators
P�,

|{k ∈ K : P� ∈ Pk}|
|K| ≤ ε.

In Sect. 3.6 we provide explicit constructions of strong purity testing codes.

3.2 Secure Channel and Secret Key Resource

The main result in this paper is a proof that the family of quantum authenti-
cation protocols of Barnum et al. [3] restricted to strong purity testing codes
can be used to construct a resource that corresponds to the parallel composition
of a secure quantum channel Sm and a secret key resource K̄νrej,νacc , which are
illustrated in Fig. 5 and explained in more detail in the following paragraphs.

The secure quantum channel, Sm, drawn in Fig. 5a, allows an m-qubit mes-
sage ρ to be transmitted from Alice to Bob, which Alice may input at her
interface. Since in general the players cannot prevent Eve from learning that
a message has been sent, Eve’s interface has one output denoted by a dashed
arrow, which notifies her that Alice has sent a message. But the players cannot
prevent Eve from jumbling the communication lines either, which is captured
in the resource Sm by allowing Eve to input a bit that decides if Bob gets the
11 We conjecture that in this case only 1 bit of the key is leaked, see the discussion in

Sect. 4.
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Secure channel Sm

boBecilA

Eve

ρ ρ,⊥

0, 1

(a) A secure channel Sm is very similar
to the authentic channel from Fig. 1b.
It allows Alice (on the left) to send an
m-qubit message, and Eve (below) to
decide if Bob (on the right) gets it. But
this time, Eve only receives a notifica-
tion that the message has been sent
(denoted by the dashed arrow), not a
copy.

key

Secret key K̄νrej,νacc

boBecilA

Eve

req. req.

k, ⊥ k

0, 1 0, 1

(b) A slightly weaker secret key re-
source than that from Fig. 1c, K̄νrej,νacc .
It allows Eve (below) to choose the
length of the key generated, either
|k| = νrej or |k| = νacc. Furthermore,
Eve can prevent Alice (on the left)
from getting the key at all.

E

Secure channel Sm

ρρ

0

key

Secret key K̄νrej,νacc

req. req.

k k

0 0

(c) When no adversary is present, the filter E covers Eve’s interface of the re-
source Sm K̄νacc,νrej . Once E is notified that a message has been sent, it allows the
message through and notifies the secret key resource to prepare a key of length
νacc.

Fig. 5. We depict here the filtered resource (Sm‖K̄νacc,νrej , �E) constructed by the quan-
tum authentication protocols analyzed in this work. It can be seen as the composition
of a secure channel Sm (Fig. 5a) and a secret key resource K̄νacc,νrej (Fig. 5b). The filter
�E that emulates an honest behavior is drawn in Fig. 5c.

message or an error symbol ⊥ —Eve may also decide not to provide this input
(Eve cuts the communication lines), in which case the system is left waiting
and Bob obtains neither the message nor an error. Note that the order in which
messages are input to the resource Sm is not fixed, Eve may well provide her bit
before Alice inputs a message. In this case, Bob immediately receives an error
⊥ regardless of the value of Eve’s bit.

The secret key resource, K̄νrej,νacc , depicted in Fig. 5b distributes a uniformly
random key to Alice and Bob. Unlike the simplified key resource from Fig. 1c,
here the adversary has some control over the length of the key produced. This is
because in the real setting Eve can prevent the full key from being recycled by
jumbling the message. This is reflected at Eve’s interface of K̄νrej,νacc allowing her
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to decide if the key generated is of length νrej or νacc. Furthermore, if in the real
setting Alice were to recycle her key before Bob receives the cipher, Eve could
use the information from the recycled key to modify the cipher without being
detected. So Alice must wait for a confirmation of reception from Bob, which Eve
can jumble, preventing Alice from ever recycling the key. This translates in the
ideal setting to Eve having another control bit, deciding whether Alice receives
the key or an error ⊥. Note that if Eve provides her two bits in the wrong order,
Alice always gets an error ⊥. This key resource is modeled so that the honest
players must request the key to obtain its value. If Bob does this before Eve has
provided the bit deciding the key length, he gets an error instead of a key. If
Alice makes the request before Eve has provided both her bits, she also gets an
error. Otherwise they get the key k.

If no adversary is present, a filter �E covers Eve’s interface of the resources
Sm and K̄νrej,νacc , which is drawn in Fig. 5c. This filter provides the inputs to the
resources that allow Bob to get Alice’s message and generate a key of length νacc
that is made available to both players.

To construct the filtered resource (Sm‖K̄νrej,νacc)�, the quantum authentication
protocol will use a shared secret key to encrypt and authenticate the message.
This means that the players must share a secret key resource. For simplicity
we assume the players have access to a resource Kμ as depicted in Fig. 1c, that
always provides them with a key of length μ.12 Note that the security of the
protocol is not affected if the players only have a weaker resource which might
shorten the key or not deliver it to both players—such as the one constructed by
the protocol, K̄νrej,νacc—because if either of the players does not have enough key,
they simply abort, which is an outcome Eve could already achieve by cutting or
jumbling the communication.

They also need to share an insecure quantum channel, which is used to send
the message, and is illustrated in Fig. 1a without a filter and in Fig. 3a with a
filter. The authentication protocol we consider is designed to catch any error, so
if it is used over a noisy channel, it will always abort, even though no adversary
is tampering with the message. We thus assume that the players share a noiseless
channel, which we denote C�, i.e., C is controlled by the adversary as in Fig. 1a.
But if no adversary is present, the filter �E is noiseless. In the full version of
this work [27] we explain how to compose the protocol with an error correcting
code so as to run it over a noisy channel.

Finally, the players need a backwards authentic channel, that can send one
bit of information from Bob to Alice. This is required so that Alice may learn
whether the message was accepted and recycle the corresponding amount of key.
The authentic channel and its filter A♦ are drawn in Figs. 1b and 3b. Putting
all this together in the case of an active adversary, we get Fig. 6, where the
converters for Alice’s and Bob’s parts of the quantum authentication protocol
are labeled πq-auth

A and πq-auth
B , respectively.

12 Since Eve’s interface of Kμ is empty, this resource has a trivial empty filter, which
we do not write down.



Quantum Authentication with Key Recycling 353

Authentic channel A

Insecure ch. C

Secret key Kμπq-auth
A πq-auth

B

ρ ρ , ⊥

req. req.

k , ⊥ k

keyk k

req. req.

0, 1

Fig. 6. The real system for quantum authentication with key recycling. Upon receiving
a message ρ, πq-auth

A encrypts it with a key that it obtains from Kμ and sends it on
the insecure channel. Upon receiving a quantum state on the insecure channel, πq-auth

B

checks whether it is valid, and outputs the corresponding message ρ′ or an error message
⊥. It may then recycle (part of) the key, k′, and uses the authentic channel to notify
πq-auth

A whether the message was accepted or not. πq-auth
A then recycles the key as well.

Concrete protocols for this are given in Sect. 3.3.

According to Definition 1, a protocol πq-auth
AB = (πq-auth

A , πq-auth
B ) is then a

quantum authentication protocol (with key recycling) with error εq-auth if it
constructs (Sm‖K̄νrej,νacc)� from C�‖A♦‖Kμ within εq-auth, i.e.,

C�‖A♦‖Kμ πq-auth
AB ,εq-auth

−−−−−−−−−→ (Sm‖K̄νrej,νacc)�. (4)

In Sect. 3.3 we describe the protocol, and in Sect. 3.4 we prove that (4) is
satisfied and provide the parameters μ, νrej, νacc, ε

q-auth.

3.3 Generic Protocol

The family of quantum authentication protocols from [3] consists in first encrypt-
ing the message to be sent with a quantum one-time pad, then encoding it with a
purity testing code and a random syndrome. We do the same, but with a strong
purity testing code. We also extend the protocol so that the players recycle all
the key if the message is accepted, and the key used to select the strong purity
testing code if the message is rejected. So that Alice may also recycle the key,
Bob uses the backwards authentic classical channel to notify her of the outcome.
We refer to this as the “encrypt-then-encode” protocol, the details of which are
provided in Fig. 7.

Alternatively, one may perform the encoding and encryption in the opposite
order: Alice first encodes her message with the strong purity testing code with
syndrome 0, then does a quantum one-time pad on the resulting m + n qubit
state. This “encode-then-encrypt” protocol is described in Fig. 8.
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Quantum authentication— encrypt-then-encode

1. Alice and Bob obtain uniform keys k, , and s from the key resource, where
k is long enough to choose an element from a strong purity testing code that
encodes m qubits in m + n qubits, is 2m bits and s is n bits.

2. Alice encrypts the message ρA she receives with a quantum one-time pad
using the key . She then appends an n qubit state |s s|S , and encodes the
whole thing with a strong purity testing code, obtaining the cipher σAS =
Uk(P ρAP ⊗ |s s|S)U†

k .
3. Alice sends σAS to Bob on the insecure channel.
4. Bob receives a message σ̃AS, he applies U†

k , decrypts the A part and measures
the S part in the computational basis.

5. If the result of the measurement is s, he accepts the message and recycles k,
and s. If the result is not s, he rejects the message, and recycles k.

6. Bob sends Alice a bit on the backwards authentic channel to tell her if he
accepted or rejected the message.

7. When Alice receives Bob’s bit, she either recycles all the keys or only k.

Fig. 7. This protocol is identical to the scheme from [3], except that the players use
a strong purity testing code, recycle key, and have a backwards authentic channel so
that Alice may learn the outcome.

The pseudo-code described in Figs. 7 and 8 can easily be translated into con-
verters as used in the AC formalism, i.e., the objects πq-auth

A and πq-auth
B from

Fig. 6. More precisely, if πq-auth
A receives a message at its outer interface, it requests

a key from the key resource, encrypts the message as described and sends the
cipher on the insecure channel. It may receive three symbols from the backwards
authentic channel: an error ⊥, in which case it does not recycle any key, a mes-
sage 0 saying that πq-auth

B did not receive the correct state, in which case it recycles
the part of the key used to choose the code, or a message 1 saying that πq-auth

B did
receive the correct state, in which case it recycles all the key. If πq-auth

A first receives
a message on the backwards authentic channel before receiving a message to send,
it will not recycle any key. Similarly, when πq-auth

B receives a cipher on the inse-
cure channel, it requests a key from the key resource, performs the decryption,
outputs either the message or an error depending on the result of the decryption,
and sends this result back to πq-auth

A on the authentic channel.
The encode-then-encrypt protocol uses n bits more key, and since these bits

are not recycled in case of a reject, it is preferable to use the encrypt-then-encode
protocol. These protocols are however identical: no external observer can detect
which of the two is being run. This holds, because the encode-then-encrypt pro-
tocol performs phase flips on a syndrome that is known to be in a computational
basis state |s〉. Thus, they have no effect and can be skipped. Likewise, Bob per-
forms phase flips on S before measuring in the computational basis—he might
as well skip these phase flips, since they have no effect either. We formalize this
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Quantum authentication— encode-then-encrypt

1. Alice and Bob obtain uniform keys k and from the key resource, where k
is long enough to choose an element from a strong purity testing code that
encodes m qubits in m + n qubits and is 2m + 2n bits long.

2. Alice appends a n qubit state |0 0| to the message ρA she receives, encodes it
with a strong purity testing code chosen according to the key k, and encrypts
the whole thing with a quantum one-time pad using the key . She thus obtains
the cipher σAS = P Uk(ρA ⊗ |0 0|S)U†

kP .
3. Alice sends σAS to Bob on the insecure channel.
4. Bob receives a message σ̃AS, he applies P , then U†

k , and measures the S part
in the computational basis.

5. If the result of the measurement is 0, he accepts the message and recycles k
and . Otherwise, he rejects the message, and recycles k.

6. Bob sends Alice a bit on the backwards authentic channel to tell her if he
accepted or rejected the message.

7. When Alice receives Bob’s bit, she either recycles all the keys or only k.

Fig. 8. This protocol is similar to the protocol from Fig. 7, except that the order of the
encryption and encoding have been reversed. To do this, the players need an extra n
bits of key.

statement by proving (in Lemma 5) that the converters corresponding to the two
different protocols are indistinguishable. This result is similar in spirit to proofs
that some prepare-and-measure quantum key distribution (QKD) protocols are
indistinguishable from entanglement-based QKD protocols, and thus security
proofs for one are security proofs for the other [32].

Since these two protocols are indistinguishable, we provide a security proof
in Sect. 3.4 for the encode-then-encrypt protocol. However, in Sect. 3.6, when we
count the number of bits of key consumed, we count those of the encrypt-then-
encode protocol.

Lemma 5. Let (π̄q-auth
A , π̄q-auth

B ) and (πq-auth
A , πq-auth

B ) denote the pairs of con-
verters modeling Alice’s and Bob’s behavior in the encrypt-then-encode and
encode-then-encrypt protocols, respectively. Then

d(π̄q-auth
A , πq-auth

A ) = d(π̄q-auth
B , πq-auth

B ) = 0.

Proof. We start with Alice’s part of the protocol. Let π̄q-auth
A and πq-auth

A receive
keys k, 	 and s as in the protocol from Fig. 7, as well as an extra key z of length n
that is needed by πq-auth

A , since it requires more key. The distinguisher prepares
a state ρRA, and sends the A part to the system. π̄q-auth

A outputs
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UAS
k PA

�

(
ρRA ⊗ |s〉〈s|S

)
PA

�

(
UAS

k

)†

= UAS
k

(
PA

� ⊗ PS
s,0

) (
ρRA ⊗ |0〉〈0|S

) (
PA

� ⊗ PS
s,0

) (
UAS

k

)†

= UAS
k

(
PA

� ⊗ PS
s,z

) (
ρRA ⊗ |0〉〈0|S

) (
PA

� ⊗ PS
s,z

) (
UAS

k

)†

= PAS
�′ UAS

k

(
ρRA ⊗ |0〉〈0|S

) (
UAS

k

)†
PAS

�′ ,

where in the last line we used (3). This is exactly the state output by πq-auth
A if

when receiving the key k, 	, s, z, the protocol uses the Pauli P�′ for the quantum
one-time pad.

For Bob’s part of the protocol, let the distinguisher prepare a state σRAS

and send the AS part to the system. The subnormalized state held jointly by
π̄q-auth

B and the distinguisher after decoding and performing the measurement is
given by

〈s|PA
�

(
UAS

k

)†
σRASUAS

k PA
� |s〉

= 〈0| (PA
� ⊗ PS

s,0

) (
UAS

k

)†
σRASUAS

k

(
PA

� ⊗ PS
s,0

) |0〉
= 〈0| (PA

� ⊗ PS
s,z

) (
UAS

k

)†
σRASUAS

k

(
PA

� ⊗ PS
s,z

) |0〉
= 〈0| (UAS

k

)†
PAS

�′ σRASPAS
�′ UAS

k |0〉.

We again obtain the state that is jointly held by πq-auth
B and the distinguisher if

when receiving the key k, 	, s, z, the protocol uses the Pauli P�′ for the quantum
one-time pad. �
Remark 6. If part of the message is classical—i.e., it is diagonal in the computa-
tional basis and known not to have a purification held be the distinguisher—then
running the same proof as Lemma5, one can show that it is sufficient to per-
form bit flips on that part of the message, the phase flips are unnecessary. This
is used in the full version of this work [27] to save some key in a construction
that involves a message that is part classical.

3.4 Security Proof

Suppose that there exists a strong purity testing code {Uk}k∈K of size log |K| = ν
and with error ε that encodes an m qubit message in an m+n qubit cipher. And
let πq-auth

AB = (πq-auth
A , πq-auth

A ) denote Alice and Bob’s converters when running
the encode-then-encrypt protocol from Fig. 8. We are now ready to state the
main theorem, namely that πq-auth

AB is a secure authentication scheme with key
recycling.

Theorem 7. Let πq-auth
AB denote converteres corresponding to the protocol from

Fig. 8. Then πq-auth
AB constructs the secure channel and secret key filtered resource
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σq-auth
E

Secure channel Sm

key

Secret key K̄ν,ν+2m+2n

|Φ CR

ρ ρ, ⊥

0, 1

req. req.

k, ⊥ k

0, 1

0, 1

C C 0, 1

Fig. 9. The ideal quantum authentication system consisting of the constructed
resources Sm and K̄ν,ν+2m+2n, and the simulator σq-auth

E .

(Sm‖K̄ν,ν+2m+2n)�, given an insecure quantum channel C�, a backwards authen-
tic channel A♦ and a secret key Kν+2m+2n, i.e.,

C�‖A♦‖Kν+2m+2n πq-auth
AB ,εq-auth

−−−−−−−−→ (Sm‖K̄ν,ν+2m+2n)�,

with εq-auth =
√

ε + ε/2, where ε is the error of the strong purity testing code.

In order to prove this theorem, we need to find a simulator such that the
real and ideal systems are indistinguishable except with advantage

√
ε + ε/2.

The simulator that we use is illustrated in Fig. 9, and works as follows. When it
receives a notification from the ideal resource that a message is sent, it generates
EPR pairs |Φ〉CR and outputs half of each pair (the C register) at its outer inter-
face. Once it receives a modified cipher (denoted C ′ in the picture), it measures
this state and the half of the EPR pairs it kept in the Bell basis to decide if
they were modified. It accordingly activates the switches on the two resources
controlling whether Bob gets the message and the length of the key generated,
and outputs the bit of backward communication from Bob to Alice—which is
always leaked to Eve. If it first receives the register C ′ before generating the
EPR pairs, it always notifies the ideal resource to output an error and outputs
0 as the leak on the backwards authentic channel.

Proof. It is trivial to show that correctness holds with error 0, namely that

d
(
πq-auth

AB

(
C�E‖A♦E‖Kν+2m+2n

)
, (Sm‖K̄ν,ν+2m+2n)�E

)
= 0. (5)

We now prove the case of security, i.e.,

d
(
πq-auth

AB

(
C‖A‖Kν+2m+2n

)
, (Sm‖K̄ν,ν+2m+2n)σq-auth

E

)
≤ √

ε + ε/2. (6)

The real and ideal systems, drawn in Figs. 6 and 9 have 5 inputs. The dis-
tinguisher thus has the choice between 5! possible orders for providing inputs.
However, most of these orders are redundant and do not need to be analyzed.
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Providing the requests for the secret keys before they are ready is pointless. So
it is sufficient to look at the case where these requests are made as soon as the
keys are available for recycling, i.e., after Bob has received the message from
Alice and after Alice has received the confirmation from Bob. What is more,
neither sending Alice an error on the backwards authentic channel nor allowing
her to get Bob’s confirmation will help either way, since the distinguisher already
knows what output Alice will produce, so we can completely ignore this input.
That leaves only 2 in-ports, and thus 2 orders to analyze:

1. The distinguisher first inputs a message at Alice’s interface, gets the cipher
at Eve’s interface, inputs a possibly modified cipher at Eve’s interface, gets
the output at Bob’s interface, and requests the recycled key.

2. The distinguisher first inputs a fake cipher at Eve’s interface, gets the output
at Bob’s interface, makes a request for his recycled key, then inputs a message
at Alice’s interface and receives the cipher for that message.

We start with the first case, the initial message is sent to Alice. The distin-
guisher prepares a message |ψ〉ME and inputs the M part at Alice’s interface.
The ideal channel then notifies the simulator that a message has been input.
The simulator prepares a maximally entangled state |Φ〉CR of dimension 22m+2n

and outputs the C register at Eve’s interface. The distinguisher now holds a
bipartite state in CE, to which it applies a unitary UCE . Without loss of gener-
ality, one may write the unitary as UCE =

∑
j PC

j ⊗ EE
j , where PC

j are Paulis
acting on the cipher register C and EE

j act on the distinguisher’s internal mem-
ory E. The resulting state in the C register is input back in the E interface.
The simulator now measures CR in the Bell basis defined by the projectors
{Pj ⊗ I|Φ〉〈Φ|CR

Pj ⊗ I}j . If the outcome is j = 0—where P0 = I—it tells the
two resources that the cipher was not modified. In which case the contents of
the register M is output at Bob’s interface with an acc flag. Furthermore, it
generates a fresh uniform key (k, 	), where |k| = ν and |	| = 2m + 2n. If the
outcome is j �= 0, then the simulator notifies the channel to delete the message
and output a rej flag, and tells the key resource to prepare only the shorter key
k. The distinguisher then sends a request to obtain the fresh key. So the final
state held by the distinguisher interacting with the ideal system is

ζ = |acc〉〈acc| ⊗ τK ⊗ τL ⊗
[(

IM ⊗ EE
0

) |ψ〉〈ψ|ME
(
IM ⊗ (

EE
0

)†)]

+
∑

j �=0

|rej〉〈rej| ⊗ τK ⊗ EE
j ρE

(
EE

j

)†
, (7)

where τK and τL are fully mixed states and ρE = trM (|ψ〉〈ψ|ME). One could
append states ⊥L and ⊥M in the rej branch of (7) so that both terms have the
same number of registers; we omit them for simplicity.
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In the real system, for the secret key (k, 	), the state before Bob’s measure-
ment of the syndrome is given by

|ϕk,�〉SME =
∑

j

((
USM

k

)†
PSM

� PSM
j PSM

� USM
k ⊗ EE

j

)
|0〉S |ψ〉ME

=
∑

j

(−1)(j,�)Sp
((

USM
k

)†
PSM

j USM
k ⊗ EE

j

)
|0〉S |ψ〉ME

,

where (·, ·)Sp denotes the symplectic product defined in (1). Let Jk
s be the set of

indices j such that the error PSM
j produces a syndrome s when code k is used,

i.e.,
(
USM

k

)†
PSM

j USM
k = eiθk,j PS

s,z ⊗ PM
j′ for some θk,j (see (3) and discussion

thereafter). For j ∈ Jk
s , let

|s〉S |ψj,k〉ME :=
((

USM
k

)†
PSM

j USM
k ⊗ EE

j

)
|0〉S |ψ〉ME

= eiθk,j
(
PS

s,z ⊗ PM
j′ ⊗ EE

j

) |0〉S |ψ〉ME
.

Then

|ϕk,�〉 =
∑

s

∑

j∈Jk
s

(−1)(j,�)Sp
((

USM
k

)†
PSM

j USM
k ⊗ EE

j

)
|0〉S |ψ〉ME

=
∑

s

∑

j∈Jk
s

(−1)(j,�)Sp |s〉S |ψj,k〉ME
.

The next step in Bob’s protocol consists in measuring the syndrome. If s = 0
is obtained, he outputs the message as well as the key (k, 	) and a flag acc.
Otherwise he deletes the message, outputs k with the flag rej. The final state
held be the distinguisher in this case is

ξ =|acc〉〈acc| ⊗ 1
2ν+2m+2n

∑

k,�

|k, 	〉〈k, 	|

⊗
∑

j1,j2∈Jk
0

(−1)(j1⊕j2,�)Sp |ψj1,k〉〈ψj2,k|ME

+ |rej〉〈rej| ⊗ 1
2ν+2m+2n

∑

k,�

|k〉〈k|

⊗
∑

s �=0

∑

j1,j2∈Jk
s

(−1)(j1⊕j2,�)SpEE
j1ρ

E
(
EE

j2

)†
,

where we have used |ψj,k〉ME =
(
V M

k,j ⊗ EE
j

)
|ψ〉ME for some unitary V M

k,j .
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Setting

ζacc :=
(
IM ⊗ EE

0

) |ψ〉〈ψ|ME
(
IM ⊗ (

EE
0

)†)
,

ζrej :=
∑

j �=0

EE
j ρE

(
EE

j

)†
,

ξacck,� :=
∑

j1,j2∈Jk
0

(−1)(j1⊕j2,�)Sp |ψj1,k〉〈ψj2,k|ME
,

ξrejk :=
1

22m+2n

∑

�,s �=0

∑

j1,j2∈Jk
s

(−1)(j1⊕j2,�)SpEE
j1ρ

E
(
EE

j2

)†
,

the distance between real and ideal systems may be written as

1
2

‖ζ − ξ‖tr =
1

2 · 2ν+2m+2n

∑

k,�

∥∥ζacc − ξacck,�

∥∥
tr

+
1

2 · 2ν

∑

k

∥∥∥ζrej − ξrejk

∥∥∥
tr

.

ζacc and ξacck,� are both pure states, so using the fact that13

1
2

‖|ψ〉〈ψ| − |ϕ〉〈ϕ|‖tr ≤ ‖|ψ〉 − |ϕ〉‖ , (8)

we bound their distance as

1
2

∥∥ζacc − ξacck,�

∥∥
tr

≤
∥∥∥∥∥∥

(
IM ⊗ EE

0

) |ψ〉ME −
∑

j∈Jk
0

(−1)(j,�)Sp |ψj,k〉ME

∥∥∥∥∥∥

=

∥∥∥∥∥∥

∑

j∈Jk
0\{0}

(−1)(j,�)Sp |ψj,k〉ME

∥∥∥∥∥∥

=
√ ∑

j1,j2∈Jk
0\{0}

(−1)(j1⊕j2,�)Sp〈ψj1,k|ψj2,k〉,

where ‖|a〉‖ =
√〈a|a〉 is the vector 2-norm and we used the fact that |ψ0,k〉ME =(

IM ⊗ EE
0

) |ψ〉ME . From Jensen’s inequality and using (2) we obtain

1
2 · 2ν+2m+2n

∑

k,�

∥∥ζacc − ξacck,�

∥∥
tr

≤
√√√√

1
2ν+2m+2n

∑

k,�

∑

j1,j2∈Jk
0\{0}

(−1)(j1⊕j2,�)Sp〈ψj1,k|ψj2,k〉

=

√√√√
1
2ν

∑

k

∑

j∈Jk
0\{0}

〈ψj,k|ψj,k〉.

13 See the full version of this work [27] for a proof that (8) holds.
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Finally, because the code is a strong purity testing code with error ε and that
〈ψj,k|ψj,k〉 = tr(EE

j ρE
(
EE

j

)†) =: pj with
∑

j pj = 1, we get

1
2|K‖|L|

∑

k,�

∥∥ζacc − ξacck,�

∥∥
tr

≤
√√√√

1
|K|

∑

j �=0

∑

k:j∈Jk
0

〈ψj,k|ψj,k〉

=

√√√√
1

|K|
∑

j �=0

∑

k:j∈Jk
0

pj

≤
√∑

j �=0

εpj ≤ √
ε.

In the reject branch of the real system we have

ξrejk =
1

22m+2n

∑

�,s �=0

∑

j1,j2∈Jk
s

(−1)(j1⊕j2,�)SpEE
j1ρ

E
(
EE

j2

)†

=
∑

s �=0

∑

j∈Jk
s

EE
j ρE

(
EE

j

)†

=
∑

j /∈Jk
0

EE
j ρE

(
EE

j

)†
,

where we used again (2). Thus

1
2 · 2ν

∑

k

∥∥∥ζrej − ξrejk

∥∥∥
tr

=
1

2 · 2ν

∑

k

∥∥∥∥∥∥

∑

j∈Jk
0\{0}

EE
j ρE

(
EE

j

)†
∥∥∥∥∥∥
tr

≤ 1
2 · 2ν

∑

k

∑

j∈Jk
0\{0}

pj ≤ ε/2.

Putting all this together we get

1
2

‖ζ − ξ‖tr ≤ √
ε + ε/2.

We now consider the second case: the distinguisher first prepares a state
|ψ〉CE and inputs the C part at Eve’s interface, then obtains the output at
Bob’s interface. Note that in the ideal case the channel always outputs a rej
message at Bob’s interface. Thus, if the cipher is accepted by Bob—who outputs
a state ζacc—the distinguisher must be interacting with the real system and can
already output this guess. In the case of a rejection, it now holds a bipartite
system KE—the recycled key K and its purifying system E. It then applies
an isometry U : HKE → HKME to this system and inputs the M part of
the resulting state at Alice’s interface. After which it obtains a cipher at Eve’s
interface and holds the tripartite system KCE—the recycled key K, the cipher
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C and its internal memory E. We denote this state ζ in the ideal case and ξrej

in the real case, and we need to bound

1
2

∥∥ζ − ξrej
∥∥
tr

+
1
2

‖ξacc‖tr .

In a first step, we assume that the state |ψ〉CE prepared by the distin-
guisher is an antisymmetric fully entangled state, which we denote |Ψ−〉CE =∑

x(−1)w(x)|x, x̄〉CE , where w(x) is the Hamming weight of x ∈ {0, 1}m+n and
x̄ is the string x with all bits flipped. In the ideal case the simulator notifies
the channel to reject the cipher, and the state |rej〉〈rej| ⊗ τK is output at Bob’s
interface. The distinguisher then holds ζ = τK ⊗τE . In the real case, Bob applies
the decoding algorithm, i.e., first a Pauli PC

� , then a unitary
(
UC

k

)† and finally
measures n bits of the syndrome in the computational basis. Since the antisym-
metric state is invariant under U ⊗ U , one could equivalently apply the inverse
operation, P�Uk, to the E system, i.e., the state after Bob’s measurement is given
by

1
2ν+3m+3n

∑

k,�,s,x1,x2

(−1)w(x1)⊕w(x2)|k, 	〉〈k, 	|

⊗ (
IC ⊗ PE

� UE
k

) |s, x1, s̄, x̄1〉〈s, x2, s̄, x̄1|CE
(
IC ⊗ (

UE
k

)†
PE

�

)
.

If s = 0 Bob accepts the cipher as being valid, which happens with probability
2−n, i.e., ‖ξacc‖tr = 2−n. In the case where s �= 0, he deletes the cipher, so the
remaining state is given by

1
2ν+3m+3n

∑

k,�,s �=0,x

|k, 	〉〈k, 	| ⊗ (
IC ⊗ PE

� UE
k

) |s̄, x̄〉〈s̄, x̄|CE
(
IC ⊗ (

UE
k

)†
PE

�

)

= τK ⊗ τL ⊗ τE − ρKLE ,

where

ρKLE =
1

2ν+3m+3n

∑

k,�,x

|k, 	〉〈k, 	| ⊗ PE
� UE

k |0̄, x̄〉〈0̄, x̄|E (
UE

k

)†
PE

� ,

K is made public and the L system is the part of the key kept secret by the
players.

Let E denote the completely positive, trace-preserving (CPTP) map consist-
ing of the distinguisher’s next step—the isometry U : HKE → HKME—and
the final operation of the ideal system—deleting the message system M that is
input at Alice’s interface and outputting a fully mixed state τC . Let F denote
the CPTP map consisting of the distinguisher’s next step and the final oper-
ation of the real system—encoding the message system M according to the
protocol and outputting the resulting cipher. We have ζ = E

(
τK ⊗ τE

)
and

ξrej = F
(
τK ⊗ τL ⊗ τE

) − F
(
ρKLE

)
. Thus,

1
2

∥∥ζ − ξrej
∥∥
tr

≤ 1
2

∥∥E
(
τK ⊗ τE

) − F
(
τK ⊗ τL ⊗ τE

)∥∥
tr

+
1
2
2−n,
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since
∥∥ρKLE

∥∥
tr

= 2−n. Finally, note that we have

E
(
τK ⊗ τE

)
= F

(
τK ⊗ τL ⊗ τE

)
= τC ⊗ σKE

for σKE = trM

[
U

(
τK ⊗ τE

)
U†], since the random Pauli P� applied by the

encryption algorithm completely decouples the cipher from KE. Putting this
together, we get

1
2

‖ζ − ξ‖tr ≤ 2−n ≤ √
ε ,

since a strong purity testing code will always have an error ε ≥ 22m+n−1
22m+2n−1 ≥ 2−2n.

The final case that remains to consider is when the distinguisher prepares a
state |ψ〉CE that is not the antisymmetric state. We will reduce this case to that
of the entangled antisymmetric by using the entangled state |Ψ−〉CE to teleport
the C ′ part of any state |ψ〉C′E′

. Due to space restrictions, the proof of this case
is provided in the full version of this work [27]. �

3.5 Optimality of the Recycled Key Length

It follows from Lemma 5 that Theorem 7 is also a proof of security for the encrypt-
then-encode protocol from Fig. 7, i.e.,

C�‖A♦‖Kν+2m+n π̄q-auth
AB ,εq-auth

−−−−−−−−−→ (Sm‖K̄ν,ν+2m+n)�,

with εq-auth =
√

ε+ ε/2. Thus, in the case where the message is not accepted by
Bob, 2m + n bits of key are lost. We prove here that this is optimal: one cannot
recycle any extra bit of key.

Lemma 8. There exists an adversarial strategy to obtain all the secret bits that
are not recycled in the encrypt-then-encode protocol.

Proof. The distinguisher prepares EPR pairs |Φ〉ME and provides the M part
to Alice. It then receives the cipher and thus holds the state

USM
k PM

�

(
|s〉S ⊗ |Φ〉ME

)
,

which it keeps. It then sends a bogus cipher to Bob, and obtains the key k after
Bob recycles it. It applies the decoding unitary

(
USM

k

)†, measures the S register
to get the secret key s and measures the joint ME register in the Bell basis to
get the secret key 	. �

3.6 Explicit Constructions

The protocols we have given in Sect. 3.3 use strong purity testing codes, and the
parameters of the key used, key recycled and error depend on the parameters
of these codes. In this section we give two constructions of purity testing codes.
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The first requires less initial secret key, the second has a better error parameter.
Both have the same net consumption of secret key bits.

The first construction is from Barnum et al. [3]. They give an explicit strong
purity testing code with ν = n and ε = 2m/n+2

2n .14 Plugging this in the parame-
ters from Theorem 7 with the encrypt-then-encode protocol, we get the following.

Corollary 9. The encrypt-then-encode protocol with the purity testing code of
[3] requires an initial key of length 2m + 2n. It recycles all bits if the message is
accepted, and n bits if the message is rejected. The error is

εq-auth =

√
2m/n + 2

2n
+

m/n + 1
2n

.

The second construction we give is based on an explicit purity testing code by
Chau [12]—though he does not name it this way. Chau [12] finds a set of unitaries
U = {Uk} in dimension d such that, if k is chosen uniformly at random, any non-
identity Pauli is mapped to every non-identity Pauli with equal frequency, i.e.,
∀Pj , P� with Pj �= I and P� �= I,

∣∣∣
{

Uk ∈ U : UkPjU
†
k = eiθj,k,�P�

}∣∣∣ =
|U|

d2 − 1
,

where eiθj,k,� is some global phase.
We prove in the full version of this work [27] that this is a strong purity test-

ing code with ε = 2−n for d = 2m+n. It also has |U| = 2m+n
(
22m+2n − 1

)
, hence

ν = m+n+log
(
22m+2n − 1

) ≤ 3m+3n. Note that when composed with Paulis
as in the encode-then-encrypt protocol, {P�Uk}k,� is a unitary 2-design [15,16].
It follows that any (approximate) unitary t-design is a good quantum authenti-
cation scheme (see the full version of this work [27] for a formal proof).

Corollary 10. The encrypt-then-encode protocol with the purity testing code of
[12] requires an initial key of length 5m + 4n. It recycles all bits if the message
is accepted, and 3m + 3n bits if the message is rejected. The error is εq-auth =
2−n/2 + 2−n−1.

4 Discussion and Open Questions

The family of quantum authentication protocols of Barnum et al. [3] as well as
the subset analyzed in this work are large classes, which include many protocols
appearing independently in the literature. The signed polynomial code [1,4], the
Clifford code [1,9,17] (which is a unitary 3-design [38,40]) and the unitary 8-
design scheme from [19] and all instances which use a strong purity testing code.

14 In fact, [3] only prove that their construction is a purity testing code, not a strong
one. But one can easily verify that it is strong with the same parameters. What is
more, their construction has ν = log(2n +1) and ε = 2m/n+2

2n+1
. We remove one of the

keys (and thus increase the error), so as to get simpler final expressions.



Quantum Authentication with Key Recycling 365

Our results apply directly to the Clifford and unitary 8-design schemes—which
have in the same error as the unitary 2-design scheme from Corollary 10. But
the signed polynomial code uses an ECC on qudits, not qubits, so our proof does
not cover this case, and would have to be adapted to do so.

The trap code [8,9] is an example of a quantum authentication scheme that
uses a purity testing code that is not a strong purity testing code, i.e., errors
which do not modify the message do not necessarily provoke an abort. For exam-
ple, if the adversary performs a simple bit flip in one position, this will provoke
an abort with probability 2/3 in the variant from [8] and with probability 1/3
in the variant from [9], but leaves the message unmodified if no abort occurs.
If the adversary learns whether Bob accepted the message or not, she will learn
whether the ECC used detects that specific bit flip or not, and thus learn some-
thing about the key used to select the ECC. Hence, the players cannot recycle
the entire key, even in the case where the message is accepted. The restriction
to strong purity testing codes is thus necessary to recycle every bit. It remains
open how many bits of key can be recycled with the trap code, but we conjecture
that this bit leaked due the decision to abort or not is the only part of the key
leaked, and the rest can be recycled.

Another quantum authentication scheme, Auth-QFT-Auth, has been pro-
posed in [19], where the authors prove that some of the key can be recycled as
well. We do not know if this scheme fits in the family from [3] or not.

In the classical case, almost strongly 2-universal hash functions [36,39] are
used for authentication, and any new family of such functions immediately yields
a new MAC. Likewise, any new purity testing code provides a new quantum
authentication scheme. However, it is unknown whether all quantum authenti-
cation schemes can be modeled as a combination of a one-time pad and a purity
testing code, or whether there exist interesting schemes following a different
pattern.

We have proven that a loss of 2m + n bits of key is inevitable with these
schemes if the adversary tampers with the channel. In the case of the unitary
2-design scheme, which has the smallest error, this is 2m + 2 log 1/ε + 2 bits of
key which are consumed. A loss of 2m bits will always occur, since these are
required to one-time pad the message. It remains open whether there exist other
schemes—which do not fit the one-time pad + purity testing code model—which
recycle more key.

The initial preprint of this work suggested that one should also investigate
whether it is possible to find a prepare-and-measure scheme to encrypt and
authenticate a classical message in a quantum state, so that all of the key may
be recycled if it is successfully authenticated. At the time of writing, a possible
solution had already been found by Fehr and Salvail [18]. Their protocol is
however not known to be composable, and it remains open to prove that it
achieves the desired result in such a setting.
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Abstract. In this paper, we show that the zero-knowledge construction
for Hamiltonian Cycle remains secure against quantum adversaries
in the relativistic setting. Our main technical contribution is a tool for
studying the action of consecutive measurements on a quantum state
which in turn gives upper bounds on the value of some entangled games.
This allows us to prove the security of our protocol against quantum
adversaries. We also prove security bounds for the (single-round) rela-
tivistic string commitment and bit commitment in parallel against quan-
tum adversaries. As an additional consequence of our result, we answer
an open question from [Unr12] and show tight bounds on the quantum
knowledge error of some Σ-protocols.

Keywords: Relativistic cryptography · Zero-knowledge protocols ·
Quantum security

1 Introduction

1.1 Context

The goal of relativistic cryptography is to exploit the no superluminal signaling
(NSS) principle in order to perform various cryptographic tasks. NSS states that
no information carrier can travel faster than the speed of light. Note that this
principle is closely related to the non-signaling principle that says that a local
action performed in a laboratory cannot have an immediate influence outside of
the lab. NSS is more precise since it gives an upper bound on the speed at which
such an influence can propagate. Apart from this physical principle, we want to
ensure information-theoretic security meaning that the schemes proposed can-
not be attacked by any classical (or quantum) computers, even with unlimited
computing power.

The idea of using the NSS principle for cryptographic protocols originated
in a pioneering work by Kent in 1999 [Ken99] as a way to physically enforce
a no-communication constraint between the different agents of one party (the
idea of splitting up a party into several agents dates back to [BOGKW88],
but without any explicit implementation proposal). The original goal of Kent
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part III, LNCS 10212, pp. 369–396, 2017.
DOI: 10.1007/978-3-319-56617-7 13
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was to bypass the no-go theorems for quantum bit-commitment [May97,LC97].
More recently, quantum relativistic bit commitment protocols were developed
where the parties exchange quantum systems, with the hope that combining
the NSS principle together with quantum theory would lead to more secure
(but less practical) protocols [Ken11,Ken12,KTHW13]. In particular, the pro-
tocol [Ken12] was implemented in [LKB+13]. We note that the scope of rela-
tivistic cryptography is not limited to bit commitment. For instance, there was
recently some interest (sparked again by Kent) for position-verification proto-
cols [KMS11,LL11,Unr14] but contrary to the case of bit commitment, it was
shown that secure position-verification is impossible both in the classical and
the quantum settings [CGMO09,BCF+14].

The original idea of [BOGKW88] was recently revisited by Crépeau et al. in
[CSST11] (see also [Sim07]). Based on this work, Lunghi et al. devised a bit
commitment protocol involving only four agents, two for Alice and two for Bob
[LKB+15]. Their protocol is secure against quantum adversaries and a multi-
round variant, with longer duration time, was shown to be secure against classical
adversaries [LKB+15,CCL15,FF15]. While those protocols only seemed of theo-
retical interest at first, recent implementations have convincingly demonstrated
that the required timing and location constraints can be efficiently enforced.
In [VMH+16], the authors performed a 24-hour-long bit commitment with the
pairs of agents standing 8 km apart.

The security analysis against quantum adversaries of [LKB+15] and against
classical adversaries of [CCL15] relies on the study of variants of CHSH games
where the inputs and outputs belong to the field FQ for some large prime power
Q, instead of {0, 1} for the usual CHSH game. In many cases, the (quantum)
security of a relativistic protocol can be derived from the value of an (entangled)
2-player game. Because the relativistic constraint essentially boils down to 2
non-communicating provers, a relativistic protocol can also be seen as a 2-prover
interactive protocol.

—
The above results are promising for relativistic cryptography but very limited

in scope. Indeed, bit commitment schemes are used as parts of larger cryptosys-
tems. The only study of the composability of the FQ bit commitment scheme was
done in [FF15] but mainly with itself, in order to increase the commit time. There
has not been any proposition to use this scheme for a more general purpose.

One natural application of bit commitment are zero-knowledge protocols.
With such a protocol, a prover wishes to convince a verifier that a given state-
ment is true without revealing any extra information. A zero-knowledge pro-
tocol is already a more advanced cryptographic primitive and has more direct
applications such as identification schemes [GMR89] for instance. Here, we will
consider the zero-knowledge construction for Hamiltonian Cycle, which is an
NP complete problem. The prover will convince the verifier that a given graph
G = (V,E) has a Hamiltonian cycle, i.e. a cycle going through each vertex
exactly once, without revealing any information, in particular no information
about this cycle. Since Hamiltonian Cycleis NP complete, a zero-knowledge
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protocol for this problem can be used to obtain a zero-knowledge protocol for
arbitrary NP problems.

There is a known zero-knowledge protocol for Hamiltonian Cycle using
bit commitment first presented by Blum [Blu86] which we recall now.

Zero-knowledge protocol for Hamiltonian Cycle using bit commitment

1. The prover picks a random permutation Π : V → V . He commits to each
of the bits of the adjacency matrix MΠ(G) of Π(G).

2. The verifier sends a random bit (called the challenge) chall ∈ {0, 1} to
the prover.

3. – If chall = 0, the prover decommits to all the elements of MΠ(G), and
reveals Π.

– If chall = 1, he reveals only the bits (of value 1) of the adjacency
matrix that correspond to a Hamiltonian cycle C′ of Π(G).

4. The verifier checks that these decommitments are valid and correspond,
for chall = 0 to MΠ(G) and, for chall = 1, to a Hamiltonian cycle.

It is natural to combine this zero-knowledge protocol with the FQ relativistic
bit commitment protocol mentioned above. The (single-round) FQ relativistic
bit commitment protocol is secure against quantum adversaries but it doesn’t
directly imply that the zero-knowledge protocol remains secure. Indeed, the secu-
rity definition considered for the bit commitment is fairly weak and composes
poorly with other protocols. The soundness of the protocol against entangled
provers will be reduced to a 2-player entangled game. Proving zero-knowledge
against a quantum verifier can sometimes be complicated because of the pres-
ence of a quantum auxiliary input. In this case, however, due to properties of
the relativistic FQ bit commitment, we will not need any rewinding from our
simulator and the simulation will actually be rather simple.

—
The goal of this paper is to show that it is indeed possible to plug in the

FQ relativistic bit commitment protocol into Blum’s zero-knowledge protocol
for Hamiltonian Cycle. This widens the possible applications for relativistic
cryptography and will encourage further implementations.

The main contribution of this paper is a technical analysis involving suc-
cessive measurements on a quantum system. Indeed, to prove that the above
scheme is secure against quantum adversaries, we use the fact that an adversary
who can answer both challenges at the same time can guess the value of a string
on which he has no information, due to non-signaling. This naturally involves
consecutive measurements on a quantum system, and leads us to analyze how
the first measurement disturbs the system before the second measurement.
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1.2 Relativistic Zero-Knowledge Protocol for Hamiltonian Cycle

Here, we show how the final protocol will look like and where exactly we rely on
the physical NSS principle. The final protocol is the following:

Relativistic zero knowledge protocol for Hamiltonian Cycle

Input — The provers and the verifiers are given a graph G = (V,E).
Auxiliary Input — The provers P1 and P2 know a Hamiltonian cycle C of G.
Preprocessing — P1 and P2 agree beforehand on a random permutation
Π : V → V and on an n × n matrix A ∈ MFQ

n where each element of A is
chosen uniformly at random in FQ.
Protocol —

1. Commitment to each bit of MΠ(G) : V1 sends a matrix B ∈ MFQ
n where

each element of B is chosen uniformly at random in FQ. P1 outputs the
matrix Y ∈ MFQ

n such that ∀i, j ∈ [n], Yi,j = Ai,j + (Bi,j ∗ (MΠ(G))i,j).
2. The verifier sends a random bit (called the challenge) chall ∈ {0, 1} to the

prover.
3. – If chall = 0, P2 decommits to all the elements of MΠ(G), i.e. he sends

all the elements of A to V2 and reveals Π.
– If chall = 1, P2 reveals only the bits (of value 1) of the adjacency

matrix that correspond to a Hamiltonian cycle C′ of Π(G), i.e. for all
edges (u, v) of C′, he sends Au,v as well as C′.

4. The verifier checks that those decommitments are valid and correspond to
what the provers have declared. He also checks that the timing constraint
of the bit commitment is satisfied. This means that

– if chall = 0, the prover’s opening A must satisfy ∀i, j ∈ [n], Yi,j =
Ai,j + (Bi,j ∗ (MΠ(G))i,j).

– if chall = 1, the prover’s opening A must satisfy ∀(u, v) ∈ C′, Yu,v =
Au,v + Bu,v.

The above protocol is obtained by plugging in the FQ relativistic bit commit-
ment protocol into Blum’s zero-knowledge protocol for Hamiltonian Cycle.
We discuss more the setting in Sects. 4 and 5. We just want here to briefly present
in which way we use the no superluminal signaling condition in this protocol.

In order for the protocol to be secure, we require the following:

1. Both the prover and the verifier are split into 2 agents, respectively P1, P2

and V1, V2.
2. V1 and V2 are far apart (we discuss this later).
3. The opening phase (steps 2 and 3) must be performed as soon as the commit

phase (step 1) is completed.

Constraints (2) and (3) are here to enforce that during step 3 of the proto-
col, the message P2 sends to V2 does not depend on the matrix B sent by V1.
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Because information travels at most at light speed, by synchronizing the steps
well enough, the verifiers can enforce this condition. For instance, it is sufficient
to check that V2 receives the message from P2 before the information on B sent
by V1 had time to reach V2. If this is the case, then it guarantees that P2’s answer
to the challenge cannot depend on the value of the matrix B, since otherwise
it would violate the NSS. An important consequence is that we do not require
the verifiers to know anything about the spatial locations of the provers: it is
sufficient for the verifiers to know their own relative position.

As said before, there were already several experiments made that showed how
to achieve the above constraints. The most notable one [VMH+16] succeeded in
performing the above bit commitment protocol by having V1 and V2 being 8 km
apart, which shows it can be achievable in real life conditions.

In summary, the main contribution of the paper is to prove the security
of the above protocol for Hamiltonian Cycle against quantum adversaries.
The main challenge is to prove the soundness property, i.e. security against a
cheating prover on an input which does not contain a Hamiltonian cycle. Here,
we have two dishonest provers P1 and P2 that want to pass the protocol even
though the input graph does not contain a Hamiltonian cycle. A cheating prover
that would be able to answer simultaneously to both challenges could break the
underlying string commitment scheme, which is a consequence of the special
soundness property of the scheme.

To prove the security of the above protocol against quantum adversaries,
we will, from a cheating strategy, construct a strategy that will successfully
answer both challenges by consecutively applying the cheating strategy for each
challenge, which is expressed by our consecutive measurement theorem (see The-
orem 1 below). We can also view this cheating scenario as a 2-player entangled
game and we will show how in general our theorem regarding quantum consec-
utive measurements can be translated into a bound on the entangled value of
2-player games.

1.3 Consecutive Measurements

Our main technical contribution is expressed by the following theorem

Theorem 1. Consider n projectors P1, . . . , Pn such that for each i, we can write
Pi :=

∑S
s=1 P s

i where the {P s
i }s are orthogonal projectors for each i, i.e. for

each i and s, s′, we have P s
i P s′

i = δs,s′P s
i . Let σ be any quantum state, let V :=

1
n

∑n
i=1 tr(Piσ), and let E := 1

n(n−1)

∑
i,j �=i

∑S
s,s′=1 tr(P s′

j P s
i σP s

i P s′
j ). Then it

holds that E ≥ 1
64S

(
V − 1

n

)3.

Such a statement can be fairly easily transposed to the context of games: see
Proposition 1 below. This theorem can be seen as a generalization of the gentle
measurement lemma [Win99], which is similar to the above with n = 2 and
S = 1. The case of n = 2 can be seen as a worst-case consecutive measurement
theorem: how much can the first measurement disturb the measured state before
the second measurement? However, for larger values of n, this shows that when
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we pick 2 measurements out of n, the disturbance is much smaller, as shown by
the dependence of the lower bound in n. Our theorem also improves on known
results since it deals with larger values of S.

Interestingly, this kind of statement has already appeared previously in a
paper by Unruh [Unr12], who studied quantum sigma protocols and in particular
quantum proofs of knowledge. He showed the following

Theorem 2 [Unr12]. Consider n projectors P1, . . . , Pn and an arbitrary quan-
tum state σ. Let V := 1

n

∑n
i=1 tr(Piσ), and let E := 1

n(n−1)

∑
i,j �=i tr(PjPiσ

PiPj). If V ≥ 1√
n
then E ≥ V (V 2 − 1

n ).

Let us now compare our main theorem to Unruh’s one, for the case of S = 1
where they are comparable. If V � 1√

n
then both bounds give essentially the

same bound E ≥ Ω(V 3) which will translate into the relation ω∗(Gcoup) ≥
Ω(ω∗(G)3) for the entangled values of a game G and its coupled version Gcoup

(see below). However, Theorem 2 is only valid when V ≥ 1√
n

while Theorem 1
works for any V ≥ 1

n . Moreover, Theorem 1 is tight in its extremal point in
the sense that there exist a quantum state and n projectors such that V = 1

n
and E = 0, as can be seen by considering for example σ = |φ〉〈φ| with |φ〉 :=
1√
n

∑
i |i〉 and Pi = |i〉〈i|.

—
A natural application of our consecutive measurement theorem is to bound

the value of some entangled games. The phrasing in terms of nonlocal games is
sometimes more comfortable to use. In this paper, our security proofs will usually
reduce to bounding the entangled value of such game, that is the maximum
winning probability for a pair of players allowed to share arbitrary entangled
states as a resource. For any game G on the uniform distribution (meaning that
the inputs of the game are drawn independently from the uniform distribution),
we define the game Gcoup (consisting of a certain couple of instances of G) as
follows:

– In G, Alice and Bob respectively receive x and y taken from the uniform
distribution on the sets IA and IB, respectively, and output a and b such that
V (a, b|x, y) = 1 for some valuation function V specified by G.

– In Gcoup, Alice receives a random x as in G and Bob receives a pair of distinct
random inputs (y, y′). Alice outputs a and Bob outputs a pair (b, b′). They
win the game if V (a, b|x, y) = 1 and V (a, b′|x, y′) = 1, that is, if they win both
instances of the game G, but for the same input/output pair of Alice.

In many cases, upper bounding the value of Gcoup will follow directly from
a non-signaling argument of the form: “If the players are able to win Gcoup

with probability p then Bob can learn some (or all) bits of x with probability
p and no-signaling implies that p ≤ 1/|IA|”. What is left to do is to relate the
entangled values of both games, ω∗(G) and ω∗(Gcoup). To do this, we construct
the following strategy for Gcoup: Alice follows the same strategy as for G; on
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inputs (y, y′), Bob performs the same strategy (measurement) as for G on input
y to get output b and then on input y′ to get b′. Note here that the non trivial
part is that Bob’s second measurement is applied on the post-measurement state
resulting from his first measurement. Because we are in the quantum setting,
this first measurement will generally perturb the state shared by Alice and Bob,
which makes it non trivial to relate the success probability of this strategy for
Gcoup with the entangled value ω∗(G) of the original game G.

A similar construction of squared games was introduced in [DS14,DSV15] to
study projective classical and entangled games. There, the input x is not revealed
to the players but they receive respectively y and y′ and output b and b′. They
win if there exists a such that V (a, b|x, y) = V (a, b′|x, y′) = 1. It would be
interesting to see the similarities and differences between those two approaches.

We show the following.

Proposition 1. For any game G on the uniform distribution which is S-
projective, we have ω∗(Gcoup) ≥ 1

S·64 · (ω∗(G) − 1
n )3 where n is dimension of

Bob’s input.

A game G is said to be S-projective if for all x, y, a, there are at most S
possible outputs for Bob that allow them to win the game, i.e. maxx,y,a |{b :
V (a, b|x, y) = 1}| ≤ S.

In order to prove this statement, we need to analyze the strategy that we pre-
sented above. As already mentioned, the main difficulty is that the first measure-
ment from Bob will modify the common shared state and therefore we cannot
directly bound the probabilities related to the second measurement. One way
of analyzing these consecutive measurements would be to use a kind of gentle
measurement lemma but unfortunately, this would only work when the winning
probability ω∗(G) is close to 1, which isn’t the case for the games we consider.

Fortunately, Theorem1 is tailored for this kind of applications and can be
used directly to prove the above proposition. We can notice the exact transpo-
sition of the parameters of Theorem 1 to Proposition 1.

1.4 Applications of the Bound

1. First, we prove that the extensions of the FQ bit commitment to string com-
mitment and its parallel repetition remain secure against quantum adversaries
with using the sum-binding definition. This is a direct consequence on upper
bounds on the entangled value of CHSH variants, like the CHSHQ(P ) game
introduced in [CCL15].

2. We show that the presented relativistic zero-knowledge protocol for Hamil-

tonian Cycle is secure against quantum adversaries. This also implies a 2-
prover 1-round zero-knowledge protocol for Hamiltonian Cycle also secure
against quantum adversaries.

3. Finally, as a direct corollary of our consecutive measurement claim, we answer
an open question from Unruh regarding quantum proofs of knowledge [Unr12].
We show tight bounds on the quantum knowledge error of a Σ-protocol with
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strict and special soundness as function of the challenge size, matching the
classical bound. We will not discuss in detail this result as it just requires to
plug our bound in the proof of [Unr12] and is a bit beyond the scope of this
paper. However, this shows that our results are useful beyond just the study
of relativistic protocols or entangled games.

The last point shows that our bound could find even more applications when
considering security against quantum adversaries. Indeed, when studying cryp-
tographic protocols, for instance Σ-protocols, a notion that often appears is
special soundness which roughly states that an attacker shouldn’t be able to
simultaneously answer successfully to 2 verifier’s challenges. The relativistic zero-
knowledge protocol we study is one example of this and Unruh’s quantum proofs
of knowledge setting is another one but there are more where our theorem could
be useful.

Organisation of the Paper. In Sect. 2, we prove our main consecutive mea-
surement theorem. In Sect. 3, we show how to use this bound for proving upper
bounds on the entangled value of nonlocal games. In Sect. 4, we present in more
detail the relativistic model and the FQ relativistic bit commitment protocol.
Finally, in Sect. 5, we describe the protocol obtained by plugging this bit com-
mitment into Blum’s zero-knowledge protocol for Hamiltonian Cycle and
we prove that it remains secure, even against quantum adversaries.

2 Consecutive Measurement Theorems

We first present some useful lemmata in the preliminaries. Then, we dive in
directly in the proof of our consecutive measurements theorems.

2.1 Preliminaries

Lemma 1. Let |φ〉 a quantum pure state, P ≤ I a projector acting on |φ〉 and
|ψ〉 := P (|φ〉)

||P (|φ〉)|| . We have |〈φ|ψ〉|2 = ||P (|φ〉)||2 = tr(P |φ〉〈φ|).

Proof. We write |φ〉 = P (|φ〉) + (I − P )(|φ〉) = ||P (|φ〉)|| |ψ〉 + (I − P )(|φ〉). By
noticing that 〈ψ|I − P |φ〉 = 0, we get |〈φ|ψ〉|2 = ||P (|φ〉)||2 = tr(P |φ〉〈φ|).
Lemma 2. Let |φ〉 a quantum pure state, P ≤ I a projector acting on |φ〉 and
|ψ〉 such that P |ψ〉 = |ψ〉. We have |〈φ|ψ〉|2 ≤ tr(P |φ〉〈φ|).
Proof. We decompose |φ〉 in order to make |ψ〉 appear. We write |φ〉 = α|ψ〉 +
β|ψ⊥〉 with |α|2+ |β|2 = 1 and 〈ψ|ψ⊥〉 = 0. This gives us P |φ〉 = α|ψ〉+βP |ψ⊥〉.
Notice that we also have 〈ψ|P |ψ⊥〉 = 0. From there, we conclude

tr(P |φ〉〈φ|) = ||P |φ〉||2 = |α|2 + |β|2||P |ψ⊥〉||2 ≥ |α|2 = |〈φ|ψ〉|2.
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2.2 Single Outcome Case : S = 1

We first prove the theorem for the case where S = 1.

Theorem 3. Consider n projectors P1, . . . , Pn and a quantum mixed state σ in
some Hilbert space B. Let V := 1

n

∑n
i=1 tr(Piσ), and let

E :=
1

n(n − 1)

∑

i,j �=i

tr(PjPiσPiPj).

Then it holds that E ≥ 1
64

(
V − 1

n

)3.

Proof. We fix a quantum mixed state σ in some Hilbert space B and n projectors
P1, . . . , Pn acting on B. We first move to the realm of pure states which will be
easier to analyze by adding an extra Hilbert space E . We consider a purification
|φ〉 of σ in some space BE = B ⊗ E . We define

|φi〉 :=
(Pi ⊗ 1E)|φ〉

||(Pi ⊗ 1E)|φ〉|| .

The state |φi〉 corresponds to the normalized projection of |φ〉 using Pi. We first
express E and V as inner products of the quantum pure states we defined:

Lemma 3. E ≥ 1
n(n−1)

∑
i,j �=i |〈φ|φi〉|2|〈φi|φj〉|2 and V = 1

n

∑n
i=1 |〈φ|φi〉|2.

Proof. We write

E =
1

n(n − 1)

∑

i,j �=i

tr(PjPiσPiPj)

=
1

n(n − 1)

∑

i,j �=i

tr ((Pj ⊗ 1E)(Pi ⊗ 1E)|φ〉〈φ|(Pi ⊗ 1E)(Pj ⊗ 1E))

Here, by using Lemma 1, notice that

(Pi ⊗ 1E)|φ〉〈φ|(Pi ⊗ 1E) = ||(Pi ⊗ 1E)|φ〉||2|φi〉〈φi| = |〈φ|φi〉|2|φi〉〈φi|.
From there, we can continue have

E =
1

n(n − 1)

∑

i,j �=i

|〈φ|φi〉|2tr ((Pj ⊗ 1E)|φi〉〈φi|)

≥ 1
n(n − 1)

∑

i,j �=i

|〈φ|φi〉|2|〈φi|φj〉|2

where the last inequality comes from Lemma 2. Notice also that we immediately
have V = 1

n

∑n
i=1 tr(Piσ) =

∑
i |〈φ|φi〉|2.

Our goal is to relate E and V . We will deal with the terms |〈φi|φj〉|2 using
the following proposition on almost orthogonal states.
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Proposition 2. Consider n quantum pure states |φ1〉, . . . , |φn〉. Let

S := max
|Ω〉

n∑

i=1

|〈Ω|φi〉|2 and C :=
n∑

i,j �=i

|〈φi|φj〉|2.

We have S ≤ 1 +
√

(n−1)C
n ≤ 1 +

√
C.

Proof. Let M =
∑n

i=1 |φi〉〈φi|. M is a positive semi-definite matrix of dimension
at most n. Let λ1 ≥ λ2 ≥ · · · ≥ λn the n eigenvalues of M in decreasing
order. We have

∑
i λi = tr(M) =

∑
j tr(|φj〉〈φj |) = n. Moreover, notice that

S = max|Ω〉
∑

i |〈Ω|φi〉|2 = λ1.
We write M2 =

∑
i,j〈φi|φj〉|φi〉〈φj | and tr(M2) =

∑
i,j |〈φi|φj〉|2 = n + C.

Moreover, we have tr(M2) =
∑

i λ2
i . This gives us

n + C = tr(M2) =
n∑

i=1

λ2
i = λ2

1 +
n∑

i=2

λ2
i ≥ λ2

1 + (n − 1)
(

n − λ1

n − 1

)2

= λ2
1 +

(n − λ1)2

n − 1
= S2 +

(n − S)2

n − 1

where the inequality comes from the convexity of the square function. From
there, we have

(n − 1)S2 + (n − S)2 − n(n − 1) ≤ (n − 1)C

Using (n−1)S2 +(n−S)2 −n(n−1) = n(S −1)2, we conclude that n(S −1)2 ≤
(n − 1)C or equivalently S ≤ 1 +

√
(n−1)C

n .

In particular, the above proposition implies that

V ≤ 1
n

+
n − 1

n

√
1

n(n − 1)

∑

i,j �=i

|〈φi|φj〉|2.

The term in the squared root is very similar to E. Unfortunately, the expression
for E contains an extra factor |〈φ|φi〉|2 in the sum under the square-root. If the
quantity |〈φ|φi〉|2 was independent of i, it would be equal to V and we would be
able to conclude. However, this is not always the case and this adds a difficulty
in the proof. In order to overcome it, we will use Proposition 2 only with the
states for which |〈φ|φi〉|2 is not too small. We will choose a threshold κ (that
will be fixed later) and consider only the indices i for which |〈φ|φi〉|2 ≥ V/κ.
This is the goal of the next proposition.

Proposition 3. ∀κ > 1, V ≤
(
1 + 1

κ−1

) (
1
n +

√
κE
V

)
.
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Proof. For all i, let pi := |〈φ|φi〉|2. We have by definition V =
∑

i pi. We fix
κ > 1 and define the set Z := {i ∈ [n] : pi ≥ V

κ }. We have

1
n

∑

i/∈Z

pi ≤ 1
n

∑

i/∈Z

V

κ
≤ V

κ
,

which implies

1
n

∑

i∈Z

pi ≥ (1 − 1
κ

)V. (1)

We write

E ≥ 1
n(n − 1)

∑

i,j �=i

pi|〈φi|φj〉|2 ≥ 1
n(n − 1)

∑

i,j∈Z
i�=j

pi|〈φi|φj〉|2 (2)

≥ V

κ
· 1
n(n − 1)

∑

i,j∈Z
i�=j

|〈φi|φj〉|2. (3)

Now, starting from Eq. 1, we have

V ≤ 1
1 − 1

κ

1
n

∑

i∈Z

pi =
1

1 − 1
κ

1
n

∑

i∈Z

|〈φ|φi〉|2 ≤
(

1 +
1

κ − 1

)
max
|Ω〉

1
n

∑

i∈Z

|〈Ω|φi〉|2

≤
(

1 +
1

κ − 1

)
⎛

⎜⎜⎜⎝
1
n

+

√√√√√
1

n(n − 1)

∑

i,j∈Z

i�=j

|〈φi|φj〉|2

⎞

⎟⎟⎟⎠ (4)

≤
(

1 +
1

κ − 1

)(
1
n

+

√
κE

V

)
(5)

where we used Lemma 2 in Eqs. 4 and 2 for the last inequality. This proves the
proposition.

We can now use Proposition 3 to prove our theorem. We distinguish two
cases:

1. If ( V
n2E )1/3 > 2. We take κ = ( V

n2E )1/3 > 2 which implies κ(n2E
V )1/3 = 1 and

(κn2E
V )

1
2 = 1

κ . We get

V ≤ 1
n

(
1 +

1
κ − 1

) (
1 +

[
κ

n2E

V

]1/2
)

=
1
n

(
1 +

1
κ − 1

)(
1 +

1
κ

)

≤ 1
n

(1 +
4
κ

) =
1
n

+ 4
(

E

nV

)1/3

.
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This gives E ≥ nV
64 (V − 1

n )3 which implies E ≥ 1
64 (V − 1

n )3. To see this
last implication, consider the following two cases: if V ≥ 1

n then the equality
comes immediately from the previous inequality. If V ≤ 1

n , we immediately
have E ≥ 0 ≥ 1

64 (V − 1
n )3.

2. If ( V
n2E )1/3 ≤ 2. This implies

(
V
E

)1/2 ≤ n · 23/2. We take κ = 2 and obtain

V ≤
(

1 +
1

κ − 1

)(
1
n

+

√
κE

V

)
= 2(

1
n

+

√
2E

V
)

≤ 2(22/3

√
E

V
+

√
2E

V
) ≤ 6

√
E

V

which implies E ≥ V 3

36 ≥ 1
64 (V − 1

n )3.

2.3 General Case

We can now show our theorem for any S. The general case will be a direct
corollary of the following.

Proposition 4. Let a projector P :=
∑m

i=1 Pi where {Pi}i∈[m] are orthogonal
projectors. For any pure state |ψ〉, we have

m∑

i=1

Pi|ψ〉〈ψ|Pi ≥ 1
m

P |ψ〉〈ψ|P.

We note that this result can be obtained as an application of the pinching
inequality [Hay02,SBT16], but we provide a proof here for completeness.

Proof. We define the following unnormalized states |ψP 〉 = P (|ψ〉) and |ψP
i 〉 =

Pi(|ψ〉). Because P =
∑

i Pi, we have |ψP 〉 =
∑

i |ψP
i 〉. This gives

m∑

i=1

Pi|ψ〉〈ψ|Pi =
m∑

i=1

|ψP
i 〉〈ψP

i |

P |ψ〉〈ψ|P † = |ψP 〉〈ψP |

Consider now any state |φ〉 =
∑

i αi|ψP
i 〉 + |ξ〉 where |ξ〉 is orthogonal to all the

|ψP
i 〉. We have

〈φ|
m∑

i=1

Pi|ψ〉〈ψ|Pi|φ〉 =
∑

i

|〈ψP
i |φ〉|2 = |αi|2

∣∣〈ψP
i |ψP

i 〉∣∣2

and

〈φ|P |ψ〉〈ψ|P |φ〉 = |〈ψP |φ〉|2 =

∣∣∣∣∣
∑

i

αi〈ψP
i |ψP

i 〉
∣∣∣∣∣

2
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From there, we can conclude. We have:

〈φ|
m∑

i=1

Pi|ψ〉〈ψ|Pi|φ〉 =
∑

i

|αi|2|〈ψP
i |ψP

i 〉|2

≥ 1
m

∣∣∣∣∣
∑

i

|αi||〈ψP
i |ψP

i 〉|
∣∣∣∣∣

2

(from Cauchy-Schwarz)

≥ 1
m

〈φ|P |ψ〉〈ψ|P |φ〉

Since this holds for any state |φ〉, we can conclude that

m∑

i=1

Pi|ψ〉〈ψ|Pi ≥ 1
m

P |ψ〉〈ψ|P †.

From there, and using the previous theorem, we can show our main technical
result.

Theorem 1. Consider n projectors P1, . . . , Pn such that for each i, we can
write Pi :=

∑S
s=1 P s

i where the {P s
i }s are orthogonal projectors for each i, i.e.

for each i and s, s′, we have P s
i P s′

i = δs,s′P s
i . Let σ be any quantum state,

let V := 1
n

∑n
i=1 tr(Piσ), and let E := 1

n(n−1)

∑
i,j �=i

∑S
s,s′=1 tr(P s′

j P s
i σP s

i P s′
j ).

Then it holds that E ≥ 1
64S

(
V − 1

n

)3.

Proof. We fix n projectors P1, . . . , Pn such that for each i, we can write Pi :=∑S
s=1 P s

i where the {P s
i }s are orthogonal projectors for each i. We fix a quantum

state σ. We have

E =
1

n(n − 1)

∑

i,j �=i

S∑

s,s′=1

tr(P s′
j P s

i σ(P s′
i )(P s

j ))

=
1

n(n − 1)

∑

i,j �=i

S∑

s=1

tr(PjP
s
i σ(P s′

i )Pj)

≥ 1
Sn(n − 1)

∑

i,j �=i

tr(PjPiσ(Pi)Pj) (from Proposition 4)

≥ 1
64S

(
V − 1

n

)3

(from Theorem 3)

3 Entangled Games

The goal of this section is to use the consecutive measurement theorems of the
previous section to establish upper bounds on the value of entangled games.
For a game G on the uniform distribution, we will define a game Gcoup which
corresponds to a couple of instances of G where Alice plays twice with the same
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input and Bob receives two distinct inputs and they need to win both instances
in order to win the game Gcoup. In the cases we consider, upper bounding Gcoup

will be easily done from non-signaling. Our learning lemmata will allow us to
relate the winning probabilities of G and Gcoup. These two steps together will
give us bounds on the value of G.

3.1 First Definitions

Definition 1. A game G = (IA, IB , OA, OB , V, p) is defined by

– 2 input sets IA, IB which are respectively Alice’s and Bob’s input sets.
– 2 output sets sets OA, OB which are respectively Alice’s and Bob’s output sets.
– A valuation function V : IA × IB ×OA ×OB → {0, 1} which indicates whether

the game is won for some fixed input and outputs. The game is won if the
value of V is 1.

– A probability function p : IA × IB → [0, 1] which corresponds to the input
distribution. We have

∑
(x,y)∈IA×IB

pxy = 1.

Definition 2. A game G = (IA, IB , OA, OB , V, p) is said to be on the uniform
distribution if ∀(x, y) ∈ IA × IB, pxy = 1

|IA||IB | .

Definition 3. A game G = (IA, IB , OA, OB , V, p) is projective if

∀(x, y) ∈ IA × IB st. pxy = 0, ∀a ∈ OA, ∃! b ∈ OB , st. V (x, y, a, b) = 1.

A game G is S-projective if

∀(x, y) ∈ IA × IB st. pxy = 0,∀a ∈ OA, |{b ∈ OB : V (x, y, a, b) = 1}| ≤ S.

In particular, a projective game is 1-projective.

In the case where Alice and Bob are classical and want to win a game G, it is
known that their optimal strategy to win is to perform a deterministic strategy.
Notice that a projective game is asymmetric in Alice and Bob.

Definition 4. For a game G = (IA, IB , OA, OB , V, p), we denote by ω∗(G) its
entangled value, i.e. the maximum winning probability for the game when Alice
and Bob are quantum and share an entangled state.

In order to study this maximal winning probability, it is enough to consider
the case where Alice and Bob perform projective measurements.

In order to prove upper bounds on ω∗(G) for a game G on the uniform
distribution, we introduce the notion of coupled game Gcoup.

Definition 5. For any game G = (IA, IB , OA, OB , V, p) on the uniform distrib-
ution we define Gcoup as follows:

– Alice receives a random x ∈R IA. Bob receives a random pair of different
inputs (y, y′) from IB.

– Alice outputs a ∈ OA. Bob outputs b, b′ ∈ OB.
– They win the game if V (x, y, a, b) = V (x, y′, a, b′) = 1.
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3.2 Relating G and Gcoup

In this section, we use our results from the previous section to relate the values
of G and Gcoup.

Proposition 1. For any game G on the uniform distribution which is S- projec-
tive, we have ω∗(Gcoup) ≥ 1

S·64 (ω∗(G) − 1
n )3 where n = |IB |.

Proof. Consider an optimal strategy for Alice and Bob for the game G. In
particular, for each y, let Qy = {Qy

b} the projective measurement that corre-
sponds to his strategy for input y. Fix an input/output pair (x, a) for Alice
and let σxa be the state held by Bob, conditioned on this pair. For each y, let
Wy = {b : V (a, b|x, y) = 1} be the set of winning outputs for Bob. Since G is
S-projective, we have |Wy| ≤ S. We define Qy

W =
∑

b∈Wy
Qy

b .
We denote by V xa the probability that Alice and Bob win the game for a

fixed x, a. Notice that ω∗(G) = Exa[V xa]. We have

V xa =
1
n

∑

y

tr(Qy
W σxa(Qy

W )),

since y is uniformly distributed over the set IB of size n.
We now consider the following quantum strategy for Gcoup: Alice and Bob

share the same initial state as in the optimal strategy for G; Alice performs
the same measurement strategy as for G; on inputs y, y, Bob applies the first
measurement Qy and obtains outcome b, then applies the measurement P y′

on
his resulting state and gets outcome b′. Bob outputs (b, b′). Let Exa be the
probability that Alice and Bob win Gcoup using this strategy for a fixed x, a.
Notice that ω∗(Gcoup) ≥ Exa[Exa] since the value Exa[Exa] is achievable. We
have

Exa =
1

n(n − 1)

∑

y,y′ �=y

∑

b:V (ab|xy)=1
b′:V (ab′|xy′)=1

tr(Qy′
b′ Q

y
bσxaQy

bQy′
b′ )

≥ Pos(
1

64S
(V xa − 1

n
)3) from Theorem 1

where Pos(x) := max(x, 0) is the positive part of x. By taking the expectation
on each side, we obtain

ω∗(Gcoup) = Exa[Exa] ≥ Exa[Pos(
1

64S
(V xa − 1

n
)3)] ≥ Pos(

1
64S

(ω∗(G) − 1
n

)3)

≥ 1
64S

(ω∗(G) − 1
n

)3

where we used the convexity of the function x �→ Pos(x3).
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3.3 Retrieving the Value of Certain Entangled Games

We now use the technique developed above in order to obtain upper bounds on
games based on the FQ variant of CHSH.

CHSHQ(P) — We consider the nonlocal game called CHSHQ(P ) with P ≤ Q.
Here, Alice and Bob receive inputs x and y, where x is a uniformly random
element in FQ and y is an element of FQ taken uniformly at random from
{0, . . . , P − 1}. They output values a, b ∈ FQ and win if a + b = x ∗ y, where the
addition and multiplication are with respect to FQ. Notice that CHSHQ(P ) is
a projective game on the uniform distribution.

Let’s analyze CHSHQ(P )coup. Fix an input/output pair (x, a) and a pair
(y, y′) of inputs for Bob with y = y′. Let b, b′ Bob’s output. If Alice and Bob
win the game then we have a + b = x ∗ y and a + b′ = x ∗ y′ which implies
that (b − b′) ∗ (y − y′)−1 = x. This means that Bob can use any strategy for
CHSHQ(P )coup as a strategy to guess x with the same winning probability.
Because of non-signaling, this happens with probability at most 1

Q . We there-
fore have ω∗(CHSHQ(P )coup) ≤ 1

Q . Using Proposition 1 (we have S = 1 in this
setting), we obtain ω∗(CHSHQ(P )) ≤ 1

P + 4
Q1/3 .

CHSHQ(2)⊗n — This is the parallel repetition of CHSHQ where Alice and
Bob receive n uniform strings x1, · · · , xn and y1, · · · , yn ∈ {0, 1} and output
strings a1, · · · , an and b1, · · · , bn, respectively. They win the CHSHQ(2)⊗n game
if they win all n instances of the CHSHQ games, i.e. if ai + bi = xi ∗ yi for all
i ∈ {1, · · · , n}. Consider now the coupled version of this game. For any two
inputs y = y1, . . . , yn, y′ = y′

1, . . . , y
′
n given to Bob, if Alice and Bob win the

game then similarly as in CHSH, Bob can recover Alice’s input bits xi for
each i where yi = y′

i. From non signaling, this happens with probability at
most Q−|y−y′|H , where |y − y′|H is the Hamming distance between strings y
and y′, counting in how many indices both strings differ. Therefore, we have
ω∗(CHSHQ(2)⊗n

coup) = Ey,y′ �=y[Q−|y−y′|H ] = 1
2n

(
(1 + 1

Q )n − 1
)
. If Q > n, we

have

ω∗(CHSHQ(2)⊗n
coup)≤ 2n

Q2n
which gives ω(CHSHQ(2)⊗n)≤ 1

2n
+4(

2n

Q2n
)1/3.

In particular, if we take Q = 64·22n
2nε3 , we obtain ω(CHSHQ(2)⊗n) ≤ 1

2n (1 + ε).

4 Relativistic Bit and String Commitment

In this section, we will review the relativistic FQ bit commitment scheme and
its natural extension to string commitment. We will show how the sum-binding
property (with worst parameters) is preserved when considering string commit-
ment or the parallel repetition of bit commitment. This is showed by Proposi-
tions 5 and 6.
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4.1 Bit Commitment

Bit commitment is a cryptographic primitive between two distrustful parties
Alice and Bob which consists of 2 phases: a Commit phase and a Reveal phase.
Alice has a bit d at the beginning of the protocol. In the commit phase, Alice will
commit to this value d by performing some communication protocol such that
at end of the commit phase, Bob has no information about d (hiding property).
In the second phase, the reveal phase, Alice and Bob also perform some commu-
nication which results in Alice revealing d. A desired property here is that Alice
is unable to reveal a bit different from the one chosen during the commit phase
(binding property).

In some sense, a bit commitment protocol simulates a digital safe. In the
commit phase, Alice writes her input d on a piece of paper, puts that paper into
the safe and sends the safe to Bob. If Bob doesn’t hold the key of the safe then
he cannot open it and therefore has no information about d. In the reveal phase,
Alice would send to Bob the key to open the safe. But she cannot change the
value of the bit in the safe because Bob has control of the safe. This primitive
has been widely studied. However, bit commitment can only be performed with
computational security in the most usual models.

We now define more formally a bit commitment scheme.

Definition 6. A quantum commitment scheme is an interactive protocol
between Alice and Bob with two phases, a Commit phase and a Reveal phase.

– Commit phase. Alice chooses a uniformly random input d that she wants to
commit to. To do so, Alice and Bob perform a communication protocol that
corresponds to this commit phase.

– Reveal phase. Alice interacts with Bob in order to reveal d. To do so, they
perform a second communication protocol where at the end, Bob should know
the value revealed by Alice. Bob, depending on this revealed value and the
interaction with Alice, outputs either “Accept” or “Reject”.

A commitment scheme Π = (COMM,OPEN) is the description of the
protocol followed by the honest parties during both the commit and the open
phases. All protocols that we will consider will be perfectly hiding and we will
only be interested in the binding property. Therefore, we only consider the
case of a cheating Alice, which will be described through her cheating strategy
Str∗ = (Comm∗,Open∗) in both phases of the protocol. The binding property
we consider is the standard sum-property, that was also used in previous work
regarding relativistic bit commitment [LKB+15,FF15,CCL15].

Definition 7 (Sum-binding). We say that a bit commitment protocol Π is
ε-sum-binding if

∀ Comm∗,
1∑

d=0

max
Open∗ (Pr[Alice successfully reveals d |(Comm∗,Open∗)])≤ 1+ε.
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In the case of string commitment, meaning Alice wants to commit/reveal
to a string of dimension P (i.e. �log(P )�bits), we can extend the sum-binding
property as follows.

Definition 8 (String sum-binding). We say that a P -string commitment
protocol Π is ε-sum-binding if

∀ Comm∗,
P−1∑

d=0

max
Open∗ (Pr[Alice successfully reveals d |(Comm∗,Open∗)])≤1+ε.

The sum-binding property for bit commitment is a relatively weak one.
Indeed, it is very hard to use this definition when combining it with other prim-
itives. For example, when committing to n bits in parallel, it is not always the
case that this overall commitment, seen as a 2n-string commitment, satisfies a
good string sum-binding property. On the other hand, the string sum-binding
for strings seems more exploitable.

4.2 Relativistic Bit Commitment

A relativistic bit commitment scheme is a commitment scheme where we use
physical property that no information carrier can travel faster than the speed of
light. In order to take advantage of this principle, we split Alice (resp. Bob) into
2 agents A1 and A2 (respectively B1 and B2). For each i ∈ {1, 2}, Ai interacts
only with Bi. If we put the two pairs (A1,B1) and (A2,B2) far apart, and use
some timing constraints, we can enforce some non-signaling type scenarios. Here,
we will only use the property that the two honest Bob’s know their respective
location. In particular, there is no trust needed regarding the location of the
cheating parties.

The security definitions for relativistic bit commitment are the ones we pre-
sented above: Definitions 7 and 8. We will now describe the FQ relativistic bit
commitment scheme. This scheme will consist of 4 phases, the preparation phase,
the commit phase, the sustain phase and the reveal phase. The preparation phase
is some preprocessing phase that can be done anytime before the protocol. The
sustain phase can be seen as a part of the reveal phase, and corresponds to the
time where the committed bit is safe. We assume here that the two Alices learn
at the beginning of the sustain phase the bit d they should try to reveal (which
doesn’t necessarily correspond to the bit, if any, they committed to).
The Single-Round FQ Protocol. The single-round version corresponds
CHSHQ to the protocol introduced by Crépeau et al. [CSST11] (see also [Sim07]).
Both players, Alice and Bob, have agents A1,A2 and B1,B2 present at two spa-
tial locations, 1 and 2, separated by a distance D. We consider the case where
Alice makes the commitment. The protocol (followed by honest players) consists
of 4 phases: preparation, commit, sustain and reveal. The sustain phase in the
single-round protocol is trivial and simply consists in waiting for a time less than
D/c, which is the time needed for light to travel between the two locations. The
bit commitment protocol goes as follows.
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1. Preparation phase: A1,A2 (resp. B1,B2) share a random number a ∈ FQ

(resp. x ∈ FQ).
2. Commit phase: B1 sends b to A1, who immediately returns y = a + d ∗ x

where d ∈ {0, 1} is the committed bit.
3. Sustain phase: A1 and A2 wait for some time τ < D/c, where c is the speed

of light. Crucially, for any time less than D/c, the NSS principle guarantees
that A2 has no information about the value of b.

4. Reveal phase: A2 reveals the values of d and a to B2 who checks that y =
a + d ∗ tx.

This relativistic bit commitment protocol is known to be O( 1√
Q

)-sum-binding
[LKB+15]. It can be easily extended to a P -string commitment where d is an
element of FP instead of an element of {0, 1}. The above construction is well
defined as long as Q ≥ P (all the operations are still the modular operations in
FQ).

Proposition 5. The above relativistic P -string commitment protocol is ε-sum-
binding with ε = 4P

Q1/3 .

