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Abstract. We present novel variants of the dual-lattice attack against
LWE in the presence of an unusually short secret. These variants are
informed by recent progress in BKW-style algorithms for solving LWE.
Applying them to parameter sets suggested by the homomorphic encryp-
tion libraries HElib and SEAL yields revised security estimates. Our
techniques scale the exponent of the dual-lattice attack by a factor of
(2 L)/(2 L + 1) when log q = Θ(L log n), when the secret has constant
hamming weight h and where L is the maximum depth of supported
circuits. They also allow to half the dimension of the lattice under
consideration at a multiplicative cost of 2h operations. Moreover, our
techniques yield revised concrete security estimates. For example, both
libraries promise 80 bits of security for LWE instances with n = 1024 and
log2 q ≈ 47, while the techniques described in this work lead to estimated
costs of 68 bits (SEAL) and 62 bits (HElib).

1 Introduction

Learning with Errors (LWE), defined in Definition 1, has proven to be a
rich source of cryptographic constructions, from public-key encryption and
Diffie-Hellman-style key exchange (cf. [Reg09,Pei09,LPR10,DXL12,BCNS15,
ADPS16,BCD+16]) to fully homomorphic encryption (cf. [BV11,BGV12,Bra12,
FV12,GSW13,CS15]).

Definition 1 (LWE [Reg09]). Let n, q be positive integers, χ be a probabil-
ity distribution on Z and s be a secret vector in Z

n
q . We denote by Ls,χ,q the

probability distribution on Z
n
q × Zq obtained by choosing a ∈ Z

n
q uniformly at

random, choosing e ∈ Z according to χ and considering it in Zq, and returning
(a, c) = (a, 〈a, s〉 + e) ∈ Z

n
q × Zq.

Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Z
n
q × Zq are

sampled according to Ls,χ,q or the uniform distribution on Z
n
q × Zq.

Search-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉 + e) ∈
Z

n
q × Zq sampled according to Ls,χ,q.
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We may write LWE instances in matrix form (A, c), where rows correspond
to samples (ai, ci). In many instantiations, χ is a discrete Gaussian distribution
with standard deviation α q/

√
2π. Though, in this work, like in many works on

cryptanalysis of LWE, the details of the error distribution do not matter as long
as we can bound the size of the error under additions.

The bit-security of concrete LWE instances is a prominent area of cur-
rent cryptographic research, in particular in light of standardisation initiatives
for LWE-based schemes and LWE-based (somewhat) homomorphic encryption
being proposed for applications such as computation with medical data [KL15].
See [APS15] for a relatively recent survey of known (classical) attacks.

Applications such as [KL15] are enabled by progress in homomorphic
encryption in recent years. The two most well-known homomorphic encryption
libraries are HElib and SEAL. HElib [GHS12a,HS14] implements BGV [BGV12].
SEAL v2.0 [LP16] implements FV [Bra12,FV12]. Both schemes fundamentally
rely on the security of LWE.

However, results on the expected cost of solving generic LWE instances do
not directly translate to LWE instances as used in fully homomorphic encryp-
tion (FHE). Firstly, because these instances are typically related to the Ring-
LWE assumption [LPR10,LPR13] instead of plain LWE. Secondly, because these
instances are typically small-secret instances. In particular, they typically sam-
ple the secret s from some distribution B as defined below. We call such instances
B-secret LWE instances.

Definition 2. Let n, q be positive integers. We call

B any distribution on Z
n
q where each component ≤ 1 in absolute value, i.e.

‖s(i)‖ ≤ 1 for s ←$ B.
B+ the distribution on Z

n
q where each component is independently sampled uni-

formly at random from {0, 1}.
B− the distribution on Z

n
q where each component is independently sampled uni-

formly at random from {−1, 0, 1}.
B+

h the distribution on Z
n
q where components are sampled independently uni-

formly at random from {0, 1} with the additional guarantee that at most h
components are non-zero.

B−
h the distribution on Z

n
q where components are sampled independently uni-

formly at random from {−1, 0, 1} with the additional guarantee that at most
h components are non-zero.

Remark 1. In [BLP+13], instances with s ←$ B+ are referred to as binary-secret;
B+ is used in [FV12]; B− is used in Microsoft’s SEAL v2.0 library1 and [LN14];
B−
64 is the default choice in HElib, cf. [GHS12b, Appendix C.1.1] and [HS14].

It is an open question how much easier, if any, B-secret LWE instances are
compared to regular LWE instances. On the one hand, designers of FHE schemes

1 cf. KeyGenerator::set poly coeffs zero one negone() at https://sealcrypto.codeplex.
com/SourceControl/latest#SEAL/keygenerator.h.

https://sealcrypto.codeplex.com/SourceControl/latest#SEAL/keygenerator.h
https://sealcrypto.codeplex.com/SourceControl/latest#SEAL/keygenerator.h
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typically ignore this issue [GHS12a,LN14,CS16]. This could be considered as
somewhat justified by a reduction from [ACPS09] showing that an LWE instance
with an arbitrary secret can be transformed into an instance with a secret fol-
lowing the noise distribution in polynomial time and at the loss of n samples.
Hence, such instances are not easier than instances with a uniformly random
secret, assuming sufficiently many samples are available. As a consequence, LWE
with a secret following the noise distribution is considered to be in normal form.
Given that the noise in homomorphic encryption libraries is also typically rather
small—SEAL and HElib use standard deviation σ ≈ 3.2—the distribution B−

gives rise to LWE instances which could be considered relatively close to normal-
form LWE instances. However, considering the actual distributions, not just the
standard deviations, it is known that LWE with error distribution B is insecure
once sufficiently many samples are available [AG11,ACFP14,KF15].

On the other hand, the best, known reduction from regular LWE to B+-secret
LWE has an expansion factor of log q in the dimension. That is, [BLP+13] gives a
reduction from regular LWE in dimension n to LWE with s ←$ B+ in dimension
n log q.

In contrast, even for noise with width ≈ √
n and s ←$ B− the best known

lattice attacks suggest an expansion factor of at most log log n [BG14], if at all.
Overall, known algorithms do not perform significantly better for B-secret LWE
instances, perhaps reinforcing our confidence in the common approach of simply
ignoring the special form of the secret.

One family of algorithms has recently seen considerable progress with regards
to B-secret instances: combinatorial algorithms. Already in [Reg09] it was
observed that the BKW algorithm, originally proposed for LPN by Blum, Kalai
and Wasserman [BKW00], leads to an algorithm in 2Θ(n) time and space for solv-
ing LWE. The algorithm proceeds by splitting the components of the vectors ai

into blocks of k components. Then, it searches for collisions in the first block in
an “elimination table” holding entries for (possibly) all qk different values for
that block. This table is constructed by sampling fresh (ai, ci) pairs from the
LWE oracle. By subtracting vectors with colliding components in the first block,
a vector of dimension n − k is recovered, applying the same subtraction to the
corresponding ci values, produces an error of size

√
2α q. Repeating the process

for consecutive blocks reduces the dimension further at the cost of an increase
in the noise by a factor

√
2 at each level. This process either continues until all

components of ai are eliminated or when there are so few components left that
exhaustive search can solve the remaining low-dimensional LWE instance.

