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Abstract. The round complexity of secure computation has been a fun-
damental problem in cryptography. Katz and Ostrovsky proved that 5
rounds are both necessary and sufficient for secure computation in the
stand alone setting, thus resolving the exact round complexity of stand-
alone secure computation.

In contrast, round complexity of secure computation in the concurrent
setting, where several protocols may run simultaneously, is poorly under-
stood. Since standard polynomial time simulation is impossible in the
concurrent setting, alternative security notions have been proposed, e.g.,
super-polynomial simulation (SPS). While SPS security can be achieved
in constant rounds, the actual constant (> 20) is far from optimal.

In this work, we take the first steps towards studying the exact
round complexity of concurrent secure computation. We focus on the
two party case and present a new secure computation protocol that
achieves SPS security under concurrent self-composition. Our proto-
col has 5 rounds assuming quasi-polynomially-hard injective one-way
functions (or 7 rounds assuming standard polynomially-hard collision-
resistant hash functions). We also require other standard assumptions,
specifically trapdoor OWPs and lossy TDFs. This matches the rounds
for standalone secure computation.

More specifically, our security proof presents a polynomial time reduc-
tion from SPS security to 3-round public-coin non-malleable commit-
ments with appropriate extractability properties. Such commitments are
known based on quasi-polynomially-hard injective OWFs. (The reduc-
tion also works with a special 6-round non-malleable commitment to
yield the 7-round result under CRHFs.)
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1 Introduction

Secure computation protocols are protocols that enable mutually distrustful par-
ties to compute a functionality without compromising the correctness of the out-
puts and the privacy of their inputs. Secure computation protocols have been
studied in both two-party case and multi-party case, and it was shown that
secure computation protocols for any functionality can be constructed in both
cases in a model with malicious adversaries and a dishonest majority [12,36].

The security of secure computation protocols is defined by using simulation
paradigm. Specifically, to define the security of a protocol π for computing a
function f , we consider the real world, where the parties compute f by exe-
cuting π, and the ideal world, where the parties compute f by interacting with
a trusted third party. Then, we define the security by requiring that for any
adversary in the real world there exists a simulator in the ideal world such that
whatever an adversary can do in the real world can be “simulated” in the ideal
world by the simulator.
Round complexity of secure computation. A fundamental question in this
area is to understand how many rounds are necessary and sufficient for securely
computing general functionalities. Katz and Ostrovsky [18] proved that five
rounds are both necessary and sufficient for secure two-party computation in
the standalone setting where there is only one protocol execution. These results
were further extended in [11,30] w.r.t. black-box constructions and simultane-
ous message channels. These results completely settle the round complexity of
two-party computation in the standalone setting.
The concurrent setting. While standalone security is sufficient for many appli-
cations, other situations (such as protocol execution over the Internet) require
stronger notions of security. This setting where there may be many protocols
executions at the same time, is called the concurrent setting. Unfortunately, it
is known that stand-alone security does not necessarily imply security in the
concurrent setting [8].

Secure computation in the concurrent setting is more challenging to define
than the standalone setting. Canetti [4] proposed the notion of universally com-
posable (UC) security where protocols maintain their strong simulation based
security guarantees even in the presence of other arbitrary protocols. However,
achieving UC-security in the plain model turned out to be impossible [4,5]. More-
over, Lindell [25,26] proved that even in the special case where only instantiations
of the same protocol are allowed, standard notion of polynomial-time simulation
is impossible to achieve. (This is called “self composition” and corresponds to
the setting we are interested in.)

These strong negative results motivated the study of alternative notions for
concurrent secure computation, such as super-polynomial-time simulation (SPS)
security (and the closely related angel-based security), input-indistinguishable
computation, bounded concurrent composition, and multiple ideal-query model
[2,6,10,13,14,19,20,23,28,29,31–33,35].
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In this work we focus on SPS security in the two-party setting. In SPS secu-
rity, the simulator is allowed to run in super-polynomial time; thus, SPS security
guarantees that whatever an adversary can do in the real world can also be done
in the ideal world in super-polynomial time. Although allowing the simulator
to run in super-polynomial time weakens the security guarantee, SPS security
still guarantees meaningful security for many functionalities. Furthermore, it was
shown that under SPS security, concurrent self-composition can be achieved in
the plain model. (In what follows, by SPS security we mean SPS-security under
concurrent self-composition.)

SPS security has been extensively studied and improved upon in the litera-
ture. Prabhakaran and Sahai [35] provided the initial positive result for SPS secu-
rity. Although, these early results [28,35] relied on non-standard/subexponential-
time assumptions, Canetti, Lin and Pass achieved this (actually, the angel-based)
notion under standard polynomial-time assumptions [6] in a polynomial number
of rounds. Soon after, Garg et al. [10] presented a constant round SPS-secure
protocol, thus resolving the asymptotic round-complexity of SPS-secure compu-
tation (under polynomially-hard assumptions).
Exact round complexity of SPS-secure computation. Although the SPS-
secure protocol of [10] has asymptotically constant rounds, its exact round com-
plexity is actually quite large (more than 20). In contrast, the standalone setting
only requires five rounds [18]. Is this gap necessary? What is the exact round
complexity of SPS-secure protocols for computing general functionalities? To the
best of our knowledge, these questions have not been explored before.

1.1 Our Results

In this work, we take the first steps towards studying the exact round com-
plexity of concurrent secure computation. We present a new secure computation
protocol whose round complexity matches that of the stand alone setting. More
specifically, we present a five-round SPS-secure two-party computation protocol.
Our protocol guarantees security under concurrent self-composition.

We are interested in basing the security of our protocol on standard,
polynomially-hard, assumptions. We do this by providing a polynomial-time
reduction that reduces the SPS-security of our protocol to that of 3-round public-
coin non-malleable commitments with some natural extractability properties. In
particular, we want 3-round non-malleable commitments that are extractable
without over-extraction [19].

One caveat is that such non-malleable commitments, at present, are only
known to exist under quasi-polynomially-hard injective OWFs [16].1 Con-
sequently, we only achieve a result under quasi-polynomially hard injective
OWFs. We remark that even under super-polynomially hard assumptions,

1 The 3-round non-malleable commitment of [16] was claimed to be secure under
polynomially-hard injective OWFs; however, the public-coin variant of their scheme
is proven secure only under quasi-polynomially-hard injective OWFs (see the latest
ePrint version [15]).
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previous SPS-secure protocols have quite large round complexity (more than 20)
[2,14,20,24,33].

While existence of quasi-polynomially-hard injective OWFs is considered a
standard assumption, it would be interesting to know if we can rely only on
polynomially-hard assumptions. Towards this goal, we realize that our construc-
tion actually works with a special 6-round non-malleable commitment scheme
based on (polynomially-hard) CRHFs. This gives us a 7-round SPS-secure
protocol for general functionalities where all underlying assumptions are only
polynomially-hard.

1.2 Overview of Techniques

Our overall strategy is to apply the techniques of the constant-round SPS-secure
protocol of Garg et al. [10] to the five-round secure two-party computation pro-
tocol of Katz and Ostrovsky [18]. In this subsection, we first recall the techniques
of Garg et al. and explain the difficulty in applying the techniques of Garg et al.
to the protocol of Katz and Ostrovsky. After that, we give an overview of our
techniques.
SPS protocol of Garg et al. Like other SPS protocols, the concurrently
SPS-secure multi-party computation protocol of Garg et al. [10] has “trapdoor
secrets” that enable simulation,2 and the simulator obtains the trapdoor secrets
by breaking cryptographic primitives by brute-force in super-polynomial time.
The main technical challenge in the proof of security is to design a polynomial-
time reduction that reduces the security of the protocol to the security of
underlying cryptographic primitives. In fact, since the simulator runs in super-
polynomial time, a naive approach that having the reduction emulate the simu-
lator internally can only result in super-polynomial-time reductions.

To obtain a polynomial-time reduction in the proof of security, Garg et al.
consider a hybrid experiment in which the brute-force extraction of the trap-
door secrets is replaced with polynomial-time rewinding extraction. With such
a hybrid experiment, Garg et al. designs a security proof roughly as follows.

1. First, the indistinguishability between the real and the hybrid experiment
is reduced to the security of various protocol components. The reductions
run in polynomial time since both the real and the hybrid experiment run in
polynomial time.

2. Next, the indistinguishability between the hybrid and the ideal experiment is
shown without relying on any cryptographic assumptions. No cryptographic
assumption is needed to show this indistinguishability since the two experi-
ments differ only in how the trapdoor secrets are extracted and anyway the
same trapdoor secrets are extracted in both experiments except with negligi-
ble probability.

2 Concretely, the trapdoor secrets enable the simulator to give “proofs of correct
behavior” while executing the protocol incorrectly.
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However, since the protocol is executed in the concurrent setting, the use of
rewinding extraction causes problems.

The first problem is that rewinding can become recursive in the concur-
rent setting, which often leads to the necessity of large round complexity of
the protocol. Recall that rewinding extraction typically requires the creation of
“look-ahead threads,” i.e., rewinding the adversary and interacting with it again
from an earlier point of the protocol. If the simulator is required to do simu-
lation even on the look-ahead threads, the rewinding can become recursive—if
the adversary starts new sessions on look-ahead threads, the simulator need to
extract the trapdoor secrets from these newly started sessions, and thus, need to
rewind the adversary recursively. A key observation by Garg et al. is that, since
the look-ahead threads are created only in the hybrid experiment, the simulator
does not need to do “full simulation” on the look-ahead threads. More precisely,
Garg et al. observe that in the hybrid experiment, the simulator can use the
secret inputs of the honest party to execute newly started sessions honestly on
the look-ahead threads, by which the simulator can avoid rewinding the adver-
sary recursively. (The secret inputs of the honest parties are used only on the
look-ahead threads, and they are never used on the “main thread.”)