Proof. Consider a P -string commitment Π and a cheating strategy Str∗ =
(Comm∗, Open∗). In this strategy, A1 and A2 share an entangled state |ψ〉.
After receiving b, A1 performs a measurement on her part of the state to pro-
duce an output y which she sends to B1. For a random d that A2 wants to reveal,
she performs a measurement on her part of the state to produce an output a.
We have

1
P

P−1∑

d=0

(Pr[Alice successfully reveals d | (Comm∗,Open∗)]) = Pr[a + y = b ∗ d].

One can directly use the above strategy to construct a strategy for a
CHSHQ(P ) game (defined in Sect. 3), with respective inputs b ∈ FQ, d ∈ FP

and with respective outputs y and a. We have immediately

Pr[a + y = b ∗ d] ≤ ω∗(CHSHQ(P )) ≤ 1
P

+
4

Q1/3
,

where the bound on the entangled is the one from Sect. 3. This gives us

P−1∑

d=0

max
Open∗ (Pr[Alice successfully reveals d | (Comm∗,Open∗)]) ≤ 1 +

4P

Q1/3

which proves the desired proposition.
If we want to perform an ε-sum-binding P -string commitment protocol then

we need to send log(Q) = log(64P 3

ε3 ) = 3(log(P ) + | log(ε)|) + 8 bits for each
round of the protocol.
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4.3 Parallel Repetiton of RBC

The problem with string commitment is that it is not possible to reveal only
some bits of the string: by construction, one has to reveal the whole string. In
order to circumvent this issue, we need to consider performing a bit commitment
n times in parallel. This then allows one to reveal only a fraction of the bits. The
scheme will still feature sum-binding property but the scaling in parameters –
although still polynomial – will not be as good as for string commitment.

1. Preparation phase: A1,A2 (resp. B1,B2) share n random bits a1, . . . , an ∈ FQ

(resp. b1, . . . , bn ∈ FQ).
2. Commit phase: B1 sends each bi to A1, who returns for each i yi = ai +di ∗ bi

where d1, . . . , dn ∈ {0, 1} is the sequence of committed bits.
3. Sustain phase: A1 and A2 wait for some time τ ≤ D/c.
4. Reveal phase: Let S be the subset of indices Alice wants to reveal. A2 indicates

S to B2 and reveals the values {ai}i∈S and {di}i∈S to B2 who checks that for
each i ∈ S, the relation yi = ai + di ∗ bi holds.

Proposition 6. Fix a subset S of indices Alice will reveal to. Relative to S, the
above protocol is ε-sum binding with ε = 4(2|S|22|S|

Q )1/3 ≤ 4( 2n22n

Q )1/3.

Proof. Fix a subset S. As before, we can use a strategy for the relativistic bit
commitment to solve an instance of CHSHQ(2)⊗|S| which implies

∑

d∈{0,1}|S|

max
Open∗ (Pr[Alice successfully reveals d | (Comm∗,Open∗)])

≤ 2|S|ω∗(CHSHQ(2)⊗|S|).

Since we know that ω∗(CHSHQ(2)⊗|S|) ≤ 1
2|S| + 4( 2|S|

Q2|S| )1/3, we can imme-
diately conclude that

∑

d∈{0,1}|S|

max
Open∗ (Pr[Alice successfully reveals d | (Comm∗,Open∗)]) ≤ 2|S|

≤ 1 + 4(
2|S|22|S|

Q
)1/3.

If we want the above protocol to be ε-sum-binding, we need to send
n log(Q) = O(n2 log(n) + n| log(ε)|) bits at each round.

5 Relativistic Zero-Knowledge

In this section, we present our relativistic zero-knowledge protocol for NP. Our
protocol will be based on the well known protocol for the NP-complete problem
Hamiltonian Cycle, which uses bit commitment.
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5.1 The Zero-Knowledge Hamiltonian Cycle Protocol

Here, we present the zero-knowledge Hamiltonian cycle protocol and its adapta-
tion to the relativistic setting. Let Sn the set of permutation on {1, . . . , n}.

Definition 9. A cycle of {1, . . . , n} is a set of couples

{(Π(1),Π(2)), (Π(2),Π(3)), . . . , (Π(n − 1),Π(n)), (Π(n),Π(1))}

for a permutation Π ∈ Sn. We denote by Γn the set of cycles of {1, . . . , n}. We
have |Γn| = (n − 1)!. For a cycle C = {(u, v)} and a permutation Π, we also
define Π(C) := {(Π(u),Π(v)}.

Definition 10. A Hamiltonian cycle of a graph G = (V,E) is a cycle C of
{1, . . . , |V |} such that C ∈ E i.e. ∀(i, j) ∈ C, (i, j) ∈ E.

Determining whether a graph G has a Hamiltonian cycle or not is an
NP-complete problem. The corresponding decision problem is Hamiltonian

Cycle and G ∈ Hamiltonian Cycle means that the graph contains a
Hamiltonian cycle.

5.2 The Protocol

We recall the zero-knowledge protocol for Hamiltonian Cycle first presented
by Blum [Blu86].

Zero knowledge protocol for Hamiltonian Cycle

Input — The prover and the verifier are given a graph G = (V,E).
Auxiliary Input — The prover knows a Hamiltonian cycle C of G.
Protocol —

1. The prover picks a random permutation Π : V → V . He commits to each
of bit of the adjacency matrix MΠ(G) of Π(G).

2. The verifier sends a random bit (called the challenge) chall ∈ {0, 1} to
the prover.

3. – If chall = 0, the prover decommits to all the elements of MΠ(G), and
reveals Π.

– If chall = 1, he reveals only the bits (of value 1) of the adjacency
matrix that correspond to a Hamiltonian cycle C′ = Π(C) of Π(G).

4. The verifier checks that these decommitments are valid and correspond,
for chall = 0 to MΠ(G) and, for chall = 1, to a Hamiltonian cycle.

We now present the relativistic zero-knowledge protocol, that uses the FQ

bit commitment.
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Relativistic zero knowledge protocol for Hamiltonian Cycle

Input — The provers and the verifiers are given a graph G = (V,E).
Auxiliary Input — The provers P1 and P2 know a Hamiltonian cycle C of G.
Preprocessing — P1 and P2 agree beforehand on a random permutation
Π : V → V and on an n × n matrix A ∈ MFQ

n where each element of A is
chosen uniformly at random in FQ.
Protocol —

1. Commitment to each bit of MΠ(G) : V1 sends a matrix B ∈ MFQ
n where

each element of B is chosen uniformly at random in FQ. P1 outputs the
matrix Y ∈ MFQ

n such that ∀i, j ∈ [n], Yi,j = Ai,j + (Bi,j ∗ (MΠ(G))i,j).
2. The verifier V2 sends a random bit (called the challenge) chall ∈ {0, 1} to

the prover P2.
3. – If chall = 0, P2 decommits to all the elements of MΠ(G), i.e. he sends

all the elements of A to V2 and reveals Π.
– If chall = 1, P2 reveals only the bits (of value 1) of the adjacency

matrix that correspond to a Hamiltonian cycle C′ of Π(G), i.e. for all
edges (u, v) of C′, he sends Au,v as well as C′.

4. The verifier checks that those decommitments are valid and correspond to
what the provers have declared. He also checks that the timing constraint
of the bit commitment is satisfied. This means that

– if chall = 0, the prover’s opening A must satisfy ∀i, j ∈ [n], Yi,j =
Ai,j + (Bi,j ∗ (MΠ(G))i,j).

– if chall = 1, the prover’s opening A must satisfy ∀(u, v) ∈ C′, Yu,v =
Au,v + Bu,v.

5.3 Proof of Security

Our goal is to show that the above protocol is a relativistic zero-knowledge
protocol for Hamiltonian Cycle. In order to do this, we show the following

– Completeness: If the prover and the verifier are honest then for any graph G
that has a Hamiltonian cycle, the verifier accepts with certainty.

– Soundness: If we take Q = 64n!23k, we have that for any cheating prover,
∀G /∈ Hamiltonian Cycle, the verifier accepts with probability at most
1
2 + 2−k. With this parameter Q, the amount of bits sent during the protocol
is log(Q) for each committed bit and is therefore n2 log(Q) = O(kn3 log(n))
at each round.

– Perfect zero-knowledge: for any cheating verifier V ∗, there exists a quantum
poly-time simulator Σ that can reproduce the cheating verifier’s view of the
protocol for any input G ∈ Hamiltonian Cycle and any auxiliary input ρ.
More details about this zero-knowledge property can be found in the corre-
sponding subsection.
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Completeness. If both players are honest and G contains a Hamiltonian cycle
then the protocol always succeeds. Indeed, the original protocol from Blum has
perfect completeness. Moreover, the FQ bit commitment always succeeds when
done honestly.

Soundness. The soundness can be reduced to the following 2-player game
GRZK−HAM .

– P1 receives a matrix B ∈ MFQ
n where each element of B is chosen uniformly

at random in FQ. P2 receives a random input bit chall.
– P1 outputs a matrix Y ∈ MFQ

n . If chall = 0 then P2 outputs a permutation Π

and a matrix A ∈ MFQ
n . If chall = 1 then P2 outputs a cycle C′ and n strings

{A′
(u,v)}(u,v)∈C′ in FQ.

– If chall = 0, the two players win if ∀i, j ∈ [n], Yi,j = Ai,j +(Bi,j ∗ (MΠ(G))i,j).
If chall = 1, the two players win if for all edges (u, v) of C′, Yu,v = Au,v +Bu,v,
which corresponds to revealing 1 for each edge of the cycle C′.

This game is n!-projective: once the permutation (or the cycle) is chosen, the win-
ning output is fixed. In order to study this game, we study the game GRZK−HAM

coup .
We fix an input/output pair (B, Y ) for P1 and we consider winning outputs for
P2 for both inputs. For chall = 0, we have a permutation Π and a matrix
A ∈ MFQ

n which is a valid opening of MΠ(G) meaning that

∀(i, j), Ai,j = Yi,j − Bi,j ∗ (MΠ(G))i,j . (6)

For chall = 1, we have a cycle C′ of {1, . . . , |V |} as well as openings A′
u,v for

each (u, v) ∈ C′. Because it is a winning output, the openings must satisfy

∀(u, v) ∈ C′, A′
u,v = Yu,v − Bu,v. (7)

If the graph G (hence also Π(G)) does not contain a Hamiltonian cycle then
there has to be an edge (u, v) of C′ such that

(
MΠ(G)

)
u,v

= 0. For this specific
(u, v), we combine Eqs. 6 and 7 and get:

Au,v = Yu,v; A′
u,v = Yu,v − Bu,v.

This implies that Au,v − A′
u,v = Bu,v which happens with probability at most

1
Q from non-signaling. We therefore conclude that ω∗(GRZK−HAM

coup ) ≤ 1
Q . From

there, we can apply Proposition 1 and obtain

ω∗(GRZK−HAM ) ≤ 1
2

+
(

64n!
Q

)1/3

.

If we take Q = 64n!23k then the protocol has soundness 1
2 +2−k. The amount of

bits sent during the protocol is log(Q) for each committed bit and is therefore
n2 log(Q) = O(kn3 log(n)), which shows that the protocol is efficient.
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5.4 Zero-Knowledge Property

In this section, we show that the above protocol is zero-knowledge. One of the
main difficulties in proving zero-knowledge in the quantum setting arises when
requiring the simulator to perform rewinding while preserving an auxiliary state.
Here, there is no need for rewinding and the simulation can be done perfectly
and quite simply. The simulator will simply simulate each round of the protocol
from the first one to the last one. The reason of this simplicity is that in our bit
commitment scheme, the verifier and the simulator are able, for any commitment,
to reveal an arbitrary value of their choice. This is a rare feature because the
prover shouldn’t be able to do this to preserve the binding property. In our case,
this asymmetry comes from the relativistic constraints imposed on the provers.

Zero-Knowledge in the Relativistic Setting. From the provers’ point of view, each
of them receives a message and replies. We assume that a cheating verifier can
totally bypass the timing constraints. We therefore consider one cheating verifier
that interacts with both provers. Moreover, we allow the verifier to send a query
to the second prover after receiving the answer from the first prover or vice-versa.
All of this is meant to have a cheating verifier as strong as possible. Proving
the zero-knowledge property in this setting will therefore be stronger in this
model. Also, this will show the zero-knowledge property both for relativistic zero-
knowledge and for the (very related) 2-prover 1-round multi-prover interactive
proof model.

A cheating verifier V ∗ is modeled by a polynomial-time uniform family of
pairs of circuits {(V ∗

1 (n), V ∗
2 (n)} where each V ∗

i (n) represents the verifier action
towards prover Pi on input size n. The verifier sends a query to each prover in
respective classical registers Q1 and Q2 and gets responses in respective classical
registers R1 and R2. The verifier also has access to private quantum register V,
which initially contains a quantum auxiliary state ρ.

Fix a cheating verifier V ∗. For any message B ∈ MFQ
n sent from the verifier

to P1, the message from P1 is a uniformly random matrix Y = MFQ
n while the

message from P2 consists of:

– if chall = 0, a random permutation Π and a matrix A satisfying Y = A+B ∗
MΠ(G) where the multiplication is the entry-wise matrix multiplication.

– if chall = 1, a random cycle C′ and a family of strings {A′
u,v}(u,v)∈C′ satisfying

∀(u, v) ∈ C′, Yu,v = A′
u,v + Bu,v.

The verifier receives as a first message a random matrix Y and as second mes-
sage a random permutation (for chall = 0) or a cycle (for chall = 1) with a
uniquely determined message A or A′ that he can perfectly infer from the infor-
mation available to him. Notice that in the soundness analysis, the prover doesn’t
know what message he has to send because of relativistic constraints which do
not apply for the verifier (as we said, this only increases our claim on zero-
knowledge).

All of the above remains true for any strategy for the cheating verifier and
with any auxiliary input, and even if the verifier queries a prover depending on
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the answer of the other prover. Moreover, simulating the interaction between V ∗

and the provers can be done step by step following V ∗’s actions, without any
need for rewinding. This therefore shows the perfect zero-knowledge property of
our scheme. In order to illustrate this, we present below a step by step simulation
of the verifier’s view in a more formal way than what we did above.

Step by Step Simulation of the Verifier’s View of the Protocol. For a cheating
verifier V ∗, we construct a quantum poly-time simulator such that on any input
G ∈ Hamiltonian Cycle and auxiliary input ρ, the simulator can recreate the
verifier’s view of the protocol perfectly. The simulator will use V ∗ as a black
box and will mimic the verifier’s view of the protocol after each round. When
considering the interaction between the verifier and the provers, we will always
distinguish 2 cases

1. The action of V ∗
2 depends on the interaction with P1.

2. The action of V ∗
1 depends on the interaction with P2.

Note that both of these events cannot happen simultaneously. In the analysis
below, we will consider case 1 but the other one can be treated in the exact same
way.

We first describe the different view for a cheating verifier V ∗ and then show
how to perform the simulation. Let σi be the verifier’s view at step i of the
protocol.

– At the beginning of the protocol, the verifier’s view consists of σ0 := ρV .
– After the verifier’s first message to P1, the verifier’s view is

σ1 := V ∗
1 (ρ) =

∑

B∈MFQ
n

pB |B〉〈B|Q1 ⊗ ρ(B)V .

– After the first prover’s answer, the shared state between the provers and the
verifier is

σ2 :=
1
n!

1
Qn2

∑

Π∈Sn

∑

A∈MFQ
n

∑

B∈MFQ
n

pB |Y (Π,A)〉〈Y (Π,A)|R1⊗|B〉〈B|Q1⊗ρ(B)V .

where Y (Π,A) := A + B ∗ Π(G) with ∗ being the entry wise matrix
multiplication.

– Now, the verifier sends his challenge bit, which can depend on everything that
happened before. His view becomes

σ3 :=
1
n!

1
Qn2

∑

Π∈Sn

∑

A∈MFQ
n

∑

B∈MFQ
n

∑

c∈{0,1}
pB,c|Y (Π,A)〉〈Y (Π,A)|R1 ⊗ |c〉〈c|Q2

⊗|B〉〈B|Q1 ⊗ ρ(B, c, Y (Π,A))V .
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– After the final message from the prover, the verifier’s view becomes

σ4 :=
1

n!

1

Qn2

∑

Π∈Sn

∑

A∈MFQ
n

∑

B∈MFQ
n

|Y (Π, A)〉〈Y (Π, A)|R1⊗|B〉〈B|Q1⊗

(
pB,0|0〉〈0|Q2 ⊗ |Π, A〉〈Π, A|R2 ⊗ ρ(B, 0, Y (Π, A))

+ pB,1|1〉〈1|Q2 ⊗ |Π(C), AΠ(C)〉〈Π(C), AΠ(C)|R2 ⊗ ρ(B, 1, Y (Π, A))
)
.

Notice that we are interested here in the verifier’s view on a ’Yes’
instance, meaning that on challenge ′1′ in register Q2, the answer
|Π(C), AΠ(C)〉〈Π(C), AΠ(C)| satisfies

∀(i, j) ∈ Π(C), Yi,j = Ai,j + Bi,j .

meaning that the prover revealed the output bit ‘1’ for entry Π(G)i,j . Notice
also that for a fixed cycle C, the mapping Π → Π(C) is a bijection between the
set of permutation and the set of cycles.

We show now how to simulate the view of the verifier. The simulator can
easily simulate σ0 and σ1 since he has a copy of ρ and knows V ∗

1 . Notice that
in σ2, the message from the prover is a uniform random matrix because of the
randomness A. Therefore, we have

σ2 =
1

Qn2

∑

Y ∈MFQ
n

∑

B∈MFQ
n

pB |Y 〉〈Y |R1 ⊗ |B〉〈B|Q1 ⊗ ρ(B)V .

This can be easily created by the simulator by just tensoring the totally mixed
state in register R1 to σ1. In order to construct σ3, the simulator just applies
V ∗
2 to transform σ2 into σ3 as the cheating verifier would and gets exactly

σ3 =
1

Qn2

∑

Y ∈MFQ
n

∑

B∈MFQ
n

∑

c∈{0,1}
pB,c |Y 〉〈Y |R1⊗|c〉〈c|Q2⊗|B〉〈B|Q1⊗ρ(B, c, Y )V .

Finally, in order to construct σ4, the simulator does the following

– conditioned on c = 0 in register Q2, the simulator picks a random per-
mutation Π and puts |Π,A(Π,B, Y )〉〈Π,A(Π,B, Y )| in register R2 where
A(Π,B, Y ) := Y −B∗Π(G), with ∗ being the entry wise matrix multiplication.

– conditioned on c = 1 in register Q2, the simulator picks a random cycle C′ and
outputs |C′, A′(C′, B, Y )〉〈C′, A′(C′, B, Y )| such that for all (i, j) ∈ C′, it holds
that A′(C′, B, Y )i,j := Yi,j − Bi,j .

The state constructed by the simulator is therefore
1

Qn2

∑

A∈MFQ
n

∑

B∈MFQ
n

|Y 〉〈Y |R1 ⊗ |B〉〈B|Q1⊗

(pB,0|0〉〈0|Q2 ⊗ 1
n!

∑

Π∈Sn

|Π,A(Π,B, Y )〉〈Π,A(Π,B, Y )|R2 ⊗ ρB,0,Y

+ pb,1|1〉〈1|Q2 ⊗ 1
(n − 1)!

∑

C′∈Γn

|C′, A′(C′, B, Y )〉〈C′, A′(C′, B, Y )|R2 ⊗ ρB,1,Y ).
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By simple changes of variables, we can see that the above state is actually exactly
equal to σ4. Therefore, we succeeded in the simulation and we can conclude that
our protocol is perfectly zero-knowledge against quantum adversaries.

Acknowledgements. The authors were partially supported by ANR DEREC <ANR-
16-CE39-0001-01>.
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Abstract. We propose a new protocol for two-party computation,
secure against malicious adversaries, that is significantly faster than prior
work in the single-execution setting (i.e., non-amortized and with no pre-
processing). In particular, for computational security parameter κ and
statistical security parameter ρ, our protocol uses only ρ garbled circuits
and O(ρ + κ) public-key operations, whereas previous work with the
same number of garbled circuits required either O(ρ · n + κ) public-key
operations (where n is the input/output length) or a second execution
of a secure-computation sub-protocol. Our protocol can be based on the
decisional Diffie-Hellman assumption in the standard model.

We implement our protocol to evaluate its performance. With ρ = 40,
our implementation securely computes an AES evaluation in 65 ms over
a local-area network using a single thread without any pre-computation,
22× faster than the best prior work in the non-amortized setting. The
relative performance of our protocol is even better for functions with
larger input/output lengths.

1 Introduction

Secure multi-party computation (MPC) allows multiple parties with private
inputs to compute some agreed-upon function such that all parties learn the
output while keeping their inputs private. Introduced in the 1980s [38], MPC
has become more practical in recent years, with several companies now using
the technology. A particularly important case is secure two-party computation
(2PC), which is the focus of this work.

Many existing applications and implementations of 2PC assume that all par-
ticipants are semi-honest, that is, they follow the protocol but can try to learn
sensitive information from the protocol transcript. However, in real-world appli-
cations this assumption may not be justified. Although protocols with stronger
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security guarantees exist, 2PC protocols secure against malicious adversaries are
relatively slow, especially when compared to protocols in the semi-honest setting.
To address this, researchers have considered variants of the classical, “single-
execution” setting for secure two-party computation, including both the batch
setting [18,28,29,33] (in which the computational cost is amortized over multi-
ple evaluations of the same function) and the offline/online setting [28,29,33]
(in which parties perform pre-processing when the circuit—but not the parties’
inputs—is known). The best prior result [33] (done concurrently and indepen-
dently of our own work) relies on both amortization and pre-processing (as well
as extensive parallelization) to achieve an overall amortized time of 6.4 ms for
evaluating AES with 40-bit statistical security. Due to the pre-processing, how-
ever, it introduces a latency of 5222 ms until the first execution can be done.

In addition, existing 2PC schemes with security against malicious adversaries
perform poorly on even moderate-size inputs or very large circuits. For example,
the schemes of Lindell [24] and Afshar et al. [1] require a number of public-key
operations at least proportional to the statistical security parameter times the
sum of one party’s input length and the output length. The schemes tailored to
the batch, offline/online setting [29,33] do not scale well for large circuits due to
memory constraints: the garbled circuits created during the offline phase need
either to be stored in memory, in which case evaluating very large circuits is
almost impossible, or else must be written/read from disk, in which case the
online time incurs a huge penalty1 due to disk I/O (see Sect. 5).

Motivated by these issues, we design a new 2PC protocol with security against
malicious adversaries that is tailored for the single-execution setting (i.e., no
amortization) without any pre-processing. Our protocol uses the cut-and-choose
paradigm [25] and the input-recovery approach introduced by Lindell [24], but
the number of public-key operations required is independent of the input/output
length. Overall, we make the following contributions.

– Our protocol is more efficient, and often much more efficient, than the previous
best protocol with malicious security in the single-execution setting (see Table
1). Concretely, our protocol takes only 65 ms to evaluate an AES circuit over
a local-area network, better than the most efficient prior work in the same
setting.

– We identify and fix bottlenecks in various building blocks for secure computa-
tion; these fixes may prove useful in subsequent work. As an example, we use
Streaming SIMD Extensions (SSE) to improve the performance of oblivious-
transfer extension, and improve the efficiency of the XOR-tree technique to
avoid high (non-cryptographic) complexity when applied to large inputs. Our
optimizations reduce the cost of processing the circuit evaluator’s input by
1000× for 216-bit inputs, and even more for larger inputs.

– We release an open-source implementation, EMP-toolkit [36], with the aim of
providing a benchmark for secure computation and allowing other researchers
to experiment with, use, and extend our code.

1 The performance numbers reported in [29,33] do not take this into account.
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Table 1. Times for two-party computation of AES, with security against malicious
adversaries, in the single-execution setting. The statistical security parameter is ρ.
All numbers except for [29] are taken directly from the cited paper, and thus are
based on different hardware/network configurations. The numbers for [29] are from
our own experiments, using the same hardware/network configuration as for our own
implementation. We do not include [33] here because it is not in the single-execution
setting. See Sect. 5 for more details.

Protocol ρ Time Notes

PSSW09 [32] 40 1,114 s

SS11 [34] 40 192 s

NNOB12 [31] 55 4,000 ms

KSS12 [23] 80 1,400 ms 256 CPUs/party

FN13 [13] 39 1,082 ms GPU

AMPR14 [1] 40 5,860 ms

FJN14 [11] 40 455 ms GPU

LR15 [29] 40 1,442 ms

Here 40 65 ms

1.1 High-Level Approach

Our protocol is based on the cut-and-choose paradigm. Let f be the circuit
the parties want to compute. At a high level, party P1, also called the circuit
garbler, begins by generating s garbled circuits for f and sending those to P2, the
circuit evaluator. Some portion of those circuits (the check circuits) are randomly
selected and checked for correctness by the evaluator, and the remaining circuits
(the evaluation circuits) are evaluated. The outputs of the evaluation circuits
are then processed in some way to determine the output.

The Input-Recovery Technique. To achieve statistical security 2−ρ, early
cut-and-choose protocols [26,34,35] required s ≈ 3ρ. Lindell [24] introduced
the input-recovery technique and demonstrated a protocol requiring only s = ρ
garbled circuits of f (plus additional, smaller garbled circuits computing another
function). At a high level, the input-recovery technique allows P2 to obtain P1’s
input x if P1 cheats; having done so, P2 can then compute the function itself to
learn the output. For example, in one way of instantiating this approach [24],
every garbled circuit uses the same output-wire labels for a given output wire i,
and moreover the labels on every output wire share the same XOR difference Δ.
That is, for every wire i, the output-wire label Zi,0 corresponding to ‘0’ is random
whereas the output-wire label Zi,1 corresponding to ‘1’ is set to Zi,1 := Zi,0 ⊕Δ.
(The protocol is set up so that Δ is not revealed by the check circuits.) If P2

learns different outputs for some output wire i in two different gabled circuits—
which means that P1 cheated—then P2 recovers Δ. The parties then run a second
2PC protocol in which P2 learns x if it knows Δ; here, input-consistency checks
are used to enforce that P1 uses the same input x as before.
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Afshar et al. [1] designed an input-recovery mechanism that does not require
a secondary 2PC protocol. In their scheme, P1 first commits to its input bit-
by-bit using ElGamal encryption; that is, for each bit x[i] of its input, P1 sends
(gr, hrgx[i]) to P2, where h := gω for some ω known only to P1. As part of the
protocol, P1 sends {Zi,b + ωb}b∈{0,1} to P2 (where, as before, Zi,b is the label
corresponding to bit b for output wire i), with ω = ω0+ω1. Now, if P2 learns two
different output-wire labels for some output wire, P2 can recover ω and hence
recover x. Afshar et al. use homomorphic properties of ElGamal encryption to
enable P2 to efficiently check that the {Zi,b +ωb}b∈{0,1} are computed correctly,
and for this bit-by-bit encryption of the input is required. Overall, O(ρ · n)
public-key operations (where |x| = n) are needed.

Our construction relies on the same general idea introduced by Afshar et al.,
but our key innovation is that we are able to replace most of the public-key
operations with symmetric-key operations, overall using only O(ρ) public-key
operations rather than O(ρ · n); see Sect. 3.1 for details.

Input Consistency. One challenge in the cut-and-choose approach with the
input-recovery technique is that P2 needs to enforce that P1 uses the same input x
in all the evaluation circuits, as well as in the input-recovery phase. Afshar et
al. address this using zero-knowledge proofs to demonstrate (in part) that the
ElGamal ciphertexts sent by P1 all commit to the same bit across all evaluation
circuits. We observe that it is not actually necessary to ensure that P1 uses the
same input x across all evaluation circuits and in the input-recovery step; rather,
it is sufficient to enforce that the input x used in the input-recovery step is used
in at least one of the evaluation circuits. This results in a dramatic efficiency
improvement; see Sect. 3.1 for details.

Preventing a Selective-Failure Attack. 2PC protocols must also prevent a
selective-failure attack whereby a malicious P1 uses one valid input-wire label
and one invalid input-wire label (for one of P2’s input wires) in the oblivious-
transfer step. If care is not taken, P1 could potentially use this to learn a bit
of P2’s input by observing whether or not P2 aborts. Lindell and Pinkas [25]
proposed to deal with this using the XOR-tree approach in which P2 replaces
each bit yi of its input by ρ random bits that XOR to yi. By doing so, it can
be shown that the probability with which P2 aborts is (almost) independent of
its actual input. This approach increases the number of oblivious transfers by a
factor of ρ, but this can be improved by using a ρ-probe matrix [25,35], which
only increases the length of the effective input by a constant factor.

Nevertheless, this constant-factor blow-up in the number of (effective) input
bits corresponds to a quadratic blow-up in the number of XOR operations
required. Somewhat surprisingly (since these XORs are non-cryptographic oper-
ations), this blow-up can become quite prohibitive. For example, for inputs as
small as 4096 bits, we find that the time to compute all the XORs required for a
ρ-probe matrix is over 3 s! We resolve this bottleneck by breaking P2’s input into
small chunks and constructing smaller ρ-probe matrices for each chunk, thereby
reducing the overall processing required. See Sect. 4 for details.
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Results. Combining the above ideas, as well as other optimizations identified in
Sect. 4, we obtain a new 2PC protocol with provable security against malicious
adversaries; see Sect. 3.2 for a full description. Implementing this protocol, we
find that it outperforms prior work by up to several orders of magnitude in the
single-execution setting; see Table 1 and Sect. 5.

Subsequent Work. In our extended version [37] we adopt ideas by David
et al. [10] to further improve the efficiency of our protocol—especially when
communication is the bottleneck—by reducing the communication required for
the check circuits (as in [14]).

1.2 Related Work

Since the first implementation of a 2PC protocol with malicious security [27],
many implementations with better performance (including those already dis-
cussed in the introduction) have been developed [11,13,23,31,32,35]. Although
other approaches have been proposed for two-party computation with malicious
security (e.g., [9,12,31]), here we focus on protocols using the cut-and-choose
paradigm that is currently the most efficient approach in the single-execution
setting when pre-processing is not used. Lindell and Pinkas [25] first showed
how to use the cut-and-choose technique to achieve malicious security. Their
construction required 680 garbled circuits for statistical security 2−40, but this
has been improved in a sequence of works [1,7,11,17,24,26,34] to the point where
currently only 40 circuits are required.

2 Preliminaries

Let κ be the computational security parameter and let ρ be the statistical secu-
rity parameter. For a bit-string x, let x[i] denote the ith bit of x. We use the
notation a := f(· · · ) to denote the output of a deterministic function, a ← f(· · · )
to denote the output of a randomized function, and a ∈R S to denote choos-
ing a uniform value from set S. Let [n] = {1, . . . , n}. We use the notation
(c, d) ← Com(x) for a commitment scheme, where c and d are the commitment
and decommitment of x, respectively.

In Figs. 1 and 2, we show functionalities FOT and FcOT for parallel oblivious
transfer (OT) and a weak flavor of committing OT used also by Jawurek et al.
[19]. FcOT can be made compatible with OT extension as in [19].

Throughout this paper, we use P1 and P2 to denote the circuit garbler and
circuit evaluator, respectively. We let n1, n2, and n3 denote P1’s input length,
P2’s input length, and the output length, respectively.

Two-Party Computation. We use a (standard) ideal functionality for two-
party computation in which the output is only given to P2; this can be extended
to deliver (possibly different) outputs to both parties using known techniques
[25,34].



404 X. Wang et al.

Functionality FOT

Private inputs: P1 has input x ∈ {0, 1}n and P2 has input {Xi,b}i∈[n],b∈{0,1} .

1. Upon receiving x from P1 and {Xi,b}i∈[n],b∈{0,1} from P2, send {Xi,x[i]}i∈[n]

to P1.

Fig. 1. Functionality FOT for oblivious transfer.

Functionality FcOT

Private inputs: P1 has input x ∈ {0, 1}n and P2 has input {Xi,b}i∈[n],b∈{0,1} .

1. Upon receiving x from P1 and {Xi,b}i∈[n],b∈{0,1} from P2, send {Xi,x[i]}i∈[n]

to P1.
2. Upon receiving open from P2, send {Xi,b}i∈[n],b∈{0,1} to P1.

Fig. 2. Reactive functionality FcOT for committing oblivious transfer.

Building Blocks. Our implementation of garbled circuits uses all recent opti-
mizations [5,21,22,32,39]. Our implementation uses the base OT protocol of
Chou and Orlandi [8], and the OT extension protocol of Asharov et al. [4].

ρ-probe Matrix. A ρ-probe matrix, used to prevent selective-failure attacks,
is a binary matrix M ∈ {0, 1}n2×m such that for any L ⊆ [n2], the Hamming
weight of

⊕
i∈L Mi (where Mi is the ith row of M) is at least ρ. If P2’s actual

input is y ∈ {0, 1}n2 , then P2 computes its effective input by sampling a random
y′ ∈ {0, 1}m such that y = My′.

The original construction by Lindell and Pinkas [25] has m = max{4n2, 8ρ}.
shelat and Shen [35] improved this to m = n2 +O(ρ+log(n2)). Lindell and Riva
[29] proposed to append an identity matrix to M to ensure that M is full rank,
and to make it easier to find y′ such that y = My′.

3 Our Protocol

3.1 Protocol Overview

We describe in more detail the intuition behind the changes we introduce. This
description is not complete, but only illustrates the main differences from prior
work. Full details of our protocol are given in Sect. 3.2.

In our protocol, the two parties first run ρ instances of OT, where in the
jth instance P1 sends a random key keyj and a random seed seedj , while P2

chooses whether to learn keyj (thereby choosing to make the jth garbled circuit
an evaluation circuit) or seedj (thereby choosing to make the jth garbled circuit a
check circuit). The protocol is designed such that keyj can be used to recover the



Faster Secure Two-Party Computation in the Single-Execution Setting 405

input-wire labels associated with P1’s input in the jth garbled circuit, whereas
seedj can be used to recover all the randomness used to generate the jth garbled
circuit. Thus far, the structure of our protocol is similar to that of Afshar et al.
[1]. However, we differ in how we recover P1’s input if P1 is caught cheating, and
in how we ensure input consistency for P1’s input.

Input Recovery. Recall that we want to ensure that if P2 detects cheating by
P1, then P2 can recover P1’s input. This is done by encoding some trapdoor in
the output-wire labels of the garbled circuits such that if P2 learns both labels for
some output wire (in different garbled circuits) then P2 can recover the trapdoor
and thus learn P1’s input. In slightly more detail, input recovery consists of the
following high-level steps:

1. P1 “commits to” its input x using some trapdoor.
2. P1 sends garbled circuits and the input-wire labels associated with x, using

an input-consistency protocol (discussed below) to enforce that consistent
input-wire labels are used.

3. P1 and P2 run some protocol such that if P2 detects cheating by P1, then P2

gets the trapdoor without P1 learning this fact.
4. P2 either (1) detects cheating, recovers x using the trapdoor, and locally

computes (and outputs) f(x, y), or (2) outputs the (unique) output of the
evaluated garbled circuits, which is f(x, y).

In Afshar et al. [1], the above is done using ElGamal encryption and efficient zero-
knowledge checks to enforce input consistency. However, this approach requires
O(ρ · (n1 + n3)) public-key operations. In contrast, our protocol achieves the
same functionality with only O(ρ) public-key operations.

Our scheme works as follows. Assume for ease of presentation that P1’s input
x is a single bit and the output of the function is also a single bit. The parties run
an OT protocol in which P1 inputs x and P2 inputs two random labels M0,M1,
with P1 receiving Mx. Then, for the jth garbled circuit, P1 “commits” to x by
computing Rj,x := PRFseedj (“R”)⊕Mx and sending to P2 an encryption of Rj,x

under keyj . Note that P1 cannot “commit” to 1 − x unless P1 can guess M1−x.
Also, if P1 is honest then x remains hidden from P2 because P2 knows either keyj

or seedj for each j, but not both. The value seedj for any evaluation circuit j
serves as a trapdoor since, in conjunction with the value keyj that P2 already
has, it allows P2 to learn Mx (and hence determine x).

The next step is to devise a way for P2 to recover seedj if it learns inconsistent
output-wire labels in two different evaluation circuits. We do this as follows.
First, P1 chooses random Δ,Δ0,Δ1 such that Δ = Δ0 ⊕ Δ1. Then, for all j
it encrypts Δ0 using Zj,0 and encrypts Δ1 using Zj,1, where Zj,0, Zj,1 are the
two output-wire labels of the jth garbled circuit. It sends all these encryptions
to P2. Thus, if P2 learns Zj1,0 for some j1 it can recover Δ0, and if it learns Zj2,1

for some j2 it can recover Δ1. If it learns both output-wire labels, it can then of
course recover Δ.

P1 and P2 then run a protocol that guarantees that if P2 knows Δ it recovers
seedj , and otherwise it learns nothing. This is done as follows. P2 sets Ω := Δ
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Table 2. Notation used in our protocol.

Notation Meaning

E evaluation set

E ρ-probe matrix

GCj jth garbled circuit

{Aj,i,b}b ith input-wire labels for P1 in GCj

{Bj,i,b}b ith input-wire labels for P2 in GCj

{Zj,i,b}b ith output-wire labels in GCj

{Tj,i,b}b ith output-mapping table for GCj

{Rj,i,b}j,b commitments for the ith bit of P1’s input

Cj , Dj input-recovery elements

if it learned Δ, and sets Ω := 1 otherwise. P2 then computes (h, g1, h1) :=
(gω, gr, hrΩ), for random ω and r, and sends (h, g1, h1) to P1. Then, for each
index j, party P1 computes Cj := gsjhtj and Dj := g

sj

1 (h1/Δ)tj for random
sj , tj , and sends Cj along with an encryption of seedj under Dj . Note that if
Ω = Δ, then Cr

j = Dj and thus P2 can recover seedj , whereas if Ω �= Δ then P2

learns nothing (in an information-theoretic sense).
Of course, the protocol as described does not account for the fact that P1

can send invalid messages or otherwise try to cheat. However, by carefully inte-
grating appropriate correctness checks as part of the cut-and-choose process, we
can guarantee that if P1 tries to cheat then P2 either aborts (due to detected
cheating) or learns P1’s input with high probability without leaking any infor-
mation.

Input Consistency. As discussed in Sect. 1.1, prior schemes enforce that P1

uses the same input x for all garbled circuits and also for the input-recovery
sub-protocol. However, we observe that this is not necessary. Instead, it suffices
to ensure that P1 uses the same input in the input-recovery sub-protocol and at
least one of the evaluated garbled circuit. Even if P1 cheats by using different
inputs in two different evaluated garbled circuits, P2 still obtains the correct
output: if P2 learns only one output then this is the correct output; if P2 learns
multiple outputs, then the input-recovery procedure ensures that P2 learns x
and so can compute the correct output.

We ensure the above weaker notion of consistency by integrating the consis-
tency check with the cut-and-choose process as follows. Recall that in our input-
recovery scheme, P1 sends to P2 a “commitment” Rj,x := PRFseedj (“R”)⊕Mx for
each index j. After these commitments are sent, we now have P2 reveal M0⊕M1

to P1 (we use committing OT for this purpose), so P1 learns both M0 and M1.
P1 then computes and sends (in a randomly permuted order) Com(Rj,0, Aj,0)
and Com(Rj,1, Aj,1), where Aj,0, Aj,1 are P1’s input-wire labels in the jth gar-
bled circuit and the commitments are generated using randomness derived from
seedj . P1 also sends Enckeyj (Decom(Com(Rj,x, Aj,x))). Note that (1) if P2 chose
j as a check circuit then it can check correctness of the commitment pair, since
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Protocol Π2pc

Private inputs: P1 has input x ∈ {0, 1}n1 and P2 has input y ∈ {0, 1}n2 .

Common inputs:
ρ-probe matrix E ∈ {0, 1}n2×m, where m = O(n2);
Circuit f : {0, 1}n1 × {0, 1}n2 → {0, 1}n3 ;
Circuit f ′ : {0, 1}n1 × {0, 1}m → {0, 1}n3 such that f ′(x, y′) = f(x, Ey′);
Prime q with |q| = poly(κ).

Protocol:

1. P1 picks random κ-bit strings {keyj , seedj}j∈[ρ], and sends them to FOT. P2

picks E ∈R {0, 1}ρ, sends E to FOT, and receives {seedj}j /∈E and {keyj}j∈E .
2. P1 computes {Bj,i,b := PRFseedj (i, b, “B”)}j∈[ρ],i∈[m],b∈{0,1} and sends

{B1,i,b‖ · · · ‖Bρ,i,b}i∈[m],b∈{0,1} to FOT. P2 chooses random y′ ∈R {0, 1}m such
that y = Ey′, sends y′ to FOT, and receives {B1,i,y′[i]‖ · · · ‖Bρ,i,y′[i]}i∈[m].

3. P2 sends random labels {Mi,b}i∈[n1],b∈{0,1} to FcOT. P1 sends x to FcOT

and receives {Mi,x[i]}i∈[n1]. For j ∈ [ρ], i ∈ [n1], P1 computes Rj,i,x[i] :=
PRFseedj (i, “R”) ⊕ Mi,x[i], and sends Enckeyj

({Rj,i,x[i]}i∈[n1]) to P2. P2 sends
open to FcOT (which sends {Mi,0, Mi,1}i∈[n1] to P1), and for j ∈ E uses keyj

to decrypt and learn Rj,i,x[i].
4. For j ∈ [ρ], i ∈ [n1], P1 computes Rj,i,1−x[i] := Rj,i,x[i]⊕Mi,0⊕Mi,1, {Aj,i,b :=

PRFseedj (i, b, “A”)}b∈{0,1} , and {(cR
j,i,b, d

R
j,i,b) ← Com(Rj,i,b, Aj,i,b)}b∈{0,1} us-

ing randomness derived from seedj , and sends {(cR
j,i,0, c

R
j,i,1)} (in random per-

muted order) and Enckeyj
({dR

j,i,x[i]}i∈[n1]) to P2. For j ∈ E , i ∈ [n1], P2 opens

cR
j,i,x[i] to obtain Rj,i,x[i] and Aj,i,x[i], and checks that Rj,i,x[i] equals the value

from Step 3. If any decommitment is invalid or any check fails, P2 aborts.
5. P1 picks random κ-bit labels Δ, {Δi,0}i∈[n3], sets {Δi,1 := Δi,0 ⊕ Δ}i∈[n3],

and sends {H(Δi,b)}i∈[n3],b∈{0,1} to P2. For j ∈ [ρ], P1 computes garbled
circuit GCj for function f ′ using Aj,i,b, Bj,i,b as the input-wire labels and
randomness derived from seedj for internal wire labels. Let Zj,i,b denote the
output-wire labels. P1 computes {Tj,i,b := EncZj,i,b(Δi,b)}i∈[n3],b∈{0,1} and

(cT
j , dT

j ) ← Com({Tj,i,b}i∈[n3],b∈{0,1}) using randomness derived from seedj ,
and sends GCj , c

T
j , and Enckeyj

(dT
j ) to P2.

6. For j ∈ E , P2 decrypts to learn dT
j and opens cT

j to learn {Tj,i,b}i∈[n3],b∈{0,1} ;
if any decommitment is invalid, P2 aborts. P2 evaluates GCj using labels
{Aj,i,x[i]}i∈[n1] and {Bj,i,y′[i]}i∈[m], and obtains output-wire labels {Zj,i}i.
P2 checks validity of these labels by checking if H(DecZj,i(Tj,i,b)) matches
H(Δi,b) for some b ∈ {0, 1}, and if so sets z′

j [i] := b; else it sets z′
j [i] :=⊥.

– Invalid circuits. If, for every j ∈ E , there is some i with z′
j [i] =⊥, then P2

sets Ω := 1, z := ⊥.
– Inconsistent output labels. Else if, for some i ∈ [n3], j1, j2 ∈ E , P2 ob-

tains z′
j1 [i] = 0 and z′

j2 [i] = 1, then P2 sets Ω := DecZj1,i(Tj1,i,0) ⊕
DecZj2,i(Tj2,i,1). If different Ωs are obtained, P2 sets z := ⊥.

– Consistent output labels. Else, for all i, set z[i] := z′
j [i] for the first index

j such that z′
j [i] �=⊥, and set Ω := 1.

Fig. 3. The full description of our malicious 2PC protocol, part 1.
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Protocol Π2pc continued

Protocol:

7. P2 picks ω, r ∈R Fq, and sends (h, g1, h1) := (gω, gr, hrΩ) to P1. P1 sends
Δ and {Δi,b}i∈[n3],b∈{0,1} to P2, who checks that {Δ = Δi,0 ⊕ Δi,1}i∈[n3]

and that H(Δi,b) matches the values P1 sent in Step 5; if any check fails, P2

aborts. For j ∈ [ρ], P1 picks sj , tj ∈R Fq using randomness derived from seedj ,

computes Cj := gsj htj , Dj := g
sj

1
h1
Δ

)tj , and sends Cj and EncDj (seedj) to
P2. For j ∈ E , P2 uses Cr

j to decrypt and obtains some seed′
j .

8. If Ω �= 1, P2 recovers x as follows: For j ∈ E , i ∈ [n1], if Rj,i,x[i] =
PRFseed′

j
(i, “R”)⊕Mi,0, P2 sets xj [i] := 0; if Rj,i,x[i] = PRFseed′

j
(i, “R”)⊕Mi,1,

P2 sets xj [i] := 1; and otherwise, P2 sets xj [i] := ⊥. If no valid xj is obtained,
or more than two different xj are obtained, P2 sets z := ⊥; otherwise P2 sets
z := f(xj , y).

9. If all the following checks hold for all j /∈ E , then P2 outputs z; otherwise, P2

aborts.
(a) For i ∈ [m], the Bj,i,y′[i] value received in Step 2 equals

PRFseedj (i, y
′[i], “B”).

(b) GCj is computed correctly using Aj,i,b := PRFseedj (i, b, “A”) and Bj,i,b :=
PRFseedj (i, b, “B”) as input-wire labels and randomness derived from
seedj .

(c) Compute Tj,i,b using Zj,i,b from GCj and Δi,b sent by P1, and check that
cT

j is computed correctly with randomness derived from seedj .
(d) The Cj ,EncDj (seedj) values in Step 7 are correctly computed, using Δ

and seedj .
(e) For i ∈ [n1], b ∈ {0, 1}, cR

j,i,b is correctly computed using seedj , Aj,i,b, and
Rj,i,b (which are themselves computed from seedj).

Fig. 4. The full description of our malicious 2PC protocol, part 2.

everything is computed from seedj , and (2) if P2 chose j as an evaluation circuit
then it can open the appropriate commitment to recover Rj,x, and check that
this matches the value sent before.

3.2 Protocol Details and Proof of Security

We present the full details of our protocol in Figs. 3 and 4. To aid in understand-
ing the protocol, we also present a graphical depiction in Fig. 5. We summarize
some important notations in Table 2 for reference.

Our protocol, including the optimizations detailed in Sect. 4, requires a total
of O(ρ · (n1 + n2 + n3 + |C|)) symmetric-key operations and O(ρ + κ) group
operations. Most of the symmetric-key operations, including circuit garbling and
computing the PRFs, can be accelerated using hardware AES instructions.

Theorem 1. Let Com be a computationally hiding/binding commitment
scheme, let the garbling scheme satisfy authenticity, privacy, and obliviousness
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Common Input: E ∈ {0, 1}n2×mP1 : x ∈ {0, 1}n1 P2 : y ∈ {0, 1}n2

FOT

{seedj , keyj}j∈[ρ] E

{seedj}j /∈E , {keyj}j∈E

E ∈R {0, 1}ρkeyj , seedj ∈R {0, 1}κ

FOT

{B1,i,b‖..}i∈[m] y′ s.t. y = Ey′

{B1,i,y′[i]‖..‖B
ρ,i,y′[i]}i∈[m]

Bj,i,b := PRFseedj
(i, b, “B”)

FcOT
x

{Mi,b}i∈[n1]

{Mi,x[i]}i∈[n1]

Mi,b ∈R {0, 1}κ

{Enckeyj
({Rj,i,x[i]}i∈[n1])}j∈[ρ]Rj,i,x[i] :=

PRFseedj
(i, “R”) ⊕ Mi,x[i]

FcOT

{Mi,0, Mi,1}i∈[n1] open

{cRj,i,0, cRj,i,1}j∈[ρ],i∈[n1](randomly permuted)

{Enckeyj
({dj,i,x[i]}i∈[n1])}j∈[ρ]

Rj,i,1−x[i] :=
Rj,i,x[i] ⊕ Mi,0 ⊕ Mi,1

Aj,i,b := PRFseedj
(i, b, “A”)

(cRj,i,b, dR
j,i,b) ← Com(Rj,i,b, Aj,i,b)

Use {dR
j,i,b}j∈E to obtain

{Rj,i,x[i], Aj,i,x[i]}j∈E
Check Rj,i,x[i] same as received

{H(Δi,b)}i∈[n3],b∈{0,1}
{GCj , cTj , Enckeyj

(dT
j )}j∈[ρ]Tj,i,b := EncZj,i,b

(Δi,b)

(cTj , dT
j ) ← Com({Tj,i,b}i,b)

{GCj , Aj,i,x[i], B
j,i,y′[i], Tj,i,z[i]}⏐⏐�Details in Step 6

z or Ω := Δ

h, g1, h1
(h, g1, h1) := (gω, gr, hrΩ)

Δ, {Δi,b}i∈[n3],b∈{0,1}
{Cj, EncDj

(seedj)}j∈[ρ]Cj := g
sj h

tj

Dj := g
sj
1

(
h1
Δ

)tj

Check Δ = Δi,0 ⊕ Δi,1
seed′

j := DecCr
j
(EncDj

(seedj))

Other computation in Steps 7–9

Fig. 5. Graphical depiction of our protocol.

(cf. [6]), let H be collision-resistant, and assume the decisional Diffie-Hellman
assumption holds. Then the protocol in Figs. 3 and 4 securely computes f in the
(FOT,FcOT)-hybrid model with security 2−ρ + negl(κ).

Proof. We consider separately the case where P1 or P2 is malicious.

Malicious P1. Our proof is based on the fact that with all but negligible proba-
bility, P2 either aborts or learns the output f(x, y), where x is the input P1 sent
to FcOT in Step 3 and y is P2’s input. We rely on the following lemma, which
we prove in Sect. 3.3.
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Lemma 1. Consider an adversary A corrupting P1 and denote x as the input
A sends to FcOT in Step 3. With probability at least 1 − 2−ρ − negl(κ), P2 either
aborts or learns f(x, y).

Given this, the simulator essentially acts as an honest P2 using input 0, extracts
P1’s input x from the call to FcOT, and outputs f(x, y) if no party aborts.

We now proceed to the formal details. Let A be an adversary corrupting P1.
We construct a simulator S that runs A as a subroutine and plays the role of P1

in the ideal world involving an ideal functionality F evaluating f . S is defined
as follows.

1–2 S interacts with A, acting as an honest P2 using input 0.
3 S obtains the input x that A sends to FcOT. It forwards x to F .

4–6 S acts as an honest P2, where if P2 would abort then S sends abort to F
and halts, outputting whatever A outputs.

7–8 S acts as an honest P2 using Ω := 1, where if P2 would abort then S sends
abort to F and halts, outputting whatever A outputs.

9 S acts as an honest P2, except that after the check in Step 9a, S also checks
if {Bj,i,b}j /∈E,i∈[m],b∈{0,1} are correctly computed and aborts if, for at least
ρ different i ∈ [m], {Bj,i,b}j /∈E,b∈{0,1} contains incorrect values. If P2 would
abort then S sends abort to F and halts, outputting whatever A outputs;
otherwise, S sends continue to F .

We now show that the joint distribution over the outputs of A and the honest
P2 in the real world is indistinguishable from their joint distribution in the ideal
world.

H1. Same as the hybrid-world protocol, where S plays the role of an honest P2

using the actual input y.
H2. S now extracts the input x that A sends to FcOT and sends x to F if no

party aborts. S also performs the additional checks as described above in
Step 9 of the simulator.

There are two ways A would cheat here, and we address each in turn. For
simplicity, we let I ⊂ [m] denote the set of indices i such that Bj,i,b is not
correctly computed.
1. A launches a selective-failure attack with |I| < ρ. Lemma 1 ensures (in

H1) that P2 either aborts or learns f(x, y) with probability at least 1 −
2−ρ. In H2, note that P2 either aborts or learns f(x, y) with probability 1.
Further, since fewer than ρ wires are corrupted, the probability of an abort
due to the selective-failure attack is exactly the same in both hybrids.
Therefore the statistical distance between H1 and H2 is at most 2−ρ.

2. A launches a selective-failure attack with |I| ≥ ρ. By the security of the
ρ-probe matrix [29], S aborts in H1 with probability at least 1 − 2−ρ. (If
A cheats elsewhere, the probability of abort can only increase.) But in
H2 in this case P2 aborts with probability 1, and so there is at most a
2−ρ difference between H1 and H2.
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H3. Same as H2, except S uses y := 0 throughout of protocol and sets Ω := 1
in Step 7.
In [H3], P2 sends (h, g1, h1) := (gω, gr, gωr), which is indistinguishable from
(gω, gr, gωrΩ) by the decisional Diffie-Hellman problem. Computationally
indistinguishability of H2 and H3 follows.

As H3 is the ideal-world execution, the proof is complete. 
�
Malicious P2. Here, we need to simulate the correct output f(x, y) that P2

learns. Rather than simulate the garbled circuit, as is done in most prior work,
we modify the output-mapping tables {Tj,i,b} to encode the correct output. At
a high level, the simulator acts as an honest P1 with input 0, which lets P2

learn the output-wire labels for f(0, y) when evaluating the garbled circuits.
The simulator then “tweaks” the output mapping tables {Tj,i,b} to ensure that
P2 reconstructs the “correct” output f(x, y).

We now proceed to the formal details. Let A be an adversary corrupting P2;
we construct a simulator S as follows.

1 S acts as an honest P1 and obtains the set E that A sends to FOT.
2 S acts as an honest P1, and obtains the input y′ that A sends to FOT. S

computes y from y′, sends (input, y) to F, which sends back z := f(x, y) to
S.

3 S acts as an honest P1 with input x := 0. That is, S receives {Mi,b} labels
and sends {Enckeyj ({Rj,i,0}i∈[n1])}j∈[ρ] to A. If A send abort to FcOT, S
aborts, outputting whatever A outputs.

4 S acts as an honest P1 with input x := 0. That is, S sends {(cR
j,i,0, c

R
j,i,1)}

(in random permuted order) and Enckeyj ({dR
j,i,0}i∈[n1]) to A.

5 S acts as an honest P1, except as follows. S computes z′ := f(0, y) and for
j ∈ E , i ∈ [n3], and b ∈ {0, 1}, sets Tj,i,b := EncZj,i,b

(Δi,1−b) if z[i] �= z′[i].
6–7 S acts as an honest P1.

We now show that the joint distribution over the outputs of the honest P1

and A in the real world is indistinguishable from their joint distribution in the
ideal world.

H1. Same as the hybrid-world protocol, where S plays the role of an honest P1.
H2. S extracts P2’s input y from FOT and sends (input, y) to F, receiving back z.

S uses x := 0 throughout the simulation and “tweaks” {Tj,i,b} as is done by
the simulator using knowledge of z.
H1 and H2 are the same except:
1. In H1, P2 learns {Rj,i,x[i]}j∈E , while P2 learns {Rj,i,0}j∈E in H2. Note

that these values are computed such that Rj,i,b := PRFseedj (i, “R”)⊕Mi,b.
Since P2 does not know any {seedj}j∈E , PRFseedj (i, “R”) looks random
to P2. Because only one of {Rj,i,b}b∈{0,1} is given in both Hs, Rj,i,x[i] in
H1 and Rj,i,0 in H2 are uniformly random to P2.

2. In H1, party P2 gets Zj,i,z[i] and Tj,i,z[i] := EncZj,i,z[i](Δi,z[i]), while in H2,
if z[i] �= z′[i] then P2 gets Zj,i,1−z[i] and Tj,i,1−z[i] := EncZj,i,1−z[i](Δi,z[i])
instead. In both hybrids, P2 cannot learn any information about the other
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output-wire label due to the authenticity property of the garbled circuit.
By the obliviousness property of the garbling scheme, Zj,i,0 and Zj,i,1 are
indistinguishable. Likewise, by the security of the encryption scheme the
values Tj,i,0 and Tj,i,1 are indistinguishable.

As H2 is the same as the ideal-world execution, the proof is complete.

3.3 Proving Lemma 1

We now prove a series of lemmas toward proving Lemma 1. We begin with a
definition of what it means for an index j ∈ [ρ] to be “good.”

Definition 1. Consider an adversary A corrupting P1, and denote {seedj} as
the labels A sent to FOT. An index j ∈ [ρ] is good if and only if all the following
hold.

1. The Bj,i,y′[i] values A sent to FOT in Step 2 are computed honestly using
seedj.

2. The commitments {cR
j,i,b}i∈[n1],b∈{0,1} that A sent to P2 in Step 4 are com-

puted honestly using seedj.
3. GCj is computed honestly using {Aj,i,b} and {Bj,i,b} as the input-wire labels

and seedj.
4. The values Cj and EncDj

(seedj) are computed honestly using seedj and the
Δ value sent by A in Step 7.

5. The commitment cT
j is computed honestly using Δi,b and seedj.

It is easy to see the following.

Fact. If an index j ∈ [ρ] is not good then it cannot pass all the checks in Step 9.
We first show that P2 is able to recover the correct output-wire labels for a good
index.

Lemma 2. Consider an adversary A corrupting P1, and denote x as the input
A sent to FcOT. If an index j ∈ E is good and P2 does not abort, then with all
but negligible probability P2 learns output labels Zj,i,z[i] with z = f(x, y).

Proof. Since j is good, we know that P2 receives an honestly computed GCj and
Tj,i,b from A and honest Bj,i,y′[i] from FOT. However, it is still possible that P2

does not receive correct input labels for P1’s input that corresponds to the input
x that A sent to FcOT. We will show that this can only happen with negligible
probability.

Note that if j is good, then the commitments {cR
j,i,b} are computed correctly.

Since P2 obtains the Aj,i,x[i] labels by decommitting one of these commitments,
the labels P2 gets are valid input-wire labels, although they may not be consistent
with the input x that A sent to FcOT.

Assume that for some i ∈ [n1], P2 receives Aj,i,1−x[i]. This means P2 also
receives Rj,i,1−x[i] from the same decommitment, since cj,i,b is computed hon-
estly. However, if P2 does not abort, then we know that P2 receives the same
label Rj,i,1−x[i] in Step 3 since the checks pass. We also know that

Rj,i,1−x[i] = PRFseedj (i, “R”) ⊕ Mi,1−x[i].
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Therefore A needs to guess Mi,1−x[i] correctly before P2 sends both labels, which
happens with probability at most 2−κ.

We next show that P2 can recover x if P1 tries to cheat on a good index.

Lemma 3. Consider an adversary A corrupting P1, and denote x as the input
A sent to FcOT. If an index j ∈ E is good and P2 learns Ω = Δ, then P2 can
recover xj = x in Step 8 if no party aborts.

Proof. Since j is good, we know that Cj and EncDj
(seedj) are constructed cor-

rectly, where seedj is the one P1 sent to FOT in Step 1. Therefore, P2 can recom-
pute seedj from them. We just need to show that P2 is able to recover x from a
good index using seedj .

Using a similar argument as the previous proof, we can show that the label
Rj,i,x[i] that P2 learns in Step 4 is a correctly computed label using x that P1

sent to FcOT in Step 3: Since j is good, the cR
j,i,b values are all good, which means

that the Rj,i,x[i] labels P2 learns are valid. However, P1 cannot “flip” the wire
label unless P1 guesses a random label correctly, which happens with negligible
probability.

In conclusion, P2 has the correct Rj,i,x[i] = PRFseedj (i, “R”) ⊕ Mi,x[i] and
the seedj used in the computation. Further P2 has Mi,0,Mi,1. Therefore P2 can
recover x that P1 sent to FcOT if P2 has Ω = Δ.

Note that given the above lemma, it may still be possible that a malicious
P1 acts in such a way that P2 recovers different x’s from different indices. In the
following we show this only happens with negligible probability.

Lemma 4. Consider an adversary A corrupting P1 and denote x as the input
P1 sends to FcOT in Step 3. If P2 does not abort, then P2 recovers some x′ �= x
with negligible probability.

Proof. Our proof is by contradiction. Assume that P2 does not abort and recovers
some x′ �= x for some j ∈ E . Let i be an index at which x′[i] �= x[i]; we will show
in the following that A will have to complete some task that is information-
theoretically infeasible, and thus a contradiction.

Since P2 does not abort at Step 4, we can denote Rj,i,x[i] as the label P1 learns
in Step 3, which also equals the one decommitted to in Step 4. P2 recovering
some x′ means that

Rj,i,x[i] = PRFseed′
j
(i, “R”) ⊕ Mi,x′[i],

where seed′
j is the seed P2 recovers in Step 7. Therefore we conclude that

PRFseed′
j
(i, “R”) = Rj,i,x[i] ⊕ Mi,x′[i]

= Rj,i,x[i] ⊕ Mi,1−x[i].

Although A receives Mi,x[i] in Step 3, Mi,1−x[i] remains completely random
before A sends Rj,i,x[i]. Further, A receives Mi,b only after sending Rj,i,x[i].
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Therefore, the value of Rj,i,x[i] ⊕ Mi,1−x[i] is completely random to A. If A
wants to “flip” a bit in x, A needs to find some seed′

j such that {PRFseed′
j
(i,

“R”)}i∈[n1] equals a randomly chosen string, which is information theoretically
infeasible if n1 > 1.

Finally, we are ready to prove Lemma 1, namely, that P2 either aborts or
learns f(x, y), regardless of P1’s behavior.

Lemma 1. Consider an adversary A corrupting P1 and denote x as the input
P1 sends to FcOT in Step 3. With probability at least 1 − (2−ρ + negl(κ)), P2

either aborts or learns f(x, y).

Proof. Denote the set of P1’s good circuits as E ′ and consider the following three
cases:

– Ē ∩ Ē ′ �= ∅. In this case P2 aborts because P2 checks some j /∈ E ′ which is not
a good index.

– E ∩ E ′ �= ∅. In this case, there is some j ∈ E ∩ E ′, which means P2 learns
z := f(x, y) and Zj,i,z[i] from the jth garbled circuit (by Lemma 2). However,
it is still possible that P2 learns more than one valid z. If this is the case,
P2 learns Δ. Lemma 3 ensures that P2 obtains x; Lemma 4 ensures that P2

cannot recover any other valid x′ even from bad indices.
– E = E ′. This only happens when A guesses E correctly, which happens with

at most 2−ρ probability.

This completes the proof.

3.4 Universal Composability

Note that in our proof of security, the simulators do not rewind in any of the
steps. Similarly, none of the simulators in the hybrid arguments need any rewind-
ing. Therefore, if we instantiate all the functionalities using UC-secure variants
then the resulting 2PC protocol is UC-secure.

4 Optimizations

We now discuss several optimizations we discovered in the course of
implementing our protocol, some of which may be applicable to other malicious
2PC implementations.

4.1 Optimizing the XOR-tree

We noticed that when using a ρ-probe matrix to reduce the number of OTs needed
for the XOR-tree, we incurred a large performance hit when P2’s input was large.
In particular, processing the XOR gates introduced by the XOR-tree, which are
always assumed to be free due to the free-XOR technique [22], takes a significant
amount of time. The naive XOR-tree [25] requires ρn OTs and ρn XOR gates; on
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the other hand, using a ρ-probe matrix of dimension n × cn, with c � ρ, requires
cn OTs but cn2 XOR gates. We observe that this quadratic blowup becomes pro-
hibitive as P2’s input size increases: for a 4096-bit input, it takes more than 3 s to
compute just the XORs in the ρ-probe matrix of Lindell and Riva [29] across all
circuits. Further, it also introduces a large memory overhead: it takes gigabytes
of memory just to store the matrix for 65,536-bit inputs.

In the following we introduce two new techniques to both asymptotically
reduce the number of XOR gates required and concretely reduce the hidden
constant factor in the ρ-probe matrix.

A General Transformation to a Sparse Matrix. We first asymptotically
reduce the number of XORs needed. Assuming a ρ-probe matrix with dimensions
n × cn, we need cρn2 XOR gates to process the ρ-probe matrices across all ρ cir-
cuits. Our idea to avoid this quadratic growth in n is to break P2’s input into small
chunks, each of size k. When computing the random input y′, or recovering y in
the garbled circuits, we process each chunk individually. By doing so, we reduce
the complexity to ρ · n

k c(k)2 = ckρn. By choosing k = 2ρ, this equates to a 51×
decrease in computation even for just 4096-bit inputs. This also eliminates the
memory issue, since we only need a very small matrix for any input size.

A Better ρ-probe Matrix. After applying the above technique, our problem
is reduced to finding an efficient ρ-probe matrix for k-bit inputs for some small
k, while maintaining a small blowup c. We show that a combination of the
previous solutions [25,29] with a new tighter analysis results in a better solution,
especially for small k. Our solution can be written as A = [M‖Ik], where M ∈
{0, 1}k×(c−1)k is a random matrix and Ik is an identity matrix of dimension k.
The use of Ik makes it easy to find a random y′ such that y = Ay′ for any y, and
ensures that A is full rank [29]. However, we show that it also helps to reduce c.
The key idea is that the XOR of any i rows of A has Hamming weight at least i,
contributed by Ik, so we do not need as much Hamming weight from the random
matrix as in prior work [25].

In more detail, for each S ⊆ [k], denote MS :=
⊕

i∈S Mi and use random
variable XS to denote the number of ones in MS . In order to make A a ρ-probe
matrix, we need to ensure that XS + |S| ≥ ρ for any S ⊆ [k], because XORing
any |S| rows from Ik gives us a Hamming weight of |S|.

XS is a random variable with distribution Bin(ck − k, 1
2 ). Therefore, we can

compute the probability that A is not a ρ-probe matrix as follows:

Pr[A is bad] = Pr

⎡

⎣
⋃

S⊆[k]

XS < ρ − |S|
⎤

⎦

≤
∑

S⊆[k]

Pr[XS < ρ − |S|]

=
∑

S⊆[k]

cdf(ρ − |S| − 1) =
k∑

i=1

(
k

i

)
cdf(ρ − i − 1),
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Table 3. Values of c as a function of chunk size k for an ρ-probe matrix with ρ = 40.

k

Scheme 40 65 80 103 143 229 520

LP07 [25] 6.66 4.1 4 4 4 4 4

sS13 [35] 7.95 5.2 4.5 4.1 3.2 2.4 1.6

This work 5.68 4 3.5 3 2.5 2 1.5

where cdf() is the cumulative distribution function for Bin(ck − k, 1
2 ). Now, for

each k we can find the smallest c such that Pr[A is bad] ≤ 2−ρ; we include some
results in Table 3. We see that our new ρ-probe matrix achieves smaller c than
prior work [25,35]. Note that the number of XORs is cρkn and the number of
OTs is cn. In our implementation we use k = 232 and c = 2 to achieve the
maximum overall efficiency.

Performance Results. See Fig. 6 for a comparison between our approach and
the best previous scheme [35]. When the input is large, the cost of computing
the ρ-probe matrix over all circuits dominates the overall cost. As we can see,
our design is about 10× better for 1,024-bit inputs and can be 1000× better
for 65,536-bit inputs. We are not able to compare beyond this point, because
just storing the ρ-probe matrix for 262,144 bits for the prior work takes at least
8.59 GB of memory.

4.2 Other Optimizations

Oblivious Transfer with Hardware Acceleration. As observed by Asharov
et al. [3], matrix transposition takes a significant amount of the time during
the execution of OT extension. Rather than adopting their solution using cache-
friendly matrix transposition, we found that a better speedup can be obtained by
using matrix transposition routines based on Streaming SIMD Extensions (SSE)
instructions [30]. The use of SSE-based matrix transposition in the OT extension
protocol is also independently studied in a concurrent work by Keller et al. [20]
in a multi-party setting.

Given a 128-bit vector of the form a[0], . . . , a[15] where each a[i] is an 8-
bit number, the instruction mm movemask epi8 returns the concatenation of
the highest bits from all a[i]s. This makes it possible to transpose a matrix of
dimension 8 × 16 very efficiently in 15 instructions (8 instructions to “assemble
the matrix” and 7 instructions to shift the vector left by one bit). By composing
such an approach, we achieve very efficient matrix transposition, which leads to
highly efficient OT extension protocols; see Sect. 5.1 for performance results.

Reducing OT Cost. Although our protocol requires three instantiations of
OT, we only need to construct the base OTs once. The OTs in Steps 1 and 2
can be done together, and further, by applying the observation by Asharov
et al. [3] that the “extension phase” can be iterated, we can perform more random
OTs along with the OTs for Steps 1 and 2 to be used in the OTs of Step 3.
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Fig. 6. Comparing the cost of our ρ-probe matrix design with the prior best scheme
[35]. When used in a malicious 2PC protocol, computing the ρ-probe matrix needs to
be done ρ times, and OT extension needs to process a cn-bit input because of the
blowup of the input caused by the ρ-probe matrix.

Pipelining. Pipelining garbled circuits was first introduced by Huang et al. [16]
to reduce memory usage and hence improve efficiency. We adopt a similar idea
for our protocol. While as written we have P2 conduct most of the correctness
checks at the end of the protocol, we note that P2 can do most of the checks much
earlier. In our implementation, we “synchronize” P1 and P2’s computation such
that P2’s checking is pipelined with P1’s computation. Pipelining also enables
us to evaluate virtually any sized circuit (as long as the width of the circuit is
not too large). As shown in Sect. 5.4, we are able to evaluate a 4.3 billion-gate
circuit without any memory issue, something that offline/online protocols [29]
cannot do without using lots of memory or disk I/O.

Pushing Computation Offline. Although the focus of our work is better
efficiency in the absence of pre-processing, it is still worth noting that several
steps of our protocol can be pushed offline (i.e., before the parties’ inputs are
known) when that is an option. Specifically:

1. In addition to the base OTs, most of the remaining public-key operations can
also be done offline. P2 can send (h, g1) := (gω, gr) before knowing the input
to P1, who can compute the Cj values and half the Dj values. During the
online phase, P1 and P2 only need to perform ρ exponentiations.

2. Garbled circuits can be computed, sent, and checked offline. P2 can also
decommit cT

j to learn the output translation tables for the evaluation
circuits.
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Table 4. Performance of common functions over various networks. SE stands for “single
execution.” All numbers are in milliseconds. Offline time includes disk I/O. For online
time, disk I/O is shown separately in the parentheses.

n1 n2 n3 |C| Localhost LAN WAN

SE Offline Online SE Offline Online SE Offline Online

ADD 32 32 33 127 29 60 6 (0.2) 39 27 12 (0.2) 1060 474 697 (0.2)

AES 128 128 128 6,800 50 82 14 (2) 65 62 21 (3) 1513 867 736 (2)

SHA1 256 256 160 37,300 136 156 48 (32) 200 206 52 (27) 3439 2705 820 (20)

SHA256 256 256 256 90,825 277 356 85 (144) 438 497 92 (128) 6716 5990 856 (99)

Table 5. Performance of our building blocks. The first row gives the running time of
P2 recovering its input when using a ρ-probe matrix. The second row gives the running
time of garbling, and the third row gives the running time for both garbling and sending.
The remaining rows give the performance of OT and malicious OT extension.

Building block Localhost LAN WAN

ρ-probe matrix for 215-bit input 5.8 ms — —

Garble 104 AES circuits 3.42 s — —

Garble and send 104 AES circuits 4.83 s 7.53 s 87.4 s

210 malicious base OTs 113 ms 133 ms 249 ms

8 × 106 malicious OT extension 4.99 s 5.64 s 25.6 s

5 Implementation and Evaluation

We implemented our protocol in C++ using RELIC [2] for group operations,
OpenSSL libssl for instantiating the hash function, and libgarble for garbling
[15]. We adopted most of the recent advances in the field [4,5,8,29,39] as well as
the optimizations introduced in Sect. 4. We instantiate the commitment scheme
as (SHA-1(x, r), r) ← Com(x), though when x has sufficient entropy we use
SHA-1(x) alone as the commitment.

Evaluation Setup. All evaluations were performed with a single-threaded pro-
gram with computational security parameter κ = 128 and statistical security
parameter ρ = 40. We evaluated our system in three different network settings:

1. localhost. Experiments were run on the same machine using the loopback
network interface.

2. LAN. Experiments were run on two c4.2xlarge Amazon EC2 instances with
2.32 Gbps bandwidth as measured by iperf and less than 1 ms latency as
measured by ping.

3. WAN. Experiments were run on two c4.2xlarge Amazon EC2 instances
with total bandwidth throttled to 200 Mbps and 75 ms latency.

All numbers are average results of 10 runs. We observed very small variance
between multiple executions.
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Table 6. Single execution performance. All numbers are in milliseconds. Numbers for
[29] were obtained by adapting their implementation to the single-execution setting,
using the same hardware as our results. Numbers for [1] are taken from their paper
and are for a single execution, not including any I/O time.

Our Protocol [29] [1]

ADD 39 1034 —

AES 65 1442 5860

SHA1 200 2007 —

SHA256 438 2621 7580

5.1 Subprotocol Performance

Because of the various optimizations mentioned in Sect. 4, as well as a care-
fully engineered implementation, many parts of our system perform better than
previously reported implementations. We summarize these results in Table 5.

The garbling speed is about 20 million AND gates per second. When both
garbling and sending through localhost, this reduces to 14 million AND gates
per second due to the overhead of sending all the data through the loopback
interface. Over LAN the speed is roughly 9.03 million gates per second, reaching
the theoretical upper bound of 2.32 · 109/256 = 9.06 · 106 gates per second.

For oblivious transfer, our malicious OT extension reports 5.64 s for 8 million
OTs. Our implementation takes 0.133 s for 1024 base OTs. We observe that when
two machines are involved, bandwidth is the main bottleneck.

5.2 Overall Performance

We now discuss the overall performance of our protocol. Table 4 presents the run-
ning time of our protocol on several standard 2PC benchmark circuits for var-
ious network settings. For each network condition, we report a single execution
running time, which includes all computation for one 2PC invocation, and an
offline/online running time. In order to be comparable with Lindell and Riva [29],
the offline time includes disk I/O and the online time does not; the time to preload
all garbled circuits before the online stage starts is reported separately in paren-
theses. We tried to compare with the implementation by Rindal and Rosulek [33];
however, their implementation is inherently parallelized, making comparisons dif-
ficult. Estimations suggest that their implementation is faster than Lindell and
Riva but still less efficient than ours in the single-execution setting.

In Table 6, we compare the performance of our protocol with the existing
state-of-the-art implementations. The most efficient implementation for single
execution of malicious 2PC without massive parallelization or GPUs we are
aware of is by Afshar et al. [1]. They reported 5860 ms of computation time for
AES and 7580 ms for SHA256, with disk and network I/O excluded, whereas we
achieve 65 ms and 438 ms, respectively, with all I/O included. Thus our result is
17× to 90× better than their result, although ours includes network cost while
theirs does not.
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Fig. 7. The performance of our protocol while modifying the input lengths, output
length and the circuit size. Input and output lengths are set to 128 bits initially and
circuit size is set as 16,384 AND gates. Numbers in the figure show the slope of the
lines, namely the cost to process an additional bit or gate.

We also evaluated the performance of the implementation by Lindell and
Riva [29] using the same hardware with one thread and parameters tuned for
single execution, i.e., 40 main circuits and 132 circuits for input recovery. Their
implementation is about 3× to 4× better than Afshar et al., but still 6× to 26×
slower than our LAN results.

Table 7. Scalability of our protocol. All numbers are in microseconds per bit or
microseconds per gate.

Localhost LAN WAN

Time per P1’s input bit 9.8 16 191.4

Time per P2’s input bit 16.4 22.5 146.9

Time per output bit 13.3 20.3 131.1

Time per AND gate 1.7 4.4 63.1
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Table 8. Performance of our implementation on additional examples. Running Time
reports the performance of our single execution over LAN; Projected Time is calculated
using the formula in Sect. 5.3; Total Comm. is the total communication as measured
by our implementation; and Non-GC Comm. is the percentage of communication not
used for garbled circuits.

Example n1 n2 n3 |C| Running Projected Total Non-GC

time time comm. comm.

16384-bit cmp 16,384 16,384 1 16,383 0.67 s 0.72 s 128 MB 84%

128-bit sum 128 128 128 127 0.04 s 0.03 s 1.8 MB 91%

256-bit sum 256 256 256 255 0.05 s 0.04 s 3.4 MB 90%

1024-bit sum 1024 1,024 1,024 1,023 0.08 s 0.09 s 11.2 MB 88%

128-bit mult 128 128 128 16,257 0.13 s 0.1 s 22.4 MB 7%

256-bit mult 256 256 256 65,281 0.4 s 0.37 s 86.6 MB 3%

Sort 1024 32-bit ints 32,768 32,768 32,768 1,802,240 9.43 s 9.8 s 2.6 GB 11.5%

Sort 4096 32-bit ints 131,072 131,072 131,072 10,223,616 53.7 s 52.7 s 14.2 GB 7.7%

1024-bit modular exp 1,024 1,024 1,024 4,305,443,839 5.3 h 5.26 h 5.5 TB 0.0002%

5.3 Scalability

In order to understand the cost of each component of our construction, we inves-
tigated the scalability as one modifies the input lengths, output length, and cir-
cuit size. We set input and output lengths to 128 bits and circuit size as 16,384
AND gates and increase each the variables separately. In Fig. 7, we show how
the performance is related to these parameters.

Not surprisingly, the cost increases linearly for each parameter. We can thus
provide a realistic estimate of the running time (in μs) of a given circuit of size
|C| with input lengths n1 and n2 and output length n3 through the following
formula (which is specific to the LAN setting):

T = 16n1 + 22.5n2 + 20.3n3 + 4.4|C| + 23, 000.

The coefficients for other network settings can be found in Table 7, with the
same constant cost of the base OTs.

5.4 Additional Examples

Finally, in Table 8 we report the performance of our implementation in the
LAN setting on several additional examples. We also show the projected time
calculated based on the formula in the previous section. We observe that over
different combinations of input, output and circuit sizes, the projected time
matches closely to the real results we get.

We further report the total communication and the percentage of the com-
munication not spent on garbled circuits. We can see the percentage stays low
except when the circuit is linear to the input lengths.
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Abstract. In cut-and-choose protocols for two-party secure computa-
tion (2PC) the main overhead is the number of garbled circuits that
must be sent. Recent work (Lindell and Riva; Huang et al. Crypto 2014)
has shown that in a batched setting, when the parties plan to evaluate
the same function N times, the number of garbled circuits per execution
can be reduced by a O(log N) factor compared to the single-execution
setting. This improvement is significant in practice: an order of mag-
nitude for N as low as one thousand. Besides the number of garbled
circuits, communication round trips are another significant performance
bottleneck. Afshar et al. (Eurocrypt 2014) proposed an efficient cut-and-
choose 2PC that is round-optimal (one message from each party), but in
the single-execution setting.

In this work we present new malicious-secure 2PC protocols that are
round-optimal and also take advantage of batching to reduce cost. Our
contributions include:

– A 2-message protocol for batch secure computation (N instances
of the same function). The number of garbled circuits is reduced
by a O(log N) factor over the single-execution case. However, other
aspects of the protocol that depend on the input/output size of the
function do not benefit from the same O(log N)-factor savings.

– A 2-message protocol for batch secure computation, in the random
oracle model. All aspects of this protocol benefit from the O(log N)-
factor improvement, except for small terms that do not depend on
the function being evaluated.

– A protocol in the offline/online setting. After an offline preprocess-
ing phase that depends only on the function f and N , the parties
can securely evaluate f , N times (not necessarily all at once). Our
protocol’s online phase is only 2 messages, and the total online com-
munication is only � + O(κ) bits, where � is the input length of f
and κ is a computational security parameter. This is only O(κ) bits
more than the information-theoretic lower bound for malicious 2PC.
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1 Introduction

Secure two-party computation (2PC) allows two parties to compute a function of
their inputs without revealing any other information. Yao’s garbled circuit pro-
tocol [39] provides an efficient general-purpose 2PC in presence of semi-honest
adversaries and has been the subject of various optimization [22,23,34,41]. The
most common approach for obtaining security against malicious adversaries is
the cut-and-choose paradigm wherein multiple circuits are garbled and a sub-
set of them are opened to check for correctness, while the remaining circuits
are evaluated to obtain the final output. A large body of work has focused on
making cut-and-choose 2PC more efficient by (i) reducing the number of gar-
bled circuits [15,24–26,36], (ii) minimizing rounds of interaction [1,9], and (iii)
optimizing techniques for checking consistency of inputs to the computation
[25,27–29,36,37].

Until recently, all protocols for cut-and-choose 2PC required at least 3λ gar-
bled circuits in order to ensure the majority output is correct with probability
1−2−λ. Lindell [24] proposed a new technique for recovering from cheating that
only relied on evaluation of one correct garbled circuit, hence reducing the num-
ber of garbled circuits to λ. The recent independent work of Lindell and Riva
[26], and Huang et al. [15], building on ideas from earlier work of [11,31], showed
how to further reduce the number of circuits to λ/O(log N) per execution, when
performing N instances of 2PC for the same function. This leads to signifi-
cant reduction in amortized communication and computation. For example for
N = 1024, only 4 garbled circuits per execution are sufficient to achieve cheat-
ing probability of less than 2−40. However, the proposed constructions require
at least 4 rounds of interaction between the parties, rendering round complexity
the main bottleneck when communicating over the internet as demonstrated in
the recent implementation of [27].

Previous Two-Round 2PC and Shortcomings. A non-interactive secure com-
putation (NISC) protocol for general computation can be constructed from
Yao’s garbled circuit, non-interactive zero-knowledge proofs (NIZK), and fully-
secure one-round oblivious transfer (OT): P1, who is the evaluator of the circuit,
sends the first message of the OT protocol. P2, who is the circuit constructor,
returns a garbled circuit, the second message of the OT protocol, and a NIZK
proof that its message is correct. (See, for example, [7,14] for such protocols.)
Unfortunately, the NIZK proof in this case requires a non black-box use of cryp-
tographic primitives (namely, it must prove the correctness of each encryption
in each gate of the circuit).

Efficient NISC protocols that do not require such non black-box construc-
tions are presented in [17] based on the MPC-in-the-head technique of [18]. The
complexity of the NISC protocol of [17] is |C| ·poly(log(|C|), log(λ))+depth(C) ·
poly(log(|C|), λ) invocations of a Pseudo-Random Generator (PRG), where C is
a boolean circuit that computes the function of interest. (Another protocol pre-
sented in that work uses only O(|C|) PRG invocations, but is based on a relaxed
security notion.) Although the protocols in [17] are very efficient asymptotically,
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their practicality is unclear and left as an open question in [17]. For instance, the
protocols combine several techniques that are very efficient asymptotically, such
as scalable MPC and using expanders in a non black-box way, each of which
contributes large constant factors to the concrete complexity.