A first detailed study of this algorithm when applied to LWE was provided
in [ACF+15]. Subsequently, improved variants were proposed, for small secret
LWE instances via “lazy modulus switching” [AFFP14], via the application
of an FFT in the last step of the algorithm [DTV15], via varying the block
size k [KF15] and via rephrasing the problem as the coding-theoretic problem
of quantisation [GJS15]. In particular, the works [KF15,GJS15] improve the
exploitation of a small secret to the point where these techniques improve the
cost of solving instances where the secret is as big as the error, i.e. arbitrary
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LWE instances. Yet, combinatorial algorithms do not perform well on FHE-
style LWE instances because of their large dimension n to accommodate the
large modulus q.

1.1 Our Contribution/Outline

We first review parameter choices in HElib and SEAL as well as known algo-
rithms for solving LWE and related problems in Sect. 2.

Then, we reconsider the dual-lattice attack (or “dual attack” in short) which
finds short vectors y such that y · A ≡ 0 mod q using lattice reduction. In
particular, we recast this attack as the lattice-reduction analogue of the BKW
algorithm and adapt techniques and lessons learned from BKW-style algorithms.
Applying these techniques to parameter sets suggested for HElib and SEAL, we
arrive at revised concrete and asymptotic security estimates.

First, in Sect. 3, we recall (the first stage of) BKW as a recursive dimension
reduction algorithm for LWE instances. Each step transforms an LWE instance
in dimension n to an instance in dimension n − k at the cost of an increase
in the noise by a factor of

√
2. This smaller instance is then reduced further

by applying BKW again or solved using another algorithm for solving LWE;
typically some form of exhaustive search once the dimension is small enough.
To achieve this dimension reduction, BKW first produces elimination tables
and then makes use of these tables to sample possibly many LWE samples in
dimension n−k relatively cheaply. We translate this approach to lattice reduction
in the low advantage regime: we perform one expensive lattice reduction step
followed by many relatively cheap lattice reductions on rerandomised bases. This
essentially reduces the overall solving cost by a factor of m, where m is the
number of samples required to distinguish a discrete Gaussian distribution with
large standard deviation from uniform modulo q. We note that this approach
applies to any LWE instance, i.e. does not rely on an unusually short secret and
thus gives cause for a moderate revision of many LWE estimates based on the
dual-attack in the low advantage regime. It does, however, rely on the heuristic
that these cheap lattice reduction steps produce sufficiently short and random
vectors. We give evidence that this heuristic holds.

Second, in Sect. 4, we observe that the normal form of the dual attack—
finding short vectors y such that y ·A ≡ x mod q is short—is a natural analogue
of “lazy modulus switching” [AFFP14]. Then, to exploit the unusually small
secret, we apply lattice scaling as in [BG14]. The scaling factor is somewhat
analogous to picking the target modulus in modulus switching resp. picking the
(dimension of the) code for quantisation. This technique applies to any B-secret
LWE instance. For B−

h -secret instances, it reduces the cost of the dual attack
by a factor of 2L/(2L + 1) in the exponent when log q = Θ (L log n) for L the
supported depth of FHE circuits and when h is a constant.

Third, in Sect. 5, we focus on s ←$ B±
h and adapt the dual attack to find

short vectors which produce zero when multiplied with a subset of the columns
of A. This, as in BKW, produces a smaller, easier LWE instance which is then
solved using another algorithm. In BKW, these smaller instances typically have
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very small dimension (say, 10). Here, we consider instances with dimension of
several hundreds. This is enabled by exploiting the sparsity of the secret and
by relaxing the conditions on the second step: we recover a solution only with a
small probability of success. The basic form of this attack does not rely on the
size of the non-zero components (only on the sparsity) and reduces the cost of
solving an instance in dimension n to the cost of solving an instance in dimension
n/2 multiplied by 2h where h is the hamming weight of the secret (other trade-
offs between multiplicative cost increase and dimension reduction are possible
and typically optimal). We also give an improved variant when the non-zero
components are also small.

In Sect. 6, we put everything together to arrive at our final algorithm Silke,
which combines the techniques outlined above; inheriting their properties. We
also give revised security estimates for parameter sets suggested for HElib and
SEAL in Table 1. Table 1 highlights that the techniques described in this work
can, despite being relatively simple, produce significantly revised concrete secu-
rity estimates for both SEAL and HElib.

Table 1. Costs of dual attacks on HElib and SEAL. Rows “log2 q” give bit sizes for the
maximal modulus for a given n, for SEAL it is taken from [LN14], for HElib it is chosen
such that the expected cost is 280 resp. 2128 s according to [GHS12a]. The rows “dual”
give the log cost (in operations) of the dual attack according to our lattice-reduction
estimates without taking any of our improvements into account; The row “Silkesmall”
gives the log cost of Algorithm 3 with “sparse” set to false; The rows “Silkesparse”
give the log cost of Algorithm 3 with “sparse” set to true. The “sparse” flag toggles
whether the approach described in Sect. 5 is enabled or not in Algorithm 3.

n 1024 2048 4096 8192 16384

SEAL 80-bit

log2 q 47.5 95.4 192.0 392.1 799.6

dual 83.1 78.2 73.7 71.1 70.6

Silkesmall 68.1 69.0 68.2 68.4 68.8

HElib 80-bit

log2 q 47.0 87.0 167.0 326.0 638.0

dual 85.2 85.2 85.3 84.6 85.5

Silkesparse 61.3 65.0 67.9 70.2 73.1

HElib 128-bit

log2 q 38.0 70.0 134.0 261.0 511.0

dual 110.7 110.1 109.3 108.8 108.9

Silkesparse 73.2 77.4 81.2 84.0 86.4
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Table 2. Logarithms of algorithm costs in operations mod q when applied to example
parameters n = 2048, q ≈ 263.4, α ≈ 2−60.4 and s ←$ B−

64. The row “base line” gives
the log cost of attacks according to our lattice-reduction estimates without taking any
of our improvements into account.

Strategy Dual Decode Embed

HElib 188.9 — —

Base line 124.2 116.6 114.5

Sect. 4 101.0 — —

Sect. 5 97.1 111.0 110.9

Sect. 6 83.9 — —

2 Preliminaries

Logarithms are base 2 if not stated otherwise. We write vectors in bold, e.g. a,
and matrices in upper-case bold, e.g. A. By a(i) we denote the i-th component of
a, i.e. a scalar. In contrast, ai is the i-th element of a list of vectors. We write Im

for the m × m identity matrix over whichever base ring is implied from context.
We write 0m×n for the m×n zero matrix. A lattice is a discrete subgroup of Rn.
It can be represented by a basis B. We write Λ(B) for the lattice generated by
the rows of the matrix B, i.e. all integer-linear combinations of the rows of B.
We write Λq(B) for the q-ary lattice generated by the rows of the matrix B over
Zq, i.e. the lattice spanned by the rows B and multiples of q. We write An:m for
the rows n, . . . , m − 1 of A. If the starting or end point is omitted it is assumed
to be 0 or the number of rows respectively, i.e. we follow Python’s slice notation.