The second problem is that the components of the protocol can be rewound
in the hybrid experiment due to the rewinding extraction of the trapdoor secrets,
which makes it hard to show the indistinguishability between the real and the
hybrid experiment. Specifically, since any component in a session can be rewound
due to the rewinding extraction of other sessions, and the security of a crypto-
graphic primitive is in general not preserved when it is rewound, it is not clear
if the indistinguishability of the real and the hybrid experiment can really be
reduced to the security of the components. Garg et al. solved this problem by
carefully designing their protocol and a sequence of intermediate hybrid experi-
ments. Specifically:

1. They define the sequence of intermediate hybrids between the real and the
hybrid experiment in such a way that the concurrent sessions are switched
from honestly executed ones to simulated ones session by session in the order
of their special messages—namely, the messages such that the look-ahead
threads are created from the rounds of these messages.3 Switching in this
order guarantees that in each intermediate hybrid, rewinding occurs only
until special message of the session that has just been switched to simulation.

2. Then, they design the protocol in such a way that all the “rewinding-insecure”
components (namely, the components whose security is not preserved when
they are rewound) start only after special message of the protocol. A key
point is that when the protocol is designed in this way, it is guaranteed that
in an intermediate hybrid where a session is switched to simulation (and
therefore rewinding occurs only until special message of this session), all the
rewinding-insecure components in this session are not rewound and therefore
their security can be used in the proof of indistinguishability.

3 In the actual security proof in [10], the sessions are switched to honestly executed
ones in a more complex manner since each session has two special messages.
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Applying techniques of Garg et al. to Katz-Ostrovsky two-party pro-
tocol. Unfortunately, the techniques of Garg et al. cannot be applied on the
round-optimal two-party secure computation protocol of Katz and Ostrovsky
(KO) [18] in a straightforward manner.

The main difficulty is that in the KO protocol, the techniques of Garg et al.
is not helpful to solve the second problem described above, i.e., the problem that
the components of the protocol can be rewound in the hybrid experiment. Recall
that Garg et al. solve this problem by designing their protocol in such a way that
the rewinding-insecure components start only after special message. In the KO
protocol, however, some components are executed in parallel to compress the
round complexity and therefore a rewinding-insecure component starts before
special message.

To see the difficulty in more details, let us first recall the KO protocol. (In
this overview, we concentrate on the setting where only one party obtains the
output. In this setting, the KO protocol has only four rounds.) Roughly speaking,
the KO protocol is a semi-honest secure two-party computation protocol that
is augmented with proofs of correct behavior. Since the protocol has only four
rounds, these proofs are executed somewhat in parallel: One party, P1, gives a
proof in Rounds 1–3 and the other party, P2, gives in Rounds 1–4. Also, these
proofs have the proof-of-knowledge property (and thus are rewinding insecure)
and the simulator can extract the implicit input of the adversary from them.
When extracting the implicit input, the simulator rewinds the adversary in the
last two rounds of the proof; hence, when P1 is corrupted, special message is the
message in Round 2 (since look-ahead threads are created from Round 2), and
when P2 is corrupted, special message is the message in Round 3 (since look-
ahead threads are created from Round 3). Notice that when P2 is corrupted, the
proof by P1 in Rounds 1–3 is executed before special message in Round 4.

Then, the difficulty is the following. Let us consider that we design a sequence
of intermediate hybrids following the approach of Garg et al. In the intermediate
hybrids, all we can guarantee is that when a session is switched to simulation,
no rewinding occurs after special message of this session—hence, when P2 is
corrupted, we can only guarantee that no rewinding occurs after Round 4, and
thus, cannot guarantee that the proof by P1 in Rounds 1–3 is not rewound in this
session. Then, since the simulation of the KO protocol is indistinguishable only
when the proof by P1 is secure, it seems hard to prove the indistinguishability
among the intermediate hybrids unless the proof by P1 is rewinding secure.
Furthermore, since we require that the proof by P1 has the proof-of-knowledge
property, it seems unlikely that the proof by P1 can be rewinding secure.
Our techniques. To solve the problem that the components of the protocol are
rewound in the hybrid experiment, we use the fact that, as observed by Garg et
al., in the SPS setting the look-ahead threads can depend on the inputs of the
honest parties. Specifically, we use the fact that we do not need to remove the
input of P1 from the proof of correct behavior on the look-ahead threads.

First, we recall the KO protocol in more details. For simplicity, we assume
that each party has only 1-bit input. In this case, P1 gives the proof of correct
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behavior using a witness indistinguishable proof of knowledge ΠWIPOK for a state-
ment of the form st0 ∨ st1, where in the honest execution, only one of st0 and
st1 is true depending on the input of P1. In simulation, in a session where P2 is
corrupted, the simulator makes both st0 and st1 true and simulates the proof of
correct behavior using a witness for st0. (Notice that the proof no longer depends
on P1’s input.) In a session where P1 is corrupted, the simulator extracts the
implicit input of the adversary by extracting a witness from ΠWIPOK and checking
whether the extracted witness is a witness for st0 or not.

Then, our idea is the following. We replace ΠWIPOK with other cryptographic
components—witness-indistinguishable one and extractable one—so that we
can have both rewinding-secure witness-indistinguishability and extractability.
Specifically, the components we use are:

– a ZAP system (namely, a two-round public-coin witness indistinguishable
proof system). Since ZAP has only two rounds, it is witness indistinguishable
even when it is rewound.

– a three-round honest-committer extractable commitment (namely, a
commitment scheme such that, as long as the committer behaves honestly, the
committed value can be extracted by rewinding the committer). The honest-
committer extractable scheme that we use, denoted by ExtCom′, is a variant
of a three-round challenge-response based extractable scheme. To commit to a
message m using ExtCom′, the committer commits to many 2-out-of-2 secret
shares {(α0

i , α
1
i )} of m using a standard non-interactive commitment scheme

in the first round, and after receiving challenge {ei} from the receiver, the
committer reveals {αei

i } in the third round but does not open the correspond-
ing commitments. An important property of ExtCom′ is that the committer’s
messages in the first and the third round can be simulated independently of
each other. In particular, we can simulate a commitment by committing to
all-zero strings in the first round and sending random strings in the last round.
(Later, we use this property to say that even though ExtCom′ is extractable,
it also has some rewinding security.)

We then modify the KO protocol in such a way that P1 gives two ExtCom′

commitments in Rounds 1–3, where one is correctly constructed and the other
is simulated, and then proves by ZAP in Rounds 2–3 that either a witness
for st0 is committed in the first ExtCom′ commitment or a witness for st1 is
committed in the second one. (Recall that only one of st0 and st1 is true in the
KO protocol depending on the input of P1) With this modification, we can solve
the problem as follows. When P2 is corrupted, the simulator makes both st0 and
st1 true (as the KO simulator does), commits to witnesses for st0 and st1 in
the two ExtCom′ commitments, and completes the ZAP proof using a witness
for that st0 is committed in the first ExtCom′ commitment. Then, even though
ZAP and ExtCom′ can be rewound in the hybrid experiments, we can show the
indistinguishability using their security for the following reasons.

1. First, the simulator can switch a simulated ExtCom′ commitment to a hon-
est one in an indistinguishable way even under rewinding as long as the
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commitment does not need to be a honest one on the look-ahead threads. This
is because the third message of the simulated commitment consists of just ran-
dom strings; we can design a reduction that obtains a ExtCom′ commitment
(either a simulated one or a honest one) on the main thread from an external
committer while internally simulating the look-ahead threads by simulating
the third message of this ExtCom′ commitment with random strings.

2. Second, the witness indistinguishability of ZAP holds even when it is rewound.
This is because it has only two rounds.

On the other hand, when P1 is corrupted, the simulator can extract the implicit
input from the adversary by extracting the committed values from the two
ExtCom′ commitments and checking whether a witness for st0 or st1 is extracted.
Even though ExtCom′ is only honest-committer extractable, the simulator can
extract the implicit input in this way since the soundness of ZAP guarantees
that at least one of the ExtCom′ commitments is constructed correctly.
Other technicalities. To prove security formally, we need to modify the KO
protocol further.

First, we need to add non-malleability to the KO protocol because in the con-
current setting with interchangeable roles, the adversary can participate as the
first party in a session while participating as the second party in another session.
To add non-malleability, we use a non-malleable commitment in a similar manner
as Barak et al. [1], who constructed a concurrent non-malleable zero-knowledge
argument using a non-malleable commitment. In particular, we modify the KO
protocol in such a way that, instead of giving a proof of correct behavior, a
party commits to a witness for the correct behavior using a non-malleable com-
mitment and then proves that it committed to a valid witness. As in the protocol
of Barak et al. [1], we assume that the non-malleable commitment is extractable
and that some components of our protocol are statistically secure. (Roughly, this
is for guaranteeing that the non-malleable commitment is non-malleable w.r.t.
not only itself but also the other components of our protocol.)

Second, for technical reasons, we augment the KO protocol with a lossy
encryption scheme, i.e., an encryption scheme that has a lossy key generation
algorithm such that lossy keys statistically hide the plaintexts. Roughly speaking,
this is because unlike the SPS-secure protocol of Garg et al. [10], the KO protocol
does not have the property that the same information is extracted by rewinding
extraction and by brute-force extraction. (Recall that this property is required
when the indistinguishability between the hybrid and the ideal experiment is
shown.) Specifically, an adversary can make the rewinding simulator obtain a
valid implicit input whereas the brute-force simulator obtain an invalid one. We
therefore modify the KO protocol so that for such an adversary, all the messages
that depend on the extracted implicit input are encrypted under a lossy key
(whereas they are encrypted under a normal key in the honest execution).
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2 Preliminaries

In this paper, we denote the security parameter by κ. We assume familiar-
ity with the definitions of basic cryptographic schemes and protocols, such as
secret-key/public-key encryption schemes, message authentication codes, com-
mitment schemes, and witness-indistinguishable proof/argument of knowledge.
We remind the reader that there exists a non-interactive perfectly binding com-
mitment scheme under the existence of injective one-way functions, and there
exists a two-round statistically hiding commitment scheme under the existence
of collision-resistance hash functions.

2.1 Components of Katz-Ostrovsky 2-Party Computation

We recall the secure two-party computation protocol of Katz and Ostrovsky [18]
and its components. Part of the text is taken from [11,18].
Semi-honest two-party computation based on Yao’s garbled circuits
We first recall that a semi-honest secure two-party computation protocol can be
constructed using Yao’s garbled circuit scheme [27,36].