Afshar et al. [1], proposed a cut-and-choose 2PC with only two rounds of
interaction, with concrete efficiency comparable to the state-of-the-art single-
execution cut-and-choose 2PC. It is not clear how to adapt their solution to the
batched execution setting to achieve better amortized efficiency. In particular, in
batched cut-and-choose protocols, the sender generates and sends many garbled
circuits. The receiver chooses a random subset of these circuits to check, and
randomly arranges the remaining circuits into buckets. The kth bucket contains
the circuits that will be evaluated in the kth execution. A main step for turning
such a protocol into a NISC is a non-interactive mechanism for the “cut-and-
choose” step and the bucket assignment. While in the single-execution setting
this can be easily done using one OT per circuit [1], the task is more challenging
when assigning many circuits to N buckets.

However, a bigger challenge is that the sender has no way of knowing a priori
to which execution (i.e., which bucket) the ith circuit will be assigned. We must
design a mechanism whereby the receiver can learn garbled inputs of the ith
circuit that encode the input to kth execution, if and only if circuit i is assigned
to the kth execution. Furthermore, in a typical cut-and-choose protocol, different
mechanisms must be designed for checking consistency of the sender’s and the
receiver’s inputs. For example, the sender must convince the receiver that all
circuits in a particular bucket are evaluated with the same input, even though the
sender does not know in advance the association between circuits and inputs (and
other sibling circuits). Similarly, cheating-recovery enables the receiver to learn
the sender’s input if two valid circuits return different outputs in the same bucket.
However, existing techniques implicitly assume the sender knows all circuits
assigned to the same bucket, for example, by using the same wire labels on
output wires of those circuits.

To further highlight the difficulty, consider a simple solution where for each
garbled circuit GCi, the sender prepares its garbled inputs and the input-
consistency gadgets for all N possible bucket assignments and all inputs xk,
k ∈ [N ]. Then, for each circuit parties perform a 1-out-of-N OT where the
receiver’s input is the index k such that GCi is assigned to bucket k, and the
sender’s inputs are the N input garblings/gadgets for GCi. First, note that this
is prohibitively expensive as it needs to be repeated for each circuit and incurs
a multiplicative factor of N2λ/ log N on input-related gadgets/commitments
(compared to the expected Nλ/logN or Nλ). Second, this still does not address
how to route receiver’s garbled input, and more importantly, how to incorpo-
rate cheating-recovery techniques since the existing solutions also depend on the
choice of sibling circuits that are assigned to the same bucket.

Our Results. As discussed above, with current techniques, one either obtains
a two-round cut-and-choose 2PC that requires λ circuits per execution or a
multiple-round 2PC that requires O(λ/ log N) circuits per execution. The main
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question motivating this work is whether we can obtain the best of both worlds
while maintaining concrete efficiency. Our results are several protocols that
achieve different combinations of features (summarized in Table 1):

– We propose the first cut-and-choose 2PC with two rounds of interaction that
only requires O(Nλ/ log N) garbled circuits to evaluate a function N times
in a single batch. The protocol is both asymptotically and concretely efficient
and can be instantiated in the standard model and using only symmetric-key
operations in the OT-hybrid model.

– In the above protocol, the number of garbled circuits is reduced by a factor
O(log N) compared to the single-execution setting. This is the only part of
the protocol whose cost depends on the size of the circuit for f . However,
several mechanisms in the protocol depend on the input/output length of f ,
and these mechanisms scale as O(Nλ) instead of O(Nλ/ log N).
We therefore describe a two-round protocol for batched 2PC in the random
oracle model, in which all aspects of the protocol benefit from batching. That
is, apart from protocol features that do not depend on f at all, the entire
protocol scales with O(κN/ log N) rather than O(κN). Unfortunately, the
number of garbled circuits now depends on the (larger) computational security
parameter κ rather than the statistical security parameter λ as before. This
is due to technical reasons (see Sect. 6.2).

– In the offline-online setting, parties perform dedicated offline preprocessing
that depends only on the function f and number of times N they would like
to evaluate it. Then, when inputs are known, the parties can engage in an
online phase to securely obtain the output. The online phases need not be
performed in a single batch—they can happen asynchronously.
We describe a 2PC protocol in this offline-online setting. As in other offline-
online protocols [15,26,35], the total costs are reduced by a O(log N) factor
(and the number of circuits is dependent on the statistical security parame-
ter λ). Unlike previous protocols, our online phase consist of only 2 rounds.
The total online communication can be reduced to only |x| + |y| + O(κ) bits,
where x is the sender’s input, y is the receiver’s input, and κ is a computa-
tional security parameter. We note that |x| + |y| bits of communication are
required for malicious-secure 2PC,1 so our protocol has nearly optimal online
communication complexity.

Our Techniques. Our main NISC construction takes advantage of a two-
round protocol for obliviously mapping garbled circuits and their associated
input/output gadgets to many buckets while hiding from the garbler the bucket
assignment and consequently what inputs a circuits would be evaluated on. As a
result, we need to extend and adapt all existing techniques for obtaining garbled
inputs, performing input consistency checks and cheating-recovery to this new
setting.
1 Each party must send a message at least as long as his/her input, otherwise it is

information-theoretically impossible for the simulator to extract a corrupt party’s
input.
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Table 1. Asymptotic efficiency of our protocols. nin, nout are number of input/output
wires. nboth = nin + nout. Rounds are listed as offline + online. κ is the computational
security parameter, and λ is the statistical security parameter.

NISC RO-NISC Online-offline

Rounds 0 + 2 0 + 2 2 + 2

# GC O(Nλ/ log N) O(Nκ/ log N) O(Nλ/ log N)

# plain commit O(ninNλ/ log N) O(ninNκ/ log N) O(ninNλ/ log N)

# hom commit O(noutNλ/ log N) O(noutNκ/ log N) O(noutNλ/ log N)

OSN OTs O(nbothNλ) - -

Other OTs O(ninN) O(ninN) O(ninN)

Another main ingredient of our constructions is a homomorphic commit-
ment scheme with homomorphic properties on the decommitment strings. Such
a primitive can be efficiently instantiated using both symmetric-key and public-
key primitives, trading-off communication for computation. We show how such
a commitment scheme combined with an oblivious switching network protocol
[30] allows a sender to obliviously open linear relations between various com-
mitted values without a priori knowledge of the choice of committed values. See
Sect. 4.1 for a detailed overview of the techniques used in our main protocol.

2 Preliminaries

2.1 Garbled Circuits

Garbled Circuits were first introduced by Yao [40]. A garbling scheme consists of
a garbling algorithm that takes a random seed σ and a function f and generates
a garbled circuit F and a decoding table dec; the encoding algorithm takes input
x and the seed σ and generates garbled input x̂; the evaluation algorithm takes
x̂ and F as input and returns the garbled output ẑ; and finally, a decoding
algorithm that takes the decoding table dec and ẑ and returns f(x). We require
the garbling scheme to satisfy the standard security properties formalized in [6].
Our construction uses the garbling scheme in a black-box way and hence can
incorporate all recent optimizations proposed in the literature. In the offline-
online setting, the scheme needs to adaptively secure in the sense of [5].

2.2 Commitments

A standard commitment scheme Com allow a party to commit to a message m,
by computing C = Com(m; d) using a decommitment d. To open a commitment
C = Com(m; d), the committer reveals (m, d). The verifier recomputes the com-
mitment and accepts if it obtains the same C, and rejects otherwise. We require
standard standalone security properties of a commitment scheme:
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– Hiding: For any a, b, the distributions Com(a; da) and Com(a; db), induced by
random choice of da, db, are indistinguishable.

– Binding: It is computationally infeasible to compute m �= m′, d, d′ such that
Com(m; d) = Com(m′; d′).

Homomorphic Commitments. In a homomorphic commitment scheme HCom,
we further require the scheme to be homomorphic with respect to an operation
on the message space denoted by ⊕. In particular given two commitments Ca =
HCom(a, da) and Cb = HCom(b, db), the committer can open a ⊕ b (revealing
nothing beyond a ⊕ b) by giving da ⊕ db.

Note that here we have assumed that the homomorphic operation also oper-
ates on the decommitment values. This is indeed the case for most instantiations
of homomorphic commitments, as we discuss in Sect. 5.2. The security properties
are extended for homomorphic commitments as follows:

– Hiding: For a set of values v1, . . . , vn and a set S ⊆ [n], define v(S) = ⊕i∈Svi.
Then, informally, the hiding property is that commitments to v1, . . . , vn and
openings of v(S1), . . . , v(Sk) reveal no more than the v(S1), . . . , v(Sk) values.
More formally, for all v = (v1, . . . , vn),v′ = (v′

1, . . . , v
′
n), and sets

S1, . . . , Sk where v(Sj) = v′(Sj) for each j, the following distributions are
indistinguishable:

(Com(v1; d1), . . . ,Com(vn; dn); d(S1), . . . , d(Sk)),
and (Com(v′

1; d1), . . . ,Com(v′
n; dn); d(S1), . . . , d(Sk))

– Binding: Intuitively, it should be hard to decommit to inconsistent values.
More formally, it should be hard to generate commitments C1, . . . , Cn and
values {(Sj , dj ,mj)}j such that dj is a valid decommitment of

⊕
i∈Sj

Ci to the
value mj , and yet there is no solution (in the xi’s) to the system of equations

defined by equations:
{ ⊕

i∈Sj
xi = mj

}

j
.

2.3 Probe-Resistant Input Encoding

In garbled-circuit-based 2PC, the receiver uses oblivious transfers to pick up his
garbled inputs. A standard problem is that a malicious sender can give incorrect
wire labels in these OTs. Furthermore, if the sender gives an incorrect value for
only one of the pair of wire labels, then the receiver picks up incorrect values
(and presumably aborts), based on his private input. Hence, a malicious sender
causes the receiver to abort, depending on the receiver’s private input. This
cannot be simulated in the ideal world, so it is indeed an attack.

A standard way to deal with this is the idea of a probe-resistant matrix:

Definition 1 [25,37]. A boolean matrix M ∈ {0, 1}n×n′
is λ-probe resistant if

for all R ⊆ [n], the Hamming weight of
⊕

i∈R Mi is at least λ, where Mi denotes
the ith row of M .
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The idea is for Bob, with input y to choose a random encoding ỹ such that
Mỹ = y. Then the parties will evaluate the function f̃(x, ỹ) = f(x,Mỹ) =
f(x, y). The matrix M can be public, so the computation Mỹ uses only XOR
operations (free in a typical garbling scheme [23]).

Suppose the parties perform n′ OTs. In each OT the sender provides two
items, and the receiver uses the bits of ỹ to select one. The items can be either
good or bad, and the receiver will abort if it receives any bad item. If for any
single OT, both inputs are bad, then the receiver will always abort. However, if
every OT has at least one good item, then the receiver will abort based on ỹ.

Lemma 2 [25,37]. Suppose M is λ-probe-resistant, and fix a set of sender’s
inputs to the OTs as described above. Let P (y) denote the probability that the
receiver aborts (i.e., sees a bad item) when it chooses a random ỹ such that
Mỹ = y, and uses ỹ as the choice bits in the OTs. Then for all y, y′, we have
|P (y) − P (y′)| = O(2−λ).

Hence, the abort probability is nearly independent of the receiver’s input,
when using this probe-resistant technique.

2.4 Secure Computation and the NISC Model

We consider security in the universal composability framework of Canetti [8]. We
refer the reader to that work for detailed security definitions. Roughly speaking,
the definition considers a real interaction and an ideal one.

In the real interaction, parties interact in the protocol. Their inputs are cho-
sen by an environment, and their outputs are given to the environment. An
adversary who attacks the protocol takes control of one of the parties and causes
it to arbitrarily deviate from the protocol. The adversary may also communicate
arbitrarily with the environment before/during/after the protocol interaction.

In the ideal interaction, parties simply forward their inputs to a trusted
party called a functionality. They receive output from the functionality which
they forward to the environment.

A protocol UC-securely realizes an ideal functionality if, for all adversaries
attacking the real world, there exists an adversary in the ideal world (called
a simulator) such that for all environments, the view of the environment is
indistinguishable between the real and ideal interactions.

NISC. Ishai et al. [17] defined a special model of secure computation called non-
interactive secure computation (NISC). A protocol is NISC if it consists of a
single message from one party to the other, possibly with some (static, parallel)
calls to some ideal functionality (typically an oblivious transfer functionality).

One can think of replacing the calls to an ideal oblivious transfer functionality
with a two-round secure OT protocol (like that of [33]). Then the NISC protocol
becomes a two-message protocol: in the first message the OT receiver sends the
first OT protocol message. In the second message, the OT sender sends the OT
response along with the single NISC protocol message.
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2.5 Correlation Robust

One of our techniques requires a correlation-robust hash function. This property
was defined in Ishai et al. [16].

Definition 3 [16]. A function H : {0, 1}κ → {0, 1}n is correlation robust if
F (s, x) = H(x ⊕ s) is a weak PRF (with s as the seed). In other words, the
distribution of:

(
x1, . . . , xm;H(x1 ⊕ s), . . . , H(xm ⊕ s)

)
is pseudorandom, for

random choice of xi’s and s.

2.6 Compressed Garbled Inputs

Applebaum et al. [2] described a technique for randomized encodings with low
online complexity. In the language of garbled circuits, this corresponds to a way
to compress garbled inputs in the online phase of a protocol, at the expense of
more data in an offline phase. We abstract their primitive as a garbled input
compression scheme, as follows.

Let e = (e1,0, e1,1, . . . , en,0, en,1) be a set of wire labels (i.e., ej,b is the wire
label encoding value b on wire j). In a traditional protocol, the garbled encoding
of a string x is (e1,x1 , . . . , en,xn

), which is sent in the online phase of the protocol.
Using the approach of [2], we can do the following to reduce the online cost:

– In an offline phase, the garbler runs Compress(e) → (sk, ê), and sends ê to the
evaluator.

– In the online phase, when garbled encoding of x is needed, the garbler runs
Online(sk, x) → x̂ and sends x̂ to the evaluator.

– The evaluator runs Decompress(ê, x, x̂), which returns the garbled encoding
(e1,x1 , . . . , en,xn

).

The security of the compression scheme is that (ê, x̂, x) can be simulated given
only the garbled encoding (e1,x1 , . . . , en,xn

). In other words, the compressed
encoding reveals no more than the expected garbled encoding.

In a traditional garbling scheme, the size of the garbled encoding is nκ.
Applebaum et al. [2] give constructions where the online communication x̂ has
size only n + O(κ). These constructions are proven secure under a variety of
assumptions (DDH, LWE, RSA). We refer the reader to their paper for details.

3 Switching Networks

3.1 Definitions

A switching network is a circuit of gates that we call switches, whose behavior
is described below. The network as a whole has n primary inputs (strings, or
more generally, elements from some group) and p programming inputs (bits).
All wires in the network have no branching. Each switch has two inputs and
two outputs. A switch is parameterized by an index j ∈ [p]. The behavior of
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an individual switch is that when its primary input wires have values (X,Y )
and the jth programming input to the circuit is 0, then the outputs are (X,Y );
otherwise (the jth programming input is 1) the outputs are (Y,X).

Note that many switches can be tied to the same programming input. When
S is a switching network and π is a programming string, we let Sπ(X1, . . . , Xn)
denote the output of the switching network when the primary inputs are
X1, . . . , Xn and its programming input is π.

3.2 Oblivious Switching Network Protocol

In the full version, we describe the oblivious switching network (OSN)
protocol of [30]. The idea is that the parties agree on a switching network S.
The sender has inputs (X1, . . . , Xn) and (Z1, . . . , Zm). The receiver has input π,
and learns Sπ(X1, . . . , Xn) ⊕ (Z1, . . . , Zm). The sender learns nothing.

The cost of the protocol is essentially a 1-out-of-2 OT (for values on the
switching network’s wires) for each switch in the network. All of the OTs can be
performed in parallel, and hence the protocol can be realized as a NISC protocol
in the OT-hybrid model.

This protocol will be used as a subroutine in our main NISC functionality.
Yet we do not abstract the OSN protocol in terms of an ideal functionality. This
is because the protocol does not ensure that a malicious sender acts consistently
with the switching network. However, this turns out to be non-problematic in our
larger NISC protocol. We simply abstract out the properties of this subprotocol
as follows:

Observation 4. When the sender is honest and the receiver is corrupt, the sim-
ulator can extract the corrupt receiver’s programming string π. When the under-
lying OTs are performed in parallel, the simulator extracts π before simulating
any outputs from these OTs.

Observation 5. When the sender is honest, the receiver’s view can be simulated
given only π and the output Sπ(X1, . . . , Xn) ⊕ (Z1, . . . , Zm).

While we described the OSN protocol for the ⊕ operation, we note that it
is easy to replace ⊕ for any group operations. In particular, we also use the
protocol in scenarios where ⊕ represent homomorphic operations on message
domain and/or decommitment domain of a homomorphic commitment.

4 Batched NISC

In this section we describe a protocol for securely evaluating many instances
of the same function f in a single batch. The ideal functionality we achieve is
described in Fig. 1.

We let N denote the number of instances of 2PC being executed, N̂ the num-
ber of garbled circuits computed and B the number of garbled circuits assigned
to each execution/bucket. For a full treatment of these parameters, we refer the
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Parameters: A function f and number N of instances.

Behavior: On input (y1, . . . , yN ) from the receiver, internally record these values
and send (input) to the sender. Later, on input (x1, . . . , xN ) from the sender, do the
following. If xi = ⊥ for any i, then give output ⊥ to the receiver. Otherwise compute
zi = f(xi, yi) for i ∈ [N ] and give (z1, . . . , zN ) to the receiver.

Fig. 1. Ideal functionality for batch 2PC

reader to [26]. For our purposes, we will assume that the parameters satisfy
the following combinatorial property: The adversary generates N̂ items, some
good, some bad. The items are randomly assigned into N buckets of B items
each. The remaining N̂ − NB items are opened. Then the probability that all
opened items are good while there exists a bucket with all bad items is at most
2−λ. Here λ is a statistical security parameter (often λ = 40). Asymptotically,
N̂ = O(λN/ log N) and B = O(λ/ log N).

Regarding our conventions for notation: we use i to index a garbled circuit,
j to index a wire in the circuit computing f , k to index a bucket (an evaluation
of f , or the special “check bucket” defined below), and l to index a position
within a bucket. We let SendInpWires,RecvInpWires,OutWires denote the set of
wire indices corresponding to inputs of Alice, inputs of Bob, and outputs of f ,
respectively.

4.1 Overview of Techniques

Bucket-Coupling via Switching Networks. Recall that the receiver must choose
randomly which circuits are checked, and which circuits are mapped to each
bucket. For simplicity, let us say that checked circuits are assigned to “bucket
#0.” Recall that the cut-and-choose statistical bounds require the receiver to
choose a random assignment of circuits into buckets. Suppose the cut-and-choose
parameters call for N buckets, B circuits per bucket, and N̂ > NB total circuits
(with N̂ − NB circuits being checked). Think of this process as first randomly
permuting the N̂ circuits, assigning the first N̂ − NB circuits to bucket #0,
assigning the next B circuits to bucket #1, and so on. More formally, we can
define public functions bkt and pos so that, after randomly permuting the circuits,
the ith circuit will be the pos(i)’th circuit placed in bucket bkt(i).

A main building block in our NISC protocol is one we call bucket cou-
pling, which is a non-interactive way to bind information related to gar-
bled circuits to information related to a particular bucket, under a bucketing-
assignment chosen by the receiver. Suppose the parties use the OSN subproto-
col of Sect. 3, on a universal switching network S, where the sender’s input is
(A1, . . . , AN̂ ), (B1, . . . , BN̂ ), and the receiver’s input is the programming string
for a random permutation π. Then the receiver will learn Aπ(i) ⊕ Bi.

Interpret π as the receiver’s random permutation of circuits when assigning
circuits to buckets as described above. Then we can interchangeably use Bv and



Non-interactive Secure 2PC in the Offline/Online and Batch Settings 435

Bbkt(v),pos(v), since there is a one-to-one correspondence between these ways of
indexing. We have the following generic functionality:

Bucket coupling: The sender has an item Ai for each circuit i, and
an item Bk,l for each position l in the kth bucket. The receiver holds a
bucketing assignment π. The receiver learns Ai ⊕ Bk,l if and only if π
assigns circuit i to position l of bucket k.

We can perform many such couplings, all with respect to the same permu-
tation π. Simply imagine a switching network that is a disjoint union of many
universal switching networks, but where corresponding switches are programmed
by the same programming bit (this is enforced in the OSN protocol).

Of course, our OSN protocol does not guarantee consistent behavior by the
sender. Furthermore, the sender might not even use the expected inputs to the
OSN protocol. However, we argue that these shortcomings do not lead to prob-
lems in our larger NISC protocol. Intuitively, the worst the sender can do is to
cause inconsistent outputs for the receiver in a way that depends on the receiver’s
choice of bucket-assignments π. But π is chosen independently of his input to the
NISC protocol! Hence the simulator can exactly simulate the abort probability
of the honest receiver, by sampling a uniform π just as the honest receiver does.

Basic Cut-and-Choose. The sender Alice generates N̂ garblings {Fi}i of f (along
with some other associated data, described below). Let σi denote the seed used
to generate all the randomness for the ith circuit. The parties can perform a
coupling whereby Bob learns σi if and only if circuit i is assigned to
bucket 0 (in the notation above, Ai = σi and B0,l = 0κ and Bk,l random for
k �= 0). Then every circuit mapped to bucket 0 (i.e., every check circuit) can be
verified by Bob.

Delivering the Receiver’s Garbled Input. Let RecvInpWires denote the set of input
wires corresponding to Bob’s input to f . Let ini,j,b denote the input wire label on
the jth wire of the ith circuit, encoding logical bit b. When circuit i is mapped
to bucket k, we must let Bob obtain his garbled input value ini,j,b, where b is the
jth bit of Bob’s input for the kth execution. Recall that the association between
circuits (i) and executions (k) is not known to Alice.

Alice commits to each input wire label as follows, and sends the commitments
to Bob:

C in
i,j,b ← Com(ini,j,b; dini,j,b)

The randomness for these commitments is derived from σi, so that the commit-
ments can be checked by Bob if circuit i is assigned to be a check-circuit.

Then, for each execution k ∈ [N ] and each j ∈ RecvInpWires, Alice chooses
random input tokens tokk,j,0 and tokk,j,1. The parties use an instance of OT so
that Bob picks up the correct tokk,j,b, where b is Bob’s input value on wire j in
the kth evaluation of f .
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Let PRF be a PRF. Then for each b ∈ {0, 1}, j ∈ RecvInpWires the parties
perform a coupling in which Bob learns dini,j,b ⊕PRF(tokk,j,b; l) if and only if
circuit i is assigned to position l of bucket k. If Bob has input bit b on the
jth wire in the kth evaluation of f , then he holds tokk,j,b and can decrypt the
corresponding dini,j,b and use it to decommit to the appropriate input wire label
for the ith garbled circuit. If he does not have input bit b, then these outputs of
the coupling subprocess look independently pseudorandom by the guarantee of
the PRF.

If Alice sends inconsistent values into the coupling, then Bob may not receive
the decommitment values dini,j,b he expects. If this happens, then Bob aborts.
Because this abort event would then depend on Bob’s private input, we have
Bob encode his input in a λ-probe-resistant encoding, following the discussion
in Sect. 2.3. This standard technique makes Bob’s abort probability independent
of his private input.

Enforcing Consistency of Sender’s Inputs. We must ensure that Alice uses the
same input for all of the circuits mapped to a particular bucket k �= 0, despite
Alice not knowing which circuits will be assigned to that bucket. This must
furthermore be done without leaking Alice’s input to Bob in the process.

We use an approach similar to [27] based on a XOR-homomorphic commit-
ment scheme. But here the sender does not know a priori which committed
values’ XOR it needs to open. Hence, we need a mechanism for letting the
receiver obliviously learn the decommitment strings for XOR of the appropriate
committed values.

For each circuit i, we have Alice choose a random string si and commit
individually to all of her input wire labels, permuted according to si. More
precisely, she computes commitments:

C in
i,j,0 ← Com(ini,j,si,j

; dini,j,0)

C in
i,j,1 ← Com(ini,j,si,j

; dini,j,1)

Here si,j denotes the jth bit of si. Hence C in
i,j,b is a commitment to the input

wire label representing truth value b ⊕ si,j .
Alice also commits to si under a homomorphic commitment scheme Cs

i ←
HCom(si; ds

i ). As before, the randomness used in all of these commitments is
derived from σi so the commitments can be checked in the cut-and-choose.

For each bucket k, Alice gives a homomorphic commitment to xk, her input
in that execution—Cx

k ← HCom(xk; dx
k). The parties perform a coupling so

that Bob learns ds
i ⊕ dx

k iff circuit i is assigned to bucket k. The result
is a decommitment value that Bob can use to learn si ⊕ xk. The soundness
of the commitment scheme ensures that Bob knows values oi = si ⊕ xk for
a consistent xk. Given that the commitments to Alice’s input wires (C in

i,j,b)
are arranged/permuted using si (a property enforced with high probability by
the cut-and-choose), the commitments indexed by oi correspond to the gar-
bled inputs that encode the logical value xk. Hence, to ensure that Alice uses
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consistent inputs within each bucket, Bob expects Alice to open the commit-
ments indexed by oi.

Routing the Sender’s Inputs. We must let Bob obtain garbled inputs encoding
Alice’s inputs to the ith garbled circuit. As above, when circuit i is mapped
to bucket k, it suffices to let Bob learn the decommitment to C in

i,j,oi,j
where

oi = si ⊕ xk. The challenge is to accomplish this without Alice knowing a priori
which circuit i will be assigned to which bucket k, and hence which input xk

needs to be garbled. We propose a novel and efficient technique for this step
that, for each input wire, only requires one symmetric-key operation and the
routing of one string of length κ through the switching network.

For each wire j ∈ SendInpWires, Alice chooses random Δj . As a matter of
notation, when b is a bit, we let bΔj denote the value [if b = 0 then 0κ else Δj ].

For each circuit i and wire j ∈ SendInpWires, Alice chooses random ri,j and
sends an encryption ei,j,b = H(ri,j ⊕bΔj)⊕dini,j,b to Bob. Here H is a correlation-
robust hash function (Sect. 2.5).

For each wire j ∈ SendInpWires the parties perform a coupling in which Bob
learns (ri,j ⊕ si,jΔj)⊕xk,jΔj if and only if circuit i is assigned to bucket
k. Simplifying, we see that Bob learns:

Ki,j = (ri,j ⊕ si,jΔj) ⊕ xk,jΔj = ri,j ⊕ (si,j ⊕ xk,j)Δj = ri,j ⊕ oi,jΔj

Indeed, this is the key that Bob can use to decrypt ei,j,oi,j
to obtain dini,j,oi,j

.
He can then use this value to decommit to the wire label encoding truth value
xk,j , as desired. Bob will abort if he is unable to decommit to the expected wire
labels in this way. Here, the abort probability depends only on Alice’s behavior,
and is not influenced by Bob’s input in any way.

Note that the decommitment values for the “other” wire labels are masked
by a term of the form H(Ki,j ⊕Δj), where Δj is unknown to Bob. Even though
the same Δj is used for many such ciphertexts, the correlation-robustness of H
ensures that these masks look random to Bob.

Cheating Recovery. Lindell [24] introduced a cheating recovery technique, where
if the receiver detects the sender cheating, the receiver is able to learn the sender’s
input (and hence evaluate the function in the clear). This technique is crucial
in reducing the number of garbled circuits, since now only a single circuit in a
bucket needs to be correctly generated. Our protocol also adapts this technique,
but in a non-interactive setting. The approach here is similar to that used in
[1], but it is describe more generally in terms of any homomorphic commitment
scheme and of course adapted to the batch setting.

For each output bit j and each bucket k, Alice generates wk,j,0 at random
and sets wk,j,1 = xk − wk,j,0. The main idea is two-fold:

– We will arrange so that if Bob evaluates any circuit in bucket k and obtains
output b on wire j, then Bob will learn wk,j,b.
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– Then, if Bob evaluates two circuits in the same bucket that disagree on their
output—say, they disagree on output bit j—then Bob can recover Alice’s input
xk = wk,j,0 + wk,j,1.

For technical reasons, we must introduce pre-output and post-output wire
labels for each garbled circuit. When evaluating a garbled circuit, the evaluator
obtains pre-output wire labels. We denote by douti,j,b the pre-output wire label
for wire j of circuit i encoding truth value b. We use this notation since the
pre-output wire labels are used as decommitment values.

Alice chooses random post-output wire labels, {outi,j,b} and generates a homo-
morphic commitment to them using the pre-output labels as the randomness:

Cout
i,j,b ← HCom(outi,j,b; douti,j,b)

The technical reason for having both pre- and post-output labels is so that there
is a homomorphic commitment that is bound to each output wire of each circuit,
that can be checked in the cut-and-choose. Indeed, these commitments can be
checked in the cut-and-choose, since they use the circuit’s [pre-]output wire labels
as their randomness.

Separately, for each bucket k �= 0, Alice generates and sends homomorphic
commitments:

Cw
k,j,b ← HCom(wk,j,b; dwk,j,b)

She sends a homomorphic opening to the linear expression wk,j,0+wk,j,1−xk, to
prove that this expression is all-zeroes (i.e., to prove that wk,j,0 + wk,j,1 = xk).

Then, for each j ∈ outpwires and b ∈ {0, 1} the parties do a coupling in
which Bob learns douti,j,b ⊕dwk,j,b when circuit i is assigned to bucket k. Bob
can use the result to decommit to the value of outi,j,b ⊕ wk,j,b.

Putting things together, Bob evaluates a circuit i assigned to bucket k. He
learns the corresponding pre-output wire labels douti,j,b, which he uses to decommit
to the post-output wire labels outi,j,b. Since he has learned outi,j,b ⊕wk,j,b from
the coupling, he can therefore compute wk,j,b (a bucket-specific value, whereas
outi,j,b was a circuit-specific value). If any two circuits disagree in their output,
he can recover the sender’s input xk as described above and compute the correct
output. Otherwise, since at least one circuit in the bucket is guaranteed (by the
cut-and-choose bounds) to be generated honestly, Bob can uniquely identify the
correct output.

4.2 Detailed Protocol Description

We present our complete protocol in Fig. 2. We refer the reader to the full version
for the proof of the following Theorem.

Theorem 6. The protocol in Fig. 2 is a UC-secure realization of the function-
ality in Fig. 1.
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Parameters: A function f and number N of instances. N̂ denotes the number of
garbled circuits, chosen according to the discussion in the text. λ is the statistical
security parameter.

Inputs: Alice has inputs (x1, . . . , xN ) and Bob has inputs (y1, . . . , yN ).

1. Bob chooses a random permutation π, and uses it as input to all coupling sub-
protocols below (i.e., all couplings are performed in parallel and bound to the
same π). The parties agree on a λ-probe resistant matrix M , and Bob encodes
each yk as ỹk where Mỹk = yk.

2. For each circuit i ∈ [N̂ ]: Alice chooses a PRF seed σi and uses it to derive all
randomness used in this step of the protocol:
Alice generates a garbling of the function f̃(x, ỹ) = f(x, Mỹ); let Fi denote the
garbled circuit, and let ini,j,b (resp. dout

i,j,b) denote the input (resp. output) wire
label encoding truth value b on wire j of circuit i. She sends each Fi to Bob.
Alice chooses random “post-output” keys {outi,j,b}j∈OutWires,b∈{0,1}. She gener-
ates and sends the following commitments (where din and ds values are derived
randomly from σi):

C in
i,j,b ← Com(ini,j,b⊕si,j ; d

in
i,j,b⊕si,j ) for j ∈ SendInpWires, b ∈ {0, 1}

C in
i,j,b ← Com(ini,j,b; d

in
i,j,b) for b ∈ {0, 1}, j ∈ RecvInpWires

Cout
i,j,b ← HCom(outi,j,b; d

out
i,j,b) for b ∈ {0, 1}, j ∈ OutWires

Cs
i ← HCom(si; d

s
i )

3. The parties perform a coupling with input for Alice {σi}i, all-zeroes masks for
bucket #0, and random masks for other buckets. Bob learns σi if circuit i is
mapped to bucket 0. For such i, Bob checks that Fi and corresponding commit-
ments from the previous step are generated using randomness derived from σi,
and aborts if this is not the case.

4. For j ∈ SendInpWires, Alice chooses a random Δj . For j ∈ SendInpWires, i ∈ [N̂ ],
Alice chooses a random ri,j . Alice generates and sends input-encryptions:

ei,j,b = H(ri,j ⊕ bΔj) ⊕ din
i,j,b

5. For k ∈ [N ], j ∈ OutWires, Alice chooses random wk,j,0 and sets wk,j,1 = xk ⊕
wk,j,0 (recall xk is her input to the kth execution). Alice generates and sends
commitments:

Cw
k,j,b ← HCom(wk,j,b; d

w
k,j,b) for k ∈ [N ], j ∈ OutWires, b ∈ {0, 1}

Cx
k ← HCom(xk; dx

k) for k ∈ [N ]

Alice also gives homomorphic decommitments:

dw
k,j,0 ⊕ dw

k,j,1 ⊕ dx
k for k ∈ [N ], j ∈ OutWires

Bob aborts if these values do not decommit Cw
k,j,0 ⊕ Cw

k,j,1 ⊕ Cx
k to the all-zeroes

string.

(protocol description continues. . .)

Fig. 2. Batch NISC protocol
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6. For k ∈ [N ], j ∈ RecvInpWires, Alice chooses random tokk,j,0, tokk,j,1. Parties
engage in an instance of OT with inputs (tokk,j,0, tokk,j,1) for Alice and ỹk,j (i.e.,
jth bit of ỹk) for Bob. Bob gets input tokk,j,ỹk,j .

7. For k ∈ [N ], j ∈ RecvInpWires, b ∈ {0, 1}, the parties perform a coupling
with inputs {din

i,j,b}i, {PRF(tokk,j,b; l)}k,l for Alice. Bob learns βi,j,b = din
i,j,b ⊕

PRF(tokk,j,b; l) when circuit i is assigned to position l of bucket k. Bob aborts if
βi,j,ỹi,j ⊕ PRF(tokk,j,ỹi,j ; l) is not a valid decommitment of C in

i,j,ỹi,j
. Otherwise,

Bob sets in∗
i,j to be the result of the decommitment.

8. The parties perform a coupling with input {ds
i }i, {dx

k}k for Alice. Bob learns
ds

i ⊕ dx
k when circuit i is assigned to bucket k, and aborts if this is not a valid

opening of Cs
i ⊕Cx

k . Otherwise, Bob sets oi to be the result of this decommitment.
9. For k ∈ [N ], j ∈ SendInpWires the parties perform a coupling with input {ri,j ⊕

si,jΔj}i, {xk,jΔj}k for Alice. Bob learns Ki,j = (ri,j ⊕ si,jΔj) ⊕ xk,jΔj when
circuit i is assigned to bucket k.
For i ∈ [N̂ ], j ∈ SendInpWires, Bob aborts if ei,j,oi,j ⊕ H(Ki,j) is not a valid

decommitment to C in
i,j,oi,j

. Otherwise, Bob sets in∗
i,j to be the result of this de-

commitment.
10. For j ∈ OutWires, b ∈ {0, 1} the parties perform a coupling with input

{dout
i,j,b}i, {dw

k,j,b}k for Alice. Bob gets dout
i,j,b ⊕dw

k,j,b if circuit i is assigned to bucket
k. Bob aborts if this value is not a valid decommitment to Cout

i,j,b ⊕ Cw
k,j,b. Other-

wise, Bob sets δi,j,b to be the result of the decommitment.

11. For i ∈ [N̂ ], where circuit i has not been mapped to bucket #0: Bob evaluates
garbled circuit Fi with input wire labels {in∗

i,j}j∈SendInpWires∪RecvInpWires. The result
is plain output zi and corresponding pre-output wire labels {dout

i,j,zi,j}. If for some

j, dout
i,j,zi,j is not a valid decommitment of Cout

i,j,zi,j then Bob changes zi = ⊥.
Otherwise, Bob opens the commitments to obtain outi,j,zi,j values.

12. For each bucket k �= 0: If zi = ⊥ for all i assigned to this bucket, then abort. If
there are zi �= zi′ , neither of them ⊥, in this bucket, then let j be some position
for which zi,j �= zi′,j . Bob computes

x̃k = (outi,j,zi,j ⊕ δi,j,zi,j ) ⊕ (outi′,j,zi′,j ⊕ δi′,j,zi′,j )

and sets z∗
k = f(x̃k, ỹk). Otherwise, let z∗

k be the unique value such that zi ∈
{⊥, z∗

k} for all i in this bucket.
13. Bob outputs z∗

1 , . . . , z∗
N .

Fig. 2. (Continued)

5 Protocol Efficiency and Choice of Commitments

We review the efficiency of our construction. First, we note that besides the
calls to an ideal OT (in the main protocol and also in the OSN subprotocol),
the protocol consists of a monolothic message from Alice to Bob (containing
garbled circuits, commitments, etc.). All instances of OT are performed in par-
allel. Hence, ours is a NISC protocol in the sense of [17]. Concretely, the OT
can be instantiated with a two-round protocol such as that of [33], making our
protocol also a two-round protocol (Bob sends the first OT message, Alice sends
the second OT message along with her monolothic NISC protocol message.)
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5.1 Effect of Oblivious Switching Network

From Table 1 we see that the parts of the protocol that involve the oblivious
switching network (OSN) scale with Nλ, whereas everything else scales with
Nλ/ log N (or independent of λ altogether). The log N term in the denominator
is a result of savings by batching the cut-and-choose step. In particular, the num-
ber of garbled circuits (which is the main communication overhead in general),
as well as their associated commitments, benefits from batching.

However, information related to the various commitments is sent as input into
the OSN. The OSN incurs a log N̂ overhead which “cancels out” the benefits of
batching, for these values. We elaborate on this fact:

We instantiate the OSN with a Waksman network [38], which is a universal
switching network (i.e., it can be programmed to realize any permutation). Each
“bucket coupling” step requires a permutation on N̂ items, leading to a Waksman
network with O(N̂ log N̂) = O(Nλ) switches.

Note that only decommitment and similar values are processed via the OSN
subprotocol (bucket coupling steps). The garbled circuits and their associated
commitments are not.

5.2 Instantiating Homomorphic Commitments

Pedersen Commitment. Let g be the generator for a prime order group G
where the discrete-log problem is hard, and let h = gx for a random secret x. In
our setting g, h can either be chosen by the receiver and sent along with its first
OT message, or it can be part of a CRS.

In Pedersen commitments [32], to commit to a message m, we let Com(m; r) =
gmhr for a random r. The decommitment string is (m, r). The scheme is statisti-
cally hiding and computationally binding. It is also homomorphic (with respect
to addition over Zp) on the message space and the decommitment. In particu-
lar, given Com(m; r) and Com(m′; r′), we can decommit to m + m′ by sending
(m+m′, r+r′) to the receiver who can check whether Com(m; r) ·Com(m′; r′) =
gm+m′

hr+r′
.

Regarding their suitability for our scheme: Clearly Pedersen commitments
have optimal communication overhead (commitment length is equal to the mes-
sage length). However, they require exponentiations in a DH group. In practice
these operations are much slower than symmetric-key primitives like hash func-
tions or block ciphers, which would be preferred. Pedersen commitments are
homomorphic over the group (Zp,+). For many of the commitments in our
scheme (in particular, the outi,j,b and wk,j,b values) the choice of group is not
crucial, but we actually require the commitments to xk and si to be combined
with respect to bitwise XOR. Later in this section we discuss techniques for com-
bining Pedersen commitments with other kinds of homomorphic commitments.

OT-Based Homomorphic Commitments. We discuss a paradigm for homo-
morphic commitments based on simple OTs.
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Starting Point. Our starting point is an XOR-homomorphic commitment of Lin-
dell and Riva [27], that is further based on a technique of Kilian [20] for proving
equality of committed values (i.e., proving that the XOR of two commitments is
zero). The Lindell-Riva commitment has an interactive opening phase, but we
will show how to make it non-interactive.

Let Com be a regular commitment. To generate a homomorphic commit-
ment to message m, the sender secret shares m0 ⊕ m1 = m and generates plain
commitments Com(m0) and Com(m1).

Suppose commitments to m and m′ exist (i.e., there are plain commitments
to m0,m1,m

′
0,m

′
1). To open m ⊕ m′ the parties do the following:

– Preamble: the sender gives Δ = m ⊕ m′ (the claimed xor of the two commit-
ments) and δ = m0 ⊕ m′

0

– Challenge: receiver chooses random b ← {0, 1}
– Response: sender opens Com(mb) and Com(m′

b). Receiver checks: mb ⊕ m′
b

?=
δ ⊕ bΔ

This scheme has soundness 1/2, but can be repeated in parallel λ times to achieve
soundness 2−λ.

If we settle for the Fiat-Shamir technique to generate the challenge bits, the
above scheme can easily become non-interactive. Similarly, in the offline-online
variant of our construction where the commitments and preambles can all be
sent in the offline phase, the online phase will be non-interactive (challenge and
response). But for our main construction in the standard model, we need to
make the above scheme non-interactive.

Making It Non-interactive. In our NISC application, we already assume access
to an ideal oblivious transfer functionality. Then the above approach can be
modified to both do away with the standalone commitments and to make a
non-interactive decommitment phase.

The idea is to replace commitments and a public challenge with an instance
of OT. To commit to m, the commitment phase proceeds as follows:

– The receiver chooses a random string b = b1 · · · bλ and uses the bits of b as
choice bits to λ instances of OT.

– The sender chooses λ pairs (m1,0,m1,1), . . . , (mλ,0,mλ,1) so that mi,0⊕mi,1 =
m. The sender uses these pairs as inputs to the instances of OT. Hence, the
receiver picks up mi,bi .

We note that when committing to many values as is the case in our constructions,
the same OTs are used for all commitments. That is, the same challenge bits b
are used for all commitments.

Suppose two such commitments have been made in this way, to m and to
m′. Then to decommit to Δ = m ⊕ m′ the sender can simply send Δ and
δ = (δ1, . . . , δλ) = (m1,0 ⊕ m′

1,0, . . . ,mλ,0 ⊕ m′
λ,0). The receiver can check the

soundness equations:

mi,bi ⊕ m′
i,bi

?= δi ⊕ biΔ
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Note that the same bi challenges are shared for all commitments, so the
receiver will indeed have mi,bi and m′

i,bi
for a consistent bi. Since the sender’s

view is independent of the receiver’s challenge b, soundness follows from the same
reasoning as above.

In this way, the decommitment string for a commitment to m is
(m,m1,0, . . . ,mλ,0). Furthermore, to decommit to m ⊕ m′, the decommitment
value is the XOR of the individual decommitment values. In other words,
the scheme satisfies the homomorphic-opening property described in Sect. 2.2.
Finally, note that since we use the same challenge bits for all commitments, it
easy to prove multiple XOR relations involving the same committed value.

Code-Based Homomorphic Commitments. A recent series of works [10,12] con-
struct homomorphic commitments from an oblivious-transfer-based setup.

Looking abstractly at our presentation of the Lindell-Riva commit-
ment above, their construction takes the payload m and generates
(m1,0,m1,1, . . . ,mλ,0,mλ,1), where (m1,0⊕m1,1, . . . ,mλ,0⊕mλ,1) is an encoding
of m. In this case, the encoding is a λ-repetition encoding.

The idea behind [12] is to choose an encoding with better rate. Namely, the
sender generates (m1,0,m1,1, . . . ,mn,0,mn,1), where (m1,0 ⊕ m1,1, . . . ,mn,0 ⊕
mn,1) encodes m in some error-correcting code. Here the total length of the
encoding may be much smaller than 2λ|m| as in the Lindell-Riva scheme. The
binding property of the construction is related to the minimum distance of this
code. We refer the reader to [12] for details about the construction and how to
choose an appropriate error-correcting code. Instead, we point out some facts
that are relevant to our use of homomorphic commitments:

– When the error-correcting code is linear, then the commitments are additively
homomorphic. Following our pattern, the decommitment value for a commit-
ment is the vector (m,m1,0, . . . ,mn,0). These decommitment values are indeed
homomorphic in the sense we require.

– The rate of a commitment scheme is the length of the commitment’s pay-
load divided by the communication cost of the commitment. For example, the
Lindell-Riva scheme has rate O(1/λ). By a suitable choice of error-correcting
codes, the rate of the scheme in [12] can be made constant, or even 1 + o(1).
Concretely, to commit to 128 bits requires the committer to send only 262 bits
when using an appropriate BCH code, leading to a rate 0.49.

Unfortunately, unlike the Lindell-Riva construction, the scheme of [12]
requires some additional interaction in the setup phase. In particular, there must
be some mechanism to ensure that the sender is indeed using valid codewords.
The sender can violate binding, for instance, by choosing a non-codeword that
is “halfway between” two valid codewords. In [12], after the parties have per-
formed the OTs of the setup phase, the receiver challenges the sender to open
some random combination of values to ensure that they are consistent with valid
codewords.

Removing this interaction turns out to be problematic. In our offline/online
application the extra interaction is in the offline phase, and so not a problem.
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In our offline/online application we therefore use this highly efficient commit-
ments. However, we cannot afford the extra round of interaction in our batch
NISC application. Hence, our options are: (1) use less efficient homomorphic
commitment schemes like the Lindell-Riva one; (2) remove the round of interac-
tion using the Fiat-Shamir heuristic, since the receiver’s challenge is random.

5.3 Reducing Cost of Homomorphic Commitments

We described our main protocol without specifying exactly which homomorphic
commitment to use. Based on the previous discussion, we have several options,
none of them ideal:

– Pedersen commitments, which are rate 1, but require public-key operations
and are homomorphic only with respect to addition in Zp.

– Lindell-Riva-style commitments based on OTs, which have rate O(1/λ) and
are homomorphic with respect to XOR.

– FJNT [12] commitments, which have constant rate and are homomorphic with
respect to XOR, but require some interaction in the initialization step (unless
one is satisfied with the Fiat-Shamir heuristic).

The only “off-the-shelf” choice that is compatible with our construction is
the Lindell-Riva-style commitments, which are the least efficient in terms of
communication.

We therefore describe two methods to significantly improve the efficiency
related to homomorphic commitments in our construction.

Linking Short-to-Long Commitments. The protocol performs homomorphic
decommitments that combine xk and wk,j,b values—hence, these values must
have the same length (|SendInpWires|). There is an wk,j,b value for each bucket
k ∈ [N ] and each circuit output wire j ∈ OutWires. Accounting for the total
communication cost for these commitments in the Lindell-Riva-style scheme,
we get O(λN |OutWires| · |SendInpWires|). For circuits with relatively long
inputs/outputs, the cost |OutWires| · |SendInpWires| is undesirable.

We propose a technique for reducing this cost when |SendInpWires| is long
(longer than a computational security parameter κ). Recall that the purpose of
the wk,j,b values is that if the receiver learns both wk,j,0 and wk,j,1, then he can
combine them to learn xk. We modify the construction so that the sender gives a
homomorphic commitment to a random (“short”) wk for each bucket k, where

wk,j,0 ⊕ wk,j,1 = wk (∀j ∈ OutWires)

(i.e., we have replaced xk with wk in the above expression). The wk,wk,j,b

values have length κ, so the total cost of these commitments to wk,j,b is
O(κλN |OutWires|).

Now we must modify the protocol so that if the receiver ever learns wk, then
he (non-interactively) can recover xk, where wk is “short” and xk is “long.” Recall
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that to commit to xk and wk in the Lindell-Riva scheme, the sender needs to gen-
erate λ independent additive sharings: {xk,0,i, xk,1,i}i∈[λ] and {wk,0,i,wk,1,i}i∈[λ]

and using them as sender’s inputs to the challenge OTs. To “link” wk to xk,
we simply have the sender also send ciphertexts {Enc(wk,b,i;xk,b,i)}i∈[λ],b∈{0,1},
i.e. encrypting each additive share of xk using the corresponding share of wk as
the key. Note that Enc can be a symmetric-key encryption scheme and therefore
relatively fast.

In the Lindell-Riva scheme, the receiver learns one share from each pair
of shares. He learns either (wk,0,i, xk,0,i) or (wk,b,i, xk,b,i). Hence, the receiver
can check half of the ciphertexts sent by the sender, and abort if any are not
correct/consistent. If the receiver doesn’t abort, this guarantees that with high
probability the majority of these linking encryptions are correct. To bound the
probability of error to 2−λ, we must increase the number of parallel repetitions
to ∼ 3λ.

Now if the receiver learns wk at some later time, it can solve for both shares
wk,0,i,wk,1,i for every i, and use them to decrypt the shares xk,0,i, xk,1,i. The
receiver thus recovers xk as the majority value among all xk,0,i ⊕ xk,1,i.

If the receiver never cheats, then the value of xk remains hidden by the
semantic security of the Enc-encryptions.

Replacing with Pedersen Commitments. We can reduce the κλ term in the com-
munication complexity to κ by using Pedersen commitments for the output wires.
In particular, O(|OutWires|N̂) Pedersen commitments are sufficient for commit-
ting to the wk, wk,j,b, and outi,j,b values. However, we also need to “link” wk

to xk. To do so, we can use the input consistency check technique used in [1]
that uses an El Gamal encryption of xk, and algebraically links the Pedersen
commitments to the output wires with the Elgamal encryption of the input. We
refer the reader to [1] for details of this approach.

We note that the use of Pedersen Commitments provides a trade-off between
communication and computation as the computation cost will likely increase due
the public-key operations required by the scheme, but we save on the communi-
cation requires for cheating-recovery.

Reducing Communication Using the Seed Technique. In the full version of the
paper, we show how to further reduce communication of our protocol by incor-
porating the seed technique of [1,13] wherein only the garbled circuits that are
evaluated are communicated in full.

6 Optimizations for the Offline-Online Setting and
Random Oracle Model

Using the random oracle model, we can remove or improve several sources of inef-
ficiency in our construction. To introduce these improvements, we first describe a
2PC protocol in the offline-online setting, which may be of independent interest.
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6.1 Offline-Online Protocol

The Setting. In this setting, the parties know that they will securely evaluate
some function f , N times (perhaps not altogether in a single batch). In an
offline phase they perform some pre-processing that depends only on f and N .
Then, when it comes time to securely evaluate an instance of f , they perform
an online phase that is as inexpensive as possible, and depends on their inputs
to this evaluation of f .

We will describe how to modify our NISC protocol to obtain an offline-online
2PC protocol where:

– The offline phase is constant-round.
– Each online phase is two rounds, consisting of a length-|y| message from the

receiver Bob followed by a message of length (|x| + |y|)κ (or |x| + |y| + O(κ),
after further optimization) from Alice.

– The total cost of N secure evaluations of f is O(N/ log N) times that of a single
secure evaluation. In particular, batching improves all aspects of the protocol
by a log N factor (unlike in the NISC protocol where the cost associated with
circuit inputs/outputs did not have a log N -factor saving).

Removing the Switching Network. Recall that in our NISC protocol the costs
associated with garbled circuits scale as O(N/ log N), while the costs associated
with circuit inputs/outputs scales as O(N). The reason is that decommitment
information related to inputs/outputs is sent through the oblivious switching
network (OSN). The switching network has log N̂ depth, and incurs a log N̂
factor overhead that cancels out the log N savings incurred by the batch cut-
and-choose.

The main reason for the oblivious switching network protocol was to non-
interactively choose an assignment of circuits to buckets. We showed how to
perform this task using a two-round OSN protocol in the standard model. How-
ever, the assignment of circuits to buckets can be done in the offline phase, as it
does not depend on the parties’ inputs to f .

Let π denote the receiver’s assignment of circuits to buckets. In the non-
interactive setting, it was necessary to hide π from the sender—the sender cannot
know in advance which circuits will be checked in the cut-and-choose. However,
in principle π does not need to be completely secret; it merely suffices for it to
be chosen after the sender commits to the garbled circuits.

When we allow more interaction in the offline phase, we can do away with the
oblivious switching network (and its log N̂ overhead on garbled inputs/outputs)
altogether. The main changes to remove the OSN subprotocols are as follows:

– The receiver chooses a random assignment π and commits to it.
– For the coupling subprotocols involving σi, we instead have the sender commit

individually to each σi. The sender also sends all of the garbled circuits and
various commitments, just as in the NISC protocol.

– After the σi’s are committed, the receiver opens the commitment of π.
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– The sender opens the commitments to σi for i assigned to be checked. This
allows the receiver to learn the σi’s while avoiding the bucket-coupling subpro-
tocol involving these values. For all other couplings, the sender simply sends
whatever the receiver’s output would have been in the NISC protocol. This is
possible since the sender knows π.

In this way, we remove all invocations of the switching network, and their asso-
ciated O(log N̂) overhead.

To argue that the protocol is still secure, we need to modify the simulator for
the NISC protocol. When the sender is corrupt, the simulator extracts the σi val-
ues, but does not use any special capabilities for the other couplings—it merely
runs these couplings honestly and uses only their output. In this offline/online
modification, the simulator can still extract the σi’s from the commitments. Then
it can receive the other values (formerly obtained via the couplings) directly from
the sender. To simulate a corrupt receiver, the simulator need only extract the
commitment to π in the first step, similar to how the NISC simulator extracts π
as its first operation. However, in this setting the inputs to the function are cho-
sen after the receiver has seen the garbled circuits. Hence, we require a garbling
scheme that has adaptive security [5].

Note that in this setting we can apply the optimization of Goyal et al. [13]:
the sender can initially send only a hash of each garbled circuit. For circuits that
are assigned to be checked, it is not necessary to send the entire garbled circuit –
the receiver can simply recompute the circuit from the seed and compare to the
hash. Only circuits that are actually evaluated must be sent. This optimization
reduces concrete cost by a significant constant factor.

Optimizing Sender’s Garbled Input. First, we can do away with the encryptions
ei,j,b (step 4) and the associated coupling (step 9). These were needed only to
route the sender’s inputs to the correct buckets without a priori knowledge of the
bucketing assignment. Instead, the sender (after learning the bucketing assign-
ment) can simply directly send the decommitments to the correct commitments
to her garbled input.

Besides this optimization, we observe that the NISC protocol uses the
sender’s input xk in several places. We briefly describe ways to move the bulk
of these operations to the offline phase.

Offline commitments to sender’s input: In the NISC protocol the sender gives
a homomorphic commitment to xk. For each circuit i assigned to bucket k, the
receiver learns the decommitment to si ⊕xk, and in the online phase will expect
the sender to open commitments indexed by si ⊕ xk, since these will be the
commitments to wire labels holding truth value xk. Furthermore, the sender
chooses bucket-wide values wk,j,b so that xk = wk,j,0 ⊕ wk,j,1. The idea is that,
if the receiver obtains conflicting outputs within a bucket, he can learn xk.

To reduce the online dependence on xk, we make the following change. Instead
of giving a homomorphic commitment to xk, the sender uses a random value μk.
Since μk is unrelated to her input xk, all of the commitments and homomorphic
openings can be done in the offline phase. In other words, the homomorphic
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commitments are arranged so that the receiver learns μk ⊕ si, and so that the
receiver learns μk if he obtains conflicting outputs in the bucket. Then in the
online phase, the sender simply gives xk⊕μk in the clear. The receiver will expect
the sender to open commitments indexed by (xk ⊕ μk) ⊕ (μk ⊕ si) = xk ⊕ si. If
cheating is detected, the receiver learns μk and thus obtains xk = (xk ⊕μk)⊕μk.

Packaging together sender’s garbled inputs: Suppose there are B circuits
assigned to each bucket. The receiver will be expecting the sender to decom-
mit to B values for each input bit (j ∈ SendInpWires). This leads to O(B|x|κ)
communication from the sender in each execution.

But since the sender knows the bucket-assignment in the offline phase, she
can “package” the corresponding decommitment values together in the following
way. For each of her input wires j ∈ SendInpWires and value b ∈ {0, 1} the sender
can choose a bucket-specific token tokk,j,b. Then, in she can encrypt all of the B
different openings that will be necessary in the event that she has truth value b
on wire j in the online phase. She can generate these ciphertexts in the offline
phase and send them (in a random order with respect to the b-values). Then in
the online phase, she need only send a single tokk,j,b value for each bit of her
input, at a cost of only |x|κ per execution.

Optimizing Receiver’s Garbled Input. In the online phase, the parties must per-
form the OTs for the receiver’s inputs. As in the NISC protocol these OTs are
already on bucket-wide “tokens” and not B sets of wire labels per input wire.

Note that the number of OTs per execution is |ỹk|, where ỹk is the λ-probe-
resistant encoding of the receiver’s true input yk. Indeed, ỹk is longer than yk

by a significant constant factor in practice. However, we can reduce the online
cost to |yk| by using an optimization proposed by Lindell and Riva [27] in their
offline/online protocol, which we describe below:

Recall that M is the λ-probe-resistant matrix, and the parties are evaluating
the function f̃(x, ỹ) = f(x,Mỹ). We instead ask the parties to evaluate the
function g(x, r̃,m) = f(x,m ⊕ Mr̃). Note that r̃ is the length of a λ-probe-
resistant-encoded input, while m has the same length as y. The idea is for Bob
to choose an encoding r̃ of a random r, in the offline phase. The parties can
perform OTs for r̃ in the offline phase. Then in the online phase, Bob announces
m = r ⊕ y in the clear. Alice must then decommit to the input wire labels
corresponding to m (in the protocol description we refer to these input wires of
g as PubInpWires). As above, the decommitments for all B circuits in this bucket
can be “packaged” together with encryptions sent in the offline phase. Therefore,
the online cost attributed to the receiver’s input is the receiver sending m and
the sender sending |m| encryption keys (where |m| = |y|).

Futher Compressing the Online Phase. Using the optimizations listed above,
each online phase consists only of a length-|y| message from Bob and a reply
from Alice of length (|x| + |y|)κ. However, we point out that the message from
Alice can be shortened even further using a technique of Applebaum et al. [2]
that we summarize in Sect. 2.6. As a result, the total communication in the online
phase is |x|+ |y|+O(κ) bits—only O(κ) bits less than the information-theoretic
minimum for secure computation.
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Protocol Description. The detailed protocol description is given in Fig. 4. For
simplicity this description does not include the technique of Applebaum et al. [2]
for compressing garbled inputs in the online phase. This optimization can be
applied in a black-box manner to our protocol.

Theorem 7. The protocol in Fig. 4 is a UC-secure realization of the function-
ality in Fig. 3. The online phase is 2 rounds, and requires a length-|y| message
from the receiver and length-(|x| + O(κ)) message from the sender.

Parameters: A function f and number N of instances.

Behavior: On input setup from the sender, give output setup to the receiver. Then
do the following N times: wait for input x from the sender and y from the receiver.
Then give output f(x, y) to the receiver.

Fig. 3. Ideal functionality for offline/online 2PC

6.2 NISC, Optimized for Random Oracle Model

In the offline/online protocol we just described, the receiver first commits to π,
receives garbled circuits and commitments, then opens π. Suppose we remove the
commitment to π from the protocol. In other words, suppose the offline phase
begins with the sender giving the garbled circuits and associated commitments,
and then the receiver sends a random π in the clear.

This modified offline phase is then public-coin for the verifier. The only mes-
sages sent by the verifier are the random π and a random challenge for the FJNT
homomorphic commitment scheme setup (not explicitly shown in the protocol
description). We can therefore apply the Fiat-Shamir technique to make the
protocol non-interactive again, in the programmable random oracle model.2 In
doing so we obtain a batch-NISC protocol that is considerably more efficient
than our standard-model protocol. In particular:

– The RO protocol makes no use of the switching network, so avoids the asso-
ciated overhead on garbled inputs/outputs.

– The RO protocol can be instantiated with the lightweight homomorphic com-
mitments of [12].

– The RO protocol avoids communication for garbled circuits that are assigned
to be checked.

– Unlike in the NISC setting, the offline/online protocol can take advantage of
efficient OT extension techniques [3,4,16,19,21] which greatly reduce the cost
of the (many) OTs in the protocol, but require interaction. This property is
of course shared by all 2PC protocols that allow for more than 2 rounds.

2 When considering a corrupt receiver, instead of extracting π from the commitment,
the simulator can simply choose π upfront and then program the random oracle to
output π on the appropriate query.



450 P. Mohassel and M. Rosulek

Parameters: A function f and number N of instances. N̂ denotes the number of
garbled circuits, chosen according to the discussion in the text. λ is the statistical
security parameter.

Offline phase:

1. Bob chooses a random permutation π, and commits to it.
2. For each circuit i ∈ [N̂ ]: Alice chooses a PRF seed σi and uses it to derive all

randomness used in this step of the protocol:
Alice generates a garbling of the function f̃(x, r̃, m) = f(x, m⊕Mr̃); let Fi denote
the garbled circuit, and let ini,j,b (resp. dout

i,j,b) denote the input (resp. output)
wire label encoding truth value b on wire j of circuit i. She computes hi = H(Fi)
where H is a CRHF, and sends hi to Bob.
Alice chooses random “post-output” keys {outi,j,b}j∈OutWires,b∈{0,1}. She gener-
ates and sends the following commitments (where din and ds values are derived
randomly from σi):

C in
i,j,b ← Com(ini,j,b⊕si,j ; d

in
i,j,b⊕si,j ) for j ∈ SendInpWires, b ∈ {0, 1}

C in
i,j,b ← Com(ini,j,b; d

in
i,j,b) for b ∈ {0, 1}, j ∈ RecvInpWires

Cout
i,j,b ← HCom(outi,j,b; d

out
i,j,b) for b ∈ {0, 1}, j ∈ OutWires

Cs
i ← HCom(si; d

s
i )

3. For each i ∈ [N̂ ], Alice commits to each σi.
4. Bob opens the commitment to π.
5. For all i assigned to be checked by π, Alice opens the commitment to σi. Bob

checks that hi and corresponding commitments from the previous step are gen-
erated using randomness derived from σi, and aborts if this is not the case.
For all i not assigned to be checked, Alice sends Fi; Bob aborts if hi �= H(Fi).

6. For k ∈ [N ], Alice chooses a random μk. For k ∈ [N ], j ∈ OutWires, Alice
chooses random wk,j,0 and sets wk,j,1 = μk ⊕ wk,j,0. Alice generates and sends
commitments:

Cw
k,j,b ← HCom(wk,j,b; d

w
k,j,b) for k ∈ [N ], j ∈ OutWires, b ∈ {0, 1}

Cμ
k ← HCom(μk; dx

k) for k ∈ [N ]

Alice also gives homomorphic decommitments:

dw
k,j,0 ⊕ dw

k,j,1 ⊕ dμ
k for k ∈ [N ], j ∈ OutWires

Bob aborts if these values do not decommit Cw
k,j,0 ⊕ Cw

k,j,1 ⊕ Cμ
k to the all-zeroes

string.
7. For j ∈ OutWires, b ∈ {0, 1} and all circuits i assigned to bucket k, Alice sends

dout
i,j,b ⊕ dw

k,j,b. Bob aborts if this is not a valid decommitment to Cout
i,j,b ⊕ Cw

k,j,b;
otherwise he sets δi,j,b to be the result of this decommitment.

8. For all circuits i assigned to bucket k, Alice sends dμ
k ⊕ ds

i . Bob aborts if this is
not a valid decommitment to Cμ

k ⊕ Cs
i ; otherwise he sets oi to be the result of

this decommitment.

(protocol description continues. . .)

Fig. 4. Online-offline protocol
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9. For all k ∈ [N ], Bob chooses a random λ-probe-resistant encoding r̃k. For
j ∈ RecvInpWires, the parties engage in an instance of OT with inputs
({din

i,j,0}i, {din
i,j,b}i) for Alice and input r̃k,j for Bob. Here the index i ranges

over circuits assigned to bucket k.
Hence Bob learns input wire labels {din

i,j,r̃k,j
}i. He aborts if these are not valid

decommitments to {C in
i,j,r̃k,j

}i. Otherwise he sets in∗
i,j to be the corresponding

decommitted values.
10. For k ∈ [N ], j ∈ SendInpWires, b ∈ {0, 1}, Alice chooses a random token tokk,j,b,

generates and sends an encryption:

ek,j,b = Enc
(
tokk,j,b; {din

i,j,μk,j
}i

)

Here the index i ranges over circuits assigned to bucket k. These are decommit-
ments to wire labels indexed by μk, hence wire labels having truth value μk ⊕ si.
Similarly, for k ∈ [N ], j ∈ PubInpWires, b ∈ {0, 1}, Alice chooses a random token
tokk,j,b, generates and sends an encryption:

ek,j,b = Enc
(
tokk,j,b; {din

i,j,b}i

)

11. For k ∈ [N ], Alice generates compressed garbled encodings of the tokens for her
input wires and public input wires:

(skk, êk) ← Compress({tokk,j,b | j ∈ SendInpWires ∪ PubInpWires; b ∈ {0, 1}})

She sends êk to Bob.
(protocol description continues. . .)

Fig. 4. (Continued)

Unfortunately, in this protocol we must use the computational security para-
meter κ (e.g., 128), and not the statistical security parameter λ (e.g., 40) to
determine the bucket sizes. In the other protocols, the sender is committed to
her choice of garbled circuits before the cut-and-choose challenge and bucketing
assignment are chosen. Hence, cheating in the cut-and-choose phase is a one-
time opportunity. In this Fiat-Shamir protocol, the sender can generate many
candidate first protocol messages, until it finds one whose hash is favorable (i.e.,
it allows her to cheat undetected). Since this step involves no interaction, she
has as many opportunities to try to find an advantageous first protocol message
as her computation allows. Hence the probability of undetected cheating in the
cut-and-choose step must be bound by the computational security parameter.

We note that the garbled-input-compressing technique of Applebaum et al. [2]
is not useful in NISC since it increases total cost to improve online cost. In the
NISC setting, there is no distinction between offline and online, so their technique
simply increases the cost.
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Online phase: For the kth time the online phase is invoked, Alice has input xk and
Bob has input yk.

1. Bob computes mk = yk ⊕ Mr̃k and sends it to Alice.
2. Alice computes γk = xk ⊕μk. She computes online compressed garbled encoding

v̂k ← Online(skk, mk‖γk), and sends both γk and v̂k to Bob.
3. Bob decompresses the garbled encodings:

{tokk,j,mk,j | j ∈ PubInpWires} ∪ {tokk,j,γk,j | j ∈ SendInpWires}
← Decompress(êk, mk‖γk, v̂k)

4. Bob decrypts the corresponding ciphertexts as follows:

{din
i,j,γk,j

}i = Dec
(
tokk,j,γk,j ; ek,j,γk,j

)
for j ∈ SendInpWires

{din
i,j,mk,j

}i = Dec
(
tokk,j,mk,j ; ek,j,mk,j

)
for j ∈ PubInpWires

Bob aborts if the din
i,j,b values are not valid decommitments of the corresponding

C in
i,j,b commitments. Otherwise, Bob sets in∗

i,j to be the result of decommitment.
Now, for all circuits i in this bucket, Bob has a complete garbled input (with
wire labels for RecvInpWires obtained in step 9 of the offline phase).

5. For each circuit i assigned to bucket k, Bob evaluates garbled circuit Fi with
input wire labels {in∗

i,j}j . The result is plain output zi and corresponding pre-
output wire labels {dout

i,j,zi,j}. If for some j, dout
i,j,zi,j is not a valid decommitment

of Cout
i,j,zi,j then Bob changes zi = ⊥. Otherwise, Bob opens the commitments to

obtain outi,j,zi,j values.
6. If zi = ⊥ for all i assigned to this bucket, then abort. If there are zi �= zi′ , neither

of them ⊥, in this bucket, then let j be some position for which zi,j �= zi′,j . Bob
computes

x̃k = (outi,j,zi,j ⊕ δi,j,zi,j ) ⊕ (outi′,j,zi′,j ⊕ δi′,j,zi′,j ) ⊕ γk

and outputs z∗
k = f(x̃k, yk). Otherwise, Bob outputs the unique value z∗

k such
that zi ∈ {⊥, z∗

k} for all i in this bucket.

Fig. 4. (Continued)

Theorem 8. There is a UC-secure batch NISC protocol in the programmable
random oracle model, that evaluates N instances of f with total cost N/O(log N)
times more than a single evaluation of f (plus some small additive terms that
do not depend on f).
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Abstract. We introduce Free Hash, a new approach to generating Gar-
bled Circuit (GC) hash at no extra cost during GC generation. This is
in contrast with state-of-the-art approaches, which hash GCs at compu-
tational cost of up to 6× of GC generation. GC hashing is at the core
of the cut-and-choose technique of GC-based secure function evaluation
(SFE).

Our main idea is to intertwine hash generation/verification with GC
generation and evaluation. While we allow an adversary to generate a
GC ĜC whose hash collides with an honestly generated GC, such a ĜC
w.h.p. will fail evaluation and cheating will be discovered. Our GC hash
is simply a (slightly modified) XOR of all the gate table rows of GC. It
is compatible with Free XOR and half-gates garbling, and can be made
to work with many cut-and-choose SFE protocols.

With today’s network speeds being not far behind hardware-assisted
fixed-key garbling throughput, eliminating the GC hashing cost will sig-
nificantly improve SFE performance. Our estimates show substantial cost
reduction in typical settings, and up to factor 6 in specialized applica-
tions relying on GC hashes.

We implemented GC hashing algorithm and report on its performance.

1 Introduction

Today Garbled Circuit (GC) is the main technique for secure computation. It
has advantages of high performance, low round complexity/low latency, and,
importantly, relative engineering simplicity. Both core GC (garbling), as well
as the meta-protocols, such as Cut-and-Choose (C&C), have been thoroughly
investigated and are today highly optimized. Particularly in the semi-honest
model there have been few asymptotic/qualitative improvements since the orig-
inal protocols of Yao [Yao86] and Goldreich et al. [GMW87]. Possibly the most
important development in the area of practical SFE since the 1980 s was the very
efficient oblivious transfer (OT) extension technique of Ishai et al. [IKNP03].
This allowed the running of an arbitrarily large number of OTs by executing a
small (security parameter) number of (possibly inefficient) “bootstrapping” OT
instances and a number of symmetric key primitives. The cheap OTs made a
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part III, LNCS 10212, pp. 456–485, 2017.
DOI: 10.1007/978-3-319-56617-7 16
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dramatic difference for securely computing functions with large inputs relative
to the size of the function, as well as for GMW-like approaches, where OTs are
performed in each level of the circuit. Another important GC core improvement
is the Free-XOR algorithm [KS08a], which allowed for the evaluation of all XOR
gates of a circuit without any computational or communication costs.

As SFE moves from theory to practice, even “small” factor improvements
can have a significant effect.

1.1 Motivation of Efficient GC Hashing: Cut-and-Choose (C&C)
and Other Uses

In this work we improve (actually show how to achieve it for free) a core garbling
feature of GC, circuit hashing. We discuss how this improves standard GC-based
SFE protocols. We also discuss evaluation of certified functions, and motivate
this use case.

GC hashing is an essential tool for C&C, and is employed in many uses of
C&C. We start with describing C&C at the high level.

C&C. According to the “Cut-and-Choose Protocol” entry of the Encyclopedia
of Cryptography and Security [TJ11], a (non-zero-knowledge) C&C protocol was
first mentioned in the protocol of Rabin [Rab77] where this concept was used to
convince a party that the other party sent it a specially formed integer n. The
expression “cut and choose” was introduced later by Brassard et al. in [BCC88]
in analogy to a popular cake-sharing problem: given a cake to be divided among
two distrustful players, one of them cuts the cake in two shares, and lets the
other one choose.

Recall, the basic GC protocol is not secure against cheating GC genera-
tor, who can submit a maliciously garbled circuit. Today, C&C is the standard
tool in achieving malicious security in secure computation. At the high level,
it proceeds as follows. GC generator generates a number of garbled circuits
GC1, ...,GCn and sends them to GC evaluator, who chooses a subset of them
(say, half) at random to be opened (with the help of the generator) and verifies
the correctness of circuit construction. If all circuits were constructed correctly,
the players proceed to securely evaluate the unopened circuits, and take the
majority output. It is easy to see that the probability of GC generator suc-
ceeding in submitting a maliciously garbled circuit is exponentially small in n.
We note that significant improvement in the concrete values of n required for
a specific probability guarantee was achieved by relatively recent C&C tech-
niques [LP11,Lin13,HKE13,Bra13,LR14,HKK+14,AO12,KM15].

Using GC Hashing for C&C. What motivates our work is the follow-
ing natural idea, which was first formalized in Goyal et al. [GMS08]. To
save on communication (usually a more scarce resource than computation),
GC generator, firstly, generates all the circuits GC1, ...,GCn from PRG seeds
s1, ..., sn. Then, instead of sending the circuits GC1, ...,GCn, it sends their hashes
H(GC1), ...,H(GCn). Finally, while the evaluation circuits will need to be sent in
full over the network, only the seeds s1, ..., sn need to be sent to verify that GC
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generator did not cheat in the generation of the opened circuits, saving a signif-
icant amount of communication at the cost of computing and checking H(GCi)
for all n circuits.

On many of today’s computing architectures (e.g. Intel PC CPUs, with or
without hardware AES), the cost of hashing the GC can be up to 6× greater
than the cost of fixed-key garbling. At the same time, today’s network speeds
are comparable in throughput with hardware-assisted fixed-key garbling (see our
calculations in Sect. 5.3). Hence, eliminating the GC hashing cost will improve
SFE performance by eliminating the (smaller of the) cost of hashing or sending
the open circuits. We stress that the use of our Free Hash requires syntactic
changes in C&C protocols and it provides a security guarantee somewhat distinct
from collision-resistant hash. Hence its use in C&C protocols should be evaluated
for security. See Sect. 5.1 for more details.

Additionally, we show that a new computation/communication cost ratio
offered by our free GC hash will allow for reduced communication, computation,
and execution time, while achieving the same cheating probability.

SFE of Private Certified Functions. One advantage offered by GC is the
hiding of the evaluated function from the evaluator. To be more precise, the
circuit topology of the function is revealed, but this information leakage can
be removed or mitigated by using techniques such as universal circuit [Val76,
KS08b,LMS16,KS16] or circuit branch overlay [KKW16].

In practical scenarios, evaluated functions are to be selected as allowed by a
mutually agreed policy, e.g., to prevent evaluation of identity function outputting
player’s private input. Then evaluating a hidden function presumes either a semi-
honest GC generator, or employing a method for preventing/deterring out-of-
policy GC generation. An efficient C&C approach does not seem to help prevent
cheating here, since check circuits will reveal the evaluated function and will not
be acceptable to the GC generator. Further, depending on policy/application,
the zero-knowledge proofs of correctly constructing the circuits may be very
expensive.

In many scenarios, Certificate Authorities (CA) may be used to certify the
correct generation of GCs. Indeed, this is quite feasible at small to medium scale.
Our motivating application here is the private attribute-based credential (ABC)
checking. Very recent concurrent works [CGM16,KKL+16] showed for the first
time that ABCs can be based on GCs. While both [CGM16,KKL+16] discuss
public policy only, their GC-based constructions will not preclude achieving pri-
vate policy. We note that this is a novel property in the ABC literature, where
all previous work (in addition to supporting very small policies only) relied in
an essential manner on the policy being known to both prover and verifier.

At the high level, the architecture/steps for evaluation of private CA-certified
functions is as follows.

1. CA generates seeds s1, ...sn and, for i = 1, ...n, CA generates GCs GCi,
GC hashes H(GCi) and signatures σi = SignCA(H(GCi)). It sends all
si,H(GCi), σi to ABC verifier V.
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2. Prover P and V proceed with execution of the ABC protocols [CGM16,
KKL+16], with the following modification:
(a) Whenever GC GCi needs to be sent by V , instead V generates GCi from

si and sends to P the pair (GCi, σi).
(b) P computes H(GC) and verifies the signature σi prior to continuing. If

the verification or GC evaluation fails, P outputs abort.

Free Hash will allow to significantly (up to factor 6) reduce the computational
effort required by the CA to support such an application. Indeed the cost of the
signature generation can be small and ignored in cases where the signed circuits
are large, or a single signature can certify a number of circuits. The latter would
be the case where two players may be expected to evaluate a number of circuits.

Importantly, evaluation of certified functions may be essential in scenarios
where legislative and/or operational demands require high degree of accountabil-
ity and auditability (recall, digital signatures are a recognized legal instrument
in many countries [Wik]). These scenarios may frequently arise in government,
intelligence or military applications.

Technical results of this work will have direct impact, up to factor 6 improve-
ment, in the bottleneck (CA load) in many scenarios discussed above.

1.2 Our Contributions and Outline of the Work

We start the presentation with a brief discussion of related work and then provid-
ing a high-level technical overview of our approach. Then, in Sect. 2, we introduce
existing definitions and constructions required for this work. In Sect. 3 we discuss
definitional aspects, assumptions and parameter choices of our work.

We start technical Sect. 4 with introducing our proposed definition of GC
hash security. Our definition is weaker than the standard hash collision guar-
antees, yet it is possible to make free hashing work with several standard
GC constructions (cf. Sect. 5.1 for discussion about its C&C use). We then
present hashed garbling algorithms for standard garbling (based on Just Garble
of [BHKR13]) as well as for half-gates garbling of [ZRE15]. Our main contri-
bution is the improvement of the state-of-the-art half-gates; we consider hashed
Just Garble a valuable generalization and an instructional example.

In Sect. 5, we discuss the impact of Free Hash garbling and C&C. We report
on our implementation and its performance evaluation. We discuss the applica-
tion to certified circuits. We propose a unified cost metric (time) and show higher
speeds/smaller computation and communication for the same error probability.
We estimate total execution time reduction of about 43% for the C&C com-
ponents of [LP11], and of about 64% for [AO12,KM15] in settings we consider
(1Gbps channel and hardware AES).

1.3 Technical Overview of Free GC Hash

In this section we present the main intuition behind our technical approach.
We take advantage of the observation that the input to the hash is a garbled

circuit GC, which must be evaluatable using the garbled circuit Eval function. We
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will not require standard hash collision resilience of GC strings, achieving which
is very costly relative to the cost of GC generation. Instead, we guarantee that
if an adversary can find another string ĜC that matches the hash of a correctly
garbled GC, then with high probability, the garbled circuit property of ĜC is
broken and its evaluation will fail.

We present our intuition iteratively; we start with a naive efficient approach,
which we then refine and arrive at a secure hashed garbling. Recall, we start
with a correctly generated GC GC with the set of output decoding labels d.
Adversary’s goal is to generate a circuit ĜC with the same hash as GC, and
which will not fail evaluation/decoding given the same output labels d. This
hash guarantee is sufficient for certain GC-based SFE protocols. A syntactic
difference with [GMS08] C&C hashing is that verification of Free Hash involves
GC evaluation, and is only possible once input labels are received (e.g., after
OT of input labels). More importantly, Free Hash, as applied to C&C, provides
a security guarantee subtly distinct from collision-resistant hash. Hence, drop-
in replacement of [GMS08] C&C hashing with Free Hash may not be always
possible, and in general should be done by hand and original proofs re-checked.
See Sect. 5.1 for additional discussion.

We present the intuition for the classical four-row GC; we use similar ideas
to achieve half-gates GC hashing as well. We present and prove secure both Free
Hash constructions.

The first Free Hash idea is to simply set the hash of the garbled circuit to
be the XOR of all garbled table (GT) rows of GC. This is clearly problematic,
since a cheating garbler A can mount, for example, the following attack. A will
set one GT entry to be the encryption of the wrong wire label. This affects the
XOR hash as follows H(ĜC) = H(GC) ⊕ Δ. Now suppose the garbler knows (or
guesses) which GT entry anywhere in GC will not be used in evaluation (inactive
GT row). Now A simply replaces the inactive GT row X with value X ⊕Δ. This
will restore the hash to the desired value, and since this entry will not be used
in the evaluation, the garbler will not be caught.

The following refinement of this approach counters the above attack: we make
the gate’s output wire key depend (in an efficient manner) on all GT rows of
that gate. The idea is that XOR hash correction, such as above, will necessarily
involve modification to an active GT row, which will affect the computed wire
key on that gate. Importantly, because wire keys and GT rows are related via a
random (albeit known) function, a GT row offset by Δ (needed to “fix” the hash)
will result in effectively randomizing the output wire label of the gate. Because a
non-failing evaluation requires output wire labels to be consistent with the fixed
decoding information d, A will now be stuck.

We attempt this by starting with a secure garbling scheme G, and modify-
ing the way the wire labels are defined, as follows. The two wire labels w0

i , w1
i

associated with gate Gi’s output wire will now be treated as temporary labels.
A label W j

i of the new scheme will be obtained from the wj
i simply by XORing

it with all the GT rows of Gi.
This is not quite sufficient, as it still allows the attacker to modify a GT

row and then correct it within the same gate table. This is possible since a “fix”
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for the hash does not disrupt the validity of the wire label, as both the hash
and the new wire label are defined in the same manner (as XOR of all the GT
rows of Gi). Our final idea, is to use the GT rows as XOR pads in a different
manner for computing the GC hash and for offsetting the wire values. This way,
the fix for the hash w.h.p. will not simultaneously keep the wire label valid. We
achieve this by malleating GT rows prior to using them as XOR pads in wire
value computation.

It is not hard to show that the above changes preserve the privacy and
authenticity properties of the garbling scheme.

We summarize the intuition for the hash security of the above construction.
Consider a ĜC �= GC that collides under the above hash. Then, the evaluation
of ĜC will deviate from that of GC w.r.t. some wire label. Importantly, ĜC
evaluation can subsequently either return to a valid wire label or to a correct
running hash, but not both. Thus, evaluation of ĜC using encoding information
ê cannot go back to both the wire label and the hash being correct.

1.4 Related Work

To our knowledge, there is no prior work specifically addressing hashing of GCs.
At the same time, significant research effort has been expended on optimizing
core GC performance. Work includes algorithmic GC improvements, such as
Free XOR [KS08a], FleXOR [KMR14], half-gates [ZRE15], as well as optimizing
underlying primitives, such as JustGarble [BHKR13]. Our work complements
the existing GC improvement work.

Of course, the natural GC hashing approach works: just hash the generated
GC. The problem with this is, of course, its cost. Relative cost of fixed-key cipher
garbling and hashing are strongly architecture-dependent. They can be almost
the same (e.g., when both AES and SHA are implemented in hardware). In
another extreme, Intel’s white paper [GGO+] reports that AES-NI evaluation
of 16-byte blocks is 23× faster that of SHA1 (35, 965.9 vs 793, 718.7 KB/sec).
In our experiments reported in Sect. 5.2, we observed about 6× performance
difference between AES-NI and SHA1.

Improving on this, and motivated in part by the availability of fast hardware
AES implementations, there was a short series of works [BRS02,RS08b,RS08a,
BÖS11], implementing a hash function with three fixed-key AES function calls.
A recent work of Rogaway and Steinberger [RS08a] constructs a class of linearly-
determined, permutation-based compression functions {0, 1}mn → {0, 1}rn mak-
ing k calls to the different permutations πi for i ∈ [k], where they named
their construction as LPmkr. The fastest construction LP362 (12.09 cycles per
byte) [BÖS11], with 6 calls to fixed-key AES would cost about 6× of that of
fast garbling. Davies-Meyer-based hash construction [Win84] in the ideal cipher
model considered in literature is reported to have similar speeds [BÖS11].

In comparison, our work eliminates the cost of hash whatsoever, while adding
no cost to garbling or GC evaluation.