2.1 Rolling Example

Throughout, we are going to use Example 1 below to illustrate the behaviour
of the techniques described here. See Table 2 for an overview of complexity esti-
mates for solving this set of parameters using the techniques described in this
work.

Example 1. The LWE dimension is n = 2048, the modulus is q ≈ 263.4, the noise
parameter is α ≈ 2−60.4, i.e. we have a standard deviation of σ ≈ 3.2. We have
s ←$ B−

64, i.e. only h = 64 components of the secret are ±1, all other components
are zero. This set of parameters is inspired by parameter choices in HElib and
produced by calling the function fhe params(n=2048,L=2) of the LWE estimator
from [APS15].

2.2 Parameter Choices in HElib

HElib [GHS12a,HS14] uses the cost of the dual attack for solving LWE to estab-
lish parameters. The dual strategy reduces the problem of distinguishing LWE
from uniform to the SIS problem [Ajt96]:
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Definition 3 (SIS). Given q ∈ Z, a matrix A, and t < q; find y with 0 <
‖y‖ ≤ t and

y · A ≡ 0 (mod q).

Now, given samples A, c where either c = A · s + e or c uniform, we can
distinguish the two cases by finding a short y which solves SIS on A and by
computing 〈y, c〉. On the one hand, if c = A · s + e, then 〈y, c〉 = 〈y · A, s〉 +
〈y, e〉 ≡ 〈y, e〉 (mod q). If y is short then 〈y, e〉 is also short. On the other hand,
if c is uniformly random, so is 〈y, c〉.

To pick a target norm for y, HElib picks ‖y‖ = q which allows distinguishing
with good probability because q is not too far from q/σ since σ ≈ 3.2 and q is
typically rather large. More precisely, we may rely on the following lemma:

Lemma 1 ([LP11]). Given an LWE instance characterised by n, α, q and a vec-
tor y of length ‖y‖ such that y ·A ≡ 0 (mod q), the advantage of distinguishing
〈y, e〉 from random is close to

exp(−π(‖y‖ · α)2).

To produce a short enough y, we may call a lattice-reduction algorithm. In
particular, we may call the BKZ algorithm with block size β. After performing
BKZ-β reduction the first vector in the transformed lattice basis will have norm
δm
0 ·det(Λ)1/m where det(Λ) is the determinant of the lattice under consideration,

m its dimension and the root-Hermite factor δ0 is a constant based on the block
size parameter β. Increasing the parameter β leads to a smaller δ0 but also leads
to an increase in run-time; the run-time grows at least exponential in β (see
below).

In our case, the expression above simplifies to ‖y‖ ≈ δm
0 ·qn/m whp, where n is

the LWE dimension and m is the number of samples we consider. The minimum
of this expression is attained at m =

√
n log q
log δ0

[MR09].

Explicitly, we are given a matrix A ∈ Z
m×n
q , construct a basis Y for its left

kernel modulo q and then consider the q-ary lattice Λq(Y) spanned by the rows
of Y. With high probability Y is an (m−n)×m matrix and Λq(Y) has volume
qn. Let L be a basis for Λq(Y), m′ = m − n and write Y = [Im′ |Y′] then we
have

L =
(
Im′ Y′

0 q In

)
.

In other words, we are attempting to find a short vector y in the integer row
span of L.

Given a target for the norm of y and hence for δ0, HElib2 estimates the cost
of lattice reduction by relying on the following formula from [LP11]:

log tBKZ(δ0) =
1.8

log δ0
− 110, (1)

2 https://github.com/shaih/HElib/blob/a5921a08e8b418f154be54f4e39a849e74489319/
src/FHEContext.cpp#L22.

https://github.com/shaih/HElib/blob/a5921a08e8b418f154be54f4e39a849e74489319/src/FHEContext.cpp#L22
https://github.com/shaih/HElib/blob/a5921a08e8b418f154be54f4e39a849e74489319/src/FHEContext.cpp#L22
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where tBKZ(δ0) is the time in seconds it takes to BKZ reduce a basis to achieve
root-Hermite factor δ0. This estimate is based on experiments with BKZ in the
NTL library [Sho01] and extrapolation.

2.3 LP Model

The [LP11] model for estimating the cost of lattice-reduction is not correct.
Firstly, it expresses runtime in seconds instead of units of computation.

As Moore’s law progresses and more parallelism is introduced, the number of
instructions that can be performed in a second increases. Hence, we first must
translate Eq. (1) to units of computation. The experiments of Lindner and Peik-
ert were performed on a 2.33 Ghz AMD Opteron machine, so we may assume
that about 2.33 · 109 operations can be performed on such a machine in one
second and we scale Eq. (1) accordingly.3

Secondly, the LP model does not fit the implementation of BKZ in NTL. The
BKZ algorithm internally calls an oracle for solving the shortest vector prob-
lem in smaller dimension. The most practically relevant algorithms for realising
this oracle are enumeration without preprocessing (Fincke-Pohst) which costs
2Θ(β2) operations, enumeration with recursive preprocessing (Kannan) which
costs βΘ(β) and sieving which costs 2Θ(β). NTL implements enumeration with-
out preprocessing. That is, while it was shown in [Wal15] that BKZ with recursive
BKZ pre-processing achieves a run-time of poly(n) ·βΘ(β), NTL does not imple-
ment the necessary recursive preprocessing with BKZ in smaller dimensions.
Hence, it runs in time poly(n) · 2Θ(β2) for block size β.

Thirdly, the LP model assumes a linear relation between 1/ log(δ0) and the
log of the running time of BKZ, but from the “lattice rule-of-thumb” (δ0 ≈
β1/(2β)) and 2Θ(β) being the complexity of the best known algorithm for solving
the shortest vector problem, we get:

Lemma 2 ([APS15]). The log of the time complexity achieve a root-Hermite
factor δ0 with BKZ is

Θ

(
log(1/ log δ0)

log δ0

)

if calling the SVP oracle costs 2Θ(β).

To illustrate the difference between Lemma 2 and Eq. (1), consider Regev’s
original parameters [Reg05] for LWE: q ≈ n2, α q ≈ √

n. Then, solving
LWE with the dual attack and advantage ε requires a log root-Hermite fac-
tor log δ0 = log2

(
α
√

ln(1/ε)/π
−1

)
/(4n log q) [APS15]. Picking ε such that

log
√

ln(1/ε)/π ≈ 1, the log root-Hermite factor becomes log δ0 = 9 log n
32n . Plug-

ging this result into Eq. 1, we would estimate that solving LWE for these para-
meters takes log tBKZ(δ0) = 32n

5 log n − 110 s, which is subexponential in n.

3 The number of operations on integers of size log q depends on q and is not constant.
However, constant scaling provides a reasonable approximation for the number of
operations for the parameter ranges we are interested in here.
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2.4 Parameter Choices in SEAL 2.0

SEAL v2.0 [LP16] largely leaves parameter choices to the user. However, it pro-
vides the ChooserEvaluator::default parameter options() function which returns val-
ues from [LN14, Table 2].4 This table gives a maximum log q for 80 bits of secu-
rity for n = 1024, 2048, 4096, 8192, 16384. We reproduce these values for log q in
Table 1. The default standard deviation is σ = 3.19.