We view Yao’s garbled circuit scheme as a tuple of PPT algorithms
(GenGC,EvalGC), where GenGC is the “generation procedure” that generates a
garbled circuit for a circuit C along with “labels,” and EvalGC is the “evaluation
procedure” that evaluates the circuit on the “correct” labels. Each individual
wire i of the circuit is assigned two labels, Zi,0, Zi,1. More specifically, the two
algorithms have the following format (here i ∈ [κ], b ∈ {0, 1}).

– (GCy, {Zi,b}) ← GenGC(1κ, F, y): GenGC takes as input a security parameter
κ, a circuit F , and a string y ∈ {0, 1}κ. It outputs a garbled circuit GCy along
with the set of all input-wire labels {Zi,b}.

– v = EvalGC(GCy, {Zi,xi
}): Given a garbled circuit GCy and a set of input-

wire labels {Zi,xi
}, where x = x1x2 · · · xκ ∈ {0, 1}κ, EvalGC outputs either an

invalid symbol ⊥ or a value v = F (x, y).

The two algorithms have the following properties.

– Correctness: Pr [EvalGC(GCy, {Zi,xi
}) = F (x, y)] = 1 for all F, x, y, taken

over the correct generation of GCy, {Zi,b} by GenGC.
– Security: There exists a PPT simulator SimGC such that for any F , we

have {(GCy, {Zi,xi
})}x,y ≈c {SimGC(1κ, F, v)}x,y, where (GCy, {Zi,b}) ←

GenGC (1κ, F, y) and v = F (x, y).

Yao’s garbled circuit scheme is based on the existence of one-way functions.
Using Yao’s garbled circuit scheme and a semi-honest OT protocol, two par-

ties, P1 and P2, can compute a function F of their inputs in the semi-honest
setting as follows. Let x, y be the inputs of P1, P2 respectively. Consider the
setting that only one party, say P1, learns the output of F . Then, P2 first com-
putes (GCy, {Zi,b}) ← GenGC(1κ, F, y) and sends GCy to P1. The two parties
then engage in κ parallel instances of OT, where in the i-th instance, P1 inputs
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xi and P2 inputs (Zi,0, Zi,1) to the OT protocol, and P1 learns Zi,xi
. Then, P1

computes v = EvalGC(GCy, {Zi,xi
}) and outputs v = F (x, y).

We next recall that a three-round semi-honest OT protocol can be con-
structed from enhanced trapdoor permutations (TDPs).

Definition 1 (Trapdoor permutations). Let TDP be a triple of PPT
algorithms (TDP.Gen,TDP.Eval,TDP.Invert) such that if TDP.Gen(1κ) out-
puts a pair (f, td), then TDP.Eval(f, ·) is a permutation over {0, 1}κ and
TDP.Invert(f, td, ·) is its inverse. TDP is a trapdoor permutation if for
any PPT adversary A, there exists a negligible function μ such that
Pr[(f, td) ← TDP.Gen(1κ); y ← {0, 1}κ;x ← A(f, y) : TDP.Eval(f, x) = y] ≤
μ(κ).

For convenience, we drop (f, td) from the notation and write f(·), f−1(·) to
denote algorithms TDP.Eval(f, ·),TDP.Invert(f, td, ·) respectively. We assume
that TDP satisfies a weak variant of certifiability, namely, given f it is possi-
ble to decide in polynomial time whether TDP.Eval(f, ·) is a permutation over
{0, 1}κ. Let H be the function that is obtained from a single-bit hardcore func-
tion h of f ∈ TDP as follows: H(z) = h(z)‖h(f(z))‖ . . . ‖h(fκ−1(z)). Informally,
H(z) looks pseudorandom given fκ(z).

The semi-honest OT protocol based on TDP is constructed as follows. Let
P2 hold two strings Z0, Z1 ∈ {0, 1}κ and P1 hold a bit b. In the first round,
P2 chooses trapdoor permutation (f, f−1) ← TDP.Gen(1κ) and sends f to P1.
Then P1 chooses two random strings z′

0, z
′
1 ← {0, 1}κ, computes zb = fκ(z′

b)
and z1−b = z′

1−b, and sends (z0, z1) to P2. In the last round P2 computes Wa =
Za ⊕ H(f−κ(za)) for each a ∈ {0, 1} and sends (W0,W1) to P1. Finally, P2

recovers Zb by computing Zb = Wb ⊕ H(zb).
Putting it altogether, we obtain the following three-round semi-honest secure

two-party computation protocol for the single-output functionality F :

Protocol ΠSH: P1 holds input x ∈ {0, 1}κ and P2 holds inputs y ∈ {0, 1}κ. Let
TDP be a family of trapdoor permutations and H be its hardcore bit function
for κ bits. In the following, i always ranges from 1 to κ and b from 0 to 1.

Round-1: P2 computes (GCy, {Zi,b}) ← GenGC(1κ, F, y), chooses {(fi,b, f
−1
i,b )}

using TDP.Gen(1κ), and sends (GCy, {fi,b}) to P2.
Round-2: P1 chooses random strings {z′

i,b}, computes zi,xi
= fκ(z′

i,xi
) and

zi,1−xi
= z′

i,1−xi
, and sends {zi,b} to P2.

Round-3: P2 computes Wi,b = Zi,b ⊕ H(f−κ
i,b (zi,b)) and sends {Wi,b} to P2.

Output: P1 recovers the labels Zi,xi
= Wi,xi

⊕ H(z′
i,xi

) and computes v =
EvalGC(GCy, {Zi,xi

}).

Equivocal commitment scheme Eqcom. We next recall the equivocal com-
mitment scheme of [18] that is based on any (standard) non-interactive perfectly
binding commitment scheme Com. To commit to a bit x ∈ {0, 1}, the sender
chooses coins ζ1, ζ2 and computes Eqcom(x; ζ1, ζ2)

def= Com(x; ζ1)‖Com(x; ζ2).
It sends Cx = Eqcom(x; ζ1, ζ2) to the receiver along with a zero-knowledge
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proof that Cx was constructed correctly (i.e., that there exist x, ζ1, ζ2 such that
Cx = Eqcom(x; ζ1, ζ2)). To decommit, the sender chooses a bit b at random and
reveals x, ζb, denoted by openCx

. Note that a simulator can “equivocate” the com-
mitment by setting C = Com(x; ζ1)‖Com(1 − x; ζ2) for a random bit x ∈ {0, 1},
simulating the zero-knowledge proof, and then revealing ζ1 or ζ2 depending on
x and the bit to be revealed. This extends to strings by committing bitwise.
Sketch of the Katz-Ostrovsky Two-Party Protocol. The main components
of the secure two-party computation protocol of Katz and Ostrovsky [18] are the
three-round semi-honest secure two-party computation protocol ΠSH and proofs
about the correctness of each round. Specifically, the protocol of [18] proceeds
as follows. First, both parties commit to their inputs. Then, they run (modified)
coin-tossing protocols to guarantee that each party obtains random coins that
are committed to the other party. Finally, they run the ΠSH protocol together
with proofs about the correctness of each round.

Since even a zero-knowledge argument alone requires four rounds, in the pro-
tocol of [18] the proof-of-correctness part is executed in parallel with ΠSH. To
enable such a parallel execution, Katz and Ostrovsky use a zero-knowledge argu-
ment system with a “delayed input” property, i.e., a property that the statement
to be proven need not be known until the last round. (Specifically, they use a
variant of the four-round zero-knowledge proof system by Feige and Samir [9].)
Furthermore, for technical reasons, in the protocol of [18] the above equivocal
commitment scheme is used to commit to the garbled circuit.

2.2 Component of Our Protocol

Statistical Feige-Shamir zero-knowledge argument ΠFS. We use a four-
round “delayed-input” statistical zero-knowledge argument ΠFS that is based
on the four-round zero-knowledge argument system by Feige and Shamir
[9]. Recall that the Feige-Shamir zero-knowledge argument for a statement
thm consists of the following two (somewhat parallelized) executions of a
witness-indistinguishable proof-of-knowledge system: in the first execution (in
Rounds 1–3), the verifier proves the knowledge of “simulation trapdoor”
σ—namely, selects a one-way function f , sets x1 = f(w1) and x2 = f(w2),
and proves the knowledge of a witness for ∃w s.t. x1 = f(w)∨x2 = f(w); in the
second execution (in Rounds 2–4), the prover proves the knowledge of a witness
for thm or the simulation trapdoor—i.e., proves the knowledge of a witness for
thm ∨ (∃w s.t. x1 = f(w) ∨ x2 = f(w)). We then obtain ΠFS by using Blum’s
three-round witness-indistinguishable proof of knowledge (denoted by ΠWIPOK)
in the first execution and a four-round statistical witness-indistinguishable ver-
sion of the “delayed input” witness-indistinguishable argument of Lapidot and
Shamir [21] (denoted by ΠSWIAOK) in the second execution. It is not hard to see
that ΠFS has a property that the statement to be proven is not needed until
its last round, and it is complete, sound, and zero-knowledge even when the
statement is determined in the last round.
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Extractable commitment scheme ExtCom′. We use the following commit-
ment scheme ExtCom′, which is used in [10]. Let Com be any non-interactive
perfectly binding commitment.

Commit Phase: The common input is security parameter 1κ. The input to
the committer is a string m ∈ {0, 1}poly(κ).
1. The committer chooses κ independent random pairs {α0

i , α
1
i }i∈[κ] such

that α0
i ⊕ α1

i = m for every i ∈ [κ]. The committer then commits to αb
i

for every i ∈ [m], b ∈ {0, 1} using Com. Let cb
i be the commitment to αb

i .
2. The receiver sends uniformly random bits {ei}i∈[κ].
3. The committer sends αei

i for every i ∈ [κ].
Comment: The committer just sends αei

i and does not decommit cei
i .

Open Phase: The committer decommits cb
i to αb

i for every i ∈ [κ], b ∈ {0, 1}.