C&C and Uses of Hashed GC. There is a long sequence of GC-based
SFE work, e.g. [Lin13,HKE13,Bra13,LR14,HKK+14,KM15], most of which uses
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some form of C&C or challenging the GC generator. Based on [GMS08], these
works will benefit from our result, to varying degree. The exact performance
benefit will depend on where the Free Hash is used, the ratio of evaluated/test
circuits, as well as the computational/communication resources available to the
players. In Sect. 5, we calculate performance improvement in several C&C pro-
tocols due to our GC hash.

2 Preliminaries

Notation. Let ppt denote probabilistic polynomial time. We let λ be the secu-
rity parameter, [n] denote the set {1, ..., n}, and |t| denote the number of bits in
a string. We denote the i-th bit value of a string s by s[i], use || to denote con-
catenation of bit strings. We write x

R← X to mean sampling a value x uniformly
from the set X . For a bit string s, we let s�i denote the bit string obtained
by shifting s by i bits to the left. Throughout, by shift we mean a circular
shift, where the vacant bit positions are filled not by zeros but by the shifted
bits. lsb(s) denotes the least significant bit of string s. We say a function f(·)
is negligible if ∀c ∈ N, there exists n0 ∈ N such that ∀n ≥ n0, it holds that
f(n) < n−c.

Let S be an infinite set and X = {Xs}s∈S , Y = {Ys}s∈S be distribution
ensembles. We say X and Y are computationally indistinguishable, if for any
ppt distinguisher D and all sufficiently large s ∈ S, we have |Pr[D(Xs) =
1] − Pr[D(Ys) = 1]| < 1/p(|s|) for every polynomial p(·).
Ideal Cipher Model. The Ideal Cipher Model (ICM) is an idealized model of
computation, similar to the random oracle model (ROM) [BR93]. In ICM, one
has a publicly accessible random block cipher (or ideal cipher). This is a block
cipher with a k-bit key and a n-bit input/output, that is chosen uniformly at
random among all block ciphers of this form; this is equivalent to having a family
of 2k independent random permutations. All parties including the adversary can
make both encryption and decryption queries to the ideal block cipher, for any
given key. ICM is shown to be equivalent to ROM [CPS08].

Collision-Resistant Hash Function. A hash function family H is a collection
of functions, where each H ∈ H is a mapping from {0, 1}m to {0, 1}n, such that
m > n and m,n are polynomials in security parameter λ. An instance H ∈ H
can be described by a key which is public known. We say a hash function family
H is collision-resistant if for any ppt adversary A

Pr[H R← H, (x, x′) ← A(H) : x �= x′ ∧ H(x) = H(x′)] = negl(λ)

2.1 Yao’s Construction

A comprehensive treatment of Yao’s construction of garbled circuits, was given
in [LP09]. At a high-level, in Yao’s construction, each wire of the boolean circuit
is associated with two random strings called wire labels or wire keys that encode
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logical 0 and 1 wire values. A garbled truth table is constructed for every gate in
the circuit, where each combination of input wire labels is used to encrypt the
appropriate output wire label as per the gate functionality. This results in four
ciphertexts per gate, one for each input combination of the gate. The evaluator
knows only one label for each input wire, and can therefore, open only one of
the four ciphertexts.

2.2 Garbled Circuits

We make use of the abstraction of garbling schemes [BHR12] introduced by Bel-
lare et al. At a high-level, a garbling scheme consists of the following algorithms:
Gb takes a circuit as input and outputs a garbled circuit, encoding information,
and decoding information. En takes an input x and encoding information and
outputs a garbled input X. Eval takes a garbled circuit and garbled input X and
outputs a garbled output Y . Finally, De takes a garbled output Y and decoding
information and outputs a plain circuit-output (or an error ⊥).

We note that this deviates from the definition of [BHR12], in that, we include
⊥ in the range of the decoding algorithm De, so it now outputs a plain output
value corresponding to a garbled output value or ⊥ if the garbled output value
is invalid. [JKO13] add an additional verification algorithm Ve to the garbling
scheme. Formally, we define a verifiable garbling scheme by a tuple of functions
G = (Gb,En,Eval,De,Ve) with each function defined as follows.

– Garbling algorithm Gb(1λ, C): A randomized algorithm which takes as input
the security parameter and a circuit C : {0, 1}n → {0, 1}m and outputs a
tuple of strings (GC, {X0

j ,X1
j }j∈[n], {Z0

j , Z1
j }j∈[m]), where GC is the garbled

circuit, the values {X0
j ,X1

j }j∈[n] denote the input-wire labels, and the values
{Z0

j , Z1
j }j∈[m] denote the output-wire labels.

– Encode algorithm En(x, {X0
j ,X1

j }j∈[n]): a deterministic algorithm that out-

puts the input wire labels X = {X
x[i]
i }i∈[n] corresponding to input x.

– Evaluation algorithm Eval(GC, {Xj}j∈[n]): A deterministic algorithm which
evaluates garbled circuit GC on input-wire labels {Xj}j∈[n], and outputs a
garbled output Y.

– Decode algorithm De(Y, {Z0
j , Z1

j }j∈[m]): A deterministic algorithm that out-
puts the plaintext output corresponding to Y or ⊥ signifying an error if the
garbled output Y is invalid.

– Verification algorithm Ve(C,GC, {Z0
j , Z1

j }j∈[m], {X0
j ,X1

j }j∈[n]): A determinis-
tic algorithm which takes as input a circuit C, garbled circuit GC, input-wire
labels {X0

j ,X1
j }j∈[n], and output-wire labels {Z0

j , Z1
j }j∈[m] and outputs accept

if GC is a valid garbling of C and reject otherwise.

A verifiable garbling scheme may satisfy several properties such as correct-
ness, privacy, obliviousness, authenticity and verifiability. We now review some
of these notions: (1) correctness, (2) privacy (3) authenticity, and (4) verifia-
bility. The definitions for correctness and authenticity are standard: correctness
enforces that a correctly garbled circuit, when evaluated, outputs the correct
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output of the underlying circuit; authenticity enforces that the evaluator can
only learn the output label that corresponds to the value of the function. Veri-
fiability [JKO13] allows one to check that the garbled circuit indeed implements
the specified plaintext circuit C.

We include the definitions of these properties for completeness.

Definition 2.1 (Correctness). A garbling scheme G is correct if for all input
lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n, the
following probability is negligible in λ:

Pr(De(Eval(GC, {X
xj

j }j∈[n]), {Z0
j , Z1

j }j∈[m]) �= C(x) :

(GC, {X0
j ,X1

j }j∈[n], {Z0
j , Z1

j }j∈[m]) ← Gb(1λ, C))

Definition 2.2 (Privacy). A garbling scheme G has privacy if for all input
lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, there exists a ppt simulator
Sim such that for all inputs x ∈ {0, 1}n, for all probabilistic polynomial-time
adversaries A, the following two distributions are computationally indistinguish-
able:

– Real(f, x) : run (GC, e, d) ← Gb(1λ, C), and output (GC,En(x, e), d).
– IdealSim(C, f(x)): output Sim(1λ, C, C(x))

Definition 2.3 (Authenticity). A garbling scheme G is authentic if for all input
lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and all
probabilistic polynomial-time adversaries A, the following probability is negligible
in λ:

Pr

(
Ŷ �= Eval(GC, {Xxj

j }j∈[n])

∧De(Ŷ , {Z0
j , Z

1
j }j∈[m]) �= ⊥ :

(GC, {X0
j , X

1
j }j∈[n], {Z0, Z1}j∈[m]) ← Gb(1λ, C)

Ŷ ← A(C, x,GC, {Xxj

j }j∈[n])

)

Definition 2.4 (Verifiability). A garbling scheme G is verifiable if for all input
lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and all
probabilistic polynomial-time adversaries A, the following probability is negligible
in λ:

Pr
(
De(Eval(GC,En(x, e)), d) �= C(x) : (GC, e, d) ← A(1λ, C)

Ve (C,GC, d, e) = accept

)

In the definition of verifiability above, we give the decoding information
explicitly to the verification algorithm since in our construction the garbled
circuit includes only the garbled tables and not the decoding information. We
note that a natural and efficient way to obtain a verifiable garbling scheme is
to generate GC by using the output of a pseudorandom generator on a seed as
the random tape for Gb, and then provide the seed to the verification procedure
Ve. Ve will regenerate the GC and the encoding and decoding tables, and will
output accept for a garbled circuit if and only if it is equal to the generated one.
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2.3 Free-XOR and Other Optimizations

Several works have studied optimizations to reduce the size of a garbled gate
down from four ciphertexts. Garbled row-reduction was introduced by Naor
et al. [NPS99]. There, instead of choosing the wire labels at random for each
wire, they are chosen such that the first ciphertext will be the all-zero string,
and hence need not be sent. In [PSSW09], the authors describe a way to further
reduce the number of ciphertexts per gate to 2, by applying polynomial inter-
polation at each gate. Kolesnikov and Schneider [KS08a] introduced the Free
XOR approach, allowing evaluation of XOR gates without any cost. Here, the
idea is to choose wire labels such that the two labels on the same wire have the
same (secret) offset across the entire circuit. The two labels for a given wire are
of the form (A,A ⊕ Δ), where Δ is secret and common to all wires. Now, as
first proposed in [Kol05], an evaluator who has one of (A,A ⊕ Δ) and one of
(B,B ⊕Δ) can compute the XOR by simply XORing the wire labels. The result
is either C or C ⊕ Δ where C = A ⊕ B and correctly represents the result of
XOR. Thus, no ciphertexts are needed for the XOR gate. Kolesnikov, Mohassel
and Rosulek proposed a generalization of Free XOR called FleXOR [KMR14]. In
FleXOR, each XOR gate can be garbled using 0, 1, or 2 ciphertexts, depending
on certain structural properties of the circuit. In [ZRE15], the authors present a
method built on Free XOR that can garble an AND gate using only two cipher-
texts. This technique is also compatible with Free XOR. The idea is to write an
AND gate as a combination of XOR and two half-gates, where a half-gate is an
AND gate for which one party knows one of the inputs. The half-gates can be
garbled with one ciphertext each, and the resulting AND gate, in combination
with free-XOR, uses two ciphertexts.

3 Preliminary Discussion

3.1 Our Treatment of GC Topology and Formalization of the GC
Representation

A formalization of what precisely the GC description string GC includes is often
natural and hence is usually omitted from discussion. In our setting this an
important aspect, as we focus on the collision resilience-related properties of GC
strings, as well as on minimizing the size of GC and its computation time.

Firstly, we remind the reader that in the BHR [BHR12] notation the func-
tion Gb outputs the garbling function F. Since it is problematic to operate on
functions, BHR regards Gb as operating on strings representing and defining the
corresponding functions. In our notation, Gb outputs GC, which we treat as a
string defining the evaluation process as well.

Clearly, GC will contain a set of garbled tables; the question is how to treat
the circuit topology, i.e. exactly how to describe/define how Eval should process
GC. One choice is to treat the plaintext circuit/topology as a part of GC. Because
we focus on size/computation, this approach would cause some waste. Indeed,
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in most scenarios, the circuit and topology is known to both players, and hence
could be implicit in GC.

Instead, we opt to consider the circuit description, including the locations of
the free XOR gates as an externally generated string. It is certainly the case in
SFE where the evaluated function is known to both players, and players can a
priori adopt a convention on how to map the GC garbled gates to the circuit
gates, hence defining the evaluation process. In PFE, which is the case in our
certified function evaluation scenario (see Sect. 1.1), the evaluated function is
not known to the evaluator. In this case, we still treat the topology/evaluation
instructions as external to GC and assume that they are correctly delivered to
the evaluator.

We note that in the certified function case, this can be naturally achieved by
the CA signing the topology with a unique identifier, and including this identifier
with GC and the hash of GC.

3.2 Our Assumptions

Our work optimizes high-performance primitives, and it is important to be clear
on the assumptions we require of them so as to properly compare to related
work.

We use the same primitives, and nearly identical constructions as JustGar-
ble [BHKR13] and half-gates [ZRE15]. As a result, privacy and authenticity prop-
erties of our schemes hold under the same assumptions as [BHKR13,ZRE15],
namely that the Davies-Meyer (DM) construction is a primitive meeting the
guarantee of the random-permutation model (RPM). While [BHKR13] proves
the security of their construction in RPM directly, [ZRE15] abstracts the DM
security property as a variant of correlation-robust function. Our first (auxiliary)
construction, namely, the privacy property, is proven under assumption that DM
is correlation-robust.

To achieve hash security, we need to assume collision resistance of DM. We
note that collision resistance of DM can be achieved e.g., by assuming that DM
meets the requirement of the ideal-cipher model (ICM) [BRS02].

3.3 Cipher Instantiation

As noted above, we instantiate the key derivation function (KDF) calls as
do [BHKR13,ZRE15], with the Davies-Meyer construction. Namely, the input
X to KDF H(X, i) are the 128-bit long wire keys, and i is an internal integer
that simply increments per hash function call. We set Hπ(X, i) = π(K) ⊕ K,
where K = 2x ⊕ i (π is assumed to be an ideal cipher, instantiated with 128-bit
AES with randomly chosen key).

3.4 Hash Security Parameters

We use λ = 128-bit security parameter, which is standard for encryption and
GCs. However, 128-bit hash domain is often seen as insufficient. This is because
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of the birthday attack, which provides time-space tradeoff for an attacker. Specif-
ically, a collision-finding attacker can precompute and store a square-root num-
ber of hash images. Then by birthday paradox, a random collision will be found
among these images with significant probability. This attack requires 264 hash
computations and efficiently accessible storage for 264 hash values.

We argue that 128-bit hash security is nevertheless acceptable in SFE, if used
carefully.

Firstly, we note that computing 264 hashes is an extremely expensive task.
Indeed, recent Bitcoin reports [Bra] suggest that world’s hashing power recently
peaked at 1 PetaHash per second (i.e. 10005 < 250 hashes/sec). That is, global
Blockchain hashing power can compute 264 hashes in the order of 214 s (or 4.5 h).
Much more importantly, storage systems operate many orders of magnitude
slower than CPUs and hashing ASICs, implying that storing and searching these
hashes will take 103–106 times more time than generating them. Thus, extremely
conservatively, we estimate that today a random hash collision may be found by
engaging the entire Bitcoin mining system fitted with global-scale storage system
in 4500 h (about 6 months).

In the majority of applications, the time and financial expense to achieve
such a task will not be feasible.

Importantly, SFE hash checks have an online property, meaning that we
can set up the system such that preprocessing or post-processing will not aid
the attacker. Indeed, consider the SFE scenario and the following solution. In
the existing fixed-key cipher-based protocols it is specified that the fixed key
is chosen at random prior to GC generation. We can simply explicitly require
that both players contribute to key generation, and that the selected key will
be the one defining the fixed-key permutation used in GC. This will render any
precomputation useless. Post-computation, while a threat to the privacy and,
perhaps, authenticity of GC, is not helping the attacker, since the GC evaluator
decision to accept or reject reached during the execution, is irrevocable. GC
evaluator can set a generous time limit (e.g. several seconds or even minutes)
after which it will abort the execution. The probability of A cheating via finding
a 128-bit hash collision in this period of time sufficiently small, even given entire
world’s resources available to A.

In sum, we have argued that using 128-bit hash security is appropriate for
SFE and the applications we discuss in this work. Further, as eventually we move
from 128-bit AES to next-generation of ciphers, our hash security guarantee will
benefit from the transition.

4 GC Hashing Scheme

In this section, we define our hashed garbled circuit scheme. We capture the secu-
rity guarantees we require from this new notion, and then present our construc-
tion that outputs a garbled circuit and its hash. Our garbled circuit construction
satisfies the properties of correctness, authenticity and privacy. We then show
that our construction is secure according to our hash security definition.
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4.1 Hashed Garbled Circuit Security

Recall, we want to define hash security of garbled circuits with the same topology
(cf. Sect. 3.1). We require that if the hash of such two garbled circuits collide, and
one of them verifies correctly, then with high probability the other garbled circuit
will fail evaluation. We now formalize this intuition in the definition below.

Definition 4.1 (Hash security). A garbling scheme G is hash-secure with respe-
ct to a hash function H if for every boolean circuit C, input x and ppt

adversary A,

Pr

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

De(Eval(ĜC,En(x, ê)), d) �= ⊥ :

(
GC, ĜC, e = {X0

j ,X1
j }j∈[m],

ê = {X̂0
j , X̂1

j }j∈[m], d, h
)

← A(C, 1λ),

GC �= ĜC,

Topology(GC) = Topology(ĜC),
Ve(C,GC, d, e) = accept,

H(GC) = H(ĜC) = h)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is negligible in λ.

We point out that the decoding information d that results in failed decoding
of ĜC is the same decoding information with respect to which GC successfully
verifies, and this is essential to hash security. If we did not place this requirement,
then an adversary can change d to d̂ which decodes any string that Eval on ĜC
returns. We note that in full generality it is not necessary to require A to generate
a GC passing the verification Ve of a specific circuit C. We can achieve that if
an A generates two unequal GCs with the same hash, at least one of them will
always output ⊥. However, the above Definition 4.1 reflects the typical use of
GCs, and is sufficient for our construction.

In this work we consider verifiable garbling schemes with hash security. That
is, G = (Gb,En,Eval,De,Ve,H). Because we apply our constructions to secure
computation, we will need schemes additionally satisfying the properties of cor-
rectness (cf. Definition 2.1) and privacy (cf. Definition 2.2). If needed, the authen-
ticity property of GC (cf. Definition 2.3) can be achieved as well.

4.2 Our Construction

We now formalize the intuition of Sect. 1.3 on how to generate a GC hash for
free when garbling. The full construction is presented in Fig. 1; here we provide
additional intuition. Recall, in Sect. 1.3, we explained that after we generated
(temporary) GC tables, we need to XOR their GT entries into the GC hash in
one manner, and into the GC wire labels in another manner. In our construction,
we do so by bitwise shifting the GT entries Ci prior to XORing them into the
wire labels.
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We note that we use bit shifting because it is fast and easy to implement,
but a more general condition is sufficient for security of our scheme1.

In presenting our construction, we adopt the approach used by [BHKR13]
and others, where the gates are garbled as H(wi||wj ||r) ⊕ wk, where wi and wj

are wire labels on input wires, r is a nonce and wk is a wire label on the output
wire. H is a key-derivation function modeled as a random oracle.

The scheme we present below follows the standard point-and-permute opti-
mization. This was introduced by Beaver et al. in [BMR90], where a select bit is
appended to each wire label, such that the two labels on each wire have opposite
select bits. This association between select bits and the logical truth values is
random and kept secret. Now the garbled truth table can be arranged by these
public select bits. The evaluator can select the correct ciphertext to decrypt
based on the select bit instead of trying all four. For each wire label w, its least
significant bit lsb(w) is reserved as a select bit that is used as in the point-and-
permute technique, and complementary wire labels have opposite select bits. For
the ith wire, define pi = lsb(w0

i ). When using Free XOR, the global randomly
chosen offset R is such that lsb(R) = 1. Since w0

i ⊕ w1
i = R holds for each i in

the circuit, we have that lsb(w0
i ) �= lsb(w1

i ).
To simplify presentation, in our constructions and notation we set the decod-

ing information simply to be the output wire labels. We note, this does not pre-
serve the authenticity property of GC. Authenticity can be easily achieved in
our scheme, e.g. by instead setting the decoding information to be the collision-
resistant hashes of the output labels. In more detail, let H be a collision-
resistant hash function. The output translation table for a wire will now be
{H(w0

i ),H(w1
i )}. Given a garbled value wb

i on an output wire, it is possible to
determine whether it corresponds to the 0 or 1 key by computing H(wb

i ) and
checking whether it is equal to the first or second value in the pair. However,
given this output translation table, it is not feasible to find the actual garbled
values.

Let H : {0, 1}∗ → {0, 1}λ be a function, satisfying properties discussed in
Sect. 3.2. For a function represented by a circuit C : {0, 1}n → {0, 1}m, we use
Win,Wout to denote the input and output wires of f respectively, and Ginter for

1 This condition is as follows. We set the wire labels of a gate output wire as a function
of its temporary wire labels and the entries of the garbled gate table. Consider
functions fi such that, if

4⊕

i=1

Ci =
4⊕

i=1

Ĉi

for Ci �= Ĉi. Then,

Pr[
4⊕

i=1

fi(Ci) =
4⊕

i=1

fi(Ĉi)]

is negligible. As we will later see in the proof, this is the property that we use in
proving the hash security of our construction in proof of Theorem 4.6.



470 X. Fan et al.

intermediate gates. The Free Hash garbling scheme hG = (Gb,En,De,Eval,Ve,H)
is described in Fig. 1.

The construction in Fig. 1 satisfies the properties of authenticity (cf. Defini-
tion 2.3), privacy (cf. Definition 2.2) and hash security (cf. Definition 4.1).

Theorem 4.2. The Free Hash garbling scheme hG described in Fig. 1 satisfies
privacy as in Definition 2.2 assuming the correlation robustness of H.

Theorem 4.3. The Free Hash garbling scheme hG described in Fig. 1 satisfies
authenticity as in Definition 2.3 assuming the correlation robustness of H.

We omit the proofs of privacy and authenticity in the main body, since our
changes to the standard construction do not affect them, and closely follow the
arguments of [BHKR13,ZRE15]. We include the proofs in the full version.

Hash Security. We now state and prove a technical lemma on which we rely for
proving hash security (Theorem 4.6). The lemma below captures the following
useful fact about GC and ĜC: a gate in ĜC whose padi,2 (XOR hash of the gate
table) collides with that of the gate in GC will not be evaluated correctly (i.e.
will not produce a valid label on the output wire) if the gate table is different,
or if the input wire keys of the gate are different, or both. We say that a wire
label, obtained during evaluation on input x encoded using ê, is valid if it is
one of the two possible wire labels for the same wire in GC. For presentation,
we slightly abuse notation, by writing gi to mean both the gate and the garbled
table corresponding to the gate. It will be clear from context, which of the two
is meant.

Definition 4.4 (Valid key). Let (GC, e, ĜC, ê, d, h) be such that GC �=
ĜC,Topology(GC) = Topology(ĜC),H(ĜC) = H(GC) = h and Ve(GC, d, e) =
accept. An internal wire key K̂b

i obtained on wire wi during Eval of ĜC is called
valid if K̂b

i ∈ {K0
i ,K1

i } where (K0
i ,K1

i ) are the wire keys corresponding to 0 and
1 on wire wi in GC.

Lemma 4.5. Let (GC, e, ĜC, ê, d, h) ← A(1λ) be such that GC �=
ĜC,Topology(GC) = Topology(ĜC),H(ĜC) = H(GC) = h and Ve(GC, d, e) =
accept. Assuming padi,2 = p̂adi,2, evaluation of the garbled gate ĝi during Eval
results in a valid wire label for the output wire of the gate with probability negl(λ)
in the following cases:

1. Input wire keys to gate ĝi are valid, and ĝi �= gi.
2. At least one input wire key to gate ĝi is invalid and ĝi = gi.
3. At least one input wire key to gate ĝi is invalid, and ĝi �= gi.

Proof. Let gi = {C1, C2, C3, C4} be the ith garbled table in GC and ĝi =
{Ĉ1, Ĉ2, Ĉ3, Ĉ4} the ith garbled table in ĜC.
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– Gb(1λ, C): On input the security parameter λ and a circuit C, choose R ←
{0, 1}λ−1||1 and set h = 0.
1. For each input wire Wi ∈ Win of the circuit C, set garbled labels in the following

way: Randomly choose K0
i ∈ {0, 1}λ. Set K1

i = K0
i ⊕ R. Set the garbled labels

for input wire Wi as wi = (K0
i , K1

i ).
2. For each intermediate gate Gi : Wc = gi(Wa, Wb) of C in topological order:

(a) Parse the garbled input labels as wa = (K0
a, K1

a) and wb = (K0
b , K1

b ).
(b) If Gi is an XOR gate, set garbled labels for the gate output wire Wc as

K0
c = K0

a ⊕ K0
b , and K1

c = K0
c ⊕ R.

(c) If Gi is an AND gate
• Choose temporary garbled labels for the gate output wire Wc as T 0

c ∈
{0, 1}λ, and set T 1

c = T 0
c ⊕ R.

• Create Gi’s garbled table: For each possible combination of Gi’s in-
put values va, vb ∈ {0, 1}, set τ i

va,vb
= H(Kva

a |Kvb
b |i) ⊕ T

gi(va,vb)
c .

Sort entries τ i in the table by input pointers, and let the entries be
Ci,1, Ci,2, Ci,3, Ci,4.

• For d ∈ {0, 1}, compute:

padi,1 = C�1
i,1 ⊕ C�2

i,2 ⊕ C�3
i,3 ⊕ C�4

i,4

K0
c = T 0

c ⊕ padi,1

Set the garbled labels for wire Wc as

wc = (K0
c , K1

c ), where K1
c = K0

c ⊕ R

• Define
padi,2 = Ci,1 ⊕ Ci,2 ⊕ Ci,3 ⊕ Ci,4

h = h ⊕ padi,2

3. For each output wire Wi ∈ Wout of C, set d0
i = (0, K0

i ) and d1
i = (1, K1

i )
4. Output encoding information e, decoding information d, garbled circuit GC and

hash H(GC) as

e = {(K0
i , K1

i )}Wi∈Win , d = {(d0
i , d

1
i )}Wi∈Wout ,GC = {τ i

a,b}a,b∈{0,1}
Gi∈Ginter

, H(GC) = h

– En(x, e): On input encoding information e and input x, output encoding X =

{X
x[i]
i }i∈[n].

– De(Y, d): On input the decoding information d and the garbled output of the
circuit Y = (Y1, ..., Ym), for each output wire i of the circuit C, parse d as
d = {(0, K0

i ), (1, K1
i )}i∈[m]. Then, set yi = b if Yi = Kb

i and yi = ⊥ if Yi {∈� K0
i , K1

i }.
Output the result y = (y1, ..., ym) if ∀i, yi �= ⊥. Else, output ⊥.

– Eval(GC,X): On input the garbled circuit GC and garbled input X, for each gate
Gi : Wc = gi(Wa, Wb) with garbled inputs wa = Kva

a , wb = K
vb
b . If Gi is an XOR

gate, compute w
gi(va,vb)
c = Kva

a ⊕ K
vb
b . If Gi is an AND gate:

1. Let C1, C2, C3, C4 be the table entries. Compute pad =
4⊕

i=1

C�i
i .

2. Decode the temporary output value from garbled table entry τ i in position
(va, vb) as T

gi(va,vb)
c = H(Kva

a |Kvb
b |i) ⊕ τ i.

3. Compute the garbled value as w
gi(va,vb)
c = T

gi(va,vb)
c ⊕ pad.

– Ve(C,GC, d, e): Check that each gate in GC correctly encrypts the gate in C given
the encoding information e. If yes, then output accept, else output reject.

– H(GC): On input the garbled circuit GC, output h as the XOR of all ciphertexts,

h =
⊕

gi

(Ci,1 ⊕ Ci,2 ⊕ Ci,3 ⊕ Ci,4)

Fig. 1. The free hash garbling scheme hG
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Case 1 Since ĝi �= gi, w.l.o.g., let C1 �= Ĉ1. Since padi,2 = p̂adi,2, there must be
(at least) one j �= 1 such that Ĉj �= Cj . Now, padi,2 = p̂adi,2 gives,

Ĉj ⊕ Ĉ1 = Cj ⊕ C1 (1)

Let K̂ = (K̂a, K̂b) be the input wire key to gate gi in ĜC during Eval, which
by assumption is valid.
For the sake of contradiction, say, one of the ciphertexts, say, Ĉ1, in ĝi gives a
valid output wire key. Let T be the intermediate key obtained by decrypting
Ĉ1. Now validity of output wire key implies T ⊕ p̂adi,1 = K ∈ {K0,K1}.

T ⊕ p̂adi,1 = K

Ĉj

�j ⊕ Ĉ1

�1
= C�j

j ⊕ C�1
1 ⊕ R (2)

where R = T ⊕K ⊕padi,1 is a fixed value, and T = H(K̂||i)⊕ Ĉ1. Therefore,
K is valid only when both (1) and (2) hold. We now argue that this happens
with probability ≤ 1/2λ. By the assumption that Ve(GC, d, e) = accept,
C1 and Cj are random keys masked by the outputs of the function H. If,
therefore, a Ĉ1 and Ĉj that satisfies (1), also satisfies (2), then we can find
r1 and r2 such that r1 ⊕ r2 is δ for some fixed δ and r�

1 ⊕ r�
2 collides with

the output of the function H on a fixed value. By collision resistance of the
function H, this happens only with probability ≤ 1/2λ.

Case 2 gi = ĝi. Either K̂a �∈ {K0
a ,K1

a) or K̂b �∈ {K0
b ,K1

b ) or both, where
(K0

a ,K1
a) and (K0

b ,K1
b ) are the wire keys corresponding to the input wires

of ĝi in GC. Let (K0,K1) be the wire keys of the output wire of gi.
For the sake of contradiction, say, one of the ciphertexts, say, C1, gives a valid
output wire key with K̂ as the input wire keys. Let T be the intermediate
key obtained by decrypting C1. Now validity of output wire key implies
T ⊕ padi,1 = K ∈ {K0,K1}. That is,

H(K̂||i) ⊕ C1 ⊕ padi,1 = K (3)

K is valid when (3) holds, and that happens with negligible probability since
we can find a r such that the output of H on r collides with a given value
only with probability ≤ 1/2λ.

Case 3 W.l.o.g., let C1 �= Ĉ1. Since padi,2 = p̂adi,2, there must be (at least) one
j �= 1 such that Ĉj �= Cj .
Either K̂a �∈ {K0

a ,K1
a) or K̂b �∈ {K0

b ,K1
b ) or both, where (K0

a ,K1
a) and

(K0
b K1

b ) are the wire keys corresponding to the input wires of ĝi in GC.
(K0,K1) be the wire keys of the output wire of gi.
Now, padi,2 = p̂adi,2 gives,

Ĉj ⊕ Ĉ1 = Cj ⊕ C1 (4)
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Let K̂ = (K̂a, K̂b) be the input wire key to gate gi in ĜC during Eval. Since
K̂ is invalid by assumption, either K̂a �∈ {K0

a ,K1
a) or K̂b �∈ {K0

b ,K1
b ) or both,

where (K0
a ,K1

a) and (K0
b ,K1

b ) are the wire keys corresponding to the input
wires of ĝi in GC. (K0,K1) be the wire keys of the output wire of gi.
For the sake of contradiction, say, one of the ciphertexts, say, Ĉ1, in ĝi gives a
valid output wire key. Let T be the intermediate key obtained by decrypting
Ĉ1. Now validity of output wire key implies T ⊕ p̂adi,1 = K ∈ {K0,K1}.

T ⊕ p̂adi,1 = K

Ĉj

�j ⊕ Ĉ1

�1
= C�j

j ⊕ C�1
1 ⊕ R (5)

where R = T ⊕ K ⊕ pad1, and T = H(K̂||i) ⊕ Ĉ1. Therefore, K is valid
only when both (4) and (5) hold. We now argue that this happens with
probability ≤ 1/2λ. By the assumption that Ve(GC, d, e) = accept, C1 and
Cj are random keys masked by the outputs of the function H. If, therefore,
K̂, Ĉ1 and Ĉj satisfy (4) and (5), then we can find r, r1 and r2 such that
the output of the function H on r collides with r�

1 ⊕ r�
2 and r1 ⊕ r2 is δ

for some fixed δ. By collision resistance of the function H, this happens with
probability at most 1/2λ.

When there is more than one j �= 1 such that Ĉj �= Cj in cases (1) and (3)
above, we will have,

⊕

j �=1

Ĉj ⊕ Ĉ1 =
⊕

j �=1

Cj ⊕ C1

⊕

j �=1

Ĉj

�j ⊕ Ĉ1

�1
=

⊕

j �=1

C�j
j ⊕ C�1

1 ⊕ R

and the same arguments extend. �
Theorem 4.6. The Free Hash garbling scheme hG described in Fig. 1 satisfies
hash security as defined in Definition 4.1 assuming the collision-resistance of H.

Proof. Given an adversary A who outputs (GC, e, ĜC, ê, d, h) such that
GC �= ĜC,H(ĜC) = H(GC) = h, Ve(GC, d, e) = accept, we show that
∀x,Pr[Eval(ĜC,En(x, ê)) �= ⊥] = negl(λ). Since GC �= ĜC, they differ in at least
one garbled gate. Let gi be the first gate in topological order that differs in GC

and ĜC. When padi,2 = p̂adi,2 for all ĝi �= gi, by case (1) of Lemma 4.5, we have
that the output wire key for ĝi is invalid. Now, by inductively applying cases
(2) and (3) of Lemma 4.5, all wire keys from then on, in topological order of
evaluation remain invalid.

Now, when padi,2 �= p̂adi,2, Eval on ĜC can return to a valid wire key for
the output wire of ĝi �= gi. Let us denote by Ĥi the running hash up until
gate ĝi in ĜC. Since padi,2 �= p̂adi,2, we have Ĥi �= Hi. By the assumption that
H(ĜC) = H(GC), there must be a gate ĝj �= gj such that
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Δ =
⊕

i:padi,2 �=p̂adi,2

(padi,2 ⊕ p̂adi,2) = Ĥi ⊕ Hi (6)

p̂adj,2 = padj,2 ⊕ Δ (7)

We now argue that the output wire of ĝj is invalid. From an argument similar
to case (1) of Lemma 4.5 (since the input wire keys to ĝj are valid), (7) imposes
a constraint on the ciphertexts of ĝj . Thus the probability that output wire key
is valid is bounded by the probability of finding r1 and r2 such that r1 ⊕ r2 is
δ for some fixed δ and r�

1 ⊕ r�
2 collides with the output of the function H on

a fixed value. By collision resistance of the function H, this happens only with
probability ≤ 1/2λ.

By Lemma 4.5 and the union bound, we have that, Pr[De(Eval(ĜC,
En(x, ê)), d) �= ⊥] ≤ |C|q2/2λ, where |C| is the number of gates in the circuit,
and q is the number of queries to the function H that A is allowed to make.

Since the input x that lead to the above wire labels was arbitrary, we have
that, given H(ĜC) = H(GC),GC �= ĜC,Ve(GC, d, e) = accept,

∀x,Pr[De(Eval(ĜC,En(x, ê)), d) �= ⊥] = negl(λ)

�
As calculated in the proof, the probability of hash collision is bounded by

|C|q2/2λ. See Sect. 3.4 for discussion on parameter choices.

4.3 Hashing in Half-Gates Garbling Scheme

The current state of the art for garbled circuit construction is the half-gates
scheme of Zahur et al. In the half-gates construction, two ciphertexts are used for
each AND gate and the construction is compatible with the free-XOR technique
[KS08a]. A half-gate is a garbled AND gate where one of the inputs to the gate
is known in clear to one of the parties. Consider an AND gate c = a ∧ b. Now
suppose the generator chooses a uniformly random bit r, and imagine we can
have the evaluator learn the value of r ⊕ b. We can write c as

c = a ∧ b = (a ∧ r) ⊕ (a ∧ (r ⊕ b))

[ZRE15] show how to garble the first AND gate with a generator-half-gate where
the generator knows one of the values r, and the second AND gate with evaluator-
half-gate since the evaluator know r ⊕ b. The full AND gate is garbled by taking
XOR of the two half-gates. Each garbled half-gate is one ciphertext, and with
free-XOR, the full AND gate is two ciphertexts.

Let GC′ = (Gb′,En′,De′,Eval′) be the algorithms of the half-gate garbling
procedure in [ZRE15]. The algorithms for encoding and evaluation in our scheme
are the same; we only include the garbling and decoding algorithms, Gb and De.
We assume that the half-gate garbling scheme outputs wire labels corresponding
to both 0 and 1 on the output wires as the decoding information. Gb outputs
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– Gb(1λ, C): On input security parameter λ and a circuit C, run the half-gate garbling
algorithm (e′, d′,GC′) ← Gb′(1λ, C), where GC′ = {τGi , τEi}gi∈Ginter , and d′ =
{(d0

i , d
1
i )}Wi∈Wout . Set the encoding information e, decoding information d, garbled

circuit GC and hash H(GC) as

e = e′, d = d′, GC = GC′, H(GC) =
⊕

i

(τGi ⊕ τEi)

– En is defined to be En′ .
– Eval is defined to be Eval′.
– De(Y, d): On input the decoding information d and the garbled output of the circuit

Y = (Y1, ..., Ym), for each output wire i of the circuit C, parse d as d = {d0
i , d

1
i }i∈[m].

Then, set yi = b if Yi = db
i and yi = ⊥ if Yi {∈� d0

i , d
1
i }. Output the result

y = (y1, ..., ym) if ∀i, yi �= ⊥. Else, output ⊥.

Fig. 2. The half-gate free hash garbling scheme halfG

a garbled circuit, the encoding and decoding information and the hash of the
garbled circuit. De returns a decoded output or ⊥ if the garbled output is invalid.

Note that in the construction of hashed garbling scheme for half-gates above,
the hash is the XOR of all the ciphertexts. Unlike our construction for general
garbled circuits (cf. Fig. 1), we do not modify the wire keys. Since the garbled
circuit is the same as the original half-gates construction, we retain the privacy
and authenticity properties. To argue hash security, first observe that in the half-
gates scheme both ciphertexts in a garbled gate (one per half-gate) are decrypted
and used for output wire computation. Consider an attacker A which modifies
a gate table and changes one entry to decrypt to a wrong label. Then there
must be another modified entry to correct the hash, and both modified entries
need to decrypt correctly during evaluation to produce a valid label. Thus, in
the half-gate garbling, the intuition for hash security is similar to that of our
original 4-row construction. Namely, any modified gate will break the XOR hash.
Further, any gate table that brings back the hash to the correct value will result
in an invalid output wire label. We provide a proof sketch below.

Theorem 4.7. The Half-Gate Free Hash garbling scheme halfG described in
Fig. 2 satisfies hash security as defined in Definition 4.1 assuming the collision-
resistance of H.

Proof Sketch. Given an adversary A who outputs (GC, e, ĜC, ê, d, h) such that
GC �= ĜC,H(ĜC) = H(GC) = h, Ve(GC, d, e) = accept, we show that
∀x,Pr[Eval(ĜC,En(ê, x)) �= ⊥] = negl(λ). Since GC �= ĜC, they must differ in
at least one garbled gate, and let gi �= ĝi be the first gate in topological order
that differs: gi = {τGi

, τEi
} and ĝi = {τ̂Gi

, τ̂Ei
}. Let Ĥi be the running hash up

until gate ĝi in ĜC. We consider the following cases:

1. Ĥi = Hi where Hi is the running hash until gate gi in GC. Now gi �= ĝi and
Ĥi = Hi implies that both half-gates are modified since ĝi is the first gate
that differs from GC. That is,
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τGi
�= τ̂Gi

and τEi
�= τ̂Ei

Let (K̂a, K̂b) be the input wire keys of ĝi. The output wire key of ĝi during
Eval is given by

K̂ = H(K̂a) ⊕ saτ̂Gi
⊕ H(K̂b) ⊕ sb(τ̂Ei

⊕ K̂a)

where sa and sb are select bits. The probability that K̂ is valid is at most 1/2λ

by the collision resistance of function H. Now, by inductively using argument
similar to cases (2) and (3) of Lemma 4.5, the wire keys of ĜC remain invalid.

2. gi �= ĝi, Ĥi �= Hi and H(GC) = H(ĜC) implies there must be a gate ĝj �= gj

such that
τ̂Gj

⊕ τ̂Ej
= Ĥi ⊕ Hi ⊕ (τGj

⊕ τEj
) (8)

We now argue that the output wire of ĝj is invalid: (8) imposes a constraint
on the ciphertexts of ĝj . Thus the probability that output wire key is valid
is bounded by the probability of finding r1 and r2 such that r1 ⊕ r2 is δ
for some fixed δ and r1 and r2 collide with the outputs of function H. By
collision resistance of H, this happens with probability at most 1/2λ. Again,
inductively all further wire keys of ĜC remain invalid.

By the union bound, we have that, Pr[De(Eval(ĜC,En(ê, x)), d) �= ⊥] ≤
|C|q2/2λ, where |C| is the number of gates in the circuit, and q is the num-
ber of queries to the function H that A is allowed to make. �

As calculated in the proof, the probability of hash collision is bounded by
|C|q2/2λ. See Sect. 3.4 for discussion on parameter choices.

5 Performance and Impact

5.1 Cut-and-Choose Protocols Using hG
As pointed out in [GMS08], an improvement in communication complexity can
be achieved by taking the following approach. To compute a garbled circuit, the
garbler P1 generates a random PRG seed. Then the output of the pseudorandom
generator is used as the random tape for the garbling algorithm. In C&C, P1

sends to P2 only a collision-resistant (CR) hash of each GC. In a later stage of
the protocol, if a GC GC is chosen as a check circuit and needs to be opened, P1

simply sends the seed corresponding to that circuit to P2.
hG hash can be used in C&C similarly to standard CR hash of GC.

In [GMS08], P1 commits via a collision resistant hash function to garbled cir-
cuits. These GCs can be either good or cheating. Importantly, due to the CR
property of the hash, a malicious P1 cannot change this designation at a later
time. In using hG, P1 has the same choice: he can compute hG of either a good
or a cheating GC. If he computed and sent the hash h of a good garbled circuit
GC, then h cannot be claimed to match a cheating evaluation circuit ĜC, even
if the XOR hash H(GC) = H(ĜC). Indeed, w.h.p., evaluation of such a ĜC will
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fail and P2 will abort, independently of P2’s input. Similarly, if P1 computed and
sent the hash of a cheating circuit ĜC, it cannot be later opened as a good check
circuit GC.

We stress that we must be careful when P2 is allowed to abort, so as to not
allow a selective failure attack. Specifically, a malicious P1 could cause evaluation
failure by sending an invalid label on a specific input wire/value pair or by
generating a GC which produces an invalid label based on a value of an internal
wire. Thus, while it is OK for P2 to abort if it sees a GC which does not match
the hG-hash, it should not (necessarily) abort simply based on seeing a decoding
failure. Instead, this failure should be treated by the C&C procedure. We stress
that it is protocol dependent, and protocol security should be evaluated. At the
high level, our hashing guarantees that the garbler cannot open/equivocate an
“honest” hashed circuit as a valid “malicious” circuit (or vice versa). However,
he can open any (i.e. honest or malicious) hashed circuit as a “broken” one (i.e.
one which will fail evaluation).

Covert C&C protocols [AL07,KM15], as well as C&C based on majority
output, such as [LP11], can be made to work with hG. Indeed, exercising the extra
power the adversary has (turning a good or bad evaluation circuit into a broken
evaluation circuit) will simply cause covert evaluator to abort independently of
its input. Similarly, in [LP11], the evaluation circuits which were made broken
cannot be used to contribute to majority output. Using hG with [KM15] requires
a bit of care. [KM15] actually already explicitly support using [GMS08]. Using
hG differs from [GMS08] only in that a cheating P1 can open an honest evaluation
circuit as a broken one, resulting in an abort. However, the same effect could be
achieved by P1 sending an invalid signature on the garbled circuit.

We note that [Lin13] uses [LP11] as a basic step in cheating punishment
and our hG can be used within the [LP11] subprotocol of [Lin13]. However, it
is not immediately clear hG can be used elsewhere in [Lin13]. This is because
the cheating punishment relies on evaluator having received a good evaluation
circuit to recover the cheating garbler’s input. However, in our case, malicious
garbler can present a broken circuit, preventing input recovery.

Similarly, it is not immediately clear that the dual-execution C&C protocols
of [HKE13,KMRR15] can take advantage of hG. Intuitively, this is because a
malicious generator P1 might produce a single cheating circuit, which is likely to
be chosen for evaluation among a number of honest circuits. Then, P1 will open
all honest evaluation circuits as broken ones. Avoiding selective failure attack,
P2 will not abort, and the resulting output will depend on the output of the
cheating circuit.

5.2 Implementation

We implemented our scheme using libgarble [Mal] for garbling and report on
the performance below. In Table 1, we compare the cost of our GC hashing
construction with garbling and then hashing the GC using SHA. We use the
AES circuit to garble in the comparisons. The numbers in Table 1 are in cycles
per gate. The configuration of the machine we used to run our implementation
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is: 2.3 GHz Core i5-2410M processor with 4 GB RAM. The processor has AES-NI
integrated.

Table 1. Evaluation times of the AES circuits, in cycles per gate.

Our hG construction Garble + SHA justGarble

Standard garbling 31.1 226.7 29

Half-gates 26.8 157.7 25.3

We believe that free hashing will simplify and speed up GC use particularly in
larger systems using GC, such as the Blind Seer encrypted database [PKV+14,
FVK+15], where GC processing will be competing for the CPU resource with a
number of other tasks.

SFE of Private Certified Functions. We now consider the use case described
in Sect. 1.1, where a Certificate Authority (CA) generates and certifies a num-
ber of GCs for use by the subscribers of the CA. In this case, clearly, CA is
the bottleneck; Table 1 demonstrates over 6× performance improvement for the
state-of-the-art half-gates GC, as compared with using standard hashing avail-
able with the OpenSSL library. Again, we stress that with half-gates hashing,
simple XOR of all rows of all the gate tables provides a secure hash. This allows
simple implementation in addition to the performance improvement.

5.3 Impact on Cut-and-Choose

We discuss the SFE performance improvement brought by our work on the exam-
ple of the state-of-the-art approach of [LP11,KM15]. (Subsequent improvements
to [LP11], as well as C&C, covert and other GC protocols will benefit from
free GC hashing correspondingly). We review the C&C choices and parameters
of [LP11,AO12,KM15] in light of [GMS08] and free hashing allowed by our work.
We will show that:

1. Computing and sending additional GC hashes does not increase communi-
cation cost (computation cost is minimal due to our work), but significantly
reduces cheating probability (see Table 2).

2. Keeping the cheating probability constant, we improve total C&C time by
43–64% by sending circuit hashes instead of circuits as suggested by [GMS08]
(See Table 3).

For concreteness, to achieve a cheating probability of, say, 2−40, the number
of garbled circuits that need to be sent is n. This incurs a communication cost,
in bits, of k, where k = nC, and C is the cost of a garbled circuit.

Sending only the hashes of the garbled circuits in the beginning of the cut-
and-choose, let the total number of garbled circuits be ñ. Let h be the size of
the hash of a GC, which is the communication cost of a check circuit. Now, we
have that the communication bits incurred,
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k̃ = ñh +
1
2
ñC

Setting the communication complexity to be the same, k̃ = k = nC, we have,

n = ñq +
ñ

2

where q = h
C is the ratio of the cost of a check circuit and the cost of a garbled

circuit. For q < 1/2, we have ñ = n
q+ 1

2
> n, thus giving a cheating probabil-

ity 2−ñ < 2−n for the same communication complexity. For large circuits, we
expect C � h, giving concrete improvements in the security at no additional
communication cost.

Table 2. Reducing cheating probabilities in [LP11] and [KM15] using hG.

Communication k Number
of circuits

Cheating
probability/deterrence

[LP11] k = 125|GC| n = 125 2−40

[LP11] with hG, q = 1/4 k = 125|GC| ñ = 166 2−51

[LP11] with hG, q = 1/8 k = 125|GC| ñ = 200 2−62

[KM15] without [GMS08]a k = 10|GC| n = 10 0.9

[KM15] with hG, q = 1/4 k = 10|GC| ñ = 36 0.972

[KM15] with hG, q = 1/8 k = 10|GC| ñ = 72 0.986
aWe note that [KM15] incorporates the [GMS08] hashing in the protocol. As we dis-
cussed, sending circuits over a fast channel may only be about 3× slower than hardware-
assisted garbling, while computing SHA1 may be up to 6× slower than such garbling.
Hence, sending circuits over a fast channel may actually be faster than generating
SHA1 hash. Therefore, in our calculations for the fast channel setting as above, we
consider [KM15] without [GMS08] hash.

Performance Improvement for Constant Cheating Probability. Con-
sider the task of evaluating a billion-gate circuit (cf. [KSS12]). We show esti-
mated improvement due to our technique as applied to [LP11,KM15]. We do
this in terms of expended time by unifying the computation and communication
costs of generating and sending garbled circuits. These calculations are not based
on specific implementations or protocol definitions. Instead they are based on
simple estimates of time needed to generate, hash and send GCs, and adding
them together.

We first calculate and explain the computation and communication costs in
seconds of our basic tasks.

According to [BHKR13], using JustGarble to garble the AES circuit (6660
non-XOR gates) takes 637µs. Adjusting for size, we calculate that the time taken
for GC generation for a circuit with 1 billion gates to be 95 s. For communication,
assuming ideal scenario in 1 Gbps channel, assume we can send 1 billion bits/sec.
Thus the time to send a circuit of 1 billion gates is 256 s at (assuming half gates
and 2 × 128 bits per gate).
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The total number of seconds needed in the cut-and-choose phase to mali-
ciously evaluate a 1 billion-gate circuit with 2−40 cheating probability using
previous technique and our construction using the optimal parameters. In our
calculation we include the costs of generating, hashing (in our scheme) and send-
ing the GCs. We do not include the cost of regenerating the check circuits at the
evaluator’s end that is incurred by our technique. This is because this cost is
also incurred by other techniques. Indeed, checking correctness of a circuit that
the evaluator already has (directly, or when using [GMS08] hash) is simplest
and fastest by receiving its generating seed, reconstructing and comparing. We
are concerned only with the cut-and-choose phase, and ignore the time taken for
OT and GC evaluation in the protocol and show how our construction allow for
reduced execution time in the cut-and-choose phase.

The cost in seconds calculated in Table 3 is obtained by adding the time to
generate, hash (if needed) and send all the required garbled circuits. As explained
above, we assume that it takes 95 s to generate a 1-Billion gate GC, and 256 s
to send it (Table 4).

Finally, we note that even though we don’t know whether the dual-execution
C&C of Huang et al. [HKE13] could be modified to take advantage of our Free
Hash, we point out that an improved balance between the check and evaluation
circuits is possible when [HKE13] is used with the [GMS08] hash. We include
the calculations of optimal parameters for [HKE13] in AppendixA.

Table 3. A billion-gate circuit. Execution time estimates of cut-and-choose with our
improvements to achieve cheating probability of 2−40

Total number
of circuits

Number of
check circuits

Circuits
sent

Time
(in secs)

[LP11] 125 75 125 43875

[LP11] + hG 125 75 50 24675

Table 4. A billion-gate circuit. Execution time estimates of cut-and-choose with our
improvements to achieve deterrence of ε = 0.9.

Total number
of circuits

Number of
check circuits

Circuits
sent

Time
(in secs)

[AL07] 10 9 10 3510

[AL07] + hG 10 9 1 1260

[KM15] without [GMS08]a 10 9 10 3510

[KM15] + hG 10 9 1 1260
aWe note that [KM15] incorporates the [GMS08] hashing in the protocol. As we dis-
cussed, sending circuits over a fast channel may only be about 3× slower than hardware-
assisted garbling, while computing SHA1 may be up to 6× slower than such garbling.
Hence, sending circuits over a fast channel may actually be faster than generating
SHA1 hash. Therefore, in our calculations for the fast channel setting as above, we
consider [KM15] without [GMS08] hash.
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A Performance Calculation for the Protocol of [HKE13]

The idea in the protocol of [HKE13] is to have both parties play the role of
the circuit constructor and circuit evaluator respectively in two simultaneous
executions of a cut-and-choose of the protocol. The protocol is thus symmetric,
and symmetric protocols might be desirable in certain situations since they have
less idle time. The number of garbled circuits required in the cut-and-choose to
achieve statistical security 2−κ is κ+O(log κ). In the cut-and-choose of [HKE13],
a party successfully cheats if it generates exactly n−c incorrect circuits and none
of them is checked by the other party. The probability that a cheating garbler
succeeds,

Pr[A wins] =
1(
n
c

)

where n is the number of garbled circuits and c is the number of check circuits.
It is easy to see that the above probability is minimized by setting c = n/2.
This gives Pr[A wins] = 2−n+log n. We now apply the hash optimization in the
cut-and-choose phase of the protocol. And now, we want compute the optimal
value of c in the case where the communication cost of a circuit is a check circuit
is cheaper than the cost of a garbled circuit that is evaluated. Let h be the cost
of the hash of a garbled circuit. The cost of a check circuit is just the hash and
the cost of an evaluation circuit is the cost of the hash plus the cost of a garbled
circuit. Let q = h

C be the ratio of the cost of a check circuit and the cost for
an evaluation circuit, where C = h + |GC|. We have, the total communication
complexity,

k = ch + eC

where e is the number of evaluation circuits, c the number of check circuits,
n = c + e the total number of circuits. Now, for a fixed k, given q we find the c
and n that minimizes

Pr[A wins] = P =
1(
n
c

)

Using Stirling’s approximation, we get,

P ≈ (n − c)n−c+ 1
2 cc+ 1

2

nn+ 1
2

Let r = c
n be the optimal fraction. Using k = ch+ eC and q = h

C , differentiating
P with respect to c, and setting the first derivative to 0, we get,

r = (1 − r)q (9)
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When q = 1, this gives r = c
n = 1

2 which is indeed the optimal value when
no hashes are used and a check circuit costs the same as an evaluation circuit.
Now we compare the standard cut-and-choose with the cut-and-choose using
hash and using optimal parameters as computed above. For security 2−κ, κ +
O(log κ) circuits need to be sent in the standard cut-and-choose, which gives a
communication k = |GC|(κ + O(log κ)), (for each party) where |GC| is the cost
of a garbled circuit. Now given the cost of a hashed GC to be h, we get cost of
a check circuit = h, C = |GC| + h,q = h

C . We now solve (9) for r and set

n =
k

rh + (1 − r)C
and c = rn

This achieves a better cheating probability for the same communication k.
In the table below, we compare the cheating probability for values of k and q.
Recall, in the protocol, both parties act as sender and send κ+O(log κ) number
of circuits each. The first column in Table 5 denoting the communication is the
total communication of the cut-and-choose.

Table 5. Cheating probability in [HKE13] using [GMS08] hash and optimal parameters.

Communication

k

Optimal

number

of circuits

Optimal

number

check circuits

Cheating

probability

[HKE13] k ≈ 90|GC| n = 45 c = n/2 2−40

[HKE13] + [GMS08] hash, q = 1/4 k ≈ 90|GC| ñ = 71 c = 0.7ñ ≈ 49 2−60

[HKE13] + [GMS08] hash, q = 1/8 k ≈ 90|GC| ñ = 98 c = 0.8ñ = 78 2−68

References

[AL07] Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient
protocols for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-70936-7 8

[AO12] Asharov, G., Orlandi, C.: Calling out cheaters: covert security with
public verifiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 681–698. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34961-4 41
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Abstract. We present a new strategy for partitioning proofs, and use it
to obtain new tightly secure encryption schemes. Specifically, we provide
the following two conceptual contributions:
– A new strategy for tight security reductions that leads to compact

public keys and ciphertexts.
– A relaxed definition of non-interactive proof systems for non-linear

(“OR-type”) languages. Our definition is strong enough to act as
a central tool in our new strategy to obtain tight security, and is
achievable both in pairing-friendly and DCR groups.

We apply these concepts in a generic construction of a tightly secure
public-key encryption scheme. When instantiated in different concrete
settings, we obtain the following:
– A public-key encryption scheme whose chosen-ciphertext security can

be tightly reduced to the DLIN assumption in a pairing-friendly
group. Ciphertexts, public keys, and system parameters contain 6,
24, and 2 group elements, respectively. This improves heavily upon a
recent scheme of Gay et al. (Eurocrypt 2016) in terms of public key
size, at the cost of using a symmetric pairing.

– The first public-key encryption scheme that is tightly chosen-cipher-
text secure under the DCR assumption. While the scheme is not very
practical (ciphertexts carry 28 group elements), it enjoys constant-
size parameters, public keys, and ciphertexts.

Keywords: Public-key encryption · Tight security proofs

1 Introduction

Tight Security. Ideally, the only way to attack a cryptographic scheme S
should be to solve a well-investigated, presumably hard computational prob-
lem P (such as factoring large integers). In fact, most existing constructions of
cryptographic schemes provide such security guarantees, by exhibiting a security
reduction. A reduction shows that any attack that breaks the scheme with some
probability εS implies a problem solver that succeeds with probability εP . Of
course, we would like εP to be as large as possible, depending on εS .
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Specifically, we could call the quotient � := εS/εP the security loss of a
reduction.1 A small value of � is desirable, since it indicates a tight coupling of
the security of the scheme to the hardness of the computational problem. It is
also desirable that � does not depend, e.g., on the number of considered instances
of the scheme. Namely, when � is linear in the number of instances, the scheme’s
security guarantees might vanish quickly in large settings. This can be a problem
when being forced to choose concrete key sizes for schemes in settings whose size
is not even known at setup time.

Hence, let us call a security reduction tight if its security loss � only depends
on a global security parameter (but not, e.g., on the number of considered
instances, or the number of usages). Most existing cryptographic reductions are
not tight. Specifically, it appears to be a nontrivial problem to construct tightly
secure public-key primitives, such as public-key encryption, or digital signature
schemes. (A high-level explanation of the arising difficulties can be found in [18].)

Existing Work on Tight Security. The importance of a tight security reduc-
tion was already pointed out in 2000 by Bellare, Boldyreva, and Micali [4].
However, the first chosen-ciphertext secure (CCA secure) public-key encryption
(PKE) scheme with a tight security reduction from a standard assumption was
only proposed in 2012, by Hofheinz and Jager [18]. Their scheme is rather ineffi-
cient, however, with several hundred group elements in the ciphertext. A number
of more efficient schemes were then proposed in [2,3,5,7,12,14,17,21,26,27]. In
particular, Chen and Wee [7] introduced a very useful partitioning strategy to
conduct tight security reductions. Their strategy leads to very compact cipher-
texts (of as few as 3 group elements [12], plus the message size), but also to
large public keys. We will describe their strategy in more detail later, when
explaining our techniques. Conversely, Hofheinz [17] presented a different parti-
tioning strategy that leads to compact public keys, but larger ciphertexts (of 60
group elements). We give an overview over existing tightly secure PKE schemes
(and some state-of-the-art schemes that are not known to be tightly secure for
reference) in Fig. 1.

Our Contribution. In this work, we propose a new strategy to obtain tightly
secure encryption schemes. This strategy leads to new tightly secure PKE
schemes with simultaneously compact public keys and compact ciphertexts (cf.
Fig. 1). In particular, our technique yields a practical pairing-based PKE scheme
that compares well even with the recent tightly secure PKE scheme of Gay,
Hofheinz, Kiltz, and Wee [12]. However, we should also note that our scheme
relies on a symmetric pairing (unlike the scheme of [12], which can be instanti-
ated even in DDH groups). Hence, the price we pay for a significantly smaller
public key is that the scheme of [12] is clearly superior to ours in terms of

1 Technically, we also need to take into account the complexity of the attacks on S
and P . However, for this exposition, let us simply assume that the complexity of
these attacks is comparable.
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|pk | |C| − |M |
3 3 O(q)

k + 1 k + 1 O(q) k k ≥ 1
O(1) O(λ) O(1)
O(1) O(λ) O(1)
O(λ) 2 O(λ)
O(λ) 47 O(λ)
O(λ) 12 O(λ)
O(λ) 6k + 4 O(λ) k k ≥ 1

2 60 O(λ)
2kλ 3k O(λ) k k ≥ 1

2k(k + 5) k + 4 O(λ) k k ≥ 2

9 2 O(q)
3 2 O(q)

20 28 O(λ)

Fig. 1. Comparison of CCA-secure public-key encryption schemes. λ is the security
parameter, and q is the number of challenge ciphertexts. The sizes |pk | and |C|−|M | of
public key (excluding public parameters) and ciphertext overhead are counted in group
elements. For the ciphertext overhead |C| − |M |, we do not count smaller components
(like MACs) inherited from the used symmetric encryption scheme.

computational efficiency. Besides, the use of a symmetric pairing might entail
larger group sizes for comparable security.

Our technique also yields the first PKE scheme whose security can be tightly
reduced to the Decisional Composite Residuosity (DCR [29]) assumption in
groups of the form Z

∗
N2 for RSA numbers N = PQ. To obtain the DCR instance

of our scheme, we also introduce a new type of “OR-proofs” (i.e., a proof system
to show disjunctions of simpler statements) in the DCR setting. We give more
details on these proofs below.

We remark that our main scheme is completely generic, and can be instan-
tiated both with prime-order groups, and in the DCR setting. Only some of
our building blocks (such as the “OR-proofs” mentioned above) require setting-
dependent instantiations, which we give both in a prime-order, and in the DCR
setting.

Hence, we view our main contribution as conceptual. Indeed, in terms of
computational efficiency, our encryption schemes do not outperform existing
(non-tightly secure) schemes, even when taking into account our tight security
reduction in the choice of key sizes. Still, we believe that specializations of our
technique can lead to schemes whose efficiency is at least on par with that of
existing non-tightly secure schemes.

1.1 Technical Overview

Technical Goal. To explain our approach, consider the following security game
with an adversary A. First, A obtains a public key, and then may ask for many
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encryptions of arbitrary messages. Depending on a single bit b chosen by the
security game, A then either always gets an encryption of the desired message,
or an encryption of a random message. Also, A has access to a decryption oracle,
and is finally supposed to guess b (i.e., whether the encrypted ciphertexts contain
the desired, or random messages). If no efficient A can predict b non-negligibly
better than guessing, the used PKE scheme is considered CCA secure in the
multi-challenge setting. Note that regular (i.e., single-challenge) CCA security
implies CCA security in the multi-challenge setting using a hybrid argument
(over the challenge encryptions A gets), but this hybrid argument incurs a large
security loss. Hence, the difficulty in proving multi-challenge security is to ran-
domize many challenge ciphertexts in as few steps as possible.

General Paradigm. All of the mentioned works on tightly secure PKE follow
a general paradigm. Namely, in these schemes, each ciphertext C = (c, π) carries
some kind of “consistency proof” π that the plaintext message encrypted in c is
intact. What this concretely means varies in different schemes. For instance, in
some works [2,17,18,26,27], π is explicit and proves knowledge of the plaintext or
of a valid signature on c. In other works [3,5,7,12,14,21], π is implicit, and proves
knowledge of the plaintext or of a special authentication tag for that ciphertext.
All of these works, however, use π to enable the security reduction to get leverage
over the adversary A, as follows. For instance, in the signature-based works
above, the security reduction will be able to produce proofs π for ciphertexts with
unknown plaintexts (by proving knowledge of a signature), while an adversary
can only construct proofs from which the plaintext can be extracted. This enables
the security reduction to implement a decryption oracle, while being able to
randomize plaintexts encrypted for A.

Chen and Wee’s Approach. Chen and Wee [7] implement the above approach
with an economic partitioning strategy (that in turn draws from an argument
of Naor and Reingold [28]). Specifically, in their scheme, π implicitly proves
knowledge of the plaintext or of a special tag T . Initially, T is constant, and
committed to in the public key. In their security analysis, Chen and Wee intro-
duce dependencies of T on the corresponding c. Specifically, in the i-th step of
their analysis, they set T = F(τ..i), where F is a random function, and τ..i is the
i-bit prefix of the hash τ of c. After a small number of such steps, T is a random
value that is individual to each ciphertext. At this point, T is unpredictable for A
on fresh ciphertexts, and hence A’s decryption queries must prove knowledge of
the respective plaintext. At the same time, the security game (which defines F)
can also prepare valid ciphertexts with unknown messages, and thus randomize
all challenge ciphertexts at once.

We call the approach of Chen and Wee a partitioning strategy, since each
hybrid step above proceeds as follows:
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1. Partition the ciphertext space into two halves (in this case, according to the
i-th bit of τ).

2. Change the definition of the “authentication tag” T for all ciphertexts from
one half. (Keep the authentication tag for ciphertexts from the other half
unchanged.)

In particular, the second step introduces an additional dependency of T on the
bit τi. Most existing works use a partitioning strategy based on the individual
bits of (the hash of) the ciphertext. An exception is the recent work [17], which
implements a similar strategy based on an algebraic predicate of the ciphertext.
This latter approach leads to shorter public keys, but requires relatively complex
proofs π, and thus not only entails larger ciphertexts, but also requires a pairing.

Our Approach. Here, we also follow the generic paradigm sketched above,
but refine the partitioning strategy of Chen and Wee. Namely, instead of par-
titioning the ciphertext space statically (e.g., through the hash of c), we add a
special (encrypted) bit to π that determines the half in which the correspond-
ing ciphertext is supposed to be. In contrast to previous works, that bit is not
always known, not even to the security reduction itself. This change has several
consequences:

– The bit that determines the partitioning in each ciphertext is easily accessible
with a suitable decryption key, and so leads to a simple consistency proof π
(and thus small ciphertexts). (This is in contrast to the scheme from [17],
which proves complex statements in π.)

– The partitioning bit can by changed dynamically in challenge ciphertexts in
different steps of the proof. Hence, a single “bit slot” can be used to partition
the ciphertext space in many different ways during the proof. Eventually, this
leads to compact public keys, since only few statements (about this single bit
slot) need to be proven. (This is in contrast to partitioning schemes in which
one proof for each bit position is generated.)

– However, since also the adversary can dynamically determine the partitioning
of his ciphertexts from decryption queries, the security analysis becomes more
complicated. Specifically, the reduction must cope with a situation in which
an adversary submits a ciphertext for which the partitioning bit is not known.

In particular the last consequence will require additional measures in our security
analysis. Namely, we will in some cases need to accept several authentication tags
T in A’s decryption queries, simply because we do not know in which half of
the partitioning the corresponding ciphertext is. In fact, we will not be able
to force A to use “the right” authentication tag in his decryption queries. We
will only be able to force A to use an authentication tag T from a previous
challenge ciphertext (since all other tags are unpredictable to A). Hence, in order
to eventually exclude that A produces ciphertexts without a proof of knowledge
of the corresponding plaintext, we will need to work a bit more.

At this point, our main conceptual idea will be to introduce a dependency
of T on a suitable value τ that is individual to each ciphertext. (While the
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construction in our scheme is slightly more complicated, one can think of τ as
being simply the hash of the ciphertext.) Hence, in the first part of our analysis,
we force A to reuse a tag T from a previous challenge ciphertext, while we tie
this T to a ciphertext-unique value τ in the second part. When this is done,
A’s proofs π from decryption queries must prove knowledge of the encrypted
plaintext message, or break the collision-resistance of the used hash function.
Since the hash function will be assumed to be collision-resistant, A must prove
knowledge of the respective plaintext in each decryption query. Hence, we can
proceed with a proof of CCA security as in previous schemes.

Building Blocks. To implement our strategy, we require a variety of building
blocks. Specifically, like previous works, we require re-randomizable (chosen-
plaintext-secure) encryption, and universal hash proof systems for linear lan-
guages. We also require tightly secure one-time signatures, for which we give the
first construction in the DCR setting. However, apart from our new partitioning
strategy, the main technical innovation from our work is the construction of a
non-interactive proof system for disjunctions (of simpler statements) in the DCR
setting.

Namely, our proof system allows to prove that, given two ciphertexts c1, c2,
at least one of them decrypts to zero. (In fact, the syntactics are a little more
complicated, and in particular, honest proofs can only be formulated when the
first ciphertext decrypts to zero. However, proofs that one of the two ciphertexts
decrypts to zero can always be simulated using a special trapdoor, and we have
soundness even in the presence of such simulated proofs.)

Such a proof system for disjunctions already exists in pairing-friendly groups
(see [1]). A construction without pairings is far from obvious, though. Intuitively,
the reason is that the language of pairs (c1, c2) as above (with at least one ci that
encrypts zero) is not closed under addition (of the respective plaintexts). Hence,
disjunctions as above do not correspond to linear languages, and most common
constructions (e.g., for universal hash proof systems [9,23]) do not apply. Our
DCR-based construction thus is not linear, and relies on new techniques.

Concretely, our proof system can be viewed as a randomized variant of a
universal hash proof system. Namely, depending on how many of the ci do not
encrypt zero, a valid proof reveals zero, one, or two linear equations about the
secret verification key of our system. However, proofs in our system are ran-
domized, and the revealed equations are also blinded with precisely one random
value. Hence, up to one equation about the secret key is completely blinded.
But as soon as both ci encrypt nonzero values, a valid proof contains nontrivial
information about the secret key. Thus, such proofs cannot be produced by an
adversary who only sees proofs for valid statements (with at least one ci that
encrypts zero). Soundness follows as with regular universal hash proof systems.

Roadmap and Additional Content in Full Version

In Sect. 2, we recall some basic notation and definitions. In Sect. 3, we formulate
an algebraic setting that allows to express both our DLIN-based and DCR-based
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schemes in a generic way. In Sect. 4, we recall some existing and construct some
new necessary tightly secure building blocks. In Sect. 5, we introduce our notion
of “benign” proof systems, and our DCR-based benign proof system for “OR”-
like languages. Finally, in Sect. 6, we describe our new generic key encapsulation
scheme.

Unfortunately, our work requires several rather technical concepts, and we
need to outsource several proofs and additional discussion into the full version
[16] of this paper. In particular, in [16], we discuss the security of our scheme in
the multi-user setting, analyze its performance, and suggest optimizations. In the
full version, we also present a new DCR-based tightly secure one-time signature
scheme (which constitutes a technical building block for our main encryption
scheme). Moreover, we present details for “more conventional” benign proof
systems, and full details of the proof for our encryption scheme.

2 Preliminaries

Notation and Conventions. For a group G of order |G|, a group element g ∈
G, and a vector u = (u1, . . . , un)� ∈ Z

n
|G|, we write gu := (gu1 , . . . , gun)� ∈ G

n.
Similarly, we define gM ∈ G

n×m for matrices M ∈ Z
n×m
|G| . For integers x,N ∈ Z

with N > 0, we define [x]N := x mod N , and [x]N to be the unique integer with
x = [x]N + N · [x]N . Furthermore, we define the “absolute modular value” |x|N
through

|x|N :=

{
[x]N if [x]N < N/2
[−x]N if [x]N ≥ N/2,

such that 0 ≤ |x|N ≤ N/2 in any case. Finally, we let
(

x
N

)
denote the Jacobi

symbol of x modulo N . For a bit b ∈ {0, 1}, we denote with b = 1 − b the
complement of b. For a bitstring x = (x1, . . . , xn) ∈ {0, 1}n, we denote with
x..i = (x1, . . . , xi) the i-bit prefix of x, and with xi.. = (xi, . . . , xn) the (n−i+1)-
bit postfix of x. For random variables X,Y ∈ {0, 1}∗, we let SD

(
X ; Y

)
denote

their statistical distance, and H∞(X) the min-entropy of X.

Global Public Parameters. To simplify notation, we assume that all algo-
rithms in this work (including adversaries) implicitly receive public parameters
pp as input. In our case, these public parameters will contain the description of
algebraic groups and related algorithms, and a collision-resistant and a universal
hash function. We give more details on these parameters when we discuss the
algebraic setting, collision-resistant hashing, and our key extractor (which uses
the universal hash function).

Collision-Resistant Hashing. We require collision-resistant hashing:

Definition 1 (Collision-resistant hashing). A hash function generator is a
PPT algorithm CRHF that, on input 1λ, outputs (the description of) an effi-
ciently computable function H : {0, 1}∗ → {0, 1}�H . We say that CRHF outputs
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collision-resistant hash functions H (or, slightly abusing notation, that CRHF
is collision-resistant), if

Advcrhf
CRHF,A(λ) = Pr

[
x �= x′ ∧ H(x) = H(x′)

∣∣ (x, x′) ← A(1λ,H)
]

(where H ← CRHF(1λ)) is negligible for every PPT adversary A.

We assume that the public parameters pp contain a function H sampled with a
hash function generator CRHF.

Universal Hashing, and Randomness Extraction. We also assume a family
UHF = UHFλ of universal hash functions h : {0, 1}∗ → {0, 1}λ. Since universal
hash functions are good randomness extractors, we in particular have that for
any random variable X with min-entropy H∞(X) ≥ 3λ,

SD
(
(h, h(X)) ; (h,R)

) ≤ 1/2λ,

where h ∈ UHFλ and R ∈ {0, 1}λ are uniformly chosen.

Key Encapsulation Mechanisms, and Multi-challenge Security. A key
encapsulation mechanism (KEM) KEM consists of PPT
algorithms (Gen,Enc,Dec). Key generation Gen(1λ) outputs a public key pk
and a secret key sk . Encapsulation Enc(pk) takes a public key pk , and outputs a
ciphertext c, and a session key K. Decapsulation Dec(sk , c) takes a secret key sk ,
and a ciphertext c, and outputs a session key K. For correctness, we require that
for all (pk , sk) in the range of Gen(1λ), and all (c,K) in the range of Enc(pk), we
always have Dec(sk , c) = K. Security is defined as follows:

Definition 2 (Multi-challenge ciphertext indistinguishability). Given a
key encapsulation scheme KEM, consider the following game between a chal-
lenger C and an adversary A:

1. C samples a keypair through (pk , sk) ← Gen(1λ), and chooses a uniform bit
b ← {0, 1}.

2. A is invoked on input (1λ, pk), and with (many-time) access to the following
oracles:
– Oenc() runs (c,K) ← Enc(pk), sets K0 = K, samples a fresh K1 ←

{0, 1}λ, and returns (c,Kb).
– Odec(c) returns ⊥ if c is a previous output of Oenc. Otherwise, Odec

returns K ← Dec(sk , c).
3. Finally, A outputs a bit b′, and C outputs 1 iff b = b′.

Let
Advmcca

KEM,A(λ) = Pr [C outputs 1] − 1/2.

We say that KEM has indistinguishable ciphertexts under chosen-ciphertext
attacks in the multi-challenge setting (short: is IND-MCCA secure) if and only
if Advmcca

KEM,A(λ) is negligible for all PPT A.

Secure KEM schemes imply secure PKE schemes [8], and the corresponding
security reduction is tight also in the multi-challenge setting. Hence, like [12],
we will focus on obtaining an IND-MCCA secure KEM scheme in the following.
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3 The Generic Algebraic Setting

3.1 The Generic Setting

Groups and Public Parameters. In the following, let G be a group of order
|G|. We require that |G| is square-free, and only has prime factors larger than
2λ. Furthermore, we assume two subgroups G1, G2 ⊆ G of order |G1| and |G2|,
respectively, and such that G1 · G2 = {h1 · h2 | h1 ∈ G1, h2 ∈ G2} = G. Note
that we neither require nor exclude that |G| (or |G1| or |G2|) is prime, or that
G1 ∩ G2 is trivial.

We assume that the global public parameters pp include

– (descriptions of) G, G1, and G2,
– fixed generators g of G, g1 of G1 and g2 of G2,
– the group order |G2| of G2,
– a positive integer �B, and a matrix gB1 , for B ∈ Z

�B×�B
|G1| .2

We stress that these parameters may depend on λ, and note that |G|, |G1|, and
B do not need to be public. However, we do require that there are efficient
algorithms for the following tasks:

– performing the group operation in G,
– sampling uniformly distributed Z|G1|-elements,
– recognizing G (i.e., deciding group membership in G).

Since we assume |G2| to be public, we also have algorithms for deciding mem-
bership in G2, and for uniformly sampling from Z|G2| and G2, and thus also from
Z|G| and G.

Computational Assumptions. In our generic setting, we will use an assump-
tion that can be seen as a combination of the Extended Decisional Diffie-Hellman
assumption from [15], and the Matrix Decisional Diffie-Hellman assumption from
[10].

Definition 3 (Generalized DDH, combining [10,15]). We say that the
Generalized Decisional Diffie-Hellman (GDDH) assumption holds in our set-
ting if the following advantage is negligible for every PPT adversary A, and for
uniformly chosen ω, r ∈ Z

�B
|G1|:

Advgddh
G,A (λ) =

1
2
(
Pr

[
A(1λ, gω�B

1 , gBr
1 , gω�Br

1 ) = 1
]

− Pr
[
A(1λ, gω�B

1 , gBr
1 , gω�Br

1 g2) = 1
] )

.

2 How �B and B are chosen depends in the concrete instance. In the prime-order
setting, �B and B determine what concrete computational problem is reduced to.
Conversely, in the DCR setting, �B = 1, and B = 1 is trivial.
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Besides GDDH, we will also assume that it is infeasible to find a nontrivial
element gu

2 ∈ G2 that does not already generate G2:

Definition 4 (G2-factoring assumption). We say that the factoring G2 is
hard in our setting if the following advantage is negligible for every PPT adver-
sary A whose output (gu1

2 , . . . , g
uq

2 ) ∈ G
q
2 is always a vector of G2-elements:

Adv
gddh
G,A (λ) =

1

2

(
Pr

[
A(1

λ
, g

ω�B
1 , g

Br
1 , g

ω�Br
1 ) = 1

]
− Pr

[
A(1

λ
, g

ω�B
1 , g

Br
1 , g

ω�Br
1 g2) = 1

] )
.

Generalized ElGamal Encryption. To simplify our notation, and to struc-
ture our presentation, we consider the following generalized variant of ElGamal:

Keypairs. Keypairs (epk , esk) are of the form (epk , esk) = (gω�B
1 ,ω) for

ω ∈ Z
�B
|G1|.

Encryption. To encrypt u ∈ Z|G2| with random coins r ∈ Z
�B
|G1|, compute

Eepk (u; r) = c = (c0, c1) = (gBr
1 , gω�Br

1 gu
2 ) ∈ G

�B × G.

If we omit r and only write Eepk (u), then r is implicitly chosen uniformly
from Z

�B
|G1|.

Decryption. A ciphertext c = (c0, c1) = (gγ , gδ) is decrypted to

Desk (c) = gδ−ω�γ ∈ G.

Note that we encrypt exponents, while decryption only retrieves the respective
group element.

It will also be useful to generalize this encryption to vectors of plaintexts
with reused random coins: for pk = (epk1, . . . , epkn) and sk = (esk1, . . . , eskn)

with (epk i, esk i) = (gω�
i B

1 ,ωi), and u = (u1, . . . , un) ∈ Z
n
|G2|, let

Epk(u; r) = (c0, (c1, . . . , cn))

= (gBr
1 , (gω�

1 Br
1 gu1

2 , . . . , g
ω�

n Br
1 gun

2 )) ∈ G
�B × G

n

Dsk(c) = (gδ1−ω�
1 γ , . . . , gδn−ω�

n γ) ∈ G
n for c = (gγ , (gδ1 , . . . , gδn)).

When no confusion is possible, we may write (c0, c1, . . . , cn) instead of the
more cumbersome (c0, (c1, . . . , cn)). Sometimes, it will also be convenient to
write

Ω = (ω1|| . . . ||ωn) ∈ Z
�B×n
|G1| , such that pk = gΩ�B

1 and

Epk(u; r) = (gBr
1 , gΩ�Br

1 gu2 )

Dsk(c) = gγ−Ω�δ for c = (gγ , gδ) ∈ G
�B × G

n.

While this variant of ElGamal encryption will mainly be a notational tool,
it is also a very simple tightly (chosen-plaintext) secure encryption scheme:
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Definition 5 (IND-MCCPA security game for (E,D)). Consider the fol-
lowing game (which we call the IND-MCCPA security game, for “indistin-
guishability against multiple (partial) corruptions and chosen-plaintext attacks”)
between a challenger C and an adversary A:

1. A(1λ) picks n ∈ N, and an index i∗ ∈ {1, . . . , n}.
2. C samples b ∈ {0, 1}, and ω1, . . . ,ωn ∈ Z

�B
|G1|, and sets (epk i, esk i) =

(gω�
i B

1 ,ωi), and pk = (epk1, . . . , epkn) and sk = (esk1, . . . , eskn).
3. Next, A is run on input (epk i)

�B
i=1, (esk i)i�=i∗ , and with (many-time) access

to the following oracle:
– Oenc(u(0),u(1)), for u(j) = (u(j)

1 , . . . , u
(j)
n ) ∈ Z

n
|G2| (j ∈ {0, 1}), first checks

that u
(0)
i = u

(1)
i for all i �= i∗, and returns ⊥ if not. Then, Oenc computes

and returns c = Epk(u(b)).
4. If A terminates with output b′, then C outputs 1 iff b = b′.

Let
Advmccpa

G,A (λ) = Pr [C outputs 1] − 1/2.

Lemma 1 (Tight security of (E,D)). For every A, there exists an adversary
B (of essentially the same complexity as the IND-MCCPA game with A) for
which

Advgddh
G,B (λ) = Advmccpa

G,A (λ). (1)

Proof. B gets epk∗ = gω∗�B
1 and c∗ = (c∗

0, c
∗
1) = (gBr∗

1 , gω∗�Br∗
1 gb

2) (for unknown
b ∈ {0, 1}) as input. Now B first runs A to obtain n and i∗. Then, B generates
public and secret keys as follows:

– For i �= i∗, B samples ωi ∈ Z
�B
|G1|, and sets (epk i, esk i) = (gω�

i B,ωi).

– B sets epk i∗ = gω∗�B
1 , and thus implicitly defines esk i∗ = ωi∗ = ω∗.

Then, B runs A, on input pk = (epk i)i and (esk i)i�=i∗ , and implements oracle
Oenc as follows:

– Upon an Oenc(u(0),u(1)) query with u
(0)
i = u

(1)
i for i �= i∗, B first samples a

fresh r′ ∈ Z
�B
|G1|, implicitly defines r = (u(1)

i∗ − u
(0)
i∗ )r∗ + r′, and sets up

c0 = g
(u

(1)
i∗ −u

(0)
i∗ )Br∗+Br′

1 = g
B((u

(1)
i∗ −u

(0)
i∗ )r∗+r′)

1 = gBr
1

ci = g
(u

(1)
i∗ −u

(0)
i∗ )ω�

i Br∗

1 g
ω�

i Br′

1 g
u
(0)
i

2 = g
ω�

i Br
1 g

u
(0)
i

2 for i �= i∗

ci = g
(u

(1)
i∗ −u

(0)
i∗ )ω∗�Br∗+ω∗�Br′

1 g
(u

(1)
i∗ −u

(0)
i∗ )·b+u

(0)
i∗

2 = g
ω�

i∗Br
1 g

u
(b)
i∗

2

For the resulting c = (c0, c1, . . . , cn), we have that c = Epk(u(b); r) for (inde-
pendently and uniformly distributed) random coins r = (u(1)

i∗ − u
(0)
i∗ )r∗ + r′.

Hence, Oenc returns c.

Finally, B relays any guess b′ from A as its own output.
Observe that B perfectly simulates the game from Lemma 1 (with the same

challenge bit b). We obtain (1).
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3.2 The Prime-Order Setting

The Groups. We consider two concrete instantiations of our generic setting.
The first is a prime-order setting, in which G = G1 = G2 has prime order
|G| = |G1| = |G2|. In these cases, we assume that |G| > 2λ is public, and hence
most syntactic requirements from Sect. 3.1 are trivially met. However, we will
additionally need to assume that membership in G is efficiently decidable. We
have numerous candidates for such groups (including, e.g., subgroups of Z

∗
p, or

elliptic curves). In such groups, plausible assumptions include the Decisional
Diffie-Hellman (DDH) assumption, the k-Linear (k-LIN) assumption [19,30], or
a whole class of assumptions called Matrix-DDH assumptions [10].