The values of [LN14, Table 2] are based on enumeration costs and the simula-
tor from [CN11,CN12]. Furthermore, to extrapolate from available enumeration
costs from [CN12,LN14] assumes calling the SVP oracle in BKZ grows only expo-
nentially with β, i.e. as 20.64β−28. Note that this is overly optimistic, as [CN12]
calls enumeration with recursive preprocessing to realise the SVP oracle inside
BKZ, which has a complexity of βΘ(β).

Finally, we note that the SEAL v2.0 manual [LP16] cautions the user against
relying on the security provided by the list of default parameters.

2.5 Lattice Reduction

We will estimate the cost of lattice reduction using the following assumptions:

BKZ-β produces vectors with δ0 ≈
(

β
2πe (πβ)

1
β

) 1
2(β−1)

[Che13]. The SVP oracle

in BKZ is realised using sieving and sieving in blocksize β costs tβ = 20.292 β+12.31

clock cycles. Here, 0.292β follows from [BDGL16], the additive constant +12.31
is based on experiments in [Laa15]. BKZ-β costs c n · tβ clock cycles in dimen-
sion n for some small constant c based on experiments in [Che13]; cf. [Che13,
Figure 4.6]. This corresponds roughly to 2 c tours of BKZ. We pick c = 8 based
on our experiments with [FPL16].

This estimate is more optimistic than the estimate in [APS15], which does
not yet take [BDGL16] into account and bases the number of SVP oracle calls
on theoretical convergence results [HPS11] instead of experimental evidence. On
the other hand, this estimate is more pessimistic than [BCD+16] which assumes
one SVP call to be sufficient in order to protect against future algorithmic devel-
opments. While such developments, amortising costs across SVP calls during
one BKZ reduction, are plausible, we avoid this assumption here in order not
to “oversell” our results. However, we note that our improvements are some-
what oblivious to the underlying lattice-reduction model used. That is, while
the concrete estimates for bit-security will vary depending on which estimate
is employed, the techniques described here lead to improvements over the plain
dual attack regardless of model. For completeness, we give estimated costs in
different cost models in Appendix C.

According to the [LP11] estimate, solving Example 1 costs 2157.8 s or 2188.9

operations using the standard dual attack. The estimates outlined in this section
predict a cost of 2124.2 operations for the same standard dual attack.

4 Note that the most recent version of SEAL now recommends more conservative
parameters [LCP16], partly in reaction to this work.



112 M.R. Albrecht

2.6 Related Work

LWE. Besides the dual attack, via BKW or lattice-reduction, there is also
the primal attack, which solves the bounded distance decoding (BDD) prob-
lem directly. That is, given (A, c) with c = A · s + e or c ←$ U (

Z
m
q

)
find

s′ such that |w − c| with w = A · s′ is minimised. For this, we may employ
Kannan’s embedding [AFG14] or variants of Babai’s nearest planes after lattice
reduction [LP11,LN13]. For Example 1 the cost of the latter approach is 2116.6

operations, i.e. about a factor 190 faster than the dual attack.
Arora & Ge proposed an asymptotically efficient algorithm for solving

LWE [AG11], which was later improved in [ACFP14]. However, these algorithms
involve large constants in the exponent, ruling them out for parameters typically
considered in cryptography. We, hence, do not consider them further in this work.

Small-Secret LWE. As mentioned in [GHS12b], we can transform instances
with an unusually short secret into instances where the secret follows the error
distribution, but n samples have the old, short secret as noise [ACPS09].

Given a random m×n matrix A mod q and an m-vector c = A ·s+e mod q,
let A0 denotes the first n rows of A, A1 the next n rows, etc., e0, e1, . . . are the
corresponding parts of the error vector and c0, c1, . . . the corresponding parts of
c. We have c0 = A0 · s + e0 or A−1

0 · c0 = s + A−1
0 e0. For i > 0 we have ci =

Ai·s+ei, which together with the above gives AiA−1
0 c0−ci = AiA−1

0 e0−ei. The
output of the transformation is z = B · e0 + f with B = (A−1

0 | A1 · A−1
0 | . . . )

and z = (A−1
0 c0 | A1A−1

0 c1 | . . .) and f = (s|e1 | . . . ). For Example 1, this
reduces α from 2−60.4 to ≈ 2−60.8 and marginally improves the cost of solving.

An explicit variant of this approach is given in [BG14]. Consider the lattice

Λ = {v ∈ Z
n+m | [A | Im] · v ≡ 0 mod q}.

It has an unusually short vector (s||e). When ‖s‖ � ‖e‖, the vector (s||e) is
uneven in length. To balance the two sides, rescale the first part to have the
same norm as the second. When s ←$ B−, this scales the volume of the lattice
by σn. When s ←$ B+, this scales the volume of the lattice by (2σ)n because
we can scale by 2σ and then re-balance. When s ←$ B±

h , the volume is scaled
depending on h. For our rolling example, this approach costs 2114.5 operations,
i.e. is about a factor 830 faster than the dual attack.

Independently and concurrently to this work, a new key-exchange protocol
based on sparse secret LWE was proposed in [CKH+16]. A subset of the tech-
niques discussed here are also discussed in [CKH+16], in particular, ignoring
components of the secret and using lattice scaling as in [BG14].

Combinatorial. This work combines combinatorial and lattice-reduction tech-
niques. As such, it has some similarities with the hybrid attack on NTRU [HG07].
This attack was recently adapted to LWE in the B-secret case in [BGPW16] and
its complexity revisited in [Wun16].
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Rings. Recently, [ABD16] proposed a subfield lattice-attack on the two fully
homomorphic encryption schemes YASHE [BLLN13] and LTV [LTV12], showing
that NTRU with “overstretched” moduli q is less secure than initially expected.
Quickly after, [KF16] pointed out that the presence of subfields is not necessary
for attacks to succeed. NTRU can be considered as the homogeneous version
of Ring-LWE, but there is currently no indication that these attacks can be
translated to the Ring-LWE setting. There is currently no known algorithm
which solves Ring-LWE faster than LWE for the parameter choices (ring, error
distribution, etc.) typically considered in FHE schemes.

3 Amortising Costs

If the cost of distinguishing LWE from random with probability ε is c, the cost of
solving is customary estimated as at least c/ε [LP11]. More precisely, applying
Chernoff bounds, we require about 1/ε2 samples to amplify a decision experiment
succeeding with advantage ε to a constant advantage. Hence, e.g. in [APS15],
the dual attack is costed as the cost of running BKZ-β to achieve the target
δ0 multiplied by the number of samples required to distinguish with the target
advantage, i.e. ≈ c/ε2.

In the case of the dual attack, this cost can be reduced by performing reran-
domisation on the already reduced basis. If L is a basis for the lattice Λq(Y), we
first compute L′ as the output of BKZ-β reduction where β is chosen to achieve
the target δ0 required for some given target advantage. Then, in order to produce
sufficiently many relatively short vectors yi ∈ Λq(Y) we repeatedly multiply L′

by a fresh random sparse unimodular matrix with small entries to produce L′
i.