ExtCom′ has extractability in the sense that we can extract the committed value
if we can obtain two correctly constructed transcripts by rewinding the committer
in the last two rounds. We remark that if the commitment is invalid, i.e., there is
no value to which the commitment can be correctly decommitted, this extracting
procedure can output any value. We also remark that in ExtCom′, a committer
can easily give an invalid commitment by committing to all-zero strings in the
first round and sending random strings in the last round. We use such an “fake”
execution of ExtCom′ in our protocol.
Non-malleable commitment scheme NMCom. Let 〈C,R〉 be a tag-based
commitment scheme (i.e., a commitment scheme that takes a κ-bit string—a
tag—as an additional input). Informally, 〈C,R〉 is non-malleable if for any man-
in-the-middle adversary M, who gives a commitment of 〈C,R〉 in the “right”
interaction while receiving a commitment of 〈C,R〉 in the “left” interaction, the
value committed in the right interaction is “independent” of the value committed
in the left interaction as long as the tags in the two interactions are different.
See, e.g., [22] for a formal definition.

In our main result, we use a non-malleable commitment scheme such that:

1. The scheme is public coin (i.e., the receiver is public coin) and the round
complexity is 3.

2. The scheme has the following extractability: an extractor extracts the com-
mitted value from a valid commitment and extracts ⊥ from an invalid one.

Such a non-malleable commitment exist under quasi-polynomially-hard injective
OWFs [15,16]; see Footnote 1. For simplicity, we also assume that the extractor
E rewinds the committer in the last two rounds until it obtains two accepting
transcripts. That is, we assume that E interacts with the committer in the same
way as the honest receiver on the main thread while repeatedly interacting with
it from the second round with fresh randomness on the look-ahead threads, and
when the commitment is accepting on the main thread, E extracts the committed
values using the accepting commitment on a look-ahead thread.
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Lossy encryption scheme. Informally, a lossy encryption scheme [3,17] is a
public-key encryption scheme such that, in addition to the standard key gen-
eration algorithm, it has a lossy key generating algorithm with the following
property: A lossy public key is indistinguishable from a standard public key, and
a ciphertext generated under a lossy public key statistically hides the informa-
tion of the plaintext. More precisely, a lossy public-key encryption scheme is a
tuple (LE.Gen, LE.Enc, LE.Dec) of PPT algorithms such that:

– LE.Gen(1κ, inj) outputs injective keys (pk, sk).
– LE.Gen(1κ, lossy) outputs lossy keys (pklossy, sklossy).

For a formal security definition, see [3,17].
It is shown in [3] that a lossy encryption scheme can be constructed from

lossy trapdoor functions [34], which in turn can be realized based on a variety of
assumptions including the DDH assumption and the LWE assumption.
ZAP ΠZAP. ZAPs are two-message public-coin witness-indistinguishable proof
systems, and can be based on doubly enhanced trapdoor permutations [7].

3 UC Security and Its SPS Variant

We recall the definition of UC security [4] and its SPS variant [2,10,35]. A part
of the text below is taken from [10].

3.1 UC Security

We assume familiarity with the UC framework. For full details, see [4].
Recall that in the UC framework, the model for protocol execution consists

of the environment Z, the adversary A, and the parties running protocol π. In
this paper, we consider static adversaries and assume the existence of authen-
ticated communication channels. Let EXECπ,A,Z(κ, z) denote a random vari-
able for the output of Z on security parameter κ ∈ N and input z ∈ {0, 1}∗

with a uniformly-chosen random tape. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(κ, z)}κ∈N,z∈{0,1}∗ .

The security of a protocol π is defined using the ideal protocol. In the execu-
tion of the ideal protocol, all the parties simply hand their inputs to the ideal
functionality F . The ideal functionality F carries out the desired task securely
and gives outputs to the parties, and the parties forward these outputs to Z. The
adversary S in the execution of the ideal protocol is often called the simulator.
Let π(F) denote the ideal protocol for functionality F .

We say that a protocol π emulates protocol φ if for any adversary A there
exists an adversary S such that no environment Z, on any input, can tell with
non-negligible probability whether it is interacting with A and parties running π
or it is interacting with S and parties running φ. We say that π securely realizes
an ideal functionality F if it emulates the ideal protocol Π(F).
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3.2 UC Security with Super-Polynomial Simulation

We next provide a relaxed notion of UC security where the simulator is given
access to super-polynomial computational resources.

Definition 2. Let π and φ be protocols. We say that π UC-SPS-emulates φ if
for any adversary A there exists a super-polynomial-time adversary S such that
for any environment Z that obeys the rules of interaction for UC security, we
have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 3. Let F be an ideal functionality and let π be a protocol. We say
that π UC-SPS-realizes F if π UC-SPS-emulates the ideal process Π(F).

The multi-session extension of an ideal functionality. When showing con-
current security of a protocol π under SPS security, we need to construct a sim-
ulator in a setting where parties execute π concurrently. (In other words, unlike
in UC security, we cannot rely on the composition theorem in SPS security.)

To consider the simulator in such a setting, we use a multi-session extension
of an ideal functionality. Roughly speaking, the multi-session extension F̂ of an
ideal functionality F is a functionally that internally runs multiple copies of F .

4 Our Five-Round Secure Two-Party Protocol

In this section, we prove our main result.

Theorem 1. Assume the existence of collision-resilient hash function fam-
ilies, trapdoor permutation families4, lossy encryption schemes, and quasi-
polynomially-hard injective one-way functions. Let F be any well-formed two-
party functionality and F̂ be its multi-session extension. Then, there exists a
five-round protocol that UC-SPS realizes F̂ .

The other result, a seven-round protocol under polynomially-hard assumptions,
is given in the full version of this paper.

Recall that in the UC framework, there are any number of parties P1, P2, . . .,
and any two of them (say, Pi and Pj) can compute F using F̂ in each subsession.
To simplify the description of the protocol and the proofs, in what follows we
denote the first party of F by P1 and the second party of F by P2 in every
subsession. (Equivalently, we consider a setting where two parties P1, P2 com-
pute F any number of times using F̂ , and A corrupts either P1 or P2 in each
subsession.)

4 Recall that we assume that the trapdoor permutation families satisfy (a weak form
of) “certifiability” and their domain/range is {0, 1}κ.
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4.1 Our Protocol Π2PC

Our protocol is based on the two-party computation protocol of Katz and Ostro-
vsky [18]; their protocol is described in Sect. 2.1. In our protocol, we use the
primitives that are described in Sects. 2.1 and 2.2, and additionally, we use a
symmetric-key encryption scheme SKE = (SKE.Enc,SKE.Dec) and a message
authentication code MAC.
Our protocol Π2PC. We denote the two parties by P1 and P2. P1 holds input
x ∈ {0, 1}κ and P2 holds input y ∈ {0, 1}κ. The identities of P1 and P2 (i.e.,
their PIDs) are id1 and id2 respectively, where id1 
= id2. Let F = (F1, F2) :
{0, 1}κ × {0, 1}κ → {0, 1}κ × {0, 1}κ be the functionality to be computed. Let
F ′ = (F ′

1, F
′
2) be a functionality such that:

– F ′
1(x, y′) = (F1(x, y), enc,mac), where y′ = (y, skske, skmac, ωenc) ∈ {0, 1}4κ,

enc = SKE.Encskske(F2(x, y);ωenc), and mac = MACskmac(enc).
– F ′

2(x, y′) = ⊥ for any x and y′.

In the following i always ranges from 1 to κ and b from 0 to 1. We will skip
mentioning the SID and SSID to keep the protocol specification simple.
Round 1. P1 sends a message m1 that is defined as follows.

1. P1 commits to 2κ random strings {ri,b} using 2κ parallel and independent
executions of Com. I.e., it chooses uniformly random strings ri,b and random-
ness ωi,b

com and then generates comi,b = Com(ri,b;ωi,b
com).

2. P1 starts committing to κ strings {ri,1−xi
‖ωi,1−xi

com } using κ parallel and inde-
pendent executions of ExtCom′ and also starts κ “fake” executions of ExtCom′.
Concretely, P1 prepares {exti,b1 } as follows.
– For every i ∈ [κ], P1 prepares exti,1−xi

1 by committing to ri,1−xi
‖ωi,1−xi

com

using ExtCom′. I.e., it generates exti,1−xi

1 ← ExtCom′
1(ri,1−xi

‖ωi,1−xi
com ),

which is the first message of ExtCom′(ri,1−xi
‖ωi,1−xi

com ).
– For every i ∈ [κ], P1 prepares exti,xi

1 by committing to all-zero strings using
Com. (Recall that the first round of ExtCom′ consists of 2κ executions of
Com.)

3. P1 prepares the first message fs1 of ΠFS.
4. Message m1 is the tuple ({comi,b, ext

i,b
1 }, fs1).

Round 2. P2 sends a message m2 that is defined as follows.

1. P2 samples secret-keys skske and skmac for SKE and MAC respectively and
chooses randomness ωenc for SKE.Enc.

2. P2 prepares a garbled circuit and labels for F ′
1 with input y′ =

(y, skske, skmac, ωenc). I.e., it uniformly chooses randomness Ω and generates(
GC, {Zi,b}

)
= GenGC

(
1κ, F ′

1, y
′;Ω

)
.

3. P2 generates standard commitments to the labels and an equivocal com-
mitment to the garbled circuit. I.e., it uniformly chooses randomness {ωi,b

lab}
and ωgc and generates Ci,b

lab = Com(Zi,b;ω
i,b
lab) and Cgc = Eqcom(GC;ωgc).

Let openCgc
be the decommitment information that decommits Cgc to GC.
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4. P2 samples random strings {r′
i,b} and

(
fi,b, f

−1
i,b

) ← TDP.Gen(1κ) for the
coin tossing and the oblivious transfer executions.

5. P2 generates the second messages {exti,b2 } for all the executions of ExtCom′

initiated by P1.
6. P2 prepares the first message zap1 of ΠZAP.
7. P2 prepares the second message fs2 of ΠFS initiated by P1.
8. P2 chooses randomness ωleEnc for LE.Enc.
9. Let wit2 := (y′, Ω,GC, ωgc, openCgc

, {Zi,b, ω
i,b
lab}) and wit4 := (wit2, {f−1

i,b },
ωleEnc). Then, P2 starts committing to wit4 using NMCom with identity id2.
I.e., it generates nm1 ← NMCom1(id2,wit4), which is the first message of
NMCom(id2,wit4).
We remark that wit2 is a witness for the following statement st2 =
(F ′

1,Cgc, {Ci,b
lab}).