Hardness of the GDDH and Factoring Problems. All of the mentioned
assumptions imply our GDDH assumption for suitable �B and B. For instance,
GDDH with �B = 1 and uniform B is nothing but a reformulation of the DDH
assumption. More generally, GDDH with uniform B is actually the so-called
U�B-MDDH assumption. In particular, this means that the k-LIN assumption
implies GDDH with �B = k and uniform B (see [10]). Additionally, we note
that the G2-factoring assumption we make is trivially satisfied in prime-order
settings (since Advfact

G2,A(λ) = 0 for all A if |G2| = |G| is prime).

Pairing-Friendly Groups. In Sect. 5.4, we also exhibit a building block in the
prime-order setting that uses a symmetric pairing G × G → GT (for a suitable
target group GT ). Also for such pairing-friendly groups, we have a variety of
candidates in case �B ≥ 2. (Unfortunately, for �B = 1, a symmetric pairing can
be used to trivially break the GDDH assumption.)

3.3 The DCR Setting

The Public Parameters. The second setting we consider is compatible with
the Decisional Composite Residuosity (DCR) assumption [29]. In this case, the
global public parameters include an integer N = PQ, for distinct safe primes
P,Q (i.e., such that P = 2P ′+1 and Q = 2Q′+1 for prime P ′, Q′ > 2λ).3 We also
assume that P,Q, P ′, Q′ are pairwise different, and that gcd(P + Q − 1, N) = 1
(the latter of which ensures that N is invertible modulo ϕ(N) = (P −1)(Q−1) =
4P ′Q′).

We implicitly set �B = 1, and the matrix B ∈ Z|G1|×|G1| from Sect. 3.1 to
be trivial (i.e., the identity matrix). Hence, neither �B nor gB1 will have to be
included in the parameters. However, we also include a generator g1 of G1 in the
public parameters, chosen as described below.

3 We note that our DCR-based OR-proofs from Sect. 5.4 require P, Q to be somewhat
larger, although still compatible with practical parameter choices.
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The Groups. We now define the groups G, G1, and G2. Since G should only
have large prime factors, we should avoid setting G = Z

∗
N2 . Instead, we could set

G1 and G2 to be the subgroups of order ϕ(N)/4 and N , respectively, and then
G = G1 · G2. However, in this case, membership in G would not be efficiently
decidable in an obvious way. So here, we define our groups in a slightly more
complex way, following the approach of signed quadratic residues [11,13,20].

Equipped with the notation |x|N and
(

x
N

)
from Sect. 2, we set

G1 =
{ |xN |N2

∣∣ x ∈ Z
∗
N2 ,

(
xN

N

)
= 1

} ⊆ Z
∗
N2

G2 =
{ |(1 + N)e|N2

∣∣ e ∈ ZN

} ⊆ Z
∗
N2

G =
{ |y|N2

∣∣ y ∈ Z
∗
N2 ,

( y

N

)
= 1

}
.

These sets are groups, when equipped with the group operation a · b = |a · b|N2 .
Indeed, since P,Q = 3 mod 4, we have

(−1
N

)
= 1, and thus

( |y1y2|N2

N

)
=

(
y1y2
N

)
=

1 for
(

y1
N

)
=

(
y2
N

)
= 1. Hence, G1 and G are closed under group operation. It is

then straightforward to check that G1, G2 and G are groups.
A canonical generator g2 of G2 is |1 + N |N2 , and a generator g1 of G1 (to

be included in the public parameters) can be randomly chosen as |xN |N2 for a
uniform x ∈ ZN2 .

Properties of the Groups. We claim that |G1| = ϕ(N)/4. Indeed, we have
that ∣∣{ |xN |N

∣∣ x ∈ Z
∗
N2

}∣∣ =
∣∣{ |xN |N2

∣∣ x ∈ Z
∗
N2

}∣∣ = ϕ(N)/2.

In other words, |xN |N uniquely determines |xN |N2 . Furthermore, since N is
invertible modulo ϕ(N), the map f : Z

∗
N2 → Z

∗
N with f(x) = xN mod N is

surjective. Hence, the set of all |xN |N with
(

xN

N

)
= 1 has cardinality ϕ(N)/4

(cf. [20, Lemma 1]). Using that |xN |N fixes |xN |N2 , we obtain |G1| = ϕ(N)/4.
Moreover, for e ∈ ZN , we can write |(1 + N)e|N2 = |1 + eN |N2 = e/|e| + |e|NN ,
and thus |G2| = N . Finally, we have G = G1 · G2, since every |y|N2 ∈ G can
be written as |y|N2 = |xN (1 + N)e|N2 with

(
xN

N

)
= 1. Hence, since |G1| =

ϕ(N)/4 = P ′Q′ and |G2| = N = PQ are coprime, |G| = |G1| · |G2| = N ·ϕ(N)/4
is square-free.

We also note that the discrete logarithm problem is easy in G2. Indeed, for
gu
2 ∈ G2, we have

gu
2 = |(1 + N)e|N2 = |1 + eN |N2 =

{
[e]NN + 1 if [e]N < N/2
[−e]NN − 1 if [e]N > N/2.

A simple case distinction thus allows to compute [e]N .
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Membership Testing and Sampling Exponents. It is left to note that
membership in G can be efficiently decided (by checking that y ∈ ZN2 is invert-
ible, lies between −N2/2 and N2/2, and satisfies

(
y
N

)
= 1). However, since

|G1| will not be public, exponents s ∈ Z|G1| can only be sampled approxima-
tively, e.g., by uniformly sampling s ∈ Z�N/4	. This incurs a statistical defect
of O(1/2λ) upon each such sampling. In the following, we will silently ignore
these statistical defects (and assume that there is an algorithm that uniformly
samples s ∈ Zϕ(N)) in our generic constructions for simplicity and ease of pre-
sentation. However, we note that the concrete bound (8) also holds for such an
approximative sampling in the DCR setting.

Hardness of the GDDH and Factoring Problems. We claim that in the
setting described above, the Decisional Composite Residuosity (DCR) assump-
tion [29] implies the GDDH assumption. This connection has already been estab-
lished in [15, Theorem 2] for a slight variant of the groups G, G1, G2 above. (In
their setting, G1 consists of elements xN ∈ ZN2 with

(
xN

N

)
= 1, instead of ele-

ments |xN |N2 with
(

xN

N

)
= 1.) In fact, their proof applies also to our setting,

and we obtain that the DCR assumption implies the GDDH assumption with
� = 1 and trivial B = 1 in G (as in Definition 3).

Furthermore, we note that the DCR assumption also implies the G2-factoring
assumption (Definition 4). We sketch how any G2-factoring adversary A can be
transformed into a DCR adversary B. First, B runs A, and obtains elements
gu1
2 , . . . , g

uq

2 . Then, B uses that the discrete logarithm problem is easy in G2, and
retrieves the corresponding u1, . . . , uq ∈ Z|G2|. Now if gcd(|G2|, ui) /∈ {1, |G2|}
for some ui, then gcd(N,ui) ∈ {P,Q} directly allows to factor N . Hence, if
A succeeds, then B can factor N , and solve its own DCR challenge (e.g., by
computing the order of its input).

4 Tightly Secure Building Blocks

In this section, we describe two building blocks for our main KEM construc-
tion. The first, tightly secure one-time signature schemes, is fairly standard, but
requires a new instantiation in the DCR setting to achieve tight security. The
second is, key extractors, is new, but similar building blocks have been used at
least in the prime-order setting implicitly in previous works on tight security
(e.g., [12]).

4.1 One-Time Signature Schemes

Definition 6 (Digital signature scheme). A digital signature scheme
OTS = (SGen,SSig,SVer) consists of the following PPT algorithms:

– SGen(1λ) outputs a keypair (ovk , osk). We call ovk and osk the verification,
resp. signing key.
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– SSig(osk ,M), for a message M ∈ {0, 1}∗, outputs a signature σ.
– SVer(ovk ,M, σ), outputs either 0 or 1.

We require correctness in the sense that for all (ovk , osk) that lie in the range of
SGen(1λ), all M ∈ {0, 1}∗, and all σ in the range of SSig(osk ,M), we always
have SVer(ovk ,M, σ) = 1.

We only require one-time security (and call a signature scheme secure in this
sense also a one-time signature scheme):

Definition 7 (EUF-MOTCMA security). Let OTS be a digital signature
scheme as in Definition 6, and consider the following game between a challenger
C and an adversary A:

1. C runs A on input 1λ, and with (many-time) oracle access to the following
oracles:
– Ogen() samples a fresh keypair (ovk , osk) ← SGen(), and returns ovk.
– Osig(ovk ,M) first checks if ovk has been generated by Ogen, and returns

⊥ if not. Next, Osig checks if there has been a previous Osig(ovk , ·) query
(i.e., an Osig query with the same ovk), and returns ⊥ if so. Let osk
be the corresponding secret key generated alongside ovk. (If ovk has been
generated multiple times by Ogen, take the first such osk.) Osig returns
σ ← SSig(osk ,M).

2. If A returns (ovk∗,M∗, σ∗), such that SVer(ovk∗,M∗, σ∗) = 1, and ovk∗ has
been returned by Ogen, but σ∗ has not been returned by Osig(ovk∗,M∗), then
C returns 1. Otherwise, C returns 0.

Let Advots
OTS,A(λ) be the probability that C finally outputs 1 in the above game. We

say that OTS is strongly existentially unforgeable under many one-time chosen-
message attacks (EUF-MOTCMA secure) iff for every PPT A, the function
Advots

OTS,A(λ) is negligible.

We remark, however, that our security notion is “strong”, in the sense that
a forger is already successful when he manages to generate a new signature for
an already signed message.

A Construction in the Prime-Order Setting. In case G = G1 = G2 with
|G| prime and public, [18] already give a simple construction of a digital signa-
ture scheme that achieves EUF-MOTCMA security under the discrete logarithm
assumption. Most importantly for our case, their security reduction is tight (i.e.,
only loses a constant factor). We refer to their paper for details.

A Construction in the DCR Setting. In the DCR setting (as in Sect. 3.3),
there exist simple and efficient EUF-MOTCMA secure signature schemes from
the factoring [24] or RSA assumptions [22]. However, these schemes are not
known to be tightly secure.

Hence, in the full version [16], we construct a new digital signature scheme
whose EUF-MOTCMA security can be tightly reduced to the GDDH assumption
in the DCR setting.
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4.2 Key Extractors

Intuition. Intuitively, a key extractor derives a pseudorandom key K from a
given encryption c = E(0; r) of 0. This K can be derived either publicly, using a
public extraction key xpk and the witness r, or secretly, using a secret extraction
key xsk and only the ciphertext c. We desire security in the sense keys derived
secretly (i.e., using xsk) from random ciphertexts c = E(R; r) for random R
cannot be distinguished from truly random bitstrings K. This should hold even
for many such challenges, and in the face of oracle access to xsk on “consistent”
ciphertexts c = E(0; r).

In this sense, key extractors give a computational form of the soundness
guarantee provided by universal hash proof systems. We also note that a similar
tool has been implicitly used in [12] for a similar purpose in the prime-order
setting. Hence, we abstract and generalize their construction in a straightforward
way.

Definition. In the following, fix a function �ext = �ext(λ). In the following
definition, we will choose the value R encrypted in random ciphertexts uniformly
from Z2�ext . Our generic construction of key extractors works for any �ext ≥ 3λ
(and |G2| ≥ 23λ).

Definition 8 (Key extractor). A key extractor EXT = (ExtGen,Extpub,
Extpriv) for G consists of the following PPT algorithms

– ExtGen(1λ, epk), on input a public encryption key epk = gω�B
1 ∈ G

�B
1 for

(E,D) (as in Sect. 3.1), outputs a keypair (xpk , xsk). We call xpk the public
and xsk the private extraction key.

– Extpub(xpk , c, r), for c = Eepk (0; r), outputs a key K ∈ {0, 1}λ.
– Extpriv(xsk , c) also outputs a session key K ∈ {0, 1}λ.

We require the following:

Correctness. For all epk = gω�B
1 , all keypairs (xpk , xsk) that lie in the range

of ExtGen(1λ, epk), all r ∈ Z
�B
|G1|, and all c = Eepk (0; r), we always have

Extpub(xpk , c, r) = Extpriv(xsk , c).
Indistinguishability. Consider the following game between a challenger C and

an adversary A:

1. C uniformly samples ω ∈ Z
�B
|G1| and sets (epk , esk) = (gω�B

1 ,ω). Then, C gen-
erates an EXT keypair (xpk , xsk) ← ExtGen(1λ, epk), and finally samples
b ∈ {0, 1}.

2. A is run on input (1λ, epk , xpk), with (many-time) access to oracles Ocha and
Oext that operate as follows:
– Ocha() uniformly chooses a fresh R ∈ Z2�ext , computes c ← Eepk (R) and

K0 = Extpriv(xsk , c), and uniformly chooses K1 ∈ {0, 1}λ. Finally, Ocha

returns (c,Kb).
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– Oext(c) first checks if Desk (c) = g02. If not, then we say that A fails, and
C terminates with output 0 immediately. Otherwise, Oext computes and
returns K = Extpriv(xsk , c).

– Finally, A outputs a bit b′, and C outputs 1 iff b = b′ (and 0 otherwise).

Let Advext
EXT,A(λ) = Pr [C outputs 1] − 1/2. We require that for all PPT A,

Advsnd
PS,A(λ) ≤ ε for a negligible function ε = ε(λ).

A Generic Construction. For our GDDH-based key extractor, we assume
that a function h chosen from a family of universal hash functions UHFλ is
made public in the global public parameters pp. Then, our extractor EXTgddh =
(ExtGengddh,Extgddhpub ,Extgddhpriv ) is defined as follows:

– ExtGengddh(1λ, epk), for epk = gω�B
1 , uniformly samples s ∈ Z

�B
|G| and t ∈

Z|G|, and computes gw
�

1 := gs
�B+t·ω�B

1 ∈ G
�B
1 . The output of ExtGengddh

is xpk = gw
�

1 and xsk = (s, t).
– Extgddhpub (xpk , c, r), for xpk as above and c = Eepk (0; r), outputs K = h(gw

�·r
1 ).

– Extgddhpriv (xsk , c), for c = (gγ , gδ) ∈ G
�B × G, outputs K = h(gs

�γ+t·δ).

Given gw
�

1 = gs
�B+t·ω�B

1 and a ciphertext c = E(0; r) = (gγ , gδ) = (gBr
1 , gω�

1

gBr
1 ), we have

gw
�r

1 = gs
�Br+t·ω�Br

1 = gs
�γ+t·δ,

and correctness follows. Indistinguishability follows from the following lemma:

Lemma 2. For �ext ≥ 3λ and |G2| ≥ 23λ, EXTgddh above satisfies the indis-
tinguishability property of Definition 8, assuming GDDH in G. Specifically, for
every adversary A that makes at most q oracle queries, there is an adversary
B (with roughly the same complexity as the indistinguishability experiment with
EXTgddh and A), such that

Advext
EXTgddh,A(λ) ≤ Advgddh

G,B (λ) + q/2λ. (2)

Due to lack of space, we outsource a proof of Lemma 2 to the full version [16].
Summing up, we obtain

Theorem 1. Under the GDDH assumption, and for �ext ≥ 3λ and |G2| ≥ 23λ,
EXTgddh is a key extractor in the sense of Definition 8.

5 Benign Proof Systems

Intuition. Benign proof systems are the central technical tool in our KEM
construction. Intuitively, a benign proof system for some language L is a non-
interactive designated-verifier zero-knowledge proof system with strong sound-
ness guarantees. Concretely, the system guarantees soundness even if simulated
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proofs for potentially false statements x /∈ L are known. However, we do not quite
require “simulation-soundness”, in the sense that this should hold for simulated
proofs for arbitrary false statements. (We note that simulation-sound proof sys-
tems are extremely useful in the context of tight security proofs, but they are
also very hard to construct.)

Instead, we only require that no adversary can forge proofs for statements
x /∈ L that are “more false” than any statement for which a simulated proof
is known. A little more specifically, we require that even if simulated proofs for
statements x ∈ L′ ⊇ L are known, an adversary cannot forge a proof for some
x /∈ L′. The main benefit over existing soundness notions is that L′ does not
even have to be known during the construction of the scheme. (For instance, our
first proof system provides a “graceful soundness degradation”, in the sense that
it is sound in this sense for arbitrary linear languages L′ ⊇ L.)

Overview Over Our Constructions. Apart from the abstraction, we also
provide generic and setting-specific constructions of benign proof systems. Our
generic constructions (for a linear, and a “dynamically parameterized” linear
language) can be viewed as abstractions and generalizations of universal hash
proof systems. For L′ = L, soundness in the above sense follows immediately
from the correctness property of hash proof systems. (Indeed, hash proofs for
valid instances x ∈ L are unique and completely determined by public informa-
tion.) For L′

� L, we will use additional properties of specific (existing) hash
proof systems. In fact, the mentioned “graceful degradation” guarantees have
already been used implicitly in the work of [12].

However, we also consider a somewhat nonstandard (and in our application
crucial) “OR-language”. Here, we give a prime-order instantiation in pairing-
friendly groups (which is directly implied by the universal hash proof systems
for disjunctions from [1]), and a new instance in the DCR setting. This DCR
instance will be the key to the DCR-based instantiation of our KEM.

5.1 Definition

Definition 9 (Proof system). Let L = {Lpars} be a family of lan-
guages4 with Lpars ⊆ Xpars , and with efficiently computable witness rela-
tion R. A non-interactive designated-verifier proof system (NIDVPS) PS =
(PGen,PPrv,PVer,PSim) for L consists of the following PPT algorithms:

– PGen(1λ, pars) outputs a keypair (ppk , psk). We call ppk the public and psk
the private key.

– PPrv(ppk , x, w), for x ∈ L and R(x,w) = 1, outputs a proof π.
– PVer(psk , x, π), for x ∈ X and a proof π, outputs a verdict b ∈ {0, 1}.
– PSim(psk , x), for x ∈ L, outputs a proof π.

We require correctness in the following sense:

4 These languages may also implicitly depend on the global public parameters pp.
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Completeness. For all pars, all (ppk , psk) in the range of PGen(1λ, pars),
all x ∈ L, and all w with R(pars, x, w) = 1, we always have
PVer(psk , x,PPrv(ppk , x, w)) = 1.

All relevant security properties of a NIDVPS are condensed in the following
definition.

Definition 10 (Benign proof system). Let PS be an NIDVPS for L as in
Difinition 9, and let Lsim = {Lsim

pars}, Lver = {Lver
pars}, and Lsnd = {Lsnd

pars} be
families of languages. We say that PS is (Lsim,Lver,Lsnd)-benign if the following
properties hold:

(Perfect) zero-knowledge. For all pars, all (ppk , psk) that lie in the range of
PGen(1λ, pars), and all x ∈ L and w with R(pars, x, w) = 1, we have the
following equivalence of distributions:

PPrv(ppk , x, w) ≡ PSim(psk , x).

(Statistical) (Lsim,Lver,Lsnd)-soundness. Consider the following game played
between a challenger C and an adversary A:

1. A is run on input 1λ, and chooses pars.
2. C generates (ppk , psk) ← PGen(1λ, pars).
3. A is run again on input (1λ, ppk), and with (many-time) access to oracles

Osim and Over that operate as follows:

– Osim(x) checks if x ∈ Lsim
pars , and if yes, returns PSim(psk , x). Otherwise,

Osim returns ⊥.
– Over(x, π) checks if x ∈ Lver

pars , and, if so, returns PVer(psk , x, π). Other-
wise, Over returns ⊥.

Finally, A wins iff it has queried Over with (x, π) such that x ∈ Xpars \Lsnd
pars and

PVer(psk , x, π) = 1. Let Advsnd
PS,A(λ) the probability that A wins. We require

that for all (not necessarily computationally bounded) A that only make a poly-
nomial number of oracle queries, Advsnd

PS,A(λ) is negligible.

Intuitively, the soundness condition of Definition 10 thus states that no proofs
for X \ Lsnd

pars -statements can be forged, even when (simulated) proofs for Lsim
pars -

statements are available, and proofs for Lver
pars -statements can be verified.

5.2 The Generic Linear Language

We will be interested in proof systems for “linear languages”, in the sense that
instances are vectors of group elements, and the language is closed under vector
addition (i.e., componentwise group operation).

In the following, let D ∈ N and pk = (epk1, . . . , epkD) =

(gω�
1 B

1 , . . . , g
ω�

DB
1 ) ∈ (G�B

1 )D. For a concise notation, write Ω = (ω1|| . . . ||ωD) ∈
Z

�B×D
|G1| . Also, fix a Z|G2|-module

U = {Mx | x ∈ Z
d
|G2|} ⊆ Z

D
|G2| (3)
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defined by a matrix M ∈ Z
D×d
|G2| . Our languages are parameterized over pars lin =

(pk,M), although Llin
pk only depends on pk, and not on M. Namely, consider

Llin
pk =

{
Epk(u; r) | r ∈ Z

�B
|G1|, u = 0 ∈ Z

D
|G2|

}

Llin
sim,(pk,M) = Llin

ver,(pk,M) = Llin
snd,(pk,M)

=
{
Epk(u; r) | r ∈ Z

�B
|G1|, u ∈ U

}

X lin = G
�B+D,

(4)

and set Llin = {Llin
pk} and Llin

sim = Llin
ver = Llin

snd = {Llin
sim,(pk,M)}. A witness for

x ∈ Llin
pk is r.

In the full version [16], we present a simple GDDH-based construction (based
upon hash proof systems) of an (Llin

sim,Llin
ver,Llin

snd)-benign proof system for Llin.

5.3 A Dynamically Parameterized Linear Language

In our scheme, we will also use a slight variant of the generic linear language
above. Specifically, we will consider a simple “dynamically parameterized” linear
language, where one parameter (i.e., coefficient) is determined by the language
instance. For a formal description, let parshash = pk = (epk1, epk2) ∈ (G�B

1 )2,
and

Lhash
pk =

{(
Epk(u; r), τ

) | u = 0 ∈ Z
2
|G2|

}

Lhash
sim,pk = Lhash

ver,pk = Lhash
snd,pk

=
{(

Epk(u; r), τ
) | u = (u1, u2)� ∈ Z

2
|G2|, u2 = τu1

}

X hash
pk =

{(
Epk(u; r), τ

) | u ∈ Z
2
|G2|

}
,

(5)

where r and τ always range over Z
�B
|G1| and Z|G2|, respectively. A witness for

x ∈ Lhash is r. The families Lhash, Lhash
sim , Lhash

ver , and X hash are defined in the
obvious way.

In the full version [16], we present a simple GDDH-based construction (based
upon hash proof systems) of an (Lhash

sim ,Lhash
ver ,Lhash

snd )-benign proof system for
Lhash.

5.4 The Generic OR-Language

We will also be interested in the following family L∨, together with its “simu-
lation”, “verification” and “soundness” counterparts L∨

sim, L∨
ver and L∨

snd. Here,
the actual languages in L∨ are linear like those in Llin. However, soundness
also holds when L∨

sim-instances are simulated, and those instances have an “OR
flavor”.

The language parameters are pars∨ = (pk, �∨) for pk = (epk1, epk2) ∈
(G�B

1 )2, and a function �∨ = �∨(λ). The families L∨, L∨
sim, L∨

ver, L∨
snd, and X ∨
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are comprised of the following languages, where we consider all r ∈ Z
�B
|G1|, and

u = (u1, u2) ∈ (Z∗
|G2| ∪ {0})2:

L∨
pk = L∨

ver,pk =
{
Epk(u; r) | u1 = 0

}

L∨
sim,(pk,�∨) =

{
Epk(u; r) | u1 = 0 ∨ (|u1| < 2�∨ ∧ u2 = 0)

}

L∨
snd,pk =

{
Epk(u; r) | u1 = 0 ∨ u2 = 0

}

X ∨
pk =

{
Epk(u; r)

}
.

Here, the value |u1| (in the definition of L∨
sim,(pk,�∨) is to be understood simply

as the absolute value for signed Z|G2|-values in the prime-order setting, and as
|u1| = |u1|N in the DCR setting. Observe that L∨

pk ⊆ L∨
sim,(pk,�∨) ⊆ L∨

snd,pk ⊆
X ∨

pk. A valid witness for x ∈ L∨ is r.

A Construction in Pairing-Friendly Groups. Now assume that G = G1 =
G2 is a prime-order group equipped with a symmetric pairing. Then, a benign
proof system for L∨ can be constructed from the universal hash proof systems
for disjunctions from [1]. Specifically, [1] construct universal hash proof systems
for languages of the form L = {(x1, x2) | x1 ∈ L1 ∨ x2 ∈ L2}, where Li ⊆ G

�

are linear languages (i.e., vector spaces over Z|G|). In our case, given pk =
(epk1, epk2), we can thus set

L1 =
{
Eepk1

(0; r)
}

L2 =
{
Eepk2

(0; r)
}

L =
{
x = (c0, c1, c2) | (c0, c1) ∈ L1 ∨ (c0, c2) ∈ L2

}
.

(6)

Invoking [1] with these languages yields a NIDVPS PS∨
pair that achieves:

Theorem 2. PS∨
pair is an (L∨

sim,L∨
ver,L∨

snd)-benign NIDVPS for L∨.

A Construction in the DCR Setting. In the following, we assume an N =
PQ, and groups G, G1, G2 as in Sect. 3.3. In particular, we have �B = 1, and B
is the trivial (identity) matrix. Furthermore, fix an �∨ = �∨(λ). We additionally
assume that P,Q > 2�∨+4λ. Recall that g1, epk1, epk2 ∈ G1 are of order |G1| =
ϕ(N)/4, and that g2 ∈ G2 is of order |G2| = N .

Our (L∨
sim,L∨

ver,L∨
snd)-benign proof system PS∨

DCR for L∨ is given by the
following algorithms:

– PGen∨(1λ) uniformly chooses s1, s2 ∈ Z�N2/4	 and then outputs ppk∨ =
(epks1

1 , epks2
1 ) and psk∨ = (s1, s2).

– PPrv∨(ppk∨, x, r) (with ppk∨ = (epks1
1 , epks2

1 ), and x = (c0, c1, c2) =
(gr

1, epk
r
1, epk

r
2g

u2
2 )) uniformly chooses t1, t2 ∈ ZN , and outputs

π∨ = (π0, π1, π2) =
(
ct1+N ·t2
2 , (epks1

1 )r · gt1
2 , (epks2

1 )r · gt2
2

)
.
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– PVer∨(psk∨, x, π∨) (for psk = (s1, s2), x = (c0, c1, c2), and π∨ = (π0, π1, π2))
first checks that π1/cs1

1 = gt1
2 and π2/cs2

1 = gt2
2 for some t1, t2 ∈ ZN (and

outputs 0 if not). PVer then computes5 these t1, t2, and outputs 1 iff π0 =
ct1+N ·t2
2 .

– PSim∨(psk∨, x) (for psk = (s1, s2) and x = (c0, c1, c2)) uniformly picks
t1, t2 ∈ ZN2 and outputs

π∨ = (π0, π1, π2) =
(
ct1+N ·t2
2 , cs1

1 · gt1
2 , cs2

1 · gt2
2

)
.

The completeness and zero-knowledge properties of PS∨
DCR follow directly

from the fact that csi
1 = (epkr

1)
si = (epksi

1 )r. To show the soundness of PS∨
DCR,

we prove a helpful technical lemma:

Lemma 3. Let s1, s2, t1, t2 be distributed as in PS∨
DCR, and fix any u ∈ Z with

|u| < 2�∨ . Let6

aux := ([s1]ϕ(N)/4, [s2]ϕ(N)/4, [t1 + N · t2]ϕ(N)/4, [us1 + t1]N , [us2 + t2]N ),

and write7 w1 := [s1/α]N (with the division performed in ZN ) for α :=
[N ]ϕ(N)/4. Then, for an independently random R ∈ Z2λ , we have

ε := SD
(
([w1]2λ , aux ) ; (R, aux )

) ≤ 3/2λ.

In other words, w1 (and thus s1) is unpredictable, even given aux .

Proof. Without loss of generality, assume u ≥ 0. (For u < 0, we can invoke the
lemma with −u, −t1, and −t2 in place of u, t1 and t2.) We proceed in steps,
in each step modifying aux , and bounding the impact on ε. Specifically, in the
following, we will define a number of random variables aux i, and abbreviate
εi := SD

(
([w1]2λ , aux i) ; (R, aux i)

)
. As a starting point, consider

aux1 := ([t1 + N · t2]ϕ(N)/4, [us1 + t1]N , [us2 + t2]N ).

Now note that w1 = [s1/α]N and the [usi + ti]N (for i ∈ {1, 2}) only depend
on [si]N . However, our uniform choice of si ∈ Z�N2/4	 is statistically 2/2�∨+4λ-
close to a uniform choice of si ∈ ZN ·ϕ(N)/4 (in which case [si]N and [si]ϕ(N)/4

are independently and uniformly random). Hence, the [si]ϕ(N)/4 are essentially
independent of w1 and aux 1, and we obtain ε ≤ ε1 + 4/2�∨+4λ. Next, consider

aux2 := ([t1]α, [t2]α, [t1]α + [t2]α, [us1 + t1]N , [us2 + t2]N ).

Since t1 + α · t2 = [t1]α + α · ([t1]α + [t2]α) + α2 · [t2]α, we have that aux 1 is a
function of aux2, and so ε1 ≤ ε2. Similarly, we can refine the last two components
of aux2 to obtain

aux 3 := ([t1]α, [t2]α, [t1]α + [t2]α, [us1 + α · [t1]α]N , [us2 + [t2]α]N ).
5 Here, we implicitly use that computing discrete logarithms in G2 is easy, see Sect. 3.3.
6 In this lemma and its proof, we heavily rely on the notation of [s]N and [s]N from

Sect. 2.
7 Here, we use our assumption that [N ]ϕ(N)/4 = P + Q − 1 and N are coprime.
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Again, ε2 ≤ ε3 since aux3 fully defines aux 2. Similar to our first step, now [t1]α
and [t2]α are essentially independent of the remaining parts of aux (up to a
statistical defect of at most 2/2�∨+4λ for each). Hence, for

aux4 := ([t1]α + [t2]α, [us1 + α · [t1]α]N , [us2 + [t2]α]N ),

we get that ε3 ≤ ε4 + 4/2�∨+4λ. Now let w2 := [s2]N , and consider

aux 5 := ([t1]α + [t2]α, uw1 + [t1]α, uw2 + [t2]α).

Since aux4 can be computed from aux5, we have ε4 ≤ ε5. Next, we release
w1 + w2 (over Z):

aux6 := ([t1]α + [t2]α, w1 + w2, uw1 + [t1]α).

Again, aux 5 can be computed from aux 6, and hence ε5 ≤ ε6. Since we consider
the statistical distance between [w1]2λ and R, we can release (and then drop)
[w1]2

λ

. Concretely, consider

aux7 := ([t1]α + [t2]α, [w1]2λ + w2, u · [w1]2λ + [t1]α, [w1]2
λ

),
aux8 := ([t1]α + [t2]α, [w1]2λ + w2, u · [w1]2λ + [t1]α)
aux9 := ([t1]α + [t2]α, u · [w1]2λ + [t1]α).

Here, ε6 ≤ ε7 since aux 6 can be computed from aux 7. Moreover, recall that
N > 22�∨+8λ by our choice of P,Q > 2�∨+4λ. Hence, ε7 ≤ ε8 + 1/22�∨+7λ, since
[w1]2λ and [w1]2

λ

are independent up to a statistical defect of at most 1/22�∨+7λ.
Finally, ε8 ≤ ε9 + 1/22�∨+7λ, since w2 is uniformly and independently random
chosen from ZN .

Similarly, we can show that [t2]α blinds [[t1]α]2�∨+2λ :

aux10 := ([[t1]α]2�∨+2λ + [t2]α, u · [w1]2λ + [[t1]α]2�∨+2λ , [[t1]α]2
�∨+2λ

),
aux11 := ([[t1]α]2�∨+2λ + [t2]α, u · [w1]2λ + [[t1]α]2�∨+2λ),
aux12 := (u · [w1]2λ + [[t1]α]2�∨+2λ).

With the same reasoning as in aux 7-aux9 (and using that α,N/α > 2�∨+4λ/2
by P,Q > 2�∨+4λ), we get ε9 ≤ ε10, as well as ε10 ≤ ε11 + 1/22λ, and ε11 ≤
ε12 + 1/22λ. Finally, if we set aux 13 := () to be the empty sequence, we get
ε12 ≤ ε13 +1/2λ +2/2�∨+4λ, since [t1]α is 2/2�∨+4λ-close to uniform over Z�N/α�
(which implies that [[t1]α]2�∨+2λ blinds u · [w1]2λ). It is left to observe that ε13 =
SD

(
[w1]2λ ; R

) ≤ 1/22�∨+7λ, since w1 ∈ ZN is uniformly random. Summing up,
we get ε ≤ 1/2λ + 2/22λ + 10/2�∨+4λ + 3/22�∨+7λ ≤ 3/2λ, as desired.

We can now proceed to show the soundness of PS∨
DCR:

Lemma 4. PS∨
DCR is statistically (L∨

sim,L∨
ver,L∨

snd)-sound in the sense of Def-
inition 10. Concretely, for an adversary A that makes at most q = q(λ) oracle
queries in the soundness game from Definition 10,

Advsnd
PS∨

DCR,A(λ) ≤ 4q/2λ. (7)
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Proof. Fix �∨ and pk, and let viewA be A’s view in a run of the computa-
tional soundness game from Definition 10. Specifically, viewA consists of A’s
input ppk∨ = (epks1

1 , epks2
1 ), as well as all oracle queries (and the correspond-

ing answers). We first consider to what extent viewA determines the secret key
psk∨ = (s1, s2).

– A’s input ppk∨ = (epks1
1 , epks2

1 ) only depends on [s1]ϕ(N)/4 and [s2]ϕ(N)/4

(since epk1 has order ϕ(N)/4).
– Each Osim oracle query of A reveals a value π∨ = (π0, π1, π2) = (ct1+N ·t2

2 , cs1
1 ·

gt1
2 , cs2

1 · gt2
2 ) for A-supplied c1, c2 and fresh t1, t2. We may assume that c1 =

epkr
1 · gu1

2 and c2 = epkr
2 · gu2

2 with u1 = 0 or |u1|N < 2�∨ ∧ u2 = 0 (since
otherwise, Osim rejects the query). Hence, such a query reveals

(π0, π1, π2) = (epkr(t1+N ·t2)
2 gu2t1

2 , epkrs1
1 · gu1s1+t1

2 , epkrs2
1 · gu1s2+t2

2 ),

which only depends on [s1]ϕ(N)/4, [s2]ϕ(N)/4, [t1 + N · t2]ϕ(N)/4, [u2t1]N , as
well as [u1s1 + t1]N and [u1s2 + t2]N . Thus, if u1 = 0, the query reveals
only [s1]ϕ(N)/4 and [s2]ϕ(N)/4 about (s1, s2). But if u1 �= 0 (and thus u2 =
0), we can apply Lemma 3 with u := u1, where we represent u1 ∈ ZN as
an integer between −N/2 and N/2. This yields that the query leaves [w1]2λ

undetermined, up to a small statistical defect. A hybrid argument over all of
A’s Osim queries shows that the overall statistical defect is bounded by 3q/2λ.

– An Over query on input (x, π∨) yields ⊥ unless x ∈ L∨
ver,(pk,�∨) = L∨

(pk,�∨). But
for x = (c0, c1, c2) = (gr

1, epk
r
1, epk

r
2g

u2
2 ) ∈ L∨

(pk,�∨), we get that Over’s output
only depends on csi

1 = epkrsi
1 , and hence only on [si]ϕ(N)/4 (for i = 1, 2).

To summarize, viewA is essentially independent of [w1]2λ , up to a statistical
defect of 3q/2λ.

It remains to prove that any Over query on some (x, π∨) with x ∈ X ∨\L∨
snd,pk

(i.e., an x with x = (c0, c1, c2) = (gr
1, epk

r
1 · gu1

2 , epkr
2 · gu2

2 ) for u1, u2 ∈ Z
∗
N ) is

invalid in the sense that PVer(psk∨, x, π∨) = 0 with high probability. To this
end, write

π∨ = (π0, π1, π2) = (epkρ0
2 · gα0

2 , epkρ1
1 · gα1

2 , epkρ2
1 · gα2

2 )

for suitable ρ0, ρ1, ρ2, α0, α1, α2. Recall that (x, π∨) is valid only if for i = 1, 2,
we have πi/csi

1 = gti
2 for some ti ∈ ZN , and if π0 = ct1+N ·t2

2 for those ti. Hence,
if (x, π∨) is valid, then the following holds for some t1, t2:

ρ0 = [r(t1 + N · t2)]ϕ(N)/4 α0 = [u2t1]N
ρ1 = [rs1]ϕ(N)/4 α1 = [u1s1 + t1]N
ρ2 = [rs2]ϕ(N)/4 α2 = [u1s2 + t2]N .

By assumption, u2 ∈ Z
∗
N , and thus α0 determines t1. Using also u1 ∈ Z

∗
N , hence

α0 and α1 determine [s1]N , and thus also w1 = [s1/α]N . However, as we have
argued above, viewA is essentially independent of [w1]2λ . The probability that
A correctly guesses an independently and uniformly random [w1]2λ with a single
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query is exactly 1/2λ. Since A makes at most q guesses, the probability for a
correct guess is bounded by q/2λ. Taking into account the mentioned statistical
defect in viewA, we obtain (7).

Taking things together, we obtain

Theorem 3. PS∨
DCR is an (L∨

sim,L∨
ver,L∨

snd)-benign NIDVPS for L∨.

6 The Key Encapsulation Scheme

In the following, we present our main construction of an IND-MCCA secure key
encapsulation (KEM) scheme. (This directly implies a PKE scheme with the
same security properties [8].)

6.1 The Construction

Ingredients and Public Parameters. In our construction, we use the follow-
ing ingredients:

– groups G, G1, G2 with |G2| > 23λ (see Sect. 3.1 for a description of the generic
setting),

– the generalized ElGamal scheme (E,D) implicitly defined through G, G1, G2

(Sect. 3.1),
– an EUF-MOTCMA secure one-time signature scheme OTS = (SGen,SSig,

SVer) (Sect. 4.1),
– a key extractor EXT = (ExtGen,Extpub,Extpriv) for G (see Sect. 4.2) with

�ext = 3λ,
– an (Llin

sim,Llin
ver,Llin

snd)-benign proof system denoted with PSlin = (PGenlin,

PPrvlin,PVerlin,PSimlin) for Llin (Sect. 5.2),
– an (Lhash

sim ,Lhash
ver ,Lhash

snd )-benign proof system denoted PShash = (PGenhash,

PPrvhash,PVerhash,PSimhash) for Lhash (Sect. 5.3),
– an (L∨

sim,L∨
ver,L∨

snd)-benign proof system denoted PS∨ = (PGen∨,PPrv∨,
PVer∨,PSim∨) for L∨ (Sect. 5.4) with �∨ = 3λ, and

– a collision-resistant hash function generator CRHF (Sect. 2) with �H = 2λ.8

We can use the presented generic constructions for EXT, PSlin, and PShash,
and, in the prime-order and DCR settings, the presented concrete construc-
tions for OTS and PS∨. (We note, however, that the DCR-based proof system
PS∨

DCR additionally requires that |G| has no prime factors smaller than 27λ.)
Specifically, we obtain instantiations both in the prime-order (with symmetric
pairing) and DCR settings.

We also assume public parameters pp that contain whatever public parame-
ters our building blocks require. Specifically, pp defines groups G, G1, and G2

(as described in Sect. 3.1), and contains a hash function H output by CRHF.
8 Since we assume collision-resistance (and not only target collision-resistance), we

will have to take into account, e.g., birthday attacks on the hash function. This
unfortunately entails �H ≥ 2λ.
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The Algorithms. Now our KEM KEM is defined through the following algo-
rithms:

– Gen(1λ) first uniformly picks ω1, . . . ,ω4 ∈ Z
�B
|G1|, and sets (pk, sk) =

(epk i, esk i)4i=1 = (gω�
i B

1 ,ωi)4i=1. Next, Gen samples

(ppk lin, psk lin) ← PGenlin(1λ,pk)

(ppkhash, pskhash) ← PGenhash(1λ, (epk1, epk2/epk3))

(ppk∨,1, psk∨,1) ← PGen∨(1λ, (epk1, epk1))

(ppk∨,2, psk∨,2) ← PGen∨(1λ, (epk4, epk4))

(ppk∨,3, psk∨,3) ← PGen∨(1λ, (epk4, epk1))

(ppk∨,4, psk∨,4) ← PGen∨(1λ, (epk2/epk3, epk4))

(ppk∨,5, psk∨,5) ← PGen∨(1λ, (epk2/epk3, epk4))

(ppk∨,6, psk∨,6) ← PGen∨(1λ, (epk2/epk3, epk1))

(xpk , xsk) ← ExtGen(1λ, epk2),

sets ppk = (ppk lin, ppkhash, ppk∨,1, . . . , ppk∨,6) and psk = (psk lin, pskhash,
psk∨,1, . . . , psk∨,6), and finally outputs

pk = (pk,ppk, xpk) sk = (sk,psk, xsk).

– Enc(pk) (for pk as above) selects a random r, and computes

c = (c0, c1, . . . , c4) = E(pk,0; r)
(ovk , osk) ← SGen()

τ = H(ovk)

πlin ← PPrvlin(ppk lin, c, r)

πhash ← PPrvhash(ppkhash, ((c0, c1, c2/c3), τ), r)
π∨,1 ← PPrv∨(ppk∨,1, (c0, c1, c1/g2), r)

π∨,2 ← PPrv∨(ppk∨,2, (c0, c4, c4/g2), r)

π∨,3 ← PPrv∨(ppk∨,3, (c0, c4, c1/g2), r)

π∨,4 ← PPrv∨(ppk∨,4, (c0, c2/c3, c4), r)

π∨,5 ← PPrv∨(ppk∨,5, (c0, c2/c3, c4/g2), r)

π∨,6 ← PPrv∨(ppk∨,6, (c0, c2/c3, c1/g2), r)

π = (πlin, πhash, π∨,1, . . . , π∨,6)
σ ← SSig(osk , (c,π))
K = Extpub(xpk , (c0, c2), r).

Here, we interpret τ = (τ1, . . . , τ2λ) ∈ {0, 1}2λ as an integer τ =
∑2λ

i=1 2i−1τi ∈
{0, . . . , 22λ − 1}, with τ1 being interpreted as the least significant bit.
The final output of Enc is C = (c,π , ovk , σ) and K.
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– Dec(sk , C) (for sk and C as above), first verifies σ and all proofs in π using
ovk and sk, and, if all are valid, returns

K = Extpriv(xsk , (c0, c2)).

Explanation. The proofs in π require some explanation. They prove vari-
ous (seemingly highly redundant) properties of the vector u = (ui)4i=1 ∈ Z

4
|G2|

encrypted in c. Some of these properties will be violated in different steps of
our security analysis already by the security game, and we will then rely on
the remaining properties. For instance, πlin always guarantees that the vectors
u encrypted in decryption queries lie in the subspace spanned by the vectors u
encrypted in challenge ciphertexts. (That subspace is initially trivial, since hon-
est encryptions contain u = 0, but will be larger in later parts of the analysis.)
πhash guarantees that τu1 = u2 −u3 in A’s decryption queries (unless generated
challenge ciphertexts already violate that relation).

The PS∨-proofs π∨,i are a bit more delicate. First, π∨,1 and π∨,2 guarantee
that u1, u4 ∈ {0, 1}. The condition u1 ∈ {0, 1} only simplifies the analysis, but
u4 ∈ {0, 1} is instrumental to enforce our partitioning strategy. In particular, u4

will be the bit that determines the partitioning of ciphertexts in our partitioning
argument. Depending on the value of u4, π∨,4 and π∨,5 give further guarantees:
π∨,4+b guarantees u2 = u3 ∨ u4 = b. At each point in our analysis, at least
one of these conditions (for one value of b) is never violated. Hence, u2 = u3 is
guaranteed in decryption queries whenever u4 �= b. Finally, the proofs π∨,3 and
π∨,6 ensure technical conditions (u4 = 0 ∨ u1 = 1 and u2 = u3 ∨ u1 = 1) that
will help to deal with the somewhat limited soundness guarantees of PS∨. (In
particular, these proofs help to cope with the fact that the soundness game of
PS∨only allows a limited type of verification queries.)

Correctness. The correctness of KEM follows directly from the correctness of
the underlying primitives.

6.2 Security Analysis

Theorem 4 (Security of KEM). If the ingredients from Sect. 6.1 are secure,
then KEM is IND-MCCA secure. Specifically, for every IND-MCCA adversary
A that makes at most q oracle queries, there are adversaries Bcrhf , Bots, Bfact,
Bmccpa, Blin, Bhash, and B∨ with

|Advmcca
KEM,A(λ)| ≤ Advcrhf

CRHF,Bcrhf (λ) + Advots
OTS,Bots(λ)

+O(λ)Advfact
G2,Bfact(λ) + O(λ)Advmccpa

G,Bmccpa(λ) + O(λ)Advsnd
PSlin,Blin(λ)

+O(λ)Advsnd
PShash,Bhash(λ) + O(λ)Advsnd

PS∨,B∨(λ) + O(λq)/2λ.

(8)
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Outline. The goal of our proof will be to randomize all keys handed out by Oenc

along with challenge ciphertexts. In order to do so, we rely on the indistinguisha-
bility of the key extractor EXT. However, to apply EXT’s indistinguishability
(Definition 8), we first need to establish a certain kind of “unfairness”. Specif-
ically, we will randomize the u2 component of all challenge ciphertexts, while
rejecting all decryption queries with u2 �= 0. (Note that this in particular means
that the experiment does not need to be able to decrypt challenge ciphertexts.)

Establishing this unfairness thus is the key to proving chosen-ciphertext secu-
rity. But it will also form the main difficulty of the proof, and we will outsource
this process into several helper lemmas.

A little more specifically, we will proceed as hinted in the introduction.
Namely, to show that all adversarial decryption queries with u2 �= 0 are rejected,
we will gradually add more and more restrictive additional checks on decryption
queries with u2 �= 0. In particular, if u2 �= 0, then we will require that u2 “authen-
ticates” the full ciphertext, in the sense that u2 = T for a ciphertext-dependent
“authentication token” T (cf. also the description in the introduction). We will
change the definition of T in a series of transformations such that eventually
T = X + τ , where X is a fixed secret value, and τ is the (up to OTS-forgeries
and CRHF -collisions ciphertext-unique) value of τ = H(ovk) from above. How-
ever, we will only be able to prove that the adversary must reuse a previously
used authentication in his decryption queries. This means that the following
rules apply:

– Any challenge ciphertext handed to the adversary satisfies u2 = X + τ .
– Any decryption query with u2 �= 0 must satisfy u2 = X + τ (j) for some τ (j)

from a challenge ciphertext. (Hence, the adversary must “reuse” an authenti-
cation tag.)

Additionally, all challenge ciphertexts will satisfy u1 = 1 and u3 = X. Hence,
using the soundness of our benign proof systems PSlin and PS∨, also any decryp-
tion query with u1 �= 0 will have to satisfy u1 = 1 and u3 = X (or it is rejected).
Finally invoking the soundness of PShash (on the equation u2 = u3+τ ·u1, which
is fulfilled in all challenge ciphertexts), we obtain that also decryption queries
will have to satisfy u2 = X + τ for the respective value τ from that decryption
query.

Hence, the requirements on adversarial decryption queries with u2 �= 0 are
now that u2 = X + τ and u2 = X + τ (j), and thus that τ = τ (j) for some τ (j)

from a previous challenge. Since the value τ is ciphertext-unique, we obtain a
contradiction. (Thus, any decryption query with u2 �= 0 is rejected.)

Due to lack of space, we have to postpone our proof (and in particular the
more complex argument for establishing the requirement u2 = X + τ (j) on
adversarial decryption queries) to the full version [16].
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Abstract. Reducing latency overhead while maintaining critical secu-
rity guarantees like forward secrecy has become a major design goal for
key exchange (KE) protocols, both in academia and industry. Of par-
ticular interest in this regard are 0-RTT protocols, a class of KE pro-
tocols which allow a client to send cryptographically protected payload
in zero round-trip time (0-RTT) along with the very first KE protocol
message, thereby minimizing latency. Prominent examples are Google’s
QUIC protocol and the upcoming TLS protocol version 1.3. Intrinsi-
cally, the main challenge in a 0-RTT key exchange is to achieve for-
ward secrecy and security against replay attacks for the very first pay-
load message sent in the protocol. According to cryptographic folklore,
it is impossible to achieve forward secrecy for this message, because
the session key used to protect it must depend on a non-ephemeral
secret of the receiver. If this secret is later leaked to an attacker, it
should intuitively be possible for the attacker to compute the session
key by performing the same computations as the receiver in the actual
session.

In this paper we show that this belief is actually false. We construct
the first 0-RTT key exchange protocol which provides full forward secrecy
for all transmitted payload messages and is automatically resilient to
replay attacks. In our construction we leverage a puncturable key encap-
sulation scheme which permits each ciphertext to only be decrypted once.
Fundamentally, this is achieved by evolving the secret key after each
decryption operation, but without modifying the corresponding public
key or relying on shared state.

Our construction can be seen as an application of the puncturable
encryption idea of Green and Miers (S&P 2015). We provide a new
generic and standard-model construction of this tool that can be instan-
tiated with any selectively secure hierarchical identity-based key encap-
sulation scheme.
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1 Introduction

Authenticated key exchange and TLS. The Transport Layer Security
(TLS) protocol is the most important cryptographic security mechanism on the
Internet today, with TLS 1.2 being the most recent standardized version [16]
and TLS 1.3 under development [40]. As one core functionality TLS provides an
(authenticated) key exchange (AKE) which allows two remote parties to estab-
lish a shared cryptographic key over an insecure channel like the Internet. The
study of provable security guarantees for AKE protocols was initiated by the
seminal work of Bellare and Rogaway [4]; the huge body of work on crypto-
graphic analyses of the TLS key exchange(s) includes [5,17,26,28].

The Demand for low-latency key exchange. Classical AKE protocols like
TLS incur a considerable latency overhead due to exchanging a relatively large
number of protocol messages before the first actual (application) data messages
can be transmitted under cryptographic protection. Latency is commonly mea-
sured in round-trip time (RTT), indicating the number of rounds/round trips
messaging has to take before the first application data can be sent. Even very
efficient examples of high-performance AKE protocols like HMQV [27] need at
least two messages (i.e., 1-RTT) before either party can compute the session key.

0-RTT key exchange. Reducing the latency overhead of key exchange pro-
tocols to zero round-trip time (0-RTT) while maintaining reasonable security
guarantees has become a major design goal both in academia [23,29,36,44] and
industry [38,40].1 In terms of practical designs, the two principal protocols are
Google’s QUIC protocol [38] and the 0-RTT mode drafted for the upcoming
TLS version 1.3 [40]. While the latter is still in development, QUIC is already
implemented in recent versions of the Google Chrome and Opera web browsers,
is currently used on Google’s web servers, and has been proposed as an IETF
standard (July 2015).

As authentication and establishment of cryptographic keys in 0-RTT with-
out prior knowledge is impossible, 0-RTT key-exchange protocols must leverage
keying material obtained in some prior communication to establish 0-RTT keys.
Consequently, one very common approach, employed in particular in QUIC, is
based on the Diffie–Hellman key exchange and is essentially comprised of the
following steps (see also Fig. 1):

1. From prior communication (which may be a key exchange or some out-of-
band communication), the client obtains a “medium-lived” (usually a cou-
ple of days) server configuration. This server configuration contains a Diffie–
Hellman share gs (with g being a generator of an algebraic group) for which

1 Beyond the pure cryptographic protocol, round trips may also be induced by lower-
layer transport protocols. For example, the TCP protocol requires 1-RTT for its
own handshake before a higher-level cryptographic key exchange can start. Here we
focus on the overhead round-trip time caused by the cryptographic components of
the key-exchange protocol.
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Client Server

(previous communication)
Signsk(gs)

0-RTT key exchange:
gx

[0-RTT data]K1

gy

[further data]K2

K1 ← gxs K1 ← gxs

K2 ← gxy K2 ← gxy

Fig. 1. The typical outline of a 0-RTT key exchange. Key K1 can be used immediately
to send 0-RTT data, key K2 is used for all further communication.

the server knows s, and is signed under a public signing key certified for
belonging to the server.

2. In the 0-RTT key exchange, the client knowing gs now picks a secret expo-
nent x at random and sends the share gx to the server. It also directly com-
putes a preliminary, 0-RTT key K1 from the Diffie–Hellman value gxs. In
immediate application, this key can be used to send cryptographically pro-
tected (0-RTT) application data along with the client’s key-exchange message.

3. The server responds with a freshly chosen, ephemeral Diffie–Hellman share gy

which is used by both the server and the client to compute the actual ses-
sion key K2 from gxy. All further communication throughout the session is
subsequently protected under K2.

An alternative approach, pursued in the latest TLS 1.3 drafts, is to derive the
0-RTT key from a pre-shared symmetric key. Note that this requires storing
secret key information on the client between sessions. In contrast, we consider
0-RTT key establishment protocols, which do not require secret information to
be stored between sessions.

Issues with 0-RTT key exchange. As outlined, the 0-RTT key-exchange
design elegantly allows clients to initiate a secure connection with zero latency
overhead, addressing an important practical problem. Unfortunately, all pro-
tocols that follow this format—including QUIC and TLS 1.3 as well as acad-
emic approaches [23,44]—face at least one of the following two very undesirable
drawbacks.

Forward Secrecy. Recall that forward secrecy essentially demands that transmit-
ted data remains secret even if an attacker learns the secret key of one commu-
nication partner. From contemporary insight, this is considered a standard and
crucial security goal of modern key exchange protocols, as it addresses data pro-
tection in the presence of passive key compromises or mass surveillance. Observe
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that a 0-RTT key exchange of the form outlined above, however, cannot pro-
vide forward secrecy for the 0-RTT application data transmitted from the client
to the server. As such data is protected under the key K1, derived from gxs,
an attacker which eavesdrops on the communication and later compromises the
server’s secret exponent s (possibly long after the session has finished) can easily
compute K1 and thus decrypt the 0-RTT data sent. This drawback is clearly
acknowledged in the design documents of QUIC and TLS 1.3 and one of the
main reasons to upgrade to a second, forward-secret key K2. Notably, the lack
of forward secrecy for TLS 1.3 0-RTT is true of both the original Diffie–Hellman-
based and the latest pre-shared key (PSK) variants of the protocol, albeit under
different assumptions on which key is learned by the attacker [29,39,40,42].

In 2005, Krawczyk stated that it was not possible to obtain forward secrecy
for implicitly-authenticated 2-message protocols in a public-key authentication
context, if there was no pre-existing shared state [27]. Subsequent works ref-
erenced this idea prominently, but often dropped one or more of the original
conditions [8,11,30]. Despite modeling changes and arguments to the contrary
in relation to 1-round protocols [13,15], and work on forward secrecy for non-
interactive key-exchange (NIKE) protocols [37], the assumption that forward
secrecy is fundamentally impossible under limited rounds has perpetuated. In
particular, the QUIC crypto specification accepts an “upper bound on the for-
ward security of the connection” for 0-RTT handshakes [31]. Likewise, this limi-
tation is accepted as seemingly inherent in academic 0-RTT designs [23,44], and
early discussions around the development of TLS 1.3 go so far as to claim that
forward secrecy “can’t be done in 0-RTT” [43].

Replay Attacks. In a replay attack, an attacker aims at making the receiver accept
the same payload twice. Specifically, replay attacks in the example 0-RTT pro-
tocol given can take the form of replaying the client’s Diffie–Hellman share gx or
the 0-RTT data sent. Observe that, without further countermeasures, an adver-
sary can simply replay (potentially multiple times) a recorded client message gx,
making the server derive the same key K1 as in the original connection, and then
replay the client’s 0-RTT data which the server can correctly decrypt and would
therefore process. Depending on the application logic, such replays can lead to
severe security issues. For example, an authenticated request (e.g., via login cre-
dentials or cookie tokens) might allow an adversary to replay client actions like
online orders or financial transactions.

One potential countermeasure, implemented in QUIC, is essentially to store
all seen client values gx (in a certain time frame encoded in an additional nonce
value) in order to detect and reject repeated requests with the same value and
nonce.2 Notably, this solution induces a substantial management overhead and
arguably is acceptable only for certain server configurations. As such, the solution
is not elegant, but effectively prevents the same key from being accepted twice
by a server. We remark, though, that on a higher level applications may resend

2 In case of Google this approach amounts to a few gigabytes of data to be held in
shared state between multiple server instances.
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data under a later-derived key in common web scenarios, essentially rendering
replay attacks on the application layer unavoidable in such cases [19,41].

Low-latency key-exchange designs proposed thus far widely accepted the
aforementioned drawbacks on forward secrecy and replay protection as inher-
ent to the 0-RTT environment. This assumption paves the way for the follow-
ing research question for the design of modern, low-latency authenticated key-
exchange protocols: Can a key-exchange protocol establish a cryptographic key in
0-RTT while upholding strong forward-secrecy and replay protection guarantees?

Contributions. In this work we introduce the notion of forward-secret one-
pass key exchange and a generic construction of such a protocol, resolving the
aforementioned open problem. Notable features of this protocol are summarized
as follows.

– The protocol provides full forward secrecy, even for the first message trans-
mitted from the client to the server, and is automatically resilient to replay
attacks. We provide a rigorous security analysis for which we develop a novel
key-exchange model (in the style of Bellare and Rogaway [4]) that captures the
peculiarities of forward secrecy and replay protection in 0-RTT key exchange.

– The protocol has the simplest message flow imaginable: the client encrypts a
session key and sends it to the server. We do not need to distinguish between
preliminary and final keys but only derive a single session key. The forward
secrecy and replay security of the protocol stem from the fact that the long-
term secret key of this scheme is evolved.

– The construction and security proof are completely generic, based on any one-
time signature scheme and any hierarchical identity-based key encapsulation
scheme (HIBKEM) that needs to provide only a weak form of selective-ID
security. This allows for flexible instantiation of the protocol with arbitrary
cryptographic constructions of these primitives, adjusted with suitable deploy-
ment and efficiency parameters for a given application, and based on various
hardness assumptions.

– The construction and its security analysis are completely independent of a
particular instantiation of building blocks, immediately yielding the first post-
quantum secure 0-RTT key exchange protocol, via instantiation of the protocol
with suitable lattice-based building blocks, such as the HIBE from [1] and the
one-time signature from [34].

– More generally, by instantiating the protocol with different HIBKEM schemes,
one can easily obtain different “cipher suites”, with different security and per-
formance characteristics. Replacement of a cipher suite is easy, as it does not
require a new security analysis of the protocol. In contrast, several consecu-
tive research papers were required to establish the security of only the most
important basic cipher suites of TLS [26,28,32].

Our work is inspired by earlier work of Canetti, Halevi, and Katz [9] on forward-
secure public-key encryption and Green and Miers [21] on forward-secret punc-
turable public-key encryption. The main novelties in this work are:
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– We make the conceptual observation that the tool of forward-secret punc-
turable public-key encryption can be leveraged to enable forward-secret 0-RTT
AKE.

– We carve out puncturable forward-secret key encapsulation as a versatile
building block and build it in a generic fashion from any HIBKEM scheme,
in the standard model, and from a wide range of assumptions. In contrast,
the cunning, but involved construction by Green and Miers [21] blends the
attribute-based encryption scheme of Ostrovsky, Sahai, and Waters [35] with
forward-secret encryption [9]. It therefore relies on specific assumptions and,
using the Fujisaki-Okamoto transform [20] to achieve CCA-security, relies on
the random-oracle model.

– We formalize 0-RTT key exchange security with forward secrecy. This is a
non-trivial extension of previous models (particularly [24]) in that it needs
to take evolving state, (semi-)synchronized time, and accordingly conditioned
forward secrecy into account in the security experiment.

We consider the established concepts as valuable towards the understanding of
forward-secret 0-RTT key exchange, its foundations, and its connection to, in
particular, asynchronous messaging.

High-level protocol description. The basic outline of our protocol is the
simplest one can imagine. We use a public-key key encapsulation mechanism
(KEM)3 to transport a random session key from the client to the server. That
is, the server is in possession of a long-term key pair (pk , sk) for the KEM, and the
client uses pk to encapsulate a key. This immediately yields a 0-RTT protocol,
because we can send encrypted payload data along with the encapsulated key.
However, of course, it does not yet provide forward secrecy or security against
replay attacks.

The key idea to achieve these additional properties is not to modify the
protocol, but to modify the way the server stores and processes its secret key.
More precisely, we construct and use a special puncturable forward-secure KEM
(PFS-KEM). Consider a server with long-term secret key sk . When receiving
an encapsulated session key in ciphertext c1, the server can use this scheme to
proceed as follows.

1. It decrypts c1 using sk .
2. The server then derives a new secret key sk\c1 from sk , which is “punctured

at position c1”. This means that sk\c1 can be used to decrypt all ciphertexts
except for c1.

3. Finally, the server deletes sk .

This process is executed repeatedly for all ciphertexts received by the server.
That is, when the server receives a second ciphertext c2 from the same or a
different client, it again “punctures” sk\c1 to obtain a new secret key sk\c1,c2 ,

3 This is essentially a public-key encryption scheme which can only be used to trans-
port random keys, but not to transport payload messages.
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which can be used to decrypt all ciphertexts except for c1 and c2. Note that this
yields forward secrecy, because an attacker that obtains sk\c1,c2 will not be able
to use this key to decrypt c1 or c2, and thus will not be able to learn the session
key of previous sessions.

The drawback of using this approach näıvely is that the size of secret keys
grows linearly with the number of sessions, which is of course impractical. For
efficiency reasons, we therefore add an additional time component to the proto-
col, which requires only loosely synchronized clocks between client and server.
Within each time slot, the size of the secret key grows linearly with the number
of sessions. However, at the end of the time slot, the server is able to “purge”
the key, which reduces its size back to a factor logarithmic in the number of
time intervals. We stress that the loose time synchronization is included in our
protocol’s design only for efficiency reasons, but is not needed to achieve the
desired security goals.

A particularly beneficial aspect of this approach is that the server’s public key
pk remains static over its entire lifetime (which would typically be 1–2 years in
practice, but longer lifetimes are easily possible), because there is no QUIC-like
server configuration that needs to be frequently updated at client-side. Thus, this
yields a protocol without the need to frequently replace the server configuration
gs at the client.

The maximal size of punctured secret keys, and thus the storage requirement
of the protocol, depends on the size of time slots. Longer time slots (several hours
or possibly even a few days, depending on the number of connections during this
time) require more storage, but only loosely synchronized clocks. Short time
slots (a few minutes) require less storage, but more precisely synchronized clocks.
These parameters can be chosen depending on the individual characteristics of
a server and the services that it provides.

Related work. The idea of forward-secret encryption based on hierarchical
identity-based encryption is due to Canetti, Halevi, and Katz [9]. Pointcheval and
Sanders [37] studied forward secrecy for non-interactive key-exchange protocols
based on multilinear maps. Both approaches however only provide coarse-grained
forward secrecy with respect to time periods, whereas we aim at a fine-grained,
immediate notion of forward secrecy in the setting of key exchange.

With a similar goal in mind, the previously mentioned work of Green and
Miers [21] achieves forward secrecy in the context of asynchronous messaging.4

Their construction blends the attribute-based encryption scheme of Ostrovsky,
Sahai, and Waters [35] with the scheme of Canetti, Halevi, and Katz [9] or,
alternatively, with the scheme of Boneh, Boyen, and Goh [7]. This makes their
scheme relatively complex and bound to specific algebraic settings and complex-
ity assumptions. Moreover, their scheme achieves only CPA security, and requires

4 Observe that asynchronous messaging and 0-RTT key exchange are conceptually
relatively close. In both settings, a data protection key is to be established while
only unilateral communication is possible. While different, e.g., in constraints for
latency and storage overhead, this in particular implies that our construction can
also be employed in the setting of asynchronous messaging.
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the random oracle model [3] and the Fujisaki-Okamoto transform [20] to achieve
CCA security. In contrast, we describe a simple, natural and directly CCA-
secure construction based on any hierarchical identity-based KEM (HIBKEM),
which can be instantiated from any HIBKEM that only needs to provide weak
selective-ID security.

The security of the QUIC protocol was formally analyzed by Fischlin and
Günther [18] as well as Lychev et al. [33]. Krawczyk and Wee [29] described
the OPTLS protocol as a foundation for TLS 1.3, including a 0-RTT mode. For
TLS 1.3, Cremers et al. [14] conducted a tool-supported analysis of TLS 1.3
including a draft 0-RTT handshake mode, and Fischlin and Günther [19] ana-
lyzed the provable security of both Diffie–Hellman- and PSK-based 0-RTT hand-
shake drafts. Foundational definitions and generic constructions of 0-RTT key
exchange from other cryptographic primitives were given by Hale et al. [23]. All
these works consider security models and constructions without forward secrecy
of the first message. In a related, but different direction, Cohn-Gordon et al. [12]
consider post-compromise security for key-exchange protocols that use key ratch-
eting, where the session key is frequently updated during the lifetime of a single
session.

Outline of the paper. Section 2 introduces the necessary building blocks
for our construction as well as puncturable forward-secret key encapsulation
(PFSKEM), before we provide a generic PFSKEM construction from HIBE. We
formalize forward-secret one-pass key exchange protocols (FSOPKE) in Sect. 3,
together with a corresponding security model. In Sect. 4 we provide a generic
construction of FSOPKE with server authentication from PFSKEM and prove
its security in the FSOPKE model. In Sect. 5 we analyze the size of keys and
messages for different deployment parameters.

2 Generic Construction of Puncturable Encryption

2.1 Building Blocks

Let us begin with recapping the definition and security of one-time signature
schemes, as well as hierarchical identity-based key encapsulation schemes.

Definition 1 (One-Time Signatures). A one-time signature scheme OTSIG
consists of three probabilistic polynomial-time algorithms (OTSIG.KGen,
OTSIG.Sign, OTSIG.Vfy).

– OTSIG.KGen(1λ) takes as input a security parameter λ and outputs a public
key pkOT and a secret key skOT .

– OTSIG.Sign(skOT ,m) takes as input a secret key and a message m ∈ {0, 1}n.
Output is a signature σ.

– OTSIG.Vfy(pkOT ,m, σ) input is a public key, a message m ∈ {0, 1}n and a
signature σ. If σ is a valid signature for m under pkOT , then the algorithm
outputs 1, else 0.

Consider the following security experiment GsEUF-1-CMA
A,OTSIG (λ) played between a

challenger C and an adversary A.
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1. The challenger C computes (pkOT , skOT ) $← OTSIG.KGen(1λ) and runs A
with input pkOT .

2. A may query one arbitrary message m to the challenger. C replies with σ
$←

OTSIG.Sign(skOT ,m).
3. A eventually outputs a message m∗ and a signature σ∗. We denote the event

that OTSIG.Vfy(pkOT ,m∗, σ∗) = 1 and (m∗, σ∗) �= (m,σ) by

GsEUF-1-CMA
A,OTSIG (λ) = 1.

Definition 2 (Security of One-Time Signatures). We define the advantage
of an adversary A in the game GsEUF-1-CMA

A,OTSIG (λ) as

AdvsEUF-1-CMA
A,OTSIG (λ):= Pr

[
GsEUF-1-CMA

A,OTSIG (λ) = 1
]
.

A one-time signature scheme OTSIG is strongly secure against existential forg-
eries under adaptive chosen-message attacks (sEUF-1-CMA), if AdvsEUF-1-CMA

A,OTSIG (λ)
is a negligible function in λ for all probabilistic polynomial-time adversaries A.

In our generic construction we use a hierarchical identity-based key encap-
sulation scheme (HIBKEM) [6]. HIBKEM schemes enable a user to encapsulate a
symmetric key with the recipients identity. An identity at depth t in the hierar-
chical tree is represented by a vector ID|t = (I1, · · · , It). Ancestors of the identity
ID|t are identities represented by vectors ID|s = (J1, · · · , Js) with 1 ≤ s < t and
Ii = Ji for 1 ≤ i ≤ s.

Definition 3 (HIBKEM [6]). A hierarchical identity-based key encapsula-
tion scheme HIBKEM consists of four probabilistic polynomial-time algorithms
(HIBKEM.KGen,HIBKEM.Del,HIBKEM.Enc,HIBKEM.Dec).

– HIBKEM.KGen(1λ) takes as input a security parameter λ and outputs an a
public key pk and an initial secret key (or master key) msk, which we refer as
the private key at depth 0. We assume that pk implicitly defines the identity
space ID and the key space K.

– HIBKEM.Del(ID|t, sk ID′|s) takes as input an identity ID|t at depth t and the
private key of an ancestor identity ID′

|s at depth s < t or the master key msk.
Output is a secret key sk ID|t.

– HIBKEM.Enc(pk , ID) takes a input the public key pk and the target ID. The
algorithm outputs a ciphertext CT and a symmetric key K.

– HIBKEM.Dec(sk ID,CT) takes as input a secret key skID and a ciphertext CT.
Output is a symmetric key K or ⊥ if decryption fails.

Consider the following selective-ID CPA security experiment GIND-sID-CPA
A,HIBKEM (λ)

played between a challenger C and an adversary A.

1. A outputs the target identity ID∗ on which it wants to be challenged.
2. The challenger generates the system parameters and computes (pk ,msk) $←

HIBKEM.KGen(1λ). C generates (K0,CT
∗) $← HIBKEM.Enc(pk , ID∗) and

K1
$← K. Then the challenger sends (Kb,CT

∗, pk) to A where b
$← {0, 1}.
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3. A may query an HIBKEM.Del oracle. The HIBKEM.Del oracle outputs the
secret key of a requested identity ID. The only restriction is, that the attacker
A is not allowed to ask the HIBKEM.Del oracle for the secret key of ID∗ or
any ancestor identity of ID∗.

4. Finally, A eventually outputs a guess b′. We denote the event that b = b′ by

GIND-sID-CPA
A,HIBKEM (λ) = 1

Definition 4 (Security of HIBKEM). We define the advantage of an adver-
sary A in the selective-ID game GIND-sID-CPA

A,HIBKEM (λ) as

AdvIND-sID-CPA
A,HIBKEM (λ):=

∣∣∣∣Pr
[
GIND-sID-CPA

A,HIBKEM (λ) = 1
] − 1

2

∣∣∣∣

A hierarchical identity-based key encapsulation scheme HIBKEM is selective-ID
CPA-secure (IND-sID-CPA), if AdvIND-sID-CPA

A,HIBKEM (λ) is a negligible function in λ for
all probabilistic polynomial-time adversaries A.

2.2 Puncturable Forward-Secret Key Encapsulation

We now formally introduce the definition of a puncturable forward-secret key
encapsulation (PFSKEM) scheme as well as its corresponding correctness defin-
ition and security notion.

Definition 5 (PFSKEM). A puncturable forward-secret key encapsulation
scheme PFSKEM consists of five probabilistic polynomial-time algorithms
(PFSKEM.KGen, PFSKEM.Enc, PFSKEM.PnctCxt, PFSKEM.Dec,
PFSKEM.PnctInt).

– PFSKEM.KGen(1λ) takes as input a security parameter λ and outputs a public
key PK and an initial secret key SK .

– PFSKEM.Enc(PK , τ) takes as input a public key and a time period τ . Output
is a ciphertext CT and a symmetric key K.

– PFSKEM.PnctCxt(SK , τ,CT) input is the current secret key SK , a time period
τ and additionally a ciphertext CT. The algorithm outputs a new secret key
SK ′.

– PFSKEM.Dec(SK , τ,CT) takes as input a secret key SK , time period τ and a
ciphertext CT. Output is a symmetric key K or ⊥ if decapsulation fails.

– PFSKEM.PnctInt(SK , τ) takes as input a secret key SK and a time interval τ .
Output is a secret key SK ′ for the next time interval τ + 1.

Definition 6 (Correctness of PFSKEM). For all λ, n ∈ N, any (PK ,SK )
$← PFSKEM.KGen(1λ), any time period τ∗, any (K,CT∗) $← PFSKEM.Enc
(PK , τ∗), and any (arbitrary interleaved) sequence i = 0, . . . , n − 1 of invoca-
tions of SK ′ $← PFSKEM.PnctCxt(SK , τ,CT) for any (τ,CT) �= (τ∗,CT∗) or SK ′
$← PFSKEM.PnctInt(SK , τ) for any τ �= τ∗ it holds that PFSKEM.Dec
(SK ′, τ∗,CT∗) = K.
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Beyond the regular correctness definition above, we further define an
extended variant of correctness which demands that decapsulation under a pre-
viously punctured out time-interval and ciphertext yields an error symbol ⊥.

Definition 7 (Extended Correctness of PFSKEM). For all λ, n ∈ N,
any (PK ,SK ) $← PFSKEM.KGen(1λ), any time period τ∗, any (K,CT∗) $←
PFSKEM.Enc(PK , τ∗), and any (arbitrary interleaved) sequence i = 0, . . . , n − 1
of invocations of SK ′ $← PFSKEM.PnctCxt(SK , τi,CTi) for any (τi,CTi) or
SK ′ $← PFSKEM.PnctInt(SK ′, τ ′

i) for any τ ′
i it holds that if (τi,CTi) = (τ∗,CT∗)

or τ ′
i = τ∗ for some i ∈ {0, . . . , n − 1}, then PFSKEM.Dec(SK ′, τ∗,CT∗) = ⊥.

The security of a PFSKEM scheme is defined by the following selective-time
CCA security experiment GIND-sT-CCA

A,PFSKEM (λ) played between a challenger C and an
attacker A.

1. In the beginning, A outputs the target time τ∗.
2. The challenger C generates a fresh key pair (PK ,SK ) $← PFSKEM.KGen(1λ).

It computes (CT∗,K∗
0)

$← PFSKEM.Enc(PK , τ∗) and selects K∗
1

$← K. Addi-
tionally, it chooses a bit b

$← {0, 1} and then sends (PK ,CT∗,K∗
b) to A.

3. A can now ask a polynomial number of the following queries:
– PFSKEM.Dec(τ,CT): The challenger computes K

$← PFSKEM.Dec(SK ,
τ,CT) and returns K to A.

– PFSKEM.PnctCxt(τ,CT): The challenger runs SK $← PFSKEM.PnctCxt
(SK , τ,CT) and returns symbol �.

– PFSKEM.PnctInt(τ): The challenger runs SK $← PFSKEM.PnctInt(SK , τ)
and returns symbol �.

– PFSKEM.Corrupt(): The challenger aborts and outputs a random bit if A
has not queried PFSKEM.PnctCxt(τ∗,CT∗) or PFSKEM.PnctInt(τ∗) before.
Otherwise, the challenger returns the current secret key SK to A.

4. A eventually outputs a guess b′. We denote the event that b = b′ by

GIND-sT-CCA
A,PFSKEM (λ) = 1 .

Definition 8 (Security of PFSKEM). We define the advantage of an adver-
sary A in the selective-time CCA game GIND-sT-CCA

A,PFSKEM (λ) as

AdvIND-sT-CCA
A,PFSKEM (λ):=

∣∣∣∣Pr
[
GIND-sT-CCA

A,PFSKEM (λ) = 1
] − 1

2

∣∣∣∣

A puncturable forward-secret key encapsulation scheme PFSKEM is selective-
time CCA-secure (IND-sT-CCA), if AdvIND-sT-CCA

A,PFSKEM (λ) is a negligible function in
λ for all probabilistic polynomial-time adversaries A.
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2.3 A Generic PFSKEM Construction from HIBKEM

We have now set up the necessary building blocks for our generic PFSKEM
construction. In this construction, we deploy a HIBKEM scheme over a binary
hierarchy tree comprising time intervals in the upper part and identifiers within
these intervals in the lower part. The latter identifiers are carefully crafted to be
public keys of a one-time signature scheme, conveniently enabling our construc-
tion to achieve CCA security.

We start with a short description of the binary tree, where the root node has
the label ε. The left child of a node under label n is labeled with n0 and the right
child with n1. In a HIBKEM scheme every identity IDi is represented by a node
ni of the hierarchy tree T and with sk i we denote the secret key corresponding
to node ni. The root node has the corresponding master secret key msk of the
HIBKEM scheme. To identify specific nodes in the tree we need the following
functions.

– Parent(T, n). On input of a description of a tree T and a node n, this function
outputs the label of the direct ancestor of n or ⊥ if it does not exists.

– Sibling(T, n). On input of a description of a tree T and a label of a node n
this function outputs the other child n′ �= n of the node Parent(T, n) or ⊥ if
it does not exists.

On input of a description of a tree T , a set of secret keys and nodes SK =
{(sk1, n1), . . . , (sku, nu)} and a node n, the following algorithm computes a new
set of secret keys and nodes SK ′. The secret keys in SK ′ can neither be used to
derive the secret key of n nor of its descendants.

– PunctureTree(T,SK , n). Create an empty set SK ′:={}. Then, for all tuples
(sk i, ni) in SK :

• If ni is neither an ancestor nor a descendant of n in the tree and if ni �= n,
then set SK ′:=SK ′ ∪ (sk i, ni) and SK :=SK \ {(sk i, ni)}.

If there is a remaining node n′ with its secret key sk ′ in SK and if n′ is an
ancestor of n, then set ntmp:=n, and while Parent(ntmp) �= ⊥:

• if n′ is an ancestor of Sibling(ntmp) then SK ′:=SK ′ ∪ {HIBKEM.Del
(Sibling(ntmp), sk ′),Sibling(ntmp))}

• ntmp:=Parent(ntmp).
Output is the set of secret keys and nodes SK ′.

Illustrating the described algorithm, we provide an example in Fig. 2, with a
tree where the nodes are labeled as described earlier. SK consists of the tuple
{(msk, ε)}, where msk is the initial secret key of a HIBKEM. We would like to
puncture the secret key SK for the input n01. In order to do so, we must delete
all keys in SK that can be used to derive the secret keys for the nodes with label
“01” or with the prefix “01”. For this, we run the algorithm PunctureTree with
input (T,SK , 01). In Fig. 2 the gray nodes denote the labels for which we have
to derive the secret keys within the new PFSKEM secret key SK ′. The secret
keys in SK ′ can only be used to generate secret keys for identities which are not
ancestors or descendants of the punctured node “01”.
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SK ′ = {(sk00, 00), (sk1, 1)} SK = {(msk, ε)},

Fig. 2. Hierarchy tree with secret key SK′, under initial secret key SK

In the following, an identifier ID = τ ||pkOT consisting of a time interval τ
and a one-time signature public key pkOT is a leaf in a HIBKEM tree T . The
public key PK and the initial secret key SK of the PFSKEM construction are,
respectively, the public key pk and a pair consisting of the initial secret key of
the HIBKEM scheme with the label of the root node (msk, ε).

To obtain a symmetric key at time τ , one can use the encapsulation algorithm
of the HIBKEM scheme with input (PK , τ ||pkOT ). Correspondingly, the secret
key SK of the PFSKEM scheme can be punctured via the previously defined
algorithm PunctureTree(T,SK , n) by deleting the secret key for the identity ID =
τ ||pkOT in the HIBKEM scheme including all secret keys of ancestors of ID.
Particularly, this can be accomplished by using the previously defined algorithm
PunctureTree(T,SK , n). Decapsulation uses the secret key of the identity ID =
τ ||pkOT with a ciphertext CT and outputs the symmetric key or ⊥ if the key is
already deleted or the signature of the ciphertext is not valid.

The described generic construction is presented in Fig. 3.
As we establish next, our PFSKEM construction is selective-time CCA-secure

(according to Definition 8) if the underlying HIBKEM scheme is IND-sID-CPA-
secure and the OTSIG scheme is sEUF-1-CMA-secure (cf. Definitions 4 and 2).

Theorem 1. For any efficient polynomial-time adversary A in the IND-sT-CCA
game there exist efficient polynomial-time algorithms BHIBKEM and BOTSIG such
that

AdvIND-sT-CCA
A,PFSKEM (λ) ≤ AdvIND-sID-CPA

BHIBKEM,HIBKEM(λ) + AdvsEUF-1-CMA
BOTSIG,OTSIG(λ).
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– PFSKEM.KGen(1λ). On input of a security parameter λ generate
(pk, msk)

$← HIBKEM.KGen(1λ) and output PK := pk and SK := (msk, ε).

– PFSKEM.Enc(PK , τ). On input of a public key PK and a time in-
terval τ , generate (pkOT , skOT )

$← OTSIG.KGen(1λ). Next, compute
(CTHIBKEM,K)

$← HIBKEM.Enc(pk , τ ||pkOT ) and σ
$← OTSIG(skOT ,CTHIBKEM).

Then, set CTPFSKEM = (CTHIBKEM, σ, pkOT ) and output K and CTPFSKEM.

– PFSKEM.PnctCxt(SK , τ,CTPFSKEM). Parse CTPFSKEM as (CTHIBKEM, σ, pkOT )
and let T be the description of the HIBKEM tree. Compute
SK ′ = PunctureTree(T,SK , τ ||pkOT ) and output the new secret key SK′.

– PFSKEM.Dec(SK , τ,CTPFSKEM). Parse CTPFSKEM as (CTHIBKEM, σ, pkOT ). If
OTSIG.Vfy(pkOT ,CTHIBKEM, σ) = 0 output ⊥. Else:

• If SK contains sk ID, then output K $← HIBKEM.Dec, (sk ID,CTHIBKEM).
• If SK contains an ancestor node nj of the node with label

ID = τ ||pkOT , then compute sk ID
$← HIBKEM.Del(ID, sk j) and output

K
$← HIBKEM.Dec, (sk ID,CTHIBKEM).

• Otherwise output ⊥.

– PFSKEM.PnctInt(SK , τ). Compute SK ′ = PunctureTree(T,SK , τ) where T is a
description of the hierarchy tree. Output the new secret key SK′.

Fig. 3. Generic PFSKEM construction from a HIBKEM and a one-time signature
scheme.

Proof. An attacker A on the PFSKEM scheme outputs a target time period τ∗

and can make the queries described in the security experiment for PFSKEM
schemes.

Let (CT∗
PFSKEM,K∗

b) = ((CT∗
HIBKEM, σ∗, pk∗

OT ),K∗
b) be the challenge we have to

compute for the PFSKEM attacker and let E denote the event that the
attacker A never queries PFSKEM.Dec(τ,CTPFSKEM = (CTHIBKEM, σ, pkOT ))
where (CTHIBKEM, σ) �= (CT∗

HIBKEM, σ∗), pkOT = pk∗
OT , and OTSIG.Vfy(pkOT ,

CTHIBKEM, σ) = 1 in the security game. The probability for A to win the secu-
rity game is

Pr
[
GIND-sT-CCA

A,PFSKEM (λ) = 1
]

= Pr
[
GIND-sT-CCA

A,PFSKEM (λ) = 1 ∩ E
]
+ Pr

[
GIND-sT-CCA

A,PFSKEM (λ) = 1 ∩ ¬E]

≤ Pr
[
GIND-sT-CCA

A,PFSKEM (λ) = 1 ∩ E
]
+ Pr [¬E]

In case event ¬E occurs, A asks for a decapsulation PFSKEM.Dec
(τ,CTPFSKEM = (CTHIBKEM, σ, pkOT )) where (CTHIBKEM, σ) �= (CT∗

HIBKEM, σ∗)
with pkOT = pk∗

OT and OTSIG.Vfy(pkOT ,CTHIBKEM, σ) = 1 in the security
game. This means that CTHIBKEM �= CT∗

HIBKEM or σ �= σ∗ (or both). Hence,
(CTHIBKEM, σ) is a valid strong existential forgery under the OTSIG scheme.
Outputting this forgery, we can use A to build an attacker BOTSIG to break
the sEUF-1-CMA security of OTSIG whenever A triggers event ¬E. Therefore,
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Pr[¬E] = AdvsEUF-1-CMA
BOTSIG,OTSIG(λ).