As a consequence, L′
i remains somewhat short. Finally, we run BKZ-β′ with

β′ ≤ β on L′
i and return the smallest non-zero vector as yi. See Algorithm 1,

where εd is chosen following Lemma 1 (see below for the expectation of ‖y‖)
and m is chosen following [SL12].

That is, similar to BKW, which in a first step produces elimination tables
which allow sampling smaller dimensional LWE samples in O(n2) operations, we
first produce a relatively good basis L′ to allow sampling yi relatively efficiently.

To produce the estimates in Table 1, we assume the same rerandomisation
strategy as is employed in fplll’s implementation [FPL16] of extreme pruning
for BKZ 2.0.5 This rerandomisation strategy first permutes rows and then adds
three existing rows together using ±1 coefficients, which would increase norms
by a factor of

√
3 < 2 when all vectors initially have roughly the same norm. For

completeness, we reproduce the algorithm in Appendix A. We then run LLL,
i.e. we set β′ = 2, and assume that our yi have their norms increased by a factor
of two, i.e. E[‖yi‖] = 2 · δm

0 qn/m.

Heuristic. We note that, in implementing this strategy, we are losing statistical
independence. To maintain statistical independence, we would consider fresh

5 https://github.com/fplll/fplll/blob/b75fe83/fplll/bkz.cpp#L43.

https://github.com/fplll/fplll/blob/b75fe83/fplll/bkz.cpp#L43
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Data: candidate LWE samples A, c ∈ Z
m×n
q × Z

m
q

Data: BKZ block sizes β, β′ ≥ 2
Data: target success probability ε
εd ← exp(−π(E[‖yi‖] · α)2);
m ← �2 log(2 − 2 ε)/ log(1 − 4 ε2d)�;
L ← basis for {y ∈ Z

m : y · A ≡ 0 mod q};
L′ ← BKZ-β reduced basis for L;
for i ← 0 to m − 1 do

U ←$ a sparse unimodular matrix with small entries;
Li ← U · L′;
L′

i ← BKZ-β′ reduced basis for Li;
yi ← shortest row vector in L′

i;
e′

i ← 〈yi, c〉;
end
if e′

i follow discrete Gaussian distribution then
return �;

else
return ⊥;

end
Algorithm 1. Silke1: Amortising costs in BKW-style SIS strategy for solving LWE

LWE samples and distinguish 〈yi, ei〉 from uniform. However, neither HElib nor
SEAL provides the attacker with sufficiently many samples to run the algorithm
under these conditions. Instead, we are attempting to distinguish 〈yi, e〉 from
uniform. Furthermore, since we are performing only light rerandomisation our
distribution could be skewed if our yi in 〈yi, e〉 are not sufficiently random.
Just as in BKW-style algorithms [ACF+15] we assume the values 〈yi, e〉 are
distributed closely enough to the target distribution to allow us to ignore this
issue.

Experimental Verification. We tested the heuristic assumption of
Algorithm 1 by rerandomising a BKZ-60 reduced basis using Algorithm 4 with
d = 3 followed by LLL reduction several hundred times. In this experiment,
we recovered fresh somewhat short vectors in each call, where somewhat short
means with a norm at most twice that of the shortest vector of L′. We give
further experimental evidence in Sect. 6.

Finally, we note that this process shares some similarities with random
sampling reduction (RSR) [Sch03], where random linear combinations are LLL
reduced to produce short vectors. While, here, we are only performing sparse
sums and accept larger norms, the techniques used to analyse RSR might per-
mit reducing our heuristic to a more standard heuristic assumption.

4 Scaled Normal-Form

The line of research improving the BKW algorithm for small secrets starting
with [AFFP14] proceeds from the observation that we do not need to find
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y · A ≡ 0 mod q, but if the secret is sufficiently small then any y such that y ·A
is short suffices, i.e. we seek short vectors (w,v) in the lattice

Λ = {(y,x) ∈ Z
m × Z

n : y · A ≡ x mod q}.

Note that this lattice is the lattice considered in dual attacks on normal form
LWE instances (cf. [ADPS15]).6 Given a short vector in (w,v) ∈ Λ, we have

w · c = w · (A · s + e) = 〈v, s〉 + 〈w, e〉 .

Here, v corresponds to the noise from “modulus switching” or quantisation in
BKW-style algorithms and w to the multiplicative factor by which the LWE
noise increases due to repeated subtractions.

Now, in small secret LWE instances we have ‖s‖ < ‖e‖. As a consequence,
we may permit ‖v‖ > ‖w‖ such that

‖ 〈w, s〉 ‖ ≈ ‖ 〈v, e〉 ‖.

Hence, we consider the lattice

Λc = {(y,x/c) ∈ Z
m × (1/c · Z)n : y · A ≡ x mod q}

for some constant c, similar to [BG14]. The lattice Λc has dimension m′ = m+n
and whp volume (q/c)n. To construct a basis for Λc, assume Am−n:m has full
rank (this holds with high probability for large q). Then Λc = Λ(L′) with

L′ =

⎛
⎝

1
c In 0n×(m−n) A

−1
m−n:m

Im−n B′

qIn

⎞
⎠

where [Im−n|B′] is a basis for the left kernel of A mod q.

Remark 2. In our estimates for HElib and SEAL, we typically have m = n and
[Im−n|B′] ∈ Z

0×n.

It remains to establish c. Lattice reduction produces a vector (w,v) with

‖(w,v)‖ ≈ δm′
0 · (q/c)n/m′

, (2)

which translates to a noise value

e = w · A · s + 〈w, e〉 = 〈c · v, s〉 + 〈w, e〉
and we set

c =
α q√
2π h

≡ √
m′ − n

to equalise the noise contributions of both parts of the above sum.
As a consequence, we arrive at the following lemma, which is attained by

combining Eq. (2) with Lemma 1.
6 The strategy seems folklore, we were unable to find a canonical reference for it.
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Lemma 3. Let m′ = 2n and c = α q√
2π h

·√m′ − n. A lattice reduction algorithm
achieving δ0 such that

log δ0 =
log

(
2n log2 ε

πα2h

)

8n

leads to an algorithm solving decisional LWE with s ←$ B−
h instance with advan-

tage ε and the same cost.

Remark 3. We focus on m′ = 2n in Lemma 3 for ease of exposure. For the
instances considered in this work, m′ = 2n is a good approximation for m′ (see
Sect. 6).

For Example 1 we predict at a cost of 2107.4 operations mod q for solving
Decision-LWE when applying this strategy. Amortising costs as suggested in
Sect. 3 reduces it further to 2101.0 operations mod q.