∃ wit2 =
(
y′, Ω,GC, ωgc, openCgc

, {Zi,b, ω
i,b
lab}

)
s.t.

(a)
(
GC, {Zi,b}

)
= GenGC

(
1κ, F ′

1, y
′;Ω

)
, and

(b) Cgc = Eqcom(GC;ωgc) and ∀(i, b) : Ci,b
lab = Com(Zi,b;ω

i,b
lab), and

(c) openCgc
is a valid decommitment that opens Cgc to GC.

Comment: Informally, st2 is the statement that P2performed this step cor-
rectly, i.e., generated a garbled circuit and labels correctly and then committed
to them in Cgc, {Ci,b

lab}.
10. Message m2 is the tuple ({Ci,b

lab, r
′
i,b, fi,b, ext

i,b
2 },Cgc, zap1, fs2, nm1).

Round 3. If any of {fi,b} is invalid, P1 aborts. Otherwise, P1 sends a message
m3 that is defined as follows.

1. P1 invokes κ parallel executions of oblivious transfer to obtain the input-wire
labels corresponding to its input x. More specifically, P1 does the following
for every i ∈ [κ].
– If xi = 0, sample z′

i,0 ← {0, 1}κ/2 and then set zi,0 := fκ
i,0(PRG(z′

i,0)) and
zi,1 := ri,1 ⊕ r′

i,1.
– If xi = 1, sample z′

i,1 ← {0, 1}κ/2 and then set zi,1 := fκ
i,1(PRG(z′

i,1)) and
zi,0 := ri,0 ⊕ r′

i,0.
2. P1 prepares {exti,b3 }, where {exti,1−xi

3 } are the third messages of ExtCom′ and
{exti,xi

3 } are random strings.
3. P1 prepares injective keys (pkle, skle) of the lossy encryption scheme, i.e., it

generates (pkle, skle) ← LE.Gen(1κ, inj).
4. P1 prepares the second message zap2 of ΠZAP proving the following statement

st3 = ({comi,b, ext
i,b
1 , exti,b2 , exti,b3 , r′

i,b, zi,b, fi,b}, pkle):
∃ wit3 = ({bi, ri, ω

i
com, ωi

ext, z
′
i}i∈[κ], skle, ωleGen) s.t. ∀i:

(a) comi,bi = Com(ri;ωi
com), and

(b) exti,bi1 and exti,bi3 are the first and the third messages of
ExtCom′(ri‖ωi

com;ωi
ext) with the second message being exti,bi2 , and

(c) zi,bi = ri,bi ⊕ r′
i,bi

, and
(d) zi,1−bi =fκ

i,1−bi
(PRG(z′

i))
∨

(pkle, skle)=LE.Gen(1κ, lossy;ωleGen).
P1 uses ({1 − xi, ri,1−xi

, ωi,1−xi
com , ωi,1−xi

ext , z′
i,xi

}i∈[κ],⊥,⊥) as the witness.
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Comment: Informally, st3 is the statement that either P1 performed this step
correctly (i.e., one of zi,0, zi,1 is an image of fκ

i,1−bi
(PRG(·)) and the other

is the outcome of the coin-tossing) or pkle is a lossy key. Here, PRG is used
to make sure that zi,1−bi 
= ri,1−bi ⊕ r′

i,1−bi
holds when pkle is an injective

key.
5. P1 prepares the third message fs3 of ΠFS.
6. P1 prepares the second message nm2 of NMCom.
7. Message m3 is the tuple ({zi,b, ext

i,b
3 }, pkle, zap2, fs3, nm2).

Round 4. If zap2 or fs3 is not accepting, P2 aborts. Otherwise, P2 sends a
message m4 that is defined as follows.

1. P2 completes the execution of the oblivious transfers by computing Wi,b =
Zi,b ⊕ H(f−κ

i,b (zi,b)).
2. P2 encrypts {Wi,b}‖GC‖openCgc

using the lossy encryption scheme with pub-
lic key pkle and randomness ωleEnc (which was chosen in Round 2), i.e., it
computes CTgc = LE.Encpkle({Wi,b}‖GC‖openCgc

;ωleEnc).
3. P2 prepares the final message nm3 of NMCom.
4. Let st4 = ({fi,b, zi,b}, st2,CTgc) be the following statement:

∃wit4 = (wit2, {gi,b}, ωleEnc) s.t.
(a)wit2 = (y′, Ω,GC, ωgc, openCgc

, {Zi,b, ω
i,b
lab}) is a valid witness for st2, and

(b) ∀(i, b): fκ
i,b(g

κ
i,b(zi,b)) = zi,b, and

(c) CTgc = LE.Encpkle({Wi,b}‖GC‖openCgc
;ωleEnc), where Wi,b = Zi,b ⊕

H(gκ
i,b(zi,b)).

Then, P2 prepares the final message fs4 of ΠFS proving the following statement
(nm1, nm2, nm3, st4).

∃ ωnm and wit4 s.t.
(a) nm1 and nm3 are the first and the third message of NMCom(id2,
wit4;ωnm) with the second message being nm2, and
(b) wit4 is a valid witness for st4.

I.e., P2 proves that it committed to a witness for st4 using NMCom.
Comment: Informally, st4 is the statement that P1 performed this step and
the previous step correctly (in particular, the final messages of the oblivious
transfers and the opening of Cgc were encrypted in CTgc).

5. Message m4 is the tuple (CTgc, fs4, nm3).

Round 5. If fs4 or nm3 is not accepting, P1 aborts. Otherwise, P1 sends a
message m5 that is defined as follows.

1. P1 recovers {Wi,b}‖GC‖openCgc
by decrypting CTgc, i.e., it computes

{Wi,b}‖GC‖openCgc
= LE.Decskle(CTgc). If (GC, openCgc

) is not a valid open-
ing of Cgc, P1 aborts. Otherwise, P1 recovers the garbled labels {Zi :=
Zi,xi

} from the completion of the oblivious transfer, and then it computes
(F1(x, y), enc,mac) = EvalGC(GC, {Zi}).

2. Message m5 is the tuple (enc,mac).
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Output computation

P1’s output: P1 outputs F1(x, y), which it obtained in Round 5.
P2’s output: If MACskmac(enc) 
= mac, P2 outputs ⊥. Otherwise, it outputs

F2(x, y) = SKE.Decskske(enc).

4.2 Description of Simulator S
The simulator S internally invokes A and simulates the real-world execution for
A as follows. To simulate the interaction between A and Z, S simply forwards
messages between A and Z. To simulate the interaction between P1 and P2, S
does the following in each subsession.
Case 1: P1 is corrupted. S simulates P2’s messages as follows.

– In Round 1, S receives m1 = ({comi,b, ext
i,b
1 }, fs1) from A.

– In Round 2, S prepares m2 = ({Ci,b
lab, r

′
i,b, fi,b, ext

i,b
2 },Cgc, zap1, fs2, nm1) in the

same way as P2 does except for the following.
• S generates {Ci,b

lab} by committing to all-zero strings.
• S generates Cgc in a way that it can be decommitted to any value by using

equivocality.
• S generates nm1 by committing to a all-zero string using NMCom.

Then, S sends m2 to A.
– In Round 3, S receives m3 = ({zi,b, ext

i,b
3 }, pkle, zap2, fs3, nm2) from A. If m3

is accepting, S does the following.
1. Extracts the committed values of the ExtCom′ commitments

{(exti,b1 , exti,b2 , exti,b3 )} by brute force. The extracted values are denoted by
{r̃i,b‖ω̃i,b

com}. (If a commitment is invalid, its committed value is defined to
be ⊥.) If there is i ∈ [κ] such that for any b∗

i ∈ {0, 1}, either (r̃i,b∗
i
, ω̃

i,b∗
i

com) is
not a valid decommitment of comi,b∗

i
or it holds that zi,b∗

i

= r̃i,b∗

i
⊕ r′

i,b∗
i
, S

aborts the simulation with output Abort1.
2. Define x∗ = (x∗

1, . . . , x
∗
κ) as follows: for each i ∈ [κ], if (r̃i,0, ω̃

i,0
com) is a valid

decommitment of comi,0 and furthermore it holds that zi,0 = r̃i,0 ⊕ r′
i,0,

define x∗
i := 1, and otherwise, define x∗

i := 0.
3. Send x∗ to the ideal functionality F (through F̂) and obtain v1 =

F1(x∗, y).
4. Extract the “simulation trapdoor” σ of ΠFS by brute force from its first

three rounds (fs1, fs2, fs3).
– In Round 4, S prepares m4 = (CTgc, fs4, nm3) in the same way as P2 does

except for the following.
• S generates CTgc as follows. First, S simulates a garbled circuit and

labels by (GC∗, {Z∗
i }) ← SimGC(1κ, F ′

1, v
′
1), where v′

1 = (v1, ˜enc, m̃ac),
˜enc ← SKE.Encskske(0

κ), and m̃ac = MACskmac( ˜enc) for randomly sam-
pled skske and skmac. Second, using the equivocality of Eqcom, S obtains a
decommitment open∗

Cgc
that opens Cgc to GC∗. Third, S generates {Wi,b}

by Wi,x∗
i

:= Z∗
i ⊕H(f−κ

i,x∗
i
(zi,b)) and Wi,1−x∗

i
← {0, 1}κ. Finally, S generates

CTgc by CTgc ← LE.Encpkle({Wi,b}‖GC∗‖open∗
Cgc

).
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• S generates fs4 by completing ΠFS using the simulation trapdoor σ.
Then, S sends m4 to A.

– In Round 5, S receives m5 = (enc,mac). If m5 is accepting, S tells the ideal
functionality F to send the output to P2.

Case 2: P2 is corrupted. S simulates P1’s messages as follows.