Next, we build an adversary BHIBKEM against the IND-sID-CPA secu-
rity of the HIBKEM. BHIBKEM generates a fresh key pair (pk∗

OT , sk∗
OT ) $←

OTSIG.KGen(1λ). Then, BHIBKEM starts A to obtain τ∗, sends ID = τ∗||pk∗
OT

to the HIBKEM challenger and receives a challenge (Kb,CT
∗
HIBKEM) with the

public key pkHIBKEM. BHIBKEM sets PK = pkHIBKEM and computes the sig-
nature σ∗ for CT∗

HIBKEM. BHIBKEM continues to run A with the challenge
(CT∗

PFSKEM = (CT∗
HIBKEM, σ∗, pk∗

OT ),K∗
b = Kb) and the public key PK . BHIBKEM

provides answers to the queries defined in the selective-time CCA security exper-
iment GIND-sT-CCA

A,PFSKEM (λ) as follows:

– PFSKEM.Dec(τ,CTPFSKEM = (CTHIBKEM, σ, pkOT )) with τ �= τ∗: BHIBKEM can
query the HIBKEM challenger for the secret key of identity τ ||pkOT , because
τ ||pkOT is not an ancestor identity of τ∗||pk∗

OT . With the secret key it is
possible to decapsulate the key for CT∗

HIBKEM.
– PFSKEM.Dec(τ,CTPFSKEM = (CTHIBKEM, σ, pkOT )): BHIBKEM can query the
HIBKEM challenger for the secret key of identity τ∗||pkOT .

– PFSKEM.Corrupt: If adversary A did not call PFSKEM.PnctCxt(τ∗,CT∗) or
PFSKEM.PnctInt(τ∗) before, then BHIBKEM aborts and outputs a random bit,
else BHIBKEM can query the HIBKEM challenger for all secret keys of the
requested identities and send them to A.

In the end A outputs a guess b′ and BHIBKEM forwards b′ to the HIBKEM chal-
lenger as its own output. BHIBKEM wins if A outputs the right b′. The security
experiment can be simulated correctly if event E occurs. Therefore we have

Pr
[
GIND-sID-CPA

BHIBKEM,HIBKEM(λ) = 1
]

= Pr
[
GIND-sT-CCA

A,PFSKEM (λ) = 1 ∩ E
]

Putting the above bounds together, we obtain

AdvIND-sT-CCA
A,PFSKEM (λ)

=
∣∣∣∣Pr

[
GIND-sT-CCA

A,PFSKEM (λ) = 1
] − 1

2

∣∣∣∣

=
∣∣∣∣Pr

[
GIND-sT-CCA

A,PFSKEM (λ) = 1 ∩ E
]
+ Pr

[
GIND-sT-CCA

A,PFSKEM (λ) = 1 ∩ ¬E] − 1
2

∣∣∣∣

≤
∣∣∣∣Pr

[
GIND-sT-CCA

A,PFSKEM (λ) = 1 ∩ E
] − 1

2

∣∣∣∣ + Pr
[
GIND-sT-CCA

A,PFSKEM (λ) = 1 ∩ ¬E]

≤
∣∣∣∣Pr

[
GIND-sID-CPA

BHIBKEM,HIBKEM(λ) = 1
] − 1

2

∣∣∣∣ + Pr[¬E]

which yields

AdvIND-sT-CCA
A,PFSKEM (λ) ≤ AdvIND-sID-CPA

BHIBKEM,HIBKEM(λ) + AdvsEUF-1-CMA
BOTSIG,OTSIG(λ)


�
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3 Forward-Secret One-Pass Key Exchange Protocols

3.1 Syntax

Protocols in a 0-RTT–like setting, where only one message is transmitted
between two key exchange protocol partners, have been the object of previous
design interest. In particular, a similar scenario was considered by Halevi and
Krawczyk under the notion of one-pass key exchange [24]. Aiming for efficiency
and optimal key management, we extend their setting by allowing shared state
between several executions of the protocol and introduce a discretized notion of
time.

Definition 9 (FSOPKE). A forward-secret one-pass key exchange (FSOPKE)
protocol supporting τmax time periods and providing mutual or unilateral (server-
only) authentication consists of the following four probabilistic algorithms.

FSOPKE.KGen(1λ, r, τmax) → (pk , sk). On input the security parameter 1λ, a
role r ∈ {client, server}, and the maximum number of time periods τmax ∈ N,
this algorithm outputs a public/secret key pair (pk , sk) for the specified role.

FSOPKE.RunC(sk , pk) → (sk ′, k,m). On input a secret key sk and a public
key pk, this algorithm outputs a (potentially modified) secret key sk ′, a session
key k ∈ {0, 1}∗ ∪ {⊥}, and a message m ∈ {0, 1}∗ ∪ {⊥}.

FSOPKE.RunS(sk , pk ,m) → (sk ′, k). On input of a secret key sk, a public key pk,
and a message m ∈ {0, 1}∗, this algorithm outputs a (potentially modified)
secret key sk ′ and a session key k ∈ {0, 1}∗ ∪ {⊥}. For a unilateral authenti-
cating protocol, pk = ⊥ indicates that the client is not authenticated.

FSOPKE.TimeStep(sk , r) → sk ′. On input a secret key sk and an according
role r ∈ {client, server}, this algorithm outputs a (potentially modified) secret
key sk ′.

We say that a forward-secret one-pass key exchange protocol is correct if:

– for all (pk i, sk i) ← FSOPKE.KGen(1λ, client, τmax),
– for all (pk j , sk j) ← FSOPKE.KGen(1λ, server, τmax),
– for any n ∈ N with n < τmax and all

• sk ′
i ← FSOPKE.TimeStepn(sk i, client)

• sk ′
j ← FSOPKE.TimeStepn(sk j , server)

(where FSOPKE.TimeStepn indicates n iterative applications of
FSOPKE.TimeStep),

– for all (sk ′′
i , ki,m) ← FSOPKE.RunC(sk ′

i, pk j),
– and for all

• (sk ′′
j , kj) ← FSOPKE.RunS(sk ′

j , pk i,m)
(for mutual authentication)

• resp. (sk ′′
j , kj) ← FSOPKE.RunS(sk ′

j ,⊥,m)
(for unilateral authentication),

it holds that ki = kj.
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A forward-secret one-pass key exchange protocol is used by a client and a
server party as follows. First of all, both parties generate public/secret key pairs
(pk , sk) ← FSOPKE.KGen(1λ, r, τmax) for their according role r = client resp. r =
server. To proceed in time (step-wise), they can invoke FSOPKE.TimeStep
on their respective secret keys (up to τmax − 1 times). Two parties holding
secret keys in the same time frame then communicate by the client running
FSOPKE.RunC on its secret key and the public key of its intended partner,
obtaining the joint session key and a message; transmitting the latter to the
server. The server then invokes FSOPKE.RunS on its secret key, the (intended)
client’s public key (or ⊥ in case of unilateral authentication), and the obtained
message, which outputs, by correctness, the same joint session key.

Note that this (0-RTT) session key is the only session key derived. Unlike in
QUIC and TLS 1.3, we demand that this key immediately enjoys full forward
secrecy and replay protection, making an upgrade to another key unnecessary.
This demand is realized via the forthcoming security model in Sect. 3.2.

3.2 Security Model

We denote by I = C ∪̇ S the set of identities modeling both clients (C) and servers
(S) in the system, each identity u ∈ I being associated with a public/secret
key pair (pku, sku). Here, the public-key part pku is generated once and fixed,
whereas sku can be modified by (the sessions of) the according party over time.
Each identity u moreover holds the local, current time in a variable denoted
by τu ∈ N, initialized to τu ← 1.

In our model, an adversary A interacts with several sessions of multiple
identities running a forward-secret one-pass key exchange protocol. We denote
by πi

u the i-th session of identity u and associate with each session the following
internal state variables:

– role ∈ {client, server} indicates the role of the session. We demand that role =
client resp. role = server if and only if u ∈ C resp. u ∈ S.

– id ∈ I indicates the owner of the session (e.g., u for a session πi
u).

– pid ∈ I∪{⊥} indicates the intended communication partner, and is set exactly
once. Setting pid = ⊥ is possible if role = server to indicate the client is
not authenticated. Initially, pid = ⊥ can also be set (if role = server) to
indicate that the client’s identity is to be learned within the protocol (i.e.,
post-specified).

– trans ∈ {0, 1}∗ ∪ {⊥} records the (single) sent, resp. received, message.
– time ∈ N records the time interval used when processing the sent, resp.

received, message.
– key ∈ {0, 1}∗ ∪ {⊥} is the session key derived in the session.
– keystate ∈ {fresh, revealed} indicates whether the session key has been revealed.

Initially keystate = fresh.

We write, e.g., πi
u.key when referring to state variables of a specific session.
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Definition 10 (Partnered sessions). We say that two sessions πi
u and πj

v

are partnered if

– πi
u.trans = πj

v.trans, i.e., they share the same transcript,
– πi

u.time = πj
v.time, i.e., they run in the same time interval,

– πi
u.role = client ∧ πj

v.role = server, i.e., they run in opposite roles,
– πi

u.pid = πi
v.id, i.e., the server session is owned by the client’s intended partner,

and
– πi

u.id = πi
v.pid ∨ πj

v.pid = ⊥, i.e., the client session is owned by the server’s
intended partner or the server considers its partner to be unauthenticated.

We assume the adversary A controls the network, is responsible for transport-
ing messages, and hence allowed to arbitrary modify, drop, or reorder messages.
It interacts with the key exchange protocol and sessions via the following queries.

NewSession(u, role, pid,m). Initializes a new session of identity u ∈ I, taking
role role ∈ {client, server} and intended communication partner pid ∈ I ∪
{⊥} (where pid = ⊥ for a server session indicates an unauthenticated client
partner). If role �= server, we require that m = ⊥.
If role = client, invoke (sku, k,m) ← FSOPKE.RunC(sku, pkpid), else invoke
(sku, k) ← FSOPKE.RunS(sku, pkpid,m), where pk⊥ = ⊥.
Register a new session πi

u with role = role, id = u, pid = pid, trans = m,
time = τu, and key = k.
If role = client, return m. If role = server, return ⊥ if k = ⊥, and � otherwise.

Reveal(πi
u). Reveals the session key of a specific session, if derived.

If πi
u.key �= ⊥, set πi

u.keystate ← revealed and return key, else return ⊥.
Corrupt(u). Corrupts the long-term state of an identity u ∈ I. This query can be

asked at most once per identity u and, from this point on, no further queries
to (sessions of) u are allowed.
Let Corrupt(u) be the ς-th query issued by A; we set ςcorr

u ← ς, where ςcorr
u =

∞ for uncorrupted identities. Likewise, we record the identity’s current time
τu at corruption and set τ corr

u ← τu.
Return sku.

Tick(u). Forward the state of some identity u ∈ I by one time step by invoking
sku ← FSOPKE.TimeStep(sku). Record the new time as τu ← τu + 1.

Test(πi
u). Allows the adversary to challenge a derived session key and is asked

exactly once. This oracle is given a secret bit btest ∈ {0, 1} chosen at random
in the security game.
If πi

u.key = ⊥, return ⊥.
Set τ t ← πt.time. If btest = 0, return πi

u.key, else return a random key chosen
according to the probability distribution specified by the protocol.

Definition 11 (Security for FSOPKE). Let FSOPKE be a forward-secret
one-pass key exchange protocol and A a PPT adversary interacting with FSOPKE
via the queries defined above in the following game GFSOPKE-sec

A,FSOPKE :

– The challenger generates keys and state for all parties u ∈ I as (pku, sku) ←
FSOPKE.KGen(1λ) and chooses a random bit btest

$← {0, 1}.
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– The adversary A receives (u, pku) for all u ∈ I and has access to the queries
NewSession, Reveal, Corrupt, Tick, and Test. Record for the Test query, being
the ςtest-th query, the tested session πt.

– Eventually, A stops and outputs a guess b ∈ {0, 1}.

The challenger outputs 1 (denoted by GFSOPKE-sec
A,FSOPKE = 1) and say the adversary

wins if b = btest and the following conditions hold:

1. πt.keystate = fresh, i.e., A has not issued a Reveal query to the test session.
2. πj

v.keystate = fresh for any session πj
v such that πj

v and πt are partners, i.e.,
A has not issued a Reveal query to a session partnered with the test session.

3. ςcorr
u > ςtest for u = πt.id, i.e., the owner of the test session has not been

corrupted before the Test query was issued.
4. if πt.role = client and ςcorr

v �= ∞, for v = πt.pid, then one of the following
must hold:
– There exists a session πj

v partnered with πt, i.e., a session of the intended
server partner processed the client session’s message in the intended time
interval.

– τ t < τ corr
v , i.e., the intended partner was corrupted in a time interval after

that of the tested session.
5. if πt.role = server and πt.pid �= ⊥, then ςcorr

v > ςtest for v = πt.pid, i.e.,
the intended client partner of a tested server session has not been corrupted
before the Test query was issued.

6. if πt.role = server and πt.pid = ⊥, then there exists a session πj
v partnered

with πt, i.e., when testing a server session without authenticated partner, there
must exist an honest communication partner to the tested server session πt.

Otherwise, the challenger outputs a random bit. We say that FSOPKE is secure
if the following advantage function is negligible in the security parameter:

AdvFSOPKE-sec
A,FSOPKE (λ):=

∣∣∣∣Pr
[
GFSOPKE-sec

A,FSOPKE = 1
] − 1

2

∣∣∣∣ .

Remark 1. Notably, our security model requires both forward secrecy and replay
protection from a FSOPKE protocol. Furthermore, it captures unilateral authen-
tication (of the server) and mutual authentication simultaneously.

As expected, we restrict Reveal on both partner sessions involved in the
test session (conditions 1 and 2). However, our notion of partnering in Defi-
nition 10 lends more power to an adversary than is typically provided. Partner-
ing is defined not only with respect to the session transcripts, partner IDs, and
roles, but also with respect to time. Consequently, if the two sessions are not
operating within the same time interval, Reveal queries are, in fact, permitted
on the intended partner session to the test session – even if all other aspects of
partnering are fulfilled (condition 2).

To ensure replay protection, the adversary is allowed to test and reveal match-
ing sessions of the same role; we only forbid testing and revealing two matching
sessions of opposite roles (via the partnering condition). This explicitly allows for
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replaying of a client’s message to two server sessions (i.e., spawning two server
sessions on input of the same client message m) and revealing one server session
while testing the other session. Hence, our model requires that secure protocols
prevent replays.

For forward secrecy, corruption of the tested identity is allowed after the Test
query was issued (condition 3). This applies to both clients (if the client identity
exists) and servers.

Server corruption under a tested client session in the 0-RTT setting neces-
sitates special considerations (condition 4). First we consider the scenario that
the intended partner server session processes messages in the same time interval
as the test query, i.e. τ t. In this case a tested client’s message must have been
processed by the intended partner server session before the server is corrupted5

to exclude the following trivial attack: observe that an adversary spawning a
new client session (with some pid = v, outputting a message m) which it subse-
quently tests, may obtain the secret key skv of the (server) identity v through
a Corrupt(v) query such that, by correctness of the FSOPKE protocol, it can
process message m and derive the correct session key. In this manner, an adver-
sary would always be trivially able to win the key secrecy game. Hence, condi-
tion 4 (first item) encodes the strongest possible forward secrecy guarantees in
such a scenario: whenever a client’s message has been processed by the server,
the corresponding session key becomes forward-secret w.r.t. compromises of the
server’s long-term secret.

Alternatively, we consider the scenario where the intended partner server ses-
sion processes messages in a time interval after that used in the tested session,
i.e. τ t < τ corr

v . If the server session’s time interval is ahead of that of the tested
client session then different session keys are computed. Yet this implies that
there are no immediate forward secrecy guarantees should the client’s clock be
ahead of the server’s time interval, since the server’s clock can be moved forward
after corruption of the server. Thus, condition 4 (second item) gives an addi-
tional forward secrecy guarantee: the tested session key is forward-secret w.r.t.
compromises of the server’s long-term secret for any future time interval.

As with corruption of the test session identity (condition 3), if a server ses-
sion is tested such that a partnered client identity is defined, corruption of the
partnered client is restricted until after the test query has been made (condi-
tion 5). We do guarantee security if the client is corrupted immediately after
it has issued the test session message, but before the server has processed it,
due to potential authentication by the client. Should the message be signed, for
example, such corruption would allow an adversary to tamper with the mes-
sage. Thus, for compromises of the client’s long-term secret, we demand forward
secrecy immediately after the server establishes the session key.

For the case of unilateral authentication, we must naturally restrict Test
queries on the server side to cases where an honest partnered client exists (con-
dition 6), as otherwise the adversary can take the role of the client and hence
trivially learns the key.

5 Recall that the adversary cannot spawn or interact with sessions of a party anymore
after corrupting it.
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Finally, all security guarantees are required to be provided independent of the
time stepping mechanism, making the latter a functional property of a FSOPKE
scheme which does not affect the scheme’s security. For example, a scheme could
liberally allow session key establishment even if the states of both of the involved
sessions are off by a number of time steps. While this is beyond the requirements
for a correct scheme, key secrecy still requires that such session keys are secure.

In our model, we do not consider randomness or session-state reveal
queries [10,30], but note that it could be augmented with such queries.

4 Constructions

For the construction of a forward-secret 0-RTT key exchange protocol we now
first focus on the more common case where only the server authenticates. Our
construction builds on puncturable forward-secure key encapsulation and lever-
ages some synchronization of time between parties in the system. Later, we
discuss how to adapt this construction to scenarios where relying on time syn-
chronization is not an option.

4.1 Construction Based on Synchronized Time

We construct a forward-secret one-pass key exchange protocol in a generic way
from any puncturable forward-secure key encapsulation scheme. For our con-
struction, we assume that clients and servers hold some roughly synchronized
time, but stress that we are concerned with time intervals rather than exact
time and, hence, synchronization for example on the same day is sufficient for
our scheme. Aiming at unilateral (server-only) authentication, clients do not
hold long-term key material (i.e., we have pk = ⊥ for clients) and only (mis-)use
their secret key to store the current time interval.

Definition 12 (FSOPKEU Construction). Let PFSKEM be a puncturable
forward-secure key encapsulation scheme. We construct a forward-secret one-
pass key exchange protocol FSOPKEU with unilateral authentication as follows:

FSOPKE.KGen(1λ, r, τmax) → (pk , sk).

– If r = server : Generate a public/secret key pair (PK ,SK ) ← PFSKEM.KGen

(1λ). Set pk ← (PK , τmax), τ ← 1, and sk ← (SK , τ, τmax), and out-
put (pk , sk).

– If r = client : Set pk ← ⊥, τ ← 1, and sk ← (τ), and output (pk , sk).

FSOPKE.RunC(sk , pk) → (sk ′, k,m). Parse sk = (τ) and pk = (PK , τmax). If
τ > τmax, then abort and output (sk ,⊥,⊥).
Otherwise, compute (CT,K) ← PFSKEM.Enc(PK , τ), set k ← K and m ←
CT, and output (sk , k,m).
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FSOPKE.RunS(sk , pk = ⊥,m) → (sk ′, k). Parse sk = (SK , τ, τmax). If SK = ⊥
or τ > τmax, then abort and output (sk ,⊥).
Compute K ← PFSKEM.Dec(SK , τ,m). If K = ⊥, then abort and out-
put (sk ,⊥).
Otherwise, issue SK ′ ← PFSKEM.PnctCxt(SK , τ,m). Let sk ←
(SK ′, τ, τmax), set k ← K, and output (sk , k).

FSOPKE.TimeStep(sk , r) → sk ′.

– If r = server : Parse sk = (SK , τ, τmax). If τ ≥ τmax, then set sk ← (⊥, τ +
1, τmax), and output sk.
Otherwise, let SK ′ ← PFSKEM.PnctInt(SK , τ), set sk ← (SK ′, τ + 1, τmax),
and output sk.

– Ifr = client : Parse sk = (τ), set sk ← (τ + 1), and output sk.

Correctness follows from the correctness of the underlying PFSKEM scheme;
the details are omitted here due to space limitations.

Security Analysis. We now investigate the security of our construction and
show that it is a secure forward-secret one-pass key exchange protocol with
unilateral authentication.

Theorem 2. The FSOPKEU construction from Definition 12 is a secure
FSOPKE protocol (with unilateral authentication). Formally, for any efficient
adversary A in the FSOPKE-sec game there exists an efficient algorithm B such
that

AdvFSOPKE-sec
A,FSOPKEU

(λ) ≤ nI · τ̂max · ns · AdvIND-sT-CCA
B,PFSKEM (λ),

where nI = |I| is the maximum number of identities, τ̂max is the maximum time
interval for any session, and ns is the maximum number of sessions.

Proof. Let A be an adversary against the security of FSOPKEU. We proceed in
a sequence of games, bounding the introduced difference in A’s advantage for
each step. By Advi we denote A’s advantage in one of the i-th game.

Game 0. This is the original security experiment, with adversarial advantage
Adv0 = AdvFSOPKE-sec

A,FSOPKEU
(λ).

Game 1. Here we let the challenger upfront guess a server identity s∗ ∈ I,
associated with public/secret key pair (pk∗, sk∗), and let it abort the game if
this is not the identity involved in the test session. I.e., if a server session is
tested (i.e., πt.role = server) this is the session owner s∗ = πt.id, while, if a client
session is tested (πt.role = client) it is the intended partner (s∗ = πt.pid). Let
nI = |I|. Then

Adv0 ≤ nI · Adv1.
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Game 2. Now the A guesses the time interval τ∗ = πt.time in which the tested
session ran, and aborts if the guess is incorrect. Letting τ̂max denote the maxi-
mum value π.time for any session π, it follows that

Adv1 ≤ τ̂max · Adv2.

Game 3. Continuing from Game 2 the challenger aborts if it does not correctly
guess the involved client session πt

c (i.e., πt
c.role = client) for which one of the

following two conditions holds:

– either πt
c = πt, i.e., πt

c is the tested session, or
– πt

c is partnered with the tested (server) session πt.

For the second case, observe that if a server is tested, by condition 6 of the
FSOPKE-sec security game in Definition 11, there must exist such a partnered
client session πt

c with πt
c.pid = πt.id in order for A to win.

Denoting ns as the total number of sessions, we have

Adv2 ≤ ns · Adv3.
Furthermore, observe that by Definition 7, if a server session is tested, ses-
sion πt must actually be the first accepting session owned by s∗ that is part-
nered with πt

c in order for A to win. Recall that the first such accepting ses-
sion, by correctness, derives a key K �= ⊥ as K ← PFSKEM.Dec(SK ∗, τ∗,m)
(where m = πt.trans) and hence invokes SK ∗ ← PFSKEM.PnctCxt(SK ∗, τ∗,m).
Any later such accepting session would hence, by Definition 7, derive K = ⊥
through K ← PFSKEM.Dec(SK ∗, τ∗,m), so an adversary would be given ⊥ as
the response to its Test query and cannot win.

Game 4. In this game hop, we replace the key k∗ derived in the tested session πt

by one chosen uniformly at random from the output space of PFSKEM.Dec. We
show that any adversary that distinguishes the change from Game 3 to Game 4
with non-negligible advantage can be turned into an algorithm B which wins in
GIND-sT-CCA

A,PFSKEM with the same advantage.
In this reduction, B first outputs the time interval τ∗ guessed in Game 2 as

the time interval it wants to be challenged on in GIND-sT-CCA
A,PFSKEM . It then obtains a

challenge public key PK ∗, which it associates with the server identity s∗ within
the pk∗ = (PK ∗, τmax) guessed in Game 1. For all other identities u ∈ I \ {s∗},
algorithm B generates appropriate public/secret key pairs on its own follow-
ing FSOPKE.KGen. In particular, it generates PFSKEM keys for all other server
identities s ∈ S \ {s∗}. Furthermore, B obtains a challenge ciphertext CT∗ and
key K∗, with K∗ either being the real key encapsulated in CT∗ or and indepen-
dently chosen random one.

Our goal is now to have algorithm B (correctly) simulate the security game
for A in such a way that, if K∗ is the real key, it perfectly simulates Game 3,
whereas if K∗ is a randomly chosen key, it perfectly simulates Game 4. To this
extent, algorithm B uses its oracles KGen(), PFSKEM.Dec(), PFSKEM.PnctInt(),
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and PFSKEM.PnctCxt() given in the selective ID, selective time CCA security
game in Definition 8 as follows, answering the queries of A in the key exchange
game:

NewSession(u, role, pid,m). We distinguish the following cases:

– For all client sessions πi
u (u ∈ C) except for the client session πt

c guessed in
Game 3, B simulates NewSession queries as specified in the security game.

– For the guessed client session πt
c, B does not invoke PFSKEM.Enc but uses its

challenge key K∗ as the session key k and the challenge ciphertext CT∗ as the
output message m. Observe that, through Games 1–3, we ensure that πt

c uses
time interval τ∗ and public key pk∗ (and hence the challenge PFSKEM public
key PK ∗) of server s∗.

– For all server sessions πi
s not owned by the server identity s∗ guessed in Game 1

(i.e., s ∈ S \ {s∗}), B simulates NewSession queries as specified, using the
according (self-generated) secret key sks.

– For all server sessions πi
s∗ owned by s∗ and not partnered with the guessed

client session πt
c, B uses its oracles PFSKEM.Dec and PFSKEM.PnctCxt from

the selective ID, selective time CCA game to simulate the operations for the
NewSession query. Note that, as πi

s∗ is not partnered with πt
c (though having

opposite roles and πt
c.pid = s∗), we have (πt

c.time, πt
c.trans) = (τ∗,CT∗) �=

(πi
s∗ .time, πi

s∗ .trans) and are hence allowed to call the PFSKEM.Dec oracle on
this input.

– For the first server session πt
s∗ owned by s∗ which is partnered with the guessed

client session πt
c, B sets the session key to be the challenge key k ← K∗ and

invokes PFSKEM.PnctCxt(τ∗,CT∗).
Note that partnering in particular implies πt

s∗ holds the same time as πt
c and

obtains the message of πt
c, i.e., πt

c.time = τ∗ = πt
s∗ .time and πt

c.trans = m =
πt

s∗ .trans. Furthermore, PFSKEM.PnctCxt was not invoked before on (τ∗,CT∗).
Hence, by correctness, πt

s∗ establishes the same session key K∗ as πt
c.

– For any further server session πi
s∗ partnered with πt

c, B sets k ← ⊥. By Defi-
nition 7, we know that any such session would obtain ⊥ ← PFSKEM.Dec(SK ,
τ∗,CT∗), as PFSKEM.PnctCxt has been called before on (τ∗,CT∗).

Reveal(πi
u). First, observe that any winning adversary A cannot call Reveal on

the sessions πt
c and πt

s∗ by conditions 1 and 2 of the security model, as one
of them is the tested session and the other, if it exists, is partnered with the
tested session.
For all other sessions, B holds the correct key from simulation of the
NewSession queries above, and can therefore respond to according Reveal
queries as specified.

Corrupt(u). For the server identity s∗ involved in the tested session πt, B invokes
its PFSKEM.Corrupt oracle to obtain the PFSKEM secret key SK ∗, which it
returns within sk∗ = (SK ∗, τs∗ , τmax). Observe, that if A calls Corrupt(s∗)
without losing, we are ensured that B has called PFSKEM.PnctCxt(τ∗,CT∗)
and/or PFSKEM.PnctInt(τ∗) before Corrupt(s∗), and hence also does not lose
in the selective-time CCA security game:
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– If πt = πt
s∗ is a server session (owned by s∗), condition 3 of the security model

ensures that s∗ can only be corrupted after πt has accepted. In the process
of πt accepting (with πt.time = τ∗ and πt.trans = CT∗), B must have invoked
PFSKEM.PnctCxt(τ∗,CT∗), and therefore before corruption of s∗.

– If πt = πt
c is a client session, condition 4 of the security model ensures that

either there exists a partnered server session (πt
s∗) that processed CT∗ in

the time interval τ∗ or that s∗ gets corrupted in a time interval τ corr
s∗ >

πt.time = τ∗. Hence, B must have invoked PFSKEM.PnctCxt(τ∗,CT∗) or
PFSKEM.PnctInt(τ∗), respectively, before corruption of s∗.6

For any other (client or server) identity u �= s∗, B maintains the corresponding
secret key sku and can therefore respond to according Corrupt queries as
specified.

Tick(u). Algorithm B conducts the time stepping procedures as specified, using
its oracle PFSKEM.PnctInt on the (unknown) secret key SK ∗ corresponding
to the PFSKEM challenge public key PK ∗.

Test(πt). Observe that the tested session πt must be either the client session πt
c

guessed in Game 3 or the (first) server session πt
s∗ owned by s∗ partnered

with πt
c. Algorithm B, in both cases, simply outputs πt.key = K∗ as the

response of the Test query.

When A stops and outputs a guess b ∈ {0, 1}, B stops as well and outputs b as
its own guess.

Observe that algorithm B correctly answers all queries of A and, in the
case that K∗ is the real key encapsulated in CT∗, perfectly simulates Game 3,
while it perfectly simulates Game 4 if K∗ is chosen independently at random.
Algorithm B moreover obeys all restrictions in the selective ID, selective time
CCA security game of Definition 8 if A adheres to the conditions in the FSOPKE
security game.

As B inherits the output of A, a difference between A’s advantage in Game 3
and its advantage in Game 4 corresponds to the probability difference of B
outputting 1 in the two cases of the selective ID, selective time CCA security
experiment. Thus,

Adv3 ≤ Adv4 + AdvIND-sT-CCA
B,PFSKEM (λ) .

As in Game 4 the session key k∗ in the tested session is always chosen uni-
formly at random the response to the Test query is independent of the challenge
bit b and hence A cannot predict b better than by guessing, i.e., Adv4 ≤ 0.
Combining the advantage bounds in Games 1–4 yields the overall bound. 
�

6 Recall that πt
s∗ must have accepted before s∗ is corrupted, as afterwards no further

queries to sessions owned by s∗ are allowed.



544 F. Günther et al.

4.2 Variant Without Synchronized Time

For those environments where more relaxed requirements for time synchro-
nization are preferable, we outline a variant of our forward-secret 0-RTT key
exchange construction above that does not rely on synchronized time. For this
variant, we essentially combine the FSOPKEU construction from Definition 12,
restricted to a single time interval, with the concept of server configurations used
in recent key exchange protocol designs, namely Google’s QUIC protocol [31] and
TLS 1.3 with Diffie–Hellman-based 0-RTT mode [39]. A server configuration
here essentially is a publicly accessible string that contains a semi-static public
key, signed with the long-term signing key of the corresponding party. Utilizing
this string, a forward-secret 0-RTT key exchange protocol variant without time
synchronization then works as follows.

For each time interval (e.g., a set number of days or weeks), servers generate
a PFSKEM key pair (i.e., with τmax = 1), which they sign and publish within
a server configuration. Clients can then retrieve and use the currently offered
public key for the server to establish connections within this time interval.

We stress that, while introducing a slightly higher communication overhead,
this variant offers the same security properties as the time-synchronized one. In
particular recall that, due to puncturing, compromising the semi-static secret
key for some time interval does not endanger the forward secrecy of priorly
established connections within the same time interval. Indeed, the choice of how
often to publish new server configurations (i.e., how long the conceptual time
intervals are) is a purely functional one, based on the performance trade-off
between storage and computation overhead for PFSKEM keys covering a shorter
or longer interval (and hence more or fewer connections).

5 Analysis

We analyze our protocol for security levels λ ∈ {80, 128, 256}. We instantiate
our scheme based on the DDH-based HIBE scheme from [6] and the discrete
log-based one-time signature scheme from [22, Sect. 5.4]. We consider groups
with asymmetric bilinear map e : G1 × G2 → GT where groups are of order p
such that p = 22λ for the given security parameter λ. Thus, an element of Zp

can be represented by 2λ bits. We assume a setting based on Barreto-Naehrig
curves [2], where elements of G1 can be represented by 2λ bits, while elements
of G2 have size 4λ bits. In this setting, we can instantiate our PFS-KEM (and
thus our FSOPKE) as follows.

– A ciphertext consist of three elements of G1 (from the HIBE of [6]) plus three
G1-elements for pkOT , plus two Zp-elements for σ. Thus, ciphertexts have size
6 × |G1| + 2 × |Zp| = 16λ bits.

– A public key contains 2λ + 35 elements of G2, which amounts to 8λ2 + 140λ
bits.

– A punctured secret key contains R +S user secret keys of the HIBKEM, each
consisting of 3×|G2| = 12λ bits. Here R = |pkOT |+ |τ | denotes the bit-length
of “HIBKEM-identities”, and S denotes the number of sessions per time slot.
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λ |pk | |c| S |sk |
80 7.8 kB 160 B 210 145.9 kB
80 7.8 kB 160 B 216 7.88 MB
80 7.8 kB 160 B 220 125.9 MB
128 18.62 kB 256 B 210 251.9 kB
128 18.62 kB 256 B 216 12.64 MB
128 18.62 kB 256 B 220 201.4 MB
256 70.02 kB 512 B 210 623.3 kB
256 70.02 kB 512 B 216 26.27 MB
256 70.02 kB 512 B 220 417 MB

Fig. 4. Size of public keys and ciphertexts and upper bounds on the size of secret keys
for different choices of the security parameter λ and the number of sessions S per time
slot.

Assuming a setting with 232 time slots (which should be sufficient for any
conceivable practical application, even with very short time slots), and that a
collision-resistant hash function with range {0, 1}2λ is used to compute a short
representation of pkOT inside the HIBKEM, we have R = 2λ + 32. Thus, the
size of the secret key as a function of S is (S + 2λ + 32) · 12λ bits.

For different values S ∈ {210, 216, 220} of sessions per time slot, and security
parameters λ ∈ {80, 128, 256}, we obtain the sizes of public keys and messages
and the upper bounds on the size of secret keys displayed in Fig. 4.
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32. Li, Y., Schäge, S., Yang, Z., Kohlar, F., Schwenk, J.: On the security of the pre-
shared key ciphersuites of TLS. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 669–684. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 38

33. Lychev, R., Jero, S., Boldyreva, A., Nita-Rotaru, C.: How secure and quick is
QUIC? Provable security and performance analyses. In: IEEE S&P 2015 [25], pp.
214–231 (2015)

34. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 43

35. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Ning, P., De Capitani di Vimercati, S., Syverson,
P.F. (eds.) ACM CCS 2007, Alexandria, Virginia, USA, pp. 195–203. ACM Press,
28–31 October 2007

36. Petullo, W.M., Zhang, X., Solworth, J.A., Bernstein, D.J., Lange, T.: MinimaLT:
minimal-latency networking through better security. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, Berlin, Germany, pp. 425–438. ACM Press,
4–8 November 2013

37. Pointcheval, D., Sanders, O.: Forward secure non-interactive key exchange. In:
Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 21–39. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-10879-7 2

38. QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/quic

http://dx.doi.org/10.1007/11935230_29
http://eprint.iacr.org/2015/1214
http://dx.doi.org/10.1007/978-3-642-19379-8_20
http://dx.doi.org/10.1007/978-3-642-32009-5_17
http://dx.doi.org/10.1007/11535218_33
http://dx.doi.org/10.1007/978-3-642-40041-4_24
http://dx.doi.org/10.1007/978-3-540-75670-5_1
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/
http://dx.doi.org/10.1007/978-3-642-54631-0_38
http://dx.doi.org/10.1007/978-3-642-29011-4_43
http://dx.doi.org/10.1007/978-3-319-10879-7_2
https://www.chromium.org/quic


548 F. Günther et al.

39. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 - draft-
ietf-tls-tls13-12. https://tools.ietf.org/html/draft-ietf-tls-tls13-12. Accessed March
2016

40. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 - draft-
ietf-tls-tls13-18. https://tools.ietf.org/html/draft-ietf-tls-tls13-18. Accessed Octo-
ber 2016

41. Rescorla, E.: 0-RTT and Anti-Replay (IETF TLS working group mail-
ing list). IETF Mail Archive, https://mailarchive.ietf.org/arch/msg/tls/
gDzOxgKQADVfItfC4NyW3ylr7yc. Accessed March 2015

42. Rescorla, E.: [TLS] Do we actually need semi-static DHE-based 0-RTT? IETF Mail
Archive, https://mailarchive.ietf.org/arch/msg/tls/c43zNQH9vGeHVnXhAb
D3cpIAIw. Accessed February 2016

43. Williams, N.: [TLS] 0-RTT security considerations (was OPTLS).
IETF Mail Archive, https://mailarchive.ietf.org/arch/msg/tls/
OZwGgVhySbVhU36BMX1elQ9x0GE. Accessed November 2014

44. Wu, D.J., Taly, A., Shankar, A., Boneh, D.: Privacy, discovery, and authentication
for the internet of things. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Mead-
ows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 301–319. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-45741-3 16

https://tools.ietf.org/html/draft-ietf-tls-tls13-12
https://tools.ietf.org/html/draft-ietf-tls-tls13-18
https://mailarchive.ietf.org/arch/msg/tls/gDzOxgKQADVfItfC4NyW3ylr7yc
https://mailarchive.ietf.org/arch/msg/tls/gDzOxgKQADVfItfC4NyW3ylr7yc
https://mailarchive.ietf.org/arch/msg/tls/c43zNQH9vGeHVnXhAb_D3cpIAIw
https://mailarchive.ietf.org/arch/msg/tls/c43zNQH9vGeHVnXhAb_D3cpIAIw
https://mailarchive.ietf.org/arch/msg/tls/OZwGgVhySbVhU36BMX1elQ9x0GE
https://mailarchive.ietf.org/arch/msg/tls/OZwGgVhySbVhU36BMX1elQ9x0GE
http://dx.doi.org/10.1007/978-3-319-45741-3_16


Multiparty Computation IV



Computational Integrity with a Public Random
String from Quasi-Linear PCPs

Eli Ben-Sasson1(B), Iddo Bentov2, Alessandro Chiesa3, Ariel Gabizon4,
Daniel Genkin5, Matan Hamilis1, Evgenya Pergament1, Michael Riabzev1,

Mark Silberstein1, Eran Tromer6, and Madars Virza7

1 Technion—Israel Institute of Technology, Haifa, Israel
eli@cs.technion.ac.il

2 Cornell University, Ithaca, USA
3 University of California, Berkeley, USA

4 Zerocoin Electric Coin Company (Zcash), Lakewood, Colorado, USA
5 University of Pennsylvania and University of Maryland, College Park, USA

6 Tel Aviv University, Tel Aviv, Israel
7 Massachusetts Institute of Technology, Cambridge, USA

Abstract. A party executing a computation on behalf of others may
benefit from misreporting its output. Cryptographic protocols that
detect this can facilitate decentralized systems with stringent computa-
tional integrity requirements. For the computation’s result to be publicly
trustworthy, it is moreover imperative to usepublicly verifiable protocols
that have no “backdoors” or secret keys that enable forgery.

Probabilistically Checkable Proof (PCP) systems can be used to
construct such protocols, but some of the main components of such
systems—proof composition and low-degree testing via PCPs of Prox-
imity (PCPPs) — have been considered efficiently only asymptotically,
for unrealistically large computations. Recent cryptographic alternatives
suffer from a non-public setup phase, or require large verification time.

This work introduces SCI, the first implementation of a scalable PCP
system (that uses both PCPPs and proof composition). We used SCI to
prove correctness of executions of up to 220 cycles of a simple proces-
sor, and calculated its break-even point : the minimal input size for which
näıve verification via re-execution becomes more costly than PCP-based
verification.

This marks the transition of core PCP techniques (like proof com-
position and PCPs of Proximity) from mathematical theory to practical
system engineering. The thresholds obtained are nearly achievable and
hence show that PCP-supported computational integrity is closer to real-
ity than previously assumed.
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1 Introduction

Computational Integrity. An unobserved party is often required to execute a
program P on data x, using auxiliary data w. Yet, that party might benefit from
misreporting the output y. For example:

1. Individuals and companies may benefit financially from reporting lower tax
payments; in this case P is the program that computes tax, x is the tax-
relevant data (w is the empty string) and y is the resulting tax.

2. Criminals may benefit if an innocent individual (or no individual) is prose-
cuted based on faulty crime-scene data analysis, and corrupt law enforcement
officials to reach this outcome. In this case P is the program that analyzes
crime-scene data, x may contain the cryptographic hashes of (i) a criminal
DNA database and (ii) DNA fingerprints taken from the crime-scene, w is
the preimage of (i), (ii) and y would be the name of a suspect.

3. Health-care and other insurance companies may benefit from mis-computing
policy rates. In this case P may be a government-approved program that
computes policy rates, x is the identifying number of a patient, w would be
her medical history (including, perhaps, her DNA sequence) and y is the
policy rate.

Naturally, correctness and integrity of the input data x,w are preliminary
requirements for obtaining a correct output y; These inputs often arrives from
third parties and can be digitally signed by them, hence changing (x,w) mali-
ciously to (x′, w′) would require their collusion. Instead, the main focus of this
work is on ensuring the integrity of the computation P itself, e.g., ensuring that
the reported tax y is correct with respect to the explicit input x, program P and
some auxiliary input w. In spite of incentives to cheat, we often assume that
unobserved parties operate with computational integrity (CI) meaning that CI
statements like

τ(P,x,y,T ) := “∃w such that y = output of P on inputs x,w after T steps′′ (∗)

are considered true, even when the party making the statement could benefit
from replacing y with y′ �= y. The assumption that parties operate with compu-
tational integrity is backed by (i) legislation and (ii) regulation, and also relies
on (iii) the economic value of “integrity” to individuals, businesses and govern-
ment. Manual enforcement of CI via audits and reports by trusted third parties
is labor-intensive, and yet leaves the door open to corruption of those third par-
ties. Automated CI based on cryptography (also called delegation of computation
[43], certified computation [32] and verifiable computation [40]) could potentially
replace this manual labor and, more importantly, introduce integrity to settings
in which it is currently too costly to achieve.

Interactive Proof (IP) Systems. [5,44] revolutionized cryptographic CI by
initiating an approach that led (see below) to a viable theoretical solution to
the problem of discovering false CI statements. In such systems the party that
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makes the CI statement (∗) is represented by a prover which is a (random-
ized) algorithm. The prover tries to convince a verifier—an efficient randomized
algorithm—that (∗) is true via a court-of-law-style interactive protocol in which
the verifier “interrogates” the prover over several rounds of communication. The
protocol ends with the verifier announcing its verdict which is either to “accept”
τ(P,x,y,T ) as true, or to “reject” it. The systems we focus on have only one-sided
error: all true statement can be supported by a prover that causes the verifier
to accept them but the verifier may err and accept falsities; the probability of
error is known as the soundness-error.

Probabilistically Checkable Proof (PCP) Systems.1 [1–4] are a partic-
ularly efficient multi-prover interactive proof (MIP) system [8] in terms of the
amount of communication between prover and verifier, verification time, the
number of rounds of interaction and soundness-error. Assuming T is given in
binary, the set of true CI statements (eq:statement) is a NEXP-complete lan-
guage and PCPs are powerful enough to prove membership in this language.
Here, the prover writes once a string of bits π(P,x,y,T ) known as a PCP; its length
is polynomial in the execution time T . Total verifier running time is poly log T ,
which is (i) negligible compared to the näıve solution of re-executing P at a
cost of T steps and (ii) nearly-optimal because every proof system for general
CI statements must have the verifier running time be at least Ω(log T ). Using
a single round, the verifier asks to read a small (randomly selected) number of
bits of π(P,x,y,T ); clearly the verifier cannot read more bits than its running time
(poly log T ) allows, and this amount can be further reduced to a small constant
that is independent of T (cf. [34,49,63,66]). Initial constructions required proofs
of length poly(T ) but length has been reduced since then [21,24,42,48] and
state-of-the-art proofs are of quasi-linear length in T , i.e., length T · poly log T
[20,23,34,62] and can be computed in quasi-linear time as well [13]. The sys-
tem reported — called Scalable Computational Integrity (SCI) — implements the
quasi-linear PCP system [13,23] with certain improvements (described later).

In many cases the prover needs to preserve the privacy of the auxiliary input
w (as is the case with examples 2, 3 above) while at the same time proving that
it “knows” w, as opposed to merely proving that w exists. Privacy-preserving,
or zero knowledge (ZK) proofs [44] and ZK proofs of knowledge [7] can be con-
structed from any PCP system in polynomial time [36,55,56] (cf. [52–54,60]).
Certain “algebraic” PCP systems, including SCI, can be converted to ZK proofs
of knowledge with only a quasilinear increase in running time [11]; implement-
ing this enhancement is left to future work.

A PCP verifier requires random access to bits of π(P,x,y,T ); a näıve implemen-
tation in which prover sends the whole proof to the verifier would cost poly(T )
communication (and verification time) but a collision-resistant hash function can
be used to reduce communication and verifier running time to poly log T [55].
The three messages transmitted between prover and verifier ((1) prover sends
proof; (2) verifier sends queries; (3) prover answers queries) can be reduced to a
single message from the prover, if both parties have access to the same random
1 PCPs are also known as holographic, and transparent proof systems.
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function [61]; this can be realized using a standard cryptographic hash function
such as SHA-3, via the Fiat-Shamir heuristic [38] (or via an extractable collision
resistant hash function [26]). The single message (published by the prover) is
known as a succinct computationally sound (CS) proof π̂; its length is poly log T
and it can now be appended to τ(P,x,y,T ) and then publicly verified in time
poly log T with no further interaction with the prover. We refer to π̂ as a hash-
based (CI) proof to emphasize that the only cryptographic primitive needed to
implement it is a hash function.

Prior CI solutions. In spite of the asymptotic efficiency of PCPs, prior CI
approaches (recounted below) did not implement a PCP system. To quote from
the recent survey [77], the reason for this was that “the proofs arising from
the PCP theorem (despite asymptotic improvements) were so long and compli-
cated that it would have taken thousands of years to generate and check them,
and would have needed more storage bits than there are atoms in the universe”.
Due to this view (which this work challenges), five main alternatives have been
explored recently, described below. Like SCI, all rely on arithmetization [59],
the reduction of computational integrity statements (∗) to systems of low-degree
polynomials over finite fields. But in contrast to SCI, all previous solutions cir-
cumvent the use of core PCP techniques like proof composition [2], low-degree
testing and the use of PCPs of proximity (PCPP) [20,35]; these techniques are
crucial for obtaining succinctly verifiable proofs with a public setup process,
which SCI is the first to implement.

IP-based: The proofs for muggles approach [43] scales down Interactive Proofs
(IP) from PSPACE to P and leads to excellent solutions for a limited yet
interesting class of programs: those with high parallelism and small memory
consumption; prover time for IP-based systems was reduced to quasi-linear
[33] and implemented in a number of works [32,73,75].

LPCP-based: [51] proposed using additively homomorphic encryption (AHE)
and linear PCPs (LPCP) to build CI proof systems that are interactive, and
where the verifier’s work is amortized over multiple statements; cf. [69,71,72]
for implementations of LPCP-based systems.

KOE-based: A sequence of works [28,40,41,46,58] improved on [51] by relying
on Knowledge Of Exponent (KOE) assumptions and bilinear pairings over
elliptic curves. KOE-based systems were implemented in [15,19,65,70,76], and
further optimizations of this latter system for specific applications related to
Bitcoin [64] such as smart contracts [57] and anonymous payment systems
[12] are already being evaluated by commercial entities [45].

IVC-based: KOE-based systems require a proving key kP (discussed below) that
is longer than T , the number of computation cycles. Incrementally verifiable
computation (IVC) [74] and bootstrapping [27] shorten the length of kP to
poly log T and an IVC-based system has been implemented recently [18].

DLP-based: KOE/IVC-based systems require a private setup phase that is
discussed below. [47] (cf. [68]) assumes hardness of the Discrete Logarithm
Problem (DLP) to build a system that requires only a public setup, like SCI.
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Proof length in the initial works above was Θ
(√

T
)

and this was reduced
to poly log T in [29], which also implemented both versions; verifier running
time in both variants is Ω(T ).

Comparing SCI to Prior CI Solutions. SCI is the first CI solution that achieves
both (1) a short public randomness setup phase and (2) universal scalability
for one-shot computation. We discuss the significance of these properties after
explaining them. (A quantitative comparison of the running time, memory con-
sumption and communication complexity of SCI to prior systems appears in
Sect. 2 and Table 1.)

One-shot Universal Scalability (OSUS). A CI system is universally scalable
if for any fixed program P, prover running time is bounded by Tpoly log T and
verification time is at most poly log T where T is the number of machine cycles2.
If the same asymptotic running times hold even for a single execution of P,
and where the setup (“preprocessing”) is carried out by the verifier (and hence
setup-cost is part of the total verification-cost), we shall say that CI solution
is one-shot universally scalable (OSUS). DLP-based systems have super-linear
verification time, hence are not scalable for any program. IP-based systems are
efficient only for highly-parallel computations, thus are not universally scalable.
LPCP- and KOE-based systems are universally scalable but not OSUS because
they require a proving key kP that is longer than T which must be generated by
the verifier (in the one-shot setting). Of all prior solutions, only the IVC-based
one is OSUS, like SCI.

Public Setup. All implemented solutions but for DLP-based and SCI, if instan-
tiated as publicly verifiable CI systems, require a setup phase (“preprocessing”),
the output of which is a pair of keys (kP, kV), one needed for proving state-
ments, the other for verifying them. A “trapdoor key” ktpdr is associated with
(kP, kV) and can be used to forge pseudo-proofs of false statements. Furthermore,
ktpdr can be recovered by the parties that run the preprocessing phase. Secure
multi-party computation can boost security by “distributing knowledge” of the
trapdoor among several parties [17] so that all of them have to be compromised
to recover ktpdr; but this does not remove the concern that ktpdr has been recov-
ered by collusion of all parties, or retrieved by a central party eavesdropping to
all of them. Even if ktpdr has not been recovered by anyone, its mere existence
may erode trust in such systems. (Cf. [6] for a recent discussion of setup-attacks
and their implications and mitigations.) In contrast, SCI and DLP-based sys-
tems require only a short public random string when instantiated as a publicly
verifiable noninteractive CI system.

Discussion. The combination of OSUS and public setup which is unique to
SCI has three implications: (i) the ease of setting up and modifying CI systems

2 Formally, a CI system is universally scalable if for any language L ∈ NTIME(T (n)))
prover running time is T (n)poly log T (n) and verifier running time is poly log T (n)
where n denotes input length.
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based on it is relatively small, (ii) the trust assumptions made by parties using
it are comparatively minor and hence (iii) it seems more suitable than existing
solutions for use in decentralized and public settings, like Bitcoin. We repeat and
stress that many such applications require zero-knowledge proofs, a property
achieved by prior solutions and not achieved by SCI; augmenting SCI to obtain
zero knowledge seems within reach [11] but is outside the scope of our work.

SCI—Main Technical Contributions. We faced three major challenges when
attempting to construct PCP systems that scale well and apply to general pro-
grams, and SCI is the first implementation to contain scalable solutions to each of
them, reported here for the first time: (i) implementing the recursive proof compo-
sition [2] technique applied to PCPs of proximity (PCPPs) [20,35] (ii) construct-
ing quasi-linear PCPP systems for Reed-Solomon (RS) error correcting codes [67]
of huge message length [23] that require, in particular, quasi-linear time algo-
rithms for interpolation and multi-point evaluation of large-degree polynomials
over finite fields of characteristic 2; and (iii) reducing general programs that
include jumps, loops, and random access memory (RAM) instructions to suc-
cinct Algebraic Constraint Satisfaction Problem (sACSP) instances that “cap-
ture” the corresponding CI statement (∗); prior arithmetization solutions require
the verifier, or a party trusted by it, to “unroll” a T -cycle computation to obtain
an arithmetic circuit of size Ω(T ), whereas SCI’s verifier is succcint and does not
perform this unrolling. (All prior solutions arithmetize over large prime fields;
SCI is also novel in its being the first arithmetization over large binary fields,
which poses new challenges, especially for integer operations like addition and
multiplciation, cf. SectionB.1.)

To overcome the blowup (i) that is due to recursive PCPP composi-
tion, we replace PCPPs with interactive oracle proofs of proximity (IOPPs)
[9,10,37], implemented here for the first time, and increase the number of rounds
of interaction between prover and verifier; the extra rounds can be removed in
the random oracle model [37]. To address (ii) we built a dedicated library that
implements finite field arithmetic efficiently (reported in [22]) and used it to
further implement additive Fast Fourier Transforms (aFFT) [39] that perform
interpolation and multi-point evaluation in quasi-linear time and in parallel (via
multi-threading); the large-scale additive FFTs are reported here for the first
time. To solve (iii) and reduce general programs to PCP systems efficiently, we
devise a novel reduction from general programs for random access machines to
sACSP instances. We describe these three contributions in more detail in Sect. 3
and the appendix.

2 Measurements

SCI can be applied to any language in NEXP; for concreteness we picked two
programs computing the NP-complete subset-sum problem (cf. Appendix C); we
explain this choice after introducing the two programs. The input to the subset-
sum problem is an integer array A of size n and a target integer t; the problem is
to decide whether there exists a subset A′ ⊂ A that sums to t. The CI statement
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addressed here is the co-NP version of the problem, stating “no subset of A sums
to t” and denoted by τ(A,n,t). The two programs differ in their time and space
consumption. The first one exhaustively tries all possible subsets, requiring 2n

cycles but only O(1) memory, hence can be executed using only the local registers
of the machine and with no random access to memory. The second program uses
sorting and runs in time O(2n/2), a quadratic improvement over the exhaustive
solution but it also requires Θ(2n/2) memory and hence uses the random access
memory. We denote the two programs by Pexh and Psort, respectively.

On Choice of Programs. We would like to run SCI on “real-world” applications
like the examples given in the introduction but our current scalability is not
up to par. This situation is similar to that of the very first works on other
CI solutions (cf. [15,33,65,69]): initial reports discussed only small word-size
machines, restricted functionality and simple programs. Like some of those works
(most notably, [19]) we use the 16-bit version of the TinyRAM architecture as our
model of computation, and support all of its assembly code even though these two
programs use only a subset of it. We focus on subset-sum for two reasons: (i) it is
a natural NP-complete problem that is often used in cryptographic applications
but more importantly (ii) it allows us to display the effect of time–space tradeoffs
on our CI solution (cf. Figure 2). Since SCI supports non-determinism, we could
have used the non-deterministic version of the subset-sum statement. In fact,
this would have reduced prover and verifier complexity because fewer boundary
constraints are imposed on the input. However, the resulting statement seems
less interesting, saying “there exists A such that no subset of it sums to t”.

Measurement Range. Input array size n ranged between 3–16. Prover data was
measured on a “large” server with 32 AMD Opteron cores at clock rate 3.2 GHz
and 512 Gigabytes of RAM, running with two threads per core (total of 64
threads); to bound the single-core/thread prover time one may multiply the
stated times by ×32/ × 64 respectively. Verifier data was measured on a “stan-
dard” laptop, a Lenovo T440s with Intel core i7-4600 at clock rate 2.1 GHz and
12 Gigabytes RAM. We stress that verifier succinctness for one-shot programs
allows us to measure verifier running time independently of prover running time,
all the way up to 247 machine cycles. Both prover and verifier were measured for
1-bit security and 80-bit security using state-of-the-art PCPP and IOPP security
estimates [9].

Prover Time and Memory. The left column of Fig. 1 presents the running time
(top) and memory consumption (bottom) of the Prover for both Pexh and Psort

as a function of the number of machine cycles of the simulated machine for both
1-bit and 80-bit security level. The two main observations from these figures
are that (i) resources scale quasi-linearly with number of cycles and (ii) Psort is
more costly than Pexh due to its random access memory usage, which increases
proof length by × logO(1) T factor for a T -cycle execution (cf. Section 3). Figure 2
compares time and memory as a function of the size on the input array n and
shows that for n ≥ 8 the quadratic running-time improvement of Psort over Pexh
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outweighs the ×O(log T ) factor required by random access to memory, both for
1-bit and 80-bit security level.

Verifier Time and Query Complexity. The right column of Fig. 1 shows verifier
running time (top) and query complexity (bottom) for both programs for both
1-bit and 80-bit security levels. Notice the ≈ 213–223× factor improvement of
verifier over prover in both parameters (recall 1MB = 210KB) and the increase
in running time as a function of security due to repetition. For small n verifier
running time is greater than that of the näıve verifier which re-runs the program.
However, since naive verification grows like 2n for Pexh and like 2n/2 for Psort,
for n ≥ 22 (at 80-bit security) our verifier is more efficient than the näıve one
for Pexh, and for n ≥ 48 the verifier for Psort is more efficient than the näıve one
(cf. Figure 3).

Table 1. Quantitative comparison of SCI with KOE-based [15], IVC-based [18] and
DLP-based [47] solutions. Data measured on executions of 216 cycles of Pexh at an 80-bit
security level on the same machine with 32 AMD Opteron cores at clock rate 3.2 GHz
and 512 Gigabytes of RAM. The DLP-based column is extrapolated from [47, Table 2],
accounting for (i) the larger circuit size of our computation (which has ∼ 132M gates
compared with maximal size of 1.4M gates there) and different compute architectures
(single threaded Intel 4690K core vs. 64 threaded AMD Opteron). Notice the proving
time of SCI is ∼ ×2 − −4 slower than KOE- and DLP-based and ∼ ×150 faster than
IVC-based. Regarding total communication complexity, SCI is more efficient than prior
solutions but less efficient when measuring only post-processing communication.

KOE-based IVC-based DLP-based SCI

Verifier setup Time ∼28min ∼10 sec ∼0.7 sec <0.01 sec

Key length ∼18.9GB 43MB 154MB 16 bytes

Prover Time ∼ 18min 4.2 days ∼ 8min ∼ 41min

Memory ∼216GB 2.9GB ∼1TB ∼135GB

Verifier
postprocessing

Time <10ms ∼25ms ∼1.7min ∼ 0.5 sec

Communication
complexity

230 bytes 374 bytes 8.8KB ∼42.5MB

Verifer total Time ∼28min ∼10 sec 1.7min ∼ 0.5 sec

Communication
complexity

∼18.9GB 43MB ∼154MB ∼42.5MB

Quantitative Comparison with other CI Implementations. Table 1 compares SCI
to three recent CI systems, the KOE-based [15], the IVC-based [18], and the
DLP-based [47], using the version with poly log(T ) communication complexity.
One sees that SCI has the shortest and fastest setup but larger post-setup com-
munication complexity; post-setup verification is faster than DLP-based but
slower than KOE/IVC-based, as predicted by theory. Two other important
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points are: (i) proofs in SCI are not zero-knowledge whereas the other solu-
tions are, and (ii) the setup of the last two columns (DLP-based and SCI) is
comprised only of a public random string, whereas KOE/IVC-based solutions
require private setup and involve a trapdoor that can be used to forge proofs of
false statements.
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Fig. 1. Comparison of prover (left) and verifier (right) running time (top) and memory
consumption (bottom). The sharp drop in query complexity is due to transition from 2
to 3 levels of recursion in the RS-PCPP; as seen in the top-right, this has little effect on
overall verifier running time, which is significantly smaller than prover running time,
and also grows at a considerably slower rate as a function of # cycles. Answers to verifier
queries provided by random strings which simulates accurately actual proofs because
verifier is non-adaptive, i.e., its running time is independent of the proof content.

3 Overview of Construction

The construction of the PCP π(P,x,y,T ) for the computational statement τ(P,x,y,T )

follows the rather complex process detailed in [13,14,21,23] which we summarize
next (see Appendix A). The statement τ(P,x,y,T ) is converted into an instance
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Pexh overcomes the ×poly log T factor overhead of Pexh due to random memory access;
this holds for both 1-bit and 80-bit security level.
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Fig. 3. Computation of the break-even point [71,72], the minimal input size n for which
näıve verification via re-execution becomes more costly than PCP-based verification.
For Pexh at 80-bit security this threshold is at n = 22 and for Psort it is significantly
higher, estimated around n = 48, due to quadratic improvement in running time of the
latter program.

ψ(P,x,y,T ) of an algebraic constraint satisfaction problem (ACSP) over a finite
field3

F of characteristic 2 and τ(P,x,y,T ) is used by prover and verifier as described
next.

Prover. To construct the PCP, the prover executes P on input x and encodes
the execution trace by a Reed-Solomon [67] codeword a(P,x,y,T) evaluated over an
additive sub-group of F. The ACSP instance ψ(P,x,y,T ) is applied to a(P,x,y,T) as

3 SCI uses the field of size 264 which suffices for the computations measured here.
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described in [23, Equation (3.2)] to obtain an additional RS-codeword, denoted
b(P,x,y,T) = ψ(P,x,y,T)(a(P,x,y,T)), that “attests” to the fact that a(P,x,y,T) encodes
a valid execution trace, and hence, in particular, its output is correct. Each of
the two codewords is appended with a PCP of proximity (PCPP) for the RS-
code [23], denoted πa, πb, respectively. The PCP π(P,x,y,T ) is defined to be the
concatenation of a(P,x,y,T), b(P,x,y,T), πa and πb.

Verifier. The verifier queries the four parts of the PCP in the following manner:
First it invokes an RS-PCPP verifier that queries a(P,x,y,T) and πa to “check” that
a(P,x,y,T) is close in Hamming distance to a codeword of the RS-code; it repeats
this process with respect to b(P,x,y,T) and πb. Second and last, the verifier queries
a(P,x,y,T) and b(P,x,y,T) and uses ψ(P,x,y,T ) to check that the two codewords encode
a valid computation of P that starts with x and reaches y within T cycles. In this
process we rely on the “locality” of the mapping ψ(P,x,y,T ) : a(P,x,y,T) → b(P,x,y,T)

which means that each entry of b(P,x,y,T) depends on a small number of entries
of a(P,x,y,T). In what follows we elaborate on the novel aspects of this reduction
as implemented in SCI.

From Assembly Code to Succinct ACSP. The efficiency of the ACSP instance
ψ(P,x,y,T ) is measured by three parameters that we seek to minimize: circuit size,
degree, and query complexity, denoted C(P,x,y,T ),D(P,x,y,T ), Q(P,x,y,T ) respec-
tively. Circuit size affects both proving and verification time; degree affects PCP
length and reducing it decreases running time and memory consumption on
the prover side; query complexity affects the length of communication between
prover and verifier (and the length of computationally sound (CS) proofs π̂) as
well as verifier running time. Each parameter can be optimized at the expense
of the other two, and the challenge is to reach an efficient balance between all
three.

Our starting point is a program P, i.e., a sequence of instructions for a
random access machine (RAM). For simplicity we first focus on instructions that
access only (local) registers; random access memory instructions are discussed
below. Each instruction specifies the input and output register locations and an
operation applied to the inputs, called the opcode. We build ψ(P,x,y,T ) bottom-
up (cf. Appendix B for a detailed example). Each opcode op appearing in P

(like xor, add, jump, etc.) is specified by an algebraic definition over F; in other
words, we specify a set of multi-variate polynomials Pop ⊆ F[X1,X2, . . . , Xm]
such that the set of common zeros of Pop correspond to correct input-output
tuples for op. Program flow is controlled by multiplying each polynomial in Pop

by a multivariate Lagrange “selector” polynomial that, based on the value v
of the program counter (PC), annihilates all constraints that are irrelevant for
enforcing the vth instruction of P. For a program with � lines these selector
polynomials have degree �log ��. The resulting ACSP has circuit size O(�) and
degree and query complexity are log �+O(1); the constants hidden by asymptotic
notation depend on the machine specification.
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Random Access Memory Instructions. The execution trace of P is the length–
T sequence of machine states that describes the computation. To verify the
integrity of random access memory instructions (such as load and store) we fol-
low [13,14] and use a pair of execution traces. The first trace, tracetime, is sorted
increasingly by time, and the second, tracemem, is sorted lexicographically first
by memory location, then by time. RAM-related execution validity is verified
“locally” by inspecting pairs of consecutive elements in tracemem, just like non-
RAM related instructions are verified “locally” by inspecting pairs of consecutive
elements in tracetime. To further reduce proof length and query complexity, each
state of tracemem contains only the information needed to check memory consis-
tency — an address, its content and the type of memory access (load/store); let
s denote the number of field elements in a single line of tracemem.

To prove that tracemem and tracetime refer to the same execution, the prover
must describe a permutation between the two, and the verifier must check
its validity. To achieve this SCI uses a non-blocking Beneš switching network
[25,31] embedded in an affine graph over F (cf. [14,23] for definitions). Using this
method, adding RAM-related instructions to a program adds only O(T · log T )
field elements to the PCP and increases query complexity by a small constant.

Reducing Proof Construction Time via Interactive Oracle Proofs of Proximity
(IOPP). A significant portion of the prover running time and memory con-
sumption are dedicated to the construction of the PCP of Proximity (PCPP)
for a(P,x,y,T) and for b(P,x,y,T). The full PCPP for an RS-codeword of degree N is
of length O(N log2.6 N) which is quite large in our applications. Observing that
(i) these PCPPs are built using recursive PCPP composition [21], and (ii) only a
small fraction of recursive branches are explored by the verifier, we increase the
number of rounds of interaction and use a notarized interactive proof of proxim-
ity (NIPP) [9], a special case of interactive oracle proofs of proximity (IOPP)
[10,37] to reduce proof length to 4N +O(

√
N). The added rounds of interaction

can be removed in the random oracle model to obtain computationally sound
proofs [37].

Parallel Implementation of PCPPs for RS Codes. To reduce the time required
to encode the execution trace into a pair of RS-codewords, SCI uses parallel algo-
rithms for finite field operations and for dealing with polynomials over finite fields
of characteristic 2. To speed up basic field operations (most notably, multiplica-
tion) a dedicated algebraic library was built, that utilizes parallel hardware on
multi-core CPU. Interpolation and evaluation of polynomials over affine spaces
of size N are computed in quasilinear time using so-called additive Fast Fourier
Transform (aFFT) [39].

4 Concluding Remarks

SCI is the first implementation of a system of computational integrity that
achieves asymptotic one shot universal scalability (OSUS) with a setup key that
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is merely a public random string. Prior solutions either required super-linear
verification time, or used a setup procedure that involves keys which could be
used to forge proofs of falsities. While the computer programs on which SCI was
tested are of limited applicability, the simpler setup assumptions of SCI make it
a natural starting point for building further applications — most notably zero
knowledge proofs — for use in decentralized networks.
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A Detailed PCP Construction

We describe the way a PCP is generated for τ(P,x,y,T ), then discuss its verification.

Proof generation. The PCP proof π(P,x,y,T ) for τ(P,x,y,T ) is a concatenation of
four sub-proofs: two codewords in a Reed-Solomon code [67] and two quasilin-
ear size PCPs of Proximity (PCPP) for the RS-codewords [23]. To obtain these
four sub-proofs, the prover starts by executing the program P on input x for T
steps and records its execution trace—the length–T sequence of machine states
that the machine goes through during execution. Each state is converted to a
sequence of elements in the finite field F of size 264; Auxiliary field elements are
appended to each state to reduce the degree complexity of ψ(P,x,y,T ) as described
in Sect. B; let s denote the total number of field elements per state. The resulting
algebraic trace traceaug is thus a table of N = T · s elements of F, and is viewed
as a function from S ⊂ F, |S| = N to F, where S is an affine space over the two-
element field. Prover now computes the low-degree extension (LDE) of traceaug

by interpolating and then evaluating traceaug on a set S′ ⊂ F that is signifi-
cantly larger than S. This results in a codeword a(P,x,y,T) of a Reed-Solomon (RS)
code [67] over F of degree N − 1 and rate ρ = |S|/|S′|. Next, the ACSP instance
ψ(P,x,y,T ) is applied to a(P,x,y,T) as described in [23, Eq. (3.2)], producing another
RS-codeword b(P,x,y,T) = ψ(P,x,y,T)(a(P,x,y,T)), of degree D(P,x,y,T ) · (N − 1) and
rate ρ′ = D(P,x,y,T ) · ρ (SCI uses ρ′ = 1

8 ). Finally, a PCP of proximity (PCPP) for
RS-codes [23] is appended to each of a(P,x,y,T) and b(P,x,y,T) to prove that indeed
each belongs to the RS-code of the designated rate — ρ for a(P,x,y,T) and ρ′ for
b(P,x,y,T); denote these PCPPs by πa, πb, respectively. Summing up, the PCP proof
π(P,x,y,T ) is the concatenation of the four strings a(P,x,y,T), πa, b(P,x,y,T) and πb.

Proof Verification. On the verifier side, given ψ(P,x,y,T ) as input and oracle access
to
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π(P,x,y,T ) = (a(P,x,y,T), πa, b(P,x,y,T), πb)

as above, the verifier invokes the RS-PCPP verifier of [23] on each
of (a(P,x,y,T), πa) and (b(P,x,y,T), πb). Then it checks that a(P,x,y,T) =
ψ(P,x,y,T)(b(P,x,y,T)) by sampling both a(P,x,y,T) and b(P,x,y,T) at a small number
of locations (1 + Q(P,x,y,T ) per test). To boost soundness, each of the aforemen-
tioned tests is repeated a number of times, using fresh randomness (SCI uses 14
repetitions to reduce the probability of error to error = 1

2 ). The verifier “accepts”
τ(P,x,y,T ) (i.e., proclaims it to be likely true) if and only if π(P,x,y,T ) passes all
these checks; the security analysis guarantees that this verdict is correct with
probability 1 − error.

B Algebraic Definition of General Programs as Zero
Locus of Low-Degree Polynomial System

Our goal here is to explain how SCI converts programs into succinct algebraic
CSP (ACSP) instances. For concreteness this is described for the TinyRAM
machine specification [16]—a simple random access machine (RAM) with 16
registers and 16-bit size words that includes opcodes for logical operations, inte-
ger arithmetic, conditional jumps and random access memory instructions; the
same techniques could be adapted to other machine specifications.

Algebra Preliminaries. Fix a basis β0, . . . , β63 for F264 over F2 generated by
an irreducible polynomial h(X). Any sequence of w bits a0, . . . , aw−1 can be
naturally mapped to the field element

∑w−1
i=0 aiβi as long as w < 64 and vice

versa, field elements can be converted to sequences of bits; we assume this natural
mapping and in particular will often identify the a 16-bit sequence (a0, . . . , a15)
with the field element

∑15
i=0 aiβi.

Overview of Reduction. The reduction from RAM programs to ACSPs has been
described in detail in [13] and further improved in [30]; we follow this route. In
particular, instructions that involve the random access memory are verified using
affine routing networks as explained in [13] (cf. [30]), although SCI uses an affine
graph in which the Beneš network [25] is embedded. Boundary constraints (such
as the initial and final state of the machine) are enforced as explained in [13]. A
remaining problem of great practical importance that remained from previous
works has been how to reduce efficiently the transition function described by a
program into a set of low-degree polynomials whose zero-locus corresponds to
a valid evolution of the program’s transition function. We describe this below.
Our reduction works bottom up and has two main steps. (i) First, we define
the input–output relation of each opcode as the zero-locus of a system of low-
degree polynomials. (ii) In similar manner we define the transition function of the
program as the zero-locus of a (larger) system of polynomials, one that uses the
definitions of opcodes in terms of polynomials. The resulting set of polynomials
is “glued” into a single large polynomial as described, e.g., in [23, Eq. (5.5)] and
[13, Sect. 10].
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B.1 Algebraic Definition of Opcodes

Our basic data-unit is called a word, in TinyRAM its size is 16 bits. The atoms
of a computer program are opcodes; each opcode has a fixed amount of input
and output words. For example, XOR receives two words A = (a0, . . . , a15),
B = (b0, . . . , b15) and its output is a single word C = (c0, . . . , c15) where ci =
ai ⊕ bi and ⊕ denotes exclusive-or; the AND opcode outputs ci = ai ∧ bi, the
ADD opcode performs integer addition, etc. (cf. [16] for details).

An opcode op with k inputs and � outputs defines a relation Rop that contains
all sequences of inputs and outputs that correspond to valid executions of op.
Continuing with the examples above and using f to denote the flag,

RXOR =
{
(a, b, c) ∈ {0, 1}3·16 | ai ⊕ bi ⊕ ci = 0

}

RAND =
{
(a, b, c) ∈ {0, 1}3·16 | (ai ∧ bi) ⊕ ci = 0

}

RADD =

{
(a, b, c) ∈ {0, 1}3·16 , f ∈ {0, 1} |

15∑

i=0

ai2
i +

15∑

i=0

bi2
i −
(
f · 216 +

15∑

i=0

ci2
i

)
= 0

}

An algebraic opcode is an opcode (as defined above) over an alphabet that
is a finite field, i.e., Rop ⊂ F

k+�. Any finite set is an algebraic set, meaning it
can be described as the zero-locus of a system of polynomials, however, these
polynomials may have large degree and/or large arithmetic complexity, which
would harm the efficiency of our reduction. To reduce degree and arithmetic
complexity we shall allow auxiliary variables and consider algebraic sets S over
F

k+�+m such that Rop is the projection of S to the first k+� variables. Formally,
an algebraic constraint system Aop corresponding to an opcode op with k inputs
and � outputs is a set of polynomials Aop ⊂ F[X1, . . . , Xk, Y1, . . . , Y�, Z1, . . . , Zm]
such that

Rop = {x1, . . . , xk, y1, . . . , y� | ∃z1, . . . , zm, Aop(x1, . . . , xk, y1, . . . , y�, z1, . . . , zm) = 0} (1)

We call X1, . . . , Xk the input variables, Y1, . . . , Y� the output variables and
Z1, . . . , Zm are auxiliary variables. While any relation can be defined without
any auxiliary variables, the degree of such Aop may be very large (e.g., in the
case of AND, ADD), therefor, to minimize ACSP degree we shall often use aux-
iliary variables as shown in the following examples; explanations appear below
but notice XOR uses no auxiliary variables and the AND opcode uses 48 of them.
We defer the explanation of the more complicated ADD opcode to later on.

AXOR = {X1 + X2 + Y1} (2)

AAND =

{
X1 +

15∑

i=0

Ziβi,X2 +
15∑

i=0

Z16+iβi, Y1 +
15∑

i=0

Z32+iβi

}
(3)

⋃
{Zj · (Zj + 1) | j = 0, . . . , 47} (4)

⋃
{(Zi · Z16+i) + Z32+i | i = 0, . . . , 15} (5)
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Recall that addition in F corresponds to exclusive-or, hence XOR has an
algebraic constraint system with a single polynomial of degree 1 and no auxiliary
variables, and it satisfies (1). To see that (3)–(5) form an algebraic constraint
system for AND we argue as follows. Suppose (x1, x2, y1, z0, . . . , z47) belongs
to the zero-locus of AAND, i.e., all polynomials in AAND vanish on this input.
Then by (4) we have zj ∈ {0, 1} for j = 0, . . . , 47. By (3) we see that z32+i =
zi ∧ z16+i for i = 0, . . . , 15. Finally, by (3) we see that x1 “packs” z0, . . . , z15
into a single field elements, meaning x1 is the field element whose representation
in the basis β0, . . . , β63 is the sequence z0, . . . , z15, 0, 0, . . . , 0 and similarly x2

“packs” z16, . . . , z31 and y1 “packs” z32, . . . , z47. Therefore, y1 is the bitwise and
of x1 and x2, as required by (1).

The constraints of the ADD opcode correspond to the operation of a full
binary adder and appear below (6)–(10). In what follows auxiliary variables
Z0, . . . , Z15 are used to “unpack” X1, auxiliary variables Z16, . . . , Z31 “unpack”
X2, auxiliary variables Z32, . . . , Z47 are the carry bits and Z48, . . . , Z63 “unpack”
the output Y1; the overflow flag is stored in Y2. The constraint set (6) “unpacks”
both inputs and the output using 16 auxiliary variables each as done in (3)
above. The constraint set (7) checks that each auxiliary variable is boolean (as
done in (4)) but now we have 16 additional auxiliary variables for the carry bits,
reaching a total of 64 auxiliary variables. The set of constraints (8) checks that
the carry bits (Z32, . . . , Z47) are computed correctly. In (9) the output is checked
to be equal to the exclusive-or of the relevant input and carry bits. Finally, in
(10) we check that the least significant carry and output bits are correct, and
that the most significant carry bit (Z47) equals the overflow flag (Y2).

AADD =

{
X1 +

15∑

i=0

Ziβi,X2 +
15∑

i=0

Z16+iβi, Y1 +
15∑

i=0

Z48+iβi

}
(6)

⋃
{Zj · (Zi + 1) | j = 0, . . . , 63} (7)

⋃
{ZiZ16+i + ZiZ31+i + Z16+iZ31+i + Z32+i | i = 1, . . . , 15} (8)

⋃
{Zi + Z16+i + Z32+i + Z48+i | i = 1, . . . , 15} (9)

⋃
{Z0 · Z16 + Z32, Z0 + Z16 + Z48, Z63 + Y2} (10)

Complexity of other Opcodes. The opcodes described above, applied to w-bit
registers, require O(w) constraints and auxiliary variables (RXOR requires O(1)
constraints and auxiliary variables). All other opcodes of the TinyRAM assembly
specification [16] can be implemented with O(w) complexity. For most opcodes
this can be verified by inspection. For integer multiplication—i.e., to prove that

(
w−1∑

i=0

ai2i

)
·
(

w−1∑

i=0

bi2i

)
=

2w−2∑

i=0

ci2i, ai, bi, ci ∈ {0, 1}
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we fix a generator g for the multiplicative group of F (the order of g is 263 − 1
for our choice of field) and then apply repeated squaring to verify that

(
g(∑i ai2

i)
)(∑i bi2

i)
= g(∑i ci2

i)

Inspection reveals this solution scales asymptotically like O(w) and for small
values, RMUL is twice as costly as RADD in terms of number of constraints and
auxiliary variables.

B.2 Program Flow via Multi-linear Lagrange Polynomials

A program P of length s is a sequence of instructions I0, . . . , Is−1, each instruction
contains an opcode and a list of k inputs and � outputs, where k and � should
match the number of inputs and outputs consumed and produced by the opcode,
respectively. An input is either a constant (also known as immediate) or a register
location and outputs are invariably register locations. (Instructions related to
random access memory are dealt with separately, below; until then we assume
our programs do not access it and use only the 16 registers.) Each instruction
also points to the next instruction in the program; by default Ij points to Ij+1

but certain instructions (jumps and conditional jumps) may point to a different
instruction, and the pointer may further depend on the value of certain registers.
The program counter (PC) is a special register that contains the number of the
current instruction, and thus takes values in {0, . . . , s − 1}.

A machine state is a pair S = (PC,R) where PC holds the value of the pro-
gram counter and R contains the values of all registers. The program P induces
a natural relation RP that contains all pairs (S = (PC,R), S′ = (PC′,R′)) of
machine states such that a single cycle of the machine in state S (with program
counter being PC and registers holding values R) results in state S′. As done
for opcodes in (1), our purpose in this subsection is to define a system of con-
straints, denoted AP, that defines RP as its zero-locus, projected onto its first
few variables. Formally, let PC,PC′,R,R′ denote variables ranging over F, and
recall x,y,z denote variables for opcode inputs, outputs and auxiliary variables,
respectively. Then

RP =
{(

(PC,R) ,
(
PC′,R′)) | ∃x,y,zAP

(
PC,R,PC′,R′,x,y,z

)
= 0

}
(11)

In words, AP is a set of polynomials whose zero-locus, projected to PC,R,PC′,R′,
equals the “program evolution” relation RP.

To minimize degree complexity, the program counter value is recorded via
r = �log s� many variables, denoted PC1, . . . ,PCr, each ranging over {0, 1}. For
α ∈ {0, 1}r let

Lα(PC1, . . . ,PCr) =
r∏

i=1

(PCi + αi + 1)



568 E. Ben-Sasson et al.

be the Lagrange multi-linear polynomial that evaluates to 1 on α and evaluates
to 0 on {0, 1}r \ {α}. We multiply the polynomials in the algebraic constraint
system appearing in the ith instruction by Li(PC1, . . . ,PCr) where i ∈ {0, 1}r is
the binary representation of i. Informally, this has the effect of applying the set of
constraints Aop only when the PC points to an instruction that contains op. For-
mally, for each opcode op appearing in the program P, let Iop∈P ⊆ {0, . . . , s − 1}
be the set of program instructions in which op is executed. Then define

Âop∈P =

⎧
⎨

⎩P ·
∑

i∈Iop

Li (PC1, . . . ,PCr) | P ∈ Aop

⎫
⎬

⎭ (12)

Inputs and outputs to an opcode are checked in a similar way. In particular,
let ii,1, . . . , ii,ki

denote the indices of the registers that are the inputs of the
opcode in instruction i and let oi,1, . . . , oi,�i be the indices of output registers of
that instruction, then we define

Â
i/o
i =

{
(Xj − Rii,j ) · Li (PC1, . . . ,PCr) | j = 1, . . . , ki

}
(13)

⋃{
(Yj − R′

oi,j ) · Li (PC1, . . . ,PCr) | j = 1, . . . , �i

}

⋃{
(Rj − R′

j) · Li (PC1, . . . ,PCr) | j is not an output register of instruction i
}

In similar fashion, updating the program counter during the ith instruction
is defined using a set of polynomials whose zero locus corresponds to the correct
update of PC value. Typically, this modification simply increments the value of
the PC by 1, and this can be done by multiplying each polynomial in (6–10)
by Li (PC1, . . . ,PCr). Let Âpc

i denote the corresponding set of polynomials. The
final set AP that defines the “program evolution” relation RP is

AP �
{

Âop∈P | opappears inP
} ⋃{

Â
i/o
i | i = 0, . . . , s − 1

}
(14)

⋃{
Âpc

i | i = 0, . . . , s − 1
}

and the discussion above shows that its zero locus AP, projected to
PC,R,PC′,R′, indeed equals RP.

C Two Programs Computing Subset-Sum

Code 1 shows a high-level description of the exhaustive subset-sum program,
and Code 2 gives an equivalent TinyRAM hand-optimized implementation (cf.
Appendix D for discussion of machine compiled assembly). In Code 1, the vari-
able k is treated as a binary vector that iterates over all the possible combinations
of the inputs. The inputs that correspond to each combination are summed up
by inspecting whether the least significant bit (LSB) of k is 1, and then shift-
ing k rightward. Code 2 uses the AND,CMPE,SHR TinyRAM instructions for these
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inspections and shifts. It should be noted that the instruction set that is needed
for Code 2 is uncostly, in particular the cost of the DIV instruction would have
been about twice higher than SHR in terms of the number of field elements that
the prover commits to in a time step.