Asymptotic Behaviour. The general dual strategy, without exploiting small
secrets, requires

log δ0 =
log

(
− 2 log ε

α2q

)

4n

according to [APS15]. For HElib’s choice of 8 = α q and h = 64 and setting ε
constant, this expression simplifies to

log δ0 =
log q + Cd

4n
,

for some constant Cd. On the other hand, Lemma 3 simplifies to

log δ0 =
log q + 1

2 log n + Cm

4n
, (3)

for some constant Cm < Cd.
For a circuit of depth L, BGV requires log q = L log n + O(L) [GHS12b,

Appendix C.2]. Applying Lemma 2, we get that

lim
κ→∞

costm

costd
= lim

n→∞
costm

costd
=

2L

2L + 1
,

where costd is the log cost of the standard dual attack, costm is the log cost
under Lemma 3 and κ the security parameter. The same analysis applies to any
constant h. Finally, when h = 2/3n, i.e. s ←$ B−, then the term 1/2 · log n
vanishes from (3), but Cm > Cd.

5 Sparse Secrets

Recall that BKW-style algorithms consist of two stages or, indeed, sub-
algorithms. First, in the reduction stage, combinatorial methods are employed
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to transform an LWE instance in dimension n into an instance of dimension
0 ≤ n′ ≤ n, typically with increased noise level α. This smaller LWE instance is
then, in the solving stage, is solved using some form of exhaustive search over
the secret.

Taking the same perspective on the dual attack, write A = [A0 | A1] with
A0 ∈ Z

m×(n−k)
q and A1 ∈ Z

m×k
q and find a short vector in the lattice

Λ = {y ∈ Z
m : y · A0 ≡ 0 mod q}.

Each short vector y ∈ Λ produces a sample for an LWE instance in dimen-
sion k and noise rate α′ = E[‖y‖] · α. Setting k = 0 recovers the original dual
attack. For k > 0, we may now apply our favourite algorithm for solving small
dimensional, easy LWE instances. Applying exhaustive search implies log2 k < κ
for s ←$ B+ resp. log3 k < κ for s ←$ B− when κ is the target level of security.

The case s ←$ B±
h permits much larger k by relaxing the conditions we place

on solving the k-dimensional instance. Instead of solving with probability one,
we solve with some probability pk and rerun the algorithm in case of failure.

For this, write A · P = [A0 | A1] and s · P = [s0 | s1] where P is a random
permutation matrix. Now, over the choice of P there is a good chance that
s1 = 0 and hence that A1 · s1 ≡ 0 mod q. That is, the right choice of P places
all non-zero components of s in the s0 part.

In particular, with probability 1−h/n a coordinate s(i) is zero. More generally,
picking k components of s at random will pick only components such that s(i) = 0
with probability

pk =
k−1∏
i=0

(
1 − h

n − i

)
=

(
n−h

k

)
(
n
k

) ≈
(

1 − h

n

)k

.

Hence, simply treating k > 0 in the solving stage the same as k = 0 suc-
ceeds with probability pk. The success probability can be amplified to close to
one by repeating the elimination and solving stages ≈ 1/pk times assuming we
distinguish with probability close to 1.

It is clear that the same strategy translates to the primal attack by simply
dropping random columns before running the algorithm. However, for the dual
attack, the following improvement can be applied. Instead of considering only
s1 = 0, perform exhaustive search over those solutions that occur with suffi-
ciently high probability. In particular, over the choice of P, the probability that
s1 contains k − j components with s1,(i) = 0 and exactly j components with
s1,(i) �= 0 is

pk,j =

(
n−h
k−j

)(
h
j

)
(
n
k

) ,

i.e. follows the hypergeometric distribution.
Now, assuming s ←$ B−

h , to check if any of those candidates for s1 is correct,
we need to compare

(
k
j

) ·2j distributions against the uniform distribution mod q.
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Thus, after picking a parameter 
 we arrive at Algorithm 2 with cost:

1. m calls to BKZ-β in dimension n − k.
2. m · ∑


i=0

(
k
i

) · 2i · i additions mod q to evaluate m samples on all possible
solutions up to weight 
.

Assuming m is chosen such that distinguishing LWE from uniform suc-
ceeds with probability close to one, then Algorithm 2 succeeds with probability∑


j=0 pk,j .

Data: m × n matrix A over Zq

Data: m vector c over Zq

Data: density parameter 0 ≤ � ≤ 64
Data: dimension parameter 0 ≤ k ≤ n
P ←$ n × n permutation matrices;

[A0 | A1] ← A · P with A0 ∈ Z
m×(n−k)
q ;

L ← basis for scaled-dual lattice of A0;
for i ← 0 to m − 1 do

yi ← a short vector in the row span of L;
e′

i ← 〈yi, c〉;
end
if e′

i follow discrete Gaussian distribution then
return �;

end

foreach s′ in the set of
∑�

i=0

(
k
i

) · 2i candidate solutions do
for i ← 0 to m − 1 do

e′′
i = e′

i + 〈yi · A1, s
′〉;

end
if e′′

i follow discrete Gaussian distribution then
return �;

end

end
return ⊥;

Algorithm 2. Silke2: Sparse secrets in BKW-style SIS strategy for solving LWE.

Asymptotic Behaviour. We arrive at the following simple lemma:

Lemma 4. Let 0 ≤ h < n and d > 1 be constants, ph,d be some constant
depending on h and d, cn,α,q be the cost of solving LWE with parameters n, α, q

with probability ≥ 1 − 2−p2
h,d Then, solving LWE in dimension n with s ←$ B±

h

costs O(cn−n/d,α,q) operations.

Proof. Observe that ph,d = limn→∞
(
n−h
n/d

)
/
(

n
n/d

)
is a constant for any constant

0 ≤ h < n and d > 1. Hence, solving O(1/ph,d) = O(1) instances in dimension
n − n/d solves the instance in dimension n. ��
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Remark 4. Picking d = 2 we get limn→∞
(
n−h
n/2

)
/
(

n
n/2

)
= 2−h and an overall costs

of O(2h · cn/2,α,q). This improves on exhaustive search, which costs O(2h · (
n
h

)
),

when cn/2,α,q ∈ o
((

n
h

))
.

6 Combined

Combining the strategies described in this work, we arrive at Algorithm 3
(Silke). It takes a flag sparse which enables the sparse strategy of Algorithm 2.
In this case, we enforce that distinguishing LWE from uniform succeeds with
probability 1− 2−κ when we guessed s′ correctly. Clearly, this parameter can be
improved, i.e. this probability reduced, but amplifying the success probability is
relatively cheap, so we forego this improvement.

We give an implementation of Algorithm 3 for sparse = false in Appendix B.
For brevity, we skip the sparse = true case. We also tested our implementation
on several parameter sets:7

1. Considering an LWE instance with n = 100 and q ≈ 223, α = 8/q and h = 20,
we first BKZ-50 reduced the basis L for c = 16. This produced a short vector
w such that | 〈w, c〉 | ≈ 215.3. Then, running LLL 256 times, we produced
short vectors such that E[| 〈wi, c〉 |] = 215.7 and standard deviation 216.6.

2. Considering an LWE instance with n = 140 and q ≈ 240, α = 8/q and
h = 32, we first BKZ-70 reduced the basis L for c = 1. This took 64 hours and
produced a short vector w such that | 〈w, c〉 | ≈ 223.7, with E[| 〈w, c〉 |] ≈ 225.5

conditioned on |w|. Then, running LLL 140 times (each run taking about 50 s
on average), we produced short vectors such that E[| 〈wi, c〉 |] = 226.0 and
standard deviation 226.4 for 〈wi, c〉.