– In Round 1, S generates m1 = ({comi,b, ext
i,b
1 }, fs1) in the same way as P1

except that S generates exti,b1 by committing to ri,b‖ωi,b
com using ExtCom′ cor-

rectly for every i ∈ [κ] and b ∈ {0, 1}. Then, S sends m1 to A.
– In Round 2, S receives m2 = ({Ci,b

lab, r
′
i,b, fi,b, ext

i,b
2 },Cgc, zap1, fs2, nm1)

from A.
– In Round 3, S generates m3 = ({zi,b, ext

i,b
3 }, pkle, zap2, fs3, nm2) in the same

way as P1 except for the following.
• S generates {zi,b} by zi,b := ri,b ⊕ r′

i,b for every i ∈ [κ] and b ∈ {0, 1}.
• S generates exti,b3 by executing ExtCom′ correctly for every i ∈ [κ] and

b ∈ {0, 1}.
• S generates pkle by (pkle, skle) ← LE.Gen(1κ, lossy) with randomness ωleGen.

(I.e., S generates a lossy public key rather than an injective one.)
• When generating zap2, S uses ({1, ri,1, ω

i,1
com, ωi,1

ext,⊥}i∈[κ], skle, ωleGen) as
the witness. (I.e., S proves that {(comi,1, ext

i,1
1 , exti,13 , zi,1)} are computed

correctly and pkle is a lossy public key.)
Then, S sends m3 to A.

– In Round 4, S receives m4 = (CTgc, fs4, nm3). If m4 is accepting, S does the
following.

1. Extract the committed value of the NMCom commitment (nm1, nm2, nm3)
by brute force. If the extracted value is not a valid witness for
st4, S aborts the simulation with output Abort2. Otherwise, the
extracted value is denoted by wit4 = wit2‖{gi,b}‖ωleEnc, where wit2 =
(y′, Ω,GC, ωgc, openCgc

, {Zi,b, ω
i,b
lab}).

2. Parse y′ as (y, skske, skmac, ωenc), send y to the ideal functionality F , and
receive v2 = F2(x, y).

– In Round 5, S generates m5 = (enc,mac) by enc := SKE.Encskske(v2;ωenc) and
mac = MACskmac(enc).

4.3 Proof of Indistinguishability

Fix any PPT adversary A, and assume for contradiction that there exists a PPT
environment Z and a PPT distinguisher D such that for infinitely many κ:

ε(κ)
def
=
∣
∣Pr [D(EXECΠ2PC,A,Z(κ)) = 1] − Pr

[

D(EXECΠ(F),S,Z(κ)) = 1
]∣
∣ ≥ 1

poly(κ)
.

(1)

We derive a contradiction by a hybrid argument. Let m be an upper bound
on the number of subsessions (e.g., an upper bound on the running time of Z).
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Let N := (10mκ/ε)2, which is a parameter that we use in the hybrid exper-
iments. (Roughly speaking, we use N to determine the number of rewinding
during extraction procedures in the hybrid experiments. We define N so that
the extraction fails with probability that is much smaller than ε.)

Before defining the hybrid experiments, we define the order of the sessions.
The order of the sessions is determined by the order of special messages, where
the message in Round 2 is special message when P1 is corrupted, and the message
in Round 3 is special message when P2 is corrupted.

Then, we define the hybrid experiments, H0:17, Hk:j (k ∈ [m], j ∈ [17]), and
Hm+1:1, as follows. Hybrid H0:17 is identical with the real experiment. Hence, in
H0:17, several parties (environment Z, adversary A, and two parties P1, P2) are
invoked and then protocol Π2PC is executed concurrently multiple times among
them; we call these executions of Π2PC the main thread. Next, for every k ∈ [m],
hybrids Hk:1, . . . ,Hk:17 are defined as follows.

Hybrid Hk:1 is the same as Hk−1:17 except that in session k on the main thread,
if P1 is corrupted, then the simulation trapdoor σ and the implicit input x∗

are extracted as follows.
1. Just before special message of session k appears on the main thread, 2N

look-ahead threads are created. Namely, from special message of session k
(inclusive), the main thread of Hk−1:17 is executed 2N times with fresh
randomness by rewinding all the parties including Z and A.
If there are at least two look-ahead threads on which Round 3 of session
k is accepting, {r̃i,b, ω̃

i,b
com} are defined as follows.

(a) For every u, v such that 1 ≤ u < v ≤ 2N , if Round 3 of session
k is accepting both on the u-th look-ahead thread and on the v-th
one, and a valid decommitment of comi,b is extractable from ExtCom′

on these threads, then r̃i,b and ω̃i,b
com are defined to be the extracted

decommitment.
(b) If r̃i,b and ω̃i,b

com are not defined by the above process, then r̃i,b =
ω̃i,b
com = ⊥.

2. Then, the main thread is resumed from special message of session k, and
if Round 3 of session k is accepting on the main thread, the following are
done. If there are less than two look-ahead threads on which Round 3
of session k is accepting, the experiment is aborted with output Abort1.
Otherwise, the simulation trapdoor σ is extracted based on the informa-
tion on the look-ahead threads and the main thread; if a valid simula-
tion trapdoor is not extractable, the experiment is aborted with output
Abort1. Next, x∗ = (x∗

1, . . . , x
∗
κ) is defined as follows: For every i ∈ [κ], let

b∗
i be the bit such that (r̃i,b∗

i
, ω̃

i,b∗
i

com) is a valid decommitment of comi,b∗
i

and furthermore it holds that zi,b∗
i

= r̃i,b∗
i

⊕ r′
i,b∗

i
; if there is no such b∗

i ,
the experiment is aborted with output Abort1, and if b∗

i is not uniquely
determined, b∗

i := 0; then, define x∗
i := 1 − b∗

i .
Hybrid Hk:2 is the same as Hk:1 except that in session k on the main thread,

if P1 is corrupted, then ΠFS in session k is switched to simulation, i.e., fs4 is
generated by using σ as the witness.
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Hybrid Hk:3 is the same as Hk:2 except that in session k on the main thread,
if P1 is corrupted, then the value committed by NMCom is switched to a
all-zero string.

Hybrid Hk:4 is the same as Hk:3 except that in session k on the main thread, if
P1 is corrupted, then {Ci,b

lab} are generated by committing to all-zero strings
by using Com.

Hybrid Hk:5 is the same as Hk:4 except that in session k on the main thread, if
P1 is corrupted, then Cgc is generated in a way that it can be opened to any
value using the equivocality and openCgc

is computed by the equivocality.
Hybrid Hk:6 is the same as Hk:5 except that in session k on the main thread, if

P1 is corrupted, then {Wi,b} are generated by Wi,x∗
i

:= Zi,x∗
i
⊕H(f−κ

i,x∗
i
(zi,x∗

i
))

and Wi,1−x∗
i

← {0, 1}κ.
Hybrid Hk:7 is the same as Hk:6 except that in session k on the main thread,

if P1 is corrupted, then GC and labels are generated by simulation, i.e., as
follows.
1. Compute v1 = F1(x∗, y) and v2 = F2(x∗, y), where y is the input of P2 in

session k.
2. Compute (GC∗, {Z∗

i }) ← SimGC(1κ, F ′
1, v

′
1), where v′

1 = (v1, ˜enc, m̃ac),
˜enc ← SKE.Encskske(v2), and m̃ac = MACskmac( ˜enc) for random skske and
skmac.

3. Set GC := GC∗ and Zi,x∗
i

:= Z∗
i . (Labels {Zi,1−x∗

i
} are not used in Hk:6.)

Hybrid Hk:8 is the same as Hk:7 except that in session k on the main thread,
if P1 is corrupted, then honest P2’s output v2 is computed as follows.
1. If MACskmac(enc) 
= mac, P2 outputs ⊥. Otherwise, it outputs F2(x∗, y).

Hybrid Hk:9 is the same as Hk:8 except that in session k on the main thread, if
P1 is corrupted, then ˜enc is generated by ˜enc ← SKE.Encskske(0

κ) during the
generation of GC and labels.

Hybrid Hk:10 is the same as Hk:9 except that in session k on the main thread,
if P2 is corrupted, then wit4 is extracted in session k as follows.
1. Just before special message of session k appears on the main thread, N

look-ahead threads are created. Namely, from special message of session
k (inclusive), the main thread of Hk:9 is executed N times with fresh
randomness by rewinding all the parties including Z and A.

2. The main thread is resumed from special message of session k. If Round
4 of session is accepting on the main thread, extract wit4 from NMCom
using the information on the look-ahead threads and the main thread; if
the extraction fails or wit4 is not a valid witness for st4, the experiment
is aborted with output Abort2.

Hybrid Hk:11 is the same as Hk:10 except that in session k on the main thread,
if P2 is corrupted, then honest P1’s output v1 is computed as follows.
1. Parse the extracted wit4 as wit2‖{gi,b}‖ωleEnc, where wit2 = (y′, Ω,GC,

ωgc, openCgc
, {Zi,b, ω

i,b
lab}) and y′ = (y, skske, skmac, ωenc).

2. Set v1 := F1(x, y) if the message m4 in Round 4 is accepting and set
v1 := ⊥ otherwise.
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Hybrid Hk:12 is the same as Hk:11 except that in session k on the main thread, if
P2 is corrupted, then m5 = (enc,mac) is generated using the keys skske, skmac

and the randomness ωenc in the extracted wit4.
Hybrid Hk:13 is the same as Hk:12 except that in session k on the main thread,

if P2 is corrupted, then pkle is switched to a lossy public key, and CTgc is no
longer decrypted in Round 5.

Hybrid Hk:14 is the same as Hk:13 except that in session k on the
main thread, if P2 is corrupted, then zap2 is generated by using ({1 −
xi, ri,1−xi

, ωi,1−xi
com , ωi,1−xi

ext ,⊥}i∈[κ], skle, ωleGen) as the witness (i.e., by using
a witness for the fact that pkle is a lossy public key).

Hybrid Hk:15 is the same as Hk:14 except that in session k on the main thread,
if P2 is corrupted, then zi,b is generated by zi,b := ri,b ⊕ r′

i,b for every i ∈ [κ]
and b ∈ {0, 1}.