The total number of time steps T of the ACSP for Code 2 is sufficiently large
if the inequality 2n · (9n + 7) < T holds, where n is the size of the input array.
With 16-bit TinyRAM architecture, n ≤ 16 is also required, unless extra logic is
added to Code 2. In this inequality, the term 9n can be inferred by amortizing
the number of TinyRAM instructions that are executed when the LSB of k is
either 0 or 1. For example, T = 220 is sufficient for n = 13 inputs. For a further
demonstration of the dependency between T and n, see Fig. 2.

The TinyRAM architecture relies on 16 or less registers, in particular Code 2
needs 5 registers in total. This helps with keeping the complexity low, as it
implies that a relatively small number of field elements are required per time
step. However, this also means that we do not have enough registers to store the
entire input array. Since it is preferable to avoid the poly-logarithmic blowup
of programs with memory, Code 2 employs a special “read-only memory” (ROM)
instruction. The ROM instruction takes a single operand, treats it as an index
J ≤ n, and returns the corredponding array[J ] input value. The algebraic con-
straints of the ROM instruction consist of unpacking the bits of J and using a
selector polynomial to force the prover to use the predefined array[J ] field ele-
ment. For example, with n = 8, the ROM instruction can be implemented as

2⋃

k=0

{bk(bk + 1)}
⋃

{J +
2∑

k=0

bkxk,
∑

α,β,γ∈{0,1}
(b0 + α)(b1 + β)(b2 + γ)(R + Cα,β,γ)},

where R is the returned operand and Cα,β,γ are the array input values that the
ACSP instance specifies. Thus, the degree of the ROM constraints is bounded by
�log n� + 1, and overall the ROM instruction is far less complex than deploying
the full read/write memory construction.

Code 3 is a subset-sum program that computes all the partial sums of half
of the input numbers, as well as the other half, and then does a linear scan
to look for two partial sums that add up to the target value [50]. The partial
sums are first stored in memory in a sorted order, which can be done in O(n)
time due to the following observation: given a sorted list S1, S2, . . . , S2k of all
the possible sums that can be produced from combinations of certain k numbers,
and another number m, the sorted list S1+m,S2+m, . . . , S2k +m can be merged
into S1, S2, . . . , S2k to obtain one sorted list of size 2k+1, in linear time. Hence,
Code 3 needs to store O(

√
2n) elements in memory, where n is the size of the

input array.
Code 4 gives a hand-optimized TinyRAM implementation of this high-level

pseudocode, in which the dependecy between n and the total number of time
steps T is n ≈ 2(T − 7). Section D discusses the machine compiled code for the
same program. As can be seen in Fig. 2, Code 4 can thus cope with greater values
of n than Code 2, even after the poly-logarithmic blowup in complexity that is
due to memory handling is taken into account.
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Notice that unlike the high-level description in Code 3, the Code 4 imple-
mentation that we benchmark actually outputs a bit-string of the correct com-
bination, if one exists (Code 5 and Code 6 do this as well). This extra work is
done for a fair comparison with Code 2, that does this “for free”. However, since
subset-sum is an NP-complete problem, it makes sense to generate the PCP on
unsatisfiable instances. Thus, this extra work can be regarded as unnecessary in
this context.

Code 1. Pseudocode of the exhaustive search subset-sum program

input: n, array[n], target

1: for k = 1 to2n − 1 do � k loops over all {0, 1}n \ {0n} combinations
2: curr ← k, idx ← 0, sum ← 0
3: while curr �= 0 do
4: if 1 = (curr bitwise-and 1) then � LSB of curr is 1?
5: sum ← sum + array[idx]
6: end if
7: curr ← curr/2, idx ← idx + 1
8: end while
9: if sum = target then

10: return k
11: end if
12: end for
13: return 0

Code 2. TinyRAM assembly code of the exhaustive search subset-sum pro-
gram

1: MOVMOVMOV r0, 1
2: CMPECMPECMPE r0, 2n

3: CJMPCJMPCJMP Line#21

4: MOVMOVMOV r1, 0
5: MOVMOVMOV r2, r0
6: MOVMOVMOV r3, 0
7: ANDANDAND r4, r2, 1
8: CMPECMPECMPE r4, 0

9: CJMPCJMPCJMP Line#12

10: ROMROMROM r4, r3
11: ADDADDADD r1, r1, r4
12: SHRSHRSHR r2, r2, 1
13: CMPECMPECMPE r2, 0
14: CJMPCJMPCJMP Line#17

15: ADDADDADD r3, r3, 1
16: JMPJMPJMP Line#7

17: CMPECMPECMPE r1, target
18: CJMPCJMPCJMP Line#22

19: ADDADDADD r0, r0, 1
20: JMPJMPJMP Line#2

21: MOVMOVMOV r0, 0
22: ANSWANSWANSW r0
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D Compiling C Code to TinyRAM

Our TinyRAM compiler is implemented as a GCC back end, with support for
some optimization techniques. Code 5 shows C source for the memory-based
subset-sum program, and the corresponding compiled code is given as Code 6. As
shown, Code 6 has 21 more instruction than the hand-written assembly of Code 4.
Likewise, the running time of Code 6 is somewhat greater than that of Code 4,
for example with n = 14 it takes 13582 time steps until Code 6 terminates, while
Code 4 terminates in 11231 time steps.

Code 3. Pseudocode of the memory-based subset-sum program

input: n = 2h, array[n], target

1: H1 ← {array[0], array[1], . . . , array[h − 1]}
2: H2 ← {array[h], array[1], . . . , array[n − 1]}
3: for m ∈ {1, 2} do � sort each half
4: let Am,0 be an array of size 1 with Am,0[0] = 0
5: i ← 0
6: for x ∈ Hm do
7: let Bm,i be an array of size i and Cm,i be an array of size 2i
8: for k ∈ {0, 1, 2, . . . , 2i − 1} do
9: Bm,i[k] ← Am,i[k] + x

10: end for
11: Cm,i ← merge(Am,i, Bm,i) � note: Am,i and Bm,i are already sorted
12: Am,i+1 ← Cm,i

13: i ← i + 1
14: end for
15: end for
16: i ← 0, k ← 2h − 1
17: while True do � search for the target
18: if target = A1,h[i] + A2,h[k] then return 1 end if
19: if target > A1,h[i] + A2,h[k] then
20: if i = 2h − 1 then return 0 end if
21: i ← i + 1
22: else
23: if k = 0 then return 0 end if
24: k ← k − 1
25: end if
26: end while
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Code 4. TinyRAM assembly code of the memory-based subset-sum program

input: n = 2h, array[n], target, � = 2h+1 − 2
constants: INPADDR = 216 − 26, ADDR1 = 0, ADDR2 = 214, OFFSET = 215

preprocess: store array[n] at INPADDR

1: MOVMOVMOV r0, INPADDR
2: MOVMOVMOV r1, ADDR1
3: MOVMOVMOV r9, 0
4: STORSTORSTOR r9, r1
5: ADDADDADD r2, r1, OFFSET
6: STORSTORSTOR r9, r2
7: MOVMOVMOV r2, r1
8: ADDADDADD r4, r1, 1
9: MOVMOVMOV r5, r4

10: MOVMOVMOV r8, 1
11: ADDADDADD r9, h
12: LOADLOADLOAD r3, r0
13: JMPJMPJMP Line#44

14: ADDADDADD r0, r0, 1
15: CMPECMPECMPE r9, r0
16: CJMPCJMPCJMP Line#60

17: LOADLOADLOAD r3, r0
18: SHLSHLSHL r8, r8, 1
19: MOVMOVMOV r5, r4
20: JMPJMPJMP Line#44

21: ADDADDADD r7, r4, OFFSET
22: STORSTORSTOR r6, r7
23: ADDADDADD r4, r4, 1
24: CMPECMPECMPE r5, r1
25: CNJMPCNJMPCNJMP Line#36

26: CMPECMPECMPE r5, r2
27: CJMPCJMPCJMP Line#14

28: LOADLOADLOAD r6, r2
29: ADDADDADD r6, r6, r3
30: STORSTORSTOR r6, r4

31: ADDADDADD r6, r2, OFFSET
32: LOADLOADLOAD r6, r6
33: XORXORXOR r6, r6, r8
34: ADDADDADD r2, r2, 1
35: JMPJMPJMP Line#21

36: CMPECMPECMPE r5, r2
37: CNJMPCNJMPCNJMP Line#44

38: LOADLOADLOAD r6, r1
39: STORSTORSTOR r6, r4
40: ADDADDADD r6, r1, OFFSET
41: LOADLOADLOAD r6, r6
42: ADDADDADD r1, r1, 1
43: JMPJMPJMP Line#21

44: LOADLOADLOAD r6, r1
45: LOADLOADLOAD r7, r2
46: ADDADDADD r7, r7, r3
47: CMPGCMPGCMPG r6, r7
48: CJMPCJMPCJMP Line#54

49: STORSTORSTOR r6, r4
50: ADDADDADD r6, r1, OFFSET
51: LOADLOADLOAD r6, r6
52: ADDADDADD r1, r1, 1
53: JMPJMPJMP Line#21

54: STORSTORSTOR r7, r4
55: ADDADDADD r6, r2, OFFSET
56: LOADLOADLOAD r6, r6
57: XORXORXOR r6, r6, r8
58: ADDADDADD r2, r2, 1
59: JMPJMPJMP Line#21

60: CMPACMPACMPA r1, ADDR2

61: CJMPCJMPCJMP Line#64

62: MOVMOVMOV r1, ADDR2
63: JMPJMPJMP Line#3

64: MOVMOVMOV r0, ADDR1 + �
65: LOADLOADLOAD r2, r0
66: LOADLOADLOAD r3, r1
67: ADDADDADD r4, r2, r3
68: CMPECMPECMPE r4, target
69: CJMPCJMPCJMP Line#L83

70: CMPGCMPGCMPG r4, target
71: CJMPCJMPCJMP Line#77

72: CMPECMPECMPE r1, ADDR2 + �
73: CJMPCJMPCJMP Line#82

74: ADDADDADD r1, r1, 1
75: LOADLOADLOAD r3, r1
76: JMPJMPJMP Line#67

77: CMPECMPECMPE r0, ADDR1
78: CJMPCJMPCJMP Line#82

79: SUBSUBSUB r0, r0, 1
80: LOADLOADLOAD r2, r0
81: JMPJMPJMP Line#67

82: ANSWANSWANSW 0
83: ADDADDADD r2, r0, OFFSET
84: LOADLOADLOAD r2, r2
85: ADDADDADD r3, r1, OFFSET
86: LOADLOADLOAD r3, r3
87: SHLSHLSHL r3, r3, H
88: XORXORXOR r2, r2, r3
89: ANSWANSWANSW r2
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Code 5. C source of the memory-based subset-sum program

#define N 7
#define TARGET 123

int input[2*N] = {10,20,30,40,50,60,70,-10,-20,-30,-40,-50,-60,70};
int arr[ 4 * ( (1 << (N+1)) - 1 ) ];

int main(void) {
register int *inp = &input[0], *last_inp, *p1, *p2, *next, *next_backup, b;
p1 = p2 = &arr[0]; //phase1: prepare arrays
for(;;) { //prepare each half array

next = next_backup = (p1+2);
*p1 = *(p1+1) = 0; b = 1; last_inp = inp + N;
for(;;) { //iterate over each input

for(;;) { //merge
if(p1 == next_backup) {

while(p2 < next_backup) {
*(next++) = *(p2++) + *inp;
*(next++) = *(p2++) ^ b;

}
break;

}
if(p2 == next_backup) {

while(p1 < next_backup) {
*(next++) = *(p1++);
*(next++) = *(p1++);

}
break;

}
if(*p1 > *p2 + *inp) {

*(next++) = *(p2++) + *inp;
*(next++) = *(p2++) ^ b;

}
else {

*(next++) = *(p1++);
*(next++) = *(p1++);

}
}
if(++inp == last_inp) break;
b = b << 1;
next_backup = next;

}
if( p1 > &arr[0] + (1 << (N+2)) ) break;
p1 = p2 = next;

}
p1 = &arr[ 2*((1 << (N+1)) - 1) - 2 ]; //phase2: search
for(;;) {

if(TARGET == *p1 + *p2)
return *(p1+1) ^ (*(p2+1) << N);

if(TARGET > *p1 + *p2) {
if(p2 == &arr[0] + 4*((1 << (N+1))-1) - 2) break;
p2 = p2 + 2;

}
else {

if(p1 == &arr[0]) break;
p1 = p1 - 2;

}
}
return 0;

}
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Code 6. TinyRAM assembly code of the compiled subset-sum program

input: n = 2h, array[n], target

preprocess: store array[n] at address 0

1: MOVMOVMOV r9, 0
2: MOVMOVMOV r12, 28
3: MOVMOVMOV r8, r12
4: ADDADDADD r13, r8, r4
5: MOVMOVMOV r4, r13
6: MOVMOVMOV r2, 0
7: ADDADDADD r0, r8, 2
8: STORSTORSTOR r2, r0
9: STORSTORSTOR r2, r8

10: MOVMOVMOV r14, 1
11: ADDADDADD r5, r9, 14
12: CMPECMPECMPE r8, r13
13: CNJMPCNJMPCNJMP Line#30

14: CMPAECMPAECMPAE r12, r13
15: CJMPCJMPCJMP Line#72

16: LOADLOADLOAD r3 r12
17: LOADLOADLOAD r2, r9
18: ADDADDADD r2, r3, r2
19: ADDADDADD r12, r12, 2
20: STORSTORSTOR r2, r4
21: ADDADDADD r4, r4, 2
22: LOADLOADLOAD r2, r12
23: XORXORXOR r2, r14, r2
24: ADDADDADD r12, r12, 2
25: STORSTORSTOR r2, r4
26: ADDADDADD r4, r4, 2
27: CMPAECMPAECMPAE r12, r13
28: CNJMPCNJMPCNJMP Line#16

29: JMPJMPJMP Line#72

30: CMPECMPECMPE r12, r13
31: CNJMPCNJMPCNJMP Line#45

32: CMPAECMPAECMPAE r8, r13
33: CJMPCJMPCJMP Line#72

34: LOADLOADLOAD r2, r8
35: ADDADDADD r8, r8, 2
36: STORSTORSTOR r2, r4
37: ADDADDADD r4, r4, 2

38: LOADLOADLOAD r2, r8
39: ADDADDADD r8, r8, 2
40: STORSTORSTOR r2, r4
41: ADDADDADD r4, r4, 2
42: CMPAECMPAECMPAE r8, r13
43: CNJMPCNJMPCNJMP Line#34

44: JMPJMPJMP Line#72

45: LOADLOADLOAD r2, r12
46: LOADLOADLOAD r3, r9
47: ADDADDADD r3, r2, r3
48: LOADLOADLOAD r2, r8
49: CMPGCMPGCMPG r2, r3
50: CNJMPCNJMPCNJMP Line#63

51: LOADLOADLOAD r3, r12
52: LOADLOADLOAD r2, r9
53: ADDADDADD r2, r3, r2
54: ADDADDADD r12, r12, 2
55: STORSTORSTOR r2, r4
56: ADDADDADD r4, r4, 2
57: LOADLOADLOAD r2, r12
58: XORXORXOR r2, r14, r2
59: ADDADDADD r12, r12, 2
60: STORSTORSTOR r2, r4
61: ADDADDADD r4, r4, 2
62: JMPJMPJMP Line#12

63: LOADLOADLOAD r2, r8
64: ADDADDADD r8, r8, 2
65: STORSTORSTOR r2, r4
66: ADDADDADD r4, r4, 2
67: LOADLOADLOAD r2, r8
68: ADDADDADD r8, r8, 2
69: STORSTORSTOR r2, r4
70: ADDADDADD r4, r4, 2
71: JMPJMPJMP Line#12

72: ADDADDADD r9, r9, 2
73: CMPECMPECMPE r9, r5
74: CJMPCJMPCJMP Line#78

75: SHLSHLSHL r14, r14, 1
76: MOVMOVMOV r13, r4
77: JMPJMPJMP Line#12

78: CMPACMPACMPA r8, 1052
79: CJMPCJMPCJMP Line#83

80: MOVMOVMOV r12, r4
81: MOVMOVMOV r8, r4
82: JMPJMPJMP Line#4

83: MOVMOVMOV r4, 1044
84: LOADLOADLOAD r3, r4
85: LOADLOADLOAD r2, r12
86: ADDADDADD r2, r3, r2
87: CMPECMPECMPE r2, target
88: CNJMPCNJMPCNJMP Line#96

89: ADDADDADD r0, r12, 2
90: LOADLOADLOAD r12, r0
91: SHLSHLSHL r12, r12, h
92: ADDADDADD r0, r4, 2
93: LOADLOADLOAD r4, r0
94: XORXORXOR r2, r12, r4
95: JMPJMPJMP Line#110

96: LOADLOADLOAD r3, r4
97: LOADLOADLOAD r2, r12
98: ADDADDADD r2, r3, r2
99: CMPGCMPGCMPG r2, target-1
100: CJMPCJMPCJMP Line#106

101: MOVMOVMOV r2, 2064
102: CMPECMPECMPE r12, r2
103: CJMPCJMPCJMP Line#109

104: ADDADDADD r12, r12, 4
105: JMPJMPJMP Line#84

106: CMPECMPECMPE r4, 28
107: CJMPCJMPCJMP Line#109

108: JMPJMPJMP Line#84

109: MOVMOVMOV r2, 0
110: ANSWANSWANSW r2
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25. Beneš, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic.
Academic Press, New York (1965). http://opac.inria.fr/record=b1083990

26. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pp. 326–349, ITCS 2012 (2012)

27. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. In: Proceedings of the 45th ACM
Symposium on the Theory of Computing, pp. 111–120, STOC 2013 (2013)

28. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36594-2 18

29. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). doi:10.1007/978-3-662-49896-5 12

30. Chiesa, A., Zhu, Z.A.: Shorter arithmetization of nondeterministic computa-
tions. Theor. Comput. Sci. 600, 107–131 (2015). http://www.sciencedirect.com/
science/article/pii/S0304397515006647

http://scipr-lab.org/tinyram
http://dx.doi.org/10.1109/SP.2015.25
http://dx.doi.org/10.1007/978-3-662-44381-1_16
http://dx.doi.org/10.1007/978-3-662-44381-1_16
http://opac.inria.fr/record=b1083990
http://dx.doi.org/10.1007/978-3-642-36594-2_18
http://dx.doi.org/10.1007/978-3-642-36594-2_18
http://dx.doi.org/10.1007/978-3-662-49896-5_12
http://www.sciencedirect.com/science/article/pii/S0304397515006647
http://www.sciencedirect.com/science/article/pii/S0304397515006647


Computational Integrity with a Public Random String 577

31. Clos, C.: A study of non-blocking switching networks. Bell Syst. Tech. J. 32(2),
406–424 (1953). http://dx.doi.org/10.1002/j.1538-7305.1953.tb01433.x

32. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Proceedings of the 4th Symposium on Innovations
in Theoretical Computer Science, pp. 90–112, ITCS 2012 (2012)

33. Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive
proofs. Proc. VLDB Endowment 5(1), 25–36 (2011)

34. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)
35. Dinur, I., Reingold, O.: Assignment testers: towards a combinatorial

proof of the PCP theorem. SIAM J. Comput. 36(4), 975–1024 (2006).
http://dx.doi.org/10.1137/S0097539705446962

36. Dwork, C., Feige, U., Kilian, J., Naor, M., Safra, M.: Low communication 2-prover
zero-knowledge proofs for NP. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol.
740, pp. 215–227. Springer, Heidelberg (1993). doi:10.1007/3-540-48071-4 15

37. Ben-Sasson, E., Chiesa, N.S.A.: Interactive oracle proofs. IACR Cryptology ePrint
Archive 2016, 116 (2016). http://eprint.iacr.org/2016/116

38. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

39. Gao, S., Mateer, T.: Additive fast fourier transforms over
finite fields. IEEE Trans. Inf. Theor. 56(12), 6265–6272 (2010).
http://dx.doi.org/10.1109/TIT.2010.2079016

40. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 25

41. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38348-9 37

42. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost-linear length.
J. ACM 53, 558–655 (2006). Preliminary version in STOC 2002

43. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, pp. 113–122, STOC 2008 (2008)

44. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). Preliminary version
appeared in STOC 1985

45. Greenberg, A.: Zcash, an untraceable bitcoin alternative, launches in alpha
(January 2016). Wired.com. Accessed 20 Jan 2016

46. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17373-8 19

47. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
431–448. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 23

48. Harsha, P., Sudan, M.: Small PCPs with low query complexity. Comput. Complex.
9(3–4), 157–201 (2000). Preliminary version in STACS 1991

49. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

http://dx.doi.org/10.1002/j.1538-7305.1953.tb01433.x
http://dx.doi.org/10.1137/S0097539705446962
http://dx.doi.org/10.1007/3-540-48071-4_15
http://eprint.iacr.org/2016/116
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1109/TIT.2010.2079016
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-38348-9_37
https://www.wired.com/
http://dx.doi.org/10.1007/978-3-642-17373-8_19
http://dx.doi.org/10.1007/978-3-642-25385-0_23


578 E. Ben-Sasson et al.

50. Horowitz, E., Sahni, S.: Computing partitions with applications to the knap-
sack problem. J. ACM 21(2), 277–292 (1974). http://doi.acm.org/10.1145/
321812.321823

51. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.
In: Proceedings of the Twenty-Second Annual IEEE Conference on Computational
Complexity, pp. 278–291, CCC 2007 (2007)

52. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

53. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-28914-9 9

54. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: Lim-
itations, simplifications, and applications (2015). http://www.cs.virginia.edu/
mohammad/files/papers/ZKPCPs-Full.pdf

55. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, pp. 723–732, STOC
1992 (1992)

56. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pp. 496–505, STOC 1997 (1997)

57. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. Cryptology ePrint
Archive, Report 2015/675 (2015). http://eprint.iacr.org/

58. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
169–189. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 10

59. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for inter-
active proof systems. J. ACM 39(4), 859–868 (1992). http://doi.acm.org/10.
1145/146585.146605

60. Mahmoody, M., Xiao, D.: Languages with efficient zero-knowledge PCPs are in
SZK. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 297–314. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36594-2 17

61. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). Preliminary version appeared in FOCS 1994

62. Mie, T.: Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann.
Math. Artif. Intell. 56, 313–338 (2009)

63. Moshkovitz, D., Raz, R.: Two-query PCP with subconstant error. J. ACM 57,
1–29 (2008). Preliminary version appeared in FOCS 2008

64. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (May 2009). http://
www.bitcoin.org/bitcoin.pdf

65. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: Proceedings of the 34th IEEE Symposium on Security and
Privacy, Oakland 2013, pp. 238–252 (2013)

66. Raz, R.: A parallel repetition theorem. In: Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, pp. 447–456, STOC 1995 (1995)

67. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Industr.
Appl. Math. 8(2), 300–304 (1960). http://dx.doi.org/10.1137/0108018

68. Seo, J.H.: Round-efficient sub-linear zero-knowledge arguments for linear algebra.
In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 387–402. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19379-8 24

http://doi.acm.org/10.1145/321812.321823
http://doi.acm.org/10.1145/321812.321823
http://dx.doi.org/10.1007/978-3-642-28914-9_9
http://www.cs.virginia.edu/mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/mohammad/files/papers/ZKPCPs-Full.pdf
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-28914-9_10
http://doi.acm.org/10.1145/146585.146605
http://doi.acm.org/10.1145/146585.146605
http://dx.doi.org/10.1007/978-3-642-36594-2_17
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1007/978-3-642-19379-8_24


Computational Integrity with a Public Random String 579

69. Setty, S., Blumberg, A.J., Walfish, M.: Toward practical and unconditional verifi-
cation of remote computations. In: Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, p. 29, HotOS 2011 (2011)

70. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the
conflict between generality and plausibility in verified computation. In: Proceedings
of the 8th EuoroSys Conference, pp. 71–84, EuroSys 2013 (2013)

71. Setty, S., McPherson, M., Blumberg, A.J., Walfish, M.: Making argument systems
for outsourced computation practical (sometimes). In: Proceedings of the 2012
Network and Distributed System Security Symposium, NDSS 2012 (2012)

72. Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking
proof-based verified computation a few steps closer to practicality. In: Proceedings
of the 21st USENIX Security Symposium, pp. 253–268, Security 2012 (2012)

73. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-40084-1 5

74. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8 1

75. Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architecture for interactive
verifiable computation. In: Proceedings of the 34th IEEE Symposium on Security
and Privacy, Oakland 2013, pp. 223–237 (2013)

76. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, February
8–11 2014 (2015)

77. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015). http://doi.acm.org/10.1145/2641562

http://dx.doi.org/10.1007/978-3-642-40084-1_5
http://dx.doi.org/10.1007/978-3-540-78524-8_1
http://doi.acm.org/10.1145/2641562


Ad Hoc PSM Protocols: Secure Computation
Without Coordination

Amos Beimel1(B), Yuval Ishai2,3, and Eyal Kushilevitz2

1 Department of Computer Science, Ben Gurion University,
Beer Sheva, Israel

amos.beimel@gmail.com
2 Department of Computer Science, Technion, Haifa, Israel

{yuvali,eyalk}@cs.technion.ac.il
3 Department of Computer Science, UCLA, Los Angeles, USA

Abstract. We study the notion of ad hoc secure computation, recently
introduced by Beimel et al. (ITCS 2016), in the context of the Private
Simultaneous Messages (PSM) model of Feige et al. (STOC 2004). In ad
hoc secure computation we have n parties that may potentially partici-
pate in a protocol but, at the actual time of execution, only k of them,
whose identity is not known in advance, actually participate. This sit-
uation is particularly challenging in the PSM setting, where protocols
are non-interactive (a single message from each participating party to
a special output party) and where the parties rely on pre-distributed,
correlated randomness (that in the ad-hoc setting will have to take into
account all possible sets of participants).

We present several different constructions of ad hoc PSM protocols
from standard PSM protocols. These constructions imply, in partic-
ular, that efficient information-theoretic ad hoc PSM protocols exist
for NC1 and different classes of log-space computation, and efficient
computationally-secure ad hoc PSM protocols for polynomial-time com-
putable functions can be based on a one-way function. As an application,
we obtain an information-theoretic implementation of order-revealing
encryption whose security holds for two messages.

We also consider the case where the actual number of participating
parties t may be larger than the minimal k for which the protocol is
designed to work. In this case, it is unavoidable that the output party
learns the output corresponding to each subset of k out of the t partic-
ipants. Therefore, a “best possible security” notion, requiring that this
will be the only information that the output party learns, is needed.
We present connections between this notion and the previously stud-
ied notion of t-robust PSM (also known as “non-interactive MPC”). We
show that constructions in this setting for even simple functions (like
AND or threshold) can be translated into non-trivial instances of pro-
gram obfuscation (such as point function obfuscation and fuzzy point
function obfuscation, respectively). We view these results as a negative
indication that protocols with “best possible security” are impossible to
realize efficiently in the information-theoretic setting or require strong
assumptions in the computational setting.
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1 Introduction

The notion of ad hoc secure computation was recently put forward in [4]. In the
ad-hoc secure computation problem, there are n parties that may potentially
take part in a secure computation protocol. At the time that the protocol is
executed, some k of these n parties actually participate in the execution. The
goal is to design (efficient) protocols that can work for every set of k parties
S, without knowing the set of participants in advance. As a concrete example,
think of a voting application, where n parties are registered to the elections but
only k of them (the identity of which becomes known only in real time) end up
participating in the vote.

In most standard secure computation models, the ad-hoc nature of the pro-
tocol does not pose a significant challenge: the participating parties can interact
with each other and use a standard general-purpose secure protocol to per-
form the computation. The problem is most challenging in situations where pre-
processing or setup are required, or where interaction is limited. In the extreme,
where non-interactive secure protocols are needed, the single message sent by
each party Pi cannot depend on the messages of other parties, whose identities
are not even known to Pi.

A simple model for non-interactive secure computation is the Private Simul-
taneous Messages (PSM) model of [14,17]. In this model, there are n parties
P1, . . . , Pn and a special party called the referee. Before the input is known, the
parties are given correlated randomness1 (r1, . . . , rn). In the online phase, each
party Pi gets an input xi and sends a single message mi, depending on xi and
ri, to the referee. Based on the n received messages, the referee should be able to
compute the value of a pre-determined function f on the input x = (x1, . . . , xn),
namely f(x). The security requires that the referee learns no additional infor-
mation about x. It is known that PSM protocols exist for every finite func-
tion f [14] and efficient PSM protocols exist for every function in NC1 and
for classes of functions defined by different types of (polynomial-size) branch-
ing programs [14,17]. In a computational setting, efficient PSM protocols for
all polynomial-time computable functions can be based on one-way functions
by using Yao’s garbled circuit construction [14,20]. The simplicity of the PSM
model makes it an attractive candidate for a complexity theoretic study (see,
e.g., [2]) and its limited interaction pattern makes it useful in applications, such
as minimizing the round-complexity of secure protocols in the standard point-
to-point model (see, e.g., [18]).

In this paper, we study the ad hoc version of the PSM model, where the
referee receives messages from a subset of size k out of the n parties. We assume
that the parameter k is known in advance, but the parties are not aware of the
identity of other participating parties. Before describing our results in detail (in
Sect. 1.1), we discuss some possible variants of the question. First, the original

1 Both in the original PSM model and in its ad-hoc variant, it suffices for the parties
to share a source of common randomness that is unknown to the referee. The use of
more general correlated randomness can help reduce the randomness complexity.
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PSM model was mainly studied in the information-theoretic security setting.
In this work, we consider both the information-theoretic variant and the com-
putational variant. In fact, the computational version of ad hoc PSM was first
considered in [4], where it was shown that such protocols can be constructed
based on the existence of a weak form of Multi-Input Functional Encryption
(MIFE) [15], a primitive whose general realization is essentially equivalent to
the existence of general indistinguishability obfuscation.

Second, the problem of ad hoc PSM is significantly different in the case where
we are guaranteed that exactly k parties will send messages vs. the case where
possibly more than k parties may participate. Most of the time, we will assume
that only k parties send messages and that this guarantee is assured by some
other mechanism, such as a public bulletin board reporting the current partici-
pant count, or an anonymous communication medium that hides all information
except the fact that a message has been sent. On the other hand, in a setting
where a set S of more than k parties may send messages in the protocol, the
referee unavoidably may compute the function f on any subset S′ ⊂ S of size k
and learn the value f(xS′). Therefore, in this case, our security notion is a “best
possible security” definition, requiring that this will be the only information that
the referee learns in the protocol. This can be formalized either using a strong
simulation-based definition or a weaker indistinguishability-based definition.

Finally, it will be convenient and, in fact, very natural in the ad-hoc setting
to think of f as a symmetric function. Most of our results do not rely on this
and can be extended to even allow the computed function to depend on the set
of participants S, i.e. to output fS(xS).

1.1 Our Results

Let us start by demonstrating our results using a concrete task of comput-
ing the SUM function. In this case, each party Pi is given an input xi ∈ Zm

and the goal is to compute their sum
∑

i∈[n] xi (all additions in this example
are mod m). A standard PSM protocol for SUM works by giving the parties
randomness r1, . . . , rn ∈R Zm subject to the constraint that

∑
i∈[n] ri = 0.

Then, each party Pi, sends a message mi = xi + ri to the referee who outputs∑
i∈[n] mi =

∑
i∈[n] xi, as needed. Moreover, due to the choice of the ri’s, no

additional information about the inputs is revealed to the referee.
In the ad-hoc version of the problem, we wish to compute the SUM of any set

S of k parties that may send messages in the protocol. One option is to prepare,
for each potential set S of size k, independent randomness rS

1 , . . . , rS
k that is

random subject to their sum being 0 and proceed by Pi sending a message (using
the corresponding randomness rS

j ), for each set S to which it belongs. While this
solution works, its randomness complexity and communication complexity are
proportional to

(
n
k

)
, which is much more than what we are shooting for. Instead,

we describe an efficient solution for this problem.
In our ad hoc PSM protocol, the randomness consists of values r1, . . . , rn ∈R

Zm subject to the constraint that
∑

i∈[n] ri = 0, as in the original PSM protocol.
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In addition, we produce shares {rj,i}i∈[n], for each rj , using a k-out-of-n secret
sharing scheme (e.g., Shamir). The randomness given to each Pi consists of its
ri and its shares of all other random values; that is {rj,i}j∈[n]\{i}. Then, each
party Pi that participates in the protocol (i.e., i ∈ S) sends as its message the
value mi = xi + ri, as well as all its shares. The referee sums up all the mi’s
that it got from the k participants, as well as all the values rj , for j /∈ S, that
it can reconstruct from the k shares that it received for each such rj , to get∑

i∈S(xi + ri) +
∑

i/∈S ri =
∑

i∈S xi, as needed. In terms of security, each ri, for
i ∈ S, remains hidden as the referee receives exactly k−1 shares for these random
elements. In fact, the view of the referee can be simulated from its view in the
original PSM, where parties Pj , for j /∈ S, have input xj = 0. Also note that if,
say, k + 1 parties send messages then the referee learns all inputs. However, for
the SUM function, the best possible security definition (that allows the referee
to learn the output on all subsets of size k) allows to recover all k + 1 inputs in
most cases (at least when gcd(k,m) = 1).

Next, we describe in some detail our main results. The first question that we
ask (in Sect. 3) is whether the existence of a standard k-party PSM computing
a function f guarantees the existence of a k-out-of-n ad hoc PSM protocol for
f . We first prove the existence of an inefficient transformation of this kind but
that has an overhead of

(
n
k

)
. While this transformation may be useful for the

case where the number of parties is small (and also proves the existence of an
ad hoc PSM protocol for every function f), our aim is to get an efficient trans-
formation (i.e., with poly(n) overhead). We next present such a transformation
that works whenever f is symmetric, and is efficient whenever k is small (essen-
tially, 2O(k) log n). When k = O(1), the overhead is as small as O(log n) (this
construction relies on perfect hash families, and its complexity depends on the
size of such families of functions from [n] to [k]). The fact that the complexity of
each party grows only logarithmically with the number of parties will be useful
for the application discussed in Sect. 6.

Then, in Sect. 4, we ask whether an ad hoc PSM protocol for f can be con-
structed more efficiently based on a standard PSM protocol for a related (n-
argument) function g. We prove that this is indeed possible, while incurring only
O(n) overhead over the complexity of the protocol for g. Moreover, the compu-
tational complexity of g is closely related to that of f in computational models
for which efficient PSM protocols are known (e.g., if f is in NC1 then so is g, and
if f has a polynomial-size branching program then so does g). This implies effi-
cient ad hoc PSM protocols for branching programs in the information-theoretic
setting and for circuits in the computational setting, where the latter relies on
the existence of a one-way function. In addition, in Sect. 5, we present an explicit
ad hoc PSM for the equality function.

In Sect. 6, we show an interesting application of ad hoc PSM protocols. Specif-
ically, we show how to construct an order revealing encryption (ORE) from an
ad hoc PSM protocol for the “greater-than” function. An order revealing encryp-
tion, presented in [10] as a generalization of order preserving encryption [1], is a
private-key encryption that enables computing the order between two messages
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(that is, checking if m1 < m2, m1 = m2, or m1 > m2), given their encryptions
(without knowing the private key), but does not disclose any additional infor-
mation. We construct information-theoretically secure order revealing encryption
that is secure as long as only two messages are encrypted. In our construction, we
use an ad hoc PSM protocol constructed in Sect. 3 with n = 2λ parties (where
λ is the security parameter), relying on the fact that the complexity of each
party in the protocol from Sect. 3 only grows logarithmically with the number
of parties. We also give a solution for a bigger number of messages, but with a
weaker security guarantee.

The above results refer to the case where exactly k parties send messages
in the protocol. We next examine (in Sect. 7) the case where more than k (but
up to some threshold t) parties may send messages. In this case, as discussed
above, one needs to settle for a “best possible security” definition. We extend the
above transformation from standard PSM to ad hoc PSM to this case, showing
that it is possible to construct a PSM protocol for f with best possible security
from a so-called “t-robust PSM” protocol [5] for a related function g′, incurring
only O(n) overhead. A t-robust PSM is a protocol where up to t parties may
collaborate with the referee in trying to learn information about the inputs of
other parties. In this case, it is always possible for the adversary to get the output
of f on many inputs, by replacing the messages of the collaborating parties with
messages that correspond to other inputs. Therefore, for such protocols also one
may only hope for a “best possible security”. Our results connect these two
best possible security settings (in both directions). It should be noted, however,
that efficient t-robust PSM protocols in the information-theoretic setting are
currently known only for limited families of functions, and limited values of t [5].

In Sect. 8, we examine the possibility of constructing efficient PSM protocols
with best possible security, in the computational setting. (The naive transforma-
tion of Sect. 3 shows that it is possible to get best possible security even in the
information theoretic case but without efficiency.) The two-way connection with
t-robust PSM already implies a two-way connection between this problem and
general-purpose obfuscation. However, it is not clear a-priori that the connec-
tion has relevance in the case of simple functions. We give evidence that efficient
ad-hoc PSM protocols with best possible security are difficult to design even for
very simple functions. For instance, a protocol for a threshold function implies
a construction of fuzzy point function obfuscation [7], a primitive whose only
known constructions rely on multilinear maps. In fact, even a protocol for the
AND function, gives a construction of point function obfuscation.

2 The Setting

We consider a network of n parties, denoted P1, . . . , Pn, and a referee; Each
party Pi holds an input xi, and the parties hold correlated random strings
r1, . . . , rn. We want to execute a protocol, where only a subset of the parties
S ⊆ {P1, . . . , Pn} participates in the protocol, each one of them sends a single
message to the referee. If exactly k parties participate and send messages then,
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based on these k messages, the referee should be able to compute the value
f(xS) but learn no other information about xS , where xS = (xi)i∈S . The subset
S of participating parties is selected in an ad hoc manner and, in particular,
the participating parties are not aware of each other. This is the main source
of difficulty in this model. The referee itself necessarily learns the set of par-
ticipants S (as it receives messages directly from the participants; avoiding this
would require the use of anonymous communication). We often assume that f
is symmetric; while this is a natural assumption in such a setting, most of our
constructions can handle a much more general requirement, where the computed
function itself may also depend on the set of participants S (i.e., the output is
fS(xS)). We call the above model ad hoc PSM. We formalize this notion below
starting with information-theoretic secure protocols.

Definition 2.1 (Ad hoc PSM: Syntax and correctness). Let X ,R1, . . . ,
Rn, M and Ω be finite domains. A k-out-of-n ad hoc PSM for a function f :
X k → Ω is a triplet Π = (Gen,Enc,Dec) where

– Gen() is a randomized function with output in R1 × · · · × Rn,
– Enc is an n-tuple of deterministic functions (Enc1, . . . ,Encn), where Enci :

X × Ri → M,
– Dec :

(
[n]
k

)×Mk → Ω is a deterministic function satisfying the following cor-
rectness requirement: for any S = {i1, . . . , ik} ⊆ [n] and xS = (xi1 , . . . , xik

) ∈
X k,

Pr
[ r = (r1, . . . , rn) ← Gen() :

Dec(S,Enci1(xi1 , ri1), . . . ,Encik
(xik

, rik
)) = f(xS)

]
= 1.

The randomness complexity of Π is the maximum of log |R1|, . . . , log |Rn|.
The communication complexity of Π is log |M|.
Definition 2.2 (Ad hoc PSM: Perfect and statistical security). We say
that an ad hoc PSM protocol Π for f is k-secure if:

– For every set S ∈ (
[n]
k

)
, given the messages of S, the referee does not get

any additional information beyond the value of f(xS). Formally, there exists
a randomized function Sim (a “simulator”) such that, for every S ∈ (

[n]
k

)
and

for every xS ∈ X k, we have Sim(S, f(xS)) ≡ MS , where MS are the messages
defined by R ← Gen() and MS = (Enci(xi, Ri))i∈S.

– For every k′ < k and every set S′ ∈ (
[n]
k′

)
, given the messages of S′, the

referee does not get any information on the input xS′ . Formally, there exists
a randomized function Sim such that, for every k′ < k, every S′ ∈ (

[n]
k′

)
and

every xS′ ∈ X k′
, we have Sim(S′) ≡ MS′ , where MS′ is defined as above.

We say that an ad hoc PSM protocol Π for f is (k, ε)-(statistically) secure
if there exists a randomized function Sim such that for every S ∈ (

[n]
k

)
and for

every xS ∈ X k,

dist(Sim (S, f(xS)) ,MS) ≤ ε.

Similarly, for every S′ ∈ (
[n]
k′

)
, we have dist(Sim(S′),MS′) ≤ ε.
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Example 2.3. We next describe a very simple ad hoc PSM protocol for com-
puting the difference of inputs for k = 2 parties; that is, for i < j we want to
compute f(xi, xj) = xi −xj (over some Abelian group G). The randomness gen-
eration chooses a random element r ∈R G and gives it to each party. The message
of each Pi on input xi is mi = xi + r. The output of the referee on messages
mi,mj from parties Pi, Pj (where i < j) is mi − mj = xi − xj . The simulator
Sim proving the security of the protocol gets as an input a set S = {i, j} and
Δ = xi − xj . It chooses a random value r and outputs r, r − Δ. Notice that
both the messages in the protocol and the output of Sim is a pair (a, b), where
a is uniformly distributed in G and b is a − f(xi, xj), thus the simulation is as
required.

While in most parts of this paper we will assume that at most k parties send
messages, we next consider the scenario that parties execute an ad hoc PSM
protocol and a set T of more than k parties sends messages. Clearly, for every
S ⊂ T of size k, the referee can compute the output of f on the inputs of S.
Thus, the best possible security requirement is that the referee does not learn any
additional information.

Definition 2.4. An ad hoc PSM protocol Π for f is (k, t, ε)-secure if there
exists a randomized function Sim such that, for every t′ ≤ t, every T ∈ (

[n]
t′

)
and

every xT ∈ X t,

dist(Sim
(
T, (f(xS))S⊆T,|S|=k

)
,MT ) ≤ ε.

An ad hoc PSM protocol Π for f is (k, t)-secure if it is (k, t, 0)-secure.

Remark 2.5. In Sect. 3.2, for every function f , we construct an inefficient (k, n)
ad hoc PSM protocol. It follows from [16] (together with our result that (k, n)-
secure ad hoc PSM protocols imply obfuscation) that efficient (k, n)-secure ad
hoc PSM protocols for every function in NC1 do not exist unless the polynomial-
time hierarchy collapses. This impossibility result does not rule out, for example,
efficient (2, n)-secure ad hoc PSM protocols for every function in NC1 (and
beyond) or efficient (k, k + 1)-secure ad hoc PSM protocols. We do not know if
such efficient ad hoc PSM protocols exist.

For some functions the (k, t)-security requirement is not interesting as the
best possible security already reveals a lot of information. For other functions
this notion is interesting.

Example 2.6. Let f be the 2-party addition function over a field whose charac-
teristic is not 2. Suppose that a referee got messages from parties P1, P2, P3 in
an ad hoc PSM for f , thus, it can compute the sum of every two inputs of these
parties, namely, x1 + x2 = s1,2, x1 + x3 = s1,3, and x2 + x3 = s2,3. From these
sums it can compute the inputs, e.g., x1 = 2−1(s1,2 + s1,3 − s2,3).

Example 2.7. Consider the n/2-party AND function and an input where the
value of exactly n/2 of the input variables is 1. Assume that the referee gets
messages from the n parties for this input. If the referee does not know the set
of variables whose value is 1, then it will not be able to efficiently determine it.
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We next consider computationally-secure ad hoc PSM protocols. In such pro-
tocols we want all algorithms to be efficient. We start by defining their syntax.

Definition 2.8 (Computational ad hoc PSM: Syntax). Let n(λ), k(λ),
and �(λ) be polynomials, and F = {fλ : ({0, 1}�(λ))k(λ) → {0, 1}∗}λ∈N be a
collection of functions. A protocol Π = (Gen,Enc,Dec) is a (k(λ), n(λ))-
computational ad hoc PSM protocol for F if

– Algorithm Gen(1λ) is a polynomial time algorithm that generates n(λ) random
strings (for n(λ) parties).

– Algorithms Enc and Dec run in polynomial time.
– There exists a negligible function negl() such that for any λ ∈ N, any S ⊆

[n(λ)], and any xS = (xi)i∈S ∈ ({0, 1}�(λ)
)k(λ)

,

Pr
[
r ← Gen(1λ) : Dec (S, (Enci(xi, ri))i∈S) = fλ(xS)

] ≥ 1 − negl(λ).

We next present three definitions of security for computational ad hoc PSM
protocols. The first definition is simulation-based and it applies to k-security
(i.e., to the scenario where exactly k parties send their messages).

Definition 2.9 (Computational ad hoc PSM: Simulation-based secu-
rity). Let n(λ), k(λ), and �(λ) be polynomials, and F = {fλ : ({0, 1}�(λ))k(λ) →
{0, 1}∗}λ∈N be a collection of functions. We say that an ad hoc PSM protocol
(Gen,Enc,Dec) is k(λ)-simulation-based secure if there exists a probabilistic
non-uniform polynomial algorithm Sim whose inputs are 1λ and the value of f
such that the two ensemble of distributions

(
(mi)i∈S : r ← Gen(1λ),

∀i∈S mi ← Enc(xi, ri)

)
λ ∈ N, S ∈ (

[n(λ)]
k(λ)

)
,

(xi)i∈S ∈ ({0, 1}�(λ)
)k(λ)

and
(
Sim(1λ, fλ((xi)i∈S)

)
λ ∈ N, S ∈ (

[n(λ)]
k(λ)

)
,

(xi)i∈S ∈ ({0, 1}�(λ)
)k(λ)

are indistinguishable in polynomial time.

Simulation-based security is a strong requirement that cannot be achieved for
computational ad hoc PSM protocols with best possible security (see discussion
in [3]). Thus, for such protocols, we define weaker security – virtual black-box
(VBB) security, where the adversary can output only one bit and that uses
indistinguishability-based security. To simplify the notation, we only consider
the case where t = n(λ).

Definition 2.10 (Computational ad hoc PSM: Virtual black-box Secu-
rity). Let n(λ), k(λ), and �(λ) be polynomials, and F = {fλ : ({0, 1}�(λ))k(λ) →



588 A. Beimel et al.

{0, 1}∗}λ∈N be a collection of functions. We say that an ad hoc PSM protocol
(Gen,Enc,Dec) is (k(λ), n(λ))-VBB-secure if, for every non-uniform polyno-
mial time adversary A that outputs one bit, there exists a non-uniform proba-
bilistic polynomial time algorithm Sim and a negligible function negl(λ) such that
for every λ ∈ N, every S ∈ (

[n(λ)]
k(λ)

)
, and every x1, . . . , xn(λ) ∈ ({0, 1}�(λ))n(λ)

∣∣∣Pr
[A(1λ,m1 . . . ,mn(λ)) = 1

] − Pr
[
Simfλ(1λ) = 1

]∣∣∣ ≤ negl(λ),

where

– The first probability is over the messages generated in the following way: first
compute r ← Gen(1λ) and then mi ← Enc(xi, ri), for every i ∈ [n(λ)].

– The second probability is over the randomness of the simulator, which has
access to an oracle fλ that on query S ∈ (

[n(λ]
k(λ)

)
returns fλ(xS).

Definition 2.11 (Computational ad hoc PSM: Indistinguishability-
based security). Let n(λ), k(λ), and �(λ) be polynomials, and F = {fλ :
({0, 1}�(λ))k(λ) → {0, 1}∗}λ∈N be a collection of functions. Consider the follow-
ing game between an adversary A and a challenger:

1. The adversary on input 1λ chooses a set T ⊆ [n(λ)] and two inputs (x0
i )i∈T

and (x1
i )i∈T and sends T and the two inputs to the challenger.

2. The challenger chooses a uniformly random bit b ∈ {0, 1} and computes
(r1, . . . , rn) ← Gen(1λ) and mi ← Enc(xb

i , ri), for every i ∈ T . It then
sends (mi)i∈T to the adversary.

3. The adversary outputs a bit b′.

The adversary wins the game if b′ = b and fλ(x0
S) = fλ(x1

S), for every S ⊆ T
such that |S| = k(λ).

We say that a computational ad hoc PSM protocol (Gen,Enc,Dec) is a
(k(λ), n(λ))-indistinguishably-secure ad hoc PSM protocol for F if, for every
non-uniform polynomial-time adversary A, the probability that A wins is at most
1/2 + negl(λ) for some negligible function negl.

Our default model in the rest of the paper, unless explicitly mentioned, is
(k, k)-secure ad hoc PSM protocol with perfect security.

3 Ad hoc PSM Protocols for a Function f from a PSM
for f

In this section we present a k-out-of-n ad hoc PSM protocol for any function f
by applying transformations to k-party PSM protocols for the same f .
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3.1 From a PSM for f to an n-out-of-n ad hoc PSM for f

In an n-party PSM protocol for f , if all n parties send messages, then the
referee learns f(x1, . . . , xn) and does not learn any additional information. In
an n-out-of-n ad hoc PSM protocol, there is an additional requirement: if less
than n parties send messages, then the referee should learn no information. The
definition of PSM does not imply the latter requirement.

Example 3.1. Consider a function which returns x1. In a PSM for this function,
P1 can send its input, while in an ad hoc PSM protocol, this should not be done.

In many PSM protocols this additional requirement does hold. Furthermore,
for many functions, the requirement for smaller sets of active participants follows
from the security requirements of the PSM.

Example 3.2. Consider a PSM protocol for the AND function. If the input of
Pn is 0, then the output of AND is 0 for every input for P1, . . . , Pn−1. Thus,
the messages m1, . . . ,mn of P1, . . . , Pn are equally distributed when xn = 0, for
every input for P1, . . . , Pn−1. Since the messages of P1, . . . , Pn−1 are independent
of xn, the messages of parties P1, . . . , Pn−1 are equally distributed for every input
for these parties. I.e., in any PSM protocol for AND the referee does not learn
any information from the messages of P1, . . . , Pn−1 or, similarly, any other set
of less than n active participants.

Lemma 3.3. If there is an n-party PSM protocol Π for f with randomness
complexity Rand(Π) and communication complexity Comm(Π), then there is an
n-out-of-n ad hoc PSM protocol for f with randomness complexity Rand(Π) +
n · Comm(Π) and communication complexity n · Comm(Π).

Proof. We construct an ad hoc PSM protocol Πah for f from the PSM protocol
Π for f , as follows.

Randomness generation:

– Generate randomness for the PSM protocol Π; denote r1, . . . , rn the gen-
erated randomness of P1, . . . , Pn, respectively.

– Choose n uniformly random strings u1, . . . , un, each of length Comm(Π).
– Share each uj , for j ∈ [n], using an n-out-of-n secret sharing scheme; let

uj,i be the i-th share of uj .
– The randomness of Pi in Πah is ri, (uj,i)j∈[n].

Message generation:

– Let mi be the messages of Pi in Π on input xi and randomness ri.
– The message of Pi in Πah is mi ⊕ ui and (uj,i)j∈[n].

If the n parties send their messages, then the referee can reconstruct ui for
every i ∈ [n], compute mi, and reconstruct f(x1, . . . , xn) using the decoding
algorithm of Π.

The security of Πah when n parties send messages follows from the security
of Π (as the strings u1, . . . , un are random). When less than n parties send their
messages, the referee gets less than n shares of each ui, thus, these strings act
as random pads and the referee learns no information. �
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3.2 A Naive ad hoc PSM Protocol for Any f

In this section we show how to construct, given a (standard) k-party PSM pro-
tocol for f , a k-out-of-n ad hoc PSM protocol for f that is n-secure (that is,
if a set T of at least k parties send their messages, then the referee can com-
pute the output of f on any subset of inputs of size k and learns no additional
information).

Theorem 3.4. If there is a k-party PSM protocol Π for f with randomness
complexity Rand(Π) and communication complexity Comm(Π), then there is
a (k, n)-secure ad hoc PSM protocol for f with randomness complexity

(
n
k

) ·
(Rand(Π) + n · Comm(Π)) and communication complexity

(
n
k

) · n · Comm(Π).

Proof. Let Πah be the k-out-of-k ad hoc PSM protocol constructed from Π in
Lemma 3.3. We construct an ad hoc PSM protocol Π ′ for f as follows:

Randomness generation:

– For each set S ∈ (
[n]
k

)
, independently generate randomness for Πah and

give this randomness to the parties in S.

Message generation:

– Each party Pi sends its message in protocol Πah, associated with the set
S′, for every S′ of size k such that i ∈ S′.

Function reconstruction by the referee: For a set S of k participating
parties, the referee (only) uses the messages of the parties in S of the PSM
Πah for S to reconstruct f(xS).

We next prove the security when a set T of size at least k sends messages.
We claim that the referee only learns f(xS) for every S ⊆ T of size k. Since the
randomness of each execution of the PSM protocol Πah is chosen independently,
the referee can only learn information from the messages of Πah for each set S of
size k. In an execution for a set S ⊆ T it can only learn f(xS). In any execution
of the PSM protocol for S such that S �⊆ T , the referee misses a message of at
least one party thus, by Lemma 3.3, learns no information from this execution.

The randomness and communication of the ad hoc PSM protocol Π ′ are
(
n
k

)

times larger than the randomness and communication, respectively, of the PSM
protocol Πah. �

As every function f has a PSM realizing it [14,17], the previous theorem
implies that every function has an ad hoc PSM protocol.

Corollary 3.5. For every k-argument function f , there is an n-secure k-out-
of-n ad hoc PSM protocol realizing f .
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3.3 A 2-out-of-n ad hoc PSM Protocol from a PSM Protocol for f

Suppose that we have a 2-party PSM protocol Π for a symmetric function f .
We denote the parties in this PSM by Q0 and Q1. We want to construct an ad
hoc PSM protocol Π∗ for f using Π. The idea is to instruct the first party Pi

to simulate Q0 and instruct the second party Pj to simulate Q1. The problem
is that in an ad hoc PSM protocol a party does not know who the other party
is; informally, it does not know if it is the “first party” or the “second party”.
Instead, we execute a few copies of the PSM protocol Π where, in some copies
of the PSM, party Pi plays the role of Q0, and in other copies it plays the role
of Q1. Specifically, we view each i ∈ [n] in its log n-bit binary representation
i = (i1, . . . , ilog n), and execute log n copies of Π, where in the �th copy Pi plays
the role of Qi�

. Since for any i �= j, there exists an index � such that i� �= j�,
in the �th copy Pi, Pj simulate both Q0 and Q1 and the referee can compute f
from this copy.

However, information can now leak when Pi and Pj simulate, in some copy,
the same Qb; that is, if i� = j�, for some �. In particular, in such copy, Pi and
Pj send the same message if xi = xj . To overcome this problem, in the �th copy,
where party Pi plays the role of Qi�

, party Pi “encrypts” its message m using
a key ki�

and each party playing the role of Qī�
sends the key ki�

as part of its
message. Thus, if both Pi, Pj play the role of the same party Qb, then the referee
does not obtain the key, and cannot learn any information from this copy of the
PSM. The formal description of the ad hoc PSM protocol Π∗ follows.

Randomness generation:

– Let p be a prime such that log p ≥ max{Comm(Π), log n}, where
Comm(Π) is the length of the messages in the PSM protocol Π. All arith-
metic in the protocol is in Fp.

– For � = 1 to log n:
• Independently generate randomness for the PSM protocol Π; denote

by r�,0, r�,1 the generated randomness of Q0, Q1, respectively.
• Choose four random values a�,0, b�,0, a�,1, b�,1 ∈R Fp.

– The randomness of Pi, where i = (i1, . . . , ilog n), is

(r�,i�
, a�,0, b�,0, a�,1, b�,1)1≤�≤log n.

Message generation for every Pi ∈ S:

– For every � ∈ {1, . . . , log n}, party Pi computes mi,� – the message that
Qi�

sends in Π on input xi with randomness r�,i�
.

Pi sends (mi,� + a�,i�
· i + b�,i�

)1≤�≤log n and (a�,ī�
, b�,ī�

)1≤�≤log n.

Assume that Pi and Pj send messages and the referee wants to compute
f(xi, xj). It finds an index � such that i� �= j�. Without loss of generality, i� = 0
and j� = 1, that is, in the �th copy of Π, party Pi plays the role of Q0 and Pj

plays the role of Q1. As Pi sends mi,� + a�,0 · i + b�,0 and Pj sends a�,0, b�,0, the
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referee can recover mi,� – the message of Q0. Similarly, the referee can recover
mj,� – the message of Q1 – and, using the reconstruction procedure of Π, it can
compute f(xi, xj).

By the privacy property of protocol Π, the referee does not learn any addi-
tional information from an �th copy of the PSM, where i� �= j�. Furthermore,
this is true also for the concatenation of the messages in all the copies where
i� �= j�; note that since f is symmetric the output of the protocol in each such
copy is the same. On the other hand, in any copy where i� = j�, the referee gets
two “encrypted” messages mi,� + a�,i�

· i + b�,i�
and mj,� + a�,i�

· j + b�,i�
. Since

i �= j (and a�,i�
, b�,i�

are random), then all pairs of “encrypted” messages are
possible and the referee learns no information from this copy of Π. The security
of Π∗ follows.

Let Rand(Π) and Comm(Π) be the randomness complexity and communi-
cation complexity of Π, respectively. The randomness complexity of the new
Π∗ is

O (log n · max{Rand(Π),Comm(Π), log n}) ,

and the communication complexity of Π∗ is O(log n · max{Rand(Π), log n}).

3.4 A k-out-of-n ad hoc PSM Protocol from a PSM Protocol for f

We want to generalize the above ad hoc PSM protocol Π∗ to larger values of k.
Again, we will execute many copies of the original k-party PSM protocol Π. The
properties we require are: (1) for every set S ⊆ [n] of size k, there exists a copy
in which the parties in S play roles of distinct parties in Π, and (2) in copies
where the parties in S do not play roles of distinct parties in Π, no information
is leaked. To achieve the first requirement, we use a perfect hash family.

Definition 3.6. A perfect hash family H = {h : [n] → [k]} is a set of functions
such that for any set S ⊆ [n] of size k, there exists at least one h ∈ H that is
1-1 over S.

Example 3.7. For k = 2, the family of bit-functions H = {h1, . . . , hlog n}, where
h�(i) = i� + 1 (and i� is the �th bit in the binary representation of i) is a perfect
hash family.

A perfect hash family with
(
n
k

)
functions can be easily constructed, but much

more efficient constructions, probabilistic or explicit, are possible. E.g., picking
the h’s at random, it is enough to have |H| ≈ ek · k log n (for a specific size-k set
S, a random function is 1-1 w/prob k!/kk > e−k, by Sterling formula, and we
need to take care of about nk such sets).

We next describe the ad hoc PSM protocol, assuming a k-party PSM protocol
Π for a symmetric function f and a perfect hash family H.

Theorem 3.8. Assume that there is a k-party PSM protocol Π for a symmetric
function f with randomness complexity Rand(Π) and communication complex-
ity Comm(Π). Then, there is a k-out-of-n ad hoc PSM protocol for f with



Ad Hoc PSM Protocols: Secure Computation Without Coordination 593

randomness complexity O(ek · k log n · (Rand(Π) + k2 · max{Comm(Π), log n}))
and communication complexity O(ek · k3 log nmax{Comm(Π), log n}).

Proof. Denote the parties of Π by Q1, . . . , Qk. We construct a k-out-of-n ad hoc
PSM protocol Π∗ as follows.

Randomness generation:

– Let p be a prime such that log p ≥ max{Comm(Π), log n}, where
Comm(Π) is the length of the messages in Π.

– For every h ∈ H do:
• Independently generate randomness for the hth copy of Π; let

rh,1, . . . , rh,k be the generated randomness for Q1, . . . , Qk respectively.
• Choose k random polynomials Ah,1(Y ), . . . , Ah,k(Y ) of degree k−1 over
Fp.

• Consider each polynomial Ah,j(Y ) as an element in F
k
p and share

it in a k-out-of-k additive sharing scheme; denotes its shares as
Ah,j,1, . . . , Ah,j,k.

– The randomness of Pi in the ad hoc PSM protocol Π∗ is

(rh,h(i), Ah,h(i), Ah,1,h(i), . . . , Ah,k,h(i))h∈H .

Message generation for every Pi ∈ S:

– For every h ∈ H, party Pi computes mi,h – the messages that Qh(i) sends
in the PSM protocol Π on input xi with randomness rh,h(i). Party Pi sends
(Ah,h(i)(i) + mi,h)h∈H and, in addition, the shares (Ah,j,h(i))h∈H,j∈[k].

Assume that a set S of size k sends messages and the referee wants to compute
f(xS). The referee finds a function h ∈ H that is 1-1 on S. Let i ∈ S. Party Pi

plays the role of Qh(i) in the hth copy of Π, and sends the message Ah,h(i)(i) +
mi,h. Furthermore, all k parties in S send their shares in a k-out-of-k secret-
sharing scheme with the secret Ah,h(i). Thus, the referee can reconstruct Ah,h(i),
compute Ah,h(i)(i), and recover mi,h. Similarly, the referee can recover all k
messages in the hth copy of Π and can decode f(xS).

By the privacy property of protocol Π, the referee does not learn any addi-
tional information from an hth copy of Π, for every h such that h is 1-1 on S.
Furthermore, this is true also for the concatenation of the messages in all such
copies and, since f is symmetric, the output of the protocol in each such copy
is the same. On the other hand, in any copy where h is not 1-1 on S, the ref-
eree does not get any information on Ah,h(i), since it gets at least two identical
shares of this secret. The referee gets at most k messages “encrypted” by the
same secret key Ah,h(i). The values {Ah,h(i)(i)}i∈S are k points on a random
polynomial of degree k − 1, thus, they are uniformly distributed and serve as
random pads, i.e., the referee gets no information from such hth copy of the
PSM Π.
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The randomness complexity of Π∗ is

|H| · (Rand(Π) + k2 · max{Comm(Π), log n})

≈ ek · k log n · (Rand(Π) + k2 · max{Comm(Π), log n}) ,

To analyze the communication complexity of Π∗, note that for each h, each
party Pi sends its encrypted message and also a share for Ah,j , for all j ∈ [k].
All together, the communication complexity of each party is

|H| · k2 · max{Comm(Π), log n} ≈ ekk3 log n · max{Comm(Π), log n}.

�
Remark 3.9. There may be several functions in H, say h, h′, that are 1-1 on S
(and, moreover, hS is different than h′

S). Since we assume here that the function
f is symmetric, the output is the same in both copies of Π and, since the
randomness is independent, there is no additional information. If f was not
symmetric the referee may learn multiple outputs (under different orders) and
hence additional information on the input.

4 An ad hoc PSM Protocol Based on a PSM Protocol
for a Related Function

In this section we construct an ad hoc PSM protocol for f from a PSM protocol
for a related function g. The construction is similar to the construction of the
ad hoc PSM protocol for SUM described in Sect. 1.1. To construct the ad hoc
PSM protocol for the k argument function f : Xk → Y , we define a (partial)
n-argument function g : (X ∪ {⊥})n → Y ∪ {⊥}, where if there are more than
n−k inputs that are ⊥, the function outputs ⊥, if there are exactly n−k inputs
that are ⊥, the function outputs the output of f on the k non-⊥ inputs, and if
there are less than n − k inputs that are ⊥, then the function is undefined (in
the latter case, we do not care what g outputs).

Lemma 4.1. If there exists a PSM protocol Πg for g with randomness com-
plexity Rand(Πg) and communication complexity Comm(Πg), then there exists
an ad hoc PSM protocol for f with randomness complexity Rand(Πg) + n ·
max{Comm(Πg), log n} and communication complexity n · max{Comm(Πg),
log n}.
Proof. We construct an ad hoc PSM protocol Πf for f from the PSM protocol
Πg as follows.

Randomness generation:

– Generate randomness for the PSM protocol Πg; let r1, . . . , rn be the gen-
erated randomness of P1, . . . , Pn, respectively.
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– Let m⊥,j be the message that Pj sends in Πg with randomness rj and
input ⊥. Share m⊥,j using a k-out-of-n secret sharing scheme; let m⊥,j,i

be the i-th share.
– The randomness of Pi in the ad hoc PSM protocol is ri, (m⊥,j,i)j 	=i.

Message generation:

– The message of Pi on input xi is its message on input xi and randomness
ri in the PSM protocol Πg and, in addition, (m⊥,j,i)j 	=i.

Assume that parties in a set S of size exactly k send messages. Then, the
referee has the k messages in Πg of the parties in S with inputs xi �= ⊥ and, for
each j /∈ S, it has k shares of the message m⊥,j . Thus, the referee can reconstruct
g(y1, . . . , yn) = f((xi)i∈S), where yi = xi if i ∈ S and yi = ⊥ otherwise. On the
other hand, since each party pi ∈ S does not send its share of m⊥,i, the referee
gets k − 1 shares of m⊥,i; hence, the referee has no information on m⊥,i. Thus,
when k parties send messages, the referee in Πf has the same information that
the referee has in Πg and the privacy requirement for Πf protocol follows from
the privacy requirement of the PSM Πg.

Assume that parties in a set S of size less than k parties send messages. In
this case, we claim that the referee in Πf gets no information even if we give it
more information, namely, m⊥,j for every Pj /∈ S. In this case, the referee gets
messages of inputs whose output is ⊥. By the privacy of the PSM protocol, these
messages are distributed as the messages when all the inputs are ⊥, that is, the
referee does not learn any information on the inputs.

The randomness in the above ad hoc PSM Πf is Rand(Πg)+n ·Comm(Πg).
The communication in Πf is O(n ·Comm(Πg)) (assuming Comm(Πg) is at least
log n). �
Example 4.2. Assume that f : {0, 1}k → {0, . . . , k} is a symmetric function
(that is, the output of f only depends on the number of 1’s in the input). The
function f has a small branching program (i.e., the size of the branching program
is O(k2)), thus f itself has an efficient PSM protocol [17]. Furthermore, the
function g has a branching program of size O(nk2), thus, it has an efficient PSM
protocol, i.e., a PSM with communication complexity O(n2k4). This implies an
ad hoc PSM protocol for f with communication O(n3k4).

If a function f has a small non-deterministic branching program, then the
corresponding function g has a small non-deterministic branching program, thus,
by [17], g has an efficient PSM protocol. By Lemma 4.1, we get for all k ≤ n
efficient k-secure ad hoc PSM protocols for every function that has a small non-
deterministic branching programs.

Similarly, if f has a small circuit, then g has a small circuit, thus, by using
Yao’s garbled circuit construction [14,20] we get a simulation-based-secure PSM
for g assuming the existence of a one-way function. By Lemma 4.1, we get for all
k ≤ n efficient computational k-secure ad hoc PSM protocols (with simulation-
based-security) for every function that has a small circuit assuming the existence
of a one-way function.
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5 A Protocol for Equality

Define the equality function EQ : ({0, 1}�)k → {0, 1} as the function, whose
input is k strings of length � and whose output is 1 if and only if all strings are
equal. We next present an ad hoc PSM protocol for EQ.

Lemma 5.1. There is a statistically-secure ad hoc PSM protocol for EQ whose
randomness complexity and communication complexity are O(n + �).

Proof. We next describe the ad hoc PSM protocol.

Randomness generation:

– Let p be a prime number such that log p > max{n, �}.
– Choose at random an element a ∈ Fp such that a �= 0.
– Choose k−1 random elements r0, . . . , rk−2 in Fp and define the polynomial

Q(Y ) =
∑k−2

i=0 riY
i (over Fp).

– Choose n random elements j1, . . . , jn in Fp

– The randomness of Pi in the ad hoc PSM protocol is (ji, Q(ji), a).

Message generation for every Pi ∈ S:

– Pi sends ji, Q(ji) + axi.

Function reconstruction by the referee:

– Assume the referee gets k pairs (�1, z1), . . . , (�k, zk). If all point lie on a
polynomial of degree k − 2 answer “equal”, otherwise answer “not equal”.

First assume that all k inputs are equal, say to α. In this case the k pairs
lie on the polynomial Q(Y ) + aα and the referee answers “equal”. Furthermore,
since the free coefficient of Q(Y ) + aα is r0 + aα, the values (�1, z1), . . . , (�k, zk)
are independent of α.

We next consider the case that not all of the k inputs are equal. Since
j1, . . . , jn are uniformly distributed, we can assume, without loss of general-
ity, that S = {P1, . . . , Pk}. Fix any inputs x1, . . . , xk such that xk �= x� for some
1 ≤ � < k (again, this is w.l.o.g.). We prove that with probability at least 1−k/p
over the choice of j1, . . . , jk, the values z1, . . . , zk are uniformly distributed in
F

k
p. In particular, this implies that with probability at least 1 − k/p, the referee

answers “not equal”. Furthermore, it implies the privacy for this case.
Fix any j1, . . . , jk−1 and z1, . . . , zk−1. Let H(Y ) and M(Y ) be the polynomi-

als of degree k − 2 such that H(ji) = xi and M(ji) = zi for every 1 ≤ i ≤ k − 1.
Such polynomials exist and they are unique. Notice that for every a �= 0 there
exists a unique polynomial Q(Y ) of degree k − 2 that can be chosen in the ran-
domness generation of the protocol, where Q(Y ) = M(Y )−a ·H(Y ) (since both
the r.h.s. and the l.h.s. are polynomials of degree k − 2 that agree on the k − 1
points j1, . . . , jk−1). Thus, the message of Pk is

zk = Q(jk) + axk = M(jk) − a · H(jk) + axk.
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The protocol fails (i.e., outputs “equal” although not all inputs are equal) if and
only if zk = M(jk); the last equality is true if and only if H(jk) = xk. Notice that
since H(Y ) �= xk since H(j�) = x� �= xk. Since H(Y ) �= xk is a polynomial of
degree k−2, there are at most k−2 values of jk such that H(jk) = xk. Thus, with
probability at least 1−(k−2)/p ≥ 1−(k−2)/2n, the referee in this case outputs
“not equal”. Assuming that such jk is not chosen, zk = M(jk)+a(−H(jk)+xk);
as a is chosen at random, the value zk is random (provided that the kth pair
does not lie on the polynomial). �

6 Order Revealing Encryption from an Ad Hoc PSM
Protocol

An order revealing encryption is a private-key encryption that enables computing
the order between two messages (that is, checking if m1 < m2, m1 = m2, or
m1 > m2), given their encryptions (without knowing the private key), but does
not disclose any additional information. In this section, we show how to use ad
hoc PSM protocols to construct information-theoretically secure order revealing
encryption that is 2-bounded (namely, the encryption is secure as long as only
two messages are encrypted).

Definition 6.1. The greater than function, GTE� : {0, 1}� × {0, 1}� → {−1,
0, 1}, is defined as follows:

GTE�(x, y) =

⎧
⎪⎨

⎪⎩

−1 Ifx < y

0 Ifx = y

1 Ifx > y,

where we identify the strings in {0, 1}� with the integers in {0, . . . , 2� − 1}.
Definition 6.2 (Order Revealing Encryption (ORE): Syntax and cor-
rectness). Let ε : N → [0, 0.5). An ε(λ)-ORE for messages in {0, 1}� is com-
posed of 4 efficient algorithms:

– GenORE is a randomized key generation algorithm, that on input 1λ (where
λ is a security parameter), outputs a key k;

– EncORE is an encryption algorithm, that on input message m and a key k,
outputs an encryption c;

– DecORE is a decryption algorithm, that on input an encryption c and a key k,
outputs a message m satisfying the following correctness requirement for any
m ∈ {0, 1}�:

Pr
[
k ← GenORE(1λ) : DecORE (EncORE(m, k), k) = m

]
≥ 1 − ε(λ).

– CompORE is a comparison algorithm, that given any two encryptions c1, c2,
outputs a value in {−1, 0, 1} such that for any m1,m2 ∈ {0, 1}�:

Pr
[

k ← GenORE(1λ), c1 ← EncORE(m1, k),
c2 ← EncORE(m2, k) : CompORE (c1, c2) = GTE�(m1,m2)

]
≥ 1 − ε(λ).



598 A. Beimel et al.

If the comparison algorithm is the comparison over the integers (e.g., it returns −1
whenever c1 < c2), then the encryption is called Order Preserving Encryption
(OPE).

Remark 6.3. Given the private key k and an encryption c, one can use a binary
search using CompORE to decrypt c. That is, we do not need to specify the
decryption algorithm. For efficiency, one can avoid this binary search by encrypt-
ing the message using a standard (semantically secure) encryption scheme in
addition to the ORE encryption.

We next define the security requirement of ORE. Our definition is the infor-
mation theoretic analogue of the IND-OCPA security requirement from [8]. The
definition of IND-OCPA is similar to the traditional IND-CPA definition of pri-
vate key encryption, however, as the adversary can learn the order between two
messages from their encryptions, the IND-OCPA definition prevents the adver-
sary from using this information by limiting the encryption queries that it can
make (see (1) in Definition 6.4 below).

Definition 6.4 (ORE: Security). Consider the following game between an
all-powerful adversary and a challenger:

– The input of both parties is a security parameter 1λ and a bound on the number
of queries 1t.

– The challenger chooses a random bit b with uniform distribution and generates
a key k ← GenORE(1λ).

– For i = 1 to t do:
• The adversary chooses two message mi

0,m
i
1 ∈ {0, 1}� and sends them to

the challenger.
• The challenger computes ci ← EncORE(mi

b, k) and sends ci to the
adversary.

– The adversary returns a bit b′.

We say that the adversary wins if b = b′ and for every 1 ≤ i < j ≤ t

GTE�(mi
0,m

j
0) = GTE�(mi

1,m
j
1). (1)

Let ε : N → [0, 0.5). We say that an ORE is ε(λ)-secure if for every polyno-
mial t(λ) and every adversary A the probability that A with parameters 1λ, 1t(λ)

wins is at most 1/2 + ε(λ). We say that an ORE is t-bounded ε(λ)-secure if for
every adversary A the probability that A with parameters 1λ, 1t wins is at most
1/2 + ε(λ).

We next describe some relevant results for OPE and ORE. In this discussion
all encryption schemes are computationally secure. Order preserving encryption
was introduced by Agrawal et al. [1]; their motivation was encrypting a database
while allowing to answer range queries given the encrypted data (without the
secret key). A cryptographic treatment of OPE was given by Boldyreva et al. [8,
9]; they gave a formal definition of OPE (called IND-OCPA) and showed that,
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in any OPE satisfying this definition, the length of the encryption is 2ω(�), where
� is the length of the messages (this is true even if the attacker can only ask to
encrypt 3 messages). In a follow up work, Boldyreva et al. [10,11] defined ORE.
As ORE is a special case of multi-input functional encryption (MIFE) [15], it
is implied by indistinguishability obfuscation (iO). Boneh et al. [12] constructed
ORE directly from multi-linear maps (with bounded multi-linearity). t-bounded
ORE can be constructed based on the LWE assumption or from pseudorandom
generators computable by small-depth circuits [13].

We next show how to construct ORE from an ad hoc PSM protocol for the
greater than function GTE�.

Theorem 6.5. There exists a 2-bounded 1/2λ-secure ORE with messages in
{0, 1}� and encryptions of length O(�2λ + λ2).

Proof. We start with a 2-out-of-n ad hoc PSM protocol ΠGTE for GTE: The
function GTE� has a deterministic branching program of size O(�) thus, by [17],
it has a PSM protocol with randomness and communication complexity O(�2).
By Theorem 3.8, GTE� has an ad hoc PSM protocol with complexity O(�2 log n+
log2 n). Note that Theorem 3.8 requires that the function for which we construct
an ad hoc PSM protocol is symmetric. As GTE�(m2,m1) = −GTE�(m1,m2),
the transformation described in Theorem 3.8 from a PSM protocol to an ad hoc
PSM protocol is valid for GTE�.

We next describe a construction of ORE, that is, we desribe algorithms
(GenORE,EncORE,CompORE) (by Theorem 6.3 we do not need to describe
DecORE). We use the ad hoc PSM ΠGTE with n = 2λ parties (where λ is the
security parameter).

– Algorithm GenORE generates a key k by choosing a random string for
GenGTE, this key has length O(�2 log n + log2 n). We emphasize that dur-
ing the key generation we do not apply GenGTE as its output is too long (it
contains n stings).

– Algorithm EncORE encrypts a message x by choosing a random party Pi

(where 1 ≤ i ≤ n) and using GenGTE(k) to generate the random string ri of
Pi in ΠGTE.2 The encryption of x is i and c ← EncGTE,i(x, ri) – the message
of Pi on input x and randomness ri.

– Algorithm CompORE((i1, c1), (i2, c2)) returns DecGTE({i1, i2}, c1, c2) if i1 �=
i2 and “FAIL” otherwise.

If two messages are encrypted using different parties (i.e., i1 �= i2), then
the correctness of the comparison and the security of ΠGTE guarantees that,
given the two encryptions, exactly their order is revealed (i.e., the first message
is smaller, equal, or greater than the second message). If the two messages are
encrypted using the same party (i.e., i1 = i2), then correctness and security are
not guaranteed. However, the probability of this event is 1/n = 1/2λ, which is
negligible. �
2 The time required to generate ri is O(�2 log n + log2 n).



600 A. Beimel et al.

Remark 6.6. In the proof of Theorem 6.5, we can replace the ad hoc PSM pro-
tocol for GTE� obtained via the PSM protocol from [17] by any ad hoc PSM
protocol for GTE� as long as its complexity is η(n, λ) logc n for some function η
and constant c. In particular, if we use a (2, t)-secure ad hoc PSM protocol for
GTE�, then the resulting ORE would be t-bounded secure.

The ORE of Theorem 6.5 is secure only when 2 messages are encrypted. If 3
messages are encrypted, then the adversary gets 3 messages of the ad hoc PSM
protocol for GTE� and the security of the ad hoc PSM protocol is broken. We
can construct a t-bounded 1/λ-secure ORE as sketched below:

– The key generation algorithms generates keys for α = poly(λ, t) copies of the
ORE of Theorem 6.5.

– The encryption algorithms encrypts m using a random subset of the keys of
size λ

√
α.

– Given encryptions of two messages, if there is a key that was used to encrypt
both messages, then use the comparison algorithm of that copy to compare
the two messages. The probability that no such key exists is 2−O(λ).

The security of the above ORE is guaranteed as long as no 3 messages are
encrypted with the same key. The probability that there are 3 messages that are
encrypted under the same key can be reduced to 1/λ if α is big enough.

7 NIMPC Vs. (k, t)-Secure Ad Hoc PSM

In this section we consider two notions of PSM protocols, (k, t)-secure ad hoc
PSM protocols and Non-Interactive secure MPC (NIMPC) protocols. Recall that
an ad hoc PSM is (k, t)-secure if the referee getting at most t messages does not
learn any information beyond the value of f on any subset of size k of the inputs.
A t-robust NIMPC for a function f is a PSM protocol, where a referee colluding
with t parties can only compute the values of the function when the inputs
of the non-colluding parties is fixed (see [4] for a formal definition of NIMPC
protocols). We show that the existence of NIMPC protocols is equivalent to the
existence of (k, t)-secure ad hoc PSM protocols.

In the information-theoretic setting, these results should be interpreted as
negative results, maybe implying that efficient protocols do not exists in both
models. In the computaional setting, this results imply an efficient construction
of computational ad hoc PSM protocols.

7.1 Ad hoc PSM ⇒ NIMPC

Given an n-out-of-2n ad hoc PSM protocol for a boolean function f , we construct
an n-party robust NIMPC protocol for f with the same complexity.

Lemma 7.1. If there exists an (n, t)-secure n-out-of-2n ad hoc PSM protocol
for a boolean function f : {0, 1}n → {0, 1}, then there exists an n-party (t − n)-
robust NIMPC protocol for f with the same communication complexity.
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Proof. Let Π∗ be the guaranteed ad hoc PSM protocol. Consider the following
NIMPC protocol Π.

Randomness generation:

– Let r1, . . . , r2n ← GenΠ∗().
– Choose at random n random bits b1, . . . , bn.
– For i ∈ [n] let

• Mi,0 ← (2i − bi,EncΠ∗,2i−bi
(r2i−bi

, 0)).
• Mi,1 ← (2i − 1 + bi,EncΠ∗,2i−1+bi

(r2i−1+bi
, 1)).

– The randomness of Pi is Mi,0,Mi,1.

Message generation for every Pi ∈ S:

– Pi on input xi ∈ {0, 1} sends Mi,xi
.

Function reconstruction by the referee:

– The referee gets n messages, where for each i it gets from Pi either the
messages of P2i or P2i−1. It uses the decryption of Π∗ to compute f .

We next argue that Π is robust. Let A be a set of parties in Π of size τ ≤ t−n.
The randomness of A and the messages of all other parties in Π are messages of
distinct n+τ ≤ t parties in Π∗. By the (n, t)-security of Π∗, from these messages
the referee in Π∗ can only compute the output of f on any subset of size n of
these parties in Π∗, i.e., the inputs of the parties in Π that are not in A are fixed.
Thus, in Π, the referee and the set A can only compute the residential function.
Thus, the (n, t)-security of Π∗ implies the (t − n)-robustness of Π. Notice that
the referee knows the identity of the party in Π∗ for which the messages was
generated; however, by choosing random bi’s, it does not know if this message
is for an input 0 or 1. �

7.2 NIMPC ⇒ Ad Hoc PSM

Our goal is to construct a (k, t)-secure ad hoc PSM protocol for a boolean
function f from an NIMPC protocol Π computing a related function. We
would like to use ideas similar to the construction in Sect. 4. Recall that,
given a k-argument function f : Xk → Y , we defined an n-argument func-
tion g : (X ∪ {⊥})n → Y ∪ {⊥}, where if there are exactly n − k inputs that
are ⊥ then the output of g is the output of f on the k non-⊥ inputs, and it
is ⊥ otherwise.3 We constructed a k-secure ad hoc PSM protocol for f by first
generating the randomness using the PSM for g, and sharing the messages of
each party with input ⊥. We would like to start from an NIMPC protocol for
g and get a (k, t)-secure ad hoc PSM protocol for f . There is a problem with
this solution – in the resulting ad hoc PSM protocol the referee will get for each

3 In Sect. 4, if there were less than n − k inputs that are ⊥, then the function was
undefined; here we need to define the output as ⊥.
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active party messages for some input xi and for the input ⊥. The definition of
the robustness of NIMPC protocols guarantees that if it gets one message from
a party, then the referee can only evaluate the function on points where the
input of this party is fixed to some (unknown) value. The definition does not
guarantee that if a referee gets two messages from one party then it can only
evaluate the output on points where the input of this party is fixed to one of
these two (unknown) values.

To overcome this problem we define a new function g′′ : {0, 1}3n → Y with
3n variables x1,0, x1,1, x2,0, x2,1, . . . , xn,0, xn,1, y1, . . . , yn, where given an assign-
ment a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1, c1, . . . , cn of g′′, we define an assignment
a1, a2, . . . , an of g as follows:

ai =

⎧
⎨

⎩

⊥ if ai,0 = ai,1,
ci if ai,0 = 1, ai,1 = 0,
1 − ci if ai,0 = 0, ai,1 = 1

and g′′(a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1, c1, . . . , cn) = g(a1, a2, . . . , an).