3. Considering the same LWE instance with n = 140 and q ≈ 240, α = 8/q and
h = 32, we first BKZ-70 reduced the basis L for c = 16. This took 65 hours
and produced a short vector w such that | 〈w, c〉 | ≈ 224.7 after scaling by c,
cf. E[| 〈w, c〉 |] ≈ 224.8. Then, running LLL 140 times (each run taking about
50 s on average), we produced short vectors such that E[| 〈wi, c〉 |] = 225.5 and
standard deviation 225.9 for 〈wi, c〉.

4. Considering again the same LWE instance with n = 140 and q ≈ 240, α = 8/q
and h = 32, we first BKZ-70 reduced the basis L for c = 1. This took 30 hours
and produced a short vector w such that | 〈w, c〉 | ≈ 225.2, cf. E[| 〈w, c〉 |] ≈
225.6. Then, running LLL 1024 times (each run taking about 50 s on average),
we produced 1016 short vectors such that E[| 〈wi, c〉 |] = 225.8 and standard
deviation 226.1 for 〈wi, c〉.

7 All experiments on “strombenzin” with Intel(R) Xeon(R) CPU E5-2667 v2 @
3.30 GHz.
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Data: candidate LWE samples A, c ∈ Z
m×n
q × Z

m
q

Data: BKZ block sizes β, β′ ≥ 2
Data: target success probability ε
Data: sparse flag toggling sparse strategy
Data: scale factor c ≥ 1
Data: dimension parameter 0 ≤ k ≤ n, 0 when sparse is set
Data: density parameter 0 ≤ � ≤ k, 0 when sparse is set
// distinguishing advantage per sample from β, β′

εd ← exp(−π(E[‖yi‖] · α)2);
if sparse then

εt ← 1 − 1/2κ; // for security parameter κ

r ← max
(
�log(1 − ε)/ log(1 −∑�

j=0 pk,j)�, 1
)
;

else
εt, r ← ε, 1;

end
// required number of samples for majority vote

m ← �2 log(2 − 2 εt)/ log(1 − 4 ε2d)�;
repeat r times

P ←$ n × n permutation matrices;

[A0 | A1] ← A · P with A0 ∈ Z
m×(n−k)
q ;

L ← basis for {(y,x/c) ∈ Z
m × (1/c · Z)n : y · A0 ≡ x mod q};

L′ ← BKZ-β reduced basis for L;
for i ← 0 to m − 1 do

U ←$ a sparse unimodular matrix with small entries;
Li ← U · L′;
L′

i ← BKZ-β′ reduced basis for Li;
(wi,vi) ← shortest row vector in L′

i;
e′

i ← 〈wi, c〉;
end
if e′

i follow discrete Gaussian distribution then
return �;

end

foreach s′ in the set of
∑�

i=1

(
k
i

) · 2i candidate solutions do
for i ← 0 to m − 1 do

e′′
i = e′

i + 〈wi · A1, s
′〉;

end
if e′′

i follow discrete Gaussian distribution then
return �;

end

end

return ⊥;
Algorithm 3. Silke: (Sparse) BKW-style SIS Strategy for solving LWE
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5. Considering an LWE instance with n = 180 and q ≈ 240, α = 8/q and h = 48,
we first BKZ-70 reduced the basis L for c = 8. This took 198 hours8 and
produced a short vector w such that | 〈w, c〉 | ≈ 226.7, cf. E[| 〈w, c〉 |] ≈ 225.9.
Then, running LLL 180 times (each run taking about 500 s on average), we
produced short vectors such that E[| 〈wi, c〉 |] = 226.6 and standard deviation
226.9 for 〈wi, c〉.

All our experiments match our prediction bounding the growth of the norms
of our vectors by a factor of two. Note, however, that in the fourth experiment
1 in 128 vectors found with LLL was a duplicate of previously discovered vector,
indicating that re-randomisation is not perfect. While the effect of this loss on
the running time of the overall algorithm is small, it highlights that further
research is required on the interplay of re-randomisation and lattice reduction.

Applying Algorithm 3 to parameter choices from HElib and SEAL, we arrive
at the estimates in Table 1. These estimates were produced using the Sage [S+15]
code available at http://bitbucket.org/malb/lwe-estimator which optimises the
parameters c, 
, k, β to minimise the overall cost.

For the HElib parameters in Table 1 we chose the sparse strategy. Here,
amortising costs as in Sect. 3 did not lead to a significant improvement, which
is why we did not use it in these cases. All considered lattices have dimension
< 2n. Hence, one Ring-LWE sample is sufficient to mount these attacks. Note
that this is less than the dual attack as described in [GHS12a] would require
(two samples).

For the SEAL parameter choices in Table 1, dimension n = 1024 requires two
Ring-LWE samples, larger dimensions only require one sample. Here, amortising
costs as in Algorithm 1 does lead to a modest improvement and is hence enabled.

Finally, we note that reducing q to ≈ 234 resp. ≈ 2560 leads to an estimated
cost of 80 bits for n = 1024 resp. n = 16384 for s ←$ B−

64. For s ←$ B−,
q ≈ 240 resp. q ≈ 2660 leads to an estimated cost of 80 bits under the techniques
described here. In both cases, we assume σ ≈ 3.2.

Acknowledgements. We thank Kenny Paterson and Adeline Roux-Langlois for help-
ful comments on an earlier draft of this work. We thank Hao Chen for reporting an
error in an earlier version of this work.

8 We ran 49 BKZ tours until fplll’s auto abort triggered. After 16 tours the norm of
the then shortest vector was by a factor 1.266 larger than the norm of the shortest
vector found after 49 tours.

http://bitbucket.org/malb/lwe-estimator
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A Rerandomisation

Data: n × m matrix L
Data: density parameter d, default d = 3
Result: U · L where U is a sparse, unimodular matrix.
for i ← 0 to 4 · n − 1 do

a ←$ {0, n − 1};
b ←$ {0, n − 1} \ {a};
L(b),L(a) ← L(a),L(b) ;

end
for a ← 0 to n − 2 do

for i ← 0 to d − 1 do
b ←$ {a + 1, n − 1};
s ←$ {0, 1};
L(a) ← L(a) + (−1)s · L(b);

end
end
return L;
Algorithm 4. Rerandomisation strategy in the fplll library [FPL16].

B Implementation

# -*- coding: utf -8 -*-

from sage.all import shuffle , randint , ceil , next_prime , log , cputime , mean , variance ,

set_random_seed , sqrt

from copy import copy

from sage.all import GF , ZZ

from sage.all import random_matrix , random_vector , vector , matrix , identity_matrix

from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler \

as DiscreteGaussian

from estimator.estimator import preprocess_params , stddevf

def gen_fhe_instance (n, q, alpha=None , h=None , m=None , seed=None):

"""

Generate FHE -style LWE instance

:param n: dimension

:param q: modulus

:param alpha: noise rate (default: 8/q)

:param h: hamming weight of the secret (default: 2/3n)

:param m: number of samples (default: n)

"""

if seed is not None:

set_random_seed(seed)

q = next_prime(ceil(q)-1, proof=False)

if alpha is None:

alpha = ZZ(8)/q

n, alpha , q = preprocess_params(n, alpha , q)

stddev = stddevf(alpha*q)

if m is None:

m = n

K = GF(q, proof=False)

A = random_matrix(K, m, n)

if h is None:

s = random_vector(ZZ, n, x=-1, y=1)

else:

S = [-1, 1]

s = [S[randint (0, 1)] for i in range(h)]

s += [0 for _ in range(n-h)]

shuffle(s)
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s = vector(ZZ , s)

c = A*s

D = DiscreteGaussian (stddev)

for i in range(m):

c[i] += D()

return A, c

def dual_instance0(A):

"""

Generate dual attack basis.