Hybrid Hk:16 is the same as Hk:15 except that in session k on the main thread,
if P2 is corrupted, then exti,b1 and exti,b3 are generated by committing to
ri,b‖ωi,b

com correctly using ExtCom′ for every i ∈ [κ] and b ∈ {0, 1}.
Hybrid Hk:17 is the same as Hk:16 except that in session k on the

main thread, if P2 is corrupted, then zap2 is generated by using
({1, ri,1, ω

i,1
com, ωi,1

ext,⊥}i∈[κ], skle, ωleGen) as the witness (i.e., by using a wit-
ness for the fact that {(comi,1, ext

i,1
1 , exti,13 , zi,1)} are correctly constructed

and pkle is a lossy public key).

Finally, hybrid Hm+1:1 is identical with the ideal experiment.

Remark 1. The hybrid experiments Hk:1, . . . , Hk:17 are designed so that no look-
ahead thread is created after special message of session k.

Our goal is to show that the output of the first hybrid H0:17 and that of
the last hybrid Hm+1:1 are indistinguishable (more precisely, are distinguishable
with advantage at most ε/2.) Toward this goal, we show the indistinguishability
among the outputs of the intermediate hybrids. Also, for a technical reason, we
show that the following condition holds with high probability in each hybrid: In
a session in which P2 is corrupted, if the session is accepting then the NMCom
commitment from P2 is valid and the committed value wit4 is a valid witness
for st4. (Notice that if this condition holds, then we can extract the input of P2

from NMCom.) Formally, for every k′ ∈ [m] let Badk′ be the event that in the
k′-th session on the main thread, P2 is corrupted, Round 4 is accepting, but the
committed value wit4 of NMCom is not a valid witness for st4, and let ρk:j:k′

be the probability that Badk′ occurs in Hk:j . We first observe that ρ0:17:k′ is
negligible for every k′ (i.e., Badk′ occurs in the real experiment with negligible
probability for every k′).

Lemma 1. For every k′ ∈ [m], ρ0:17:k′ = negl(κ).

Proof. This lemma follows from the soundness of ΠFS because P2 proves in ΠFS

that a valid witness for st4 is committed in NMCom. ��
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Now we are ready to show the indistinguishability among the outputs of the
hybrids. Let Hk:j be the random variable representing the output of Hk:j . We
first prove the following lemma.

Lemma 2. For every k ∈ [m], the following two inequalities hold.

1. |Pr [D(Hk−1:17) = 1] − Pr [D(Hk:17) = 1]| ≤ 2κ + 1√
N

+
1
N

+ negl(κ). (2)

2. ∀k′ ∈ [m] : ρk:17:k′ ≤ ρk−1:17:k′ + negl(κ). (3)

Proof. Fix any k ∈ [m]. From Lemma 1, it suffices to show that the above two
inequalities hold whenever we have

∀k′ ∈ [m] : ρk−1:17:k′ = negl(κ). (4)

In what follows we show claims about the outputs of each neighboring hybrids.

Claim 1. |Pr [D(Hk−1:17) = 1] − Pr [D(Hk:1) = 1]| ≤ 2κ+1√
N

+ negl(κ). Further-
more, for every k′ ∈ [m], ρk:1:k′ ≤ ρk−1:17:k′ .

Proof. We first show the indistinguishability of the outputs of the hybrids. The
output of Hk:1 differs from that of Hk−1:17 only when it outputs Abort1 in session
k, and Hk:1 outputs Abort1 in session k only when one of the following events
occur.

Event E1: Round 3 of session k is accepting on less than two look-ahead threads
but it is accepting on the main thread.

Event E2: The extraction of the simulation trapdoor σ fails.
Event E3,i (i ∈ [κ]): There is no b∗

i such that (r̃i,b∗
i
, ω̃

i,b∗
i

com) is a valid decommit-
ment of comi,b∗

i
and zi,b∗

i
= r̃i,b∗

i
⊕ r′

i,b∗
i
.

From Markov’s inequality, E1 occurs with probability at most 1/
√

N , and from
the extractability of ΠWIPOK (inside ΠFS), E2 occurs with negligible probability.
In what follows, we show that for every i ∈ [κ], E3,i occurs with probability at
most 2/

√
N + negl(κ). Let prefix be any prefix of the execution of Hk:1 up until

the creation of the look-ahead threads in the k-th session (exclusive). We show
that for every i, under that condition that a prefix of the execution of Hk:1 is
prefix, E3,i occurs with probability at most 2/

√
N +negl(κ). For b ∈ {0, 1}, let us

say that session k is (i, b)-good if its Round 3 is accepting, a valid decommitment
(ri,b, ω

i,b
com) of comi,b is correctly committed in (exti,b1 , exti,b2 , exti,b3 ), and it holds

that zi,b = ri,b ⊕ r′
i,b. From the extractability of ExtCom′, one of the following

events occurs whenever E3,i occurs.

– Session k is (i, 0)-good on the main thread, but it is (i, 0)-good on less than
two look-ahead threads. If session k is (i, 0)-good on the main thread with
probability at most 1/

√
N , this event occurs with probability at most 1/

√
N .

Furthermore, even if session k is (i, 0)-good on the main thread with proba-
bility at least 1/

√
N , this event occurs with probability at most 1/

√
N , since

from Markov’s inequality, session k is (i, 0)-good on less than two look-ahead
threads with probability at most 1/

√
N .
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– Session k is (i, 1)-good on the main thread, but it is (i, 1)-good on less than
two look-ahead threads. From the same argument as above, this event occurs
with probability at most 1/

√
N .

– On the main thread, Round 3 of session k is accepting but it is neither (i, 0)-
good nor (i, 1)-good. From the soundness of ΠZAP, this event occurs with
negligible probability.

Hence, for every i ∈ [κ], E3,i occurs with probability at most 2/
√

N + negl(κ).
From the union bound, the probability that there exists i ∈ [κ] such that E3,i

occurs is at most 2κ/
√

N + negl(κ). Since prefix is any prefix, we conclude that
even without conditioning that a prefix of the execution of Hk:1 is prefix, the
probability that there exists i ∈ [κ] such that E3,i occurs is at most 2κ/

√
N +

negl(κ). Hence, the indistinguishability follows.
We next observe that we have ρk:1:k′ ≤ ρk−1:17:k′ . This is because the main

thread of Hk:1 is identical with that of Hk−1:17 until the experiment outputs
Abort1 in session k, and when it outputs Abort1, the experiment is aborted
immediately and no further NMCom commitment is created. ��
Claim 2. |Pr [D(Hk:1) = 1] − Pr [D(Hk:2) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:2:k′ ≤ ρk:1:k′ + negl(κ).

Proof. We first show the indistinguishability of the outputs. Hk:2 differs from
Hk:1 only in that in session k on the main thread, the simulation trapdoor is
used in ΠSWIAOK (inside ΠFS) as the witness. We then observe that, since no look-
ahead thread is created after Round 2 of session k on the main thread, ΠSWIAOK

in session k is not rewound after its second round, and so the indistinguishability
follows from the witness indistinguishability of ΠSWIAOK.

We next observe that ρk:2:k′ ≤ ρk:1:k′ + negl(κ) follows from the statistical
witness indistinguishability of ΠSWIAOK. Specifically, if ρk:2:k′ differs from ρk:1:k′

with non-negligible amount, we can break the statistical witness indistinguisha-
bility of ΠSWIAOK by checking whether Badk′ occurs or not by extracting the
committed value of the NMCom commitment by brute force. ��
Claim 3. |Pr [D(Hk:2) = 1] − Pr [D(Hk:3) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:3:k′ ≤ ρk:2:k′ + negl(κ).

Proof. We first show the indistinguishability of the outputs. Hk:3 differs from
Hk:2 only in the committed value of NMCom in session k on the main thread. We
then observe that, since no look-ahead thread is created after Round 2 of session
k on the main thread, NMCom in session k on the main thread is not rewound.
Hence, the indistinguishability follows from the hiding property of NMCom.

We next observe that ρk:3:k′ ≤ ρk:2:k′ + negl(κ) follows from the non-
malleability of NMCom. Specifically, if ρk:3:k′ differs from ρk:2:k′ with non-
negligible amount, we can break the non-malleability of NMCom by considering
an adversary that internally emulates Hk:2 while obtaining the NMCom com-
mitment of session k from the external committer and forwarding the NMCom
commitment of session k′ to the external receiver. We remark that since NMCom
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is public coin, we can emulate Hk:2 while forwarding the NMCom commitment of
session k′ to the external receiver (without worrying that it can be rewound). ��
Claim 4. |Pr [D(Hk:3) = 1] − Pr [D(Hk:4) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:4:k′ ≤ ρk:3:k′ + negl(κ).

Proof. We first show the indistinguishability of the outputs. Hk:4 differs from
Hk:3 only in the committed values of Com in session k. Hence, the indistinguisha-
bility follows from the hiding properly of Com.

We next observe that ρk:4:k′ ≤ ρk:3:k′ + negl(κ) follows from the hiding prop-
erty of Com and the extractability of NMCom. Specifically, if ρk:4:k′ differs from
ρk:3:k′ with non-negligible amount, we can break the hiding property of Com by
considering an adversary that internally emulates Hk:3 while obtaining {Ci,b

lab}
of session k from the external committer and extracting the committed value of
the NMCom commitment in session k′. We remark that there are two subtleties:

1. The extraction from NMCom requires rewinding, and hence the Com commit-
ment in session k might be rewound during the extraction from NMCom. Nev-
ertheless, we can use the hiding property of Com since Com is non-interactive
(which trivially implies that Com is hiding even when it is rewound).

2. The NMCom commitment in session k′ might be rewound in Hk:3 during the
creation of the look-ahead threads. Nevertheless, we can use its extractability
since NMCom is public coin (which implies that an adversary can internally
emulate Hk:3 while forwarding NMCom to an external receiver). ��

We remark that the statement of Claim 4 also holds w.r.t. Hk:j and Hk:j+1 for
j = 4, . . . , 8. The proofs are similar to the proof of Claim 4: the indistinguisha-
bility between the outputs of the hybrids is shown by relying on the security of
the components (e.g., the equivocality of Eqcom), and the inequality between
ρk:j:k′ and ρk:j+1:k′ is shown by additionally using the extractability of NMCom.
We therefore have the following claim.