Theorem 7.2. If there is a 3n-party 2n-robust NIMPC protocol Πg′′ for g′′ with
randomness complexity Rand(Πg′′) and communication complexity Comm(Πg′′)
then there exists a (k, n)-secure ad hoc PSM protocol for f with randomness
complexity O(Rand(Πg′′)+n·Comm(Πg′′)) and communication complexity O(n·
Comm(Πg′′)).

Proof. Denote the parties of the NIMPC Πg′′ by P1,0, P1,1, . . . , Pn,0, Pn,1, Q1,
. . . , Qn. We next describe an ad hoc PSM protocol Πf for f .

Randomness generation:

– Generate the randomness of Πg′′ for g′′; let r1,0, r1,1, . . . , rn,0, rn,1, q1,
. . . , qn be the generated randomness of P1,0, P1,1, . . . , Pn,0, Pn,1, Q1, . . . ,
Qn respectively.

– For every 1 ≤ j ≤ n:
• Choose ci ∈ {0, 1} at random and let mi be the message that Qi sends

in Πg′′ with randomness qi and input ci.
• For every b ∈ {0, 1}, let mj,b be the message that Pj,b sends in Πg′′

with randomness rj,b and input 0.
– The randomness of Pi in the ad hoc PSM protocol is

ri,0, ri,1, ci, (mi)1≤i≤n, (mj,b)1≤i≤n,b∈{0,1}.

Message generation for every Pi ∈ S:

– Let ui be the message that Pi,ci⊕xi
sends in Πg′′ with input 1 and ran-

domness ri,ci⊕xi
.

– Pi sends (ci ⊕ xi), ui and, in addition, (mi)1≤i≤n, (mj,b)j 	=i,b∈{0,1}.

Assume that a set S ∈ (
[n]
k

)
sends messages. To compute the value of f on

the inputs of S, the referee applies the decoding procedure of Πg′′ , where for
every i ∈ [n],
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– If i ∈ S, then the message of Pi,ci⊕xi
is ui (i.e., an encoding of 1); otherwise

it is mi,ci⊕xi
(i.e., an encoding of 0),

– the message of Pi,1−(ci⊕xi) is mi,1−(ci⊕xi) (i.e., an encoding of 0), and
– the message of Qi is mi (i.e., an encoding of ci).

The correctness follows as these messages correspond to the input

(zi,b)i∈[n],b∈{0,1}, (ci)i∈[n]

where:

– If i /∈ S, then zi,0 = zi,1 = 0, that is, it correspond to the input ai = ⊥ of g.
– If i ∈ S, then zi,ci⊕xi

= 1 and z1−(i,ci⊕xi) = 0,
• If xi = ci, then zi,0 = 1 and zi,0 = 0, that is, it correspond to the input

ai = ci = xi of g,
• If xi �= ci, then zi,0 = 0 and zi,0 = 1, that is, it correspond to the input

ai = 1 − ci = xi of g.
That is, if i ∈ S, then it correspond to the input ai = xi of g.

To conclude, the referee reconstructs

g′′((zi,b)i∈[n],b∈{0,1}, (ci)i∈[n]) = g((xi)i∈S , (⊥)i/∈S) = f((xi)i∈S).

For the (k, t)-security, note that if a set T of size t′ sends messages in the
ad hoc PSM protocol for f , then the referee gets two messages for Pi,ci⊕xi

for
every i ∈ S and one message for every other party. Thus, by the robustness of
the NIMPC protocol Πg′′ , the referee can only compute outputs of g, where the
input of every i /∈ S is fixed to ⊥ and the input of every i ∈ S is either xi or
⊥. Since g is defined to be ⊥ if the number of non-bottom inputs is not k, the
referee can only compute the values of f on subsets of size k of T . �

The transformation of Theorem 7.2 also applies if the NIMPC protocol is
computationally-secure. Specifically, in [4] it is shown that if iO and one-way
functions exist, then there is a computational indistinguishably-secure NIMPC
protocol for every function. This implies that if iO and one-way functions exist
then there is a computational (k, n)-indistinguishably-secure ad hoc PSM pro-
tocol for every function f .

8 Ad Hoc Protocols for and Threshold Imply Nontrivial
Obfuscation

Computational ad hoc PSM protocols for general functions imply obfuscation.
This follows from Lemma 7.1, showing that ad hoc PSM protocols imply NIMPC
protocols, and by results of [4], showing that NIMPC protocols imply obfusca-
tion. To prove this result, ad hoc PSM protocols for fairly complex functions,
i.e., universal functions, are used. In this section, we show that ad hoc PSM pro-
tocols for simple functions already imply obfuscation for interesting functions.
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Specifically, computational ad hoc PSM protocols for AND with VBB security
imply point function obfuscation and ad hoc PSM protocols for threshold func-
tions with VBB security imply fuzzy point function obfuscation [7]. There are
several definitions of point function obfuscation in the literature (see [6]). In this
paper, we consider the strong virtual black-box notion of obfuscation of Barak
et al. [3] for point function and fuzzy point function obfuscation. This notion
was considered for point function obfuscation in, e.g., [19]. As the only known
constructions for fuzzy point function obfuscation are based on strong assump-
tions (e.g., iO), these results imply that even ad hoc PSM protocols with VBB
security for the threshold function may require strong assumptions.

Notation 8.1. For every x ∈ {0, 1}n, define the point function Ix : {0, 1}n →
{0, 1} where Ix(y) = 1 if x = y and Ix(y) = 0 otherwise. For every x ∈ {0, 1}n

and 0 < δ < 1, define the fuzzy point function F δ
x : {0, 1}n → {0, 1} where

F δ
x (y) = 1 if dist(x, y) ≤ δn and F δ

x (y) = 0 otherwise, where dist(x, y) is the
Hamming distance. We will also denote by Ix and Fx the canonical circuits that
compute these functions.

Lemma 8.2. If there exists an (n, 2n)-VBB-secure ad hoc PSM protocol for
AND, then there is a point function obfuscation, i.e., an obfuscation for
{Ix}x∈{0,1}n .

Proof. The obfuscation algorithm of a point function Ix uses the computational
ad hoc PSM protocol ΠAND = (GenAND,EncAND,DecAND) for AND. We
denote the 2n parties in ΠAND by {Pi,b}i∈[n],b∈{0,1}. Algorithm Obf(1n, x) is
as follows:

– Let (ri,b)i∈[n],b∈{0,1} ← GenAND(1n).
– For every i ∈ [n] let zi,xi

← 1 and zi,xi
← 0.

– For every i ∈ [n] and b ∈ {0, 1} let mi,b ← EncAND(zi,b, ri,b).
– Return a circuit C that on input y ∈ {0, 1}n computes

DecAND({(i, yi)}i∈[n], (mi,yi
)i∈[n]).

Correctness: The circuit C returns the output of the decoding algorithm
Dec on the messages (mi,yi

)i∈[n], which encode the inputs (zi,yi
)i∈[n]. Hence, C

returns AND((zi,yi
)i∈[n]). If y = x, then for every i ∈ [n], yi = xi and zi,yi

= 1,
thus C returns 1. If y �= x, then yi = xi for at least one i ∈ [n], thus zi,yi

= 0
and C returns 0.

Security: Let A be an adversary attacking the obfuscation in the real world,
that is, the adversary gets the above circuit C. We construct a simulator Sim,
with an oracle access to Ix, such that there exists a negligible function negl() for
which, for every x ∈ {0, 1}n,

|Pr[A(1n, C) = 1] − Pr[SimIx(1n) = 1]| ≤ negl(n), (2)

where the first probability is taken over the randomness of A and the randomness
of Obf(1n, x) and the second probability is taken over the randomness of Sim.
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We first define an attacker AAND against the ad hoc PSM protocol ΠAND:
AAND gets as an input 2n messages and generates a circuit C from these messages
as Obf does, and executes A on C. By the VBB-security of ΠAND, there exists
a simulator SimAND for the adversary AAND; this simulator SimAND should have
an oracle access to the function AND on any n of the 2n inputs (zi,b)i∈[n],b∈{0,1}.

The simulator Sim for the obfuscation, with oracle access to Ix, emulates
SimAND, where the queries to AND are answered as follows: if a query contains
two variables zi,0 and zi,1, for some i ∈ [n], then the answer is 0 (as the value
of one of them is zero). Otherwise, for every i there is exactly one yi such
that zi,yi

is in the query; in this case zi,yi
= 1 if and only if yi = xi, i.e.,

AND((zi,yi
)i∈[n],b∈{0,1}) = 1 iff x = (y1, . . . , yn) iff Ix((y1, . . . , yn)) = 1. In this

case, Sim answers the query by invoking its oracle Ix. The VBB-security of ΠAND

implies that (2) holds. �
For δ < 0.5, let Thδ : {0, 1}n → {0, 1} be the following function:

Thδ(x1, . . . , xn) = 1 iff
n∑

i=1

xi ≥ (1 − δ)n.

We next construct fuzzy point function obfuscation from an ad hoc PSM
protocol for Thδ with VBB security. The construction and its proof of correctness
are similar to those in Lemma 8.2; however, the proof of security is more involved.
For this proof, we need the following claim.

Claim 8.3. Let δ < 0.5. There is an efficient algorithm that, given a point w
such that F δ

x (w) = 1 and an oracle access to F δ
x , can find x.

Proof. Let w = (w1, . . . , wn) and w = (w1, . . . , wn). Since dist(x,w) ≤ δn <
0.5n, it must be that dist(x,w) > 0.5n > δn, i.e., F δ

x (w) = 0. There must be a j
such that F δ

x (w1, . . . , wj , wj+1, . . . , wn) = 1 and F δ
x (w1, . . . , wj−1, wj , . . . , wn) =

0. Furthermore, such j can be found by n − 1 queries to the oracle F δ
x . Let

v = (w1, . . . , wj , wj+1, . . . , wn); it must be that dist(x, v) = �δn�. If vi = xi,
for some i, and we flip the ith bit in v (i.e., consider v ⊕ ei), then the distance
between the resulting sting and x will be larger than δn. On the other hand,
if vi �= xi, then dist(x, v ⊕ ei) < dist(x, v) ≤ δn. Thus, the following procedure
recovers x:

– For i = 1 to n: if F δ
x (x, v ⊕ ei) = 0 then xi = vi, otherwise xi = vi.

�
Lemma 8.4. Let δ < 0.5. If there is an (n, 2n)-VBB-secure ad hoc PSM proto-
col for Thδ, then there is a fuzzy point function obfuscation, i.e., an obfuscation
for {F δ

x}x∈{0,1}� .

Proof. The obfuscation algorithm Obffuzzy of a fuzzy point function F δ
x

uses the computational n-out-of-2n ad hoc PSM protocol ΠTh = (GenTh,
EncTh,DecTh) for Thδ. We denote the parties in ΠTh by {Pi,b}i∈[n],b∈{0,1}.
Algorithm Obf(1n, x) is as follows:
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– Let (ri,b)i∈[n],b∈{0,1} ← GenTh(1n).
– For every i ∈ [n] let zi,xi

← 1 and zi,xi
← 0.

– For every i ∈ [n] and b ∈ {0, 1} let mi,b ← EncTh(zi,b, ri,b).
– Return a circuit C that on input y ∈ {0, 1}n computes

DecTh({(i, yi)}i∈[n], (mi,yi
)i∈[n]).

Correctness: The circuit C returns the output of the decoding algorithm
Dec on the messages ((mi,yi

)i∈[n]), which encode the inputs (zi,yi
)i∈[n]. Hence,

C returns Thδ((zi,yi
)i∈[n]). If dist(x, y) ≤ δn, then yi = xi for at least (1 − δ)n

values of i, and zi,yi
= 1 for at least (1 − δ)n values of i, thus, C returns 1. If

dist(x, y) > δn, then yi = xi for more than (1 − δ)n values of i, thus, zi,yi
= 1

for less than (1 − δ)n values of i and C returns 0.
Security: Let A be an adversary attacking the obfuscation in the real world.

We construct a simulator Simfuzzy, with an oracle access to F δ
x , such that there

exists a negligible function negl() for which for every x ∈ {0, 1}n

|Pr[A(1n, C) = 1] − Pr[SimF δ
x

fuzzy(1
n) = 1]| ≤ negl(n), (3)

where the first probability is taken over the randomness of A and the random-
ness of Obffuzzy(1n, x) and the second probability is taken over the randomness
of Simfuzzy.

We first define an attacker ATh against the ad hoc PSM protocol ΠTh: ATh

gets as an input 2n messages and generates a circuit C from these messages as
Obffuzzy does, and executes A on C. By the VBB-security of ΠTh, there exists
a simulator SimTh for the adversary ATh; this simulator SimTh should have an
oracle access to the function Thδ of any n of the inputs (zi,b)i∈[n],b∈{0,1}.

The simulator Simfuzzy for the obfuscation, with oracle access to F δ
x , emu-

lates SimTh, where the queries to Thδ are answered as follows: If for every i
there is exactly one yi such that zi,yi

is in the query, then zi,yi
= 1 if and

only if yi = xi, i.e., Thδ((zi,yi
)i∈[n],b∈{0,1}) = 1 iff dist(x, (y1, . . . , yn)) ≤ δn iff

F δ
x ((y1, . . . , yn)) = 1. Thus, in this case, Simfuzzy answers the query by invoking

its oracle F δ
x .

The challenging case is when a query contains two variables zi,0 and zi,1 for
some i ∈ [n]; we call such queries “illegal”. In this case, we do not know how to
answer the query directly (e.g., as we did in Lemma 8.2). The idea of answering
the query is that if Thk returns 1 on the query, then the simulator can find a
point w such that F δ

x (w) = 1 (as explained below), from such point it finds x
(using Claim 8.3), computes (zi,b)i∈[n],b∈{0,1} as Obffuzzy does, and answers the
current and future queries using these values. If the simulator does not find such
point w, then it returns 0.

Consider a query to Thδ that contains exactly α pairs zi,0 and zi,1 for some
α > 0 and assume that the answer to the query is 1. Without loss of generality,
the query is

(zi,yi
)1≤i≤n−2α, zn−2α+1,0, zn−2α+1,1, . . . , zn−α,0, zn−α,1
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for some y1, . . . , yn−2α. The value of exactly α of the variables

zn−2α+1,0, zn−2α+1,1, . . . , zn−α,0, zn−α,1

is 1, thus,
∑n−2α

i=1 zi,yi
+ α ≥ (1 − δ)n. Furthermore,

n∑

i=n−2α+1

zi,0 +
n∑

i=n−2α+1

zi,1 = 2α,

i.e., at least one of the sums is at least α. This implies that if the answer to
the query is 1, then Thδ

x(y1, . . . , yn−2α, 0, . . . , 0) = 1 or Thδ
x(y1, . . . , yn−2α,

1, . . . , 1) = 1. Therefore, for each “illegal” query, the simulator asks two queries
to the oracle Thδ

x; if the answers to both of them are zero, the simulator answers
0 to the query. Otherwise, the simulator uses Claim 8.3 to find x, computes
(zi,b)i∈[n],b∈{0,1} as Obffuzzy does, and answers all further queries of SimTh using
these values. The VBB security of ΠTh implies thet (3) holds. �

Acknowledgments. We thank David Cash and David Wu for helpful discussions
about Order Revealing Encryption.

The first author was supported by ISF grant 544/13 and by a grant from the BGU
Cyber Security Research Center. The second and third authors were partially supported
by ISF grant 1709/14, BSF grant 2012378, and NSF-BSF grant 2015782. Research
of the second author was additionally supported from a DARPA/ARL SAFEWARE
award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and
1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views expressed are those
of the authors and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pp. 563–574 (2004)

2. Applebaum, B., Raykov, P.: From private simultaneous messages to zero-
information Arthur-Merlin protocols and back. In: Kushilevitz, E., Malkin, T.
(eds.) TCC 2016. LNCS, vol. 9563, pp. 65–82. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49099-0 3

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

4. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E.: Distribution design. In: Sudan,
M. (ed.) Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pp. 81–92. ACM, New York (2016)

5. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44381-1 22

http://dx.doi.org/10.1007/978-3-662-49099-0_3
http://dx.doi.org/10.1007/978-3-662-49099-0_3
http://dx.doi.org/10.1007/978-3-662-44381-1_22


608 A. Beimel et al.

6. Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic
constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 565–594. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 21

7. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 108–125. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44381-1 7

8. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 13

9. Boldyreva, A., Chenette, N., Lee, Y., O’neill, A.: Order-preserving symmetric
encryption. Technical report 2012/624, IACR Cryptology ePrint Archive (2012).
http://eprint.iacr.org/2012/624

10. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22792-9 33

11. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited:
improved security analysis and alternative solutions. Technical report 2012/625,
IACR Cryptology ePrint Archive (2012). http://eprint.iacr.org/2012/625

12. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 563–594. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 19

13. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49896-5 30

14. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: Pro-
ceedings of the 26th ACM Symposium on the Theory of Computing, pp. 554–563
(1994)

15. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 32

16. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-70936-7 11

17. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: 5th Israel Symposium on Theory of Computing and Systems, pp. 174–183
(1997)

18. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 31

19. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 2

20. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE
Symposium on Foundations of Computer Science, pp. 162–167 (1986)

http://dx.doi.org/10.1007/978-3-662-49099-0_21
http://dx.doi.org/10.1007/978-3-662-44381-1_7
http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://eprint.iacr.org/2012/624
http://dx.doi.org/10.1007/978-3-642-22792-9_33
http://dx.doi.org/10.1007/978-3-642-22792-9_33
http://eprint.iacr.org/2012/625
http://dx.doi.org/10.1007/978-3-662-46803-6_19
http://dx.doi.org/10.1007/978-3-662-49896-5_30
http://dx.doi.org/10.1007/978-3-642-55220-5_32
http://dx.doi.org/10.1007/978-3-540-70936-7_11
http://dx.doi.org/10.1007/978-3-540-70936-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_31
http://dx.doi.org/10.1007/978-3-540-24676-3_2


Topology-Hiding Computation Beyond
Logarithmic Diameter

Adi Akavia1 and Tal Moran2(B)

1 The Academic College of Tel-Aviv, Jaffa, Israel
akavia@mta.ac.il

2 IDC Herzliya, Herzliya, Israel
talm@idc.ac.il

Abstract. A distributed computation in which nodes are connected by
a partial communication graph is called topology-hiding if it does not
reveal information about the graph (beyond what is revealed by the out-
put of the function). Previous results [Moran, Orlov, Richelson; TCC’15]
have shown that topology-hiding computation protocols exist for graphs
of logarithmic diameter (in the number of nodes), but the feasibility ques-
tion for graphs of larger diameter was open even for very simple graphs
such as chains, cycles and trees.

In this work, we take a step towards topology-hiding computation pro-
tocols for arbitrary graphs by constructing protocols that can be used
in a large class of large-diameter networks, including cycles, trees and
graphs with logarithmic circumference. Our results use very different
methods from [MOR15] and can be based on a standard assumption
(such as DDH).

1 Introduction

When theoretical cryptographers think about privacy and computation, the first
thing that comes to mind is usually secure multiparty computation (MPC), in
which multiple parties can compute an arbitrary function of their inputs without
revealing anything but the function’s output. In the original definitions (and
constructions) of MPC, the participants were connected by a full communication
graph (a broadcast channel and/or point-to-point channels between every pair
of parties). In real-world settings, however, the actual communication graph
between parties is usually not complete, and parties may be able to communicate
directly with only a subset of the other parties. Moreover, in some cases the graph
itself is sensitive information (e.g., if you communicate directly only with your
friends in a social network).

A natural question is whether we can successfully perform a joint computa-
tion over a partial communication graph while revealing no (or very little) infor-
mation about the graph itself. In the information-theoretic setting, in which a
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variant of this question was studied by Hinkelman and Jakoby [10], the answer
is mostly negative.

The situation is better in the computational setting. Moran, Orlov and
Richelson showed that topology-hiding computation is possible against static,
semi-honest adversaries [12]. However, their protocol is restricted to communica-
tion graphs with small diameter. Specifically, their protocol addresses networks
with diameter d = O(log n) logarithmic in the number of nodes n (where the
diameter is the maximal distance between two nodes in the graph). For many
natural network topologies the question remains open, including for wireless and
ad-hoc sensor networks [4,14], where topology is modeled by random geometric
graphs [13] whose diameter is large with high probability [5], as well as for very
simple topologies such as chains, cycles and trees (note that topology-hiding
computation isn’t trivial even if the overall topology of the network is known; in
a cycle, for example, the order of the nodes may still be sensitive).

1.1 Our Results

In this work we take a step towards topology-hiding computation protocols for
arbitrary graphs by constructing protocols that can be used in a large class of
large-diameter networks. As in [12], our protocols actually implement topology-
hiding broadcast—given this primitive, standard MPC protocols can then be
used for generic topology-hiding computation.

– We construct a protocol for topology-hiding broadcast on directed cycles,
given an upper bound on the number of nodes in the cycle. This protocol
uses completely different techniques than those of [12], and in particular does
not require generic MPC (it borrows ideas from mix networks). The security
of this protocol can be based on standard assumptions, e.g., the Decisional
Diffie-Hellman assumption.

– We show that given (black-box) access to a protocol for topology-hiding broad-
cast on a cycle, we can construct a protocol for topology-hiding broadcast on
arbitrary graphs if nodes are given an auxiliary information specifying their
neighbors in a spanning tree of the graph (this information will be used to
compute a cycle traversing all nodes of the graph). Our security guarantee
in this case is that our protocol reveals nothing beyond what can be learned
from the auxiliary information. For arbitrary graphs, we do not know how to
compute the auxiliary information in a topology-hiding manner, so this proto-
col would require a trusted setup phase for those graphs. Any class of graphs
for which we can construct a protocol to compute this auxiliary information
locally will give us a topology-hiding broadcast for that class of graphs. In
particular, for trees, the “auxiliary information” for computing a spanning
tree is trivial and does not require trusted setup; thus, together with our cycle
protocol this result gives us a protocol for topology-hiding broadcast on trees.

This construction makes only black-box use of the cycle protocol, and does
not require additional assumptions.
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– We define information-local computation; loosely speaking this is a distributed
computation in which the outputs of each party can depend only on informa-
tion available in their “local neighborhood”. We prove that information-local
computations can be performed in a topology-hiding way on arbitrary graphs
given a topology-hiding computation protocol for small-diameter graphs.

– We construct an information-local computation for computing consistent local
views of a spanning tree in arbitrary small-circumference graphs (in which the
length of the longest cycle is bounded by k). This gives a protocol for topology-
hiding broadcast on small-circumference graphs. This protocol makes black-
box use of both the small-diameter topology-hiding computation protocol and
almost-black-box use of the topology-hiding broadcast on the cycle (we require
the existence of an efficient circuit to compute the next-message function of
the cycle protocol).

Assumptions. Our basic protocol for topology-hiding broadcast on a cycle can be
based on the Decisional Diffie-Hellman (DDH) assumption. Our further reduc-
tions are black box, and do not require additional assumptions. Elaborating on
the former, all we require for our basic protocol is the existence of an CPA-secure
encryption scheme with some special properties (aka, hPKCR-enc); we show that
such a scheme exists based on DDH. The properties we require from a hPKCR-
enc are essentially that ciphertexts are rerandomizable (given the public-key),
that it is key-commutative when given the secret-key (we name the latter prop-
erty privately key-commutative), and that it is homomorphic w.r. to a single
operation; see details in Sect. 3.

Voting vs. Broadcast. We also present protocols for topology-hiding voting
(rather than broadcast) for all aforementioned graph topologies; for full secu-
rity, these require the exact number of nodes for the cycle topology to be known
(rather than an upper-bound). We note that for our voting protocols we do
not require the homomorphism property of the underlying hPKCR-enc scheme.
Recall that voting means that each player Pi has at the beginning of the protocol
an input vote vi, and receives at the termination of the protocol a list of all votes
in a randomly permuted order (vπi(1), . . . , vπi(n)) for πi : [n] → [n] a uniformly
random permutation.

We summarize our results in the following theorems. For brevity we use the
shorthand notation “TH-F” standing for “an efficient topology-hiding protocol
realizing functionality F against a statically-corrupting semi-honest adversary”.
Denote by |G| the number of nodes in a graph G.

Theorem 1 (Topology-hiding on cycle). Under DDH assumption, for every
network of cycle topology C, there exist the following protocols:

– Broadcast. A TH-FBroadcast, provided parties are given an upper-bound
on |C|.

– Voting. A TH-FVote, provided parties are given the exact size |C|.
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Theorem 2 (Reductions to other topologies). Suppose there exists TH-F
for networks of cycle-topology C when given upper-bound on (resp. exact size of)
|C|. Then there exists TH-F for the following (connected, undirected) network
graphs G, when given an upper-bound on (resp. exact size of) |G|:
– Every graph G, provided parties are given their neighbors in a (globally con-

sistent) spanning tree of G.
– Every tree G.
– Every graph G with circumference at most k, provided there exists TH-

FBroadcast for graphs of diameter at most k.

Combining the above theorems and employing a TH-FBroadcast protocol for
low-diameter graphs [12] we conclude:

Corollary 1. Under the DDH assumption, there exists TH-FBroadcast (resp.
TH-FVote) for the following (connected, undirected) network graphs G, when
given an upper-bound on (resp. exact size of) |G|:
– Every cycle G.
– Every graph G, provided parties are given their neighbors in a (globally con-

sistent) spanning tree of G.
– Every tree G.
– Every graph G with circumference at most O(log |G|).

1.2 High-Level Overview of Our Techniques

In the following we first give an overview of the our approach and chal-
lenges, then an overview for our protocols for topology-hiding voting, and con-
clude by describing their modification yielding our protocols for topology-hiding
broadcast.

Our Approach and Challenges. Recall that in a broadcast protocol a bit
b ∈ {0, 1} is given as input to a single player called the broadcasting player,
and the protocol terminates with all players receiving this bit b as output. Our
starting point is the “OR-and-Forward” protocol, in which at the first round the
broadcasting player forwards its bit b to all its neighbors, and at each following
round the players OR their received bits and forward the resulting bit to their
neighbors. Note that the bit b reaches all players once the number of rounds
exceeds the network diameter.

This “OR-and-Forward” protocol is of course not topology-hiding. For one,
distance to the broadcaster leaks from the round number t when a node i first
receives a message. To prevent this leakage-by-timing attack, we change the
protocol to have all players send messages at all rounds, where the change is
simply by asking the non-broadcasting players to send the neutral bit 0 in the
first round.

The latter protocol is still not topology-hiding, e.g., because distance to the
broadcaster leaks from the round number t when a node i first receives a non-
zero message. To prevent this leakage-by-content attack, we’d like to encrypt
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all transmitted messages, so that the players (nodes) cannot identify when their
received messages are transformed from 0 to 1.

Encrypting the transmitted messages raises new challenges. First, when using
such an encryption, who has the secret-key for decryption?! If every player has
the secret key, then encryption hides nothing; and if not, then how do players
decrypt to get the output? Second, how can we compute the OR of encrypted
messages? To address these challenges we first restrict our attention to the
cycle topology, and use key-homomorphic and message-homomorphic encryp-
tion (e.g., ElGamal). Our first protocol realizes a voting functionality rather
than broadcast—its output is a shuffled list of all parties’ inputs. On the cycle
topology, encryption/decryption can be computed jointly by all players via going
around the cycle where every player adds/peels-of their own encryption layer
(using the key-homomorphism property). This protocol requires us to know the
exact length of the cycle in order to prevent leaking topology information. We
then show how to use the homomorphic operation to OR ciphertexts together
in a way that hides topology even if the exact cycle length is not known.

Topology-Hiding Voting on Directed Cycles. At the beginning of the
voting protocol each player i has a secret input vi (her vote). The protocol then
proceeds in two phases, aggregation and mix-and-decrypt. Loosely speaking, in
the aggregation phase votes are aggregated by passing around the cycle an array
of encrypted votes, to which each party adds their own vote and then adds an
extra layer of encryption before sending it on to the next party. At the end of this
phase, each party has an array of all n votes, encrypted under the a public key
whose secret key is shared between all parties. In the mix-and-decrypt phase,
the parties successively remove the layer of encryption they are responsible for,
mix the votes and rerandomize the remaining layers of encryption before passing
the array back to the previous party. Upon the termination of this phase, each
player i has a list of all votes in a randomly permuted order (vπi(1), . . . , vπi(n))
(for πi : [n] → [n] a uniformly random permutation). For details, see Sect. 4.

From Voting to Broadcast. Relaxing the input to consist of an upper bound
n′ on the number of nodes n in the cycle (rather than the exact number) is the
main challenge in devising our topology-hiding broadcast protocol. Subsequently,
our reductions from the cycle topology to other topologies go through as is.

Our first attempt was to execute our voting protocol as is, while using n′

instead of n; but this fails to be topology-hiding. In particular, topology informa-
tion leaks from the output now consisting of multiple votes from some parties.1

We remark that correctness is also undermined by receiving multiple votes from

1 For example, for n′ = n + 3, the output of player i consists of double votes from
players i, i+1, i+2, implying that non-neighboring corrupted players i, j can identify
whether j = i + 2 by letting j place a unique vote v∗ and then count whether this
vote v∗ appears once in the output of i (implying j �= i + 2) or twice (implying
j = i + 2).
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some players; this could be fixed (say, by augmenting the vote with an anony-
mous identifier and post-processing to remove multiple votes), yet, this fix is of
course not topology-hiding.

Our topology-hiding broadcast is a modification of the above approach where
we combine the list of votes into a single bit—the OR of all input bits, thus
avoiding the aforementioned votes counting attack. Specifically, the aggregation
phase in our topology-hiding broadcast combines each additional vote to a sin-
gle ciphertext being passed around, where this ciphertext either holds the neu-
tral message or a random group element (interpreted as a broadcast of 0 or 1
respectively). To combine the votes we require the underlying hPKCR-enc to be
homomorphic with respect to a single operation. The “mix-and-decrypt” phase is
a degenerate version of the mix-and-decrypt phase in our topology-hiding voting
protocol, where the players peel off decryption layers and re-randomize, but with
no need for mixing ciphertexts (as now only a single ciphertext is being passed
around).

The additional wrinkle here is that, when we know only an upper bound n′ on
the number of nodes, using a simple homomorphic multiplication (or addition)
to OR bits together is not topology hiding. To see this, suppose the broadcaster
chooses the value m as the non-neutral element representing a 1 bit. Every time
the encrypted bit passes around the cycle it is multiplied by m, so the output will
be mc, where c is the number of passes through the broadcasting party. Thus,
the output leaks a tighter estimate for n, as well as information on the distance
from the broadcasting party (for example, parties i, j receiving outputs m2, m,
respectively, can conclude that i appears first on the path from the broadcasting
party).

To prevent this leakage-by-output attack, we require that all parties random-
ize their message m before passing it forward (and then re-randomize also the
ciphertext). Our message randomization is by raising m to a random power r
(using homomorphic multiplication, and exponentiation-by-squaring algorithm
for efficiency), this in turn maps the identity to itself while mapping other ele-
ments m to uniformly random group elements mr (choosing the message space
to be a prime order group).

For space considerations, a detailed description and analysis of our broadcast
protocol is deferred to the full version of the paper.

From Cycles to Graphs Given Spanning-Tree Neighbors and Tree. The
main idea for this reduction is that given a tree, we can compute a cycle-traversal
of the graph by having each node independently decide on a local ordering of
edges. Each node will appear exactly d times in the cycle (where d is the degree
of the node). The predecessor of the ith instance of the node in the cycle is the
neighbor adjacent to its ith edge; the successor is the neighbor adjacent to the
next edge. In Sect. 5.2, we prove that for any numbering of edges, this always
generates a cycle-traversal of the graph, and that this traversal can be used to
execute any protocol for topology-hiding computation on directed cycles.
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Topology-Hiding Computation for Information-Local Functions. The
intuition behind this reduction is simple: if a node’s output depends only on
information from a node’s k-neighborhood, then we can use a topology-hiding
computation protocol for small-diameter graphs to compute it by limiting the
protocol to the node’s k-neighborhood. The reason this isn’t quite that straight-
forward is that we want to hide the topology of the k-neighborhoods. This means
the node participating in the protocol shouldn’t be able to tell who else is partic-
ipating with it in the protocol. In particular, this means we can’t assign a global
session id to distinguish between multiple concurrent instances of the protocol
(we need to run multiple instances since each node will need to compute the
function given its own local neighborhood).

Our main innovation here is the use of relative session ids, where the session
id depends on the node’s relative location in its neighborhood, and each node
applies a transformation on the session ids sent and received so that they remain
in the correct relative framework. In Sect. 7 we describe our protocol in detail
and prove that we can use it to compute an arbitrary information-local function
in parallel in all k-neighborhoods.

From Graphs Given Spanning-Tree Neighbors to Small-Circumference
Graphs. For this reduction, we combine several of our previous results. There
are two main ideas here. First, we prove that for graphs whose circumference
is bounded by k, we can compute local views of a spanning tree using a k-
information-local function (this is not trivial, since local views must be globally
consistent with a single spanning tree). Together with our result on topology-
hiding computation given a spanning tree, and our result on computation of
information-local functions, this already gives a protocol for topology-hiding
computation on small-circumference graphs. This näıve way of running the pro-
tocol reveals the local view of the spanning tree to each node, which can give
information about the graph topology. However, we show it is possible to com-
pose the protocols into a single computation that does not reveal the spanning-
tree information (at the cost of higher complexity). Due to space considerations,
the details of this reduction are deferred to the full version of the paper.

1.3 Related Work

Topology-Hiding MPC in Computational Settings. The most relevant related
work is that of Moran, Orlov and Richelson [12], who gave the first feasibil-
ity results for topology-hiding computation in the computational setting, giv-
ing a protocol for topology-hiding broadcast secure against static, semi-honest
adversaries, as well as a protocol secure against fail-stop adversaries that do not
disconnect the graph. However, their protocol is restricted to communication
graphs with diameter logarithmic in the total number of parties.

The main idea behind their protocol is a series of nested multiparty compu-
tations, in which each node is replaced with a secure computation in its local
neighborhood that simulates that node. In contrast, our cycle protocol uses ideas
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from the cryptographic voting literature—it hides the order of the nodes in the
cycle by “mixing” encrypted inputs before decrypting them.

Other related works include a concurrent work by Hirt et al. [11] that
achieves better efficiency than [12] for topology-hiding computation, albeit still
restricted to low diameter networks as in [12]. The work by Chandran et al. [3]
addresses the question of hiding the communication network in the context of
secure multi-party computation, but with a different goal than topology-hiding:
their goal is to reduce communication complexity by allowing each party to com-
municate with a small (sublinear in the total number of parties) number of its
neighbors.

Topology-Hiding MPC in Information Theoretic Settings. Hinkelmann and
Jakoby [10] considered the question of topology-hiding secure computation while
focusing on the information theoretic setting. Their main result is negative: any
MPC protocol in the information-theoretic setting must inherently leak infor-
mation about G to an adversary. They do, however, prove a nice positive result:
if we are allowed to leak a routing table of the network, one can construct an
MPC protocol which leaks no further information.

Secure Multiparty Computation with General Interaction Patterns. Halevi
et al. [8] presented a unified framework for studying secure MPC with arbitrar-
ily restricted interaction patterns (generalizing models for MPC with specific
restricted interaction patterns [1,7,9]). The questions they study, however, are
independent of our topology-hiding focus. Their starting point is the observa-
tion that an adversary controlling the final players Pi, . . . , Pn in the interaction
pattern can learn the output of the computed function on several inputs (as the
adversary can rewind and execute the protocol over any possible values for the
inputs xi, . . . , xn for the corrupted players while fixing the inputs x1, . . . , xi−1 for
the preceding parties). The question they ask is therefore when is it possible to
prevent the adversary from learning the output of the function on multiple inputs.
In contrast to ours, their model allows complete knowledge on the underlying
interaction patterns, and does not hide the topology.

2 Preliminaries

2.1 Computation and Adversarial Models

We model a network by a directed graph G = (V,E) that is not fully connected.
We consider a system with n = poly(κ) parties (where κ is the security parame-
ter), denoted P1, . . . , Pn. We often implicitly identify V with the set of parties
{P1, . . . , Pn}. We consider a static and computationally bounded (PPT) adver-
sary that controls some subset of parties (any number of parties). That is, at the
beginning of the protocol, the adversary corrupts a subset of the parties and may
instruct them to deviate from the protocol according to the corruption model.
Throughout this work, we consider only semi-honest adversaries. In addition,
we assume that the adversary is rushing; that is, in each round the adversary
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sees the messages sent by the honest parties before sending the messages of the
corrupted parties for this round. For general MPC definitions including in-depth
descriptions of the adversarial models we consider see [6].

2.2 Definitions of Graph Terms

Let G = (V,E) be an undirected graph. For v ∈ V we let N(v) = {w ∈ V :
(v, w) ∈ E} denote the neighborhood of v; and similarly, the closed neighborhood
of v, N [v] = N(v)∪{v}. We sometimes refer to N [v] as the closed 1-neighborhood
of v, and for k ≥ 1 we define the k-neighborhood of v as the set of all nodes
within distance k of v. Formally, we can define this recursively:

N (k+1)[v] =
⋃

w∈N(k)[v]

N [w].

The k-neighborhood graph of v in G is the subgraph G(k)[v] of G on the k-
neighborhood of v, defined by

G(k)[v] = (N (k)[v], E′) where E′ =
{

(u,w) |u, v ∈ N (k)[v] and w ∈ N [u]
}

.

2.3 UC Security

As in [12], we prove security in the UC model [2]. Proving security in the UC
model allows our protocols to be composed with other protocols, and makes
it easier to use as a subprotocol in more complex constructions. For details
about the UC framework, we refer the reader to [2]. We note that although
the UC model requires setup for security against general adversaries, this is not
necessary for security against semi-honest adversaries, so we also get a protocol
that is secure in the plain model.

2.4 Topology Hiding—The Simulation-Based Definition

To help make the paper more self-contained, in this section we reproduce the
simulation-based definition for topology hiding computation from [12].

The UC model usually assumes all parties can communicate directly with
all other parties. To model the restricted communication setting, [12] define the
Fgraph-hybrid model, which employs a special “graph party,” Pgraph. Figure 1
shows Fgraph’s functionality: at the start of the functionality, Fgraph receives
the network graph from Pgraph, and then outputs, to each party, that party’s
neighbors. Then, Fgraph acts as an “ideal channel” for parties to communicate
with their neighbors, restricting communications to those allowed by the graph.

Since the graph structure is an input to one of the parties in the computation,
the standard security guarantees of the UC model ensure that the graph struc-
ture remains hidden (since the only information revealed about parties’ inputs
is what can be computed from the output). Note that the Pgraph party serves
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Fig. 1. The functionality Fgraph.

only to specify the communication graph, and does not otherwise participate in
the protocol.

Since Fgraph provides local information about the graph to all corrupted
parties, any ideal-world adversary must have access to this information as well
(regardless of the functionality we are attempting to implement). To capture
this, we define the functionality FgraphInfo, that is identical to Fgraph but contains
only the initialization phase. For any functionality F , we define a “composed”
functionality (FgraphInfo||F) that adds the initialization phase of Fgraph to F .
We can now define topology-hiding MPC in the UC framework:

Definition 1. We say that a protocol Π securely realizes a functionality F hid-
ing topology if it UC-realizes (FgraphInfo||F) in the Fgraph-hybrid model.

Note that this definition can also capture protocols that realize functionalities
depending on the graph (e.g., find a shortest path between two nodes with the
same input, or count the number of triangles in the graph).

3 Privately Key-Commutative and Rerandomizable
Encryption

We require a public key encryption scheme with the properties of being
homomorphic (w.r. to a single operation), privately key-commutative, and re-
randomizable. In this section we first formally define the properties we require,
and then show how they can be achieved based on the Decisional Diffie-Hellman
assumption.

We call an encryption scheme satisfying the latter two properties, i.e., pri-
vately key-commutative and re-randomizable, a hPKCR-enc; and call an encryp-
tion scheme satisfying all three properties, i.e., homomorphic, privately key-
commutative and re-randomizable, a hPKCR-enc.

3.1 Required Properties

Let KeyGen : {0, 1}∗ �→ PK×SK,Enc : PK×M×{0, 1}∗ �→ C,Dec : SK×C �→ M
be the encryption scheme’s key generation, encryption and decryption functions,
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respectively, where PK is the space of public keys, SK the space of secret keys,
M the space of plaintext messages and C the space of ciphertexts.

We will use the shorthand [m]k to denote an encryption of the message m
under public-key k. We assume that for every secret key sk ∈ SK there is
associated a single public key pk ∈ PK such that (pk, sk) are in the range of
KeyGen. We slightly abuse notation and denote the public key corresponding to
sk by pk(sk).

Rerandomizable. We require that there exists a ciphertexts “re-randomizing”
algorithm Rand : C × PK × {0, 1}∗ �→ C satisfying the following:

1. Randomization: For every message m ∈ M, every public key pk ∈ PK
and ciphertext c = [m]pk, the distributions (m, pk, c,Rand (c, pk, U∗)) and
(m, pk, c,Encpk(m;U∗)) are computationally indistinguishable.

2. Neutrality: For every ciphertext c ∈ C, every secret key sk ∈ SK and every
r ∈ {0, 1}∗,

Decsk(c) = Decsk(Rand (c, pk(sk), r)).

Furthermore, we require that public-keys are “re-randomizable” in the sense
that the product k � k′ of an arbitrary public key k with a public-key k′ gener-
ated using KeyGen is computationally indistinguishable from a fresh public-key
generated by KeyGen.

Privately Key-Commutative. The set of public keys PK form an abelian
(commutative) group. We denote the group operation �. Given any k1, k2 ∈ PK,
there exists an efficient algorithm to compute k1 � k2. We denote the inverse of
k by k−1 (i.e., k−1 � k is the identity element of the group). Given a secret key
sk, there must be an efficient algorithm to compute the inverse of its public key
(pk(sk))−1.

There exist a pair of algorithms AddLayer : C × SK �→ C and DelLayer :
C × SK �→ C that satisfy:

1. For every public key k ∈ PK, every message m ∈ M and every ciphertext
c = [m]k,

AddLayer (c, sk) = [m]k�pk(sk) .

2. For every public key k ∈ PK, every message m ∈ M and every ciphertext
c = [m]k,

DelLayer (c, sk) = [m]k�(pk(sk))−1 .

We call this privately key-commutative since adding and deleting layers both
require knowledge of the secret key.

Note that since the group PK is commutative, adding and deleting layers
can be done in any order.
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Homomorphism. We require the message space M forms a group with opera-
tion denoted ·, and require that the encryption scheme is homomorphic with
respect this operation · in the sense that there exist an efficient algorithm
hMult : C ×C �→ C that, given two ciphertexts c = [m]pk and c′ = [m′]pk, returns
a ciphertext c′′ ← hMultc1, c2 s.t. Decsk(c′′) = m · m′ (for sk the secret-key
associated with public-key pk).

3.2 Instantiation of PKCR-enc and hPKCR-enc Under DDH

We use standard ElGamal, augmented by the additional required functions. The
KeyGen, Dec and Enc functions are the standard ElGamal functions, except that
to obtain a one-to-one mapping between public keys and secret keys, we fix the
group G and the generator g, and different public keys vary only in the element
h = gx. Below, g is always the group generator. The Rand function is also the
standard rerandomization function for ElGamal:
function Rand(c = (c1, c2), pk, r)

return (c1 · gr, pkr · c2)
end function

We use the shorthand notation of writing Rand (c, pk) when the random coins
r are chosen independently at random during the execution of Rand. We note
that the distribution of public-keys outputted by KeyGen is uniform, and thus
the requirement for “public-key rerandomization” indeed holds. ElGamal public
keys are already defined over an abelian group, and the operation is efficient.
For adding and removing layers, we define:
function AddLayer(c = (c1, c2), sk)

return (c1, c2 · csk
1 )

end function
function DelLayer(c = (c1, c2), sk)

return (c1, c2/csk
1 )

end function
Every ciphertext [m]pk has the form (gr, pkr ·m) for some element r ∈ Zord(g). So

AddLayer
(
[m]pk , sk′

)
= (gr, pkr · m · gr·sk′

) = (gr, pkr · (pk′)r · m)

= (gr, (pk · pk′)r · m) = [m]pk·pk′ .

It is easy to verify that the corresponding requirement is satisfied for Del-
Layer as well.

ElGamal message space already defined over an abelian group with homo-
morphic multiplication, specifically:
function hMult(c = (c1, c2), c′ = (c′

1, c
′
2))

return c′′ = (c1 · c′
1, c2 · c′

2)
end function

Recalling that the input ciphertext have the form c = (gr, pkr · m) and c′ =
(gr′

, pkr′ · m′) for messages m,m′ ∈ Zord(g), it is easy to verify that decrypting
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the ciphertext c′′ = (gr+r′
, pkr+r′ ·m·m′) returned from hMult yields the product

message Decsk(c′′) = m · m′.
Finally, to obtain a negligible error probability in our broadcast protocols,

we take G a prime order group of size satisfying that 1/ |G| is negligible in the
security parameter κ.

4 Topology-Hiding Voting for Cycle Topology

In this section we present our topology-hiding voting protocol for the cycle topol-
ogy. That is, we consider networks where the n players are numbered by indices
1, . . . , n, and communication is only between players with consecutive indices,
i.e., player i can communicate with players i + 1 and i − 1 (where addition is
modulo n). We remind the reader that cycles have a large diameter (diameter
n/2), and are therefore not handled by prior works on topology hiding protocols.

4.1 Topology Hiding Voting for Cycle Topology from PKCR-Enc

The Protocol. Recall that each player i has a secret input vi (her vote). To
simplify notation, we omit the modulus when specifying the party (i.e., we let
Pn+1 = P1 and P0 = Pn). The protocol is composed of two main phases:

– In the first phase the votes are aggregated in encrypted form. This phase
consists of n rounds. At the first round each player i encrypts its vote vi and
sends it to player i + 1 together with the public-key pk

(1)
i . At every following

round t, upon receiving from player i − 1 a list L of encrypted votes together
their encryption key k, player i does the following. (a) Encrypt its vote vi under
key k, and add the resulting ciphertext to the list L, (b) Add an encryption
layer to every vote in the list using its keys (pk

(t)
i , sk

(t)
i ), (c) Compute the new

key k′ = k � pk
(t)
i , and (d) Sends the updated list L′ and key k′ to i + 1. We

note that player i uses fresh keys (pk
(t)
i , sk

(t)
i ) at each round t, this is necessary

for security.
– In the second phase the players each remove an encryption layer to reveal

the votes in plaintext, while also shuffling the votes and re-randomizing their
ciphertexts so that the votes in the resulting lists are not traceable to the
voters.

See Protocol 1 for details.

A Note Regarding Notation. We use the superscript (i : t) to denote variables set
by party i in iteration t; e.g., the notation k(i:t) denotes the key party i receives
from party i − 1 in iteration t of the Aggregate phase. When the identity of
the party is clear, we will sometimes use the shorter versions k(t). For clarity
we also omit the modular arithmetic for party indices, identifying party 0 with
party n and party n + 1 with party 1.
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Protocol 1. Cycle Protocol for Player i

1: procedure CycleVote(n, vi)
2: // AGGREGATE PHASE:
3: Generate keys (pk(i:1), sk(i:1)), . . . , (pk(i:n−1), sk(i:n−1)) ← KeyGen(1k).
4: Send [vi]pk(i:1) and pk(i:1) to Pi+1.
5: for t ∈ {1, . . . , n − 2} do

6: Wait to receive c
(t)
1 , . . . , c

(t)

(t) and k(t) from Pi−1

7: Send [vi]k(t)�pk(i:t+1) ,AddLayer
(
c
(t)
1 , sk(i:t+1)

)
, . . . ,AddLayer

(
c
(t)
t , sk(i:t+1)

)

and k(t) � pk(i:t+1) to Pi+1

8: end for
9: Wait to receive c

(n−1)
1 , . . . , c

(n−1)
n−1 and k(n−1) from Pi−1

10: // MIXANDDECRYPT PHASE:

11: Let d
(n−1)
1 ← [vi]k(n−1) // Encryption of our own vote

12: For all j ∈ {2, . . . , n}, denote d
(n−1)
j

·
= c

(n−1)
j−1 .

13: for t ∈ {n − 1, . . . , 1} do
14: // Mix and Rerandomize
15: Choose a random permutation π = π(i:t) : [n] �→ [n].

16: For all j ∈ {1, . . . , n}, let h
(i:t)
j ← Rand

(
d
(t)

π(j), k
(t)
)
.

17: // Pass back

18: Send h
(i:t)
1 , . . . , h

(i:t)
n to Pi−1

19: Wait to receive h
(i+1:t)
1 , . . . , h

(i+1:t)
n from Pi+1

20: // Decrypt

21: For all j ∈ {1, . . . , n}, let d
(t−1)
j ← DelLayer

(
h
(i+1:t)
j , sk(i:t)

)

22: end for
23: // OUTPUT:

24: Output d
(0)
1 , . . . , d

(0)
n

25: end procedure

4.2 Correctness and Topology-Hiding

We formally prove the following theorems about Protocol 1.

Theorem 3 (Completeness). Protocol 1 is complete.

Theorem 4 (Topology-Hiding). If the underlying encryption PKCR scheme
is CPA-secure then Protocol 1 realizes the functionality FVote in a topology-hiding
way against a statically-corrupting, semi-honest adversary.

The proofs of these theorems appear in Sect. 6.

5 Dealing with General (Connected, Undirected) Graphs

In this section we show that topology-hiding computation on a cycle is a useful
stepping stone to other large-diameter graphs. Given a protocol for computing a
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(symmetric) functionality Ff on a cycle, we show how to construct a topology-
hiding protocol for computing the functionality on arbitrary graphs, as long as
every node is also given some auxiliary data: a local view of a cycle-traversal of
the graph (the computed function is a “multiple-input” version of the original,
see below for details).

A corollary is that we can construct a topology-hiding voting and broadcast
protocols for every network topology for which the aforementioned auxiliary
information can be efficiently found in a topology-hiding way. Chains, trees and
small-circumference graphs are a special case of the latter.

We remark that in our results using auxiliary information, this informa-
tion may be given to the players once-and-for-all during setup (as it depends
only of the network topology and not on the input to the voting protocol).
Clearly, the auxiliary information reveals properties of the graphs; in this case,
the topology-hiding property of our protocols ensures that no additional infor-
mation is revealed.

Multiple-Input Extension. Our reductions to Ff on a cycle realize a slightly
different functionality—we realize a “multiple-input” version of Ff which we
denote Ff∗ . Loosely speaking, the “multiple-input” extension of a function allows
each party to give several inputs to the function, with the number of inputs
depending on the number of times the party appears in the cycle traversal.
Formally, let {fn} be a class of symmetric functions on n inputs (i.e., in which
the order of inputs does not matter). For every n and g : [n] �→ N, we define
f∗

g,n to be f∑n
i=1 g(n) where the ith input to f∗

g,n is a vector of g(i) inputs to
f∑n

i=1 g(n). In our case, g will always map each party to the number of times the
party appears in the cycle traversal; we will omit g and n for brevity and write
Ff∗ as the functionality we are computing.

5.1 Dealing with General Graphs, Given Local Views of a
Cycle-Traversal

In this section we first observe that for every (connected, undirected) graph G
there exists a cycle traversing all its nodes;2 we call such a cycle a cycle-traversal
of G, denoted CG. We then show that if all nodes of G are given their local view
of the cycle as auxiliary information, then they can execute a topology-hiding
protocol to compute Ff∗ on G simply by executing a topology-hiding protocol
for Ff on its cycle-traversal, CG.

A cycle-traversal is sure to exist as it can be explicitly found, e.g., by running
Depth-First-Search (DFS) to find a DFS-tree spanning all nodes of the graph,
and then converting this tree to a cycle-traversal using Protocol 4.

The local view of the cycle traversal CG is specified for each node i by its
successor function Succi : N(i) �→ N(i) ∪ {⊥}. Note that each node may appear

2 Note that, unlike Eulerian or Hamiltonian cycles, we do not require a single pass
through each edge or vertex. This relaxation in turn guarantees that the cycle-
traversal always exists and can be found efficiently (when given the graph as input).
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more than once on the cycle, so the successor function is defined Succi(v) = u
if-and-only-if (v → i → u) is part of the cycle CG (if the edge (v, i) is not on
CG, then Succi(v) = ⊥).

Theorem 5 (Cycle-traversal known, realizing Ff∗). Suppose there exists
a topology-hiding protocol Π that realizes the functionality Ff on directed cycles.
Then there exists a topology-hiding protocol Π ′ realizing the functionality Ff∗ on
any (connected, undirected) graph G, when given as auxiliary input local views
of a cycle-traversal CG of G.

We remark that for protocols Π requiring auxiliary information aux (e.g., the
cycle length m) Theorem 5 still holds, provided that aux is included in Π ′’s
auxiliary information. The only change in the proof is that the protocol Π ′

provides aux to Π when calling it.

Proof (sketch for Theorem 5). Our protocol Π ′ for G (c.f. Prototcol 2) simply
runs Π on the cycle CG, where each node i ∈ V plays the role of all its wi occur-
rences on the cycle (in parallel). Recall that in the functionality Ff∗ , the input
to player Pi is a vector (vi,1, . . . , vi,wi

). Player Pi executes as wi independent
players in Π, with each occurrence � using input vi,�, and where sending forward
(backward) messages received from j ∈ N(i) is executed by sending them to the
corresponding successor (predecessor) on the cycle CG.

Protocol 2. Topology-hiding protocol for Ff∗ given cycle-traversal CG. Proto-
col Description for player i on its cycle occurrence preceded by node pred and
followed by node succ = Succi(pred) (pred → i → succ), and with input v.
1: procedure CycleTraversalVote(v, pred, succ, Π)
2: // Π is a protocol for topology-hiding computation of Ff on a cycle
3: Execute Π on input v, sending messages “forward” by sending them to succ,

and sending messages “back” by sending them to pred.
4: end procedure

We note that the when Ff = FVote is the voting functionality, the above
protocol realizes the weighted-vote functionality Ff∗ = FWVote that accepts as
input a list of wi votes from each party i (where wi the number of times party
i appears on CG), and outputs a list of all m =

∑n
i=1 wi votes in a randomly

permuted order. Nevertheless, in the semi-honest setting, the standard voting
functionality FVote can be easily reduced to FWVote by letting each party submit
only one “real” vote and use a ⊥ value for the additional votes. For the broadcast
functionality, the multiple-input version gives the same output as the original
(without modification).

Due to space considerations, the details and formal analysis are deferred to
the full version of the paper. 	
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5.2 Dealing with General Graphs, Given Local Views
of a Spanning-Tree

In this section we show that if there exists a topology-hiding protocol for Ff on
a cycle, and for some spanning-tree T = (V, F ⊆ E) of a graph G = (V,E), all
nodes are given as auxiliary information their neighbors in T , then there exists
a topology-hiding protocol realizing the functionality Ff∗ on G. The main idea
is that given a spanning tree, nodes can locally compute (their local views of) a
cycle-traversal of G. Thus, we can reduce this problem to the previously solved
one of topology-hiding computation given a cycle-traversal of G.

Let G = (V,E) be a connected undirected graph describing the network
topology.

Theorem 6 (Spanning-tree known, realizing Ff∗). If there exists a proto-
col Π that realizes Ff in a topology-hiding way, given as input a local view of a
cycle-traversal of G and m = |CG| (the cycle length), then, using Π as a black
box, Protocol 3 realizes Ff∗ when given as inputs a local view of a spanning tree
T of G and n (the number of nodes in G).

Proof. Our proof follows from the existence of a local translation from local views
of a spanning-tree T to local views of a cycle-traversal CG. Protocol 3 simply
executes this translation and then runs Π using the auxiliary information about
the cycle-traversal.

The auxiliary input conversion is local in the sense that each node executes
the computation while using only its own auxiliary information. Specifically, the
conversion executed by node i takes as input its neighbors NT (i) in the spanning
T , and returns as output its successor function Succi on the cycle CG of G. In
our execution of Protocol 2 we use the cycle length m and the successor functions
Succi as the auxiliary information of node i.

Protocol 3. Topology-hiding computation of Ff∗ given spanning-tree neighbors
NT (i). Protocol Description for player i.

1: procedure SpanningTreeCompute(n, i, N(i)
·
= {v ∈ V | (i, v) ∈ F})

2: Succi = ConvertTreeToCycle(N(i)) // compute cycle-traversal
3: Execute Π using m = 2(n − 1) and Succi as auxiliary information.
4: end procedure
5: procedure ConvertTreeToCycle(N(i))
6: if |N(i)| = 0 then

7: return Succi
·
= ∅ // singleton graph, empty cycle

8: else
9: return

{
Succi(vi)

·
= vi+1

}

i=1,...,d
for (v1, . . . , vd) an ascending ordering of

the neighbors N(i) of i, and where we identify vd+1
·
= v1.

10: end if
11: end procedure
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Completeness. In Lemma 1 we show that our conversion procedure is correct;
i.e., there exists a length m cycle-traversal of G such that the output for each
node i is indeed its successor function on this cycle. Thus, by completeness of
Protocol 2 the output of each node is indeed the output of the Ff∗ functionality.

Security follows immediately from the security of Protocol 1. 	

Lemma 1 (Tree to cycle). There exists a length m cycle-traversal CG of G
such that for every node i ∈ V , its output Succi in the conversion procedure
(c.f. line 5 in Protocol 3) equals its successor function on this cycle CG.

Proof. We show that the functions Succi returned by the conversion procedure
are the successor functions for a length m cycle-traversal of G. For this purpose,
we exhibit an algorithm that, given a spanning-tree T , outputs a length cycle-
traversal CT of T (c.f. Protocol 4 and Claims 1 and 2). Next we prove that Succi

are successor functions for the graph CT returned by Protocol 4 (c.f. Claim 3).
Specifically, Protocol 4 first initializes CT to consist of a single node CT = 〈x〉

(for an arbitrary x ∈ V ). Next, while there exists a node u in CT with a neighbor
v ∈ N(u) not included in CT , the algorithm pastes to CT in place of u a cycle
Cv defined as follows. The cycle Cv = 〈w1, v, w2, v, . . . , v, wd, v, w1〉 is a cycle
traversing all neighbors NT (v) = {w1, . . . , wd} of v (where neighbors order on
the cycle is ascending, and the starting point is chosen to be w1 = u). That is,
for (v1, v2, . . . , vd) the neighbors of v in ascending order where u = vj we define
(w1, w2, . . . , wd) = (vj , vj+1, . . . , vd, v1, . . . , vj−1). We remark that the require-
ment of traversing neighbors of v is ascending order is not essential; we use it
merely to facilitate notations in demonstrating the correspondence between the
cycle CT returned from Protocol 4 and the successor function Succi returned
from line 5 Protocol 3 (c.f. Claim 3).

Protocol 4. Find cycle-traversal, given spanning-tree.
1: procedure ConvertTreeToCycle(T = (V, F ))
2: CT = 〈x〉 for arbitrary x ∈ V
3: while exists u ∈ CT and v ∈ N(u) such that v /∈ CT do
4: Let Cv = 〈u, v, w2, v, . . . , v, wd, v, u〉 for (u, w2, . . . , wd) the neighbors of v in

T in ascending order shifted to start with u.
5: Paste Cv into CT in place of the first appearance of u in CT

6: end while
7: return CT

8: end procedure

	

Claim 1. The output CT of Protocol 4 is a cycle-traversal of G.

Proof. Observe that CT visits all nodes of T , and thus all nodes of G. Else,
if there is an unvisited node y, then there is a path from x to y (since T is
connected), and on this path there must be a node u with neighbor v /∈ CT . A
contradiction to the termination of the while loop.
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Next, observe that CT is a cycle. This is proved by induction. The base case
〈x〉 is a cycle of length zero. The induction hypothesis say that the content of CT

throughout the first t iterations of the while loop is a cycle. The induction step
shows that CT remains a cycle after pasting Cv = 〈u, v, w2, v, . . . , v, wd, v, u〉.
For this purpose note that Cv is a cycle starting at node u, and thus when it
is pasted in place of u in CT = 〈. . . a, u, b . . .〉 (which is a cycle, by induction
hypothesis) the resulting C ′

T = 〈. . . a, u, v, w2, v, . . . , v, wd, v, u, b . . .〉 remains a
cycle.

We conclude that CT of is a cycle-traversal of G. 	

Claim 2. The output CT of Protocol 4 has length m = 2(n − 1).

Proof. To show that CT has length m = 2(n − 1) we recall that there are n − 1
edges in a spanning-tree for a graph with n = |V | nodes, and argue that the cycle
CT goes through each edge of the spanning-tree exactly twice. Thus resulting in
a total of 2(n − 1) edges on the cycle.

To complete the above argument we first prove by induction that throughout
the first t iterations of the while loop, the number of times CT goes through
every edge of T is either 0 or 2. Base case (t = 0): At the initialization, CT = 〈x〉
passes through every edges exactly 0 times. Induction step: Note that the cycle
to be pasted Cv goes over each edge connecting v to its neighbor exactly twice.
Moreover, these edges (v, w) were not included in CT prior to pasting Cv by
the choice of v as a node not appearing in CT . Next, we note that to traverse
all notes of the tree, CT must go through each edge at least once. We conclude
therefore that CT goes through each edge exactly twice. 	

Claim 3. The output Succi in the conversion procedure (c.f. line 5 in Protocol 3)
is the successor function for the cycle CT output by Protocol 4.

Proof. Recall first that the output Succi returned from the conversion procedure
(c.f. Line 5 in Protocol 3) is defined to be

{
Succi(vi)

·= vi+1

}

i=1,...,d

for (v1, . . . , vd) an ascending ordering of the neighbors N(i) of i (and where we
identify vd+1

·= v1). Namely, this successor function corresponds to the cycle
Ci = (v1, i, v2, i, . . . , i, vd) where the nodes v1, . . . , vd are in ascending order.

Recall also that in the cycle CT returned from Protocol 4 the edges passing
through node i were added by pasting a cycle C ′

i = (u, i, w2, i, . . . , i, wd) passing
through the neighbors u,w1, . . . , wd of i in ascending order shifted to start with
neighbor u. Since this is a cycle, we may view each point as the starting point.
Choosing to view the smallest neighbor as the starting point we see that C ′

i is
the same as the cycle Ci.

We conclude that the function Succi is identical to the successor function for
the cycle CT outputted by Protocol 4. 	
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5.3 Dealing with Trees

A simple corollary of Theorem 6 is that if G is a tree T (i.e., connected and
acyclic), then there exists a topology-hiding protocol realizing the voting func-
tionality Ff∗ on G. The proof is derived from the fact that when G is a tree, the
players can trivially find their neighbors in its spanning tree, without needing to
get it as an auxiliary input:

Corollary 2 (Trees). Suppose there exists a topology-hiding protocol realizing
the functionality Ff on directed cycles, when given (a bound on) the cycle length.
Then there exists a topology-hiding protocol realizing the functionality Ff∗ on
every tree T , when given (a bound on) the number of nodes in T .

6 Topology-Hiding Voting for Cycle Topology—Formal
Proofs

In this section we give the formal proofs of correctness and security for Protocol 1.

6.1 Correctness Analysis

Denote k(0) ·= 1, the identity element of the group. Then:

Claim 4. For every party i and all t ∈ {0, . . . , n − 1}:

k(i:t) =
t∏

j=1

pk(i−j:j).

Proof. Let i be an arbitrary party index. The proof is by induction on t. For
t = 0 it is trivially true. Assume it is true for all i up to some t ∈ {0, . . . , n − 2},
then in iteration t of the Aggregate loop, party i − 1 will have k(i−1:t) =∏t

j=1 pk(i−1−j:j), and will send k(i−1:t) � pk(i−1:t+1) =
∏t+1

j=1 pk(i−j:j) to party i

in line 7. Thus, for party i, k(i:t+1) will also have the required form. 	

Claim 5. For every party i and all t ∈ {1, . . . , n − 1}:

(
c
(i:t)
1 , . . . , c

(i:t)
t

)
= ([vi−1]k(i:t) , . . . , [vi−t]k(i:t)) .

Proof. Let i be an arbitrary party index. The proof is also by induction on t.
For t = 1, c(i:1) = [vi−1]pk(i−1:1) (as sent by party i − 1 in line 4). Assume the
hypothesis is true for all i up to iteration t. The values party i receives at lines
6 and 9 in iteration t + 1 of the Aggregate phase are those sent by party i − 1
in line 7 of iteration t:
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(
c
(i:t+1)
1 , . . . , c

(i:t+1)
t+1

)

=
(
[vi−1]k(i−1:t)�pk(i−1:t+1) ,AddLayer

(
c
(i−1:t)
1 , sk(i−1:t+1)

)
, . . .

. . . ,AddLayer
(
c
(i−1:t)
t , sk(i−1:t+1)

))

(by the induction hypothesis, c
(i−1:t)
j = [vi−j−1]k(i−1:t))

=
(
[vi−1]k(i−1:t)�pk(i−1:t+1) ,AddLayer

(
[vi−2]k(i−1:t) , sk(i−1:t+1)

)
, . . .

. . . ,AddLayer
(
[vi−t−1]k(i−1:t) , sk(i−1:t+1)

))

(by the definition of AddLayer)

=
(
[vi−1]k(i−1:t)�pk(i−1:t+1) , [vi−2]k(i−1:t)�pk(i−1:t+1) , . . . ,

[vi−t−1]k(i−1:t)�pk(i−1:t+1)

)

(since k(i:t+1) = k(i−1:t) � pk(i−1:t+1))
= ([vi−1]k(i:t+1) , [vi−2]k(i:t+1) , . . . , [vi−t−1]k(i:t+1)) ,

confirming the hypothesis for iteration t + 1.
	


Claim 6. For every party i and all t ∈ {1, . . . , n − 1}:
(
h
(i:t)
1 , . . . , h(i:t)

n

)
=

([
vσ(i:t)(1)

]
k(i:t) , . . . ,

[
vσ(i:t)(n)

]
k(i:t)

)

and
(
d
(i:t−1)
1 , . . . , d(i:t−1)

n

)
=

([
vσ(i+1:t)(1)

]
k(i:t−1) , . . . ,

[
vσ(i+1:t)(n)

]
k(i:t−1)

)

where σ(i:t) = π(i:t) ◦ · · · ◦ π(i+n−t−1:n−1).

Proof. We note that it’s enough to show the claim holds for the h values, since
the corresponding d values are computed from them by peeling off the outer key
layer (by calling DelLayer with the key sk(i:t)).

The proof is by induction on t (we run the induction backwards, starting at
t = n− 1). Let i be an arbitrary party. First, note that by the initial assignment
to the d values in lines 11 and 12 of the MixAndDecrypt phase, and using
Claim 5, we have

(
d
(i:n−1)
1 , . . . , d(i:n−1)

n

)
=

(
[vi]k(i:n−1) , . . . ,

[
vi−(n−1)

]
k(i:n−1)

)

Thus, t = n − 1 and all i, j ∈ {1, . . . , n}:

h
(i:n−1)
j = Rand

(
d
(i:n−1)

π(i:n−1)(j)
, k(n−1)

)
=

[
vπ(i:n−1)(j)

]
k(i:n−1) =

[
vσ(i:n−1)(j)

]
k(i:n−1) ,

which is the required value of h(i:n−1) according to the induction hypothesis.
Since this is true for all i, it also holds for the values of h(i+1:n−1) received in
line 19. Hence, it follows that for the di:n−2 values computed in line 21 we have:
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d
(i:n−2)
j = DelLayer

(
h(i+1:n−1), sk(i:t)

)

= DelLayer
([

vσ(i+1:n−1)(j)

]
k(i+1:n−1) , sk(i:t)

)

which by Claim 4:

= DelLayer
([

vσ(i+1:n−1)(j)

]
k(i:n−1)�pk(i:t) , sk(i:t)

)

and by the definition of DelLayer :

=
[
vσ(i+1:n−1)(j)

]
k(i:n−1)

as required by the induction hypothesis.
Assume the hypothesis holds for all i down to some t. Then for iteration

t − 1, the hi:t−1 values computed in line 16 are a rerandomized permutation of
d(i:t−1), hence by the induction hypothesis they are:

h
(i:t−1)
j = Rand

(
d
(i:t−1)

π(i:t−1)(j)
, k(t−1)

)
=

[
vπ(i:t−1)(σ(i:t)(j))

]
k(i:t−1)

=
[
vσ(i:t−1)(j)

]
k(i:t−1) .

Since this is true for all i, the h(i+1:t−1) values received in line 19 also satisfy the
equation, hence the d(i:t−2) values satisfy

d
(i:t−2)
j =

[
vσ(i+1:t−1)(j)

]
k(i:t−1)

(the details are exactly as in the proof of the base case). 	

Proof (of Theorem 3). The theorem follows directly from Claim 6, setting t = 1
the outputs of party i are the values d

(i:0)
1 , . . . , d

(i:0)
n . 	


6.2 Security Analysis

Proof (of Theorem 4). To prove Theorem 4, we first describe the ideal-world sim-
ulator S (that “lives” in the ideal world in which all honest parties are dummy
parties and there exists only the composed FVote||FGraph functionality). We will
then prove, via a hybrid argument, that the environment’s interactions with
S are computationally indistinguishable from an interaction with the real-world
adversary A that “lives” in the real world in which the parties execute Protocol 1
and only the FGraph functionality exists.

Simulator Description. S works as follows:

1. Let Q be the set of corrupt parties. Note that we are in the semi-honest model
with static corruptions, so Q and the input to each party in Q is available at
the start of the protocol, and the adversary must play “according to protocol”
with these inputs.

2. S sends the inputs for the parties in Q to FVote and receives the output of
FVote (i.e., a random permutation of all the parties’ inputs). Let out1, . . . , outn
be the output FVote sends to S.
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3. S receives the local neighborhood information from FGraph for all parties in
Q. For P ∈ Q, let pred (P ) denote the party preceding P on the cycle and
succ (P ) the party succeeding P on the cycle.

4. The adversary partitions Q into “segments”, where each segment consists
of a sequence of corrupt parties that appear consecutively on the cycle. The
segments are separated on the cycle by one or more honest parties (if it’s more
than one, S can’t tell how many, or in which order the segments appear on the
cycle). Let Q ⊆ Q be the set of corrupt parties that are first in their segment,
i.e., Q = {P ∈ Q : pred (P ) /∈ Q}) and Q = {P ∈ Q : succ (P ) /∈ Q} the set
of parties that are last in their segment.

5. Within each segment, S simulates the corrupt parties exactly according to
protocol. However, S must still simulate the inputs to the parties in Q and
Q that are generated by honest parties.

6. Simulating messages from honest parties in the AGGREGATE phase,
for party P ∈ Q :
(a) S generates n − 1 key pairs:

(pk(pred(P ):1), sk(pred(P ):1)), . . . , (pk(pred(P ):n−1), sk(pred(P ):n−1))

for the honest party preceding P (by honestly running KeyGen).
(b) To simulate the n − 1 messages sent by pred (P ) in lines and 7, for each

t ∈ {0, . . . , n − 2}, S simulates pred (P ) sending:

[0]pk(pred[P ]:t+1) , . . . , [0]pk(pred[P ]:t+1)
︸ ︷︷ ︸

t+1independent ciphertexts

and pk(pred(P ):t+1),

where each encryption of 0 is generated honestly using Enc with indepen-
dent random coins (note that line 4 is covered by t = 0.)

7. Simulating messages from honest parties in theMIXANDDECRYPT

phase, for party P ∈ Q : To simulate the n − 1 messages sent by succ (P )
in line 18, for each t ∈ {n − 1, . . . , 1}, S
(a) Chooses a random permutation π′(t) = π′(succ(P ):t) : [n] �→ [n]
(b) Simulates succ (P ) sending:

[
outπ′(t)(1)

]
k(t−1)�pk(P :t) , . . . ,

[
outπ′(t)(n)

]
k(t−1)�pk(P :t) .

(Recall that k(0) ·= 1 is defined to be the identity for the key group; and
out1, . . . , outn are the outputs FVote sent to S).

Proof of Transcript Indistinguishability. A real-world protocol transcript is fully
defined by the following information:

1. The messages received by corrupt parties during the protocol (including the
messages from FGraph)

2. The outputs of the honest parties.
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Since S faithfully simulates corrupt parties exactly according to the real-
world protocol, if the input messages to the corrupt parties are indistinguishable
in the ideal and real world, so are their output messages.

We will construct a sequence of hybrid worlds. Assume S has access to the
honest parties inputs and neighborhoods in these hybrids (in the final hybrid it
will not make use of this information, and will be identical to the ideal-world
simulator described above):

1. Hybrid 1: S simulates the real-world protocol exactly. (The transcript is iden-
tically distributed to a real-world transcript).

2. Hybrid 2: For each honest party H = pred (P ) that precedes a corrupt party
P , S generates n − 1 “simulated” key pairs

(pk′(H:1), sk′(H:1)), . . . , (pk′(H:n−1), sk′(H:n−1))

using KeyGen (exactly as in step 6a of the simulation). In line 4 of the Aggre-

gate phase, instead of simulating H exactly according to the protocol S sim-
ulates H sending [vH ]pk′(H:1) and pk′(H:1) to P , while in the tth iteration of
line 7, it sends

[
vpred(1)(P )

]

pk′(H:t+1)
, . . . ,

[
vpred(t+1)(P )

]

pk′(H:t+1)
and pk′(H:t+1)

to P .
3. Hybrid 3: In this hybrid (compared to the previous one), every simulated

ciphertext sent by S in step 6b of the simulation is replaced by a fresh,
independent, encryption of 0, under the same key.

4. Hybrid 4: In this hybrid (compared to the previous one), in line 16 of the
Aggregate phase, instead of mixing as required by the protocol, S sets the
h(i:t) values as follows:

h
(i:t)
j ← [

outπ′(t)(j)
]
k(i:t) .

That is, it replaces the mix and re-randomize step with a new, fresh set of
ciphertexts (under the same public key), permuted according to a fresh, ran-
dom permutation π′. (This hybrid is identically distributed to the transcript
of the simulated execution in the ideal world.)

Indistinguishability of Hybrids.

1. In Hybrid 1 (the real-world protocol), the adversary’s view contains, for each
P ∈ Q , the following sequence of messages sent by pred (P ) (each row is a
message):

k(1) = pk(pred
(1)(P ):1) and

[
vpred(1)(P )

]

k(1)

k(2) = pk(pred
(2)(P ):1) � pk(pred

(1)(P ):2) and
[
vpred(1)(P )

]

k(2)
,
[
vpred(2)(P )

]

k(2)

.

..
.
..

k(n−1) = pk(pred
(n−1)(P ):1)

� · · · � pk(pred
(1)(P ):n−1) and

[
vpred(1)(P )

]

k(n−1)
, . . . ,

[
vpred(n−1)(P )

]

k(n−1)
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In Hybrid 2, the difference is that instead of the sequence of keys

pk(pred(1)(P ):1), . . . , pk(pred(n−1)(P ):1) � · · · � pk(pred(1)(P ):n−1),

the public keys seen are pk′(pred(P ):1), . . . , pk′(pred(P ):n−1), and the ciphertexts
are fresh encryptions of the same values.
Note that in the Hybrid 1 key sequence, each product contains one entirely

new independent key, that hasn’t been included in any transcript prefix (the
tth product contains pk(pred(1)(P ):t)). Thus, we can think of this key as being
chosen randomly and independently at that point. Since the keys are ran-
domly chosen, each product is itself a random, independent key, hence iden-
tically distributed to pk′(pred(P ):t).
As for the ciphertexts, the indistinguishability property of AddLayer ensures

that fresh encryptions under the composed key are indistinguishable from the
ciphertexts produced by adding layers sequentially.

2. The difference between Hybrid 2 and 3 is that ciphertexts containing actual
votes are replaced with encryptions of 0 under the same key. However, these
ciphertexts are all encrypted under an honest public key (generated by S),
whose corresponding secret key is never revealed to the adversary. Moreover,
every ciphertext received from an honest party is re-randomized, so is indis-
tinguishable from a fresh encryption of that value. Thus, by the semantic
security of the encryption scheme, the hybrids are indistinguishable.

3. Finally, the differences between Hybrid 3 and 4 are that S chooses a new
random permutation in place of σ(i:t) (by Claim 7 this is distributed iden-
tically) and instead of calling Rand it generates new ciphertexts (these are
indistinguishable by the security properties of Rand).

To complete the proof we use Claim 7. 	

Claim 7. For every party i ∈ Q and all t ∈ {1, . . . , n − 1}, the permutation
σ(i+1:t) (as defined in Claim 6) is random even conditioned on everything else in
the adversary’s view up to iteration t.

Proof. By Claim 6, σ(i+1:t) = π(i+1:t) ◦ · · · ◦ π(i+n−t:n−1). Since π(i+1:t) is chosen
uniformly at random by the honest party i + 1 at iteration t, its composition
with an arbitrary permutation is still uniformly random. 	


7 Topology-Hiding Computation of Information-Local
Functions

In Sect. 5, we showed how to reduce the topology-hiding computation problem
in general graphs to (1) computing local views of a spanning tree and (2) solving
the problem for cycles. This leads us to ask: “when can we compute local views
of a spanning tree in a topology-hiding way?”. More generally, what can be
computed in a topology hiding way for arbitrary graphs, without relying in a
circular manner on a generic protocol for topology-hiding computation?

With this motivation in mind, we define:
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Definition 2 (Information-local Function). We say a function computed
over a communication graph G = (V,E) is k-information-local if the output of
every node v ∈ V can be (efficiently) computed from the inputs and random coins
of N (k)[v] (v’s k-neighborhood).

Note that information-locality is a property of the function computed, not the
protocol used to compute it—although if a function is information-local, an
immediate consequence of the definition is that there exists an information-
local protocol to compute it (i.e., a protocol involving only nodes in v’s k-
neighborhood).

In this section, we show that any k-information-local protocol can be com-
puted in a topology-hiding way on a general graph, given a protocol for topology-
hiding computation on depth-k trees (as long dk

max = poly(κ), where dmax is a
bound on the degree of the graph). This will allow us to leverage previous results
for topology-hiding computation for small-diameter graphs.

We then show that we can construct a k-information-local protocol for com-
puting a spanning tree for graphs of circumference k, and can combine this step
with the cycle protocol itself in a secure computation so that nodes don’t ever
learn the results of the spanning tree computation. Due to space considerations,
the details are deferred to the full version of the paper.

7.1 High-Level Overview of Our Protocol

Let f be a k-information-local function. By Definition 2, the output of every
node can be computed from the inputs and random coins of its k-neighborhood.
Thus, we can construct a generic protocol for computing f , by having every
node v “collect” the required information from its k-neighborhood and locally
compute its output. Every node can run multiple instances of the protocol in
parallel—once as the center of the k-neighborhood (this will give it its output)
and an additional instance for each member of its k-neighborhood as a “helper
instance” that only serves as an information source.

Executing the generic protocol described above is not topology-hiding, and in
fact requires knowledge of the graph topology (for example, in order to determine
how many instances a node must execute as a helper instance). To hide the
topology information, we will run each instance of the protocol under a topology-
hiding MPC whose participants are the k-neighborhoods.

Even this does not completely solve the problem, however, since the näıve
way of determining the participants in the MPC requires knowledge of the graph
topology. To achieve a full topology-hiding execution, we have to be able to run
a protocol between all parties in a k-neighborhood in such a way that individual
nodes do not learn anything about which other nodes (beyond their immediate
neighbors) are participating in the protocol.

Our solution to the problem is to have every node “pretend” its k-
neighborhood is a complete dmax-ary tree of depth k. If this were actually the
case, it would know exactly how many nodes are in its k-neighborhood and
could refer to all other nodes in its neighborhood using relative notation (by the
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unique path to reach that node). Of course, in the actual k-neighborhood of v
not all nodes have maximal degree, and there may be cycles. To reduce to the
ideal tree setting, every node with less than maximal degree will simulate any
missing neighbors as subtrees of depth k − 1 consisting of “dummy” nodes with
default inputs (the simulation is not recursive; the simulated dummy nodes par-
ticipate only in helper instances whose output instance is not a dummy node, so
in particular they will not need inputs from nodes outside the original simulated
subtree).

In order to allow nodes to match messages received from their neighbors with
the specific instance of the protocol, we introduce relative session identifiers
(sids). That is, instead of using a global sid to denote the protocol instance,
each node will have a different sid for the same instance. When receiving (or
sending) a message, the node will translate the received sid into its “local frame
of reference”. In more detail, we identify each execution instance with the central
node of the depth-k tree, and the sid of the node for that execution will be the
(relative) path in the tree from that node to the center. For example, suppose a
node u is running an instance with sid = (dist = 3, e1 = 1, e2 = 2, e3 = 1); that
is, to reach the center of this execution’s tree from u, take edge 1 from u, then
take edge 2 from the next node, and finally edge 1 from the third node (each
node fixes some random numbering of its edges). When node u sends a message
to v, then:

Case 1: v is “upstream”; i.e., (u,v) is edge 1 from u: In this case u will send
the sid (up : dist = 2, e∗

1 = 2, e2 = 1) (that is, remove the edge (u, v)
from the path to get an sid relative to v for the same execution). v will
still have to renumber e∗

1, since u’s numbering omits the edge (u, v) on
which the message was received by v.

Case 2: v is “downstream”: In this case, u will send the sid (down : dist =
4, e1 =?, e2 = 1, e2 = 3, e4 = 1). Note that u doesn’t know the num-
bering of v’s edge to u, so v will have to fill that in when receiving the
message).

By matching sids in this way, each execution will be a complete dmax-ary tree
of depth k. If the neighborhood contains cycles, however, some nodes will have
several different sids participating in the same execution instance. This because
when cycles exist, the relative directions to its neighbors are not unique. We
deal with this issue by requiring the underlying function to be invariant with
respect to the number of actual inputs (otherwise the function itself reveals the
size of the k-neighborhood) and transforming the function to make it invariant
with respect to duplicate inputs. That is, suppose fv is a k-information-local
function that receives the input xu from every u ∈ N (k)[v]. We will modify the
input from each party to be the pair x′

u = (u, xu), where u is the id of node u in
the original graph G, and compute the function f ′(X ′) that computes f on the
“deduplicated” inputs

X = {xu|(u, xu) ∈ X ′}
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where X ′ is the set of “raw” inputs that may contain duplicates.
Due to space considerations, the formal description of the protocol and its

analysis are deferred to the full version of the paper.

8 Discussion and Open Questions

This work leaves several natural open questions.

Topology-Hiding Computation for Arbitrary Graphs. This work extends the fea-
sibility results for topology-hiding computation to graphs with large diameter,
but the class of graphs we can handle is still restricted. The question of whether
a topology-hiding computation protocol exists for any graph (without additional
auxiliary information) is still open.

Topology-Hiding Computation for Large-Diameter Graphs in the Fail-Stop
Model. All of our protocols are proven secure in the semi-honest model. This is
an inherent restriction for cycles and trees, since topology-hiding computation is
known to be impossible in the fail-stop model unless the adversary cannot dis-
connect the graph [12]. Thus, our approach does not give a feasibility result for
topology-hiding computation for large-diameter graphs in the fail-stop model.
This remains an interesting open question.
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