:param A: LWE matrix A

"""

q = A.base_ring (). order()

B0 = A.left_kernel (). basis_matrix (). change_ring(ZZ)

m = B0.ncols ()

n = B0.nrows ()

r = m-n

B1 = matrix(ZZ, r, n). augment(q*identity_matrix(ZZ , r))

B = B0.stack(B1)

return B

def dual_instance1(A, scale =1):

"""

Generate dual attack basis for LWE normal form.

:param A: LWE matrix A

"""

q = A.base_ring (). order()

n = A.ncols ()

B = A.matrix_from_rows (range(0, n)). inverse (). change_ring(ZZ)

L = identity_matrix(ZZ, n). augment(B)

L = L.stack(matrix(ZZ, n, n). augment(q* identity_matrix(ZZ , n)))

for i in range(0, 2*n):

for j in range(n, 2*n):

L[i, j] = scale*L[i, j]

return L

def balanced_lift(e):

"""

Lift e mod q to integer such that result is between -q/2 and q/2

:param e: a value or vector mod q

"""

from sage.rings.finite_rings.integer_mod import is_IntegerMod

q = e.base_ring (). order()

if is_IntegerMod(e):

e = ZZ(e)

if e > q//2:

e -= q

return e

else:

return vector(balanced_lift(ee) for ee in e)

def apply_short1(y, A, c, scale =1):

"""

Compute ‘y*A‘, ‘y*c‘where y is a vector in the integer row span of

‘‘dual_instance(A)‘‘

:param y: (short) vector in scaled dual lattice

:param A: LWE matrix

:param c: LWE vector

"""

m = A.nrows ()

y = vector(ZZ , 1/ZZ(scale) * y[-m:])

a = balanced_lift(y*A)

e = balanced_lift(y*c)

return a, e

def log_mean(X):

return log(mean([abs(x) for x in X]), 2)

def log_var(X):

return log(variance(X). sqrt(), 2)
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def silke(A, c, beta , h, m=None , scale=1, float_type="double"):

"""

:param A: LWE matrix

:param c: LWE vector

:param beta: BKW block size

:param m: number of samples to consider

:param scale: scale rhs of lattice by this factor

"""

from fpylll import BKZ , IntegerMatrix , LLL , GSO

from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

if m is None:

m = A.nrows()

L = dual_instance1(A, scale=scale)

L = IntegerMatrix.from_matrix(L)

L = LLL.reduction(L, flags=LLL.VERBOSE)

M = GSO.Mat(L, float_type=float_type)

bkz = BKZ2(M)

t = 0.0

param = BKZ.Param(block_size=beta ,

strategies=BKZ.DEFAULT_STRATEGY ,

auto_abort=True ,

max_loops =16,

flags=BKZ.VERBOSE|BKZ.AUTO_ABORT|BKZ.MAX_LOOPS)

bkz(param)

t += bkz.stats.total_time

H = copy(L)

import pickle

pickle.dump(L, open("L-%d-%d.sobj"%(L.nrows , beta), "wb"))

E = []

Y = set()

V = set()

y_i = vector(ZZ , tuple(L[0]))

Y.add(tuple(y_i))

E.append(apply_short1(y_i , A, c, scale=scale )[1])

v = L[0]. norm()

v_ = v/sqrt(L.ncols)

v_r = 3.2* sqrt(L.ncols - A.ncols ())*v_/scale

v_l = sqrt(h)*v_

fmt = u"{\"t\": %5.1fs , \"log(sigma )\": %5.1f, \"log(|y|)\": %5.1f, \"log(E[sigma ]):\"%5.1f}"

print

print fmt%(t,

log(abs(E[-1]), 2),

log(L[0]. norm(), 2),

log(sqrt(v_r**2 + v_l**2), 2))

print

for i in range(m):

t = cputime ()

M = GSO.Mat(L, float_type=float_type)

bkz = BKZ2(M)

t = cputime ()

bkz.randomize_block (0, L.nrows , stats=None , density =3)

LLL.reduction(L)

y_i = vector(ZZ , tuple(L[0]))

l_n = L[0]. norm()

if L[0]. norm() > H[0]. norm ():

L = copy(H)

t = cputime(t)

Y.add(tuple(y_i))

V.add(y_i.norm ())

E.append(apply_short1(y_i , A, c, scale=scale )[1])

if len(V) >= 2:

fmt = u"{\"i\": %4d, \"t\": %5.1fs , \"log(|e_i |)\": %5.1f, \"log(|y_i |)\": %5.1f,"

fmt += u"\"log(sigma )\": (%5.1f,%5.1f), \"log(|y|)\": (%5.1f,%5.1f), |Y|: %5d}"

print fmt%(i+2, t, log(abs(E[-1]), 2), log(l_n , 2), log_mean(E), log_var(E),

log_mean(V), log_var(V), len(Y))

return E
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C Alternative Cost Models

See Table 3.

Table 3. Costs of dual attacks on HElib and SEAL in the [LP11] cost model resp.
assuming SVP in dimension β costs 20.64β−28 operations as in [LN14] plugged into the
estimator from [APS15]; cf. Table 1.

[LP11]

n 1024 2048 4096 8192 16384

SEAL 80-bit

q 47.5 95.4 192.0 392.1 799.6

dual 107.9 97.4 88.0 82.0 78.8

small 80.5 81.1 78.2 76.4 75.9

HElib 80-bit

q 47.0 87.0 167.0 326.0 638.0

dual 111.5 112.4 111.5 111.2 111.2

sparse 58.1 62.6 65.4 69.2 71.5

HElib 128-bit

q 38.0 70.0 134.0 261.0 511.0

dual 162.0 162.1 160.1 159.1 159.5

sparse 76.3 81.9 85.8 86.2 90.3

[LN14,APS15], 8 − 16 BKZ tours

n 1024 2048 4096 8192 16384

SEAL 80-bit

q 47.5 95.4 192.0 392.1 799.6

dual 101.2 91.7 83.1 78.3 76.1

small 74.5 76.0 74.1 73.5 73.2

HElib 80-bit

q 47.0 87.0 167.0 326.0 638.0

dual 105.1 107.1 106.8 107.7 108.8

sparse 54.1 59.1 62.8 65.8 68.9

HElib 128-bit

q 38.0 70.0 134.0 261.0 511.0

dual 158.4 159.8 158.6 158.3 160.0

sparse 72.0 77.4 81.4 84.3 87.1
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