Claim 5. |Pr [D(Hk:4) = 1] − Pr [D(Hk:9) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:9:k′ ≤ ρk:4:k′ + negl(κ).

A formal argument for this claim is given in the full version of this paper.

Claim 6. |Pr [D(Hk:9) = 1] − Pr [D(Hk:10) = 1]| ≤ 1
N + negl(κ). Furthermore,

for every k′ ∈ [m], ρk:10:k′ ≤ ρk:9:k′ .

Proof. We first show the indistinguishability of the outputs. The output of
Hk:10 differs from that of Hk:9 only when it outputs Abort2 in session k, and
Hk:10 outputs Abort2 in session k only when one of the following happens.

1. Round 4 of session k does not complete on the look-ahead threads but it
completes on the main thread.

2. Even though Round 3 of session k completes on a look-ahead thread and the
main thread, a valid witness wit4 for st4 is not extractable.
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The former occurs with probability at most 1/N from the swapping argument.
The latter occurs with negligible probability since we have ρk:9:k′ = negl(κ)
from Eq. (4). (Notice that when P2 is corrupted in session k, the main thread of
Hk:9 proceeds identically with that of Hk−1:17.) Hence, the indistinguishability
follows.

We next observe that we have ρk:10:k′ ≤ ρk:9:k′ . This is because Hk:10 is
identical with Hk:9 until it outputs Abort2 in session k, and when it outputs
Abort2, the experiment is immediately aborted. ��
We remark that the statement of Claim 4 also holds w.r.t. Hk:j and Hk:j+1 for
j = 10, . . . , 14; the proofs are similar to the proof of Claim 4. We therefore have
the following claim.

Claim 7. |Pr [D(Hk:10) = 1] − Pr [D(Hk:15) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:15:k′ ≤ ρk:10:k′ + negl(κ).

A formal argument for this claim is given in the full version of this paper.

Claim 8. |Pr [D(Hk:15) = 1] − Pr [D(Hk:16) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:16:k′ ≤ ρk:15:k′ + negl(κ).

Proof. We first show the indistinguishability of the outputs. Hk:16 differs from
Hk:15 only in that exti,xi

1 and exti,xi

3 are generated by committing to ri,xi
‖ωi,xi

com

correctly using ExtCom′ (rather than by executing “fake” ExtCom′). Since exti,xi

1

consists of Com commitments to κ pairs of 2-out-of-2 secret shares and exti,xi

3

consists of the revealing of the shares that are selected by exti,xi

2 , we use the
hiding property of Com to show the indistinguishability. Assume for contradic-
tion that the output of Hk:15 and that of Hk:16 are distinguishable. Then, we
consider an adversary ACom that internally emulates Hk:16 honestly except for
the following.

– In Round 1 of session k on the main thread, ACom obtains {exti,xi

1 } from the
external committer, where each exti,xi

1 consists of Com commitments whose
committed values are either all-zero strings or pairs of 2-out-of-2 secret shares
of ri,xi

‖ωi,xi
com.

– In Round 3 of session k on the main thread, ACom computes exti,xi

3 as in the
correct execution of ExtCom′ assuming that the values committed in exti,xi

1

are the pairs of 2-out-of-2 secret shares.

When ACom receives Com commitment to the pairs of 2-out-of-2 secret shares,
the internally emulated experiment is identical with Hk:16. When ACom receives
Com commitments to all-zero strings, the internally emulated experiment is iden-
tical with Hk:15 (since in this case, exti,xi

3 consists of random strings that are
independent of other parts of the experiment). Hence, we derive a contradiction.

Remark 2. ExtCom′ in session k might be rewound in Hk:15 and Hk:16 since
look-ahead threads might be created after Round 1 of session k on the main
thread (for simulating other sessions). Nevertheless, ACom can emulate Hk:16
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while obtaining exti,xi

1 from the external committer because (1) the randomness
for generating exti,xi

1 and exti,xi

3 is not used after Round 1 and (2) exti,xi

3 on
look-ahead thread is a random string (and thus can be simulated trivially).

We next observe that ρk:16:k′ ≤ ρk:15:k′ + negl(κ) follows from the indistin-
guishability of Com. The argument for this statement is similar to the one in the
proof of Claim 4. ��
Claim 9. |Pr [D(Hk:16) = 1] − Pr [D(Hk:17) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:17:k′ ≤ ρk:16:k′ + negl(κ).

Proof. We first show the indistinguishability of the outputs. Hk:17 differs from
Hk:16 only in the witness used in ΠZAP. Hence, the indistinguishability follows
form the witness indistinguishability of ΠZAP.

We next observe that ρk:17:k′ ≤ ρk:16:k′ + negl(κ) follows from the witness
indistinguishability of ΠZAP and the extractability of NMCom. The argument for
this statement is similar to the one in the proof of Claim 4. ��

By combining Claims 1, 2, 3, 4, 5, 6, 7, 8 and 9, we conclude that the two
inequalities in the statement of Lemma 2 hold for k. This concludes the proof of
Lemma 2. ��

We next show that the output of Hm:17 and that of the last hybrid Hm+1:1

(i.e., the ideal experiment) is indistinguishable.

Lemma 3

|Pr [D(Hm:17) = 1] − Pr [D(Hm+1:1) = 1]| ≤ m

(
2κ + 1√

N
+

1

N
+ negl(κ)

)

+ negl(κ).

Proof. We consider an intermediate hybrid Ĥm:17 that is the same as Hm:17

except that the extractions from ExtCom′, ΠWIPOK, and NMCom are performed
by brute force rather than by rewinding (hence, no look-ahead thread is created
in Ĥm:17). That is, Ĥm:17 is the same as Hm:17 except that in a session in which
P1 is corrupted, the simulation trapdoor σ and the committed values {r̃i,b‖ω̃i,b

com}
of ExtCom′ are extracted by brute force, and in a session in which P2 is corrupted,
the committed value wit4 of NMCom is extracted by brute force.

First, we observe that the output of Ĥm:17 and that of Hm+1:1 are identical,
that is,

Pr
[
D(Ĥm:17) = 1

]
= Pr [D(Hm+1:1) = 1] . (5)

This can be seen by inspection: in Ĥm:17, all the messages of the honest parties
are generated in the same way as in Hm+1:1 and the outputs of the honest parties
are computed in the same way as in Hm+1:1.

Next, we show the indistinguishability between the output of Ĥm:17 and that
of Hm:17. We first observe that when Hm:17 outputs neither Abort1 nor Abort2,
the messages and outputs of the honest parties are statistically close to those
that would be computed with brute-force extractions (i.e., as in Ĥm:17).
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– When Hm:17 does not output Abort2, a valid witness wit4 for st4 is extracted
in every session in which P2 is corrupted, and the same wit4 would be also
extracted by brute-force extraction. (This is because from Lemmas 1 and 2,
the probability that Badk′ occurs in Hm:17 is negligible for every k′ ∈ [m].)

– When Hm:17 does not output Abort1, a valid simulation trapdoor σ is extracted
in every session in which P1 is corrupted, and although a different simulation
trapdoor might be extracted as σ by brute-force extraction, the information
about σ is statistically hidden because a statistical witness-indistinguishable
argument ΠSWIAOK is used in ΠFS.

– When Hm:17 does not output Abort1, an implicit input x∗ is defined according
to the values extracted from ExtCom′ in every session in which P1 is corrupted.
If pkle is an injective public key in such a session, the same x∗ would be defined
by brute-force extraction except with negligible probability. (This is because
if pkle is an injective public key, the soundness of ΠZAP guarantees that for
every i ∈ [κ], there is a unique b∗

i ∈ {0, 1} such that (exti,b
∗
i

1 , ext
i,b∗

i
2 , ext

i,b∗
i

3 )
is a correct ExtCom′ commitment to a valid decommitment (ri,b∗

i
, ω

i,b∗
i

com) of
comi,b∗

i
and zi,b∗

i
= ri,b∗

i
⊕r′

i,b∗
i
.) If pkle is a lossy public key in such a session, a

different x∗ might be defined by brute-force extraction.5 However, x∗ is used
only to compute CTgc and the output of honest P2, where CTgc is generated
by LE.Encpkle(·) (which statistically hides the plaintext when pkle is lossy) and
the output of P2 is ⊥ when mac in Round 5 is rejecting (which is almost always
the case when pkle is lossy because skmac is statistically hidden in this case).
Thus, the information about x∗ is statistically hidden in this case.

We next analyze the probability that Hm:17 outputs Abort1 or Abort2. From
Lemma 2, we have

|Pr [D(H0:17) = 1] − Pr [D(Hm:17) = 1]| ≤ m

(
2κ + 1√

N
+

1
N

+ negl(κ)
)

.

Then, since H0:17 (i.e., the real experiment) never output Abort1 or Abort2, we
have that Hm:17 outputs Abort1 or Abort2 with probability at most

m

(
2κ + 1√

N
+

1
N

+ negl(κ)
)

.

By combining the above, we obtain
∣
∣
∣Pr
[

D(Ĥm:17) = 1
]

− Pr [D(Hm:17) = 1]
∣
∣
∣ ≤ m

(
2κ + 1√

N
+

1

N
+ negl(κ)

)

+ negl(κ).

(6)

From Eqs. (5) and (6), we obtain

|Pr [D(Hm:17) = 1] − Pr [D(Hm+1:1) = 1]| ≤ m

(
2κ + 1√

N
+

1

N
+ negl(κ)

)

+ negl(κ).

��
5 This is because from an invalid ExtCom′ commitment, the brute-force extractor

always outputs ⊥ but the rewinding extractor can output any value (in particular,
it can output even a valid decommitment of Com).
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From Lemmas 2 and 3 and N = (10mκ/ε)2, we have
∣
∣Pr [D(EXECΠ2PC,A,Z(κ)) = 1] − Pr

[
D(EXECΠ(F),S,Z(κ)) = 1

]∣∣

= |Pr [D(H0:17) = 1] − Pr [D(Hm+1:1) = 1]|

≤ 2m

(
2κ + 1√

N
+

1
N

+ negl(κ)
)

+ negl(κ) ≤ 5mκ√
N

=
ε

2
.

This contradicts to Eq. (1). This concludes the proof of Theorem 1.
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